
Index

● 495

books booksbooks

#
Main program lo

op. Send the temp
erature to smartp

hone

#
while True:

buf = uart.readli
ne() # Read data

dat = buf.decode(
'UTF-8') # Decode

n = dat.find("T?"
) # T? received?

if n > 0:
T = GetTemperatur

e() # Get the temperature

Tstr = "T=" + str
(T) # Insert T=

Tlen = str(len(Ts
tr)) # Length

Dt = "AT+CIPSEND=
"+Tlen + "\r\n" #

 AT command to se
nd

uart.write(Dt)
 # Send to ESP-01

utime.sleep(2)
Wait 2 sec

uart.write(Tstr)
Send data

Raspberry Pi Pico Essentials • D
ogan Ibrahim

Dogan Ibrahim

Raspberry Pi Pico
Essentials

Prof. Dr. Dogan Ibrahim has a
BSc, Hons. degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing.

Dogan has worked in many
industrial organizations before
he returned to academic life. He
is the author of over 70 technical
books and has published over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields.

Elektor International Media BV
www.elektor.com

Program, build, and master over 50 projects with
MicroPython and the RP2040 microprocessor

The Raspberry Pi Pico is a high-performance microcontroller module
designed especially for physical computing. Microcontrollers differ from
single-board computers, like the Raspberry Pi 4, in not having an operating
system. The Raspberry Pi Pico can be programmed to run a single task very
efficiently within real-time control and monitoring applications requiring
speed. The ‘Pico’ as we call it, is based on the fast, efficient, and low-cost
dual-core ARM Cortex-M0+ RP2040 microcontroller chip running at up to
133 MHz and sporting 264 KB of SRAM, and 2 MB of Flash memory. Besides
its large memory, the Pico has even more attractive features including a
vast number of GPIO pins, and popular interface modules like ADC, SPI,
I2C, UART, and PWM. To cap it all, the chip offers fast and accurate timing
modules, a hardware debug interface, and an internal temperature sensor.

The Raspberry Pi Pico is easily programmed using popular high-level langua-
ges such as MicroPython and or C/C++. This book is an introduction to
using the Raspberry Pi Pico microcontroller in conjunction with the Micro-
Python programming language. The Thonny development environment
(IDE) is used in all the projects described. There are over 50 working and
tested projects in the book, covering the following topics:

> Installing the MicroPython
on Raspberry Pi Pico using a
Raspberry Pi or a PC

> Timer interrupts and external
interrupts

> Analogue-to-digital converter
(ADC) projects

> Using the internal temperature
sensor and external tempera-
ture sensor chips

> Datalogging projects
> PWM, UART, I2C, and SPI

projects
> Using Wi-Fi and apps to

communicate with smartphones
> Using Bluetooth and apps to

communicate with smartphones
> Digital-to-analogue converter

(DAC) projects

All projects given in the book have been fully tested and are working.
Only basic programming and electronics experience is required to follow
the projects. Brief descriptions, block diagrams, detailed circuit diagrams,
and full MicroPython program listings are given for all projects described.
Readers can find the program listings on the Elektor web page created to
support the book.

Raspberry Pi Pico
Essentials
Program, build, and master over 50 projects with
MicroPython and the RPi ‘Pico’ microprocessor

Hello World!
Breadboard
Brushed-DC

S
m

ar
tp

h
o

n
e

7-
se

gm
en

t

Bl
ue

to
ot

h

D
A

C
 &

 A
D

C

Autorun
B

M
E

-2
8

0

S
e

n
so

rs E
E

P
R

O
M

RP
20

40
RS-232

TMP102
Wi-Fi
GPIO

U
A

RT

App

I2C
I2 S

IoT

LC
D

LED
PWM

TR
IED •

T

E S T E
D

•

Raspberry Pi Pico Essentials
Program, build, and master over 50 projects with

MicroPython and the RP2040 microprocessor

●

Dogan Ibrahim

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The Author and the Publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other
cause.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● �ISBN 978-3-89576-427-1	 Print
ISBN 978-3-89576-428-8	 eBook
ISBN 978-3-89576-429-5	 ePub

● �© Copyright 2021: Elektor International Media B.V.
Prepress Production: D-Vision, Julian van den Berg

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro

engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops

and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social

media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

http://www.elektormagazine.com

﻿

● 5

Preface . 9

Chapter 1 • Raspberry Pi Pico Hardware . 11

1.1 Overview . 11

1.2 Pico hardware module . 11

1.3 Comparison with the Arduino UNO . 13

1.4 Operating conditions and powering the Pico . 14

1.5 Pinout of the RP2040 microcontroller and Pico module . 14

1.6 Other RP2040 microcontroller-based boards . 16

	 1.6.1 Adafruit Feather RP2040 . 16

	 1.6.2 Adafruit ItsyBitsy RP2040 . 17

	 1.6.3 Pimoroni PicoSystem . 17

	 1.6.4 Arduino Nano RP2040 Connect . 18

	 1.6.5 SparkFun Thing Plus RP2040 . 18

	 1.6.6 Pimoroni Pico Explorer Base . 19

	 1.6.7 SparkFun MicroMod RP2040 Processor . 20

	 1.6.8 SparkFun Pro Micro RP2040 . 20

	 1.6.9 Pico RGB Keypad Base . 20

	 1.6.10 Pico Omnibus . 21

	 1.6.11 Pimoroni Pico VGA Demo Base . 21

Chapter 2 • Raspberry Pi Pico Programming . 23

2.1 Overview . 23

2.2 Installing MicroPython on the Pico . 23

	 2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico 23

	 2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico 29

Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects 48

3.1 Overview . 48

3.2 Project 1: Flashing LED – Using the on-board LED . 48

3.3 Project 2: External flashing LED . 51

3.4 Project 3: Flashing SOS in Morse . 53

3.5 Project 4: Flashing LED – using a timer . 55

3.6 Project 5: Alternately flashing LEDs . 56

3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts 58

Content

Raspberry Pi Pico Essentials

● 6

3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB 63

3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB 65

3.10 Project 9: Rotating LEDs . 66

3.11 Project 10: Binary-counting LEDs . 69

3.12 Project 11: Christmas lights (random flashing 8 LEDs) 72

3.13 Project 12: Electronic dice . 74

3.14 Project 13: Lucky day of the week . 78

3.15 Project 14: Door alarm with 7-colour flashing LED . 80

3.16 Project 15: 2-digit, 7-segment display . 84

3.17 Project 16: 4-digit, 7-segment display seconds counter 93

3.18 LCDs . 98

3.19 Project 17: LCD functions – displaying text . 100

3.20 Project 18: Seconds counter — LCD . 104

3.21 Project 19: Reaction timer with LCD . 106

3.22 Project 20: Ultrasonic distance measurement . 108

3.23 Project 21: Height of a person (stadiometer) . 112

3.24 Project 22: Ultrasonic reverse parking aid with buzzer 114

Chapter 4 • Using Analogue-To-Digital Converters (ADCs) 117

4.1 Overview . 117

4.2 Project 1: Voltmeter . 117

4.3 Project 2: Temperature measurement – using the internal temperature sensor . . 119

4.4 Project 3: Temperature measurement – using an external temperature sensor . . 120

4.5 Project 4: ON/OFF temperature controller . 122

4.6 Project 5: ON/OFF temperature controller with LCD . 125

4.7 Project 6: Measuring the ambient light intensity . 128

4.8 Project 7: Ohmmeter . 130

4.9 Project 8: Internal and external temperature . 133

4.10 Project 9: Using a thermistor to measure temperature 135

Chapter 5 • Data Logging . 140

5.1 Overview . 140

5.2 Project 1: Logging the temperature data . 140

5.3 Project 2: Reading the logged data . 142

﻿

● 7

Chapter 6 • Pulse Width Modulation (PWM) . 144

6.1 Overview . 144

6.2 Basic theory of pulsewidth modulation . 144

6.3 PWM channels of the Raspberry Pi Pico . 146

6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle 147

6.5 Project 2: Changing the brightness of an LED . 148

6.6 Project 3: Varying the speed of a brushed DC motor . 149

6.7 Project 4: Frequency generator with LCD . 150

6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform 152

6.9 PROJECT 6: Melody maker . 154

Chapter 7 • Serial Communication (UART) . 158

7.1 Overview . 158

7.2 Raspberry Pi Pico UART serial ports . 160

7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno 160

7.4 Project 2: Receiving and displaying numbers from the Arduino Uno 165

7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link 166

Chapter 8 • The I2C Bus Interface . 170

8.1 Overview . 170

8.2 The I2C Bus . 170

8.3 I2C pins of the Raspberry Pi Pico . 171

8.4 Project 1: I2C port expander . 172

8.5 Project 2: EEPROM memory . 177

8.6 Project 3: TMP102 temperature sensor . 182

8.7 Project 4: BMP280 temperature and atmospheric pressure sensor 188

8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD . . . 196

Chapter 9 • The SPI Bus Interface . 198

9.1 Overview . 198

9.2 Raspberry Pi Pico SPI ports . 199

9.3 Project 1: SPI Port expander . 200

Chapter 10 • Wi-Fi with the Raspberry Pi Pico . 206

10.1 Overview . 206

10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi 206

Content

Raspberry Pi Pico Essentials

● 8

10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi . . . 212

Chapter 11 • Bluetooth with the Raspberry Pi Pico . 217

11.1 Overview . 217

11.2 Raspberry Pi Pico Bluetooth interface . 217

11.3 Project 1: Controlling an LED from your smartphone using Bluetooth 217

11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to
 the smartphone . 222

Chapter 12 • Using Digital-to-Analogue Converters (DACs) 225

12.1 Overview . 225

12.2 The MCP4921 DAC . 225

12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V 226

12.4 Project 2: Generating fixed voltages . 231

12.5 Project 3: Generating a sawtooth signal . 233

12.6 Project 4: Generating a triangular signal . 235

12.7 Project 5: Arbitrary periodic waveform . 237

12.8 Project 6: Generating a sinewave . 239

12.9 Project 7: Generating an accurate sinewave signal using timer interrupts 242

Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots . . 245

Appendix A • Bill of Components . 247

Index	 . . 248

● 9

Preface

Preface

Traditionally, a computer was built using a microprocessor chip and many external support
chips. A microprocessor includes a Central Processing Unit (CPU), an Arithmetic and Logic
Unit (ALU), and timing and control circuitry — and as such it is not particularly useful on
its own. A microprocessor must be supported by many external chips such as memory,
input/output, timers, interrupt circuits etcetera, before it becomes a useful computer. The
disadvantage of this type of design was that the chip count was large, resulting in complex
design and wiring, and high power consumption.

A microcontroller on the other hand is basically a single chip computer including a CPU,
memory, input/output circuitry, timers, interrupt circuitry, clock circuitry, and several other
circuits and modules, all housed in a single silicon chip. Early microcontrollers were limited
in their capacities and speed and they consumed considerably more power. Most of the ear-
ly microcontrollers were 8-bit processors with clock speeds in the region of several MHz and
offered only hundreds of bytes of program and data memories. These microcontrollers were
traditionally programmed using the assembly languages of the target processors. 8-bit mi-
crocontrollers are still in common use, especially in small projects where large amounts of
memory or high speed are not the main requirements. With the advancement of chip tech-
nology we now have 32-bit and 64-bit microcontrollers with speeds in the region of several
GHz and offering several GB of memory space. Microcontrollers are nowadays programmed
using a high-level language such as C, C#, BASIC, PASCAL, JAVA, etc.

The Raspberry Pi Pico is a high-performance microcontroller, designed especially for phys-
ical computing. Readers should realize that microcontrollers are very different from sin-
gle-board computers like the Raspberry Pi 4 (and other family members of the Raspberry
Pi). There is no operating system on the Raspberry Pi Pico. Microcontrollers like the Rasp-
berry Pi Pico can be programmed to run a single task and they can be used in fast real-time
control and monitoring applications.

The Raspberry Pi Pico is based on the fast and very efficient dual-core ARM Cortex-M0+
RP2040 microcontroller chip running at up to 133 MHz. The chip incorporates 264 KB of
SRAM and 2 MB of Flash memory. What makes the Raspberry Pi Pico very attractive is its
large number of GPIO pins, and commonly used peripheral interface modules, such as SPI,
I2C, UART, PWM, plus fast and accurate timing modules.

Perhaps the biggest advantage of the Raspberry Pi Pico compared to other many microcon-
trollers in the marketplace is its very low cost, large memory, and fast and accurate timing
modules. At the time of writing this book the cost of a single unit was around $6.

Raspberry Pi Pico can easily be programmed using some of the popular high-level languag-
es such as MicroPython, or C/C++. There are many application notes, tutorials, and data-
sheets available on the Internet covering the use of the Raspberry Pi Pico.

Raspberry Pi Pico Essentials

● 10

This book is an introduction to using the Raspberry Pi Pico microcontroller with the Micro-
Python programming language. The Thonny development environment (IDE) is used in all
the projects in the book, and readers are recommended to use this IDE. There are over
50 working and tested projects in the book, covering almost all aspects of the Raspberry
Pi Pico.

The following sub-headings are given for each project to make it easy to follow:

•	Title
•	Brief Description
•	Aim
•	Block Diagram
•	Circuit Diagram
•	Program Listing with full description

I hope your next microcontroller-based projects make use of the Raspberry Pi Pico, and this
book becomes useful in the development of your projects.

Dr Dogan Ibrahim
London, February, 2021

● 11

Chapter 1 • Raspberry Pi Pico Hardware

Chapter 1 • Raspberry Pi Pico Hardware

1.1 Overview
The Raspberry Pi Pico is a single-board microcontroller module developed by the Raspberry
Pi Foundation. This module is based on the RP2040 microcontroller chip. In this Chapter we
will be looking at the hardware details of the Raspberry Pi Pico microcontroller module in
some detail. From here on, we will be calling this microcontroller module "Pico" for short, in
for appreciation and recognition though of its official name: Raspberry Pi Pico.

1.2 Pico hardware module
The "Pico" is a very low-cost, $4 microcontroller module based on the RP2040 microcon-
troller chip having a dual Cortex-M0+ processor. Figure 1.1 shows the front view of the Pico
hardware module which is basically a small board. At the centre of the board is the tiny,
7×7 mm RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of
the board there are 40 gold-coloured metal GPIO (General-Input-Output) pins with holes.
Soldering pins to these holes enables external connections to be easily made to the board.
The holes are marked starting with number 1 at the top left corner of the board and the
numbers increase downwards up to number 40 which is at the top right-hand corner of the
board. The board is breadboard-compatible (i.e. 0.1-inch pin spacing), and after soldering
the pins, the board can be plugged on a breadboard for easy connection to the GPIO pins
using jumper wires. Next to these holes you will see bumpy circular cut-outs which can be
plugged in on top of other modules without having any physical pins fitted.

Figure 1.1: Front view of the Pico hardware module.

At one edge of the board there is the micro-USB B port for supplying power to the board as
well as for programming it. Next to the USB port there is an on-board user LED that can be
used during program development. Next to this LED sits a button named as BOOTSEL that
is used during programming of the microcontroller as we will see in next Chapters. At the
other edge of the board, next to the Raspberry Pi logo, there are 3 connectors that can be
used for debugging your programs.
Figure 1.2 shows the back view of the Pico hardware module. Here, all the GPIO pins are
identified with letters and numbers. You will notice the following types of letters and num-
bers:

Raspberry Pi Pico Essentials

● 12

GND	 -	 power supply ground (digital ground)
AGND	 -	 power supply ground (analogue ground)
3V3	 -	 +3.3 V power supply (output)
GP0 – GP22	 -	 digital GPIO
GP26_A0 – GP28_A2	 -	 analogue inputs
ADC_VREF	 -	 ADC reference voltage
TP1 – TP6	 -	 test points
SWDIO, GND, SWCLK	 -	 debug interface
RUN	 -	� default RUN pin. Connect LOW to reset the RP2040.
3V3_EN	 -	� this pin by default enables the +3.3V power supply.	

+3.3 V can be disabled by connecting this pin LOW.
VSYS	 -	� system input voltage (1.8 V to 5.5 V) used by the on-

board SMPS to generate +3.3 V supply for the board.
VBUS	 -	 micro-USB input voltage (+5 V)

Figure 1.2: Back view of the Pico hardware module.

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input)	 -	 used in ADC mode (ADC3) to measure VSYS/3
GP25 (output)	 -	 connected to on-board user LED
GP24 (input)	 -	 VBUS sense - HIGH if VBUS is present, else LOW
GP23 (output)	 -	 Controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

•	32-bit RP2040 Cortex-M0+ dual core processor operating at 133 MHz
•	2 Mbyte Q-SPI Flash memory
•	264 Kbyte SRAM memory
•	26 GPIO (+3.3V compatible)
•	3× 12-bit ADC pins
•	Serial Wire Debug (SWD) port
•	Micro-USB port (USB 1.1) for power (+5V) and data (programming)
•	2× UART, 2 x I2C, 2 x SPI bus interface
•	16× PWM channels
•	1× Timer (with 4 alarms), 1× Real-Time Counter
•	On-board temperature sensor

● 13

Chapter 1 • Raspberry Pi Pico Hardware

•	On-board LED (on port GP25)
•	MicroPython, C, C++ programming
•	Drag & drop programming using mass storage over USB

The Pico's GPIO hardware is +3.3 V compatible and it is therefore important to be careful
not to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V
to +3.3 V logic converter circuits or resistive potential divider circuits must be used if it is
required to interface devices with +5 V outputs to the Pico GPIO pins.
Figure 1.3 shows a resistive potential divider circuit that can be used to lower +5 V to +3.3 V.

Figure 1.3: resistive potential divider circuit.

1.3 Comparison with the Arduino UNO
The Arduino UNO is one of the most popular microcontroller development boards used by
students, practicing engineers, and hobbyists. Table 1.1 shows a comparison of the Raspber-
ry Pi Pico with the Arduino UNO. It is clear from this table that the Pico is much faster than
the Arduino UNO, having larger flash and data memories, providing more digital input/output
pins, and sporting an on-board temperature sensor. The Arduino UNO operates at +5 V and
its GPIO pins are +5 V compatible. Perhaps some advantages of the Arduino UNO include
having a built-in EEPROM memory, and having a 6-channel ADC rather than a 3-channel.

Feature Raspberry Pi Pico Arduino UNO
Microcontroller RP2040 Atmega328P
Core and bits Dual core, 32-bit, Cortex-M0+ Single-core 8-bit
RAM 264 Kbytes 2 Kbytes
Flash 2 Mbytes 32 Kbytes
CPU speed 48 MHz to 133 MHz 16 MHz
EEPROM None 1 KByte
Power input +5 V through USB port +5V through USB port
Alternative power 2–5 V via VSYS pin 7–12 V
MCU operating voltage +3.3 V +5 V
GPIO count 26 20
ADC count 3 6
Hardware UART 2 1
Hardware I2C 2 1
Hardware SPI 2 1
Hardware PWM 16 6
Programming languages MicroPython, C, C++ C (Arduino IDE)
On-board LED 1 1
Cost $4 $20

Table 1.1: Comparison of Raspberry Pi Pico and Arduino UNO.

Raspberry Pi Pico Essentials

● 14

1.4 Operating conditions and powering the Pico
The recommended operating conditions for the Pico are:

•	Operating temperature: –20ºC to +85ºC
•	VBUS voltage: +5 V ±10%
•	VSYS voltage: +1.8 V to +5.5 V

An on-board SMPS is used to generate the +3.3 V to power the RP2040 from a range of
input voltages from 1.8 V to +5.5 V. For example, 3 alkaline size-AA batteries can be used
to provide +4.5 V to power the Pico.
The Pico can be powered in several ways. The simplest method is to plug the micro-USB
port into a +5 V power source, such as the USB port of a computer or a +5 V power adapt-
er. This will provide power to the VSYS input (see Figure 1.4) through a Schottky diode. The
voltage at the VSYS input is therefore VBUS voltage minus the voltage drop of the Schottky
diode (about +0.7 V). VBUS and VSYS pins can be shorted if the board is powered from an
external +5 V USB port. This will increase the voltage input slightly and hence reduce rip-
ples on VSYS. VSYS voltage is fed to the SMPS through the RT6150 which generates fixed
+3.3 V for the MCU and other parts of the board. VSYS is divided by 3, and is available at
analogue input port GPIO29 (ADC3) which can easily be monitored. GPIO24 checks the
existence of VBUS voltage and is at logic HIGH if VBUS is present.
Another method to power the Pico is by applying external voltage (+1.8 V to +5.5 V) to the
VSYS input directly (e.g., using batteries or external power supply). We can also use the
USB input and VSYS inputs together to supply power to Pico, for example to operate with
both batteries and the USB port. If this method is used, then a Schottky diode should be
used at the VSYS input to prevent the supplies from interfering with each other. The higher
of the voltages will power VSYS.

Figure 1.4: Powering the Pico.

1.5 Pinout of the RP2040 microcontroller and Pico module
Figure 1.5 shows the RP2040 microcontroller pinout, which is housed in a 56-pin package.
The Pico module pinout is shown in Figure 1.6 in detail. As you can see from the illustration,
most pins have multiple functions. For example, GPIO0 (pin 1) doubles as the UART0 TX,
I2C0 SDA, and the SPI0 RX pin.

● 15

Chapter 1 • Raspberry Pi Pico Hardware

Figure 1.5: RP2040 microcontroller pinout.

Figure 1.6: Raspberry Pi Pico pinout.

Figure 1.7 shows a simplified block diagram of the Pico hardware module. Notice that the
GPIO pins are directly connected from the microcontroller chip to the GPIO connector. GPIO
nos. 26-28 can be used either as digital GPIO or as ADC inputs. ADC inputs GPIO26-29
have reverse-biased diodes to 3 V and therefore the input voltage must not exceed 3V3 +

Raspberry Pi Pico Essentials

● 16

300 mV. Another point to note is that if the RP2040 is not powered, applying voltages to
GPIO26-29 pins may leak through the diode to the power supply (there is no problem with
the other GPIO pins and voltage can be applied when the RP2040 is not powered).

Figure 1.7: Simplified block diagram.

1.6 Other RP2040 microcontroller-based boards
During the writing of this book, some third-party manufacturers have been developing mi-
crocontrollers based on the RP2040 chip. Some examples are given in this section.

1.6.1 Adafruit Feather RP2040
This microcontroller board (Figure 1.8) has the following basic specifications:

•	RP2040 32-bit Cortex-M0+ running at 125 MHz
•	4 MB Flash memory
•	264 KB RAM
•	4× 12-bit ADC
•	2× I2C, 2× SPI, 2× UART
•	16× PWM
•	200 mA LiPo charger
•	Reset and Bootloader buttons
•	24 MHz crystal
•	+3.3 V regulator with 500 mA current output
•	USB type-C connector
•	on-board red LED
•	RGB NeoPixel
•	on-board STEMMA QT connector with optional SWD debug port

● 17

Figure 1.8: Adafruit Feather Rp2040.

1.6.2 Adafruit ItsyBitsy RP2040
The ItsyBitsy RP2040 (Figure 1.9) is another RP2040-based microcontroller board from
Adafruit. Its basic features are very similar to Feather RP2040. It has USB-micro B connec-
tor and provides +5 V output.

Figure 1.9: Adafruit ItsyBitsy RP2040.

1.6.3 Pimoroni PicoSystem
This is a miniature gaming board (Figure 1.10) developed around the RP2040 microcontrol-
ler. Its basic features are:

•	133 MHz clock
•	264 KB SRAM
•	LCD screen
•	joypad
•	buttons
•	LiPo battery
•	USB-C power connector

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 18

Figure 1.10: Pimoroni PicoSystem.

1.6.4 Arduino Nano RP2040 Connect
This board (Figure 1.11) offers 16 MB flash, 9-axis IMU, and a microphone. It has a very
efficient power supply section equipped with Wi-Fi/Bluetooth.

Figure 1.11: Arduino Nano RP2040 Connect.

1.6.5 SparkFun Thing Plus RP2040
This development platform (Figure 1.12) provides an SD card slot, 16 MB flash memory, a
JST single-cell battery connector, a WS2812 RGB LED, JTAG pins, and Qwiic connector. Its
basic features are:

•	133 MHz speed
•	264 KB SRAM
•	4× 12-bit ADC
•	2× UART, 2× I2C, 2× SPI
•	16× PWM
•	1× timer with 4 alarms

● 19

Figure 1.12: SparkFun Thing Plus RP2040.

1.6.6 Pimoroni Pico Explorer Base
This development board (Figure 1.13) includes a small breadboard and a 240 × 240 IPS LC
display with 4 tactile buttons. A socket is provided on the board to plug-in a Raspberry Pi
Pico board. The basic features of this development board are:

•	piezo speaker
•	1.54-inch IPS LCD
•	4× buttons
•	2× half-bridge motor drives
•	two breakout I2C sockets
•	easy access to GPIO and ADC pins
•	mini breadboard
•	no soldering required
•	Raspberry Pi Pico not supplied

Figure 1.13: Pimoroni Pico Explorer Base.

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 20

1.6.7 SparkFun MicroMod RP2040 Processor
This board (Figure 1.14) includes a MicroMod M.2 connector for access to the GPIO pins.

Figure 1.14: SparkFun MicroMod RP 2040 Processor.

1.6.8 SparkFun Pro Micro RP2040
This board (Figure 1.15) includes a ES2812B addressable LED, boot button, reset button,
Qwiic connector, USB-C power interface, PTC fuse, and castellated GPIO pads.

Figure 1.15: SparkFun Pro Micro RP2040.

1.6.9 Pico RGB Keypad Base
This board is equipped with 4×4 rainbow-illuminated keypad (Figure 1.16) with APA102
LEDs. The basic features are:

•	4×4 keypad
•	16× APA102 RGB LEDs
•	keypad connected via I2C I/O expander
•	GPIO pins labelled

● 21

Figure 1.16 Pico RGB Keypad Base.

1.6.10 Pico Omnibus
This is an expansion board (Figure 1.17) for the Pico. The basic features of this board in-
clude:

•	GPIO pins labelled
•	two landing areas with labelled (mirrored) male headers for attaching add-ons
•	4× rubber feet
•	compatible with Raspberry Pi Pico
•	fully assembled
•	dimensions approx. 94 × 52 × 12 mm

Figure 1.17: Pico Omnibus.

1.6.11 Pimoroni Pico VGA Demo Base
This board (Figure 1.18) has VGA output and SD card slot. The basic features are:

•	powered by Raspberry Pi Pico
•	15-pin VGA connector
•	I2S DAC for line out audio

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 22

•	PWM audio output
•	SD card slot
•	Reset button
•	headers to install your Raspberry Pi Pico
•	three user switches
•	no soldering required

Figure 1.18: Pimoroni Pico VGA Demo Base.

Chapter 2 • Raspberry Pi Pico Programming

● 23

Chapter 2 • Raspberry Pi Pico Programming

2.1 Overview
At the time of writing this book, the Raspberry Pi Pico accepts programming with the fol-
lowing programming languages:

•	C/C++
•	MicroPython
•	assembly language

Although the Pico by default is set up for use with the powerful and popular C/C++ lan-
guage, many beginners find it easier to use MicroPython, which is a version of the Python
programming language developed specifically for microcontrollers.
In this Chapter we will learn how to install and use the MicroPython programming language.
We will be using the Thonny text editor which has been developed specifically for Python
programs.
Many working and fully tested projects will be given in the next Chapters using MicroPython
with our Pico. Use of the C language will also be discussed in later Chapters with some
projects.

2.2 Installing MicroPython on the Pico
MicroPython must be installed on the Pico before the board can be used. Once installed,
MicroPython stays on your Pico, unless it is overwritten with something else. Installing
MicroPython requires an Internet connection, and this is required only once. Since the Pico
has no Wi-Fi connectivity, we will need to use a computer with Internet access. This can be
done either by using a Raspberry Pi (e.g. Raspberry Pi 4), or by using a PC. In this section
we will see how to install using both methods.

2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
The steps are as follows.

•	Boot your Raspberry Pi 4 and log in to Desktop.
•	Make sure your Raspberry Pi is connected to the Internet.
•	Hold down the BOOTSEL button on your Pico.
•	Connect your Pico to one of the USB ports of the Raspberry Pi 4 using a

micro-USB cable while holding down the button.
•	Wait a few seconds and release the BOOTSEL button.
•	You should see the Pico appear as a removable drive. Click OK in the

Removable medium is inserted window (Figure 2.1).

Raspberry Pi Pico Essentials

● 24

Figure 2.1: Click OK.

•	In the File Manager window, you will see two files with the names
INDEX.HTM and INFO_UF2.TXT (Figure 2.2).

Figure 2.2: Notice two files.

•	Double-click on file INDEX.HTM and scroll down.
•	You should see the message Welcome to your Raspberry Pi Pico displayed

in a web page (Figure 2.3).

Figure 2.3: Displayed message.

Chapter 2 • Raspberry Pi Pico Programming

● 25

•	Click on the Getting started with MicroPython tab and click Download UF2
file to download the MicroPython firmware. You should see the downloaded
file at the bottom of the screen. This will take only a few seconds (Figure 2.4).

Figure 2.4: Download the UF2 file.

•	Close your browser window by clicking on the cross icon located at the top right
corner.

•	Open the File Manager by clicking on menu, followed by Accessories.
•	Open the Downloads folder (under /home/pi) and locate the file

with the extension: .uf2. This file will have a name similar to:
micropython-20-Jan-2021.uf2 (Figure 2.5)

Figure 2.5: Locate the file with extension: ".uf2".

•	Drag and drop this file to Raspberry Pi Pico's removable drive which is named:
RPI-RP2 (at the top left side of the screen – see Figure 2.5).

•	After a while, the MicroPython firmware will be installed onto the internal
storage of Pico and the drive will disappear.

•	Your Pico is now running MicroPython.
•	Powering-down the Pico will not erase MicroPython from its memory.

Using the Thonny text editor from Raspberry Pi
Thonny is a free Python Integrated Development Environment (IDE) developed specifically
for Python. It has built-in text editor and debugger and a number of other utilities that can
be useful during program development.
In this section we will learn how to use Thonny by invoking it from Raspberry Pi. You should
leave your Pico connected to Raspberry Pi. We will create a one-line program to display the
message Hello from Raspberry Pi Pico.

Raspberry Pi Pico Essentials

● 26

The steps are given below.

•	Click Menu, followed by Programming on your Raspberry Pi Desktop and then
click Thonny Python IDE (see Figure 2.6). The author had version 3.3.3 of
Thonny installed on his Raspberry Pi 4.

Figure 2.6: Start Thonny on your Raspberry Pi.

•	Click on the label Python at the bottom right-hand corner of Thonny (Figure
2.7).

Figure 2.7: Click on Python in the bottom right-hand corner.

•	Click to select MicroPython (Raspberry Pi Pico) as shown in Figure 2.8.

Figure 2.8: Select: Raspberry Pi Pico.

•	You should see the version number of your MicroPython displayed in the bottom
part of the screen where Shell is located (Figure 2.9).

Chapter 2 • Raspberry Pi Pico Programming

● 27

Figure 2.9: Version number of MicroPython is displayed.

•	We are now ready to write our simple program. Enter the following line in the
lower part of the screen where Shell sits. Program statements written in this
part of Thonny are executed online and immediately. This part is normally used
to test parts of a program. Enter:

print("Hello from Raspberry Pi Pico")

you should see message Hello from Raspberry Pi Pico displayed as shown in
Figure 2.10.

Figure 2.10: Displaying a message.

Thonny's icons
At the top of the Thonny screen you will see a number of icons as shown in Figure 2.11.
The functions of these icons are described in this section (notice that plain letters are used
to identify the icons).

Figure 2.11: Icons presented by Thonny.

A: NEW. Create a new file.
B: Open. Open an existing file
C: Save. Save a file
D: Run. Run the current program
E: Debug. Debug the current program
F: Step Over. Step over a function when in Debug mode
G: Step Into. Step into a function in Debug mode
H: Step Out. Step out of a function in Debug mode
I: Resume. Resume a stopped session
J: Stop/Restart. Stop/restart a session

Raspberry Pi Pico Essentials

● 28

Writing a program using Thonny
In an earlier section we have seen how to execute a statement online using the Thonny
Shell. In almost all applications we have to write programs. As an example, the steps to
write and run a very simple one-line program to display message Hello from program…
are given below.

•	Enter the program statements at the upper part of the screen as shown in
Figure 2.12.

Figure 2.12: Write the program at upper part of the screen.

•	Click File followed by Save As and give a name to your program. e.g. First-
Prog. You have the option of storing the program either on your Raspberry Pi
or on the Pico. Click Raspberry Pi Pico to save it on the Pico (Figure 2.13).
Enter the name of your program (FirstProg) and click OK (notice that the file
is saved with the extension .py).

Figure 2.13: Click Raspberry Pi Pico to save your program.

•	Click the green arrow icon at the top of the screen (under Run) to run your
program. The output of the program will be displayed in the lower Shell part of
the screen as shown in Figure 2.14.

Figure 2.14: Output of the program.

Chapter 2 • Raspberry Pi Pico Programming

● 29

2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico
In Section 2.2.1 we have learned how to install MicroPython on Pico using a Raspberry
Pi 4. In this section we will see how to install MicroPython using only a PC running the
Windows 10 operating system. This is the option the readers should choose if they do not
have access to a Raspberry Pi.
The steps are as follows.

•	Make sure your PC is connected to the Internet.
•	Hold down the BOOTSEL button on your Pico.
•	Connect your Pico to the USB port of your PC using a micro-USB cable while

holding down the button.
•	Wait a few seconds and let go the BOOTSEL button.
•	You should see the Pico appear as a removable drive with the name RPI-RP2

as shown in Figure 2.15 (drive E: in this case).

Figure 2.15: Pico as a removable drive RPI-RP2.

•	Click on drive RPI-RP2. You will see two files with the names INDEX.HTM and
INFO_UF2.TXT (see Figure 2.16).

Figure 2.16: You will see two files.

•	Double-click on file INDEX.HTM and scroll down.
•	You should see the message Welcome to your Raspberry Pi Pico displayed

in a web page (Figure 2.17)

Raspberry Pi Pico Essentials

● 30

Figure 2.17: Displayed message.

•	Click on the Getting started with MicroPython tab and click Download UF2
file to download the MicroPython firmware. You should see the downloaded
file at the bottom of the screen. This will take only a few seconds (Figure 2.18).

Figure 2.18. Download the "UF2" file.

•	Close your browser window.
•	Open the File Explorer on your PC.
•	Open the Downloads folder and locate the file with the extension: .uf2. This

file will have the name similar to: micropython-20-Jan-2021.uf2 (Figure
2.19).

Figure 2.19: Locate file with extension ".uf2".

•	Drag and drop this file to Raspberry Pi Pico's removable drive named:
RPI-RP2.

•	After a while, the MicroPython firmware will be installed onto the internal stor-
age of Pico and the drive RPI-RP2 will disappear.

•	Your Pico is now running MicroPython.
•	Powering down the Pico will not erase MicroPython from its memory.

Using the Thonny text editor from the PC
In the previous section we have learned how to use the Thonny on Raspberry Pi and devel-
op, save, and run programs on the Pico.
In this section we will be using Thonny on the PC so that a Raspberry Pi is not needed to
develop and run our programs. First of all, we have to install Thonny on our PC (if it is not
already installed). The steps are given below.

Chapter 2 • Raspberry Pi Pico Programming

● 31

•	Go to the Thonny.org web site: https://thonny.org/ .
•	Click on the link at the top right-hand side of the screen to install Thonny (see

Figure 2.20).

Figure 2.20: Click to install Thonny.

•	You should see an icon on the Desktop (Figure 2.21) of your PC. Double-click to
start Thonny.

Figure 2.21: Thonny icon on the PC Desktop.

•	The startup screen of Thonny on your PC is shown in Figure 2.22.

https://thonny.org/

Raspberry Pi Pico Essentials

● 32

Figure 2.22: Thonny startup screen on the PC.

•	Click on the label Python at the bottom right-hand corner of the screen and
click to select MicroPyhton (Raspberry Pi Pico).

•	You are now ready to write your programs.
•	Enter the following statement at the lower part of the screen (in Shell):

print("hello from Thonny on PC")

•	You should the message hello from Thonny on PC is displayed as shown in
Figure 2.24.

Figure 2.24: Displaying the message.

In this book we will be using Thonny on the PC to write programs and to execute
them on the Raspberry Pi Pico.
Simple example programs are given in the remainder sections of this Chapter. The aim here
has been to review the basic Python programming concepts. However, this book does not
aim to teach Python programming. There are many books and tutorials on the Internet for
learning Python.

Chapter 2 • Raspberry Pi Pico Programming

● 33

Example 1 — Average of two numbers read from the keyboard
In this example, two numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how data can be read from the keyboard.

Solution 1
The program is named Average and the program listing and an example run of the pro-
gram are shown in Figure 2.25. Function input is used to read the numbers in the form of
strings from the keyboard. These strings are then converted into floating point numbers
and stored in variables n1 and n2. The average is calculated by adding and then dividing
the numbers by two. The result is displayed on the screen.

Figure 2.25: Program: Average and a sample run.

Example 2 — Average of 10 numbers read from the keyboard
In this example, 10 numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how a loop can be constructed in Python.

Solution 2
The program is named Average10 and the program listing and an example run of the pro-
gram are shown in Figure 2.26. In this program a loop is constructed which runs from 0 to
9 (i.e. 10 times). Inside this loop the numbers are read from the keyboard, added to each
other, and stored in variable sum. The average is then calculated and displayed by dividing
sum by 10. Notice that a new-line is not printed after the print statements since the option
end = ' ' is used inside the print statement.

Raspberry Pi Pico Essentials

● 34

Figure 2.26 Program: Average10, and a sample run.

Example 3 — Surface area of a cylinder
In this example the radius and height of a cylinder are read from the keyboard and its sur-
face area is displayed on the screen.

