Alﬁ)ﬁaﬁlﬁn
With Python for Robots

(2020 Edition)
A Beginner to Advanced Reference Guide to
Arduino Microcontroller Processing and Robotics

Ted Humphrey

Programming
ARDUINO

With Python for Robots
(2020 Edition)

A Beginner to Advanced Reference Guide to Arduino
Microcontroller Processing and Robotics

Ted Humphrey

Copyright

Copyright©2020 Ted Humphrey

All rights reserved. No part of this book may be reproduced or used in any manner without the prior
written permission of the copyright owner, except for the use of brief quotations in a book review.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,

with respect to the material contained herein.

Printed on acid-free paper.

Table of Contents
Copyright
CHAPTER ONE

CREATING THE PROGRAMMING ENVIRONMENT FOR
PYTHON AND ARDUINO

Getting Started with Python
Installing python on your computer

Installing python on Windows

Installing python Setup tools

For Linux operating system

For Windows operating systems
For Mac OS

Installing pip

Installing Python packages

Getting started with the python basics

The print function in python

Controlling your output with escape sequence in python

Breaking a long output lines of characters

Creating comments in scripts

Understanding the Python variables

Creating Python Variable Names

Assigning Value to Python Variables

Formatting Variable and String Output

Learning about python data type

Allowing Python Script Input

Python math operators

Order of Operations

CHAPTER TWO
MORE ABOUT PYTHON LANGUAGE
Data structures

Creating a List

Extracting Data from a List

Tuples
Sets
Controlling the flow of your program

Built-in functions

Math operations

String operations
Closing a File

Writing to a File

Writing to a Pre-existing File
CHAPTER THREE
INTRODUCTION TO ARDUINO

The Arduino Uno: the most popular Arduino model

The Arduino Uno variants
Installing the Arduino Integrated Development Environment (IDE)
Linux OS
Mac OS X
Windows
Getting started with the Arduino IDE
Arduino Sketch
Working with the Arduino library

The Arduino Built-in example sketches
CHAPTER FOUR

CHOOSING YOUR ARDUINO BOARD
Using the Serial Monitor window
Uploading Your First Sketch
PROGRAMMING THE ARDUINO
Getting a grip of how codes perform real action on Arduino
The Blink Example
Variables

Experiments in C Language

Numeric Variables and Arithmetic

Commands

If command

The for command

While loop
CHAPTER FIVE

INTERFACING ARDUINO WITH PYTHON PROGRAMMING
LANGUAGE

Connecting Arduino with your computer

Linux environment
Mac OS X
Windows

Troubleshooting

The Firmata protocol
Uploading the Firmata sketch to the Arduino board
Testing the Firmata protocol

Working with the firmata_test program on Linux

The pySerial Library

Working with the pySerial

Bridging pySerial and Firmata
CHAPTER SIX
ARDUINO INPUT AND OUTPUT
Digital Output: Measuring output with a multimeter
CHAPTER SEVEN
GETTING YOUR HANDS DIRTY
Building Robots with Arduino
Materials needed to get started
The Arduino Rover robot
Materials needed

Project Achievement
About Author

CHAPTER ONE

CREATING THE PROGRAMMING ENVIRONMENT FOR
PYTHON AND ARDUINO

This chapter is essential if you are a beginner who doesn’t understand much
about python and creating an enabling environment for Arduino on your
computer. It doesn’t matter which category of operating system you are
running on your computer as this chapter will take you through the python
and Arduino programming environment.

Getting Started with Python

In 1991, Guido Van Rossum brought the python programming language
which was at the time a basic language of instruction for learners and
students of programming. Today, the python programming language is
among the most used and user-friendly programming language. The
programming language works on all platforms, such as Windows (all
versions of Windows), Linux OS, and Apple OS. The python programming
language, recently, has gone through some minor modifications when newer
versions have been developed to replace the older versions. The switching
between python v2 to python v3 was met with huge applause. One main
difference between python v2 and the newer versions (python v3) is that the
v3 can handle both English and Non-English characters while the v2 can
only work with English characters. Also, the python v3 i1s a bit more
compatible and smaller than the v2. Nonetheless, the python v2 is still
being used to teach the basis of python programming today.

Installing python on your computer
As it has been said above, the python programming language has two
versions which are the v2 and the v3 versions. Most operating systems,
such as Linux distributions and Macs OS, have their default python which
has been pre-installed on them. The python V2 is the default python on
most operating systems. The python 2.7 is the last version of the v2.x series
(x here represents unknown v2 series) while the python 3.8.5 is the latest
version of the V 3.8 series as at the time of writing this guide. The python
3.8 will be used as a guide in this book because it is user-friendly and it is
easy to understand the basics. The instructions in this guide will work on all
versions of the python 2.x and the 3.8 series. The python’s installation

procedures for three of the most common operating systems will be
discussed.

Linux distributions: Installing python on Linux distributions (such as
Ubuntu and Fedora) is quite easy unlike the Windows operating systems.
This is because the Linux distributions come default with python that has
already been installed. Your job will be to check, using some sets of basic
instructions, if you are running the right version of python. If you want to
check the version of python that has been pre-installed on your computer,
enter the command line $ python -V . If you execute the command line
properly, you will get a window displaying the version of the python you
are using. Endeavor to use a capital letter V in the command prompt. If the
version on your Linux OS is the latest version, that is good. You are on the
path to getting started with python. However, if the version on your
computer is below the version 3.8, you will have to upgrade the version to
the V3.8 series.

If you are using the Ubuntu operating system, you should have a pre-
installed python latest version. If you don’t have the python latest installed,
you can upgrade to the latest version by upgrading with the command line:
$ sudo apt-get update && sudo apt-get --only-upgrade install python.

Installing python on Windows

Installing your python on the Window OS is not as simple as the other
operating systems. The first thing is to go to http://www.python.org/getit to
download the python version 3.8. which is the latest version of python To
get it right, navigate to the system property of your computer to confirm the
type of operating system you are running. You will be able to see whether
you are running the 32bits OS or the 64bits OS. Once the python file has
been downloaded successfully, you can then run the file for full installation.
As soon as the installation is complete, you can explore the python
command line tool and IDLE from the start menu. If you want to make the
python accessible from the Windows command prompt, you need to set the
path in the environment variable . The path is the most used environment
variable in Windows is the path. Follow these steps to add the python path
for easy execution;

- Scroll to the bottom pane of your Window interface, and search

“Advanced system settings” in the “type here to search” box.

http://www.python.org/getit

The “system properties” window will be prompted which is
usually open to the “advanced tab” by default. Scroll to the bottom

and select environmental variables.

Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memory

Settings...
User Profiles
Desktop settings related to your sign-n

Settings...
Startup and Recovery
System startup, system failure, and debugging information

Settings...

P

Environment Yariables...

OK Cancel

From the environmental variable window, you will get two sets of
variables: the system variable and the user variable. Both of the
variables have the path variable and you can decide to edit any of the
paths (either from user variable or the system variable). You can
choose to edit the path for the user variable section if you are
planning to be using the command for only your user account on the
computer. You will choose the system variable if you need the change
to be effective across all users sharing the computer with you.

Environment Variables X

User variables for user

Variable Value
Onelrve ChUsers\usertOnelrive
OnelrveConsumer ChUsers\useryOnelrive
Path CA\Python2 M python.exe; CAU sers\um:\m cal\Microsoft\...
TEMP ChlUsers\user\AppDatatLocal\ Ternp
TMP ChlUsers\user\AppDatatLocal\ Ternp
Mew... Edit... Delete

Systemn variables

Variable Value 2

ComSpec CAWINDOWS\system32emd exe

DriverData ChWindows\ Systern32\Drivers\DriverData

NUMBER_OF_PROCESSORS 2

as Windows_MNT

Path &' CAWINDOWS; CAWINDOWS!System324\Whbem; C:\Python2 P\ python...

PATHEXT .COM;.EXE: BAT:.CMD; VES:.VBE:.JS: JSE: WSF:. WSH:.MSC

PROCESSOR ARCHITECTURE ~ AMD&4 b
New... Edit... Delete

Tap on path and then scroll to the right section to choose edit .

Add a new path by simply tapping on “New” and a new line will be
added at the bottom of the list where you can either type or paste the
path of the python that you downloaded. You can also choose the
browse option which will enable you to browse your files and copy
the program file.

ChPython2python.exe Mew
%USERPROFILESS AppDatat Local\Microsoft\WindowsApps
Edit

Browse...

Delete

Move Up

MMove Down

Edit text...

0] 4 Cancel

- Tapping on the PATH option as shown in the screenshot above will
bring an Edit System Variable window. Add C:\Python27 or the full
path of the custom Python installation directory at the end of the
existing PATH variable. You should put a semicolon (;) right before
the installation path.

Installing python on Mac OS: The Mac OS comes preinstalled with a
copy of python, only that the rate of updates for the default version is not
really fast. The version of Mac OS called the 10.9 Maverick comes default
with python 2.7.5.

Installing python Setup tools
The python Setup tools is a library featuring an assemblage of utilities that
users can use for building and distributing Python packages. The most used
tool from this assemblage is called easy_install . It enables you to access
the PyPI, the de facto python repository that features the highest number of
Python packages is the PyPI (http://pypi.python.org). The PyPI also gives

easy ways to install as many packages as possible on your operating system.
With the PyPI, you will be able to install any package by name on your
python. The easy install utility will be able to automatically download,
build, install, and manage your packages for you as a user. Many of the
packages that will be used for the python and the Arduino project in this
book will be installed by the easy install. It is necessary to state here that
the python experts all over the world have been, of recent, using another
tool called pip to replace the easy install utility. This is because the
easy_install utility fails to carry out some basic tasks such as support for
uninstalling packages, tracking actions and support for other versions
control systems. The easy_install and pip utility use the same python
repository; they can both be used to install any python package of your
choice.

Let us get started by using the easy_install to install various python’s setup
tools for different operating systems;

For Linux operating system
- In Ubuntu, the setup tools can be installed by prompting the
command:

$ sudo apt-get install python-setuptools
Note the use of the $§ symbol in the prompt above which is the command
prompt in the Linux based system. It is often used to specify that the python
command you prompted should be run on a command line and rather not on
a python/perl/ruby shell. The % symbol in front of the command line also
means the same thing. You might not necessarily put the $ symbol in front
of the command line as this will not destroy the command line.

- You can install the setup tools on Fedora by using the yum which is
the Fedora’s default software manager it can be installed using the
default software manager yum:

$ sudo yum install python-setuptools
- Most other Linux distributions can be downloaded and built when
you used using the following single line command:
$ wget
https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez
setup.py -O -| sudo python
Once you have successfully installed the setup tools on your Linux
distribution, the easy install can now be accessed directly right from the

https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_

terminal as a built-in command.

For Windows operating systems
The procedures for installing the setup tools for Windows are not exactly as
simple as it is for Linux based operating system. The installation needs you
to get the right ez_setup.py file straight from
successfully, press the shift button on your computer and then right-click
the actual folder containing the setup files. You can then prompt the
command;

>>> python ez_setup.py
The command line above will be able to install python Setup tools in the
Scripts folder of the default Python installation folder. You should adopt the
same method you used when you wanted to add the python to
Environmental Variables. Insert the setup tools by including
C:\Python27\Scripts to path. This will allow you to be able to install
various python packages using the easy_install inside the python packages
folder named Libs. Close and then open the command prompt window after
you have added the packet manager to your environment variable. This is to
allow these changes to be effective.

For Mac OS

You can install the Setup tools in Mac OS by following the method below

1. Navigate to the Mac section https:/pypipython.org/pypi/setuptools to
download the ez_setup.py, file.

2. Open the terminal and browse to the directory where the file has been
downloaded to. You can, most of the times, see the downloaded file inside
the download folder on your computer.

3. Run the command below inside the terminal to allow you to build and
manage the Set up tools.

$ sudo python ez_setup.py

Installing pip
The setup tools have been installed successfully, you can then use it to
install the pip.
- To install the pip on Linux or Mac, try and run the command line $
sudo easy _install pip to install the pip.

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/setuptools%20to%20download%20the%20ez_setup.py
https://pypi.python.org/pypi/setuptools%20to%20download%20the%20ez_setup.py

- For Windows OS, access the command prompt window and then
prompt the command line > easy_install.exe pip
If the pip has already been installed either by you or by default, you need to
upgrade it to the latest edition. This is necessary to fix certain bugs that
might be present in the version you are running. To upgrade pip, enter the
command $ sudo easy_install --upgrade pip

Installing Python packages

Having successfully installed the pip, you can use two different to install
any outside python package available on the PyPi repository at
http://pypLpython.org . To work effectively with installation of python
packages, you have to be familiar with the methods identified below. Note
that the PackageName has been used in these examples to replace any
third-party python package since there are many packages you can actually
download from the python’s repository. If you have a name of the exact
third-party you want to download, simply replace the term PackageName
with the name of the third-party app.

Note that there are instances where you will require superuser privilege
(root privilege) before you will be allowed to install or uninstall any third-
party app. Try and use sudo and then follow it by the appropriate command
for the cases.

To install a Python package, prompt the following command at the
command window:

$ easy install PackageName

Or you can use the pip by prompting the:

$ pip install PackageName

Prompt the command below if you have a specific third-party ap in mind
that you want to install;

$ easy install '""PackageName==version"

If you don’t know the precise version number, try and use the comparison
operators like >=, <=, > or < to include a range for the version number.
When you include a range like this, the easy install and the pip will be able
to find and install the right version of the package from the python’s
repository and then install it for you. Use $ easy_install '""PackageName >
version"

http://pypi.python.org/

You can use the following commands for pip to allow you to install the
same package you installed with the easy_install;

$ pip install PackageName==version

$ pip install ""PackageName>=version"

For instance, if you want to install a package version between 3.0 and 5.0,
you can enter the command $ pip install '"PackageName>=0.3,<=0.5"

Upgrading a package with either the easy install tool or the pip utility is
not difficult as both commands are even similar;

$ easy install --upgrade PackageName

$ pip install --upgrade PackageName

The easy_install utility does not exactly favor clean package un-installation
of a package; you can tweak this to your favor by making the program stop
searching for the specific package. You can then, later, delete the package
file from the directory where it has been installed:

$ easy install -mxN PackageName

The pip even gives a good way to carry out clean uninstallation of
packages, simply prompt;

$ pip uninstall PackageName

Getting started with the python basics

This section should be thoroughly revised by users who have little to no
understanding of python basics. If you are a user that has already
understood the python basics, you can move to the next chapter.
Nonetheless, whether you are a beginner or a pro, this section will get you
intimated with some crash concepts in python programming language. You
have already installed python from the appropriate website, what is left now
is to open the python IDLE from the location where it has been installed so
that you can have access to the full python interface. The python IDLE
means integrated development environment. The IDLE will give you a
basic text environment (built-in text editor) that allows you to create and
test python scripts easily. To have access to the python 3.8 IDLE, simply
enter IDLE in the search bar at the bottom of the window. You will get the
search result where you can tap to open the python IDLE interface. The
python IDLE has a development mode called the interactive mode which
consists of many features needed to run and create python scripts
effectively. The python 3.8 IDLE will look like the screenshot below;

L& "-py - C/Users/user/&ppData/Local/Programs/Python/Python38-32/)).py (3.8.5)* = O *
File Edit Format Run Options Window Help

As you can see in the screenshot above, the python’s interactive mode has
menu features which are displayed at the upper section of the window.
These features include;

- The file menu: This menu allows you to open new python scripts,

save your result and access some files. You can even print the current

window from the file menu.
File Edit Format Run Options

New File Ctrl+N
Open... Ctrl+0
Open Module... Alt+M
Recent Files 4

Module Browser Alt+C
Path Browser

Save Ctrl+S
Save As.., Ctrl+Shift+S
Save Copy As... Alt+Shift+5

Print Window Ctrl+P

Close Alt+F4
Exit Ctrl+Q

- Edit menu: Allows you to copy, paste and do a lot of other editing
features.

Edit Format Run Options Window Help
Undo Ctrl+Z
Redo Ctrl+Shift+Z
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Select All Ctrl+A
Find... Ctrl+F
Find Again Ctrl+G
Find Selection Ctrl+F3
Find in Files... Alt+F3
Replace... Ctrl+H
Go to Line Alt+G
Show Completions Ctrl+space
Expand Word Alt+/
Show Call Tip Ctrl+backslash

Show Surrounding Parens Ctrl+0

The Run menu: This allows you to run your command. You can
alternatively press the F5 key on your keyboard to run any script.
Note that you will be asked to save your prompt into a directory
before the script will run and display the answer.

