
T E C H N O L O G Y I N A C T I O N ™

Practical Arduino
Engineering

End to End Development with the
Arduino, Fusion 360, 3D Printing,
and Eagle
—
Second Edition
—
Harold Timmis

Practical Arduino
Engineering

End to End Development
with the Arduino, Fusion 360,

3D Printing, and Eagle

Second Edition

Harold Timmis

Practical Arduino Engineering: End to End Development with the Arduino,
Fusion 360, 3D Printing, and Eagle

ISBN-13 (pbk): 978-1-4842-6851-3		 ISBN-13 (electronic): 978-1-4842-6852-0
https://doi.org/10.1007/978-1-4842-6852-0

Copyright © 2021 by Harold Timmis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Practical Arduino Engineering: End to End Development with the Arduino, Fusion360, 3D Printing,
and Eagle is an independent publication and is not affiliated with, nor has it been authorized,
sponsored, or otherwise approved by Microsoft Corporation. LabVIEW is a trademark of National
Instruments, Eagle and Fusion 360 are trademarks of Autodesk and Simplify3D is a trademark of
Simplify3D. This publication is independent of National Instruments, Autodesk, and Simplify3D, which
is not affiliated with the publisher or the author, and does not authorize, sponsor, endorse, or otherwise
approve this publication.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6851-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Harold Timmis
Jacksonville, FL, USA

https://doi.org/10.1007/978-1-4842-6852-0

To my friend AJ. I love you and miss you.
May you rest in peace.

v

Chapter 1: ��The Process of Arduino Engineering������������������������������������1

Gathering Your Hardware���2

Gathering Your Tools���10

Understanding the Engineering Process��17

Requirements Gathering���18

Creating the Requirements Document���18

Gathering the Hardware���19

Configuring the Hardware��20

Writing the Software���22

Debugging the Arduino Software��23

Troubleshooting the Hardware���24

Finished Prototype��25

Summary���25

Chapter 2: ��Understanding the Arduino Software���������������������������������27

Getting Started with setup() and loop()��28

Initializing Variables���29

Writing Conditional Statements��31

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Preface��xvii

vi

Timers vs. Delays���33

Finite-State Machine��38

Working with Loops���42

Communicating Digitally��45

Communicating with Analog Components���46

Serial Communication��46

SerialEvent���50

Using Arduino Libraries��51

TinyGPS++���51

Putting Together the Arduino Language Basics���52

Summary���55

Chapter 3: ��Modeling with Fusion 360��57

Installing and Setting Up Fusion 360���58

Download Fusion 360��58

Installation Procedures for Fusion 360��63

Getting to Know Fusion 360���64

Fusion 360’s User Interface���65

Fusion 360 Sketch Tools��72

Fusion 360 3D Tools���78

Fusion 360 Tools��85

Importing Files���86

Your First 3D Model in Fusion 360���96

Creating a Sketch���97

Using the Extrude Function��103

Parametric Modeling in Fusion 360���106

Summary���126

Table of Contents

vii

Chapter 4: ��3D Printing���129

What Is 3D Printing��129

Types of 3D Printers���130

Tools of the Trade���133

Parts of a 3D Printer���138

What Is a Slicer��145

Different Slicing Programs���145

Simplify3D��146

The Main Screen��146

Common Settings���149

Troubleshooting���163

Over/Under Extrusion���163

Ghosting���168

Parts Do Not Stay on Build Plate��169

Our First Print���169

Summary���182

Exercise���182

Chapter 5: ��PCB Design���183

What Is a PCB���183

PCB Design Software���184

Eagle��185

Eagle’s Main Windows���185

Loading a Library���189

Creating a Schematic���196

Laying Out a PCB��229

Table of Contents

viii

Exporting Gerber Files��256

PCB Manufacturers��261

Summary���263

Chapter 6: ��Robot Engineering Requirements: Controlling Motion����� 265

Hardware Explained: The H-Bridge��265

Chapter Project: Creating the First Prototype��275

Controlling Motors with Serial Commands���275

Requirements Gathering���275

Outlining the Software Requirements��277

Creating an H-Bridge PCB��279

Designing a Robot Chassis���319

Assembly��350

Summary���381

Exercise���382

Chapter 7: ��Final Project PCB��383

Creating Schematic Sheets��383

Final Project: NatBot��385

Requirements Gathering (PCB)���385

Outlining the Hardware Requirements���386

Creating the NatBot PCB���389

Hardware Explained: The NatBot PCB���399

PCB Bill of Materials (BOM)��428

Summary���430

Chapter 8: ��Final Project 3D Model���431

Final Project: NatBot��431

Requirements Gathering (3D Model)��432

Outlining the 3D Model Requirements��433

Table of Contents

ix

Fusion 360 Functions Explained���435

Features of the NatBot 3D Model Explained���451

3�D Printing the NatBot��467

Fit Check and Assembly���469

Summary���488

Chapter 9: ��Final Project Software��489

Final Project: NatBot��489

Requirements Gathering (Firmware)��490

Outlining the Software Requirements��491

Reviewing the Arduino Libraries for the NatBot���492

Writing the NatBot Firmware��495

Uploading and Testing the NatBot Firmware��516

Summary���517

Chapter 10: ��Final Project Putting It All Together�������������������������������519

Introduction to the LabVIEW Environment��519

The Front Panel��520

The Controls Palette���521

The Block Diagram���522

The Functions Palette���523

The Tools Palette��524

LabVIEW Functions Explained��525

The While Loop���526

The Case Structure���526

The Sequence Structure���527

Numerical Functions��528

String Functions���529

Comparison Functions��531

Table of Contents

x

Serial Functions��532

Input Device Control Functions���533

Gathering Requirements and Creating the Requirements Document����������������535

Software���535

Writing the Software���536

Getting Started���536

Designing the GUI���538

Programming the Application���539

Adding Serial Functions��543

Completing the While Loop Condition���548

Adding a Merge Errors Function���548

Adding a SubVI���550

Error Handling��551

Read Function���552

Uploading the Code to the Arduino���558

Operation��569

Summary��572

Index��573

Table of Contents

xi

About the Author

Harold Timmis, since he was a small child,

has fostered a curiosity for technology,

taking apart everything in his parents’ house

just to see how it all worked. This fueled his

thirst for knowledge of computer science,

programming, and its uses. He has worked

with LabVIEW and Arduino for the past

13 years. During that time, he has been

involved in several professional projects using

LabVIEW, as well as many hobbyist projects utilizing both Arduino and

LabVIEW. Harold attended the Florida Institute of Technology, where

he studied computer engineering and was introduced to LabVIEW and

Arduino. Later, he worked at the Harris Corporation and General Electric,

where he created several LabVIEW projects for trains and became very

interested in the Arduino, data acquisition, and control theory.  

xiii

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

Open Source Hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to contribute to build things that improve quality of

life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=

xv

Acknowledgments

I would like to thank my beautiful wife Alexandria for being very patient

with me while I wrote this book. I also want to thank my daughter Natalie

for inspiring me every day. As always, I want to thank my mom (Bonnie),

dad (George), sister (Amanda), and brother (George) for always believing

in me.

I want to thank the Apress team for helping me complete this book.

It was rough with COVID, but we finally finished the book! I want to

personally thank Natalie Pao and Jessica Vakili. They helped me navigate

through this process again effectively and efficiently. Also, I want to thank

my Technical Editor Sai Yamanoor. His thoughts were insightful and made

this book much better.

I want to thank the Arduino Team for developing a truly revolutionary

product. I want to thank SparkFun, Pololu, PCBWay, Autodesk, Simplify3D,

National Instruments, and Adafruit. You all make making so much more

enjoyable and attainable.

xvii

Preface

Hello reader! Welcome to the wonderful world of engineering. First off,

this book is divided into two main sections: the first section will teach you

about the various bits of software and hardware that we will be using in

this book. The topics in this section include

•	 The Engineering Process

•	 An Arduino Software Review

•	 3D Modeling with Autodesk Fusion 360

•	 PCB Design with Autodesk Eagle

•	 First Section Final Project

Once those are completed, we move to the final project where you

will be given a requirements document that you will need to interpret and

understand to make the final project all while using the skills you obtained

in the previous section of this book. The topics in this section are

•	 Final Project PCB

•	 Final Project 3D Model

•	 Final Project Software

•	 Final Project Putting It All Together

Once completed, you will have a unique robot that you can modify and

elaborate on for future projects. So without further ado, let’s get started

with the engineering process.

1© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_1

CHAPTER 1

The Process of
Arduino Engineering
In this chapter, we will discuss the engineering process and how you can

use it to streamline your prototypes by avoiding problems with hardware

and software and keeping to a fixed schedule. Throughout this book, you

will have projects that will be organized into a sequence I like to call the

“engineering process.” Here’s a quick summary of the sequence:

	 1.	 Requirements gathering

	 2.	 Creating the requirements document

	 3.	 Gathering hardware

	 4.	 Configuring the hardware

	 5.	 Writing the software

	 6.	 Debugging the Arduino software

	 7.	 Troubleshooting the hardware

	 8.	 Finished prototype

As you can imagine, even this summary of the engineering process

is very effective when prototyping, which is why we will use it with

the Arduino in this book. What is the Arduino? The Arduino is a very

customizable microcontroller used by hobbyists and engineers alike. Also,

it is open source, which means that the source code is available to you for

https://doi.org/10.1007/978-1-4842-6852-0_1#DOI

2

your programming needs; the integrated development environment (IDE)

(where you will be writing your software) is free, and most resources you

can find are open source. The only thing you have to buy is the Arduino

microcontroller itself. The Arduino is supported very well on the Web

and in books, which makes it very easy to research how-to topics; a few

sites that will help you get started are www.arduino.cc and http://

tronixstuff.wordpress.com/tutorials/. But this book is more than

simply a how-to reference; this book is going to teach you the engineering

process—a skill that is useful for making projects more readable, efficient,

and reliable. This book will also focus on end to end development, another

useful skill (or skills as the name implies) that will allow you to create

robust prototypes and/or fully developed hardware and software, but first

we will take a look at the engineering process.

�Gathering Your Hardware
Before we examine the engineering process steps, it’s important to know

some of the parts and materials you’ll need. Throughout this book, you

will need the following pieces of hardware to complete the various projects

we’ll be working on (for a complete list of hardware used in this book):

•	 Arduino: Since the first edition of this book, there

have been many new developments in the Arduino

product line (a lot from other vendors as well); there

are many flavors of the “Arduino” out in the wild. For

the purposes of this book, the MEGA 2560 Pro will be

used. This is because it has a very small form factor,

and it has a ton of IO (inputs/outputs). Really though

as we are designing through this book, you may want

to experiment with other Arduino boards; that is fine

and encouraged since most of the code in this book will

Chapter 1 The Process of Arduino Engineering

http://www.arduino.cc
http://tronixstuff.wordpress.com/tutorials/
http://tronixstuff.wordpress.com/tutorials/

3

work with the standard Arduino UNO form factor; that

is not to say other form factors will not work as well.

See Figure 1-1.

•	 Bluetooth Mate Silver or RN-42: Since this book will

focus on end to end development while still keeping in

mind the engineering process to prototype your circuit,

you may want to purchase a Bluetooth Mate Silver, but

when we design actual PCBs (Printed Circuit Boards),

we will need to use a module that we can quickly and

effectively use just like the Bluetooth Mate Silver, which

Figure 1-1.  1. Arduino Pro Mini, 2. MEGA 2560 Pro, 3. Bluetooth
Arduino, and 4. Arduino UNO

Chapter 1 The Process of Arduino Engineering

4

is the RN-42. This module has a small footprint which

will be nice because we want to use as little space on

the PCB as possible. See Figure 1-2.

•	 Solderless breadboard: Another very important

piece of hardware is the solderless breadboard (see

Figure 1-3), which is used to implement your circuitry.

For this book, you need to have a midsize solderless

breadboard. It will be used in both the design and

troubleshooting phases of the projects and will allow

you to create a proof of concept for when we create the

PCB in Eagle.

Figure 1-2.  1. RN-42 Bluetooth Module, 2. Bluetooth Mate Silver

Chapter 1 The Process of Arduino Engineering

5

•	 Wire: We will use a large quantity of wire in this

book; you can get a wire jumper kit at almost any

electronics store.

•	 Arduino shields: Unlike the first edition of this book,

we will not focus too much on shields; they are very

useful and can make validating firmware a breeze, but

this edition will focus on creating a couple of shields

for the MEGA 2560 Pro. See Figure 1-4 for a couple of

examples of shields, and underneath that picture, you

will find a few descriptions of useful shields for this

book. Please note that it is not necessary to purchase

these shields, but they are still valuable tools.

Figure 1-3.  An example of some solderless breadboards

Chapter 1 The Process of Arduino Engineering

6

•	 Motor shield: This shield is used to control motors up

to 18V. It includes a surface mount H-bridge, which

allows for a higher power motor to be used as well as

for control of two motors.

•	 GPS shield: This shield is used to get positioning

information from GPS satellites. It uses the National

Marine Electronics Association (NMEA) standard,

which can be parsed to tell you any number of things

such as longitude and latitude, whether the GPS has

a fix, what type of fix, a timestamp, and the signal-to-

noise ratio.

Figure 1-4.  1. Motor shield, 2. GPS shield, 3. GSM shield

Chapter 1 The Process of Arduino Engineering

7

•	 Sensors: These are very important because they

give your projects life. Some sensor examples are

PIR (Passive Infrared), sonar, and temperature (see

Figure 1-5).

•	 PIR sensor: This is an outstanding sensor for detecting

changes in infrared light and can detect changes in

temperature. It is also great at detecting motion, and

that’s what we will use it for.

Figure 1-5.  1. GPS module with breakout board, 2. accelerometer, 3.
photoresistor, 4. temperature sensor, 5. flex sensor, 6. PIR sensor, 7. tilt
sensor, 8. humidity sensor, 9. FSR (force sensitive resistor)

Chapter 1 The Process of Arduino Engineering

8

•	 Sonar sensor (not pictured): Sonar sensors are good

at detecting objects in their surroundings. The sonar

sensor we will use is a Parallax sensor that uses digital

pinging to tell how far away an object is.

•	 Temperature sensor: These sensors are used to read

temperature. To use them, you first scale the voltage to

the temperatures you want to record.

•	 Accelerometer: This sensor can detect acceleration

in multiple directions, that is, in the X, Y, and Z

directions. There are accelerometers that have more

degrees of freedom. These sensors can be used to

measure motion, vibration, or shock. For example,

accelerometers are used in Fitbits and other exercise

tracking hardware to keep track of your step count or

even what exercise you are doing. We will be using an

accelerometer later in this book on the main shield that

we will create.

•	 GPS module: The GPS module that will be used in this

book is the EM-506; it has a UART interface which will

make it very easy to interface with the Arduino.

•	 Photoresistor: These sensors are used to sense

brightness and dimness.

•	 Tilt sensor: This sensor is used to detect if a system

has flipped over which can be useful if you don’t have

access to an accelerometer.

•	 Flex sensor: As this sensor is flexed, the resistance

increases, which can then be read by the Arduino on

one of its ADCs (Analog to Digital Converters) to keep

track of how much flex a system has.

Chapter 1 The Process of Arduino Engineering

9

•	 Humidity sensor: The RHT03 humidity sensor can read

both temperature and relative humidity and is accurate

(+/–2%RH for humidity and +/–0.5C for temperature)

for a low-cost sensor.

•	 FSR (force sensitive resistor): This sensor is great to

detect force. A good use for this sensor may be a scale

or to detect pressure points.

•	 Servos and motors: We will be using motors and servos

to control many aspects of the projects (see Figure 1-6).

Figure 1-6.  1. 12V DC motor, 2. 9g servo motor, 3. 24V DC pancake
stepper motor

Chapter 1 The Process of Arduino Engineering

10

•	 Miscellaneous: These are the most common

components, such as resistors, capacitors, LEDs,

diodes, headers, push buttons, and transistors. You can

buy many kits that will supply you for a while on all this

hardware at a low cost (see Figure 1-7).

�Gathering Your Tools
You will also use a variety of tools; this section will briefly describe them.

An (*) will be placed next to the hardware that is not required, but is a good

tool to have.

Figure 1-7.  Miscellaneous pieces of hardware (various terminal
blocks/connectors, diodes, headers, push buttons)

Chapter 1 The Process of Arduino Engineering

11

Electronic Hardware

•	 Soldering iron: This tool is used to connect circuits

to each other; we will use it mostly to connect wire to

circuits (see Figure 1-8).

•	 Solder: You will use this in conjunction with the

soldering iron; it is the metal that connects the circuits

together. Solder has a very low melting point.

•	 Needle-nose pliers: These pliers are very important;

they are used to hold wire and circuits in place, wrap

wire around circuitry, and so on.

•	 *Third hand: This is a very useful tool when you are

trying to solder a PCB together (see Figure 1-12 #2).

•	 Cutters: These are used to cut wires

(see Figure 1-12 #1).

•	 Wire stripper: This tool is used to take off wire

insulation (see Figure 1-12 #3).

•	 Multimeter: Possibly the most important tool you can

own; this tool allows you to read voltage (AC (alternate

current) and DC (direct current)), amps (ampere), and

ohms (see Figure 1-10).

•	 *Scientific calculator: This allows you to do various

calculations (Ohm’s law, voltage divider, etc.).

•	 *Adjustable DC power supply: With a power supply,

you can give your projects continuous power; this is

normally only used for testing circuits (see Figure 1-9).

•	 *Microscope: Can be very useful for checking leads on

circuits to make sure they are soldered properly (see

Figure 1-11).

Chapter 1 The Process of Arduino Engineering

12

•	 *Logic analyzer: Another very useful tool; a logic

analyzer will read back data coming off of various IO

lines. For example, the one pictured in Figure 1-13 #1

can read eight lines of IO simultaneously; these IO lines

could be UART, I2C, SPI, and so on. We will discuss

these protocols later in this book.

•	 *AVR programmer (AVRISP mkII): This programmer

can be used to upload code into various Atmel uC

(microcontrollers). It is also able to upload the Arduino

Bootloader onto the ATMEGA2560 or ATMEGA328p.

•	 *FTDI programmer: Another programmer, if the board

you are working on does not have an ISP (in-system

programmer), it may have a five-pin header that you

can connect an FTDI programmer to. Make sure you

get the correct voltage level FTDI programmer for your

system. Normally, they come in 5V and 3.3V levels (see

Figure 1-14).

•	 *Oscilloscope: The multimeter and the oscilloscope

are probably the most important tools when debugging

electronics. The Oscope, as it is sometimes referred to

as, allows you to measure voltage vs. time. This can be

useful when reading back digital or analog signals. For

example, you may want to read the output of a digital

pin to make sure it is triggering at the correct intervals.

This is an example where a multimeter would not be as

useful as an Oscope because the Oscope will show you

voltage over time (such as transitions from high to low

states) for a set interval, and the multimeter will just

display the latest voltage output.

Chapter 1 The Process of Arduino Engineering

13

Figure 1-8.  A soldering iron and its stand

Figure 1-9.  Adjustable DC power supply (3, 4.5, 6, 7.5, 9, and 12V)

Chapter 1 The Process of Arduino Engineering

14

Figure 1-10.  Multimeter

Chapter 1 The Process of Arduino Engineering

15

Figure 1-11.  USB microscope

Figure 1-12.  1. Cutters, 2. third hand with magnifying glass,
3. wire strippers

Chapter 1 The Process of Arduino Engineering

16

Figure 1-13.  1. Logic analyzer, 2. AVR programmer AVRISP mkII

Figure 1-14.  FTDI programmer

Chapter 1 The Process of Arduino Engineering

17

�Understanding the Engineering Process
The engineering process is very useful in making your designs more

efficient, streamlined, and comprehensible. The process consists of

gathering requirements, creating the requirements document, gathering

the correct hardware, configuring the hardware, writing the software,

debugging the software, troubleshooting the hardware, and the signing off

on the finished prototype.

Figure 1-15.  A two-channel 70MHz digital oscilloscope (note how
the Oscope is displaying the high to low transitions 0 to 5V at a
frequency of 1kHz and a 50% duty cycle)

Chapter 1 The Process of Arduino Engineering

18

�Requirements Gathering
One day, when you’re an engineer, you may be asked to go to a company

and assess its needs for a particular project. This part of the engineering

process is crucial; everything will depend on the requirements you gather

at this initial meeting. For example, assume you learn that your client

needs to blink an LED at a certain speed, and for that task, you and the

client determine that the Arduino microprocessor is the best choice. To use

the Arduino to blink the LED, a customer needs an LED to blink at 100ms

intervals.

�Creating the Requirements Document
Based on the client’s needs and your proposed solution, the following is a

very simple requirements document:

•	 Hardware

•	 Arduino

•	 LED

•	 9V battery

•	 9V battery connector

•	 330ohm resistor

•	 Software

•	 A program that blinks an LED at 100ms intervals

Mind you, this is a very simple example, but we will be using

this format for the rest of this book. One of the reasons you create a

requirements document is to stop feature creep. This happens when

a customer keeps adding features to the software and/or hardware.

This is, of course, a problem because you will be working more hours

Chapter 1 The Process of Arduino Engineering

19

without more pay on a project that may never end. You should create a

requirements document, so you and the client know what you are doing

and the features you will be creating for your project. After you have

created the requirements document, you can create a flowchart that will

help you debug the software later in the design process (see Figure 1-16).

�Gathering the Hardware
The next very important part of the engineering process is making sure you

have the right hardware. Your hardware needs should be decided as you

gather requirements, but it is important to make sure all your hardware is

compatible. If it is not compatible, hardware changes may be necessary,

but you should consult the company you are working with to make sure it

is satisfied with any hardware changes.

Figure 1-16.  Blinking LED processes

Chapter 1 The Process of Arduino Engineering

20

�Configuring the Hardware
Once you have the correct hardware, it is time to configure it. Depending

on the hardware required for the project, the configuration can change.

For example, let’s take a look at the hardware configuration for the blinking

LED project:

•	 Arduino

•	 LED

•	 330ohm resistor

•	 USB cable

To set up the hardware, we need to connect the LED to the solderless

breadboard, then attach the 330ohm resistor to the anode (+) of the LED;

next, take a male to male wire and attach it from the cathode (-) of the LED

to the GND (ground) pin on the Arduino UNO. Finally, take another male

to male wire and attach it from the other end of the resistor to pin 13 of the

Arduino (see Figures 1-17 and 1-18).

Chapter 1 The Process of Arduino Engineering

21

Figure 1-17.  The hardware setup for the blinking LED project

Figure 1-18.  Wiring guide for the Arduino LED project

Chapter 1 The Process of Arduino Engineering

22

Alright, now that the hardware is finished, we need to get the Arduino

IDE software up and running on Windows. To do this, go to www.Arduino.

cc/en/Main/Software. The Arduino IDE will work with Windows 8 or 10

(it will even work with older versions of Windows as well), Mac OS X, and

Linux systems. After the Arduino IDE is downloaded to your desktop, it will

be in a zipped format, so unzip the Arduino folder to your desktop. The

Arduino IDE is now installed.

Now that you have the Arduino IDE installed on your computer,

you need to make sure it is configured correctly. To do this, open the

Arduino IDE, and go to Tools ➤ Port; select the serial port your Arduino

is connected to. Next, select Tools ➤ Board, and select the Arduino

board you are using; for this project and this project only, we will use the

Arduino UNO. Later projects will use the MEGA 2560 Pro board. Once your

hardware is configured, it is time to write the software.

�Writing the Software
Now, let’s consider the software we need to write. This part of the

engineering process is crucial. Let’s take a look at the blinking LED

software requirements document to decide what the software will need

to do: the LED needs to blink in 100ms intervals. The software might look

something like this:

// This code blinks an LED at 100ms

const int LEDdelay = 100; // delay time

void setup()

{

 pinMode(13, OUTPUT); // makes pin 13 an output

}

Chapter 1 The Process of Arduino Engineering

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software

23

void loop()

{

 digitalWrite(13, HIGH); // this writes a high bit to pin 13

 delay(LEDdelay); // delay 100ms

 digitalWrite(13, LOW);

 delay(LEDdelay) �// this will throw a syntax

error due to a missing semicolon

}

Note  When you try to compile this program to your Arduino, it gives
you an error. This is because of a syntax error that we will debug in
the next section.

�Debugging the Arduino Software
The last program failed to compile because of a syntax error. This type of

error is because of incorrectly formatted code, such as a missing semicolon

(which is why the last program didn’t compile). Here is the revised code:

// This code blinks an LED at 100ms

const int LEDdelay = 100; // delay time

void setup()

{

 pinMode(13, OUTPUT); // makes pin 13 an output

}

Chapter 1 The Process of Arduino Engineering

24

void loop()

{

 digitalWrite(13, HIGH); // this writes a high bit to pin 13

 delay(LEDdelay); // delay 100ms

 digitalWrite(13, LOW);

 delay(LEDdelay); // �the semicolon is now present

and the code will compile

}

Syntax errors are not the worst errors out there. The worst errors you

can receive are logical errors; these errors allow the code to compile, but

the end result is unexpected. For example, using a greater-than symbol

instead of less-than is a logical error, and if it is in a project with thousands

of lines, it can be almost impossible to fix.