Solution 3
The program is named CylArea, and the program listing and an example run of the pro-
gram are shown in Figure 2.27. The surface area of a cylinder is given by:

Surface area = 2 × π × r × h

Where r and h are the radius and height of the cylinder respectively. In this program the
math library is imported so that function Pi can be used in the program. The surface area
of the cylinder is displayed after reading its radius and height.

Chapter 2 • Raspberry Pi Pico Programming

● 35

Figure 2.27: Program: CylArea, and a sample run.

Example 4 — ºC to ºF conversion
In this example the program reads degrees Celsius from the keyboard and converts and
displays the equivalent degrees Fahrenheit.

Solution 4
The program is named CtoF and the program listing and an example run of the program
are shown in Figure 2.28. The formula to convert ºC to ºF is:

	F = 1.8 × C + 32

Figure 2.28: Program: CtoF, and a sample run.

Raspberry Pi Pico Essentials

● 36

Example 5 — Surface area and volume of a cylinder (user function)
In this example, the surface area and volume of a cylinder are calculated whose radius and
height are given. The program uses a function to calculate and return the surface area and
the volume.

Solution 5
The program is named CylAreaSurf and the program listing, and an example run of the
program are shown in Figure 2.29. The surface area and the volume of a cylinder are given
by:

Surface area = 2 × π × r × h
Volume = π × r2 × h

Where r and h are the radius and height of the cylinder respectively. Function Calc is used
to get the radius and height of the cylinder. The function returns the surface area and vol-
ume to the main program which are displayed on the screen.

Figure 2.29: Program CylAreaSurf, and a sample run.

Example 6 — Table of squares of numbers
In this example the squares of numbers from 1 to 10 are calculated and tabulated.

Solution 6
The program is named Squares, and the program listing and an example run of the pro-
gram are shown in Figure 2.30. Notice that \t prints a tab so that the data can be tabulated
nicely.

Chapter 2 • Raspberry Pi Pico Programming

● 37

Figure 2.30 Program: Squared numbers, and a sample run.

Example 7 — Table of trigonometric sine
In this example, the trigonometric sine is tabulated from 0 to 45 degrees in steps of 5
degrees.

Solution 7
The program is named Sines, and the program listing and an example run of the program
are shown in Figure 2.31. It is important to notice that the arguments of the trigonometric
functions must be in radians and not in degrees.

Figure 2.31: Program: Sines, and a sample output.

Raspberry Pi Pico Essentials

● 38

Example 8 — Table of trigonometric sine, cosine and tangent
In this example, the trigonometric sine, cosine, and tangent are tabulated from 0 to 45
degrees in steps of 5 degrees.

Solution 8
The program is named Trig, and the program listing and an example run of the program
are shown in Figure 2.32.

Figure 2.32 Program: Trig, and a sample output.

Example 9 — Trigonometric function of a required angle
In this example, an angle is read from the keyboard. Also, the user specifies whether the
sine (s), cosine (c), or the tangent (t) of the angle is required.

Solution 9
The program is named TrigUser, and the program listing and an example run of the pro-
gram are shown in Figure 2.33.

Chapter 2 • Raspberry Pi Pico Programming

● 39

Figure 2.33: Program: TrigUser, and a sample output.

Example 10 — Series and parallel resistors
This program calculates the total resistance of a number of series- or parallel-connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

Solution 10
When a number of resistors are in series, then the resultant resistance is the sum of the
resistance of each resistor. When the resistors are in parallel, then the reciprocal of the
resultant resistance is equal to the sum of the reciprocal resistances of each resistor.
Figure 2.34 shows the program listing (program: Serpal). At the beginning of the program,
a heading is displayed, and the program enters a while loop. Inside his loop, the user is
prompted to enter the number of resistors in the circuit and whether they are connected
in series or in parallel. Function str converts a number into its equivalent string. e.g. num-
ber 5 is converted into string "5". If the connection is serial (mode equals to 's'), then the
value of each resistor is accepted from the keyboard and the resultant is calculated and
displayed on the screen. If on the other hand the connection is parallel (mode is equals to
'p'), then again the value of each resistor is accepted from the keyboard and the reciprocal
of the number is added to the total. When all the resistor values are entered, the resultant
resistance is displayed on the screen.

print("RESISTORS IN SERIES OR PARALLEL")
print("===============================")
yn = "y"

while yn == 'y':
 N = int(input("\nHow many resistors are there?: "))
 mode = input("Are the resistors series (s) or parallel (p)?: ")

Raspberry Pi Pico Essentials

● 40

 mode = mode.lower()
#
Read the resistor values and calculate the total
#
 resistor = 0.0

 if mode == 's':
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = int(input(s))
 resistor = resistor + r
 print("Total resistance = %d Ohms" %(resistor))

 elif mode == 'p':
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = float(input(s))
 resistor = resistor + 1 / r
 print("Total resistance = %.2f Ohms" %(1 / resistor))
#
Check if the user wants to exit
#
 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

 Figure 2.34: Program: Serpal.

Figure 2.35 shows a typical run of the program.

Figure 2.35: Typical run of the Serpal program.

Chapter 2 • Raspberry Pi Pico Programming

● 41

Example 11 — Words in reverse order
Write a program to read a word from the keyboard and then display the letters of this word
in reverse order on the screen.

Solution 11
The required program listing is shown in Figure 2.36 (program: Letters). A word is read
from the keyboard and stored in string variable word. Then the letters of this word are
displayed in reverse order. An example run of the program is shown in Figure 2.36.

Figure 2.36: Program: Letters, and a sample output.

Example 12 — Calculator
Write a calculator program to carry out the four simple mathematical operations of addi-
tion, subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 12
The required program listing is shown in Figure 2.37 (program: Calc). Two numbers are
received from the keyboard and stored in variables n1 and n2. Then, the required math-
ematical operation is received and it is performed. The result, stored in variable result, is
displayed on the screen. The user is given the option of terminating the program.

any = 'y'
while any == 'y':
 print("\nCalculator Program")
 print("==================")

 n1 = float(input("Enter first number: "))
 n2 = float(input("Enter second number: "))
 op = input("Enter operation (+-*/): ")

Raspberry Pi Pico Essentials

● 42

 if op =="+":
 result = n1 + n2
 elif op == "-":
 result = n1 - n2
 elif op == "*":
 result = n1 * n2
 elif op == "/":
 result = n1 / n2
 print("Result = %f" %(result))
 any = input("\nAny more (yn): ")

Figure 2.37: Program: Calc.

An example run of the program is shown in Figure 2.38.

Figure 2.38: Example run of the program.

Example 13 — Dice
Write a program to simulate double dice, i.e. to display two random numbers between 1
and 6 every time it is run.

Solution 13
The required program listing is shown in Figure 2.39 (program: Dice). Here, the ran-
dom-number generator randint is used to generate random numbers between 1 and 6
when the Enter key is pressed. The program is terminated when letter x (or X) is entered.

Chapter 2 • Raspberry Pi Pico Programming

● 43

Figure 2.39: Program: Dice.

An example run of the program is shown in Figure 2.39.

Example 14 — Sorting lists
The names of 5 countries are stored in a list. Write a program to sort the names of these
countries in alphabetical order and then display them.

Solution 14
The program is named Sort, and its listing and an example run are shown in Figure 2.40.

Figure 2.40: Program: Sort, and an example output.

Example 15 — File processing (writing)
In this example, a text file called MyFile.txt will be created and text Hello from Raspber-
ry Pi Pico! will be written to this file.

Solution 15
The program is named Filew and its listing and an example run are shown in Figure 2.41.

Raspberry Pi Pico Essentials

● 44

The fie is opened in write (w) mode and the text is written in it using function write. Notice
here that fp is the file handle.

Figure 2.41: Program: Filew.

Example 16 — File processing (reading)
In this example, the text file MyFile.txt created in the previous example is opened and its
contents is displayed on the screen.

Solution 16
The program is named Filer, and its listing and an example run are shown in Figure 2.42.
The fie is opened in read (r) mode and its contents is displayed.

Figure 2.42: Program: Filer.

Example 17 — Squares and cubes of numbers
Write a program to tabulate the squares and cubes of numbers from 1 to 10.

Solution 17
The program is named Cubes, and its listing an example run are shown in Figure 2.43.

Chapter 2 • Raspberry Pi Pico Programming

● 45

Figure 2.43: Program: Cubes, and an example output.

Example 18 — Multiplication timetable
Write a program to read a number from the keyboard and then display the timetable for
this number from 1 to 12.

Solution 18
The program is named Times, and its listing and an example run are shown in Figure 2.44.

Figure 2.44: Program: Times, and an example output.

Example 19 — Odd or even
Write a program to read a number from the keyboard, then check and display if this num-
ber is odd or even.

Solution 19
The program is named OddEven, and its listing and an example run are shown in Figure
2.45.

Raspberry Pi Pico Essentials

● 46

Figure 2.45: Program: OddEven, and an example output.

Example 20 — Binary, octal, and hexadecimal
Write a program to read a decimal number from the keyboard. Convert this number into
binary, octal, and hexadecimal and display on the screen.

Solution 20
The program is named Conv, and its listing and an example run are shown in Figure 2.46.

Figure 2.46: Program: Conv, and an example output.

Example 21 — Add two matrices
Write a program to add two given matrices and display the elements of the new matrix.

Solution 21
The program is named AddMatrix, and its listing and an example run are shown in Figure
2.47.

Chapter 2 • Raspberry Pi Pico Programming

● 47

Figure 2.47: Program: AddMatrix, and an example output.

Raspberry Pi Pico Essentials

● 48

Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects

3.1 Overview
In this Chapter we will be developing simple hardware projects with the Raspberry Pi Pico,
using the Thonny text editor. The following sub-headings will be given for each project
where applicable:

•	Title
•	Description
•	Aim
•	Block Diagram
•	Circuit Diagram
•	Program Listing
•	Suggestions for future work

All the programs in this Chapter have been developed using the Thonny on a PC, with the
Raspberry Pi Pico connected to the USB port of the PC.

3.2 Project 1: Flashing LED – Using the on-board LED
Description: In this project the on-board LED is flashed every second.

Aim: The aim of this project is to make the reader familiar with some basic GPIO control
statements.

Program listing: Figure 3.1 shows the program listing (Program: LEDINT). At the be-
ginning of the program modules machine and utime are imported to the program. LED
is then assigned to port pin GP25 and it is configured as an output. The remainder of the
program runs in a loop forever, until stopped by the user. Inside this loop the LED is turned
ON by the statement LED.value(1). After a delay of one second the LED is turned OFF by
the statement LED.value(0). Function utime.sleep(n) creates n seconds of delay in the
program.

#---
FLASHING THE ON-BOARD LED
=========================
#
In this program the on-board LED (at GP25) is flashed
every second
#
Author: Dogan Ibrahim
File : LEDINT.py
Date : February, 2021
#--
import machine
import utime

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 49

LED = machine.Pin(25, machine.Pin.OUT) # LED at GP25

while True: # DO FOREVER
 LED.value(1) # LED ON
 utime.sleep(1) # Wait 1 second
 LED.value(0) # LED OFF
 utime.sleep(1) # Wait 1 second

Figure 3.1: Program: LEDINT.

In Figure 3.1, import machine module imports other functions in addition to Pin. We can
simplify the program by importing only the Pin functions as shown in Figure 3.2 (Program:
LEDINT2). You may have to stop the program by selecting Run followed by Stop/Restart
backend before being able to save a new program while a program is already running on
Pico.

#---
FLASHING THE ON-BOARD LED
=========================
#
In this program the on-board LED (at GP25) is flashed
every second. In this version only module Pin is imported
#
Author: Dogan Ibrahim
File : LEDINT2.py
Date : February, 2021
#--
from machine import Pin
import utime

LED = Pin(25, Pin.OUT) # LED at GP25

while True: # DO FOREVER
 LED.value(1) # LED ON
 utime.sleep(1) # Wait 1 second
 LED.value(0) # LED OFF
 utime.sleep(1) # Wait 1 second

 Figure 3.2: Program: LEDINT2.

The machine module supports the following functions (we will see in later Chapters how
to use these functions):

•	Pin
•	Timer
•	ADC

Raspberry Pi Pico Essentials

● 50

•	I2C and Soft I2C
•	SPI and SoftSPI
•	WDT
•	PWM
•	UART

The general format of the machine.Pin function is:

machine.Pin(pin, mode, pull, value, alt)

for more information, go to
https://docs.micropython.org/en/latest/library/machine.Pin.html

The parameters of a pin can be re-initialized using the following function:

Pin.init(pin, mode, value, drive, at)

Where pin is the pin number.

Parameter mode can take the following values:

Pin.IN		 - pin is configured as input
Pin.OUT		 - pin is configured as output
Pin.OPEN_DRAIN	 - pin is configured as open-drain output
Pin.ALT		 - pin is configured as an alternative function

Parameter pull can take the following values:

NONE		 - no internal pull-up or pull-down resistors
Pin.PULL_UP	 - internal pull-up resistor enabled
Pin.PULL_DOWN	 - internal pull-down resistor enabled

Parameter value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and it specifies the
initial output pin value (if specified).
Parameter alt specifies an alternate function for the pin (port dependent). This parameter
is valid only for PIN.ALT and Pin.ALT_OPEN_DRAIN modes.

A pin can be set/reset using one of the following functions:

Pin.value(1) - set pin to logic 1
Pin.value(0) - set pin to logic 0

Some other useful machine functions are:

machine.reset() �- �reset the device (same as pressing the external RESET
button)

https://docs.micropython.org/en/latest/library/machine.Pin.html

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 51

machine.reset_cause) - return the cause of the reset
machine.disable_irq() - disable interrupt requests
machine.enable_irq() - enable interrupt requests
machine.freq() - returns the CPU frequency

3.3 Project 2: External flashing LED
Description: In this project an external LED is connected to the Pico. The LED is flashed
every second as in the previous project.

Aim: The aim of this project is to show how an external LED can be connected to the Pico.

Block diagram: Figure 3.3 shows the block diagram of the project.

Figure 3.3: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.4. The LED is
connected to port pin GP0 of Pico through a current-limiting resistor.

Figure 3.4: Circuit diagram of the project.

Raspberry Pi Pico Essentials

● 52

The LED can be connected either in current-sourcing or in current-sinking mode. In cur-
rent-sourcing mode (Figure 3.5) the LED is turned ON when logic HIGH is applied to the
port pin. In current-sinking mode (Figure 3.6) the LED is turned ON when logic LOW is
applied to the port pin.

Figure 3.5: LED in current-sourcing mode.

Figure 3.6: LED in current-sinking mode.

The required value of the current limiting resistor can be calculated as follows. In cur-
rent-sourcing mode, assuming the output HIGH voltage is +3.3 V, the voltage drop across
the LED is 2 V, and the current through the LED is 3 mA, the required value of the current
limiting resistor is:

	R = (3.3 – 2) / 3 = 433 ohms

So we will choose 470 ohms as the nearest practical resistor value.

Program listing: Figure 3.7 shows the program listing (Program: ExtFlash.py).

#---
FLASHING AN EXTERNAL LED
========================
#
In this program an external LED is connected to port pin
GP0 (pin 1). The LED is flashed every second

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 53

#
Author: Dogan Ibrahim
File : ExtFlash.py
Date : February, 2021
#--
from machine import Pin
import utime

LED = Pin(0, Pin.OUT) # LED at GP0

while True: # DO FOREVER
 LED.value(1) # LED ON
 utime.sleep(1) # Wait 1 second
 LED.value(0) # LED OFF
 utime.sleep(1) # Wait 1 second

Figure 3.7 Program: ExtFlash.py.

Figure 3.8 shows the Fritzing diagram of the project built on a breadboard.

Figure 3.8: Project built on a breadboard.

3.4 Project 3: Flashing SOS in Morse
Description: In this project an external LED flashes the SOS signal in Morse code (three
dots, followed by three dashes, followed by three dots) continuously. In this project, a dot is
represented with the LED being ON for 0.25 seconds (Dot time) and a dash is represented
with the LED being ON for 1 second (Dash time). The delay between the dots and dashes
is set to 0.2 second (GAP time). This process is repeated continuously after 2 seconds of
delay.
The block diagram and circuit diagram of this project are the same as in Figure 3.3 and
Figure 3.4, respectively.

Program listing. Figure 3.9 shows the program listing (Program: SOS). At the beginning
of the program the dot, dash, and gap times are defined. Then a loop is formed using a
while statement. Inside this loop two for loops are formed, each iterating 3 times. The

Raspberry Pi Pico Essentials

● 54

first loop displays three dots, while the second loop displays three dashes. This process is
repeated after 2 seconds of delay.

#---
LED FLASHING SOS
================
#
In this program an external LED is connected to port pin
GP0 (pin 1). The LED flashes the SOS signal
#
Author: Dogan Ibrahim
File : SOS.py
Date : February, 2021
#--
from machine import Pin
import utime

Dot = 0.25 # Dot time
Dash = 1.0 # Dash time
Gap = 0.2 # Gap time
ON = 1 # ON
OFF = 0 # OFF

LED = Pin(0, Pin.OUT) # LED at GP0

while True: # DO FOREVER
 for i in range(0, 3):
 LED.value(ON) # LED ON
 utime.sleep(Dot) # Wait Dot time
 LED.value(OFF) # LED OFF
 utime.sleep(Gap) # Wait Gap time

 utime.sleep(0.5) # 0.5 second delay

 for i in range(0, 3):
 LED.value(ON) # LED ON
 utime.sleep(Dash) # Wait Dash time
 LED.value(OFF) # LED OFF
 utime.sleep(Gap) # Wait Gap time

 utime.sleep(2) # Wait 2 seconds

Figure 3.9: Program: SOS.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 55

Suggestions: You could easily replace the LED with a buzzer to make the SOS signal au-
dible. There are two types of buzzers: active and passive. Passive buzzers require an audio
signal to be sent to them and the frequency of the output signal depends on the frequency
of the supplied signal. Active buzzers are ON/OFF type devices producing audible sound
when activated. In his project we can use an active buzzer with a transistor switch (any
NPN type transistor can be used) as shown in Figure 3.10.

Figure 3.10: Using an active buzzer.

3.5 Project 4: Flashing LED – using a timer
Description: This project is very similar to Project 2 where an external LED is connected
to port pin GP0 of the Pico. In this project a timer is used to flash the LED every 500 ms.

Aim: The aim of this project s to show how a timer can be used in a program.
The block diagram and circuit diagram of this project are the same as in Figure 3.3 and
Figure 3.4, respectively.

Program listing. Figure 3.11 shows the program listing (Program: LEDTimer). Here, a
timer is initialized which calls function Flash_LED twice (freq = 2.0) a second in a periodic
manner. Notice that the LED is flashed using the toggle function.

#---
LED FLASHING USING A TIMER
==========================
#
In this program an external LED is connected to port pin
GP0 (pin 1). The LED flashes every second using a timer
#
Author: Dogan Ibrahim
File : LEDTimer.py
Date : February, 2021
#--
from machine import Pin, Timer

LED = Pin(0, Pin.OUT)

Raspberry Pi Pico Essentials

● 56

tim = Timer()

def Flash_LED(timer):
 global LED
 LED.toggle()

tim.init(freq = 2.0, mode = Timer.PERIODIC, callback = Flash_LED)

Figure 3.11: Program: LEDTimer.

3.6 Project 5: Alternately flashing LEDs
Description: In this project two LEDs are connected to the Pico. The LEDs flash alternately
every 500 ms.

Aim: The aim of this project is to show how multiple LEDs can be connected to the Pico.

Block diagram: Figure 3.12 shows the block diagram of the project.

Figure 3.12: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.13. The LEDs are
connected to port pins GP0 and GP1 through 470-ohm current limiting resistors.

Figure 3.13: Circuit diagram of the project.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 57

Program listing: Figure 3.14 shows the program listing (Program: LED2).

#---
ALTERNATELY FLASHING LEDs
=========================
#
In this program two external LEDs are connected to pins
GP0 (pin 1) and GP1 (pin 2). The LEDs flash alternately
every 500ms
#
Author: Dogan Ibrahim
File : LED2.py
Date : February, 2021
#--
from machine import Pin
import utime

LED1 = Pin(0, Pin.OUT)
LED2 = Pin(1, Pin.OUT)

while True:
 LED1.value(1)
 LED2.value(0)
 utime.sleep(0.5)
 LED1.value(0)
 LED2.value(1)
 utime.sleep(0.5)

Figure 3.14: Program: LED2.

Figure 3.15 shows the Fritzing diagram of the project built on a breadboard.

Figure 3.15: Project built on a breadboard.

Raspberry Pi Pico Essentials

● 58

3.7 Project 6: Changing the LED flashing rate – using pushbutton
interrupts
Description: In this project an external LED is connected to port pin GP0 of the Pico. Addi-
tionally, two pushbuttons are connected to port pins GP1 and GP2. At the start of the pro-
gram the LED flashes every second. Pushbutton at GP1 is named Faster and pressing this
button flashes the LED faster. Similarly, pushbutton at GP2 is named Slower, and pressing
this button flashes the LED slower.

Aim: The aim of this project is to show how pushbuttons can be connected to the Pico, and
how the state of a button can be read.

Block diagram: Figure 3.16 shows the block diagram of the project.

Figure 3.16: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.17. The LED is
connected through a 470-ohm current limiting resistor. The two pushbuttons are connected
through 10-kohm resistors. The default state of the pushbuttons is at logic 1, being pulled-
up through the resistors. Pressing a pushbutton changes its output state to logic 0.

Figure 3.17: Circuit diagram of the project.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 59

Program listing: Figure 3.18 shows the program listing (Program: LEDrate). At the be-
ginning of the program LED is assigned to pin GP0, and pushbuttons Faster and Slower
are assigned to ports GP1 and GP2 respectively. The default flashing rate is set to one sec-
ond and is stored in variable dly. The program is external-interrupt-based. Pressing either
of the pushbuttons creates an interrupt. For example, the interrupt for pushbutton Faster
is configured using the following function call:

Faster.irq(handler=Flash_Faster, trigger=Faster.IRQ_FALLING)

Where Flash_Faster is the name of the interrupt service routine where dly is decrement-
ed. The interrupt is configured to happen on the falling edge of the pushbutton, i.e. when
the pushbutton is pressed (the normal state of the pushbuttons is at logic 1, being pulled-
up by resistors). Inside the interrupt service routine Flash_Faster variable dly is declared
as global so that it can be accessed. Its value is then decremented by 100ms (0.1 second).
The Interrupt service routine for pushbutton Slower is done similarly where the delay is
incremented by 100 ms each time the button is pressed.

The other external interrupt modes are:

Pin.IRQ_FALLING		 - interrupt on falling edge (high-to-low)
Pin.IRQ_RISING		 - interrupt on rising edge (low-to-high)
Pin.IRQ_LOW_LEVEL	 - interrupt on low level
Pin.IRQ_HIGH_LEVEL	 - interrupt on high level

The above values can be OR'ed together to trigger on multiple events. We can also spec-
ify the interrupt priority with the keyword priority, where higher values represent higher
priorities.
An interrupt wake parameter can be specified with the values None, machine.IDLE,
machine.SLEEP, or machine.DEEPSLEEP.
Additionally, a parameter called hard with the values of False or True can be specified.
If this parameter is set to True, then hardware interrupts are used which yields faster
response.

#---
CHANGE THE LED FLASHING RATE
============================
#
In this program an external LED and two pushbuttons are
connected to Pico. Pressing Faster flashes the LED faster,
and pressing Slower flashes the LED slower
#
Author: Dogan Ibrahim
File : LEDrate.py
Date : February, 2021
#--
from machine import Pin

Raspberry Pi Pico Essentials

● 60

import utime

LED = Pin(0, Pin.OUT) # LED at pin GP0
Faster = Pin(1, Pin.IN) # Faster at pin GP1
Slower = Pin(2, Pin.IN) # Slower at pin GP2
dly = 1.0 # Default delay

#
This is the interrupt service routine. Whenever pushbutton
Faster is pressed, the program jumps here and decrements
delay to make the flashing faster
#
def Flash_Faster(Faster):
 global dly
 dly = dly - 0.1

#
This is the interrupt service routine. Whenever pushbutton
Slower is pressed, the program jumps here and increments
delay to make the flashing slower
#
def Flash_Slower(Slower):
 global dly
 dly = dly + 0.1

#
Configure the external interrupts
#
Faster.irq(handler=Flash_Faster,trigger=Faster.IRQ_FALLING)
Slower.irq(handler=Flash_Slower,trigger=Slower.IRQ_FALLING)

#
Main program loop
#
while True:
 LED.value(1) # LED ON
 utime.sleep(dly) # Delay dly
 LED.value(0) # LED OFF
 utime.sleep(dly) # Delay dly

Figure 3.18: Program LEDrate.

Figure 3.19 shows the project built on a breadboard.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 61

Figure 3.19: Project built on a breadboard.

Using the internal pull-up resistors
We can simplify the circuit diagram of Figure 3.17 by removing the external resistors and
using the internal pull-up resistors. The simplified circuit diagram is shown in Figure 3.20.
The modified program listing (Program: LEDrate2) is shown in Figure 3.21 where the op-
tion pull = Pin.PULL__UP is added to the input configuration statements.

Figure 3.20: Modified circuit diagram.

#---
CHANGE THE LED FLASHING RATE
============================
#
In this program an external LED and two pushbuttons are
connected to Pico. Pressing Faster flashes the LED faster,
and pressing Slower flashes the LED slower
In this modified version, internal pull-ups are used
#
Author: Dogan Ibrahim
File : LEDrate2.py

Raspberry Pi Pico Essentials

● 62

Date : February, 2021
#--
from machine import Pin
import utime

LED = Pin(0, Pin.OUT)
Faster = Pin(1, Pin.IN, pull=Pin.PULL_UP)
Slower = Pin(2, Pin.IN, pull=Pin.PULL_UP)
dly = 1.0

#
This is the interrupt service routine. Whenever pushbutton
Faster is pressed, the program jumps here and decrements
delay to make the flashing faster
#
def Flash_Faster(Faster):
 global dly
 dly = dly - 0.1

#
This is the interrupt service routine. Whenever pushbutton
Slower is pressed, the program jumps here and increments
delay to make the flashing slower
#
def Flash_Slower(Slower):
 global dly
 dly = dly + 0.1

#
Configure the external interrupts
#
Faster.irq(handler=Flash_Faster,trigger=Faster.IRQ_FALLING)
Slower.irq(handler=Flash_Slower,trigger=Slower.IRQ_FALLING)

#
Main program loop
#
while True:
 LED.value(1) # LED ON
 utime.sleep(dly) # Delay dly
 LED.value(0) # LED OFF
 utime.sleep(dly) # Delay dly

Figure 3.21: Program LEDrate2.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 63

3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
Description: This is a very simple project where an RGB LED is connected to the Raspberry
Pi Pico and the red, green, and blue colours are flashed alternately every 500 ms.

Aim: The aim of this project is to show how an RGB LED can be used in a Raspberry Pi Pico
project.

Background Information: As shown in Figure 3.22, the RGB LED is a 4-pin device which
incorporates Red, Green and Blue LEDs. Each colour LED is assigned a pin, where the fourth
pin is the ground. By activating different LEDs at different brightness, we can generate
many different colours. In this project a common cathode RGB LED is used. Notice that the
cathode pin of the RGB LED is the longer pin.

Figure 3.22: RGB LED (from CircuitBread).

Block Diagram: Figure 3.23 shows the block diagram of the project.

Figure 3.23: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.24. The Red,
Green, and Blue pins are connected to port pins GP0, GP1, and GP2 respectively through
470-ohm current limiting resistors.

Raspberry Pi Pico Essentials

● 64

Figure 3.24: Circuit diagram of the project.

Program Listing: The program is very simple and is shown in Figure 3.25 (program:
RGB). At the beginning of the program the RED, GREEN, and BLUE LEDs are assigned to
the 0, 1, and 2 port pins respectively, and the LED ports are configured as outputs. The
remainder of the program runs in an endless loop. Inside this loop the RED, GREEN, and
BLUE LEDs are turned ON and OFF with 0.5-second delay between each output.

#---
ALTERNATELY FLASHING RGB LED
============================
#
In this program an RGB LED is connected to Pico.The three
colours of the LED are flashed alternately every 500ms
#
Author: Dogan Ibrahim
File : RGB.py
Date : February, 2021
#--
from machine import Pin
import utime

Red = Pin(0, machine.Pin.OUT)
Green = Pin(1, Pin.OUT)
Blue = Pin(2, Pin.OUT)

Red.value(0)
Green.value(0)
Blue.value(0)

while True:
 Red.value(1)
 utime.sleep(0.5)
 Red.value(0)
 Green.value(1)
 utime.sleep(0.5)

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 65

 Green.value(0)
 Blue.value(1)
 utime.sleep(0.5)
 Blue.value(0)

Figure 3.25: The RGB program.

Figure 3.26 shows the project built on a breadboard.

Figure 3.26: Project built on a breadboard.

3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
Description: In this project the RGB LEDs flash randomly, where the Red, Green, or the
Blue LEDs are randomly ON or OFF.
The block diagram and the circuit diagram are the same as in Figure 3.23 and 3.24, re-
spectively.

Program listing: Figure 3.27 shows the program listing (Program: RGB2). Random num-
bers are generated either as 0 or 1 for each colour, and these numbers are used either to
turn ON or OFF a colour LED.

#---
RANDOMLY FLASHING RGB LED
=========================
#
In this program an RGB LED is connected to Pico.The three
colours of the LED are flashed randomly every 500ms
#
Author: Dogan Ibrahim
File : RGB2.py
Date : February, 2021
#--
from machine import Pin
import utime

Raspberry Pi Pico Essentials

● 66

import random

Red = Pin(0, Pin.OUT)
Green = Pin(1, Pin.OUT)
Blue = Pin(2, Pin.OUT)

while True:
 r = random.randint(0, 1)
 g = random.randint(0, 1)
 b = random.randint(0, 1)
 Red.value(r)
 utime.sleep(0.2)
 Green.value(g)
 utime.sleep(0.2)
 Blue.value(b)
 utime.sleep(0.2)

Figure 3.27: The RGB2 program.

3.10 Project 9: Rotating LEDs
Description: In this project, 4 LEDs are connected to the Pico. The LEDs display a pattern
of rotating left as shown in Figure 3.28.

Figure 3.28: 'Rotating' LEDs.

Block diagram: Figure 3.29 shows the block diagram of the project.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 67

Figure 3.29: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.30. The LEDs are
connected to the Pico through 470-ohm current limiting resistors.

Figure 3.30: Circuit diagram of the project.

Program listing. Figure 3.31 shows the program listing (Program: ROTATE).

#---
ROTATING LEDs
=============
#
In this program 4 LEDs are connected to Pico. The LEDs
display pattern of rotating to the left
#
Author: Dogan Ibrahim
File : Rotate.py
Date : February, 2021
#--
from machine import Pin
import utime

LED1 = Pin(0, Pin.OUT)

Raspberry Pi Pico Essentials

● 68

LED2 = Pin(1, Pin.OUT)
LED3 = Pin(2, Pin.OUT)
LED4 = Pin(3, Pin.OUT)

while True:
 LED1.value(1)
 utime.sleep(0.5)
 LED1.value(0)
 LED2.value(1)
 utime.sleep(0.5)
 LED2.value(0)
 LED3.value(1)
 utime.sleep(0.5)
 LED3.value(0)
 LED4.value(1)
 utime.sleep(0.5)
 LED4.value(0)

Figure 3.31: Program: ROTATE.

More efficient program
The program given in Figure 3.31 can be made more efficient (Program: ROTATE2) and
easier to understand by modifying it as shown in Figure 3.32. This is especially true if there
are more than 4 LEDs.

#---
ROTATING LEDs
=============
#
In this program 4 LEDs are connected to Pico. The LEDs
display pattern of rotating to the left
#
Author: Dogan Ibrahim
File : Rotate2.py
Date : February, 2021
#--
from machine import Pin
import utime

LEDS = [0, 1, 2, 3] # LED ports
L = [0, 0, 0, 0]

for i in range(4): # Do for all LEDs
 L[i] = Pin(LEDS[i], Pin.OUT) # All are outputs

while True: # Do forever

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 69

 for i in range(4):
 L[i].value(1) # LED ON
 utime.sleep(0.5) # Wait 0.5 second
 L[i].value(0) # LED OFF

Figure 3.32: Modified program.

Figure 3.33 shows the project built on a breadboard.

Figure 3.33: Project built on a breadboard.

3.11 Project 10: Binary-counting LEDs
Description: In this project, 8 LEDs are connected to the Pico. The LEDs count up in binary
from 0 to 255 as shown in Figure 3.34, with a 1-second delay between each count.

Figure 3.34: Binary counting LEDs.

Aim: The aim of this project is to show how a group of port pins can be combined and
accessed as a parallel port.

Block diagram: Figure 3.35 shows the block diagram of the project.

Raspberry Pi Pico Essentials

● 70

Figure 3.35: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.36. The LEDs are
connected to the Pico through 470-ohm current limiting resistors.

Figure 3.36: Circuit diagram of the project.

Program listing. Figure 3.37 shows the program listing (Program: LEDCount). All 8 GPIO
ports used in the project are configured as outputs using the function Configure_Port.
Notice that the Configure_Port function is general, and the list DIR sets the directions of
the GPIO pins. An "O" sets as an output and an "I" sets as an input. Then, a loop is formed
to execute forever and inside this loop the LEDs count up by one in binary. Variable cnt is
used as the counter. Function Port_Output is used to control the LEDs. This function can
take integer numbers from 0 to 255 and it converts the input number (x) into binary using
the built-in function bin. Then the leading "0b" characters are removed from the output
string b (bin function inserts characters "0b" to the beginning of the converted string).
Then, the converted string b is made up of 8 characters by inserting leading 0s. The string
is then sent to the PORT bit by bit, starting from the most-significant bit position.

#---
BINARY COUNTING 8 LEDs
======================
#
In this program 8 LEDs are connected to Pico. The LEDs

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 71

count up in binary every second
#
Author: Dogan Ibrahim
File : LEDCount.py
Date : February, 2021
#--
from machine import Pin
import utime

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directons
L = [0]*8

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 L[i] = Pin(PORT[i], Pin.OUT)
 else:
 L[i] = Pin(PORT[i], Pin.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 L[i].value(1)
 else:
 L[i].value(0)
 return

#
Configure PORT to all outputs
#
Configure_Port()

Raspberry Pi Pico Essentials

● 72

#
Main program loop. Count up in binary every second
#
cnt = 0
while True:
 Port_Output(cnt) # send cnt to port
 utime.sleep(1) # wait 1 second
 cnt = cnt + 1 # increment cnt
 if cnt > 255:
 cnt = 0

Figure 3.37: Program LEDCount.

Figure 3.38 shows the project built on a breadboard.

Figure 3.38: Project built on a breadboard.

3.12 Project 11: Christmas lights (random flashing 8 LEDs)
Description: In this project, 8 LEDs are connected to the Pico as in the previous project.
The LEDs flash randomly every 250 milliseconds just like fancy Christmas lights.

Aim: The aim of this project is to show how to generate random numbers between 1 and
255 and then shows how to use these numbers to turn the individual LEDs ON and OFF
randomly.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 73

The block diagram and circuit diagram of the project are given in Figure 3.35 and Figure
3.36 respectively.

Program listing: The program is called XMAS and the listing is shown in Figure 3.39. All
the 8 GPIO ports used in the project are configured as outputs using the function Config-
ure_Port as in the previous project. Then, a loop is formed to execute forever and inside
this loop a random number is generated between 1 and 255, and this number is used as
an argument to function Port_Output. The binary pattern corresponding to the generated
number is sent to the port which turns the LEDs ON or OFF in a random manner.

#---
CHRISTMAS LIGHTS
================
#
In this program 8 LEDs are connected to Pico. The LEDs
flash randomly
#
Author: Dogan Ibrahim
File : XMAS.py
Date : February, 2021
#--
from machine import Pin
import utime
import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directons
L = [0]*8

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 L[i] = Pin(PORT[i], Pin.OUT)
 else:
 L[i] = Pin(PORT[i], Pin.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary

Raspberry Pi Pico Essentials

● 74

 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 L[i].value(1)
 else:
 L[i].value(0)
 return

#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop. Count up in binary every second
#
while True:
 numbr = random.randint(1, 255) # generate a random number
 Port_Output(numbr) # send cnt to port
 utime.sleep(0.25) # wait 250ms

Figure 3.39: Program: XMAS.

3.13 Project 12: Electronic dice
Description: In this project, 7 LEDs are arranged in the form of the faces of a dice and a
pushbutton switch is used. When the button is pressed, the LEDs turn ON to display num-
bers 1 to 6 as if on a real dice. The display is turned OFF after 3 seconds, ready for the
next game.

Aim: The aim of this project is to show how a dice can be constructed with 7 LEDs.

Block diagram: The block diagram of the project is shown in Figure 3.40.

Figure 3.40: Block diagram of the project.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 75

Figure 3.41 shows the LEDs that should be turned ON to display the 6 dice numbers.

Figure 3.41: Numbers out of the program LED Dice.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.42. Here, 8 GPIO
pins are collected together to form a PORT. There are 7 LEDs, but 8 port pins are used in
the form of a byte where the most-significant bit position is not used.

Figure 3.42: Circuit diagram of the project.

The pushbutton switch is connected to port pin GP15.

Table 3.1 gives the relationship between a dice number and the corresponding LEDs to be
turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e. only
the middle LED is ON), we have to turn LED D3 ON. Similarly, to display number 4, we have
to turn ON D0, D2, D4 and D6.

Required number LEDs to be turned on

1 D3

2 D1, D5

3 D1, D3, D5

4 D0, D2, D4, D6

5 D0, D2, D3, D4, D6

6 D0, D1, D2, D4, D5, D6

Table 3.1: Dice number and LEDs to be turned ON.

Raspberry Pi Pico Essentials

● 76

The relationship between the required number and the data to be sent to the PORT to turn
on the correct LEDs, is given in Table 3.2. For example, to display dice number 2, we have
to send hexadecimal 0x22 to the PORT. Similarly, to display number 5, we have to send
hexadecimal 0x5D to the PORT and so on.