Check the following “Do it yourself” instruction after you have successfully
opened the python IDEL;

In the IDLE 3 window, at the >>> prompt input print and then wait
to look at what you have on the screen. You will observe that the print
command has been changed to a violet color. This is because the
python language sees the print statement as a built-in function. The
color aids easy recognition of the python’s syntax and makes the
scripts look beautiful and logical.

Press the spacebar on your computer and input something like
(“This is my computer”) and then wait a little bit. You will observe
that the statement (This is my computer) is colored green. This is
because the python language sees the statement as a string literal.
These are the ways python color your statement for more
understanding and clarity.

Can you spot the color change in the screenshot below?

Local/Programs/Python/Python38-32/y.py (3.8.5)*

Window Help

- You can close the python shell by pressing CTRL + Q on your
computer or navigating to the file menu at the top section and scroll
down to select “Exit.” Another way you can use to close a python
script or window is to prompt the command exit () and then press the
F5 key to run. You will get a window that looks like the one below;

- Creating a Python script in IDLE is not really difficult. You start by
opening the text editor (IDLE) window by pressing or by choosing
the file menu at the upper part of the window and choose “New
window”. The new window will be opened with the “untitled” boldly
written at the top section. This is the IDLE text editor. The python
statement won’t be showing results in the mode (untitled mode) even
when you hit the “enter button”. This is because the script has not
been saved. To get past this limitation, enter your python statement
and you will either be prompted to save it or you can choose the
“save” option by yourself from the file menu. This will save the script
to a file.

The print function in python

The usefulness of the print function is to show the result for a specific
argument. The items you put inside the print function are called argument .
The syntax of the print function is print (argument). The argument part of
the print function can be characters like 123 or ABC. These characters are
also known as string literals. To enter any character using the print function,
you must enclose the character with either a single or a double quote (‘or).
The print statement below uses single quote while the second on uses the
double quote to enclose the characters;

>>>Print (‘This is my name’)
This is my name

>>>Print (“This is my name”)
This is my name

Notice that the quotation mark did not accompany the print result. In the
same vein, you should not mix the single quotation mark with the double
quotation mark in one print statement; if you do, the screenshot below is
what you will see

| SyntaxErros

@ EOL while scanning string ltera

Protecting a single quote with a double quote: Sometimes, you might
want to display a result that already has a single quotation mark inside
showing possession, you should use a double quotation mark to enclose the
result.

>>>print (“This is my father’s house”)

This is my father’s house

Protecting a double quote with a single quote: If you have a double quote
within the statement you want to print, you should try and use a single
quote to enclose the print statement. See an instance below;

>>>print (‘I said that, “I need a house!” and I bought one.’)

I said that, “I need a house!” and I bought one.

Controlling your output with escape sequence in python

You can use an escape sequence in python to let a python statement jump or
escape from the usual behavior or action. Escape sequences usually start
with the backlash character (\). A typical instance of using the escape
sequence to insert special formatting in output is the use of the \m escape
sequence. The \n escape sequence brings any character you listed after it on
to another line (next line). See below;

>>> print (" This is my name.\nThis is my wife.\nAnd this is my
house.")

This is my name.

This is my wife.

And this is my house.

>>>

Breaking a long output lines of characters

The first method you can use to break a long output line of characters is to
use the string concatenation. The string concatenation is able to take many
strings of texts and combine them to have one string of text. The plus (+) is
often used to achieve this. You will also use the escape sequence function to
jump out of the normal print function (use the backlash \ for this purpose).
Essentially, the two things that you need to concatenate are + and \.

>>> print ("I went to the market and bought vegetables, rice'" +\

... "and a lot of fishes!")

I went to the market and bought vegetables, rice and a lot of fishes !
>>>

The version 3.8.5 might be having problems with the above string literals
by displaying an error called EOL (end of strings literal), simply use the
plus (+) sign only to concatenate. For example,
S= (“aaa” + “bbb”)

Print (S)
S = aaabbb

Creating comments in scripts

In scripts, comments are words or notes from the person (author) that
compiled the Python script. The comment serves to give a clearer picture of
the script’s syntax and logic. The python interpreter doesn’t particularly
have anything to do with comments as it will ordinarily ignore it. However,
comments are important ways to enable users to modify or debug a script.
Precede a script with the hash symbol (#) to add a comment to the script.
The python interpreter will not reckon with anything that comes after the
hash sign. For instance, the comment can give you a way of adding your
name, the time the script was written and the purpose of the script. You can
put the comment at the top of the script or at the bottom of your script.

You can break up sections of the script by inserting long lines of the hash
(#) symbol. This provides more clarity and separates the comment from the
main body of script. In addition, you can also add comments at the end of
the statement. For example, print () # insert a blank line in output.

Understanding the Python variables

You can see a variable as a name that keeps a value for future use in a
script. A variable is just like a cup of tea. A teacup typically holds tea, of
course! But a tea cup can also hold coffee, water, stones, rocks, gravel, sand
etc.

While naming your python variable, you need to know that the variable
names are case sensitive. For instance, the variable SandStone and
sandstone are two different variables. Some rules that guide creating the
names of variables in python include;

- Don’t use a python keyword as a variable name. How can you know
if a variable name is a python keyword? More on this later.

- Don’t use a number as the first character of your variable name.

- Don’t insert any spaces inside your variable name.
Python Keywords
The list of python keywords changes every now and then, therefore it is
always handy to know the list of some current python keywords before you
start creating your variable name. All the python’s keywords except true,
false and none are in lower case letters. Find below the list of python’s
keywords;
['False', 'None', '"True', 'and', 'as', 'assert', 'break’, 'class', 'continue', 'def', 'del’,
‘elif', 'else', 'except!, 'finally', 'for', 'from', 'global', 'if, 'import', 'in', 'is',

'lambda', 'monlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with'
9 b 9 9 9 9 9 9 9 9

'yield']

Creating Python Variable Names

The first character in your python variable name must not be a number but
can be any of the following; a letter from lower case “a” to lowercase “z”, a
letter from uppercase “A” to uppercase (Z) and the underscore (_). After the
first character, you can use any of the following characters to precede it; the
numbers 0 through 9, the letters a through z, the letters A through Z. and the
underscore (_) character.

Since you cannot use a space in a variable name, you can replace it with an
underscore (). The variable name teacup can be tea cup. You cannot use a
variable without a value in python, it is therefore important you assign
value to the variable name before you use it.

Assigning Value to Python Variables

You will be able to assign value to a variable by writing the name of the
variable first, then put an equal to (=) symbol and then add the value you
want to assign to the variable. The syntax is Variable = value. For instance,
>>>Tea_cup = “tea”

>>>print (tea_cup)

Tea

& hgt.py - C:/Users/user/AppData/Local/Programs/Python/Python38-32/hgt.py (3.8.5)

File Edt Format Run Options Window Help

Tea cup

print (T

ea cup)

L& Python 3.8.5 Shell

File Edit Shell Debug Options Window Help

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 32 bit (In
tel))] on win32

Type "help"”, "copyright®™, "credits" or "license()" for more information.

==== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/hgt.py ===

Formatting Variable and String Output

When you use a variable, you automatically add extra formatting issues to
the script. For instance, the print function will include a space anytime it
sees a comma in the script. This is the reason you don’t need to put a space
at the end of the text that initially contains a comma. If you want to separate
a string of character from the variable in the output, simply use a separator
in the statement. The below code uses a separator (sep) to put an asterisk in
the result instead of space;

>>> print ("I enjoy my", tea_cup, '"!", sep="*")

I enjoy my*tea*!

Learning about python data type

When you create a variable by an assignment such as variable = value ,
Python will determine and assign a data type to that particular variable. A
data type determines how the variable will be stored and the rules that
govern how the data will be exploited. Python deploys the value it assigned
to the variable to determine the type of the variable.

When the Python statement coffee cup = ‘tea’ was prompted, Python
observed the characters in quotation marks and classified the variable
coffee cup to be a string literal data type, or str.

You can actually determine the category of data type Python has given to a
variable by deploying the type function. See the example below where the
variable coffee cup 1s a string literal variable and the variable
cups_consumed is an integer variable.

>>> coffee cup = 'coffee’

>>> type (coffee cup)

<class 'str’>

>>> cups_consumed =3

>>> type (cups_consumed)

<class 'int™>

>>>

Python assigned the string literal (str) data type to the variable coffee cup
since it saw a string of characters between quotation marks. But the python
language saw the whole number for the cups consumed variable, hence it
was assigned the integer data type.

The print function will assign the string literal data type to its argument.
This is the case for anything that is in the form of an argument, such as
numbers, quoted characters, variable values etc. This means that you can

mix different data class in your print function argument. The print function
will change all the data type present to a string literal data type.

If you make a little change in the cups consumed variable will make
python change the data type. For instance, if you change the number given
to cups_consumed — say from 3 to 3.2 — the python will reassign the data
type it formerly assigned to cups_consumed from integer to float (of course
now we have a decimal point)

>>> cups_consumed =3

>>> type (cups_consumed)

<class 'int™>

>>> cups_consumed = 3.2

>>> type (cups_consumed)

<class 'float™
>>>

Allowing Python Script Input

There will be a particular that you (script writer) will need your script users
to enter some data into your script from their keyboard, you can use the
python’s input function to do this. The input function is a python’s in-built
function and deploys the syntax below;

variable = input (user prompt)

In the script below, the variable cups consumed is assigned that was
provided by the script user who answered the question “How many cups did
you drink? The script writer provided the prompt (which is meant to be
answered) to the script user in the form of argument. The user will provide
the answer and hit the enter key. This will make the input function to assign
3 as the answer to the variable cups_consumed.

>>> cups_consumed = input("'How many cups did you drink? ")

How many cups did you drink? 3

>>> print ("' You drank", cups _consumed, "cups!")

You drank 3 cups!

>>>

For the user prompt, you can enclose the string of the prompt with either a
single or a double quote.

As a script writer, do well by adding a space at the end of each prompt to
allow the users to be able to answer the prompt without difficulty. It is not
good typing in an answer that is jammed with the prompt. The input

function considers all input as strings which are actually different from the
way Python handles other variable assignments. Remember that if the
variable cups consumed = 3 were inside your Python script, it would be
given the integer data type. When using the input function, as shown below,
the data type is assigned to string, str.

>>> cups_consumed =3

>>> type (cups_consumed)

<class "int™>

>>> cups_consumed = input("'How many cups did you drink? ")

How many cups did you drink? 3

>>> type (cups_consumed)

<class 'str’>

>>>

You can use the integer function to change which were input from the
keyboard from strings data type. The integer function will change a number
from a string data type to an integer data type. You can as well use the float
function to change a number from a string to a floating-point data type. The
script below shows how to change the variable cups consumed to an
integer data type.

>>> cups_consumed = input ("How many cups did you drink? ")

How many cups did you drink? 3

>>> type (cups_consumed)

<class 'str'>

>>> cups_consumed = int(cups_consumed)

>>> type (cups_consumed)

<class 'int™>

>>>

You can decide to do some little manipulations here and use a nested
function. The Nested functions are functions within another function. The
general format of a nested function is as follows:

variable = functionA (functionB (user _prompt))

The script below deploys this method to effectively change the input data
type from a string data type to an integer data type.

>>> cups_consumed = int(input('"How many cups did you drink? "))
How many cups did you drink? 3

>>> type (cups _consumed)

<class 'int™>

>>>

Python math operators

Python can be used to perform some basic calculations such as addition,
subtraction, multiplication and division. You can use the python as a
calculator.

To get an understanding of how python handles digits, simply open your
python IDLE window and carry out some basic calculations from the
command line. See below;

>>>3 + 4

7

>>> 5+ 1

6

>>>2 * 4

8

>>>16/2

8

File Edit Shell Debug Options Window Help

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 32 bit (In

tel)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/math.py ===
> 3 + 4

For division, python will automatically convert the result into a floating
data type even though what you are dividing is an integer data type;
=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/math.py ===

>> 3 + 4

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/math.py ===
>> 16/2

Order of Operations

In fact, the Python programming language follows all the basic rules of
mathematical calculations, including the order of operations. In the example
below, Python performs the multiplication first follow by the addition
operation:

>>>3+5%5

28

>>>

And just like it i1s in mathematics, Python enables you to change the order
of operations with the use of parentheses:

>>>(3+5)*5

40

>>>

You can also nest parentheses as much as you need to in your calculations.
Just ensure that you match up all the opening and closing parentheses
properly. If you don’t do this, python will not run as it will continue to wait
for the parentheses that are missing. Check below;

>>>((3+5)*5

When you hit the Enter key, the IDLE sends back a blank line instead of
giving you the result. It is waiting for you to close out the missing
parenthesis. To run the command, just input the missing parenthesis on the
blank line:

>>>(3+5) *5)

40

>>>

CHAPTER TWO

MORE ABOUT PYTHON LANGUAGE

Data structures

The Python programming language supports four (4) essential data
structures which include list, tuple, set, and dictionary. These data structures
feature a number of important built-in methods.

Lists

When you have values of a single or multiple data type, you can use lists to
group these values together. The list data structure

can be assigned by specifying values using a square bracket together with a
comma (,) as a separator:

>>> myList = ['a', 17, 'b', 12.5, 5, 2.9]

>>>print (myList)

['a', 17,'b', 12.5, 5, 2.9]

=== RESTART: C:/Users/user/AppData/Local/Prog:
[‘a', 17, 'b', 12.5, 5, 2.9]

0 |

Just like strings, the values in a list can be checked using index numbers,
which begins from 0. Python uses a feature named slicing to get a specified
subset or element of the data structure by deploying the colon operator. You
can specify slicing by using myList[start:end:increment] prompt. See the
example below to better comprehend how slicing can be achieved;
- You can get a single element in the list just like it is shown below:
>>> myList[0]
g
- You can get all the elements in a list by using empty to start and end
values:
>>> myList|:]
['a', 17, 'b", 12.5, 5, 2.9]

o

RESTART: C:/Usersfuser/AppData/Local/Programs/Pyvthon/Python3i-32/nhyy.py ==
>>»> myList = ['a', 17, 'b', 12.5, 5, 2.9]

»>»>» myList[:]

['a', 17, 'b', 12.5, 5, 2.9]

- You can specify the start and the end index values to access a
specific subset of the list:
>>> myList[1:5]
o [17,'b', 12.5, 5]

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/nhyy
>>»> myList = ['a', 17, 'b', 12.5, 5, 2.9]

>>> myList|[:]

[‘a', 17, 'b', 12.5, 5, 2.9]

S>>

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/nhyy
>>>

>>> myList[1:5]

[17, 'b*', 12.5, 5]

- When you use the minus symbol together with an index number,
you are telling the python interpreter to use that particular index
number backwards. In the following instance, -1 backwards
represents the index number 5:

>>> myList[1:-1]
[17,'b', 12.5, 5]

RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-3
>>> myList = ['a', 17, 'b', 12.5, 5, 2.9]

>>> myList[:]

[(‘a', 17, 'b', 12.5, 5, 2.9]

>>>

P

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-3
S>>

>>> myList[1:5]

[17, 'b', 12.5, 5]

>>> myList[1l:-1]

[17, 'b', 12.5, 5]

- You can get every other element in the list by providing the
increment value with the start and the end values:

>>> myList[0:5:2]
[Va" 'b', 5]

P

RESTART: C:/Users/user/LppData/Local/Programs/Python/Python38-32/nk

>>»> myList = ['a', 17, 'b', 12.5, 5, 2.9]
>>> myList[:]
[*a', 17, 'b"', 12.5, 5, 2.9]

>>>

RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/nr
>

>>> myList[1l:
[17, 'b', 12.
>>> myList[1l:
[17, 'b', 12.
>>> myList[O0:
['a', 'B',

>>> [

You can know the length of a list variable by using the len() method.
This method will be used often in most of the projects we will be

5]

doing in this guide.
>>> len(myList)
6

RESTART: C:/Users/user/AppData/Local/Programs/Python/Python3g-32/nhyy

»»» myList = ['a', 17, 'b', 12.5, 5, 2.9]
>>> myList[:]

j"a", 1T, "B, L2325 S5 23

2

RESTART: C:/Users/user/AppData/Local/Programs/Python/Python3g-32/nhyy
x>

>>> myList[l:
125
>>> myList[l:
i f§ 13

(17, 'kB’',
[17, 'e’',
>»> myList [0
[Ialr Iblr
>
&

>

31
=
_l]
S, 51
SR R |

=1

3]

lentmyLiit}

You can add or delete an element from a list by using a number of

operations. For instance, if you wish to add an element at the end of

the list, utilize the append() method on the list:
>>> myList.append(10)
>>> myList
['a', 17, 'b', 12.5, 5, 2.9, 10]

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/nhyy.py ===
>>> myList[1:5]

[17, 'b', 12.5, 5]

>>> myList[1l:-1]

[17, 'b', 12.5, 5]

>>> myList[0:5:2]

[lal, Ibl, 5]

>>> len (myList)

6

>>> myList.append(10)

>>> myList

[*a', 17, 'b', 12.5, 5, 2%, 10]

>>>

You can see that an extra element 10 has been added to the list with the use
of an “append” method.