Note A logical error in the blinking LED project would be if you put
digitalWrite(13, HIGH); for both digital write functions.

We can debug logical errors in an Arduino program by using a

flowchart to figure out where the values are not lining up.

�Troubleshooting the Hardware
The number one tool used to troubleshoot hardware is the multimeter.

This tool can save your hardware from being damaged. For instance, if

your multimeter detects that your power supply is more than is required,

the hardware setup for the blinking LED project could use a 330ohm

resistor to keep the LED from burning out. Also, an Oscope could be

valuable as we can make sure the intervals are correct at 100ms on and

100ms off.

Chapter 1 The Process of Arduino Engineering

25

�Finished Prototype
Once you have finished debugging the software and troubleshooting the

hardware, you should have a completed prototype that will work under

most circumstances. In this chapter, we used a very simple project,

but in future chapters, the projects will get more complicated, and the

engineering process will become even more necessary to make sure our

code is efficient, streamlined, and comprehensible.

�Summary
In this chapter, you learned the different pieces of hardware and various

tools such as the Arduino, Arduino shields, multimeter, and needle-nose

pliers, just to name a few that will be used throughout this book. We then

went over the engineering process, which is a sequence you can use to solve

problems that provides the format for this book. The steps in the process are

requirements gathering, creating the requirements document, gathering the

hardware, configuring the hardware, writing the software, debugging the

Arduino software, troubleshooting the hardware, and finished prototype. I

also defined a few new terms that will help you understand the engineering

process, and you learned the differences between logical and syntax errors.

In the next chapter, we will go over some of the software that we will use

throughout this book. We will also use a different programming technique

that will allow our code to have multitasking capabilities; this is called a

finite-state machine or FSM for short.

Chapter 1 The Process of Arduino Engineering

27© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_2

CHAPTER 2

Understanding the
Arduino Software
In this chapter, we will discuss the various programming components

that will be used throughout this book. If you have programmed in C,

you will find that programming for the Arduino is very similar. If not, this

chapter will teach you the basic concepts. Why is it important for you to

learn the basics of programming the Arduino? In the long run, this will

help keep your code clean and readable. Also, learning the basic loops

and structures initially will allow us to focus more on the libraries later.

Libraries can be sets of classes, types, or functions and can be called by

using keywords in your program. The purpose of a library is to readily

add more functionality to your program by using code that has been

created previously; this promotes code reuse. We will also take a look at

the new TinyGPS++ library.

https://doi.org/10.1007/978-1-4842-6852-0_2#DOI

28

�Getting Started with setup() and loop()
All Arduino programs must have two main components to work properly—

setup() and loop()—and they are implemented like this:

// Basic Arduino Program

void setup()

{

 // Set up I/Os here

}

void loop()

{

 // Do something

}

setup() is used to set up your I/O ports such as LEDs, sensors, motors,

and serial ports. Careful setup is important because in order to use the pins

on the Arduino, we need to tell the Arduino that they are going to be used.

loop() holds all of the code that controls your I/O ports. For instance,

here, you’d tell your motor to go a certain speed. I will explain how to set

up and control your I/Os in the next sections.

Arduino programs also have subroutines—very useful extra functions

you can call within loop() or its subroutines. To use a subroutine, you must

first initialize it at the beginning of your program; this initial mention is

called a function prototype. Here is an example:

// Function Prototype

void delayLED();

void setup()

{

}

Chapter 2 Understanding the Arduino Software

29

void loop()

{

}

// Subroutine Example

void delayLED()

{

 // This will go after the loop() structure.

}

�Initializing Variables
Variables are the most basic programming building blocks; they are used

to pass data around your program and are used in every program we will

write in this book. We can write several types of variables to the Arduino

language; Table 2-1 illustrates them.

Table 2-1.  Types of variables

Type Name Type Value Type Range

char ‘a’ –128 to 127

byte 1011 0 to 255

Int -1 –32,768 to 32,767

unsigned int 5 0 to 65,535

long 512 –2,147,483,648 to 2,147,483,647

unsigned long 3,000,000 0 to 4,294,967, 295

float 2.513 –3.4028235E+38 to 3.4028235E+38

double 2.513 –3.4028235E+38 to 3.4028235E+38

Chapter 2 Understanding the Arduino Software

30

Now that you know what types of variables are out there, you need to

know how to declare those variables. In order to declare them, you need

to know in what scope those variables can be used and then specify (or

declare) the scope that meets your needs. In this book, we will declare two

scopes for variables: local variables and global variables. A local variable

only works in its given scope. For instance, a for loop keeps its declared

variables only within its parentheses, so those variables are local to the

for loop. A global variable can be called at any point in your program. To

define a global variable, initialize it at the beginning of your program. The

following program illustrates how to initialize local and global variables:

// Initialize Variable

int x; // �This variable is declared globally and is available

for access throughout this program.

void setup()

{

}

void loop()

{

 x = 1 + 2; // Assigns the value 3 to x

 for(int i; i <= 100; i++)

 {

 // �i is a local variable and can only be called in this

for loop.

 }

}

Chapter 2 Understanding the Arduino Software

31

The rest of the declarations are set up the same way until you start

using arrays. Arrays allow you to pass multiple values of the same type, for

example, if you want to pass multiple digital pins without having to declare

each one individually:

int pins[] = {13,9,8};

It is a good idea to declare the size of the array, as in the following

example:

const int NumOfPins = 3;

int pins[NumOfPins] = {13,9,8};

This will allow you to access your array’s information, and then you

can pass that information to a digital pin or whatever else you want. Now

that you have declared variables, how do you use them? This will be

discussed in the next few sections of this chapter.

Note  Whitespacing means that you’ve added blank lines and
spaces in your code to make it more readable.

�Writing Conditional Statements
Conditional statements can be used to control the flow of your program.

For instance, say you want to turn a motor on only when a button is

pressed; you can do so using a conditional statement. We will discuss

the following conditional statements: if, if-elseif, if-else, and switch

statements.

Chapter 2 Understanding the Arduino Software

32

An if statement is a very important conditional statement; it can be

used in any Boolean capacity for a variety of reasons, such as limiting

testing. Here is an example of an if statement:

int i;

if (i < 10)

{

 i++;

}

You can also add elseif statements to the end of your if statement to

add other conditions to your program and create an if-elseif statement, for

example:

int i;

if (i < 10)

{

 i++;

}

else if (i > 10)

{

 i--;

}

A practical use of a conditional statement would be to read a value

from a potentiometer, as in the following example:

potValue = analogRead(potPin);

if (potValue <= 500)

{

 digitalWrite(motorpin, 1);

}

Chapter 2 Understanding the Arduino Software

33

else

{

 digitalWrite(motorpin, 0);

}

Note  You must remember to set up your Arduino’s pins before you
call them in a loop.

A switch statement is used if you have multiple conditions because it

cleans up your code. Here is an example of a switch statement:

switch (potValue){

case 500;

 digitalWrite(motorPin,1);

case 501;

 digitalWrite(ledPin,1);

 break;

default:

 digitalWrite(motorPin,0);

 digitalWrite(ledPin,0);

In this example, if potValue is equal to 500, the motor will turn on, and

if potValue is equal to 501, an LED will turn on. The default case is true

when the potValue equals neither 500 nor 501, and in that case, the motor

and LED are both turned off.

�Timers vs. Delays
When you are writing code, you may get used to using delays to pause

when an LED turns on or off. This is not very efficient; what we should be

using is timers instead. The reason behind this is so that your code is not

Chapter 2 Understanding the Arduino Software

34

stuck in a delay and can move on with other tasks. For example, say you

want to blink an LED at a 10-second interval and turn a motor on and off at

a 2-second interval. You may think that this code would suffice:

int LED = 13;

int motorPin = 5;

void setup()

{

 pinMode(led, OUTPUT);

 pinMode(motorPin, OUTPUT);

}

void loop()

{

 // turn on LED for 5s and then turn off LED for 5s

 DigitalWrite(LED, HIGH);

 delay(5000);

 DigitalWrite(LED, LOW);

 delay(5000);

 // turn on motor for 1s and then turn off motor for 1s

 DigitalWrite(motorPin, HIGH);

 delay(1000);

 DigitalWrite(motorPin, LOW);

 delay(1000);

}

Chapter 2 Understanding the Arduino Software

35

The code does compile, and the LED does turn on and off in 10s

intervals, but you may notice that the motor has to wait until the LED code

finishes; this is because we used a delay and can be fixed by using a timer

instead. Let’s take a look at some of the functions we can use to accomplish

this task:

•	 millis() function: This function will return the amount

of milliseconds that have passed since the Arduino

program started. It is also important to note that this

function will overflow in 50 days as an unsigned long

can only hold 0 to 4,294,967,296.

•	 micros() function: This function will return the amount

of microseconds that have passed since the Arduino

program started. It is also important to note that this

function will overflow in 70 minutes as an unsigned

long can only hold 0 to 4,294,967,296.

We will need to handle overflow (this is when a value returns to 0) of the

micros() and millis(), and we will do this in the new LED/motor example:

// initialize the led and motor pins

int LEDPin = 13;

int motorPin = 5;

// keep track of the current state of the led and motor

int LEDState = 0;

int motorState = 0;

// store led and motor previous time value

unsigned long prevLEDTime = 0;

unsigned long prevMotorTime = 0;

// interval declaration can be changed if needed

const long LEDInterval = 5000;

const long motorInterval = 1000;

Chapter 2 Understanding the Arduino Software

36

void setup() {

 // set up motor and led pins to be outputs

 pinMode(LEDPin, OUTPUT);

 pinMode(motorPin, OUTPUT);

}

void loop() {

 // get current time for the led and motor pin

 unsigned long curLEDTime = millis();

 unsigned long curMotorTime = millis();

 // �this is a delta of the current time and previous time for

the led circuit

 // this will also handle overflow

 if (curLEDTime - prevLEDTime >= LEDInterval)

 {

 // �set the previous time to the current time to keep track

of the led's state

 prevLEDTime = curLEDTime;

 // �set the led state to high or low depending on what its

previous state was.

 if(LEDState == LOW)

 {

 LEDState = HIGH;

 }

 else

 {

 LEDState = LOW;

 }

Chapter 2 Understanding the Arduino Software

37

 // turn on or off the led

 digitalWrite(LEDPin, LEDState);

 }

 // �this is a delta of the current time and previous time for

the motor circuit

 // this will also handle overflow

 if (curMotorTime - prevMotorTime >= motorInterval)

 {

 // �set the previous time to the current time to keep track

of the motor's state prevMotorTime = curMotorTime;

 // �set the motor state to high or low depending on what its

previous state was.

 if(motorState == LOW)

 {

 motorState = HIGH;

 }

 else

 {

 motorState = LOW;

 }

 // turn on or off the motor

 digitalWrite(motorPin, motorState);

 }

}

With this new code, we are running true timers that will keep track

of the LED and motor states with no delay in between; that is, the

LED conditional statement will occur, and then the motor conditional

statement will occur in quick succession rather than like the previous code

Chapter 2 Understanding the Arduino Software

38

where the motor had to wait 10 seconds before it could turn on and off.

This is the power of timers, and we will continue to use them throughout

this book.

�Finite-State Machine
With a finite-state machine (FSM for short), you can make your code

more readable and split your tasks into much smaller blocks while still

accomplishing the multitasking like we did in the previous section with the

millis() function. Take a look at the following code:

// initialize the led and motor pins

int LEDPin = 13;

int motorPin = 5;

// Keep track of Prev States of the LED and Motor

int prevLEDState = 0;

int prevMotorState = 0;

// Keep track of the current states of the LED and Motor

int currLEDState = 0;

int currMotorState = 0;

// store led and motor previous time value

unsigned long initLEDTime = 0;

unsigned long initMotorTime = 0;

// store led and motor previous time value

unsigned long currLEDTime = 0;

unsigned long currMotorTime = 0;

// interval declaration can be changed if needed

const long LEDInterval = 5000;

const long motorInterval = 1000;

Chapter 2 Understanding the Arduino Software

39

void setup() {

 // set up motor and led pins to be outputs

 pinMode(LEDPin, OUTPUT);

 pinMode(motorPin, OUTPUT);

}

void loop() {

 // Run State Machines

 LED_State_Machine();

 MOT_State_Machine();

}

void LED_State_Machine(){

 prevLEDState = currLEDState;

 // �current state will always be preserved, so when in

currLEDState = 2 the

 // �switch statment will always go back to that state until

set to a new state

 // in this case state 3.

 switch(currLEDState){

 case 0: // Init State

 currLEDState = 1;

 break;

 case 1: // Set State 1

 // Set initial time and Set the LED to High

 initLEDTime = millis();

 digitalWrite(LEDPin, HIGH);

 currLEDState = 2;

 break;

Chapter 2 Understanding the Arduino Software

40

 case 2: // Update State 1

 // get current time and compare time to interval

 currLEDTime = millis();

 if (currLEDTime - initLEDTime > LEDInterval)

 {

 currLEDState = 3;

 }

 break;

 case 3: // Set State 2

 // Set initial time and Set the LED to Low

 initLEDTime = millis();

 digitalWrite(LEDPin, LOW);

 currLEDState = 4;

 break;

 case 4: // Update State 2

 // get current time and compare time to interval

 currLEDTime = millis();

 if (currLEDTime - initLEDTime > LEDInterval)

 {

 currLEDState = 0;

 }

 break;

 }

}

void MOT_State_Machine(){

 prevMotorState = currMotorState;

 // �current state will always be preserved, so when in

currMotorState = 2 the

 // �switch statment will always go back to that state until

set to a new state

Chapter 2 Understanding the Arduino Software

41

 // in this case state 3.

 switch(currMotorState){

 case 0: // Init State

 currMotorState = 1;

 break;

 case 1: // Set State 1

 // Set initial time and Set the Motor to High

 initMotorTime = millis();

 digitalWrite(motorPin, HIGH);

 currMotorState = 2;

 break;

 case 2: // Update State 1

 // get current time and compare time to interval

 currMotorTime = millis();

 if (currMotorTime - initMotorTime > motorInterval)

 {

 currMotorState = 3;

 }

 break;

 case 3: // Set State 2

 // Set initial time and Set the Motor to Low

 initMotorTime = millis();

 digitalWrite(motorPin, LOW);

 currMotorState = 4;

 break;

 case 4: // Update State 2

 // get current time and compare time to interval

 currMotorTime = millis();

 if (currMotorTime - initMotorTime > motorInterval)

Chapter 2 Understanding the Arduino Software

42

 {

 currMotorState = 0;

 }

 break;

 }

}

You will notice a few differences between the previous sketch and

this sketch; first off, the loop function has been taken from several lines to

two lines of code. Also, there are two functions that now control the state

of the LED (LED_State_Machine()) and motor (MOT_State_Machine()).

Finally, the if statements have been replaced with a switch statement that

has cases of values 0 through 4. You will also notice that each case has very

simple blocks of code; this is where the readability comes into play. If you

run this code, you will notice that both the LED and the motor will update

independently just like the previous example. We will be utilizing the FSM

in later projects.

�Working with Loops
Loops have many uses including getting rid of redundant code and

iterating through arrays. The loops we will use are for, while, and do…

while. These loops will allow us to run through code while a condition is

true (or false, in some circumstances).

•	 for loop: This loop is used to repeat a block of code a

fixed number of times. The for loop’s basic setup is

for(int i = 0; i <= 10; i++)

{

 // Place statements here

}

Chapter 2 Understanding the Arduino Software

43

•	 A practical application for a for loop is to use it to

update multiple pinMode settings:

int pins[] = {13,9,8};

void setup()

{

 for(int i = 0; i<=2;i++) // Sets up each pin

 {

 pinMode(pin[i], OUTPUT);

 }

}

void loop()

{

 // Put code here

}

Note  pinMode is used to set up your I/O pins on the Arduino.

•	 while loop: This loop will run until a condition has

been met; if its first condition is false, it will not run at

all. For example, you’d use a while loop if you wanted to

run code until a certain value came from a sensor. The

following example illustrates this principle:

int potPin = A1;

int motorPin = 9;

int potVal;

Chapter 2 Understanding the Arduino Software

44

void setup()

{

 pinMode(motorPin,OUTPUT);

 pinMode(potPin,INPUT);

}

void loop()

{

 potVal = analogRead(potPin);

 while(potVal <= 100) // �Runs until potVal is

greater than 100

 {

 digitalWrite(motorPin,1);

 }

}

•	 The first thing this code does is initialize the

potentiometer and motor pins; then, it declares potVal,

our variable that holds the potentiometer value. Next,

we set the motorPin to an output and the potPin to an

input. Finally, we use a while loop with a condition

potVal <= 100, and while that condition is true, the

motor will be on.

•	 do…while loop: This is the same as the while loop

except that the conditional statement is checked at the

end of the loop, so this loop will run at least one time.

Here’s an example:

do

{

 i++; // Increment i

}while(i <= 100);

Chapter 2 Understanding the Arduino Software

45

�Communicating Digitally
Throughout this book, we will be communicating different types of

I/O through the digital pins, so it is important to understand how that

communication works. Specifically, we use the digitalWrite(pin,HIGH/

LOW) and digitalRead(pin) commands to communicate with the digital

pins. An example of this is shown in Listing 2-1.

Listing 2-1.  Digital commands

int button = 12;

int led = 13;

int buttonState;

void setup()

{

 pinMode(button,INPUT);

 pinMode(led,OUTPUT);

}

void loop()

{

 buttonState = digitalRead(button); // �Assigns button to

buttonState

 if(buttonState == 1)

 {

 digitalWrite(led,HIGH); // Writes a 1 to pin 13

 }

 Else

 {

 digitalWrite(led,LOW); // Writes 0 to pin 13

 }

}

Chapter 2 Understanding the Arduino Software

46

This program uses digitalWrite() and digitalRead() to get the value of

the button pin and writes a new value to it (in this case, high or low).

Note  Use the PWM digital pins to control motor speed and LED
brightness.

�Communicating with Analog Components
You can also use analog communication with sensors and motors,

meaning you can connect potentiometers to control motor speed

through a pulse width modulation (PWM) pin on the Arduino. The

functions for analog communication are analogRead(value) and

analogWrite(pin,value). The only thing you need to remember is that

a potentiometer will give a value of 0 to 1024, so you will have to scale

analogWrite from 0 to 255, for example:

analogWrite(LED,ledValue/4); // 1024/4 = 255

�Serial Communication
We will be using serial communication throughout this book. Serial

communication allows us to communicate with a computer, LCD, and

many other devices, as you will see in the next several chapters. Some

serial commands are Serial.begin(baud), Serial.Println(“anything you want

to write to the serial pin”), Serial.read(), Serial.write(Binary data), Serial.

available(), and Serial.end(). These commands allow us to read and write

to any serial peripheral we want. Here is a brief description of each of these

serial commands:

Chapter 2 Understanding the Arduino Software

47

•	 Serial.begin(baud): You will put this command

inside your setup() structure and put the appropriate

baud rate for the device with which the serial will be

communicating, for example:

void setup()

{

 Serial.begin(9600); // �9600 baud rate to

communicate with a computer

}

•	 Serial.println(): Use this command to write values to

the serial port, for example:

void loop()

{

 Serial.println("Hello, World"); // �Writes Hello,

World to the

serial port

}

Or…

void loop()

{

 Serial.println(potVal); // �Writes potVal to the

serial port

}

•	 Serial.read(): This reads in a value from the serial port.

For example, you could use this to read something from

your computer that you’d then want to write to an LCD

on the Arduino.

Chapter 2 Understanding the Arduino Software

48

void loop()

{

 char var = Serial.read(); // �Read incoming byte

from serial port

}

•	 Serial.write(): Use this to write binary data to a serial

port, for example:

void loop()

{

while(Serial.available() > 0)

 {

 char var = Serial.read(); // �Reads incoming

byte from

serial

 Serial.write(var); // �Writes binary data to

serial

 }

}

Note I n this book, most of the time, you will use Serial.println()
because we will be writing int or string values to the serial monitor.
The Serial.write() function is used to send binary data to the serial
monitor or any other serial port program.

Chapter 2 Understanding the Arduino Software

49

•	 Serial.available(): This function checks to see if there

are any incoming bytes at the serial port, for example:

void loop()

{

 while(Serial.available() > 0)

// This makes sure there is at least one byte at the

 // �serial port.

 {

 // Put code here

 }

}

•	 Serial.end(): This disables serial communication.

Now that you have seen the command set for serial communication,

we can use them in our programs. Listing 2-2 illustrates most of the

functions we have been discussing.

Listing 2-2.  Serial communication

int incomingByte;

const int ledPin = 13;

void setup() {

 Serial.begin(9600); // �Opens serial port, sets data

rate to 9600 bps

 pinMode(ledPin, OUTPUT);

}

Chapter 2 Understanding the Arduino Software

50

void loop()

{

 while(Serial.available() > 0)

 {

 incomingByte = Serial.read(); // Reads incoming byte

 Serial.println(incomingByte, BYTE); // �Prints incoming

byte to serial port

 digitalWrite(ledPin, incomingByte); // Write to LED pin

 }

}

This program is the foundation of serial communication: it initializes

incomingByte and ledPin. Next in the setup structure, the baud rate is set

to 9600. When we get inside the loop structure, the while loop is checking

to see if anything is at the serial port. If there is, it assigns the information

on the serial port to incomingByte. Finally, the program prints the data to

the serial port and writes data to ledPin (in this case, 1 or 0).

�SerialEvent
SerialEvents are pretty cool if you need some code to run whenever you

send data to the Arduino via the serial port. Here is how it is used:

Void setup()

{

 // code here

}

Void loop()

{

 // code here

}

Chapter 2 Understanding the Arduino Software

51

void serialEvent() {

 // code here

}

What this will allow you to do is trigger an event if the serial port reads

any data. You can then take that data and pass it into various functions

such as a parser, or you can turn different hardware on, and so on. We can

use this, for instance, to read a certain NMEA string from a GPS with a code

sent over the Arduino’s serial port; more on this later. Oh! One more thing,

since we will be using the MEGA 2560 Pro, we will have multiple UARTs

which means we can use the serialEvents for each of these ports; all you

need to do is add the functions for each UART you will use: serialEvent1,

serialEvent2, serialEvent3.

�Using Arduino Libraries
Now that you know the basics of Arduino programming, I want to at least

describe one important library in this chapter called the TinyGPS++

library, and in later chapters I will expand on other libraries as we add

more components to our design. To use the TinyGPS++ library, you will

need to download it and unzip it into the Libraries folder in the Arduino

directory. After you do that, you should be able to do this with many other

libraries.

�TinyGPS++
This library parses NMEA data, such as longitude, latitude, elevation, and

speed, into a user-friendly style. All you need to do now is download the

TinyGPS++ library from http://arduiniana.org/libraries/tinygpsplus

(we need to thank Mikal Hart).

Chapter 2 Understanding the Arduino Software

http://arduiniana.org/libraries/tinygpsplus

52

�Putting Together the Arduino Language
Basics
You should now know how to create the most basic Arduino program,

so let’s take a moment to recap some of the key programming points just

discussed. You can use this recap to help you program throughout this

book and through creating your own projects. Here is an example of that

program:

void setup()

{

 // Setup I/Os here

}

void loop()

{

 // Put code here

}

We also went over declaring variables and using them globally, as in

the following example:

char ch = 'A';

int pin = 13;

These values have types of character and integer.

You also learned about if and if-else statements and how to use them:

if (condition)

{

 // Put code here

}

else

 // Put code here

Chapter 2 Understanding the Arduino Software

53

Also, you can now add elseif statements to create if-elseif statements to

add more conditions, if you need them:

else if(condition)

{

 // Put code here

}

We then went over the switch statement, another type of conditional

statement that is used sometimes to clean up larger if statements; it has

this format:

switch(value)

{

 case value:

 // Put code here

 break;

 case: value:

 // Put code here

 break;

 default:

 // Put code here

 break;

}

After the conditional statements were explained, we discussed timers

vs. delays and how to use the millis() and micros() functions to accomplish

multitasking within the Arduino. That then leads us to the finite-state

machine (FSM) which made multitasking and readability much better

Chapter 2 Understanding the Arduino Software

54

compared to the nested if statement version. We then went over the

various loop structures you can use to parse or iterate through code. The

first loop we discussed was the for loop:

for(initialization;condition;Variable Manipulation

{

 // Put code here

}

We then went over the while loop and its functions:

while(condition)

{

 // Put code here

}

After that, you learned about a close relative of the while loop called

the do…while loop; it has the following format:

do

{

 // Put code here

}while(condition);

Next, you needed to learn about different ways to communicate with

sensors and other peripherals, so we discussed the digitalRead() and

digitalWrite() functions, which follow:

 digitalRead();

 digitalWrite(pin,state);

We then discussed communicating with the analog pins on the

Arduino. The analog pins use these commands:

 analogRead();

 analogWrite(pin,value);

Chapter 2 Understanding the Arduino Software

55

After learning about the different ways to communicate with sensors,

we needed a way to communicate with serial communication. Here are the

commands for serial communication:

Serial.begin(baud);

Serial.println(value);

Serial.read();

Serial.write(value);

Serial.available();

Serial.end();

We also discussed the SerialEvent function and how it can be used

to trigger code based off of data received by the serial port. Finally, you

learned a little about the TinyGPS++ library that will be used throughout

this book.