Required number PORT data (Hex)

1 0x08

2 0x22

3 0x2A

4 0x55

5 0x5D

6 0x77

Table 3.2: Required number and PORT data.

Program listing: The program is called DICE and the listing is shown in Figure 3.43. LED
port pins are declared as a list in variable PORT and they are configured as outputs by
using function Configure_Port. The bit pattern to be sent to the LEDs corresponding to
each dice number is stored in hexadecimal format in a list called DICE_NO (see Table 3.2).
GP15 is configured as an input pin and the pushbutton switch is connected to this pin
to simulate the "throwing" of a dice. The state of the pushbutton is checked in the main
program and when the button is pressed, function DICE is called to display a dice number
between 1 and 6 for 3 seconds. After this time, all the LEDs are turned OFF to indicate that
the program is ready to generate a new dice number. List DICE_NO is indexed to find the
LEDs that should be turned ON, and the required bit pattern is sent to the PORT to display
the dice number.

#---
DICE PROGRAM
============
#
In this program 7 LEDs are connected to Pico to simlate
a dice. When a pushbutton is pressed the LEDs display a
dice number between 1 and 6
#
Author: Dogan Ibrahim
File : DICE.py
Date : February, 2021
#--
from machine import Pin
import utime
import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 77

DICE_NO = [0, 0x08, 0x22, 0x2A, 0x55, 0x5D, 0x77]
L = [0]*8
Button = Pin(15, Pin.IN)

#
This function configures the LED ports as outputs
#
def Configure_Port():
 for i in range(0, 8):
 L[i] = Pin(PORT[i], Pin.OUT)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 L[i].value(1)
 else:
 L[i].value(0)
 return

#
The program jumps here after the button is pressed
#
def DICE():
 n = random.randint(1, 6) # generate a random number
 pattern = DICE_NO[n] # find the pattern
 Port_Output(pattern) # turn ON required LEDs
 utime.sleep(3) # wait for 3 seconds
 Port_Output(0) # turn OFF all LEDs
 return
#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop, check if Button is pressed
#

Raspberry Pi Pico Essentials

● 78

while True:
 if Button.value() == 0: # Button pressed?
 DICE() # Call DICE
 pass # Do nothing

Figure 3.43: Program DICE.

3.14 Project 13: Lucky day of the week
Description: In this project, 7 LEDs are positioned in the form of a circle and are connect-
ed to the Raspberry Pi Pico. Each LED is assumed to represent a day of the week. Pressing
a button generates a random number between 1 and 7 and lights up only one of the LEDs.
The day name corresponding to this LED is assumed to be your lucky day of the week.

Block diagram: Figure 3.44 shows the block diagram of the project.

Figure 3.44: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.45, where 7 LEDs
are connected to the Pico through current-limiting resistors. The button is connected to
GP15. Normally the output of the button is at logic 1 and goes to logic 0 when the button
is pressed.

Figure 3.45: Circuit diagram of the project.

Program listing: Figure 3.46 shows the program listing (Program: LuckyDay). At the
beginning of the program, all the 8 LED GPIO pins are combined into a single port and is

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 79

addressed as a single 8-bit port using function PORT_Output. utime.ticks_ms() is used
as the seed for the random number generator so that different sequence of numbers will
be generated every time the program starts. This function returns an increasing millisecond
counter with an arbitrary reference point, that wraps around after some value. An integer
random number is generated between 1 and 7 and this number is used to turn ON one of
the LEDs corresponding to a day of the week.

#---
LUCKY DAY OF THE WEEK
=====================
#
In this program 7 LEDs are connected to Pico where each
LED represents a day of the week. Pressing a button
turns ON one of the LEDs randomly and this corresponds to
your lucky day of the week
#
Author: Dogan Ibrahim
File : LuckyDay.py
Date : February, 2021
#--
from machine import Pin
import utime
import random

PORT = [7, 6, 5, 4, 3, 2, 1, 0] # port connections
L = [0]*8
Button = Pin(15, Pin.IN)

#
This function configures the LED ports as outputs
#
def Configure_Port():
 for i in range(0, 8):
 L[i] = Pin(PORT[i], Pin.OUT)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):

Raspberry Pi Pico Essentials

● 80

 if b[i] == "1":
 L[i].value(1)
 else:
 L[i].value(0)
 return
#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop, check if Button is pressed
#
print("Press the Button to display your lucky number...")

random.seed(utime.ticks_ms())

while Button.value() == 1: # If Button not pressed
 pass
r = random.randint(1, 7) # Generate random number
r = pow(2, r-1) # LED to be turned ON
Port_Output(r) # Send to LEDs

Figure 3.46: Program: LuckyDay.

3.15 Project 14: Door alarm with 7-colour flashing LED
Description: In this project, a miniature reed switch module is used together with a
7-colour flashing LED module. A small magnet is mounted on the door frame such that this
magnet is very close to the reed switch and as a result the reed switch contacts are closed.
When the door opens, the reed switch moves away from the magnet and as a result the
reed switch contacts opens and this activates a 7-colour flashing LED module which flashes
to indicate that the door is opened.

Aim: The aim of this project is to show how a mini reed switch module can be used togeth-
er with a 7-colour flashing LED module to create a silent door alarm.

Sensors used: Two sensor modules are used in this project: The KY-021 mini reed switch
module, and the KY-034 7-colour flashing LED module. Figure 3.47 shows a picture of the
KY-021 module. This is a 3-pin module with the connections GND, +V, and Signal. The
GND and +V pins are connected to the ground and power pins of the processor, respective-
ly. The Signal pin can be connected to any general-purpose input/output pin. An on-board
10 kohm resistor is connected between the +V and the S pins as shown in Figure 3.47.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 81

Figure 3.47: KY-021 mini reed switch module.

Figure 3.48 shows a picture of the KY-034 7-colour LED module. This is a 3-pin module
where two GND pins are connected together. The other pin is the Signal pin. A 10 kohm
resistor is connected to on-board pin V but is not used here. The module generates 7-col-
ours when the Signal pin is connected.

Figure 3.48: KY-034 7-colour LED module.

Background Information: Reed switches are electrical switches operated by applied
magnetic field. These switches consist of a pair of ferromagnetic flexible metal contacts in
a sealed glass envelope (see Figure 3.49). The contacts are normally open, closing when
magnetic field (e.g. a magnet) is present near the contacts, and re-open i.e. return to their
normal state when the magnetic field is removed. Reed switches are used in door and
window mechanisms to detect when they are open or closed, and in many other security
applications.

Figure 3.49: Typical reed switch in glass enclosure.

Raspberry Pi Pico Essentials

● 82

The 7-colour LED module has a built-in chip that controls the LED so that it flashes and
cycles through 7 colours when power is applied to the LED. The operating voltage of the
module is +3.3 V to +5 V. The module has pink, yellow, and green high brightness lights.
The Flash module generates light of high brightness. By setting the LED ON and OFF with
different durations we can get interesting flashing effects.

Block Diagram: The block diagram of the project is shown in Figure 3.50.

Figure 3.50: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.51 for the case
when the door is closed. Here, GP0 and GP1 of the Pico are connected to the KY-021 reed
switch and KY-034 7-colour LED, respectively. The reed switch output is pulled HIGH
through a pull-up resistor and because the magnet is near the reed switch when the door is
closed. As shown in Figure 3.52, this pin goes to logic HIGH when the door is opened (i.e.
when the reed switch contacts open). The LED module is connected to the Pico through a
470-ohm current limiting resistor.

Figure 3.51: Door is closed.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 83

Figure 3.52: Door is open.

Program Listing: The program listing (ReedDoor) is shown in Figure 3.53. At the begin-
ning of the program, the connections to KY-021 and KY-034 are defined, where GP0 and
GP1 are configured as input and output respectively. The remainder of the program runs in
an endless loop. Inside this loop, the state of the reed switch is checked and if it is at logic
HIGH then it is assumed that the reed switch contacts are open i.e. the door is opened. As
a result of this, the 7-color LED is activated to give visual indication that the door is opened.

#---
DOOR ALARM WITH 7-COLOUR FLASHING LED
=====================================
#
In this program a reed switch is connected as an input and
a 7-colour flashing LED is connected as an output. The LED
flashes when the door is opened
#
Author: Dogan Ibrahim
File : ReedDoor.py
Date : February, 2021
#--
from machine import Pin

ReedSwitch = Pin(0, Pin.IN)
LED = Pin(1, Pin.OUT)

LED.value(0)

while True:
 door = ReedSwitch.value()
 if door == 1:
 LED.value(1)
 else:
 LED.value(0)

Figure 3.53: Raspberry Pi program listing.

Raspberry Pi Pico Essentials

● 84

Testing the program
When the program is run, you should see the LED flashing (door open condition). Place a
magnet close to the reed switch (door closed condition) and the LED should stop flashing.

3.16 Project 15: 2-digit, 7-segment display
Description: In this project, a 7-segment LED display is used as a counter to count up
every second from 0 to 99. Multi-digit 7-segment displays require continuous refreshing of
their digits so that the human brain perceives the digits as lighting steady and non-flashing.
The general technique used is to enable each digit for a short time (e.g., 10 ms) so that
our eyes 'see' both digits as ON at any time. This process requires the digits to be enabled
alternately and continuously. As a result of this, the processor cannot perform any other
tasks and has to be busy all the time, refreshing the digits. One technique used in non-mul-
titasking systems is to use timer interrupts and refresh the digits in the timer interrupt
service routines. In this project, we will be employing a multitasking approach to refresh
the display digits so that the processor can carry out other tasks. The aim of the project is
to show how the digits of a multiplexed 2-digit 7-segment LED display can be refreshed,
while the main program sends data to the display to count up in seconds from 00 to 99.

7-Segment LED Displays: Displaying data is one of the fundamental output activities of
any microcontroller system. For example, displays are used to show the sensor data such
as the temperature, humidity, pressure etc. There are several types of display devices that
can be used in microcontroller-based systems. LCDs and 7-segment displays are probably
two of the most used display devices. There are several types of LCDs, such as text-based
LCD, graphics LCDs, colour LCDs, touch screen LCDs, etc. Most 7-segment displays are
used to display numeric or alphanumeric values, and they can have one or more digits.
One-digit displays can only display numbers from 0 to 9. Two-digit displays can display
numbers from 0 to 99, three-digit displays numbers from 0 to 999, and so on. In this pro-
ject a two-digit 7-segment display is used.
As shown in Figure 3.54, a 7-segment LED display basically consists of 7 LEDs connected
such that numbers from 0 to 9 and some (basic) letters can be displayed. The display seg-
ments are identified by letters from a through g. Figure 3.55 shows the segment names of
a typical 7-segment display.

Figure 3.54: Some 7-segment displays.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 85

Figure 3.55: Segment names of a 7-segment display.

Figure 3.56 shows how numbers from 0 to 9 can be obtained by turning ON or OFF different
segments of the display.

Figure 3.56: Displaying numbers 0 – 9.

7-segment LED displays are available in two different configurations: common-cathode
and common-anode. As shown in Figure 3.57, in common-cathode configuration all the
cathodes of all the segment LEDs are connected together to ground. The segments are then
turned ON by applying a logic 1 to the required segment LED via current-limiting resistors.
In common-cathode configuration, the 7-segment LED is connected to the microcontroller
in current-sourcing mode.

Figure 3.57: Common-cathode 7-segment LED display.

In a common-anode configuration, the anode terminals of all the LEDs are connected to-
gether as shown in Figure 3.58. This common point is then normally connected to the

Raspberry Pi Pico Essentials

● 86

supply voltage. A segment is turned ON by connecting its cathode terminal to logic 0 via a
current-limiting resistor. In common-anode configuration the 7-segment LED is connected
to the microcontroller in current-sinking mode.

Figure 3.58: Common-anode, 7-segment LED display.

In multiplexed LED applications (for example, see Figure 3.59 for a 2-digit multiplexed LED
display), the LED segments of all the digits are tied together and the common pins of each
digit is turned ON separately by the microcontroller. By displaying each digit for several
milliseconds, the brain cannot differentiate that the digits are not ON all the time. This
way we can multiplex any number of 7-segment displays together. For example, to display
number 57, we have to send 5 to the first digit and enable its common pin. After a few
milliseconds, number 7 is sent to the second digit and the common point of the second digit
is enabled. When this process is repeated continuously the user sees as if both displays are
ON continuously.

Figure 3.59: 2-digit, multiplexed, 7-segment LED display.

Some manufacturers provide multiplexed multi-digit displays in single packages. For exam-
ple, we can purchase 2-, 4-, or 8-digit multiplexed displays in a single package. The display
used in this project is the DC56-11EWA which is a red, 0.56-inch height, common-cath-
ode two-digit multiplexed display with 18 pins, where the pin configuration is shown in
Table 3.3. Basically, this display can be controlled from the microcontroller as follows:

•	send the segment bit pattern for digit 1 to segments a to g;
•	enable digit 1;
•	wait for a few milliseconds;
•	disable digit 1;

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 87

•	send the segment bit patter for digit 2 to segments a to g;
•	enable digit 2;
•	wait for a few milliseconds;
•	disable digit 2;
•	repeat the above process continuously.

Pin no Segment

1,5 e

2,6 d

3,8 c

14 digit 1 enable

17,7 g

15,10 b

16,11 a

18,12 f

13 digit 2 enable

4 decimal point1

9 decimal point 2

Table 3.3: Pin configuration of Type DC56-11EWA dual display.

The segment configuration of DC56-11EWA display is shown in Figure 3.60. In a multi-
plexed display application, the segment pins of corresponding segments are connected
together. For example, pins 11 and 16 are connected as the common a segment. Similarly,
pins 15 and 10 are connected as the common b segment and so on.

Figure 3.60: DC56-11EWA display segment configuration.

Block Diagram: Figure 3.61 shows the block diagram of the project.

Raspberry Pi Pico Essentials

● 88

Figure 3.61: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.62. In this project,
the following pins of the Raspberry Pi Pico are used to interface with the 7-segment LED
display:

7-Segment Display pin Raspberry Pi Pico GPIO Physical pin no.

a 0 1

b 1 2

c 2 4

d 3 5

e 4 6

f 5 7

g 6 9

E1 8 (via transistor) 11

E2 7 (via transistor) 10

7-segment display segments are driven from the port pins through 470-ohm current-lim-
iting resistors. Digit-enable pins E1 and E2 are driven from port pins GP8 and GP7 respec-
tively through two BC108 NPN transistors (any other NPN transistor can be used here),
used as switches. The collectors of these transistors drive the segment digits. The seg-
ments are enabled when the base of the corresponding transistor is set to logic 1. Notice
that the following pins of the display are connected together to form a multiplexed display:

16 and 11; 15 and 10; 3 and 8; 2 and 6; 1 and 5; 17 and 7; 18 and 12.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 89

Figure 3.62: Circuit diagram of the project.

Program Listing: Before driving the display, we must know the relationship between the
numbers to be displayed and the corresponding segments to be turned ON. This is shown
below.

Number to be displayed LED bit pattern (a,b,c,d,e,f,g)

0 1,1,1,1,1,1,0

1 0,1,1,0,0,0,0

2 1,1,0,1,1,0,1

3 1,1,1,1,0,0,1

4 0,1,1,0,0,1,1

5 1,0,1,1,0,1,1

6 1,0,1,1,1,1,1

7 1,1,1,0,0,0,0

8 1,1,1,1,1,1,1

9 1,1,1,1,0,1,1

Figure 3.63 shows the program listing (program: SevenCount). At the beginning of the
program the connections between the LED segments and the GPIO pins are defined in list
variable LED_Segments. Also the connections between the LED digits and the GPIO pins
are defined in list variable LED_Digits. These GPIO pins are then configured as outputs
and are all cleared to 0. Variable count is initialized to zero at the beginning of the pro-
gram. Function Refresh is called periodically by the timer and this function refreshes the
display to display the value of variable count. The display digits are refreshed every 10 ms.

Raspberry Pi Pico Essentials

● 90

If the number to be displayed is less than 10 then a 0 is inserted in front of the number so
that the numbers 0 to 9 are displayed as 00 to 09. Variable count is incremented by one
every second.

#---
2-DIGIT 7-SEGMENT COUNTER
=========================
#
In this program a 2-digit 7-segment display is connected
to the Pico. The program counts up every second
#
Author: Dogan Ibrahim
File : SevenCount.py
Date : February, 2021
#--
from machine import Pin, Timer
import utime

tim = Timer()
LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [8, 7]
L = [0]*7
D = [0, 0]

#
LED bit pattern for all numbers 0-9
#
LED_Bits ={
‘0’:(1,1,1,1,1,1,0), # 0
‘1’:(0,1,1,0,0,0,0), # 1
‘2’:(1,1,0,1,1,0,1), # 2
‘3’:(1,1,1,1,0,0,1), # 3
‘4’:(0,1,1,0,0,1,1), # 4
‘5’:(1,0,1,1,0,1,1), # 5
‘6’:(1,0,1,1,1,1,1), # 6
‘7’:(1,1,1,0,0,0,0), # 7
‘8’:(1,1,1,1,1,1,1), # 8
‘9’:(1,1,1,1,0,1,1)} # 9

count = 0 # Initialzie count
#
This function configures the LED ports as outputs
#
def Configure_Port():
 for i in range(0, 7):
 L[i] = Pin(LED_Segments[i], Pin.OUT)

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 91

 for i in range(0, 2):
 D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
 global count
 cnt = str(count) # into string
 if len(cnt) < 2:
 cnt = "0" + cnt # Make sure 2 digits
 for dig in range(2): # Do for 2 digits
 for loop in range(0,7):
 L[loop].value(LED_Bits[cnt[dig]][loop])
 D[dig].value(1)
 utime.sleep(0.01)
 D[dig].value(0)

#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop. Start the periodic timer and counting
#
tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever
 utime.sleep(1) # Wait a second
 count = count + 1 # Increment count
 if count == 100: # If count = 100
 count = 0

Figure 3.63: Program: SevenCount.

Modified program
In the program shown in Figure 3.63, numbers under 10 are displayed with a leading 0
(e.g. 05). We can remove the leading zero by blanking all the segments of the left-hand
digit if the number is less than 10. The number five, for example, is displayed as 5 and not
as 05. The modified program listing (program: SevenCount2) is shown in Figure 3.64.
Here, list LED_Bits is modified by adding a blank line where all the segment bits are set to
0. Additionally, a blank character is inserted to the front of string cnt if the number is less
than 10 so that the leading digit is blanked.

Raspberry Pi Pico Essentials

● 92

#---
2-DIGIT 7-SEGMENT COUNTER
=========================
#
In this program a 2-digit 7-segment display is connected
to the Pico. The program counts up every second.
In this version of the program leading zero is omitted
#
Author: Dogan Ibrahim
File : SevenCount.py
Date : February, 2021
#--
from machine import Pin, Timer
import utime

tim = Timer()
LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [8, 7]
L = [0]*7
D = [0, 0]

#
LED bit pattern for all numbers 0-9
#
LED_Bits ={
‘ ‘:(0,0,0,0,0,0,0), # Blank
‘0’:(1,1,1,1,1,1,0), # 0
‘1’:(0,1,1,0,0,0,0), # 1
‘2’:(1,1,0,1,1,0,1), # 2
‘3’:(1,1,1,1,0,0,1), # 3
‘4’:(0,1,1,0,0,1,1), # 4
‘5’:(1,0,1,1,0,1,1), # 5
‘6’:(1,0,1,1,1,1,1), # 6
‘7’:(1,1,1,0,0,0,0), # 7
‘8’:(1,1,1,1,1,1,1), # 8
‘9’:(1,1,1,1,0,1,1)} # 9

count = 0 # Initialzie count
#
This function configures the LED ports as outputs
#
def Configure_Port():
 for i in range(0, 7):
 L[i] = Pin(LED_Segments[i], Pin.OUT)

 for i in range(0, 2):

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 93

 D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
 global count
 cnt = str(count) # into string
 if len(cnt) < 2:
 cnt = " " + cnt # Make sure 2 digits
 for dig in range(2): # Do for 2 digits
 for loop in range(0,7):
 L[loop].value(LED_Bits[cnt[dig]][loop])
 D[dig].value(1)
 utime.sleep(0.01)
 D[dig].value(0)

#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop. Start the periodic timer and counting
#
tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever
 utime.sleep(1) # Wait a second
 count = count + 1 # Increment count
 if count == 100: # If count = 100
 count = 0

Figure 3.64: Program: SevenCount2.

3.17 Project 16: 4-digit, 7-segment display seconds counter
Description: In this project a 7-segment, 4-digit multiplexed LED display is used as a
counter to count up every second from 0 to 9999. The project is very similar to the previous
project, but here 4 digits are used instead of 2.
The operation of a 4-digit multiplexed display (Figure 3.65) is similar to the 2-digit display,
where the LED segments of all the digits are tied together and the common pins of each
digit are turned ON separately by the microcontroller. By displaying each digit for several
milliseconds, the eye can not differentiate that the digits are not ON all the time. This way
we can multiplex any number of 7-segment displays together. For example, to display
number 5734, we must send '5' to the first digit and enable its common pin. After a few

Raspberry Pi Pico Essentials

● 94

milliseconds, number '7' is sent to the second digit and the common point of the second
digit is enabled, and so on. When this process is repeated continuously, the user perceives
both displays as ON continuously.

Figure 3.65: 4-digit, multiplexed 7-segment LED display.

The display used in this project is the DC56-11EWA, which is a red 0.56-inch height com-
mon-cathode two-digit multiplexed display having 18 pins, where the pin configuration is
shown in Table 3.3. Two such display modules are used to construct a 4-digit display. Each
module has its own E1 and E2 enable pins.
In a multiplexed display application, the segment pins of corresponding segments are con-
nected together. For example, pins 11 and 16 are connected as the common a segment.
Similarly, pins 15 and 10 are connected as the common b segment and so on.

Block Diagram: Figure 3.66 shows the block diagram of the project.

Figure 3.66: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 3.67. In this project,
the following pins of the Raspberry Pi Pico are used to interface with the 7-segment LED
display:

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 95

7-Segment Display Pin Raspberry Pi Pico GPIO Physical Pin No.

a 0 1

b 1 2

c 2 4

d 3 5

e 4 6

f 5 7

g 6 9

E1 7 (via transistor) 10

E2 8 (via transistor) 1

E1 9 (via transistor) 12

E2 10 (via transistor) 14

The 7-segment display segments are driven from the port pins through 470-ohm current
limiting resistors. Digit-enable pins E1, E2 of the first module and E1, E2 of the second
module are driven from port pins GP7, GP8, GP9, and GP10 respectively through four
BC108 NPN transistors used as switches (any other NPN, small-signal transistor can be
used here). The collectors of these transistors drive the segment digits. The segments are
enabled when the base of the corresponding transistor is set to logic 1. Notice that the fol-
lowing pins of the display are interconnected to form a multiplexed display:

16 and 11; 15 and 10; 3 and 8; 2 and 6; 1 and 5; 17 and 7; 18 and 12.

Figure 3.67: Circuit diagram of the project.

Raspberry Pi Pico Essentials

● 96

Program Listing: Figure 3.68 shows the program listing (Program: SevenCount4). At
the beginning of the program, the modules used in the program are imported. The program
is very similar to the one with 2 digits. Here, the list LED_Digits contains 4 numbers which
are the digit-enable pins of the four 7-segment LED modules. Function Refresh is very
similar to the function with 2 digits, except that here we had to make sure that the number
to be displayed (count) consists of 4 digits. If the number is less than 4 digits, spaces are
inserted in front of it to blank the display for these digit positions. Notice that 'digit count'
runs from 0 to 4 and not from 0 to 2 which was the case with the 2-digit display. The delay
between the digit-enables is reduced to 5 ms since we have 4 digits, and quicker refreshing
is required. Variable count starts from 0 at the beginning of the program by default. It is
incremented by 1 every second. When the count reaches 10000 it is reset back to 0.

#---
4-DIGIT 7-SEGMENT SECONDS COUNTER
=================================
#
In this program a 4-digit 7-segment display is connected
to the Pico. The program counts up every second.
In this version of the program leading zero is omitted
#
Author: Dogan Ibrahim
File : SevenCount4.py
Date : February, 2021
#--
from machine import Pin, Timer
import utime

tim = Timer()
LED_Segments = [6, 5 ,4, 3, 2, 1, 0]
LED_Digits = [7, 8, 9, 10]
L = [0]*7
D = [0, 0, 0, 0]

#
LED bit pattern for all numbers 0-9
#
LED_Bits ={
‘ ‘:(0,0,0,0,0,0,0), # Blank
‘0’:(1,1,1,1,1,1,0), # 0
‘1’:(0,1,1,0,0,0,0), # 1
‘2’:(1,1,0,1,1,0,1), # 2
‘3’:(1,1,1,1,0,0,1), # 3
‘4’:(0,1,1,0,0,1,1), # 4
‘5’:(1,0,1,1,0,1,1), # 5
‘6’:(1,0,1,1,1,1,1), # 6
‘7’:(1,1,1,0,0,0,0), # 7

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 97

‘8’:(1,1,1,1,1,1,1), # 8
‘9’:(1,1,1,1,0,1,1)} # 9

count = 0 # Initialzie count

#
This function configures the LED ports as outputs
#
def Configure_Port():
 for i in range(0, 7):
 L[i] = Pin(LED_Segments[i], Pin.OUT)

 for i in range(0, 4):
 D[i] = Pin(LED_Digits[i], Pin.OUT)

#
Refresh the 7-segment display
#
def Refresh(timer): # Thread Refresh
 global count
 cnt = str(count) # into string
 if len(cnt) == 3: # 3 digits?
 cnt = " " + cnt # Make sure 4 digits
 elif len(cnt) == 2: # 2 digits?
 cnt = " " + cnt # MAke sure 4 digits
 elif len(cnt) == 1: # 1 digit?
 cnt = " " + cnt # MAke sure 4 digits
 for dig in range(4): # Do for 4 digits
 for loop in range(0,7):
 L[loop].value(LED_Bits[cnt[dig]][loop])
 D[dig].value(1)
 utime.sleep(0.005)
 D[dig].value(0)

#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop. Start the periodic timer and counting
#
tim.init(freq=50, mode=Timer.PERIODIC, callback=Refresh)

while True: # Do forever

Raspberry Pi Pico Essentials

● 98

 utime.sleep(1) # Wait a second
 count = count + 1 # Increment count
 if count == 10000: # If count = 10000
 count = 0

Figure 3.68: Program: SevenCount4.

3.18 LCDs
In microcontroller-based systems we usually want to interact with the system — for exam-
ple, to enter a parameter, to change the value of a parameter, or to display the output of
a measured variable. Data is usually entered to a system using a switch, a small keypad,
or a full-blown keyboard. Data is usually displayed using an indicator such as one or more
LEDs, 7-segment displays, or LC (liquid-crystal) type displays. LCDs have the advantages
that they can display alphanumeric as well as graphical data. Some LCDs have 40 or more
character lengths with the capability to display data on several lines. Some other LCDs can
be used to display graphical images (graphical LCDs, or simply GLCDs), such as animation.
Some displays are available in single- or multi-colour, while others incorporate backlighting
so that they can be viewed in dimly lit conditions.
LCDs can be connected to a microcontroller either in parallel form or through the I2C inter-
face. Parallel LCDs (e.g. the Hitachi HD44780) are connected using more than one data line
and several control lines, and the data gets transferred in parallel form. It is common to
use either 4 or 8 data lines and two or more control lines. Using a 4-wire connection saves
I/O pins but it is slower since the data is transferred in two stages. I2C based LCDs on the
other hand are connected to a microcontroller using only 2 wires, carrying 'data' and 'clock'.
I2C-based LCDs are in general much easier to use and require less wiring, but they cost
more than the parallel ones. In this Chapter we will be learning to use both parallel and I2C
based LCDs in projects.
The programming of LCDs is a complex task and requires a good understanding of the in-
ternal operations of the LCD controllers, including knowledge of their exact timing require-
ments. Fortunately, there are several libraries that can be used to simplify the use of both
parallel and serial LCDs.

The HD44780 LCD module
Although there are several types of LCDs, the HD44780 is currently one of the most popu-
lar LCD modules used in industry as well as by hobbyists (Figure 3.69). This module is an
alphanumeric monochrome display and comes in different sizes. Modules with 16 columns
are popular in most small applications, but other modules with 8, 20, 24, 32, or 40 columns
are also available. Although most LCDs have two lines (or rows) as the standard, it is pos-
sible to purchase models with 1 or 4 lines. LCD displays are available with standard 14-pin
connectors, although 16-pin modules are also available, providing terminals for backlight-
ing. Table 3.4 gives the pin configuration and pin functions of a 16-pin LCD module. A brief
summary of the pin functions is given below.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 99

Pin no Name Function

1 VSS Ground

2 VDD + ve Supply

3 VEE Contrast

4 RS Register Select

5 R/W Read/Write

6 E Enable

7 D0 Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

15 A Backlight anode (+)

16 K Backlight cathode (GND)

Table 3.4: Pin configuration of HD44780 LCD module.

Figure 3.69: HD44780-compatible parallel LCD.

VSS (pin 1) and VDD (pin 2) are the Ground and Power Supply pins. The supply voltage
should be +5 V.
VEE is pin 3 and this is the contrast control pin used to adjust the contrast of the display.
The arm of a 10-kohm potentiometer is normally connected to this pin and the other two
terminals of the potentiometer are connected to the ground and power supply pins. The
contrast of the display is adjusted by rotating the potentiometer arm.
Pin 4 is the Register Select (RS) and when this pin is LOW, data transferred to the display
is treated as commands. When RS is HIGH, character data can be transferred to and from
the display.
Pin 5 is the Read/Write (R/W) line. This pin is pulled LOW in order to write commands or
character data to the LCD module. When this pin is HIGH, character data or status infor-
mation can be read from the module. This pin is normally connected permanently LOW so
that commands or character data can be sent to the LCD module.

Raspberry Pi Pico Essentials

● 100

Enable (E) is pin 6 which is used to initiate the transfer of commands or data between the
LCD module and the microcontroller. When writing to the display, data is transferred only
on the HIGH to LOW transition of this pin. When reading from the display, data becomes
available after the LOW to HIGH transition of the enable pin and this data remains valid as
long as the enable pin is at logic HIGH.
Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred between the
microcontroller and the LCD module using either a single 8-bit byte, or as two 4-bit nibbles.
In the latter case only the upper four data lines (D4 to D7) are used. 4-bit mode has the
advantage that four less I/O lines are required to communicate with the LCD. The 4-bit
mode is slower, however, since the data is transferred in two stages. In this book we shall
be using the 4-bit interface only.
Pins 15 and 16 are for background brightness control. To enable the background bright-
ness, a 220-ohm resistor should be connected from pin 15 to +5 V supply, and pin 16
should be connected to ground.
In 4-bit mode the following pins of the LCD are used. The R/W line is permanently connect-
ed to ground. This mode uses 6 GPIO port pins of the microcontroller:

VSS, VDD, VEE, E, R/S, D4, D5, D6, D7.

In the next section we will be creating an LCD library of functions that can be used to send
data and text to standard HD44780 type character LCDs.

3.19 Project 17: LCD functions – displaying text
Description: In this project we will develop a number of functions that can be used to send
data and text to 16×2 character type LC displays.

Aim: The aim of this project is to develop a library of functions that can be used to control
LCDs. These functions can be used in projects to send text and numbers to LCDs.

Block diagram: Figure 3.70 shows the block diagram of the project.

Figure 3.70: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.71. The LCD is
connected to the Pico using 4 data wires (D4 – D7) and 2 control wires (E and R/S). The
connections between the LCD and Pico are as follows:

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 101

LCD pin Pico pin

R/S GP0

E GP1

D4 GP2

D5 GP3

D6 GP4

D7 GP5

Figure 3.71: Circuit diagram of the project.

The contrast of the LCD is controlled using a 10-kohm potentiometer.

Program listing: Figure 3.72 shows the functions listing (Program: LCD). The connections
between the LCD and the Pico are defined at the beginning and these can be changed if
desired. The remainder of the functions should not be changed for proper control of the
LCD. These functions implement the initialization and control of the LCD.

The following LCD control functions are available:

lcd_init: this is the LCD initialization function and must be called first before any
other functions are called;
lcd_clear: clears the LCD;
lcd_home: homes the cursor (top left position);
lcd_cursor_blink: enables blinking cursor;
lcd_cursor_on: enables visible cursor;
lcd_cursor_off: disables visible cursor;
lcd_puts(s): displays string s;
lcd_putch(c): displays character c;
lcd_goto(col,row): positions the cursor at the specified column and position. (0,
0) is the left corner of the LCD. First row is row 0, second row is row 1 and so on.

Raspberry Pi Pico Essentials

● 102

#--
PARALLEL LCD FUNCTIONS
======================
#
These functions initialize and control the LCD
#
Author: Dogan Ibrahim
File : LCD
Date : February 2021
#--
from machine import Pin
import utime

EN = Pin(0, Pin.OUT)
RS = Pin(1, Pin.OUT)
D4 = Pin(2, Pin.OUT)
D5 = Pin(3, Pin.OUT)
D6 = Pin(4, Pin.OUT)
D7 = Pin(5, Pin.OUT)
PORT = [2, 3, 4, 5]
L = [0,0,0,0]

def Configure():
 for i in range(4):
 L[i] = Pin(PORT[i], Pin.OUT)

def lcd_strobe():
 EN.value(1)
 utime.sleep_ms(1)
 EN.value(0)
 utime.sleep_ms(1)

def lcd_write(c, mode):
 if mode == 0:
 d = c
 else:
 d = ord(c)
 d = d >> 4
 for i in range(4):
 b = d & 1
 L[i].value(b)
 d = d >> 1
 RS.value(mode)
 lcd_strobe()

 if mode == 0:

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 103

 d = c
 else:
 d = ord(c)
 for i in range(4):
 b = d & 1
 L[i].value(b)
 d = d >> 1
 RS.value(mode)
 lcd_strobe()
 utime.sleep_ms(1)
 RS.value(1)

def lcd_clear():
 lcd_write(0x01, 0)
 utime.sleep_ms(5)

def lcd_home():
 lcd_write(0x02, 0)
 utime.sleep_ms(5)

def lcd_cursor_blink():
 lcd_write(0x0D, 0)
 utime.sleep_ms(1)

def lcd_cursor_on():
 lcd_write(0x0E, 0)
 utime.sleep_ms(1)

def lcd_cursor_off():
 lcd_write(0x0C, 0)
 utime.sleep_ms(1)

def lcd_puts(s):
 l = len(s)
 for i in range(l):
 lcd_putch(s[i])

def lcd_putch(c):
 lcd_write(c, 1)

def lcd_goto(col, row):
 c = col + 1
 if row == 0:
 address = 0
 if row == 1:
 address = 0x40

Raspberry Pi Pico Essentials

● 104

 address = address + c - 1
 lcd_write(0x80 | address, 0)

def lcd_init():
 Configure()
 utime.sleep_ms(120)
 for i in range(4):
 L[i].value(0)
 utime.sleep_ms(50)
 L[0].value(1)
 L[1].value(1)
 lcd_strobe()
 utime.sleep_ms(10)
 lcd_strobe()
 utime.sleep_ms(10)
 lcd_strobe()
 utime.sleep_ms(10)
 L[0].value(0)
 lcd_strobe()
 utime.sleep_ms(5)
 lcd_write(0x28, 0)
 utime.sleep_ms(1)
 lcd_write(0x08, 0)
 utime.sleep_ms(1)
 lcd_write(0x01, 0)
 utime.sleep_ms(10)
 lcd_write(0x06, 0)
 utime.sleep_ms(5)
 lcd_write(0x0C, 0)
 utime.sleep_ms(10)
#================= END OF LCD FUNCTIONS =======================

Figure 3.72: Program LCD.

Displaying text
The following statement displays text Hello from PICO (these statements must follow the
LCD functions given in Figure 3.72).

lcd_init()
lcd_puts('Hello from PICO')

3.20 Project 18: Seconds counter — LCD
Description: In this project we will count up every second and display the result on the
LCD.

Aim: The aim of this project is to show how numeric data can be displayed on the LCD.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 105

The block diagram and circuit diagram of the project are as in Figure 3.70 and Figure 3.71.

Program listing: The program is named LCDCount. The following statements must follow
the LCD functions given in Figure 3.72.

lcd_init()
count = 0
while True:
 lcd_goto(0, 0)
 cntstr = str(count)
 lcd_puts(cntstr)
 count = count + 1
 utime.sleep(1)

Storing the LCD functions in a module library
We can easily combine all the LCD functions in a library and then import this library at the
beginning of our program. The steps are given below.

•	Open the program LCD (see Figure 3.72).
•	Click at Thonny: File followed by Save As.
•	Select Raspberry Pi Pico as the destination.
•	Set the filename as LCD.py and click OK.

We can now import library LCD into our LCD based programs. For example, the program
given in this project can be written as shown in Figure 3.73 (Program: LCDCount2). Notice
that all the LCD functions must be preceded with word LCD.

#--
LCD SECONDS COUNTER
===================
#
This program counts up every secon and displays on LCD
#
Author: Dogan Ibrahim
File : LCDCount2.py
Date : February 2021
#--
import LCD
import utime

LCD.lcd_init()
count = 0

while True:
 LCD.lcd_goto(0, 0)
 cntstr = str(count)

Raspberry Pi Pico Essentials

● 106

 LCD.lcd_puts(cntstr)
 count = count + 1
 utime.sleep(1)

Figure 3.73: Program LCDCount2.

3.21 Project 19: Reaction timer with LCD
Description: This is a reaction timer game. The idea of the game is to measure the reac-
tion time of the user. The game consists of an LCD, an LED, and a pushbutton. The game
starts with the user keeping one hand on the pushbutton. The LED turns ON at random
times and as soon as it is ON, the user is expected to press the pushbutton. The elapsed
time between seeing the LED lit and pressing the pushbutton is measured and displayed on
the LCD as the reaction time of the user.

Block diagram: Figure 3.74 shows the block diagram of the project.

