€ lektor books

Raspberry Pi Pico
Essentials

0
SAutorunApp

i Vord Okc
ello WoriaG:

board XPWM

-
th
hone
w

UAR
Bluetoo
Ssmartp
E_EI
C ()
ta

Sensors
7-segmen

DAC & AD

“

Dogan lbrahim

(>)lektor

design > share > sell

Raspberry Pi Pico Essentials

Program, build, and master over 50 projects with
MicroPython and the RP2040 microprocessor

Dogan Ibrahim

(lektor

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11, NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

@ All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

® Declaration

The Author and the Publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other
cause.

@ British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

@® ISBN 978-3-89576-427-1 Print
ISBN 978-3-89576-428-8 eBook
ISBN 978-3-89576-429-5 cPub

@ © Copyright 2021: Elektor International Media B.V.
Prepress Production: D-Vision, Julian van den Berg

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social
media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

e 4

http://www.elektormagazine.com

Prefacettt i i e s s e 9
Chapter 1 e Raspberry PiPicoHardware. . . .« st s st v s v s s s s s nnnnnnnnnnnnnns 11
1. OVaIVIBW & i 11
1.2 Pico hardware module e 11
1.3 Comparison with the Arduino UNO. o i i i e 13
1.4 Operating conditions and poweringthe Pico 14
1.5 Pinout of the RP2040 microcontroller and Picomodule. 14
1.6 Other RP2040 microcontroller-based boards 16
1.6.1 Adafruit Feather RP2040 o e e 16

1.6.2 Adafruit ItsyBitsy RP2040 o o i 17

1.6.3 Pimoroni PicoSystem 17

1.6.4 Arduino Nano RP2040 Connectottt it e e e 18

1.6.5 SparkFun Thing Plus RP2040 oo it i e e 18

1.6.6 Pimoroni Pico Explorer Base i 19

1.6.7 SparkFun MicroMod RP2040 Processor.t 20

1.6.8 SparkFun Pro Micro RP2040. o i i i i e e 20

1.6.9 PICORGB Keypad Base v it ittt ittt et e e e e e e e e e 20

1.6.10 Pico Omnibus. oo e 21

1.6.11 Pimoroni Pico VGADemo Base. i 21
Chapter 2 e Raspberry PiPicoProgramming. oot ivnnnesrnnnnnnsnns 23
2.1 OVEIVIEW o o it e e 23
2.2 Installing MicroPython onthe Pico. i s 23
2.2.1 Using a Raspberry Pi 4 to aid installing MicroPython on the Pico. 23

2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico. 29
Chapter 3 e Raspberry Pi Pico Simple Hardware Projects v v i i i v uus 48
3L OVEIVIEW ottt e e e s 48
3.2 Project 1: Flashing LED - Using the on-board LED. 48
3.3 Project 2: External flashing LED it 51
3.4 Project 3: Flashing SOS in MOrse. o vttt e e e e e e e e e e 53
3.5 Project 4: Flashing LED —usingatimer e 55
3.6 Project 5: Alternately flashing LEDs i 56
3.7 Project 6: Changing the LED flashing rate — using pushbutton interrupts 58

Raspberry Pi Pico Essentials

3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB. 63
3.9 Project 8: Randomly flashing red, green, and blue LEDs —RGB 65
3.10 Project 9: Rotating LEDS. o 0ttt 66
3.11 Project 10: Binary-counting LEDsS. 69
3.12 Project 11: Christmas lights (random flashing 8 LEDS)o v v v 72
3.13 Project 12: Electronic diceot iia 74
3.14 Project 13: Lucky day of theweek i i 78
3.15 Project 14: Door alarm with 7-colour flashing LED 80
3.16 Project 15: 2-digit, 7-segment display 84
3.17 Project 16: 4-digit, 7-segment display seconds counter 93
Bl LCDS ottt e e e e 98
3.19 Project 17: LCD functions — displayingtext. 100
3.20 Project 18: Seconds counter — LCD ittt i e e 104
3.21 Project 19: Reaction timer with LCD. i 106
3.22 Project 20: Ultrasonic distance measurement 108
3.23 Project 21: Height of a person (stadiometer) 112
3.24 Project 22: Ultrasonic reverse parking aid with buzzer 114
Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCS) s i n v nn s 117
4.1 OVEIVIEBW & i ittt 117
4.2 Project 1: Voltmeter. o 117

4.3 Project 2: Temperature measurement - using the internal temperature sensor. . . 119

4.4 Project 3: Temperature measurement - using an external temperature sensor. . . 120

4.5 Project 4: ON/OFF temperature controller. 122
4.6 Project 5: ON/OFF temperature controller with LCD. 125
4.7 Project 6: Measuring the ambient lightintensity 128
4.8 Project 7: Ohmmeter. o o e e e e 130
4.9 Project 8: Internal and external temperature 133
4.10 Project 9: Using a thermistor to measure temperature. 135
Chapter5eDatalogging.ot vunnnnrasssssnsnnnnnnnnnnnnnns 140
5.1 OVEIVIEW . o ot s 140
5.2 Project 1: Logging the temperaturedata, 140
5.3 Project 2: Readingtheloggeddata 142

e 6

Chapter 6 e Pulse Width Modulation (PWM)ttt iiiinnnnnnnnnns 144
6.1 OVEIVIBW . . it e e e e e 144
6.2 Basic theory of pulsewidth modulation. 144
6.3 PWM channels of the Raspberry PiPico 146
6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle 147
6.5 Project 2: Changing the brightnessofanLED 148
6.6 Project 3: Varying the speed of a brushed DCmotor 149
6.7 Project 4: Frequency generator with LCD ittt e e 150
6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform 152
6.9 PROJECT 6: Melody Maker i e e e e e e e e e e 154

Chapter 7 e Serial Communication (UART) ¢t nnnnnssnnnnnsnns 158
7.1 OVEIVIEW . vt e s 158
7.2 Raspberry Pi Pico UART serial portsttt e 160

7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno 160

7.4 Project 2: Receiving and displaying numbers from the ArduinoUno........... 165
7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link 166
Chapter8eTheI2CBusInterface.......u:ueuerernrnrnsnsnnnnnnsnsnnns 170
B 1 OV VIBW . ottt 170
B.2The I2C BUS . o i vt it et e e e e e e 170
8.3 12C pins of the Raspberry Pi PiCO v vt i it e e e e e et e e 171
8.4 Project 1: I2C port eXpander. oottt e 172
8.5 Project 2: EEPROM MeEmMOry o it e e e e e e e 177
8.6 Project 3: TMP102 temperature Sensor ittt it e et e e e 182
8.7 Project 4: BMP280 temperature and atmospheric pressure sensor. 188

8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD ... 196

Chapter9e TheSPIBusInterface. v vt nrtrsrteannnnnnnnnnnnnnnnnns 198
0.1 OVIVIEW & ottt 198
9.2 Raspberry Pi Pico SPI pOrtS. . . v v v vttt i e e e e e e e 199
9.3 Project 1: SPI Port expander. ittt 200

Chapter 10 e Wi-Fi with the Raspberry PiPico i iinnnnnnnns 206
10,1 OVEIVIBW & ettt et e e 206
10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi 206

Raspberry Pi Pico Essentials

10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi. . . .
Chapter 11 e Bluetooth with the Raspberry PiPico....... ...t nnarnnn
11,1 OVeIVIEBW &t
11.2 Raspberry Pi Pico Bluetooth interface. i
11.3 Project 1: Controlling an LED from your smartphone using Bluetooth.

11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to
the smartphone. i

Chapter 12 e Using Digital-to-Analogue Converters (DACSs)t uuaun
12,1 OVeIVIEBW o ot et e e
12.2 The MCP4921 DAC . . o v v it e et e e e e e e
12.3 Project 1: Generating squarewave signal with amplitude under +3.3V
12.4 Project 2: Generating fixed voltages o
12.5 Project 3: Generating a sawtooth signal
12.6 Project 4: Generating a triangularsignal.
12.7 Project 5: Arbitrary periodic waveform.
12.8 Project 6: Generating a sinewave i
12.9 Project 7: Generating an accurate sinewave signal using timer interrupts.

Chapter 13 e Automatic Program Execution after the Raspberry Pi Pico Boots ..

Appendix AeBillofComponents.:i:ittiiiiiinnnnnnnnnnnnnnnnnnns

1 T =

Preface

Preface

Traditionally, a computer was built using a microprocessor chip and many external support
chips. A microprocessor includes a Central Processing Unit (CPU), an Arithmetic and Logic
Unit (ALU), and timing and control circuitry — and as such it is not particularly useful on
its own. A microprocessor must be supported by many external chips such as memory,
input/output, timers, interrupt circuits etcetera, before it becomes a useful computer. The
disadvantage of this type of design was that the chip count was large, resulting in complex
design and wiring, and high power consumption.

A microcontroller on the other hand is basically a single chip computer including a CPU,
memory, input/output circuitry, timers, interrupt circuitry, clock circuitry, and several other
circuits and modules, all housed in a single silicon chip. Early microcontrollers were limited
in their capacities and speed and they consumed considerably more power. Most of the ear-
ly microcontrollers were 8-bit processors with clock speeds in the region of several MHz and
offered only hundreds of bytes of program and data memories. These microcontrollers were
traditionally programmed using the assembly languages of the target processors. 8-bit mi-
crocontrollers are still in common use, especially in small projects where large amounts of
memory or high speed are not the main requirements. With the advancement of chip tech-
nology we now have 32-bit and 64-bit microcontrollers with speeds in the region of several
GHz and offering several GB of memory space. Microcontrollers are nowadays programmed
using a high-level language such as C, C#, BASIC, PASCAL, JAVA, etc.

The Raspberry Pi Pico is a high-performance microcontroller, designed especially for phys-
ical computing. Readers should realize that microcontrollers are very different from sin-
gle-board computers like the Raspberry Pi 4 (and other family members of the Raspberry
Pi). There is no operating system on the Raspberry Pi Pico. Microcontrollers like the Rasp-
berry Pi Pico can be programmed to run a single task and they can be used in fast real-time
control and monitoring applications.

The Raspberry Pi Pico is based on the fast and very efficient dual-core ARM Cortex-M0+
RP2040 microcontroller chip running at up to 133 MHz. The chip incorporates 264 KB of
SRAM and 2 MB of Flash memory. What makes the Raspberry Pi Pico very attractive is its
large number of GPIO pins, and commonly used peripheral interface modules, such as SPI,
12C, UART, PWM, plus fast and accurate timing modules.

Perhaps the biggest advantage of the Raspberry Pi Pico compared to other many microcon-
trollers in the marketplace is its very low cost, large memory, and fast and accurate timing
modules. At the time of writing this book the cost of a single unit was around $6.

Raspberry Pi Pico can easily be programmed using some of the popular high-level languag-
es such as MicroPython, or C/C++. There are many application notes, tutorials, and data-
sheets available on the Internet covering the use of the Raspberry Pi Pico.

Raspberry Pi Pico Essentials

This book is an introduction to using the Raspberry Pi Pico microcontroller with the Micro-
Python programming language. The Thonny development environment (IDE) is used in all
the projects in the book, and readers are recommended to use this IDE. There are over
50 working and tested projects in the book, covering almost all aspects of the Raspberry
Pi Pico.

The following sub-headings are given for each project to make it easy to follow:

o Title

¢ Brief Description

e Aim

¢ Block Diagram

e Circuit Diagram

e Program Listing with full description

I hope your next microcontroller-based projects make use of the Raspberry Pi Pico, and this
book becomes useful in the development of your projects.

Dr Dogan Ibrahim
London, February, 2021

e 10

Chapter 1 e Raspberry Pi Pico Hardware

Chapter 1 e Raspberry Pi Pico Hardware

1.1 Overview

The Raspberry Pi Pico is a single-board microcontroller module developed by the Raspberry
Pi Foundation. This module is based on the RP2040 microcontroller chip. In this Chapter we
will be looking at the hardware details of the Raspberry Pi Pico microcontroller module in
some detail. From here on, we will be calling this microcontroller module "Pico" for short, in
for appreciation and recognition though of its official name: Raspberry Pi Pico.

1.2 Pico hardware module

The "Pico" is a very low-cost, $4 microcontroller module based on the RP2040 microcon-
troller chip having a dual Cortex-M0+ processor. Figure 1.1 shows the front view of the Pico
hardware module which is basically a small board. At the centre of the board is the tiny,
7x7 mm RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of
the board there are 40 gold-coloured metal GPIO (General-Input-Output) pins with holes.
Soldering pins to these holes enables external connections to be easily made to the board.
The holes are marked starting with number 1 at the top left corner of the board and the
numbers increase downwards up to number 40 which is at the top right-hand corner of the
board. The board is breadboard-compatible (i.e. 0.1-inch pin spacing), and after soldering
the pins, the board can be plugged on a breadboard for easy connection to the GPIO pins
using jumper wires. Next to these holes you will see bumpy circular cut-outs which can be
plugged in on top of other modules without having any physical pins fitted.

Raspberry Pi Pico (©2020

Figure 1.1: Front view of the Pico hardware module.

At one edge of the board there is the micro-USB B port for supplying power to the board as
well as for programming it. Next to the USB port there is an on-board user LED that can be
used during program development. Next to this LED sits a button nhamed as BOOTSEL that
is used during programming of the microcontroller as we will see in next Chapters. At the
other edge of the board, next to the Raspberry Pi logo, there are 3 connectors that can be
used for debugging your programs.

Figure 1.2 shows the back view of the Pico hardware module. Here, all the GPIO pins are
identified with letters and numbers. You will notice the following types of letters and num-
bers:

o 11

Raspberry Pi Pico Essentials

GND

AGND

3V3

GPO - GP22

GP26_A0 - GP28_A2
ADC_VREF

TP1 - TP6

SWDIO, GND, SWCLK
RUN

3V3_EN

VSYS

VBUS

Sl

Figure 1.2:

power supply ground (digital ground)

power supply ground (analogue ground)

+3.3 V power supply (output)

digital GPIO

analogue inputs

ADC reference voltage

test points

debug interface

default RUN pin. Connect LOW to reset the RP2040.
this pin by default enables the +3.3V power supply.
+3.3 V can be disabled by connecting this pin LOW.
system input voltage (1.8 V to 5.5 V) used by the on-
board SMPS to generate +3.3 V supply for the board.
micro-USB input voltage (+5 V)

[} =
= =
=] =

N9 HO-APE

e o o 9
- R
o w ® ==

Back view of the Pico hardware module.

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input) -
GP25 (output)
GP24 (input) -
GP23 (output)

used in ADC mode (ADC3) to measure VSYS/3
connected to on-board user LED

VBUS sense - HIGH if VBUS is present, else LOW
Controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

e 12

e 32-bit RP2040 Cortex-M0+ dual core processor operating at 133 MHz
e 2 Mbyte Q-SPI Flash memory

e 264 Kbyte SRAM memory

e 26 GPIO (+3.3V compatible)

e 3x 12-bit ADC pins

¢ Serial Wire Debug (SWD) port
¢ Micro-USB port (USB 1.1) for power (+5V) and data (programming)
e 2x UART, 2 x I2C, 2 x SPI bus interface

e 16x PWM channels

e 1x Timer (with 4 alarms), 1x Real-Time Counter
¢ On-board temperature sensor

Chapter 1 e Raspberry Pi Pico Hardware

e On-board LED (on port GP25)
e MicroPython, C, C++ programming
e Drag & drop programming using mass storage over USB

The Pico's GPIO hardware is +3.3 V compatible and it is therefore important to be careful
not to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V
to +3.3 V logic converter circuits or resistive potential divider circuits must be used if it is
required to interface devices with +5 V outputs to the Pico GPIO pins.

Figure 1.3 shows a resistive potential divider circuit that can be used to lower +5V to +3.3 V.

1K

+5V o — O +3.3V
EZK

Figure 1.3: resistive potential divider circuit.

1.3 Comparison with the Arduino UNO

The Arduino UNO is one of the most popular microcontroller development boards used by
students, practicing engineers, and hobbyists. Table 1.1 shows a comparison of the Raspber-
ry Pi Pico with the Arduino UNO. It is clear from this table that the Pico is much faster than
the Arduino UNO, having larger flash and data memories, providing more digital input/output
pins, and sporting an on-board temperature sensor. The Arduino UNO operates at +5 V and
its GPIO pins are +5 V compatible. Perhaps some advantages of the Arduino UNO include
having a built-in EEPROM memory, and having a 6-channel ADC rather than a 3-channel.

Feature Raspberry Pi Pico Arduino UNO
Microcontroller RP2040 Atmega328P
Core and bits Dual core, 32-bit, Cortex-M0+ Single-core 8-bit
RAM 264 Kbytes 2 Kbytes

Flash 2 Mbytes 32 Kbytes

CPU speed 48 MHz to 133 MHz 16 MHz

EEPROM None 1 KByte

Power input +5 V through USB port +5V through USB port
Alternative power 2-5V via VSYS pin 7-12V

MCU operating voltage +3.3V +5V

GPIO count 26 20

ADC count 3 6

Hardware UART 2 1

Hardware 12C 2 1

Hardware SPI 2 1

Hardware PWM 16 6

Programming languages MicroPython, C, C++ C (Arduino IDE)
On-board LED 1 1

Cost $4 $20

Table 1.1: Comparison of Raspberry Pi Pico and Arduino UNO.

e 13

Raspberry Pi Pico Essentials

1.4 Operating conditions and powering the Pico
The recommended operating conditions for the Pico are:

e Operating temperature: -20°C to +85°C
e VBUS voltage: +5V £10%
e VSYS voltage: +1.8 Vto +5.5V

An on-board SMPS is used to generate the +3.3 V to power the RP2040 from a range of
input voltages from 1.8 V to +5.5 V. For example, 3 alkaline size-AA batteries can be used
to provide +4.5 V to power the Pico.

The Pico can be powered in several ways. The simplest method is to plug the micro-USB
port into a +5 V power source, such as the USB port of a computer or a +5 V power adapt-
er. This will provide power to the VSYS input (see Figure 1.4) through a Schottky diode. The
voltage at the VSYS input is therefore VBUS voltage minus the voltage drop of the Schottky
diode (about +0.7 V). VBUS and VSYS pins can be shorted if the board is powered from an
external +5 V USB port. This will increase the voltage input slightly and hence reduce rip-
ples on VSYS. VSYS voltage is fed to the SMPS through the RT6150 which generates fixed
+3.3 V for the MCU and other parts of the board. VSYS is divided by 3, and is available at
analogue input port GPIO29 (ADC3) which can easily be monitored. GPI0O24 checks the
existence of VBUS voltage and is at logic HIGH if VBUS is present.

Another method to power the Pico is by applying external voltage (+1.8 V to +5.5 V) to the
VSYS input directly (e.g., using batteries or external power supply). We can also use the
USB input and VSYS inputs together to supply power to Pico, for example to operate with
both batteries and the USB port. If this method is used, then a Schottky diode should be
used at the VSYS input to prevent the supplies from interfering with each other. The higher
of the voltages will power VSYS.

External voltage

VSYS

v

vBUS o—)f
(USB port)

Figure 1.4: Powering the Pico.

1.5 Pinout of the RP2040 microcontroller and Pico module

Figure 1.5 shows the RP2040 microcontroller pinout, which is housed in a 56-pin package.
The Pico module pinout is shown in Figure 1.6 in detail. As you can see from the illustration,
most pins have multiple functions. For example, GPIO0 (pin 1) doubles as the UARTO TX,
12C0 SDA, and the SPIO RX pin.

e 14

Chapter 1 e Raspberry Pi Pico Hardware

&

458

QSPLSCLK
QSPLSD3
SB_VDD
M
VIN
ADC_AVDD

!

52|51/50[49[48[47[46]45]4443]
10v0D [1] (42| 1ovoD
GPI00 | 2| 41| GPi029/aDC3
GPIOT [3 | (40| GPI028/ADC2
cPI02 |4 | (39| GPI027/ADC
GPI03 [5 | |38/ GP1026/anCO
GPIO4 [6 | (37| GPI025
GPIOS [7 | 36| GPI024
- GND —

GPIOG [8 35| GPI023
GPI07 | 9| (34| GPI022
10voD [10] 133 1ovop
GPIO8 [11] (32 GPI021
GPI09 [12| 31 GP1020
GPI010 [13] TOP VIEW 30| GPIO19
GPIOT1 [14] 29| oPiots

[15]16]17]18]19]20[21]22]23] 24[25]26]27] 28]

e by et 5 § §55 = o

e HE

06 oo |]

Figure 1.5: RP2040 microcontroller pinout.

(5249) a3

[uarTox fizcospa§ seiorx | cro Ble . VBUS
[uarrorx fizcosct § spiocsn | cP1[ElRe 3 INEEE
[_ono Kl okl oo |
1201504 § spiosck | P2 iR e @l 3VaE
[1zc1scL fspioTx | _Gps JORe s 3v3(ouT) |
[uarr Tx B izcospa f spiorx | cpa Jie X 35
[uarr1 Rx§ 1zcoscL | spiocsn | cps [l e o8 GP2g | Apcz |
[_ono [l - ekl G0 | acho |
1201504 | spiosck |Gpe JOle o4 Gp27 | soc1 | iociscL]
[cisci] sroix | Ge7 Rllbe o okl GPas | coco | i2ci DA
[uarri 7x § i2cospa | spiirx | cra [ile o - o g RUN
[OArrex] cosce scer o Bl e © o Gr2 |
T = 23 ST
[i2¢150A § spiisck | crio friee el Gri |
[izc1scL | spiix | cpin ECibe o @ GPo0
[uarTox | izcosoa § sriirx | cpiz Bilpe © o @ epig | sporx | izcisct]
[uarrorx § izcoscr | sericsn | cria e = o7 GPia | spiosck | 12¢1 DA
TR = = 2 ST
120150 § sprisck | cpia BT o Q8 GP17_| spio csn | 1260 sct § UARTORY
I T W 2 T) ol Gpi6 | spiorx | 1200 spA | uaRTO T

HIOMS

Figure 1.6: Raspberry Pi Pico pinout.

Figure 1.7 shows a simplified block diagram of the Pico hardware module. Notice that the
GPIO pins are directly connected from the microcontroller chip to the GPIO connector. GPIO
nos. 26-28 can be used either as digital GPIO or as ADC inputs. ADC inputs GPI026-29
have reverse-biased diodes to 3 V and therefore the input voltage must not exceed 3V3 +

e 15

Raspberry Pi Pico Essentials

300 mV. Another point to note is that if the RP2040 is not powered, applying voltages to
GPI026-29 pins may leak through the diode to the power supply (there is no problem with
the other GPIO pins and voltage can be applied when the RP2040 is not powered).

GPIO

VBUS [Q VsYS
+3.3V
I/L CONNECTOR

RT6150
DATA 3V3_EN— |

VBUS —

USB 3V3_EN VsYS —
CONNECTOR DEBUG — |
GND—

GPI0-GP22

BOOTSEL[|:|7 RP2140 ADC0-ADC2
—

LED (GP25)

| Dl vy —
ADC_VREF ——|

12MH:z —

Figure 1.7: Simplified block diagram.

1.6 Other RP2040 microcontroller-based boards
During the writing of this book, some third-party manufacturers have been developing mi-
crocontrollers based on the RP2040 chip. Some examples are given in this section.

1.6.1 Adafruit Feather RP2040
This microcontroller board (Figure 1.8) has the following basic specifications:

e 16

RP2040 32-bit Cortex-M0+ running at 125 MHz
4 MB Flash memory

264 KB RAM

4x 12-bit ADC

2% I2C, 2% SPI, 2x UART

16x PWM

200 mA LiPo charger

Reset and Bootloader buttons

24 MHz crystal

+3.3 V regulator with 500 mA current output
USB type-C connector

on-board red LED

RGB NeoPixel

on-board STEMMA QT connector with optional SWD debug port

Chapter 1 e Raspberry Pi Pico Hardware

Figure 1.8: Adafruit Feather Rp2040.

1.6.2 Adafruit ItsyBitsy RP2040

The ItsyBitsy RP2040 (Figure 1.9) is another RP2040-based microcontroller board from
Adafruit. Its basic features are very similar to Feather RP2040. It has USB-micro B connec-
tor and provides +5 V output.

uvuOuOO OOO Q0

< &)

Figure 1.9: Adafruit ItsyBitsy RP2040.

1.6.3 Pimoroni PicoSystem
This is a miniature gaming board (Figure 1.10) developed around the RP2040 microcontrol-
ler. Its basic features are:

e 133 MHz clock

264 KB SRAM

e LCD screen

* joypad

¢ buttons

e LiPo battery

e USB-C power connector

e 17

Raspberry Pi Pico Essentials

Figure 1.10: Pimoroni PicoSystem.

1.6.4 Arduino Nano RP2040 Connect
This board (Figure 1.11) offers 16 MB flash, 9-axis IMU, and a microphone. It has a very
efficient power supply section equipped with Wi-Fi/Bluetooth.

Figure 1.11: Arduino Nano RP2040 Connect.

1.6.5 SparkFun Thing Plus RP2040

This development platform (Figure 1.12) provides an SD card slot, 16 MB flash memory, a
JST single-cell battery connector, a WS2812 RGB LED, JTAG pins, and Qwiic connector. Its
basic features are:

133 MHz speed

264 KB SRAM

e 4x 12-bit ADC

e 2x UART, 2x I2C, 2x SPI
e 16X PWM

e 1x timer with 4 alarms

e 18

Chapter 1 e Raspberry Pi Pico Hardware

Figure 1.12: SparkFun Thing Plus RP2040.

1.6.6 Pimoroni Pico Explorer Base

This development board (Figure 1.13) includes a small breadboard and a 240 x 240 IPS LC
display with 4 tactile buttons. A socket is provided on the board to plug-in a Raspberry Pi
Pico board. The basic features of this development board are:

piezo speaker

1.54-inch IPS LCD

e 4x buttons

2x half-bridge motor drives

two breakout 12C sockets

e easy access to GPIO and ADC pins
mini breadboard

no soldering required

Raspberry Pi Pico not supplied

Figure 1.13: Pimoroni Pico Explorer Base.

e 19

Raspberry Pi Pico Essentials

1.6.7 SparkFun MicroMod RP2040 Processor
This board (Figure 1.14) includes a MicroMod M.2 connector for access to the GPIO pins.

Figure 1.14: SparkFun MicroMod RP 2040 Processor.

1.6.8 SparkFun Pro Micro RP2040
This board (Figure 1.15) includes a ES2812B addressable LED, boot button, reset button,
Qwiic connector, USB-C power interface, PTC fuse, and castellated GPIO pads.

Figure 1.15: SparkFun Pro Micro RP2040.

1.6.9 Pico RGB Keypad Base
This board is equipped with 4x4 rainbow-illuminated keypad (Figure 1.16) with APA102
LEDs. The basic features are:

4x4 keypad

16x APA102 RGB LEDs

e keypad connected via I2C I/O expander
e GPIO pins labelled

e 20

Chapter 1 e Raspberry Pi Pico Hardware

@t 1 6P20
o= GP18

- DERY

¢ LS RARA =" 'GP1B

Figure 1.16 Pico RGB Keypad Base.

1.6.10 Pico Omnibus
This is an expansion board (Figure 1.17) for the Pico. The basic features of this board in-
clude:

GPIO pins labelled

¢ two landing areas with labelled (mirrored) male headers for attaching add-ons
e 4x rubber feet

compatible with Raspberry Pi Pico

fully assembled

dimensions approx. 94 x 52 x 12 mm

A==

)

)

| e L
o = - !
Ger D)
)

j

pimeoronl.com/plcodisplay

Figure 1.17: Pico Omnibus.

1.6.11 Pimoroni Pico VGA Demo Base
This board (Figure 1.18) has VGA output and SD card slot. The basic features are:

e powered by Raspberry Pi Pico

e 15-pin VGA connector
e 12S DAC for line out audio

o 21

Raspberry Pi Pico Essentials

PWM audio output

SD card slot

Reset button

headers to install your Raspberry Pi Pico
three user switches

no soldering required

VIDEO PHICS ARRAY

JidIdemo

VGA, SD Card & Audio Demo Board

= B

MSNVHD

nzghcnmmlu n"“‘"""‘-’u"-“:‘
Eé’- SASRE Rz RSY SN REY S

“S\Raspberry Pi Pice ©202°J,
.r Wi A 'E

.......... ig e

et E' WY o

el bead

AUDIO LINE OUT
[T

Figure 1.18: Pimoroni Pico VGA Demo Base.

° 22

Chapter 2 ¢ Raspberry Pi Pico Programming

Chapter 2 e Raspberry Pi Pico Programming

2.1 Overview
At the time of writing this book, the Raspberry Pi Pico accepts programming with the fol-
lowing programming languages:

o C/C++
e MicroPython
e assembly language

Although the Pico by default is set up for use with the powerful and popular C/C++ lan-
guage, many beginners find it easier to use MicroPython, which is a version of the Python
programming language developed specifically for microcontrollers.

In this Chapter we will learn how to install and use the MicroPython programming language.
We will be using the Thonny text editor which has been developed specifically for Python
programs.

Many working and fully tested projects will be given in the next Chapters using MicroPython
with our Pico. Use of the C language will also be discussed in later Chapters with some
projects.

2.2 Installing MicroPython on the Pico

MicroPython must be installed on the Pico before the board can be used. Once installed,
MicroPython stays on your Pico, unless it is overwritten with something else. Installing
MicroPython requires an Internet connection, and this is required only once. Since the Pico
has no Wi-Fi connectivity, we will need to use a computer with Internet access. This can be
done either by using a Raspberry Pi (e.g. Raspberry Pi 4), or by using a PC. In this section
we will see how to install using both methods.

2.2.1 Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
The steps are as follows.

e Boot your Raspberry Pi 4 and log in to Desktop.

e Make sure your Raspberry Pi is connected to the Internet.

e Hold down the BOOTSEL button on your Pico.

e Connect your Pico to one of the USB ports of the Raspberry Pi 4 using a
micro-USB cable while holding down the button.

e Wait a few seconds and release the BOOTSEL button.

e You should see the Pico appear as a removable drive. Click OK in the
Removable medium is inserted window (Figure 2.1).

e 23

Raspberry Pi Pico Essentials

Removable mediumisinserted v ~ X

Removable medium is inserted

Type of medium: removable disk

Select the action you want to perform:

Mk Open in File Manager

Cancel OK

Figure 2.1: Click OK.

¢ In the File Manager window, you will see two files with the names

INDEX.HTM and INFO_UF2.TXT (Figure 2.2).

File Edit View Sort Go Tools

D= :BEE = A | media/pi/RPI-RP2
| Home Folder @ —

Filesystem Root == :

INDEXHT INFO_UF2
M TXT
b [Tetc i
b home
13 lib
lost+found

= media

Figure 2.2: Notice two files.

e Double-click on file INDEX.HTM and scroll down.

¢ You should see the message Welcome to your Raspberry Pi Pico displayed

in a web page (Figure 2.3).

F 2 X & raspbeypiorg/s

. Board Getting started Getting started
specifications with MicroPython with C/C++

Board Specifications

Raspberry Pi Pico is a low-cost, high-per i ller board with flexible digital
interfaces. Key features include:

= RP2040 micrecontroller chip designed by » Drag-and-drop programming using mass
Raspberry Pi in the United Kingdom storage over USB

s Nual-rars Arm Cartay M0+ nrocessor, + 26 x multi-function GPIO pins
jpiting for cache. 199 641 0.CDI 2,190 3L 1IIADT 9. 19 kit ADC 14

Figure 2.3: Displayed message.

e 24

Chapter 2 e Raspberry Pi Pico Programming

¢ Click on the Getting started with MicroPython tab and click Download UF2
file to download the MicroPython firmware. You should see the downloaded
file at the bottom of the screen. This will take only a few seconds (Figure 2.4).

Python?

full implementation of the
nming language that runs
fdded hardware like

pico_micropy...uf2 Show al

Figure 2.4: Download the UF2 file.

e Close your browser window by clicking on the cross icon located at the top right
corner.

¢ Open the File Manager by clicking on menu, followed by Accessories.

¢ Open the Downloads folder (under /home/pi) and locate the file
with the extension: .uf2. This file will have a name similar to:
micropython-20-Jan-2021.uf2 (Figure 2.5)

Edit View Sort Go Tools

File

| m 4| 5 n & " /home/pi/Downloads

| Home Folder

Figure 2.5: Locate the file with extension: ".uf2".

Drag and drop this file to Raspberry Pi Pico's removable drive which is named:
RPI-RP2 (at the top left side of the screen - see Figure 2.5).

After a while, the MicroPython firmware will be installed onto the internal
storage of Pico and the drive will disappear.

e Your Pico is now running MicroPython.

¢ Powering-down the Pico will not erase MicroPython from its memory.

Using the Thonny text editor from Raspberry Pi

Thonny is a free Python Integrated Development Environment (IDE) developed specifically
for Python. It has built-in text editor and debugger and a number of other utilities that can
be useful during program development.

In this section we will learn how to use Thonny by invoking it from Raspberry Pi. You should
leave your Pico connected to Raspberry Pi. We will create a one-line program to display the
message Hello from Raspberry Pi Pico.

e 25

Raspberry Pi Pico Essentials

The steps are given below.

¢ Click Menu, followed by Programming on your Raspberry Pi Desktop and then
click Thonny Python IDE (see Figure 2.6). The author had version 3.3.3 of
Thonny installed on his Raspberry Pi 4.

$ @ E [Downloads]
43 BlueJ Java IDE
\.d Education > s Geany Programmer's Editor
g}} Internet » go GNU Radio Companion
]H Sound & Video > .%.’ Greenfoot Java IDE
@ Graphics >)‘ Mathematica
M Games » @ mu
Q System Tools > E Node-RED
l » Accessories > E‘ Sense HAT Emulator
@8 Hamradio > @ Sonic Pi
A , Tl Thonny Python IDE

Figure 2.6: Start Thonny on your Raspberry Pi.

¢ Click on the label Python at the bottom right-hand corner of Thonny (Figure
2.7).

Shell %

5>

Python 373
A

Figure 2.7: Click on Python in the bottom right-hand corner.

¢ Click to select MicroPython (Raspberry Pi Pico) as shown in Figure 2.8.

+ The same interpreter which runs Thonny (default)
Alternative Python 3 interpreter or virtual environment
MicroPython (Raspberry Pi Pico)

CircuitPython (generic)

Configure interpreter...

Figure 2.8: Select: Raspberry Pi Pico.

¢ You should see the version number of your MicroPython displayed in the bottom
part of the screen where Shell is located (Figure 2.9).

° 26

Chapter 2 e Raspberry Pi Pico Programming

Figure 2.9: Version number of MicroPython is displayed.

We are now ready to write our simple program. Enter the following line in the
lower part of the screen where Shell sits. Program statements written in this
part of Thonny are executed online and immediately. This part is normally used
to test parts of a program. Enter:

print("Hello from Raspberry Pi Pico")

you should see message Hello from Raspberry Pi Pico displayed as shown in
Figure 2.10.

Shell %

>>>
>>>
>>> print("Hello from Raspberry Pi Pico")

Hello from Raspberry Pi Pico

>5> I

Figure 2.10: Displaying a message.

Thonny's icons

At the top of the Thonny screen you will see a humber of icons as shown in Figure 2.11.
The functions of these icons are described in this section (notice that plain letters are used
to identify the icons).

UHMIOTMMOUOWD>

e OB O

Figure 2.11: Icons presented by Thonny.

: NEW. Create a new file.

: Open. Open an existing file

: Save. Save a file

: Run. Run the current program

Debug. Debug the current program

: Step Over. Step over a function when in Debug mode
: Step Into. Step into a function in Debug mode

: Step Out. Step out of a function in Debug mode

: Resume. Resume a stopped session

Stop/Restart. Stop/restart a session

e 27

Raspberry Pi Pico Essentials

Writing a program using Thonny

In an earlier section we have seen how to execute a statement online using the Thonny
Shell. In almost all applications we have to write programs. As an example, the steps to
write and run a very simple one-line program to display message Hello from program...
are given below.

¢ Enter the program statements at the upper part of the screen as shown in
Figure 2.12.

File Edit View Run Tools Help
e ol o
13-

print("Hello from program...")

Figure 2.12: Write the program at upper part of the screen.

¢ Click File followed by Save As and give a hame to your program. e.g. First-
Prog. You have the option of storing the program either on your Raspberry Pi
or on the Pico. Click Raspberry Pi Pico to save it on the Pico (Figure 2.13).
Enter the name of your program (FirstProg) and click OK (notice that the file
is saved with the extension .py).

Wheretosaveto? v ~ x

This computer

Raspberry Pi Pico

Figure 2.13: Click Raspberry Pi Pico to save your program.

¢ Click the green arrow icon at the top of the screen (under Run) to run your
program. The output of the program will be displayed in the lower Shell part of
the screen as shown in Figure 2.14.

>>>

Hello from program...

>>>

Figure 2.14: Output of the program.

e 28

Chapter 2 ¢ Raspberry Pi Pico Programming

2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico

In Section 2.2.1 we have learned how to install MicroPython on Pico using a Raspberry
Pi 4. In this section we will see how to install MicroPython using only a PC running the
Windows 10 operating system. This is the option the readers should choose if they do not
have access to a Raspberry Pi.

The steps are as follows.

e Make sure your PC is connected to the Internet.

e Hold down the BOOTSEL button on your Pico.

e Connect your Pico to the USB port of your PC using a micro-USB cable while
holding down the button.

¢ Wait a few seconds and let go the BOOTSEL button.

¢ You should see the Pico appear as a removable drive with the name RPI-RP2
as shown in Figure 2.15 (drive E: in this case).

= This PC

J 3D Objects
Il Desktop

:| Documents
& Downloads
D Music

= Pictures
ﬂ' Videos
E. Windows (C)
«~ DATA (D)
== RPI-RP2 (E2)

«~ RPI-RP2 (E2)

W Network

Figure 2.15: Pico as a removable drive RPI-RP2.

e Click on drive RPI-RP2. You will see two files with the names INDEX.HTM and
INFO_UF2.TXT (see Figure 2.16).

« v 4 = * ThisPC * RPI-RP2 (E) ~
O Nam e e e
A Quick access
€ INDEXHTM
= This PC INFO_UF2.TXT
3D Objects

Figure 2.16: You will see two files.
e Double-click on file INDEX.HTM and scroll down.

¢ You should see the message Welcome to your Raspberry Pi Pico displayed
in a web page (Figure 2.17)

e 29

Raspberry Pi Pico Essentials

& https//www.raspberrypicrg

gyog T1eey BaTSTIeTe, TOUT 210 110 OTeTe -
documentation for both the Raspberry Pi Pico microcontroller board and our RP2040
microcontroller chip.

B Board . Getting started @ Getting started

specifications with MicroPython with C/C++

Figure 2.17: Displayed message.

¢ Click on the Getting started with MicroPython tab and click Download UF2
file to download the MicroPython firmware. You should see the downloaded
file at the bottom of the screen. This will take only a few seconds (Figure 2.18).

MicroPython.

pico_micropython_2...uf2
Open e

Figure 2.18. Download the "UF2" file.

e Close your browser window.

¢ Open the File Explorer on your PC.

¢ Open the Downloads folder and locate the file with the extension: .uf2. This
file will have the name similar to: micropython-20-Jan-2021.uf2 (Figure
2.19).

« v 4 & > ThisPC > Downloads

O Name Date modified Type
> 2 Quick access

~ Today (1)
~ = This PC

» T8I0 Nhiact

pico_micropython_20210121.uf2 01/02/2021 14:52 UF2 File

Figure 2.19: Locate file with extension ".uf2".

¢ Drag and drop this file to Raspberry Pi Pico's removable drive named:
RPI-RP2.

o After a while, the MicroPython firmware will be installed onto the internal stor-
age of Pico and the drive RPI-RP2 will disappear.

¢ Your Pico is now running MicroPython.

e Powering down the Pico will not erase MicroPython from its memory.

Using the Thonny text editor from the PC

In the previous section we have learned how to use the Thonny on Raspberry Pi and devel-
op, save, and run programs on the Pico.

In this section we will be using Thonny on the PC so that a Raspberry Pi is not needed to
develop and run our programs. First of all, we have to install Thonny on our PC (if it is not
already installed). The steps are given below.

e 30

Chapter 2 ¢ Raspberry Pi Pico Programming

¢ Go to the Thonny.org web site: https://thonny.org/ .

¢ Click on the link at the top right-hand side of the screen to install Thonny (see
Figure 2.20).

onn . Download version 3.3.3 for

I h y ~— Windows « Mac « Linux

Python IDE for beginners NB! Windows installer is signed with
new identity and you may receive
a warning dialog from Defender until
it gains more reputation.

Just click "More info" and
"Run anyway".

Figure 2.20: Click to install Thonny.

¢ You should see an icon on the Desktop (Figure 2.21) of your PC. Double-click to
start Thonny.

Thonny

Figure 2.21: Thonny icon on the PC Desktop.

e The startup screen of Thonny on your PC is shown in Figure 2.22.

e 31

https://thonny.org/

Raspberry Pi Pico Essentials

T Thonny - <untitled> @ 1:1 = [m] x
File Edit View Run Tools Help
Ji5d O% @
<untitled>
Shell
>>>
Python 3.7.9

Figure 2.22: Thonny startup screen on the PC.

Click on the label Python at the bottom right-hand corner of the screen and
click to select MicroPyhton (Raspberry Pi Pico).

You are now ready to write your programs.

Enter the following statement at the lower part of the screen (in Shell):

print("hello from Thonny on PC")

You should the message hello from Thonny on PC is displayed as shown in
Figure 2.24.

>>>
>>> print("hello from Thonny on PC")

helle from Thonny on PC

>

Figure 2.24: Displaying the message.

In this book we will be using Thonny on the PC to write programs and to execute
them on the Raspberry Pi Pico.

Simple example programs are given in the remainder sections of this Chapter. The aim here
has been to review the basic Python programming concepts. However, this book does not
aim to teach Python programming. There are many books and tutorials on the Internet for
learning Python.

e 32

Chapter 2 e Raspberry Pi Pico Programming

Example 1 — Average of two numbers read from the keyboard
In this example, two numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how data can be read from the keyboard.

Solution 1

The program is named Average and the program listing and an example run of the pro-
gram are shown in Figure 2.25. Function input is used to read the numbers in the form of
strings from the keyboard. These strings are then converted into floating point numbers
and stored in variables n1 and n2. The average is calculated by adding and then dividing
the numbers by two. The result is displayed on the screen.

* Thonny - Raspberry Pi Pico :: fAverage @ 3:38 - O
File Edit View Run Tools Help
D= O]
[Average |
print("Average of two numbers")
nl = float(input("Enter number 1: "))
n2 = float(input("Enter number 2: "))
average = (nl + n2) / 2
print("Average = ", average)

Shell
23>

Average of two numbers
Enter number 1: 12.4
Enter number 2: 6.2
Average = 9.299999
>3>
>3>
> |

Figure 2.25: Program: Average and a sample run.

Example 2 — Average of 10 numbers read from the keyboard
In this example, 10 numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how a loop can be constructed in Python.

Solution 2

The program is named Averagel0 and the program listing and an example run of the pro-
gram are shown in Figure 2.26. In this program a loop is constructed which runs from 0 to
9 (i.e. 10 times). Inside this loop the numbers are read from the keyboard, added to each
other, and stored in variable sum. The average is then calculated and displayed by dividing
sum by 10. Notice that a new-line is not printed after the print statements since the option
end ="' is used inside the print statement.

e 33

Raspberry Pi Pico Essentials

T Thonny - Raspberry Pi Pico : fAverage10 @ 3:18
File Edit View Run Tools Help

0@ [} b

Average.py * - [Average10]

print("Average of 10 numbers")

sum = @

for n in range(10):
print("Enter number”, n+l, ":",end='")
m = float(input())
sum = sum + m

average = sum / 18

print("Average = ", average)

Shell

Average of 10 numbers
Enter number
Enter number
Enter number
Enter number
Enter number
Enter number
Enter number
Enter number
Enter number
Enter number
Average = 7.

(8}

MO WE RN GG SN
s

[RIS I T T A SR

n o
)

>3 |
Figure 2.26 Program: Averagel0, and a sample run.

Example 3 — Surface area of a cylinder
In this example the radius and height of a cylinder are read from the keyboard and its sur-
face area is displayed on the screen.