- You can also add a particular element at a specific location by using
the insert(i, x) method, where i stands for the index value, while x is
the exact value that you want to add to the list:

>>> myList.insert(5,'hello")
>>> myList
['a', 17, 'b', 12.5, 5, 'hello', 2.9, 10]

=== RESTART: C:/Users/user/AppData/Local/Programs/Python/Pythor
>>>

>>> myList[1l:5]

(17, 'e', 12.5, 5]

>>> myList([1l:-1]

[17, 'b', 12.5, 5]

>>> myList[0:5:2]

[‘a', 'b', 5]

>>> len(myList)

6

>>> myList.append(10)

>>> myList

[ta', 17, 'b', 12.5, 5, 2.9, 10]

>>> myList.insert (5, 'hello')

>>> myList

[‘a', 17, 'b', 12.5, 5, 'hello', 2.9, 10]

In the script above, the “hello” has been added right after the number “5”
because that is exactly what the script specified.

- In the same vein, you can utilize pop() to remove any element from
the list. When you prompt only the pop() function without signifying
the exact element that you want to remove, the pop function will
remove the last element in the list. You will be able to remove a
specific element from the list by using the pop(i) where ‘1’ is the
particular element that you wish to remove.

>>> myList.pop()
10

=== RESTART: C:/Users/user/AppData/Local/Programs,/Pyvthon

>>> myList[l:35]
[17, 'b"', 12.5, 5]
>»> myList[l:-11]
[17, 'b', 12.5, 5]
>»> myList[0:5:2]
[‘a', 'b', 5]

»>> len(myList)

>> myList.append (10}
>»> myList

['a', 17, 'B', 12.5, 5, 2.9, 10]
>>»> mylList.insert (5, "hello')

>>> myList
[Iall l'?l Iblr

12.5; §
> myList.pr[;i
10

, 'hellg', 2.9, 10]

>>> myList
['a', 17, 'b', 12.5, 5, 'hello', 2.9]
>>> myList.pop(5)
'hello’
>>> myList
['a', 2,'b', 12.0, 5, 2]

=== RESTART: C:/Users/user/hppData/Local/Programs/T

»>> myList[1l:5]

J17, "Bb', 12.5, 5]

»>»>» myList[l:-1]

J17, "By 12.5, 21

»>> myList[0:5:2]

['a', 'B", 3]

»>>» len(myList)

[

»>> myList.append (10}

»>>»>» myList

["a"; 17; "B"; 12.5; S; 2:-5; 1l0O]

>»> myList.insert (5, 'hello')

»>> myList

[*a', 17, 'b', 12.5, 5, 'hello', 2.9, 10]
»»>» myList.popl()

10

»>> myList

[*a", 17, 'b', 12.5, 5, '"hello', 2.9]

*»>»>» myList.pop(5) t
'hello®

»>> myList
["B" s 1Ty "By AE.Sy S5 %]

>>> I

Creating a List
There are about four (4) different methods of creating a list variable which
include;

- Create an empty with an empty pair of square brackets. See below
>>> list] =[]
>>> print(list1)

[]

>>>
| & Python 3.8.5 Shell

File Edit Shell Debug Options Window Help

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:4:
tel)] on win32
Type "help", "copyright", "credits" or "license()" fc

> >

=== RESTART: C:/Users/user/AppData/Local/Programs/Pyt
[]

22>

- Puta square bracket around a list of values that have been separated
by comma. See below;
>>>list2 =1, 2, 3, 4]

>>> print(list2)
[17 27 37 4]
>>>
rne CuiL arnen veouy VpLuuns winuauow neip
Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 3:Z

tel)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.
= RESTART: C:/Users/user/AppData/Local/Programs/Python/Python38-32/mat
>>> 1list2 = [1, 2, 3, 4]

>>> print (list2)

(1, 2, 3, 4]

- Use the list() function to make a list from another iterable object,
see below:
>>>tuplell =1, 2, 3, 4
>>> ist3 = list(tuplell)
>>> print(list3)
[1,2,3,4]
>>>
- Use a list comprehension.
The list comprehension system of creating lists is a bit more complicated
way of creating a list from other data. Notice that with lists, Python deploys
square brackets around the data values, not parentheses as with tuples (more
on tuples later)
Just as with tuples, lists can feature any type of data, not just numbers or
alphabets, as in this example:
>>> list4 = ['Rick’, 'James', 'Katie Morgan', 'Jessica']
>>> print(list4)
['Rick’, 'James', 'Katie Morgan', 'Jessica']
>>>

Extracting Data from a List

You can obtain individual data elements from list values by deploying index
values. Check below using examples

>>> print(list2[0])

1

>>> print(list2[3])

4

>>>

You can as well use a negative number for specifying the list index. A
negative index gets values starting from the end of the list:

>>> print(list2[-1])

4

>>>

You can observe that while using a negative index value, the -1 value
begins from the end of the list because -0 is still 0. Notice that when you
use negative index values, the -1 value starts at the end of the list, since -0
is

the same as 0.

Lists also agrees with the slicing method of getting a subset of the data
elements which are contained in the list value, as in the following example:
>>> listd = 1ist2[0:3]

>>> print(list4)

[1, 2, 3]

>>>

The command above tells the print to display the list4 from 0 to 3 i.e from 1
to 2 to 3.

Tuples

Tuples, unlike lists, are immutable data structures that are supported by
Python. Tuples being an immutable data structure implies that you cannot
remove or add elements from or to the tuple data structure. Due to this
immutable feature, it is faster and easier to access tuples unlike the mutable

lists. Tuples are most often used to store sets of values that can never
change. You declare a tuple data structure just the same way you declare
lists but with the use of parentheses or without even using brackets at all.
See example below;

>>> tupleA=1,2,3

>>> tupleA

{,2,3)

File Ekdit Shell Debug Options Window Help

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:
tel)] on win32

Type "help"™, "copyright", "credits"™ or "license()"

== RESTART: C:/Users/user/AppData/Local/Programs/Py
>>> tupleA =1, 2, 3

>>> tupleld

(1, 2, 3)

>>>

>>> tupleB = (1, 'a’, 3)

>>> tupleB

(1,'a', 3)

File Edit Shell Debug Options Window Help

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020,
tel)] on win32
Type "help", "copyright", "credits"™ or "license

== RESTART: C:/Users/user/AppData/Local/Program
>>> tupleA =1, 2, 3

>>> tupleld

(1, 2, 3)

3)

TRV,
- ¢t ct
oS oo
-
S
m M
w o w
Il

-~

v

Just like you have it in a list data structure, the values in tuple can be called
using index numbers:

>>> tupleB[1]
Va!
== RESTART: C:/Users/user/AppData/Local/Pro
>>> tupleA =1, 2, 3
>> tuplei

(L, 2, 3)
>> tupleB = (1, 'a', 3)
>> tupleB

(1, a', 3)

> tupleB[1] s
>>> I

Since tuples are not exactly mutable like lists, most of the manipulations
you carried out for lists (such as append, insert and pop) cannot be done for
lists.

Sets

The set data structure in Python is designed to aid mathematical set
operations. The set data structure features an unordered assemblage of
elements without duplicates. When you have a list of numbers and some of
the numbers appear more than once, you can use the set() function to
remove the ones that are duplicate and then have each of them appearing
once.

For instance

>>> listA=[1,2,3,1,4,5, 3, 2]

>>> setA = set(listA)

>>> setA

set([1, 2,3, 4, 5])

Dictionaries

The dict data structure is deployed to store key-value pairs indexed by keys,
which are also identified in other languages as associative arrays, hashes, or
hashmaps. Unlike other data structures, you can extract dict values by using
associated keys:

>>> boards = {'uno':328,'mega':2560,'lily':'128'}

>>> boards|'lily’]
'128'

>>> poards.keys()
['lily', 'mega’, 'uno'|

Controlling the flow of your program

Just like any other language, Python enables you to control the program
flow using some compound statements. In this section, we will briefly
introduce these statements to you.

The if statement

The if statement is perhaps the most simple and standard statement you can
use to set up conditional flow. To have a better understanding of the if
statement, prompt the following code in the Python interpreter while using
different values of the age variable:

>>> age = 15

>>> jf age <17 and age > 12:

print "Teen"

elif age < 13:

print "Child"

else:

print "Adult"

This will print teen as your result on the screen.

The for statement

The Python’s for statement iterates over the elements of any sequence based
on the order of the elements in that sequence:

>>> celsius = [13, 21, 23, 8]

>>> for c in celsius:

print " Fahrenheit: "+ str((c * 1.8) + 32)

The python interpreter will produce the following result that will show the
calculated values in Fahrenheit from the provided Celsius values.
Fahrenheit: 55.4

Fahrenheit: 69.8

Fahrenheit: 73.4

Fahrenheit: 46.4

The while statement

You can utilize the While statement to produce a continuous loop in a
python language. A while loop will continue to iterate over the code block
until the condition is proved true:

>>> count =35

>>> while (count > 0):

print count

count = count - 1

The while statement will continue to iterate and print the value of the count
variable and also reduce its value by 1 until the condition, that is (count >
0), 1s true. As soon as the value of count is smaller than or equal to 0, the
while loop will exit the code block and stop the iteration process.

Built-in functions

Python supports many useful built-in functions that do not need the user to
import any external libraries.

Conversions

The conversion parameters such as int(), float(), and str() can convert other
categories of data into integer, float, or string data types respectively:

>>>q="q'
>>> int(a,base=16)
10

i=1

str (i)

> int (a,base=16)

10

>>1=1
>>> str(i)

Vl !
You can also use parameters such as list(), set(), and tuple() to convert one
data structure into another data structure.

Math operations

Python features a built-in mathematical function that can process the
minimum and/or maximum values from a list. See below;

>>> list = [1.12, 2, 2.34, 4.78]

>>> min(list)

1.12
>>> list = [1.12, 2, 2.34, 4.78]

>>> min(list)
1.12

>>> max(list)

4.78

>>> 1list = [1.12, 2, 2.34, 4.78]
>>> min(list)

1.12

>>> max(list)

4.78

You can also carry out other mathematical calculations such as addition,
subtraction, multiplication and division
list=[1.12, 2, 2.34, 4.78]

>>> min(list)

1.12

>>> max(list)

4.78

>>> max(list) / min(list)
4.267857142857142

>>>

Max(list) * min(list)

5.3536

>>>
Max(list) — min(list)
3.66
>>>

Max(list) + min(list)
5.9
>>>

>>> list = [1.12, 2, 2.34, 4.78]
>>> min(list)

>>> max(list)
4,78
>>> max(list) / min(list)

4.267857142857142

>>> max(list) * min(list)

w
w
w
w
o
L.
L.
L.
L=
L
L.
L=
L.
L.
L=
[

>>> max(list) - min(list)
3.66
>> max(list) + min(list)

N |

The pow(x,y) function solves the value of x raised to the power of y. for
instance, pow(max(list), min(list)) above will return 5.767123400417216
Also,

VoY

>>>pow(3, 2)
9

>>> pow(max(list), min(list))
5.767123400417216
>>> pow (3, 2)

9

String operations

Python gives easy access to string manipulation through the built-in
functions that have been fully optimized for performance. See below;

>>> str = ""Hello World!"

>>> str.replace('""World", "Universe')

'Hello Universe!'

See below code to split a string that has a separating character where the
default character is space:

>>> str = ""Hello World!"

>>> str.split()

['Hello', "World!']

See the code below to split a string from a separating character for any
other character:

>>> str2 = "John, Merry, Tom"

>>> str2.split(",")

['John', ' Merry', ' Tom']

See the code below to convert an entire string value into uppercase or
lowercase:

>>> str = ""Hello World!"

>>> str.upper()

'"HELLO WORLD!'

>>> str.lower()

'hello world!'

You can deploy the built-in open function to access a file in a python script.
The basic syntax for this is written below;
filename variable = open (filename , options)

Closing a File

When you open a file in any program, it is only safe you close the file
before you exit the program. The same scenario applies in a python script.
To close an opened file in python, use the syntax below;

filename variable. close ()

Writing to a File

You can either open a file for the purpose of writing alone, or you can open
the said file to be read and written. The open mode usually deployed for
writing a text file is either w or a, which actually depends on whether you
want to create a new file or append to an already existing file. Adding a +

sign at the end of the w or a open mode will enable you to both read and
write to the file.

Writing to a Pre-existing File
You instruct Python that your written data will be appended to a pre-
existing file through the open function. After that, you can now write data to
a pre-existing file by using the .write just like the way you used the .write
method to write data to a new file.

CHAPTER THREE
INTRODUCTION TO ARDUINO

Arduino is not just a name of a device or a computer as you might have
perceived. More than a gadget, Arduino is the software and Hardware
Company that makes single-board microcontrollers that can be used for
manufacturing digital devices. It is an open source company comprising
builders, users and project communities that come together for the purpose
of designing a single-board computer. One example of such a computer is
the Arduino Uno. The Arduino board and its software are licensed by the
manufacturer under the CC-BY-SA license and the GNU General Public
License. These licenses give permission to any company or individual,
which 1s not the initial maker of Arduino, to manufacture both the software
and hardware (Arduino board) without penalty. If you are a builder or an
engineer, and you are currently reading this book, you can actually design
your own board just like an Arduino board; no one will penalize you. The
Arduino board comprises some set of digital and analog input/output (I/O)
pins that can be used for interfacing with other boards and circuits. The
board is also made up of serial communication interfaces such as the
Universal Serial bus (USB) which can be used to connect Arduino with
other computers. The Arduino project was first initiated in 2005 and was
meant as a tool to enable students and novices to design devices and
materials that will be able to interact, at the basic level, with the
environment. Thermostats, simple robots and motion detectors are examples
of devices that can interface with the Arduino project. The Arduino project
started as a team work with Massimo Banzi, David Cuartielles, Tom Igoe,
Gianluca Martino, and David Mellis.

Most Arduino boards are made up of an Atmel 8-bit AVR
microcontroller (ATmega8, ATmegal68, ATmega328, ATmegal280, or
ATmega2560) featuring different levels of flash memory, features and pins.
The 32-bit Arduino Due, based on the Atmel ARM-based processor
(SAM3X8E) came into the market in 2012. The boards deploy single or
double-row pins or a female header, which can facilitate connections for
programming and attachment into other circuits. The single or double-row
pins or a female header can connect with add-on modules called shields.
Most boards feature a 5 V linear regulator with a 16 MHz crystal
oscillator or ceramic resonator. Some designs, like the LilyPad, operate at

8 MHz and dispense with the onboard voltage regulator. Arduino
microcontrollers are already pre-programmed with a boot loader that helps
simplify uploading of various programs to the on-chip flash memory. The
default bootloader that came with the Arduino Uno is called the Optiboot
bootloader. Boards are installed with program code through a serial
connection to work with another computer. Current Arduino boards are
organized via Universal Serial Bus (USB), perfected using USB-to-serial
adapter chips like the FTDI FT232. Some boards, such as the later-model
Uno boards, replace the FTDI chip with a separate AVR chip featuring
USB-to-serial firmware, which i1s reprogrammable via its own in-system
programming header. Other Arduino variants, like the Arduino Mini and the
unofficial Boarduino, deploy a detachable USB-to-serial adapter board or
cable, Bluetooth or other methods. When the other variants are used with
traditional microcontroller tools, instead of the Arduino IDE, the standard
AVR in-system programming (ISP) programming is utilized.