Figure 3.74: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.75. The LCD is
connected as in the previous project. The LED and the pushbutton are connected to GP16
and GP17 respectively. An internal pull-up resistor is used at pin GP17, obviating the use
of an external resistor.

Figure 3.75: Circuit diagram of the project.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 107

Program listing: Figure 3.76 shows the program listing (Program: Reaction). At the
beginning of the program the LCD module, machine, utime, and the random module are
all imported to the program. Button and LED are assigned to port pins GP17 and GP16
respectively. GP17 is pulled-up internally so that the state of this pin is logic 1 by default,
and goes to logic 0 when the pushbutton is pressed. LCD library is then initialized by calling
function lcd_init.
At the beginning of the main program the LED is turned OFF, and the program enters a
while loop. Inside this loop the LCD is cleared, and a random number is generated between
3 and 10. This value is used to delay turning the LED ON so that the user does not know
when the LED is going to be lit. At this point the LED is turned ON, a timer is started, and
the button interrupt is enabled. The interrupt is configured to be activated on the falling
edge of the pushbutton output (i.e. when the pushbutton is pressed). The main program
then waits until the interrupt is serviced (i.e. while the flag is 0).
The program jumps to function MyButton as soon as the pushbutton is pressed. At the be-
ginning of this program further interrupts are disabled by setting handler = None. Inside
this function, the LED is turned OFF and the timer is stopped. The elapsed time is calculated
by subtracting the current time from the time when the LED was turned ON. This time is
converted into string and stored in variable ReactionStr and is displayed in the second
row of the LCD in milliseconds. The text Reaction Time: is displayed at the first row of the
LCD. As an example, if the reaction time is 500 ms, it is displayed in the following format:

	Reaction Time:
	500

Variable flag is then set to 1 so that the main program continues. At the same time the LCD
is cleared. The game restarts as soon as the LCD is cleared.

#--
REACTION TIMER
==============
#
This is a reaction timer program which measures the
reaction of the user and displays on the LCD in ms.
For a fast reaction time, the user should press the
pushbutton as soon as the LED is lit
#
Author: Dogan Ibrahim
File : Reaction.py
Date : February 2021
#--
import LCD
from machine import Pin
import utime
import random

Button = Pin(17, Pin.IN, Pin.PULL_UP)

Raspberry Pi Pico Essentials

● 108

LED = Pin(16, Pin.OUT)
LCD.lcd_init()
flag = 0

#
This is the interrupt service routine. The progra jumps
here as soon as the pushbutton is pressed
#
def MyButton(pin):
 global flag
 Button.irq(handler = None)
 LED.value(0)
 TmrEnd = utime.ticks_ms()
 ReactionTime = utime.ticks_diff(TmrEnd, TmrStart)
 ReactionStr = str(ReactionTime)
 flag = 1
 LCD.lcd_puts("Reaction Time:")
 LCD.lcd_goto(0, 1)
 LCD.lcd_puts(ReactionStr)
 utime.sleep(3)

#
Start of MAIN program
#
LED.value(0)
while True:
 flag = 0
 LCD.lcd_clear()
 rnd = random.randint(3, 10)
 utime.sleep(rnd)
 LED.value(1)
 TmrStart = utime.ticks_ms()
 Button.irq(handler=MyButton, trigger = Pin.IRQ_FALLING)
 while flag == 0:
 pass

Figure 3.76: Program Reaction.

3.22 Project 20: Ultrasonic distance measurement
Description: In this project an ultrasonic sensor module is used to measure the distance
in front of a sensor. The distance is displayed on the LCD.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used in a
project to measure distance.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 109

Ultrasonic sensors
In this project the popular HC-SR04 ultrasonic transmitter-receiver module is used (Fig-
ure 3.77). The basic features of this sensor module are:

•	Operating voltage:	 5 V
•	Operating current: 	 2 mA
•	Detection distance: 	 2 – 450 cm
•	Input trigger signal: 	 10 µs TTL
•	Sensor angle: 		 15 degrees or less

Figure 3.77: HC-SR04 ultrasonic sensor module.

The HC-SR04 has the following pin names and descriptions:

Vcc: Power input
Trig: Trigger input
Echo: Echo output
Gnd: Power ground

The basic principle of operation of the HC-SR04 ultrasonic sensor module is as follows (see
Figure 3.78):

•	a 10µs trigger pulse is sent to the module;
•	the module then sends eight 40-kHz square wave signals to the target and sets

the echo pin HIGH;
•	the program starts a timer;
•	the signal hits the target and echoes back to the module;
•	when the signal is returned to the module the echo pin goes LOW;
•	the timer is stopped;

the duration of the echo signal is calculated, and this is proportional to the distance to the
target.
The distance to the object is calculated as follows.

Distance to object (in metres) = (duration of echo time in seconds * speed of
sound) / 2

Raspberry Pi Pico Essentials

● 110

The speed of sound is 343 m/s, or 0.0343 cm/µs at 20 ºC air temperature.
Therefore,

Distance to object (in cm) = (duration of echo time in µs) * 0.0343 / 2
or,

	Distance to object (in cm) = (duration of echo time in µs) * 0.0171

For example, if the duration of the echo signal is 294 microseconds then the distance to the
object is calculated as follows:

Distance to object (cm) = 294 * 0.0171 = 5.03 cm

Figure 3.78: Operation of the ultrasonic sensor module.

Block Diagram: Figure 3.79 shows the block diagram of the project.

Figure 3.79: Block diagram of the project.

Circuit Diagram: Figure 3.80 shows the project circuit diagram. Notice that the sensor op-
erates at +5 V and its output is not compatible with the Raspberry Pi Pico input. A resistive
potential divider circuit is used to lower the sensor voltage to +3.3 V.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 111

Figure 3.80: Circuit diagram of the project.

Program listing: Figure 3.81 shows the program listing (Program: Ultrasonic). At the
beginning of the program, trig and the echo pins are configured. Inside the main program
loop, a trigger pulse is sent for 10 microseconds and the program waits to receive the echo
signal. After receiving the echo signal its duration is calculated and stored in the variable
named Duration. Assuming that the speed of sound in air is 343 m/s (at air temperature
20 ºC), the distance to the object is calculated and stored in variable distancecm. This
value is then displayed on the LCD as shown in Figure 3.81.

#--
ULTRASONIC DISTANCE MESUREMENT
==============================
#
In this project a HC-SR04 type ultrasonic sensor module is
connected to the Raspberry Pi Pico. The program displays
distance to an object in-front of the sensor
#
Author: Dogan Ibrahim
File : Ultrasonic.py
Date : February 2021
#--
from machine import Pin
import utime
import LCD

trig = Pin(16, Pin.OUT) # trig pin
echo = Pin(17, Pin.IN) # echo pin

LCD.lcd_init() # Init LCD

Raspberry Pi Pico Essentials

● 112

while True:
 trig.value(0)
 utime.sleep_us(5) # Wait until settled

 trig.value(1) # Send trig pulse
 utime.sleep_us(10) # 10 microseconds
 trig.value(0) # Remove trig pulse

 while echo.value() == 0: # Wait for echo 1
 pass
 Tmrstrt = utime.ticks_us()

 while echo.value() == 1: # Wait for echo 0
 pass
 Tmrend = utime.ticks_us()

 Duration = utime.ticks_diff(Tmrend, Tmrstrt)
 distancecm = Duration * 0.0171
 LCD.lcd_clear()
 D = "Dist = " + str(distancecm)[:6] + " cm"
 LCD.lcd_puts(D)
 utime.sleep(1)

Figure 3.81: Program: Ultrasonic.

Figure 3.82: Example display on the LCD.

3.23 Project 21: Height of a person (stadiometer)
Description: Stadiometers are electronic devices used to measure the height of a person.
In this project an ultrasonic sensor module is used to measure the height of a person. The
height of the stadiometer is assumed to be 200 cm. The height of the person is displayed
on the LCD.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used to
make a stadiometer

Block diagram: Figure 3.83 shows the block diagram of the project. The person whose
height is to be measured stands below the stadiometer.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 113

Figure 3.83: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is identical to the one in Figure 3.80.

Program listing: Figure 3.84 shows the program listing (Program: Stadiometer). At the
beginning of the program the height of the stadiometer is specified (H = 200 cm). The
program then calculates the distance between the sensor and the top of the head of the
person (h) The height of the person is given by H – h.

#--
PERSON HEIGHT MEASUREMENT (STADIOMETER)
=======================================
#
In this project a HC-SR04 type ultrasonic sensor module is
connected to the Raspberry Pi Pico. The program measures the
height of a person
#
Author: Dogan Ibrahim
File : Stadiometer.py
Date : February 2021
#--
from machine import Pin
import utime
import LCD

trig = Pin(16, Pin.OUT) # trig pin
echo = Pin(17, Pin.IN) # echo pin

LCD.lcd_init() # Init LCD
H = 200 # Height of stadiometer

while True:
 trig.value(0)

Raspberry Pi Pico Essentials

● 114

 utime.sleep_us(5) # Wait until settled

 trig.value(1) # Send trig pulse
 utime.sleep_us(10) # 10 microseconds
 trig.value(0) # Remove trig pulse

 while echo.value() == 0: # Wait for echo 1
 pass
 Tmrstrt = utime.ticks_us()

 while echo.value() == 1: # Wait for echo 0
 pass
 Tmrend = utime.ticks_us()

 Duration = utime.ticks_diff(Tmrend, Tmrstrt)
 h = Duration * 0.0171
 LCD.lcd_clear()
 Height = H - h
 D = "H = " + str(Height)[:5] + " cm"
 LCD.lcd_puts(D)
 utime.sleep(1)

Figure 3.84: Program: Stadiometer.

3.24 Project 22: Ultrasonic reverse parking aid with buzzer
Description: In this project the ultrasonic sensor module is used together with an active
buzzer to help while reverse parking our car. As the distance to the objects get smaller, the
buzzer sound faster to warn the driver that the objects at the rear of the vehicle are nearer.

Aim: The aim of this project is to show how the ultrasonic sensor module can be used to
help reverse-park our car.

Block Diagram: Figure 3.85 shows the block diagram of the project.

Figure 3.85: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 3.86. The circuit is
basically same as Figure 3.80, but there is no LCD. Also an active buzzer is added to port
pin GP18 of the Raspberry Pi Pico.

Chapter 3 • Raspberry Pi Pico Simple Hardware Projects

● 115

Figure 3.86: Circuit diagram of the project.

Program listing: Figure 3.87 shows the program listing (Program: Parking). After finding
the distance to the obstacle, the program creates a delay value depending on the distance
of the obstacle. As the car gets closer to the obstacle, this delay value is made smaller,
causing the buzzer to sound faster (more frequently) to alert the driver that the car is get-
ting close to the obstacle. If on the other hand the car gets further away from the obstacle,
the delay is made larger so that the buzzer sounds slower (less frequently) to inform the
driver that the obstacle is not very close.

#--
ULTRASONIC REVERSE CAR PARKING AID
==================================
#
In this project a HC-SR04 type ultrasonic sensor module is
connected to the Raspberry Pi Pico. Additionally, a buzzer
is connected. The project sounds the buzzer as the car gets
near an obstacle.The buzzer sounds faster as the car gets
nearer an object

Author: Dogan Ibrahim
File : Parking.py
Date : February 2021
#--
from machine import Pin
import utime

trig = Pin(16, Pin.OUT) # trig pin
echo = Pin(17, Pin.IN) # echo pin

Buzzer = Pin(18, Pin.OUT) # Buzzer at pin 18
Buzzer.value(0) # Turn OFF buzzer

Raspberry Pi Pico Essentials

● 116

while True:
 trig.value(0)
 utime.sleep_us(5) # Wait until settled

 trig.value(1) # Send trig pulse
 utime.sleep_us(10) # 10 microseconds
 trig.value(0) # Remove trig pulse

 while echo.value() == 0: # Wait for echo 1
 pass
 Tmrstrt = utime.ticks_us()

 while echo.value() == 1: # Wait for echo 0
 pass
 Tmrend = utime.ticks_us()

 Duration = utime.ticks_diff(Tmrend, Tmrstrt)
 distance = Duration * 0.0171

#
Now sound the buzzer accordingly.The sounding should be faster
as the car gets neareer the object.This is done by changing the
delay in the duration of the sound
#

 if distance > 100:
 dely = 0
 elif distance > 70 and distance < 90:
 dely = 600
 elif distance > 50 and distance < 70:
 dely = 400
 elif distance > 30 and distance < 50:
 dely = 300
 elif distance > 10 and distance < 30:
 dely = 200
 elif distance < 10:
 dely = 10

 if distance < 100:
 Buzzer.value(1)
 utime.sleep_ms(dely)
 Buzzer.value(0)
 utime.sleep_ms(dely)

Figure 3.87: Program: Parking.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 117

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

4.1 Overview
Most sensors in real life are analogue, supplying analogue output voltages or currents
which are proportional to the measured variable. Without using ADCs, such sensors cannot
be directly connected to digital computers. In this Chapter we will learn how to use the ADC
channels of the Raspberry Pi Pico.
Most ADCs for general purpose applications are 8-bits or 10-bits wide, although some
higher-grade professional ones are 16 or even 32-bit wide. The conversion time of an ADC
is one of its important specifications. This is the time taken for the ADC to convert an an-
alogue input into digital. The smaller the conversion time, the better. Some cheaper ADCs
give the converted digital data in serial format, while some more expensive, professional
ones provide parallel digital outputs.
The Raspberry Pi Pico has 5 ADC channels. Four of them are at pins GP26, GP27, GP28, and
GP29 — known as analogue channels 0, 1, 2, and 3. The first 3 channels are available at the
GPIO pins, and the 4th one can be used to measure the VSYS voltage of the board. There is
also a built-in ADC channel 4 which is connected internally to a temperature sensor.
The Pico's ADC has a resolution of 12 bits, thus converting an analogue input voltage into
4096 (0 to 4095) levels. MicroPython however transforms the output into a 16-bits number,
ranging from 0 to 65535.
The reference voltage of the ADC used on the Pico is +3.3 V. Using such an ADC, the reso-
lution is 3300 mV / 65535 = 0.050 mV per bit, or 50 μV/bit. Therefore, an analogue input
voltage of 0.050 mV gives digital output of 00000000 0000001, 0.1mV gives 00000000
00000010, and so on.
In this Chapter we will develop several projects using the ADC offered by the Pico.

4.2 Project 1: Voltmeter
Description: This is a simple voltmeter project where the voltage of an external voltage
source is measured and displayed on the screen in millivolts.

Aim: The aim of this project is to show how the Pico ADC channels can be used to read
analogue input voltage.

Circuit diagram: Figure 4.1 shows the circuit diagram of the project. In this project, the
voltage to be measured is applied to analogue input GP26 (pin 31, channel 0). You must
make sure that the input voltage does not exceed +3.3 V. If it is required to measure higher
voltages, then you can use resistive potential divider circuits at the input of the ADC.

Raspberry Pi Pico Essentials

● 118

Figure 4.1: Circuit diagram of the project.

Program listing: Figure 4.2 shows the program listing and sample output from the pro-
gram (Program: Voltmeter). At the beginning of the program module ADC of 'machine' is
imported to the program and variable AnalogIn is assigned to analogue input channel 0.
The conversion factor is then defined as 3300 / 65535. The value read from the analogue
channel must be multiplied by this number in order to calculate the actual value of the
measured voltage. The remainder of the program runs in a loop where the input voltage is
read, converted to millivolts, and then displayed on the PC screen.

Figure 4.2: Program: Voltmeter.

Displaying the voltage on the LCD
It is easy to modify the program to display the measured voltage on an LCD. First of all,
build the circuit given in Figure 3.71 and apply the voltage to be measured to GP26 (pin 31)
of the Pico, making sure that the voltage does not exceed +3.3 V. The program to display
the measured voltage on the LCD (Program: VoltLCD) is shown in Figure 4.3.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 119

#--
VOLTMETER
=========
#
This is a voltmeter project. The voltage to me measured
is applied to GP26 (pin 31) of the Pico
This version of the program displays the measured voltage
on the LCD
#
Author: Dogan Ibrahim
File : VoltLCD.py
Date : February 2021
#--
from machine import ADC
import utime
import LCD

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor
LCD.lcd_init()

while True: # Do forever
 mV = AnalogIn.read_u16() # Read input
 mV = mV * Conv # Input in mV
 LCD.lcd_clear() # Clear screen
 mVstr = str(mV) # Convert to string
 LCD.lcd_puts(mVstr) # Display
 utime.sleep(1) # Wait 1 second

Figure 4.3: Program: VoltLCD.

4.3 Project 2: Temperature measurement – using the internal
temperature sensor
Description: In this project, the internal temperature sensor of Pico is employed, and the
measured temperature is displayed on the LCD.

Aim: The aim of this project is to show how the internal temperature sensor can be used
to measure the temperature.

Circuit diagram: The circuit diagram of the project is same as in Figure 3.71.

Program listing: The internal temperature sensor is connected to ADC channel 4. The
data read is converted into degrees Celsius using the following formula:

	Temperature (in degrees Celsius) = 27 – (reading – 0.706) / 0.001721

Raspberry Pi Pico Essentials

● 120

The program listing is shown in Figure 4.4 (Program: TempInt). The program reads the
data from ADC channel 4, converts it into volts, and then applies the above formula to con-
vert into degrees Celsius. The calculated value is then displayed on the LCD. The program
repeats every second. You can check that the temperature will increase if you touch the
processor with the tip of your finger.

#--
TEMPERATURE MEASUREMENT
=======================
#
This program measures the temperature using the internal
temperature sensor of the Pico and displyas on LCD
#
Author: Dogan Ibrahim
File : TempInt.py
Date : February 2021
#--
from machine import ADC
import utime
import LCD

AnalogIn = ADC(4) # ADC channel 4
Conv = 3.3 / 65535 # Conversion factor
LCD.lcd_init()

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 V = V * Conv # Convert to Volts
 Temp = 27 - (V - 0.706) / 0.001721 # Convert to temp
 LCD.lcd_clear() # Clear screen
 Tempstr = str(Temp) # Convert to string
 LCD.lcd_puts(Tempstr) # Display
 utime.sleep(1) # Wait 1 second

Figure 4.4: Program: TempInt.

4.4 Project 3: Temperature measurement – using an external
temperature sensor
Description: In this project, an external analogue temperature sensor is used to measure
and display the ambient temperature on the LCD

Aim: The aim of this project is to show how an external analogue temperature can be used
to measure the external temperature.

Block Diagram: Figure 4.5 shows the block diagram of the project.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 121

Figure 4.5: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.6. In this pro-
ject a TMP36 type temperature sensor chip is used (Figure 4.7) and it's connected to ADC
channel 0. This chip provides analogue output voltage proportional to the measured tem-
perature. The relationship between the measured temperature and the output voltage is
given by:

T = (Vo – 500) / 10

Where T is the measured temperature in degrees Celsius, and Vo is the sensor output volt-
age in millivolts.

Figure 4.6: Circuit diagram of the project.

Figure 4.7: TMP36 sensor chip.

Raspberry Pi Pico Essentials

● 122

Program listing: Figure 4.8 shows the program listing (Program: TMP36). The sensor
voltage is read in on ADC channel 0. This voltage is then converted into millivolts, the
temperature is calculated in degrees Celsius, and gets displayed on the LCD every second.
Notice that the output data is formatted so that only the first 5 digits of string Temp are
displayed. As an example, the temperature is displayed in the following format:

nn.mm

#--
TEMPERATURE MEASUREMENT
=======================
#
This program measures the temperature using an external
TMP36 type temperature sensor chip
#
Author: Dogan Ibrahim
File : TMP36.py
Date : February 2021
#--
from machine import ADC
import utime
import LCD

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor
LCD.lcd_init()

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 mV = V * Conv # Convert to Volts
 Temp = (mV - 500.0) / 10.0 # Convert to temp
 LCD.lcd_clear() # Clear screen
 Tempstr = str(Temp)[:5] # Convert to string
 LCD.lcd_puts(Tempstr) # Display
 utime.sleep(1) # Wait 1 second

Figure 4.8: Program: TMP36.

4.5 Project 4: ON/OFF temperature controller
Description: Temperature control is important in many industrial, commercial, domestic,
and chemical applications. A temperature control system basically consists of a tempera-
ture sensor, a heater, a fan (optional), an actuator to operate the heater, and a controller.
A negative feedback is used to control the heater so that the temperature is at the desired
set-point value. Accurate temperature control systems are based on the PID (Proportional
+ Integral + Derivative) algorithm.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 123

In this project, an ON/OFF type simple control system is designed. ON/OFF temperature
control systems commonly use relays to turn the heater ON or OFF depending on the set-
point temperature and the measured temperature. If the measured temperature is below
the set-point value, then the relay is activated which turns the heater ON. If on the other
hand the measured temperature is above the set-point value, then the relay is de-activated
to turn OFF the heater so that the temperature is lowered.
The project employs a type TMP36 sensor chip in conjunction with a heater and an LED, to
control the temperature of a small room. The heater is turned ON by the relay if the meas-
ured room temperature (RoomTemp) is below the setpoint temperature (SetTemp), and
it is turned OFF if it is above the setpoint value. The LED turns ON if the room temperature
is below the set point value to indicate that the heater is ON. This process is repeated every
3 seconds.

The aim: The aim of this project is to show how an ON/OFF temperature controller system
can be designed using a low-cost temperature sensor chip with the Raspberry Pi Pico.

Block diagram: Figure 4.9 shows the block diagram of the project.

Figure 4.9: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.10. TMP36 sensor
chip is connected to analogue channel 0 as in the previous project. The LED is connected
to GP16 through a 470-ohm current-limiting resistor. The Relay is connected to GP17 and
is activated when a logic 1 (+3.3V) is applied to it. The connections between the Raspberry
Pi Pico ports and various components are as follows:

Raspberry Pi Pico Component

GP26 (ADC0) TMP36 out

GP16 LED

GP17 Relay

Raspberry Pi Pico Essentials

● 124

Figure 4.10: Circuit diagram of the project.

Operation of the project
The operation of the project is described in Figure 4.11 as a PDL (program description
language).

BEGIN
 Read the set temperature (SetTemp)
 Read the maximum temperature (MaxTemp)
 DO FOREVER
 Read the room temperature (RoomTemp)
 IF SetTemp > RoomTemp THEN
 Activate relay
 LED ON
 ELSE
 Deactivate relay
 LED OFF
 ENDIF
 Wait 3 seconds
 ENDDO
END

Figure 4.11: PDL of the project.

Program listing: Figure 4.12 shows the program listing (Program: ONOFF). The desired
temperature is set to 24 ºC and is stored in variable SetTemp. The LED and Relay are
assigned to GP16 and GP17 respectively, which are configured as outputs and are turned
OFF at the beginning of the program.
Inside the program loop, the room temperature (RoomTemp) is read and compared with
the desired temperature (SetTemp). If the room temperature is below the desired value
then both the heater and the LED are turned ON, otherwise they are both turned OFF. This
process is repeated after 3 seconds of delay.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 125

#--
ON-OFF TEMPERATURE CONTROLLER
=============================
#
This is an ON-OFF temperature controller program. The
project consists of a temperature sensor, an LED and a
heater. The heater and the LED are turned ON if the room
temperature (RoomTemp) is below the desired value (SetTemp)
#
Author: Dogan Ibrahim
File : ONOFF.py
Date : February 2021
#--
from machine import ADC, Pin
import utime

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor

SetTemp = 24.0 # Desired temperature
LED = Pin(16, Pin.OUT) # LED at GP16
Relay = Pin(17, Pin.OUT) # Relay at GP17
LED.value(0) # Turn OFF LED
Relay.value(0) # Turn OFF Relay

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 mV = V * Conv # Convert to Volts
 RoomTemp = (mV - 500.0) / 10.0 # Measured temperature
 if RoomTemp < SetTemp: # If Room temp < desired
 Relay.value(1) # Turn Relay ON
 LED.value(1) # Turn LED ON
 else:
 Relay.value(0) # Turn Relay OFF
 LED.value(0) # Tuen LED OFF
 utime.sleep(3) # Wait 3 seconds

Figure 4.12: Program: ONOFF.

4.6 Project 5: ON/OFF temperature controller with LCD
Description: This project is similar to the previous project, but here additionally an LCD is
connected to the project. The LCD shows both the desired temperature (SetTemp) and the
measured room temperature (RoomTemp).

Block diagram: Figure 4.13 shows the block diagram of the project.

Raspberry Pi Pico Essentials

● 126

Figure 4.13: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.14. The LCD is
connected to the Pico as in the previous LCD based projects. The TMP36, LED, and the Re-
lay are connected as in the previous project.

Figure 4.14: Circuit diagram of the project.

Program listing: Figure 4.15 shows the program listing (Program: ONOFFLCD). The
program is very similar to the one given in Figure 4.12. Here, additionally the desired tem-
perature and the room temperature are displayed in the following format, where the room
temperature is updated continuously at every 3 seconds:

Row 0: Set : 23.45
Row 1: Meas: 22.50

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 127

#--
ON-OFF TEMPERATURE CONTROLLER
=============================
#
This is an ON-OFF temperature controller program. The
project consists of a temperature sensor, an LED and a
heater. The heater and the LED are turned ON if the room
temp (RoomTemp) is below the desired value (SetTemp)
#
An LCD is used to display the desired temperature at the
top row, and room temperature at bottom row
#
Author: Dogan Ibrahim
File : ONOFFLCD.py
Date : February 2021
#--
from machine import ADC, Pin
import utime
import LCD

LCD.lcd_init() # Initialize LCD
AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor

SetTemp = 24.0 # Desired temperature
LED = Pin(16, Pin.OUT) # LED at GP16
Relay = Pin(17, Pin.OUT) # Relay at GP17
LED.value(0) # Turn OFF LED
Relay.value(0) # Turn OFF Relay

LCD.lcd_clear() # Clear LCD
LCD.lcd_puts("Set : ") # Display Set :
LCD.lcd_puts(str(SetTemp)[:5]) # Display SetTemp

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 mV = V * Conv # Convert to Volts
 RoomTemp = (mV - 500.0) / 10.0 # Measured temperature
 LCD.lcd_goto(0, 1) # Cursor at 0,1
 LCD.lcd_puts("Meas: ") # Display Meas:
 LCD.lcd_puts(str(RoomTemp)[:5]) # Display RoomTemp
 if RoomTemp < SetTemp: # If Room temp < desired
 Relay.value(1) # Turn Relay ON
 LED.value(1) # Turn LED ON
 else:
 Relay.value(0) # Turn Relay OFF

Raspberry Pi Pico Essentials

● 128

 LED.value(0) # Turn LED OFF
 utime.sleep(3) # Wait 3 seconds

Figure 4.15: Program: ONOFFLCD.

4.7 Project 6: Measuring the ambient light intensity
Description: In this project, a light-dependent-resistor (LDR) is used to measure and dis-
play the ambient light intensity.

Block diagram: Figure 4.16 shows the block diagram of the project.

Figure 4.16: Block diagram of the project.

Background information: An LDR is an electronic component whose resistance changes
with the light intensity that falls upon it. The resistance of the LDR drops with an increase in
light intensity falling upon the device. Typically, the resistance at daylight is in the order of
kilo-ohms (also: k-ohms or kΩ) and in dark it could be a few mega-ohms (also: megohms
or MΩ). As a result, we can use such a device to measure the light intensity. Figure 4.17
shows the commonly used symbol of an LDR. A typical characteristic of an LDR is shown
in Figure 4.18. LDRs are used in circuits in the form of resistive potential dividers. A fixed
resistor is connected in series with the LDR, and the voltage across this resistor is meas-
ured. This voltage is proportional to the resistance of the LDR and consequently to the light
intensity incident on the face of the LDR.

Figure 4.17: LDR circuit symbol.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 129

Figure 4.18: Typical LDR light/R characteristics.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.19. A 10-kohm
fixed resistor is used in the resistive potential divider circuit. The voltage across this resistor
is measured using channel 0 of the ADC.

Figure 4.19: Circuit diagram of the project.

Program listing: Figure 4.20 shows the program listing (Program: LDR) together with
output data. The program reads the analogue voltage across the fixed resistor. Notice that
there is no need to know the absolute voltage. We can just use the digital value of the
voltage (0 to 65535) read (r in this program). This value should be calibrated to give the
intensity of the light in Lux.

Raspberry Pi Pico Essentials

● 130

Figure 4.20: Program: LDR.

Calibration
A light-intensity meter is required to calibrate the readings. Measurements should be made
at different light levels and a table should be created to list the lux readings of the meter
and the corresponding output from the ADC. Then, a formula can be derived that describes
the relationship between the light level and the ADC readings. Alternatively, this table can
be indexed for a given ADC reading in order to find the corresponding light level. Interpo-
lation can be applied for values between two readings.

4.8 Project 7: Ohmmeter
Description: This is an ohmmeter project. The project measures the value of an unknown
resistor and displays it on the Thonny screen.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.21. A fixed resistor
(10 kohm) is used in series with the unknown resistor. The program measures the voltage
across the fixed resistor and then calculates the value of the unknown resistor (Rx).

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 131

Figure 4.21: Circuit diagram of the project.

Program listing: Figure 4.22 shows the program listing (Program: Ohmmeter). If RF is
the fixed resistance and Rx is the unknown resistance, assuming the circuit is supplied from
+3.3 V (3300 mV), the voltage at the output of the fixed resistor will be:

V = 3300 × RF / (RF + Rx)

If we choose RF to be 10 kΩ, then

V = 33000 / (10 + Rx)

Where V is in millivolts, and RF and Rx are in kilo-ohms. As Rx changes from, say, 1 kΩ to
1 MΩ, the voltage across the fixed resistor will change from:

V = 33000 / 11 = 3000 mV

into

V = 33000 / 1001 = 33 mV

We can easily measure these voltages with the ADC. Therefore, the resistance measure-
ment range of our ohmmeter is well below 1 kΩ and above 1 MΩ.

What we really want is to measure resistance Rx. We can write:

Rx = 3300 × RF / V – RF

Remembering that the ADC resolution is 65535 steps and RF = 10 kΩ, we can write:

Rx = 655350 / Vm – RF

Raspberry Pi Pico Essentials

● 132

Where Vm is the digital value directly read from the ADC.

The voltage across the fixed resistor is read 5 times, and the value is averaged for higher
accuracy.

#--
OHMMETER
========
#
In this project the value of an unknown resistor is measured
#
Author: Dogan Ibrahim
File : Ohmmeter.py
Date : February 2021
#---
from machine import ADC
import utime

RF = 10 # RF = 10K
LDRin = ADC(0) # ADC channel 0

while True: # Do forever
 sum = 0
 for i in range(5): # Get 5 readings
 sum = sum + LDRin.read_u16() # Read voltage
 Vm = sum / 5 # Average
 Rx = 65535*RF / Vm - RF # Calculate Rx
 RxOhms = 1000 * Rx # Rx in Ohms
 print("Rx (Ohms)=%8.1f" %RxOhms) # Display Rx
 utime.sleep(1) # Wait 1 second

Figure 4.22: Program: Ohmmeter.

An example output from the program is shown in Figure 4.23.

Figure 4.23: Example output.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 133

4.9 Project 8: Internal and external temperature
Description: In this project, two temperature sensor chips are used: one to measure the
external ambient temperature, and the other to measure the internal ambient tempera-
ture. Both readings are displayed on the LCD every 2 seconds.

Block diagram: Figure 4.24 shows the block diagram of the project.

Figure 4.24: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.25. Two TMP36
type temperature sensor chips are used, one connected to channel 0 (external sensor) and
the other one connected to channel 1 (internal sensor) of the ADC. The LCD is connected
to the Pico as in the previous LCD-based projects.

Figure 4.25: Circuit diagram of the project.

Program listing: Figure 4.26 shows the program listing (Program: MultiTmp). The ex-
ternal temperature sensor is named ExtTemp and gets assigned to channel 0. The internal

Raspberry Pi Pico Essentials

● 134

temperature is named IntTemp and assigned to channel 1 of the ADC. Inside the pro-
gram loop, the temperature of each channel is read, converted into degrees Celsius, and
displayed on the LCD in the following format (top row displays the external temperature,
bottom row displays the internal temperature):

	Row 0: Ext: nn.mm
	Row 1: Int: pp.qq

#--
EXTERNAL AND INTERNAL TEMPERATURE MEASUREMENT
===
#
This program measures the external and internal temperatures
using two TMP36 type temperature sensor chips. Both external
and internal temperatures are displayed on the LCD
#
Author: Dogan Ibrahim
File : MultiTmp.py
Date : February 2011
#---
from machine import ADC
import utime
import LCD

ExtTemp = ADC(0) # ADC channel 0
IntTemp = ADC(1) # ADC channel 1
Conv = 3300 / 65535 # Conversion factor
LCD.lcd_init()

while True: # Do forever
 Vext = ExtTemp.read_u16() # Read channel 0
 mV = Vext * Conv # Convert to mV
 Tempext = (mV - 500.0) / 10.0 # External temp
 Vint = IntTemp.read_u16() # Read channel 1
 mV = Vint * Conv # Convert to mV
 Tempint = (mV - 500.0) / 10.0 # Internal temp
 LCD.lcd_clear() # Clear screen
 Tempextstr = str(Tempext)[:5] # Convert to string
 Tempintstr = str(Tempint)[:5] # Convert to string
 LCD.lcd_puts("Ext: ") # Heading
 LCD.lcd_puts(Tempextstr) # Display external
 LCD.lcd_goto(0, 1) # Cursor at row 1
 LCD.lcd_puts("Int: ") # Heading
 LCD.lcd_puts(Tempintstr) # Display internal
 utime.sleep(2) # Wait 2 seconds

Figure 4.26: Program: MultiTmp.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 135

4.10 Project 9: Using a thermistor to measure temperature
Description: In this project we will be reading the ambient temperature every second
using the KY-013 temperature sensor (NTC thermistor) module, and then display it on the
LCD.

Aim: The aim of this project is to show how the temperature of an NTC thermistor temper-
ature sensor can be read, as well as learn to use an LCD in a project.

Background information: In this project, the type KY-013 analogue output NTC thermis-
tor temperature sensor module is used. NTC thermistors are semiconductor devices whose
resistances are inversely proportional to the temperature. Thus, as the temperature rises,
their resistance falls and vice versa. As shown in Figure 4.27, this is a 3-pin module with
the following pin assignment:

GND
+V
S (analogue output)

Figure 4.27: KY-013 module.

The sensor module is internally connected to a 10-kohm resistor as shown in the Figure to
form a potential divider circuit. The voltage across the thermistor is read using an analogue
port of the processor. This voltage is proportional to the temperature where the temper-
ature is calculated using the well-known Steinhart-Hart equation. Different thermistors
have different Steinhart-Hart coefficients, and it is required to know these coefficients in
order to calculate the temperature of the thermistor used. For the KY-013, these coefficients
are specified by the manufacturer as follows (your coefficients may be slightly different!):

c1 = 0.001129148
c2 = 0.000234125
c3 = 0. 0000000876741

Assuming the resistor is series with the thermistor, R1 = 10 kΩ (i.e. R1 = 10000 ohms),
and a 16-bit ADC is used (0 to 65535 quantization levels) to read the thermistor voltage,
the temperature is calculated as follows (see Figure 4.27).
First, calculate the resistance of the thermistor. From the potential divider circuit, the out-
put voltage Vo is given by:

Raspberry Pi Pico Essentials

● 136

Vo = V × R2 / (R1 + R2)							 (1)

Where V is the applied voltage. From this equation we find R2 as:

R2 = Vo × R1 / (V – Vo) 							 (2)

With a 16-bit ADC, if Raw is the raw value read by the ADC then the actual physical voltage
read, Vo, is given by:

 Vo = Raw × V / 65535						 (3)

 From (3) and (2) we get:

R2 = [R1 × Raw × V / 65535] / (V – Raw × V / 65535]		 (4)

Equation (4) is simplified to give:

R2 = R1 / (65535 / Raw – 1)						 (5)

or,

R2 = 10000 / (65535 / Raw – 1)				 	 (6)

Knowing R2, the temperature is then given by the Steinhart-Hart equation:

T = log(R2)								 (7)

Tmp = 1 / (c1 + (c2 + (c3 × T × T)) × T)	 	 		 (8)

Now, we convert the temperature from Kelvin into Celsius:

Temp = Tmp – 273.15			 			 (9)

We will be using the above equations to calculate the temperature. Notice that the above
calculations are only for a 10-kΩ resistor. You should check to make sure that you have the
correct resistor installed on the KY-013 sensor module. Notice that the reading is very
sensitive to the resistor as well as to the thermistor parameters c1, c2, c3.

Block diagram: Figure 4.28 shows the block diagram of the project.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 137

Figure 4.28: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.29. The sensor is
connected to channel 0 of the ADC (GP26, pin 31). The LCD is connected as in the previous
projects using LCD.

Figure 4.29: Circuit diagram of the project.

Program listing: Figure 4.30 shows the program listing (Program: Thermistor). At the
beginning of the program variable Thermistor is assigned to channel 0 of the ADC and the
LCD is initialized. Main program runs in a loop every 2 seconds. The thermistor data is read
into variable Raw and then function Temperature is called to calculate the temperature. The
LCD is cleared, heading Temperature (C) is displayed at the top row, and the temperature
reading is formatted and displayed at the bottom row of the LCD in degrees Celsius in the
following format:

Row 0:	 Temperature (C)
Row 1:	 nn.mm

Raspberry Pi Pico Essentials

● 138

#--
THERMISTOR TEMPERATURE MEASUREMENT
==================================
#
This program measures the ambient temperature using a
low-cost NTC thermistor module (KY-013). The readings are
displayed on the LCD
#
Author: Dogan Ibrahim
File : Thermistor.py
Date : February 2021
#---
from machine import ADC
import utime
import math
import LCD

Thermistor = ADC(0) # ADC channel 0
LCD.lcd_init() # Initialize LCD

#
Calculate the temperature using Steinhart-Hart equation
#
def Temperature(RawValue):
 c1 = 0.001129148
 c2 = 0.000234125
 c3 = 0.0000000876741
 R1 = 10000.0
 ADC_Res = 65535.0

 R2 = R1 / ((ADC_Res/RawValue - 1))
 T = math.log(R2)
 Tmp = 1.0 / (c1 + (c2 + (c3 * T * T)) * T)
 Temp = Tmp - 273.15
 return Temp

while True: # Do forever
 Raw = Thermistor.read_u16() # Read channel 0
 temp = Temperature(Raw) # Calculate temp
 LCD.lcd_clear() # Clear LCD
 LCD.lcd_puts("Temperature (C)") # Display heading
 LCD.lcd_goto(0, 1) # Move cursor
 tempstr = str(temp)[:5] # Convert to string
 LCD.lcd_puts(tempstr) # Display temperature
 utime.sleep(2) # Wait 2 seconds

Figure 4.30: Program: Thermistor.