Solution 3
The program is named CylArea, and the program listing and an example run of the pro-
gram are shown in Figure 2.27. The surface area of a cylinder is given by:
Surface area = 2 x m x r x h
Where r and h are the radius and height of the cylinder respectively. In this program the

math library is imported so that function Pi can be used in the program. The surface area
of the cylinder is displayed after reading its radius and height.

e 34

Chapter 2 e Raspberry Pi Pico Programming

T Thonny - Raspberry Pi Pico = /CylArea @ 3:29
File Edit View Run Tools Help
Qe o @
Averagepy* - Average10.py* [CylArea]
1 import math
2 print("Surface area of a cylinder")
r = float(input("Enter radius: "))
h = float(input("Enter height: "))
5 area = 2 * math.pi * r * h

print("Surface area = ", area)

Shell
>>>

Surface area of a cylinder
Enter radius: 12

Enter height: 20

surface area = 1507.965

23>
23>

Figure 2.27: Program: CylArea, and a sample run.

Example 4 — °C to OF conversion
In this example the program reads degrees Celsius from the keyboard and converts and
displays the equivalent degrees Fahrenheit.

Solution 4

The program is named CtoF and the program listing and an example run of the program
are shown in Figure 2.28. The formula to convert °C to °F is:

F=18xC+ 32

T Thonny - Raspberry Pi Pico :: /CtoF @ 3:10
File Edit View Run Tools Help
J&Zd O @
Average.py * - Averagel0.py* - CylAreapy* [CtoF]*

I print("Degrees C to Degrees F")

2 € = float(input("Enter C: "))

3 F=1.8*C + 32.0

print(C, "Degrees C = ", F, "Degrees F")

Shell
23>
22>
22>
Degrees C to Degrees F

Enter C: 100
100.0 Degrees C = 212.0 Degrees F

>>>

Figure 2.28: Program: CtoF, and a sample run.

e 35

Raspberry Pi Pico Essentials

Example 5 — Surface area and volume of a cylinder (user function)

In this example, the surface area and volume of a cylinder are calculated whose radius and
height are given. The program uses a function to calculate and return the surface area and
the volume.

Solution 5

The program is named CylAreaSurf and the program listing, and an example run of the
program are shown in Figure 2.29. The surface area and the volume of a cylinder are given
by:

Surfacearea =2 xn xr x h
Volume =n x r2 x h

Where r and h are the radius and height of the cylinder respectively. Function Calc is used
to get the radius and height of the cylinder. The function returns the surface area and vol-
ume to the main program which are displayed on the screen.

T Thonny - Raspberry Pi Pico =: /CylAreaSurf @ 1:12 -
File Edit View Run Tools Help

D@E o o

Average.py * - Average10py* - CylAreapy* CtoFpy* [CylAreaSurf]

import math
print("Surface area and volume of a cylinder")

def Calc(r, h):
area = 2 * math.pi * r * h
volume = math.pi * r * r * h
return(area, volume)

radius = float(input("Enter radius: "))

height = float(input("Enter height: "))

area, vol = Calc(radius, height)

print("surface area = ",area,” Volume = ", vol)

Shell

Surface area and volume of a cylinder

Enter radius: 10

Enter height: 20

Surface area = 1256.637 Volume = 6283.185

22>

Figure 2.29: Program CylAreaSurf, and a sample run.

Example 6 — Table of squares of numbers
In this example the squares of numbers from 1 to 10 are calculated and tabulated.

Solution 6

The program is named Squares, and the program listing and an example run of the pro-
gram are shown in Figure 2.30. Notice that \t prints a tab so that the data can be tabulated
nicely.

e 36

Chapter 2 e Raspberry Pi Pico Programming

We Thonny - Raspberry Pi Pico : /Squares @ 3:15
File Edit View Run Tools Help
e (V] =

Averagepy* - AveragelOpy* CylAreapy* Ciofp

print("N Square")
for i in range(11):
n=1i+1
print{(n, "\t", n*n)

Shell

S

N Square
1

2 4

3]

4 16

5 25

6 36

7 49

8 64

9 81

10 100

11 121

> |

Figure 2.30 Program: Squared numbers, and a sample run.

Example 7 — Table of trigonometric sine
In this example, the trigonometric sine is tabulated from 0 to 45 degrees in steps of 5

degrees.

Solution 7

The program is named Sines, and the program listing and an example run of the program
are shown in Figure 2.31. It is important to notice that the arguments of the trigonometric
functions must be in radians and not in degrees.

D&

Shell
222

W Thonny - Raspbenry Pi Pico = /Sines © 3:33

File Edit View Run Tools Help

0 -

Averagepy* - Averagel0py* CylAreapy* CtoFpy* CylAreay

import math
print("TABLE OF TRIGONOMETRIC SIN")
print("= ")
print("N sin")
for i in range(e, 5@, 5):

d = math.radians(i)

print(i, "\t", math.sin(d))

TABLE OF TRIGONOMETRIC SIN

sin

a
08715573
1736481
2588191
3420201
4226182
5
5735765
.6427876
0.7071068

ocoococoocoo

Figure 2.31: Program: Sines, and a sample output.

e 37

Raspberry Pi Pico Essentials

Example 8 — Table of trigonometric sine, cosine and tangent
In this example, the trigonometric sine, cosine, and tangent are tabulated from 0 to 45
degrees in steps of 5 degrees.

Solution 8
The program is named Trig, and the program listing and an example run of the program
are shown in Figure 2.32.

T Thonny - Raspbenry Pi Pico = /Trig @ 7:20

File Edit View Run Tools Help

DEE o =

Averagepy* - AveragelOpy* CylAreapy* Ctofpy* CylAreaSurfpy* Squarespy* Si

import math

print(" TABLE OF TRIGONOMETRIC FUNCTIONS")
print("”)
print("N\t Sin\t\t cCos\t\t Tan")

for i in range(@, 5@, 5)

d = math.radians(i)
s = math.sin(d)
¢ = math.cos(d)
t = math.tan(d)

print(i, "\t¥%9.7f\t%9.7f\t%0.7f" %(s,d,t))

Shel

TABLE OF TRIGONOMETRIC FUNCTIONS

N Sin Cos

0 0.0000000 000

5 0.0871557 665

10 0.1736481 0.1745329 '

15 0.2588191 0.2617994 0.2679492
20 0.3420201 0.3490658 0.3639702
25 0.4226 0.4363323 0.4663076

30 0 0. .5773502
35 0 0. 0

40 0.642787¢6 0.6

45 0.7071068 0.78

Figure 2.32 Program: Trig, and a sample output.

Example 9 — Trigonometric function of a required angle
In this example, an angle is read from the keyboard. Also, the user specifies whether the
sine (s), cosine (c), or the tangent (t) of the angle is required.

Solution 9

The program is named TrigUser, and the program listing and an example run of the pro-
gram are shown in Figure 2.33.

e 38

Chapter 2 e Raspberry Pi Pico Programming

ile Edit View Run Tools Help
0& o [~

Averagepy * AVETagE TU.pY v

import math

angle = float(input("Enter angle in degrees: "))

trig = input(“Sine (s), cosine (c), or tangent (t): ")
rad = math.radians(angle)

Area.py * - CtoF.py* - CylAreaSurf.py * - Squares.py* = Sines.p)

if trig == "s
print(math.sin(rad))
elif trig == "c":
print(math.cos(rad))
elif trig == "t"{|
print(math.tan(rad))
else:
print("Error in input")

Shell
Enter angle in degrees: 30
Sine (s), cosine (c), or tangent (t): s
0.5

>>>

Figure 2.33: Program: TrigUser, and a sample output.

Example 10 — Series and parallel resistors

This program calculates the total resistance of a number of series- or parallel-connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

Solution 10

When a number of resistors are in series, then the resultant resistance is the sum of the
resistance of each resistor. When the resistors are in parallel, then the reciprocal of the
resultant resistance is equal to the sum of the reciprocal resistances of each resistor.
Figure 2.34 shows the program listing (program: Serpal). At the beginning of the program,
a heading is displayed, and the program enters a while loop. Inside his loop, the user is
prompted to enter the number of resistors in the circuit and whether they are connected
in series or in parallel. Function str converts a number into its equivalent string. e.g. num-
ber 5 is converted into string "5". If the connection is serial (mode equals to 's'), then the
value of each resistor is accepted from the keyboard and the resultant is calculated and
displayed on the screen. If on the other hand the connection is parallel (mode is equals to
'p'), then again the value of each resistor is accepted from the keyboard and the reciprocal
of the number is added to the total. When all the resistor values are entered, the resultant
resistance is displayed on the screen.

print("RESISTORS IN SERIES OR PARALLEL")

while yn == 'y':
N = [dint(input("\nHow many resistors are there?: "))
mode = input("Are the resistors series (s) or parallel (p)?: ")

e 39

Raspberry Pi Pico Essentials

mode = mode. lower ()
#
Read the resistor values and calculate the total
#

resistor = 0.0

if mode == 's':
for n in range(0,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "
r = int(input(s))
resistor = resistor + r

print("Total resistance = %d Ohms" %(resistor))

elif mode == 'p':
for n in range(0,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "
r = float(input(s))
resistor = resistor + 1 / r
print("Total resistance = %.2f Ohms" %(1 / resistor))

#
Check if the user wants to exit
#
yn = input("\nDo you want to continue?: ")

yn = yn.lower ()

Figure 2.34: Program: Serpal.

Figure 2.35 shows a typical run of the program.

RESISTORS IN SERIES OR PARALLEL

How many resistors are there?: 3

Are the resistors series (s) or parallel (p)?: s
Enter resistor 1 value in Ohms: 100

Enter resistor 2 value in Ohms: 150

Enter resistor 3 value in Ohms: 200

Total resistance = 450 Ohms

Do you want to continue?: y

How many resistors are there?: 2

Are the resistors series (s) or parallel (p)?: p
Enter resistor 1 value in Ohms: 100

Enter resistor 2 value in Ohms: 100

Total resistance = 50.00 Ohms

Do you want to continue?: n

Figure 2.35: Typical run of the Serpal program.

e 40

Chapter 2 e Raspberry Pi Pico Programming

Example 11 — Words in reverse order
Write a program to read a word from the keyboard and then display the letters of this word
in reverse order on the screen.

Solution 11

The required program listing is shown in Figure 2.36 (program: Letters). A word is read
from the keyboard and stored in string variable word. Then the letters of this word are
displayed in reverse order. An example run of the program is shown in Figure 2.36.

W TTOTIy = RESPUETTY FTFICU T TETETs @ TTo
ile Edit View Run Tools Help
DFE O -
Averagepy * AveragelOpy* CylAreapy* CtoFpy* CylAre:
. word = input("Enter a word: ")
1 = len(word)
k=28
while 1 != @:
k =k -1
print(word[k])
1=1-1

Shell
23>

Enter a word: computer

oFTME O R

a

v
v
v

Figure 2.36: Program: Letters, and a sample output.

Example 12 — Calculator
Write a calculator program to carry out the four simple mathematical operations of addi-
tion, subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 12

The required program listing is shown in Figure 2.37 (program: Calc). Two numbers are
received from the keyboard and stored in variables n1 and n2. Then, the required math-
ematical operation is received and it is performed. The result, stored in variable result, is
displayed on the screen. The user is given the option of terminating the program.

any = 'y'
while any == 'y':
print("\nCalculator Program")

nl = float(input("Enter first number: "))
n2 = float(input("Enter second number: "))
op

input("Enter operation (+-x/): ")

e 41

Raspberry Pi Pico Essentials

if op =="+":

result = nl + n2
elif op == "-":

result = nl - n2
elif op == "«":

result = nl * n2
elif op == "/":

result = nl / n2
print("Result = %f" %(result))
any = dinput("\nAny more (yn): ")

Figure 2.37: Program: Calc.

An example run of the program is shown in Figure 2.38.

Calculator Program

Enter first number: 25
Enter second number: 2
Enter operation (+-*/): *
Result = 50.000000

Any more (yn): y

Calculator Program

Enter first number: 12
Enter second number: 2
Enter operation (+-*/): /
Result = 6.000000

Any more (yn): n

22>

Figure 2.38: Example run of the program.

Example 13 — Dice
Write a program to simulate double dice, i.e. to display two random numbers between 1
and 6 every time it is run.

Solution 13

The required program listing is shown in Figure 2.39 (program: Dice). Here, the ran-
dom-number generator randint is used to generate random numbers between 1 and 6
when the Enter key is pressed. The program is terminated when letter x (or X) is entered.

e 42

Chapter 2 e Raspberry Pi Pico Programming

W THonny - RaspoerTy Pi Pico =/UKE @ 1277
ile Edit View Run Tools Help
BH (¥] @
{ Dice)
import random

2 strt = ‘a’
while True:
strt = input(“"Press ENTER to start, X to exit ")
if strt.upper() = 'X":

first = random.randint(1, &)

second = random.randint(1l, &)

print("%d %d" %(first, second))
else:

break

X to exit
re, X to exit

X to exit

Press ENTER to start, X to exit x

> |

Figure 2.39: Program: Dice.
An example run of the program is shown in Figure 2.39.
Example 14 — Sorting lists
The names of 5 countries are stored in a list. Write a program to sort the names of these

countries in alphabetical order and then display them.

Solution 14
The program is named Sort, and its listing and an example run are shown in Figure 2.40.

MyList = ['italy', 'france', 'germany', 'india', ‘china']
MyList.sort()
print ("Sorted list : ", MyList)

Shell

Sorted list : [*china', "france', ‘'germany®, ‘'india‘’, 'italy']

23>

Figure 2.40: Program: Sort, and an example output.

Example 15 — File processing (writing)
In this example, a text file called MyFile.txt will be created and text Hello from Raspber-
ry Pi Pico! will be written to this file.

Solution 15
The program is named Filew and its listing and an example run are shown in Figure 2.41.

e 43

Raspberry Pi Pico Essentials

The fie is opened in write (w) mode and the text is written in it using function write. Notice
here that fp is the file handle.

print("Open the file and write the text")
fp = open("MyFile.txt", "w")
fp.write("Hello from Raspberry Pi Pico!\n")
fp.close()

print("End of file operation")

Shell

Open the file and write the text
End of file operation

Figure 2.41: Program: Filew.

Example 16 — File processing (reading)
In this example, the text file MyFile.txt created in the previous example is opened and its

contents is displayed on the screen.

Solution 16
The program is named Filer, and its listing and an example run are shown in Figure 2.42.
The fie is opened in read (r) mode and its contents is displayed.

print("Open the file and read its contents")
fp = open("MyFile.txt", "r")
str = fp.read(89)
fp.close()
s print(str)

Ihell
Open the file and read its contents
Hello from Raspberry Pi Pico!

Figure 2.42: Program: Filer.

Example 17 — Squares and cubes of numbers
Write a program to tabulate the squares and cubes of numbers from 1 to 10.

Solution 17
The program is named Cubes, and its listing an example run are shown in Figure 2.43.

e 44

Chapter 2 ¢ Raspberry Pi Pico Programming

print("Squares and cubes of numbers")
print(' N N*N N*N*N')
for i in range(1,11):
print(‘{@:2d} {1:3d} {2:4d}'.format(i, i*i, i*i*i))

[Shell

Squares and cubes of numbers

N N*N NTN*N
54 ! 1
2 4 8
3 9 27
4 16 64
5 25 125
€ 36 216
7 49 343
8 64 512
9 81 729
0

10 100 1000

Figure 2.43: Program: Cubes, and an example output.

Example 18 — Multiplication timetable
Write a program to read a number from the keyboard and then display the timetable for
this number from 1 to 12.

Solution 18
The program is named Times, and its listing and an example run are shown in Figure 2.44.

num = int(input("Enter a number: "))
print("Timetable of number *, num)
for i in range(1, 13):

print(num, 'x', i, ‘=", num*i)

Shell

Enter a number: 5
Timetable of number 5
Sx1 5
10
15
20
25
30
35
40
45
50
55
€0

BB s W N

9
¢ 10
11
12

v nnn
WokokoM KM NN KN X

mowon

Figure 2.44: Program: Times, and an example output.

Example 19 — Odd or even
Write a program to read a number from the keyboard, then check and display if this num-
ber is odd or even.

Solution 19

The program is named OddEven, and its listing and an example run are shown in Figure
2.45.

e 45

Raspberry Pi Pico Essentials

num

else:

hell

int(input("Enter a number:
if (num % 2) == @:

print("Number {@} is Even".format(num))

Enter a number:
Number 15 is Odd

)

print("Number {@} is odd".format(num))

15

Figure 2.45: Program: OddEven, and an example output.

Example 20 — Binary, octal, and

hexadecimal

Write a program to read a decimal number from the keyboard. Convert this number into
binary, octal, and hexadecimal and display on the screen.

Solution 20

The program is named Conv, and its listing and an example run are shown in Figure 2.46.

dec

int(input("Enter a number: "))
print("The decimal value of", dec,
print("in binary: ",bin(dec))
print("in octal: ",oct(dec))
print("in hexadecimal: ",hex(dec))

1

s:")

hell
Enter a number:
in binary:

in octal: 00376
in hexadecimal:

254

The decimal value of 254 is:
0b11111110

Oxfe

Figure 2.46: Program: Conv, and an example output.

Example 21 — Add two matrices

Write a program to add two given matrices and display the elements of the new matrix.

Solution 21

The program is named AddMatrix, and its listing and an example run are shown in Figure

2.47.

® 46

Chapter 2 e Raspberry Pi Pico Programming

A = [[5.4,2],
[6 ,311]’
(2 ,8,3]]

2%,

w N

B = [[2:412];
[e,4,10],|
[8,2,8]]

V- WY,

® O

res = [[e,0,8],
1e [e,0,0],
11 [e,0,0]]

12 for i in range(len(A)):
4 for j in range(len(A[@])):
15 res[i][3] = A[i]1[3] + B[i][]]

7 for i in res:
print(i)

hell

PP

7, 8, 4]
6, 7, 11)
[10, 10, 11]

Figure 2.47: Program: AddMatrix, and an example output.

e 47

Raspberry Pi Pico Essentials

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

3.1 Overview
In this Chapter we will be developing simple hardware projects with the Raspberry Pi Pico,
using the Thonny text editor. The following sub-headings will be given for each project
where applicable:

o Title

e Description

e Aim

¢ Block Diagram

e Circuit Diagram

e Program Listing

e Suggestions for future work

All the programs in this Chapter have been developed using the Thonny on a PC, with the
Raspberry Pi Pico connected to the USB port of the PC.

3.2 Project 1: Flashing LED - Using the on-board LED
Description: In this project the on-board LED is flashed every second.

Aim: The aim of this project is to make the reader familiar with some basic GPIO control
statements.

Program listing: Figure 3.1 shows the program listing (Program: LEDINT). At the be-
ginning of the program modules machine and utime are imported to the program. LED
is then assigned to port pin GP25 and it is configured as an output. The remainder of the
program runs in a loop forever, until stopped by the user. Inside this loop the LED is turned
ON by the statement LED.value(1). After a delay of one second the LED is turned OFF by
the statement LED.value(0). Function utime.sleep(n) creates n seconds of delay in the
program.

e
FLASHING THE ON-BOARD LED

—========================

#

In this program the on-board LED (at GP25) 1is flashed

every second

#

Author: Dogan Ibrahim

File : LEDINT.py

Date : February, 2021

import machine
import utime

e 48

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

LED

= machine.Pin(25, machine.Pin.OUT)

while True:

LED.value(1)
utime.sleep(1)
LED.value(0)
utime.sleep(1)

Figure 3.1: Program: LEDINT.

o

LED at GP25

DO FOREVER
LED ON

Wait 1 second
LED OFF

Wait 1 second

In Figure 3.1, import machine module imports other functions in addition to Pin. We can
simplify the program by importing only the Pin functions as shown in Figure 3.2 (Program:
LEDINT2). You may have to stop the program by selecting Run followed by Stop/Restart
backend before being able to save a new program while a program is already running on

Pico.

#

=======

#

#

#

#

Author: Dogan Ibrahim
File LEDINT2.py

Date February, 2021

from machine import Pin

import utime

LED

In this program the on-board LED (at GP25) is flashed
every second. In this version only module Pin is imported

= Pin(25, Pin.0UT) # LED at GP25
while True: # DO FOREVER
LED.value(1) # LED ON
utime.sleep(1) # Wait 1 second
LED.value(0) # LED OFF
utime.sleep(1) # Wait 1 second

Figure 3.2: Program: LEDINT2.

The machine module supports the following functions (we will see in later Chapters how
to use these functions):

e Pin
e Timer
e ADC

e 49

Raspberry Pi Pico Essentials

e 12C and Soft I2C
e SPI and SoftSPI
e WDT
e PWM
e UART
The general format of the machine.Pin function is:

machine.Pin(pin, mode, pull, value, alt)

for more information, go to
https://docs.micropython.org/en/latest/library/machine.Pin.html

The parameters of a pin can be re-initialized using the following function:
Pin.init(pin, mode, value, drive, at)
Where pin is the pin number.

Parameter mode can take the following values:

Pin.IN - pin is configured as input

Pin.oOUT - pin is configured as output

Pin.OPEN_DRAIN - pin is configured as open-drain output
Pin.ALT - pin is configured as an alternative function

Parameter pull can take the following values:

NONE - no internal pull-up or pull-down resistors
Pin.PULL_UP - internal pull-up resistor enabled
Pin.PULL_DOWN - internal pull-down resistor enabled

Parameter value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and it specifies the
initial output pin value (if specified).

Parameter alt specifies an alternate function for the pin (port dependent). This parameter
is valid only for PIN.ALT and Pin.ALT_OPEN_DRAIN modes.

A pin can be set/reset using one of the following functions:

Pin.value(1) - set pin to logic 1
Pin.value(0) - set pin to logic 0

Some other useful machine functions are:

machine.reset() - reset the device (same as pressing the external RESET
button)

e 50

https://docs.micropython.org/en/latest/library/machine.Pin.html

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

machine.reset_cause) - return the cause of the reset
machine.disable_irq() - disable interrupt requests
machine.enable_irq() - enable interrupt requests

machine. freq() returns the CPU frequency

3.3 Project 2: External flashing LED
Description: In this project an external LED is connected to the Pico. The LED is flashed
every second as in the previous project.

Aim: The aim of this project is to show how an external LED can be connected to the Pico.

Block diagram: Figure 3.3 shows the block diagram of the project.

=
S
©)
e
&
~
H

Raspberry Pi Pico
Figure 3.3: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.4. The LED is
connected to port pin GPO of Pico through a current-limiting resistor.

y 470 A
GPO —|:1—[>|1
LED =
Raspberry Pi
Pico

Figure 3.4: Circuit diagram of the project.

e 51

Raspberry Pi Pico Essentials

The LED can be connected either in current-sourcing or in current-sinking mode. In cur-
rent-sourcing mode (Figure 3.5) the LED is turned ON when logic HIGH is applied to the
port pin. In current-sinking mode (Figure 3.6) the LED is turned ON when logic LOW is
applied to the port pin.

GPx —|:|—{)|1
LED

Raspberry Pi
Pico

Figure 3.5: LED in current-sourcing mode.

+3.3V

GPx

Raspberry Pi
Pico

Figure 3.6: LED in current-sinking mode.

The required value of the current limiting resistor can be calculated as follows. In cur-
rent-sourcing mode, assuming the output HIGH voltage is +3.3 V, the voltage drop across
the LED is 2 V, and the current through the LED is 3 mA, the required value of the current
limiting resistor is:

R =(3.3-2)/3 =433 0ohms
So we will choose 470 ohms as the nearest practical resistor value.

Program listing: Figure 3.7 shows the program listing (Program: ExtFlash.py).

#
#
#

In this program an external LED 1is connected to port pin
GPO (pin 1). The LED is flashed every second

e 52

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

#

Author: Dogan Ibrahim
File : ExtFlash.py

Date : February, 2021

from machine import Pin

import utime

LED = Pin(0@, Pin.OUT) # LED at GPO

while True: # DO FOREVER
LED.value(1) # LED ON
utime.sleep(1) # Wait 1 second
LED.value(0) # LED OFF
utime.sleep(1) # Wait 1 second

Figure 3.7 Program: ExtFlash.py.

Figure 3.8 shows the Fritzing diagram of the project built on a breadboard.

LI I
“ e s 00
LI
LR
.
.

L
L B
.
L
LR
.

.

sebaw ‘LK e e e LU e e e w .
LR U A * e 0 0w LI * s e 0 .

Figure 3.8: Project built on a breadboard.

3.4 Project 3: Flashing SOS in Morse

Description: In this project an external LED flashes the SOS signal in Morse code (three
dots, followed by three dashes, followed by three dots) continuously. In this project, a dot is
represented with the LED being ON for 0.25 seconds (Dot time) and a dash is represented
with the LED being ON for 1 second (Dash time). The delay between the dots and dashes
is set to 0.2 second (GAP time). This process is repeated continuously after 2 seconds of
delay.

The block diagram and circuit diagram of this project are the same as in Figure 3.3 and
Figure 3.4, respectively.

Program listing. Figure 3.9 shows the program listing (Program: SOS). At the beginning

of the program the dot, dash, and gap times are defined. Then a loop is formed using a
while statement. Inside this loop two for loops are formed, each iterating 3 times. The

e 53

Raspberry Pi Pico Essentials

first loop displays three dots, while the second loop displays three dashes. This process is
repeated after 2 seconds of delay.

In this program an external LED 1is connected to port pin
GPO (pin 1). The LED flashes the SOS signal

Author: Dogan Ibrahim
File : SOS.py
Date : February, 2021

T T T

from machine import Pin

import utime

Dot = 0.25 # Dot time

Dash = 1.0 # Dash time

Gap = 0.2 # Gap time

ON = 1 # ON

OFF = 0 # OFF

LED = Pin(®, Pin.OUT) # LED at GPO

while True: # DO FOREVER

for i 1in range(0, 3):

LED.value (ON) # LED ON
utime.sleep(Dot) # Wait Dot time
LED.value(OFF) # LED OFF
utime.sleep(Gap) # Wait Gap time

utime.sleep(0.5) # 0.5 second delay

for i 1in range(0, 3):

LED.value (ON) # LED ON
utime.sleep(Dash) # Wait Dash time
LED.value(OFF) # LED OFF
utime.sleep(Gap) # Wait Gap time

utime.sleep(2) # Wait 2 seconds

Figure 3.9: Program: SOS.

e 54

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

Suggestions: You could easily replace the LED with a buzzer to make the SOS signal au-
dible. There are two types of buzzers: active and passive. Passive buzzers require an audio
signal to be sent to them and the frequency of the output signal depends on the frequency
of the supplied signal. Active buzzers are ON/OFF type devices producing audible sound
when activated. In his project we can use an active buzzer with a transistor switch (any
NPN type transistor can be used) as shown in Figure 3.10.

Vv

Buzzer

GPO

Raspberry Pi =
Pico

Figure 3.10: Using an active buzzer.

3.5 Project 4: Flashing LED - using a timer
Description: This project is very similar to Project 2 where an external LED is connected
to port pin GPO of the Pico. In this project a timer is used to flash the LED every 500 ms.

Aim: The aim of this project s to show how a timer can be used in a program.
The block diagram and circuit diagram of this project are the same as in Figure 3.3 and
Figure 3.4, respectively.

Program listing. Figure 3.11 shows the program listing (Program: LEDTimer). Here, a
timer is initialized which calls function Flash_LED twice (freq = 2.0) a second in a periodic
manner. Notice that the LED is flashed using the toggle function.

In this program an external LED 1is connected to port pin
GPO (pin 1). The LED flashes every second using a timer

Author: Dogan Ibrahim
File : LEDTimer.py
Date : February, 2021

O F W I O I I W

from machine import Pin, Timer

LED = Pin(@, Pin.OUT)

e 55

Raspberry Pi Pico Essentials

tim = Timer()
def Flash_LED(timer):
global LED
LED.toggle()
tim.init(freq = 2.0, mode = Timer.PERIODIC, callback = Flash_LED)
Figure 3.11: Program: LEDTimer.
3.6 Project 5: Alternately flashing LEDs
Description: In this project two LEDs are connected to the Pico. The LEDs flash alternately
every 500 ms.

Aim: The aim of this project is to show how multiple LEDs can be connected to the Pico.

Block diagram: Figure 3.12 shows the block diagram of the project.

Raspberry Pi Pico

Figure 3.12: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.13. The LEDs are
connected to port pins GPO and GP1 through 470-ohm current limiting resistors.

LED
i 470 A
GPO
b 470 A
GP1
Raspberry Pi -
Pico

Figure 3.13: Circuit diagram of the project.

e 56

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Program listing: Figure 3.14 shows the program listing (Program: LED2).

EE Y N

In this program two external LEDs are connected to pins
GPO (pin 1) and GP1 (pin 2). The LEDs flash alternately
every 500ms

Author: Dogan Ibrahim
File : LED2.py
Date : February, 2021

from machine import Pin

import utime

LED1 = Pin(@, Pin.OUT)
LED2 = Pin(l, Pin.OUT)

while True:

LED1.value(l)
LED2.value(0)
utime.sleep(0.5)
LED1.value(0)
LED2.value(1)
utime.sleep(0.5)

Figure 3.14: Program: LEDZ2.

Figure 3.15 shows the Fritzing diagram of the project built on a breadboard.

.
.
.
.
.
.
-
-
.
.
-
.
-
.
.
-
.
.
.

« e e e
DR
LI]

DRI * e s e D « o e 0w .

Figure 3.15: Project built on a breadboard.

e 57

Raspberry Pi Pico Essentials

3.7 Project 6: Changing the LED flashing rate — using pushbutton
interrupts

Description: In this project an external LED is connected to port pin GPO of the Pico. Addi-
tionally, two pushbuttons are connected to port pins GP1 and GP2. At the start of the pro-
gram the LED flashes every second. Pushbutton at GP1 is named Faster and pressing this
button flashes the LED faster. Similarly, pushbutton at GP2 is named Slower, and pressing
this button flashes the LED slower.

Aim: The aim of this project is to show how pushbuttons can be connected to the Pico, and
how the state of a button can be read.

Block diagram: Figure 3.16 shows the block diagram of the project.
@

&

Faster

Slower LED

Raspberry Pi Pico

Figure 3.16: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.17. The LED is
connected through a 470-ohm current limiting resistor. The two pushbuttons are connected
through 10-kohm resistors. The default state of the pushbuttons is at logic 1, being pulled-
up through the resistors. Pressing a pushbutton changes its output state to logic 0.

+3.3V
10K
2
@ GP1 LED
Faster [I 470 A
i GPO —|:|—{)Q:L
+3.3V -

Raspberry Pi
10K Pico
4 GP2
@

Slower [I_T_

GND
il

Figure 3.17: Circuit diagram of the project.

e 58

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

Program listing: Figure 3.18 shows the program listing (Program: LEDrate). At the be-
ginning of the program LED is assigned to pin GPO, and pushbuttons Faster and Slower
are assigned to ports GP1 and GP2 respectively. The default flashing rate is set to one sec-
ond and is stored in variable dly. The program is external-interrupt-based. Pressing either
of the pushbuttons creates an interrupt. For example, the interrupt for pushbutton Faster
is configured using the following function call:

Faster.irq(handler=Flash_Faster, trigger=Faster.IRQ_FALLING)

Where Flash_Faster is the name of the interrupt service routine where dly is decrement-
ed. The interrupt is configured to happen on the falling edge of the pushbutton, i.e. when
the pushbutton is pressed (the normal state of the pushbuttons is at logic 1, being pulled-
up by resistors). Inside the interrupt service routine Flash_Faster variable dly is declared
as global so that it can be accessed. Its value is then decremented by 100ms (0.1 second).
The Interrupt service routine for pushbutton Slower is done similarly where the delay is
incremented by 100 ms each time the button is pressed.

The other external interrupt modes are:

Pin.IRQ_FALLING - interrupt on falling edge (high-to-low)
Pin.IRQ_RISING - interrupt on rising edge (low-to-high)
Pin.IRQ_LOW_LEVEL - interrupt on low level
Pin.IRQ_HIGH_LEVEL - interrupt on high level

The above values can be OR'ed together to trigger on multiple events. We can also spec-
ify the interrupt priority with the keyword priority, where higher values represent higher
priorities.

An interrupt wake parameter can be specified with the values None, machine.IDLE,
machine.SLEEP, or machine.DEEPSLEEP.

Additionally, a parameter called hard with the values of False or True can be specified.
If this parameter is set to True, then hardware interrupts are used which yields faster
response.

In this program an external LED and two pushbuttons are
connected to Pico. Pressing Faster flashes the LED faster,
and pressing Slower flashes the LED slower

Author: Dogan Ibrahim
File : LEDrate.py
Date : February, 2021

EE Y N B

from machine import Pin

e 59

Raspberry Pi Pico Essentials

import utime

LED = Pin(@, Pin.OUT) # LED at pin GPO
Faster = Pin(1, Pin.IN) # Faster at pin GP1
Slower = Pin(2, Pin.IN) # Slower at pin GP2
dly = 1.0 # Default delay

#

This is the 1dinterrupt service routine. Whenever pushbutton
Faster 1is pressed, the program jumps here and decrements

delay to make the flashing faster

#

def Flash_Faster(Faster):
global dly
dly = dly - 0.1

#

This is the 1dinterrupt service routine. Whenever pushbutton
Slower 1is pressed, the program jumps here and increments
delay to make the flashing slower
#
def Flash_Slower (Slower):
global dly
dly = dly + 0.1

#

Configure the external interrupts

#
Faster.irq(handler=Flash_Faster,trigger=Faster.IRQ_FALLING)
Slower.irq(handler=Flash_Slower,trigger=Slower.IRQ_FALLING)

#

Main program loop

#

while True:
LED.value(1) # LED ON
utime.sleep(dly) # Delay dly
LED.value(0) # LED OFF
utime.sleep(dly) # Delay dly

Figure 3.18: Program LEDrate.

Figure 3.19 shows the project built on a breadboard.

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Using the internal pull-up resistors

e s e 0w

Figure 3.19: Project built on a breadboard.

We can simplify the circuit diagram of Figure 3.17 by removing the external resistors and
using the internal pull-up resistors. The simplified circuit diagram is shown in Figure 3.20.
The modified program listing (Program: LEDrate2) is shown in Figure 3.21 where the op-
tion pull = Pin.PULL___UP is added to the input configuration statements.

EE Y N B

®
Faster [I

1

®
Slower [I

1

2

GP1

GPO

Raspberry Pi
Pico

GP2

GND

LED
470 A

gl

1

Figure 3.20: Modified circuit diagram.

Author: Dogan Ibrahim
LEDrate2.py

In this program an external LED and two pushbuttons are
connected to Pico. Pressing Faster flashes the LED faster,
and pressing Slower flashes the LED slower

In this modified version, internal pull-ups are used

e 61

Raspberry Pi Pico Essentials

Date : February, 2021

from machine dimport Pin
import utime

LED = Pin(®, Pin.OUT)

Faster = Pin(1, Pin.IN, pull=Pin.PULL_UP)
Slower = Pin(2, Pin.IN, pull=Pin.PULL_UP)
dly = 1.0

#

This is the 1dinterrupt service routine. Whenever pushbutton
Faster 1is pressed, the program jumps here and decrements

delay to make the flashing faster

#

def Flash_Faster(Faster):
global dly
dly = dly - 0.1

#

This is the 1dinterrupt service routine. Whenever pushbutton
Slower 1is pressed, the program jumps here and increments
delay to make the flashing slower
#
def Flash_Slower (Slower):
global dly
dly = dly + 0.1

#

Configure the external interrupts

#
Faster.irq(handler=Flash_Faster,trigger=Faster.IRQ_FALLING)
Slower.irq(handler=Flash_Slower,trigger=Slower.IRQ_FALLING)

#

Main program loop

#

while True:
LED.value(1) # LED ON
utime.sleep(dly) # Delay dly
LED.value(0) # LED OFF
utime.sleep(dly) # Delay dly

Figure 3.21: Program LEDrate2.

e 62

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
Description: This is a very simple project where an RGB LED is connected to the Raspberry
Pi Pico and the red, green, and blue colours are flashed alternately every 500 ms.

Aim: The aim of this project is to show how an RGB LED can be used in a Raspberry Pi Pico
project.

Background Information: As shown in Figure 3.22, the RGB LED is a 4-pin device which
incorporates Red, Green and Blue LEDs. Each colour LED is assigned a pin, where the fourth
pin is the ground. By activating different LEDs at different brightness, we can generate
many different colours. In this project a common cathode RGB LED is used. Notice that the
cathode pin of the RGB LED is the longer pin.

Figure 3.22: RGB LED (from CircuitBread).

Block Diagram: Figure 3.23 shows the block diagram of the project.

i

RGB LED

SJ.
E.

Raspberry Pi Pico
Figure 3.23: Block diagram of the project.
Circuit Diagram: The circuit diagram of the project is shown in Figure 3.24. The Red,

Green, and Blue pins are connected to port pins GP0O, GP1, and GP2 respectively through
470-ohm current limiting resistors.

e 63

Raspberry Pi Pico Essentials

1 470 RGB

GPO ——+— Red
2 470
GP1 ——3— Green
4 470
GP2 —T—3—Blue

K
Raspberry Pi J_
Pico =
GND

1

Figure 3.24: Circuit diagram of the project.

Program Listing: The program is very simple and is shown in Figure 3.25 (program:
RGB). At the beginning of the program the RED, GREEN, and BLUE LEDs are assigned to
the 0, 1, and 2 port pins respectively, and the LED ports are configured as outputs. The
remainder of the program runs in an endless loop. Inside this loop the RED, GREEN, and
BLUE LEDs are turned ON and OFF with 0.5-second delay between each output.

e
ALTERNATELY FLASHING RGB LED

============================

#

In this program an RGB LED is connected to Pico.The three
colours of the LED are flashed alternately every 500ms

#

Author: Dogan Ibrahim

File : RGB.py

Date : February, 2021

from machine import Pin
import utime

Red = Pin(0, machine.Pin.0OUT)
Green = Pin(1, Pin.OUT)
Blue = Pin(2, Pin.OUT)

Red.value(0)
Green.value(0)
Blue.value(0)

while True:
Red.value(1)
utime.sleep(0.5)
Red.value(0)
Green.value(l)
utime.sleep(0.5)

e 64

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Green.value(0)
Blue.value(1l)
utime.sleep(0.5)
Blue.value(0)
Figure 3.25: The RGB program.

Figure 3.26 shows the project built on a breadboard.

i
i f

e e e o0
LI I
LI I

0 8 & el =

LI T
LI T

-
] |
|}
.

. . L
. . . R R] CHR A U

Figure 3.26: Project built on a breadboard.

3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
Description: In this project the RGB LEDs flash randomly, where the Red, Green, or the
Blue LEDs are randomly ON or OFF.

The block diagram and the circuit diagram are the same as in Figure 3.23 and 3.24, re-
spectively.

Program listing: Figure 3.27 shows the program listing (Program: RGB2). Random num-
bers are generated either as 0 or 1 for each colour, and these numbers are used either to
turn ON or OFF a colour LED.

In this program an RGB LED is connected to Pico.The three
colours of the LED are flashed randomly every 500ms

Author: Dogan Ibrahim
File : RGB2.py
Date : February, 2021

o F W I O I I W

from machine import Pin
import utime

e 65

Raspberry Pi Pico Essentials

import random

Red = Pin(®, Pin.OUT)
Green = Pin(1, Pin.OUT)
Blue = Pin(2, Pin.OUT)

while True:
r = random.randint(0, 1)
g = random.randint(0, 1)
b = random.randint(0, 1)
Red.value(r)
utime.sleep(0.2)
Green.value(g)
utime.sleep(0.2)
Blue.value(b)
utime.sleep(0.2)

Figure 3.27: The RGB2 program.

3.10 Project 9: Rotating LEDs
Description: In this project, 4 LEDs are connected to the Pico. The LEDs display a pattern
of rotating left as shown in Figure 3.28.

900
90 @
O@OO
000
900

sessesesssereseresets e

Figure 3.28: 'Rotating' LEDs.

Block diagram: Figure 3.29 shows the block diagram of the project.

e 66

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Raspberry Pi Pico

Figure 3.29: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.30. The LEDs are
connected to the Pico through 470-ohm current limiting resistors.

LED
W 470 A

GPO ——+—}—

b 470 A

GP1 ——{}—

4 470 A

GP2 ——{}—

GP3 —+—{}—

Raspberry Pi
Pico

L

Figure 3.30: Circuit diagram of the project.

Program listing. Figure 3.31 shows the program listing (Program: ROTATE).

In this program 4 LEDs are connected to Pico. The LEDs
display pattern of rotating to the left

Author: Dogan Ibrahim
File : Rotate.py
Date : February, 2021

O F W I O I I W

from machine import Pin
import utime

LED1 = Pin(@, Pin.OUT)

e 67

Raspberry Pi Pico Essential

S

LED2
LED3
LED4

whil

= Pin(1, Pin.
= Pin(2, Pin.
= Pin(3, Pin.

e True:

LED1.value(1)
utime.sleep(0.
LED1.value(0)
LED2.value(1)
utime.sleep(0.
LED2.value(0)
LED3.value(1)
utime.sleep(0.
LED3.value(0)
LED4.value(1)
utime.sleep(0.
LED4.value(0)

More efficient program
The program given in Figure 3.31 can be made more efficient (Program: ROTATE2) and
easier to understand by modifying it as shown in Figure 3.32. This is especially true if there
are more than 4 LEDs.

e 68

Fi

B T T

from machine import Pin

Date

le : Rotate2.

import utime

ouT)
ouT)
ouT)

5)

5)

5)

5)

Figure 3.31: Program: ROTATE.

Author: Dogan Ibrahim

py

February, 2021

LEDS = [0, 1, 2, 3]

L =

for

(e, o, 0, 0]

i in range(4):

L[4] = Pin(LEDS[i], Pin.OuT)

while True:

In this program 4 LEDs are connected to Pico. The LEDs
display pattern of rotating to the left

LED ports

Do for all LEDs
ALl are outputs

Do forever

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

for i 1in range(4):

L[i].value(l) # LED ON
utime.sleep(0.5) # Wait 0.5 second
L[i].value(0) # LED OFF

Figure 3.32: Modified program.

Figure 3.33 shows the project built on a breadboard.

LR R B

"-|-|-'u

Jelelele. 8

® e s 0
LA I]

@ % @ o UIImD CHEIID ¥ F S 8 S S e e e e e e

oIo I llloooooon.l"oooo

effUee ool Te e e e Sseees sewew
.
|

LR LI A ® s 0 0w L A A e s e w0

Figure 3.33: Project built on a breadboard.

3.11 Project 10: Binary-counting LEDs
Description: In this project, 8 LEDs are connected to the Pico. The LEDs count up in binary
from 0 to 255 as shown in Figure 3.34, with a 1-second delay between each count.

0000000
000000 @
00000 [
00000 00
00000 O

...

Figure 3.34: Binary counting LEDs.

Aim: The aim of this project is to show how a group of port pins can be combined and
accessed as a parallel port.

Block diagram: Figure 3.35 shows the block diagram of the project.

e 69

Raspberry Pi Pico Essentials

LEDs

Raspberry Pi Pico

Figure 3.35: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.36. The LEDs are
connected to the Pico through 470-ohm current limiting resistors.

LED
4y 470 A

GPO —:I—H—

p 40 A

GP1 —=—{}—1

L4o A

GP2 F——{—¢

5 470 A
GP3 F—{}—4
g 470 A

GP4 F——{}—4

a0 A

GP5 ———}—4

bd4r0 A

GP8 F——{}—4
GP7 L:l—[)'—<

Raspberry Pi =
Pico

T

Figure 3.36: Circuit diagram of the project.

Program listing. Figure 3.37 shows the program listing (Program: LEDCount). All 8 GPIO
ports used in the project are configured as outputs using the function Configure_Port.
Notice that the Configure_Port function is general, and the list DIR sets the directions of
the GPIO pins. An "O" sets as an output and an "I" sets as an input. Then, a loop is formed
to execute forever and inside this loop the LEDs count up by one in binary. Variable cnt is
used as the counter. Function Port_Output is used to control the LEDs. This function can
take integer numbers from 0 to 255 and it converts the input number (x) into binary using
the built-in function bin. Then the leading "0b" characters are removed from the output
string b (bin function inserts characters "0b" to the beginning of the converted string).
Then, the converted string b is made up of 8 characters by inserting leading Os. The string
is then sent to the PORT bit by bit, starting from the most-significant bit position.