The Arduino Uno: the most popular Arduino model

The Arduino Uno is the most popularly used of the Arduino series. If you
are a beginner who 1is just getting started with coding and electronics, this is
the board for you. Arduino Uno is essentially a microcontroller single-
board designed on the ATmega328P platform. It features 14 digital
input/output pins out of which six (6) can be deployed for pulse-width
modulation output (PWM), 6 analog inputs, a 16 MHz ceramic resonator
(CSTCE16MO0V53-R0), a Universal Serial Bus (USB) connection, a power
jack, an in-circuit serial programming header (ICSP) and a reset button. The
Universal Serial Bus (USB) provides a platform for connecting a circuit
device or another computer. The in-circuit serial programming header
(ICSP) gives the microcontroller its ability to be programmed without even
disconnecting it from the circuitry. You can simply connect your Arduino to
a computer using a Universal Serial Bus (USB) cable or power it using a
battery or an adapter.

https://en.wikipedia.org/wiki/FTDI

The Arduino Uno variants

Depending on the project that you want to do, hardware specifications
depend largely on project requirements. If you are working on a project that
needs you to interface with a number of external parts, you will require a
prototyping platform that features a sufficient number of input/output (I/O
) pins that you can use for interfacing purposes. In the same vein, if you are
working on a project that requires you to carry out a large array of complex
mathematics, you will need a platform with large computational ability.

That said, the Arduino board can be found in 16 different official models,
and each model of the Arduino board differs from the others when it comes
to form factor, input/output pins, computational capability and many other
on-board specifications. The Arduino Uno is the simplest and most popular
model, which is good enough for simple Do-It-Yourself projects. We will be
using the Arduino Uno board for most of the projects in this guide. The
Arduino Mega board is another widely used variant, and it is very big with
more I/O pins and a very powerful microcontroller. Find below some of the
major Arduino variants with their specifications;

1. Arduino Uno

- Processor: ATmega328
- Processor frequency: 16 MHz

- Digital Input or output:14
- Digital Input or output with PWM: 6
Analog Input or output: 6

2. Arduino Leonardo

- Processor: ATmega32u4

- Processor frequency: 16 MHz

- Digital Input or output:14

- Digital Input or output with PWM: 6
- Analog Input or output: 12

3. Arduino mega

- Processor: ATmega2560

- Processor frequency: 16 MHz

- Digital Input or output:54

- Digital Input or output with PWM: 14
- Analog Input or output: 16

4. Arduino Nano

- Processor: ATmega328

- Processor frequency: 16 MHz

- Digital Input or output:14

- Digital Input or output with PWM: 6
- Analog Input or output: 8

5. Arduino Due

- Processor: AT91SAM3XS8E

- Processor frequency: 84 MHz

- Digital Input or output:54

- Digital Input or output with PWM: 12
- Analog Input or output: 12

6. LillyPad Arduino

- Processor: ATmegal68v

- Processor frequency: 8 MHz

- Digital Input or output :14

- Digital Input or output with PWM: 6
- Analog Input or output: 6

You can program any one of the variants discussed above by deploying a
common integrated development environment, which you can refer to as
Arduino IDE. The type of project that you want to do will inform your
choice of the Arduino board as you can actually get to choose between any
of the variants. Your Arduino integrated development environment (IDE)
should be able to write and download any Arduino program you select on to
the board.

Installing the Arduino Integrated Development Environment
(IDE)

Just like installing, the Python IDE is the first thing to get started with the
python, installing the Arduino integrated development environment (IDE)
on your computer is the first step to getting started with Arduino. You can
remember when you want to install the python IDE; you installed the IDE
based on the operating system you are running on your computer. The same
thing will apply with the installation of the Arduino IDE. You will install
the Arduino based on your operating system. See the guides below;

Linux OS

You don’t really need too much stress to install the Arduino integrated
development environment in your Ubuntu operating system. This i1s because
the repository of your Ubuntu OS already has the Arduino IDE with the
needed dependencies. If you are using the Ubuntu 12.04 or the newer
version of the Ubuntu, you can install the Arduino from the terminal by
prompting the command below;

$ sudo apt-get update & & sudo apt-get install arduino arduino-core

The Ubuntu repository has the latest version of the Arduino integrated
development environment (IDE) as version 1.8.12.

If you are using the Fedora 17 or the latest version of RedHat Linux, you
can prompt and execute the following script in the

terminal:

$ sudo yum install arduino

You can also install the Arduino IDE on Ubuntu with the DEB package.
The Arduino DEB packages are not readily available in the Ubuntu default
repositories. If you want to install it, you need to download the .DEB
package from its download’s page at
https://www.arduino.cc/en/Main/Software . You can install the .DEB
package on both the 32-bit version and the 64-bit version of Ubuntu.
Alternatively, you can deploy the following wget command to get the

Arduino Software (IDE) package directly on the terminal. The current latest
version of the Arduino is 1.8.12.

cd /tmp

wget https://downloads.arduino.cc/arduino-1.8.12-linux64.tar.xz

The next step will be to extract the downloaded archive file by deploying
the tar command as displayed below.

tar -xvf arduino-1.8.12-linux64.tar.xz

You can then move into the Arduino-1.8.12 which has been extracted and
run the installation script as root.

cd arduino-1.8.12/

sudo ./install.sh

Once the installation has been completed, a desktop icon will then appear
on your desktop.

You can also install the Arduino IDE by using Snap. Snaps are software
packages that you can easily create and install to manage and use packages
on the Linux distributions system. The Snap provides the easiest and most

https://www.arduino.cc/en/Main/Software

organized way of installing and managing packages on the Linux
distributions. You can prompt the command below to install Snap packages
and then install the Arduino IDE;

sudo apt install snapd

sudo snap install arduino

In order to allow code uploading on the Arduino board over USB, you will
be required to add your user to the dialout group and then connect the snap
to the USB socket (raw-USB socket). Simply open the terminal, run the
prompt below and then restart your computer.

sudo usermod -a -G dialout SUSER
sudo snap connect arduino:raw-usb
You can then restart the computer to get started.

Mac OS X
If you want to install the Arduino integrated development environment on
Mac OS X (10.7 or newer), follow the guides below;

1. Get the updated version of the Arduino integrated development
environment (IDE) for Mac OS X from http://arduino.cc/en/Main/Software

2. Unzip the downloaded Arduino IDE and then drag it to the application
folder.

The Arduino IDE for Mac OS is incorporated with Java and you will be
required to get the latest version of Java on your computer. If you don’t
have the upgraded version of Java on your device, the program (Arduino
IDE) will ask you upon installation to install the Java SE 6 runtime. Follow
the request and install Java as the Mac OS will help you to install it
automatically.

Windows

Installation of Arduino for your Windows is not really difficult. All that you
need to do i1s to download the setup file from
http://arduino.cc/en/Main/Software . Choose the most recent version of the

Arduino integrated development environment (IDE), that is, 1.0.x or a
newer version.

Verify the operating system on your Windows, and then download the right
Arduino model based on your operating system, which can either be 32 bits
or 64 bits. Install the Arduino integrated development environment (IDE) to
the default location as already indicated in the installation wizard. Once you
have successfully installed the Arduino IDE, you can navigate to start|
programs on your computer to get started.

Getting started with the Arduino IDE
The Arduino IDE is a cross-platform application created in Java that can be
deployed to build, compile, and upload programs to your Arduino board.
When you launch your Arduino IDE, you will see an interface that is
similar to the interface shown in the following screenshot.

The integrated development environment (IDE) features a text editor which
can be used for coding purposes, a menu bar to have access to the IDE
components, a toolbar to easily have access to the most common IDE
functions, and a text console to see the compiler outputs. Check the status
bar at the bottom to show the selected Arduino board and the name of the
port that it is connected to. The screenshot below show the Arduino
interface;

& sketch_jul28a | Arduino 1.8.13 — O x
File Edit Sketch Tools Help

sketch_jul28a

I.':i:i setup() {

f/ put wyour setup code here, to run once:
1
void loop() {
// put your main code here, to run repeatedly:

Arduing Uno

The bottom right hand side of the screenshot above shows the type of
Arduino board which the software is currently connected to. Likewise, the
top left section is showing the sketch name together with the date the
software is being used. Today being July 28, 2020, this is how your own
software will be showing the current date anytime you open it.

Arduino Sketch
The Arduino sketch is an Arduino program that has been developed solely
for you using the Arduino integrated development environment (IDE). The
Arduino sketches are written in Arduino language which is a custom model
of the javascript. The Arduino sketch has a built-in text editor where you
can write, edit and even copy & paste your codes. As soon as you finish
writing the code, you can then save the code with the .ino extension. The

.ino extension is the format which the latest version of the Arduino saves
texts with. Anytime you save your code or texts file, the Arduino IDE will
instantly create a folder for you to save the text files. The location where the
file has been saved is called a sketchbook. Even if you are using some
other supporting files for your sketch, like the library files or header file,
they will still be saved in the sketchbook location. You can open a new
sketchbook by choosing new from the file bar as shown below;

&7 sketch_jul28a | Arduino 1.8.13 - LJ

File Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+0
Open Recent
Sketchbook 4
Bl y {r€, tO run once
Close Ctrl+W
Save Ctrl+S
Save As... Ctrl+Shift+5
e, to run repeatedly:

Page Setup Ctrl+Shift+P
Print Ctrl+P

Preferences Ctrl+Comma

Quit Ctrl+Q

You can alternatively press CTRL + N on your computer to open a new
sketchbook.

Working with the Arduino library

The Arduino IDE makes use of the libraries to gain access to more
functionality from your existing sketches. The libraries are some set of
functions that are able to carry out some tasks around a specified concept or
component. You can start working with any external hardware component
right from the software by using some set of customized Arduino libraries.
You can import library from the sketch menu and then scroll down to select
Include Library. See screenshot below;

2 sketch jul?8a | Arduino 1.8.13
File Edit Sketch Tools Help

& Verify/Compile Ctrl+R
Upload Ctrl+U
sketch) Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Al+5

Show Sketch Folder Ctrl+K |
Include Library 3 &
Add File... ' Manage Libraries... Ctrl+Shift+|

Add ZIP Library...

Arduino libraries
Bridge

EEPROM

Esplora

Ethernet
Firmata

G5M

HID

Keyboard
LiguidCrystal
Mouse

Robot Control
Robot IR Remote
Robot Motor

sD

SPI

Servo

SoftwareSerial

SpacebrewYun
Stepper
TET

¥

You can get to use any library out of the multitude of libraries in your
sketch by merely specifying the library you want to use using the #include
statement at the start of the sketch. For instance, you can include the bridge
library by typing #include <Bridge.h>.
The Arduino Built-in example sketches

The Arduino IDE features a huge array of built-in example sketches. These
examples are there to make you get familiar with some basic Arduino
concepts and libraries. The Arduino community has a good support base for
each of the examples you see under the Arduino example section. To have
access to the examples from the Arduino IDE, simply tap on Files and then
scroll down to select Examples. See below;

@ sketch_jul2la | Arduine 1.8.13
File Edit Sketch Tools Help

Mew Ctrl+M

Open... Ctrl+Q

Open Recent

Sketchbook -

Examples ¥ &

Gl ChrleW Built-in Examples

C e CirleS 011 .Basics 4 AnalogReadSerial

BN Ctrl+Shift+5 02.Digital -'=| BareMinirmum
03.Analog 1 Blink

Page Setup Ctrl+Shift+P DA st J DigitalReadSerial

Print Ctrl+P 05.Control JI Fade

Preferences Ctrl+Comma 06.5ensors '| ReadAnalogVoltage
07.Display b

Quit Ctrl+CQ 08.5trings ;
0o.USE H
10.5tarterkit_Basickit >

Each of the examples you are seeing in the screenshot above shows basic
Arduino commands which can be used for a lot of things like turning on/off
LED light, reading a potentiometer etc.

If you toggle down the basic example menu, you will see some examples
like the one below;

£y
Built-in Examples |
01.Basics ; AnalogReadSerial
02.Digital : BareMinimum
03.Analog : Elink
d.Communication : DigitalRead5enal
05.Control : Fade
06.5ensors : ReadAnalogVoltage

07.Display > |

Each of these examples ranging from AnalogReadSerial to
ReadAnalogVoltage can be used as follows;

e Analog Read Serial: You can use this to read a potentiometer, print the
state of the potentiometer out to the Arduino Serial Monitor.

Bare Minimum: This is the bare minimum of code you would need to
start your Arduino sketch.

Blink: You can use this to turn an LED on and off.

Digital Read Serial: You can use this to read a switch, print the state of
the switch out to your Arduino Serial Monitor.

Fade: Shows you how to use the analog output to fade an LED.

Read Analog Voltage: You can use this to read an analog input and then
print the voltage result out to the Serial Monitor.

If you select the Digital Example, you see the following;

. Blink Without Delay: You can use this to blink an LED without
necessarily using the delay() function.
Button: Use the pushbutton to control the LED.
Debounce: Read a pushbutton and filter the noise.

Digital Input Pullup: shows you the use of INPUT PULLUP with
pinMode().

State Change Detection: You can use this to count the number of

pushes of the button.

Tone Keyboard: A musical keyboard using piezo speaker

Tone Melody: You can use this to play a melody using a Piezo speaker.

Tone Multiple: Play different tones on multiple speakers sequentially by
deploying the tone() command.
. Tone Pitch Follower: You can use this to play a pitch on a piezo
speaker depending essentially on the input from an analog.

file Edit Sketch Tools Help

10.5tarterkit_BasicKit tonePitchFollower

11.Arduinol5P

Mew Ctrl+M
Open... Ctrl+0
Open Recent
Sketchbook * |
Examples 3 &
Closa Cirl+ W [Built-in Examples
Save Ctri+5 el T ! —
Save As... Ctel+ Shift+5 02.Digital 1 BlinkWithoutDelay
[03.Analog 1 Button
PageSetup Ctrl+Shift+P (4. Communication H Debounce
S Sl 05.Control ! DigitalinputPullup
Pralerence: Chi=Camima 06.5ensors 3 StateChangeDetection
I 07.Display ? tonekeyboard
_QUit o ! 08.5trings H toneMelody
09.USE 3 toneMultiple
1
>“I

Let us see a built-in example of how to turn on/off LED.

You should start by building the circuit plug of your Arduino board into
your computer, then initiate the Arduino Software (IDE) and prompt the
code below. You may also load these codes right from the menu File by
selecting Basics and then tapping on Blink.

The first thing you should try is to initialize LED BUILTIN pin as an
output pin with the line below

pinMode(LED_BUILTIN, OUTPUT);
Turn on the LED light in the main loop with the code below;
digitalWrite(LED_BUILTIN, HIGH);

When you prompt the code above, you will be supplying 5 volts to the LED
anode. This will create a voltage difference across the pins of the LED, and
then lights up your LED.

You can then turn it off with the code:
digitalWrite(LED_ BUILTIN, LOW);

The code above will take the LED BUILTIN pin back to 0 volts, and then
turns the LED light off. In between the on and the off session, you want
much time that will allow the person or user see what is happening (turning
on/off), the delay command is the one that will Arduino board to do nothing
for a very small seconds. Therefore, when you deploy the delay ()
command, nothing else will happen for that specific amount of period.

When you tap on the blink example from the basic option, the Arduino IDE
will give you a new window containing the code below;

// the setup function runs once when you press reset or power the board
void setup() {
// 1nitialize digital pin LED BUILTIN as an output.
pinMode(LED BUILTIN, OUTPUT);
b
// the loop function runs over and over again forever
void loop() {

digitalWrite(LED_ BUILTIN, HIGH); // turn the LED on (HIGH is
the voltage level)

delay(1000); // wait for a second

digitalWrite(LED_ BUILTIN, LOW); // turn the LED off by making
the voltage LOW

delay(1000); // wait for a second

CHAPTER FOUR
CHOOSING YOUR ARDUINO BOARD

Now that you have opened the code in the integrated development

environment (IDE), you can on-board the type of board you want to be

using. This board is where you are going to be uploading all of your

sketches. The Arduino integrated development environment (IDE) will need

to know your type of board. This is so that the board will be able to

implement the program for the right microcontroller.

To choose your type of Arduino board, simply scroll to the Tools section

and then select board. See below;

ul28a | Arduino 1.8.13
ketch Tools Help

ul28a

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter
WiFi101 / WiFiNINA Firmware Updater

Board: "Arduino Uno"
Port
Get Board Info

Programmer: "AVRISP mkll"

Burn Bootloader

Ctrl+T

Ctrl+ Shift+|
Ctrl+ Shift+ M
Ctrl+Shift+L

Boards Manager...