Chapter 4 • Using Analogue-To-Digital Converters (ADCs)

● 139

Note: We could also use the modified form of the Steinhart-Hart equation (known as the B
parameter equation) if the parameters c1, c2, c3 are not known. The modified equation is:

	1 / T = 1 / T0 + 1 / B (log(R / R0))

where

T = the measured absolute temperature (take away 273.15 to find temperature
in ºC);

T0 = the absolute room temperature (equal to 298.15 K) at 25 ºC;

B = the thermistor coefficient (usually quoted by the manufacturers, in the region
of 3960);

R = the measured resistance of the thermistor;

R0 = the resistance of the thermistor at room temperature (usually quoted by the
manufacturers, in the region of 10 kΩ).

Raspberry Pi Pico Essentials

● 140

Chapter 5 • Data Logging

5.1 Overview
The filing system of the Raspberry Pi Pico enables us to manipulate files in memory, which
includes creating new files, reading from files, and writing to files. In this Chapter we will
learn how to log the temperature data to files.

5.2 Project 1: Logging the temperature data
Description: In this project, we will create a file called Temp.txt and save the ambi-
ent temperature data every second, time-stamped with relative seconds. The data will be
saved for 30 seconds, i.e. 30 records will be saved.

Aim: The aim of this project is to show how the temperature data (or any other data) can
be saved in a file.

Block diagram: Figure 5.1 shows the block diagram of the project.

Figure 5.1: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 5.2. TMP36 temperature sensor
chip is connected to analogue channel 0 (GP26, pin 31).

Figure 5.2: Circuit diagram of the project.

Chapter 5 • Data Logging

● 141

Program listing: Figure 5.3 shows the program listing (Program: LogTemp). At the be-
ginning of the program, modules ADC of machine and utime are imported to the program.
A new file is created (i.e. opened in write w mode) with the name Temp.txt and the head-
ing Ambient Temperature, followed by a 'newline' character is written to the file. The
remainder of the program runs in a for loop which is iterated 30 times. Inside this loop the
temperature is read from TMP36, converted into degrees Celsius, and then saved in the file
with the relative seconds. At the end of the loop, the file is closed, and the message Data
has been written to file… is displayed on the screen.

#--
LOGGING THE TEMPERATURE DATA
============================
#
This program measures the temperature using an external
temperature sensor chip and logs the data every second
for 30 seconds (i.e. 30 records)
#
Author: Dogan Ibrahim
File : LogTemp.py
Date : February 2021
#--
from machine import ADC
import utime

AnalogIn = ADC(0) # ADC channel 0
Conv = 3300 / 65535 # Conversion factor

file = open("Temp.txt", "w") # Create a new file
file.write("Ambient Temperature\n") # Write heading

for secs in range(30): # Do forever
 V = AnalogIn.read_u16() # Read temp
 mV = V * Conv # Convert to Volts
 Temp = (mV - 500.0) / 10.0 # Convert to temp
 Tempstr = str(Temp)[:5] # Convert to string
 data = str(secs+1) + " " + Tempstr + "\n"
 file.write(data) # Write to file
 utime.sleep(1) # Wait 1 second

file.close() # Close file
print("Data has been written to file...")

Figure 5.3: Program: LogTemp.

Raspberry Pi Pico Essentials

● 142

The contents of the file can be displayed by on the Thonny screen by clicking File, followed
by Open. Select Raspberry Pi Pico, and then click on file Temp.txt to display it as shown
in Figure 5.4. Notice that it is important that you close a file after you finished writing to it,
otherwise the data may not be saved securely. Also, by default a file is always opened in
read mode as a text file. Files can also be opened in binary mode using the options rb and
wb for read and write operations, respectively.

Figure 5.4: Contents of file Temp.txt (only part of the file is shown).

5.3 Project 2: Reading the logged data
Description: In this project, the temperature data Temp.txt created in the previous pro-
ject is open and its contents is displayed on the Thonny screen.

Aim: The aim of this project is to show how a file can be opened and its contents read and
displayed on the PC screen.

Program listing: Figure 5.5 shows the program listing (Program: ReadTemp). At the be-
ginning of the program, file Temp.txt is opened in read r mode. Function file.read is then
used to read the data from the file and display (print) it in the Thonny screen.

Figure 5.5 shows the program and the data displayed on the Thonny screen.

Chapter 5 • Data Logging

● 143

Figure 5.5: Program: ReadTemp and the data displayed.

Function read() reads the entire contents of a file. If we want to read a line, we use the
function readline(). An example is given below which reads and displays the first 3 lines of
file Temp.txt (notice that an additional newline character is added to the end of each line):

file = open("Temp.txt", "r") # Open the file
for i in range(3): # Read 3 lines
 print(file.readline()) # Display the data

file.close() # Close the file

Ambient Temperature

1 25.18
2 25.18

Raspberry Pi Pico Essentials

● 144

Chapter 6 • Pulse Width Modulation (PWM)

6.1 Overview
A digital form of Pulse Width Modulation (PWM; also written as pulsewidth modulation) is
commonly used to drive heavy loads such as motors, actuators, heaters, and so on. As we
shall see in this Chapter, PWM is basically a positive-going squarewave whose pulsewidth
can be changed. By changing the pulsewidth, we can effectively change the average value
of the voltage supplied to the load.

6.2 Basic theory of pulsewidth modulation
PWM is a commonly used technique for controlling the power delivered to analogue loads
using digital waveforms. Although analogue voltages (and currents) can be used to control
the delivered power, they have several drawbacks. Controlling large analogue loads require
large voltages and currents that cannot easily be obtained using standard analogue circuits
and DACs. Precision analogue circuits can be heavy, large, and expensive, and they are also
sensitive to noise. By using the PWM technique, the average value of voltage (and current)
fed to a load is controlled by switching the supply voltage ON and OFF at a fast rate. The
longer the power on time, the higher the effective voltage supplied to the load.
Figure 6.1 shows a typical PWM waveform where the signal is basically a repetitive positive
pulse, having the period T, ON time TON and OFF time of T–TON seconds. The minimum and
maximum values of the voltage supplied to the load are 0 and VP respectively. The PWM
switching frequency is usually set to be very high (usually in the order of several kHz) so
that it does not affect the load that uses the power. The main advantage of PWM is that the
load is operated efficiently since the power loss in the switching device is very low. When
the switch is ON there is practically no voltage drop across the switch, and when the switch
is OFF there is no current supplied to the load.

Figure 6.1: Basic PWM waveform.

The duty cycle D of a PWM waveform is defined as the ratio of the ON time to its period.
Expressed mathematically,

D = TON / T

The duty cycle is usually expressed as a percentage and therefore,

D = (TON / TOFF) × 100%

Chapter 6 • Pulse Width Modulation (PWM)

● 145

By varying the duty cycle between 0% and 100% we can effectively control the average
voltage supplied to the load between 0 and Vp.

The average value of the voltage applied to the load can be calculated by considering a gen-
eral PWM waveform shown in Figure 1. The average value A of waveform f(t) with period T
and peak value ymax and minimum value ymin is calculated as:

or,

In a PWM waveform, ymin = 0 and the above equation becomes

or,

As it can be seen from the above equation, the average value of the voltage supplied to
the load is directly proportional to the duty cycle of the PWM waveform and by varying the
duty cycle we control the average load voltage. Figure 6.2 shows the average voltage for
different values of the duty cycle.

Figure 6.2: Average voltage (shown as dashed line) supplied to a load.

It is interesting to notice that with correct lowpass filtering, the PWM can be used as a DAC
if the MCU does not have a DAC channel. By varying the duty cycle we can effectively vary
the average analogue voltage supplied to the load.

Raspberry Pi Pico Essentials

● 146

6.3 PWM channels of the Raspberry Pi Pico
The Raspberry Pi Pico microcontroller has 16 programmable PWM channels. Figure 6.3
shows the pin configurations of these channels. Each channel is identified with a letter and
a number, such as PWM_A[0]. Some of the 16 PWM channels located at left hand side of
the microcontroller pins are duplicated at the right-hand side and only one of the duplicated
channels can be used in an application.

Figure 6.3: PWM channels of the Pico.

The PWM channels can be accessed by one of two methods. For example, channel PW-
M_A[0] connected to port pin GP0 can be accessed as:

import machine
ch = machine.PWM(machine.Pin(0))

or as

from machine import PWM, Pin
ch = PWM(Pin(0))

The frequency of the PWM waveform can be set using the following statement. For exam-
ple, to set the frequency to 1000 Hz:

ch.freq(1000)

Chapter 6 • Pulse Width Modulation (PWM)

● 147

The duty cycle can be set between 0% and 100% by setting it from 0 to 65535. The duty
cycle can be set using the following statement. For example, to set the duty cycle to 50%:

ch.duty_u16(32767)

Example projects are given in this Chapter using the PWM.

6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cy-
cle
Description: In this project, we create a PWM waveform with a frequency of 1000 Hz and
a duty cycle of 50%.

Aim: The aim of this project is to show how we can use the PWM functions.

Circuit diagram: In this project, port pin GP0 is used and an oscilloscope is connected to
this pin to observe the waveform.

Program listing: The program listing is very simple. and it is given below.

from machine import Pin, PWM
ch = PWM(Pin(0)) # PWM at GP0
ch.freq(1000) # Frequency = 1000Hz
ch.duty_u16(32767) # 50% duty cycle
while True:
 pass

Figure 6.4 shows the generated waveform on the oscilloscope. Here, the horizontal axis
was 0.5ms/division and the vertical axis was 1 V/division. Clearly the period of the gener-
ated waveform is 1 ms (freq = 1000 Hz), duty cycle 50%, and the amplitude is about 3 V.

Figure 6.4: Generated PWM waveform.

Raspberry Pi Pico Essentials

● 148

Note: The author has generated clean and correct PWM waveforms to up to several MHz
without any appreciable noise.

6.5 Project 2: Changing the brightness of an LED
Description: In this project, an external LED is connected to port pin GP0 through a 470-
ohm current limiting resistor. The program changes the brightness of the LED by changing
the duty cycle of the PWM voltage sent to the LED.

Aim: The aim of this project is to show how the PWM can be used in a project.
The block diagram and the circuit diagram of this project are as in Figure 3.3 and Figure
3.4 respectively.

Program listing: Figure 6.5 shows the program listing (Program: LEDfade). The frequen-
cy is set to 1000 Hz so that the LED light is steady (i.e. not flashing). As the duty cycle is
increased from 0% to 100%, the LED brightness increases gradually.

#--
CHANGING THE BRIGHTNESS OF AN LED
=================================
#
In this program and LED is connected to port pin GP0. The
brightness of the LED is changed continuously by changing
duty cycle of the voltage waveform from 0% to 100%
#
Author: Dogan Ibrahim
File : LEDfade.py
Date : February 2011
#--
from machine import Pin, PWM
import utime

ch = PWM(Pin(0)) # PWM at GP0
ch.freq(1000) # Frequency = 1000Hz

i = 0
while True: # Do forever
 ch.duty_u16(i) # Change duty cycle
 utime.sleep_ms(300) # Delay 300ms
 i = i + 5000 # Increment i
 if i > 65535:
 i = 0

Figure 6.5: Program: LEDfade.

Chapter 6 • Pulse Width Modulation (PWM)

● 149

6.6 Project 3: Varying the speed of a brushed DC motor
Description: This is a simple project where a small, brushed DC motor is connected to the
PICO microcontroller through a power MOSFET. In addition, a potentiometer is connected
to one of the analogue inputs of the microcontroller. In this project, the speed of the motor
is varied by moving the potentiometer arm.

Block Diagram: Figure 6.6 shows the block diagram of the project. A motor driver (MOS-
FET) and a potentiometer are connected to the microcontroller.

Figure 6.6: Block diagram of the project.

The DC motor In this project, is controlled using PWM waveforms as in the previous pro-
ject. By varying the potentiometer arm, the analogue voltage read by the microcontroller
is varied and this in turn changes the PWM duty cycle of the voltage applied to the motor,
thus causing the motor speed to change.

Circuit diagram: The circuit diagram of the project is shown in Figure 6.7. The potentiom-
eter is connected to channel 0 of the ADC (GP26, pin 31). The motor is connected to GP17
(pin 22) through an IRL540 type MOSFET switch. It is recommended to use an external
power supply for the motor.

Figure 6.7: Circuit diagram of the project.

Raspberry Pi Pico Essentials

● 150

Program listing: Figure 6.8 shows the program listing (Program: Motor). The data read
from the ADC varies between 0 and 65535 as the potentiometer arm is fully moved from
one side to the other side. This data is used to change the duty cycle from 0% to 100%.

#--
CHANGING THE MOTOR SPEED
========================
#
In this project a brushed DC motor is connected to the
Pico.Additionally, a potentiometer is conencted to channel
0 of the ADC.Varying the potentiometer changes the motor speed
#
Author: Dogan Ibrahim
File : Motor.py
Date : February 2021
#--
from machine import Pin, PWM, ADC

Pot = ADC(0) # Pot at channel 0
Motor = Pin(17, Pin.OUT) # Motor at GP17

ch = PWM(Pin(17)) # PWM at GP17
ch.freq(1000) # Frequency = 1000Hz

while True: # Do forever
 duty = Pot.read_u16() # Read pot data
 ch.duty_u16(duty) # Change duty cycle

Figure 6.8: Program: Motor.

6.7 Project 4: Frequency generator with LCD
Description: This is a frequency generator project. A potentiometer and an LCD are con-
nected to the Raspberry Pi Pico. By varying the potentiometer arm we change the frequen-
cy of the generated PWM waveform. The frequency of the generated waveform is displayed
on the LCD. The duty cycle of the generated waveform is set at 50%. Frequencies up to
about 65535 Hz can be generated by moving the potentiometer arm fully to one side.

Block diagram: Figure 6.9 shows the block diagram of the project.

Chapter 6 • Pulse Width Modulation (PWM)

● 151

Figure 6.9: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is given in Figure 6.10. The potenti-
ometer arm is connected to channel 0 of the ADC (GP0). The LCD is connected as in the
previous LCD projects. Output PWM waveform is available at port pin GP16, pin 21).

Figure 6.10: Circuit diagram of the project.

Program listing: Figure 6.11 shows the program listing (Program: FreqGen). At the be-
ginning of the program, Pot is assigned to ADC channel 0; LCD is initialized and a message
'Frequency(Hz)' is displayed at the top row of the LCD. Inside the program loop the value
of Pot is read and this is used to set the frequency of the PWM waveform. The duty cycle
is set to 50%.

#--
FREQUENCY GENERATOR
===================
#
In this project a potentiometer is connected to channel 0
of the Pico. Also, an LCD is connected. The program generates
PWM waveforms of different frequencies as the potentiometer

Raspberry Pi Pico Essentials

● 152

arm is moved
#
Author: Dogan Ibrahim
File : FreqGen.py
Date : February 2011
#--
from machine import Pin, PWM, ADC
import LCD
import utime

Pot = ADC(0) # Pot at channel 0
LCD.lcd_init()

ch = PWM(Pin(16)) # PWM at GP16
ch.freq(100) # Default freq
LCD.lcd_clear()
LCD.lcd_puts("Frequency(Hz)")

while True: # Do forever
 frequency = Pot.read_u16(# Read pot data
 LCD.lcd_goto(0, 1)
 LCD.lcd_puts(" ")
 LCD.lcd_goto(0, 1)
 LCD.lcd_puts(str(frequency))
 ch.duty_u16(32767)
 ch.freq(frequency) # Change the freuency
 utime.sleep(1)

Figure 6.11: Program FreqGen.

The frequency is displayed on the LCD in the following format:

Row 1: Frequency(Hz)
Row 2: nnnnnnn

6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM
waveform
Description: In this project, the frequency and duty cycle of a PWM waveform is read and
displayed on the Thonny screen.

Circuit diagram: The PWM waveform whose frequency and duty cycle is to be asserted
is applied to port GP17 (pin 22). Make sure that the voltage is not greater than +3.3 V,
otherwise you may damage the input circuitry of your Pico.

Chapter 6 • Pulse Width Modulation (PWM)

● 153

Program listing: Figure 6.12 shows the program listing (Program: MeasPWM). The pro-
gram measures the Mark (i.e. logic 1) and Space (i.e. logic 0) timings of the PWM input
waveform in microseconds. The duty cycle and the frequency are then calculated as follows:

Duty cycle (%) = 100 × Mark / (Mark + Space)
Frequency (kHz) = 1000 / (Mark + Space)

#--
MEASURE THE FREQUENCY AND DUTY CYCLE
====================================
#
In this project a PWM wave is applied to the PIco. The
frequency and duty cycle of this wave are measured and
displayed on the Thonny screen.
#
Author: Dogan Ibrahim
File : MeasFreq.py
Date : February 2021
#--
from machine import Pin
import utime

PWMin = Pin(17, Pin.IN) # PWM wave input

while True: # Do forever
 while True:
 if PWMin.value() == 1: # Wait while 0
 break
 Tmr1Strt = utime.ticks_cpu() # Start timer 1

 while True:
 if PWMin.value() == 0: # Wait while 1
 break
 Tmr1End = utime.ticks_cpu() # End

 while True:
 if PWMin.value() == 1: # Wait while 0
 break

 Tmr2End = utime.ticks_cpu() # End

 Mark = utime.ticks_diff(Tmr1End, Tmr1Strt)
 Space = utime.ticks_diff(Tmr2End, Tmr1End)
 duty = 100.0 * Mark / (Mark + Space)
 freqkHz = 1000.0 / (Mark + Space)
 print("Duty Cycle = %5.2f" % duty)

Raspberry Pi Pico Essentials

● 154

 print("Frequency (kHz) = ", freqkHz, "\n")
 utime.sleep(2)

Figure 6.12: Program: MeasPWM.

Example output from the program is shown in Figure 6.13.

Figure 6.13: Example output.

6.9 PROJECT 6: Melody maker
Description: This project shows how PWM-type tones of different frequencies can be gen-
erated and sent to a passive buzzer device. The project shows how the simple melody
Happy Birthday can be played on the buzzer.

Aim: The aim of this project is to show how various tones can be generated to create a
simple melody.

Block diagram: The block diagram of the project is shown in Figure 6.14.

Figure 6.14: Block diagram of the Melody Maker project.

Circuit diagram: Figure 6.15 shows the circuit diagram of the project. A passive buzzer
is connected to port GP0 (pin 1) of the Raspberry Pi Pico. A transistor switch is used to in-
crease the voltage level of the buzzer (this can be omitted, and the buzzer can be directly
connected to GP0 if desired. This however will give low output from the buzzer). Almost
any old NPN, small-signal, bipolar transistor can be used in this project. The + terminal of
the buzzer can be connected to either +3.3 V or to +5 V for higher output from the buzzer.

Chapter 6 • Pulse Width Modulation (PWM)

● 155

Figure 6.15: Circuit diagram of the project.

Melodies
When playing a melody each note is played for a certain duration and with a certain fre-
quency. In addition, a certain gap is necessary between two successive notes. The frequen-
cies of the musical notes starting from middle C (i.e. C4) are given below. The harmonic of
a note is obtained by doubling the frequency. For example, the frequency of C5 is 2 × 262
= 524 Hz.

Notes C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4

Hz 261.63 277.18 293.66 311.13 329.63 349.23 370 392 415.3 440 466.16 493.88

To play the tune of a melody, we need to know its musical notes. Each note is played for
certain duration and there is a certain time gap between two successive notes. The next
thing we want is to know how to generate a sound with a required frequency and duration.
In this project, we will be generating the classic Happy Birthday melody and thus we need
to know the notes and their durations. These are given in the table below where the dura-
tions are in units of 400 milliseconds (i.e. the values given in the table should be multiplied
by 400 to give the actual durations in milliseconds).

Note C4 C4 D4 C4 F4 E4 C4 C4 D4 C4 G4 F4 C4

Duration 1 1 2 2 2 3 1 1 2 2 2 3 1

Note C4 C5 A4 F4 E4 D4 A4# A4# A4 F4 G4 F4

Duration 1 2 2 2 2 2 1 1 2 2 2 4

Program Listing: The program listing (program: Melody) is shown in Figure 6.16. The
frequencies and durations of the melody are stored in two arrays called frequency and
duration respectively. Before the main program loop the durations of each tone are calcu-
lated and stored in array Durations so that the main program loop does not have to spend
time to do these calculations. Inside the program loop, the melody frequencies are gener-
ated with the required durations. Notice that the tone output is stopped by setting the duty
cycle to 0. A small delay (100 ms) is introduced between each tone. The melody is repeated

Raspberry Pi Pico Essentials

● 156

after 3 seconds of delay. You can try higher harmonics of the notes for clearer sound. For
example, in Figure 6.16 the frequencies are multiplied by 2 to play the second harmonics.

#---
MELODY MAKER - PLAY HAPPY BIRTHDAY
==================================
#
In this project a buzzer is connected to port pin GP0
which is configured as a PWM output. The program plays the
melody Happy Birthday
#
Author: Dogan Ibrahim
File : Melody.py
Date : February 2021
#--
from machine import Pin, PWM
import utime

ch = PWM(Pin(0)) # PWM output at GP0
MaxNotes = 25
Durations = [0]*MaxNotes
#
Melody frequencis
#
frequency = [262,262,294,262,349,330,262,262,294,262,
 392,349,262,262,524,440,349,330,294,466,
 466,440,349,392,349]
#
Frequency durations
#
duration = [1,1,2,2,2,3,1,1,2,2,2,3,1,1,2,2,2,2,
 2,1,1,2,2,2,3]

for k in range(MaxNotes):
 Durations[k] = 400 * duration[k]

while True: # Do forever
 for k in range(MaxNotes): # Do for all notes
 ch.duty_u16(32767) # Duty cycle
 ch.freq(2*frequency[k]) # Play 2nd harmonics
 utime.sleep_ms(Durations[k]) # Durations
 utime.sleep_ms(100) # Wait
 ch.duty_u16(0) # Stop playing
 utime.sleep(3) # Stop 3 seconds

Figure 6.16: Program: Melody.

Chapter 6 • Pulse Width Modulation (PWM)

● 157

Suggestions for additional work
Modify the program given in Figure 6.16 by changing the durations between the notes and
see its effects. How can you make the melody run quicker? Also, replace the buzzer with
an audio amplifier and a speaker for higher quality and at the same time louder output.

Raspberry Pi Pico Essentials

● 158

Chapter 7 • Serial Communication (UART)

7.1 Overview
Serial communication is a simple means of sending data across long distances quickly and
reliably. The most seen serial communication method is based on the RS-232 standard. In
this standard data is sent over a single line from a transmitting device to a receiving device
in bit-serial format at a pre-specified speed, also known as the Baud rate, or the number of
bits sent each second. Typical Baud rates are 4800, 9600, 19200, 38400, etc.
RS-232 serial communication is a form of asynchronous data transmission where data is
sent character-by-character. Each character is preceded with a start bit, seven or eight data
bits, an optional parity bit, and one or more stop bits. The most commonly used format is
eight data bits, no parity bit and one stop bit (8N1). Therefore, a data frame consists of 10
bits. With a Baud rate of 9600, we can transmit and receive 960 characters every second.
The least significant data bit is transmitted first, and the most significant bit is transmitted
last.
In standard RS-232 communication, logic high is defined to be at –12 V, and a logic 0 is at
+12 V. Figure 7.1 shows how character "A" (ASCII binary pattern 0010 0001) is transmitted
over a serial line. The signal line is normally idle at –12 V. The start bit is first sent by the
line going from high to low. Then eight data bits are sent starting from the least significant
bit. Finally, the stop bit is sent by raising the line from Low to High.

 START 1 0 0 0 0 0 1 0 STOP

IDLE

Figure 7.1: Sending character "A" across, in serial format.

In serial communication a minimum of three lines are used for communication: transmit
(TX), receive (RX), and ground (GND). Some high-speed serial communication systems
use additional control signals for synchronization, such as CTS, DTR, and so on. Some sys-
tems use software synchronization techniques where a special character (XOFF) is used to
tell the sender to stop sending, and another character (XON) is used to tell the sender to
recommence transmission. RS-232 devices are connected to each other using two types of
connectors: 9-way connector, and 25-way connector. Table 7.1 shows the TX, RX, and GND
pins of each types of connectors. The connectors used in RS232 serial communication are
shown in Figure 7.2.

9-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

5 Ground (GND)

Chapter 7 • Serial Communication (UART)

● 159

25-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

7 Ground (GND)

Table 7.1: Minimum pins required for RS232 serial communication.

Figure 7.2: RS-232 connectors.

As described above, RS-232 voltage levels are at ±12 V. On the other hand, microcontroller
input/output ports typically operate at 0 to +5 V voltage levels. It is therefore necessary
to translate the voltage levels before a microcontroller can be connected to an RS-232
compatible device. Thus, the output signal from the microcontroller has to be converted
into ±12 V, and the input from an RS-232 device must be converted into 0 to +5 V before
it can be connected to a microcontroller. This voltage translation is normally done using
special RS232 voltage converter chips. One such popular chip is the MAX232. This is a dual
converter chip having the pin configuration as shown in Figure 7.3. This particular device
requires four external 1-μF capacitors for its operation.

Figure 7.3: MAX232 pin configuration.

Raspberry Pi Pico Essentials

● 160

Nowadays, serial communication is done using standard TTL logic levels instead of ±12 V,
where logic 1 is +5 V (or greater than +3 V) and logic 0 is 0 V. A serial line is idle when the
voltage is at +5 V. The start bit is identified on the High-to-Low transition of the line, i.e.
the transition from +5 V to 0 V.
In this Chapter we will develop a program to communicate between the Raspberry Pi Pico
and an Arduino Uno microcontroller. Also, a program to communicate with a Raspberry Pi 4.

7.2 Raspberry Pi Pico UART serial ports
The Raspberry Pi Pico has two serial ports as shown in Figure 7.4. These are named as
UART0 and UART1 where both have TX and RX pins as shown in the figure. Notice that a few
ports share UART0 and UART1 and only one of each shared port can be used at any time.

Figure 7.4: Raspberry Pi Pico UART serial ports.

7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to
an Arduino Uno
Description: In this project we will be using a Raspberry Pi Pico and an Arduino Uno micro-
controller jointly. The Pico will read the temperature from its internal sensor and send it to
the Arduino over a serial link every 10 seconds. The Arduino will then display the received
temperature on its monitor.

Aim: The aim of this project is to show how serial data can be sent to another device.

Block diagram: Figure 7.5 shows the block diagram of the project.

Chapter 7 • Serial Communication (UART)

● 161

Figure 7.5: Block diagram of the Pico-temperature-to-Arduino project.

Circuit diagram: The circuit diagram of the project is shown in Figure 7.6. TX0 pin (at
GP0) of the Raspberry Pi Pico is connected to pin 2 of the Arduino (this pin will be config-
ured as a soft serial input in the Arduino program).

Figure 7.6: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.7 shows the program listing (Program:
SerTemp). At the beginning of the program variable AnalogIn is assigned to ADC channel
4 which is where the internal temperature sensor is connected to. UART 0 is then initialized
at port GP0 with the speed of 9600 Baud. Inside the program loop the internal temperature
is read, converted into degrees Celsius and finally sent to UART using function write. The
data is sent with 2 digits before, and 2 digits after the decimal point. Also, the text Degrees
C, followed by a 'newline' character ('\n') is sent.

Function UART can be used in one of two ways:

from machine import UART
uart = UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

Where id is the UART port number (e.g. 0 for TX0, RX0). By default, the number of bits is
8, parity is None, and stop bits is 1. If we are using GP0 with 9600 Baud, we can write the
second statement as:

uart = UART(0, 9600)

Raspberry Pi Pico Essentials

● 162

We can alternatively use the UART as follows:

import machine
uart=machine.UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

We can then use the following functions to send and receive data:

uart.read(n) read n characters
uart.read() read all available characters
uart.readline() read a line
uart.readinto(buf) read and store into the given buffer
uart.write('xyz') write the characters

#--
SERIAL LINK - SEND TEMPERATURE READING TO ARDUINO
===
#
This project reads the internal temperature and sends it
to Arduino Uno over a serial link at 9600 Baud
#
Author: Dogan Ibrahim
File : SerTemp.py
Date : February 2021
#--
from machine import ADC, UART
import utime

AnalogIn = ADC(4) # ADC channel 4
Conv = 3.3 / 65535 # Conversion factor

uart = UART(0, 9600)

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 V = V * Conv # Convert to Volts
 Temp = 27 - (V - 0.706) / 0.001721 # Convert to temp
 Tempstr = str(Temp) # Convert to string
 uart.write(Tempstr[:5]) # Send to UART
 uart.write(" Degrees C\n")
 utime.sleep(10) # Wait 10 seconds

Figure 7.7: Raspberry Pi Pico program: SerTemp.

Figure 7.8 shows the program listing (Program: SerTemp2) where library machine is im-
ported to the program.

Chapter 7 • Serial Communication (UART)

● 163

#--
SERIAL LINK - SEND TEMPERATURE READING TO ARDUINO
===
#
This project reads the internal temperature and sends it
to Arduino Uno over a serial link at 9600 Baud.
This version of the program imports machine
#
Author: Dogan Ibrahim
File : SerTemp2.py
Date : February 2021
#--
import machine
import utime

AnalogIn = machine.ADC(4) # ADC channel 4
Conv = 3.3 / 65535 # Conversion factor

uart=machine.UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

while True: # Do forever
 V = AnalogIn.read_u16() # Read temp
 V = V * Conv # Convert to Volts
 Temp = 27 - (V - 0.706) / 0.001721 # Convert to temp
 Tempstr = str(Temp) # Convert to string
 uart.write(Tempstr[:5]) # Send to UART
 uart.write(" Degrees C\n")
 utime.sleep(10) # Wait 10 seconds

Figure 7.8: Raspberry Pi Pico program: SerTemp2.

Arduino Uno program listing: Figure 7.9 shows the Arduino Uno program listing (Pro-
gram: Temp.c). The soft serial library is included at the beginning of the program and pins
2 and 3 are assigned to soft UART RX and TX, respectively. Inside the setup routine the
baud rate of the monitor and the soft serial port are configured to 9600. Inside the main
program loop the program waits until data arrives from the Raspberry Pi Pico. The data is
received until and including a 'newline' character. The temperature data is then displayed
on the Arduino IDE monitor as shown in Figure 7.10. Make sure that the Arduino IDE moni-
tor Baud rate is set to 9600.

/***
 * TEMPERATURE DISPLAY
 * ===================
 * This program reads the analog temperature data from the
 * Raspberry Pi Pico over teh serial link and then displays
 * this data on the Arduino IDE monitor

Raspberry Pi Pico Essentials

● 164

 *
 * Author: Dogan Ibrahim
 * Date : February, 2020
 * File : Temp.c
 ***/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(2, 3); // RX, TX

String Temp;
char ch;

void setup()
{
 Serial.begin(9600); // Monitor speed 9600
 MySerial.begin(9600); // Soft serial speed 9600
}

void loop()
{
 if(MySerial.available() > 0) // Data available?
 {
 ch = MySerial.read();
 Temp.concat(ch);
 if(ch == ‘\n’)
 {
 Serial.print("Temperature = ");
 Serial.print(Temp); // Display data
 Temp="";
 }
 }
}

Figure 7.9: Arduino Uno program: Temp.

Figure 7.10: Data displayed by Arduino Uno.

Chapter 7 • Serial Communication (UART)

● 165

7.4 Project 2: Receiving and displaying numbers from the Arduino Uno
Description: In this project we will be using a Raspberry Pi Pico and an Arduino Uno mi-
crocontroller as in the previous project. The program receives numbers counting up every
second from the Arduino and displays them on the Thonny screen.

Aim: The aim of this project is to show how serial data can be received from another de-
vice.

Circuit diagram: Figure 7.11 shows the circuit diagram of the project. RX0 pin (at GP1)
of the Raspberry Pi Pico is connected to pin 3 of the Arduino (this pin will be configured as
a soft serial output in the Arduino program).

Figure 7.11: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.12 shows the program listing (Program:
SerRecv) together with the received data. At the beginning of the program UART 0 is ini-
tialized to 9600 Baud. The program loop receives data from the UART using function read-
line. The received data is decoded and displayed on the Thonny string.

Figure 7.12: Raspberry Pi Pico program: SerRecv and sample received data.

Raspberry Pi Pico Essentials

● 166

Arduino Uno program listing: Figure 7.13 shows the Arduino Uno program listing (Pro-
gram: Numbers.c). The soft serial library is included at the beginning of the program and
pins 2 and 3 are assigned to soft UART RX and TX respectively. Inside the setup routine
the Baud rate of the soft serial port is set to 9600. Variable cnt is incremented inside the
program loop, converted into string, and is sent to UART every 10 seconds.

/***
 * SEND NUMBERS TO RASPBERRY PICO
 * ==============================
 * This program sends numbers to the Rspberry Pi Pico over
 * the serial link. These numbers are displayed by the Pico
 *
 * Author: Dogan Ibrahim
 * Date : February, 2020
 * File : Numbers.c
 ***/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(2, 3); // RX, TX

String Temp;
int cnt = 0;
char buffer[5];

void setup()
{
 MySerial.begin(9600); // Soft serial speed 9600
}

void loop()
{
 cnt = cnt + 1; // Increment cnt
 itoa(cnt, buffer, 10); // Convert to string
 MySerial.println(buffer);
 delay(10000); // 10 seconds delay
}

Figure 7.13: Arduino Uno program: Numbers.c.

7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial
link
Description: In this project, we will be using a Raspberry Pi Pico and a Raspberry Pi 4. Our
Pico will send the message Hello from Raspberry Pi Pico to the RaspberryPi, and the
Raspberry Pi will reply with Hello back.

Aim: The aim of this project is to show how the Raspberry Pi Pico and Raspberry Pi 4 can
communicate over a serial link.

Chapter 7 • Serial Communication (UART)

● 167

Block diagram: Figure 7.14 shows the block diagram of the project.

Figure 7.14: Block diagram of the project.

Raspberry Pi serial port
The Raspberry Pis have two built-in UARTs: a PL011 and a mini UART. They are implement-
ed using different hardware blocks, so they have slightly different characteristics. Since
both are 3.3 V devices, extra care must be taken when connecting to other serial commu-
nication lines operating at higher voltages like +5 V.
On Raspberry Pi models equipped with the Wireless/Bluetooth modules (e.g. Raspberry Pi
3, Zero W, 4, etc), the PL011 UART is by default connected to the Bluetooth module, while
the mini UART is the primary UART with the Linux console on it. In all other models, the
PL011 is used as the primary UART. By default, /dev/ttyS0 refers to the mini UART and /
dev/ttAMA0 refers to the PL011. The Linux console uses the primary UART which depends
on the Raspberry Pi model used. Also, if enabled, /dev/serial0 refers to the primary UART
(if enabled), and if enabled, /dev/serial1 refers to the secondary UART.
By default, on the Raspberry Pi 4 the primary UART (serial0) is assigned to the Linux
console. Using the serial port for other purposes requires this default configuration to be
changed. On startup, systemd checks the Linux kernel command line for any console
entries and will use the console defined therein. To stop this behaviour, the serial console
setting needs to be removed from command line. This is easily done as follows:

•	start raspi-config utility;
•	select Option 5 (Interfacing option);
•	select P6 (serial);
•	select No;
•	select Yes;
•	select Finish and Exit raspi-config;
•	restart your Raspberry Pi.

In Raspberry Pi 3 and 4, the serial port (/dev/ttyS0) is routed to two pins GPIO14 (TXD)
and GPIO15 (RXD) on the header. This port is stable and of good quality. Models earlier
than model 3 use this port for Bluetooth. Instead, a serial port is created in software (/
dev/ttyS0).

To search for available serial ports, use the command:

pi@raspberrypi:~ $ dmesg | grep tty

Raspberry Pi Pico Essentials

● 168

Circuit diagram: The circuit diagram of the project is shown in Figure 7.15. UART 0 of the
Pico (at GP0 and GP1) is connected to the UART of Raspberry Pi 4.

Figure 7.15: Circuit diagram of the project.

Raspberry Pi Pico program listing: Figure 7.16 shows the program listing (Program:
PicotoPi4) together with the received data. At the beginning of the program, UART 0 is
initialized to 9600 Baud. The program loop receives data from the UART using function
readline. The received data is decoded and displayed on the Thonny string. This is repeat-
ed after a 5-second delay.

Figure 7.16: Raspberry Pi Pico program: PicotoPi4.

Raspberry Pi 4 program listing: Figure 7.17 shows the Raspberry Pi 4 program listing
(Program: Pi4toPico.py). The program initializes the serial port, receives a message from
the Raspberry Pi Pico, and sends back a different message. The Baud rate is set to 9600.

Chapter 7 • Serial Communication (UART)

● 169

#---
RASPBERRY PI 4 TO RASPBERRY PI PICO SERIAL COMMS
--
#
This program receives a number from the Raspberry Pi Pico,
increments teh number and sends it back to the Pico
#
Author: Dogan Ibrahim
File : Pi4toPico.py
Date : February, 2021
#---
import RPi.GPIO as GPIO # Import RPi library
from RPLCD.i2c import CharLCD # Import LCD library
import time # Import time library
import serial # Import srial
port = "/dev/serial0" # Serial port

GPIO.setwarnings(False)

#
Receive the GPS coordinates and display on the LCD
#
ser = serial.Serial(port,baudrate=9600,timeout=100)

while True:
 data = ser.readline() # Read a line
 ser.write(b’Hello back\n’)
 print(data)
 time.sleep(5)

Figure 7.17: Raspberry Pi 4 program: Pi4toPico.py.