�Summary
In this chapter, you learned about the Arduino language. Specifically,

you learned how to get your programs set up and how to use conditional

statements, the differences of timers and delays, and how to utilize a

finite-state machine and loops to refine them. You also learned how to

communicate with different types of hardware pins using digital, analog,

and serial communication. Finally, we discussed the TinyGPS++ library

and its use. In the next chapter, we will be switching gears from the

Arduino to 3D Modeling using Fusion 360.

Chapter 2 Understanding the Arduino Software

57© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_3

CHAPTER 3

Modeling with
Fusion 360
Here we go!!! Now we will learn about 3D CAD; I will first introduce a few

different pieces of software that you can use to create 3D objects that can

then be sent to your 3D printer. The 3D CAD software used in this book will

be Fusion 360; this is a very powerful piece of software that will allow you

to make pretty much anything you can think of. After going over some of

the basics of Fusion 360, such as menus, how to navigate around a model,

and so on, we will go through a project that will have you make your first

3D object from sketch to a 3D model; this will include a section on how

to constrain your model which will also help when using the parametric

paradigm. We will be using the parametric 3D Modeling paradigm

throughout this book, which will allow us to make quick changes to our 3D

model by adjusting sketches or features of the model. Here are a couple

more examples of other 3D CAD software used in the industry:

Solidworks: This is probably the most used

industrial 3D CAD software on the market. One

of the main reasons it is not used in this book is

because it can be a bit pricey; that is not to say it is

not worth the price; I just want to make sure all the

readers of this book can utilize 3D Modeling without

breaking the bank.

https://doi.org/10.1007/978-1-4842-6852-0_3#DOI

58

DesignSpark Mechanical: This software is

specifically made for 3D printing; it includes a lot

of nice features and is also free to use. It uses more

of a direct modeling approach as opposed to the

parametric 3D Modeling paradigm. DesignSpark

Mechanical is a good piece of software, but it does

not have the number of features that Fusion 360 has

with the same price tag.

Onshape: This is another powerful piece of 3D CAD

software; it is also free to use, but it is a web browser

program which means you need to be connected to

the Internet to use it. Also, if you want to store your

files locally, you must pay.

There are many other pieces of software out there that will allow you to

create 3D objects and then save them as STL files (see Chapter 4).

�Installing and Setting Up Fusion 360
First things first, we need to download and install Fusion 360; this is an

easy process and works just like any other program you would install on

your PC other than the fact that you need to create an Autodesk account,

which is still pretty straightforward. So, let’s get started.

�Download Fusion 360
Now we can go ahead and download Fusion 360 from this URL: www.

autodesk.com/products/fusion-360. Let’s start by creating an account.

Click the “SIGN IN” button at the top-right corner of the screen; a drop-

down menu will display; click the “Sign In” portion of the drop-down

menu. See Figures 3-1 and 3-2.

Chapter 3 Modeling with Fusion 360

http://www.autodesk.com/products/fusion-360
http://www.autodesk.com/products/fusion-360

59

Next, click the “CREATE ACCOUNT” hyperlink under the email

address text box, or if you think you have an account, type it in and click

“NEXT.” If you have an account, great! Move to Figure 3-5. Otherwise, see

Figure 3-3.

Figure 3-1.  Click the SIGN IN link

Figure 3-2.  SIGN IN drop-down menu

Chapter 3 Modeling with Fusion 360

60

Now you will need to supply a few things: your first and last name,

email address, and the password you want to use. After you add the

previous data, make sure you read the Privacy Statement and click the “I

Agree” checkbox. See Figure 3-4.

Figure 3-3.  Autodesk login screen

Figure 3-4.  Click the “CREATE ACCOUNT” button

Chapter 3 Modeling with Fusion 360

61

After that, click the “CREATE ACCOUNT” button. This will then send

you an email asking you to verify your account; click the “VERIFY EMAIL”

button in the email you received from Autodesk, which will bring you back

to Autodesk and tell you whether you were successful or not.

Alright! Now that you have an account, you can download Fusion

360. Go back to this URL: www.autodesk.com/products/fusion-360; you

should already be signed in, but if you are not, go ahead and sign in to

your account. Now go ahead and click the “FREE TRIAL” button, and it

will bring you to a new site (Figure 3-6). Click the “NON-COMMERCIAL

USE” button, and again you will go to a new page. You should be able to

click the “Get started” button. This will bring you to a new page and start

downloading the client that will be used to download and then install

Fusion 360. See Figures 3-5, 3-6, and 3-7.

Figure 3-5.  Click the “FREE TRIAL” link

Chapter 3 Modeling with Fusion 360

https://www.autodesk.com/products/fusion-360

62

Figure 3-7.  Fusion 360 will begin to download

Figure 3-6.  Click the “NON-COMMERCIAL USE” link

Now that the download is completed, you will need to install Fusion

360 which will be discussed in the next section.

Chapter 3 Modeling with Fusion 360

63

�Installation Procedures for Fusion 360
Okay, so let’s start by going to our downloads folder and double-click the

“Fusion 360 Client Downloader.” See Figures 3-8 and 3-9. Fusion 360 will

begin to set up its files.

Figure 3-8.  Install Fusion 360

Chapter 3 Modeling with Fusion 360

64

Once that is done, Fusion 360 should start up automatically. You

may notice a lot of buttons and menus on the screen now; these will be

discussed in the next section.

�Getting to Know Fusion 360
Before we get into designing 3D objects in Fusion 360, it is important to

know the various interfaces/controls that you will be using in order to

manipulate your models. This section will go over several areas in Fusion

360; it won’t be a complete reference to Fusion 360 as that could be and

has been the talk of many books, but it will get you started, so that you can

begin to work with Fusion 360.

Figure 3-9.  When Fusion 360 is done installing, sign in and the main
screen will appear

Chapter 3 Modeling with Fusion 360

65

�Fusion 360’s User Interface
Figure 3-10 will give you a basic understanding of the layout of Fusion

360. This may be useful later if you need a reference of the various menus,

controls, and so on (see Figure 3-10).

Let’s first talk about the mouse gestures you will need in order to

maneuver around in Fusion 360.

Right mouse click: This will pop up the quick menu in Fusion 360,

which will allow to navigate through Fusion quicker, but for now we will

use the regular menus to get around. See Figure 3-11.

Figure 3-10.  Layout of Fusion 360

Chapter 3 Modeling with Fusion 360

66

Left mouse click from the top left to the bottom right: This will create a

blue box around an object and select just the object that is completely in the

window when the left mouse button is released. See Figures 3-12 and 3-13.

Figure 3-12.  Make selection with left mouse click and drag top left to
bottom right

Figure 3-11.  Right mouse click

Chapter 3 Modeling with Fusion 360

67

Left mouse click from the top right to the bottom left: This will create

a dashed box around an object, but when the mouse button is released,

it will select all objects within the box even if the object is only partially

selected. See Figures 3-14 and 3-15.

Figure 3-13.  Only lines completely in the window will be selected

Figure 3-14.  Make selection with left mouse click and drag top right
to bottom left

Chapter 3 Modeling with Fusion 360

68

Center mouse button: Usually, the wheel on the mouse is also a center

mouse button; when you click this in Fusion 360, you can pan the object.

This will be denoted by this pointer image.

Center mouse button + Shift: Holding down the center mouse button

while also holding down the Shift key will allow you to rotate the field of

view in 360 degrees. It will be denoted by this mouse pointer.

Mouse roller: Use this to zoom in and out of an

object. Roll forward to zoom in and roll backward to

zoom out.

Now that that is over, we can start to talk about the

many menus and icons on the Fusion 360. Let’s start

with the ViewCube.

ViewCube: This visual aid is located in the top-

right corner of the screen and will show you the

current view of the object or plane; you can select

Top, Bottom, Front, Back, Right, and Left, and the

Figure 3-15.  Will select entire shape

Chapter 3 Modeling with Fusion 360

69

view will switch immediately to the selected view.

Also, you will see arrows that allow you to turn the

object clockwise or counterclockwise. Then there is

a Home button that will take you to the Top-Front-

Right corner of the object or plane. Finally, there is a

drop-down menu that will allow you to change how

you see your objects, and you can also set a new

home for the 3D object. See Figure 3-16.

Browser: This menu will allow you to create a

new component which will have sketches and

bodies that can be manipulated. Also, the planes

are located here under the Origin submenu and if

selected will display a demo of the plane. The final

thing I want to say about the Browser menu is that

under the Document Settings submenu, you will

find the Units control which will allow you to switch

from inches to millimeters or vice versa. This will be

used throughout this book, so you will get plenty of

practice with navigating its options. See Figure 3-17.

Figure 3-16.  ViewCube

Chapter 3 Modeling with Fusion 360

70

Design History Bar: This is very important when it

comes to parametric 3D Modeling as this will allow

you to move back and forth from one feature to the

next. For example, say you want to modify a sketch

at the very beginning of a component and you also

want the features that you have done to also apply

to these new dimensions; you would use the Design

History Bar to move back to that sketch, modify the

dimensions needed, and then move the bar back

to the last feature, and that’s it! The model will use

those new dimensions and apply all the features you

have already created. You can also move features

and sketches around and delete features as needed.

See Figure 3-18.

Figure 3-17.  Browser

Figure 3-18.  Design History Bar

Chapter 3 Modeling with Fusion 360

71

Navigation Bar: Instead of using the mouse, you

can use this menu to select ways to move around a

component or sketch. The selections are

Orbit: Allows you to rotate around a component

Look At: Select a face or sketch, and the view will be

switched to that face.

Pan: When this is selected, hold the left mouse

button and move the mouse to view an object in the

left, right, up, and down directions.

Zoom: When selected, zooms in and out of a

component.

Zoom Window: This will allow you to zoom in to a

region of a component or sketch.

Display Settings: This allows you to change effects,

environment, visual style, object visibility, and so

on; the most used feature here is the visual style

which will allow you to change to a wireframe to

see hard-to-see areas of a component.

Grid and Snaps: Allows you to change where

components or sketches snap to; initially, this is set

to 10mm, which is what we will use for this book.

Viewports: This will allow you to see a component

from multiple angles.

Chapter 3 Modeling with Fusion 360

72

�Fusion 360 Sketch Tools
Now we can get down to the nitty-gritty of parametric design. By using

sketches and sketch features, we can create a 2D model that can be

extruded, revolved, loft, and so on to create a 3D object, so that later on

if we need to make changes to the model, we only need to change the

dimensions on the sketch. For now, we will go over the basics and move to

more sophisticated tools in later chapters.

All these functions are under the “CREATE” tab:

Create Sketch: This is the first thing you will do after

making/naming components needed for the model.

This will put you into sketch mode automatically,

and the only thing you need to do to begin drawing

is to select a plane.

Line: This allows you to create a line on the plane

you selected; just left-click where you want the

line to start and then left-click again to select

where you want the line to end. Later, we will use

the dimensioning tool to constrain our sketches.

Equally important to note is that there are two

types of line; one is a regular line, and the other is

a construction line. A construction line will not be

a part of your overall sketch, and because of that

when you extrude your sketch, the dimensions of

Chapter 3 Modeling with Fusion 360

73

the construction lines will not be included. To turn a

line into a construction line, select the line and press

the “x” key on your keyboard. See Figure 3-19 for an

example of a normal line and a construction line.

Rectangle: There are a few types of rectangles, and

each one has its benefits in certain situations; we

will be going over these different benefits later

in this book. For now, it is important to know the

center rectangle which will create a rectangle from

the inside out. The other rectangle is the two-point

rectangle; this will allow you to select two points

in a plane that will create a length and width for a

rectangle.

Figure 3-19.  Normal and construction lines

Chapter 3 Modeling with Fusion 360

74

Circle: There are several options here; for the most

part, we will stick with the center diameter circle

which, just like the center rectangle, will create a

circle from the inside out.

Chapter 3 Modeling with Fusion 360

75

Arc: Mainly, we will be using the three-point arc which

will create an arc based on three individual points.

Polygon: Create a specific number of sides sketch,

for example, a hexagon.

Chapter 3 Modeling with Fusion 360

76

Text: This is a great feature for adding text sketches

onto your models, which just recently became

available.

Mirror: This is a great time savings tool; it allows you

to duplicate lines from one side of a centerline to

the other side, so you will only need to create half a

sketch if the sketch is symmetric.

Chapter 3 Modeling with Fusion 360

77

All these functions are found under the “MODIFY” tab:

Fillet: This will create an arc with a specific radius.

All you must do is select two coincident lines like a

corner of a rectangle.

Trim: This is a very useful tool when you need to

clean up your sketch by trimming lines that are

not needed, but be careful if those lines are used

to constrain your sketch; you might be better off

making them a construction line.

Chapter 3 Modeling with Fusion 360

78

Offset: To use this feature, select the outline/lines

you want to offset and then put in the dimensions

needed; you should then see a demo of what to

expect when you accept the offset. This is a great

time saver if you need to, for example, make a small

border around a sketch or object.

This should be enough to get started with as we will be using most

of these functions throughout this book, but don’t be discouraged; I will

be introducing more features in later projects. This is just a good set of

features to start with.

�Fusion 360 3D Tools
Alright, now once you finish creating your sketch, you will need tools to

make a 2D image a 3D object. This can be done several ways in Fusion 360;

we will discuss a few of them in this section, as well as a few features that

will allow you to modify a 3D object without using the sketch.

All these functions are found under the “CREATE” section in the

“SOLID” tab:

New Component: This is used when you first

start to make your model. You should separate

your 3D project into several components if it is

required, which most of the time it is. Also, give the

component a well-defined name, so that you know

what that component’s 3D model is; you do this by

going to the Browser menu on Fusion 360 (see the

“Getting to Know Fusion 360” section) and double-

clicking the new component and renaming it.

Chapter 3 Modeling with Fusion 360

79

Extrude: Probably the most used method of going

from a 2D sketch to a 3D object. This will allow you

to extrude a sketch to a desired height. There are

also other settings here that will allow you to extrude

to another 3D object surface; also, if you want to

make a hole, you can extrude into a 3D object, and it

will cut out material instead of adding it.

Chapter 3 Modeling with Fusion 360

80

Revolve: This will allow you to select a sketch and

revolve it around an axis. Very useful when you want

to make a cylindrical object.

Sweep: Create a 3D object by selecting a sketch and

a path (a line) for the sketch to follow.

Chapter 3 Modeling with Fusion 360

81

Loft: Create a 3D object by selecting multiple

sketches on multiple planes; this will then create a

3D object with those shapes as profile.

Rectangular Pattern: Just like in the sketch mode,

you can create patterns that will allow you to quickly

replicate 3D objects; this also works for holes. This

function creates a rectangular pattern. You can also

Chapter 3 Modeling with Fusion 360

82

choose how many objects are replicated, which axis

to create the sketches on, and what type of pattern

to create.

Circular Pattern: Just like in the sketch mode, you can

create patterns that will allow you to quickly replicate

3D objects; this also works for holes. This function

creates a circular pattern. You can also choose how

many objects are replicated, which axis to revolve

around, and what type of pattern to create.

Chapter 3 Modeling with Fusion 360

83

All these functions are found under the “MODIFY” section in the

“SOLID” tab:

Press Pull: This will allow you to extend a face or

retract a face. Useful if you need to make a quick

modification to a face.

Fillet: Adds a radius to one or more edges. This can

be used to strengthen corners by adding a bit more

material between two faces.

Chapter 3 Modeling with Fusion 360

84

Chamfer: Will create a bevel on one or more edges.

This can be used just like the fillet; it will create an

angled feature as opposed to a round feature.

Shell: This tool is very useful if you need to make a

hollow object. All you need to do is select the face to

shell and then specify the inside thickness and voila!

You have a hollow object.

Chapter 3 Modeling with Fusion 360

85

Combine: If you need to merge two or more objects,

this tool will allow you to do that.

Well, I know this might all seem like a lot, but with a little practice and

patience, you will be able to create a lot of different models even with this

short list of functions. Next up! I will explain a few tools that you can use to

measure and review your models.

�Fusion 360 Tools
There are a lot of useful functions in the Tools tab; they can be used for

many things like checking out a section of a model or measuring distances

between two or more points. You will want to get used to using these as it

will be important later when you are making your own models or working

on someone else’s model. Here is a short list of Fusion 360 tools:

All these functions are found under the “INSPECT” section in the

“TOOLS” tab:

Measure: Measure the distance, angle, and area of

two points.

Chapter 3 Modeling with Fusion 360

86

Section Analysis: Allows you to see your object in

a cutaway view; you can move the arrow to view

different areas of an object. For example, say you

have a hollow box and you want to make sure there

are no other structures within the hollow box; you

can use this feature to look inside the box and verify

no other structures are in it.

Alright, that was short and right to the point. There are many other

tools in this menu, but for starters these are the key tools, so I wanted to go

over them first. The final portion of this section will go over how to import

various files into Fusion 360.

�Importing Files
Sometimes, you may need to import a STEP file, a DXF file, or maybe even

an SVG file. Here are some functions that will help make adding these files

possible:

To add a STEP file to your project:

	 1.	 Go to the Data Panel by clicking the Data Panel

button at the top left of the screen. See Figure 3-20.

Chapter 3 Modeling with Fusion 360

87

	 2.	 Select New Project. See Figure 3-21.

	 3.	 Name the project.

	 4.	 Click the “Upload” button. See Figure 3-22.

Figure 3-20.  Select Data Panel

Figure 3-21.  Select New Project

Chapter 3 Modeling with Fusion 360

88

	 5.	 A pop-up window will appear, and you can drag and

drop or select the STEP file you want to use in this

project. See Figure 3-23.

Figure 3-22.  Select Upload

Chapter 3 Modeling with Fusion 360

89

	 6.	 Click the Upload button, and you will see this screen

which will tell you the progress of your import.

When the STEP file is finished, click the “Close”

button. See Figure 3-24.

Figure 3-23.  Drag and drop the STEP file or browse to the file

Chapter 3 Modeling with Fusion 360

90

To insert a DXF file:

	 1.	 Go to the “SOLID” tab in Fusion 360. See Figure 3-25.

	 2.	 Go to the “INSERT” drop-down menu. See Figure 3-26.

	 3.	 Select the “Insert DXF” option. See Figure 3-27.

Figure 3-24.  When finished, click the Close button

Figure 3-25.  Go to the “SOLID” tab

Figure 3-26.  Click the “INSERT” drop-down menu

Chapter 3 Modeling with Fusion 360

91

	 4.	 Select the plane/sketch that you want the DXF

image to be placed on to. See Figure 3-28.

Figure 3-27.  Click the “Insert DXF” button

Figure 3-28.  Select the plane that the DXF will display on

Chapter 3 Modeling with Fusion 360

92

	 5.	 Select the DXF file. See Figure 3-29.

	 6.	 Then click the “OK” button. See Figure 3-30.

Figure 3-29.  Select the DXF file from your computer

Figure 3-30.  Click the “OK” button

Chapter 3 Modeling with Fusion 360

93

	 7.	 You should now see your DXF file on the plane you

chose earlier. See Figure 3-31.

To insert an SVG file:

	 1.	 Go to the “SOLID” tab in Fusion 360. See Figure 3-32.

	 2.	 Go to the “INSERT” drop-down menu. See Figure 3-33.

Figure 3-31.  DXF is loaded into Fusion 360

Figure 3-32.  Go to the “SOLID” tab

Figure 3-33.  Click the “INSERT” drop-down menu

Chapter 3 Modeling with Fusion 360

94

	 3.	 Select the “Insert SVG” option. See Figure 3-34.

	 4.	 Select the plane that you want the SVG image to be

placed on to. See Figure 3-35.

Figure 3-34.  Click the “Insert SVG” button

Figure 3-35.  Select plane

Chapter 3 Modeling with Fusion 360

95

	 5.	 Select the SVG file. See Figure 3-36.

	 6.	 Then click the “OK” button. See Figure 3-37.

Figure 3-36.  Select the SVG file from your computer

Figure 3-37.  SVG will be added to Fusion 360

Chapter 3 Modeling with Fusion 360

96

	 7.	 You should now see your SVG file on the plane you

chose earlier. See Figure 3-38.

Alright, now that you have a little understanding of Fusion 360, you

can move on to the exciting part, making your first 3D model. After reading

through this chapter, you may feel you are not ready to make a model yet,

but don’t worry; it won’t be that complicated, and you can always look

back if you need to know where a function is, so without further ado let’s

get modeling!

�Your First 3D Model in Fusion 360
Alright, let’s get started with a simple 3D model, and then we will move to a

more complex 3D model (don’t worry; it won’t be too complex). Go ahead

and open Fusion 360 so we can create our first sketch.

Figure 3-38.  SVG is ready to be extruded

Chapter 3 Modeling with Fusion 360

97

�Creating a Sketch

	 1.	 Save this project as “Cube” by pressing Ctrl-S.

	 2.	 Click the “Create Sketch” icon under the “SOLID”

tab. See Figure 3-39.

	 3.	 Select a plane to draw your sketch on. In this

example, I chose the XZ plane. See Figure 3-40.

Figure 3-39.  Left-click “CREATE SKETCH”

Chapter 3 Modeling with Fusion 360

98

	 4.	 Now select the Rectangle tool under the “SKETCH”

tab. See Figure 3-41.

Figure 3-40.  Select plane from the grid or the Browser menu

Figure 3-41.  Select a two-point rectangle from the “SKETCH” tab

Chapter 3 Modeling with Fusion 360

99

	 5.	 Put a rectangle anywhere on the grid; don’t worry

about the dimensions yet. Press “Enter” when you

are finished. See Figure 3-42.

Now I want to give this next part a bit of context. You may notice

that the square’s lines are all blue; blue lines mean that the sides are

not constrained, which can be a problem if you are trying to make

a maintainable 3D model. You can constrain sketches using several

different methods, for example, by defining the square’s dimensions and

referencing the origin. Let’s give that a try and see what happens.

	 6.	 Click a single point of your sketch and the origin.

See Figure 3-43.

Figure 3-42.  Add a rectangle to the grid

Chapter 3 Modeling with Fusion 360

100

	 7.	 Go to the “CONSTRAINTS” menu under the

“SKETCH” tab. See Figure 3-44.

Figure 3-44.  Select the “CONSTRAINT” drop-down menu

Figure 3-43.  Left-click a single point on the rectangle and a point on
the origin

Chapter 3 Modeling with Fusion 360

101

	 8.	 Select the “Coincident” selection, then select the

origin, and you will notice that your square has

moved to the origin and two of the four sides of your

square have turned black which indicates those

sides are now constrained. See Figure 3-45.

	 9.	 Now let’s constrain the other two sides. Press the

“D” key. Select one of the blue sides and enter

the value 5. (I am using millimeters; this can be

switched in the Browser menu under Document

Setting ➤ Units). Now three sides are constrained.

See Figure 3-46.

Figure 3-45.  Select Coincident from the drop-down menu

Chapter 3 Modeling with Fusion 360

102

	 10.	 Finally, let’s constrain the last side by pressing

the “D” key and selecting the final blue side and

entering a 5 into the text box. See Figure 3-47.

Congratulations! Your sketch is fully constrained

now.

Figure 3-46.  Add dimensions for one side of the rectangle

Figure 3-47.  Add dimensions to the last side of the rectangle

Chapter 3 Modeling with Fusion 360

103

	 11.	 Select the “FINISH SKETCH” button to get out of

sketch mode. See Figure 3-48.

Okay, now that the sketch is done, you can move on to the next part

which will have you create a 3D model from the sketch you just completed.

�Using the Extrude Function

	 1.	 Select the “Extrude” function from the “SOLID” tab.

See Figure 3-49.

Figure 3-48.  Click “FINISH SKETCH”

Chapter 3 Modeling with Fusion 360

104

	 2.	 The “Extrude” function has a lot of options, but

for now let’s just move to the distance text box and

enter “5” and press enter. See Figure 3-50.

Figure 3-50.  Extrude out 5mm

Figure 3-49.  Select the Extrude function

Chapter 3 Modeling with Fusion 360

105

Figure 3-51.  Select “HOME” on ViewCube

	 3.	 You can get a better angle on the 3D model by

pressing the Shift key and holding down your

mouse’s center button and moving the mouse

toward your computer screen. You could also select

the “Home” button next to the ViewCube. See

Figure 3-51.

	 4.	 If everything looks fine, press the Enter key or click

the “OK” button under the “EXTRUDE” menu. See

Figure 3-52.

Chapter 3 Modeling with Fusion 360

106

Alright! That was your first 3D model. Great job! Now I want to move

on to a bit of a more complex example that will be used in the following

chapter. Also, it will be a good segue into parametric 3D Modeling as we

will use the “Cube” project to make a keychain.