Arduino Ydn
i ® Arduino Uno
Arduino Duemilanove or Diecimila
Arduino Nano
Arduino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino Leonardo ETH

Arduino Micro

- .

Unless you have another type of Arduino board that is not the Arduino Uno
board, simply select the Arduino Uno board. After selecting the board, you
can then start compiling your sketches.

You can start compiling your sketches by tapping on the Sketch menu and
then select Verify or compile from the top menu bar. Alternatively, you can
press CTRL + R on your computer to start compiling. This will enable you

to start compiling your codes if there is no error in any of your connections.
@ sketch_jul28a | Arduino 1.8.13
File Edit Sketch Tools Help

@ @ Verify/Compile Ctrl+R
Upload Ctrl+U
sketch Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Alt+S

Show Sketch Folder Ctrl+K
Include Library >
Add File...

Once you are done compiling your code, you can then upload the code to
your Arduino Uno board. First, check properly if your Arduino Uno board
has been properly connected to your computer. If you see that you have not
yet connected the Arduino Uno board with your computer, kindly do this by
using a USB to connect the Arduino Uno board to the computer.

After you have successfully connected the Arduino Uno board to the
computer, you can then select the serial port for the IDE. To do this, move
your cursor to the Tools section and then Serial Ports. Select the
appropriate serial port from the serial port menu.

@ sketch_jul28a | Arduino 1.8.13
File Edit Sketch Tools Help

@ @"Z" F}jf [Auto Format Ctrl+T
Archive Sketch
sketch_jul28a Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+|
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WIiFi101 / WiFiNINA Firmware Updater

Board: "Arduino Uno" ?|
Port . Serial ports
Get Board Info COM3
COmM4
Programmer: "AVRISP mkll"
COM5
Burn Bootloader
COMSb

Note that if you are using some Linux distributions, it is possible that you
will not be able to upload your Arduino program to the Arduino board. This
is due to some permission restrictions on the serial port. You can bypass this
restriction by prompting the command below on the terminal;

$ sudo usermod -a -G uucp, dialout, lock <username>

You can now start to upload your compiled sketch to your Arduino Uno
board by tapping on the File menu and then select Upload.

This will deploy the serial connection to enter the compiled firmware in the
Arduino microcontroller. Please exercise a little patience until you observe
that the LED light on the board has stopped flashing. With this, your
Arduino board is ready for sketches.

You can monitor or see the action of the blinking LED near digital pin 13.

Using the Serial Monitor window
When you wanted to board your Arduino Uno onto your computer, we used
the Universal Serial Bus (USB) cable to attach the Arduino board into the
computer. The Universal Serial Bus (USB) is the standard, which gives you
the opportunity to attach many electronic parts to your computer by using

the serial interface. When you attach your Arduino Uno board to your
computer with the USB, the computer will notice the board as a peripheral
gadget. This type of connection you made with your USB will be referred to
as Serial connection.
The Serial Monitor window is just a built-in utility of the Arduino
integrated development environment (IDE). To have access to the serial
monitor window, simply move your cursor to Tools and then tap on Serial
Monitor. You can alternatively press CTRL + SHIFT + M on your
computer to have access to the serial monitor window. You can configure
the serial monitor window to be able to monitor data or information that is
being sent or received on the serial port that was used to connect the Uno
board to your computer.
The baud rate of the serial connection can also be configured with the drop-
down icon. This feature is especially handy when you want to test your
prototypes for their performances.

@ sketch_jul28a | Arduino 1.8.13

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch

sketch_jul28a Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+|
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 / WiFiNINA Firmware Updater

Board: "Arduino Uno" b
Port b
Get Board Info

Programmer: "AVRISP mkll" >

Burn Bootloader

Uploading Your First Sketch
The Arduino equivalent of the “Hello World” which is default in most
traditional programming languages is the blinking LED. Let us begin first
by installing the blinking LED on the Arduino board followed by slight
modification to make the light blinks faster. Your Arduino comes up with
an empty sketch (containing no sketch) when you initially open the Arduino

software. Navigate to the File menu and open the Blink example (this has
been discussed in the previous concept). You will be uploading the Blink
sketch onto your Arduino Uno board. Use the USB cable to first connect
your Arduino board to the computer. After you have successfully plugged
the devices, you should observe the green LED light on the Arduino coming
up. The Arduino board will, by now, be flashing with light. This is because
the boards are now pre-installed with the Blink sketch. You can install the
blink sketch again so that you can be able to do some little modifications.
Mac users, upon successfully plugging the board, may be prompted with a
message “A new network message has been detected”, just cancel this
message as it 1s just a notification telling you that you have inserted a
device into your computer. You won’t be able to upload your sketch
successfully until you let the Arduino software the type of Arduino board
that you are using and the serial port you are connecting with. Kindly go to
the Tools menu to select the serial port and the board type. If you are using
a Windows computer, your serial port will always be COM3. Select the
Upload icon in the toolbar, once you select the icon, you will notice a short
pause while compiling the sketch after which sketch uploading will then
begin. Once the uploading is completed, you will receive a “Done
Uploading” message at the bottom side of the window.

Upon successful uploading, the Arduino board will start running the sketch
automatically for you and you will observe that the LED light will start to
blink. If you don’t see any result, kindly check your serial and board type
settings. You can modify this sketch to enable the LED light blink faster by
simply modifying the two places in your sketch where there is a short pause
of about 1000 milliseconds so that the short pause is now about 500
milliseconds. To do this, kindly modify the blink script as follow;

Void setup()
{
// initialize digital pin LED_BUILTIN as an output.

pinMode(LED_BUTLTIN, QUTPUT);

}

// the loop function runs over and over again forever

void loop() {
digitalWrite(LED_BUILTIN, HIGH); //furntheLED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(LED_BUILTIN,LOW); //turnthe LED off by making the voltage LOW

delay(10b0); // wait for a second
}

Change the delay time above from 1000 to 500.

Void setup()

{
// initialize digital pin LED_BUILTIN as an outpuf.

pinMode(LED_BUILTIN, OUTPUT)|

}

// the loop function runs over and over again forever

void loop() {
digitalWrite(LED_BUILTIN, HIGH); //turnthelLED on (HIGH is the voltage level)
delay(500); // wait fora second
digitalWrite(LED_BUILTIN,LOW); //turnthelLED off by making the voltage LOW

delay(500); // wait fora second

PROGRAMMING THE ARDUINO

The C Language is the language of instruction for the Arduino board. This
section will only teach you what you need to know to use the C language to
be able to program your Arduino. You will be using the basics here in every
Arduino sketch you make. Programming, unlike most languages we speak,
is not innate in us as it is not our mother’s tongue. To get the best out of any
programming language, you need to dedicate your time and attention to it.
If you have used a programming language, such as python or any other
programming language, you will easily get the basics of the C programming
language. The programs in Arduino are called sketches. You can see these
sketches as instructions you need to carry out in the order in which they
appear. For instance, let us say you are supposed to carry out the instruction
below; Note that the pin 13 in the code below stands for LED BUILTIN (
LED light on Arduino is on pin 13).

digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);

The three lines you are seeing above are different lines and they each carry
out a task. The first line is an instruction to set the output on pin 13, which
1s the LED light, to high mode. So the LED light will literally come up at
this stage. The second line is an instruction to wait for 500 milliseconds,
while the third line will turn off the LED light. These three lines,
consecutively, will carry out the task of getting the LED light to blink a
single time.

Let us begin by getting the basics. The fear and frustration of most
beginners is not that they don’t know what to write when it comes to
syntax; their fear is in how to write it properly. The first thing you should
take care of as a beginner in syntax is proper punctuation and the ways the
words in codes are weaved. You write the name of a single thing as a single
word (if your intention is to write the name of one thing). This implies that
you are not expected to put a space between the letters. In the example code
above, the digitalWrite is a name of a specific built-in function whose job
1s to set an output pin (pin 13) on your Arduino board.

While writing names in syntax, you must understand that the programming
language 1s case sensitive. digitalWrite and DigitalWrite or digitalwrite are
three different things entirely. While digitalWrite will carry out the task
specified above, DigitalWrite will not. The digitalWrite function needs to be
informed which pin on the Arduino you want to set and whether to take it
high or to take it low. These two information are referred to as arguments
and the program will help you pass these arguments to a function when
called. You should separate the parameters in the function with a
parenthesis and set off by a comma. The normal is to put the first
parentheses (opening parentheses) just immediately after the last letter in
the function’s name and then to insert a space right after the comma before
the following parameter. However, you can insert space characters inside
the parentheses if you desire. If there is only one argument in the function,
then you don’t need to put a comma. You can observe how a semicolon
ends each line, but it would be preferable if it were a period. This is because
the semicolon marks the finishing of a statement. In the following section,
you will be able to understand more about what happens when you hit the
Upload button on your Arduino IDE. This will enable you to try a few do-it-
yourself projects.

Getting a grip of how codes perform real action on Arduino

We can now recognize an Arduino sketch and of course have a rough hint of
what the Arduino sketch is trying to do, but we still have to see deeper into
how most of these programming language codes we are talking about
transform from being words on some pages to instructions that carry out
something real, such as turn an LED on and off. The processes involved in
compiling your codes from the Arduino software text editor and deploying
them in real scenarios on the Arduino board is an interesting one. To get
started, the computer carried out a step called compilation where it exports
the codes you have written and then translates it into a machine language
which the Arduino understands (the machine languages are some set of
binary codes). If you have successfully written your codes inside the text
editor, and you select the verify icon (the icon that looks like a triangle),
this will try to compile the C language inside the editor without necessarily
making an effort to send the code to the Arduino IDE. If you enter a word
like KENT WAMP inside the Arduino IDE, and then hit the upload icon at
the top, you will get a screenshot that look like the one below;

kEnT wanp

ENT does notname a type

The Arduino has helped you run the word KENT WAMP and the language
is not recognizable. This is because the text you entered inside the text

editor is not a C language. The error message “KENT WAMP does not
name a type” is displayed. In another manner, when you compile a sketch
that has no code at all, the compiler will run and tell you that your sketch
does not have a loop function. You need to have some boilerplate codes
before you can start adding your own codes into your sketch. For Arduino
programming, the “boilerplate” code will assume the form of the “setup”
and “loop” functions which must be always available in your sketch. So,
you must always adapt your sketch to the boilerplate so that your code will
run. When you adapt the boilerplate in your code, the compiler will find it
acceptable and will bring a “Done Compiling” message. It will as well tell
you the size of the sketch. Let us take a look at the boilerplate code which
will later be the starting point for all the sketches that you will be writing in
Arduino.

Let us examine the Void setup first. The line void setup() implies that you
want to define a function called setup. In Arduino, some functions have
been defined for you already, like the digitalWrite and the delay function
that you used earlier, whereas you need to define other functions by
yourself. The setup and the loop functions are two important functions that
you have to define for yourself in every sketch that you write. You have to
know that you are not calling the loop and the setup functions just like you
called the digitalWrite, but your plan is to create the two functions so that
your Arduino can call the functions. To have a good grasp of this concept,
see the functions as some set of documents. In the document, you have a
part that used fisherman as the shorthand definition for someone that
engages in fishing activities. This will enable the document to look concise
and straightforward to read than a lengthy and ambiguous one. Functions
work in a much similar manner like this. This means you can actually get to
define a specific function that you, and even the Arduino program, can
deploy anywhere in your sketch. When you look at it very well, you will
observe that the two functions (setup and loop) do not actually return any
value, so to say, that means you need to say that the two functions are void.
Going back to void, these two functions (setup and loop) do not return a
value as some functions do, so you have to say that they are void, using the
void keyword. Let us say you have a cos function that can perform the
cosine trigonometric function of cos, then the cos function will return a
value. The value it will return would be the cosine of the angle that was
passed to it as the argument. In short, rather than using words to define a

function, we simply use functions in C language which we can call anytime
to do something for us. The name of the function will usually come after
the keyword void followed by a parenthesis to accommodate the argument.
A semicolon doesn’t follow the closing parenthesis because you are
defining a function, and not that you are calling the function. So you must
define what should happen when something does call the function. The
action that you need to occur when something calls on the function should
be put in between the curly braces. The curly braces together with the codes
between them are referred to as blocks of code. Note that even though you
need to define both the functions setup and loop, you don’t necessarily have
to put lines of code inside them. But you need to be reminded that if you
don’t put lines of codes, your sketch might look a bit unattractive.

The Blink Example

The reason why Arduino possesses the two functions setup and loop,
obviously, is to separate the things that only need to be done once, when the
Arduino starts running its sketch, from the things that have to keep
happening continuously. The function setup will just be run once when the
sketch starts. Let us add some code to it that will blink the LED built onto
the board. Add the lines to your sketch so that it appears as follows and then
upload them to your board:

void setup()
pinMode (13, OUTPUT) ;
digitalWrite (13, HIGH);

e I -
-~

The setup function itself calls two built-in functions, which are the pinMode
and digitalWrite. You already have an idea of what digitalWrite is all about,
but pinMode might seem new to you. The pinMode function assigns a
particular pin to either be an input or an output. So, the process involved in

turning the LED on is actually a two stage process. First, you need to set pin
13 (LED) to be an output, and second, you need to assign that output to be
high (5V). When you run this sketch, on your board you will observe that
the LED comes on and stays on. This is not very exhilarating, so we can at
least try to make the LED flash by turning it on and off in the loop function
instead of using the setup function. The pinMode call can be put in the
setup function since you are only required to call on it once. Although, the
project won’t get terminated if you move the pinMode into the loop. To get
things done, you can modify the sketch above to something like the code
below;

void setup/()

{

pinMode (13, QUTPUT) ;

-

void loop()
digitalWrite (13, HIGH);
delay (500} ;
digitalWrite (13, LOW);

{
i

Run the sketch above and see the result. It may not be quite what you were
expecting because it appears as if the LED i1s on all the time. Let us see
what is happening; try to prompting the sketch above one-step at a time in
your head and you can summarize like below;

1. Run the sketch and set pin 13 to be an output.

2. Run loop and set pin 13 to high (LED on).

3. Delay for half a second.

4. Set pin 13 to low (LED off).

5. Run loop again, going back to step 2, and set pin 13 to high (LED on).

The problem lies in step 4 and step 5. You will notice that the LED is being
turned off, and then it is turned on again when step 5 instructs the code to

go to step 2 (which clearly says Set pin to high). However, the process
occurred so fast that it looks like the LED is turned on all the time. The
microcontroller chip on the Arduino can perform 16 million instructions per
second. That is not 16 million C language commands, but it is still very fast.
Therefore, our LED will only be off for a few millionths of a second. To fix
the problem, you need to add another delay after you turn the LED off. Your
code should now look like this:

// sketch 3-01
volid setup ()

{

pinMode (13, OUTPUT) ;

volid loop()

{

digitalWrite (13, HIGH) ;
delay (500) ;
digitalWrite (13, LOW);
delay(500) ;

Variables

You should also notice that pin 13 was used and referenced in three places.
If you use a different pin, you will only need to modify the code in three
different places inside the code above. If you want to delay the rate of
blinking of the LED, you can change the number 500 to any other number
in those places where the number 500 has appeared. When defining a
variable in the Arduino language C, you have to indicate the type of the
variable. If you want your variables to be whole numbers, which in C are
called integers (ints). So if you want to define a variable called ledPin with
a value of 13, you have to write the following:

Int ledPin 13;

You can observe that ledPin is a name, so just names of functions; you
should not add any spaces in between the names. Notice that because ledPin
is a name, the same rules apply as those of function names. So, there cannot
be any spaces. The norm is to begin variables using a lowercase letter and
start each new word using an uppercase letter. Let us fit this into your Blink
sketch as follows:

int ledPin = 13;

int delayPeriod = 500;

void setup()

{
}

void loop()

{

digitalWrite(ledPin, HIGH) ;
delay (delayPeriocd) ;
digitalWrite(ledPin, LOW);
delay (delayPeriod) ;

}

pinMode (ledPin, OUTPUT) ;

If you check the sketch above very well, you will notice that another
variable called “delayPeriod” has been inserted. The “delayPeriod” has
replaced the number 500 in the previous sketch and the ledPin variable has
replaced the integer variable 13. If you need to make your sketch blink very
fast, you can modify the value of delayPeriod in one place. Try to change
the number 500 to, say 100, and then run the sketch on the Arduino Uno

board. This 1s one way of experimenting with variables and having different
results.