Figure 7.18 shows example output from the Raspberry Pi 4 program.

Figure 7.18: Example output from the Raspberry Pi 4.

Raspberry Pi Pico Essentials

● 170

Chapter 8 • The I2C Bus Interface

8.1 Overview
The I2C bus is commonly used in microcontroller-based projects. In this Chapter we shall be
looking at the use of this bus on the Raspberry Pi Pico. The aim is to make the reader fam-
iliar with the I2C bus library functions and to show how they can be used in a real project.
Before looking at the details of the project, it is worthwhile to look at the basic principles
of the I2C bus.

8.2 The I2C Bus
I2C is one of the most commonly used microcontroller communication protocols for com-
municating with external devices such as sensors and actuators. The bus is a single-master,
multiple-slave network structure capable of operating in standard mode at 100 Kbit/s, at
full speed: 400 Kbit/s; in fast mode: 1 Mbit/s; and at high speed: 3.2 Mbit/s. The bus con-
sists of two open-drain wires, SDA and SCL, pulled up with resistors:

SDA: serial data line
SCL: serial clock line

Figure 8.1 shows an I2C bus structure with one master and three slaves.

Figure 8.1: I2C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an indi-
vidual slave device on the same bus. For this reason, the protocol defines that each slave
device provides a unique slave address for the given bus. This address is usually 7-bits
wide. When the bus is free, both lines are HIGH. All communication on the bus is initiated
and completed by the master which initially sends a START bit, and completes a transaction
by sending STOP bit. This alerts all the slaves that some data is coming on the bus and all
the slaves listen on the bus. After the start bit, 7 bits of a unique slave address are sent.
Each slave device on the bus has its own address and this ensures that only the addressed
slave communicates on the bus at any time, to avoid any collisions. The last sent bit is read/
write bit such that if this bit is 0, it means that the master wishes to write to the bus (e.g.
to a register of a slave). If this bit is a 1, it means that the master wishes to read from the
bus (e.g. from the register of a slave). The data is sent on the bus with the MSB bit first.
An acknowledgement (ACK) bit takes is suffixed after every byte, allowing the receiver to

Chapter 8 • The I2C Bus Interface

● 171

signal to the transmitter that the byte was received successfully, and another byte may be
sent. The ACK bit is sent at the 9th clock pulse.

The communication over the I2C bus is described in the following sequence.

•	The master sends on the bus the address of the slave it wants to communicate
with.

•	The LSB is the R/W bit which establishes the direction of data transmission, i.e.
from mater to slave (R/W = 0), or from slave to master (R/W = 1).

•	Requested bytes are sent, each interleaved with an ACK bit, until a stop condi-
tion occurs.

Depending on the type of slave device used, some transactions may require separate trans-
action. For example, the steps to read data from an I2C compatible memory device are
given below.

•	Master starts the transaction in write mode (R/W = 0) by sending the slave
address on the bus.

•	The memory location to be retrieved are then sent as two bytes (assuming
64 Kbit memory).

•	The master sends a STOP condition to end the transaction.
•	The master starts a new transaction in read mode (R/W = 1) by sending the

slave address on the bus.
•	The master reads the data from the memory. If reading the memory in sequen-

tial format, then more than one byte will be read.
•	The master sets a stop condition on the bus.

8.3 I2C pins of the Raspberry Pi Pico
Raspberry Pi Pico has 2 I2C pins, named I2C0 and I2C1 (see Figure 8.2). As shown in the
image, the I2C pins are duplicated and are shared with other pins. For example, GP0 (pin
1) is the I2C0 SDA pin and GP1 (pin 1) is the I2C0 SCL pin. Also, GP16 (pin 21) is the I2C0
SDA pin and GP17 (pin 22) is the I2C SCL pin.

Raspberry Pi Pico Essentials

● 172

Figure 8.2: Raspberry Pi Pico I2C pins.

The default I2C pins are:

I2C0 SCL	 GP9
I2C0 SDA	 GP8
I2C1 SCL	 GP7
I2C1 SDA	 GP6

In the remainder of this Chapter we will be developing projects using the I2C bus.

8.4 Project 1: I2C port expander
Description: A simple project is given in this section to show how the I2C functions can be
used in a program. In this project the I2C bus compatible Port Expander chip (MCP23017)
is used to give additional 16 I/O ports to the Raspberry Pi Pico. This is useful in some ap-
plications where a large number of I/O ports may be required. In this project, an LED is
connected to MCP23017 port pin GPA0 (pin 21) and the LED is flashed ON and OFF every
second so that the operation of the program can be verified. A 470-ohm current limiting
resistor is used in series with the LED.

The aim: The aim of this project is to show how the I2C bus can be used in Raspberry Pi
Pico projects.

Block diagram: The block diagram of the project is shown in Figure 8.3.

Chapter 8 • The I2C Bus Interface

● 173

Figure 8.3: Block diagram of the project.

The MCP23017
The MCP23017 is a 28-pin chip with some features listed below. Its pin configuration is
shown in Figure 8.4.

•	16 bidirectional I/O ports
•	Up to 1.7 MHz operation on I2C bus
•	Interrupt capability
•	External reset input
•	Low standby current
•	+1.8 to +5.5 V operation
•	3 address pins, allowing up to 8 devices on the I2C bus
•	28-pin DIL package

Figure 8.4: Pin configuration of the MCP23017.

The pin descriptions are given in Table 8.1.

Pin Description

GPA0-GPA7 Port A pins

GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SDA I2C data pin

SCL I2C clock pin

RESET Reset pin

A0-A2 I2C address pins

Table 8.1: MCP23017 pin descriptions.

Raspberry Pi Pico Essentials

● 174

The MCP23017 is addressed using pins A0 to A2. Table 8.2 shows the address selection. In
this project the address pins are connected to ground, thus the address of the chip is 0x20.
The chip address is 7 bits wide with the low bit is set or cleared depending on whether we
wish to read data from the chip or write data to the chip respectively. Since in this project
we will be writing to the MCP23017, the low bit should be 0, making the chip byte address
(also called the device opcode) as 0x40.

Table 8.2: Address selection of the MCP23017.

A2 A1 A0 Address

0 0 0 0x40

0 0 1 0x21

0 1 0 0x22

0 1 1 0x23

1 0 0 0x24

1 0 1 0x25

1 1 0 0x26

1 1 1 0x27

The MCP23017 chip has 8 internal registers that can be configured for its operation. The
device can either be operated in 16-bit mode or in two 8-bit mode by configuring bit IO-
CON.BANK. On power-up this bit is cleared which chooses the two 8-bit mode by default.

The I/O direction of the port pins are controlled with registers IODIRA (at address 0x00)
and IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the correspond-
ing port pin(s) as output(s). Similarly, setting a bit to 1 in these registers make the cor-
responding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13
respectively. This is shown in Figure 8.5.

Figure 8.5: Configuring the I/O ports.

Figure 8.6 shows the circuit diagram of the project. Notice that I2C pins of the port ex-
pander are connected to pins GP8 (I2C0 SDA) and GP9 (I2C0 SCL) of the Raspberry Pi Pico
and are pulled-up using 10-kohm resistors as required by the I2C specifications. The LED
is connected to port pin GPA0 of the MCP23017 (pin 21). The address select bits of the
MCP23017 are all connected to ground.

Chapter 8 • The I2C Bus Interface

● 175

Figure 8.6: Circuit diagram of the project.

More information on the MCP23017 chip can be obtained from the datasheet:

http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Program listing: Figure 8.7 shows the program listing (Program: MCP23017). The Rasp-
berry Pi Pico supports the following I2C functions:

i2c.scan()		 scan for slave I2C devices
i2c.writeto()		 write to I2C bus
i2c.readfrom()		 read from I2C bus
i2c.writeto_mem()	 write to memory of slave device
i2c.readfrom_mem()	 read from memory of slave device

Some example I2C operations are:

	print("I2C address=", i2c.scan())	� print the I2C slave addresses on the
bus

	i2c.writeto(0x20, b'56')			 write 56 to I2C address 0x20

	i2c.writeto(0x20, bytearray(buff))	 write buffer to I2C address 0x20
i2c.readfrom(0x20, 3)			 read 3 bytes from I2C address 0x20

i2c.writeto_mem(0x20, 0x10, b'\x35')	� write 0x35 to memory address 0x10 of
the slave whose I2C address is 0x20

	i2c.readfrom_mem(0x20, 0x10, 3)		� read 3 bytes starting from register
address 0x10 of slave I2C device
whose address is 0x20

http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Raspberry Pi Pico Essentials

● 176

At the beginning of the program, the I2C module is imported to the program and the I2C
interface is defined by specifying the SDA and SCL pin connections to the Pico. Function
i2c.scan() is called to display the I2C slave devices on the bus, and the following was
displayed:

i2c address = [32] which corresponds to hexadecimal 0x20

Then the MCP23017 I2C device address, register GPIOA address, and the I/O direction
IODIRA address are defined. List conf stores the IODIRA register address and 0 so that
MCP23017 PORTA is set to output mode. List buff1 stores the GPIOA register address and
what the output should be set to (1 to turn ON the LED). Similarly, buff2 stores the GPIOA
register address and what the output should be set to (0 to turn OFF the LED). Inside the
main program loop the LED is flashed every second.

#--
I2C PORT EXPANDER
=================
#
In this project the MCP23017 port expander chip is used.
An LED is connected to port pin GPA0 of the port expander
and this LED is flashed every second
#
Author: Dogan Ibrahim
File : MCP23017.py
Date : February 2021
#--
from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x20 # MCP23017 I2C address
MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address
MCP_IODIRA_REG = 0 # MCP23017 IODIRA Address

conf = [MCP_IODIRA_REG, 0] # Configure as output
buff1 = (MCP_GPIOA_REG, 0) # Set GPIOA to 0
buff0 = [MCP_GPIOA_REG, 1] # Set GPIOA to 1

i2c.writeto(Device_Address, bytearray(conf))

while True:
 i2c.writeto(Device_Address, bytearray(buff1))
 utime.sleep(1)
 i2c.writeto(Device_Address, bytearray(buff0))

Chapter 8 • The I2C Bus Interface

● 177

 utime.sleep(1)

Figure 8.7: Program: MCP23017.

The program can be modified so that the memory functions of i2c are used. The modified
program listing (Program: MCP23017-2) is shown in Figure 8.8.

#--
I2C PORT EXPANDER
=================
#
In this project the MCP23017 port expander chip is used.
An LED is connected to port pin GPA0 of the port expander
and this LED is flashed every second
#
This version of the program uses the i2c memory functions
#
Author: Dogan Ibrahim
File : MCP23017-2.py
Date : February 2021
#--
from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x20 # MCP23017 I2C address
MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address
MCP_IODIRA_REG = 0 # MCP23017 IODIRA Address

i2c.writeto_mem(Device_Address, MCP_IODIRA_REG, b’0’)

while True:
 i2c.writeto_mem(Device_Address, MCP_GPIOA_REG, b’1’)
 utime.sleep(1)
 i2c.writeto_mem(Device_Address, MCP_GPIOA_REG, b’0’)
 utime.sleep(1)

Figure 8.8: Modified program: MCP23017-2.

8.5 Project 2: EEPROM memory
Description: In this project we will be using the I2C-bus-compatible 24LC256 type EE-
PROM memory chip and write the characters ABCD to memory locations starting from ad-
dress 0x1000 of the memory. The data is then read from these locations and displayed on
the Thonny screen to confirm that the write/read operation has been successful.

Raspberry Pi Pico Essentials

● 178

The aim: The aim of this project is to show how an I2C based EEPROM memory can be
programmed using the Raspberry Pi Pico.

The 24LC256 memory
The 24LC256 is a 32 K × 8 (256 Kbit) EEPROM memory chip manufactured by Microchip
Technology. The chip can be powered from 1.7 V to 5.5 V, with a standby current of 1 μA
and a write current of 3 mA. The chip can operate from 100 kHz up to 1 MHz. A hardware
write-protect pin is provided to disable writing to the chip. 24LC256 is capable of both ran-
dom and sequential reads up to a 256 K boundary. The device has page write capability
up to 64 bytes of data. The device has 32768 addresses, ranging from 0x0000 to 0x7FFF
Figure 8.9 shows the pin layout of the chip.

Figure 8.9: Pin layout of the 24LC256.

A0, A1 and A2 are used to set the LSB bits of the device I2C address. As shown below, the
upper 4 bits of the device address are fixed at 1010 and the LSB bit is the R/W bit:

1 0 1 0 A2 A1 A0 R/W

For example, if A2 = A1 = A0 = 0 then the I2C address is 0xA0.

Vcc and Vss are the power supply pins.

WP is the write protection pin. If this pin is tied to Ground, writing is enabled. If connected
to Vcc then the write operations have no effect.

Circuit diagram
The circuit diagram of the project is shown in Figure 8.10. In this project, I2C pins GP8
(I2C0 SDA) and GP9 (I2C0 SCL) of Raspberry Pi Pico are used. A0, A1 and A2 are connect-
ed to ground so that the device address is 0xA0. Also, the write protect pin WP is tied to
ground. The SDA and SCL pins are pulled-up using 10-kohm resistors.

Chapter 8 • The I2C Bus Interface

● 179

Figure 8.10: circuit diagram of the project.

Before going into details of the memory write and read operations, it is worthwhile to learn
how this is done.

Memory-write operation
As an example, assume that we want to write byte 0x25 into memory location 0x0250.
Figure 8.11 shows the write steps in detail. First of all, the START bit is sent on the bus,
followed by the device address which is assumed to be 0xA0, with the LSB bit set to 0 to
indicate that we wish to do a write operation.
The memory address 0x0250 is then split into upper and lower bytes as 0x02 and 0x50
and they are sent sequentially with the higher byte sent first over the bus. Then, the data
byte 0x25 is sent (this is called Byte Writing since only one byte is written to memory).
Notice that we can send multiple bytes (this is called Page Writing where up to 64 bytes
can be written sequentially. There are 512 pages and each page is 64 bytes long) in the
same transaction (an internal address counter is incremented automatically after a byte is
sent). The write operation is terminated with the STOP bit. Notice that ACK bit is sent by
the EEPROM between the byte transfers.
After a byte write command, the internal address counter will point to the address location
following the one that was just written. Page write operations are limited to writing bytes
within a single physical page (64 bytes), regardless of the number of bytes actually being
written. Physical page boundaries start at addresses that are integer multiples of the page
buffer size and end at addresses that are integer multiples of page size –1. If a page write
command attempts to write across a physical page boundary, the result is that the data
wraps around to the beginning of the current page (overwriting data previously stored
there), instead of being written to the next page.

It is, therefore, necessary for the application software to prevent page write operations
that would attempt to cross a page boundary (e.g. when writing long strings care should be
taken when crossing a page boundary). Some of the page boundaries in bytes are:

Raspberry Pi Pico Essentials

● 180

Page 1:	 0 – 63
Page 2: 64 – 127
Page 3: 128 – 191
Page 4: 192 – 255
Page 5: 256…….

Notice that the data sent the EEPROM is stored in a temporary buffer since a whole page
consisting of 64 bytes is refreshed after every write operation. It is therefore important to
detect when a write operation has been completed successfully.

 Address R/W 0x02 0x50 Data

Start 0xA0 0 AC
K

0 0 0 0 0 0 1 0 AC
K

0 1 0 1 0 0 0 0 AC
K

0x25 AC
K

Stop

Figure 8.11: Memory Byte Writing operation.

Memory-read operation
Memory-read operations are slightly more complex. There are 3 types of reads: current
address read, random read, and sequential read. Random read mode is probably the most
commonly used mode where the master can access any memory location in a random
manner.
As an example, assume that we want to read the byte at memory location 0x0250 (where
0x25 was stored in Figure 8.11). Figure 8.12 shows the read steps in detail. To perform
a Random Read, the memory address must be sent first. This is done by an I2C device
sending the memory address to the 24LC256 as part of a write operation (R/W bit set to
'0'). Once the memory address is sent, the master generates a START condition following
the ACK. This terminates the write operation, but not before the internal address counter
is set. The master then issues the slave address again, but with the R/W bit set to a 1.
The 24LC256 will then issue an ACK and transmit the 8-bit data word. The master will not
acknowledge the transfer, though it generates a STOP condition, which causes the EEPROM
to discontinue transmission. After a random read command, the internal address counter
will point to the address location following the one that was just read.
In Sequential Read operation, an internal address pointer is incremented automatically
after each read operation. This allows the entire memory contents to be read easily.

 Addr R/W 0x02 0x50 Addr R/W

Start 0xA0 0 ACK 0 0 0 0 0 0 1 0 ACK 0 1 0 1 0 0 0 0 ACK Start 0xA0 1

ACK 0x25 NOACK Stop

Figure 8.12: Random memory read operation.

Program listing: Figure 8.13 shows the program listing (Program: EEPROM). In this pro-
gram the device address of the EEPROM chip was found to be 80 (hexadecimal 0x50). In-
side the main program, a list wmsg is defined and is pre-loaded with the data 1357 which
is the data to be written to the EEPROM memory. Also, another list called rmsg is declared
which will be loaded with the data read from the memory chip. The program then calls func-
tion Write to write the contents of list wmsg to the memory chip, starting from address

Chapter 8 • The I2C Bus Interface

● 181

0x10000. Function Read reads 4 bytes of data from the same memory locations and stores
them in array wmsg. This data is then displayed on the PC screen. Page writing is used
in this program where the memory address increments automatically after writing or read-
ing a byte of data. Sequential read operation is done by the program where the memory
address pointer is incremented automatically to point to the next location.

Function: Write
This function has 3 arguments:

memloc: starting memory address where the data will be stored to
data: the data to be stored
addrsize: size of the address

def Write(memloc, data,len):
 i2c.writeto_mem(Device_Address, memloc, data, addrsize = 16)
 utime.sleep_ms(10)

Function: Read
memloc: This function has two arguments: starting memory address where the
data will be read from
len: Number of bytes to read
addrsize: size of the address

def Read(memloc, len):
 data = [0]*4
 data = i2c.readfrom_mem(Device_Address, memloc, 4,addrsize=16)
 return(data)

#--
I2C EEPROM READ/WRITE
=====================
#
In this project a 24LC256 type I2C EEPROM memory chip is
connected to the Raspberry Pi Pico. The program writes and
then reads from the memory
#
Author: Dogan Ibrahim
File : EEPROM.py
Date : February 2021
#--
from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

len = 4

Raspberry Pi Pico Essentials

● 182

Device_Address = 0x50 # EEPROM I2C address

#
This function reads len bytes starting from specified memory
address memloc (16 bits)
#
def Read(memloc, len):
 data = [0]*4
 data = i2c.readfrom_mem(Device_Address, memloc, 4,addrsize=16)
 return(data)

#
This function writes the data to starting from the specified
memory address memloc (16 bits)
#
def Write(memloc, data,len):
 i2c.writeto_mem(Device_Address, memloc, data, addrsize = 16)
 utime.sleep_ms(10)

wmsg = ‘1357’ # Data to be written
rmsg = [0]*len # List for return data
Write(0x1000, wmsg, len) # Write the data
rmsg = Read(0x1000, len) # Read the data

#
Display the data read starting from address 0x1000
#
print("Data read is: %c%c%c%c\n" %(rmsg[0],rmsg[1],rmsg[2],rmsg[3]))

Figure 8.13: Program: EEPROM.

The data displayed by the program was as follows:

i2c address = [80]
Data read is: 1357

8.6 Project 3: TMP102 temperature sensor
Description: In this project, the I2C-compatible TMP102 temperature sensor chip is used.
The ambient temperature is read every second and is displayed on the Thonny screen.

The aim: The aim of this project is to show how the temperature sensor chip TMP102 can
be used in a program.

The TMP102
The TMP102 is an I2C compatible, highly accurate temperature sensor chip with a built-in
thermostat with the following basic features:

Chapter 8 • The I2C Bus Interface

● 183

Supply voltage: 1.4 V to 3.6 V
Supply current: 10 μA
Accuracy: ±0.5 ºC
Resolution: 12 bits (0.0625 ºC)
Operating range: –40 ºC to +125 ºC

TMP102 is a 6-pin chip as shown in Figure 8.14. the pin descriptions are:

Pin Name Description

1 SCL I2C line

2 GND power supply ground

3 ALERT Over-temperature alert.
Open-drain output. Requires a
pull-up resistor

4 ADD0 address select

5 V+ power supply

6 SDA I2C line

Figure 8.14: TMP102 pin layout.

The TMP102 supports the following operational modes:

•	Continuous conversion: by default, an internal ADC converts the tempera-
ture into digital format with the default conversion rate of 4 Hz, with a conver-
sion time of 26 ms. The conversion rate can be selected using bits CR1 and
CR0 of the configuration register as: 0.25 Hz, 1 Hz, 4 Hz (default), and 8 Hz. In
this project the default 4 Hz is used.

•	Extended mode: Bit EM of the configuration register selects normal mode (EM
= 0), or extended mode (EM = 1). In normal mode (default mode) the convert-
ed data is 12 bits. Extended mode is used if the temperature is above 128 ºC
and the converted data is 13 bits. In this project the normal mode is used.

•	Shutdown mode: This mode is used to save power where the current con-
sumption is reduced to less than 0.5 μA. The shutdown mode is entered when
configuration register bit SD = 1. The default mode is normal operation (SD =
0).

•	One-shot conversion: Setting configuration register bit OS to 1 selects the
one-shot mode which is a single conversion mode. The default mode is continu-
ous conversion (OS = 0).

Raspberry Pi Pico Essentials

● 184

•	Thermostat mode: This mode indicates whether to operate in comparator
mode (TM = 0) or in interrupt mode (TM = 1). The default is the comparator
mode. In comparator mode, the Alert pin is activated when the temperature
equals or exceeds the value in the THIGH register, and remains active until the
temperature drops below TLOW. In interrupt mode, the Alert pin is activated
when the temperature exceeds THIGH or goes below TLOW registers. The Alert pin
is cleared when the host controller reads the temperature register.

A Pointer Register select various registers in the chip as shown in Table 8.1. The upper
6 bits of this register are 0s.

P1 P0 Register Selected

0 0 Temperature register (read only)

0 1 Configuration register

1 0 TLOW register

1 1 THIGH register

Table 8.1: Pointer register bits.

Table 8.2 shows the temperature register bits in normal mode (EM = 0).

BYTE 1:

D7 D6 D5 D4 D3 D2 D1 D0

T11 T10 T9 T8 T7 T7 T5 T4

BYTE 2:

D7 D6 D5 D4 D3 D2 D1 D0

T3 T2 T1 T0 0 0 0 0

Table 8.2: Temperature register bits.

Table 8.3 shows the configuration register bits. The power-up default bit configuration is
shown in the Table.

BYTE 1:

D7 D6 D5 D4 D3 D2 D1 D0

OS R1 R0 F1 F0 POL TM SD

0 1 1 0 0 0 0 0

Chapter 8 • The I2C Bus Interface

● 185

BYTE 2:

D7 D6 D5 D4 D3 D2 D1 D0

CR1 CR0 AL EM 0 0 0 0

1 0 1 0 0 0 0 0

Table 8.3: Configuration register bits.

The Polarity bit (POL) allows the user to adjust the polarity of the Alert pin output. If set
to 0 (default), the Alert pin becomes active low. When set to 1, the Alert pin becomes ac-
tive-High.

The default device address is 0x48. TMP102 is available as a module (breakout module)
as shown in Figure 8.15. The temperature register address is 0x00 and this should be sent
after sending the device address. This is then followed with a read command where 2 bytes
are read from the TMP102. These 2 bytes contain the temperature data.

The temperature-reading sequence is given below.

•	Master sends the device address 0x48 with the R/W set to 0.
•	Device responds with ACK.
•	Master sends the temperature register address 0x00.
•	Device responds with ACK.
•	Master resends device address 0x48 with the R/W bit set to 1.
•	Master reads upper byte of temperature data.
•	Device sends ACK.
•	Master reads lower byte of temperature data.
•	Device sends ACK.
•	Master sends Stop condition on the bus.

Figure 8.15: TMP102 as a module.

Block diagram: Figure 8.16 shows the block diagram of the project.

Raspberry Pi Pico Essentials

● 186

Figure 8.16: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.17. On-chip
pull-up resistors are available on the TMP102 I2C bus lines, hence there is no need to use
external pull-up resistors.

Figure 8.17: Circuit diagram of the project.

Program listing: Figure 8.18 shows the program listing (Program: TMP102). At the be-
ginning of the program, the I2C address of TMP102 and the Pointer register addresses are
defined. The Pointer register is set to 0 to select the temperature register.

The program runs inside a while loop and calls function Read every second. Read reads
the temperature from TMP102, converts it into positive (or negative) degrees Celsius and
then returns the reading to the main program. The two bytes read are combined to form
the 12-bit temperature data in variable temp. If the temperature is negative, then it is in
2's complement form and its complement is taken and 1 is added to find the true negative
value. By multiplying temp with the LSB we find the temperature in degrees Centigrade.
The temperature is displayed on the Thonny screen as a floating point number.

Table 8.4 shows the data output format of the temperature. Let us look at two examples:

Example 1: Measured value = 0011 00100000 = 0x320 = 800 decimal

This is positive temperature, so the temperature is: 800 × 0.0625 = +50 ºC

Example 2: Measured value = 1110 01110000 = 0xE70

Chapter 8 • The I2C Bus Interface

● 187

This is negative temperature. The complement is 0001 10001111, and adding 1 gives 0001
10010000 = 400 decimal. The temperature works out as: 400 × 0.0625 = 25, i.e. –25 ºC

Temperature Digital Output (Binary) Digital Output (Hex)

128 011111111111 7FF

100 011001000000 640

50 001100100000 320

0.25 000000000100 004

-0.25 111111111100 FFC

-25 111001110000 E70

-55 110010010000 C90

Table 8.4 The data output for some temperature readings.

#--
TMP102 TEMPERATURE SENSOR
=========================
#
In this project a TMP102 type I2C compatible temperature
sensor chip is connected to Raspberry Pi Pico. The temperature
readings are displayed on the Thonny screen.
#
Author: Dogan Ibrahim
File : TMP102.py
Date : February 2021
#--
from machine import Pin,I2C
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=",i2c.scan())

Device_Address = 0x48 # TMP102 I2C address
PointerReg = 0 # TMP102 register

#
This function reads the temperature, extracts degrees Celius
and returns the temperature to the main calling program
#
def Read():
 data = [0, 0]
 LSB = 0.0625
 data = i2c.readfrom_mem(Device_Address, PointerReg, 2)
 temp = (data[0] << 4) | (data[1] >> 4)

Raspberry Pi Pico Essentials

● 188

 if temp > 0x7FF:
 temp = (~temp) & 0xFF
 temp = temp + 1
 temperature = -temp * LSB
 else:
 temperature = temp * LSB
 return(temperature)

#
Main program reads and displays the temperature every second
#
while True:
 Temperature = Read()
 print("Temperature = %+5.2f" %Temperature)
 utime.sleep(1)

Figure 8.18: Program: TMP102.c.

Example output from the program is shown in Figure 8.19.

Figure 8.19: Example output from the program.

8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
Description: In this project the I2C compatible BMP280 module is used to read and display
the ambient temperature and atmospheric pressure on the Thonny screen.

The aim: The aim of this project is to show how the BMP280 chip can be used in a program.

The BMP280
The BMP280 (Figure 8.20) is an I2C compatible highly accurate temperature and atmos-
pheric pressure sensor chip having the following basic features:

Chapter 8 • The I2C Bus Interface

● 189

•	Temperature range: –40 to +85ºC
•	Pressure range: 300 to 1100 hPa
•	Relative pressure accuracy: ±0.12 hPa
•	Current consumption: 2.7 μA
•	I2C and SPI interface
•	Supply voltage: 1.71 V to 3.6 V
•	Footprint 2.0 x 2.5 mm2

•	8-pin LGA metal package

The BMP280, manufactured by Bosch, is used in many applications, including navigation,
temperature and pressure monitoring, elevator and floor detection (altitude measure-
ment), leisure and sports, weather forecast, mobile phones, tablets, GPS devices, flying
toys, watches, and so on.
The BMP280 consists of a Piezo-resistive pressure sensing element and a mixed-signal
ASIC which performs ADC conversions for the digital interface. The chip can be operated
in three power modes: sleep mode, normal mode, and forced mode. The chip is equipped
with a built-in digital IIR filter to minimize disturbances in the output.
Interested readers can get detailed information on the BMP280 from the BMP280 Digital
Pressure Sensor datasheet
(link: https://www.mouser.co.uk/datasheet/2/783/BST_BMP280_DS001-1509562.pdf)

Figure 8.20: BMP280 module.

Block diagram: Figure 8.21 shows the block diagram of the project.

Figure 8.21: Block diagram of the project.

Circuit diagram: The BMP280 can be operated either in I2C or in SPI mode. In this project
we are using the I2C mode. The circuit diagram of the project is shown in Figure 8.22. I2C
pins GP8 (SDA) and GP9 (SCL) of the Raspberry Pi Pico are connected to the corresponding
SDA and SCL pins of the BMP280.

https://www.mouser.co.uk/datasheet/2/783/BST_BMP280_DS001-1509562.pdf

Raspberry Pi Pico Essentials

● 190

Figure 8.22: Circuit diagram of the project.

Program listing: Programming the BMP280 is a complex process. In this project
the program has been adapted by the author to work with the Raspberry Pi Pico. The
program can be found at:

https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/
BMP280.py

This program reads the temperature and pressure from the BMP280 chip whose I2C ad-
dress is 118 (0x76).
Figure 8.23 shows the program listing (Program: ReadBMP280) where the temperature
and pressure readings are displayed on the Thonny screen. The I2C address is also dis-
played on the screen.

#--
BMP280 TEMPERATURE AND PRESSURE SENSOR
======================================
#
In this project the BMP280 temperature and pressure sensor
chip is used and the readings are displayed on the screen
every 5 seconds
#
Author: Dogan Ibrahim
File : ReadBMP280.py
Date : February 2021
#--
from machine import Pin,I2C
import utime
import utime

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=" ,i2c.scan())

#

https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/BMP280.py
https://github.com/ControlEverythingCommunity/BMP280/blob/master/Python/BMP280.py

Chapter 8 • The I2C Bus Interface

● 191

THis function returns the temperature and pressure readings
Adapted for the RAspberry Pi Pico from:
#
https://github.com/ControlEverythingCommunity/
BMP280/blob/master/Python/BMP280.py
#
def BMP280():
 # BMP280 address, 0x76(118)
 # Read data back from 0x88(136), 24 bytes
 b1 = i2c.readfrom_mem(0x76, 0x88, 24)

 # Convert the data
 # Temp coefficents
 dig_T1 = b1[1] * 256 + b1[0]
 dig_T2 = b1[3] * 256 + b1[2]
 if dig_T2 > 32767 :
 dig_T2 -= 65536
 dig_T3 = b1[5] * 256 + b1[4]
 if dig_T3 > 32767 :
 dig_T3 -= 65536

Pressure coefficents
 dig_P1 = b1[7] * 256 + b1[6]
 dig_P2 = b1[9] * 256 + b1[8]
 if dig_P2 > 32767 :
 dig_P2 -= 65536
 dig_P3 = b1[11] * 256 + b1[10]
 if dig_P3 > 32767 :
 dig_P3 -= 65536
 dig_P4 = b1[13] * 256 + b1[12]
 if dig_P4 > 32767 :
 dig_P4 -= 65536
 dig_P5 = b1[15] * 256 + b1[14]
 if dig_P5 > 32767 :
 dig_P5 -= 65536
 dig_P6 = b1[17] * 256 + b1[16]
 if dig_P6 > 32767 :
 dig_P6 -= 65536
 dig_P7 = b1[19] * 256 + b1[18]
 if dig_P7 > 32767 :
 dig_P7 -= 65536
 dig_P8 = b1[21] * 256 + b1[20]
 if dig_P8 > 32767 :
 dig_P8 -= 65536
 dig_P9 = b1[23] * 256 + b1[22]
 if dig_P9 > 32767 :

Raspberry Pi Pico Essentials

● 192

 dig_P9 -= 65536

BMP280 address, 0x76(118)
Select Control measurement register, 0xF4(244)
0x27(39) Pressure and Temperature Oversampling rate = 1
Normal mode
 i2c.writeto_mem(0x76, 0xF4, b’\x27’)
BMP280 address, 0x76(118)
Select Configuration register, 0xF5(245)
0xA0(00) Stand_by time = 1000 ms
 i2c.writeto_mem(0x76, 0xF5, b’\xA0’)

 utime.sleep(0.5)

BMP280 address, 0x76(118)
Read data back from 0xF7(247), 8 bytes
Pressure MSB, Pressure LSB, Pressure xLSB, Temperature MSB, Temperature LSB
Temperature xLSB, Humidity MSB, Humidity LSB
 data = i2c.readfrom_mem(0x76, 0xF7, 8)

Convert pressure and temperature data to 19-bits
 adc_p = ((data[0] * 65536) + (data[1] * 256) + (data[2] & 0xF0)) / 16
 adc_t = ((data[3] * 65536) + (data[4] * 256) + (data[5] & 0xF0)) / 16

Temperature offset calculations
 var1 = ((adc_t) / 16384.0 - (dig_T1) / 1024.0) * (dig_T2)
 var2 = (((adc_t) / 131072.0 - (dig_T1) / 8192.0) * ((adc_t)/131072.0 -
(dig_T1)/8192.0)) * (dig_T3)
 t_fine = (var1 + var2)
 cTemp = (var1 + var2) / 5120.0

Pressure offset calculations
 var1 = (t_fine / 2.0) - 64000.0
 var2 = var1 * var1 * (dig_P6) / 32768.0
 var2 = var2 + var1 * (dig_P5) * 2.0
 var2 = (var2 / 4.0) + ((dig_P4) * 65536.0)
 var1 = ((dig_P3) * var1 * var1 / 524288.0 + (dig_P2) * var1) / 524288.0
 var1 = (1.0 + var1 / 32768.0) * (dig_P1)
 p = 1048576.0 - adc_p
 p = (p - (var2 / 4096.0)) * 6250.0 / var1
 var1 = (dig_P9) * p * p / 2147483648.0
 var2 = p * (dig_P8) / 32768.0
 pressure = (p + (var1 + var2 + (dig_P7)) / 16.0) / 100
 return(cTemp, pressure)

Chapter 8 • The I2C Bus Interface

● 193

#
Main program, read and siaplay the temperature and pressure
#
while True:
 T,P = BMP280()
 print("Temperature in Celsius : %.2f C" %T)
 print("Pressure : %.2f hPa \n" %P)
 utime.sleep(5)

Figure 8.23: Program: ReadBMP280.

Figure 8.24 shows example output from the program.

Figure 8.24: Example output from the program.

Building the BMP280 reading program into a module
The BMP280 reading program can be built into a module so that it can be imported at the
beginning of the program and used with ease. The steps to follow are given below.

•	Use the Thonny to save the function given in Figure 8.25 with the name
bmp280.py on your Raspberry Pi Pico.

import machine
import utime
def BMP280():
 i2c = machine.I2C(0, scl=machine.Pin(9), sda=machine.Pin(8), freq=100000)
 # BMP280 address, 0x76(118)
 # Read data back from 0x88(136), 24 bytes
 b1 = i2c.readfrom_mem(0x76, 0x88, 24)

 # Convert the data
 # Temp coefficents
 dig_T1 = b1[1] * 256 + b1[0]
 dig_T2 = b1[3] * 256 + b1[2]
 if dig_T2 > 32767 :
 dig_T2 -= 65536
 dig_T3 = b1[5] * 256 + b1[4]
 if dig_T3 > 32767 :
 dig_T3 -= 65536

Raspberry Pi Pico Essentials

● 194

Pressure coefficents
 dig_P1 = b1[7] * 256 + b1[6]
 dig_P2 = b1[9] * 256 + b1[8]
 if dig_P2 > 32767 :
 dig_P2 -= 65536
 dig_P3 = b1[11] * 256 + b1[10]
 if dig_P3 > 32767 :
 dig_P3 -= 65536
 dig_P4 = b1[13] * 256 + b1[12]
 if dig_P4 > 32767 :
 dig_P4 -= 65536
 dig_P5 = b1[15] * 256 + b1[14]
 if dig_P5 > 32767 :
 dig_P5 -= 65536
 dig_P6 = b1[17] * 256 + b1[16]
 if dig_P6 > 32767 :
 dig_P6 -= 65536
 dig_P7 = b1[19] * 256 + b1[18]
 if dig_P7 > 32767 :
 dig_P7 -= 65536
 dig_P8 = b1[21] * 256 + b1[20]
 if dig_P8 > 32767 :
 dig_P8 -= 65536
 dig_P9 = b1[23] * 256 + b1[22]
 if dig_P9 > 32767 :
 dig_P9 -= 65536

BMP280 address, 0x76(118)
Select Control measurement register, 0xF4(244)
0x27(39) Pressure and Temperature Oversampling rate = 1
Normal mode
 i2c.writeto_mem(0x76, 0xF4, b’\x27’)
BMP280 address, 0x76(118)
Select Configuration register, 0xF5(245)
0xA0(00) Stand_by time = 1000 ms
 i2c.writeto_mem(0x76, 0xF5, b’\xA0’)

 utime.sleep(0.5)

BMP280 address, 0x76(118)
Read data back from 0xF7(247), 8 bytes
Pressure MSB, Pressure LSB, Pressure xLSB, Temperature MSB, Temperature LSB
Temperature xLSB, Humidity MSB, Humidity LSB
 data = i2c.readfrom_mem(0x76, 0xF7, 8)

Chapter 8 • The I2C Bus Interface

● 195

Convert pressure and temperature data to 19-bits
 adc_p = ((data[0] * 65536) + (data[1] * 256) + (data[2] & 0xF0)) / 16
 adc_t = ((data[3] * 65536) + (data[4] * 256) + (data[5] & 0xF0)) / 16

Temperature offset calculations
 var1 = ((adc_t) / 16384.0 - (dig_T1) / 1024.0) * (dig_T2)
 var2 = (((adc_t) / 131072.0 - (dig_T1) / 8192.0) * ((adc_t)/131072.0 -
(dig_T1)/8192.0)) * (dig_T3)
 t_fine = (var1 + var2)
 cTemp = (var1 + var2) / 5120.0

Pressure offset calculations
 var1 = (t_fine / 2.0) - 64000.0
 var2 = var1 * var1 * (dig_P6) / 32768.0
 var2 = var2 + var1 * (dig_P5) * 2.0
 var2 = (var2 / 4.0) + ((dig_P4) * 65536.0)
 var1 = ((dig_P3) * var1 * var1 / 524288.0 + (dig_P2) * var1) / 524288.0
 var1 = (1.0 + var1 / 32768.0) * (dig_P1)
 p = 1048576.0 - adc_p
 p = (p - (var2 / 4096.0)) * 6250.0 / var1
 var1 = (dig_P9) * p * p / 2147483648.0
 var2 = p * (dig_P8) / 32768.0
 pressure = (p + (var1 + var2 + (dig_P7)) / 16.0) / 100
 return(cTemp, pressure)

Figure 8.25: Function 'bmp280.py'.