In this program 8 LEDs are connected to Pico. The LEDs

e 70

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

count up in binary every second

#

#

Author: Dogan Ibrahim
File : LEDCount.py

Date : February, 2021
from machine import Pin
import utime

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
DIR = ["0”,"0”,"0","0","0","0","0”,"0”] # por't d-irectons
L = [0]*8

#

This function configures the port pins as outputs ("0") or
as dnputs ("I")
#
def Configure_Port():
for i 1in range(0, 8):

if DIR[i] == "o":

L[i] = Pin(PORT[i], Pin.OUT)
else:

L[i] = Pin(PORT[i], Pin.IN)

return

#

This function sends 8-bit data (0 to 255) to the PORT
#

def Port_Output(x):

b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "ob"
diff = 8 - len(b) # find the length

for i 1in range (0, diff):
b ="e" +b # insert leading os

for i 1in range (0, 8):

if b[i] == "1":
L[i].value(1)
else:
L[i].value(0)
return
#
Configure PORT to all outputs
#

Configure_Port()

e 71

Raspberry Pi Pico Essentials

#
Main program loop. Count up in binary every second
#
cnt = 0
while True:
Port_Output(cnt) # send cnt to port
utime.sleep(1) # wait 1 second
cnt = cnt + 1 # increment cnt
if cnt > 255:
cnt = 0

Figure 3.37: Program LEDCount.

Figure 3.38 shows the project built on a breadboard.

Figure 3.38: Project built on a breadboard.

3.12 Project 11: Christmas lights (random flashing 8 LEDs)
Description: In this project, 8 LEDs are connected to the Pico as in the previous project.
The LEDs flash randomly every 250 milliseconds just like fancy Christmas lights.

Aim: The aim of this project is to show how to generate random numbers between 1 and

255 and then shows how to use these numbers to turn the individual LEDs ON and OFF
randomly.

72

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

The block diagram and circuit diagram of the project are given in Figure 3.35 and Figure
3.36 respectively.

Program listing: The program is called XMAS and the listing is shown in Figure 3.39. All
the 8 GPIO ports used in the project are configured as outputs using the function Config-
ure_Port as in the previous project. Then, a loop is formed to execute forever and inside
this loop a random number is generated between 1 and 255, and this number is used as
an argument to function Port_Output. The binary pattern corresponding to the generated
number is sent to the port which turns the LEDs ON or OFF in a random manner.

In this program 8 LEDs are connected to Pico. The LEDs
flash randomly

Author: Dogan Ibrahim
File : XMAS.py
Date : February, 2021

o F W I O I I W

from machine import Pin
import utime
import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
DIR = ["0”,"0”,"0”,"0”,"0","0","0”,"0”] # por't d-irectons

L = [0]%8

#

This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
for i 1in range(0, 8):
if DIR[i] == "o":
L[] Pin(PORT[i], Pin.OUT)
else:
L[i] = Pin(PORT[i], Pin.IN)

return
#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary

e 73

Raspberry Pi Pico Essentials

b = b.replace("6b", "") # remove leading "ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):

b ="e"+b # insert leading os

for i 1in range (0, 8):

if b[i] == "1":
L[i].value(1)
else:
L[i].value(0)
return
#
Configure PORT to all outputs
#

Configure_Port()

#

Main program loop. Count up in binary every second

#

while True:
numbr = random.randint(1l, 255) # generate a random number
Port_Output(numbr) # send cnt to port
utime.sleep(0.25) # wait 250ms

Figure 3.39: Program: XMAS.

3.13 Project 12: Electronic dice

Description: In this project, 7 LEDs are arranged in the form of the faces of a dice and a
pushbutton switch is used. When the button is pressed, the LEDs turn ON to display num-
bers 1 to 6 as if on a real dice. The display is turned OFF after 3 seconds, ready for the
next game.

Aim: The aim of this project is to show how a dice can be constructed with 7 LEDs.

Block diagram: The block diagram of the project is shown in Figure 3.40.

Push-button *~— O O

- RASPBERRY

e T Jo] R i O @ O
DICE

Figure 3.40: Block diagram of the project.

e 74

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Figure 3.41 shows the LEDs that should be turned ON to display the 6 dice numbers.

[] O [J O []

[oNeNe]
[eNeNe]
cCeo
[oN Mo
[oN NeJ
(o} N
eCe
eCe
eCe
eCe

e o
L_NON J
e o
1 2 3 4 5 6

Figure 3.41: Numbers out of the program LED Dice.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.42. Here, 8 GPIO
pins are collected together to form a PORT. There are 7 LEDs, but 8 port pins are used in
the form of a byte where the most-significant bit position is not used.

GPO
36
+3.3V GP1
10K
20 GP2
GP15
@
Button [] GP3
GP4
b 470
GP5 —
o 470
GP6 |——
Raspberry Pi
Pico
°L

Figure 3.42: Circuit diagram of the project.
The pushbutton switch is connected to port pin GP15.

Table 3.1 gives the relationship between a dice humber and the corresponding LEDs to be
turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e. only
the middle LED is ON), we have to turn LED D3 ON. Similarly, to display number 4, we have
to turn ON DO, D2, D4 and D6.

Required number LEDs to be turned on

D3

D1, D5

D1, D3, D5

DO, D2, D3, D4, D6

1
2
3
4 DO, D2, D4, D6
5
6

DO, D1, D2, D4, D5, D6

Table 3.1: Dice number and LEDs to be turned ON.

e 75

Raspberry Pi Pico Essentials

The relationship between the required number and the data to be sent to the PORT to turn
on the correct LEDs, is given in Table 3.2. For example, to display dice number 2, we have
to send hexadecimal 0x22 to the PORT. Similarly, to display number 5, we have to send
hexadecimal Ox5D to the PORT and so on.

Required number PORT data (Hex)

1 0x08

0x22

0x2A

0x5D

2
3
4 0x55
5
6

0x77

Table 3.2: Required number and PORT data.

Program listing: The program is called DICE and the listing is shown in Figure 3.43. LED
port pins are declared as a list in variable PORT and they are configured as outputs by
using function Configure_Port. The bit pattern to be sent to the LEDs corresponding to
each dice number is stored in hexadecimal format in a list called DICE_NO (see Table 3.2).
GP15 is configured as an input pin and the pushbutton switch is connected to this pin
to simulate the "throwing" of a dice. The state of the pushbutton is checked in the main
program and when the button is pressed, function DICE is called to display a dice number
between 1 and 6 for 3 seconds. After this time, all the LEDs are turned OFF to indicate that
the program is ready to generate a new dice number. List DICE_NO is indexed to find the
LEDs that should be turned ON, and the required bit pattern is sent to the PORT to display
the dice nhumber.

e
DICE PROGRAM

============

#

In this program 7 LEDs are connected to Pico to simlate
a dice. When a pushbutton 1is pressed the LEDs display a
dice number between 1 and 6

#

Author: Dogan Ibrahim

File : DICE.py

Date : February, 2021

from machine import Pin
import utime

import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections

e 76

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

DICE_NO = [0, 0x08, 0x22, Ox2A, 0x55, Ox5D, Ox77]
L = [0]*8
Button = Pin(15, Pin.IN)

#
This function configures the LED ports as outputs
#
def Configure_Port():
for i 1in range(0, 8):
L[i] = Pin(PORT[i], Pin.OUT)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("0b", "") # remove leading "ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):
b ="e" +b # insert leading os
for i 1in range (0, 8):
if b[i] == "1":
L[i].value(1)
else:
L[i].value(0)
return
#
The program jumps here after the button 1is pressed
#
def DICE():
n = random.randint(1l, 6) # generate a random number
pattern = DICE_NO[n] # find the pattern
Port_Output(pattern) # turn ON required LEDs
utime.sleep(3) # wait for 3 seconds
Port_Output(0) # turn OFF all LEDs
return
#
Configure PORT to all outputs
#
Configure_Port()
#
Main program loop, check if Button is pressed
#

o 77

Raspberry Pi Pico Essentials

while True:

if Button.value() == 0: # Button pressed?
DICE() # Call DICE
pass # Do nothing

Figure 3.43: Program DICE.

3.14 Project 13: Lucky day of the week

Description: In this project, 7 LEDs are positioned in the form of a circle and are connect-
ed to the Raspberry Pi Pico. Each LED is assumed to represent a day of the week. Pressing
a button generates a random number between 1 and 7 and lights up only one of the LEDs.
The day name corresponding to this LED is assumed to be your lucky day of the week.

Block diagram: Figure 3.44 shows the block diagram of the project.

Monday
Sunday .

. Tuesday

Saturday
—_— . . Wednesday

Raspberry Pi Pico A [|

Frid
Tiday Thursday

Figure 3.44: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.45, where 7 LEDs
are connected to the Pico through current-limiting resistors. The button is connected to
GP15. Normally the output of the button is at logic 1 and goes to logic 0 when the button
is pressed.

33V Raspberry Pi

Pico
10K

i

n A
GPO
GP15 GP1 470
®
Button [] GP2 Wednesday
470
I GP3 Thursday

470
GP4 470
GP5

GPe

Monday

Tuesday
470

~ |

Friday

Saturday

470
Sunday

GND
L

Figure 3.45: Circuit diagram of the project.

Program listing: Figure 3.46 shows the program listing (Program: LuckyDay). At the
beginning of the program, all the 8 LED GPIO pins are combined into a single port and is

e 78

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

addressed as a single 8-bit port using function PORT_Output. utime.ticks_ms() is used
as the seed for the random number generator so that different sequence of nhumbers will
be generated every time the program starts. This function returns an increasing millisecond
counter with an arbitrary reference point, that wraps around after some value. An integer
random number is generated between 1 and 7 and this number is used to turn ON one of
the LEDs corresponding to a day of the week.

o
LUCKY DAY OF THE WEEK

—======z==============

#

In this program 7 LEDs are connected to Pico where each

LED represents a day of the week. Pressing a button

turns ON one of the LEDs randomly and this corresponds to
your lucky day of the week

#

Author: Dogan Ibrahim

File : LuckyDay.py

Date : February, 2021

from machine import Pin
import utime
import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
L = [0]*8
Button = Pin(15, Pin.IN)

#
This function configures the LED ports as outputs
#
def Configure_Port():
for i 1in range(0, 8):
L[i] = Pin(PORT[i], Pin.OUT)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("0b", "") # remove leading "ob"
diff = 8 - len(b) # find the length

for i 1in range (0, diff):
b ="e" +b # insert leading os

for i 1in range (0, 8):

e 79

Raspberry Pi Pico Essentials

if b[i] == "1":
L[i].value(1)
else:
L[i].value(0)
return
#
Configure PORT to all outputs
#

Configure_Port()

#

Main program loop, check if Button is pressed

#

print("Press the Button to display your lucky number...")

random.seed(utime.ticks_ms())

while Button.value() == 1: # If Button not pressed
pass

r = random.randint(1, 7) # Generate random number

r = pow(2, r-1) # LED to be turned ON

Port_Output(r) # Send to LEDs

Figure 3.46: Program: LuckyDay.

3.15 Project 14: Door alarm with 7-colour flashing LED

Description: In this project, a miniature reed switch module is used together with a
7-colour flashing LED module. A small magnet is mounted on the door frame such that this
magnet is very close to the reed switch and as a result the reed switch contacts are closed.
When the door opens, the reed switch moves away from the magnet and as a result the
reed switch contacts opens and this activates a 7-colour flashing LED module which flashes
to indicate that the door is opened.

Aim: The aim of this project is to show how a mini reed switch module can be used togeth-
er with a 7-colour flashing LED module to create a silent door alarm.

Sensors used: Two sensor modules are used in this project: The KY-021 mini reed switch
module, and the KY-034 7-colour flashing LED module. Figure 3.47 shows a picture of the
KY-021 module. This is a 3-pin module with the connections GND, +V, and Signal. The
GND and +V pins are connected to the ground and power pins of the processor, respective-
ly. The Signal pin can be connected to any general-purpose input/output pin. An on-board
10 kohm resistor is connected between the +V and the S pins as shown in Figure 3.47.

e 80

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

+V

10K

D S
KY-021

S +V GND

Figure 3.47: KY-021 mini reed switch module.

Figure 3.48 shows a picture of the KY-034 7-colour LED module. This is a 3-pin module
where two GND pins are connected together. The other pin is the Signal pin. A 10 kohm
resistor is connected to on-board pin V but is not used here. The module generates 7-col-
ours when the Signal pin is connected.

Figure 3.48: KY-034 7-colour LED module.

Background Information: Reed switches are electrical switches operated by applied
magnetic field. These switches consist of a pair of ferromagnetic flexible metal contacts in
a sealed glass envelope (see Figure 3.49). The contacts are normally open, closing when
magnetic field (e.g. a magnet) is present near the contacts, and re-open i.e. return to their
normal state when the magnetic field is removed. Reed switches are used in door and
window mechanisms to detect when they are open or closed, and in many other security

applications.
R e

Figure 3.49: Typical reed switch in glass enclosure.

e 81

Raspberry Pi Pico Essentials

The 7-colour LED module has a built-in chip that controls the LED so that it flashes and
cycles through 7 colours when power is applied to the LED. The operating voltage of the
module is +3.3 V to +5 V. The module has pink, yellow, and green high brightness lights.
The Flash module generates light of high brightness. By setting the LED ON and OFF with
different durations we can get interesting flashing effects.

Block Diagram: The block diagram of the project is shown in Figure 3.50.

KY-034

magnet

Door poor
frame

Figure 3.50: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.51 for the case
when the door is closed. Here, GP0O and GP1 of the Pico are connected to the KY-021 reed
switch and KY-034 7-colour LED, respectively. The reed switch output is pulled HIGH
through a pull-up resistor and because the magnet is near the reed switch when the door is
closed. As shown in Figure 3.52, this pin goes to logic HIGH when the door is opened (i.e.
when the reed switch contacts open). The LED module is connected to the Pico through a

470-ohm current limiting resistor.

+3.3V

10K
(internal)
S 470 KY-034

GPO GP1 —/———S

.||—

Raspberry Pi
Pico

GND

1

Figure 3.51: Door is closed.

e 82

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

10K
(internal)

+3.3V
470 KY-034
GPO GP1 ——3——8

o S
KY-021

GND

Raspberry Pi J_—
Pico
GND

1

Figure 3.52: Door is open.

Program Listing: The program listing (ReedDoor) is shown in Figure 3.53. At the begin-
ning of the program, the connections to KY-021 and KY-034 are defined, where GP0O and
GP1 are configured as input and output respectively. The remainder of the program runs in
an endless loop. Inside this loop, the state of the reed switch is checked and if it is at logic
HIGH then it is assumed that the reed switch contacts are open i.e. the door is opened. As
a result of this, the 7-color LED is activated to give visual indication that the door is opened.

o
DOOR ALARM WITH 7-COLOUR FLASHING LED

—===================z=================

#

In this program a reed switch 1is connected as an input and
a 7-colour flashing LED is connected as an output. The LED
flashes when the door is opened

#

Author: Dogan Ibrahim

File : ReedDoor.py

Date : February, 2021

from machine import Pin

ReedSwitch = Pin(@, Pin.IN)
LED = Pin(1, Pin.OUT)

LED.value(0)

while True:
door = ReedSwitch.value()
if door ==
LED.value(1)
else:
LED.value(0)

Figure 3.53: Raspberry Pi program listing.

e 83

Raspberry Pi Pico Essentials

Testing the program
When the program is run, you should see the LED flashing (door open condition). Place a
magnet close to the reed switch (door closed condition) and the LED should stop flashing.

3.16 Project 15: 2-digit, 7-segment display

Description: In this project, a 7-segment LED display is used as a counter to count up
every second from 0 to 99. Multi-digit 7-segment displays require continuous refreshing of
their digits so that the human brain perceives the digits as lighting steady and non-flashing.
The general technique used is to enable each digit for a short time (e.g., 10 ms) so that
our eyes 'see' both digits as ON at any time. This process requires the digits to be enabled
alternately and continuously. As a result of this, the processor cannot perform any other
tasks and has to be busy all the time, refreshing the digits. One technique used in non-mul-
titasking systems is to use timer interrupts and refresh the digits in the timer interrupt
service routines. In this project, we will be employing a multitasking approach to refresh
the display digits so that the processor can carry out other tasks. The aim of the project is
to show how the digits of a multiplexed 2-digit 7-segment LED display can be refreshed,
while the main program sends data to the display to count up in seconds from 00 to 99.

7-Segment LED Displays: Displaying data is one of the fundamental output activities of
any microcontroller system. For example, displays are used to show the sensor data such
as the temperature, humidity, pressure etc. There are several types of display devices that
can be used in microcontroller-based systems. LCDs and 7-segment displays are probably
two of the most used display devices. There are several types of LCDs, such as text-based
LCD, graphics LCDs, colour LCDs, touch screen LCDs, etc. Most 7-segment displays are
used to display numeric or alphanumeric values, and they can have one or more digits.
One-digit displays can only display numbers from 0 to 9. Two-digit displays can display
numbers from 0 to 99, three-digit displays numbers from 0 to 999, and so on. In this pro-
ject a two-digit 7-segment display is used.

As shown in Figure 3.54, a 7-segment LED display basically consists of 7 LEDs connected
such that numbers from 0 to 9 and some (basic) letters can be displayed. The display seg-
ments are identified by letters from a through g. Figure 3.55 shows the segment names of
a typical 7-segment display.

D>

Figure 3.54: Some 7-segment displays.

e 84

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

a

f b
g

€ v
d

Figure 3.55: Segment names of a 7-segment display.

Figure 3.56 shows how numbers from 0 to 9 can be obtained by turning ON or OFF different
segments of the display.

Figure 3.56: Displaying numbers 0 - 9.

7-segment LED displays are available in two different configurations: common-cathode
and common-anode. As shown in Figure 3.57, in common-cathode configuration all the
cathodes of all the segment LEDs are connected together to ground. The segments are then
turned ON by applying a logic 1 to the required segment LED via current-limiting resistors.
In common-cathode configuration, the 7-segment LED is connected to the microcontroller
in current-sourcing mode.

TITTTTY
i

Figure 3.57: Common-cathode 7-segment LED display.

In a common-anode configuration, the anode terminals of all the LEDs are connected to-
gether as shown in Figure 3.58. This common point is then normally connected to the

e 85

Raspberry Pi Pico Essentials

supply voltage. A segment is turned ON by connecting its cathode terminal to logic 0 via a
current-limiting resistor. In common-anode configuration the 7-segment LED is connected
to the microcontroller in current-sinking mode.

vtV

11713

Figure 3.58: Common-anode, 7-segment LED display.

N

In multiplexed LED applications (for example, see Figure 3.59 for a 2-digit multiplexed LED
display), the LED segments of all the digits are tied together and the common pins of each
digit is turned ON separately by the microcontroller. By displaying each digit for several
milliseconds, the brain cannot differentiate that the digits are not ON all the time. This
way we can multiplex any number of 7-segment displays together. For example, to display
number 57, we have to send 5 to the first digit and enable its common pin. After a few
milliseconds, number 7 is sent to the second digit and the common point of the second digit
is enabled. When this process is repeated continuously the user sees as if both displays are
ON continuously.

Digit 1 Enable Digit 2 Enable

DIGIT 1 DIGIT 2

[(ohny TeTele;]

| i

Figure 3.59: 2-digit, multiplexed, 7-segment LED display.

Some manufacturers provide multiplexed multi-digit displays in single packages. For exam-
ple, we can purchase 2-, 4-, or 8-digit multiplexed displays in a single package. The display
used in this project is the DC56-11EWA which is a red, 0.56-inch height, common-cath-
ode two-digit multiplexed display with 18 pins, where the pin configuration is shown in
Table 3.3. Basically, this display can be controlled from the microcontroller as follows:

¢ send the segment bit pattern for digit 1 to segments a to g;
enable digit 1;

wait for a few milliseconds;

e disable digit 1;

e 86

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

¢ send the segment bit patter for digit 2 to segments a to g;

enable digit 2;

o disable digit 2;

wait for a few milliseconds;

e repeat the above process continuously.

Pin no Segment

1,5 e

2,6 d

3,8 [¢

14 digit 1 enable
17,7 g

15,10 b

16,11 a

18,12 f

13 digit 2 enable
4 decimal pointl
9 decimal point 2

Table 3.3: Pin configuration of Type DC56-11EWA dual display.

The segment configuration of DC56-11EWA display is shown in Figure 3.60. In a multi-
plexed display application, the segment pins of corresponding segments are connected
together. For example, pins 11 and 16 are connected as the common a segment. Similarly,
pins 15 and 10 are connected as the common b segment and so on.

Enable 1

Enable 2

%%%%%%%% %%%%%%%%

16 15

h dpt a

17 4 10 8

h dp2
5 7

Figure 3.60: DC56-11EWA disp/ay segment conﬁ'guration.

Block Diagram: Figure 3.61 shows the block diagram of the project.

e 87

Raspberry Pi Pico Essentials

2-digit LED display

Raspberry
Pi Pico - T
Data | | |
I
Enable 1 T i
Enable 2

Figure 3.61: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.62. In this project,
the following pins of the Raspberry Pi Pico are used to interface with the 7-segment LED
display:

7-Segment Display pin Raspberry Pi Pico GPIO Physical pin no.

El 8 (via transistor) 11

E2 7 (via transistor) 10

7-segment display segments are driven from the port pins through 470-ohm current-lim-
iting resistors. Digit-enable pins E1 and E2 are driven from port pins GP8 and GP7 respec-
tively through two BC108 NPN transistors (any other NPN transistor can be used here),
used as switches. The collectors of these transistors drive the segment digits. The seg-
ments are enabled when the base of the corresponding transistor is set to logic 1. Notice
that the following pins of the display are connected together to form a multiplexed display:

16 and 11; 15and 10; 3and 8; 2and 6; 1and 5; 17 and 7; 18 and 12.

e 88

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

DC56-11EWA Common Cathode

16
Raspberry Pi "
Pico 15
1470 18
GPO ——a 10
2470 45
GP1 = b 3
4 3
GP2-—E§%F———C 8
5 2
GP3 |—=——4 2
6470 1 8
GP4 (————€©
7470 43 1
GP5 ——f
9470 47 5
GP6 ——1+——9 -
1
GP8
GP7 10 .
GND B 18
1 2 |

BC108

Figure 3.62: Circuit diagram of the project.

Program Listing: Before driving the display, we must know the relationship between the
numbers to be displayed and the corresponding segments to be turned ON. This is shown

below.
Number to be displayed LED bit pattern (a,b,c,d,e,f,g)

0 1,1,1,1,1,1,0
0,1,1,0,0,0,0
1,1,0,1,1,0,1

1,1,1,1,0,0,1

0,1,1,0,0,1,1

1,0,1,1,0,1,1

1,0,1,1,1,1,1
1,1,1,0,0,0,0
1,1,1,1,1,1,1

O 0 I N O || W |N |-

1,1,1,1,0,1,1

Figure 3.63 shows the program listing (program: SevenCount). At the beginning of the
program the connections between the LED segments and the GPIO pins are defined in list
variable LED_Segments. Also the connections between the LED digits and the GPIO pins
are defined in list variable LED_Digits. These GPIO pins are then configured as outputs
and are all cleared to 0. Variable count is initialized to zero at the beginning of the pro-
gram. Function Refresh is called periodically by the timer and this function refreshes the
display to display the value of variable count. The display digits are refreshed every 10 ms.

e 89

Raspberry Pi Pico Essentials

If the number to be displayed is less than 10 then a 0 is inserted in front of the number so
that the numbers 0 to 9 are displayed as 00 to 09. Variable count is incremented by one
every second.

e
2-DIGIT 7-SEGMENT COUNTER

—========================

#

In this program a 2-digit 7-segment display 1is connected
to the Pico. The program counts up every second

#

Author: Dogan Ibrahim

File : SevenCount.py

Date : February, 2021

from machine import Pin, Timer
import utime

tim = Timer()
LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [8, 7]

L = [0]*7

D = [0, 0]

#

LED bit pattern for all numbers 0-9
#

LED_Bits ={

‘0’:(1,1,1,1,1,1,0),
1’:(0,1,1,0,0,0,0),
€2’:(1,1,0,1,1,0,1),
€3’:(1,1,1,1,0,0,1),
‘4’:(0,1,1,0,0,1,1),
¢5’:(1,0,1,1,0,1,1),
‘6’:(1,0,1,1,1,1,1),
¢7’:(1,1,1,0,0,0,0),
‘8’:(1,1,1,1,1,1,1),
‘9’:(1,1,1,1,0,1,1)}

HoOH O O W W W A
© O N O U AN WN RO

count = 0 # Initialzie count
#

This function configures the LED ports as outputs

#

def Configure_Port():
for i 1in range(0, 7):
L[i] = Pin(LED_Segments[i], Pin.OUT)

e 90

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

for i 1in range(0, 2):
D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
global count
cnt = str(count) # into string
if len(cnt) < 2:
cnt = "0" + cnt # Make sure 2 digits
for dig in range(2): # Do for 2 digits
for loop in range(0,7):
L[loop].value(LED_Bits[cnt[dig]][loop])
D[dig].value(1)
utime.sleep(0.01)
D[dig].value(0)
#
Configure PORT to all outputs
#

Configure_Port()

#

Main program loop. Start the periodic timer and counting
#

tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever
utime.sleep(1) # Wait a second
count = count + 1 # Increment count
if count == 100: # If count = 100
count = 0

Figure 3.63: Program: SevenCount.

Modified program

In the program shown in Figure 3.63, numbers under 10 are displayed with a leading 0
(e.g. 05). We can remove the leading zero by blanking all the segments of the left-hand
digit if the number is less than 10. The number five, for example, is displayed as 5 and not
as 05. The modified program listing (program: SevenCount2) is shown in Figure 3.64.
Here, list LED_Bits is modified by adding a blank line where all the segment bits are set to
0. Additionally, a blank character is inserted to the front of string cnt if the number is less
than 10 so that the leading digit is blanked.

e 91

Raspberry Pi Pico Essentials

e
2-DIGIT 7-SEGMENT COUNTER

==========z=====z==========

#

In this program a 2-digit 7-segment display 1is connected
to the Pico. The program counts up every second.

In this version of the program leading zero 1is omitted

#

Author: Dogan Ibrahim

File : SevenCount.py

Date : February, 2021

from machine import Pin, Timer
import utime

tim = Timer()
LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [8, 7]

L = [0]*7

D = [0, 0]

#

LED bit pattern for all numbers 0-9

#

LED_Bits ={

¢ ¢:(0,0,0,0,0,0,0), # Blank
‘@’:(1,1,1,1,1,1,0), #0
€1°:(0,1,1,0,0,0,0), # 1
€2°:(1,1,0,1,1,0,1), # 2
€3°:(1,1,1,1,0,0,1), # 3
“4°:(0,1,1,0,0,1,1), # 4
‘5°:(1,0,1,1,0,1,1), #5
‘6°:(1,0,1,1,1,1,1), #6
€7°:(1,1,1,0,0,0,0), # 7
‘8’:(1,1,1,1,1,1,1), # 8
‘9°:(1,1,1,1,0,1,1)} #9
count = 0 # Initialzie count
#

This function configures the LED ports as outputs
#

def Configure_Port():
for i 1in range(0, 7):
L[i] = Pin(LED_Segments[i], Pin.OUT)

for i 1in range(0, 2):

e 92

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
global count
cnt = str(count) # into string
if len(cnt) < 2:
cnt =" " + cnt # Make sure 2 digits
for dig in range(2): # Do for 2 digits
for loop in range(0,7):
L[loop].value(LED_Bits[cnt[dig]][loop])
D[dig].value(1)
utime.sleep(0.01)
D[dig].value(0)
#
Configure PORT to all outputs
#

Configure_Port()

#

Main program loop. Start the periodic timer and counting
#

tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever
utime.sleep(1) # Wait a second
count = count + 1 # Increment count
if count == 100: # If count = 100
count = 0

Figure 3.64: Program: SevenCount2.

3.17 Project 16: 4-digit, 7-segment display seconds counter
Description: In this project a 7-segment, 4-digit multiplexed LED display is used as a
counter to count up every second from 0 to 9999. The project is very similar to the previous
project, but here 4 digits are used instead of 2.

The operation of a 4-digit multiplexed display (Figure 3.65) is similar to the 2-digit display,
where the LED segments of all the digits are tied together and the common pins of each
digit are turned ON separately by the microcontroller. By displaying each digit for several
milliseconds, the eye can not differentiate that the digits are not ON all the time. This way
we can multiplex any number of 7-segment displays together. For example, to display
number 5734, we must send '5' to the first digit and enable its common pin. After a few

e 93

Raspberry Pi Pico Essentials

milliseconds, number '7' is sent to the second digit and the common point of the second
digit is enabled, and so on. When this process is repeated continuously, the user perceives
both displays as ON continuously.

Figure 3.65: 4-digit, multiplexed 7-segment LED display.

The display used in this project is the DC56-11EWA, which is a red 0.56-inch height com-
mon-cathode two-digit multiplexed display having 18 pins, where the pin configuration is
shown in Table 3.3. Two such display modules are used to construct a 4-digit display. Each
module has its own E1 and E2 enable pins.

In a multiplexed display application, the segment pins of corresponding segments are con-
nected together. For example, pins 11 and 16 are connected as the common a segment.
Similarly, pins 15 and 10 are connected as the common b segment and so on.

Block Diagram: Figure 3.66 shows the block diagram of the project.

4-digit LED display
Raspberry
Pi Pico - T - T
pwa | LT[
R
Enable 1 T f t
Enable 2
Enable 3
Enable 4

Figure 3.66: Block diagram of the project.
Circuit Diagram: The circuit diagram of the project is shown in Figure 3.67. In this project,

the following pins of the Raspberry Pi Pico are used to interface with the 7-segment LED
display:

e 94

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

7-Segment Display Pin Raspberry Pi Pico GPIO Physical Pin No.
2
4
5
6
7
g 6 9
E1l 7 (via transistor) 10
E2 8 (via transistor) 1
El 9 (via transistor) 12
E2 10 (via transistor) 14

The 7-segment display segments are driven from the port pins through 470-ohm current
limiting resistors. Digit-enable pins E1, E2 of the first module and E1, E2 of the second
module are driven from port pins GP7, GP8, GP9, and GP10 respectively through four
BC108 NPN transistors used as switches (any other NPN, small-signal transistor can be
used here). The collectors of these transistors drive the segment digits. The segments are
enabled when the base of the corresponding transistor is set to logic 1. Notice that the fol-
lowing pins of the display are interconnected to form a multiplexed display:

16 and 11; 15and 10; 3and 8; 2and 6; 1 and 5; 17 and 7; 18 and 12.

RASPBERRY PI 2 x DC56-11EWA Common Cathode
PICO
GPO

GP1 |———
GP2 |———
GP3 |———
GP4 |————
GP5 —T——
GP6 [———

~
]
=)

)
)

E]

=
[

@ 0 00 o o

GP7

|
|
FFEFEFE]

GP8
GP9 7
GP10 E1 E2 Z]
3L 14 13
BC108 BC108 BC108

Figure 3.67: Circuit diagram of the project.

e 95

Raspberry Pi Pico Essentials

Program Listing: Figure 3.68 shows the program listing (Program: SevenCount4). At
the beginning of the program, the modules used in the program are imported. The program
is very similar to the one with 2 digits. Here, the list LED_Digits contains 4 numbers which
are the digit-enable pins of the four 7-segment LED modules. Function Refresh is very
similar to the function with 2 digits, except that here we had to make sure that the number
to be displayed (count) consists of 4 digits. If the number is less than 4 digits, spaces are
inserted in front of it to blank the display for these digit positions. Notice that 'digit count'
runs from 0 to 4 and not from 0 to 2 which was the case with the 2-digit display. The delay
between the digit-enables is reduced to 5 ms since we have 4 digits, and quicker refreshing
is required. Variable count starts from 0 at the beginning of the program by default. It is
incremented by 1 every second. When the count reaches 10000 it is reset back to 0.

e
4-DIGIT 7-SEGMENT SECONDS COUNTER

=======z========z==================

#

In this program a 4-digit 7-segment display 1is connected
to the Pico. The program counts up every second.

In this version of the program leading zero 1is omitted

#

Author: Dogan Ibrahim

File : SevenCount4.py

Date : February, 2021

from machine import Pin, Timer
import utime

tim = Timer()

LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [7, 8, 9, 10]

L = [0]*7

D = [0, 0, 0, 0]

#

LED bit pattern for all numbers 0-9

#

LED_Bits ={

¢ ¢:(0,0,0,0,0,0,0), # Blank
‘@’:(1,1,1,1,1,1,0), #0
€1°:(0,1,1,0,0,0,0), # 1
€2°:(1,1,0,1,1,0,1), # 2
€3°:(1,1,1,1,0,0,1), # 3
“4°:(0,1,1,0,0,1,1), # 4
‘5°:(1,0,1,1,0,1,1), #5
‘6°:(1,0,1,1,1,1,1), #6
€7°:(1,1,1,0,0,0,0), # 7

e 96

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

¢87:(1,1,1,1,1,1,1),
€97:(1,1,1,1,0,1,1)}

count = 0 # Initialzie count
#

This function configures the LED ports as outputs

#

def Configure_Port():
for i 1in range(0, 7):
L[i] = Pin(LED_Segments[i], Pin.OUT)

for i 1in range(0, 4):
D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
global count
cnt = str(count) # into string
if len(cnt) == # 3 digits?
cnt =" " + cnt # Make sure 4 digits
elif len(cnt) == # 2 digits?
cnt =" " + cnt # MAke sure 4 digits
elif len(cnt) == # 1 digit?
cnt = " " + cnt # MAke sure 4 digits
for dig in range(4): # Do for 4 digits
for loop in range(0,7):
L[loop].value(LED_Bits[cnt[dig]][loop])
D[dig].value(1)
utime.sleep(0.005)
D[dig].value(0)
#
Configure PORT to all outputs
#

Configure_Port()

#

Main program loop. Start the periodic timer and counting
#

tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever

e 97

Raspberry Pi Pico Essentials

utime.sleep(1) # Wait a second

count = count + 1 # Increment count

if count == 10000: # If count = 10000
count = 0

Figure 3.68: Program: SevenCount4.

3.18 LCDs

In microcontroller-based systems we usually want to interact with the system — for exam-
ple, to enter a parameter, to change the value of a parameter, or to display the output of
a measured variable. Data is usually entered to a system using a switch, a small keypad,
or a full-blown keyboard. Data is usually displayed using an indicator such as one or more
LEDs, 7-segment displays, or LC (liquid-crystal) type displays. LCDs have the advantages
that they can display alphanumeric as well as graphical data. Some LCDs have 40 or more
character lengths with the capability to display data on several lines. Some other LCDs can
be used to display graphical images (graphical LCDs, or simply GLCDs), such as animation.
Some displays are available in single- or multi-colour, while others incorporate backlighting
so that they can be viewed in dimly lit conditions.

LCDs can be connected to a microcontroller either in parallel form or through the I2C inter-
face. Parallel LCDs (e.g. the Hitachi HD44780) are connected using more than one data line
and several control lines, and the data gets transferred in parallel form. It is common to
use either 4 or 8 data lines and two or more control lines. Using a 4-wire connection saves
1/0 pins but it is slower since the data is transferred in two stages. 12C based LCDs on the
other hand are connected to a microcontroller using only 2 wires, carrying 'data’ and 'clock’.
12C-based LCDs are in general much easier to use and require less wiring, but they cost
more than the parallel ones. In this Chapter we will be learning to use both parallel and 12C
based LCDs in projects.

The programming of LCDs is a complex task and requires a good understanding of the in-
ternal operations of the LCD controllers, including knowledge of their exact timing require-
ments. Fortunately, there are several libraries that can be used to simplify the use of both
parallel and serial LCDs.

The HD44780 LCD module

Although there are several types of LCDs, the HD44780 is currently one of the most popu-
lar LCD modules used in industry as well as by hobbyists (Figure 3.69). This module is an
alphanumeric monochrome display and comes in different sizes. Modules with 16 columns
are popular in most small applications, but other modules with 8, 20, 24, 32, or 40 columns
are also available. Although most LCDs have two lines (or rows) as the standard, it is pos-
sible to purchase models with 1 or 4 lines. LCD displays are available with standard 14-pin
connectors, although 16-pin modules are also available, providing terminals for backlight-
ing. Table 3.4 gives the pin configuration and pin functions of a 16-pin LCD module. A brief
summary of the pin functions is given below.

e 98

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Pin no Name Function

1 VSS Ground

2 VDD + ve Supply

3 VEE Contrast

4 RS Register Select

5 R/W Read/Write

6 E Enable

7 DO Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

15 A Backlight anode (+)
16 Backlight cathode (GND)

Table 3.4: Pin configuration of HD44780 LCD module.

[. ; L
Figure 3.69: HD44780-compatible parallel LCD.

Vss (pin 1) and Vpp (pin 2) are the Ground and Power Supply pins. The supply voltage
should be +5 V.

Vee is pin 3 and this is the contrast control pin used to adjust the contrast of the display.
The arm of a 10-kohm potentiometer is normally connected to this pin and the other two
terminals of the potentiometer are connected to the ground and power supply pins. The
contrast of the display is adjusted by rotating the potentiometer arm.

Pin 4 is the Register Select (RS) and when this pin is LOW, data transferred to the display
is treated as commands. When RS is HIGH, character data can be transferred to and from
the display.

Pin 5 is the Read/Write (R/W) line. This pin is pulled LOW in order to write commands or
character data to the LCD module. When this pin is HIGH, character data or status infor-
mation can be read from the module. This pin is normally connected permanently LOW so
that commands or character data can be sent to the LCD module.

e 99

Raspberry Pi Pico Essentials

Enable (E) is pin 6 which is used to initiate the transfer of commands or data between the
LCD module and the microcontroller. When writing to the display, data is transferred only
on the HIGH to LOW transition of this pin. When reading from the display, data becomes
available after the LOW to HIGH transition of the enable pin and this data remains valid as
long as the enable pin is at logic HIGH.

Pins 7 to 14 are the eight data bus lines (DO to D7). Data can be transferred between the
microcontroller and the LCD module using either a single 8-bit byte, or as two 4-bit nibbles.
In the latter case only the upper four data lines (D4 to D7) are used. 4-bit mode has the
advantage that four less I/0 lines are required to communicate with the LCD. The 4-bit
mode is slower, however, since the data is transferred in two stages. In this book we shall
be using the 4-bit interface only.

Pins 15 and 16 are for background brightness control. To enable the background bright-
ness, a 220-ohm resistor should be connected from pin 15 to +5 V supply, and pin 16
should be connected to ground.

In 4-bit mode the following pins of the LCD are used. The R/W line is permanently connect-
ed to ground. This mode uses 6 GPIO port pins of the microcontroller:

Vss, Voo, Vees E, R/S, D4, D5, D6, D7.

In the next section we will be creating an LCD library of functions that can be used to send
data and text to standard HD44780 type character LCDs.

3.19 Project 17: LCD functions - displaying text
Description: In this project we will develop a number of functions that can be used to send

data and text to 16x2 character type LC displays.

Aim: The aim of this project is to develop a library of functions that can be used to control
LCDs. These functions can be used in projects to send text and numbers to LCDs.

Block diagram: Figure 3.70 shows the block diagram of the project.

Raspberry Pi Pico LCD
Figure 3.70: Block diagram of the project.
Circuit diagram: The circuit diagram of the project is shown in Figure 3.71. The LCD is

connected to the Pico using 4 data wires (D4 — D7) and 2 control wires (E and R/S). The
connections between the LCD and Pico are as follows:

e 100

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

LCD pin Pico pin

R/S GPO
E GP1
D4 GP2
D5 GP3
D6 GP4
D7 GP5
10K
® o contrast
2 220 2 3 =
+5V 15| vdd Vee
K
4 11
GP2 D4
5 12
GP3 D5
6 13
GP4 Y, D6 LCD
GP5 D7
2 4
GP1 RS
GPO ! 5 E
Raspberry Pi
Pico Vss RIWA
GND 105 16

dl s

Figure 3.71: Circuit diagram of the project.
The contrast of the LCD is controlled using a 10-kohm potentiometer.

Program listing: Figure 3.72 shows the functions listing (Program: LCD). The connections
between the LCD and the Pico are defined at the beginning and these can be changed if
desired. The remainder of the functions should not be changed for proper control of the
LCD. These functions implement the initialization and control of the LCD.

The following LCD control functions are available:

lcd_init: this is the LCD initialization function and must be called first before any
other functions are called;

Icd_clear: clears the LCD;

lcd_home: homes the cursor (top left position);

led_cursor_blink: enables blinking cursor;

lcd_cursor_on: enables visible cursor;

lcd_cursor_off: disables visible cursor;

lcd_puts(s): displays string s;

led_putch(c): displays character c;

lcd_goto(col,row): positions the cursor at the specified column and position. (0,
0) is the left corner of the LCD. First row is row 0, second row is row 1 and so on.

e 101

Raspberry Pi Pico Essentials

e
PARALLEL LCD FUNCTIONS

=======z====z===========

#

These functions initialize and control the LCD

#

Author: Dogan Ibrahim

File : LCD

Date : February 2021

from machine import Pin
import utime

EN = Pin(0®, Pin.OUT)
RS = Pin(1, Pin.OUT)
D4 = Pin(2, Pin.OUT)
D5 = Pin(3, Pin.OUT)
D6 = Pin(4, Pin.OUT)
D7 = Pin(5, Pin.OUT)
PORT = [2, 3, 4, 5]
L = [0,0,0,0]

def Configure():
for i in range(4):
L[i] = Pin(PORT[i], Pin.OUT)

def lcd_strobe():
EN.value(1)
utime.sleep_ms(1)
EN.value(0)
utime.sleep_ms(1)

def lcd_write(c, mode):
if mode ==
d =c
else:
d ord(c)
d=d> 4
for i in range(4):
b=dg&1
L[i].value(b)
d=d>1
RS.value(mode)
lcd_strobe()

e 102

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

def

def

def

def

def

def

def

def

d
else:
d = ord(c)
for i 1in range(4):
b=dg&1
L[i].value(b)
d=4d>1
RS.value(mode)
lcd_strobe()
utime.sleep_ms(1)
RS.value(1)

0]
0

lcd_clear():
lcd_write(0x01, 0)
utime.sleep_ms(5)

lcd_home():
lcd_write(0x02, 0)
utime.sleep_ms(5)

lcd_cursor_blink():

lcd_write(0x0D, 0)
utime.sleep_ms(1)

lcd_cursor_on():
lcd_write(OxQE, 0)
utime.sleep_ms(1)

lcd_cursor_off():
lcd_write(0x0C, 0)
utime.sleep_ms(1)

lcd_puts(s):

1 = len(s)

for i 1in range(l):
lcd_putch(s[i])

lcd_putch(c):
lcd_write(c, 1)

lcd_goto(col, row):

c=col +1

if row ==
address = 0
if row == 1:

address = 0x40

e 103

Raspberry Pi Pico Essentials

address = address + ¢ - 1
lcd_write(0x80 | address, 0)

def led_init():
Configure()
utime.sleep_ms(120)
for i in range(4):
L[i].value(0)
utime.sleep_ms(50)
L[0].value(l)
L[1].value(1)
lcd_strobe()
utime.sleep_ms(10)
lcd_strobe()
utime.sleep_ms(10)
lcd_strobe()
utime.sleep_ms(10)
L[0].value(0)
lcd_strobe()
utime.sleep_ms(5)
lcd_write(0x28, 0)
utime.sleep_ms(1)
lcd_write(0x08, 0)
utime.sleep_ms(1)
lcd_write(0x01, 0)
utime.sleep_ms(10)
lcd_write(0x06, 0)
utime.sleep_ms(5)
lcd_write(0x0C, 0)
utime.sleep_ms(10)
#================= END OF LCD FUNCTIONS =======================

Figure 3.72: Program LCD.
Displaying text
The following statement displays text Hello from PICO (these statements must follow the

LCD functions given in Figure 3.72).

led_init()
lcd_puts('Hello from PICO')

3.20 Project 18: Seconds counter — LCD
Description: In this project we will count up every second and display the result on the

LCD.

Aim: The aim of this project is to show how numeric data can be displayed on the LCD.

e 104

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

The block diagram and circuit diagram of the project are as in Figure 3.70 and Figure 3.71.

Program listing: The program is named LCDCount. The following statements must follow

the LCD functions given in Figure 3.72.

led_init()

count = 0

while True:
lcd_goto(0, 0)
cntstr = str(count)
lcd_puts(cntstr)
count = count + 1
utime.sleep(1)

Storing the LCD functions in a module library

We can easily combine all the LCD functions in a library and then import this library at the

beginning of our program. The steps are given below.

e Open the program LCD (see Figure 3.72).
Click at Thonny: File followed by Save As.

e Select Raspberry Pi Pico as the destination.
¢ Set the filename as LCD.py and click OK.