You can as well modify the sketch such that the blinking of the LED starts
very fast and then goes dim or reduced making it look like the Arduino
board is getting tired. To carry this out, all that you might need to do is to
insert something into the delayPeriod variable every time you do a blink.
You can modify your sketch by including the single line at the end of the
loop function and then initiate the sketch like the one below;

int ledPin = 13;
int delayPeriod = 100;

vold setup()

pinMode (ledPin, OUTPUT) ;

volid loop()
digitalWrite(ledPin, HIGH) ;
delay(delayPeriod) ;
digitalWrite(ledPin, LOW) ;
delay(delayPeriod) ;
delayPeriod = delayPeriod + 100;
}
Hit the Reset button and watch it start from a fast rate of flashing again.
Your Arduino Uno is now doing some sorts of arithmetic. Every time that

loop is called, it will carry out the normal flash of the LED, but then it will
add 100 to the delayPeriod variable.

Experiments in C Language

You need a means that you can use to test your experiments in C. One
method is to insert the C that you want to test out inside the setup function,
evaluate them on the Arduino interface, and then have the Arduino show
any output back to something called the Serial Monitor. The Serial Monitor

is inside the Arduino IDE. You can have access to the Serial Monitor by
tapping on the top right section in the toolbar. The Serial Monitor serves as
a channel of communication between the Arduino Uno and your computer.
You can enter any message inside the text area at the top part of the Serial
Monitor and then hit the send button to send the message to the Arduino
Uno. Likewise, the Arduino Uno can relay any message and you will get it
on the Serial Monitor. The information, in both cases, is sent through
Universal Serial Bus link. The Serial.println is a built-in function that you
can deploy in your sketches to send back a message to the Serial Monitor.
The Serial.println cannot take more than a single argument, which consists
of the information, usually a variable that you intend to send.

Numeric Variables and Arithmetic
The last thing you did was add the following line to your blinking sketch to
increase the blinking period steadily:

delayPeriod = delayPeriod + 100;

When you take a closer look at the line above, you will observe that it
consists of a variable name, an equal to (=) sign and what you can otherwise
refer to as an expression (delayPeriod + 100). The equal to sign is there as
an assignment. That implies that it is the one that is assigning a new value
to a variable, and the value it is given is a function of what comes right after
the equals sign and just before the semicolon. In this instance, the new
value to be given to the delayPeriod variable will be the old value of
delayPeriod plus 100. We can test out this new mechanism to examine what
the Arduino is doing by running the following sketch, and then opening the
Serial Monitor:

void setup()

{
Serial.begin(9600) ;
int a = 2;
int b = 2;
int ¢ = a + b;
Serial.println(c);

}

void loop()

()

Let us take a slightly more complex example, the formula for changing a
temperature from degrees Centigrade into degrees Fahrenheit is to multiply
it by 5, divide by 9, and then add 32. So you could write that in a sketch like
the one below;

void setup()

{

Serial.begin(9600) ;

int degC = 20;
int degF;
egF = degC * 9 / 5 + 32;

Serial.println(degF) ;
]
!

volid loop()

{ }

There are some few things you will likely observe here. First, note the line
below:

Int degC = 20;

When you see a line like the one above, it is doing two tasks; it is declaring
an int variable called degC, and it is saying that its initial value will be 20.
Alternatively, you could separate these two things and then come up with
one below;

Int degC;
degC = 20;

You should declare any variable that you want to declare just once.
However, you can still assign your variable a value as many times as you
desire. So, in the Centigrade to Fahrenheit instance, you are declaring the
variable degC and assigning it an initial value of 20, but when you declare
the degF, it does not get an initial value. Its value gets assigned on the next
line, according to the conversion formula, before being sent to the Serial
Montitor for you to see.

Commands

The C language used in Arduino has a wide number of built-in commands.
In this part, you will be able to see some of these commands and how you
can deploy them in your Arduino Sketches.

If command

For all the sketches you have been seeing so far, the basic assumption that
was made was such that the lines of code were executed in order just one
after the other without exception. But we can have an instance where you
don’t even want to tow that lane — perhaps you only want to execute only
part of your sketches and not everything. How do you get this done?

Let us use the previous example of the LED blinking light which is already
slowing down gradually. At the moment, it will start getting slower and
slower until each blink is lasting hours. Let us take a look at how we can
actually modify it so that once it has slowed down to a certain point, it
reverts back to its fast starting speed again.

You can deploy the if command to achieve this by modifying the last sketch
(where the LED is already slowing down) as follows;

int ledPin = 13;
int delayPeriod = 100;

void setup ()

{
}

void loop()

{

pinMcde (ledPin, OUTPUT) ;

digitalWrite (ledPin, HIGH) ;
delay (delayPeriod) ;
digitalWrite(ledPin, LOW) ;

delay (delayPeriod) ;

delayPeriod = delayPeriod + 100;
if (delayPeriod > 3000)

{

delayPeriod = 100;

}
}

The if command looks a bit like a function definition, but this resemblance
is not deep as it is only on the surface level. The word in the parenthesis is
not an argument; it is what is called a condition . So in this case, the
condition is set such that the variable delayPeriod has a value that is more
than 3,000. If this is true, then the commands inside the curly braces will be
executed. In this case, the code sets the value of delayPeriod back to 100.
If the condition is not true, then the Arduino will just continue on with the
next thing. In this case, there is nothing after the “if”, so the Arduino will
run the loop function again.

If you run these series of events right inside your head, you can have a
better grasp of what Arduino is doing. Look at what is happening below

1. Arduino initiates setup and prompts the LED pin to be an output.

2. Arduino begins to run the loop .

3. The LED light turns on.

4. A delay occurs.

5. The LED turns off.

6. A delay occurs.

7. Add 100 to the delayPeriod .

8. If the delay period is greater than 3,000 set it back to 100.

9. Go back to step 2.

We used the symbol <, which implies less than. The less than (<) is a
typical example of comparison operator.

You can deploy the double equal to symbol (==) to make comparison
between two numbers. Don’t confuse the double equal to (==) sign with an
ordinary equal to (=) which is only used to assign values to variables.
There is another type of if that enables you to carry out one task if the
condition is met, and then carry out a different task if the condition is not
true.

The for command

While you will be able to execute a number of commands under different
conditions, you might as well decide to execute a series of commands a
number of times in a program. The loop method is a good way of achieving
this. The loop function will automatically start again as soon as all the
commands in the program have been executed.

However, there are times when you will need more levels of controls than
this. Let us, for instance, write a sketch that can blink 20 times, then paused
for just 3 seconds, and then start again. You can achieve this by simply
repeating the same code over and over again in your loop function, like the
one below;

int ledPin = 13;
int delayPeriod = 100;

void setup()

{

pinMode (ledPin, OUTPUT) ;

}

void loop()

{

digitalWrite (ledPin, HIGH) ;
delay (delayPeriod) ;
digitalWrite (ledPin, LOW) ;
delay (delayPeriod) ;

digitalWrite (ledPin, HIGH) ;
delay (delayPeriod) ;
digitalWrite (ledPin, LOW) ;
delay (delayPeriod) ;

digitalWrite (ledPin, HIGH);

delay (delayPeriod) ;

digitalWrite (ledPin, LOW) ;

delay (delayPericd) ;

// repeat the above 4 lines another 17 times

delay (3000} ;

}

But doing it like the one you have above takes a lot of time entering the
codes inside the editor. There are other ways of getting this done by using a
“for loop.”

The sketch to achieve the task above by using a for loop is as shown below
which 1s much easier;

int ledPin = 13:
int delayPeriod = 100;

void setupl()
pinMode (ledPin, OUTPUT) ;

]

void loop()
for (int 1 = 0; 1 < 20; 1 ++)
digitalWrite (ledPin, HIGH) ;
delay(delayPeriod) ;
digitalWrite (ledPin, LOW);
delay(delayPeriod) ;
}

delay (3000) ;

The first item in the parentheses after for is the variable declaration. This
specifies a variable to be used as a counter variable and assigns it an initial
value—in this case, 0.

The second part is a condition that must be essentially true for you to stay in
the loop . In this case, you will be able to stay in the loop as long as the
value of i is still less than 20, but as soon as i is equal to 20 or more, the
program will stop carrying out the task inside the loop.

The last part is the action you want to be doing every time you have carried
out all the tasks in the loop . In this case, that is to raise the value of i by 1
so that it will, after 20 trips around the loop , stop to be less than 100 and
cause the program to exit the loop .

Try entering the code and then run it. As an advice, you should endeavor to
be typing these codes as this is one way to avoid unnecessary punctuations
and errors, which will not give you results.

One potential disadvantage of this method is that the loop function will take
a long time. This is not an issue for this sketch, since all that it is doing is to
flash the LED. But often, the loop function in a sketch will also be checking
that keys have been pressed or that serial communications have been

received. The processor will not be able to check for any serial
communication if it is busy inside a for loop. This is why it is necessary to
let the loop function to run as fast as it can so that it can be run as
frequently as possible.

The sketch below shows you how to get this done:

int ledPin = 13;

int delayPeriod = 100;
int count = 0;

void setup()

{

pinMode (ledPin, OUTPUT) ;

H

void loop()

{

digitalWrite(ledPin, HIGH) ;
delay (delayPericd) ;
digitalWrite (ledPin, LOW) ;
delay (delayPeriod) ;

count ++;

if (count == 20)

count = 0;
delay(3000) ;

You may have noticed the following line:

Count ++;

This i1s just C shorthand for the following:

Count =count + 1 ;

So now each time that loop is run, it will take just a bit more than 200
milliseconds, unless it is the 20th time round the loop, in which case it will
take the same plus the three seconds delay between each batch of 20
flashes.

While loop

Another method of looping in C is to deploy the while command to replace
the “for” command. You can also do the same thing as the preceding for
example when you use a while command as follows:

digitalWrite (ledPin, HIGH) ;

delay (delayPeriod) ;

digitalWrite (ledPin, LOW) ;
delay (delayPeriod) ;
1 ++;

The expression in parentheses after while must be true if it wants to stay in
the loop . When it is no longer true, then the sketch continues running the
commands after the final curly brace.

CHAPTER FIVE

INTERFACING ARDUINO WITH PYTHON

PROGRAMMING LANGUAGE
In chapter one, we discussed the nitty-gritty of the python programming
language and how you can write a script with the language. In this chapter,
we will take a look at how we can bridge the python language with Arduino
and then control some basic hardware connected to the Arduino through the
python programming language.

There are two major platforms that can be used to bridge Arduino with
python. These include;

- The Arduino Firmata protocol
- The python’s serial library (pySerial)

Most times, people used the Arduino Firmata protocol to interface Arduino
with python, but the Firmata protocol can also be used to develop a number
of useful applications.

Now that you have decided to get your hands dirty with some hardware that
can be connected to Arduino, you are expected to get ready some of these
components;

- Abreadboard

- An LED

- USB cable

- Arduino Uno (there are other variants of Arduino, but the one for
these projects 1s the Uno)

- Arresistor

Connecting Arduino with your computer

In chapter two, you were able to use codes to successfully communicate
with the Arduino board using the Arduino IDE on your computer.
Nonetheless, if you were not able to communicate successfully with these
codes, this section is still for you to get things done and connect your
Arduino board with your computer using a USB. The first time you are to
carry out is to connect your computer with the Arduino board using a
Universal Serial Bus (USB) cable and then follow these instructions to
connect Arduino based on the operating system that your computer is
running.

Linux environment

You need to ensure that you have the upgraded version of the Ubuntu
Linux. As soon as you connect your Arduino board to the computer, you
will be greeted with a prompt on the Arduino IDE telling you to add your
username to the dialout group. Note that the username here is your Linux
username. If you don’t know your username, quickly open the terminal
window and type whoami or you can alternatively tap the system menu in
the top right corner of the screen and look for your username at the bottom
entry of the drop-down menu. Tap the “Add” button on the prompt to add
your username which you have already obtained and then log out from your
system. The changes will take effect automatically without necessarily
having to restart your device. Log in to the interface with the same
username you entered earlier (remember to choose a username that you can

remember) and then enter the Arduino IDE on the Ardunino software. If
you don’t get the prompt to add your username (as some people on various
online platforms complained of not getting this prompt on their Linux), then
you need to do a little troubleshooting. Kindly check the Serial port menu
from the Tools menu of your Arduino IDE. It is possible that you might
have installed some other software on your computer that has already added
your username to the dialout group. If you couldn’t see the Serial Port
option on the Arduino IDE, then try and execute the prompt (in the
terminal) below;

$ sudo usermod -a -G dialout <username>
Note that the username here is your Linux username.
The script you add above will add your username to the dialout group, and
this will work for other Linux models. The Arduino board in Linux will
usually connect as /dev/ttyACMx where the “x” here is just an integer
value which depends essentially on the physical port address of your
computer.
If you are using the Fedora Linux distribution, simply add the uucp and
lock groups with the dialout group in order to control the serial port:
$ sudo usermod -a -G uucp,dialout,lock <username>

Mac OS X

The Mac OS X configures your Arduino Uno board as a network interface
anytime you connect the board to the system through a serial port. If you
have the Mac OS X Mavericks, navigate to Network from System
preferences once you connected your Arduino. You will get a prompt
telling you that you have connected a new network interface. Tap on ok for
Thunderbolt Bridge and then select apply.

If you have the Mac OS X Lion or the later models, you will get a prompt
(after connecting the Arduino board to your computer) that will tell you to
add a new network interface. But unlike the Mac OS X Mavericks, you will
not navigate to the network preferences on your computer. Once you notice
the network interface that reads not connected highlighted in red, you
should not fear as it is just a prompt and it doesn’t determine anything.
Enter your Arduino IDE and scroll to Serial Port from the Tools option.
Note that the serial port on which your Arduino board has been connected
might vary based on your OS X version and the physical port to which it is
connected. Ensure that you choose a tty interface for a USB modem.

Windows

The configuration of your Arduino serial port is not so difficult if you have
a Windows device. The Windows operating system will help you to install
all the necessary drivers the very first time you slot your Arduino Uno
board inside the computer. Once the necessary installations have been
completed, choose the appropriate COM port right from the serial port of
the Arduino menu bar. Tap on Tools and then select the Serial port option
in the menu bar to choose your COM port.

Troubleshooting

You might follow all the steps highlighted above for the various operating
systems, ranging from Linux, Mac and Windows, and still don’t get to see
the Serial port. If this is the case with you, then a little troubleshooting is
necessary. The problem can be caused by two major reasons: either the
serial port is currently being used by another software on your computer or
your Arduino USB drivers have not been installed properly. If you observe
that the serial port is currently being used by any other software aside from
the Arduino IDE, kindly terminate the software and then restart the Arduino
IDE. At times in Linux, the bratty library might not go well with the
Arduino serial interface. Simply remove this library, log out of the IDE and
then log in again:

$ sudo apt-get remove brltty
If you are using Windows, you can try to reinstall your Arduino IDE as this
will help to install and configure the Arduino Uno USB drivers again.

The Firmata protocol

Arduino is an inbuilt hardware gadget with /O pins that can communicate
with an external device. You can write a sketch that can control these
external devices attached to the Arduino Uno right inside the Arduino IDE.
And just like magic, you can see your devices (Arduino) receiving
communications from the computer. If it is possible to write an Arduino
program capable of transferring the full control of the Arduino I/O pin to
another software, then you don’t need to stress yourself writing an Arduino
for every change you want to effect in Arduino. This can be solved by
writing such an Arduino program that can be controlled with the serial port.
The Firmata protocol is the platform of choice that can handle this.

Firmata is a broad protocol that enables communication between the
Arduino microcontroller and the software hosted on your computer. If you
have a software that has been hosted on your computer that can perform
serial communication with the microcontroller can actually do this with the
help of Firmata. With Firmata, you don’t have to start uploading and
modifying any sketch before your software gets direct and full access to the
Arduino.

To use the Firmata protocol, you as a developer can upload a sketch that
supports the Firmata protocol straight to the Arduino client as a one time
process. By so doing, you can have the chance to start writing custom
software on the host computer and then perform hard tasks on it. The
custom software will be able to give commands to the Arduino Uno board
equipped with Firmata by using a serial port. The art of writing custom
Arduino sketches still holds when it comes to standalone applications where
the Arduino board has to carry out some local tasks.