•	Modify the program ReadBMP280-2 in Figure 8.23 as shown in Figure 8.26.

#--
BMP280 TEMPERATURE AND PRESSURE SENSOR
======================================
#
In this project the BMP280 temperature and pressure sensor
is connected to the Raspberry Pi Pico. The temperature and
pressure readings are displayed every 5 seconds on the
Thonny screen
#
In this version of the program the BMP280 code is imported
as a module
#
Author: Dogan Ibrahim
File : ReadBMP280-2.py
Date : February 2021
#--

Raspberry Pi Pico Essentials

● 196

from machine import Pin,I2C
import utime
import bmp280

i2c = machine.I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)
print("i2c address=" ,i2c.scan())

while True:
 T,P = bmp280.BMP280()
 print("Temperature in Celsius : %.2f C" %T)
 print("Pressure : %.2f hPa \n" %P)
 utime.sleep(5)

Figure 8.26: Modified program: ReadBMP280-2.

8.8 Project 5: Display BMP280 temperature and atmospheric pressure
on an LCD
Description: This project is similar to the previous project, but here the temperature and
pressure readings are displayed on the LCD.

Block diagram: Figure 8.27 shows the block diagram of the project.

Figure 8.27: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28.

Figure 8.28: Circuit diagram of the project.

Chapter 8 • The I2C Bus Interface

● 197

Program listing: Figure 8.29 shows the program listing (Program: TempPres). At the be-
ginning of the program modules bmp280, utime, I2C, and LCD are imported to the program
and the LCD is initialized. Inside the program loop the temperature and pressure readings
are displayed on the top and bottom rows of the LCD respectively.

#--
DISPLAY BMP280 TEMPERATURE AND PRESSURE READINGS ON LCD
===
#
In this project a BMP280 temperature and pressure sensor
module is connected to Raspberry Pi Pico. The readings
are displayed on LCD
#
Author: Dogan Ibrahim
File : TempPres.py
Date : February 2021
#--
from machine import Pin,I2C
import utime
import bmp280
import LCD

LCD.lcd_init()

while True:
 T,P = bmp280.BMP280() # Read T and P
 Temp = "T=" + str(T)[:5] + " C" # Format T
 Press = "P=" + str(P)[:6] + " hPa" # Format P
 LCD.lcd_clear() # Clear LCD
 LCD.lcd_puts(Temp) # Display Temperature
 LCD.lcd_goto(0, 1) # At 0, 1
 LCD.lcd_puts(Press) # Display Pressure
 utime.sleep(5) # Wait 5 seconds

Figure 8.29: Program: TempPres.

Figure 8.30 shows an example of a pressure reading appearing on the LCD.

Figure 8.30: Example display on the LCD.

Raspberry Pi Pico Essentials

● 198

Chapter 9 • The SPI Bus Interface

9.1 Overview
In this Chapter we shall be developing projects using the SPI bus (serial Peripheral Inter-
face) with the Raspberry Pi Pico. The SPI bus is commonly a widely used protocol to connect
sensors and many other devices to microcontrollers. The SPI bus is a master-slave type bus
protocol. In this protocol, one device (the microcontroller) is designated as the master, and
one or more other devices (usually sensors) are designated as slaves. In a minimum bus
configuration there is one master and only one slave. The master establishes communica-
tion with the slaves and controls all the activity on the bus.
Figure 9.1 shows an SPI bus example with one master and 3 slaves. The SPI bus uses 3
signals: clock (SCK), data in (SDI, or RX), and data out (SDO, or TX). SDO of the master
is connected to the SDIs of the slaves, and SDOs of the slaves are connected to the SDI of
the master. The master generates the SCK signals to enable data to be transferred on the
bus. In every clock pulse one bit of data is moved from master to slave, or from slave to
master. The communication is only between a master and a slave, and the slaves cannot
communicate with each other. It is important to note that only one slave can be active
at any time since there is no mechanism to identify the slaves. Thus, slave devices have
enable lines (e.g. CS or CE) which are normally controlled by the master. A typical commu-
nication sequence between a master and several slaves is given below.

•	Master enables slave 1.
•	Master sends SCK signals to read or write data to slave 1.
•	Master disables slave 1 and enables slave 2.
•	Master sends SCK signals to read or write data to slave 2.
•	The above process continues as required.

Figure 9.1: SPI bus with one master and 3 slaves.

The SPI signal names are also called MISO (Master in, Slave out), and MOSI (Master out,
Slave in). Clock signal SCK is also called SCLK and the CS is also called SSEL. In the SPI
projects in this Chapter the Raspberry Pi is the master and one or more slaves are con-
nected to the bus. Transactions over the SPI bus are started by enabling the SCK line.
The master then asserts the SSEL line Low so that data transmission can begin. The data
transmission involves two registers, one in the master and one in the slave device. Data is
shifted out from the master into the slave with the MSB bit first. If more data is to be trans-
ferred, then the process is repeated. Data exchange is complete when the master stops
sending clock pulses and deselects the slave device.

Chapter 9 • The SPI Bus Interface

● 199

The master and the slave must agree on the clock polarity and phase on the line, which are
known as the SPI bus modes. These two settings go by the names 'Clock Polarity' (CPOL)
and 'Clock Phase' (CPHA) respectively. CPOL and CPHA can have the following values:

CPOL Clock-Active State
1 Clock active High
1 Clock active Low

CPHA Clock Phase
1 Clock out of phase with data
2 Clock in phase with data

The four SPI modes are:

Mode	 CPOL	 CPHA
 0	 0	 0
 1	 0	 1
 2	 1	 0
 3	 1	 1

When CPOL = 0, the active state of the clock is 1, and its idle state is 0. For CPHA = 0, data
is captured on the rising clock, and data is shifted out on the falling clock. For CPHA = 1,
data is captured on the falling edge of the clock and gets shifted out on the rising edge of
the clock.
When CPOL = 1, the active state of the clock is 0, and its idle state is 1. For CPHA = 0, data
is captured on the falling edge of the clock and gets output on the rising edge. For CPHA =
1, data is captured on the rising edge of the clock and gets shifted out on the falling edge.

9.2 Raspberry Pi Pico SPI ports
There are 2 SPI ports on the Raspberry Pi Pico, named SPI0 and SPI1. Figure 9.2 shows
the SPI pin configuration.

Raspberry Pi Pico Essentials

● 200

Figure 9.2: Raspberry Pi Pico SPI pins.

In the remaining sections of this Chapter we will be developing a project using the SPI bus.

9.3 Project 1: SPI Port expander
Description: A simple project is given in this section to show how the SPI functions can be
used in a program. This project is very similar to the port expender project in the previous
Chapter. In that project the I2C compatible chip MCP23017 was used. In this project, the
SPI-bus-compatible port expander chip type MCP23S17 is used to give additional 16 I/O
ports to the Raspberry Pi Pico. The operation of the MCP23S17 is identical to the operation
of MCP23017, except that the MCP23S17 uses the SPI bus. In this project, an LED is con-
nected to MCP23S17 port pin GPA0 and the LED is flashed ON and OFF every second. A
470-ohm current limiting resistor is used in series with the LED.

The aim: The aim of this project is to show how the SPI bus can be used in Raspberry Pi
Pico based projects.

Block diagram: The block diagram of the project is same as in Figure 8.3, but the
MCP23017 chip is replaced with the MCP23S17.

The MCP23S17
The MCP23S17 is a 28-pin chip with some interesting features:

•	16 bidirectional I/O ports
•	Up to 1.7 MHz operation on I2C bus
•	Interrupt capability
•	External reset input

Chapter 9 • The SPI Bus Interface

● 201

•	Low standby current
•	+1.8 V to +5.5 V operation
•	3 address pins, allowing up to 8 devices to be used on the SPI bus
•	28-pin DIL package

The pin configuration is shown in Figure 9.3, which is same as the pin configuration of
MCP23017, but SPI pins are used instead of I2C pins.

Figure 9.3: Pin configuration of the MCP23S17.

The pin descriptions are given in Table 9.1.

Pin Description

GPA0-GPA7 Port A pins

GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SI SPI MOSI data pin

SCK SPI clock pin

SO SPI MISO data pin

CS SPI SSEL chip enable pin

A0-A2 I2C address pins

RESET Reset pin

INTA Interrupt pin

INTB Interrupt pin

Table 8.1: MCP23S17 pin descriptions.

The MCP23S17 is a slave-SPI device. The slave address contains four upper fixed bits
(0100) and three user-defined hardware address bits (pins A2, A1 and A0) with the read/
write bit filling out the control byte. These address bits are enabled/disabled by control
register IOCON.HAEN. By default, the user address bits are disabled at power-up (i.e. IO-
CON.HAEN = 0) and A2 = A1 = A0 = 0. and the chip is addressed with 0x40. As such, we

Raspberry Pi Pico Essentials

● 202

can use two MCP23S17 chips on SPI0 by connecting one CS bit to CE0, and the other one
to CE1 and addressing both chips with 0x40. By setting bit HAEN to 1, we can change the
addresses of the devices in multiple MCP23S17 based applications (e.g. more than 2) by
connecting the A2, A1, and A0 accordingly. 16 such chips can be connected (8 to CE0 and
8 to CE1), corresponding to 16 × 16 = 256 I/O ports. Figure 9.4 and Figure 9.5 show the
addressing format. The address pins should be externally biased even if disabled.

Figure 9.4: MCP23S17 control byte format.

Figure 9.5: MCP23S17 addressing registers.

Like the MCP23017, the MCP23S17 chip has 8 internal registers that can be configured for
its operation. The device can either be operated in 16-bit mode or in two 8-bit mode, by
configuring bit IOCON.BANK. On power-up this bit is cleared which chooses the two 8-bit
mode by default.
The I/O direction of the port pins are controlled with registers IODIRA (at address 0x00)
and IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the correspond-
ing port pin(s) as output(s). Similarly, setting a bit to 1 in these registers make the cor-
responding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13
respectively. This is shown in Figure 9.6.

Figure 9.6: Configuring the I/O ports.

Further information on the MCP23S17 chip can be obtained from the Microchip Inc data
sheet at the following web site:

Chapter 9 • The SPI Bus Interface

● 203

http://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Circuit diagram: Figure 9.7 shows the circuit diagram of the project. SPI0 pins at GP3
(SPI0 TX) and GP2 (SPI0 SCK) are used to interface to the chip. CS is controlled separately
and in this project GP26 is used as the CS pin. SPI0 RX pin is not used in this project since
there is no input from the MCP23S17.

Figure 9.7: Circuit diagram of the project.

Program listing: Figure 9.8 shows the program listing (Program: MCP23S17). The pro-
gramming of the MCP23S17 chip is as follows (notice that not all SPI devices require device
addresses):

•	send device address (0x40 in this project);
•	send register address;
•	send register data.

First of all, we have to program the I/O direction register IODIRA to 0 so that PORTA pins
are outputs. This register has address 0x0. Then, we should program bit 0 of PORTA (pin:
GPIOA) where the LED is connected to. The address of register GPIOA is 0x12.
At the beginning of the program the SPI interface signals between the Raspberry Pi Pico
and MCP23S17 are defined. The required addresses of the MCP23S17 and the CS connec-
tion are then defined, and CS is initially set to 1 so that the MCP23S17 chip command mode
is disabled (CS must be controlled separately).

Function Configure configures PORTA as output. Function Send sends data to the specified
port register (RegAddr) so that the required pin is at logic 1 or 0. Data is either 0 or 1.
When 1, the LED is turned ON, and when 0 the LED is turned OFF. The main program runs
in a loop and calls function Send every second to flash the LED.

http://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Raspberry Pi Pico Essentials

● 204

#--
SPI BUS PORT EXPANDER
=====================
#
In this project the SPI bus compatible MCP23S17 chip is used
to add 16 more ports to Raspberry Pi Pico.An LED is connected
to pin GPA0 of the expander and the LED is flashed every
second
#
Author: Dogan Ibrahim
File : MCP23S17.py
Date : February 2021
#--
from machine import Pin,SPI
import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

Device_Address = 0x40 # MCP23S17 SPI address
MCP_GPIOA = 0x12 # MCP23S17 GPIOA address
MCP_IODIRA = 0 # MCP IODIRA address
CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

#
This function configures PORTA as output
#
def Configure():
 buff = [0, 0, 0]
 buff[0] = Device_Address
 buff[1] = MCP_IODIRA
 buff[2] = 0
 CS.value(0)
 spi.write(bytearray(buff))
 CS.value(1)

#
This function sends data to register RegAddr
#
def Send(RegAddr, data):
 buff = [0, 0, 0]
 buff[0] = Device_Address

Chapter 9 • The SPI Bus Interface

● 205

 buff[1] = RegAddr
 buff[2] = data
 CS.value(0)
 spi.write(bytearray(buff))
 CS.value(1)

#
Main program reads and displays the temperature every second
#
while True:
 Configure()

 while True:
 Send(MCP_GPIOA, 1) # LED ON
 utime.sleep(1) # 1 second delay
 Send(MCP_GPIOA, 0) # LED OFF
 utime.sleep(1) # 1 second delay

Figure 9.8: Program 'MCP23S17'.

Raspberry Pi Pico supports the following SPI functions:

spi.read(nbytes) read nbytes
spi.readinto(buffer) read into the specified buffer
spi.write(buffer) write buffer contents to the SPI bus
spi.write_readinto(wbuffer, rbuffer)) �write from wbuffer while reading into

rbuffer (both buffers must have the
same length)

Default SPI bus settings are:

baud rate:	 1,000,000	 can be set as required
polarity:		 0		 can be 0 or 1
phase:		 0		 can be 0 or 1
bits:		 8		 should be 8
firstbit:		 MSB		 can be SPI.MSB or SPI.LSB
SPI0 SCK:	 GP6
SPI0 MOSI	 GP7
SPI0 MISO	 GP4
SPI1 SCK	 GP10
SPI1 MOSI	 GP11
SPI1 MISO	 GP8

sck, mosi, and miso are the SPI pins and they can be assigned to GPIO pins using the Pin
functions (see Figure 9.8).

Raspberry Pi Pico Essentials

● 206

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

10.1 Overview
In this Chapter we shall be developing projects using a Wi-Fi link to establish communica-
tion between the Raspberry Pi Pico and a smartphone.

10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
Description: In this project we will be sending commands over the Wi-Fi link from a mo-
bile phone to control an LED (the LED can be replaced with a relay for example to control
an equipment) connected to the Raspberry Pi Pico. Commands must be terminated with a
Return (CR/LF or 'newline'). Valid commands include:

LON	 Turn LED ON
LOFF	 Turn LED OFF

Aim: The aim of this project is to showcase the use the Wi-Fi connectivity on the Raspberry
Pi Pico.

Pico Wi-Fi connectivity: The Raspberry Pi Pico has no built-in Wi-Fi module and as such it
cannot be connected to a Wi-Fi network without interfacing it to an external Wi-Fi module.
Perhaps the easiest and the cheapest way of providing Wi-Fi capability to the Pico is by
using an ESP-01 processor board. This is a tiny board (see Figure 10.1), measuring only
2.7 cm × 1.2 cm, and based on the ESP8266 processor chip, and costing around $3 USD.
The ESP-01 has the following motivating features:

•	Operating voltage: +3.3 V
•	Interface: using simple AT commands over serial port/UART
•	Integrated TCP/IP protocol stack. 802.11 b/g/n
•	No external components required

Figure 10.1: ESP-01 processor board.

ESP-01 communicates with the host processor through its TX and RX serial port pin. It is
an 8-pin board with pin names as follows:

VCC: 		 +3.3 V power supply pin
GND: 		 Power supply ground
GPIO0: 		� I/O pin. This pin must be connected to +3.3 V for normal

operation, and to GND for uploading firmware to the chip
GPIO2: 		 General purpose I/O pin

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

● 207

RST: 		 Reset pin. Must be connected to +3.3 V for normal operation
CH_PD: 	 Enable pin. Must be connected to +3.3 V for normal operation
TX: 		 Serial output pin
RX: 		 Serial input pin

The ESP-01's pins are not standard breadboard-compatible, so an adaptor is required if the
board is to be attached to a breadboard (see Figure 10.2).

Figure 10.2: ESP-01 breadboard adapter.

Block Diagram: Figure 10.3 shows the project block diagram.

Figure 10.3: Block diagram of the project.

Circuit Diagram: Figure 10.4 shows the circuit diagram of the project. The Raspberry Pi
Pico's UART 0 TX and RX pins are used to communicate with the ESP-01.

Raspberry Pi Pico Essentials

● 208

Figure 10.4: Circuit diagram of the project.

Program Listing: Figure 10.5 shows the program listing (program: Picowifi). Inside the
setup routine serial communication speed is set to 115200 which is the default Baud rate
for ESP-01, and the LED is configured as output and turned OFF. Function ConnectToWiFi
is called to connect to the local Wi-Fi router. AT-style commands are used to configure the
ESP-01 to connect to the Wi-Fi router.

The remainder of the program runs in an endless loop formed using a while statement.
Inside this loop, data is received from the smart mobile phone and the LED is controlled ac-
cordingly. Commands LON and LOFF turn the LED ON and OFF, respectively. Data packets
are received from the smartphone using the readline function. Function find looks for a
substring in a string and returns a non-zero value if the substring is found. The find func-
tion is used because the data received from the mobile device is in the following format:
+ID0,n: data (e.g. +ID0,3:LON) where 0 is the link ID and n is the number of characters
received. Using the function find we can easily search for the strings LON or LOFF in the
received data packet.

Function ConnectToWiFi sends the following commands to the ESP-01 to connect to the
Wi-Fi network:

AT+RST		 -	 reset ESP-01
AT+CWMODE	 -	 set ESP-01 mode (here it is set to Station mode)
AT+CWJAP	 -	 set Wi-Fi ssid name and password
AT+CPIMUX	 -	 set connection mode (here it is set to multiple connec-
tion)
AT+CIFSR	 -	 returns the IP address (not used here)
AT+CIPSTART	 -	� set TCP or UDP connection mode, destination IP address,

and port number (here, UDP is used with port number
set to 5000. Destination IP address is set to "0.0.0.0"
so that any device can send data as long as port 5000
is used (You can change this to the IP address of your
smart phone to receive data only from your phone).

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

● 209

#--
USING WI-FI
===========
#
In this project a ESP-01 chip is connected to the Raspberry
Pi Pico. This chip is used to connect the Pico to the Wi-Fi
#
Author: Dogan Ibrahim
File : Picowifi.py
Date : February 2021
#--
from machine import Pin, UART
import utime
uart = UART(0, baudrate=115200,rx=Pin(1),tx=Pin(0))

LED = Pin(16, Pin.OUT)
LED.value(0)

#
Send AT commands to ESP-01 to connect to local WI-Fi
#
def ConnectToWiFi():
 uart.write("AT+RST\r\n")
 utime.sleep(5)

 uart.write("AT+CWMODE=1\r\n")
 utime.sleep(1)

 uart.write(‘’’AT+CWJAP="BTHomeSpot-XNH","49345xyzpq"\r\n’’’)
 utime.sleep(5)

 uart.write("AT+CPIMUX=0\r\n")
 utime.sleep(3)

 uart.write(‘’’AT+CIPSTART="UDP","0.0.0.0",5000,5000,2\r\n’’’)
 utime.sleep(3)

ConnectToWiFi()

#
Main program loop
#
while True:
 buf = uart.readline() # Read data
 dat = buf.decode(‘UTF-8’) # Decode
 n = dat.find("LON") # Includes LON?

Raspberry Pi Pico Essentials

● 210

 if n > 0:
 LED.value(1) # LED ON
 n = dat.find("LOFF") # Includes OFF?
 if n > 0:
 LED.value(0) # LED OFF

Figure 10.5: Program: Picowifi.

Notice that small delays are used after each command. Command AT+CWJAP requires a
longer delay. The program can easily be modified such that the delays can be removed and
the responses from the ESP-01 can be checked. This way, as soon as the correct response
is received, the program can continue. You may have to hardware-reset the ESP-01 by
powering it down and up again before you run the program.

Testing the program
The program can easily be tested using the PacketSender program (see Figure 10.6) on
the PC or using a smart phone after installing a UDP app.

Figure 10.6: Using the PacketSender to test the program.

You should install a UDP Server app on your Android mobile phone before starting the test
with the smartphone. There are many freely available UDP apps in the Play Store. The
one installed and used in this project is called the UDP/TCP Widget by K.J.M as shown in
Figure 10.7.

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

● 211

Figure 10.7: UDP/TCP Widget apps for Android.

The steps to test the program are as follows.

•	Construct the circuit.
•	Download the program to your Raspberry Pi Pico.
•	Start the UDP/TCP Widget apps on your mobile phone.
•	Click the gear symbol and set the Protocol to UDP, IP address to the IP ad-

dress of your Raspberry Pi Pico (192.168.1.160 in author's Pico), and set the
Port to 5000 as shown in Figure 10.8.

Figure 10.8: Configuring the app.

•	Click the MESSAGE menu item and select Text (UTF-8) as the Format, and
enter command LON to turn ON the LED. Select LF\n as the Terminator and
click the OK symbol (check symbol), as shown in Figure 10.9.

•	Now, click the SEND button (Figure 10.10) to send the command to the Rasp-
berry Pi Pico. You should see the message Packet Sent displayed at the top of
your Android screen temporarily.

Raspberry Pi Pico Essentials

● 212

Figure 10.9: Command to turn ON the LED.

Figure 10.10: Click SEND to send the command.

Notice that the IP address of the ESP-01 can be obtained by scanning all the devices on the
local Wi-Fi router. For example, the Android app called Who Uses My WiFi – Network
Scanner by Phuongpn can be used to see the IP addresses of all the devices connected
to your router. The ESP-01 is listed as shown in Figure 10.11 (IP: 192.168.1.160), listed
with the name Espressif.

Figure 10.11: Finding the IP address of the ESP-01.

10.3 Project 2: Displaying the internal temperature on a smartphone
using Wi-Fi
Description: In this project we will be reading the internal temperature of the Raspberry
Pi Pico and then send this data to a smartphone over a Wi-Fi link.
A request for data is made by the smartphone when it sends the characters T? to the
Raspberry Pi Pico. This project uses two-way UDP communication to receive and send data.

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

● 213

Aim: The aim of this project is to show how two-way communication can be established
with a smartphone over the Wi-Fi link.

Block Diagram: Figure 10.12 shows the block diagram of the project.

Figure 10.12: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is same as in Figure 10.4.

Program Listing: The program listing is shown in Figure 10.13 (program: Temptowifi).
Function ConnectToWiFi is called to connect to the local Wi-Fi router as in the previous
program. Inside the main program loop, the program waits to receive command T? and
when this command is received, function GetTemperature is called and the Raspberry Pi
Pico's internal temperature is read and stored in variable T in the main program. String var-
iable Tstr stores string T= followed by the value of the temperature as a string. The length
of this string is stored in variable Tlen. Sending data through the Wi-Fi UDP link involves
sending command AT+CIPSEND to ESP-01, followed by the number of bytes to be sent
(i.e. the length of the data). The actual data is then sent after a short delay.

#--
SEND TEMPERATURE TO SMART PHONE
===============================
#
In this project a ESP-01 chip is connected to the Raspberry
Pi Pico. Internal temperature of the Raspberry Pi Pico is
sent to the smart phone
#
Author: Dogan Ibrahim
File : Temptowifi.py
Date : February 2021
#--
from machine import Pin, UART, ADC
import utime

Raspberry Pi Pico Essentials

● 214

uart = UART(0, baudrate=115200,rx=Pin(1),tx=Pin(0))

Conv = 3.3 / 65535
AnalogIn = ADC(4)

def GetTemperature():
 V = AnalogIn.read_u16()
 V = V * Conv
 Temp = 27 - (V - 0.706) / 0.001721
 return Temp

#
Send AT commands to ESP-01 to connect to local WI-Fi
#
def ConnectToWiFi():
 uart.write("AT+RST\r\n")
 utime.sleep(5)

 uart.write("AT+CWMODE=1\r\n")
 utime.sleep(1)

 uart.write(‘’’AT+CWJAP="BTHomeSpot-XNH","49345axyzw"\r\n’’’)
 utime.sleep(5)

 uart.write("AT+CPIMUX=0\r\n")
 utime.sleep(3)

 uart.write(‘’’AT+CIPSTART="UDP","192.168.1.199",5000,5000,2\r\n’’’)
 utime.sleep(3)

ConnectToWiFi()

#
Main program loop. Send the temperature to smart phone
#
while True:
 buf = uart.readline() # Read data
 dat = buf.decode(‘UTF-8’) # Decode
 n = dat.find("T?") # T? received?
 if n > 0:
 T = GetTemperature() # Get the temperature
 Tstr = "T=" + str(T) # Insert T=
 Tlen = str(len(Tstr)) # Length
 Dt = "AT+CIPSEND="+Tlen + "\r\n" # AT command to send
 uart.write(Dt) # Send to ESP-01

Chapter 10 • Wi-Fi with the Raspberry Pi Pico

● 215

 utime.sleep(2) # Wait 2 sec
 uart.write(Tstr) # Send data

Figure 10.13: Program: Temptowifi.

Testing the program
The program can either be tested on a PC using the freely available PacketSender pro-
gram or a smartphone with a UDP app installed. PacketSender enables the user to send
and received UDP as well as TCP packets from a PC. This program could be very useful
during testing of UDP and TCP based programs. Figure 10.14 shows the PacketSender
program where command T? is sent and the temperature is received and displayed. Notice
that 192.168.1.199 was the PC IP address during the testing.

Figure 10.14: Using the PacketSender program.

Alternatively, we can use a suitable UDP client/server program to test the program. One
such program for Android-running smartphones is the TCP/UDP Client app from Digit
Mund as shown in Figure 10.15. Figure 10.16 shows the startup screen of this app on an
Android smartphone. Enter the Raspberry Pi Pico IP address, Port number, Protocol,
and click the menu button REQUEST.

Figure 10.15: UDP app.

Raspberry Pi Pico Essentials

● 216

Figure 10.16: Startup screen of the app.

An example run of the program on the app is shown in Figure 10.17, where command T? is
sent to the Raspberry Pi Pico and the temperature is received and displayed on the Android
screen.

Figure 10.17: Example run of the program.

Chapter 11 • Bluetooth with the Raspberry Pi Pico

● 217

Chapter 11 • Bluetooth with the Raspberry Pi Pico

11.1 Overview
Bluetooth is one of the most popular means of exchanging data wirelessly over short dis-
tances. Nowadays, many electronic devices such as smartphones, laptops, iPads, games,
gadgets, portable health monitoring devices, and so on, are all equipped with Bluetooth
modules. Bluetooth is used by many people to share picture and music files using their
smartphones.
Bluetooth is a paired communication protocol where both devices must enable their Blue-
tooth links and use then use the same key to connect to each other. When the connection
is established, the data can be sent both ways. There is no need to worry about line-of-
sight between the devices since the communication is based on radio waves, albeit with
limited range.
Sometimes the pairing between devices may fail. You should pay attention to the following
points for successful pairing between the devices.

•	Make sure Bluetooth is turned on at both devices.
•	Make your device discoverable. On some devices you may have to click a but-

ton to make Bluetooth discoverable.
•	Male sure the two devices are close to each other.
•	Make sure the devices to be paired are compatible with each other, e.g. their

versions are compatible.
•	Enter the same pairing code on both devices when asked.

11.2 Raspberry Pi Pico Bluetooth interface
The Raspberry Pi Pico has no built-in Bluetooth module. We have to use an external Blue-
tooth module to enable the Pico to communicate with other devices via the Bluetooth. One
possibility may be to use a Raspberry Pi computer, but a cheaper option may be to use a
serial Bluetooth module, such as the HC-06. In the next section we will develop a project
and learn how to connect a HC-06 type low-cost Bluetooth module to our Raspberry Pi Pico.

11.3 Project 1: Controlling an LED from your smartphone using Blue-
tooth
Description: In this project we will be sending commands over the Bluetooth link from a
smartphone to control an LED connected to the Raspberry Pi Pico (you could easily replace
the LED with a buzzer so that electrical devices can be controlled remotely). In this project,
valid commands are:

	L1	 Turn LED ON
	L0	 Turn LED OFF

Aim: The aim of this project is to showcase the use of a low-cost serial Bluetooth module
with the Raspberry Pi Pico.

Raspberry Pi Pico Essentials

● 218

The HC-06 Bluetooth module
The HC-06 is a low-cost popular 4-pin, serially controlled module with a pinout as pictured
in Figure 11.1.

Figure 11.1: The HC-06 Bluetooth module.

The HC-06 is a serially controlled module with a set of interesting specifications:

•	+3.3 V to +6 V operation
•	30 mA unpaired current (10 mA matched current)
•	Built-in antenna
•	Band: 2.40 GHz – 2.48 GHz
•	Power level: +6 dBm
•	Default communication: 9600 baud, 8 data bits, no parity, 1 stop bit
•	Signal coverage 10 m (30 ft) approx.
•	Safety features: authentication and encryption
•	Modulation mode: Gaussian frequency-shift keying

Block Diagram: Figure 11.2 shows the block diagram of the project.

Figure 11.2: Block diagram of the project.

Circuit Diagram: Figure 11.3 shows the project circuit diagram. The RXD and TXD pins
of the Bluetooth module are connected to UART 0 pins GP0 (TX) and GP1 (RX) of the
Raspberry Pi Pico, respectively. The LED is connected to GP16 (pin 21) through a 470-ohm
current-limiting resistor.

Chapter 11 • Bluetooth with the Raspberry Pi Pico

● 219

Figure 11.3: Circuit diagram of the project.

Program listing: Check out Figure 11.4 (program: BlueLED). At the beginning of the
program the hardware UART interface is set to baud rate 9600, which is the default speed
of the HC-06. The LED is configured as an output and turned OFF. The remainder of the
program runs in an endless loop. Inside this loop data (commands) are received from the
Bluetooth device using a function call to readline. The data read is stored in list buf. The
program then controls the LED based on the received command. For example, L1 turns the
LED ON, L0 turns it OFF, and so on.

#--
BLUETOOTH COMMUNICATION
=======================
#
In this project a HC-06 type serial Bluetooth module and
and LED are connected to the Raspberry Pi Pico. The LED
is controlled by sending commands from a Bluetooth
compatible smart phone.
#
Author: Dogan Ibrahim
File : BlueLED.py
Date : February 2021
#--
from machine import Pin, UART
import utime

uart = UART(0, baudrate=9600,rx=Pin(1),tx=Pin(0))

LED = Pin(16, Pin.OUT)
LED.value(0)

#
Main program loop. Receive a command and control the LED
#

Raspberry Pi Pico Essentials

● 220

while True:
 buf = uart.readline() # Read data
 dat = buf.decode(‘UTF-8’) # Decode
 if dat[0] == ‘L’ and dat[1] == ‘1’: # L1?
 LED.value(1) # LED ON
 elif dat[0] == ‘L’ and dat[1] == ‘0’: # L0?
 LED.value(0) # LED OFF

Figure 11.4: Program: BlueLED.

Testing the program
The program can be tested by using an Android-running smartphone to send commands
through a Bluetooth communication interface. There are many freely available Bluetooth
communication programs in the Play Store. The one chosen by the author was called the
Bluetooth Controller by mightyIT (it@memighty.com) as shown in Figure 11.5. You
should install this app on your Android smartphone so that you can send commands to the
development board.

Figure 11.5: Bluetooth Controller app.

The steps to test the application are as given below.

•	Construct the project.
•	Download the program to your Raspberry Pi Pico.
•	Active the Bluetooth Controller apps on your mobile phone.
•	The app will look for nearby Bluetooth devices. Click on HC-06 when displayed

on the phone screen (you may have to scan for devices).
•	You will now be asked to enter the password to pair the phone with the devel-

opment board. Enter the default password: 1234.
•	Start the Bluetooth apps on your smartphone. Click the semicircle with an ar-

row located at the top right side of the screen to connect to HC-06.
•	You should see a green colour dot at the top right-hand side of the screen when

a connection is made to the HC-06. Also, the HC-06 with its address (like HC-06
[98:D3:31:FB:5E:B6]) should be displayed at the top left side of the screen.

•	To turn the LED ON, enter command L1 and click Send ASCII. You should see
the LED turning ON. Enter command L0 to turn OFF the LED. Figure 11.6 shows
an example screen.

mailto:it@memighty.com

Chapter 11 • Bluetooth with the Raspberry Pi Pico

● 221

Figure 11.6: Example command to turn the LED ON.

We can modify the program in Figure 11.5 by sending a confirmation to the smartphone
when there is change in the LED status. The required modifications are shown below:

while True:
 buf = uart.readline() # Read data
 dat = buf.decode('UTF-8') # Decode
 if dat[0] == 'L' and dat[1] == '1': # L1?
 LED.value(1) # LED ON
 uart.write("LED is ON") # Send confirmation
 elif dat[0] == 'L' and dat[1] == '0': # L0?
 LED.value(0) # LED OFF
 uart.write("LED is OFF") # Send confirmation

For example, as shown in Figure 11.7, the message LED is ON is displayed on the screen
after the command L1 is sent.

Figure 11.7: Example display with confirmation.

Raspberry Pi Pico Essentials

● 222

11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature
to the smartphone
Description: In this project the internal temperature of the Raspberry Pi Pico is read every
10 seconds and gets sent to a smartphone over a Bluetooth link.

Aim: The aim of this project is to showcase data being sent from the Raspberry Pi Pico to
a smartphone at regular intervals.

Block Diagram: Figure 11.8 shows the block diagram of the project.

Figure 11.8: Block diagram of the project.

Circuit Diagram: Figure 11.9 shows the project circuit diagram. RXD and TXD pins of the
Bluetooth module are connected to UART 0 pins GP0 (TX) and GP1 (RX) of Raspberry Pi
Pico respectively.

Figure 11.9: Circuit diagram of the project.

Program listing: The program listing of the project is shown in Figure 11.10 (program:
BlueTemp). At the beginning of the program the hardware UART interface is set to baud
rate 9600, which is the default speed of the HC-06 module. The Function GetTemperature
returns the internal temperature of the Raspberry Pi Pico. Inside the main program loop the
temperature is read and sent to the smartphone every 10 seconds. Figure 11.11 shows the
temperature displayed on a smartphone using the Bluetooth Controller app described in
the previous section.

Chapter 11 • Bluetooth with the Raspberry Pi Pico

● 223

#--
SEND TEMPERATURE TO SMART PHONE
===============================
#
In this project a HC-06 type serial Bluetooth module is
connected to the Raspberry Pi Pico. Internal temperature
readings are sent to a smart phone every 10 seconds
#
Author: Dogan Ibrahim
File : BlueTemp.py
Date : February 2021
#--
from machine import Pin, UART, ADC
import utime

uart = UART(0, baudrate=9600,rx=Pin(1),tx=Pin(0))

Conv = 3.3 / 65535
AnalogIn = ADC(4)

def GetTemperature():
 V = AnalogIn.read_u16()
 V = V * Conv
 Temp = 27 - (V - 0.706) / 0.001721
 return Temp

#
Send the temperature to smart phone
#
while True:
 T = GetTemperature()
 Temp = "T=" + str(T) + "\r\n"
 uart.write(Temp)
 utime.sleep(10)

Figure 11.10: Program: BlueTemp.

Raspberry Pi Pico Essentials

● 224

Figure 11.11: Temperature displayed on the smartphone.

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 225

Chapter 12 • Using Digital-to-Analogue Converters
(DACs)

12.1 Overview
DACs are used to convert digital signals into analogue form. Such converters have many
applications in digital signal processing (DSP) and digital control applications. For exam-
ple, we can generate waveforms by writing programs and then convert these waveforms
into analogue forms and output them from our digital computer. We also need DACs if we
want to interface a speaker or some other device operating with analogue voltages to our
Raspberry Pi Pico.
The Raspberry Pi Pico has no built-in ADC converter and consequently an external DAC chip
must be used to output analogue signals. In this Chapter we will be learning how to use a
popular DAC (the MCP4921) chip with our Raspberry Pi Pico to generate some simple signal
waveforms.

12.2 The MCP4921 DAC
Before using the MCP4921, it is worthwhile to look at its features and operation in some
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 12.1 shows
the pin layout of this chip. The basic features include:

•	12-bit operation
•	20 MHz clock support
•	4.5 μs settling time
•	external voltage reference input
•	1× or 2× gain, with control
•	2.7 V to 5.5 V supply voltage
•	–40 ºC to +125 ºC temperature range

Figure 12.1: Microchip MCP4921 DAC.