�Parametric Modeling in Fusion 360

	 1.	 Let’s start by opening our Cube project. Go to the

Data Panel ➤ My Recent Data; the Cube project

should be the most recent project. See Figure 3-53.

Figure 3-53.  Go back to the Cube project

Figure 3-52.  Final cube

Chapter 3 Modeling with Fusion 360

107

	 2.	 Double-click the Cube project and close the Data

Panel.

	 3.	 Go to the Browser menu and go to the folder

Sketches and double-click Sketch1. This will take

you to the Sketch view, and you can start to modify

your sketch. See Figure 3-54.

	 4.	 We want to change this square into a rectangle; let’s

change (double left-click) the X axis dimension to

20mm and the Z dimension to 10mm. To do this,

press the “D” key and select the X axis dimension

and type in 20mm, then change the Z dimension

to 10mm. Press “Enter” when you are finished. See

Figure 3-55.

Figure 3-54.  Select Sketch1

Chapter 3 Modeling with Fusion 360

108

	 5.	 Click the “FINISH SKETCH” button. See Figure 3-56.

Figure 3-55.  Change dimensions for the X and Z axis

Figure 3-56.  Click the “FINISH SKETCH” button

Chapter 3 Modeling with Fusion 360

109

	 6.	 You will notice that your 3D model has changed to

a shape that is 10mm x 20mm x 5mm. This is the

power of parametric 3D Modeling; it allows you to

make quick changes to your sketch and then applies

these dimensions through the rest of the history of

the 3D object.

	 7.	 Now double-click the Extrude1 icon in the History

Bar at the bottom of the screen. See Figure 3-57.

	 8.	 Edit this to be 3mm instead of 5mm in the Distance

text box and press enter. See Figure 3-58.

Figure 3-57.  Select the Extrude1 in the Design History Bar

Chapter 3 Modeling with Fusion 360

110

	 9.	 Click the “Create Sketch” button at the top left under

the “SOLID” tab.

	 10.	 Select the top of the 3D object, and this will put you

into sketch mode. See Figure 3-59.

Figure 3-58.  Extrude only 3mm

Figure 3-59.  Select the top of the 3D object

Chapter 3 Modeling with Fusion 360

111

	 11.	 Under the Create menu, select the Offset function

and click the edge of the 3D object. See Figure 3-60.

	 12.	 Notice that there is now a box around your 3D

object. To change this, put –1.00mm into the Offset

position text box, or just click the “Flip image.” Press

“Enter” when you are finished. See Figure 3-61.

Figure 3-60.  Select the Offset function

Chapter 3 Modeling with Fusion 360

112

	 13.	 Click OK.

	 14.	 Now select the Center Diameter Circle by going

here: SKETCH ➤ CREATE ➤ Circle ➤ Center

Diameter Circle, or just press the “C” key. See

Figure 3-62.

Figure 3-61.  Edit the dimension to –1mm

Chapter 3 Modeling with Fusion 360

113

	 15.	 Place a circle on the top face, just like the offset.

See Figure 3-63.

Figure 3-62.  Select the Center Diameter Circle

Figure 3-63.  Place a circle on the grid

Chapter 3 Modeling with Fusion 360

114

	 16.	 Now you will notice the circle is not constrained;

let’s fix this. First, press the “D” key and select the

circle’s edge; type in 3mm. Press “Enter” when you

are finished. See Figure 3-64.

	 17.	 Let’s make some construction lines, so that we know

where the center of this rectangle is. First, select the

Line function from the “CREATE” menu or press the

“L” key, and place a line from one side of the rectangle

to the other side. You will see this symbol when you

have selected the center for an edge; once you see that,

left-click and move to the other side and left-click

again. See Figure 3-65.

Figure 3-64.  Add a dimension to the circle (3mm)

Chapter 3 Modeling with Fusion 360

115

	 18.	 Do the same for the top and bottom of the sketch.

See Figure 3-66.

Figure 3-65.  Find the horizontal center of the rectangle

Figure 3-66.  Find the vertical center of the rectangle

Chapter 3 Modeling with Fusion 360

116

	 19.	 Exit out of the Line function by pressing the “Esc”

key.

	 20.	 Select the two lines you created and press the “x”

key. This will make both of those lines construction

lines. See Figure 3-67.

	 21.	 Now while pressing the “Ctrl” key, select the center

of the circle and the horizontal construction line;

then select the coincident constraint from the

“CONSTRAINTS” menu. See Figure 3-68.

Figure 3-67.  Make both the horizontal and vertical center lines
construction lines

Chapter 3 Modeling with Fusion 360

117

Figure 3-68.  Constrain the circle to the horizontal center line

	 22.	 Next, press the “D” key and select from the center

of the circle to the edge of the left side of the vertical

offset and put 3mm into the text field and press

enter. See Figure 3-69.

Figure 3-69.  Add the dimension from the left offset to the center of the
circle to 3mm

Chapter 3 Modeling with Fusion 360

118

	 23.	 Now click the “FINISH SKETCH” button.

	 24.	 Make sure you press Ctrl-S to save your progress.

	 25.	 Now click the Extrude button on the “CREATE”

menu and click the border area we created with

the Offset function; extrude the border 1mm. Press

“Enter” when you are finished. See Figure 3-70.

	 26.	 Once you press the “Enter” key, the sketch goes

away; to bring the sketch back up, all you need to do

is go to the Browser menu and go to Sketches and

click this button on Sketch2 to view the sketch.

See Figure 3-71.

Figure 3-70.  Extrude the border to 1mm

Chapter 3 Modeling with Fusion 360

119

Figure 3-71.  Show Sketch using the Browser menu

	 27.	 Next, select the circle and click the Extrude button.

This will be a bit different as you are going to create

a hole. Rotate the 3D object so you can see the

bottom of the 3D object and left-click the bottom

of the 3D object and click OK; this will create a hole

that is 3mm in diameter. Press “Enter” when you are

finished. See Figure 3-72.

Chapter 3 Modeling with Fusion 360

120

	 28.	 You can hide your sketch again by clicking the same

icon shown in step 26.

	 29.	 Now to make this keychain template more

appealing, let’s add a fillet to one side. Using the

Design History Bar, move the slider right after the

Sketch1. See Figure 3-73.

	 30.	 Double-click the Sketch1 icon in the Design History

Bar, and you will be able to edit this sketch. See

Figure 3-74.

Figure 3-73.  Go to Sketch1 in the Design History Bar

Figure 3-72.  Extrude the circle to the bottom face

Chapter 3 Modeling with Fusion 360

121

	 31.	 Add a fillet by going to the “MODIFY” tab and

clicking the Fillet button. See Figure 3-75.

Figure 3-74.  Select Sketch1

Figure 3-75.  Add fillet

Chapter 3 Modeling with Fusion 360

122

	 32.	 Click the top horizontal line, then the left vertical

line, and finally the bottom horizontal line. See

Figure 3-76.

	 33.	 In the text box, put 2mm and press enter (don’t

mind the warning that you may get when you do

this). Press “Enter” when you are finished. See

Figure 3-77.

Figure 3-76.  Select left-side outlines

Chapter 3 Modeling with Fusion 360

123

	 34.	 Click the “FINISH SKETCH” button.

	 35.	 Now drag the Design History Bar slider to the right

after Sketch2 and double-click the Sketch2 icon in

the Design History Bar. See Figure 3-78.

Figure 3-77.  2mm fillets

Figure 3-78.  Select Sketch2 in the Design History Bar

Chapter 3 Modeling with Fusion 360

124

	 36.	 Do the same thing to Sketch2 that we did to Sketch1.

See Figure 3-79.

	 37.	 Click the “FINISH SKETCH” button.

	 38.	 Move the History slider to the very end and see the

result! See Figure 3-80.

Figure 3-79.  Add 2mm fillets

Chapter 3 Modeling with Fusion 360

125

	 39.	 Make sure you save the project (Ctrl-S).

So, with parametric 3D Modeling, we were able to change our

simple cube into a keychain template very quickly and with only a few

modifications to the original model.

Now we have a blank keychain template that we can use as an example

in the next chapter to 3D print. We will also add an image to this keychain

in that chapter.

Figure 3-80.  Move the Design History Bar slider all the way to the
right

Chapter 3 Modeling with Fusion 360

126

�Summary
Great job! You now have a better understanding of Fusion 360. This

chapter was a bit long, but there was a ton of material to cover. Here is a

brief list of what was covered in this chapter; these items will be important

moving forward as we will be doing 3D Modeling in several chapters:

•	 Creating a user account for Autodesk

•	 Downloading and installing Fusion 360

•	 Understanding the Fusion 360 user interface

•	 Fusion 360 sketch tools

•	 Create Sketch

•	 Line

•	 Rectangle

•	 Circle

•	 Fusion 360 3D tools

•	 New Component

•	 Extrude

•	 Revolve

•	 Sweep

•	 Loft

•	 Fusion 360 tools

•	 Measure

Chapter 3 Modeling with Fusion 360

127

•	 Importing files into Fusion 360

•	 STEP, DXF, SVG

•	 Creating a sketch

•	 Extruding a sketch

•	 Parametric 3D Modeling in Fusion 360

Chapter 3 Modeling with Fusion 360

129© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_4

CHAPTER 4

3D Printing
Alright! It is now time to learn a bit about a very cool engineering tool

called a 3D printer. We will start with a look at what 3D printing is and

what type of 3D printing this book will focus on, which is Fused Filament

Fabrication (FFF). After that, we will investigate the tools needed by

anyone who wants to use a 3D printer. Then I will discuss the various

parts and upgrades a printer can have to allow for faster printing times,

easy printing setup, and better print quality. Then we will discuss what a

slicer is and the various slicers available on the market. Once we have all

that knowledge, we can focus on troubleshooting common issues with 3D

printers and prints. Finally, we will update and print the keychain we made

in Chapter 3. This chapter will be filled with tons of information; you don’t

need to memorize it, but you can use this as a reference when using your

3D printer in the future.

�What Is 3D Printing
Well, you can think of Fused Filament Fabrication as a hot glue gun with

an XYZ table. The extruder will lay down plastic onto the build plate in

the X and Y coordinates in a 2D fashion, but then when the first layer has

completed, the Z axis will move up a predetermined amount, and another

2D layer will go on top of the previous 2D layer; this will continue until the

model is completed, and a 3D object will be the final product. You can also

https://doi.org/10.1007/978-1-4842-6852-0_4#DOI

130

use many types of 3D filament. This book will mainly focus on using PLA

plastic as it is easy to get and very easy to use. The only real downside to

PLA is it is not very heat resistant, so don’t leave the parts in your car on a

hot day. See Figure 4-1.

�Types of 3D Printers
There are many types of 3D printers, but I want to talk about two main

types of 3D printing for hobbyists; they are FFF and SLA.

Figure 4-1.  FDM printer with its axes labeled

Chapter 4 3D Printing

131

FFF (Fused Filament Fabrication): As stated earlier,

this is a process that takes plastic filament and

places molten plastic onto a build plate, and when it

is finished with that layer, it then melts plastic onto

the previous layer, and over time (sometimes hours

or days) a completed 3D model is created. FFF

printing is great for printing tools, fixtures, and toys,

especially when real high resolution is not needed.

Normally, you can print at 50 microns with a good

FFF printer. See Figure 4-2.

Figure 4-2.  Example of an FDM printer

Chapter 4 3D Printing

132

SLA (Stereolithography): This is a process that

includes a vat of photochemical (chemicals

that harden with light) and a galvanometer. The

galvanometer has a laser that uses two mirrors to

move around the resin and hardens it over time.

Then the Z moves up (like on an FDM printer), and

the process starts all over again until you have a 3D

model. The 3D model comes up out of the resin and

will be printed upside down. An SLA printer is great

at fit check assemblies, high-definition models, and

anything with high amounts of detail. SLA printers

have a very high resolution, usually around 10

microns. See Figure 4-3.

Figure 4-3.  Example of an SLA printer

Chapter 4 3D Printing

133

We will go into more depth of what is required to doing FFF printing,

but for SLA printing I would suggest looking at Formlabs white paper on

the subject at this web address: https://formlabs.com/blog/ultimate-

guide-to-stereolithography-sla-3d-printing/.

For FFF printers, there are also a variety of filament feeding styles; they

are direct drive (what this book will focus on) and Bowden style of feeding

filament. Direct drive as its name states will push filament directly from the

extruder to the cold break. Bowden extruder assemblies will normally be

on the back side of the printer, and the cold break and hot end will be on

the gantry; this is ideal for speed, but some filaments do not work well with

this style of filament feeding. These are the main two types; there is also

the Wade style extruder, but it is not used as often.

Now we can talk about the various tools you will need in order to 3D

print successfully.

�Tools of the Trade
On the journey of becoming a 3D printing guru, you will need many tools;

some of the more common tools are as follows.

Needle-nose pliers: Great for removing support material and other

excess of plastic the 3D model does not need. See Figure 4-4.

Chapter 4 3D Printing

https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/
https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/

134

Paint spatula: Great for taking 3D models off the

build plate. See Figure 4-5.

Figure 4-5.  Paint spatula

Figure 4-4.  Needle-nose pliers

Chapter 4 3D Printing

135

Wire cutters: Again, these can help you take off

support material. See Figure 4-6.

Allen wrenches: These are a must as you will need to

maintain your 3D printer which almost always use

hex cap screws. See Figure 4-7.

Figure 4-6.  Wire cutters

Chapter 4 3D Printing

136

Tweezers: Great for cleaning plastic off the

extruder’s nozzle. See Figure 4-8.

X-Acto knife: This is a must-have tool when you are

cleaning up 3D prints, but be careful. See Figure 4-9.

Figure 4-8.  Few types of tweezers

Figure 4-7.  Allen wrenches both SI and metric sets

Chapter 4 3D Printing

137

Calipers: This tool is used to measure the parts

coming off the printer as well as debugging some

common issues a printer might have. See Figure 4-10.

Figure 4-9.  X-Acto knife. BE CAREFUL; these are very sharp

Figure 4-10.  Digital calipers

Chapter 4 3D Printing

138

These tools should get you started on the right foot when it comes to

3D printing. In the next section, we will discuss the most important parts of

a 3D printer.

�Parts of a 3D Printer
A 3D printer has many parts; I would like to go over the key components.

These components make up most of the functionality of the printer; they

are the hot end, cold break, extruder assembly, gantry, and control board.

Hot end: This component has a heater cartridge

and a thermistor attached to an aluminum block

that has a nozzle at the bottom. This is where plastic

is melted and placed on the build plate. Common

issues with this include plastic seeping out of the

top of the nozzle or at the top of the aluminum block

because the nozzle or the block has not been tighten

down. See Figure 4-11 for an example of a hot end.

Chapter 4 3D Printing

139

Cold block: This part of the extruder allows pressure

to build up in the hot end, so you never run out

of plastic. It does this by acting as a heat sink and

drawing out the heat that may creep up from the

hot end. One key issue that you can run into is heat

creep; this is when heat from the hot end softens the

plastic too much in the cold block, and a jam occurs.

See Figure 4-12.

Figure 4-11.  Hot end with silicone cover

Chapter 4 3D Printing

140

Extruder assembly: The extruder assembly draws

plastic in from a spool of plastic filament that is

either 1.75mm or 3mm. It does this by using a

hob gear and a pully under tension; plastic is fed

between these two parts and fed into the cold

break. The hob gear is normally mounted to a

stepper motor that feeds the plastic filament at

a set rate (steps/mm). Common issues with the

extruder assembly are jams; sometimes, the hob

gear can get plastic bit in its teeth, and because of

Figure 4-12.  Cold block

Chapter 4 3D Printing

141

this, plastic will slip. Also, when loading the plastic,

you can sometimes miss the hole to the cold break,

and no plastic will ever make it to the hot end. See

Figure 4-13.

Gantry: With some printers, the X and Y axes move

on the same apparatus, and the Z moves up and

down on an acme screw or a ball screw. Other

printers have the X and Z axes mounted together,

and the build plate moves along the Y axis. Both

styles of machine work well; I personally like the

Figure 4-13.  E3D brand extruder assembly

Chapter 4 3D Printing

142

former to the latter, but it is up to you to decide

which style of printer is right for you. Common

issues with the gantry include screws loosening due

to vibrations, axes getting jackknifed or misaligned,

very noisy due to lack of lubrication, and/or motor

driver being set to high/low on its reference voltage.

See Figure 4-14.

Control board: This is the brain of the 3D printer;

it controls all aspects of the printer. There are a

few components on here of note. For starters, the

Figure 4-14.  FT5 gantry X, Y, and Z axes

Chapter 4 3D Printing

143

motor drivers are located here; the MOSFETs that

control both the build plate and hot end heaters are

here, and all the sensors used to home the printer

are on the control board as well. Common issues

with the control board are: the voltage reference on

the motor drivers is not dialed in all the way, loose

thermistor wires can cause thermal runaway, and

noisy (electrically noisy) power supply can cause

your printer to restart at inopportune times. See

Figure 4-15.

Build plate: This is where the print will be created.

The most important thing to know about it is

whether it is heated and the build envelope. It is also

Figure 4-15.  Duet Wifi 2 control board

Chapter 4 3D Printing

144

important to note the different materials used on a

build plate. For example, the image in Figure 4-16

shows a mirror being used as a build plate. Other

materials that are used for 3D printing build plates

are borosilicate glass, aluminum, and PEI. See

Figure 4-16.

Now that we have a basic understanding of the various components of

a 3D printer, we can move on to the software side of things. The software

we are going to talk about is very important as it will convert an STL file

into G-code.

Figure 4-16.  Build plate, with heated bed

Chapter 4 3D Printing

145

�What Is a Slicer
A slicer is a program that takes a 3D image normally and an STL file

(stereolithography file); this file is then converted into layers (slices) of the

3D object. The slicer also contains all kinds of settings that you can use to

make your print quality better, print speed faster, and so on. For this book,

I will be using Simplify3D; this application does cost 150 USD, but it is

worth it in the long run. I also recommend Cura as it is a free slicer and has

a ton of settings as well. Let’s get started by talking about these two slicers

in a little more detail.

�Different Slicing Programs
Cura: As stated earlier, it is a free software from Ultimaker that a

community of hobbyists, makers, and engineers update on a regular basis,

which is nice because you normally get a lot of new features with each

release. Now, that being said, Cura offers a lot of features in the magnitude

of 100s of settings, so it can be a bit overwhelming, but there is also a

lot of forums that you can go to, to get help. Visit https://community.

ultimaker.com/forum/107-ultimaker-software/ for any help with Cura,

or if your printer has a forum, I would suggest visiting that forum as well.

Simplify3D: Unlike Cura, Simplify3D is not freeware and costs about

150 USD, but I think it is worth it for one key feature which is it allows you

to add and remove support structures (we will go over this in the next

section). It also has a forum and regular releases; it works well with most

printers, and there are some that have full libraries of material profiles that

you can use. The next section will cover everything you need in order to get

started with Simplify3D.

Chapter 4 3D Printing

https://community.ultimaker.com/forum/107-ultimaker-software/
https://community.ultimaker.com/forum/107-ultimaker-software/

146

�Simplify3D
For this book, I will be using Simplify3D; you can use any slicer you would

like, but I prefer Simplify3D because it is really easy to use and has some

great functionality. First off, I want to explain all the function of the main

screen. Then I will go into details of the various settings that you may or

may not use when using Simplify3D. Finally, I will import the 3D model

we made in the previous chapter to demonstrate the preview mode on

Simplify3D. So, let’s get started with the Simplify3D’s main screen.

�The Main Screen
In Figure 4-17, you will see an illustration of the main screen of

Simplify3D. This screen has many buttons, drop-down menus, selection

boxes, and so on. I want to go over each of these, so you have a better

understanding of the software when we use it later in this chapter as well

as in chapters to come.

Figure 4-17.  Main Simplify3D screen

Chapter 4 3D Printing

147

	 1.	 Models selection box: This is where you add your

STL file to Simplify3D. You can drag and drop your

files into this box, or you can use the “Import”

button; once you do that, the part will be added

to the build area. You can also use the “Remove”

button if you want to remove a model from the

build area.

	 2.	 Processes selection box: This is where all the

processes for the various plastics go. They are

created by clicking the “Add” button and deleted by

clicking the “Delete” button. The next section will

have a more in-depth look at the various settings in

these processes.

	 3.	 Build area: This is where the 3D model will be

viewed; you can manipulate the position of the

3D object by double-clicking it and changing the

rotation on the X, Y, and Z plane. This menu will

also allow you to change the scale and position. If

you have a part that is too large for the build area,

Simplify3D will tell you, and you can adjust the 3D

object accordingly (but only upon inserting the 3D

model, not when you scale a model already on the

build area).

	 4.	 Side bar: This bar has several functions; they are

•	 Normal selection: This will allow you to select the

various models in the build area.

•	 Translate models: Move a model in X, Y, and Z

directions.

•	 Scale models: Make a model larger or smaller in all

directions.

Chapter 4 3D Printing

148

•	 Rotate models: Allow you to rotate a model.

•	 Default view: This will take you to the home view.

•	 Top view: Rotates the view to the top.

•	 Front view: Rotates the view to the front.

•	 Side view: Rotates the view to the side.

•	 Coordinate axes: Toggles the X, Y, and Z coordinate

image.

•	 Solid model: Toggles the solid models on and off.

•	 Wireframe: Toggles the wireframe of the model.

•	 Show normals: Will toggle the normal on a 3D

model.

•	 Cross-section view: Very important function; it can

be used to see cross-sections of the 3D model in the

X, Y, and Z directions. Useful when you want to see

support material within the 3D model.

•	 Machine control panel: Here, you can control your

printer over a USB cable. Very useful if you need to

debug a problem.

•	 Support generation: This is a great function; it

allows you to add or remove support structures,

and it also allows you to change the density of

support structure.

In the next section, we will discuss common settings needed in order

to create the best print possible.

Chapter 4 3D Printing

149

�Common Settings
Click the “Add” button on the main screen under the processes selection

box (see Figure 4-18). You may be in the basic setting menu. To get into the

advanced menu, click the “Show Advanced” button, and you will see a lot

of new settings.

	 1.	 Tab 1: Extruder (see Figure 4-19)

•	 Extruder List: This is where you will select which

extruder you want these settings to apply to. If

you only have a single extruder, only the primary

extruder will be available.

•	 Nozzle Diameter: This is the diameter of the nozzle

at the end of the extruder.

•	 Retraction Distance: How much plastic to suck

back into the extruder.

Figure 4-18.  Click the Show Advanced button for more functions

Chapter 4 3D Printing

150

•	 Retraction Vertical Lift: The nozzle will lift up when

a retraction occurs. This is very useful when you are

printing multiple parts, so the nozzle will not hit

other parts.

•	 Retraction Speed: How fast the extruder will retract.

Figure 4-19.  Extruder tab

Chapter 4 3D Printing

151

	 2.	 Tab 2: Layer (see Figure 4-20)

•	 Primary Extruder: Select the extruder that these

settings apply to.

•	 Primary Layer Height: Layer height for the z axis.

•	 Top Solid Layers: How many top solid layers to

print.

•	 Bottom Solid Layers: How many solid layers to

print.

•	 Outline/Perimeter Shells: How many perimeters to

print. Good for making bosses for threaded inserts

or screws.

•	 Single outline corkscrew printing mode (vase

mode): Increment the Z axis so that the print will be

seamless. Note that this will mean there is no infill.

•	 First Layer Speed: Slow down or speed up the first

layer by a certain percentage.

Chapter 4 3D Printing

152

	 3.	 Tab 3: Additions (see Figure 4-21)

•	 Use Skirt/Brim: This will purge some plastic at the

beginning of the print. It will outline the entire print.

Normally, this is set to two or three outlines. If you

set the “Skirt Offset from Part” to zero, it will create a

brim which is useful for keeping a print from warping.

•	 Use Raft: Raft is very useful when you need to keep

a print from warping. Normally, I don’t like to use

them, and if you have a well-leveled build plate,

you should not need to use a raft.

Figure 4-20.  Layer tab

Chapter 4 3D Printing

153

	 4.	 Tab 4: Infill (see Figure 4-22)

•	 Infill Extruder: Extruder that will be used for

infilling the part.

•	 Internal Fill Pattern: What fill pattern will be used.

For now, rectilinear will be used.

•	 External Fill Pattern: This is the pattern that will be

used for the top and bottom fill.

•	 Interior Fill Percentage: The amount of plastic infill

used on the interior of the print.

Figure 4-21.  Additions tab

Chapter 4 3D Printing

154

	 5.	 Tab 5: Support (see Figure 4-23)

•	 Generate Support Material: Toggle whether to add

support material to a print.

•	 Support Extruder: Which extruder will be used to

print the support material.

•	 Support Infill Percentage: How dense the support

material will be.

Figure 4-22.  Infill tab

Chapter 4 3D Printing

155

	 6.	 Tab 6: Temperature (see Figure 4-24)

•	 Temperature Controller List: List of heaters on the

3D printer. Select one and update the settings for it.