Uploading the Firmata sketch to the Arduino board

One of the ways - perhaps the best way- that you can deploy to test the
Firmata protocol is to upload a standard Firmata program to your Arduino
Uno board and then use the testing software from the host. You will get to
upload an Arduino sketch which already features the standard Firmata
program to the board. If you want to get the best out of Firmata, you need
the latest version of the Firmata firmware and you don’t need to stress
yourself to get it. If you have the latest and upgraded Arduino IDE, then
you are sure it already has the latest model of the Firmata firmware. The
methods below show you exactly how you can upload the Firmata program
to our Arduino Uno board;

- Open the Arduino sketch interface on your computer. Navigate to
File, and then select Example. Scroll down from the example menu
and choose Firmata. Scroll down one more time and select standard
Firmata.

o] sketch_juld8a | Arduine 1.8.13
File Edit Sketch Tools Help

Mew Ctrl+M
Open... Ctrl+0
Open Recent >
Sketchbook >)
Examples F &
Close ChrlsW [Built-in Examples
Save Ctrl+5 01.Basics .
SaveAs.. Ctrl+Shift+S S g 4
| 03.Analog ?
Page Setup Ctrl+5Shift+P DSty T T
. nputsFirmata
Print Ctrl+P 05.Control | _
AnalogFirmata
06.5ensors]
Preferences Ctrl+Comma _ _ EchoString
| 07.Display 3 :
Quit Ctrl+ 0) OldStandardFirmata
| 08.5trings 1 _
ServoFirmata
09.USB . ;
SimplefnalogFirmata
10.5tarterkit_Basickit) L
| SimpleDigitalFirmata
11.Arduincl5SP 4 3
[StandardFirmata
Examples for any board StandardFirmataBLE
Adafruit Circuit Playground * StandardFirmataChipKIT
Bridge 3 StandardFirmatakthernet
Esplora H StandardFirmataPlus
Ethernet 5, StandardFirmataWiFi
Firmata F test >

Once you tap on the StandardFirmata, you will be greeted with a
new window with a new sketch space loaded in the editor. It is
important to tell you not to change anything in the displayed window;
this is because the test software will not work any longer if you try to
modify anything within the code.

Once you have successfully opened the StandardFirmata sketch,
the next thing is to compile it for your Arduino board. You have
already seen how to connect the Arduino Uno board to your computer
and choose the right serial port. But if you noticed the new sketch
space opened for you has a different configuration from that, kindly
navigate to Tools and then scroll down to choose the right Arduino
board and port.

To compile the current sketch, tap on the Verify icon from the
toolbar as shown in the screenshot below. You can as well compile the
current sketch by selecting Sketch | Verify/ Compile or tapping on
Ctrl + R (command + R if you have the Mac OS X):

&) StandardFirmata | Arduino 1.8.13 — O x
File Edit Sketch Tools Help

StandardFirmata

byte portConfigInputs[TOTAL PORTS]; // each kit: 1 = pin in INPBUT,

unsigned long currentMillis; [/ atore the current value £ro
unsigned long previousMillis: // for comparison with current
unsigned int samplingInterwval = 1%; // how often to run the main]

struct i2c dewvice_info {
byte addr:
int reg:
byte bytesa;
byte stopTX;
}:

idc _dewvice_info query[I2C MAX QUERIES];

byvte i2cRxDatal[6d]:

< >

Arduino Uno

The standard Firmata sketch above is already compiling (see the
bottom left corner of the screenshot) by selecting the compile icon in
the toolbar section. By pressing the upload button or compile button,

you can upload the codes displayed in the editor above straight to the
Arduino Uno board.
- Once the code is done compiling, you will get a notification at the
bottom of the window like the one in the screenshot below;
& StandardFirmata | Arduino 1.8.13 = [l >

File Edit Sketch Tools Help

standardFirmata

byte portConfigInputs[TOTAL PORTS]: // each bit: 1 = pin in INPUT, ™

unsigned long currentMillis; // store the current value frc
unsigned long previousMillis: // for comparison with current
unsigned int samplingInterval = 1%; // how often to run the main 1

struct idc device info |
byte addr;
int regr
byte bytes;
byte stopIX;]
b: |

IO 1l2C DEad CONTlnmaous more £
i2e_dewice_info query[I2C MRX QUERIES]:
kvte i2cBxDatal[6d]:

= - - .

Arduino Unao

After successful compilation of the codes, your Arduino Uno board is now
available with the latest Firmata firmware. The next thing is to start testing
the Firmata protocol.

Testing the Firmata protocol

You can remember how you once used an on-board (within the Arduino
board) LED light at pin 13 to test the blink program by writing a script for
the blinking process, now is the time to get you started with how to
assemble hardware parts using the Arduino Uno board. Although, this time
we are not going to use an on-board LED but rather an external LED which
will be connected to your Arduino. To get started, you will need a LED, 1
kilo ohm resistor and an Arduino board. First, you need to disconnect your
Arduino board from the computer to avoid damage due to static electricity.
The LED we are talking about comes with two legs; the short leg is
grounded with the 1k-ohm resistor and the long leg will be connected to the
pin 13 of the Arduino Uno board. Just something that will look like the
image below;

e s moAaT < noa oo et et s
. "2 s AR L (R
Lr2 e e)
L.
U
T . ; T [T'H" N +* s s va o @ie s s v o5 09 s s s s se e sewwn
rxmm Arduing® 0090909092 W EEEEEEEEY I EEEEE R R R R

oooooooooooooooo

Long leg gl 4 1 Short leg
(Anode) (Cathode)

e L i 2 S S B o
oooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooo

oooooooooooooooooooooooo

The attached LED above will be deployed to test some basic functions of
the Firmata protocol. The Firmata code has already been uploaded to the
Arduino and you can now get ready to start controlling the LED attached
with your computer (host computer).

There are many ways you can communicate with the Arduino board from
your computer using the Firmata protocol. One of such ways is to write
your own program in python by using the supported library or with the
prebuilt testing software. One free tool you can use for this kind of
communication is the Firmata firmware. You can also get many test tools
from the Firmata’s official website at http://www.firmata.org . Follow the
steps below to test the deployment of the Firmata protocol;

1. Depending on the operating system on your computer, you are required
to download the right version of the firmata test program that fits your
computer.

2. After you have successfully downloaded the right Firmata program,
attach your Arduino board (which has already been joined to the LED) to
the host computer by using the USB cable and then run the downloaded
firmata test program. When the program has been executed successfully,
you will be greeted with a window telling you that your program has been
executed successfully.

3. This step should not involve error on your side to avoid your program nor
running successfully, navigate to the top section of the Firmata test program
and select port. From the port section, choose the right port from the port
dropdown list. You need to be sure that you are selecting the same port that
you used when you wanted to upload the Arduino sketch.

You also need to ensure that the Arduino IDE is not connected to the
Arduino board with the same port number you are choosing on the Firmata
test program. This is because the serial port can only give access to just one
program at a time.

4. Once you have successfully selected the Arduino serial port, the program
will bring multiple drop-down boxes including buttons with labels that have
the pin number. You can already observe from the image below that the
Firmata program has been preloaded with 12 digital pins (pin 2 to pin 13)
and six (6) analog pins (pin 14 to pin 19).

As you start using your Arduino Uno board for your applications, the
Firmata test program will only load pins that are part of Arduino Uno. If
you have, let us say the Arduino Mega or any other board, the number of
pins displayed in the Firmata program will be according to the pins
supported by that particular variant of the Arduino board that you are using.

Working with the firmata_test program on Linux

If you have a Linux platform, you might have to change the property of the
downloaded Firmata test file to make it executable. From the same
directory, prompt the command below in the terminal to make it executable:
$ chmod +x firmata_test

Once you have modified the permissions, you can then use the following
command to run the program right from the terminal:

$./firmata_test

5. As you can verify in the program window below, you have two other
columns including the column that contains the labels. The second column
in the program enables you to indicate the role for the appropriate pins. You
can indicate the role of digital pins (in the case of Arduino Uno, from 2 to
13) as input or output. As shown in the screenshot below, you will be able
to see Low in the third column immediately you choose the role of pins 2
and 3 as input pins. This is right, since we don’t have any input connected
to these pins. You can do some other manipulations with the program by
changing the functions and values of multiple pins.

You have connected the LED to digital pin 13, and you are not expected to
do any physical changes on the board while you are still working around
with the other pins.

Pin 2 | Input + | Low
Pin 3 | Input + Low
Pin 4 | Output - Low
Pin 5 | Output - Low

6. You can now choose pin 13 as the output pin and hit the Low button.
This will modify the

Button’s label to High and you will notice that the LED is turned on. By
carrying out this process, you have modified the logic of the digital pin 13
to 1, which implies High , which translates to +5 volts at the pin. This
potential difference will be good enough to light up the LED. You can as
well change the level of pin 13 back to 0 by tapping on the button again and
then turning it to Low . This will modify the potential difference back to 0
volts. The Firmata program that you have deployed here is good for testing
fundamental things, but you cannot use it to compute complex applications
by using the Firmata protocol. When you are in a real world scenario, you
will need to execute this Firmata method by using custom mode, which can
as well implement smart logic and algorithms apart from switching the
LED.

Pin 12 | Output | Low

Pin 13| Output » | High |

Pin 14 | Analog + | A0: 153

The pySerial Library

You don’t necessarily need to write your own library by specifying and
implementing functions before you can allow communication on a serial
protocol. This is because it is time consuming and a little bit inconvenient.
This stress can be avoided by using the python library called the pySerial.
The pySerial library allows communication with your Arduino Uno by
encapsulating the access for the serial port. This module will provide access
to the serial port settings through the Python properties and enables you to
configure the serial port directly through the interpreter. The pySerial will
be the bridge for any further future communication between the Python and
your Arduino Uno. Let us get started by installing pySerial;

- Open your terminal or the command prompt and then prompt the
command below:
> pip install pyserial

If you are using the Windows operating system, you do not need any
administrative level user access to prompt the command above, but
you do require root privileges before you will be able to install
python applications if you are using a Unix-based operating system.
Just prompt the command below for Unix;
$ sudo pip install pyserial
You can as well install the pySerial library from source by
downloading the archive from the web at
http://pypi.python.org/pypi/pyserial , unpack the archive, and then run
the command below from the pySerial directory;
$ sudo python setup.py install

- If Python and Setuptools have been properly installed, you will see
the output below at the command line after the installation is

complete:

.. Processing dependencies for pyserial

Finished processing dependencies for pyserial
This means that you have successfully installed the pySerial library
and you are good to start programming your Arduino with pySerial
library.

- Now, to check whether or not pySerial is successfully installed, start

your Python interpreter and import the pySerial library using the

following command:

>>> import serial

Working with the pySerial
Previously, you have seen how you can use the StandardFirmata to sketch
on your Arduino. Now, you will be seeing how you can use another simple
Arduino sketch that is capable of implementing serial communication
which can be captured on the python interpreter.

- From the Arduino IDE, scroll to the File menu and tap on Example.

Then select Basic >> DigitalReadSerial.

) sketch_jul28a | Arduino 1.8.13
File Edit Sketch Tools Help

MNew Ctrl+M

Ising Programmer
Open... Ctrl+ O
Open Recent _
Sketchbook ¥
Examples H Fal
Close Chrl+ W Built-in Examples |
Save Ctrl+s 01.Basics q AnalogReadSerial
S A Chrl+ Shift+5 02.Digital 1 BareMinimum
03.Analog EH Elink
Fageelip Tty shift £ B 04, Communication 1 DigitalReadSerial
Sl Ll 05.Control i Fade
Bioleroncess ChltComma 0B.5ensors 1 ReadAnalogVoltage
07.Display »
Quit Ctrl+Q 08 Strings -
09.USB >
10.5tarterkit_BasicKit >
11.ArduinolSP ¥

Examples for any board

Adafruit Circuit Playground >

- Simply compile and then upload the DigitalReadSerial program to
the Arduino board by tapping the DigitalReadSerial. You will be
greeted with a window containing the codes. Select the verify icon
(icon that looks like a v-shape) at the top to start compiling the code.
Also, choose the appropriate serial port which must be the same port
as the one on which your Arduino is connected by selecting the Tools
option at the top section. Note down the port name. This Arduino
code reads a digital input on pin 2, and then prints the result to the
Serial Monitor. While the Arduino Uno board is still connected to
your computer, open your python interpreter. And then prompt the
command below on the python interpreter. Ensure that you replace

the /dev/tty ACMO part of the code below with the port name that you
noted down previously.

>>> import serial

>>> ¢ = serial.Serial('/dev/ttyACM0',9600)

>>> while True:

print s.readline()

- When you execute the prompt above, you will have repeated 0

values in the Python interpreter. Hit Ctrl +C to stop the code. As you
can observe, the Arduino code will keep sending messages due to the
fact that you used a loop function in the sketch.
In the preceding Python script, the serial.Serial method interfaces and
opens the specified serial port, while the readline() method reads each
line from this interface, terminated with \n, that is, the newline
character.

Bridging pySerial and Firmata

If you can remember when we treated the Firmata protocol, you have
already seen how useful it is to use the Firmata protocol rather than
constantly modifying the Arduino sketch and uploading it anytime you are
running some simple programs.

The pySerial is just a simple library that initiates a bridge between Arduino
and Python through a serial port, but it doesn’t have any support for the
Firmata protocol. Python has an advantage for the fact that it has a library
for almost every package. And as such, there is a python library called
pyFirmata built on pySerial to give necessary support to the Firmata
protocol. There exists some other Python libraries that also give support to
Firmata, but here we will only be focusing our attention on pyFirmata.
1.The first thing 1s to install the pyFirmata, just the way you used to install
any other python package, by deploying the setup tools;

$ sudo pin install pyfirmata

You will still remember that in the previous section, while testing the
pySerial, you uploaded the DigitalSerialRead sketch to the Arduino board.
2. To communicate using the Firmata protocol, you will need to upload the
StandardFirmata sketch again, just as you did in the Uploading a Firmata
sketch to the Arduino board section.

3. Once you have uploaded the StandardFirmata sketch, open the Python
interpreter and prompt the script below. The function of the script is to

import the pyFirmata library to the interpreter. The script also defines the
pin number and the port.

>>> import pyfirmata

>>> pin= 13

>>> port = '/dev/tty ACM('

4. The next step is to link the port with the board type of the
microcontroller.

>>> poard = pyfirmata.Arduino(port)

In the process of executing the previous script, you observed that two LEDs
on your Arduino Uno will be on as the interaction between the python
interpreter and the Arduino board is established.

You can still remember that in the Testing the Firmata protocol section, you
used a prebuilt program to turn an LED on and off. You can carry out these
functions directly from the prompt once the Arduino Uno board has been
properly associated with the python interpreter.

5. You can now start playing with Arduino pins. Turn on the LED by
executing the following command:

>>> board.digital[pin].write(1)

6. You can turn off the LED by executing the following command. Here, in
both commands, we set the state of digital pin 13 by passing values 1 (High
) or O (Low):

>>> poard.digital[pin].write(0)

7. Similarly, you can as well get to read the status of a pin from the prompt.

>>> poard.digital[pin].read()

CHAPTER SIX
ARDUINO INPUT AND OUTPUT

This chapter will take care of how to attach electronics to the Arduino
board. Outputs may be digital, which literally connotes switched between
being at OV or at 5V, or it can be analog, which enables users to set the
voltage to their desired voltage between 0V and 5V—although it is not
necessarily as easy as it sounds, as you shall soon see. In the same vein,

inputs can as well be digital (for instance, determining whether a button
pressed or not) or analog (such as from a light sensor).

Digital Output: Measuring output with a multimeter

For this work, you will need a multimeter, an LED, the Arduino board and
some wires. The Arduino Uno has many pins as it has been discussed
previously, and for this experiment you will be using digital pin 4. Attach
some wire to the multimeter lead to monitor what is happening with the
LED, and then connect the multimeter to the right pin (pin 4) on the
Arduino board. The arrangement is as shown below;

72-TT25

e
; : - a
Auto Display B-:fl'.‘.i-:j,h':-__‘.;-,!- ‘
. : :'r.-'-:.
POWER %0, *

You should set the multimeter to its direct current value of about 0-20V. The
negative lead (black) should be joined to the ground pin and the positive
lead should be connected to the digital pin at 4 (D4). The wire is connected
to the probe and then inserted into the socket headers of your Arduino
board.