For more details, see the information at:
http://ww1.microchip.com/downloads/en/devicedoc/21897b.pdf

The pin descriptions are:
Vdd:	 supply voltage
CS:	 chip select (Active-Low)
SCK:	 SPI clock
SDI:	 SPI data in
LDAC:	 used to transfer input register data to the output (Active-Low)
Vref	 reference input voltage
Vout:	 analogue output
Vss:	 supply ground

http://ww1.microchip.com/downloads/en/devicedoc/21897b.pdf

Raspberry Pi Pico Essentials

● 226

In this project we will be operating the MCP4921 with a gain of 1 (i.e. unity). As a result,
with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC
will be 3300 mV / 4096 = 0.8 mV.

12.3 Project 1: Generating squarewave signal with amplitude under
+3.3 V
Description: In this project we will be using the DAC to generate a squarewave signal with
a frequency of 500 Hz (period = 2 ms), and 50% duty cycle (i.e. ON time = 1 ms, OFF time
= 1 ms). The output voltage will be 2 Vpeak (notice that this could not have been achieved
without using a DAC since the output HIGH voltage of a pin is +3.3 V).

Aim: The aim of this project is to show how a DAC chip can be interfaced to a Raspberry
Pi Pico.

Block Diagram: Figure 12.2 shows the block diagram of the project.

Figure 12.2: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.3. Pins GP3
(SPI0 TX) and GP2 (SPIO SCK) are connected to MCP4921 pins SDI and SCK, respectively.
The CS of the MCP4921 is controlled separately from GP16 (pin 21). The output of the DAC
is connected to the oscilloscope.

Figure 12.3: Circuit diagram of the project.

Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of the digital input
data. The upper byte consists of the following bits:

D8:D11		 bits D8:D11 of the digital input data
SHDN		 1: active (output available), 0: shutdown the device

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 227

GA		 output gain control. 0: gain is 2×, 1: gain is 1×
BUF		 0: input unbuffered, 1: input buffered
A/B		� 0: write to DACa, 1: Write to DACb (MCP4921 supports only

DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input
data with bits D12 and D13 set to 1 so that the device is active, and the gain is set to 1×.
Then we will send the low byte (D0:D7) of the data. This means that 0x30 should be added
to the upper byte before sending it to the DAC.

Program listing: Figure 12.4 shows the program listing (program: Square). Since we
are using a DAC with the reference voltage set to +3.3 V (3300 mV), and 12-bit wide data
(i.e. 4096 steps), the required digital value to set the output voltage to 2 V is given by
ONvalue, where:

ONvalue = 2000 × 4095 / 3300

The OFF value of the signal (OFFvalue) is set to 0 V. Function DAC configures the DAC so
that 2 V is output from it. First the HIGH byte (in buff[0]) is put into buffer buff, followed
by the LOW byte (in buff[1]):

buff[0] = (data >> 8) & 0x0F
 buff[0] = buff[0] + 0x30
buff[1] = data & 0xFF
spi.write(bytearray(buff))

The durations of the ON and OFF times are set to 1 ms. However, it was found by the
experiments that the DAC routine takes some time and because of this, the period and
consequently the frequency of the output waveform are not very accurate. The ON and
OFF times are slightly bigger than 1 ms. Readers can experiment to adjust the delay to get
exactly 1 ms if required.

#--
GENERATE SQUARE WAVE SIGNAL WITH AMPLITUDE +2V
==
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates a square wave signal
with frequency f=500Hz, 50% duty cycle (ON and OFF tiems equal
and each 1ms), and 2V amplitude
#
Author: Dogan Ibrahim
File : Square.py
Date : February 2021
#--
from machine import Pin, SPI

Raspberry Pi Pico Essentials

● 228

import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

ONvalue = int(2000 * 4095 / 3300) # For +2V amplitude
OFFvalue = 0

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
while True:
 DAC(ONvalue)
 utime.sleep_ms(1000)
 DAC(OFFvalue)
 utime.sleep_ms(1000)

Figure 12.4: Program: Square.

Figure 12.5 shows the output waveform generated by the program. This waveform was
captured using a PCSGU250 type digital oscilloscope. The horizontal axis was set to 1 ms/
division and the vertical axis was 1 V/division. The peak output voltage is 2 V as expected.

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 229

Figure 12.5: Output waveform.

Using timer interrupt for accurate timing
As we have seen in Figure 12.5, the period of the waveform is not exactly 2 ms. In this
section we will be using timer interrupts to achieve more accurate timing.
Figure 12.6 shows te new program listing (Program:Square2). In this version of the pro-
gram, a variable called flag is used to output the ON and the OFF times alternately. The
timer works in the background and calls function DAC 1000 times a second (i.e. 500 ON
pulses and 500 OFF pulses).

#--
GENERATE SQUARE WAVE SIGNAL WITH AMPLITUDE +2V
==
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates a square wave signal
with frequency f=500Hz, 50% duty cycle (ON and OFF tiems equal
and each 1ms), and 2V amplitude
#
This version of the program uses timer interrupts
#
Author: Dogan Ibrahim
File : Square2.py
Date : February 2021
#--
from machine import Pin, SPI, Timer
#import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

Raspberry Pi Pico Essentials

● 230

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

ONvalue = int(2000 * 4095 / 3300) # For +2V amplitude
OFFvalue = 0

tim = Timer()
flag = 0

#
Timer interrupt service routine
#
def DAC(timer):
 global flag, Onvalue, OFFvalue
 global CS
 buff = [0, 0]
 if flag == 0:
 data = ONvalue
 flag = 1
 else:
 data = OFFvalue
 flag = 0
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
tim.init(freq = 1000, mode = Timer.PERIODIC, callback = DAC)

Figure 12.6: Program: Square2.

Figure 12.7 shows the new output. Clearly, the period of the waveform is exactly 2 ms (i.e.
frequency of exactly 500 Hz).

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 231

Figure 12.7: Output waveform.

12.4 Project 2: Generating fixed voltages
Description: In this project we will be using the DAC to generate fixed voltages. Voltages
with amplitudes 0, 1, 2, and 3 V with 100-ms delay between each voltage will be generated.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.8 shows the program listing (Program: FixedV). Function
'Voltage' converts the voltage into digital value for 12 bits and returns it to the main pro-
gram.

#--
GENERATE FIXED VOLTAGES
=======================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates fixed voltages with
amplitues 0, 1, and 2V and the delay between each output
being 100ms

Author: Dogan Ibrahim
File : FixedV.py
Date : February 2021
#--
from machine import Pin, SPI
import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

Raspberry Pi Pico Essentials

● 232

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

def Voltage(V):
 Amplitude = int(V * 4095 / 3300)
 return Amplitude

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
while True:
 DAC(Voltage(0))
 utime.sleep_ms(100)
 DAC(Voltage(1000))
 utime.sleep_ms(100)
 DAC(Voltage(2000))
 utime.sleep_ms(100)
 DAC(Voltage(3000))
 utime.sleep_ms(100)

Figure 12.8: Program: FixedV.

Figure 12.9 shows the generated output waveform.

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 233

Figure 12.9: Output waveform.

12.5 Project 3: Generating a sawtooth signal
Description: In this project we will be using the DAC to generate a sawtooth-shaped signal
with the following specifications:

	Peak voltage: 		 3.3 V
	Step width:		 2 ms
	Number of steps:	 10

The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.10 shows the program listing (Program: Sawtooth). Func-
tion 'Voltage' converts the voltage into digital value for 12 bits and returns it to the main
program. Notice that as described earlier, the timing of the generated signal is not very
accurate and timer interrupts can be used to generate accurate output.

#--
GENERATE SAWTOOTH WAVEFORM
==========================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates sawtooth waveform
having 10 steps

Author: Dogan Ibrahim
File : Sawtooth.py
Date : February 2021
#--
from machine import Pin, SPI
import utime

Raspberry Pi Pico Essentials

● 234

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

def Voltage(V):
 Amplitude = int(V * 4095 / 3300)
 return Amplitude

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
k = 0.0
while True:
 DAC(int(Voltage(k*3300)))
 utime.sleep_ms(2)
 k = k + 0.1
 if k == 1.0:
 k = 0.0

Figure 12.10: Program: Sawtooth.

Figure 12.11 shows the generated output waveform. Here, the horizontal axis was 10 ms/
division, and the vertical axis, 1 V/division.

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 235

Figure 12.11: Output waveform.

12.6 Project 4: Generating a triangular signal
Description: In this project we will be using the DAC to generate a triangular-shaped
signal having 10 steps going up, and 10 steps going down. The step width is set to 1 ms.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.12 shows the program listing (Program: Triangle). Function
'Voltage' converts the voltage into digital value for 12 bits and returns it to the main pro-
gram.

#--
GENERATE TRIANGLE WAVEFORM
==========================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates triangle waveform

Author: Dogan Ibrahim
File : Triangle.py
Date : February 2021
#--
from machine import Pin, SPI
import utime

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

Raspberry Pi Pico Essentials

● 236

def Voltage(V):
 Amplitude = int(V * 4095 / 3300)
 return Amplitude

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
while True:
 k = 0.0
 while k < 1.0: # Going up
 DAC(int(Voltage(k*3300)))
 utime.sleep_ms(1)
 k = k + 0.1

 k = 1.0
 while k > 0.0: # Going down
 DAC(int(Voltage(k*3300)))
 utime.sleep_ms(1)
 k = k - 0.1

Figure 12.12: Program: Triangle.

Figure 12.13 shows the generated output waveform. Notice again that as described earlier,
the timing of the generated signal is not very accurate and timer interrupts can be used to
generate accurate output.

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 237

Figure 12.13: Output waveform.

12.7 Project 5: Arbitrary periodic waveform
Description: In this project we will generate an arbitrary-wave, periodic waveform with a
period of 20 ms. The details of the waveform are as shown in Figure 12.14.

Figure 12.14: The waveform to be generated.

The waveform takes the following values:

Time (ms) Amplitude (V) Time (ms) Amplitude (V)

0 0 11 1.6

1 0.2 12 1.6

2 0.4 13 1.4

3 0.6 14 1.2

4 0.8 15 1.0

5 1.0 16 0.8

6 1.2 17 0.6

7 1.4 18 0.4

8 1.6 19 0.2

9 1.6 20 0.0

10 1.6

Raspberry Pi Pico Essentials

● 238

Aim: The aim of this project is to demonstrate how an arbitrary waveform can be gener-
ated.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Figure 12.15 shows the program listing (Program: Arbitrary). The volt-
age samples are stored in list Waveform. Inside the main program, a loop runs from 0 to
20 (inclusive), gets the required voltage amplitude at every sample and calls the DAC to
generate the required sample.

#--
GENERATE ARBITRARY WAVEFORM
===========================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates an arbitarry waveform
whose characteristics are defined in the text

Author: Dogan Ibrahim
File : Arbitrary.py
Date : February 2021
#--
from machine import Pin, SPI
import utime
import math

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

Waveform = [0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.6,1.6,1.6,1.6,
 1.4,1.2,1.0,0.8,0.6,0.4,0.2,0.0]

def Voltage(V):
 Amplitude = int(V * 4095 / 3.3)
 return Amplitude

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 239

 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
while True:
 for k in range(21):
 DAC(int(4095*Waveform[k]/3.3))
 utime.sleep_ms(1)

Figure 12.15: Program: Arbitrary.

Figure 12.16 shows the generated output waveform. Notice again that as described earlier,
the timing of the generated signal is not very accurate and timer interrupts can be used to
generate accurate output.

Figure 12.16: Output waveform.

12.8 Project 6: Generating a sinewave
Description: In this project we will generate a sinewave-shaped signal using the trigono-
metric function sin. The generated sine wave should have the peak-to-peak amplitude of
1.4 V, a frequency of 50 Hz, and an offset of 1 V.
The block diagram and circuit diagram are as in Figure 12.2 and Figure 12.3, respectively.

Program listing: Since the required frequency is 50 Hz, the period is 20 ms or 20,000 μs.
If we assume that the sinewave will consist of 100 samples, then each sample must be
output at 20,000 / 100 = 200 μs.

The sine function has the following format:

	Offset + PeaktoPeak / 2 × sin(2 × π × Count / T)

Raspberry Pi Pico Essentials

● 240

where, T is the period of the waveform and is equal to 100 samples. Count is a variable
that ranges from 0 to 100 and is incremented by 1, PeaktoPeak is the peak-to-peak am-
plitude, and Offset is the DC offset (this is necessary because the sinewave has negative
values, but the DAC only outputs positive values and therefore we have to shift the sine-
wave up by a DC offset).
The sum of Offset and Amplitude voltage must not be greater than +3.3 V, being the max-
imum output voltage the DAC can deliver, hence:

Offset + PeaktoPeak <= +3.3 V

The actual required DC offset is equal to:

Required DC offset = Offset – PeaktoPeak / 2.

Therefore, Offset in the above formula is calculated as:

Offset = Required DC offset + PeaktoPeak / 2

The sinewave is divided into 100 samples and each sample is output at 200 μs intervals.
The sine formula can be written as follows:

Required DC offset + PeaktoPEak / 2 + PeaktoPeak / 2 × sin(0.0628 × Count)

Therefore, at each sample, we will calculate and output the above value to the DAC.

Figure 12.17 shows the program listing (Program: Sine). At the beginning of the program
the peak-to-peak amplitude and the offset are defined and converted into digital values for
the DAC. The sine values are calculated outside the program loop and stored in list sins in
order to save time. Inside the main program the sine samples are sent to the DAC and are
then output.

#--
GENERATE SINE WAVEFORM
======================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates a sine waveform with
the specifications given in the text

Author: Dogan Ibrahim
File : Sine.py
Date : February 2021
#--
from machine import Pin, SPI
import utime
import math

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 241

spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not
used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

R = 0.0628
T = 100
Conv = 4095.0 / 3.3
PeaktoPeak = 1.4 * Conv # 1.4V
ReqDCoffset = 1.0 * Conv # 1.6V

def DAC(data):
 buff = [0, 0]
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
sins=[0]*101

for i in range (101):
 sins[i] = ReqDCoffset+PeaktoPeak/2 + PeaktoPeak/2 * math.sin(R*i)

while True:
 for k in range(101):
 value = sins[k]
 DAC(int(value))
 utime.sleep_us(200)

Figure 12.17: Program: Sine.

Figure 12.18 shows the generated output waveform. Here, the horizontal axis was 20 ms/
division, and the vertical axis was 1 V/division. The offset and the peak-to-peak amplitude
of the waveform are correct, but as described earlier the timing of the generated signal is
not very accurate and timer interrupts can be used to generate accurate output.

Raspberry Pi Pico Essentials

● 242

Figure 12.18: Output waveform.

12.9 Project 7: Generating an accurate sinewave signal using timer
interrupts
Description: In this project we will generate an accurate sinewave signal using timer in-
terrupts. Here, the required peak-to-peak amplitude is 1.4 V, the required offset is 1 V, and
the required frequency is 50 Hz (period = 20 ms). In this project, we will take 50 samples
instead of 100, so that the duration of each sample is 400 μs. In the program, a timer inter-
rupt is configured with the callback function of DAC and frequency of 2500 Hz (i.e. 400 μs
for each call). Inside function DAC, the data samples are indexed by variable k which is
incremented at each interrupt. These samples are then output by the DAC.

Program listing: Figure 12.19 shows the program listing (Program: Sineint).

#--
GENERATE SINE WAVEFORM
======================
#
In this project a MCP4921 type DAC chip is connected to the
Raspberry Pi Pico.The program generates a sine waveform with
the specifications given in the text
#
This program uses timer interrupts for accurate timings

Author: Dogan Ibrahim
File : Sineint.py
Date : February 2021
#--
from machine import Pin, SPI, Timer
import utime
import math

Chapter 12 • Using Digital-to-Analogue Converters (DACs)

● 243

tim = Timer()
spi_sck = Pin(2) # SCK pin at GP2
spi_tx = Pin(3) # TX pin at GP3
spi_rx = Pin(0) # RX pin at GP0 (not used)

spi = SPI(0,sck=spi_sck,mosi=spi_tx,miso=spi_rx,baudrate=100000)

CS = Pin(16, Pin.OUT) # CS
CS.value(1) # Disable chip

R = 2 * 3.14159/50
T = 100
Conv = 4095.0 / 3.3
PeaktoPeak = 1.4 * Conv # 1.4V
ReqDCoffset = 1.0 * Conv # 1.6V
k = 0

def DAC(timer):
 global k, CS, sins
 buff = [0, 0]
 k = k + 1
 if k == 50:
 k = 0
 data = int(sins[k])
 buff[0] = (data >> 8) & 0x0F # HIGH byte
 buff[0] = buff[0] + 0x30
 buff[1] = data & 0xFF # LOW byte
 CS.value(0) # Enable MCP4921
 spi.write(bytearray(buff)) # Send to SPI bus
 CS.value(1) # DIsable MCP4921

#
Main program
#
sins=[0]*101

for i in range (101):
 sins[i] = ReqDCoffset+PeaktoPeak/2 + PeaktoPeak/2 * math.sin(R*i)

tim.init(freq=2500, mode = Timer.PERIODIC, callback = DAC)

Figure 12.19: Program: Sineint.

Figure 12.20 shows the output waveform. Here, the horizontal axis was10 ms/division and
the vertical axis was 1 V/division. Clearly, the period of the waveform is exactly 20 s as
required, the offset is 1 V and the peak-to-peak amplitude is 1.4 V.

Raspberry Pi Pico Essentials

● 244

Figure 12.20: Output waveform.

Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots

● 245

Chapter 13 • Automatic Program Execution after the
Raspberry Pi Pico Boots

There may be applications where we may want to start a program automatically after the
Raspberry Pi Pico boots. Perhaps the easiest way to learn how this is done is to give a very
simple example. The program shown in Figure 13.1 flashes an LED connected to port pin
GP6 every second. We will configure the Raspberry Pi Pico so that the LED starts flashing
immediately after the Pico boots.

#--
RUNNING A PROGRAM AUTOMATICALLY AFTER REBOOT
===
#
In some applications we may want to run a program
automatically after reboot.This is done easily by saving
the program with the name "main.py". This very simple
program flashes an LED connected to GP16 automatically
after the Raspberry Pi Pico boots.
#
Author: Dogan Ibrahim
File : main.py
Date : February 2021
#--
from machine import Pin
import utime

LED = Pin(16, Pin.OUT) # LED at pin 16

while True: # Do Forever
 LED.value(1) # LED ON
 utime.sleep(1) # Wait 1 second
 LED.value(0) # LED OFF
 utime.sleep(1) # Wait 1 second

Figure 13.1: Simple program to flash an LED.

The steps to execute are as follows.

•	Give a name to your program and run it to make sure that there are no errors,
and it runs as expected (in this case, the LED flashes every second).

•	Stop the program by clicking menu item Run in Thonny, followed by Stop/Re-
start backend.

•	Click File followed by Save as, then click Raspberry Pi Pico (Figure 13.2) to
save the file in the Raspberry Pi Pico memory.

Raspberry Pi Pico Essentials

● 246

Figure 13.2: Click Raspberry Pi Pico to save file.

•	Enter the filename as main.py and click OK.
•	Confirm that the file is saved correctly. Click File followed by Open and click

Raspberry Pi Pico. You should see file with the name 'main.py' listed (Figure
13.3). You may have to scroll down.

Figure 13.3: File 'main.py'.

•	Reboot your Raspberry Pi Pico and you should see the LED flashing as soon as
the Pico boots.

•	You can stop the program out of Thonny by clicking Run, followed by Stop/
Restart backend.

•	You should either remove or rename file main.py if you do not want it to start
automatically.

That's it! From now on, you can make your Raspberry Pi Pico auto-execute a suitable pro-
gram, immediately after booting.

Appendix A • Bill of Components

● 247

Appendix A • Bill of Components

Electronic Components & Modules

•	Through-hole / leaded parts only
•	8× red LED
•	8× 470Ω resistor
•	2× pushbutton
•	1× RGB LED
•	2× 2-digit 7-segment LED display (e.g. DC56-11EWA)
•	4× NPN transistor (any, small-signal), e.g. BC548, BC108
•	1× LCD
•	1× 10kΩ potentiometer
•	1× 220Ω resistor
•	1× buzzer
•	1× HC-SR04 ultrasonic sensor
•	2× TMP36 temperature sensor
•	1× 1kΩ resistor
•	1× 2kΩ resistor
•	1× 3.3V relay
•	1× LDR
•	2× 10kΩ resistor
•	1× KY-013
•	1× KY-021
•	1× KY-034
•	1× diode (e.g. 1N4148)
•	1× IRL540 MOSFET
•	1× small, brushed DC motor
•	1× 2.2kΩ resistor
•	1× MCP23017
•	1× MCP23S17
•	1× BMP280 module
•	1× 24LC256 EEPROM
•	1× HC-06 Bluetooth module
•	1× MCP4921 DAC
•	1× breadboard
•	10× jumper wires (male-male, various lengths)
•	1× microUSB cable

Processor Boards & SBCs:

•	1× Raspberry Pi Pico
•	1× ESP-01 *
•	1× Arduino UNO *
•	1× Raspberry Pi 4 *

* For the advanced communications projects only.

Raspberry Pi Pico Essentials

● 248

Index

Symbols
7-segment	 84
24LC256	 177

A
Accessories	 25
accurate sinewave	 242
Active buzzers	 55
ADC3	 14
ADC inputs	 15
Arbitrary periodic waveform	 237
Arduino UNO	 13
atmospheric pressure	 188

B
BC108	 88
Binary-counting	 69
Bluetooth	 217
Bluetooth Controller	 220
BMP280	 188
Bootloader	 16
BOOTSEL	 11, 23, 29
brushed DC motor	 149

C
Calculator	 41
common-anode	 85
common-cathode	 85
Cortex-M0+	 11
cosine	 38
CPHA	 199
CPOL	 199
current-sinking	 52
current-sourcing	 52

D
DACs	 225
Data Logging	 140
DC56-11EWA	 87
dice	 74
Dice	 42
distance measurement	 108
Door alarm	 80

E
EEPROM memory	 177
echo	 111
ESP-01	 206
external temperature	 133

F
Feather RP2040	 17
File processing	 43
Flash memory	 12, 16
Frequency generator	 150

H
HC-06	 217
HC-SR04	 109
HD44780	 98

I
I2C bus	 170
I2C pins	 171
import machine	 49
INDEX.HTM	 24, 29
INFO_UF2.TXT	 24
internal temperature sensor	 119

K
keypad	 20
KY-013	 135
KY-021	 80
KY-034	 80

L
LDR	 128
light intensity	 128

M
machine	 48
magnetic field	 81
matrices	 46
MCP23S17	 200
MCP4921	 225
Melody	 154
Memory-read	 180
Memory-write	 179
MicroMod M.2 connector	 20
micro-USB	 11

Index

● 249

MCP23017	 173
MOSFET	 149
multi-digit displays	 86
musical notes	 155

N
NPN transistors	 95
NTC	 135

O
Ohmmeter	 130

P
Passive buzzers	 55
Polarity	 185
port expander	 172
potentiometer	 149
priority	 59
Pulse Width Modulation	 144
pushbutton	 58, 75
PWM	 144
PWM channels	 12, 146

Q
QFN-56 package	 11

R
randint	 42
random flashing	 72
Random Read	 180
Reaction timer	 106
reed switch	 80
reverse parking aid	 114
RGB	 63
RPI-RP2	 25
RS-232 communication	 158
RUN	 12

S
sawtooth signal	 233
Schottky diode	 14
SCL	 170
SDA	 170
serial link	 166
serial ports	 160
Shell	 27

sinewave	 239
smartphone	 206
SMPS	 14
Sorting	 43
SPI Bus	 198
SPI Port expander	 200
SPI ports	 199
squarewave signal	 226
SRAM	 12
stadiometer	 112
Steinhart-Hart	 135
SWD	 12

T
tangent	 38
temperature controller	 122
Temperature measurement	 119
temperature sensor	 12
Text (UTF-8)	 211
thermistor	 135
Thonny	 26
timer	 55
timer interrupt	 229
TMP36	 121
TMP102	 182
triangular signal	 235
trig	 111
trigonometric sine	 38

U
UART	 158
UDP Server	 210
UDP/TCP Widget	 210
Ultrasonic sensors	 109
utime	 48

V
VBUS	 12
V logic converter	 13
Voltmeter	 117
VSYS	 12, 14

W
wake	 59
Wi-Fi	 206
WS2812 RGB	 18

Raspberry Pi Pico Essentials

● 250

Raspberry Pi Pico Essentials

● 496

books booksbooks

#
Main program lo

op. Send the temp
erature to smartp

hone

#
while True:
 buf = uart.r

eadline() # Read data

 dat = buf.de
code('UTF-8')

 # Decode

 n = dat.find
("T?") # T? received?

 if n > 0:

 T = GetT
emperature() # Get the tempera

ture

 Tstr = "
T=" + str(T) # Insert T=

 Tlen = s
tr(len(Tstr))

 # Length

 Dt = "AT
+CIPSEND="+Tlen +

 "\r\n" # AT comm
and to send

 uart.wri
te(Dt) # Send to ESP-01

 utime.sl
eep(2) # Wait 2 sec

 uart.wri
te(Tstr) # Send data

Raspberry Pi Pico Essentials • D
ogan Ibrahim

Dogan Ibrahim

Raspberry Pi Pico
Essentials

Prof. Dr. Dogan Ibrahim has a
BSc, Hons. degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing.

Dogan has worked in many
industrial organizations before
he returned to academic life. He
is the author of over 70 technical
books and has published over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields.

Elektor International Media BV
www.elektor.com

Program, build, and master over 50 projects with
MicroPython and the RP2040 microprocessor

The Raspberry Pi Pico is a high-performance microcontroller module
designed especially for physical computing. Microcontrollers differ from
single-board computers, like the Raspberry Pi 4, in not having an operating
system. The Raspberry Pi Pico can be programmed to run a single task very
efficiently within real-time control and monitoring applications requiring
speed. The ‘Pico’ as we call it, is based on the fast, efficient, and low-cost
dual-core ARM Cortex-M0+ RP2040 microcontroller chip running at up to
133 MHz and sporting 264 KB of SRAM, and 2 MB of Flash memory. Besides
its large memory, the Pico has even more attractive features including a
vast number of GPIO pins, and popular interface modules like ADC, SPI,
I2C, UART, and PWM. To cap it all, the chip offers fast and accurate timing
modules, a hardware debug interface, and an internal temperature sensor.

The Raspberry Pi Pico is easily programmed using popular high-level langua-
ges such as MicroPython and or C/C++. This book is an introduction to
using the Raspberry Pi Pico microcontroller in conjunction with the Micro-
Python programming language. The Thonny development environment
(IDE) is used in all the projects described. There are over 50 working and
tested projects in the book, covering the following topics:

 > Installing the MicroPython
on Raspberry Pi Pico using a
Raspberry Pi or a PC

 > Timer interrupts and external
interrupts

 > Analogue-to-digital converter
(ADC) projects

 > Using the internal temperature
sensor and external tempera-
ture sensor chips

 > Datalogging projects
 > PWM, UART, I2C, and SPI
projects

 > Using Wi-Fi and apps to
communicate with smartphones

 > Using Bluetooth and apps to
communicate with smartphones

 > Digital-to-analogue converter
(DAC) projects

All projects given in the book have been fully tested and are working.
Only basic programming and electronics experience is required to follow
the projects. Brief descriptions, block diagrams, detailed circuit diagrams,
and full MicroPython program listings are given for all projects described.
Readers can find the program listings on the Elektor web page created to
support the book.

Raspberry Pi Pico
Essentials
Program, build, and master over 50 projects with
MicroPython and the RPi ‘Pico’ microprocessor

Hello World!
Breadboard
Brushed-DC

S
m

ar
tp

h
o

n
e

7-
se

gm
en

t

Bl
ue

to
ot

h

D
A

C
 &

 A
D

C

Autorun

B
M

E
-2

8
0

S
e

n
so

rs E
E

P
R

O
M

RP
20

40

RS-232
TMP102

Wi-Fi
GPIO

U
A

RT

App

I2C

I2 S

IoT

LC
D

LED
PWM

TR
IED •

T

E S T E
D

•

	Preface
	Chapter 1 • Raspberry Pi Pico Hardware
	1.1 Overview
	1.2 Pico hardware module
	1.3 Comparison with the Arduino UNO
	1.4 Operating conditions and powering the Pico
	1.5 Pinout of the RP2040 microcontroller and Pico module
	1.6 Other RP2040 microcontroller-based boards
	1.6.1 Adafruit Feather RP2040
	1.6.2 Adafruit ItsyBitsy RP2040
	1.6.3 Pimoroni PicoSystem
	1.6.4 Arduino Nano RP2040 Connect
	1.6.5 SparkFun Thing Plus RP2040
	1.6.6 Pimoroni Pico Explorer Base
	1.6.7 SparkFun MicroMod RP2040 Processor
	1.6.8 SparkFun Pro Micro RP2040
	1.6.9 Pico RGB Keypad Base
	1.6.10 Pico Omnibus
	1.6.11 Pimoroni Pico VGA Demo Base

	Chapter 2 • Raspberry Pi Pico Programming
	2.1 Overview
	2.2 Installing MicroPython on the Pico
	2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
	2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico

	Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects
	3.1 Overview
	3.2 Project 1: Flashing LED – Using the on-board LED
	3.3 Project 2: External flashing LED
	3.4 Project 3: Flashing SOS in Morse
	3.5 Project 4: Flashing LED – using a timer
	3.6 Project 5: Alternately flashing LEDs
	3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts
	3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
	3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
	3.10 Project 9: Rotating LEDs
	3.11 Project 10: Binary-counting LEDs
	3.12 Project 11: Christmas lights (random flashing 8 LEDs)
	3.13 Project 12: Electronic dice
	3.14 Project 13: Lucky day of the week
	3.15 Project 14: Door alarm with 7-colour flashing LED
	3.16 Project 15: 2-digit, 7-segment display
	3.17 Project 16: 4-digit, 7-segment display seconds counter
	3.18 LCDs
	3.19 Project 17: LCD functions – displaying text
	3.20 Project 18: Seconds counter — LCD
	3.21 Project 19: Reaction timer with LCD
	3.22 Project 20: Ultrasonic distance measurement
	3.23 Project 21: Height of a person (stadiometer)
	3.24 Project 22: Ultrasonic reverse parking aid with buzzer

	Chapter 4 • Using Analogue-To-Digital Converters (ADCs)
	4.1 Overview
	4.2 Project 1: Voltmeter
	4.3 Project 2: Temperature measurement – using the internal temperature sensor
	4.4 Project 3: Temperature measurement – using an external temperature sensor
	4.5 Project 4: ON/OFF temperature controller
	4.6 Project 5: ON/OFF temperature controller with LCD
	4.7 Project 6: Measuring the ambient light intensity
	4.8 Project 7: Ohmmeter
	4.9 Project 8: Internal and external temperature
	4.10 Project 9: Using a thermistor to measure temperature

	CHAPTER 5 • Data Logging
	5.1 Overview
	5.2 Project 1: Logging the temperature data
	5.3 Project 2: Reading the logged data

	CHAPTER 6 • Pulse Width Modulation (PWM)
	6.1 Overview
	6.2 Basic theory of pulsewidth modulation
	6.3 PWM channels of the Raspberry Pi Pico
	6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle
	6.5 Project 2: Changing the brightness of an LED
	6.6 Project 3: Varying the speed of a brushed DC motor
	6.7 Project 4: Frequency generator with LCD
	6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform
	6.9 PROJECT 6: Melody maker

	CHAPTER 7 • Serial Communication (UART)
	7.1 Overview
	7.2 Raspberry Pi Pico UART serial ports
	7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno
	7.4 Project 2: Receiving and displaying numbers from the Arduino Uno
	7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link

	CHAPTER 8 • The I2C Bus Interface
	8.1 Overview
	8.2 The I2C Bus
	8.3 I2C pins of the Raspberry Pi Pico
	8.4 Project 1: I2C port expander
	8.5 Project 2: EEPROM memory
	8.6 Project 3: TMP102 temperature sensor
	8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
	8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD

	Chapter 9 • The SPI Bus Interface
	9.1 Overview
	9.2 Raspberry Pi Pico SPI ports
	9.3 Project 1: SPI Port expander

	Chapter 10 • Wi-Fi with the Raspberry Pi Pico
	10.1 Overview
	10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
	10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi

	Chapter 11 • Bluetooth with the Raspberry Pi Pico
	11.1 Overview
	11.2 Raspberry Pi Pico Bluetooth interface
	11.3 Project 1: Controlling an LED from your smartphone using Bluetooth
	11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to the smartphone

	Chapter 12 • Using Digital-to-Analogue Converters (DACs)
	12.1 Overview
	12.2 The MCP4921 DAC
	12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V
	12.4 Project 2: Generating fixed voltages
	12.5 Project 3: Generating a sawtooth signal
	12.6 Project 4: Generating a triangular signal
	12.7 Project 5: Arbitrary periodic waveform
	12.8 Project 6: Generating a sinewave
	12.9 Project 7: Generating an accurate sinewave signal using timer interrupts

	Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots
	Appendix A • Bill of Components
	Index
	cover UK.pdf
	_GoBack
	Preface
	Chapter 1 • Raspberry Pi Pico Hardware
	1.1 Overview
	1.2 Pico hardware module
	1.3 Comparison with the Arduino UNO
	1.4 Operating conditions and powering the Pico
	1.5 Pinout of the RP2040 microcontroller and Pico module
	1.6 Other RP2040 microcontroller-based boards
	1.6.1 Adafruit Feather RP2040
	1.6.2 Adafruit ItsyBitsy RP2040
	1.6.3 Pimoroni PicoSystem
	1.6.4 Arduino Nano RP2040 Connect
	1.6.5 SparkFun Thing Plus RP2040
	1.6.6 Pimoroni Pico Explorer Base
	1.6.7 SparkFun MicroMod RP2040 Processor
	1.6.8 SparkFun Pro Micro RP2040
	1.6.9 Pico RGB Keypad Base
	1.6.10 Pico Omnibus
	1.6.11 Pimoroni Pico VGA Demo Base

	Chapter 2 • Raspberry Pi Pico Programming
	2.1 Overview
	2.2 Installing MicroPython on the Pico
	2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
	2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico

	Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects
	3.1 Overview
	3.2 Project 1: Flashing LED – Using the on-board LED
	3.3 Project 2: External flashing LED
	3.4 Project 3: Flashing SOS in Morse
	3.5 Project 4: Flashing LED – using a timer
	3.6 Project 5: Alternately flashing LEDs
	3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts
	3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB
	3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB
	3.10 Project 9: Rotating LEDs
	3.11 Project 10: Binary-counting LEDs
	3.12 Project 11: Christmas lights (random flashing 8 LEDs)
	3.13 Project 12: Electronic dice
	3.14 Project 13: Lucky day of the week
	3.15 Project 14: Door alarm with 7-colour flashing LED
	3.16 Project 15: 2-digit, 7-segment display
	3.17 Project 16: 4-digit, 7-segment display seconds counter
	3.18 LCDs
	3.19 Project 17: LCD functions – displaying text
	3.20 Project 18: Seconds counter — LCD
	3.21 Project 19: Reaction timer with LCD
	3.22 Project 20: Ultrasonic distance measurement
	3.23 Project 21: Height of a person (stadiometer)
	3.24 Project 22: Ultrasonic reverse parking aid with buzzer

	Chapter 4 • Using Analogue-To-Digital Converters (ADCs)
	4.1 Overview
	4.2 Project 1: Voltmeter
	4.3 Project 2: Temperature measurement – using the internal temperature sensor
	4.4 Project 3: Temperature measurement – using an external temperature sensor
	4.5 Project 4: ON/OFF temperature controller
	4.6 Project 5: ON/OFF temperature controller with LCD
	4.7 Project 6: Measuring the ambient light intensity
	4.8 Project 7: Ohmmeter
	4.9 Project 8: Internal and external temperature
	4.10 Project 9: Using a thermistor to measure temperature

	CHAPTER 5 • Data Logging
	5.1 Overview
	5.2 Project 1: Logging the temperature data
	5.3 Project 2: Reading the logged data

	CHAPTER 6 • Pulse Width Modulation (PWM)
	6.1 Overview
	6.2 Basic theory of pulsewidth modulation
	6.3 PWM channels of the Raspberry Pi Pico
	6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle
	6.5 Project 2: Changing the brightness of an LED
	6.6 Project 3: Varying the speed of a brushed DC motor
	6.7 Project 4: Frequency generator with LCD
	6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform
	6.9 PROJECT 6: Melody maker

	CHAPTER 7 • Serial Communication (UART)
	7.1 Overview
	7.2 Raspberry Pi Pico UART serial ports
	7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno
	7.4 Project 2: Receiving and displaying numbers from the Arduino Uno
	7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link

	CHAPTER 8 • The I2C Bus Interface
	8.1 Overview
	8.2 The I2C Bus
	8.3 I2C pins of the Raspberry Pi Pico
	8.4 Project 1: I2C port expander
	8.5 Project 2: EEPROM memory
	8.6 Project 3: TMP102 temperature sensor
	8.7 Project 4: BMP280 temperature and atmospheric pressure sensor
	8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD

	Chapter 9 • The SPI Bus Interface
	9.1 Overview
	9.2 Raspberry Pi Pico SPI ports
	9.3 Project 1: SPI Port expander

	Chapter 10 • Wi-Fi with the Raspberry Pi Pico
	10.1 Overview
	10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi
	10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi

	Chapter 11 • Bluetooth with the Raspberry Pi Pico
	11.1 Overview
	11.2 Raspberry Pi Pico Bluetooth interface
	11.3 Project 1: Controlling an LED from your smartphone using Bluetooth
	11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to the smartphone

	Chapter 12 • Using Digital-to-Analogue Converters (DACs)
	12.1 Overview
	12.2 The MCP4921 DAC
	12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V
	12.4 Project 2: Generating fixed voltages
	12.5 Project 3: Generating a sawtooth signal
	12.6 Project 4: Generating a triangular signal
	12.7 Project 5: Arbitrary periodic waveform
	12.8 Project 6: Generating a sinewave
	12.9 Project 7: Generating an accurate sinewave signal using timer interrupts

	Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots
	Appendix A • Bill of Components
	Index

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1
 1
 482
 277

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