We can now import library LCD into our LCD based programs. For example, the program
given in this project can be written as shown in Figure 3.73 (Program: LCDCount2). Notice

that all the LCD functions must be preceded with word LCD.

This program counts up every secon and displays on LCD

Author: Dogan Ibrahim
File : LCDCount2.py
Date : February 2021

import LCD
import utime

LCD. lcd_init()
count = 0

while True:
LCD.lcd_goto(0, 0)
cntstr = str(count)

e 105

Raspberry Pi Pico Essentials

LCD.lcd_puts(cntstr)
count = count + 1
utime.sleep(1)

Figure 3.73: Program LCDCount?2.

3.21 Project 19: Reaction timer with LCD

Description: This is a reaction timer game. The idea of the game is to measure the reac-
tion time of the user. The game consists of an LCD, an LED, and a pushbutton. The game
starts with the user keeping one hand on the pushbutton. The LED turns ON at random
times and as soon as it is ON, the user is expected to press the pushbutton. The elapsed
time between seeing the LED lit and pressing the pushbutton is measured and displayed on
the LCD as the reaction time of the user.

Block diagram: Figure 3.74 shows the block diagram of the project.

Pushbutton Raspberry Pi Pico

LED
Figure 3.74: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.75. The LCD is
connected as in the previous project. The LED and the pushbutton are connected to GP16

and GP17 respectively. An internal pull-up resistor is used at pin GP17, obviating the use
of an external resistor.

10K
® o contrast

[= [[L
+5V 15 KVdd Vee

Raspberry Pi
Pico 4 11
oprr GP2 P— D4
@l GP3 D5
Button q 6 13
GP4 — D6 Lcp
GP5 D7
= 2 4
GP1 RS
apo [ble
GP16 Vss RWA
GND 115116
3 A
-]T- 470 A
LED=

Figure 3.75: Circuit diagram of the project.

e 106

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

Program listing: Figure 3.76 shows the program listing (Program: Reaction). At the
beginning of the program the LCD module, machine, utime, and the random module are
all imported to the program. Button and LED are assigned to port pins GP17 and GP16
respectively. GP17 is pulled-up internally so that the state of this pin is logic 1 by default,
and goes to logic 0 when the pushbutton is pressed. LCD library is then initialized by calling
function lcd_init.

At the beginning of the main program the LED is turned OFF, and the program enters a
while loop. Inside this loop the LCD is cleared, and a random number is generated between
3 and 10. This value is used to delay turning the LED ON so that the user does not know
when the LED is going to be lit. At this point the LED is turned ON, a timer is started, and
the button interrupt is enabled. The interrupt is configured to be activated on the falling
edge of the pushbutton output (i.e. when the pushbutton is pressed). The main program
then waits until the interrupt is serviced (i.e. while the flag is 0).

The program jumps to function MyButton as soon as the pushbutton is pressed. At the be-
ginning of this program further interrupts are disabled by setting handler = None. Inside
this function, the LED is turned OFF and the timer is stopped. The elapsed time is calculated
by subtracting the current time from the time when the LED was turned ON. This time is
converted into string and stored in variable ReactionStr and is displayed in the second
row of the LCD in milliseconds. The text Reaction Time: is displayed at the first row of the
LCD. As an example, if the reaction time is 500 ms, it is displayed in the following format:

Reaction Time:
500

Variable flag is then set to 1 so that the main program continues. At the same time the LCD
is cleared. The game restarts as soon as the LCD is cleared.

o
REACTION TIMER

—=======z======

#

This 1is a reaction timer program which measures the

reaction of the user and displays on the LCD in ms.

For a fast reaction time, the user should press the

pushbutton as soon as the LED 1is lit

#

Author: Dogan Ibrahim

File : Reaction.py

Date : February 2021

o
import LCD

from machine import Pin
import utime
import random

Button = Pin(17, Pin.IN, Pin.PULL_UP)

e 107

Raspberry Pi Pico Essentials

LED = Pin(16, Pin.OUT)
LCD.led_init()
flag = 0

#
This 1is the dinterrupt service routine. The progra jumps
here as soon as the pushbutton is pressed
#
def MyButton(pin):
global flag
Button.irq(handler = None)
LED.value(0)
TmrEnd = utime.ticks_ms()
ReactionTime = utime.ticks_diff(TmrEnd, TmrStart)
ReactionStr = str(ReactionTime)
flag = 1
LCD.lcd_puts("Reaction Time:")
LCD.lcd_goto(0, 1)
LCD.lcd_puts(ReactionStr)
utime.sleep(3)

#

Start of MAIN program

#

LED.value(0)

while True:
flag = 0
LCD.lcd_clear ()
rnd = random.randint(3, 10)
utime.sleep(rnd)
LED.value(1)
TmrStart = utime.ticks_ms()
Button.irqg(handler=MyButton, trigger = Pin.IRQ_FALLING)
while flag == 0:

pass

Figure 3.76: Program Reaction.
3.22 Project 20: Ultrasonic distance measurement
Description: In this project an ultrasonic sensor module is used to measure the distance

in front of a sensor. The distance is displayed on the LCD.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used in a
project to measure distance.

e 108

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

Ultrasonic sensors
In this project the popular HC-SR04 ultrasonic transmitter-receiver module is used (Fig-
ure 3.77). The basic features of this sensor module are:

e Operating voltage: 5V

e Operating current: 2 mA

e Detection distance: 2 -450 cm

e Input trigger signal: 10 pus TTL

e Sensor angle: 15 degrees or less

Figure 3.77: HC-SR04 ultrasonic sensor module.
The HC-SR04 has the following pin names and descriptions:

Vcc: Power input

Trig: Trigger input
Echo: Echo output
Gnd: Power ground

The basic principle of operation of the HC-SR04 ultrasonic sensor module is as follows (see
Figure 3.78):

e a 10us trigger pulse is sent to the module;

e the module then sends eight 40-kHz square wave signals to the target and sets
the echo pin HIGH;

e the program starts a timer;

e the signal hits the target and echoes back to the module;

e when the signal is returned to the module the echo pin goes LOW;

e the timer is stopped;

the duration of the echo signal is calculated, and this is proportional to the distance to the
target.

The distance to the object is calculated as follows.

Distance to object (in metres) = (duration of echo time in seconds * speed of
sound) / 2

e 109

Raspberry Pi Pico Essentials

The speed of sound is 343 m/s, or 0.0343 cm/us at 20 °C air temperature.

Therefore,

Distance to object (in cm) = (duration of echo time in ps) * 0.0343 / 2

or,
Distance to object (in cm) = (duration of echo time in ps) * 0.0171

For example, if the duration of the echo signal is 294 microseconds then the distance to the

object is calculated as follows:

Distance to object (cm) = 294 * 0.0171 = 5.03 cm

|--]llm--
Trigger ;—‘ |_
Acoustic

Burst 8x40KHz

40KHz I"l"" ||||||
e

Reflected
Signal
Output of | |
ECHO Pin
Propagation Delay

Dependent on Distance

Figure 3.78: Operation of the ultrasonic sensor module.

Block Diagram: Figure 3.79 shows the block diagram of the project.

ject - . @

HC-SRO4 >
Ultrasonic sensor Raspberry Pi Pico

Figure 3.79: Block diagram of the project.

LCD

Circuit Diagram: Figure 3.80 shows the project circuit diagram. Notice that the sensor op-
erates at +5 V and its output is not compatible with the Raspberry Pi Pico input. A resistive

potential divider circuit is used to lower the sensor voltage to +3.3 V.

e 110

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

10K
© o contrast

]2 220 |2 T_J:

+5V 15| vdd Vee
K
4 1
Vee 21 GP2 D4
trig GP16 o 5 12 5
scho |1 P gpiy o)
GP4 D6
HC-SR04 7 14 LCD
GND 2K GP5 5 y D7
T GP1 RS
= = eroll—8le
Ultrasonic module Raspberry Pi
Pico Vss RIWA
GND 1|5 16

3| s

Figure 3.80: Circuit diagram of the project.

Program listing: Figure 3.81 shows the program listing (Program: Ultrasonic). At the
beginning of the program, trig and the echo pins are configured. Inside the main program
loop, a trigger pulse is sent for 10 microseconds and the program waits to receive the echo
signal. After receiving the echo signal its duration is calculated and stored in the variable
named Duration. Assuming that the speed of sound in air is 343 m/s (at air temperature
20 °C), the distance to the object is calculated and stored in variable distancecm. This
value is then displayed on the LCD as shown in Figure 3.81.

o
ULTRASONIC DISTANCE MESUREMENT

==============================

#

In this project a HC-SR04 type ultrasonic sensor module 1is
connected to the Raspberry Pi Pico. The program displays

distance to an object in-front of the sensor

#

Author: Dogan Ibrahim

File : Ultrasonic.py

Date : February 2021

from machine import Pin
import utime

import LCD

trig = Pin(16, Pin.OUT) # trig pin
echo = Pin(17, Pin.IN) # echo pin
LCD. led_init() # Init LCD

o111

Raspberry Pi Pico Essentials

while True:
trig.value(0)

utime.sleep_us(5) # Wait until settled

trig.value(1l) # Send trig pulse

utime.sleep_us(10) # 10 microseconds

trig.value(0) # Remove trig pulse

while echo.value() == 0: # Wait for echo 1
pass

Tmrstrt = utime.ticks_us()

while echo.value() == 1: # Wait for echo 0
pass
Tmrend = utime.ticks_us()

Duration = utime.ticks_diff(Tmrend, Tmrstrt)
distancecm = Duration * 0.0171
LCD.lcd_clear ()

D = "Dist = " + str(distancecm)[:6] + " cm"
LCD.lcd_puts(D)

utime.sleep(1)

Figure 3.81: Program: Ultrasonic.

Ao bk ol b b

Figure 3.82: Example display on the LCD.

3.23 Project 21: Height of a person (stadiometer)

Description: Stadiometers are electronic devices used to measure the height of a person.
In this project an ultrasonic sensor module is used to measure the height of a person. The
height of the stadiometer is assumed to be 200 cm. The height of the person is displayed
on the LCD.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used to
make a stadiometer

Block diagram: Figure 3.83 shows the block diagram of the project. The person whose
height is to be measured stands below the stadiometer.

e 112

Chapter 3 ¢ Raspberry Pi Pico Simple Hardware Projects

h

200 cm

 J

4 - Ultrasonic Sensor

Height=H-h

Figure 3.83: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is identical to the one in Figure 3.80.

Program listing: Figure 3.84 shows the program listing (Program: Stadiometer). At the
beginning of the program the height of the stadiometer is specified (H = 200 cm). The
program then calculates the distance between the sensor and the top of the head of the

person (h) The height of the person is given by H = h.

o
PERSON HEIGHT MEASUREMENT (STADIOMETER)

=======================================

#

In this project a HC-SR04 type ultrasonic sensor module 1is

connected to the Raspberry Pi Pico. The program measures the
height of a person

#

Author: Dogan Ibrahim

File : Stadiometer.py

Date : February 2021

from machine import Pin
import utime
import LCD

trig = Pin(16, Pin.OUT)
echo = Pin(17, Pin.IN)

LCD.lcd_init()
H = 200

while True:
trig.value(0)

trig pin
echo pin

Init LCD
Height of stadiometer

e 113

Raspberry Pi Pico Essentials

utime.sleep_us(5) # Wait until settled

trig.value(1l) # Send trig pulse

utime.sleep_us(10) # 10 microseconds

trig.value(0) # Remove trig pulse

while echo.value() == 0: # Wait for echo 1
pass

Tmrstrt = utime.ticks_us()

while echo.value() == 1: # Wait for echo 0
pass
Tmrend = utime.ticks_us()

Duration = utime.ticks_diff(Tmrend, Tmrstrt)
h = Duration * 0.0171

LCD.lcd_clear ()

Height = H - h

D ="H ="+ str(Height)[:5] + " cm"
LCD.lcd_puts(D)

utime.sleep(1)

Figure 3.84: Program: Stadiometer.
3.24 Project 22: Ultrasonic reverse parking aid with buzzer
Description: In this project the ultrasonic sensor module is used together with an active
buzzer to help while reverse parking our car. As the distance to the objects get smaller, the

buzzer sound faster to warn the driver that the objects at the rear of the vehicle are nearer.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used to
help reverse-park our car.

Block Diagram: Figure 3.85 shows the block diagram of the project.

llIII'

HC-SR04 A
Ultrasonic sensor Raspberry Pi Pico

Buzzer
Figure 3.85: Block diagram of the project.
Circuit diagram: The circuit diagram of the project is shown in Figure 3.86. The circuit is

basically same as Figure 3.80, but there is no LCD. Also an active buzzer is added to port
pin GP18 of the Raspberry Pi Pico.

e 114

Chapter 3 e Raspberry Pi Pico Simple Hardware Projects

+5V

Vee 21
trig GP16

1K 22 24

echo GP17 GP18
HC-SR04 ECI Buzzer
GND 2K 1

Ultrasonic module Raspberry Pi

Pico
GND

il

Figure 3.86: Circuit diagram of the project.

Program listing: Figure 3.87 shows the program listing (Program: Parking). After finding
the distance to the obstacle, the program creates a delay value depending on the distance
of the obstacle. As the car gets closer to the obstacle, this delay value is made smaller,
causing the buzzer to sound faster (more frequently) to alert the driver that the car is get-
ting close to the obstacle. If on the other hand the car gets further away from the obstacle,
the delay is made larger so that the buzzer sounds slower (less frequently) to inform the
driver that the obstacle is not very close.

o
ULTRASONIC REVERSE CAR PARKING AID

==================================

#

In this project a HC-SR04 type ultrasonic sensor module 1is
connected to the Raspberry Pi Pico. Additionally, a buzzer
is connected. The project sounds the buzzer as the car gets
near an obstacle.The buzzer sounds faster as the car gets

nearer an object

#

Author: Dogan Ibrahim

File : Parking.py

Date : February 2021

from machine import Pin

import utime

trig = Pin(16, Pin.OUT) # trig pin
echo = Pin(17, Pin.IN) # echo pin
Buzzer = Pin(18, Pin.OUT) # Buzzer at pin 18
Buzzer.value(0) # Turn OFF buzzer

e 115

Raspberry Pi Pico Essentials

while True:
trig.value(0)
utime.sleep_us(5)

trig.value(1l)
utime.sleep_us(10)
trig.value(0)

while echo.value() == 0:
pass
Tmrstrt = utime.ticks_us()

while echo.value() == 1:
pass
Tmrend = utime.ticks_us()

Wait until settled

Send trig pulse
10 microseconds

Remove trig pulse

Wait for echo 1

Wait for echo 0

Duration = utime.ticks_diff(Tmrend, Tmrstrt)

distance = Duration * 0.0171

delay in the duration of the sound

H* R o H H

if distance > 100:
dely = 0

elif distance > 70 and distance < 90:

dely = 600

elif distance > 50 and distance < 70:

dely = 400

elif distance > 30 and distance < 50:

dely = 300

elif distance > 10 and distance < 30:

dely = 200
elif distance < 10:
dely = 10

if distance < 100:
Buzzer.value(1l)
utime.sleep_ms(dely)
Buzzer.value(0)
utime.sleep_ms(dely)

Now sound the buzzer accordingly.The sounding should be faster
as the car gets neareer the object.This is done by changing the

Figure 3.87: Program: Parking.

e 116

Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCs)

Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCs)

4.1 Overview

Most sensors in real life are analogue, supplying analogue output voltages or currents
which are proportional to the measured variable. Without using ADCs, such sensors cannot
be directly connected to digital computers. In this Chapter we will learn how to use the ADC
channels of the Raspberry Pi Pico.

Most ADCs for general purpose applications are 8-bits or 10-bits wide, although some
higher-grade professional ones are 16 or even 32-bit wide. The conversion time of an ADC
is one of its important specifications. This is the time taken for the ADC to convert an an-
alogue input into digital. The smaller the conversion time, the better. Some cheaper ADCs
give the converted digital data in serial format, while some more expensive, professional
ones provide parallel digital outputs.

The Raspberry Pi Pico has 5 ADC channels. Four of them are at pins GP26, GP27, GP28, and
GP29 — known as analogue channels 0, 1, 2, and 3. The first 3 channels are available at the
GPIO pins, and the 4th one can be used to measure the VSYS voltage of the board. There is
also a built-in ADC channel 4 which is connected internally to a temperature sensor.

The Pico's ADC has a resolution of 12 bits, thus converting an analogue input voltage into
4096 (0 to 4095) levels. MicroPython however transforms the output into a 16-bits number,
ranging from 0 to 65535.

The reference voltage of the ADC used on the Pico is +3.3 V. Using such an ADC, the reso-
lution is 3300 mV / 65535 = 0.050 mV per bit, or 50 uV/bit. Therefore, an analogue input
voltage of 0.050 mV gives digital output of 00000000 0000001, 0.1mV gives 00000000
00000010, and so on.

In this Chapter we will develop several projects using the ADC offered by the Pico.

4.2 Project 1: Voltmeter
Description: This is a simple voltmeter project where the voltage of an external voltage
source is measured and displayed on the screen in millivolts.

Aim: The aim of this project is to show how the Pico ADC channels can be used to read
analogue input voltage.

Circuit diagram: Figure 4.1 shows the circuit diagram of the project. In this project, the
voltage to be measured is applied to analogue input GP26 (pin 31, channel 0). You must
make sure that the input voltage does not exceed +3.3 V. If it is required to measure higher
voltages, then you can use resistive potential divider circuits at the input of the ADC.

o117

Raspberry Pi Pico Essentials

Raspberry Pi
Pico
31
Voltage to be D——— GP26
measured [>__|_
GND

L

Figure 4.1: Circuit diagram of the project.

Program listing: Figure 4.2 shows the program listing and sample output from the pro-
gram (Program: Voltmeter). At the beginning of the program module ADC of 'machine' is
imported to the program and variable AnalogIn is assigned to analogue input channel 0.
The conversion factor is then defined as 3300 / 65535. The value read from the analogue
channel must be multiplied by this number in order to calculate the actual value of the
measured voltage. The remainder of the program runs in a loop where the input voltage is
read, converted to millivolts, and then displayed on the PC screen.

This is a voltmeter project. The voltage to me measured
is applied to GP26 (pin 31) of the Pico

Author: Dogan Ibrahim
File : Voltmeter.py

Date : February 2011
from machine import ADC
import utime

LR I I

AnalogIn = ADC(®@) j# ADC channel e
Conv = 3300 / 65535 # Conversion factor
while True: # Do forever
mV = AnalogIn.read_ulé6() # Read input
mvy = mV * Conv # Input in mv
print("Voltage = %5.2f" %mV) # Display
utime.sleep(1) # Wait 1 second
Shell
Voltage = 53.98
Voltage = 53.98
Voltage = 53.17
voltage = 53.17

Figure 4.2: Program: Voltmeter.

Displaying the voltage on the LCD

It is easy to modify the program to display the measured voltage on an LCD. First of all,
build the circuit given in Figure 3.71 and apply the voltage to be measured to GP26 (pin 31)
of the Pico, making sure that the voltage does not exceed +3.3 V. The program to display
the measured voltage on the LCD (Program: VoItLCD) is shown in Figure 4.3.

e 118

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

o
VOLTMETER

—========

#

This is a voltmeter project. The voltage to me measured

is applied to GP26 (pin 31) of the Pico

This version of the program displays the measured voltage
on the LCD

#

Author: Dogan Ibrahim

File : VoltLCD.py

Date : February 2021

from machine import ADC
import utime

import LCD
AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor

LCD.lcd_init()

while True: # Do forever
mV = AnalogIn.read_ul6() # Read input
mV = mV % Conv # Input in mVv
LCD.lcd_clear () # Clear screen
mVstr = str(mV) # Convert to string
LCD. lcd_puts(mVstr) # Display
utime.sleep(1) # Wait 1 second

Figure 4.3: Program: VoltLCD.
4.3 Project 2: Temperature measurement - using the internal
temperature sensor
Description: In this project, the internal temperature sensor of Pico is employed, and the

measured temperature is displayed on the LCD.

Aim: The aim of this project is to show how the internal temperature sensor can be used
to measure the temperature.

Circuit diagram: The circuit diagram of the project is same as in Figure 3.71.

Program listing: The internal temperature sensor is connected to ADC channel 4. The
data read is converted into degrees Celsius using the following formula:

Temperature (in degrees Celsius) = 27 - (reading - 0.706) / 0.001721

e 119

Raspberry Pi Pico Essentials

The program listing is shown in Figure 4.4 (Program: TemplInt). The program reads the
data from ADC channel 4, converts it into volts, and then applies the above formula to con-
vert into degrees Celsius. The calculated value is then displayed on the LCD. The program
repeats every second. You can check that the temperature will increase if you touch the
processor with the tip of your finger.

from machine import ADC

import utime
import LCD

AnalogIn = ADC(4)
Conv = 3.3 / 65535

LCD.led_init()

while True:

V = AnalogIn.read_ul6()

V =V x Conv

Temp = 27 - (V - 0.706) / 0.001721

LCD.lcd_clear ()

Tempstr = str(Temp)
LCD.lcd_puts(Tempstr)

utime.sleep(1)

4.4 Project 3: Temperature measurement - using an external

temperature sensor

Description: In this project, an external analogue temperature sensor is used to measure
and display the ambient temperature on the LCD

Aim: The aim of this project is to show how an external analogue temperature can be used
to measure the external temperature.

#

#

#

#

#

#

Author: Dogan Ibrahim
File : TempInt.py

Date : February 2021

This program measures the temperature using the internal
temperature sensor of the Pico and displyas on LCD

ADC channel 4
Conversion factor

T

Do forever

Read temp

Convert to Volts
Convert to temp
Clear screen
Convert to string
Display

Wait 1 second

Figure 4.4: Program: Templnt.

Block Diagram: Figure 4.5 shows the block diagram of the project.

e 120

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

TMP36 Raspberry Pi Pico LCD

Figure 4.5: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.6. In this pro-
ject a TMP36 type temperature sensor chip is used (Figure 4.7) and it's connected to ADC
channel 0. This chip provides analogue output voltage proportional to the measured tem-
perature. The relationship between the measured temperature and the output voltage is

given by:

T = (V, - 500) / 10

Where T is the measured temperature in degrees Celsius, and V, is the sensor output volt-

age in millivolts.

10K
® o contrast

‘2 220 |2 ?_J:
+5V 15 Vdd Vee

36 4 1
33V Gp2 D4
5 12
GP3 D5
TMP | 31 GP4 6 1 D6
36— GP26 7 14 LCD
(ADC 0) GP5 > 2 D7
J_ GP1 RS
= ero— Sl
Temperature .
sepnsor Raspberry Pi
Pico Vss RIWA
GND 1|5 |16

3 .

Figure 4.6: Circuit diagram of the project.

MGG

BOTTOM VIEW
(Not to Scale)

PIN 1, +Vg; PIN 2, Voyr; PIN 3, GND

Figure 4.7: TMP36 sensor chip.

e 121

Raspberry Pi Pico Essentials

Program listing: Figure 4.8 shows the program listing (Program: TMP36). The sensor
voltage is read in on ADC channel 0. This voltage is then converted into millivolts, the
temperature is calculated in degrees Celsius, and gets displayed on the LCD every second.
Notice that the output data is formatted so that only the first 5 digits of string Temp are
displayed. As an example, the temperature is displayed in the following format:

nn.mm

o
TEMPERATURE MEASUREMENT

=======================

#

This program measures the temperature using an external
TMP36 type temperature sensor chip

#

Author: Dogan Ibrahim

File : TMP36.py

Date : February 2021

from machine import ADC
import utime

import LCD
AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor

LCD.lecd_init()
while True: Do forever
V = AnalogIn.read_ul6()

mV = V % Conv

Temp = (mV - 500.0) / 10.0
LCD.lcd_clear ()

Tempstr = str(Temp)[:5]
LCD.lcd_puts(Tempstr)
utime.sleep(1)

Read temp

Convert to Volts
Convert to temp
Clear screen
Convert to string
Display

T

Wait 1 second
Figure 4.8: Program: TMP36.

4.5 Project 4: ON/OFF temperature controller

Description: Temperature control is important in many industrial, commercial, domestic,
and chemical applications. A temperature control system basically consists of a tempera-
ture sensor, a heater, a fan (optional), an actuator to operate the heater, and a controller.
A negative feedback is used to control the heater so that the temperature is at the desired
set-point value. Accurate temperature control systems are based on the PID (Proportional
+ Integral + Derivative) algorithm.

e 122

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

In this project, an ON/OFF type simple control system is designed. ON/OFF temperature
control systems commonly use relays to turn the heater ON or OFF depending on the set-
point temperature and the measured temperature. If the measured temperature is below
the set-point value, then the relay is activated which turns the heater ON. If on the other
hand the measured temperature is above the set-point value, then the relay is de-activated
to turn OFF the heater so that the temperature is lowered.

The project employs a type TMP36 sensor chip in conjunction with a heater and an LED, to
control the temperature of a small room. The heater is turned ON by the relay if the meas-
ured room temperature (RoomTemp) is below the setpoint temperature (SetTemp), and
it is turned OFF if it is above the setpoint value. The LED turns ON if the room temperature
is below the set point value to indicate that the heater is ON. This process is repeated every
3 seconds.

The aim: The aim of this project is to show how an ON/OFF temperature controller system
can be designed using a low-cost temperature sensor chip with the Raspberry Pi Pico.

Block diagram: Figure 4.9 shows the block diagram of the project.

&® LD
ROOM
- =

RASPBERRY] RELAY HEATER TMP36

PIPICO [

FEEDBACK

Figure 4.9: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.10. TMP36 sensor
chip is connected to analogue channel 0 as in the previous project. The LED is connected
to GP16 through a 470-ohm current-limiting resistor. The Relay is connected to GP17 and
is activated when a logic 1 (+3.3V) is applied to it. The connections between the Raspberry
Pi Pico ports and various components are as follows:

Raspberry Pi Pico Component

GP26 (ADCO) TMP36 out
GP16 LED
GP17 Relay

e 123

Raspberry Pi Pico Essentials

36[Mains
+3.3V L
Raspberry Pi
Pico * Sy
22
GP17 S Relay | | Heater
GND
TMP36 | 31| 5pog (ADCO) I—
GND ~
= apis |21 470 A
Temperature
sensor LED
GND

3L

Warning: Risk of electrical shock. Care should be taken when using mains voltages in a circuit
Please consult a professional before making connections to mains voltage

Figure 4.10: Circuit diagram of the project.

Operation of the project
The operation of the project is described in Figure 4.11 as a PDL (program description
language).

BEGIN
Read the set temperature (SetTemp)
Read the maximum temperature (MaxTemp)
DO FOREVER
Read the room temperature (RoomTemp)
IF SetTemp > RoomTemp THEN
Activate relay
LED ON
ELSE
Deactivate relay
LED OFF
ENDIF
Wait 3 seconds
ENDDO
END

Figure 4.11: PDL of the project.

Program listing: Figure 4.12 shows the program listing (Program: ONOFF). The desired
temperature is set to 24 °C and is stored in variable SetTemp. The LED and Relay are
assigned to GP16 and GP17 respectively, which are configured as outputs and are turned
OFF at the beginning of the program.

Inside the program loop, the room temperature (RoomTemp) is read and compared with
the desired temperature (SetTemp). If the room temperature is below the desired value
then both the heater and the LED are turned ON, otherwise they are both turned OFF. This
process is repeated after 3 seconds of delay.

e 124

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

o
ON-OFF TEMPERATURE CONTROLLER

===========z==================

#

This is an ON-OFF temperature controller program. The

project consists of a temperature sensor, an LED and a

heater. The heater and the LED are turned ON if the room

temperature (RoomTemp) is below the desired value (SetTemp)
#

Author: Dogan Ibrahim

File : ONOFF.py

Date : February 2021

from machine import ADC, Pin
import utime

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor
SetTemp = 24.0 # Desired temperature
LED = Pin(16, Pin.OUT) # LED at GP1l6
Relay = Pin(17, Pin.OUT) # Relay at GP17
LED.value(0) # Turn OFF LED
Relay.value(0) # Turn OFF Relay
while True: # Do forever
V = AnalogIn.read_ul6() # Read temp
mV = V x Conv # Convert to Volts
RoomTemp = (mV - 500.0) / 10.0 # Measured temperature
if RoomTemp < SetTemp: # If Room temp < desired
Relay.value(1l) # Turn Relay ON
LED.value(1) # Turn LED ON
else:
Relay.value(0) # Turn Relay OFF
LED.value(0) # Tuen LED OFF
utime.sleep(3) # Wait 3 seconds

Figure 4.12: Program: ONOFF.
4.6 Project 5: ON/OFF temperature controller with LCD
Description: This project is similar to the previous project, but here additionally an LCD is
connected to the project. The LCD shows both the desired temperature (SetTemp) and the

measured room temperature (RoomTemp).

Block diagram: Figure 4.13 shows the block diagram of the project.

e 125

Raspberry Pi Pico Essentials

-
i-—s—@ W

RASPBERRY RELAY HEATER TMP36
PIPICO

\

FEEDBACK

Figure 4.13: Block diagram of the project.
Circuit diagram: The circuit diagram of the project is shown in Figure 4.14. The LCD is

connected to the Pico as in the previous LCD based projects. The TMP36, LED, and the Re-
lay are connected as in the previous project.

10K
® o contrast

, 220 2 |3 &
+5V 15| Vvdd Vee
36 K
+3.3V 4 11
GP2 D4
5 12
GP3 D5
TMP36 i GP26 6 13
GP4 = ” D& LCD
_L GP5 2 D7
= GP1 RS
Temperature GPO 1 8 E Mains
sensor 22 -~
GP17
+3.3V
GP16 21 Vss RIWA T
: 115 16
Rasp!)erry Pi l__.l‘__’ v
Pico - [
GND g Relay § / Heater
3] 470 A GND = |
’ LED L

Risk of electrical shock!. Please consult a professional before making connections to the mains voltage |

Figure 4.14: Circuit diagram of the project.

Program listing: Figure 4.15 shows the program listing (Program: ONOFFLCD). The
program is very similar to the one given in Figure 4.12. Here, additionally the desired tem-
perature and the room temperature are displayed in the following format, where the room
temperature is updated continuously at every 3 seconds:

Row 0: Set :23.45
Row 1: Meas: 22.50

e 126

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

o
ON-OFF TEMPERATURE CONTROLLER

===========z==================

#

This is an ON-OFF temperature controller program. The

project consists of a temperature sensor, an LED and a

heater. The heater and the LED are turned ON if the room
temp (RoomTemp) 1is below the desired value (SetTemp)

#

An LCD 1is used to display the desired temperature at the
top row, and room temperature at bottom row

#

Author: Dogan Ibrahim

File : ONOFFLCD.py

Date : February 2021

from machine import ADC, Pin
import utime
import LCD

LCD.lcd_init()
AnalogIn = ADC(0)
Conv = 3300 / 65535

SetTemp = 24.0

LED = Pin(16, Pin.OUT)
Relay = Pin(17, Pin.OUT)
LED.value(0)
Relay.value(0)

LCD.lcd_clear()
LCD.lcd_puts("Set : ")
LCD. lcd_puts(str(SetTemp)[:5])

while True:

V = AnalogIn.read_ulé6()

mV = V % Conv

RoomTemp = (mV - 500.0) / 10.0

LCD.lcd_goto(0, 1)

LCD.lcd_puts("Meas: ")

LCD. lcd_puts(str(RoomTemp)[:5])

if RoomTemp < SetTemp:
Relay.value(1l)
LED.value(1)

else:
Relay.value(0)

H* o o W I

ET

ET

EE Y N B

Initialize LCD
ADC channel 0
Conversion factor

Desired temperature
LED at GP16

Relay at GP17

Turn OFF LED

Turn OFF Relay

Clear LCD
Display Set :
Display SetTemp

Do forever

Read temp

Convert to Volts
Measured temperature
Cursor at 0,1

Display Meas:

Display RoomTemp

If Room temp < desired
Turn Relay ON

Turn LED ON

Turn Relay OFF

e 127

Raspberry Pi Pico Essentials

LED.value(0) # Turn LED OFF
utime.sleep(3) # Wait 3 seconds

Figure 4.15: Program: ONOFFLCD.
4.7 Project 6: Measuring the ambient light intensity
Description: In this project, a light-dependent-resistor (LDR) is used to measure and dis-

play the ambient light intensity.

Block diagram: Figure 4.16 shows the block diagram of the project.

Raspberry Pi Pico

Figure 4.16: Block diagram of the project.

Background information: An LDR is an electronic component whose resistance changes
with the light intensity that falls upon it. The resistance of the LDR drops with an increase in
light intensity falling upon the device. Typically, the resistance at daylight is in the order of
kilo-ohms (also: k-ohms or kQ) and in dark it could be a few mega-ohms (also: megohms
or MQ). As a result, we can use such a device to measure the light intensity. Figure 4.17
shows the commonly used symbol of an LDR. A typical characteristic of an LDR is shown
in Figure 4.18. LDRs are used in circuits in the form of resistive potential dividers. A fixed
resistor is connected in series with the LDR, and the voltage across this resistor is meas-
ured. This voltage is proportional to the resistance of the LDR and consequently to the light
intensity incident on the face of the LDR.

\>~§>

Figure 4.17: LDR circuit symbol.

e 128

Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCs)

1000

100 \

=
3 \\
§ 10
2 \
T 10 <
0.1
0.1 10 10 100 1000 10,000
= Lux

Figure 4.18: Typical LDR light/R characteristics.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.19. A 10-kohm
fixed resistor is used in the resistive potential divider circuit. The voltage across this resistor
is measured using channel 0 of the ADC.

36
+3.3V

LDR

31
GP26

10K (ADC 0)

B Raspberry Pi
Pico

GND
3

Figure 4.19: Circuit diagram of the project.

Program listing: Figure 4.20 shows the program listing (Program: LDR) together with
output data. The program reads the analogue voltage across the fixed resistor. Notice that
there is no need to know the absolute voltage. We can just use the digital value of the
voltage (0 to 65535) read (r in this program). This value should be calibrated to give the
intensity of the light in Lux.

e 129

Raspberry Pi Pico Essentials

MEASURE THE LIGHT INTENSITY

In this project an LCD is connected to the Pico in series
with a fixed resistor. The program displays the volatge
across the fixed resisor which is proportional to the
light level falling on the LCD

Author: Dogan Ibrahim
File : LDR.py
Date : February 2011

£ I I O O

from machine import ADC
import utime

LDRin = ADC(®) # ADC channel @
while True: # Do forever
r = LDRin.read_ul6() # Read LDR
print("ADC=",r) # Display ADC |reading
utime.sleep(l) # Wait 1 second
hell
ADC= 38425
ADC= 38617

ADC= 38345
ADC= 38329

Figure 4.20: Program: LDR.

Calibration

A light-intensity meter is required to calibrate the readings. Measurements should be made
at different light levels and a table should be created to list the lux readings of the meter
and the corresponding output from the ADC. Then, a formula can be derived that describes
the relationship between the light level and the ADC readings. Alternatively, this table can
be indexed for a given ADC reading in order to find the corresponding light level. Interpo-
lation can be applied for values between two readings.

4.8 Project 7: Ohmmeter
Description: This is an ohmmeter project. The project measures the value of an unknown
resistor and displays it on the Thonny screen.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.21. A fixed resistor

(10 kohm) is used in series with the unknown resistor. The program measures the voltage
across the fixed resistor and then calculates the value of the unknown resistor (R,).

e 130

Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCs)

36
+3.3V

Rx

31
GP26

RF| 10K (ADC 0)

- Raspberry Pi
Pico

GND
3|

Figure 4.21: Circuit diagram of the project.

Program listing: Figure 4.22 shows the program listing (Program: Ohmmeter). If R is
the fixed resistance and Ry is the unknown resistance, assuming the circuit is supplied from
+3.3 V (3300 mV), the voltage at the output of the fixed resistor will be:

V = 3300 x Rr/ (Rf + Ry)
If we choose R¢ to be 10 kQ, then

V = 33000/ (10 + Ry)

Where V is in millivolts, and Rg and Ry are in kilo-ohms. As R, changes from, say, 1 kQ to
1 MQ, the voltage across the fixed resistor will change from:

V = 33000/ 11 = 3000 mV
into
V = 33000/ 1001 = 33 mV

We can easily measure these voltages with the ADC. Therefore, the resistance measure-
ment range of our ohmmeter is well below 1 kQ and above 1 MQ.

What we really want is to measure resistance R,. We can write:
R, =3300 X Rr/V - Rf
Remembering that the ADC resolution is 65535 steps and Rg = 10 kQ, we can write:

Ry = 655350 / V;n — Re

e 131

Raspberry Pi Pico Essentials

Where V,, is the digital value directly read from the ADC.

The voltage across the fixed resistor is read 5 times, and the value is averaged for higher
accuracy.

B
OHMMETER

========

#

In this project the value of an unknown resistor 1is measured
#

Author: Dogan Ibrahim

File : Ohmmeter.py

Date : February 2021

from machine import ADC
import utime

RF = 10 # RF = 10K

LDRin = ADC(0) # ADC channel 0

while True: # Do forever
sum = 0

for i in range(5): Get 5 readings

sum = sum + LDRin.read_ul6() Read voltage
Vm = sum / 5

Rx = 65535*RF / Vm - RF

RxOhms = 1000 * Rx

print("Rx (Ohms)=%8.1f" %RxOhms)
utime.sleep(1)

Average
Calculate Rx
Rx in Ohms
Display Rx

o T T

Wait 1 second
Figure 4.22: Program: Ohmmeter.

An example output from the program is shown in Figure 4.23.

Shell
Rx (Ohms)= 216.0
Rx (Ohms)= 214.0
Rx (Ohms)= 203.8
Rx (Ohms)= 192.1
Rx (Ohms)= 176.4
Rx (Ohms)= 195.7
Rx (Ohms)= 176.9
Rx (Ohms)= 200.2

Figure 4.23: Example output.

e 132

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

4.9 Project 8: Internal and external temperature
Description: In this project, two temperature sensor chips are used: one to measure the
external ambient temperature, and the other to measure the internal ambient tempera-
ture. Both readings are displayed on the LCD every 2 seconds.

Block diagram: Figure 4.24 shows the block diagram of the project.

External '

Internal o3
Raspberry Pi Pico

TMP36

[

Figure 4.24: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.25. Two TMP36
type temperature sensor chips are used, one connected to channel 0 (external sensor) and
the other one connected to channel 1 (internal sensor) of the ADC. The LCD is connected
to the Pico as in the previous LCD-based projects.

10K
© o contrast
3

|2 220 |2 T_—l-
36 +5V 15 Vdd Vee

+3.3V
4 11
GP2 5 2 D4
TMP | 31 GP3 D5
36 [GP26 6 13
(ADCO) GP4———D6 | cp
1 GPS5 D7
= 2 4
External GP1 RS
GPO ! 6 E
TMP | 32
36 [GP27 Vss RIWA
(ADC1) 115 16
J__ RasFP_berry Pi =
Internal lco
GND

3

Figure 4.25: Circuit diagram of the project.

Program listing: Figure 4.26 shows the program listing (Program: MultiTmp). The ex-
ternal temperature sensor is named ExtTemp and gets assigned to channel 0. The internal

e 133

Raspberry Pi Pico Essentials

temperature is named IntTemp and assigned to channel 1 of the ADC. Inside the pro-
gram loop, the temperature of each channel is read, converted into degrees Celsius, and
displayed on the LCD in the following format (top row displays the external temperature,
bottom row displays the internal temperature):

Row 0: Ext: nn.mm
Row 1: Int: pp.qq

This program measures the external and internal temperatures
using two TMP36 type temperature sensor chips. Both external

and 1internal temperatures are displayed on the LCD

Author: Dogan Ibrahim
File : MultiTmp.py
Date : February 2011

HoOH O O W W W A

from machine import ADC
import utime

import LCD

ExtTemp = ADC(0) # ADC channel 0
IntTemp = ADC(1) # ADC channel 1
Conv = 3300 / 65535 # Conversion factor

LCD.lecd_init()

Do forever
Read channel 0
Convert to mV

while True:
Vext = ExtTemp.read_ul6()
mV = Vext x Conv
Tempext = (mV - 500.0) / 10.0
Vint = IntTemp.read_ul6()
mV = Vint * Conv
Tempint = (mV - 500.0) / 10.0
LCD.lcd_clear ()
Tempextstr = str(Tempext) [:5]

External temp
Read channel 1
Convert to mV
Internal temp
Clear screen
Convert to string
Tempintstr = str(Tempint)[:5] Convert to string
LCD.lcd_puts("Ext: ")
LCD.lcd_puts(Tempextstr)
LCD.lcd_goto(0, 1)
LCD.lcd_puts("Int: ")
LCD.lcd_puts(Tempintstr)
utime.sleep(2)

Heading
Display external
Cursor at row 1
Heading
Display internal

HoOHE HE F O I I W I O O O I W I

Wait 2 seconds

Figure 4.26: Program: MultiTmp.

e 134

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

4.10 Project 9: Using a thermistor to measure temperature

Description: In this project we will be reading the ambient temperature every second
using the KY-013 temperature sensor (NTC thermistor) module, and then display it on the
LCD.

Aim: The aim of this project is to show how the temperature of an NTC thermistor temper-
ature sensor can be read, as well as learn to use an LCD in a project.

Background information: In this project, the type KY-013 analogue output NTC thermis-
tor temperature sensor module is used. NTC thermistors are semiconductor devices whose
resistances are inversely proportional to the temperature. Thus, as the temperature rises,
their resistance falls and vice versa. As shown in Figure 4.27, this is a 3-pin module with
the following pin assignment:

GND
+V
S (analogue output)
+V
GND R1| [10K
+V
S S (Vo)

R2| | Thermistor

GND
Figure 4.27: KY-013 module.

The sensor module is internally connected to a 10-kohm resistor as shown in the Figure to
form a potential divider circuit. The voltage across the thermistor is read using an analogue
port of the processor. This voltage is proportional to the temperature where the temper-
ature is calculated using the well-known Steinhart-Hart equation. Different thermistors
have different Steinhart-Hart coefficients, and it is required to know these coefficients in
order to calculate the temperature of the thermistor used. For the KY-013, these coefficients
are specified by the manufacturer as follows (your coefficients may be slightly different!):

cl1 =0.001129148
c2 = 0.000234125
c3 = 0. 0000000876741

Assuming the resistor is series with the thermistor, R1 = 10 kQ (i.e. R1 = 10000 ohms),
and a 16-bit ADC is used (0 to 65535 quantization levels) to read the thermistor voltage,
the temperature is calculated as follows (see Figure 4.27).

First, calculate the resistance of the thermistor. From the potential divider circuit, the out-
put voltage V, is given by:

e 135

Raspberry Pi Pico Essentials

Vo=V x R2/(R1 + R2) (1)
Where V is the applied voltage. From this equation we find R2 as:
R2 =V, xR1/(V-V,) (2)

With a 16-bit ADC, if Raw is the raw value read by the ADC then the actual physical voltage
read, V,, is given by:

V, = Raw x V / 65535 (3)
From (3) and (2) we get:

R2 = [R1 x Raw x V/ 65535] / (V - Raw x V' / 65535] (4)
Equation (4) is simplified to give:

R2 = R1/ (65535 / Raw - 1) (5)
or,

R2 = 10000 / (65535 / Raw - 1) (6)
Knowing R2, the temperature is then given by the Steinhart-Hart equation:

T = log(R2))

Tmp=1/(cl+(c2+(c3xTxT)xT) (8)
Now, we convert the temperature from Kelvin into Celsius:

Temp = Tmp - 273.15 (9)
We will be using the above equations to calculate the temperature. Notice that the above
calculations are only for a 10-kQ resistor. You should check to make sure that you have the
correct resistor installed on the KY-013 sensor module. Notice that the reading is very

sensitive to the resistor as well as to the thermistor parameters c1, c2, c3.

Block diagram: Figure 4.28 shows the block diagram of the project.

e 136

Chapter 4 e Using Analogue-To-Digital Converters (ADCs)

KY-013

Temperature sensor Lco

Raspberry Pi Pico
Figure 4.28: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.29. The sensor is

connected to channel 0 of the ADC (GP26, pin 31). The LCD is connected as in the previous
projects using LCD.