•	 Temperature Identifier: Identifies the temperature

controller.

•	 Temperature Controller Type: Select whether the

type of heater is for an extruder or heated build

plate.

Figure 4-23.  Support tab

Chapter 4 3D Printing

156

•	 Per-Layer Temperature Setpoint List: Displays the

various temperature setpoints and which layer it

will set.

•	 Layer Number: What layer number you want the

temperature to change.

•	 Setpoint: What temperature you want to set.

Figure 4-24.  Temperature tab

Chapter 4 3D Printing

157

	 7.	 Tab 7: Cooling (see Figure 4-25)

•	 Per-Layer Fan Speed List: Displays what percentage

the cooling fan will be set and at what layer

•	 Layer Number: Layer number to set the percentage

of the cooling fan speed

•	 Fan Speed: The percentage to set the cooling

fan speed

Figure 4-25.  Cooling tab

Chapter 4 3D Printing

158

	 8.	 Tab 8: G-Code (see Figure 4-26)

•	 Build Volume: You can adjust the build volume of

your printer if the configuration assistant had the

incorrect build volume or you have updated the

printer’s build envelope.

	 9.	 Tab 9: Scripts (see Figure 4-27)

•	 Starting Script: This script will run at the very

beginning of the print. Useful for setting up auto

leveling or purging plastic.

Figure 4-26.  G-Code tab

Chapter 4 3D Printing

159

•	 Ending Script: This script will run at the end of the

print. Useful for turning off hot ends and moving

the extruder to the home position.

	 10.	 Tab 10: Speeds (see Figure 4-28)

•	 Defaulting Printing Speed: Initial speed used for all

printing movements.

•	 Outline Underspeed: Speed that the outline of the

print is printed at.

Figure 4-27.  Scripts tab

Chapter 4 3D Printing

160

•	 Solid Infill Underspeed: The infills print speed.

•	 X/Y Axis Movement Speed: How fast the extruder

will move when it is not printing.

•	 Z Axis Movement Speed: Speed of the Z axis

movement.

•	 Adjust Printing Speed for Layers below: Very useful

when you have small features of parts that need a

bit more cooldown between layers.

Figure 4-28.  Speed tab

Chapter 4 3D Printing

161

	 11.	 Tab 11: Other (see Figure 4-29)

•	 Filament Diameter: For most printers set to a value

close to 1.75mm, it is best to check the filament

with calipers to get an average of the filament

diameter and then update this setting.

	 12.	 Tab 12: Advanced (see Figure 4-30)

•	 Start Printing at Height: The height that the current

process will begin at.

Figure 4-29.  Other tab

Chapter 4 3D Printing

162

•	 Stop Printing at Height: The height that the current

process will end at.

•	 Only Retract when Crossing Open Spaces: Will

retract when extruder is moving from one part to

another.

Figure 4-30.  Advanced tab

Chapter 4 3D Printing

163

�Troubleshooting
Alright, let’s get started with a simple 3D model, and then we will move to a

more complex 3D model (don’t worry; it won’t be too complex). Go ahead

and open Fusion 360 so we can create our first sketch.

�Over/Under Extrusion
If you have an over extrusion, it means you have too much plastic being

pushed out of the nozzle. If you have an under extrusion, you will notice

gaps in the print. You may want to first check the Extrusion Multiplier in

the Extruder tab of settings. See Figure 4-31.

If that does not help, you may want to make sure the filament is

consistent ~1.75mm; if it is not correct, make sure the Filament Diameter

setting in the “Other” tab of the processes window is updated to the correct

value. See Figure 4-32.

Figure 4-31.  Adjust the Extrusion Multiplier to increase or decrease
the flow of plastic

Chapter 4 3D Printing

164

For under extrusion, you may also want to make sure your thermistor

is calibrated properly. If, for example, the thermistor is reading 220C and

the heater cartridge is only getting to 180C, you may notice gaps in the

print due to the printer not being able to push plastic out as smoothly as

it should be. You can make sure this is not the issue by taking a laser temp

gun and checking the hot end for consistency.

If none of those are working for you, you may need to adjust the steps/

mm in the firmware of the printer. This is an advanced task, so I would

make sure none of the other adjustments won’t fix the problem before

attempting this.

	 1.	 Find the steps/mm perimeter in the firmware for

your printer, change the value, and upload the

firmware to your printer. See Figure 4-33.

Figure 4-32.  Check the filament in three areas, average the value,
and update the Filament Diameter property

Chapter 4 3D Printing

165

Figure 4-33.  Update steps/mm value of the extruder motor

	 2.	 Decrease this value (because you are over extruding

or increase the value if the printer is under

extruding) and recompile and upload into your

printer.

	 3.	 Mark a distance of 100mm on the filament going

into the extruder. See Figure 4-34.

Figure 4-34.  Put a mark at 100mm

Chapter 4 3D Printing

166

	 4.	 Extrude 100mm of material using the machine

control panel (also, make sure your extruder is

heated up; otherwise, the extruder will not extrude);

you will also need to have the printer connected to

your computer for this process. See Figure 4-35.

	 5.	 If the 100mm mark is above or below the entrance

into the extruder, then you will need to adjust the

steps/mm setting again. See Figures 4-36, 4-37,

and 4-38.

Figure 4-35.  Open the machine control panel to control your printer

Chapter 4 3D Printing

167

Figure 4-36.  This is what you want to see

Figure 4-37.  If you see this, decrease the value of the steps/mm

Chapter 4 3D Printing

168

�Ghosting
Ghosting is when you see outlines of the print on the exterior of the print;

for example, you may see outlines of holes next to a physical hole in your

print. See Figure 4-39. The most important setting to adjust here would be

the speed at which you are printing.

Figure 4-38.  If you see this, increase the value of the steps/mm

Figure 4-39.  Ghosting example

Chapter 4 3D Printing

169

�Parts Do Not Stay on Build Plate
The first thing to do is to make sure your build plate is true/level to the

extruder’s nozzle. Normally, this means moving the nozzle to the Z Offset

(or 0) and using a piece of paper at each side and then finally in the center.

You want to make it to where the paper just barely drags on the nozzle at

all points. To do this, you adjust the thumb screws under the build plate to

either lift the build plate or lower the build plate. Today’s printers normally

have automatic bed leveling, and I would highly recommend the BLTouch

as it works great on all build plates. There are also tons of videos on how

to level a build plate; if you are having issues leveling your build plate, I

recommend going to the companion YouTube channel for this book and

watching the “Build Plate Leveling Tutorial.”

If that does not work, I would recommend adjusting your Z Offset.

Again, this will be a firmware update on most printers. I would

recommend going to the companion YouTube channel for this book and

watching the “Z Offset Adjustment Tutorial.”

Finally, if you are still having issues, make sure you have a nice even

amount of Elmer’s “Disappearing Purple” glue on the build plate.

�Our First Print
So here we are ready to try our first print. The first thing you will want to

do is set your printer up in Simplify3D. To do this, you can go through

the “Configuration Assistant” in the Help ➤ Configuration Assistant; this

will bring up a menu that will have you select your printer, and it should

automatically create a profile for your printer. 10 to 1 that your printer will

work even if it is not on the list as it is probably a copy of another printer,

for example, the Wanhao Duplicator 4S is a remake of the MakerBot

Replicator 2X and the FlashForge Creator. Next, we will need to open

Fusion 360 and load our project from the previous chapter. See Figure 4-40.

Chapter 4 3D Printing

170

	 1.	 Go to the Tools ➤ MAKE drop-down menu and

select “3D Print.” See Figure 4-41.

Figure 4-41.  Select the 3D Print function

Figure 4-40.  Open the Fusion 360 project from Chapter 3

Chapter 4 3D Printing

171

	 2.	 Select the 3D object you want printed.

See Figure 4-42.

	 3.	 If “Send to 3D Print Utility” checkbox is selected,

remove the check. See Figure 4-43.

Figure 4-42.  Select the model you want converted to an STL

Chapter 4 3D Printing

172

	 4.	 Click “OK” and select where you want the STL to go.

See Figure 4-43.

	 5.	 Go back to Simplify3D and click the “Import”

button. See Figure 4-44.

Figure 4-43.  Deselect the “Send to 3D Print Utility” and click OK

Chapter 4 3D Printing

173

	 6.	 Find the STL file you just created, select it, and then

click the “Open” button. See Figure 4-45.

Figure 4-44.  Go back to Simplify3D and click the “Import” button

Chapter 4 3D Printing

174

	 7.	 You will notice that the tag will be put on its side; this is

suboptimal since there is an overhang. To fix this, press

Ctrl-L and select the bottom of the tag; this will put the

bottom of the tag to the top of the build plate which is

a much more efficient orientation for this part to be

printed in. See Figure 4-46.

Figure 4-45.  Select the STL file that was created by Fusion 360

Figure 4-46.  Orient the part in this position using the Ctrl-L quick key

Chapter 4 3D Printing

175

	 8.	 Now select or create a new process. For the first

process, use the following settings. I would also

recommend searching Google for your printer’s

profiles as there is a good chance someone has

already made a profile for the particular printer

you have; remember not all printers are the same,

and my settings may not work for your printer. See

Figures 4-47 through 4-51.

Figure 4-47.  Add a “Skirt/Brim” to the print to purge some plastic

Chapter 4 3D Printing

176

Figure 4-48.  15% is more than enough for this part

Chapter 4 3D Printing

177

Figure 4-49.  Support tab (just remove the “Generate Support
Material” check)

Figure 4-50.  Make sure the temps are correct for your printer

Chapter 4 3D Printing

178

	 9.	 Now that you have the process sorted out, you will

need to click the “Prepare to Print!” button which

you will then need to select the process you want to

use for this print. See Figure 4-52.

Figure 4-51.  65mm/s work very well for most printers

Chapter 4 3D Printing

179

	 10.	 Next will be sent to the Print Preview mode. The

Print Preview mode is very important as you can use

the Layer Range to Show ➤ Max slider to show you

what your print will look like just by sliding it back

and forth. You can also use the “Play/Pause” button

to run through the print at an accelerated speed.

You may also notice small dots on your print; these

are retraction points. On the left side of the window,

you will notice several checkboxes; these control

what you are seeing on the build plate, for example,

the retraction points. See Figure 4-53.

Figure 4-52.  Click the “Prepare to Print!” button and select the
process and click OK

Chapter 4 3D Printing

180

	 11.	 Finally, you will need to create the G-code your

printer will use to create the 3D object. Click the

“Save Toolpaths to Disk” button and save the file to

your computer or an SD card. See Figure 4-54.

Figure 4-53.  Print Preview functions

Figure 4-54.  When ready, click the “Save Toolpaths to Disk” button

Chapter 4 3D Printing

181

	 12.	 You will also need to make sure your printer is

mechanically configured, meaning the build plate

is level, there is plastic loaded into the extruder, and

the build plate is ready to have plastic extruded onto

it (see the “Parts Do Not Stay on Build Plate” section

of this chapter for more information).

	 13.	 Then you will need to follow your printer’s

instructions on how to start the print from an SD

card or over Wifi if your printer is wireless. This print

should be quick between 2 and 10 minutes; once it

is done, use the paint spatula to take the print off the

build plate. See Figure 4-55.

Figure 4-55.  Finished print

Chapter 4 3D Printing

182

Before we get to the summary of this chapter, I just want to say that

this chapter had a ton of information, and there is still a lot more about 3D

printing that I want to go through before the end of this book. 3D printing

has a lot to it, and one chapter would not do 3D printing justice. So, let’s

review what we have learned in this chapter.

�Summary
Alright, another chapter bites the dust. This chapter had a ton of material,

so feel free to go over it again. Let’s take a look at the summary of this

chapter:

•	 Learned about the different types of 3D printers

•	 Discovered new tools that will help when 3D printing

•	 Learned about the different parts of a 3D printer

•	 Talked about what a slicer is

•	 Went over a lot of the functions in Simplify3D

•	 Went over a few troubleshooting tips when 3D printing

•	 Learned how to create a process in Simplify3D

•	 Printed our first object

�Exercise

	 1.	 You may have noticed the print came out a bit

smaller than you may want a keychain to be. How

could you modify this with either Fusion 360 or

Simplify3D to make it larger?

Chapter 4 3D Printing

183© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_5

CHAPTER 5

PCB Design
Now that we have taken some time to learn about Fusion 360 and

Simplify3D, we need to focus on the electrical aspects of this book. First,

we will investigate what a PCB is and briefly describe how it is designed.

Then I want to go over PCB Design software that will be used to create

PCBs in this book. After that, we will have an in-depth discussion on

Eagle and how to make your first PCB, as well as how to load libraries into

Eagle. Then we will learn how to export the Gerber files for the final board.

Finally, we will review how to get this board manufactured using PCBWay.

There is a lot to cover just like the previous chapters, so let’s get started.

�What Is a PCB
PCB stands for Printed Circuit Board; PCBs are created using PCB Design

software. The design software will have both a schematic section and a

board section. The schematic section will have a diagram like reference

to all connections such as: integrated circuit (IC), passive electrical

component, and so on. The board section will have the component layout,

wiring, drills, and so on that are needed to create the actual board. Once

both sections are completed, the board file will be compiled into a Gerber

file which will hold all the information that the PCB manufacturer needs

to create the PCB. All of these will be explained in detail in this chapter.

Figure 5-1 illustrates some examples of PCBs manufactured by PCBWay.

https://doi.org/10.1007/978-1-4842-6852-0_5#DOI

184

�PCB Design Software
There are a lot of PCB Design software on the market, such as Altium,

KiCAD, and what this book will utilize: Eagle. PCB Design software allows

you to create schematics and board layouts. These can then be converted

into Gerber files which will then be sent to the board manufacturer. There

is a lot to learn with PCB Design software; this chapter will give you a good

glimpse and get you ready for the next chapters that will have several board

designs.

Figure 5-1.  Examples of PCB boards including an Arduino board,
battery tester (courtesy of David Segal and Chris Defant), H-bridge,
rotary encoder breakout

Chapter 5 PCB Design

185

�Eagle
Eagle has a monthly subscription program, so if you only want to use it

for this book, you can purchase a monthly license for 15 USD. Eagle is a

professional PCB software that can even link to Fusion 360, so you can

make sure a PCB fits in its enclosure. It also allows you to connect to

various component libraries, so you do have to create every component

your board needs. So, let’s get started with Eagle.

�Eagle’s Main Windows
Did I say windows? Yes, Eagle has two main windows that you will be using

to create PCBs. The first window we will talk about allows you to create

a schematic of the PCB. A schematic is a drawing of all the ICs, resistors,

capacitors, headers, and their connections; these connections are called

nets. The second window we will discuss focuses on the physical layout

of the board; this is important because it will become the Gerber files you

send off to the PCB manufacturer.

Schematic Window

As stated earlier, the schematic window will allow you to create a

logical diagram of your circuit. This will also connect all the various

components using nets that will then become routes when you switch over

to the Board Layout window. Let’s look at the schematic window and its

various menus and controls. See Figure 5-2.

Chapter 5 PCB Design

186

	 1.	 Action bar: This bar has a couple of important

buttons on it. They are

	 a.	 Open/Save/Print: This is where you can save your

progress.

	 b.	 Schematic/Board: This button allows you to toggle

between the board window and the schematic

window.

	 2.	 Parameters bar: This bar holds all the functions for:

control grid settings and layer control.

	 a.	 Layer settings: Allows you to show or hide layers

(most of the time, this is used in the board window).

	 b.	 Grid: Allows you to change the resolution of the grid

and change the units of measurement.

	 c.	 Layer selection box: Select which layer to edit.

Normally set to “Nets” for the schematic window.

Figure 5-2.  Schematic window

Chapter 5 PCB Design

187

	 3.	 Command buttons bar: I will not spend too much

time here listing all of the commands (there are a

ton), but instead will show you these as we create

PCBs throughout the book, but here are a few very

common commands:

	 a.	 Info: Allows you to check various properties of a

component.

	 b.	 Add Part: Allows you to select the component you

want to add to the schematic window.

	 c.	 Delete: Deletes a component from the schematic

window and the board window.

	 d.	 Show: Select a net with this option selected, and all

nets with that name will be highlighted.

	 e.	 Group: Use this function to select multiple objects.

	 f.	 Net: Nets are used to connect your circuit together;

we will be using this function a lot in the coming

projects.

	 4.	 Command texts bar: In this text box, you can type

out commands to quickly move through schematic

development. These are typically used when you

get a bit more experience in Eagle. If you want to see

a list of the commands, go here: http://web.mit.

edu/xavid/arch/i386_rhel4/help/24.htm.

	 5.	 Simulation bar: This bar allows you to evaluate your

circuit to make sure it will work as expected.

Board Window

The board window is where you will create the layout of the board

with the various layers and routes. Also, you will add any holes or special

features that your board may need. See Figure 5-3.

Chapter 5 PCB Design

http://web.mit.edu/xavid/arch/i386_rhel4/help/24.htm
http://web.mit.edu/xavid/arch/i386_rhel4/help/24.htm

188

	 1.	 Actions bar: This bar is just like the one found on the

schematics window but has one function I want to

mention.

	 a.	 CAM Processor: This is the function that will be used to

create the final Gerber file that will be sent to the board

manufacturer.

	 2.	 Parameters bar: See the “Schematic Window”

section.

	 3.	 Command buttons: Several of the command

buttons are the same, but there are a few that differ.

	 a.	 Route Airwire: These are used to physically connect the

circuit from the schematic view together.

	 b.	 Ripup: This will not delete nets; that is to say, this will not

remove the connection from component to component; it

will just delete the routing of the net and leave a yellow line

where the two components terminate.

Figure 5-3.  Board window

Chapter 5 PCB Design

189

	 4.	 Command texts bar: See the “Schematic Window”

section.

Alright, now that we know about the layout of the two main windows

in Eagle, we can start to discuss how to add libraries that have already been

created to Eagle.

�Loading a Library
Now another essential thing you need to know how to do is to have the

ability to add libraries to Eagle. This is important because sometimes

the components that come with Eagle are not enough, so you have two

options: find a library that has the component and add it to Eagle or

create the part yourself.

	 1.	 Open Eagle. See Figure 5-4.

Figure 5-4.  Open Eagle

Chapter 5 PCB Design

190

	 2.	 Open a new File Explorer and navigate to “My

Documents.”

	 3.	 Create a new folder called “Extra Libraries.” See

Figure 5-5.

	 4.	 Go to this link: https://github.com/sparkfun/

SparkFun-Eagle-Libraries. See Figure 5-6.

Figure 5-5.  Create the Extra Libraries folder

Chapter 5 PCB Design

https://github.com/sparkfun/SparkFun-Eagle-Libraries
https://github.com/sparkfun/SparkFun-Eagle-Libraries

191

	 5.	 Download the SparkFun Eagle library. See Figure 5-7.

Figure 5-6.  Go to the URL

Figure 5-7.  Download the SparkFun Eagle library

Chapter 5 PCB Design

192

	 6.	 Unzip and put the folder “SparkFun-Eagle-

Libraries-master” into the “Extra Libraries” folder.

See Figure 5-8.

	 7.	 Go to Eagle and select Options ➤ Directories, and

the Directories window will appear. See Figure 5-9.

Figure 5-8.  Copy to the Extra Libraries folder

Chapter 5 PCB Design

193

	 8.	 Copy the link address from your File Explorer to

the Libraries text box in the Directories window.

Remember to add the “;” after the “$HOME\EAGLE\

libraries”. See Figure 5-10.

Figure 5-9.  Open Directories

Figure 5-10.  Copy Libraries directory

Chapter 5 PCB Design

194

	 9.	 Click the “OK” button on the Directories window.

See Figure 5-11.

	 10.	 On the front screen of Eagle, go to the Libraries

drop-down and click the arrow. See Figure 5-12.

Figure 5-11.  Paste directory

Chapter 5 PCB Design

195

Figure 5-12.  Shows the SparkFun Eagle library loaded

	 11.	 You should now see the SparkFun library. Right-

click it and click “Use all.” One thing to note is that

you will need to select “Use all” on each library

when you want to use this for each project. See

Figure 5-13.

Chapter 5 PCB Design

196

	 12.	 The library has now been added and is ready to use.

Alright! Now that we know how to add libraries to Eagle, we can start

to create schematics and layouts, but first I would recommend adding the

Adafruit library to Eagle. The link for which can be found here: https://

github.com/adafruit/Adafruit-Eagle-Library.

�Creating a Schematic
Finally, we are ready to start creating schematics and board layouts. We

will start with the schematic. What we will be making is an LED board with

a push button and a terminal block for easy connection to a power supply.

So, let’s get started.

	 1.	 Open Eagle. See Figure 5-14.

Figure 5-13.  Select “Use all”

Chapter 5 PCB Design

https://github.com/adafruit/Adafruit-Eagle-Library
https://github.com/adafruit/Adafruit-Eagle-Library

197

	 2.	 Go to the Libraries drop-down and right-click the

SparkFun library we added in the previous section

and click “Use all.” See Figure 5-15.

Figure 5-14.  Open Eagle

Chapter 5 PCB Design

198

	 3.	 Select File ➤ New ➤ Schematic; this will open a

schematic window. See Figure 5-16.

Figure 5-15.  Select “Use all”

Figure 5-16.  Create a new schematic

Chapter 5 PCB Design

199

	 4.	 Press Ctrl-S and save this schematic as LED_Board.

See Figure 5-17.

	 5.	 Click the Add Part button, and the ADD window will

appear. See Figure 5-18.

Figure 5-17.  Save the new schematic

Chapter 5 PCB Design

200

	 6.	 Scroll down to the SparkFun-PowerSymbols

selection. Then double-click the “5V” text. See

Figure 5-19.

Figure 5-18.  ADD window

Figure 5-19.  Select 5V symbol

Chapter 5 PCB Design

201

	 7.	 Add two of the “5V” symbol onto the schematic

window by left-clicking the screen. See Figure 5-20.

	 8.	 Pressing escape will bring you back to the ADD

window where you can double-click GND. See

Figure 5-21.

Figure 5-20.  Add 5V symbols to the schematic window

Chapter 5 PCB Design

202

	 9.	 Add two “GND” symbols to the schematic window, just

as you did with the “5V” symbol. See Figure 5-22.

Figure 5-21.  Select GND symbol

Chapter 5 PCB Design

203

	 10.	 Press escape again, which will open the ADD

window again. See Figure 5-23.

Figure 5-22.  Add GND symbols to the schematic window

Chapter 5 PCB Design

204

	 11.	 In the search bar, type in “LED” and press enter. See

Figure 5-24.

Figure 5-23.  Go to the ADD window again

Figure 5-24.  Search for LED

Chapter 5 PCB Design

205

	 12.	 Scroll down to the SparkFun-LED ➤ LED drop-

down and double-click the “LED3MM.” See

Figure 5-25.

Figure 5-25.  Select LED3MM

Chapter 5 PCB Design

206

Figure 5-26.  Add LED3MM symbol to the schematic window

	 13.	 Now if you right-click, you will notice that the LED

symbol will turn 90 degrees. Do this once. See

Figure 5-26.

	 14.	 Press escape again (or click the “ADD” button). In

the search bar, type in “button” and press enter. See

Figure 5-27.

Chapter 5 PCB Design

207

	 15.	 Scroll down to SparkFun-Switches and locate

MOMENTARY-SWITCH-SPST. Then locate

MOMENTARY-SWITCH-SPST-SMD-4.5MM and

double-click it. See Figure 5-28.

Figure 5-27.  Search for button

Figure 5-28.  Select the Momentary button

Chapter 5 PCB Design

208

	 16.	 Right-click three times on the schematic window to

orient the switch correctly and then place the switch

symbol. See Figure 5-29.

Figure 5-29.  Add the Momentary button to the schematic window

Chapter 5 PCB Design

209

	 17.	 Click the Info button and then click the switch you

just placed. The info dialog window will open. See

Figure 5-30.

Figure 5-30.  Update the value of the button

Chapter 5 PCB Design

210

	 18.	 If the Properties window you are seeing is not

correct, try right-clicking the switch near the “+”

symbol; you should see this menu. Make sure you

try and right-click the bottommost “+” symbol. See

Figure 5-31.

Figure 5-31.  Right-click the “+” next to the button’s name

Chapter 5 PCB Design

211

	 19.	 The Properties menu should have the value of

“VALUE.” See Figure 5-32.

Figure 5-32.  When the proper area of the button is selected, the name
will be “VALUE”

Chapter 5 PCB Design

212

	 20.	 Select the “Display” drop-down menu and select

“off.” See Figure 5-33.

	 21.	 Click the ADD button again. See Figure 5-34.

Figure 5-33.  Select “off”

Chapter 5 PCB Design

213

Figure 5-34.  ADD window

Figure 5-35.  Search connector

	 22.	 In the search bar, type in “connector” and press

enter. See Figure 5-35.

Chapter 5 PCB Design

214

	 23.	 Scroll to the SparkFun-Connectors drop-down; then

select the CONN-02 drop-down. See Figure 5-36.