Now, navigate to your Arduino IDE and load the sketch below;
int outPin = 4;

void setup()

{

pinMode (outPin, OUTPUT) ;

Serial.begin(9600) ;

Serial.println("Enter 1 or 0");
}

void loop()

{

if (Serial.available() > 0}

{

char ch = Serial.read();
if (ch == '1"')

{
J

else if (ch == '0"')

{

)
}

digitalWrite(outPin, HIGH) ;

digitalWrite (outPin, LOW);

)

You can see the pinMode command at the top of the script above. What the
pinMode command is doing is that it enables Arduino bto configure any

electronics connected to that specific pin to be either the output or an input.
See be'low;

pinMode (outPin, OUTPUT) ;

As you might have understood that the pinMode is a built-in function. The
pinMode first argument is the pin number (which is an integer) and its

second argument is the mode which should be either an output or input. The
name of the mode must be all capital letters.

This loop i1s set to wait for a command of either 1 or 0 to come from your
computer’s serial monitor. If the serial monitor inputs a 1, then the pin 4
(multimeter) will be turned on. If it is not a 1, the pin 4 will be turned off.
So now that the multimeter has been turned on and plugged into the
Arduino, you will be able to see its reading change between OV and about
5V as you send commands to the board from

the Serial Monitor by either pressing 1 and then Return or pressing 0 and
then Return . The picture below shows a multimeter reading after a 1 has
been sent to it from the serial monitor;

72-7T725

e —

y Auto Display Hal—.-'klj-!'_ll}”

POWER %, °

"

If you don’t have enough “D” labeled pins, you can actually use the pins
that are labeled “A”. Though, the pins labeled “A” are for analog, and you
only need to do a little modification by adding 14 to the analog pin number.
To do this, simply modify the first line in the above sketch and type pin as
14 instead of 4. Then move the positive lead of the multimeter to pin A0 on
your Arduino Uno.

Digital Input:

You can use a digital input to understand whether a switch has been closed
or not. A digital input can either be on or off. If the value of the potential
difference at the digital input is less than 2.5V, it will be 0 (meaning off)
and 1f it is above 2.5, it will be 1 (meaning on).

Upload the sketch below onto the Arduino board while disconnecting the
multimeter you used previously.

int inputPin = 5;

void setup ()

pinMode (inputPin, INPUT) ;
Serial .begin (9600) ;

Ay

void loop()
int reading = digitalRead (inputPin);
Serial.println(reading) ;
delay(1000) ;

As it is when you are working with an output, you will need to inform the
Arduino in the setup function that you will be using a pin as the input. You
will be able to get the value of digital input by using the digitalRead
command. This will returna O ora 1.

- Take a small piece of wire and push one end into the D5 socket and
then pinch the other end of the wire between your fingers as shown
below. When you continue pinching, you will observe a mixture of
ones and zeros showing up on your serial monitor. This is because
your fingers are now acting like an antenna picking up electrical
signals.

If you can take the end of the wire you were holding in the image
above, and then connect it to the Arduino socket for +5V, then you
will start seeing the texts that were a mixture of zeros and ones before
now appearing as only ones. See the arrangement below;

| B]
DIGITAL (PWM~) ¥ 2

- Now if you can take the end that was in +5V, and then put it into
one of the GND connections on the Arduino, you will have your
serial monitor displaying zeros.

CHAPTER SEVEN
GETTING YOUR HANDS DIRTY
Building Robots with Arduino

In this chapter, you will learn some basic concepts about how to interface
with the Arduino to have a fully functioning robot. There are many things

that go into making a robot like; wiring and wire management, order of
operation, component placement and arrangement etc. You can begin by
getting a commercially available toolkit for building your robot. The kit will
contain all the hardware needed to start building robots. In times past, it was
almost a herculean task involved in building robots due to the large number
of parts you need to build or buy before you can have a fully functioning
robot. Now, anybody can build a robot; all thanks to Arduino and
readymade Kkits.

Materials needed to get started

Actually, there is no one-fits-all rule that guides the choice of materials for
building an Arduino robot. This is because your choice of materials depends
largely on the kind of robot you want to build, and most especially, your
budget. Nonetheless, you can still consider the following basic materials
that might be handy when building your Arduino robot;

- Any Arduino board: might be an Arduino Uno, Arduino Mini or
Arduino micro. Just any.

Motor driver: the current repository of the robot components.
Provides every part with current for propelling.

Motors: you can easily guess what this one is used for. It allows free
rotation of the wheel which makes the robot to easily move around.
Ultrasonic Distance Sensor: the robot can easily use this to know

when there 1s an obstacle so that it can avoid the obstacle.
Connectivity module, Bluetooth etc.
Universal Serial Bus cable: for easy uploading of software
Vehicle kit or robotic platform: this is like the robot’s body. For
mounting of various parts.

The list 1s actually very much and you might not necessarily exhaust it. But
the simplest Arduino robots are usually made using most or all of the basic
materials outlined above. To ease the stress of having to buy all of these
components separately, you can actually buy Arduino robot Kkits . The
Arduino robot kit is a readymade kit for you that gives you basic gadgets
necessary to build your robot. Some examples of readymade Arduino kits
that you can buy include; Arduino robot Kits for beginners, Arduino line
follower robot kit, AlphaBot2 robot building kits for Arduino etc.

Let us take a look at one example of a robot built with Arduino

The Arduino Rover robot
Note: This project has been carried out and is solely referenced for the
purpose of learning how various hardware and software can make an
Arduino robot.

Materials needed

- Hardware part: Arduino 101 & Genuino 101, Skeleton Bot — 4WD
Mobile Robotic Platform (which contain DC motor etc), Grove starter
kit for Arduino (consisting LCD RGB Backlight, sound sensor,
buzzer, smart relay, touch sensor, LED etc) and Grove 12C motor
driver board (consisting the 12C motor). You can buy the Grove
starter kit for Arduino and the Grove 12C motor driver board from
online stores.

- Software part: Arduino IDE and Nordic semiconductor BLE
Toolbox.

Project Achievement
- The built-in wireless Bluetooth Low energy (BLE) communication
coupled with a 6 axis Inertial measurement unit (IMU) — for motion.
- The Grove starter kits — adds sensor and remove the need to use a
breadboard

Step 1: Assembling the rolling rover chassis

You don’t need to worry about getting to assemble the rover kits together as
they come pre-assembled when you buy one. The assembling process
literally involves mounting of wheels.

Step 2: Assembling the electrical part

The DC motor, as part of the Skeleton Bot — 4WD Mobile Robotic
Platform, has wires already attached to it. The wire on the left motor was
attached to motor driver 1 and the wire on the right motor was attached to
motor driver 2. The kit will also come with the power cable that was used to
connect a battery to the rover. The lithium polymer battery was used in this

project. It contains 2S batteries each rated at 3.7V. This gives a 7.4V input
for the motor driver.

Talking about output, the Grove 12C motor driver serves to drive the two
DC motors and to independently direct their directions. The 12C motor
driver also features a 5V regulator which can be deployed to power your
Arduino through the 12C bus.

Step 3: Testing the motor control

The wiring was checked for right connection using some basic Arduino
codes that spin the four motors at varying speed and direction. The script
for everything that was done will be given at the end of the section.

Step 4: Building the rover remote control.

The entire logic involved in building the Arduino rover remote control has
been covered on the instructable website at

https://www.instructables.com/id/Arduino-101-BLE-Rover-Remote-
Control/ .

Step 4: programming the Arduino for a “base model” rover.
Starting with a “base model’ rover code that contains;

e Rover control code that was used to translate commands into actions

that will be carried out by the motor.
e Bluetooth Low Energy communications code used to connect the

smartphone to the Arduino interface.

The code was structured to;

features libraries and then declare global variables

Setup() function — for code that needed to be run just once run.

Loop() function — for code that needed to be run repeatedly

User defined functions — for long codes in a loop.

https://www.instructables.com/id/Arduino-101-BLE-Rover-Remote-Control/

The Base model code actually featured two functions that were used to
control the DC motors;

For communication, the CallbackLED sample which shows the use of
Bluetooth Low Energy on the Arduino was modified. This modification
involved defining the UART profile that the nRF Toolbox application will
like to interact with. The nRF Toolbox application is the one that was used
to define the remote control on the smartphone. See the sections of codes
that was used below;

Section 1 (include and declare):

e include the wire.h library to start the 12C bus
e include the CurieBLE.h library to allow Bluetooth LE communications

e declare variables defining D2 for the Blue LED, state to hold the

RoverControl command char, vSpeedSet to hold the char for speed (0-
100)

e make a BLEPeripheral instance, make a BLEService for the UART
profile, and then create a rx and tx characteristics for the service

Section 2 (setup function):

e start the I2C bus and the serial link

e define D2 as the output — the D2 is the Grove LED pin.
e Initialize many items related to BLE — LocalName, include the tx and

rx feature to the BLE service, specify event handlers for connect,
disconnect and rxCharacteristic written, then begin to advertise the BLE
service

3 start the DC motors as “oft” (both + and — pins low for both motors),
DC motor speed set at 50%

Section 3 (loop function):

The below image contains all 4 lines of code in the loop() function:

blePeripheral.poll(); // check if the rxCharacteristic is written

if(state |=prev_state) { // check if the value from the remote control is

RoverControl(state); // function to respond to control state changes -
direction and/or speed

prev_state = state; // keep a little history

Section 4 (user defined functions):

e motor control: MotorSetSpeedAB, MotorSetDirection

e BLEeventhandlers: blePeripheral ConnectHandler,
blePeripheralDisconnectHandler, rxCharacteristicWritten.

e Rover “state machine” to parse and respond to commands:
RoverControl

The Bluetooth Low Energy connected handler turns on the LED when it is
connected and the Bluetooth Low Energy will also disconnect when the
handler turns off the LED when it is disconnected. All the codes for this
work can be found below;

The first part of the code contains information about the developer and the
licensing information. You can redistribute the code as the developer has
made it free.

<Wire.h> // Library for the initializing the I2C bus.
<CurieBLE.h> // CurieBLE library - pre-installed when Arduino 181 is
selected in Arduino IDE 1.6.7 or later

int ledPin =

char vSpeedSet =

char vSpeedLimit =

char state = 3
char prev_state = 3

BLEPeripheral blePeripheral;

BLEService uartService = BLEService(’

BLECharacteristic rxCharacter
BLECharacter 4D , BLEWriteWithoutResponse, 28);

BLECharacteristic twCharacteristic =
BELECharacteristic(s BLEMotify , 13

void setup() {
Wire.begin{);
delay(12a8);
Serial.begin(i

pinMode(ledPin, OUTPUT);

blePeripheral.setlLocalName("4WD RV");
blePeripheral.setAdvertisedServiceluid(uartService.uuid());

blePeripheral.addAttribute{uartService);
blePeripheral.addAttribute(rxCharacteristic);
blePeripheral.addAttribute(txCharacteristic);

blePeripheral.setEventHandler (BLEConnected, blePeripheralConnectHandler);
blePeripheral.setEventHandler (BLEDisconnected, blePeripheralDisconnectHandler);

rxCharacteristic.setEventHandler(BLEWritten, rxCharacteristicWritten);

blePeripheral.begin();

s
delay(1ea);
MotorSpeedSetAB(vSpeedSet, vSpeedSet) ;
delay(1ea};

1
}

void loop() {

blePeripheral.poll();
(state != prev_state) {

RoverControl(state);

prev_state = state;

¥
I

void blePeripheralConnectHandler (BLECentral& central) {

Serial.print("Connected event, central: ");
serial.println{central.address());
digitalWrite(ledPin, HIGH);

}

void blePeripheralDisconnectHandler(BLECentral& central) {

Serial.print("Disconnected ewvent, central: ™);
Sserial.println{central.address());
digitalWrite(ledPin, LOW);

state = 5
RoverControl(state);

delay(lea};
I

void rxCharacteristicWritten({BLECentral& central, BLECharacteristic& characteristic)

(characteristic.value()) {
state = *characteristic.value();

oid MotorSpeedSetAB(unsigned char MotorSpeedA , unsigned char MotorSpeedB) {
MotorSpeedA=map(MotorSpeedA, &, 28, ¥s

MotorSpeedB=map(MotorSpeedB, &, 28, ¥5
Wire.beginTransmission(I2CMotorDriverAdd);

Wire.write({MotorSpeedSet);

Wire.write{MotorSpeedA);

Wire.write(MotorSpeedB);

Wire.endTransmission();

void MotorDirectionSet({unsigned char Direction) {
Wire.beginTransmission(I2CMotorDriverddd);
Wire.write{DirectionSet);
Wire.write{Direction);

Wire.write(Nothing};
Wire.endTransmission();

void RoverControl(char state) {

(state == Y I
MotorDirectionSet(2bl@el); 1}

(state ==

HDtDPDirectiDnSet{ baaa1)

(state ==)
MotorDirectionSet (@bl

(state == I
MotorDirectionSet(2boeoa) ;

(state == Y {
MotorDirectionSet(2b8118);

(state == Y1

vSpeedSet=0;
(state
vSpeedSet=25;
(state
vspeedSet=58;
(state
vSpeedset=75;
(state
vSpeedset=

[*rd

delay(187;
vspeedLimit = vSpeedSet;
MotorspeedsetAB(vSpeedset,vSpeedSet);

About Author

Ted Humphrey is a tech expert and a programmer who understands python

programming language and their application to 21* century problems. Ted
has over 12 years of experience writing about latest gadgets and technical
appliances. Ted is also a seasoned website developer with 7+ years of
experience creating WordPress websites and experienced in using other
content management systems, such as Drupal, aside WordPress to create
websites. He values making an impact and has a blog where he teaches
people the nitty-gritty of Programming Python, developing blogs using
WordPress and other content management systems.

Ted holds a Bachelor’s degree in Computer science and Engineering from

the University of Michigan, USA. He loves pets and he is happily married
with two beautiful daughters.

	Copyright
	CHAPTER ONE
	CREATING THE PROGRAMMING ENVIRONMENT FOR PYTHON AND ARDUINO
	Getting Started with Python
	Installing python on your computer
	Installing python on Windows

	Installing python Setup tools
	For Linux operating system
	For Windows operating systems
	For Mac OS
	Installing pip
	Installing Python packages
	Getting started with the python basics
	The print function in python
	Controlling your output with escape sequence in python
	Breaking a long output lines of characters
	Creating comments in scripts
	Understanding the Python variables
	Creating Python Variable Names
	Assigning Value to Python Variables
	Formatting Variable and String Output
	Learning about python data type
	Allowing Python Script Input
	Python math operators
	Order of Operations

	CHAPTER TWO
	MORE ABOUT PYTHON LANGUAGE
	Data structures
	Creating a List
	Extracting Data from a List
	Tuples
	Sets
	Controlling the flow of your program
	Built-in functions
	Math operations
	String operations
	Closing a File
	Writing to a File
	Writing to a Pre-existing File

	CHAPTER THREE
	INTRODUCTION TO ARDUINO
	The Arduino Uno: the most popular Arduino model
	The Arduino Uno variants

	Installing the Arduino Integrated Development Environment (IDE)
	Linux OS
	Mac OS X
	Windows

	Getting started with the Arduino IDE
	Arduino Sketch
	Working with the Arduino library
	The Arduino Built-in example sketches

	CHAPTER FOUR
	CHOOSING YOUR ARDUINO BOARD
	Using the Serial Monitor window
	Uploading Your First Sketch

	PROGRAMMING THE ARDUINO
	Getting a grip of how codes perform real action on Arduino
	The Blink Example
	Variables
	Experiments in C Language
	Numeric Variables and Arithmetic

	Commands
	If command
	The for command
	While loop

	CHAPTER FIVE
	INTERFACING ARDUINO WITH PYTHON PROGRAMMING LANGUAGE
	Connecting Arduino with your computer
	Linux environment
	Mac OS X
	Windows

	Troubleshooting
	The Firmata protocol
	Uploading the Firmata sketch to the Arduino board
	Testing the Firmata protocol
	Working with the firmata_test program on Linux
	The pySerial Library
	Working with the pySerial
	Bridging pySerial and Firmata

	CHAPTER SIX
	ARDUINO INPUT AND OUTPUT
	Digital Output: Measuring output with a multimeter

	CHAPTER SEVEN
	GETTING YOUR HANDS DIRTY
	Building Robots with Arduino
	Materials needed to get started
	The Arduino Rover robot
	Materials needed
	Project Achievement

	About Author