10K
@ o contrast

[2] [| 1
+5V 15 KVdd Vee

or2 s
36
5 12
BV gps D5
5 13
y GPai——D6 | cp
Ky-013 sk— ep2s CPS[1%
(ADC 0) GP1 RS
J_ eproll— 8l
Vss RIWA
1] 5 |is
Raspberry Pi =
&CO
GND

)|

Figure 4.29: Circuit diagram of the project.

Program listing: Figure 4.30 shows the program listing (Program: Thermistor). At the
beginning of the program variable Thermistor is assigned to channel 0 of the ADC and the
LCD is initialized. Main program runs in a loop every 2 seconds. The thermistor data is read
into variable Raw and then function Temperature is called to calculate the temperature. The
LCD is cleared, heading Temperature (C) is displayed at the top row, and the temperature
reading is formatted and displayed at the bottom row of the LCD in degrees Celsius in the
following format:

Row 0: Temperature (C)
Row 1: nn.mm

e 137

Raspberry Pi Pico Essentials

e
THERMISTOR TEMPERATURE MEASUREMENT

==================================

#

This program measures the ambient temperature using a

low-cost NTC thermistor module (KY-013). The readings are
displayed on the LCD

#

Author: Dogan Ibrahim

File : Thermistor.py

Date : February 2021

from machine import ADC
import utime
import math

import LCD

Thermistor = ADC(0) # ADC channel 0
LCD.lcd_init() # Initialize LCD
#

Calculate the temperature using Steinhart-Hart equation
#

def Temperature(RawValue):
cl = 0.001129148
c2 = 0.000234125
c3 = 0.0000000876741
R1 = 10000.0
ADC_Res = 65535.0

R2 = R1 / ((ADC_Res/RawValue - 1))

T = math.log(R2)

Tmp = 1.0 / (cl + (c2 + (c3 * T x T)) * T)
Temp = Tmp - 273.15

return Temp

Do forever

Read channel 0
Calculate temp
Clear LCD
Display heading

while True:
Raw = Thermistor.read_ul6()
temp = Temperature(Raw)
LCD.lcd_clear ()
LCD.lcd_puts("Temperature (C)")
LCD.lcd_goto(0, 1)
tempstr = str(temp)[:5]
LCD.lcd_puts(tempstr)
utime.sleep(2)

Move cursor
Convert to string
Display temperature

HOH H O H H H H H

Wait 2 seconds

Figure 4.30: Program: Thermistor.

e 138

Chapter 4 ¢ Using Analogue-To-Digital Converters (ADCs)

Note: We could also use the modified form of the Steinhart-Hart equation (known as the B
parameter equation) if the parameters c1, c2, c3 are not known. The modified equation is:

1/T=1/Ty+ 1/B((log(R/Ryp))
where

T = the measured absolute temperature (take away 273.15 to find temperature
in °C);

To = the absolute room temperature (equal to 298.15 K) at 25 °C;

B = the thermistor coefficient (usually quoted by the manufacturers, in the region
of 3960);

R = the measured resistance of the thermistor;

Ro = the resistance of the thermistor at room temperature (usually quoted by the
manufacturers, in the region of 10 kQ).

e 139

Raspberry Pi Pico Essentials

Chapter 5 e Data Logging

5.1 Overview

The filing system of the Raspberry Pi Pico enables us to manipulate files in memory, which
includes creating new files, reading from files, and writing to files. In this Chapter we will
learn how to log the temperature data to files.

5.2 Project 1: Logging the temperature data

Description: In this project, we will create a file called Temp.txt and save the ambi-
ent temperature data every second, time-stamped with relative seconds. The data will be
saved for 30 seconds, i.e. 30 records will be saved.

Aim: The aim of this project is to show how the temperature data (or any other data) can
be saved in a file.

Block diagram: Figure 5.1 shows the block diagram of the project.

TMP36 Raspberry Pi Pico
Figure 5.1: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 5.2. TMP36 temperature sensor
chip is connected to analogue channel 0 (GP26, pin 31).

36
+3.3V
TMP | 31
3 [— GP26
(ADC 0)
Temperature .
seewsor Raspberry Pi
Pico
GND

3|

Figure 5.2: Circuit diagram of the project.

e 140

Chapter 5 ¢ Data Logging

Program listing: Figure 5.3 shows the program listing (Program: LogTemp). At the be-
ginning of the program, modules ADC of machine and utime are imported to the program.
A new file is created (i.e. opened in write w mode) with the name Temp.txt and the head-
ing Ambient Temperature, followed by a 'newline' character is written to the file. The
remainder of the program runs in a for loop which is iterated 30 times. Inside this loop the
temperature is read from TMP36, converted into degrees Celsius, and then saved in the file
with the relative seconds. At the end of the loop, the file is closed, and the message Data
has been written to file... is displayed on the screen.

This program measures the temperature using an external
temperature sensor chip and logs the data every second
for 30 seconds (i.e. 30 records)

Author: Dogan Ibrahim
File : LogTemp.py
Date : February 2021

EE Y N B

from machine import ADC
import utime

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor
file = open("Temp.txt", "w") # Create a new file
file.write("Ambient Temperature\n") # Write heading
for secs in range(30): # Do forever
V = AnalogIn.read_ul6() # Read temp
mV = V x Conv # Convert to Volts
Temp = (mV - 500.0) / 10.0 # Convert to temp
Tempstr = str(Temp)[:5] # Convert to string
data = str(secs+l) + " " + Tempstr + "\n"
file.write(data) # Write to file
utime.sleep(1) # Wait 1 second
file.close() # Close file

print("Data has been written to file...")

Figure 5.3: Program: LogTemp.

e 141

Raspberry Pi Pico Essentials

The contents of the file can be displayed by on the Thonny screen by clicking File, followed
by Open. Select Raspberry Pi Pico, and then click on file Temp.txt to display it as shown
in Figure 5.4. Notice that it is important that you close a file after you finished writing to it,
otherwise the data may not be saved securely. Also, by default a file is always opened in
read mode as a text file. Files can also be opened in binary mode using the options rb and
wb for read and write operations, respectively.

mp]x [Temp.txt]
Ambient Temperature
1 25.18
2 25.18
3 23.65
4 25.42
5 25.02
6 25.10
7 25.18
8 25.58
9 23.33
1e 25.26
11 25.10
12 25.18
13 25.42

Figure 5.4: Contents of file Temp.txt (only part of the file is shown).
5.3 Project 2: Reading the logged data
Description: In this project, the temperature data Temp.txt created in the previous pro-

ject is open and its contents is displayed on the Thonny screen.

Aim: The aim of this project is to show how a file can be opened and its contents read and
displayed on the PC screen.

Program listing: Figure 5.5 shows the program listing (Program: ReadTemp). At the be-
ginning of the program, file Temp.txt is opened in read r mode. Function file.read is then

used to read the data from the file and display (print) it in the Thonny screen.

Figure 5.5 shows the program and the data displayed on the Thonny screen.

e 142

Chapter 5 ¢ Data Logging

B SR R R I O

[Shell

1

2 25.
3 23.
4 25.
5 25.
6 25.
7 25.
8 25.
9 23.
10 25.26
11 25.10
12 25.18
13 25.42

READ AND DISPLAY THE LOGGED DATA

This program opens thd file where the temperature data
was saved and displays its contents on PC screen

Author: Dogan Ibrahim
File
Date
open("Temp.txt", "r")
print(file.read())
file.close()

file

Ambient Temperature
25.18

18
€5
42
02
10
18
58
33

Open the file
Read the data

Figure 5.5: Program: ReadTemp and the data displayed.

Function read() reads the entire contents of a file. If we want to read a line, we use the
function readline(). An example is given below which reads and displays the first 3 lines of
file Temp.txt (notice that an additional newline character is added to the end of each line):

file = open("Temp.txt", "r")
for i 1in range(3):
print(file.readline())

file.close()

Ambient Temperature

1 25.18
2 25.18

Open the file
Read 3 lines
Display the data

Close the file

e 143

Raspberry Pi Pico Essentials

Chapter 6 o Pulse Width Modulation (PWM)

6.1 Overview

A digital form of Pulse Width Modulation (PWM; also written as pulsewidth modulation) is
commonly used to drive heavy loads such as motors, actuators, heaters, and so on. As we
shall see in this Chapter, PWM is basically a positive-going squarewave whose pulsewidth
can be changed. By changing the pulsewidth, we can effectively change the average value
of the voltage supplied to the load.

6.2 Basic theory of pulsewidth modulation

PWM is a commonly used technique for controlling the power delivered to analogue loads
using digital waveforms. Although analogue voltages (and currents) can be used to control
the delivered power, they have several drawbacks. Controlling large analogue loads require
large voltages and currents that cannot easily be obtained using standard analogue circuits
and DACs. Precision analogue circuits can be heavy, large, and expensive, and they are also
sensitive to noise. By using the PWM technique, the average value of voltage (and current)
fed to a load is controlled by switching the supply voltage ON and OFF at a fast rate. The
longer the power on time, the higher the effective voltage supplied to the load.

Figure 6.1 shows a typical PWM waveform where the signal is basically a repetitive positive
pulse, having the period T, ON time Toy and OFF time of T-Toy seconds. The minimum and
maximum values of the voltage supplied to the load are 0 and V;, respectively. The PWM
switching frequency is usually set to be very high (usually in the order of several kHz) so
that it does not affect the load that uses the power. The main advantage of PWM is that the
load is operated efficiently since the power loss in the switching device is very low. When
the switch is ON there is practically no voltage drop across the switch, and when the switch
is OFF there is no current supplied to the load.

Voltage
A

Vp

Ton T Time
Figure 6.1: Basic PWM waveform.

The duty cycle D of a PWM waveform is defined as the ratio of the ON time to its period.
Expressed mathematically,

D = TON/ T
The duty cycle is usually expressed as a percentage and therefore,

D = (Ton / Torr) X 100%

o 144

Chapter 6 ¢ Pulse Width Modulation (PWM)

By varying the duty cycle between 0% and 100% we can effectively control the average
voltage supplied to the load between 0 and V.

The average value of the voltage applied to the load can be calculated by considering a gen-
eral PWM waveform shown in Figure 1. The average value A of waveform f(t) with period T
and peak value ymax and minimum value yi, is calculated as:

_1p
A—?{f(t)dt

or,
T

1 O T
Az? Ymax d“'.r Ymin di

0 Tow
In a PWM waveform, ymin = 0 and the above equation becomes

1.
A=?|.TON ylmx.l

or, A=D Ymax

As it can be seen from the above equation, the average value of the voltage supplied to
the load is directly proportional to the duty cycle of the PWM waveform and by varying the
duty cycle we control the average load voltage. Figure 6.2 shows the average voltage for
different values of the duty cycle.

Voltage
A

25% 50% 75% 100%

-
0 Time

Figure 6.2: Average voltage (shown as dashed line) supplied to a load.

It is interesting to notice that with correct lowpass filtering, the PWM can be used as a DAC
if the MCU does not have a DAC channel. By varying the duty cycle we can effectively vary
the average analogue voltage supplied to the load.

e 145

Raspberry Pi Pico Essentials

6.3 PWM channels of the Raspberry Pi Pico

The Raspberry Pi Pico microcontroller has 16 programmable PWM channels. Figure 6.3
shows the pin configurations of these channels. Each channel is identified with a letter and
a number, such as PWM_A[O0]. Some of the 16 PWM channels located at left hand side of
the microcontroller pins are duplicated at the right-hand side and only one of the duplicated

channels can be used in an application.

PWM_A[0]
PWM_B[0]

PWM_A[1]
PWM_B[1]
PWM_A[2]
PWM_B([2]

BOOTSEL

W e N o B W N -

PWM_A[3]

PWM_B[3] 10
PWM_A[4] 11
PWM_B[4] 12

13
PWM_A[5] 14
PWM_B[5] 15
PWM_A[6] 16
PWM_B[6] 17

18
PWM_A[7] 19
PWM_BI[7] 20

. Raspberry Pi Pico ©2020

PWM_A[6]

PWM_B[5]
PWM_A[5]

PWM_A[3]

PWM_B[2]
PWM_A(2]
PWM_B[1]
PWM_A[1]

PWM_BI[0]
PWM_A[0]

Duplicate PWM channels (same name and same numbered channels cannot
be used at the same time e.g. PWM_AO at pin 1 and PWM_AO at pin 21)

Figure 6.3: PWM channels of the Pico.

The PWM channels can be accessed by one of two methods. For example, channel PW-

M_A[0] connected to port pin GP0O can be accessed as:

import machine
ch = machine.PWM(machine.Pin(0))
or as

from machine import PWM, Pin
ch = PWM(Pin(0))

The frequency of the PWM waveform can be set using the following statement. For exam-

ple, to set the frequency to 1000 Hz:

ch.freq(1000)

e 146

Chapter 6 o Pulse Width Modulation (PWM)

The duty cycle can be set between 0% and 100% by setting it from 0 to 65535. The duty
cycle can be set using the following statement. For example, to set the duty cycle to 50%:

ch.duty_ul6(32767)
Example projects are given in this Chapter using the PWM.
6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cy-
;I:scription: In this project, we create a PWM waveform with a frequency of 1000 Hz and
a duty cycle of 50%.

Aim: The aim of this project is to show how we can use the PWM functions.

Circuit diagram: In this project, port pin GPO is used and an oscilloscope is connected to
this pin to observe the waveform.

Program listing: The program listing is very simple. and it is given below.

from machine import Pin, PWM

ch = PWM(Pin(0)) # PWM at GPO
ch.freq(1000) # Frequency = 1000Hz
ch.duty_ul6(32767) # 50% duty cycle

while True:
pass

Figure 6.4 shows the generated waveform on the oscilloscope. Here, the horizontal axis
was 0.5ms/division and the vertical axis was 1 V/division. Clearly the period of the gener-
ated waveform is 1 ms (freq = 1000 Hz), duty cycle 50%, and the amplitude is about 3 V.

Tine/Div.

(500 [200ms]

(100ms] [50ms |

[[20ms] [10ms |

(o)
Mﬂﬂﬂ“ ==
\Mllaw;l

s |

J

:“ e ' e e et - e Single

Oscloscope |[_spectumansbzer _|[TiensientRecoder | | Cicut Anabzer | [10110010 |

Vos/Div oo ‘ Tiiggel
of CBn) (CAuoset | [Pesit] [On) ([Avoset] - 3 on/oi [on | [Con | [21«]
[][oav | [mgseeen | [3v |[Cov_|[o3v | ’V [sooen (0] (2]

— e — : ouce

Figure 6.4: Generated PWM waveform.

e 147

Raspberry Pi Pico Essentials

Note: The author has generated clean and correct PWM waveforms to up to several MHz
without any appreciable noise.

6.5 Project 2: Changing the brightness of an LED

Description: In this project, an external LED is connected to port pin GPO through a 470-
ohm current limiting resistor. The program changes the brightness of the LED by changing
the duty cycle of the PWM voltage sent to the LED.

Aim: The aim of this project is to show how the PWM can be used in a project.
The block diagram and the circuit diagram of this project are as in Figure 3.3 and Figure
3.4 respectively.

Program listing: Figure 6.5 shows the program listing (Program: LEDfade). The frequen-
cy is set to 1000 Hz so that the LED light is steady (i.e. not flashing). As the duty cycle is
increased from 0% to 100%, the LED brightness increases gradually.

e e
CHANGING THE BRIGHTNESS OF AN LED

=================================

#

In this program and LED is connected to port pin GPO. The
brightness of the LED is changed continuously by changing
duty cycle of the voltage waveform from 0% to 100%

#

Author: Dogan Ibrahim

File : LEDfade.py

Date : February 2011

from machine import Pin, PWM
import utime

ch = PWM(Pin(0)) # PWM at GPO
ch.freq(1000) # Frequency = 1000Hz
i=0

while True: Do forever
ch.duty_ul6(i)
utime.sleep_ms(300)
i =1 + 5000
if i > 65535:

i=0

Change duty cycle
Delay 300ms
Increment i

BT R

Figure 6.5: Program: LEDfade.

e 148

Chapter 6 ¢ Pulse Width Modulation (PWM)

6.6 Project 3: Varying the speed of a brushed DC motor

Description: This is a simple project where a small, brushed DC motor is connected to the
PICO microcontroller through a power MOSFET. In addition, a potentiometer is connected
to one of the analogue inputs of the microcontroller. In this project, the speed of the motor
is varied by moving the potentiometer arm.

Block Diagram: Figure 6.6 shows the block diagram of the project. A motor driver (MOS-
FET) and a potentiometer are connected to the microcontroller.

+V

Raspberry Pi _ i .
Pico » Driver [—®

Motor

Potentiometer

Figure 6.6: Block diagram of the project.

The DC motor In this project, is controlled using PWM waveforms as in the previous pro-
ject. By varying the potentiometer arm, the analogue voltage read by the microcontroller
is varied and this in turn changes the PWM duty cycle of the voltage applied to the motor,
thus causing the motor speed to change.

Circuit diagram: The circuit diagram of the project is shown in Figure 6.7. The potentiom-
eter is connected to channel 0 of the ADC (GP26, pin 31). The motor is connected to GP17
(pin 22) through an IRL540 type MOSFET switch. It is recommended to use an external
power supply for the motor.

+3.3V

31
10K GP26

(ADC 0)

GP17

Raspberry Pi
Pico

Figure 6.7: Circuit diagram of the project.

e 149

Raspberry Pi Pico Essentials

Program listing: Figure 6.8 shows the program listing (Program: Motor). The data read
from the ADC varies between 0 and 65535 as the potentiometer arm is fully moved from
one side to the other side. This data is used to change the duty cycle from 0% to 100%.

e e
CHANGING THE MOTOR SPEED

========================

#

In this project a brushed DC motor is connected to the

Pico.Additionally, a potentiometer is conencted to channel

0 of the ADC.Varying the potentiometer changes the motor speed
#

Author: Dogan Ibrahim

File : Motor.py

Date : February 2021

from machine import Pin, PWM, ADC

Pot = ADC(0) # Pot at channel 0
Motor = Pin(17, Pin.OUT) # Motor at GP17
ch = PWM(Pin(17)) # PWM at GP17
ch.freq(1000) # Frequency = 1000Hz
while True: # Do forever
duty = Pot.read_ul6() # Read pot data
ch.duty_ul6(duty) # Change duty cycle

Figure 6.8: Program: Motor.

6.7 Project 4: Frequency generator with LCD

Description: This is a frequency generator project. A potentiometer and an LCD are con-
nected to the Raspberry Pi Pico. By varying the potentiometer arm we change the frequen-
cy of the generated PWM waveform. The frequency of the generated waveform is displayed
on the LCD. The duty cycle of the generated waveform is set at 50%. Frequencies up to
about 65535 Hz can be generated by moving the potentiometer arm fully to one side.

Block diagram: Figure 6.9 shows the block diagram of the project.

e 150

Chapter 6 o Pulse Width Modulation (PWM)

+V

—, ' LCD
Potentiometer Raspberry Pi
Pico
Figure 6.9: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is given in Figure 6.10. The potenti-
ometer arm is connected to channel 0 of the ADC (GP0). The LCD is connected as in the
previous LCD projects. Output PWM waveform is available at port pin GP16, pin 21).

10K
© o contrast

|2 220 |2 T_J:
+5V 15| vdd Vee

36
+3.3V 4 1
GP2 D4
5 12
31 GP3 D5
10K GP26 6 13
woco) CP4,1%® Lep
1 GP5 > D7
GP1 RS
cro—Cle
21
GP16 Vss RIWA
115 [16
Raspberry Pi n
Pico "
GND PWM output

L

Figure 6.10: Circuit diagram of the project.

Program listing: Figure 6.11 shows the program listing (Program: FreqGen). At the be-
ginning of the program, Pot is assigned to ADC channel 0; LCD is initialized and a message
'Frequency(Hz)' is displayed at the top row of the LCD. Inside the program loop the value
of Pot is read and this is used to set the frequency of the PWM waveform. The duty cycle
is set to 50%.

#

===================

#

In this project a potentiometer is connected to channel 0

of the Pico. Also, an LCD s connected. The program generates
PWM waveforms of different frequencies as the potentiometer

e 151

Raspberry Pi Pico Essentials

arm is moved

#

Author: Dogan Ibrahim
File : FreqGen.py

Date : February 2011

from machine import Pin, PWM, ADC
import LCD
import utime

Pot = ADC(0) # Pot at channel 0
LCD.lcd_init()

ch = PWM(Pin(16)) # PWM at GP16
ch.freq(100) # Default freq
LCD.lcd_clear ()

LCD.lcd_puts("Frequency(Hz)")

while True: # Do forever
frequency = Pot.read_ul6(# Read pot data
LCD.lcd_goto(0, 1)
LCD.lcd_puts(" "

LCD.lcd_goto(0, 1)

LCD.lcd_puts(str(frequency))

ch.duty_ul6(32767)

ch.freq(frequency) # Change the freuency
utime.sleep(1)

Figure 6.11: Program FreqgGen.
The frequency is displayed on the LCD in the following format:

Row 1: Frequency(Hz)
Row 2: nnnnnnn

6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM
waveform

Description: In this project, the frequency and duty cycle of a PWM waveform is read and
displayed on the Thonny screen.

Circuit diagram: The PWM waveform whose frequency and duty cycle is to be asserted

is applied to port GP17 (pin 22). Make sure that the voltage is not greater than +3.3 V,
otherwise you may damage the input circuitry of your Pico.

e 152

Chapter 6 ¢ Pulse Width Modulation (PWM)

Program listing: Figure 6.12 shows the program listing (Program: MeasPWM). The pro-
gram measures the Mark (i.e. logic 1) and Space (i.e. logic 0) timings of the PWM input
waveform in microseconds. The duty cycle and the frequency are then calculated as follows:

Duty cycle (%) = 100 x Mark / (Mark + Space)
Frequency (kHz) = 1000 / (Mark + Space)

o
MEASURE THE FREQUENCY AND DUTY CYCLE

====================================

#

In this project a PWM wave 1is applied to the PIco. The
frequency and duty cycle of this wave are measured and
displayed on the Thonny screen.

#

Author: Dogan Ibrahim

File : MeasFreq.py

Date : February 2021

from machine import Pin
import utime

PWMin = Pin(17, Pin.IN) # PWM wave input

while True: # Do forever
while True:

if PWMin.value() == 1: # Wait while 0
break
TmrlStrt = utime.ticks_cpu() # Start timer 1

while True:

if PWMin.value() == 0: # Wait while 1
break
TmrlEnd = utime.ticks_cpu() # End

while True:

if PWMin.value() == 1: # Wait while 0
break
Tmr2End = utime.ticks_cpu() # End

Mark = utime.ticks_diff(TmrlEnd, TmriStrt)
Space = utime.ticks_diff(Tmr2End, TmrlEnd)
duty = 100.0 * Mark / (Mark + Space)
fregkHz = 1000.0 / (Mark + Space)
print("Duty Cycle = %5.2f" % duty)

e 153

Raspberry Pi Pico Essentials

print("Frequency (kHz) =", fregkHz, "\n")
utime.sleep(2)

Figure 6.12: Program: MeasPWM.

Example output from the program is shown in Figure 6.13.

Duty Cycle = 39.74
Frequency (kHz) = 1.20048

Duty Cycle = 35.05
Frequency (kHz) = 1.317523

Duty Cycle = 39.59
Frequency (kHz) = 1.203369

Figure 6.13: Example output.

6.9 PROJECT 6: Melody maker

Description: This project shows how PWM-type tones of different frequencies can be gen-
erated and sent to a passive buzzer device. The project shows how the simple melody
Happy Birthday can be played on the buzzer.

Aim: The aim of this project is to show how various tones can be generated to create a
simple melody.

Block diagram: The block diagram of the project is shown in Figure 6.14.

Raspberry Pi Pico Passive Buzzer
Figure 6.14: Block diagram of the Melody Maker project.

Circuit diagram: Figure 6.15 shows the circuit diagram of the project. A passive buzzer
is connected to port GPO (pin 1) of the Raspberry Pi Pico. A transistor switch is used to in-
crease the voltage level of the buzzer (this can be omitted, and the buzzer can be directly
connected to GPO if desired. This however will give low output from the buzzer). Almost
any old NPN, small-signal, bipolar transistor can be used in this project. The + terminal of
the buzzer can be connected to either +3.3 V or to +5 V for higher output from the buzzer.

e 154

Chapter 6 o Pulse Width Modulation (PWM)

+V (3.3V or 5V)

+
Buzzer

1 22K
Any NPN

Raspberry Pi
Pico -

3L

Figure 6.15: Circuit diagram of the project.

Melodies
When playing a melody each note is played for a certain duration and with a certain fre-
quency. In addition, a certain gap is necessary between two successive notes. The frequen-
cies of the musical notes starting from middle C (i.e. C4) are given below. The harmonic of
a note is obtained by doubling the frequency. For example, the frequency of Cs is 2 x 262
= 524 Hz.

Notes C, Cu# D, D, #

Hz 261.63 | 277.18|293.66 | 311.13 | 329.63 | 349.23 | 370 | 392 |415.3 |440 |466.16|493.88

To play the tune of a melody, we need to know its musical notes. Each note is played for
certain duration and there is a certain time gap between two successive notes. The next
thing we want is to know how to generate a sound with a required frequency and duration.
In this project, we will be generating the classic Happy Birthday melody and thus we need
to know the notes and their durations. These are given in the table below where the dura-
tions are in units of 400 milliseconds (i.e. the values given in the table should be multiplied
by 400 to give the actual durations in milliseconds).

Note Cs GCs A, Fu Ei; Dy A# A# A,

Program Listing: The program listing (program: Melody) is shown in Figure 6.16. The
frequencies and durations of the melody are stored in two arrays called frequency and
duration respectively. Before the main program loop the durations of each tone are calcu-
lated and stored in array Durations so that the main program loop does not have to spend
time to do these calculations. Inside the program loop, the melody frequencies are gener-
ated with the required durations. Notice that the tone output is stopped by setting the duty
cycle to 0. A small delay (100 ms) is introduced between each tone. The melody is repeated

e 155

Raspberry Pi Pico Essentials

after 3 seconds of delay. You can try higher harmonics of the notes for clearer sound. For
example, in Figure 6.16 the frequencies are multiplied by 2 to play the second harmonics.

o
MELODY MAKER - PLAY HAPPY BIRTHDAY

==================================

#

In this project a buzzer 1is connected to port pin GPO

which 1is configured as a PWM output. The program plays the
melody Happy Birthday

#

Author: Dogan Ibrahim

File : Melody.py

Date : February 2021

from machine import Pin, PWM
import utime

ch = PWM(Pin(0)) # PWM output at GPO

MaxNotes = 25

Durations = [0]*MaxNotes

#

Melody frequencis

#

frequency = [262,262,294,262,349,330,262,262,294,262,
392,349,262,262,524,440,349,330,294,466,

466,440,349,392,349]

#

Frequency durations

#

duration = [1,1,2,2,2,3,1,1,2,2,2,3,1,1,2,2,2,2,
2,1,1,2,2,2,3]

for k in range(MaxNotes):
Durations[k] = 400 * duration[k]
while True: Do forever
for k in range(MaxNotes): Do for all notes
ch.duty_ul6(32767)

ch.freq(2xfrequency[k])

Duty cycle

Play 2nd harmonics
Durations

Wait

Stop playing

utime.sleep_ms(Durations[k])
utime.sleep_ms(100)
ch.duty_ul6(0)
utime.sleep(3)

HOH O H O H H H H FHE

Stop 3 seconds

Figure 6.16: Program: Melody.

e 156

Chapter 6 ¢ Pulse Width Modulation (PWM)

Suggestions for additional work

Modify the program given in Figure 6.16 by changing the durations between the notes and
see its effects. How can you make the melody run quicker? Also, replace the buzzer with
an audio amplifier and a speaker for higher quality and at the same time louder output.

e 157

Raspberry Pi Pico Essentials

Chapter 7 e Serial Communication (UART)

7.1 Overview

Serial communication is a simple means of sending data across long distances quickly and
reliably. The most seen serial communication method is based on the RS-232 standard. In
this standard data is sent over a single line from a transmitting device to a receiving device
in bit-serial format at a pre-specified speed, also known as the Baud rate, or the number of
bits sent each second. Typical Baud rates are 4800, 9600, 19200, 38400, etc.

RS-232 serial communication is a form of asynchronous data transmission where data is
sent character-by-character. Each character is preceded with a start bit, seven or eight data
bits, an optional parity bit, and one or more stop bits. The most commonly used format is
eight data bits, no parity bit and one stop bit (8N1). Therefore, a data frame consists of 10
bits. With a Baud rate of 9600, we can transmit and receive 960 characters every second.
The least significant data bit is transmitted first, and the most significant bit is transmitted
last.

In standard RS-232 communication, logic high is defined to be at -12 V, and a logic 0 is at
+12 V. Figure 7.1 shows how character "A" (ASCII binary pattern 0010 0001) is transmitted
over a serial line. The signal line is normally idle at —12 V. The start bit is first sent by the
line going from high to low. Then eight data bits are sent starting from the least significant
bit. Finally, the stop bit is sent by raising the line from Low to High.

IDLE

N

START 1 0 0 0 0 0 1 0 STOP

Figure 7.1: Sending character "A" across, in serial format.

In serial communication a minimum of three lines are used for communication: transmit
(TX), receive (RX), and ground (GND). Some high-speed serial communication systems
use additional control signals for synchronization, such as CTS, DTR, and so on. Some sys-
tems use software synchronization techniques where a special character (XOFF) is used to
tell the sender to stop sending, and another character (XON) is used to tell the sender to
recommence transmission. RS-232 devices are connected to each other using two types of
connectors: 9-way connector, and 25-way connector. Table 7.1 shows the TX, RX, and GND
pins of each types of connectors. The connectors used in RS232 serial communication are
shown in Figure 7.2.

9-pin connector

2 Transmit (TX)
3 Receive (RX)
5 Ground (GND)

e 158

Chapter 7 e Serial Communication (UART)

25-pin connector

2 Transmit (TX)
3 Receive (RX)
7 Ground (GND)

Table 7.1: Minimum pins required for RS232 serial communication.
00000000000
R
Y 4 olglolz|=l=lelslolsl=|sl|2lel=l =[] <lel=|of~|<]-

9-way connector 25-way connector
Figure 7.2: RS-232 connectors.

As described above, RS-232 voltage levels are at £12 V. On the other hand, microcontroller
input/output ports typically operate at 0 to +5 V voltage levels. It is therefore necessary
to translate the voltage levels before a microcontroller can be connected to an RS-232
compatible device. Thus, the output signal from the microcontroller has to be converted
into £12 V, and the input from an RS-232 device must be converted into 0 to +5 V before
it can be connected to a microcontroller. This voltage translation is normally done using
special RS232 voltage converter chips. One such popular chip is the MAX232. This is a dual
converter chip having the pin configuration as shown in Figure 7.3. This particular device
requires four external 1-uF capacitors for its operation.

AtV
16
.
1, VCC
'ﬁ“_im_ Vnij'
LS &
5
T T
MAX232 | =
T1in ——>—1%— 71 out
ol 7
T2in 1> T2 out
1
R1 out <—=—Riin
R2 out <}—F— Rr2in
GND

El

Figure 7.3: MAX232 pin configuration.

e 159

Raspberry Pi Pico Essentials

Nowadays, serial communication is done using standard TTL logic levels instead of £12 V,
where logic 1 is +5 V (or greater than +3 V) and logic 0 is 0 V. A serial line is idle when the
voltage is at +5 V. The start bit is identified on the High-to-Low transition of the line, i.e.
the transition from +5 V to 0 V.

In this Chapter we will develop a program to communicate between the Raspberry Pi Pico
and an Arduino Uno microcontroller. Also, a program to communicate with a Raspberry Pi 4.

7.2 Raspberry Pi Pico UART serial ports

The Raspberry Pi Pico has two serial ports as shown in Figure 7.4. These are named as
UARTO and UART1 where both have TX and RX pins as shown in the figure. Notice that a few
ports share UARTO and UART1 and only one of each shared port can be used at any time.

UARTOTX 1 . X 40
UARTORX 3 30 T
3 . 1 L 38

4 *® L 37

@

5 L = L] 36
UARTITX] § T B X 35
UARTIRX] 7 S o &

e - X 33

9 U LR 32

=

(e ~ o o]

(=]
UARTITX 11 ZUBGRE LX 350
UARTIRX] 12 22 © X 2
(=]

iFpe © X 28

14 X

e = %

>

UARTOTX 16 . I X 75
@

UARTORX] 17 - SUESY X 24

18 IO (X 73

o
19 X7 L1 22 UARTORX]
20 X3 . 1 21 UARTOTX

Duplicate UART channels cannot be used at the same time e.g. UARTO TX at
pin 1 and UARTO TX at pin 21

Figure 7.4: Raspberry Pi Pico UART serial ports.
7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to
an Arduino Uno
Description: In this project we will be using a Raspberry Pi Pico and an Arduino Uno micro-
controller jointly. The Pico will read the temperature from its internal sensor and send it to

the Arduino over a serial link every 10 seconds. The Arduino will then display the received
temperature on its monitor.

Aim: The aim of this project is to show how serial data can be sent to another device.

Block diagram: Figure 7.5 shows the block diagram of the project.

e 160

Chapter 7 e Serial Communication (UART)

Serial line

Temperature data

Raspberry Pi Pico Arduino Uno
Figure 7.5: Block diagram of the Pico-temperature-to-Arduino project.

Circuit diagram: The circuit diagram of the project is shown in Figure 7.6. TX0 pin (at
GP0) of the Raspberry Pi Pico is connected to pin 2 of the Arduino (this pin will be config-
ured as a soft serial input in the Arduino program).

Raspberry Pi Arduino
Pico Uno
1
GPO 2
(UARTO TX)
GND GND

1 L

Figure 7.6: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.7 shows the program listing (Program:
SerTemp). At the beginning of the program variable Analogln is assigned to ADC channel
4 which is where the internal temperature sensor is connected to. UART 0 is then initialized
at port GP0O with the speed of 9600 Baud. Inside the program loop the internal temperature
is read, converted into degrees Celsius and finally sent to UART using function write. The
data is sent with 2 digits before, and 2 digits after the decimal point. Also, the text Degrees
C, followed by a 'newline' character ('\n') is sent.

Function UART can be used in one of two ways:

from machine import UART
uart = UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

Where id is the UART port number (e.g. 0 for TX0, RX0). By default, the number of bits is
8, parity is None, and stop bits is 1. If we are using GP0 with 9600 Baud, we can write the

second statement as:

uart = UART(0, 9600)

e 161

Raspberry Pi Pico Essentials

We can alternatively use the UART as follows:

import machine
uart=machine.UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

We can then use the following functions to send and receive data:

uart.read(n) read n characters

uart.read() read all available characters
uart.readline() read a line

uart.readinto(buf) read and store into the given buffer
uart.write('xyz') write the characters

#

This project reads the 1internal temperature and sends it

to Arduino Uno over a serial link at 9600 Baud

Author: Dogan Ibrahim
File : SerTemp.py
Date : February 2021

B T T

from machine import ADC, UART
import utime

AnalogIn = ADC(4) # ADC channel 4
Conv = 3.3 / 65535 # Conversion factor

uart = UART(0, 9600)
while True: Do forever
Vv AnalogIn.read_ul6()

V =V % Conv

Temp = 27 - (V - 0.706) / 0.001721
Tempstr = str(Temp)

Read temp

Convert to Volts
Convert to temp
Convert to string
Send to UART

ETE

uart.write(Tempstr[:5])
uart.write(" Degrees C\n")
utime.sleep(10) # Wait 10 seconds

Figure 7.7: Raspberry Pi Pico program: SerTemp.

Figure 7.8 shows the program listing (Program: SerTemp2) where library machine is im-
ported to the program.

e 162

Chapter 7 ¢ Serial Communication (UART)

o
SERIAL LINK - SEND TEMPERATURE READING TO ARDUINO
===
#

This project reads the internal temperature and sends it

to Arduino Uno over a serial link at 9600 Baud.

This version of the program qimports machine

#

Author: Dogan Ibrahim

File : SerTemp2.py

Date : February 2021

import machine
import utime

AnalogIn = machine.ADC(4) # ADC channel 4
Conv = 3.3 / 65535 # Conversion factor

uart=machine.UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

while True: # Do forever
V = AnalogIn.read_ul6() # Read temp
V =V % Conv # Convert to Volts
Temp = 27 - (V - 0.706) / 0.001721 # Convert to temp
Tempstr = str(Temp) # Convert to string
uart.write(Tempstr[:5]) # Send to UART
uart.write(" Degrees C\n")
utime.sleep(10) # Wait 10 seconds

Figure 7.8: Raspberry Pi Pico program: SerTemp2.

Arduino Uno program listing: Figure 7.9 shows the Arduino Uno program listing (Pro-
gram: Temp.c). The soft serial library is included at the beginning of the program and pins
2 and 3 are assigned to soft UART RX and TX, respectively. Inside the setup routine the
baud rate of the monitor and the soft serial port are configured to 9600. Inside the main
program loop the program waits until data arrives from the Raspberry Pi Pico. The data is
received until and including a 'newline' character. The temperature data is then displayed
on the Arduino IDE monitor as shown in Figure 7.10. Make sure that the Arduino IDE moni-
tor Baud rate is set to 9600.

/*‘k*k~k~k~k**********k*‘k*****~k~k~k**********k*‘k***‘k***‘k***‘k*******‘k*
* TEMPERATURE DISPLAY

* S-S ======

* This program reads the analog temperature data from the

* Raspberry Pi Pico over teh serial link and then displays
* this data on the Arduino IDE monitor

e 163

Raspberry Pi Pico Essentials

e 164

*

* Author: Dogan Ibrahim
* Date : February, 2020
* File : Temp.c

***/

#include <SoftwareSerial.h>
SoftwareSerial MySerial(2, 3);

String Temp;
char ch;

void setup()

{
Serial.begin(9600);
MySerial.begin(9600);

void loop()
{
if(MySerial.available() > 0)
{
ch = MySerial.read();
Temp.concat(ch);
if(ch == ‘\n?)
{

Serial.print("Temperature

Serial.print(Temp);
Temp="";

"

// RX, TX

// Monitor speed 9600
// Soft serial speed 9600

// Data available?

// Display data

Figure 7.9: Arduino Uno program: Temp.

@ com3
|

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature =
Temperature =

Temperature =

Temperature =

Temperature =

Temperature =

17.
17.
17.
= 16.
= 17.
17.
le.
= 17.
17.
= 17.
= 17.

21
21
21
74
21
21
74
23
21
21
21

[#]

Degrees

Q

Degrees

aQ

Degrees

[#]

Degrees

(¢}

Degrees

Q

Degrees

(]

Degrees

7]

Degrees

7]

Degrees

Q

Degrees

(]

Degrees

Figure 7.10: Data displayed by Arduino Uno.

Chapter 7 e Serial Communication (UART)

7.4 Project 2: Receiving and displaying humbers from the Arduino Uno
Description: In this project we will be using a Raspberry Pi Pico and an Arduino Uno mi-
crocontroller as in the previous project. The program receives numbers counting up every
second from the Arduino and displays them on the Thonny screen.

Aim: The aim of this project is to show how serial data can be received from another de-
vice.

Circuit diagram: Figure 7.11 shows the circuit diagram of the project. RX0 pin (at GP1)
of the Raspberry Pi Pico is connected to pin 3 of the Arduino (this pin will be configured as
a soft serial output in the Arduino program).

Raspberry Pi Arduino
Pico Uno
2 1K
GP1 3 (Soft TX)
(UARTO RX)
2K
GND = GND

1 1

Figure 7.11: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.12 shows the program listing (Program:
SerRecv) together with the received data. At the beginning of the program UART 0 is ini-
tialized to 9600 Baud. The program loop receives data from the UART using function read-
line. The received data is decoded and displayed on the Thonny string.

SERIAL LINK - READ DATA FROM ARDUINO

This project reads data from the Arduino Uno and displays
on the Thonny screen

#

Author: Dogan Ibrahim

File : SerRecv.py

Date : February 2011

from machine import UART|

uart = UART(®, 9600)

while True: # Do forever
line = uart.readline()
enc = line.decode('utf-8")

print(enc)

bhell
2

3
4
s

Figure 7.12: Raspberry Pi Pico program: SerRecv and sample received data.

e 165

Raspberry Pi Pico Essentials

Arduino Uno program listing: Figure 7.13 shows the Arduino Uno program listing (Pro-
gram: Numbers.c). The soft serial library is included at the beginning of the program and
pins 2 and 3 are assigned to soft UART RX and TX respectively. Inside the setup routine
the Baud rate of the soft serial port is set to 9600. Variable cnt is incremented inside the
program loop, converted into string, and is sent to UART every 10 seconds.

/***
* SEND NUMBERS TO RASPBERRY PICO

* e S

* This program sends numbers to the Rspberry Pi Pico over

* the serial link. These numbers are displayed by the Pico

* Author: Dogan Ibrahim

* Date : February, 2020

* File : Numbers.c
***/
#include <SoftwareSerial.h>

SoftwareSerial MySerial(2, 3); // RX, TX

String Temp;
int cnt = 0;
char buffer[5];

void setup()

{
MySerial.begin(9600); // Soft serial speed 9600

void loop()

{
cnt = cnt + 1; // Increment cnt
itoa(cnt, buffer, 10); // Convert to string
MySerial.println(buffer);
delay (10000); // 10 seconds delay
}

Figure 7.13: Arduino Uno program: Numbers.c.

7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial
link

Description: In this project, we will be using a Raspberry Pi Pico and a Raspberry Pi 4. Our
Pico will send the message Hello from Raspberry Pi Pico to the RaspberryPi, and the
Raspberry Pi will reply with Hello back.

Aim: The aim of this project is to show how the Raspberry Pi Pico and Raspberry Pi 4 can
communicate over a serial link.

e 166

Chapter 7 ¢ Serial Communication (UART)

Block diagram: Figure 7.14 shows the block diagram of the project.

Raspberry Pi Pico Raspberry Pi 4

Figure 7.14: Block diagram of the project.

Raspberry Pi serial port

The Raspberry Pis have two built-in UARTs: a PLO11 and a mini UART. They are implement-
ed using different hardware blocks, so they have slightly different characteristics. Since
both are 3.3 V devices, extra care must be taken when connecting to other serial commu-
nication lines operating at higher voltages like +5 V.

On Raspberry Pi models equipped with the Wireless/Bluetooth modules (e.g. Raspberry Pi
3, Zero W, 4, etc), the PLO11 UART is by default connected to the Bluetooth module, while
the mini UART is the primary UART with the Linux console on it. In all other models, the
PLO11 is used as the primary UART. By default, /dev/ttySO0 refers to the mini UART and /
dev/ttAMAO refers to the PLO11. The Linux console uses the primary UART which depends
on the Raspberry Pi model used. Also, if enabled, /dev/serial0 refers to the primary UART
(if enabled), and if enabled, /dev/seriall refers to the secondary UART.

By default, on the Raspberry Pi 4 the primary UART (serialQ) is assigned to the Linux
console. Using the serial port for other purposes requires this default configuration to be
changed. On startup, systemd checks the Linux kernel command line for any console
entries and will use the console defined therein. To stop this behaviour, the serial console
setting needs to be removed from command line. This is easily done as follows:

¢ start raspi-config utility;

e select Option 5 (Interfacing option);
e select P6 (serial);

e select No;

e select Yes;

e select Finish and Exit raspi-config;
e restart your Raspberry Pi.

In Raspberry Pi 3 and 4, the serial port (/dev/ttyS0) is routed to two pins GPIO14 (TXD)
and GPIO15 (RXD) on the header. This port is stable and of good quality. Models earlier
than model 3 use this port for Bluetooth. Instead, a serial port is created in software (/
dev/ttySO0).

To search for available serial ports, use the command:

pi@raspberrypi:~ $ dmesg | grep tty

e 167

Raspberry Pi Pico Essentials

Circuit diagram: The circuit diagram of the project is shown in Figure 7.15. UART 0 of the
Pico (at GPO and GP1) is connected to the UART of Raspberry Pi 4.

6Po(TX) 1101 5pio15 (RXD)

GP1(RX) |12___81apio14 (TXD)
Raspberry Pi Raspberry Pi

Pico 4

GND GND

oL oL

Figure 7.15: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.16 shows the program listing (Program:
PicotoPi4) together with the received data. At the beginning of the program, UART 0 is
initialized to 9600 Baud. The program loop receives data from the UART using function
readline. The received data is decoded and displayed on the Thonny string. This is repeat-
ed after a 5-second delay.