Figure 5-36.  Select the 5mm terminal block

Chapter 5 PCB Design

215

	 24.	 Double-click the “CONN_025MM” and add it to the

schematic window. See Figure 5-37.

Figure 5-37.  Add the 5mm terminal block to the schematic window

Chapter 5 PCB Design

216

	 25.	 Click the ADD button again and type in resistor into

the search box and press enter. See Figure 5-38.

Figure 5-38.  Search resistor

Chapter 5 PCB Design

217

	 26.	 Go to Resistor ➤ R-US ➤ R-US_R0805 and add it to

the schematic window. See Figure 5-39.

Figure 5-39.  Select the R0805 resistor

Chapter 5 PCB Design

218

	 27.	 Press escape and click the cancel button. See

Figure 5-40.

Figure 5-40.  Get out of the ADD window

Chapter 5 PCB Design

219

	 28.	 Click the “Move” button and configure the symbols

like Figure 5-41. Rotate any symbols as needed by

selecting the symbol and using a right mouse click.

Figure 5-41.  Configure the symbols in these orientations

Chapter 5 PCB Design

220

	 29.	 Click the “Net” button; we are now in the

phase where we will be connecting the various

components together. Pay special attention to each

of these connections as an incorrect connection

here means an incorrect connection on the board

layout, which can cause serious problems with your

board. See Figure 5-42.

Figure 5-42.  Click the “Net” button

Chapter 5 PCB Design

221

	 30.	 Connect 5V to the 5mm terminal block. See

Figure 5-43.

Figure 5-43.  Connect the 5V net to the terminal block

Chapter 5 PCB Design

222

	 31.	 If you want your schematic to look just like Figure 5-43,

you can cycle through the different directions of

net shapes by right-clicking while the net button is

active.

	 32.	 Connect 5V to the left side of the switch symbol. See

Figure 5-44.

Figure 5-44.  Connect 5V to the right side of S1

Chapter 5 PCB Design

223

	 33.	 Connect the right side of the switch symbol to the

left side of the resistor. See Figure 5-45.

Figure 5-45.  Connect the left side of S1 to the right side of R1

Chapter 5 PCB Design

224

	 34.	 Connect the right side of the resistor symbol to the

anode (left side) of the LED symbol. See Figure 5-46.

Figure 5-46.  Connect the left side of R1 to the right side of D1

Chapter 5 PCB Design

225

	 35.	 Connect the GND symbol to the 5mm terminal

block. See Figure 5-47.

Figure 5-47.  Connect GND to the terminal block

Chapter 5 PCB Design

226

	 36.	 Connect the GND symbol to the cathode (right side)

of the LED. See Figure 5-48.

	 37.	 In order to add a value to the resistor, right-click the

“+” on the resistor and select “Value” on the pop-up

menu. Then enter “330ohm” and click “OK.” See

Figure 5-49.

Figure 5-48.  Connect the left side of D1 to GND

Chapter 5 PCB Design

227

	 38.	 The schematic is now done, but in order to create a

board file for the next section, we need to click the

“Generate/Switch to Board” button. A dialog will

come up asking you if you would like to create a

board file; click the “Yes” button. See Figure 5-50.

Figure 5-49.  Set the value of R1

Chapter 5 PCB Design

228

	 39.	 This file will automatically be saved as LED_Board.

brd. See Figure 5-51.

Figure 5-50.  Create a *.brd file

Chapter 5 PCB Design

229

Now that the schematic is done and we have a board file, we can focus

on the board layout for this project, which is what the next section will

cover.

�Laying Out a PCB
We have a schematic, but we still need to create a board layout so that a

Gerber file can be created and sent off to the board manufacturer. This

section will cover several important functions. It is alright if you must do

these steps a few times before you get the hang of it; try to follow the layout

as best you can.

Figure 5-51.  Board window for LED_Board

Chapter 5 PCB Design

230

	 1.	 Go to the Board Layout window if you are already

not there. See Figure 5-52.

Figure 5-52.  Board window

Chapter 5 PCB Design

231

	 2.	 Click the Grid button and make sure it looks like

Figure 5-53.

Figure 5-53.  Make sure the grid is the same

Chapter 5 PCB Design

232

	 3.	 Once the Board Layout window is open, click the

“Info” button. See Figure 5-54.

Figure 5-54.  Select the “Info” button

Chapter 5 PCB Design

233

	 4.	 Click the left vertical line, and a menu should

appear. See Figure 5-55.

Figure 5-55.  Select the left vertical line

Chapter 5 PCB Design

234

	 5.	 In the second text box next to “From,” type in 542 (if

this value makes your board huge, please make sure

you change your “Grid” to “mil”) and click “OK.” See

Figure 5-56.

Figure 5-56.  Update vertical line value

Chapter 5 PCB Design

235

	 6.	 Now click the bottom horizontal line, and the same

box should appear. See Figure 5-57.

Figure 5-57.  Select bottom horizontal line

Chapter 5 PCB Design

236

	 7.	 Type 1294 into the box right next to the “to” and

click “OK.” See Figure 5-58.

Figure 5-58.  Update horizontal line value

Chapter 5 PCB Design

237

	 8.	 Now click the top horizontal line (or what would be

horizontal had we not updated the other lines). See

Figure 5-59.

Figure 5-59.  Select top horizontal line

Chapter 5 PCB Design

238

	 9.	 Type 1294 into the box right next to “From” and click

“OK.” See Figure 5-60.

Figure 5-60.  Update top horizontal line value

Chapter 5 PCB Design

239

	 10.	 Click the right-side vertical line. See Figure 5-61.

Figure 5-61.  Select right vertical line

Chapter 5 PCB Design

240

	 11.	 Type 542 into the second box next to “To,” and

you now have the dimensions for the PCB. See

Figure 5-62.

Figure 5-62.  Update right vertical line value

Chapter 5 PCB Design

241

	 12.	 Click the “Move” button and select the terminal

block. See Figure 5-63.

Figure 5-63.  Select the “Move” button

Chapter 5 PCB Design

242

	 13.	 Rotate the terminal block and move it onto the

PCB. You can use the “Info” button and type in the

position “155” and “365,” or you can move it with the

mouse and hold the Alt Key to get more precision.

See Figure 5-64.

Figure 5-64.  Move terminal block

Chapter 5 PCB Design

243

	 14.	 Next, move the push button onto the PCB. Pay

attention to the yellow lines going from one

component to the next. These lines are the nets you

created in the schematic. The position for the button

should be “540” and “265.” See Figure 5-65.

Figure 5-65.  Move button

Chapter 5 PCB Design

244

	 15.	 You may notice that the push button’s device name

is very long and not necessary to put on the PCB. If

you zoom in to the PCB and right-click the “+” right

next to the name, you can select “Delete,” and this

will remove the name from the PCB. See Figure 5-66.

Figure 5-66.  Delete button name value

Chapter 5 PCB Design

245

	 16.	 Now add the resistor to the PCB, positioned at “860”

and “270.” See Figure 5-67.

Figure 5-67.  Move resistor

Chapter 5 PCB Design

246

	 17.	 Now add the LED to the PCB, positioned at “1135”

and “280.” You have now finished arranging the

parts onto the PCB. See Figure 5-68.

Figure 5-68.  Move LED

Chapter 5 PCB Design

247

	 18.	 Select the “Route Airwire” button. See Figure 5-69.

Figure 5-69.  Select the Route Airwire button

Chapter 5 PCB Design

248

	 19.	 At the top, select 12 from the “Width:” drop-down

menu, or you can just enter “12.” See Figure 5-70.

Figure 5-70.  Select 12mil route

Chapter 5 PCB Design

249

	 20.	 Left-click the 5V contact on the terminal block (J1),

then move your mouse over to the top-left contact of

the push button (S1), and left-click that contact. See

Figure 5-71.

Figure 5-71.  Connect terminal block to 5V

Chapter 5 PCB Design

250

	 21.	 Left-click from the 5V contact on the push button

(S1) and drag your mouse to connect the route to

the other 5V contact on the push button (S1). See

Figure 5-72.

Figure 5-72.  Connect 5V lines

Chapter 5 PCB Design

251

	 22.	 Left-click the top-right contact on the push button

and connect it to the left contact of the resistor (R1).

See Figure 5-73.

Figure 5-73.  Connect button to resistor

Chapter 5 PCB Design

252

	 23.	 Left-click the top-right contact on the push button

again and connect it to the right-bottom contact

“N$1.” See Figure 5-74.

Figure 5-74.  Connect buttons right side

Chapter 5 PCB Design

253

	 24.	 Next, left-click the right contact of the resistor and

connect the other end to the top contact of the

LED (D1). See Figure 5-75.

Figure 5-75.  Connect resistor to LED

Chapter 5 PCB Design

254

	 25.	 To select the bottom layer, go to the top and

change the “Layer:” drop-down to “16 Bottom.” See

Figure 5-76.

Figure 5-76.  Select the bottom layer

Chapter 5 PCB Design

255

	 26.	 Select the bottom contact on the terminal block (J1)

and connect the other end to the bottom contact of

the LED (D1). Because this is on the bottom layer

of the board, you can pass right through top layer

contacts and routes as long as the contacts are not

on the bottom layer as well. A good example of this

is that when you pass underneath an SMT (surface

mount) part which is only on the top layer, but if

there is a through-hole contact, you will have to go

around that part. See Figure 5-77.

Figure 5-77.  Connect the terminal block to GND

Chapter 5 PCB Design

256

	 27.	 The board is now ready to be made into a Gerber

file. See Figure 5-78.

�Exporting Gerber Files
Creating a Gerber file is very simple in Eagle and is also a very important

step as it is the file that you will eventually send to the board manufacturer.

	 1.	 Go to the Board Layout window for your project. See

Figure 5-79.

Figure 5-78.  Final board

Chapter 5 PCB Design

257

	 2.	 Go to File ➤ CAM Processor. Make sure your current

project is saved. See Figure 5-80.

Figure 5-79.  Final board

Chapter 5 PCB Design

258

	 3.	 At the top, you will see the “Job” file that is currently

being utilized, “template_2_layer.cam.” This job will

work for the current PCB we have created, but if we

say had a four-layer board, this job would need to

be modified to include those layers, as well as any

other layers, such as soldermask or silkscreens those

layers may also employ. See Figure 5-81.

Figure 5-80.  Select CAM Processor…

Chapter 5 PCB Design

259

	 4.	 If you select the “Top Copper” layer, you will see a

preview of that layer. Same thing goes for any of the

other selections that the CAM Processor shows. See

Figure 5-82.

Figure 5-81.  CAM Processor window with “Job” name highlighted

Chapter 5 PCB Design

260

	 5.	 Click the “Process Job” button, and Gerber files will

be generated after you select where you want them

to be stored and what name you want to give them.

See Figure 5-83.

Figure 5-82.  Preview of the Top Copper of the PCB

Chapter 5 PCB Design

261

	 6.	 When done, just exit out of the CAM Processor

window and close out Eagle.

�PCB Manufacturers
There is a plethora of board manufacturers in the United States and

in China. I personally use PCBWay for both professional and personal

projects, but there are 100s of board manufacturers ready to make your

board. Figure 5-84 illustrates what I used to create this board.

Figure 5-83.  Save Gerber files

Chapter 5 PCB Design

262

Figure 5-84.  Common settings for board manufacturing

Chapter 5 PCB Design

263

�Summary
Well, you have made it through all of the first five chapters which I know

contained a ton of information, and I am sure not all of it has been

retained, which is fine because in the next five chapters we will be focusing

on using and reinforcing these new skills to do some pretty cool project,

but first let’s take a look at some of the highlights of this chapter:

•	 Looked at what a PCB is and what kind of software is

needed in order to make a PCB

•	 Took a tour of Eagle and some of the most important

functions

•	 Learned how to load a third-party library into Eagle

•	 Learned the basics on how to create a schematic

•	 Learned the basics on how to create a board layout

•	 Learned how to export Gerber files

•	 Took a look at PCBWay as a board manufacturing

company

Chapter 5 PCB Design

265© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_6

CHAPTER 6

Robot Engineering
Requirements:
Controlling Motion
Alright, we have made it through several chapters of basic knowledge to

continue through this book. From now on, I will be explaining only new

concepts; for everything else, I would suggest looking at the previous five

chapters for assistance. In this chapter, we will be using all the knowledge

we gained in those previous chapters to work on a project for a company

named Naticom. Naticom is a robotics company, and they want you to

develop several prototypes and updates of a robot; for this chapter, that

robot will be the first prototype and will require you to create a PCB,

design a robot chassis, write some Arduino code, and physically make the

prototype with a 3D printer. So, let’s get started with this chapter as we

have a lot to cover.

�Hardware Explained: The H-Bridge
An H-bridge gets its name from the configuration of the npn and pnp

transistors that make it. See Figure 6-1.

https://doi.org/10.1007/978-1-4842-6852-0_6#DOI

266

Note  If you search Google for “TB6612FNG,” the first item should
be Digi-Key; from this website, you can view the datasheet.

This is a very cool and important circuit to know how to use because it

allows you to control DC motors, and it is even possible to control a stepper

motor. The H-bridge we will use for this project will be the TB6612FNG. This

is a very good and easy-to-use H-bridge. Let’s look at the datasheet to see

what this H-bridge is capable of (see Figures 6-2 through 6-8).

Figure 6-1.  Simple H-bridge circuit

Chapter 6 Robot Engineering Requirements: Controlling Motion

267

The first thing that is important to note is on page 2 which shows the

pinout of the TB6612FNG, which is very useful when you are trying to

figure out what signals need to be connected and what signals can be left

floating or set to GND (0V) or +5V.

Figure 6-2.  First page of datasheet

Chapter 6 Robot Engineering Requirements: Controlling Motion

268

The third page is also very important because it explains what

operating voltages will work with the TB6612FNG. For example, the supply

voltage for this H-bridge can be between 6 and 15V, which means VM1

must be connected to a supply voltage of 6V to 15V. The rest of the pins

that will be connected to power can have a value of –0.2 to 6V, which is

Figure 6-3.  Second page of datasheet

Chapter 6 Robot Engineering Requirements: Controlling Motion

269

fine because the Arduino we are using will use 0 to 5V to control these

pins. AIN1, AIN2, BIN1, and BIN2 are used to control the direction of the

motor and will eventually be connected to a logical NOT circuit that will

turn a bit from 1 (+5V) to 0 (GND) or 0 (GND) to 1 (+5V), creating a motor

that will go clockwise (CW) or counterclockwise (CCW). The PWM pins

will control the amount of power the motor will have using a duty cycle

of 0 to 100% which will be represented by the Arduino program as a value

from 0 to 255. Also, on this page is the “operating range.” The values to pay

attention to here are the supply voltages both VCC and VM. Then the most

important value in this datasheet is the output current which is set to 1A

for each channel of this H-bridge, which means each motor can draw 1A

continuously without hurting this driver.

Chapter 6 Robot Engineering Requirements: Controlling Motion

270

Figure 6-4.  Third page of datasheet

The fourth page shows us how to use the H-bridge; for example, in

order to turn the motor CCW, AIN1 needs to be low (GND), AIN2 needs

to be high (+5V), PWM needs to be some voltage from 0.1V (motor low

power) to 5V (motor full power), AO1 is LOW (GND), and AO2 is HIGH

Chapter 6 Robot Engineering Requirements: Controlling Motion

271

(+6V to +13V). Finally, there are some nice diagrams to show you what the

circuit looks like in the various states of this H-bridge.

Figure 6-5.  Fourth page of datasheet

Chapter 6 Robot Engineering Requirements: Controlling Motion

272

Figure 6-6.  Fifth page of datasheet

The fifth page will show you the various characteristics of the H-bridge.

Skipping to the seventh page, we can see a typical application for this

H-bridge, which can be very useful when you are creating a PCB for this

H-bridge.

Chapter 6 Robot Engineering Requirements: Controlling Motion

273

Lastly, we get to page 8 which has the measurements of the H-bridge,

which is very useful when you need to make a footprint for a component.

Luckily, this H-bridge has several devices already created for us in Eagle, so

we will not have to recreate this footprint or symbol for this H-bridge.

Figure 6-7.  Seventh page of datasheet

Chapter 6 Robot Engineering Requirements: Controlling Motion

274

Well, now that we know a bit more about this H-bridge, we can move

on to the fun part and create a motor driver board that we can use to create

the robot for Naticom.

Figure 6-8.  Eighth page of datasheet

Chapter 6 Robot Engineering Requirements: Controlling Motion

275

�Chapter Project: Creating the First Prototype
Here, we are now at the start of a project; the first thing we will work on is

gathering the requirements for this project; then we will start to work on

the various parts to complete this project such as designing the H-bridge,

designing the chassis, printing the chassis, assembling the chassis, and

finally troubleshooting the first prototype.

�Controlling Motors with Serial Commands
Now that you understand what an H-bridge is, we can visit our Naticom to

see if it has any projects for us to complete that require using the Arduino

to control motors. It does! So, our first steps are gathering the requirements

and creating the requirements document.

�Requirements Gathering
Now, the customer has set up a meeting and has several requirements for a

robot controlled by the Arduino using serial communication; the Arduino will

drive two motors with the help of a custom H-bridge PCB. The client’s project

also requires that the user send the motor’s parameters in a comma-separated

format to the serial monitor (shown in Figure 6-9) as follows:

1,255,1,255

In this format, the first parameter is the direction of motor A, the

second parameter is the speed of motor A, the third is the direction

of motor B, and the fourth is the speed of motor B. The serial monitor

displays the information in this format:

Motor A

1

255

Chapter 6 Robot Engineering Requirements: Controlling Motion

276

Motor B

1

255

Note  Comma-separated format is a very common way for data
to be passed and collected from the Arduino and many other
peripherals.

Naticom wants each of the comma-separated parameters to go to these

specific pins. The pins are 12, 3, 13, and 11. Another requirement is that

the final prototype needs to be configured on a custom chassis once the

hardware and software have been tested.

Figure 6-9.  The user will type values for the direction and speed of
the motors into the serial monitor shown here

Chapter 6 Robot Engineering Requirements: Controlling Motion

277

Note  When using the serial monitor, make sure that newline is
selected in the line ending parameter.

Now that you have notes for this project, we can configure them into a

requirements document.

�Outlining the Software Requirements
The following are the software requirements:

•	 Create a program that sends comma-separated data to

the Arduino to control the speed and direction of two

motors. The user should enter the data in this format:

1,255,1,255

•	 The first and third parameters in the comma-separated

values are the direction of motors A and B, and the second

and fourth parameters are the speeds of motors A and B.

•	 The serial monitor should output the data in this format:

Motor A

1

255

Motor B

1

255

•	 The overall purpose of this program is to control the

speed and direction of two 6V motors.

Chapter 6 Robot Engineering Requirements: Controlling Motion

278

Now that we have the hardware and software requirements, we can create

the software’s flowchart. Figure 6-10 shows the flowchart for this project.

Figure 6-10.  Flowchart for this project

Chapter 6 Robot Engineering Requirements: Controlling Motion

279

Alright, the next section will cover designing the H-bridge for this

project.

�Creating an H-Bridge PCB
First, let’s get all the circuits we will need for this PCB on the schematic

by using the “ADD” button. Configure it in the orientations seen in

Figure 6-11. For the parts used on this PCB, look at the Bill of Materials

found in this chapter’s source and look up each part using the “Found”

column.

Figure 6-11.  Schematic layout

Chapter 6 Robot Engineering Requirements: Controlling Motion

280

Next, let’s add the nets to each of these components. See Figure 6-12.

Now I want to explain what is happening in this circuit, mainly the

inverters for AIN1 and AIN2 (BIN1 and BIN2 have identical circuitry). If

AIN1 is HIGH (+5V), then AIN2 is LOW (GND); this is a logical not or an

inverter due to the pull-up resistor R9. When AIN1 is LOW, AIN2 will be

pulled to +5V, and if AIN1 is HIGH, the transistor will activate and force

AIN2 to GND. This allows us to control the direction of the motor with only

Figure 6-12.  Add nets to the components

Chapter 6 Robot Engineering Requirements: Controlling Motion

281

the use of one pin per motor instead of using two pins; this can be very

useful if you do not have a ton of GPIO (general-purpose input/output)

pins. You may also notice some capacitors on the +5V and VIN nets. These

are here to filter electrical noise as we do not want the H-bridge to act in an

unexpected way.

Next, go ahead and click the “Value” button for both of the two-pin

headers and update its value to “609-1317-ND.” Do this also for the seven-

pin header, but update its value to “WM4205-ND.” This will be used later

when you need to get the parts for this board, or you need to tell the PCB

manufacturer what parts to buy.

Now that the schematic is done, we can move on to laying out the

PCB. Here are the coordinates of each component and the size of the

current PCB. It is also very important to get the correct orientations of the

components, so make sure all the components are in the right orientation

and that all the yellow wires look the same as well. See Figure 6-13 for the

component orientations.

Table 6-1.

Component X Y Unit

U$1 400 500 Mil

C1 450 300 Mil

C2 325 300 Mil

C4 400 200 Mil

JP2 100 611.81 Mil

JP3 100 392.913 Mil

JP1 920 480 Mil

R1 650 600 Mil

R2 775 750 Mil

(continued)

Chapter 6 Robot Engineering Requirements: Controlling Motion

282

Figure 6-13.  Configure the components like this

Component X Y Unit

R3 750 375 Mil

R4 775 250 Mil

T1 650 750 Mil

T2 650 250 Mil

PCB 1000 1000 Mil

Table 6-1.  (continued)

Chapter 6 Robot Engineering Requirements: Controlling Motion

283

Let’s move on to the routing of this board as it has a few very important

elements to it. You will notice there are two pins for each of the motor

pins (A01, A02, B01, B02). This is not on accident; this is to ensure that

when the motors are encountering a load, the traces do not burn up, so

it is important to give these pins larger traces to allow more current to be

drawn (remember that the max current draw for each channel is 1A). Let’s

go ahead and add 24mil traces to A01 of JP2 to the A01 of the H-bridge

(connect A02 of JP2 to A02 on the H-bridge), and do the same for the B01

and B02 signals; only they attached to JP3. See Figure 6-14.

Figure 6-14.  Connect A01, A02, B01, and B02

Chapter 6 Robot Engineering Requirements: Controlling Motion

284

Now we can route those filter caps we talked about during the

schematic portion of this project. Connect +VIN of the 10uF capacitor to

+VIN of the 0.1uF filter cap. This will finally be connected to the +VIN pin

on the H-bridge (all of this using the 24mil trace). Switching to a 16mil

wire for the +5V routes. Let’s connect the 0.1uF cap’s +5V pad to the +5V

pins of the H-bridge (just remember you do not have to follow my routing

perfectly; just be sure not to short any of the traces). Next, connect the +5V

pad from the 1kohm resistor of the INV4 to the +5V pad of the 0.1uF filter

cap we just connected to the H-bridge. See Figures 6-15 and 6-16.

Figure 6-15.  Connect VIN to the filter caps

Chapter 6 Robot Engineering Requirements: Controlling Motion

285

Figure 6-16.  Connect +5V

Now we are going to do something a little different. We are going to

use a “via” to pass a signal from the top of the PCB to the bottom of the

PCB; this will allow us to get under other routes that would otherwise

cause a short which would cause the H-bridge circuit not to work. See

Figure 6-17 if you want to see what a short would look like. We will start

with the resistor for the INV4 that we hooked up in the previous paragraph.

First, connect the +5V pad to the +5V header. See Figure 6-16. Switch

to a 12mil route. Connect the INV4 from the 1k resistor to the collector

of the transistor. This is the pull-up resistor we discussed earlier. Now

select the collector of the transistor, move the route close to the +VIN

route then place the route, next press the wheel button on your mouse;

this will automatically create a via (don’t worry if it is large or a square

shape); place the via on top of the route you just placed (you are now on

the bottom side of the PCB) and drag the route toward the INV4 pad of the

Chapter 6 Robot Engineering Requirements: Controlling Motion

286

H-bridge. Press the wheel of your mouse again, and you will move back

to the top layer of the PCB, and you can connect to the INV4 pad of the

H-bridge. Now to make these vias smaller and of the correct shape, click

the “Info” button and select the via next to the transistor. For shape, select

“round.” For drill, select 13.77; if 13.77 is not an option, you can just type

13.77 into the drill text box. Do the same for the other via next to the INV4

pad of the H-bridge. See Figures 6-18 and 6-19.

Figure 6-17.  This is a short and should always be avoided

Chapter 6 Robot Engineering Requirements: Controlling Motion

287

Figure 6-18.  Connect INV4

Chapter 6 Robot Engineering Requirements: Controlling Motion

288

Note  You may find it difficult to select a via to get the Properties
menu. If you find yourself selecting the trace instead of the via, you
can cycle through the various components by right-clicking until the
via is highlighted and then selecting it with a left-click.

Now let’s connect the base of the transistor (N$17) to the base resistor’s

N$17 pad. Again, a via will be needed in order to avoid other routes. You

Figure 6-19.  Update the vias for INV4

Chapter 6 Robot Engineering Requirements: Controlling Motion

289

can use the same 12mil vias. Next, connect the INV3 pad of the resistor to

the INV3 header pin and then connect to the INV3 of the H-bridge. See

Figures 6-20 and 6-21.

Figure 6-20.  Connect the N$17 using vias

Chapter 6 Robot Engineering Requirements: Controlling Motion

290

When you place a route, you may have to remove it because it

interferes with another signal or it is not in the most optimal position. This

is when the “Ripup” button comes into use, and trust me you will use it a

lot during the routing process of a PCB. See Figures 6-22a and 6-22b.

Figure 6-21.  Connect INV3

Figure 6-22a.  Before the Ripup tool is used

Chapter 6 Robot Engineering Requirements: Controlling Motion

291

Let’s move on to the other inverter circuit. Switch to a 16mil trace.

Then route the +5V pad of the resistor in front of the transistor to the +5V

pad of the H-bridge. Switch to a 12mil trace. Then take the INV2 pad of that

same resistor and connect it to the INV2 of the H-bridge and the INV2 of

the transistor. Next, connect the PWM1 signal from the header pin to the

PWM1 pad of the H-bridge. See Figures 6-23, 6-24, and 6-25.

Figure 6-22b.  After the Ripup tool is used

Chapter 6 Robot Engineering Requirements: Controlling Motion

292

Figure 6-23.  Route +5V from R1 to the H-bridge

Chapter 6 Robot Engineering Requirements: Controlling Motion

293

Figure 6-24.  Connect INV2 from R1 to T1

Chapter 6 Robot Engineering Requirements: Controlling Motion

294

Stay on the 12mil trace and connect the N$15 signal of the transistor

to the N$15 of the resistor next to the transistor. Connect INV1 to the INV1

header pin. Then connect the INV1 pad of the resistor to the INV1 pad of

the H-bridge; this will require you to use a couple of vias to get past the

PWM1 signal. Use the same specs for the vias as the other inverter circuit.

See Figures 6-26, 6-27, and 6-28.

Figure 6-25.  Connect PWM1 from JP1 to the H-bridge

Chapter 6 Robot Engineering Requirements: Controlling Motion

295

Figure 6-26.  Route N$15

Chapter 6 Robot Engineering Requirements: Controlling Motion

296

Figure 6-27.  Route INV1 to JP1

Chapter 6 Robot Engineering Requirements: Controlling Motion

297

Note  While you have been routing, you may have noticed there is a
new menu bar at the top; this menu has a lot of cool features such as
routing avoidance settings, route shape, route width, via shape, and
via drill.

Now let’s connect PWM2 from the H-bridge to the PWM2 header using

a 12mil trace; again you will need to use a via, but this time you will not

need to switch back from the bottom because the header is on both sides

of the PCB. See Figure 6-29.

Figure 6-28.  Route the rest of INV1 to the H-bridge

Chapter 6 Robot Engineering Requirements: Controlling Motion

298

Now we need to connect all the +VIN signals together; to do this,

switch to a 24mil trace and select the +VIN pad at the top of the PCB

(pin 24 of the H-bridge). Using a via, go from the top to the bottom of the

PCB, move through the center of the H-bridge, and use another via to

get back to the top of the PCB and connect to the other +VIN pads on the

H-bridge. Finally, connect the +VIN pad (pads 13 and 14 of the H-bridge)

to the header pin marked +VIN; you may have to use a via. These vias will

be much larger than the 12mil vias that we previously used; they will be

25.59mil vias. See Figures 6-30, 6-31, and 6-32.

Figure 6-29.  Connect PWM2 from the H-bridge to JP1

Chapter 6 Robot Engineering Requirements: Controlling Motion

299

Figure 6-30.  Connect +VIN pins together

Figure 6-31.  Connect the +VIN pin of the H-bridge to the header
pin (+VIN)

Chapter 6 Robot Engineering Requirements: Controlling Motion

300

That should do it for the routing, but there are a few more things to do

before we move on. It is always a good idea to make sure all your routes

have been made. To do this, click the “Layer Settings”; this will open a

menu that will allow you to hide layers of the PCB. See Figure 6-33. Go

ahead and select the “Hide Layers” button. You will notice that all your

hard work has disappeared; well not really, it is just hidden. See Figure 6-34.

Go ahead and click the “19 Unrouted” layer. If you see any yellow, this

means that you have a trace that needs to be routed; otherwise, your circuit

will not work correctly. See Figure 6-35. We have several traces that need

Figure 6-32.  Make the routes 25.59055mils

Chapter 6 Robot Engineering Requirements: Controlling Motion

301

to be connected, and they are all GND. In order to make sure all GNDs are

connected, we need to create vias that will connect the GNDs together.

Figure 6-33.  Hide all of the layers

Chapter 6 Robot Engineering Requirements: Controlling Motion

302

Figure 6-34.  Screen after all layers are hidden

Chapter 6 Robot Engineering Requirements: Controlling Motion

303

Go ahead and show all the layers by going to the “Layer Settings”

window and clicking “Show Layers,” then click “OK.” See Figure 6-36. Now

go ahead and click the “Via” button; add vias near the unrouted areas of the

PCB. See Figure 6-37. Now click the “Name” button and select one of the

new vias and name it “GND”; do this for each of the vias. See Figure 6-38.

Figure 6-35.  Shows all of the unrouted traces

Chapter 6 Robot Engineering Requirements: Controlling Motion

304

Figure 6-36.  Select “Show Layers” and click “OK”

Chapter 6 Robot Engineering Requirements: Controlling Motion

305

Figure 6-37.  Add some vias to the layout

Chapter 6 Robot Engineering Requirements: Controlling Motion

306

We need to add holes at these coordinates: y-axis: 100mil x-axis: 900mil

and y-axis: 100mil x-axis: 100mil. To do this, click the “Hole” button and

place it in an open area on the PCB. Click the “Info” button and select the

hole. See Figure 6-39. For position, type 100 for the first value and 900 for

the second value. Then put the drill size 118.11024 and click “OK.” See

Figure 6-40. Do this for the second hole except the values will be 100mil and

100mil. See Figure 6-41. You may also have to move a via out of the way.

Figure 6-38.  Name all of those new vias “GND”

Chapter 6 Robot Engineering Requirements: Controlling Motion

307

Figure 6-39.  Add holes to the layout

Chapter 6 Robot Engineering Requirements: Controlling Motion

308

Figure 6-40.  Set the size and location of the via

Figure 6-41.  Create a second hole

Chapter 6 Robot Engineering Requirements: Controlling Motion

309

Now if you see any text on the outside of the PCB, go ahead and move

it onto the PCB; just make sure it is close to the component it represents.

See Figure 6-42.

Finally, the last thing we need to do is create some ground planes for

the PCB; this is very important as it will connect those GND vias together

so that we do not have any floating grounds. First, select the “Polygon”

Figure 6-42.  Move the header labels and the via that is interfering
with the second hole

Chapter 6 Robot Engineering Requirements: Controlling Motion

310

button and select the origin of the PCB. See Figure 6-43. Now go ahead and

place a square along the perimeter of the PCB. If you need more precision

while you are placing this outline, you can hold the “Alt” key and you

should be able to make a close to perfect perimeter around the PCB; just

make sure you close the square where the PCB’s origin is. See Figure 6-44.

You will know that the polygon has been closed because a window will

pop up asking you to name the polygon. Name it GND. See Figure 6-45. Do

this for the bottom layer as well; just make sure you select the bottom layer

in the Layers selection box. See Figure 6-46. Finally, click the “Ratsnest”

button, and you will see that a top and bottom ground plane has been

added to your PCB. See Figure 6-47. You should check that you have no

unrouted traces.

Chapter 6 Robot Engineering Requirements: Controlling Motion

311

Figure 6-43.  Start to make the polygon on the top layer

Chapter 6 Robot Engineering Requirements: Controlling Motion

312

Figure 6-44.  Make sure the polygon ends at the origin

Chapter 6 Robot Engineering Requirements: Controlling Motion

313

Figure 6-45.  Name the plane GND

Chapter 6 Robot Engineering Requirements: Controlling Motion

314

Figure 6-46.  Create a GND plane for the bottom layer

Chapter 6 Robot Engineering Requirements: Controlling Motion

315

You will notice that there is indeed some unrouted traces for GND; to

fix these, we need to reconfigure the traces for A01, A02, B01, and B02. See

Figure 6-48. Then add two vias between the two sets of signals and click

the “Ratsnest” button. See Figure 6-49. If you need to use a 12mil trace to

connect the new vias to the GND pads on the H-bridge. See Figure 6-50.

Figure 6-47.  Click the “Ratsnest” button

Chapter 6 Robot Engineering Requirements: Controlling Motion

316

Figure 6-48.  Redo the A01, A02, B01, and B02 routes using the ripup
tool and the route tool

Chapter 6 Robot Engineering Requirements: Controlling Motion

317

Figure 6-49.  Add vias in between A01 and A02 and B01 and B02

Chapter 6 Robot Engineering Requirements: Controlling Motion

318

Now you will need to send this board to be made; as I have stated

before, I use PCBWay quite often, and they work very well for me. You can

also get this board assembled by them which I recommend if you are a

novice at soldering surface mount hardware (SMT). Also, you will need to

extract the Bill of Materials. To do this, go to CAM Processor again, select

“Bill of Material,” then select your name and location for the file, and click

the “Export File” button. This will be a text document. If you are unsure,

you can download the content for this book and look under:

Figure 6-50.  Add 12mil traces to connect the GNDs

Chapter 6 Robot Engineering Requirements: Controlling Motion

319

Chapter 6\CH6_PCBs\driver with TB6621FNG\Gerber\CAMOutputs\

Assembly. When purchasing the connectors for this motor driver, make

sure you purchase these connectors:

2 x 609-1317-ND: This is the FCI two-pin header.

1 x WM4205-ND: This is the main connector for the

motor driver.

Both are Digi-Key part numbers.

Wow! That was a lot of work well done, but the job is not over yet; we

still need to create the first prototype of the robot chassis, which is the

subject of the next section.

�Designing a Robot Chassis
Well, the wait is over; we need to make the 3D model that will be the

chassis we develop through the entire book. This is just the first version of

the chassis, but we still want to get it as right as we can. For this chassis, the

customer wants a three-wheeled robot controlled by an Arduino. Let’s go

ahead and get started on the 3D model.

	 1.	 Go ahead and open Fusion 360 and create a new

project; name it Chassis_v1.

	 2.	 Create a new component by right-clicking the

main component at the top of the browser. See

Figure 6-51. You can name that component

“Chassis.”

Chapter 6 Robot Engineering Requirements: Controlling Motion

320

	 3.	 Start a new sketch and create a rectangle 160mm by

140mm. See Figure 6-52.

Figure 6-51.  Create a new component

Chapter 6 Robot Engineering Requirements: Controlling Motion

321

	 4.	 Extrude that rectangle out 5.08mm.

	 5.	 Create two 4mm holes for the caster wheel. They

should be 39.45mm apart and 15mm away from

the front edge of the chassis. See Figure 6-53.

Remember to use the distancing tool (press the “d”

key) to create the constraints in Figure 6-53. Also,

convert all non-essential lines to construction lines

by selecting the line and pressing the “x” key.

Figure 6-52.  Create a rectangle

Chapter 6 Robot Engineering Requirements: Controlling Motion

322

Figure 6-53.  Add the holes for the caster wheel

	 6.	 Extrude to the bottom surface of the chassis. This

will make two 4mm holes.

Chapter 6 Robot Engineering Requirements: Controlling Motion

323

	 7.	 Let’s make a spot for the Arduino to go. We need

two holes again. Follow Figure 6-54. Remember

you want to make sure the rectangle and holes are

constrained. You can tell this sketch is constrained

because all lines are black.

Figure 6-54.  Add the holes for the MEGA 2560 Pro

Chapter 6 Robot Engineering Requirements: Controlling Motion

324

	 8.	 Extrude the two 4mm holes again to the bottom of

the chassis.

	 9.	 Flip to the bottom of the chassis and start a new

sketch. Draw two 10mm circles around the two

Arduino holes you already made. See Figure 6-55.

	 10.	 Extrude these 3mm into the chassis.

	 11.	 Make a 50mm chamfer at the front of the

chassis. See Figure 6-56.

Figure 6-55.  Move to the bottom and create some circles that will
hide the screws from view

Chapter 6 Robot Engineering Requirements: Controlling Motion

325

	 12.	 Go back to the top of the chassis and create a

rectangle to represent the battery holder and then

two more rectangles that will be holes for a zip tie.

See Figure 6-57 for the measurements.

Figure 6-56.  Add two 50mil chamfers

Chapter 6 Robot Engineering Requirements: Controlling Motion

326

	 13.	 Extrude the two small rectangles to the bottom of

the chassis.

	 14.	 Now let’s make the holes and the stand for the

H-bridge we created in the previous section. It is

easy to get these measurements as we created the

board. Use Eagle to get these distances if you want

some practice. See Figure 6-58. The platform is used

to make sure the PCB is stable.

Figure 6-57.  Add the holes for zip tie that will hold the battery
pack

Chapter 6 Robot Engineering Requirements: Controlling Motion

327

	 15.	 Extrude the holes to the bottom of the chassis and

extrude the rectangle up 14.45mm. If you have

different standoffs, you should measure them and

use that value here instead.

	 16.	 Switch to the bottom of the chassis and create a

sketch around the holes you just extruded for the

H-bridge. 10mm holes will work. See Figure 6-59.

Figure 6-58.  Add the holes and support for the motor driver

Chapter 6 Robot Engineering Requirements: Controlling Motion

328

	 17.	 Extrude the circles 3mm into the chassis.

	 18.	 Create a few more components named Motor_

Bracket_Left, Motor_Bracket_Right, Motor_Right,

and Motor_Left. See Figure 6-60.

Figure 6-59.  Add two more holes that will hide the screws from
view

Chapter 6 Robot Engineering Requirements: Controlling Motion

329

	 19.	 Select the Motor_Right component.

	 20.	 Create a rectangle 49mm from the back of the

chassis. See Figure 6-61 for all the measurements of

the motor. Where did I get these measurements? I

went to the distributer and looked at the datasheet

of the motor. Later, in this book, I will show you how

to import 3D models that have already been created.

Making this representation of the motor is nice

because it allows us to create a model around it.

Figure 6-60.  Create four more components

Chapter 6 Robot Engineering Requirements: Controlling Motion

330

	 21.	 Extrude the rectangle out 10mm.

	 22.	 Switch to the Motor_Left component.

	 23.	 Make the same drawing on the other side of the

chassis. Use the mirror tool, or you can just draw it

out again. See Figure 6-62.

Figure 6-61.  Create a rectangle for the right motor

Chapter 6 Robot Engineering Requirements: Controlling Motion

331

	 24.	 Extrude the Motor_Left out 10mm.

	 25.	 Select the Motor_Bracket_Left component.

	 26.	 Create a sketch on the front face of the Motor_Left.

	 27.	 Use the outline tool to create a 0.03mm outline of

the front of the motor.

	 28.	 Use the trim tool to remove the bottom and top

pieces of the outline.

	 29.	 Use the line tool to create half of the bracket, and

then use the mirror tool to create the second half

of the bracket. Make sure it is fully enclosed. See

Figure 6-63. Extrude this –16mm.

Figure 6-62.  Create the rectangle for the left motor

Chapter 6 Robot Engineering Requirements: Controlling Motion

332

	 30.	 We need something to hold the motor in the bracket

from the front, so make a rectangle on the front of

the bracket. See Figure 6-64.

Figure 6-63.  Create the outline of the left motor bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

333

	 31.	 Extrude out 2.5mm.

	 32.	 Make a small rectangle on the bottom of the bracket

that will allow full access to the shaft of the motor for

the wheel couple. See Figure 6-65.

Figure 6-64.  Create the front stop rectangle for the motor
bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

334

	 33.	 Extrude it up –1.84mm.

	 34.	 Make two 3mm holes in the center of each of the

wings of the bracket. See Figure 6-66.

Figure 6-65.  Create a rectangle that will be used to make clearance
for the motor axle

Chapter 6 Robot Engineering Requirements: Controlling Motion

335

	 35.	 Extrude them to the bottom of the bracket. If you

must make the chassis invisible, that is fine.

	 36.	 Extend the back of the bracket by 10.03mm. Use the

extrude tool to do this.

	 37.	 Create another brace for the back of the bracket; this

will make sure the motor does not slip out the back

of the bracket. See Figure 6-67.

Figure 6-66.  Create the holes for the motor bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

336

	 38.	 Extrude it out 2.5mm.

	 39.	 Extrude 0.03mm of plastic from the back of the

two braces at the front of the motor bracket. See

Figure 6-68. If you need to hide the motor and

chassis, that is fine.

Figure 6-67.  Create a rectangle that will hold in the back of the
motor

Chapter 6 Robot Engineering Requirements: Controlling Motion

337

	 40.	 Go back to the chassis component.

	 41.	 On the top of the chassis, create two 4.3mm holes

where the motor bracket wing holes are. You can use

the sketch of the motor bracket; just make sure you

select the top of the chassis as your plane; otherwise,

you may be drawing on the top of the motor bracket

which will not work. See Figure 6-69.

Figure 6-68.  Cut 0.03mm from the front brace of the motor
bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

338

	 42.	 Mirror these two holes to the other side of the

chassis. See Figure 6-70.

Figure 6-69.  Create the holes for the chassis that will hold the motor
bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

339

	 43.	 Select these circles on the top of the chassis and

extrude into the chassis 3.43mm.

	 44.	 Select the Motor_Bracket_Left component and

sketch on the frontmost rectangle.

	 45.	 Sketch a small rectangle. See Figure 6-71.

Figure 6-70.  Mirror these holes for the other motor bracket

Chapter 6 Robot Engineering Requirements: Controlling Motion

340

	 46.	 Cut (opposite of extrude) into the bracket –2.5mm.

	 47.	 Select the chassis component.

	 48.	 Create a center rectangle next to the Arduino holes.

See Figure 6-72 for the measurements.

Figure 6-71.  Make a small rectangle that will allow you to tighten the
set screw of the wheels

Chapter 6 Robot Engineering Requirements: Controlling Motion

341

	 49.	 Extrude the rectangle out 14.45mm.

That was a lot of steps, and I have a few more things for you in this

section. I don’t just want to give you the measurements, I also want you to

learn how to take measurements. So here are a few examples of how I was

able to get the measurements of hole locations and object sizes.

Caster wheel:

Figure 6-72.  Create a rectangle that will be the support of the MEGA
2560 Pro

Chapter 6 Robot Engineering Requirements: Controlling Motion

342

Figure 6-73.  Get the width of one hole

Chapter 6 Robot Engineering Requirements: Controlling Motion

343

Figure 6-74.  Press the zero button without moving the calipers

Chapter 6 Robot Engineering Requirements: Controlling Motion

344

MEGA 2560 Pro:

Figure 6-75.  Measure from one hole to the other

Chapter 6 Robot Engineering Requirements: Controlling Motion

345

Figure 6-76.  Measuring the Arduino 1

Chapter 6 Robot Engineering Requirements: Controlling Motion

346

Figure 6-77.  Measuring the Arduino 2

Chapter 6 Robot Engineering Requirements: Controlling Motion

347

Figure 6-78.  Measuring the Arduino 3

Chapter 6 Robot Engineering Requirements: Controlling Motion

348

Micro motor:

Figure 6-79.  Measuring the Arduino 4

Chapter 6 Robot Engineering Requirements: Controlling Motion

349

Figure 6-80.  Micro motor measurement 1

Chapter 6 Robot Engineering Requirements: Controlling Motion

350

Now that you understand how some of these parts were measured, you

can measure other objects and get good at it. The next section will focus on

3D printing the chassis and motor brackets.

�Assembly
Before we get started with the assembly of the chassis, please look at

the Bill of Materials for this chapter and make sure you have all the

components needed.

Now on to the assembly, gently take the 3D printed hardware off your

build plate. Use a painter’s spatula this will save you time and will be less

likely to break your build plate. Clean off any glue that may be on your

print before you try to assemble.

Figure 6-81.  Micro motor measurement 2

Chapter 6 Robot Engineering Requirements: Controlling Motion

351

The first thing we are going to add onto the chassis is the M2.5 brass

inserts; this can be done with a hammer or with a vise. See Figure 6-82.

Next, solder the wires (wires should be no more than 10” long) onto the

micro motor; make sure you try to avoid melting the plastic housing on the

back of the motor. See Figure 6-83. Do this for both motors.

Figure 6-82.  Press the four brass inserts into the chassis

Chapter 6 Robot Engineering Requirements: Controlling Motion

352

Now take one of the female to female wire and cut two 2” pieces and

solder one side to the power side (red wire) of the 9V connector, and the

other will be soldered to the GND (black wire). See Figure 6-84. Use some

heat shrink to make sure there is no exposed wire.

Figure 6-83.  Solder the motors

Chapter 6 Robot Engineering Requirements: Controlling Motion

353

Now crimp the other side of the 28 AWG wire with the FCI female

sockets. See Figure 6-85. Do this for all four wires.

Figure 6-84.  Create the power cable

Chapter 6 Robot Engineering Requirements: Controlling Motion

354

Now insert these sockets into the blue FCI housing. Make sure the “+”

wire in the second hole (right side) of the FCI housing.

Go ahead and do this for the second wire as well, except put it in the

first hole (left side) of the FCI housing. See Figure 6-86.

Figure 6-85.  Crimp the FCI sockets to the motor wire

Chapter 6 Robot Engineering Requirements: Controlling Motion

355

Now go ahead and put the motor into the motor bracket. Be careful

with the wires as you don’t want to shear them off the motor. It is a snug fit,

but that is what we want. See Figure 6-87.

Figure 6-86.  Put the FCI sockets into the FCI housing

Chapter 6 Robot Engineering Requirements: Controlling Motion

356

Attach the motor brackets to the chassis, with the 2.5mm x 8mm

screws. See Figure 6-88.

Figure 6-87.  Put the micro motors into the motor brackets

Chapter 6 Robot Engineering Requirements: Controlling Motion

357

Attach the motor driver and the MEGA 2560 Pro to the chassis, with

the standoffs. It is easier to add the standoffs to the chassis first and then

attach the components to them. See Figure 6-89.

Figure 6-88.  Attach the motor brackets to the chassis

Chapter 6 Robot Engineering Requirements: Controlling Motion

358

Next, let’s attach the battery pack to the chassis. Use a zip tie to secure

it to the chassis. Make sure the 9V connector on the battery pack is on

the right side of the chassis and that the batteries are in the holder. See

Figure 6-90.

Figure 6-89.  Attach the motor driver and the MEGA 2560 Pro to the
chassis

Chapter 6 Robot Engineering Requirements: Controlling Motion

359

Now attach the caster wheel to the chassis, using the M3 x 10mm

screws and 25mm standoffs. See Figure 6-91.

Figure 6-90.  Attach the 6V battery pack

Chapter 6 Robot Engineering Requirements: Controlling Motion

360

Next, attach the two wheels to the two motors, using the wheel couples

and wheel set. See Figure 6-92.

Figure 6-91.  Attach the caster wheel

Chapter 6 Robot Engineering Requirements: Controlling Motion

361

Connect the FCI connectors from the motors to the motor driver. See

Figure 6-93.

Figure 6-92.  Attach the two 4” disk wheels; make sure you tighten the
set screws!

Chapter 6 Robot Engineering Requirements: Controlling Motion

362

Now it is time to connect the wires from the motor driver to the MEGA

2560 Pro. Connect GND from the motor driver to the GND on the MEGA

2560 Pro. See Figure 6-94.

Figure 6-93.  Attach the two motors to the two motor channels on the
motor driver

Chapter 6 Robot Engineering Requirements: Controlling Motion

363

Next, wire the motor controller in this configuration.

Figure 6-94.  Attach GND from the motor driver to the GND of the
MEGA 2560 Pro

Chapter 6 Robot Engineering Requirements: Controlling Motion

364

Now connect the positive side of the 9V connector to the +VIN of the

MEGA 2560 Pro, and finally connect the negative side of the 9V connector

to the GND of the MEGA 2560 Pro. See Figure 6-95.

Table 6-2.  Motor Driver Pinout

Motor Driver Pin MEGA 2560 Pro

GND GND

+5V +5V

+VIN +VIN

INV3 Digital Pin 12

INV1 Digital Pin 13

PWM2 Digital Pin 3

PWM1 Digital Pin 11

Chapter 6 Robot Engineering Requirements: Controlling Motion

365

And that is it! The first prototype chassis is finished as far as the hardware

is concerned; now it is time to tackle the software portion of this chapter.

�Writing the Software

Now, we will move on to the software for this project. We need to

communicate with both digital and analog pins. For this project, we will

be interfacing data by means of serial communication, so we must send in

multiple sets of data, specifically the direction of motor A, speed of motor A,

direction of motor B, and speed of motor B. We need to use comma-separated

Figure 6-95.  Connect the 6V power from the battery pack to the VIN
on the Arduino and then connect GND from the 6V battery pack to
GND on the Arduino

Chapter 6 Robot Engineering Requirements: Controlling Motion

366

format to parse the data to their respective digital or analog pins. After that, we

need to display the data on the serial monitor in this format:

Motor A

1

255

Motor B

1

255

Listing 6-1 shows the code.