SERIAL LINK WITH RASPBERRY PI 4

This project sends a message to Raspberry Pi 4 and then

receives back a message and displays the received message
#

Author: Dogan Ibrahim

File : PicotoPid.py

Date : February 2011

from machine import UART
import utime

uart = UART(@, 9608)

while True:
uart.write("Hello from Raspberry Pi Pico\n")
recv = uart.readline()
enc = recv.decode('utf-8')
print(enc)
ytime.sleep(S)

hell
Hello back

Hello back

Figure 7.16: Raspberry Pi Pico program: PicotoPi4.
Raspberry Pi 4 program listing: Figure 7.17 shows the Raspberry Pi 4 program listing

(Program: Pi4toPico.py). The program initializes the serial port, receives a message from
the Raspberry Pi Pico, and sends back a different message. The Baud rate is set to 9600.

e 168

Chapter 7 e Serial Communication (UART)

#

#

#

#

#

#

Author: Dogan Ibrahim
File : Pi4toPico.py

Date : February, 2021

import RPi.GPIO as GPIO

from RPLCD.i2c import CharLCD

import time
import serial
port = "/dev/serial@"

GPIO.setwarnings(False)

#

This program receives a number from the Raspberry Pi Pico,
increments teh number and sends it back to the Pico

Import RPi library
Import LCD library

Import srial

#
#
Import time library
#
#

Serial port

Receive the GPS coordinates and display on the LCD

#

ser = serial.Serial(port,baudrate=9600,timeout=100)

while True:

data = ser.readline()
ser.write(b’Hello back\n’)

print(data)
time.sleep(5)

Read a line

Figure 7.17: Raspberry Pi 4 program: Pi4toPico.py.

Figure 7.18 shows example output from the Raspberry Pi 4 program.

b'Helleo
b'Hello
b'Helle
b'Hello
b'Helleo
b'Hello
b'Hello
b'Hello

from
from
from
from
from
from
from
from

Raspberry
Raspberry
Raspberry
Raspberry
Raspberry
Raspberry
Raspberry
Raspberry

Pi
Pi
Pi
Pi
Pi
Pi
Pi
Pi

Pico\n'
Pico\n'
Pico\n'
Pico\n'
Pico\n'
Pico\n'
Pico\n'
Pico\n'

Figure 7.18: Example output from the Raspberry Pi 4.

e 169

Raspberry Pi Pico Essentials

Chapter 8 e The I2C Bus Interface

8.1 Overview

The I12C bus is commonly used in microcontroller-based projects. In this Chapter we shall be
looking at the use of this bus on the Raspberry Pi Pico. The aim is to make the reader fam-
iliar with the I2C bus library functions and to show how they can be used in a real project.
Before looking at the details of the project, it is worthwhile to look at the basic principles
of the I2C bus.

8.2 The I2C Bus

12C is one of the most commonly used microcontroller communication protocols for com-
municating with external devices such as sensors and actuators. The bus is a single-master,
multiple-slave network structure capable of operating in standard mode at 100 Kbit/s, at
full speed: 400 Kbit/s; in fast mode: 1 Mbit/s; and at high speed: 3.2 Mbit/s. The bus con-
sists of two open-drain wires, SDA and SCL, pulled up with resistors:

SDA: serial data line
SCL.: serial clock line

Figure 8.1 shows an I2C bus structure with one master and three slaves.

PULL-UP
RESISTORS

SDA

MASTER

SCL

SLAVE 1 SLAVE 2 SLAVE 3

Figure 8.1: I2C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an indi-
vidual slave device on the same bus. For this reason, the protocol defines that each slave
device provides a unique slave address for the given bus. This address is usually 7-bits
wide. When the bus is free, both lines are HIGH. All communication on the bus is initiated
and completed by the master which initially sends a START bit, and completes a transaction
by sending STOP bit. This alerts all the slaves that some data is coming on the bus and all
the slaves listen on the bus. After the start bit, 7 bits of a unique slave address are sent.
Each slave device on the bus has its own address and this ensures that only the addressed
slave communicates on the bus at any time, to avoid any collisions. The last sent bit is read/
write bit such that if this bit is 0, it means that the master wishes to write to the bus (e.g.
to a register of a slave). If this bit is a 1, it means that the master wishes to read from the
bus (e.g. from the register of a slave). The data is sent on the bus with the MSB bit first.
An acknowledgement (ACK) bit takes is suffixed after every byte, allowing the receiver to

e 170

Chapter 8 e The I12C Bus Interface

signal to the transmitter that the byte was received successfully, and another byte may be
sent. The ACK bit is sent at the 9th clock pulse.

The communication over the 12C bus is described in the following sequence.

e The master sends on the bus the address of the slave it wants to communicate
with.

e The LSB is the R/W bit which establishes the direction of data transmission, i.e.
from mater to slave (R/W = 0), or from slave to master (R/W = 1).

e Requested bytes are sent, each interleaved with an ACK bit, until a stop condi-
tion occurs.

Depending on the type of slave device used, some transactions may require separate trans-
action. For example, the steps to read data from an 12C compatible memory device are
given below.

e Master starts the transaction in write mode (R/W = 0) by sending the slave
address on the bus.

e The memory location to be retrieved are then sent as two bytes (assuming
64 Kbit memory).

e The master sends a STOP condition to end the transaction.

e The master starts a new transaction in read mode (R/W = 1) by sending the
slave address on the bus.

e The master reads the data from the memory. If reading the memory in sequen-
tial format, then more than one byte will be read.

e The master sets a stop condition on the bus.

8.3 I2C pins of the Raspberry Pi Pico
Raspberry Pi Pico has 2 I2C pins, named 12C0 and I2C1 (see Figure 8.2). As shown in the
image, the 12C pins are duplicated and are shared with other pins. For example, GPO (pin
1) is the I2C0 SDA pin and GP1 (pin 1) is the I2C0 SCL pin. Also, GP16 (pin 21) is the I2C0
SDA pin and GP17 (pin 22) is the I12C SCL pin.

o171

Raspberry Pi Pico Essentials

12C0 SDA
12C0 scL)

12C1 SDA
12C1 5CL
12C0 SDA
12C0 SCL

BOOTSEL

12C1 SDA 12C15CL

12C15CL
12C0 SDA
12C0 SCL

12C1 SDA

12C1 SDA
12C1 SCL
12C0 SDA
12C0 SCL

12C0 SCL
12C0 SDA
12C15CL
12C1 SDA

12C1 SDA
12C15CL

12C0 SCL
12C0 SDA

& ® » & & & & & » " " " " a8

-
o™
o
(=]
N -
(=]
o
o
o
>
-
@
o
=%
w
@©
o

Duplicate 12C channels (name and same numbered channels cannot be used
at the same time e.g. 12C0 SDA at pin 1 and 12C0 SDA at pin 21)

Figure 8.2: Raspberry Pi Pico I2C pins.

The default 12C pins are:

12C0 SCL GP9
12C0 SDA GP8
12C1 SCL GP7
12C1 SDA GP6

In the remainder of this Chapter we will be developing projects using the 12C bus.

8.4 Project 1: I2C port expander

Description: A simple project is given in this section to show how the I2C functions can be
used in a program. In this project the 12C bus compatible Port Expander chip (MCP23017)
is used to give additional 16 I/O ports to the Raspberry Pi Pico. This is useful in some ap-
plications where a large number of I/O ports may be required. In this project, an LED is
connected to MCP23017 port pin GPAO (pin 21) and the LED is flashed ON and OFF every
second so that the operation of the program can be verified. A 470-ohm current limiting
resistor is used in series with the LED.

The aim: The aim of this project is to show how the I2C bus can be used in Raspberry Pi
Pico projects.

Block diagram: The block diagram of the project is shown in Figure 8.3.

e 172

Chapter 8 e The 12C Bus Interface

12¢ m .
o ﬂ
MCP23017 LED

Raspberry Pi Pico
Figure 8.3: Block diagram of the project.

The MCP23017
The MCP23017 is a 28-pin chip with some features listed below. Its pin configuration is
shown in Figure 8.4.

¢ 16 bidirectional I/O ports

e Up to 1.7 MHz operation on I12C bus

e Interrupt capability

e External reset input

e Low standby current

e +1.8 to +5.5 V operation

e 3 address pins, allowing up to 8 devices on the I2C bus
e 28-pin DIL package

GPBO~—=+1 ~ 280~ GPA7
GPB1 ~—=[]2 27[) = GPAB
GPB2 =—[]3 26 [] =— GPAS
GPB3 ~—=[]4 25(] «——» GPA4
GPB4=—=[]5 24] - GPA3
GPB5 ~—=[]6 23] == GPA2
GPBG ~—=[]7 227 - GPAT
GPB7 ~—[]8 21[] ~— GPAD
Vpp —=09 20— INTA
Vgg —=[]10 19[]—= I|NTB
s —=[O 1M 18—» RESET
SCK —»[] 12 170 =— A2
S| —=[]13 16 []=— A1
SO -—[]14 15[]=— AD

Figure 8.4: Pin configuration of the MCP23017.

The pin descriptions are given in Table 8.1.

Pin Description
GPAO-GPA7 Port A pins
GPBO0-GPB7 Port B pins

VDD Power supply
VSS Ground

SDA 12C data pin
SCL 12C clock pin
RESET Reset pin

A0-A2 12C address pins

Table 8.1: MCP23017 pin descriptions.

e 173

Raspberry Pi Pico Essentials

The MCP23017 is addressed using pins A0 to A2. Table 8.2 shows the address selection. In
this project the address pins are connected to ground, thus the address of the chip is 0x20.
The chip address is 7 bits wide with the low bit is set or cleared depending on whether we
wish to read data from the chip or write data to the chip respectively. Since in this project
we will be writing to the MCP23017, the low bit should be 0, making the chip byte address
(also called the device opcode) as 0x40.

Table 8.2: Address selection of the MCP23017.

>
N
>
[

AO Address
0x40

0x21

0x22

0x23

0x24

0x25

0x26

= | = | = |2 | Ol O0o|o|o
= | = OO ||+ |O|O
= | O |+~ |O |+~ | O|+~=| O

0x27

The MCP23017 chip has 8 internal registers that can be configured for its operation. The
device can either be operated in 16-bit mode or in two 8-bit mode by configuring bit I10-
CON.BANK. On power-up this bit is cleared which chooses the two 8-bit mode by default.

The I/0 direction of the port pins are controlled with registers IODIRA (at address 0x00)
and IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the correspond-
ing port pin(s) as output(s). Similarly, setting a bit to 1 in these registers make the cor-
responding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13
respectively. This is shown in Figure 8.5.

IODIRA

GPIOA Register:
(Register:0x00}| 2 | v | 0| 2 | & ‘ : |1 |1 ‘

NN I

OUTPUTS INPUTS

IODIRB

GPIOB Register:
(Register:ﬂxﬂl)‘u|0|U|°|1\1|1 |1| o

l l l l T ? ? T 0x13

OUTPUTS INPUTS
Figure 8.5: Configuring the I/O ports.

Figure 8.6 shows the circuit diagram of the project. Notice that 12C pins of the port ex-
pander are connected to pins GP8 (I2C0 SDA) and GP9 (I2C0 SCL) of the Raspberry Pi Pico
and are pulled-up using 10-kohm resistors as required by the I2C specifications. The LED
is connected to port pin GPAO of the MCP23017 (pin 21). The address select bits of the
MCP23017 are all connected to ground.

e 174

Chapter 8 e The I12C Bus Interface

+3.3v |2
Raspberry Pi [J]‘IOK
Pico 9
vdd e
GPs (12c0 sDA) 1] 18] Reset
12
GPg (12C0 SCL) [2 Sl |y A un
151 A0 GPAO
2 LED
e 1
GND I

?i) 1‘j_Mcpz?,on

Figure 8.6: Circuit diagram of the project.
More information on the MCP23017 chip can be obtained from the datasheet:
http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Program listing: Figure 8.7 shows the program listing (Program: MCP23017). The Rasp-
berry Pi Pico supports the following I2C functions:

i2c.scan() scan for slave I12C devices
i2c.writeto() write to I2C bus

i2c.readfrom() read from I2C bus
i2c.writeto_mem() write to memory of slave device
i2c.readfrom_mem() read from memory of slave device

Some example I2C operations are:

print("I2C address=", i2c.scan()) print the I12C slave addresses on the
bus

i2c.writeto(0x20, b'56') write 56 to I2C address 0x20

i2c.writeto(0x20, bytearray(buff)) write buffer to I2C address 0x20

i2c.readfrom(0x20, 3) read 3 bytes from I2C address 0x20

i2c.writeto_mem(0x20, 0x10, b'\x35') write 0x35 to memory address 0x10 of

the slave whose 12C address is 0x20
i2c.readfrom_mem(0x20, 0x10, 3) read 3 bytes starting from register

address 0x10 of slave 12C device
whose address is 0x20

e 175

http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Raspberry Pi Pico Essentials

At the beginning of the program, the I12C module is imported to the program and the 12C
interface is defined by specifying the SDA and SCL pin connections to the Pico. Function
i2c.scan() is called to display the I2C slave devices on the bus, and the following was
displayed:

i2c address = [32] which corresponds to hexadecimal 0x20

Then the MCP23017 I2C device address, register GPIOA address, and the I/O direction
IODIRA address are defined. List conf stores the IODIRA register address and 0 so that
MCP23017 PORTA is set to output mode. List buffl stores the GPIOA register address and
what the output should be set to (1 to turn ON the LED). Similarly, buff2 stores the GPIOA
register address and what the output should be set to (0 to turn OFF the LED). Inside the
main program loop the LED is flashed every second.

e e
I2C PORT EXPANDER

=================

#

In this project the MCP23017 port expander chip 1is used.
An LED is connected to port pin GPAO@ of the port expander
and this LED 1is flashed every second

#

Author: Dogan Ibrahim

File : MCP23017.py

Date : February 2021

from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x20 # MCP23017 I2C address
MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address
MCP_IODIRA_REG = 0 # MCP23017 IODIRA Address
conf = [MCP_IODIRA_REG, 0] # Configure as output
buffli = (MCP_GPIOA_REG, 0) # Set GPIOA to O

buff@ = [MCP_GPIOA_REG, 1] # Set GPIOA to 1

i2c.writeto(Device_Address, bytearray(conf))

while True:
i2c.writeto(Device_Address, bytearray(buffl))
utime.sleep(1)
i2c.writeto(Device_Address, bytearray(buffe))

e 176

Chapter 8 e The I12C Bus Interface

utime.sleep(1)
Figure 8.7: Program: MCP23017.

The program can be modified so that the memory functions of i2c are used. The modified
program listing (Program: MCP23017-2) is shown in Figure 8.8.

o
I2C PORT EXPANDER

=================

#

In this project the MCP23017 port expander chip is used.
An LED 1is connected to port pin GPA® of the port expander
and this LED is flashed every second

#

This version of the program uses the i2c memory functions
#

Author: Dogan Ibrahim

File : MCP23017-2.py

Date : February 2021

from machine import Pin,I2C

import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x20 # MCP23017 I2C address
MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address
MCP_IODIRA_REG = 0 # MCP23017 IODIRA Address

i2c.writeto_mem(Device_Address, MCP_IODIRA_REG, b’0’)

while True:
i2c.writeto_mem(Device_Address, MCP_GPIOA_REG, b’17%)
utime.sleep(1)
i2c.writeto_mem(Device_Address, MCP_GPIOA_REG, b’07’)
utime.sleep(1)

Figure 8.8: Modified program: MCP23017-2.

8.5 Project 2: EEPROM memory

Description: In this project we will be using the 12C-bus-compatible 24LC256 type EE-
PROM memory chip and write the characters ABCD to memory locations starting from ad-
dress 0x1000 of the memory. The data is then read from these locations and displayed on
the Thonny screen to confirm that the write/read operation has been successful.

e 177

Raspberry Pi Pico Essentials

The aim: The aim of this project is to show how an I2C based EEPROM memory can be
programmed using the Raspberry Pi Pico.

The 24LC256 memory

The 24LC256 is a 32 K x 8 (256 Kbit) EEPROM memory chip manufactured by Microchip
Technology. The chip can be powered from 1.7 V to 5.5 V, with a standby current of 1 pA
and a write current of 3 mA. The chip can operate from 100 kHz up to 1 MHz. A hardware
write-protect pin is provided to disable writing to the chip. 24LC256 is capable of both ran-
dom and sequential reads up to a 256 K boundary. The device has page write capability
up to 64 bytes of data. The device has 32768 addresses, ranging from 0x0000 to Ox7FFF
Figure 8.9 shows the pin layout of the chip.

A0 [8[] vee
A1[]2 7[Jwp
A2 []3 6[]scL
vss[|4 5[] SDA

Figure 8.9: Pin layout of the 24LC256.

A0, Al and A2 are used to set the LSB bits of the device 12C address. As shown below, the
upper 4 bits of the device address are fixed at 1010 and the LSB bit is the R/W bit:

‘1 ‘0 ‘1 ‘0 ‘AZ‘AI‘AO‘R/W‘

For example, if A2 = A1 = A0 = 0 then the 12C address is 0xAOQ.
Vcc and Vss are the power supply pins.

WP is the write protection pin. If this pin is tied to Ground, writing is enabled. If connected
to Vcc then the write operations have no effect.

Circuit diagram

The circuit diagram of the project is shown in Figure 8.10. In this project, I2C pins GP8
(I2C0 SDA) and GP9 (I12C0 SCL) of Raspberry Pi Pico are used. A0, A1 and A2 are connect-
ed to ground so that the device address is O0XAOQ. Also, the write protect pin WP is tied to
ground. The SDA and SCL pins are pulled-up using 10-kohm resistors.

e 178

Chapter 8 e The I12C Bus Interface

Raspberry Pi
Pico
33V E
[]]10K
8
Vcc
11 5
GP8 (SDA) |— SDA
12 6
GP9 (SCL) SCL
; AQ 24LC256
= A1
A2
— Vss WP

GND
ﬂ_ - Z |__E|7

Figure 8.10: circuit diagram of the project.

Before going into details of the memory write and read operations, it is worthwhile to learn
how this is done.

Memory-write operation

As an example, assume that we want to write byte 0x25 into memory location 0x0250.
Figure 8.11 shows the write steps in detail. First of all, the START bit is sent on the bus,
followed by the device address which is assumed to be 0xA0Q, with the LSB bit set to 0 to
indicate that we wish to do a write operation.

The memory address 0x0250 is then split into upper and lower bytes as 0x02 and 0x50
and they are sent sequentially with the higher byte sent first over the bus. Then, the data
byte 0x25 is sent (this is called Byte Writing since only one byte is written to memory).
Notice that we can send multiple bytes (this is called Page Writing where up to 64 bytes
can be written sequentially. There are 512 pages and each page is 64 bytes long) in the
same transaction (an internal address counter is incremented automatically after a byte is
sent). The write operation is terminated with the STOP bit. Notice that ACK bit is sent by
the EEPROM between the byte transfers.

After a byte write command, the internal address counter will point to the address location
following the one that was just written. Page write operations are limited to writing bytes
within a single physical page (64 bytes), regardless of the number of bytes actually being
written. Physical page boundaries start at addresses that are integer multiples of the page
buffer size and end at addresses that are integer multiples of page size -1. If a page write
command attempts to write across a physical page boundary, the result is that the data
wraps around to the beginning of the current page (overwriting data previously stored
there), instead of being written to the next page.

It is, therefore, necessary for the application software to prevent page write operations

that would attempt to cross a page boundary (e.g. when writing long strings care should be
taken when crossing a page boundary). Some of the page boundaries in bytes are:

e 179

Raspberry Pi Pico Essentials

Page 1: 0-63
Page 2: 64 - 127
Page 3: 128 - 191
Page 4: 192 - 255
Page 5: 256.......

Notice that the data sent the EEPROM is stored in a temporary buffer since a whole page
consisting of 64 bytes is refreshed after every write operation. It is therefore important to
detect when a write operation has been completed successfully.

Address R/W 0x02 0x50 Data

‘ Start

0xA0 ‘O‘AC ‘D‘O‘O‘O‘O‘O‘I‘O‘AC ‘0‘1‘0‘1‘0‘0‘0‘0‘“
K K K

0x25 ‘ AC ‘ Stop
K

Figure 8.11: Memory Byte Writing operation.

Memory-read operation

Memory-read operations are slightly more complex. There are 3 types of reads: current
address read, random read, and sequential read. Random read mode is probably the most
commonly used mode where the master can access any memory location in a random
manner.

As an example, assume that we want to read the byte at memory location 0x0250 (where
0x25 was stored in Figure 8.11). Figure 8.12 shows the read steps in detail. To perform
a Random Read, the memory address must be sent first. This is done by an 12C device
sending the memory address to the 24LC256 as part of a write operation (R/W bit set to
'0"). Once the memory address is sent, the master generates a START condition following
the ACK. This terminates the write operation, but not before the internal address counter
is set. The master then issues the slave address again, but with the R/W bit set to a 1.
The 24LC256 will then issue an ACK and transmit the 8-bit data word. The master will not
acknowledge the transfer, though it generates a STOP condition, which causes the EEPROM
to discontinue transmission. After a random read command, the internal address counter
will point to the address location following the one that was just read.

In Sequential Read operation, an internal address pointer is incremented automatically
after each read operation. This allows the entire memory contents to be read easily.

Addr R/W 0x02 0x50 Addr R/W

['start [oxao [o[Ack [o] o[o[ofo]o] 1] o] Ack [o] 1] o] 2] o] o] o] o] Ack [start [oxa0 [1|

[Ack [0x25 | NOACK [Stop |

Figure 8.12: Random memory read operation.

Program listing: Figure 8.13 shows the program listing (Program: EEPROM). In this pro-
gram the device address of the EEPROM chip was found to be 80 (hexadecimal 0x50). In-
side the main program, a list wmsg is defined and is pre-loaded with the data 1357 which
is the data to be written to the EEPROM memory. Also, another list called rmsg is declared
which will be loaded with the data read from the memory chip. The program then calls func-
tion Write to write the contents of list wmsg to the memory chip, starting from address

e 180

Chapter 8 e The I12C Bus Interface

0x10000. Function Read reads 4 bytes of data from the same memory locations and stores
them in array wmsg. This data is then displayed on the PC screen. Page writing is used
in this program where the memory address increments automatically after writing or read-
ing a byte of data. Sequential read operation is done by the program where the memory
address pointer is incremented automatically to point to the next location.

Function: Write

This function has 3 arguments:
memloc: starting memory address where the data will be stored to
data: the data to be stored
addrsize: size of the address

def Write(memloc, data,len):
i2c.writeto_mem(Device_Address, memloc, data, addrsize = 16)

utime.sleep_ms(10)

Function: Read
memloc: This function has two arguments: starting memory address where the
data will be read from
len: Number of bytes to read
addrsize: size of the address

def Read(memloc, len):
data = [0]*4
data = i2c.readfrom_mem(Device_Address, memloc, 4,addrsize=16)

return(data)

o
I2C EEPROM READ/WRITE

=======z==============

#

In this project a 24LC256 type I2C EEPROM memory chip 1is

connected to the Raspberry Pi Pico. The program writes and
then reads from the memory

#

Author: Dogan Ibrahim

File : EEPROM.py

Date : February 2021

from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)

print("i2c address=",i2c.scan())

len = 4

e 181

Raspberry Pi Pico Essentials

Device_Address = 0x50 # EEPROM I2C address

#

This function reads len bytes starting from specified memory

address memloc (16 bits)

#

def Read(memloc, len):
data = [0]*4
data = j2c.readfrom_mem(Device_Address, memloc, 4,addrsize=16)
return(data)

#
This function writes the data to starting from the specified
memory address memloc (16 bits)
#
def Write(memloc, data,len):
i2c.writeto_mem(Device_Address, memloc, data, addrsize = 16)
utime.sleep_ms(10)

wmsg = ‘1357’ # Data to be written
rmsg = [0]xlen # List for return data
Write(0x1000, wmsg, len) # Write the data

rmsg = Read(0x1000, len) # Read the data

#

Display the data read starting from address 0x1000

#

print("Data read 1is: %c%c%c%c\n" %(rmsg[0],rmsg[1],rmsg[2],rmsg[3]))
Figure 8.13: Program: EEPROM.
The data displayed by the program was as follows:

i2c address = [80]
Data read is: 1357

8.6 Project 3: TMP102 temperature sensor
Description: In this project, the 12C-compatible TMP102 temperature sensor chip is used.
The ambient temperature is read every second and is displayed on the Thonny screen.

The aim: The aim of this project is to show how the temperature sensor chip TMP102 can
be used in a program.

The TMP102

The TMP102 is an 12C compatible, highly accurate temperature sensor chip with a built-in
thermostat with the following basic features:

e 182

Chapter 8 e The I12C Bus Interface

Supply voltage: 1.4V to 3.6 V
Supply current: 10 pA

Accuracy: 0.5 °C

Resolution: 12 bits (0.0625 °C)
Operating range: -40 °C to +125 °C

TMP102 is a 6-pin chip as shown in Figure 8.14. the pin descriptions are:

Pin Name Description

1 SCL I2C line

2 GND power supply ground

3 ALERT Over-temperature alert.

Open-drain output. Requires a
pull-up resistor

4 ADDO address select
V+ power supply
6 SDA I12C line

DRL Package
6-Pin SOT563
Top View

soL | 1 o 6 | soa
onp | 2 W [s]w
ALERT | 3 N [+] aooo

Figure 8.14: TMP102 pin layout.
The TMP102 supports the following operational modes:

e Continuous conversion: by default, an internal ADC converts the tempera-
ture into digital format with the default conversion rate of 4 Hz, with a conver-
sion time of 26 ms. The conversion rate can be selected using bits CR1 and
CRO of the configuration register as: 0.25 Hz, 1 Hz, 4 Hz (default), and 8 Hz. In
this project the default 4 Hz is used.

e Extended mode: Bit EM of the configuration register selects normal mode (EM
= 0), or extended mode (EM = 1). In normal mode (default mode) the convert-
ed data is 12 bits. Extended mode is used if the temperature is above 128 °C
and the converted data is 13 bits. In this project the normal mode is used.

e Shutdown mode: This mode is used to save power where the current con-
sumption is reduced to less than 0.5 pA. The shutdown mode is entered when
configuration register bit SD = 1. The default mode is normal operation (SD =
0).

e One-shot conversion: Setting configuration register bit OS to 1 selects the
one-shot mode which is a single conversion mode. The default mode is continu-
ous conversion (OS = 0).

e 183

Raspberry Pi Pico Essentials

o Thermostat mode: This mode indicates whether to operate in comparator
mode (TM = 0) or in interrupt mode (TM = 1). The default is the comparator
mode. In comparator mode, the Alert pin is activated when the temperature
equals or exceeds the value in the Tygn register, and remains active until the
temperature drops below T ow. In interrupt mode, the Alert pin is activated
when the temperature exceeds Tyign Or goes below T o registers. The Alert pin
is cleared when the host controller reads the temperature register.

A Pointer Register select various registers in the chip as shown in Table 8.1. The upper
6 bits of this register are 0Os.

P1 PO Register Selected

0 0 Temperature register (read only)
0 1 Configuration register

1 0 TLOW register

1 1 THIGH register

Table 8.1: Pointer register bits.
Table 8.2 shows the temperature register bits in normal mode (EM = 0).

BYTE 1:

D7 D6 D5 D4 D3 D2 D1 DO
T11 T10 T9 T8 T7 T7 T5 T4

BYTE 2:

D7 D6 |D5 |D4 |D3 D2 D1 DO
T3 T2 |T1 TO 0 0 0 0

Table 8.2: Temperature register bits.

Table 8.3 shows the configuration register bits. The power-up default bit configuration is
shown in the Table.

BYTE 1:

D7 D6 D5 D4 D3 D2 D1 DO
os R1 RO F1 FO POL | TM SD

e 184

Chapter 8 e The 12C Bus Interface

BYTE 2:
D7 D6 D5 D4 D3 D2 D1 DO
CR1 |CRO |AL EM 0 0 0 0
1 0 1 0 0

Table 8.3: Configuration register bits.

The Polarity bit (POL) allows the user to adjust the polarity of the Alert pin output. If set
to 0 (default), the Alert pin becomes active low. When set to 1, the Alert pin becomes ac-
tive-High.

The default device address is 0x48. TMP102 is available as a module (breakout module)
as shown in Figure 8.15. The temperature register address is 0x00 and this should be sent
after sending the device address. This is then followed with a read command where 2 bytes
are read from the TMP102. These 2 bytes contain the temperature data.

The temperature-reading sequence is given below.

e Master sends the device address 0x48 with the R/W set to 0.
e Device responds with ACK.

e Master sends the temperature register address 0x00.

e Device responds with ACK.

e Master resends device address 0x48 with the R/W bit set to 1.
e Master reads upper byte of temperature data.

¢ Device sends ACK.

e Master reads lower byte of temperature data.

¢ Device sends ACK.

e Master sends Stop condition on the bus.

Figure 8.15: TMP102 as a module.

Block diagram: Figure 8.16 shows the block diagram of the project.

e 185

Raspberry Pi Pico Essentials

TMP102 module Laptop

Raspberry Pi Pico

Figure 8.16: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.17. On-chip
pull-up resistors are available on the TMP102 I2C bus lines, hence there is no need to use
external pull-up resistors.

5
,7 +3.3V
VCC
11
SDA - GP8 (SDA)
SCL GP9 (SCL)
TMP102
Raspberry Pi
Pico
GND GND
i ST

Figure 8.17: Circuit diagram of the project.

Program listing: Figure 8.18 shows the program listing (Program: TMP102). At the be-
ginning of the program, the 12C address of TMP102 and the Pointer register addresses are
defined. The Pointer register is set to 0 to select the temperature register.

The program runs inside a while loop and calls function Read every second. Read reads
the temperature from TMP102, converts it into positive (or negative) degrees Celsius and
then returns the reading to the main program. The two bytes read are combined to form
the 12-bit temperature data in variable temp. If the temperature is negative, then it is in
2's complement form and its complement is taken and 1 is added to find the true negative
value. By multiplying temp with the LSB we find the temperature in degrees Centigrade.
The temperature is displayed on the Thonny screen as a floating point number.

Table 8.4 shows the data output format of the temperature. Let us look at two examples:
Example 1: Measured value = 0011 00100000 = 0x320 = 800 decimal

This is positive temperature, so the temperature is: 800 x 0.0625 = +50 °C

Example 2: Measured value = 1110 01110000 = OxE70

e 186

Chapter 8 e The 12C Bus Interface

This is negative temperature. The complement is 0001 10001111, and adding 1 gives 0001
10010000 = 400 decimal. The temperature works out as: 400 x 0.0625 = 25, i.e. -25 °C

Temperature Digital Output (Binary) Digital Output (Hex)

128 011111111111 7FF
100 011001000000 640
50 001100100000 320
0.25 000000000100 004
-0.25 111111111100 FFC
-25 111001110000 E70
-55 110010010000 C90

Table 8.4 The data output for some temperature readings.

In this project a TMP102 type I2C compatible temperature
sensor chip is connected to Raspberry Pi Pico. The temperature
readings are displayed on the Thonny screen.

Author: Dogan Ibrahim
File : TMP102.py
Date : February 2021

EE Y N B

from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x48 # TMP102 I2C address
PointerReg = 0 # TMP102 register
#

This function reads the temperature, extracts degrees Celius
and returns the temperature to the main calling program

#

def Read():
data = [0, 0]
LSB = 0.0625

data = i2c.readfrom_mem(Device_Address, PointerReg, 2)
temp = (data[0] << 4) | (data[1l] >> 4)

e 187

Raspberry Pi Pico Essentials

if temp > OX7FF:
temp = (~temp) & OxFF
temp = temp + 1
temperature = -temp * LSB
else:
temperature = temp * LSB
return(temperature)

#
Main program reads and displays the temperature every second
#
while True:
Temperature = Read()
print("Temperature = %+5.2f" %Temperature)
utime.sleep(1)

Figure 8.18: Program: TMP102.c.

Example output from the program is shown in Figure 8.19.

Shell
s

i2c address= [72]

Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12
Temperature = +21.12

Figure 8.19: Example output from the program.
8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
Description: In this project the I2C compatible BMP280 module is used to read and display
the ambient temperature and atmospheric pressure on the Thonny screen.
The aim: The aim of this project is to show how the BMP280 chip can be used in a program.
The BMP280

The BMP280 (Figure 8.20) is an I2C compatible highly accurate temperature and atmos-
pheric pressure sensor chip having the following basic features:

e 188

Chapter 8 e The 12C Bus Interface

e Temperature range: -40 to +85°C

e Pressure range: 300 to 1100 hPa
Relative pressure accuracy: £0.12 hPa
e Current consumption: 2.7 pA

I12C and SPI interface

Supply voltage: 1.71 Vto 3.6 V

e Footprint 2.0 x 2.5 mm?2

8-pin LGA metal package

The BMP280, manufactured by Bosch, is used in many applications, including navigation,
temperature and pressure monitoring, elevator and floor detection (altitude measure-
ment), leisure and sports, weather forecast, mobile phones, tablets, GPS devices, flying
toys, watches, and so on.

The BMP280 consists of a Piezo-resistive pressure sensing element and a mixed-signal
ASIC which performs ADC conversions for the digital interface. The chip can be operated
in three power modes: sleep mode, normal mode, and forced mode. The chip is equipped
with a built-in digital IIR filter to minimize disturbances in the output.

Interested readers can get detailed information on the BMP280 from the BMP280 Digital
Pressure Sensor datasheet

(link: https://www.mouser.co.uk/datasheet/2/783/BST_BMP280_DS001-1509562.pdf)

Q0O®@

¥ _JC—m - O
O ln O
DIOLDDINN|O

101235W1 09785

Figure 8.20: BMP280 module.

Block diagram: Figure 8.21 shows the block diagram of the project.

BMP280 module Laptop

Raspberry Pi Pico

Figure 8.21: Block diagram of the project.

Circuit diagram: The BMP280 can be operated either in I2C or in SPI mode. In this project
we are using the I2C mode. The circuit diagram of the project is shown in Figure 8.22. 12C
pins GP8 (SDA) and GP9 (SCL) of the Raspberry Pi Pico are connected to the corresponding
SDA and SCL pins of the BMP280.

e 189

https://www.mouser.co.uk/datasheet/2/783/BST_BMP280_DS001-1509562.pdf

Raspberry Pi Pico Essentials

5
li +3.3V
VCC
11
SDA > GP8 (SDA)
SCL GP9 (SCL)
BMP280
Raspberry Pi
Pico
GND GND
L a8

Figure 8.22: Circuit diagram of the project.

Program listing: Programming the BMP280 is a complex process. In this project
the program has been adapted by the author to work with the Raspberry Pi Pico. The
program can be found at:

https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/
BMP280.py

This program reads the temperature and pressure from the BMP280 chip whose 12C ad-
dress is 118 (0x76).

Figure 8.23 shows the program listing (Program: ReadBMP280) where the temperature
and pressure readings are displayed on the Thonny screen. The 12C address is also dis-
played on the screen.

o
BMP280 TEMPERATURE AND PRESSURE SENSOR

======================================

#

In this project the BMP280 temperature and pressure sensor
chip is used and the readings are displayed on the screen
every 5 seconds

#

Author: Dogan Ibrahim

File : ReadBMP280.py

Date : February 2021

from machine import Pin,I2C
import utime
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=" ,i2c.scan())

e 190

https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/BMP280.py
https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/BMP280.py

Chapter 8 e The I12C Bus Interface

THis function returns the temperature and pressure readings
Adapted for the RAspberry Pi Pico from:

#

https://github.com/ControlEverythingCommunity/
BMP280/blob/master/Python/BMP280.py

#

def BMP280():
BMP280 address, 0x76(118)
Read data back from 0x88(136), 24 bytes
bl = d2c.readfrom_mem(0x76, 0x88, 24)

Convert the data
Temp coefficents
dig_T1 = bl[1] * 256 + bl[0]
dig_T2 = b1[3] * 256 + bl[2]
if dig_T2 > 32767 :

dig_T2 -= 65536
dig_T3 = b1[5] * 256 + bl[4]
if dig_T3 > 32767 :

dig_T3 -= 65536

Pressure coefficents
dig_Pl1 = bl1[7] * 256 + bl[6]
dig_P2 = bl1[9] * 256 + bl[8]
if dig_P2 > 32767 :
dig_P2 -= 65536
dig_P3 = b1[11] * 256 + b1l[10]
if dig_P3 > 32767 :
dig_P3 -= 65536
dig_P4 = b1[13] * 256 + b1l[12]
if dig_P4 > 32767 :
dig_P4 -= 65536
dig_P5 = b1[15] * 256 + bl[14]
if dig_P5 > 32767 :
dig_P5 -= 65536
dig_P6 = b1[17] * 256 + bl1l[16]
if dig_P6 > 32767 :
dig_P6 -= 65536
dig_P7 = b1[19] * 256 + b1l[18]
if dig_P7 > 32767 :
dig_P7 -= 65536
dig_P8 = bl[21] * 256 + bl[20]
if dig_P8 > 32767 :
dig_P8 -= 65536
dig_P9 = b1[23] * 256 + bl[22]
if dig_P9 > 32767 :

e 1901

Raspberry Pi Pico Essentials

dig_P9 -= 65536

BMP280 address, 0x76(118)
Select Control measurement register, OxF4(244)

0x27(39) Pressure and Temperature Oversampling rate = 1

H* o I* H

Normal mode
i2c.writeto_mem(0x76, OxF4, b’\x27’)
BMP280 address, 0x76(118)
Select Configuration register, OxF5(245)
OxA0 (00) Stand_by time = 1000 ms
i2c.writeto_mem(0x76, OxF5, b’\xA0’)

utime.sleep(0.5)

BMP280 address, 0x76(118)
Read data back from 0xF7(247), 8 bytes
Pressure MSB, Pressure LSB, Pressure xLSB, Temperature MSB, Temperature LSB
Temperature xLSB, Humidity MSB, Humidity LSB
data = i2c.readfrom_mem(0x76, OxF7, 8)

H* o I* H

Convert pressure and temperature data to 19-bits
((data[0] * 65536) + (data[l] * 256) + (data[2] & OxF0)) / 16
((data[3] * 65536) + (data[4] * 256) + (data[5] & OxF0)) / 16

adc_p
adc_t

Temperature offset calculations

varl = ((adc_t) / 16384.0 - (dig_T1l) / 1024.0) * (dig_T2)

var2 = (((adc_t) / 131072.0 - (dig_T1) / 8192.0) * ((adc_t)/131072.0 -
(dig_T1)/8192.0)) x (dig_T3)

t_fine = (varl + var2)

cTemp = (varl + var2) / 5120.0

Pressure offset calculations
varl = (t_fine / 2.0) - 64000.0
var2 = varl * varl x (dig_P6) / 32768.0
var2 = var2 + varl x (dig_P5) * 2.0
var2 = (var2 / 4.0) + ((dig_P4) x 65536.0)
varl = ((dig_P3) % varl * varl / 524288.0 + (dig_P2) * varl) / 524288.0
varl = (1.0 + varl / 32768.0) * (dig_Pl1)
p = 1048576.0 - adc_p
p = (p - (var2 / 4096.0)) * 6250.0 / varl
varl = (dig_P9) * p *x p / 2147483648.0
var2 = p * (dig_P8) / 32768.0
pressure = (p + (varl + var2 + (dig_P7)) / 16.0) / 100
return(cTemp, pressure)

e 192

Chapter 8 e The I12C Bus Interface

#
Main program, read and siaplay the temperature and pressure
#
while True:
T,P = BMP280()
print("Temperature in Celsius : %.2f C" %T)
print("Pressure : %.2f hPa \n" %P)
utime.sleep(5)

Figure 8.23: Program: ReadBMP280.

Figure 8.24 shows example output from the program.

Shell
i2¢c address= [118]

Pressure : 1022.97 hPa

Pressure : 1022.99 hPa

Temperature in Celsius :

Temperature in Celsius :

Temperature in Celsius :

20.33' €

20.44 C

20.09 ¢C

Figure 8.24: Example output from the program.

Building the BMP280 reading program into a module
The BMP280 reading program can be built into a module so that it can be imported at the
beginning of the program and used with ease. The steps to follow are given below.

¢ Use the Thonny to save the function given in Figure 8.25 with the name
bmp280.py on your Raspberry Pi Pico.

import machine
import utime
def BMP280():
i2c = machine.I2C(0, scl=machine.Pin(9), sda=machine.Pin(8), freq=100000)
BMP280 address, 0x76(118)
Read data back from 0x88(136), 24 bytes
bl = d2c.readfrom_mem(0x76, 0x88, 24)

Convert the data
Temp coefficents
dig_T1 = bl[1] * 256 + bl[0]
dig_T2 = b1[3] * 256 + bl[2]
if dig_T2 > 32767 :

dig_T2 -= 65536
dig_T3 = bl1[5] * 256 + bl[4]
if dig_T3 > 32767 :

dig_T3 -= 65536

e 193

Raspberry Pi Pico Essentials

e 194

#

H* o I* H

E™

H* o I* H

Pressure coefficents

dig_P1l =
dig_P2 =

b1[7] * 256 + bl[6]
b1[9] * 256 + b1[8]

if dig_P2 > 32767 :
dig_P2 -= 65536

dig_P3 =

b1[11] * 256 + bl[10]

if dig_P3 > 32767 :
dig_P3 -= 65536

dig_P4 =

b1[13] * 256 + b1l[12]

if dig_P4 > 32767 :
dig_P4 -= 65536

dig_P5 =

b1[15] * 256 + bl[14]

if dig_P5 > 32767 :
dig_P5 -= 65536

dig_P6 =

b1[17] * 256 + bl[16]

if dig_P6 > 32767 :
dig_P6 -= 65536

dig_P7 =

b1[19] * 256 + b1[18]

if dig_P7 > 32767 :
dig_P7 -= 65536

dig_P8 =

b1[21] * 256 + b1l[20]

if dig_P8 > 32767 :
dig_P8 -= 65536

dig_P9 =

b1[23] * 256 + b1l[22]

if dig_P9 > 32767 :
dig_P9 -= 65536

BMP280 address, 0x76(118)
Select Control measurement register, OxF4(244)

0x27(39)

OxA0 (00)

Pressure and Temperature Oversampling rate

Normal mode

i2c.writeto_mem(0x76, OxF4, b’\x27’)
BMP280 address, 0x76(118)
Select Configuration register, 0xF5(245)

Stand_by time =

i2c.writeto_mem(0x76, OxF5, b’\xA0’)

utime.sleep(0.5)

BMP280 address, 0x76(118)
Read data back from 0xF7(247), 8 bytes

Pressure MSB, Pressure LSB,
Temperature xLSB, Humidity MSB, Humidity LSB

data = i2c.readfrom_mem(0x76, OxF7, 8)

1000 ms

1

Pressure xLSB, Temperature MSB, Temperature LSB

Chapter 8 e The I12C Bus Interface

Convert pressure and temperature data to 19-bits
adc_p = ((data[@] * 65536) + (data[l] * 256) + (data[2] & OxF0)) / 16
adc_t = ((data[3] * 65536) + (data[4] * 256) + (data[5] & OxFQ)) / 16

Temperature offset calculations

varl = ((adc_t) / 16384.0 - (dig_T1l) / 1024.0) * (dig_T2)

var2 = (((adc_t) / 131072.0 - (dig_T1) / 8192.0) * ((adc_t)/131072.0 -
(dig_T1)/8192.0)) * (dig_T3)

t_fine = (varl + var2)

cTemp = (varl + var2) / 5120.0

Pressure offset calculations
varl = (t_fine / 2.0) - 64000.0
var2 = varl * varl x (dig_P6) / 32768.0
var2 = var2 + varl x (dig_P5) * 2.0
var2 = (var2 / 4.0) + ((dig_P4) * 65536.0)
varl = ((dig_P3) % varl * varl / 524288.0 + (dig_P2) * varl) / 524288.0
varl = (1.0 + varl / 32768.0) * (dig_P1)
p = 1048576.0 - adc_p
p = (p - (var2 / 4096.0)) * 6250.0 / varl
(dig_P9) * p * p / 2147483648.0
var2 = p * (dig_P8) / 32768.0
pressure = (p + (varl + var2 + (dig_P7)) / 16.0) / 100
return(cTemp, pressure)

varl

Figure 8.25: Function 'bmp280.py'.

¢ Modify the program ReadBMP280-2 in Figure 8.23 as shown in Figure 8.26.

o
BMP280 TEMPERATURE AND PRESSURE SENSOR

======================================

#

In this project the BMP280 temperature and pressure sensor
is connected to the Raspberry Pi Pico. The temperature and
pressure readings are displayed every 5 seconds on the

Thonny screen

#

In this version of the program the BMP280 code is imported
as a module

#

Author: Dogan Ibrahim

File : ReadBMP280-2.py

Date : February 2021

e 195

Raspberry Pi Pico Essentials

from machine import Pin,I2C
import utime
import bmp286

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=" ,i2c.scan())

while True:
T,P = bmp280.BMP280()
print("Temperature 1in Celsius : %.2f C" %T)
print("Pressure : %.2f hPa \n" %P)
utime.sleep(5)

Figure 8.26: Modified program: ReadBMP280-2.
8.8 Project 5: Display BMP280 temperature and atmospheric pressure
on an LCD

Description: This project is similar to the previous project, but here the temperature and
pressure readings are displayed on the LCD.

Block diagram: Figure 8.27 shows the block diagram of the project.

BMP280 module Lco

Raspbrry Pi Pico
Figure 8.27: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28.

10K
o o contrast

|2 220 |2 ?_—l-
+5V 15[Vdd Vee

+3.3V
4 1
GP2 —r D4
Vee 11
SDA GPa(spa) 3 6 13 D5
12 GP4 D6
scL GPY(SCL) 7 14 LCD
BMP280 GP5 > 2 D7
GND GP1 RS
l aro H—81
= Raspberry Pi
Pico Vss RIWA

GND 115 s
3J_ s

Figure 8.28: Circuit diagram of the project.

e 196

Chapter 8 e The 12C Bus Interface

Program listing: Figure 8.29 shows the program listing (Program: TempPres). At the be-
ginning of the program modules bmp280, utime, 12C, and LCD are imported to the program
and the LCD is initialized. Inside the program loop the temperature and pressure readings
are displayed on the top and bottom rows of the LCD respectively.

o
DISPLAY BMP280 TEMPERATURE AND PRESSURE READINGS ON LCD
===
#

In this project a BMP280 temperature and pressure sensor
module is connected to Raspberry Pi Pico. The readings

are displayed on LCD

#

Author: Dogan Ibrahim

File : TempPres.py

Date : February 2021

from machine import Pin,I2C
import utime

import bmp280

import LCD

LCD.lcd_init()

while True:

LCD.lcd_puts(Press)
utime.sleep(5)

Display Pressure

T,P = bmp280.BMP280 () # Read T and P
Temp = "T=" + str(T)[:5] + " C" # Format T
Press = "P=" + str(P)[:6] + " hPa" # Format P
LCD.lcd_clear() # Clear LCD
LCD. lcd_puts(Temp) # Display Temperature
LCD.lcd_goto(0, 1) # At 0, 1

#

#

Wait 5 seconds
Figure 8.29: Program: TempPres.

Figure 8.30 shows an example of a pressure reading appearing on the LCD.

Figure 8.30: Example display on the LCD.

e 197

Raspberry Pi Pico Essentials

Chapter 9 e The SPI Bus Interface

9.1 Overview

In this Chapter we shall be developing projects using the SPI bus (serial Peripheral Inter-
face) with the Raspberry Pi Pico. The SPI bus is commonly a widely used protocol to connect
sensors and many other devices to microcontrollers. The SPI bus is a master-slave type bus
protocol. In this protocol, one device (the microcontroller) is designated as the master, and
one or more other devices (usually sensors) are designated as slaves. In a minimum bus
configuration there is one master and only one slave. The master establishes communica-
tion with the slaves and controls all the activity on the bus.

Figure 9.1 shows an SPI bus example with one master and 3 slaves. The SPI bus uses 3
signals: clock (SCK), data in (SDI, or RX), and data out (SDO, or TX). SDO of the master
is connected to the SDIs of the slaves, and SDOs of the slaves are connected to the SDI of
the master. The master generates the SCK signals to enable data to be transferred on the
bus. In every clock pulse one bit of data is moved from master to slave, or from slave to
master. The communication is only between a master and a slave, and the slaves cannot
communicate with each other. It is important to note that only one slave can be active
at any time since there is no mechanism to identify the slaves. Thus, slave devices have
enable lines (e.g. CS or CE) which are normally controlled by the master. A typical commu-
nication sequence between a master and several slaves is given below.

¢ Master enables slave 1.

e Master sends SCK signals to read or write data to slave 1.
¢ Master disables slave 1 and enables slave 2.

e Master sends SCK signals to read or write data to slave 2.
e The above process continues as required.

1
Microcontroller s s cs
SLAVE 1 SLAVE 2 SLAVE 3
SPI BUS MASTER
SCK l |l J- l‘ |
SDI
sDo

Figure 9.1: SPI bus with one master and 3 slaves.

The SPI signal nhames are also called MISO (Master in, Slave out), and MOSI (Master out,
Slave in). Clock signal SCK is also called SCLK and the CS is also called SSEL. In the SPI
projects in this Chapter the Raspberry Pi is the master and one or more slaves are con-
nected to the bus. Transactions over the SPI bus are started by enabling the SCK line.
The master then asserts the SSEL line Low so that data transmission can begin. The data
transmission involves two registers, one in the master and one in the slave device. Data is
shifted out from the master into the slave with the MSB bit first. If more data is to be trans-
ferred, then the process is repeated. Data exchange is complete when the master stops
sending clock pulses and deselects the slave device.

e 198

Chapter 9 e The SPI Bus Interface

The master and the slave must agree on the clock polarity and phase on the line, which are
known as the SPI bus modes. These two settings go by the names 'Clock Polarity' (CPOL)
and 'Clock Phase' (CPHA) respectively. CPOL and CPHA can have the following values:

CPOL Clock-Active State
1 Clock active High
1 Clock active Low

CPHA Clock Phase
1 Clock out of phase with data
2 Clock in phase with data

The four SPI modes are:

Mode CPOL CPHA
0 0 0

1 0 1
2 1 0
3 1 1

When CPOL = 0, the active state of the clock is 1, and its idle state is 0. For CPHA = 0, data
is captured on the rising clock, and data is shifted out on the falling clock. For CPHA = 1,
data is captured on the falling edge of the clock and gets shifted out on the rising edge of
the clock.

When CPOL = 1, the active state of the clock is 0, and its idle state is 1. For CPHA = 0, data
is captured on the falling edge of the clock and gets output on the rising edge. For CPHA =
1, data is captured on the rising edge of the clock and gets shifted out on the falling edge.

9.2 Raspberry Pi Pico SPI ports

There are 2 SPI ports on the Raspberry Pi Pico, named SPIO and SPI1. Figure 9.2 shows
the SPI pin configuration.

e 199

Raspberry Pi Pico Essentials

SPIO RX
SPIO CSn

LN
ref it

SPI0 SCK
SPIOTX
SPIO RX

SP10 CSn

BOOTSEL
fRY88 S

8%

SPI0 SCK

a8

SPIOTX
SPI1RX
SPI1 CSn

SPI1SCK
SPI1 TX
SPI1RX
SPI1 CSn

8B 88

25 spioTx
24 sPIDSCK
2

22 SPIOCSn
21 SPIORX

SPI1 SCK
SPILTX

@ 8 & & a8 @ " & & 8 e s s e e enm

-
o™
o
(=]
N -
(=]
o
o
o
>
-
@
o
=%
w
@©
o

Duplicate SPI channels (name and same numbered channels cannot be used
at the same time e.g. SPI0 RX at pin 1 and SPIO0 RX at pin 21)

Figure 9.2: Raspberry Pi Pico SPI pins.
In the remaining sections of this Chapter we will be developing a project using the SPI bus.

9.3 Project 1: SPI Port expander

Description: A simple project is given in this section to show how the SPI functions can be
used in a program. This project is very similar to the port expender project in the previous
Chapter. In that project the 12C compatible chip MCP23017 was used. In this project, the
SPI-bus-compatible port expander chip type MCP23S17 is used to give additional 16 I/O
ports to the Raspberry Pi Pico. The operation of the MCP23S17 is identical to the operation
of MCP23017, except that the MCP23S17 uses the SPI bus. In this project, an LED is con-
nected to MCP23S17 port pin GPAO and the LED is flashed ON and OFF every second. A
470-ohm current limiting resistor is used in series with the LED.

The aim: The aim of this project is to show how the SPI bus can be used in Raspberry Pi
Pico based projects.

Block diagram: The block diagram of the project is same as in Figure 8.3, but the
MCP23017 chip is replaced with the MCP23S17.

The MCP23S17
The MCP23S17 is a 28-pin chip with some interesting features:

e 16 bidirectional I/O ports

e Up to 1.7 MHz operation on I2C bus
e Interrupt capability

e External reset input

e 200

Chapter 9 e The SPI Bus Interface

e Low standby current

e +1.8Vto +5.5V operation

e 3 address pins, allowing up to 8 devices to be used on the SPI bus
e 28-pin DIL package

The pin configuration is shown in Figure 9.3, which is same as the pin configuration of
MCP23017, but SPI pins are used instead of 12C pins.

1~ 28h-—GPA7

GPBO =—=[]*
GPB1 =—=[]2 27 [] =— GPAG6
GPB2 =—=[]3 26] =— GPAS
GPB3 =—=[]4 25[]) =— GPA4
GPB4=-—=[]5 24] «— GPA3
GPB5 =—[]6 23] =— GPA2
GPB6 =—[]7 22[] =-—= GPA1
GPB7 =—[]8 21[]=— GPAO
Vpp —=[]9 20— INTA
Vﬁ —[]10 190 — INTB
cs —=[OM1" 18[0— RESET
SCK —=[] 12 17T0=-— A2
Sl —=[]13 16[0=— A1
SO -—[]14 150 =— A0

Figure 9.3: Pin configuration of the MCP23S17.

The pin descriptions are given in Table 9.1.

Pin Description
GPAO-GPA7 Port A pins
GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SI SPI MOSI data pin
SCK SPI clock pin

SO SPI MISO data pin
Cs SPI SSEL chip enable pin
A0-A2 12C address pins
RESET Reset pin

INTA Interrupt pin

INTB Interrupt pin

Table 8.1: MCP23S17 pin descriptions.

The MCP23S17 is a slave-SPI device. The slave address contains four upper fixed bits
(0100) and three user-defined hardware address bits (pins A2, A1 and A0) with the read/
write bit filling out the control byte. These address bits are enabled/disabled by control
register IOCON.HAEN. By default, the user address bits are disabled at power-up (i.e. I0-
CON.HAEN = 0) and A2 = A1 = A0 = 0. and the chip is addressed with 0x40. As such, we

e 201

Raspberry Pi Pico Essentials

can use two MCP23S17 chips on SPIO by connecting one CS bit to CEO, and the other one
to CE1 and addressing both chips with 0x40. By setting bit HAEN to 1, we can change the
addresses of the devices in multiple MCP23S17 based applications (e.g. more than 2) by
connecting the A2, A1, and AO accordingly. 16 such chips can be connected (8 to CEO and
8 to CE1), corresponding to 16 x 16 = 256 I/O ports. Figure 9.4 and Figure 9.5 show the
addressing format. The address pins should be externally biased even if disabled.

| [
47 Control Byte 4>
[0]1]0]0 [A2][AT[AO[RW]|
4— Slave Address —b

R/W bit ——
R/W = 0 = write
R/W =1 =read

Figure 9.4: MCP23S17 control byte format.

S JOo[1]0]0[A2[AT[AD] 0 JACK*[A7 | A6 | A5 | A4 | A3 | A2 | Al | AD JACK*]

: RW=0 ! :
#—— Device Opcode ————» 4———— Register Address ————»

*“The ACKs are provided by the MCP23017.
Figure 9.5: MCP23S17 addressing registers.

Like the MCP23017, the MCP23S17 chip has 8 internal registers that can be configured for
its operation. The device can either be operated in 16-bit mode or in two 8-bit mode, by
configuring bit IOCON.BANK. On power-up this bit is cleared which chooses the two 8-bit
mode by default.

The I/0 direction of the port pins are controlled with registers IODIRA (at address 0x00)
and IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the correspond-
ing port pin(s) as output(s). Similarly, setting a bit to 1 in these registers make the cor-
responding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13
respectively. This is shown in Figure 9.6.

IODIRA | o | - | o | o | 1 ‘ 1 |1 |1 ‘ GPIOA Register:
(Register: 0x00) ¢ ¢ l T ? T T 0x12
OUTPUTS INPUTS
IODIRB ‘ . | n | o | o | 1 ‘ 1 |1 |1 | GPIOB Register:
(Register: 0x01) l ¢ & T T ? T 0x13
OUTPUTS INPUTS

Figure 9.6: Configuring the I/O ports.

Further information on the MCP23S17 chip can be obtained from the Microchip Inc data
sheet at the following web site:

° 202

Chapter 9 e The SPI Bus Interface

http://ww1l.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Circuit diagram: Figure 9.7 shows the circuit diagram of the project. SPIO pins at GP3
(SPIO TX) and GP2 (SPIO SCK) are used to interface to the chip. CS is controlled separately
and in this project GP26 is used as the CS pin. SPI0 RX pin is not used in this project since
there is no input from the MCP23S17.

5
+3.3V 9[
Reset ﬂ
13 ese
Sl

5
GP3 (SPO TX)

4
GP2 (SP0 SCK) -——— SCK ” A
GP16 (CS) cs GPAO

470

LED
15 =
Raspberry Pi 16 ﬁ?
Pico 17
A2
€ Vss
GND "lMCPzzsn

il

Figure 9.7: Circuit diagram of the project.

Program listing: Figure 9.8 shows the program listing (Program: MCP23S17). The pro-
gramming of the MCP23S17 chip is as follows (notice that not all SPI devices require device
addresses):

e send device address (0x40 in this project);
e send register address;
e send register data.

First of all, we have to program the I/O direction register IODIRA to 0 so that PORTA pins
are outputs. This register has address 0x0. Then, we should program bit 0 of PORTA (pin:
GPIOA) where the LED is connected to. The address of register GPIOA is 0x12.

At the beginning of the program the SPI interface signals between the Raspberry Pi Pico
and MCP23S17 are defined. The required addresses of the MCP23S17 and the CS connec-
tion are then defined, and CS is initially set to 1 so that the MCP23S17 chip command mode
is disabled (CS must be controlled separately).

Function Configure configures PORTA as output. Function Send sends data to the specified
port register (RegAddr) so that the required pin is at logic 1 or 0. Data is either 0 or 1.
When 1, the LED is turned ON, and when 0 the LED is turned OFF. The main program runs
in a loop and calls function Send every second to flash the LED.

e 203

http://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Raspberry Pi Pico Essentials

e e
SPI BUS PORT EXPANDER

=====================

#

In this project the SPI bus compatible MCP23S17 chip is used
to add 16 more ports to Raspberry Pi Pico.An LED 1is connected
to pin GPAQ@ of the expander and the LED s flashed every

second

#

Author: Dogan Ibrahim

File : MCP23S17.py

Date : February 2021

from machine import Pin,SPI
import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

Device_Address = 0x40 # MCP23S17 SPI address
MCP_GPIOA = 0x12 # MCP23S17 GPIOA address
MCP_IODIRA = © # MCP IODIRA address

CS = Pin(16, Pin.OUT) # CS

CS.value(l) # Disable chip

#

This function configures PORTA as output

#

def Configure():
buff = [0, 0, 0]
buff[0] = Device_Address
buff[1] = MCP_IODIRA
buff[2] = 0
CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

#
This function sends data to register RegAddr
#
def Send(RegAddr, data):
buff = [0, 0, 0]
buff[0] = Device_Address

e 204

Chapter 9 e The SPI Bus Interface

buff[1] = RegAddr
buff[2] = data
CS.value(0)

spi.write(bytearray(buff))

CS.value(l)

#

Main program reads and displays the temperature every second

#
while True:
Configure()

while True:
Send (MCP_GPIOA, 1)
utime.sleep(1)
Send (MCP_GPIOA, 0)
utime.sleep(1)

LED ON

1 second delay
LED OFF

1 second delay

Figure 9.8: Program 'MCP23S17'.

Raspberry Pi Pico supports the following SPI functions:

spi.read(nbytes)
spi.readinto(buffer)
spi.write(buffer)

read nbytes
read into the specified buffer
write buffer contents to the SPI bus

spi.write_readinto(wbuffer, rbuffer)) write from wbuffer while reading into

Default SPI bus settings are:

baud rate: 1,000,000
polarity: 0
phase: 0
bits: 8
firstbit: MSB
SPI0 SCK: GP6
SPI0 MOSI GP7
SPI0 MISO GP4
SPI1 SCK GP10
SPI1 MOSI GP11
SPI1 MISO GP8

rbuffer (both buffers must have the
same length)

can be set as required
canbeOor1l

canbeOor1l

should be 8

can be SPI.MSB or SPI.LSB

sck, mosi, and miso are the SPI pins and they can be assigned to GPIO pins using the Pin

functions (see Figure 9.8).

e 205

Raspberry Pi Pico Essentials

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

10.1 Overview
In this Chapter we shall be developing projects using a Wi-Fi link to establish communica-
tion between the Raspberry Pi Pico and a smartphone.

10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
Description: In this project we will be sending commands over the Wi-Fi link from a mo-
bile phone to control an LED (the LED can be replaced with a relay for example to control
an equipment) connected to the Raspberry Pi Pico. Commands must be terminated with a
Return (CR/LF or 'newline'). Valid commands include:

LON Turn LED ON
LOFF Turn LED OFF

Aim: The aim of this project is to showcase the use the Wi-Fi connectivity on the Raspberry
Pi Pico.

Pico Wi-Fi connectivity: The Raspberry Pi Pico has no built-in Wi-Fi module and as such it
cannot be connected to a Wi-Fi network without interfacing it to an external Wi-Fi module.
Perhaps the easiest and the cheapest way of providing Wi-Fi capability to the Pico is by
using an ESP-01 processor board. This is a tiny board (see Figure 10.1), measuring only
2.7 cm x 1.2 cm, and based on the ESP8266 processor chip, and costing around $3 USD.
The ESP-01 has the following motivating features:

e Operating voltage: +3.3V

Interface: using simple AT commands over serial port/UART
e Integrated TCP/IP protocol stack. 802.11 b/g/n

e No external components required

Figure 10.1: ESP-01 processor board.

ESP-01 communicates with the host processor through its TX and RX serial port pin. It is
an 8-pin board with pin names as follows:

VCC: +3.3 V power supply pin

GND: Power supply ground

GPIOO: I/0 pin. This pin must be connected to +3.3 V for normal
operation, and to GND for uploading firmware to the chip

GPIO2: General purpose 1I/0 pin

e 206

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

RST: Reset pin. Must be connected to +3.3 V for normal operation
CH_PD: Enable pin. Must be connected to +3.3 V for normal operation
TX: Serial output pin

RX: Serial input pin

The ESP-01's pins are not standard breadboard-compatible, so an adaptor is required if the
board is to be attached to a breadboard (see Figure 10.2).

Figure 10.2: ESP-01 breadboard adapter.

Block Diagram: Figure 10.3 shows the project block diagram.

LED

Raspberry Pi Pico

Mobile Phone

Figure 10.3: Block diagram of the project.

Circuit Diagram: Figure 10.4 shows the circuit diagram of the project. The Raspberry Pi
Pico's UART 0 TX and RX pins are used to communicate with the ESP-01.

e 207

Raspberry Pi Pico Essentials

+3.3V ° I I
; Veec RST
GPO (TX) RX ¢cH PD
GP1 (RX) 2 ™ GPIO0
ESP-01
21
GP16 GND
Raspberry Pi J_
Pico -
GND
3 J_ 470 A
= LED L

Figure 10.4: Circuit diagram of the project.

Program Listing: Figure 10.5 shows the program listing (program: Picowifi). Inside the
setup routine serial communication speed is set to 115200 which is the default Baud rate
for ESP-01, and the LED is configured as output and turned OFF. Function ConnectToWiFi
is called to connect to the local Wi-Fi router. AT-style commands are used to configure the
ESP-01 to connect to the Wi-Fi router.

The remainder of the program runs in an endless loop formed using a while statement.
Inside this loop, data is received from the smart mobile phone and the LED is controlled ac-
cordingly. Commands LON and LOFF turn the LED ON and OFF, respectively. Data packets
are received from the smartphone using the readline function. Function find looks for a
substring in a string and returns a non-zero value if the substring is found. The find func-
tion is used because the data received from the mobile device is in the following format:
+IDO,n: data (e.g. +IDO0,3:LON) where 0 is the link ID and n is the number of characters
received. Using the function find we can easily search for the strings LON or LOFF in the
received data packet.

Function ConnectToWIiFi sends the following commands to the ESP-01 to connect to the
Wi-Fi network:

AT+RST - reset ESP-01

AT+CWMODE - set ESP-01 mode (here it is set to Station mode)
AT+CWIAP - set Wi-Fi ssid name and password

AT+CPIMUX - set connection mode (here it is set to multiple connec-
tion)

AT+CIFSR - returns the IP address (not used here)

AT+CIPSTART - set TCP or UDP connection mode, destination IP address,

and port number (here, UDP is used with port number
set to 5000. Destination IP address is set to "0.0.0.0"
so that any device can send data as long as port 5000
is used (You can change this to the IP address of your
smart phone to receive data only from your phone).

e 208

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

o
USING WI-FI

===========

#

In this project a ESP-01 chip 1is connected to the Raspberry
Pi Pico. This chip is used to connect the Pico to the Wi-Fi
#

Author: Dogan Ibrahim

File : Picowifi.py

Date : February 2021

from machine import Pin, UART
import utime
uart = UART(O, baudrate=115200,rx=Pin(1),tx=Pin(0))

LED = Pin(16, Pin.OUT)
LED.value(0)

#
Send AT commands to ESP-01 to connect to local WI-Fi
#
def ConnectToWiFi():
uart.write("AT+RST\r\n")
utime.sleep(5)

uart.write("AT+CWMODE=1\r\n")
utime.sleep(1)

uart.write(‘’’AT+CWIAP="BTHomeSpot-XNH","49345xyzpq"\r\n’’’)
utime.sleep(5)

uart.write("AT+CPIMUX=0\r\n")
utime.sleep(3)

uart.write(‘’’AT+CIPSTART="UDP","0.0.0.0",5000,5000,2\r\n’’’)
utime.sleep(3)

ConnectToWiFi ()

#
Main program loop
#
while True:
buf = uart.readline() # Read data
dat = buf.decode(‘UTF-87) # Decode
n = dat.find("LON") # Includes LON?

e 209

Raspberry Pi Pico Essentials

if n > 0:

LED.value(1) # LED ON
n = dat.find("LOFF") # Includes OFF?
if n > 0:

LED.value(0) # LED OFF

Figure 10.5: Program: Picowifi.

Notice that small delays are used after each command. Command AT+CWJAP requires a
longer delay. The program can easily be modified such that the delays can be removed and
the responses from the ESP-01 can be checked. This way, as soon as the correct response
is received, the program can continue. You may have to hardware-reset the ESP-01 by
powering it down and up again before you run the program.

Testing the program
The program can easily be tested using the PacketSender program (see Figure 10.6) on
the PC or using a smart phone after installing a UDP app.

& Packet Sender = u] x
File Tools Help
Name [Packet |
asci [LoFrinn (]
HEX |4¢ 4f 46 46 0d 02 o Load File

Address |192.168.1.160 © | Fort 5000 © | Resend Delay 2 % upP v Send Save

Delete Saved Packet| [] Persistent TCP

Send MName Resend (sec) ToAddress ToPot Method ASCH Hex

Clear Log Log Traffic | Savelog Save Traffic Packet Copy to Clipboard
Time From 1P From Port TolP ToPort Method Error AscHl Hex
1 o 9:17:53.743 am You 5000 192.168.1.160 5000 UDP LON\An dc 4f de 0d 0a

2 o4 9:10:27.409 am You 5000 192.168.1.160 5000 UDP LOFR\Rn dc 4f 46 46 0d Oaf

< >

Figure 10.6: Using the PacketSender to test the program.

You should install a UDP Server app on your Android mobile phone before starting the test
with the smartphone. There are many freely available UDP apps in the Play Store. The
one installed and used in this project is called the UDP/TCP Widget by K.J.M as shown in
Figure 10.7.

e 210

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

0921 s~ =2 ™ =l 98%MA

- Q

@@» UDP/TCP Widget

i'p KJM.

Figure 10.7: UDP/TCP Widget apps for Android.

The steps to test the program are as follows.

e Construct the circuit.

¢ Download the program to your Raspberry Pi Pico.

Start the UDP/TCP Widget apps on your mobile phone.

Click the gear symbol and set the Protocol to UDP, IP address to the IP ad-
dress of your Raspberry Pi Pico (192.168.1.160 in author's Pico), and set the
Port to 5000 as shown in Figure 10.8.

09:27 & & o= +

< New Packet

CONNECTION MESSAGE RESPONSE WIDGET

Protocol

®urp QO T1CP

IP Address
o [192.168.1.160 }

Port
| 5000]

Needs WiFi (@)

Figure 10.8: Configuring the app.

e Click the MESSAGE menu item and select Text (UTF-8) as the Format, and
enter command LON to turn ON the LED. Select LF\n as the Terminator and
click the OK symbol (check symbol), as shown in Figure 10.9.

¢ Now, click the SEND button (Figure 10.10) to send the command to the Rasp-
berry Pi Pico. You should see the message Packet Sent displayed at the top of
your Android screen temporarily.

e 211

Raspberry Pi Pico Essentials

0935 E =M -

< New Packet

CONNECTION MESSAGE RESPONSE WIDGET §

Format

@®) Text (UTF-8) (O Hex

Message

LON

Terminators

CR\r '/ LF\n NULL\D

Figure 10.9: Command to turn ON the LED.

= 192.168.1.150

Espressif

¢ ESP_14C051.home kg
g 192.168.1.160

Figure 10.10: Click SEND to send the command.

Notice that the IP address of the ESP-01 can be obtained by scanning all the devices on the
local Wi-Fi router. For example, the Android app called Who Uses My WiFi — Network
Scanner by Phuongpn can be used to see the IP addresses of all the devices connected
to your router. The ESP-01 is listed as shown in Figure 10.11 (IP: 192.168.1.160), listed
with the name Espressif.

=77 192.168.1.150

Espressif

T ESP_14C051.home %
g 192.168.1.160

Figure 10.11: Finding the IP address of the ESP-01.

10.3 Project 2: Displaying the internal temperature on a smartphone
using Wi-Fi

Description: In this project we will be reading the internal temperature of the Raspberry
Pi Pico and then send this data to a smartphone over a Wi-Fi link.

A request for data is made by the smartphone when it sends the characters T? to the
Raspberry Pi Pico. This project uses two-way UDP communication to receive and send data.

e 212

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

Aim: The aim of this project is to show how two-way communication can be established
with a smartphone over the Wi-Fi link.

Block Diagram: Figure 10.12 shows the block diagram of the project.

Temperature
-

ESP-01

Raspberry Pi Pico

Mobile Phone

Figure 10.12: Block diagram of the project.
Circuit Diagram: The circuit diagram of the project is same as in Figure 10.4.

Program Listing: The program listing is shown in Figure 10.13 (program: Temptowifi).
Function ConnectToWiFi is called to connect to the local Wi-Fi router as in the previous
program. Inside the main program loop, the program waits to receive command T? and
when this command is received, function GetTemperature is called and the Raspberry Pi
Pico's internal temperature is read and stored in variable T in the main program. String var-
iable Tstr stores string T= followed by the value of the temperature as a string. The length
of this string is stored in variable Tlen. Sending data through the Wi-Fi UDP link involves
sending command AT+CIPSEND to ESP-01, followed by the number of bytes to be sent
(i.e. the length of the data). The actual data is then sent after a short delay.

o
SEND TEMPERATURE TO SMART PHONE

===============================

#

In this project a ESP-01 chip 1is connected to the Raspberry
Pi Pico. Internal temperature of the Raspberry Pi Pico is

sent to the smart phone

#

Author: Dogan Ibrahim

File : Temptowifi.py

Date : February 2021

from machine import Pin, UART, ADC
import utime

e 213

Raspberry Pi Pico Essentials

uart UART (0, baudrate=115200,rx=Pin(1l),tx=Pin(0))
Conv = 3.3 / 65535
AnalogIn = ADC(4)

def GetTemperature():
' AnalogIn.read_ul6()
V =V % Conv
Temp = 27 - (V - 0.706) / 0.001721
return Temp

#
Send AT commands to ESP-01 to connect to local WI-Fi
#
def ConnectToWiFi():
uart.write("AT+RST\r\n")
utime.sleep(5)

uart.write("AT+CWMODE=1\r\n")
utime.sleep(1)

uart.write(‘’’AT+CWIAP="BTHomeSpot-XNH","49345axyzw"\r\n’’’)
utime.sleep(5)

uart.write("AT+CPIMUX=0\r\n")
utime.sleep(3)

uart.write(¢’’AT+CIPSTART="UDP","192.168.1.199",5000,5000,2\r\n’’?)
utime.sleep(3)

ConnectToWiFi()

#
Main program loop. Send the temperature to smart phone
#
while True:
buf = uart.readline() # Read data
dat = buf.decode(‘UTF-8) # Decode
n = dat.find("T?") # T? received?
if n > 0:
T = GetTemperature() Get the temperature
Tstr = "T=" + str(T) Insert T=
Tlen = str(len(Tstr)) Length

Dt = "AT+CIPSEND="+Tlen + "\r\n"
uart.write(Dt)

AT command to send
Send to ESP-01

H* o o W I

e 214

Chapter 10 e Wi-Fi with the Raspberry Pi Pico

utime.sleep(2) # Wait 2 sec
uart.write(Tstr) # Send data

Figure 10.13: Program: Temptowifi.

Testing the program

The program can either be tested on a PC using the freely available PacketSender pro-
gram or a smartphone with a UDP app installed. PacketSender enables the user to send
and received UDP as well as TCP packets from a PC. This program could be very useful
during testing of UDP and TCP based programs. Figure 10.14 shows the PacketSender
program where command T? is sent and the temperature is received and displayed. Notice
that 192.168.1.199 was the PC IP address during the testing.

4=+ Packet Sender

File Tools Help

Hame |Testing UDP link
ASCH [T?\r\n o]

HEX [54 3f 0d 02 O] LoadFie

Address [192.168.1.160 @ | rort [5000 © | Resend Dalay *ouop v send Save

Delate Saved Packet| [] Persistent TCP

Send Mame Resend (sec) ToAddress ToPort Method ASCH Hex

Clear Log [£l Log Traffic =~ Savelog Save Traffic Packet Copy to Clipboard
Time From 1P From Port To P ToPort Method Error ASCIE

1 3:52:28.626 pm 192.168.1.160 5000 You 5000 upe T=17.21338 543D 3137
2 s 3:52:26423 pm You 5000 192.168.1.160 5000 UDP TAAn 54 310d 0a
3 352:19.859 pm 192.168.1.160 5000 You 5000 UDP T=14.87265 54303134
4 s 35217.501 pm You 5000 192.168.1.160 5000 UDP TAAD 54310d 0a
5 ok 3:50:29.510 pm You 5000 192.168.1.160 5000 uDP TN 54 3f0d Oa
<

>

Figure 10.14: Using the PacketSender program.

Alternatively, we can use a suitable UDP client/server program to test the program. One
such program for Android-running smartphones is the TCP/UDP Client app from Digit
Mund as shown in Figure 10.15. Figure 10.16 shows the startup screen of this app on an
Android smartphone. Enter the Raspberry Pi Pico IP address, Port number, Protocol,
and click the menu button REQUEST.

15422 EY - Fral 42%

< Q

TCP/UDP Client
T Digit Mund
Contains ads

Figure 10.15: UDP app.

e 215

Raspberry Pi Pico Essentials

W= @E -

CONNECT REQUEST HOTKEY
e Ay W
IP Address
192.168.1.160

Port Number: 5000

Timeout (ms): 2000 4

Protocol: O ep @® uop
Close the socket when exit. []
Enable the unlimited log »
Enable the vibration of hotkeys. »

Figure 10.16: Startup screen of the app.

An example run of the program on the app is shown in Figure 10.17, where command T? is

sent to the Raspberry Pi Pico and the temperature is received and displayed on the Android
screen.

» @ getir INSTALL
o a7 *

Encoding: UTF-8 4
Data: T?F
End: CR LF

~

Switch to UTF-8 mode.
2348 TX [T?]
23:50 RX [T=17.21338]
23:56 TX [T?]
23:59 RX [T=16.74523]

COPY SEND SAVE

1] (@] <

Figure 10.17: Example run of the program.

e 216

Chapter 11 e Bluetooth with the Raspberry Pi Pico

Chapter 11 e Bluetooth with the Raspberry Pi Pico

11.1 Overview

Bluetooth is one of the most popular means of exchanging data wirelessly over short dis-
tances. Nowadays, many electronic devices such as smartphones, laptops, iPads, games,
gadgets, portable health monitoring devices, and so on, are all equipped with Bluetooth
modules. Bluetooth is used by many people to share picture and music files using their
smartphones.

Bluetooth is a paired communication protocol where both devices must enable their Blue-
tooth links and use then use the same key to connect to each other. When the connection
is established, the data can be sent both ways. There is no need to worry about line-of-
sight between the devices since the communication is based on radio waves, albeit with
limited range.

Sometimes the pairing between devices may fail. You should pay attention to the following
points for successful pairing between the devices.

e Make sure Bluetooth is turned on at both devices.

e Make your device discoverable. On some devices you may have to click a but-
ton to make Bluetooth discoverable.

¢ Male sure the two devices are close to each other.

e Make sure the devices to be paired are compatible with each other, e.g. their
versions are compatible.

e Enter the same pairing code on both devices when asked.

11.2 Raspberry Pi Pico Bluetooth interface

The Raspberry Pi Pico has no built-in Bluetooth module. We have to use an external Blue-
tooth module to enable the Pico to communicate with other devices via the Bluetooth. One
possibility may be to use a Raspberry Pi computer, but a cheaper option may be to use a
serial Bluetooth module, such as the HC-06. In the next section we will develop a project
and learn how to connect a HC-06 type low-cost Bluetooth module to our Raspberry Pi Pico.

11.3 Project 1: Controlling an LED from your smartphone using Blue-
tooth

Description: In this project we will be sending commands over the Bluetooth link from a
smartphone to control an LED connected to the Raspberry Pi Pico (you could easily replace
the LED with a buzzer so that electrical devices can be controlled remotely). In this project,
valid commands are:

L1 Turn LED ON
LO Turn LED OFF

Aim: The aim of this project is to showcase the use of a low-cost serial Bluetooth module
with the Raspberry Pi Pico.

e 217

Raspberry Pi Pico Essentials

The HC-06 Bluetooth module
The HC-06 is a low-cost popular 4-pin, serially controlled module with a pinout as pictured
in Figure 11.1.

Figure 11.1: The HC-06 Bluetooth module.
The HC-06 is a serially controlled module with a set of interesting specifications:

e +3.3 V to +6 V operation

e 30 mA unpaired current (10 mA matched current)

¢ Built-in antenna

e Band: 2.40 GHz - 2.48 GHz

e Power level: +6 dBm

¢ Default communication: 9600 baud, 8 data bits, no parity, 1 stop bit
¢ Signal coverage 10 m (30 ft) approx.

o Safety features: authentication and encryption

e Modulation mode: Gaussian frequency-shift keying

Block Diagram: Figure 11.2 shows the block diagram of the project.

Raspberry Pi Pico

HC-06

Mobile Phone
Figure 11.2: Block diagram of the project.

Circuit Diagram: Figure 11.3 shows the project circuit diagram. The RXD and TXD pins
of the Bluetooth module are connected to UART 0 pins GPO (TX) and GP1 (RX) of the
Raspberry Pi Pico, respectively. The LED is connected to GP16 (pin 21) through a 470-ohm
current-limiting resistor.

e 218

Chapter 11 e Bluetooth with the Raspberry Pi Pico

+33vE
] Vce
GPO (TX) RXD
2
GP1 (RX) TXD
HC-06
GP16 |2
GND
Raspberry Pi J_
Pico =
GND
iL 470 A2

= LED L

Figure 11.3: Circuit diagram of the project.

Program listing: Check out Figure 11.4 (program: BlueLED). At the beginning of the
program the hardware UART interface is set to baud rate 9600, which is the default speed
of the HC-06. The LED is configured as an output and turned OFF. The remainder of the
program runs in an endless loop. Inside this loop data (commands) are received from the
Bluetooth device using a function call to readline. The data read is stored in list buf. The
program then controls the LED based on the received command. For example, L1 turns the
LED ON, LO turns it OFF, and so on.

O F W O O W I HE I I

In this project a HC-06 type serial Bluetooth module and
and LED are connected to the Raspberry Pi Pico. The LED

is controlled by sending commands from a Bluetooth

compatible smart phone.

Author: Dogan Ibrahim
File : BlueLED.py
Date : February 2021

from machine import Pin, UART

import utime

uart = UART(O, baudrate=9600,rx=Pin(1),tx=Pin(0))

LED = Pin(16, Pin.OUT)
LED.value(0)

#

Main program loop. Receive a command and control the LED

#

e 219

Raspberry Pi Pico Essentials

while True:

buf = uart.readline() # Read data
dat = buf.decode(‘UTF-8) # Decode
if dat[0] == ‘L’ and dat[1] == ‘1’: # L1?
LED.value(1) # LED ON
elif dat[0] == ‘L’ and dat[1l] == ‘0’: # LO?
LED.value(0) # LED OFF

Figure 11.4: Program: BlueLED.

Testing the program

The program can be tested by using an Android-running smartphone to send commands
through a Bluetooth communication interface. There are many freely available Bluetooth
communication programs in the Play Store. The one chosen by the author was called the
Bluetooth Controller by mightyIT (it@memighty.com) as shown in Figure 11.5. You
should install this app on your Android smartphone so that you can send commands to the
development board.

109562 EH& - ol 77%0
&« Q
ﬂ Bluetooth Controller
®N Hc-o0s
mightylT

Contains ads * In-app purchases
Uninstall “

Figure 11.5: Bluetooth Controller app.

The steps to test the application are as given below.

e 220

e Construct the project.

e Download the program to your Raspberry Pi Pico.

¢ Active the Bluetooth Controller apps on your mobile phone.

e The app will look for nearby Bluetooth devices. Click on HC-06 when displayed
on the phone screen (you may have to scan for devices).

¢ You will now be asked to enter the password to pair the phone with the devel-
opment board. Enter the default password: 1234.

e Start the Bluetooth apps on your smartphone. Click the semicircle with an ar-
row located at the top right side of the screen to connect to HC-06.

¢ You should see a green colour dot at the top right-hand side of the screen when
a connection is made to the HC-06. Also, the HC-06 with its address (like HC-06
[98:D3:31:FB:5E:B6]) should be displayed at the top left side of the screen.

e To turn the LED ON, enter command L1 and click Send ASCII. You should see
the LED turning ON. Enter command LO to turn OFF the LED. Figure 11.6 shows
an example screen.

mailto:it@memighty.com

Chapter 11 e Bluetooth with the Raspberry Pi Pico

195199 @ -

Bluetooth Controller

HC-06 [98:D3:31:FB:5E:B6)

1
Slider 1 Edit
®

Slider 2 Edit
[

Slider 3 Edit
®

Figure 11.6: Example command to turn the LED ON.

We can modify the program in Figure 11.5 by sending a confirmation to the smartphone
when there is change in the LED status. The required modifications are shown below:

while True:

buf = uart.readline() # Read data
dat = buf.decode('UTF-8") # Decode
if dat[0] == 'L' and dat[1] == '1': # L1?
LED.value(1) # LED ON
uart.write("LED 1is ON") # Send confirmation
elif dat[0] == 'L' and dat[1] == '0': # LO?
LED.value(0) # LED OFF
uart.write("LED 1is OFF") # Send confirmation

For example, as shown in Figure 11.7, the message LED is ON is displayed on the screen
after the command L1 is sent.

20059 & & -

Bluetooth Controller
HC-06 [98:D3:31:FB:5E:B6]

| L1[l Send ASCII

Slider 1 Edit
[]
Slider 2 Edit
@
Slider 3 Edit
®
Btn 1 Btn 2 Btn 3 Btn 4 Btn 5
Bin 6 Btn7 Btn 8 Btin9 Btn 10
Btn 11 Btn 12 Btn 13 Btn 14 Btn 15

Btn 16 Btn 17 Btn 18 Btn 19 Btn 20

Received Data:
LED is ON

Figure 11.7: Example display with confirmation.

e 221

Raspberry Pi Pico Essentials

11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature
to the smartphone

Description: In this project the internal temperature of the Raspberry Pi Pico is read every
10 seconds and gets sent to a smartphone over a Bluetooth link.

Aim: The aim of this project is to showcase data being sent from the Raspberry Pi Pico to
a smartphone at regular intervals.

Block Diagram: Figure 11.8 shows the block diagram of the project.

Raspberry Pi Pico

HC-06

Mobile Phone
Figure 11.8: Block diagram of the project.

Circuit Diagram: Figure 11.9 shows the project circuit diagram. RXD and TXD pins of the
Bluetooth module are connected to UART 0 pins GPO (TX) and GP1 (RX) of Raspberry Pi
Pico respectively.

+3.3V 5
, Vee
GPO (TX) RXD
GP1 (RX) 2 TXD
HC-06
GND
Raspberry Pi J_
Pico =
GND

il

Figure 11.9: Circuit diagram of the project.

Program listing: The program listing of the project is shown in Figure 11.10 (program:
BlueTemp). At the beginning of the program the hardware UART interface is set to baud
rate 9600, which is the default speed of the HC-06 module. The Function GetTemperature
returns the internal temperature of the Raspberry Pi Pico. Inside the main program loop the
temperature is read and sent to the smartphone every 10 seconds. Figure 11.11 shows the
temperature displayed on a smartphone using the Bluetooth Controller app described in
the previous section.

® 222

Chapter 11 e Bluetooth with the Raspberry Pi Pico

o
SEND TEMPERATURE TO SMART PHONE

===============================

#

In this project a HC-06 type serial Bluetooth module is
connected to the Raspberry Pi Pico. Internal temperature
readings are sent to a smart phone every 10 seconds

#

Author: Dogan Ibrahim

File : BlueTemp.py

Date : February 2021

from machine import Pin, UART, ADC
import utime

uart UART (0, baudrate=9600,rx=Pin(1),tx=Pin(0))
Conv = 3.3 / 65535
AnalogIn = ADC(4)

def GetTemperature():
Vv AnalogIn.read_ul6()
V =V % Conv
Temp = 27 - (V - 0.706) / 0.001721
return Temp

#
Send the temperature to smart phone
#
while True:
T = GetTemperature()
Temp = "T=" + str(T) + "\r\n"
uart.write(Temp)
utime.sleep(10)

Figure 11.10: Program: BlueTemp.

e 223

Raspberry Pi Pico Essentials

e 224

1

Bluetooth Controller

1:FB:5E:B6]
|rHTE‘f ASCIl Command | Send ASCII
Slider 1 Edit
[]
Slider 2 Edit
[]
Slider 3 Edit
[]
Btn 1 Btn 2 Btn 3 Btn 4 Btn 5
Btn 6 Btn7 Btn 8 Btn 9 Btn 10

Btn 11 Btn 12 Btn 13 Btn 14 Btn 15
Btn 16 Btn 17 Btn 18 Btn 19 Btn 20

Received Data
121900099
T=19.08595
T=19.08595
T=18.61781
T=19.08595
=19.08595
T=19.55409
T=19.08595
T=19.08595
T=19.08595
T=19.08595
T=19.08595
T=19.08595
T=19.08595
T=19.08595
T=19.08595
=19.08595
T=19.08595
T=18.61781

Figure 11.11: Temperature displayed on the smartphone.

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

Chapter 12 e Using Digital-to-Analogue Converters
(DACs)

12.1 Overview

DACs are used to convert digital signals into analogue form. Such converters have many
applications in digital signal processing (DSP) and digital control applications. For exam-
ple, we can generate waveforms by writing programs and then convert these waveforms
into analogue forms and output them from our digital computer. We also need DACs if we
want to interface a speaker or some other device operating with analogue voltages to our
Raspberry Pi Pico.

The Raspberry Pi Pico has no built-in ADC converter and consequently an external DAC chip
must be used to output analogue signals. In this Chapter we will be learning how to use a
popular DAC (the MCP4921) chip with our Raspberry Pi Pico to generate some simple signal
waveforms.

12.2 The MCP4921 DAC

Before using the MCP4921, it is worthwhile to look at its features and operation in some
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 12.1 shows
the pin layout of this chip. The basic features include:

12-bit operation

e 20 MHz clock support

4.5 ps settling time

e external voltage reference input

e 1x or 2x gain, with control

e 2.7 V to 5.5V supply voltage

e —-40 °C to +125 °C temperature range

Voo [1]® ~ [8]Vour
-
csZ] & [Tlvss
<
sck(B] & [6]Veer
soi4l = [5]{pAc

Figure 12.1: Microchip MCP4921 DAC.

For more details, see the information at:
http://ww1l.microchip.com/downloads/en/devicedoc/21897b.pdf

The pin descriptions are:
Vvdd: supply voltage
CS: chip select (Active-Low)
SCK: SPI clock
SDI: SPI data in
LDAC: used to transfer input register data to the output (Active-Low)
Vref reference input voltage
Vout: analogue output
Vss: supply ground

e 225

http://ww1.microchip.com/downloads/en/devicedoc/21897b.pdf

Raspberry Pi Pico Essentials

In this project we will be operating the MCP4921 with a gain of 1 (i.e. unity). As a result,
with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC
will be 3300 mV / 4096 = 0.8 mV.

12.3 Project 1: Generating squarewave signal with amplitude under
+3.3V

Description: In this project we will be using the DAC to generate a squarewave signal with
a frequency of 500 Hz (period = 2 ms), and 50% duty cycle (i.e. ON time = 1 ms, OFF time
= 1 ms). The output voltage will be 2 Ve, (notice that this could not have been achieved
without using a DAC since the output HIGH voltage of a pin is +3.3 V).

Aim: The aim of this project is to show how a DAC chip can be interfaced to a Raspberry
Pi Pico.

Block Diagram: Figure 12.2 shows the block diagram of the project.

@

'
MCP4822

Raspberry Pi Pico
PSCGU250 Laptop

Figure 12.2: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.3. Pins GP3
(SPIO TX) and GP2 (SPIO SCK) are connected to MCP4921 pins SDI and SCK, respectively.
The CS of the MCP4921 is controlled separately from GP16 (pin 21). The output of the DAC
is connected to the oscilloscope.

Sl
3.3V
Raspberry Pi
Pico
1 _|6
vVdd Vref
4 3 8 To Oscillosco
P2 (SPI K pe
GP2 (SPI0 SCK) SCK Vout

GP3 (SPI0 TX)|2__4{gpy

GP16 |21

S
MCP4921
Vss LDAC

GND 7 5
sl

Figure 12.3: Circuit diagram of the project.

Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of the digital input
data. The upper byte consists of the following bits:

D8:D11 bits D8:D11 of the digital input data
SHDN 1: active (output available), 0: shutdown the device

e 226

Chapter 12 o Using Digital-to-Analogue Converters (DACs)

GA output gain control. 0: gain is 2%, 1: gain is 1x

BUF 0: input unbuffered, 1: input buffered

A/B 0: write to DACa, 1: Write to DACb (MCP4921 supports only
DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input
data with bits D12 and D13 set to 1 so that the device is active, and the gain is set to 1x.
Then we will send the low byte (D0:D7) of the data. This means that 0x30 should be added
to the upper byte before sending it to the DAC.

Program listing: Figure 12.4 shows the program listing (program: Square). Since we
are using a DAC with the reference voltage set to +3.3 V (3300 mV), and 12-bit wide data
(i.e. 4096 steps), the required digital value to set the output voltage to 2 V is given by
ONvalue, where:

ONvalue = 2000 x 4095 / 3300

The OFF value of the signal (OFFvalue) is set to 0 V. Function DAC configures the DAC so
that 2 V is output from it. First the HIGH byte (in buff[0]) is put into buffer buff, followed
by the LOW byte (in buff[1]):

buff[0] = (data >> 8) & OxOF
buff[0] = buff[0] + Ox30

buff[1] = data & OxFF

spi.write(bytearray(buff))

The durations of the ON and OFF times are set to 1 ms. However, it was found by the
experiments that the DAC routine takes some time and because of this, the period and
consequently the frequency of the output waveform are not very accurate. The ON and
OFF times are slightly bigger than 1 ms. Readers can experiment to adjust the delay to get
exactly 1 ms if required.

o
GENERATE SQUARE WAVE SIGNAL WITH AMPLITUDE +2V

==

#

In this project a MCP4921 type DAC chip 1is connected to the

Raspberry Pi Pico.The program generates a square wave signal

with frequency f=500Hz, 50% duty cycle (ON and OFF tiems equal
and each 1ms), and 2V amplitude

#

Author: Dogan Ibrahim

File : Square.py

Date : February 2021
W

from machine import Pin, SPI

e 227

Raspberry Pi Pico Essentials

import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip
ONvalue = int(2000 * 4095 / 3300) # For +2V amplitude

OFFvalue = 0

def DAC(data):
buff = [0, 0]
buff[0] = (data >> 8) & OxOF # HIGH byte
buff[0] = buff[0] + 0x30
buff[1] = data & OxFF
CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

LOW byte

Enable MCP4921
Send to SPI bus
DIsable MCP4921

HOH H

#

Main program

#

while True:
DAC(ONvalue)
utime.sleep_ms(1000)
DAC(OFFvalue)
utime.sleep_ms(1000)

Figure 12.4: Program: Square.

Figure 12.5 shows the output waveform generated by the program. This waveform was
captured using a PCSGU250 type digital oscilloscope. The horizontal axis was set to 1 ms/
division and the vertical axis was 1 V/division. The peak output voltage is 2 V as expected.

e 228

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

Osclloscope |[__SpectumAnsbzer][TienseniRecoder || CicutAnsbzes | [1om0m0] | 1]

w Tms

L A

FEE

q

¢

El

£

|_2us
EET
(0]

g

N

«
-]

r T = | History

Vullew Chi Trigger —————|

T On_ [Asoset | [Pesit | [On J \ Autoset | [{ onvor [[0n | [Lont | [21<]
w v][Loav | [[moseesn | [v v oav | e

Figure 12.5: Output waveform.

Using timer interrupt for accurate timing

As we have seen in Figure 12.5, the period of the waveform is not exactly 2 ms. In this
section we will be using timer interrupts to achieve more accurate timing.

Figure 12.6 shows te new program listing (Program:Square?2). In this version of the pro-
gram, a variable called flag is used to output the ON and the OFF times alternately. The
timer works in the background and calls function DAC 1000 times a second (i.e. 500 ON
pulses and 500 OFF pulses).

o

GENERATE SQUARE WAVE SIGNAL WITH AMPLITUDE +2V

==

#

In this project a MCP4921 type DAC chip 1is connected to the
Raspberry Pi Pico.The program generates a square wave signal
with frequency f=500Hz, 50% duty cycle (ON and OFF tiems equal
and each 1ms), and 2V amplitude

#

This version of the program uses timer interrupts

#

Author: Dogan Ibrahim

File : Square2.py

Date : February 2021
W

from machine import Pin, SPI, Timer
#import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

e 229

Raspberry Pi Pico Essentials

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_

rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip
ONvalue = int(2000 * 4095 / 3300) # For +2V amplitude

OFFvalue = 0

tim = Timer()
flag = 0

#
Timer interrupt service routine
#
def DAC(timer):
global flag, Onvalue, OFFvalue

global CS
buff = [0, 0]
if flag == 0:
data = ONvalue
flag = 1
else:
data = OFFvalue
flag = 0
buff[0@] = (data >> 8) & OxOF #

buff[e] = buff[0] + 0x30

buff[1] = data & OxFF #
CS.value(0) #
spi.write(bytearray(buff)) #
CS.value(l) #

#

Main program

#

tim.init(freq = 1000, mode = Timer.PERIODIC,

HIGH byte

LOW byte

Enable MCP4921

Send to SPI bus
DIsable MCP4921

callback = DAC)

Figure 12.6: Program: SquareZ2.

Figure 12.7 shows the new output. Clearly, the period of the waveform is exactly 2 ms (i.e.
frequency of exactly 500 Hz).

e 230

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

Spectium Analyzer

|| Teansient Recoder || ity

Circu Analyzer | [_10170010 |

(5000s)

T
)

ms]

I

[l

L

EE Il

[l

Lr T
Volts/Div. Chl

[|

- | History
- -

"' On | | Autoset | Peisit | | On Autoset |

(IE A = (R =Y ({

on/0ff | On | O | [l
ource | Ch1 || oho |

Figure 12.7: Output waveform.

12.4 Project 2: Generating fixed voltages

Description: In this project we will be using the DAC to generate fixed voltages. Voltages
with amplitudes 0, 1, 2, and 3 V with 100-ms delay between each voltage will be generated.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.8 shows the program listing (Program: FixedV). Function
'Voltage' converts the voltage into digital value for 12 bits and returns it to the main pro-

gram.
M
#
==============
#
#
#
#
being 100ms
#
Author: Dogan Ibrahim
File FixedV.py
Date February 2021

from machine import Pin, SPI
import utime

spi_sck = Pin(2)

spi_tx = Pin(3)
spi_rx = Pin(0)
spi =

In this project a MCP4921 type DAC chip 1is connected to the
Raspberry Pi Pico.The program generates fixed voltages with
amplitues 0, 1, and 2V and the delay between each output

SCK pin at GP2
TX pin at GP3
RX pin at GPO (not used)

SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

e 231

Raspberry Pi Pico Essentials

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip

def Voltage(V):
Amplitude = int(V * 4095 / 3300)
return Amplitude

def DAC(data):
buff = [0, 0]
buff[0] = (data >> 8) & OxOF # HIGH byte
buff[0] = buff[0] + 0x30
buff[1] = data & OxFF
CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

LOW byte

Enable MCP4921
Send to SPI bus
DIsable MCP4921

HOH H

#

Main program

#

while True:
DAC(Voltage(0))
utime.sleep_ms(100)
DAC(Voltage(1000))
utime.sleep_ms(100)
DAC(Voltage(2000))
utime.sleep_ms(100)
DAC(Voltage(3000))
utime.sleep_ms(100)

Figure 12.8: Program: FixedV.

Figure 12.9 shows the generated output waveform.

e 232

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

File Edit Options View Math Help

Oscilloscope

Options Tools

Spectum Analyzer

Circuit Analyzer

-

H Transient Recorder

J

J [_10110010 |

v

100ms

Time/T|

B

e el el e

=
g

=]
3

L]

%3
S

-
2
2

-I‘ T
Vols/Div. Chl Chi
| [_Autoset | [__Pesit] [_On] [Autoset | - onoif [_on | [Co| [21<

| D) e e || 1]

Figure 12.9: Output waveform.

Trigger

Ferr 1 (e |

12.5 Project 3: Generating a sawtooth signal
Description: In this project we will be using the DAC to generate a sawtooth-shaped signal
with the following specifications:

Peak voltage: 3.3V
Step width: 2 ms
Number of steps: 10

The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.10 shows the program listing (Program: Sawtooth). Func-
tion 'Voltage' converts the voltage into digital value for 12 bits and returns it to the main
program. Notice that as described earlier, the timing of the generated signal is not very
accurate and timer interrupts can be used to generate accurate output.

o
GENERATE SAWTOOTH WAVEFORM

==========================

#

In this project a MCP4921 type DAC chip 1is connected to the
Raspberry Pi Pico.The program generates sawtooth waveform

having 10 steps

#

Author: Dogan Ibrahim

File : Sawtooth.py

Date : February 2021

from machine import Pin, SPI
import utime

e 233

Raspberry Pi Pico Essentials

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip

def Voltage(V):
Amplitude = int(V * 4095 / 3300)
return Amplitude

def DAC(data):
buff = [0, 0]
buff[0] = (data >> 8) & OxOF # HIGH byte
buff[0] = buff[0] + 0x30

buff[1] = data & OxFF # LOW byte
CS.value(0) # Enable MCP4921
spi.write(bytearray(buff)) # Send to SPI bus
CS.value(l) # DIsable MCP4921

#

Main program

#

k = 0.0

while True:
DAC(int(Voltage (kx3300)))
utime.sleep_ms(2)

k =k + 0.1
if k == 1.0:
k = 0.0

Figure 12.10: Program: Sawtooth.

Figure 12.11 shows the generated output waveform. Here, the horizontal axis was 10 ms/
division, and the vertical axis, 1 V/division.

° 234

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

|[Spectumandeer |[TiansientRecodes || Circuil Analyzer] Caonomo | | ™=

[500ms)|200ms
10ms | [100ms] [50ms
| 20ms | [10ms |

[l
¢

i

7
E]
2

\.

133315
Bl [l

i

Voks/Div.

Run
y History Single

Trigget

o)))) Gl 7| | oor () (O i)
B~ -1 -—EIl

e e il ey

Figure 12.11: Output waveform.

12.6 Project 4: Generating a triangular signal

Description: In this project we will be using the DAC to generate a triangular-shaped
signal having 10 steps going up, and 10 steps going down. The step width is set to 1 ms.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.12 shows the program listing (Program: Triangle). Function
'Voltage' converts the voltage into digital value for 12 bits and returns it to the main pro-

gram.

o F W I O I I W

In this project a MCP4921 type DAC chip 1is connected to the
Raspberry Pi Pico.The program generates triangle waveform

Author: Dogan Ibrahim
File
Date

¢ Triangle.py
February 2021

from machine import Pin, SPI

import utime

spi_sck = Pin(2)
spi_tx = Pin(3)
spi_rx = Pin(0)

spi

(&)

SCK pin at GP2
TX pin at GP3
RX pin at GPO (not used)

SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

Pin(16, Pin.OUT) # CS
CS.value(l)

Disable chip

e 235

Raspberry Pi Pico Essentials

def Voltage(V):
Amplitude = int(V * 4095 / 3300)
return Amplitude

def DAC(data):
buff = [0, 0]
buff[0] = (data >> 8) & OxOF
buff[0] = buff[0] + 0x30
buff[1] = data & OxFF
CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

#

Main program
#

while True:

k = 0.0

while k < 1.0:
DAC(int(Voltage(k*3300)))
utime.sleep_ms(1)
k =k+ 0.1

k = 1.0

while k > 0.0:
DAC(int(Voltage(k*3300)))
utime.sleep_ms(1)
k =k -0.1

H* W I H

HIGH byte
LOW byte
Enable MCP4921

Send to SPI bus
DIsable MCP4921

Going up

Going down

Figure 12.12: Program: Triangle.

Figure 12.13 shows the generated output waveform. Notice again that as described earlier,
the timing of the generated signal is not very accurate and timer interrupts can be used to

generate accurate output.

e 236

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

Dischoscope |[__Spectumansbzer || Trammien\Recodes || CicutAnsheer][10710010 | | o0
\ 10ms
[(me [2m2 |
(0.2me] [0:1me]
(50 20|
! (20w] (5]
(o] (2]
Run
Lr T £ Histoy Sove
Vols/Div. Chl Ch2 Trgger
: On Autozet Peusit 0n buoss | g onot [0n | Lo | [21€]
'-" [v oav | [mgseeen | [v |[v_|[oav " ’V .

Figure 12.13: Output waveform.

12.7 Project 5: Arbitrary periodic waveform

Description: In this project we will generate an arbitrary-wave, periodic waveform with a
period of 20 ms. The details of the waveform are as shown in Figure 12.14.

v
16 T
I
12 RN
P
[B I
. | [
08 Prbprrrrg g bl
Clblbr e
YA
1] ms
DI|I||‘IIIIII!I||\|}\.=
012345678 91011121314151617181920

Figure 12.14: The waveform to be generated.

The waveform takes the following values:

Time (ms) Amplitude (V) Time (ms) Amplitude (V)

0 0 11 1.6
1 0.2 12 1.6
2 0.4 13 1.4
3 0.6 14 1.2
4 0.8 15 1.0
5 1.0 16 0.8
6 1.2 17 0.6
7 1.4 18 0.4
8 1.6 19 0.2
9 1.6 20 0.0
10 1.6

e 237

Raspberry Pi Pico Essentials

Aim: The aim of this project is to demonstrate how an arbitrary waveform can be gener-
ated.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.15 shows the program listing (Program: Arbitrary). The volt-
age samples are stored in list Waveform. Inside the main program, a loop runs from 0 to
20 (inclusive), gets the required voltage amplitude at every sample and calls the DAC to
generate the required sample.

e e
GENERATE ARBITRARY WAVEFORM

===========================

#

In this project a MCP4921 type DAC chip 1is connected to the

Raspberry Pi Pico.The program generates an arbitarry waveform
whose characteristics are defined in the text

#

Author: Dogan Ibrahim

File : Arbitrary.py

Date : February 2021

from machine import Pin, SPI
import utime
import math

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip

Waveform = [0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.6,1.6,1.6,1.6,
1.4,1.2,1.0,0.8,0.6,0.4,0.2,0.0]

def Voltage(V):
Amplitude = int(V * 4095 / 3.3)
return Amplitude

def DAC(data):
buff = [0, 0]

buff[0] = (data >> 8) & OxOF # HIGH byte
buff[0] = buff[0] + Ox30
buff[1] = data & OxFF # LOW byte

e 238

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

#
Main program
#
while True:
for k in range(21):
DAC(int(4095*xWaveform[k]/3.3))
utime.sleep_ms(1)

Enable MCP4921
Send to SPI bus
DIsable MCP4921

Figure 12.15: Program: Arbitrary.

Figure 12.16 shows the generated output waveform. Notice again that as described earlier,
the timing of the generated signal is not very accurate and timer interrupts can be used to

generate accurate output.

Oscilloscope \ !

Time/Div.

SpectumAnshzer || TiansientRecorder || Circuit Analyzer | [1o10000 |

v

e P O O O P

(2o (00
(1000 e
[20ms) (10ms |
([5ms) (s

[Cims] (0.5me]

Tms
0.2ms

10ms

43064

13

el

&

p
£
3

Ll

=
3

|

o
5

:

* | History

Chi

Trigger

| [_Autoset | [Pessist | |

| e e o v 1]

[Pesit | [__0On | [Auoset | :

w0 [_0n_| [of | [=1<]

F=cul NP |

Figure 12.16: Output waveform.

12.8 Project 6: Generating a sinewave
Description: In this project we will generate a sinewave-shaped signal using the trigono-
metric function sin. The generated sine wave should have the peak-to-peak amplitude of
1.4V, a frequency of 50 Hz, and an offset of 1 V.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Since the required frequency is 50 Hz, the period is 20 ms or 20,000 ps.
If we assume that the sinewave will consist of 100 samples, then each sample must be

output at 20,000 / 100 = 200 ps.

The sine function has the following format:

Offset + PeaktoPeak / 2 x sin(2 x n x Count/ T)

Raspberry Pi Pico Essentials

where, T is the period of the waveform and is equal to 100 samples. Count is a variable
that ranges from 0 to 100 and is incremented by 1, PeaktoPeak is the peak-to-peak am-
plitude, and Offset is the DC offset (this is necessary because the sinewave has negative
values, but the DAC only outputs positive values and therefore we have to shift the sine-
wave up by a DC offset).

The sum of Offset and Amplitude voltage must not be greater than +3.3 V, being the max-
imum output voltage the DAC can deliver, hence:

Offset + PeaktoPeak <= +3.3 V
The actual required DC offset is equal to:
Required DC offset = Offset — PeaktoPeak / 2.
Therefore, Offset in the above formula is calculated as:
Offset = Required DC offset + PeaktoPeak / 2

The sinewave is divided into 100 samples and each sample is output at 200 ps intervals.
The sine formula can be written as follows:

Required DC offset + PeaktoPEak / 2 + PeaktoPeak / 2 x sin(0.0628 x Count)
Therefore, at each sample, we will calculate and output the above value to the DAC.

Figure 12.17 shows the program listing (Program: Sine). At the beginning of the program
the peak-to-peak amplitude and the offset are defined and converted into digital values for
the DAC. The sine values are calculated outside the program loop and stored in list sins in
order to save time. Inside the main program the sine samples are sent to the DAC and are
then output.

e e
GENERATE SINE WAVEFORM

======================

#

In this project a MCP4921 type DAC chip 1is connected to the
Raspberry Pi Pico.The program generates a sine waveform with
the specifications given in the text

#

Author: Dogan Ibrahim

File : Sine.py

Date : February 2021

from machine import Pin, SPI
import utime
import math

e 240

Chapter 12 o Using Digital-to-Analogue Converters (DACs)

spi_sck = Pin(2)
spi_tx = Pin(3)
spi_rx = Pin(0)
used)

#

SCK pin at GP2

TX pin at GP3

#

RX pin at GPO® (not

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT)
CS.value(l)

R = 0.0628

T = 100

Conv = 4095.0 / 3.3
PeaktoPeak = 1.4 * Conv
RegDCoffset = 1.0 * Conv

def DAC(data):
buff = [0, 0]
buff[0] = (data >> 8) & OxOF
buff[0] = buff[0] + 6x30
buff[1] = data & OxFF
CS.value(0)
spi.write(bytearray(buff))
CS.value(l)

#

Main program
#

sins=[0]%101

for i 1in range (101):

#
#

CS
Disable chip

1.4V
1.6V

HOH H

HIGH byte

LOW byte

Enable MCP4921
Send to SPI bus
DIsable MCP4921

sins[i] = RegDCoffset+PeaktoPeak/2 + PeaktoPeak/2 * math.sin(Rx*1i)

while True:
for k in range(101):
value = sins[k]
DAC(int(value))
utime.sleep_us(200)

Figure 12.17: Program: Sine.

Figure 12.18 shows the generated output waveform. Here, the horizontal axis was 20 ms/
division, and the vertical axis was 1 V/division. The offset and the peak-to-peak amplitude
of the waveform are correct, but as described earlier the timing of the generated signal is
not very accurate and timer interrupts can be used to generate accurate output.

e 241

Raspberry Pi Pico Essentials

Osclloscope
| [Spectunfnsy |[[_TronsertRecoder | [CocutAnabeer | 10710010 | | "™
|500ms|

\/\// N TN ST

Lr Y | Hiskoy
Volts/Div. Chi C Trigger

I B [CAdoset] [_Pesin On e : : oot (o] O B
" [>][oav | [sgscen w |Cv|[eav | [l'
Figure 12.18: Output waveform.

S e an |

12.9 Project 7: Generating an accurate sinewave signal using timer
interrupts

Description: In this project we will generate an accurate sinewave signal using timer in-
terrupts. Here, the required peak-to-peak amplitude is 1.4 V, the required offsetis 1 V, and
the required frequency is 50 Hz (period = 20 ms). In this project, we will take 50 samples
instead of 100, so that the duration of each sample is 400 us. In the program, a timer inter-
rupt is configured with the callback function of DAC and frequency of 2500 Hz (i.e. 400 pus
for each call). Inside function DAC, the data samples are indexed by variable k which is
incremented at each interrupt. These samples are then output by the DAC.

Program listing: Figure 12.19 shows the program listing (Program: Sineint).

In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates a sine waveform with

the specifications given in the text
This program uses timer interrupts for accurate timings
Author: Dogan Ibrahim

File : Sineint.py
Date : February 2021

H R H H H H H H H H H H

from machine import Pin, SPI, Timer
import utime
import math

e 242

Chapter 12 ¢ Using Digital-to-Analogue Converters (DACs)

tim = Timer()

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GPO (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(l) # Disable chip

R = 2 * 3.14159/50

T = 100

Conv = 4095.0 / 3.3

PeaktoPeak = 1.4 * Conv # 1.4V
RegDCoffset = 1.0 * Conv # 1.6V
k =0

def DAC(timer):
global k, CS, sins
buff = [0, 0]
k=k+1
if k == 50:
k =0
data = int(sins[k])
buff[0] = (data >> 8) & OxOF # HIGH byte
buff[0] = buff[0] + 6x30

buff[1] = data & OxFF # LOW byte
CS.value(0) # Enable MCP4921
spi.write(bytearray(buff)) # Send to SPI bus
CS.value(l) # DIsable MCP4921

#

Main program

#

sins=[0]%101

for i 1in range (101):

sins[i] = RegDCoffset+PeaktoPeak/2 + PeaktoPeak/2 * math.sin(Rx*1i)

tim.init(freq=2500, mode = Timer.PERIODIC, callback = DAC)

Figure 12.19: Program: Sineint.

Figure 12.20 shows the output waveform. Here, the horizontal axis was10 ms/division and
the vertical axis was 1 V/division. Clearly, the period of the waveform is exactly 20 s as

required, the offset is 1 V and the peak-to-peak amplitude is 1.4 V.

e 243

Raspberry Pi Pico Essentials

Gicloscope | [SpeciumAnhsr | [TionsertAecoder | [Cocutansheer | [10m10070 | | "2
(508 [200ms]

v W 10ms |
(5] (2|

O.1ms

f |

i
i

d
[

ai

r T * Histoy
Voks/Div. ol chz | [Trigger

L)) o)) Cm) [o[owon (o) (500 (3
[v v || oav | [sgsceen | [v |[Tv]|[0w | [|- i

Figure 12.20: Output waveform.

° 244

Chapter 13 o Automatic Program Execution after the Raspberry Pi Pico Boots

Chapter 13 e Automatic Program Execution after the
Raspberry Pi Pico Boots

There may be applications where we may want to start a program automatically after the
Raspberry Pi Pico boots. Perhaps the easiest way to learn how this is done is to give a very
simple example. The program shown in Figure 13.1 flashes an LED connected to port pin
GP6 every second. We will configure the Raspberry Pi Pico so that the LED starts flashing
immediately after the Pico boots.

In some applications we may want to run a program
automatically after reboot.This is done easily by saving
the program with the name "main.py". This very simple
program flashes an LED connected to GP16 automatically
after the Raspberry Pi Pico boots.

Author: Dogan Ibrahim
File : main.py
Date : February 2021

from machine import Pin

i

L

mport utime

ED = Pin(16, Pin.OUT) # LED at pin 16
while True: # Do Forever
LED.value(1) # LED ON
utime.sleep(1) # Wait 1 second
LED.value(0) # LED OFF
#

utime.sleep(1) Wait 1 second

Figure 13.1: Simple program to flash an LED.

The steps to execute are as follows.

Give a name to your program and run it to make sure that there are no errors,
and it runs as expected (in this case, the LED flashes every second).

Stop the program by clicking menu item Run in Thonny, followed by Stop/Re-
start backend.

Click File followed by Save as, then click Raspberry Pi Pico (Figure 13.2) to

save the file in the Raspberry Pi Pico memory.

e 245

Raspberry Pi Pico Essentials

from machine import Pin
import utime B Where to save to? X
LED = Pin(16, Pin.OUT)
This computer
while True: i
LED.value(1)
utime.sleep(l) I
LED.value(B) Raspberry Pi Pico
utime.sleep(1) E

Figure 13.2: Click Raspberry Pi Pico to save file.

¢ Enter the filename as main.py and click OK.

e Confirm that the file is saved correctly. Click File followed by Open and click
Raspberry Pi Pico. You should see file with the name 'main.py' listed (Figure
13.3). You may have to scroll down.

T Open from Raspberry Pi Pico

Raspberry Pi Pico
Name
B List
2 LogTemp
) LuckyDay
@ main.py
B MCP23017

Figure 13.3: File 'main.py’.

e Reboot your Raspberry Pi Pico and you should see the LED flashing as soon as
the Pico boots.

¢ You can stop the program out of Thonny by clicking Run, followed by Stop/
Restart backend.

¢ You should either remove or rename file main.py if you do not want it to start
automatically.

That's it! From now on, you can make your Raspberry Pi Pico auto-execute a suitable pro-
gram, immediately after booting.

e 246

Appendix A e Bill of Components

Appendix A e Bill of Components

Electronic Components & Modules

Through-hole / leaded parts only
e 8x red LED

e 8x 470Q resistor

e 2x pushbutton

e 1x RGB LED

e 2x 2-digit 7-segment LED display (e.g. DC56-11EWA)
e 4x NPN transistor (any, small-signal), e.g. BC548, BC108
e 1x LCD

e 1x 10kQ potentiometer

e 1x 220Q resistor

e 1x buzzer

e 1x HC-SR04 ultrasonic sensor

e 2x TMP36 temperature sensor

e 1x 1kQ resistor

o 1x 2kQ resistor

e 1x 3.3V relay

e 1x LDR

e 2x 10kQ resistor

e 1x KY-013

e 1x KY-021

e 1x KY-034

e 1x diode (e.g. 1N4148)

e 1x IRL540 MOSFET

e 1x small, brushed DC motor

e 1x 2.2kQ resistor

e 1x MCP23017

e 1x MCP23S17

e 1x BMP280 module

e 1x 24LC256 EEPROM

e 1x HC-06 Bluetooth module

e 1x MCP4921 DAC

e 1x breadboard

e 10x jumper wires (male-male, various lengths)
e 1x microUSB cable

Processor Boards & SBCs:

e 1x Raspberry Pi Pico
e 1x ESP-01 *

e 1x Arduino UNO *

e 1x Raspberry Pi 4 *

* For the advanced communications projects only.

e 247

Raspberry Pi Pico Essentials

Index

Symbols
7-segment
24LC256

A

Accessories

accurate sinewave

Active buzzers

ADC3

ADC inputs

Arbitrary periodic waveform
Arduino UNO

atmospheric pressure

B

BC108
Binary-counting
Bluetooth

Bluetooth Controller
BMP280

Bootloader
BOOTSEL

brushed DC motor

C

Calculator
common-anode
common-cathode
Cortex-MO+
cosine

CPHA

CPOL
current-sinking
current-sourcing

D

DACs

Data Logging
DC56-11EWA

dice

Dice

distance measurement
Door alarm

e 248

84
177

25
242
55
14
15
237
13
188

88

69

217

220

188

16

11, 23, 29
149

41
85
85
11
38
199
199
52
52

225
140
87
74
42
108
80

E

EEPROM memory
echo

ESP-01

external temperature

F

Feather RP2040

File processing

Flash memory
Frequency generator

H

HC-06
HC-SR04
HD44780

I

I12C bus

12C pins

import machine

INDEX.HTM

INFO_UF2.TXT

internal temperature sensor

K

keypad
KY-013
KY-021
KY-034

L
LDR
light intensity

M

machine
magnetic field
matrices
MCP23S17
MCP4921
Melody
Memory-read
Memory-write
MicroMod M.2 connector
micro-USB

177
111
206
133

17

43
12,16
150

217
109
98

170
171
49

24, 29
24
119

20
135
80
80

128
128

48
81
46
200
225
154
180
179
20
11

Index

MCP23017
MOSFET
multi-digit displays
musical notes

N
NPN transistors
NTC

o
Ohmmeter

P
Passive buzzers
Polarity

port expander
potentiometer

priority

Pulse Width Modulation
pushbutton

PWM

PWM channels

Q
QFN-56 package

R

randint

random flashing
Random Read
Reaction timer
reed switch
reverse parking aid
RGB

RPI-RP2

RS-232 communication
RUN

S

sawtooth signal
Schottky diode
SCL

SDA

serial link
serial ports
Shell

173
149

86
155

95
135

130

55

185
172
149

59

144

58, 75
144

12, 146

11

42
72
180
106
80
114
63
25
158
12

233

14
170
170
166
160

27

sinewave
smartphone
SMPS

Sorting

SPI Bus

SPI Port expander
SPI ports
squarewave signal
SRAM
stadiometer
Steinhart-Hart
SWD

T
tangent
temperature controller

Temperature measurement

temperature sensor
Text (UTF-8)
thermistor
Thonny

timer

timer interrupt
TMP36

TMP102
triangular signal
trig

trigonometric sine

U

UART

UDP Server
UDP/TCP Widget
Ultrasonic sensors
utime

v

VBUS

V logic converter
Voltmeter

VSYS

W

wake

Wi-Fi
WS2812 RGB

239
206
14
43
198
200
199
226
12
112
135
12

38
122
119

12
211
135

26

55
229
121
182
235
111

38

158
210
210
109

48

12
13
117
12, 14

59
206
18

e 249

Raspberry Pi Pico Essentials

e 250

€ lektorbooks

Raspberry Pi Pico
Essentials

The Raspberry Pi Pico is a high-performance microcontroller module
designed especially for physical computing. Microcontrollers differ from
single-board computers, like the Raspberry Pi 4, in not having an operating
system. The Raspberry Pi Pico can be programmed to run a single task very
efficiently within real-time control and monitoring applications requiring
speed. The 'Pico’ as we call it, is based on the fast, efficient, and low-cost
dual-core ARM Cortex-M0+ RP2040 microcontroller chip running at up to
133 MHz and sporting 264 KB of SRAM, and 2 MB of Flash memory. Besides
its large memory, the Pico has even more attractive features including a
vast number of GPIO pins, and popular interface modules like ADC, SP,
I2C, UART, and PWM. To cap it all, the chip offers fast and accurate timing
modules, a hardware debug interface, and an internal temperature sensor.

The Raspberry Pi Pico is easily programmed using popular high-level langua-
ges such as MicroPython and or C/C++. This book is an introduction to
using the Raspberry Pi Pico microcontroller in conjunction with the Micro-
Python programming language. The Thonny development environment
(IDE) is used in all the projects described. There are over 50 working and
tested projects in the book, covering the following topics:

Installing the MicroPython

on Raspberry Pi Pico using a
Raspberry Piora PC

Timer interrupts and external
interrupts

Analogue-to-digital converter
(ADC) projects

Using the internal temperature
sensor and external tempera-
ture sensor chips

Datalogging projects

PWM, UART, 12C, and SPI
projects

Using Wi-Fi and apps to
communicate with smartphones
Using Bluetooth and apps to
communicate with smartphones
Digital-to-analogue converter
(DAC) projects

All projects given in the book have been fully tested and are working.
Only basic programming and electronics experience is required to follow
the projects. Brief descriptions, block diagrams, detailed circuit diagrams,
and full MicroPython program listings are given for all projects described.
Readers can find the program listings on the Elektor web page created to
support the book.

(>)lektor

design > share > sell

Prof. Dr. Dogan Ibrahim has a
BSc, Hons. degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing.

Dogan has worked in many
industrial organizations before

he returned to academic life. He

is the author of over 70 technical
books and has published over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields.

Elektor International Media BV
www.elektor.com

IiBN| 9|7|8|38|9|5|7(||i’|27||1
9 |?83895|76427 1

	Preface
	Chapter 1 • Raspberry Pi Pico Hardware
	1.1 Overview
	1.2 Pico hardware module
	1.3 Comparison with the Arduino UNO
	1.4 Operating conditions and powering the Pico
	1.5 Pinout of the RP2040 microcontroller and Pico module
	1.6 Other RP2040 microcontroller-based boards
	1.6.1 Adafruit Feather RP2040
	1.6.2 Adafruit ItsyBitsy RP2040
	1.6.3 Pimoroni PicoSystem
	1.6.4 Arduino Nano RP2040 Connect
	1.6.5 SparkFun Thing Plus RP2040
	1.6.6 Pimoroni Pico Explorer Base
	1.6.7 SparkFun MicroMod RP2040 Processor
	1.6.8 SparkFun Pro Micro RP2040
	1.6.9 Pico RGB Keypad Base
	1.6.10 Pico Omnibus
	1.6.11 Pimoroni Pico VGA Demo Base

	Chapter 2 • Raspberry Pi Pico Programming
	2.1 Overview
	2.2 Installing MicroPython on the Pico
	2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
	2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico

	Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects
	3.1 Overview
	3.2 Project 1: Flashing LED – Using the on-board LED
	3.3 Project 2: External flashing LED
	3.4 Project 3: Flashing SOS in Morse
	3.5 Project 4: Flashing LED – using a timer
	3.6 Project 5: Alternately flashing LEDs
	3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts
	3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
	3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
	3.10 Project 9: Rotating LEDs
	3.11 Project 10: Binary-counting LEDs
	3.12 Project 11: Christmas lights (random flashing 8 LEDs)
	3.13 Project 12: Electronic dice
	3.14 Project 13: Lucky day of the week
	3.15 Project 14: Door alarm with 7-colour flashing LED
	3.16 Project 15: 2-digit, 7-segment display
	3.17 Project 16: 4-digit, 7-segment display seconds counter
	3.18 LCDs
	3.19 Project 17: LCD functions – displaying text
	3.20 Project 18: Seconds counter — LCD
	3.21 Project 19: Reaction timer with LCD
	3.22 Project 20: Ultrasonic distance measurement
	3.23 Project 21: Height of a person (stadiometer)
	3.24 Project 22: Ultrasonic reverse parking aid with buzzer

	Chapter 4 • Using Analogue-To-Digital Converters (ADCs)
	4.1 Overview
	4.2 Project 1: Voltmeter
	4.3 Project 2: Temperature measurement – using the internal temperature sensor
	4.4 Project 3: Temperature measurement – using an external temperature sensor
	4.5 Project 4: ON/OFF temperature controller
	4.6 Project 5: ON/OFF temperature controller with LCD
	4.7 Project 6: Measuring the ambient light intensity
	4.8 Project 7: Ohmmeter
	4.9 Project 8: Internal and external temperature
	4.10 Project 9: Using a thermistor to measure temperature

	CHAPTER 5 • Data Logging
	5.1 Overview
	5.2 Project 1: Logging the temperature data
	5.3 Project 2: Reading the logged data

	CHAPTER 6 • Pulse Width Modulation (PWM)
	6.1 Overview
	6.2 Basic theory of pulsewidth modulation
	6.3 PWM channels of the Raspberry Pi Pico
	6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle
	6.5 Project 2: Changing the brightness of an LED
	6.6 Project 3: Varying the speed of a brushed DC motor
	6.7 Project 4: Frequency generator with LCD
	6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform
	6.9 PROJECT 6: Melody maker

	CHAPTER 7 • Serial Communication (UART)
	7.1 Overview
	7.2 Raspberry Pi Pico UART serial ports
	7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno
	7.4 Project 2: Receiving and displaying numbers from the Arduino Uno
	7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link

	CHAPTER 8 • The I2C Bus Interface
	8.1 Overview
	8.2 The I2C Bus
	8.3 I2C pins of the Raspberry Pi Pico
	8.4 Project 1: I2C port expander
	8.5 Project 2: EEPROM memory
	8.6 Project 3: TMP102 temperature sensor
	8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
	8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD

	Chapter 9 • The SPI Bus Interface
	9.1 Overview
	9.2 Raspberry Pi Pico SPI ports
	9.3 Project 1: SPI Port expander

	Chapter 10 • Wi-Fi with the Raspberry Pi Pico
	10.1 Overview
	10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
	10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi

	Chapter 11 • Bluetooth with the Raspberry Pi Pico
	11.1 Overview
	11.2 Raspberry Pi Pico Bluetooth interface
	11.3 Project 1: Controlling an LED from your smartphone using Bluetooth
	11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to the smartphone

	Chapter 12 • Using Digital-to-Analogue Converters (DACs)
	12.1 Overview
	12.2 The MCP4921 DAC
	12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V
	12.4 Project 2: Generating fixed voltages
	12.5 Project 3: Generating a sawtooth signal
	12.6 Project 4: Generating a triangular signal
	12.7 Project 5: Arbitrary periodic waveform
	12.8 Project 6: Generating a sinewave
	12.9 Project 7: Generating an accurate sinewave signal using timer interrupts

	Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots
	Appendix A • Bill of Components
	Index
	cover UK.pdf
	_GoBack
	Preface
	Chapter 1 • Raspberry Pi Pico Hardware
	1.1 Overview
	1.2 Pico hardware module
	1.3 Comparison with the Arduino UNO
	1.4 Operating conditions and powering the Pico
	1.5 Pinout of the RP2040 microcontroller and Pico module
	1.6 Other RP2040 microcontroller-based boards
	1.6.1 Adafruit Feather RP2040
	1.6.2 Adafruit ItsyBitsy RP2040
	1.6.3 Pimoroni PicoSystem
	1.6.4 Arduino Nano RP2040 Connect
	1.6.5 SparkFun Thing Plus RP2040
	1.6.6 Pimoroni Pico Explorer Base
	1.6.7 SparkFun MicroMod RP2040 Processor
	1.6.8 SparkFun Pro Micro RP2040
	1.6.9 Pico RGB Keypad Base
	1.6.10 Pico Omnibus
	1.6.11 Pimoroni Pico VGA Demo Base

	Chapter 2 • Raspberry Pi Pico Programming
	2.1 Overview
	2.2 Installing MicroPython on the Pico
	2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
	2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico

	Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects
	3.1 Overview
	3.2 Project 1: Flashing LED – Using the on-board LED
	3.3 Project 2: External flashing LED
	3.4 Project 3: Flashing SOS in Morse
	3.5 Project 4: Flashing LED – using a timer
	3.6 Project 5: Alternately flashing LEDs
	3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts
	3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
	3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
	3.10 Project 9: Rotating LEDs
	3.11 Project 10: Binary-counting LEDs
	3.12 Project 11: Christmas lights (random flashing 8 LEDs)
	3.13 Project 12: Electronic dice
	3.14 Project 13: Lucky day of the week
	3.15 Project 14: Door alarm with 7-colour flashing LED
	3.16 Project 15: 2-digit, 7-segment display
	3.17 Project 16: 4-digit, 7-segment display seconds counter
	3.18 LCDs
	3.19 Project 17: LCD functions – displaying text
	3.20 Project 18: Seconds counter — LCD
	3.21 Project 19: Reaction timer with LCD
	3.22 Project 20: Ultrasonic distance measurement
	3.23 Project 21: Height of a person (stadiometer)
	3.24 Project 22: Ultrasonic reverse parking aid with buzzer

	Chapter 4 • Using Analogue-To-Digital Converters (ADCs)
	4.1 Overview
	4.2 Project 1: Voltmeter
	4.3 Project 2: Temperature measurement – using the internal temperature sensor
	4.4 Project 3: Temperature measurement – using an external temperature sensor
	4.5 Project 4: ON/OFF temperature controller
	4.6 Project 5: ON/OFF temperature controller with LCD
	4.7 Project 6: Measuring the ambient light intensity
	4.8 Project 7: Ohmmeter
	4.9 Project 8: Internal and external temperature
	4.10 Project 9: Using a thermistor to measure temperature

	CHAPTER 5 • Data Logging
	5.1 Overview
	5.2 Project 1: Logging the temperature data
	5.3 Project 2: Reading the logged data

	CHAPTER 6 • Pulse Width Modulation (PWM)
	6.1 Overview
	6.2 Basic theory of pulsewidth modulation
	6.3 PWM channels of the Raspberry Pi Pico
	6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle
	6.5 Project 2: Changing the brightness of an LED
	6.6 Project 3: Varying the speed of a brushed DC motor
	6.7 Project 4: Frequency generator with LCD
	6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform
	6.9 PROJECT 6: Melody maker

	CHAPTER 7 • Serial Communication (UART)
	7.1 Overview
	7.2 Raspberry Pi Pico UART serial ports
	7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno
	7.4 Project 2: Receiving and displaying numbers from the Arduino Uno
	7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link

	CHAPTER 8 • The I2C Bus Interface
	8.1 Overview
	8.2 The I2C Bus
	8.3 I2C pins of the Raspberry Pi Pico
	8.4 Project 1: I2C port expander
	8.5 Project 2: EEPROM memory
	8.6 Project 3: TMP102 temperature sensor
	8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
	8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD

	Chapter 9 • The SPI Bus Interface
	9.1 Overview
	9.2 Raspberry Pi Pico SPI ports
	9.3 Project 1: SPI Port expander

	Chapter 10 • Wi-Fi with the Raspberry Pi Pico
	10.1 Overview
	10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
	10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi

	Chapter 11 • Bluetooth with the Raspberry Pi Pico
	11.1 Overview
	11.2 Raspberry Pi Pico Bluetooth interface
	11.3 Project 1: Controlling an LED from your smartphone using Bluetooth
	11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to the smartphone

	Chapter 12 • Using Digital-to-Analogue Converters (DACs)
	12.1 Overview
	12.2 The MCP4921 DAC
	12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V
	12.4 Project 2: Generating fixed voltages
	12.5 Project 3: Generating a sawtooth signal
	12.6 Project 4: Generating a triangular signal
	12.7 Project 5: Arbitrary periodic waveform
	12.8 Project 6: Generating a sinewave
	12.9 Project 7: Generating an accurate sinewave signal using timer interrupts

	Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots
	Appendix A • Bill of Components
	Index

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1
 1
 482
 277

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