Listing 6-1.  Code for the client’s project

const int fields = 4; // amount of values excluding the commas

int motorPins[] = {12,13,3,11}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

void setup()

{

 �Serial.begin(9600); // Initialize serial port to send and

receive at 9600 baud

 for (int i; i <= 3; i++) // set LED pinMode to output

 {

 pinMode(motorPins[i], OUTPUT);

 }

 �Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,Mo

toBSpe\n"); // \n is a new

 // line constant that will output a new line

}

void loop()

Chapter 6 Robot Engineering Requirements: Controlling Motion

367

{

if(Serial.available())

 {

 char ch = Serial.read();

 if(ch >= '0' && ch <= '9') // If it is a number 0 to 9

 {

 // �add to the value array and convert the character to an

integer

 values[index] = (values[index] * 10) + (ch - '0');

 }

 else if (ch == ',') // if it is a comma increment index

 {

 if(index < fields -1)

 index++; // increment index

 }

 else

 {

 for(int i=0; i <= index; i++)

 {

 if (i == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

 }

 if (i == 2)

 {

Chapter 6 Robot Engineering Requirements: Controlling Motion

368

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

 if (i == 0 || i == 1) // If the index is equal to 0 or 2

 {

 digitalWrite(motor�Pins[i], values[i]);

// �Here we see a logical error

 }

 if (i == 2 || i == 3) // If the index is equal to 1 or 3

 {

 analogWrite(motor�Pins[i], values[i]);

// Here we see a logical error

 }

 values[i] = 0; // set values equal to 0

 }

 index = 0;

 }

}

}

Notice that the code will run—with unexpected results. Look at the

initialization of motorPins, and you’ll see that the array is out of order

with the format we were given: motor A direction, motor A speed, motor

B direction, motor B speed. This is one of those pesky logical errors, and it

brings us to the next section, debugging the Arduino software.

Chapter 6 Robot Engineering Requirements: Controlling Motion

369

�Debugging the Arduino Software

Now that we have discovered the logical error, we need to fix it. Listing 6-2

contains the corrected array in bold.

Listing 6-2.  Corrected code for project 1

const int fields = 4; // amount of values excluding the commas.

int motorPins[] = {12,3,13,11}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

void setup()

{

 Serial.begin(9600); // �Initialize serial port to send and

receive at 9600 baud

 for (int i; i <= 3; i++) // set LED pinMode to output

 {

 pinMode(motorPins[i], OUTPUT);

 }

 Serial.println("The Format is:

MotoADir,MotoASpe,MotorBDir,MotoBSpe\n");

}

void loop()

{

if(Serial.available())

 {

 char ch = Serial.read();

 if(ch >= '0' && ch <= '9') // If the value is a number 0 to 9

 {

 // add to the value array

Chapter 6 Robot Engineering Requirements: Controlling Motion

370

 values[index] = (values[index] * 10) + (ch - '0');

 }

 else if (ch == ',') // if it is a comma

 {

 if(index < fields -1) // If index is less than 4 - 1

 index++; // increment index

 }

 else

 {

 for(int i=0; i <= index; i++)

 {

 if (i == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

 }

 if (i == 2)

 {

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

 if (i == 0 || i == 2) // �If the index is equal to 0

or 2

Chapter 6 Robot Engineering Requirements: Controlling Motion

371

 {

 digitalW�rite(motorPins[i], values[i]);

// Write to the digital pin 1 or 0

 // depending what is sent to the Arduino.

 }

 if (i == 1 || i == 3) // �If the index is equal to 1

or 3

 {

 analogWr�ite(motorPins[i], values[i]);

// Write to the PWM pins a number between

 // 0 and 255 or what the person entered

 // in the serial monitor.

 }

 values[i] = 0; // set values equal to 0

 }

 index = 0;

 }

}

}

At this point, I want to discuss the finer details of this code. The first thing

I want to point out is where we parse the data to be sent to the correct pins:

 if(ch >= '0' && ch <= '9') // If the value is a number 0 to 9

 {

 // add to the value array

 values[index] = (values[index] * 10) + (ch - '0');

 }

 else if (ch == ',') // if it is a comma

 {

 if(index < fields -1) // If index is less than 4 - 1

 index++; // increment index

 }

Chapter 6 Robot Engineering Requirements: Controlling Motion

372

 else

 // �This is where the data is passed to the digital

and analog pins

This part of the code first checks to see if an input character from 0 to 9

exists. If so, it converts the character type to an integer type by subtracting

by 0, which has an integer value of 48, and tells the microcontroller to see

this value as an integer instead of a character. Next, it checks to see if the

character is a comma. If so, it will check to see if the index is greater than or

equal to 3. If the value is less than 3, it will increment the index value. The

if-elseif statement handles any other values such as numerical values,

which is what the characters are converted to.

Next, I would like to discuss the parsing of the data to the digital and

analog pins and how we formatted the data on the serial monitor. The code

looks like this:

for(int i=0; i <= index; i++)

 {

 if (i == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

 }

 if (i == 2)

 {

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

Chapter 6 Robot Engineering Requirements: Controlling Motion

373

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

 if (i == 0 || i == 2) // �If the index is equal to 0

or 2

 {

 digitalW�rite(motorPins[i], values[i]);

// Write to the digital pin 1 or 0

 // depending what is sent to the Arduino.

 }

 if (i == 1 �|| i == 3)

// If the index is equale to 1 or 3

 {

 �analogWrite(motorPins[i], values[i]); // Write

to the PWM pins a number between

 // 0 and 255 or what the person entered

 // in the serial monitor.

 }

The for loop iterates through all the indexes (in this case, 0–3). The

first and second if statements and if-elseif statements are printing the

data to the serial monitor, which is where we get the format:

Motor A

1

255

Motor B

1

255

Chapter 6 Robot Engineering Requirements: Controlling Motion

374

Do you see an easier way of programming this format? (Hint: Use

switch.) After those if statements, we come to the code that separates the

data to its appropriate pin, which is what the company asked for, so the

format this code accepts is motor A direction (0 or 1), motor A speed (0 to

255), motor B direction (0 or 1), and motor B speed (0 to 255). Now that we

have the software sorted out, we can focus on testing the hardware.

�Troubleshooting the Hardware

When debugging, first start with the software unless there is an obvious

issue with the hardware. For example, a wire is not connected to the

correct pin. If you copied the code straight from this book, chances are it is

not a software issue. Next, we need to make sure we are entering data into

the serial monitor correctly. Type 1,255,1,255 into the serial monitor and

press the “Enter” key. Also, make sure the serial monitor is in “Newline”

configuration at the bottom right of the serial monitor. Now if none of that

resolves your issues, we need to move on to checking the hardware.

The first thing to check with the hardware is that the power and ground

are not shorted. There is an easy way to check this. Disconnect all power

from the Arduino and motor driver by disconnecting the 6V connector

on the battery pack. Configure your multimeter to check for continuity.

Continuity will check to see if a signal is connected to another signal.

Check your multimeter’s user manual to see which setting you need to be

in to check for continuity; normally, it is a secondary test to resistance or

sometimes the diode test. Now take the positive lead of the multimeter

and put it on the positive side of the 6V connector (the connector that

should now be disconnected from the battery pack). Go ahead and put the

negative lead of the multimeter to the GND side of the 6V connector. If you

see 0ohms or hear a beeping, you have a short somewhere between the 6V

battery pack and the Arduino or even the motor controller. See Figure 6-96.

Now if you want to check to see if the Arduino has the short, disconnect

VIN and GND from the motor controller to the Arduino. See Figure 6-97.

Chapter 6 Robot Engineering Requirements: Controlling Motion

375

Connect the two leads from the multimeter to the 6V power connector. See

Figure 6-98. If you get a short still, then chances are the Arduino you have

is defective, or you have a wire connected incorrectly (this has a higher

probability of being the problem than the first case). If you find that the

short is not on the Arduino, then it must be on the H-bridge itself. Check

the H-bridge orientation on the PCB and make sure the first pin is where it

is supposed to be. See Figure 6-99. Next, check the soldering of the IC and

make sure there are no shorts between pins that should not be connected

to each other. See Figure 6-100. You can use the large connector and make

sure none of these are shorted as well. I hope this helped to isolate the

problem if your problem was a short between +VIN and GND. If you don’t

find a short between +VIN and GND but instead have a short from +5V to

GND, do the same exact steps, just instead of connecting the multimeter to

+VIN, connect it to +5V on the Arduino.

Figure 6-96.  Check if there is a short between VIN and GND

Chapter 6 Robot Engineering Requirements: Controlling Motion

376

Figure 6-97.  Disconnect the VIN and GND from the motor
driver

Chapter 6 Robot Engineering Requirements: Controlling Motion

377

Figure 6-98.  Then check if there is a short between
VIN and GND

Chapter 6 Robot Engineering Requirements: Controlling Motion

378

Figure 6-99.  Make sure the chip is oriented in the correct
manner

Chapter 6 Robot Engineering Requirements: Controlling Motion

379

Now if you do not have a short at all, chances are you just have

something wired incorrectly; make sure your wiring matches Table 6-1

found in the “Assembly” section of this chapter.

If all wires are correctly in place, make sure they are connected by

using a continuity test from each of the wire’s destination. For example,

make sure you are getting a short when you connect +VIN from the motor

controller (pins 13 and 14 of the H-bridge) to the +VIN of the MEGA 2560

Pro. See Figure 6-101.

Figure 6-100.  Check for any shorts on the H-bridge

Chapter 6 Robot Engineering Requirements: Controlling Motion

380

Finally, you may need to make sure your motor controller is

manufactured correctly. If you did the soldering, then you can fix this

on your own, but if you had PCBWay or another board manufacturer

assemble your boards, you may want to make sure all the components are

on the board correctly and are the right parts.

Note  If you need to, copy and paste the code from the “Debugging
the Arduino Software” section to the Arduino IDE to make sure
everything is correct.

Figure 6-101.  Make sure all the pins are connected where they should
be. VIN is just one example

Chapter 6 Robot Engineering Requirements: Controlling Motion

381

�Finished Prototype

Naticom should be very happy with the first prototype as it has all the

features that Naticom wanted. Figure 6-102 shows the final first prototype.

�Summary
This was a very large chapter and covered a lot of old and new material.

Let’s review what we learned:

•	 Learned about what an H-bridge was and how it is used

•	 Learned about gathering requirements from a company

Figure 6-102.  Final prototype

Chapter 6 Robot Engineering Requirements: Controlling Motion

382

•	 Learned how to create a schematic and reinforced skills

learned in Chapter 5

•	 Learned how to create a multicomponent 3D model

•	 Learned how to take measurements of various pieces of

hardware

•	 3D printed and assembled a 100% custom chassis

•	 Learned how to control motors over the serial monitor

•	 Learned how to troubleshoot hardware and how to find

continuity issues within a circuit

�Exercise

	 1.	 Create your own 3D printed wheel that will still

connect to the aluminum motor couple. Be creative

as really you can make almost any kind of wheel you

want.

Chapter 6 Robot Engineering Requirements: Controlling Motion

383© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_7

CHAPTER 7

Final Project PCB
Moving into the major project for this book will not be easy as it will

involve a lot of different pieces, the first of which is the PCB for the MEGA

2560 Pro Arduino board. In this chapter, we will explore what it takes to go

from a requirements document to a finished PCB. Do not get discouraged

and always know that the final PCB can be downloaded, so that you can

review it and compare it to what you are currently doing. Like before, not

everything will be shown in this chapter for creating the schematic or

laying out the PCB, but anything that is new will be explained, so that you

don’t get lost in the schematic or layout because compared to the other

schematics in this book, it is the largest and most complex, which will lead

me to the next item on the agenda, creating different schematic pages.

�Creating Schematic Sheets
We have not covered sheets yet; they are very easy to use. All you need to

do is turn on the sheets window (if it is not already on); to do this, right-

click anywhere on the menus of the schematic page, and a window will

pop up. Select the “Sheets” option, and the Sheets window will appear.

See Figure 7-1. Now to make a new sheet, all you must do is right-click

a sheet and select “New” from the pop-up window. See Figure 7-2. That

about does it for Sheets; let us get into the project and see what we will be

making.

https://doi.org/10.1007/978-1-4842-6852-0_7#DOI

384

Figure 7-1.  Select the “Sheets” checkbox

Figure 7-2.  Right-click a sheet and select “New”

Chapter 7 Final Project PCB

385

�Final Project: NatBot
The NatBot product is an open source robot that will allow students or

professionals to gain experience with robots. Naticom wants you to design

and build this product to their specifications.

The NatBot is a complex robot that will require a PCB to be developed,

3D hardware to be designed and printed, and lastly software needs to be

created to control and receive information from the NatBot. Let us take a

deeper look at the requirements in the sections that follow.

�Requirements Gathering (PCB)
Naticom has put together a requirements document for each phase of the

NatBot. They are PCB, 3D model, software, and finally hardware/software

integration. For this chapter, we will be focusing on the requirements for

the PCB which are the following:

•	 Needs to run on four independent wheels that can be

controlled individually.

•	 Needs to be able to sense acceleration in X, Y, and Z

directions.

•	 Must use a rechargeable battery, preferably a single-

cell Li-Poly battery, and the battery must be able to be

charged on the NatBot via USB.

•	 Must be able to send and receive information over

Bluetooth.

•	 Must be able to detect objects in front of it at a range of

1.5in to 25in and must be able to work in sunlight.

•	 The robot must be able to run for 20mins.

Chapter 7 Final Project PCB

386

•	 The robot must have a temperature sensor with a

temperature sensing range of 0 to 100C with a +/– 5C

accuracy.

•	 The robot needs an OLED display to give some feedback

as to what the robot is doing. Must be around a 1in screen.

•	 Receive GPS information and store it on an onboard SD

card.

•	 The robot may need to have some breakouts for future

hardware/software updates.

Alright, those are not all very specific requirements, but they are

enough for us to start imagining what this PCB would need to fulfill these

requirements. In the next section, we will dive into the requirements and

lay out a plan to meet each of them.

�Outlining the Hardware Requirements
Alright, so we have several requirements; let us go through each bullet

point and put together a road map that will lead us to success:

•	 Needs to run on four independent wheels that can be

controlled individually.

This one is relatively straightforward; the NatBot

requires four wheels that will steer independently. This

can be accomplished using some geared DC motors and

maybe some Servos to turn the wheels.

•	 Needs to be able to sense acceleration in X, Y, and Z

directions.

Another straightforward request! We can use an

accelerometer to meet these requirements; there are plenty

of good accelerometers that are inexpensive and effective.

Chapter 7 Final Project PCB

387

•	 Must use a rechargeable battery, preferably a single-

cell Li-Poly battery, and the battery must be able to be

charged on the NatBot via USB.

This is also straightforward but will still be difficult

because we have so much hardware to power, and a 3.7V

2Ahr battery is still limited. We will need to use a couple

of boost regulators to power the various systems of the

NatBot. For example, we will need a separate regulator

for the microcontroller, the motors, and the servos as they

will run on different voltages. The charging circuit is very

straightforward as there are several circuits we can use.

•	 Must be able to send and receive information over

Bluetooth.

Again, this is a pretty simple request; we can use an

RN-42 Bluetooth module that will connect to the

Arduino via UART and fulfill this requirement.

•	 Must be able to detect objects in front of it at a range of

1.5in to 25in and must be able to work in sunlight.

Alright, this one could have multiple answers, but

because the product owner wants the device to work in

the sunlight, an ultrasonic sensor would probably work

the best as it does not require any light to determine

distance and is also affordable.

•	 The robot must be able to run for 10 to 20mins.

This is more of a power requirement than anything

else. We just need to calculate the current draw of

each device we choose and make sure it falls into the

threshold 10 to 20mins.

Chapter 7 Final Project PCB

388

•	 The robot must have a temperature sensor with a

temperature sensing range of 0 to 100C with a +/– 5C

accuracy.

Okay, here is another sensor for the robot that will be

easy to furnish. There are many temperature sensors

we can choose from, and many of them check all the

boxes of this requirement.

•	 The robot needs an OLED display to give some

feedback as to what the robot is doing. Must be around

a 1in screen.

This can be tricky to find, but there are a lot of drop-in

LCDs that we can use to fulfill this requirement.

•	 Receive GPS information and store it on an onboard

SD card.

This requirement is straightforward as well; we will

probably use a drop-in GPS module that will only

require us to route a single connector.

•	 The robot may need to have some breakouts for future

hardware/software updates.

We will need to make sure we add some duplicate

headers to the PCB so that the users can add their

own hardware if needed.

Okay, now that we have a good idea as to what we

will need to do in order to fulfill these requirements,

we can start to talk about the actual hardware we

are going to implement and how we will implement

each piece of hardware.

Chapter 7 Final Project PCB

389

�Creating the NatBot PCB
In this section, I want to go over creating the PCB’s dimensions because

there are a few new things that need to be explained. Figure 7-3 shows the

dimension layer of the NatBot; you will notice the additional holes that are

used to pass wires from the servo motors and the DC motors to the main

board.

Let us look at how to make these four rectangles into the PCB

dimensions.

	 1.	 Create a new schematic and board file and name it

NatBot v1.0.

	 2.	 Open the board file in Eagle.

	 3.	 The size of the NatBot will be 160mm by 100mm,

which is the initial board size that Eagle starts with,

so you should not have to change these dimensions.

See Figures 7-4 and 7-5.

Figure 7-3.  Final board dimensions

Chapter 7 Final Project PCB

390

Figure 7-5.  Vertical length

Figure 7-4.  Horizontal length

Chapter 7 Final Project PCB

391

	 4.	 Select the “Rect” function. See Figure 7-6.

Figure 7-6.  Select Rect from the functions menu

Chapter 7 Final Project PCB

392

	 5.	 Select the Holes layer. See Figure 7-7.

	 6.	 Left-click within the board perimeter and create a

rectangle. Do not make it too large. See Figure 7-8.

Figure 7-7.  Select the “Holes” layer

Figure 7-8.  Add a rectangle to the layout

Chapter 7 Final Project PCB

393

	 7.	 Create three more of these rectangles. See Figure 7-9.

	 8.	 Click “Info” and select the bottom-left rectangle.

Enter in these values. See Figure 7-10.

Figure 7-9.  Add the rest of rectangles to the layout

Figure 7-10.  Dimensions of the bottom-left rectangle

Chapter 7 Final Project PCB

394

	 9.	 Here are the top-left rectangle values. See Figure 7-11.

	 10.	 Here are the top-right rectangle values. See Figure 7-12.

Figure 7-11.  Dimensions of the top-left rectangle

Figure 7-12.  Dimensions of the top-right rectangle

Chapter 7 Final Project PCB

395

	 11.	 Here are the bottom-right rectangle values.

See Figure 7-13.

	 12.	 Now we just need to add dimension lines to each

of the rectangles. To do this, select the “Line”

function and trace around each of the rectangles.

See Figures 7-14 and 7-15.

Figure 7-13.  Dimensions of the bottom-right rectangle

Figure 7-14.  Select the Line function

Chapter 7 Final Project PCB

396

	 13.	 That should do it; the final product should look

something like this. See Figure 7-16.

Figure 7-15.  Add the outline to each of the four rectangles

Figure 7-16.  Final dimension layout

Chapter 7 Final Project PCB

397

Alright, now that that part is squared away, we can take a look at the

ground planes for the NatBot. This will be a little different as we have an

antenna that cannot have anything under it; this is so there is no distortion

in the signal. Let us take a look on how to accomplish this.

	 1.	 Select the “Polygon” function, select the tKeepout

layer, select the right-angle trace, and select a

0.254mm as the trace width. See Figure 7-17.

Figure 7-17.  Select the Polygon function and use these perimeters

Figure 7-18.  Add a top layer keepout zone under the Bluetooth
antenna

	 2.	 Create a polygon like the one shown in Figure 7-18.

Chapter 7 Final Project PCB

398

	 3.	 Do the same for the bKeepout layer.

	 4.	 Now select the “Polygon” function again, and start

to make the top GND plane, but once you get to the

keepout zone, go around it. See Figure 7-19.

	 5.	 Do the same for the bottom ground plane.

	 6.	 That will do it for the ground plane. One thing to

make sure is that you do not clip out any used pins

with the keepout zone.

Figure 7-19.  Route the ground plane around the keepout zones

Chapter 7 Final Project PCB

399

That sums up all the new techniques we need in order to create the

NatBot. The next section will cover the new hardware for this project, what

the schematic should look like, and finally how each of the components

should be routed.

�Hardware Explained: The NatBot PCB
In this section, we are going to explore the hardware that we will use to

fulfill all the requirements of the NatBot project. This will also include the

schematic and routing of the various pieces of hardware. All the knowledge

you learned in the previous chapters will be used here; if there is anything

new to explain, it will be in the next section of this chapter. If you find that

you are stuck, you may want to look at Chapters 5 and 6.

DC Motor

Description:

We will be using a geared micro motor at 180 rpm that has a no-load

current of 20mA; these motors will meet all requirements by the product

owner. The following link will direct you to the seller of this product:

Micro DC Motors

Schematic:

There are four of these motors, so we will need to use two H-bridges

to control all four motors. We will also need four PWM outputs and

four regular digital outputs. Figure 7-20 illustrates the schematic for the

H-bridges.

Chapter 7 Final Project PCB

https://www.pololu.com/product/2209

400

Layout:

The layout for the H-bridges is much like the layout of the previous

chapters’ H-bridge. One thing to be concerned about is if you have other

signal wires under the H-bridge because it can spike and cause noise on

signal lines that can cause problems with other circuits. Figures 7-21A

through 7-21F illustrate the layout of both H-bridges and motor connectors.

Figure 7-20.  H-bridge and motor header schematic

Figure 7-21A.  Bottom H-bridge configuration

Chapter 7 Final Project PCB

401

Figure 7-21B.  Top H-bridge configuration

Figure 7-21C.  Bottom-left motor header

Chapter 7 Final Project PCB

402

Figure 7-21D.  Top-left motor header

Figure 7-21E.  Top-right motor header

Chapter 7 Final Project PCB

403

Figure 7-21F.  Bottom-right motor header

IO on MEGA 2560:

M1PWM D44

M1DIR1 D42

M2PWM D46

M2DIR1 D40

M3PWM D12

M3DIR1 D25

M4PWM D13

M4DIR1 D26

Chapter 7 Final Project PCB

404

Servo

Description:

We will be using a micro servo for our robot because we need it to be

able to power four of these at the same time, and larger servos require a lot

of power; a simple hobby servo can draw 1 to 2 amps which is quite a bit

for our tiny robot. The GH-S37D micro servo is perfect for our applications

as they are small and require a lot less power >300mA to start and to run

around 40mA with no load. One thing to also be careful with is the torque

and strength of the servo motor. We cannot make the apparatus that holds

these servos too heavy, and the robot itself must not be too heavy as the

servo motors will have a hard time turning the wheels of the robot. A lot of

design will need to go into figuring out a suitable mount for these servos.

Micro Servos

Schematic:

The schematic for the four servos is very simple, just a header with

GND, +6V, and signal; also, adding a 0.1uF capacitor to lower the noise is a

good practice. See Figure 7-22.

Chapter 7 Final Project PCB

https://www.amazon.com/YoungRC-Aeromodelling-Aircraft-Direction-Helicopter/dp/B082SM99HL/ref=pd_ybh_a_4?_encoding=UTF8&psc=1&refRID=T7SX3BXNQZVMTJSHWTQ8

405

Layout:

The layout for the servos needs to be a bit strategic because both the

DC motors and the Servos need to be in the same area, and we need an

area for the servo motor wires to come up through the PCB and the chassis.

We also need to make sure we do not put any Servo signal wires under any

high noise hardware such as the H-bridges. Figures 7-23A through 7-23E

illustrate the layout of the Servo headers and the connection to the MEGA

2560 Pro.

Figure 7-22.  Servo header schematic

Chapter 7 Final Project PCB

406

Figure 7-23A.  Bottom-left Servo header (Servo3)

Figure 7-23B.  Top-left Servo header (Servo1)

Chapter 7 Final Project PCB

407

Figure 7-23C.  Top-right Servo header (Servo2)

Figure 7-23D.  Bottom-right Servo header (Servo4)

Chapter 7 Final Project PCB

408

IO on MEGA 2560:

SERVO1 D4

SERVO2 D5

SERVO3 D6

SERVO4 D7

Figure 7-23E.  Servo headers connected to the MEGA 2560 Pro

Chapter 7 Final Project PCB

409

Accelerometer

Description:

The accelerometer is a very cool piece of hardware that allows you to

detect acceleration in the X, Y, and Z plane. The particular accelerometer

we will be using is an ADXL362; this accelerometer will allow us to detect

certain acceleration, for example, if the robot flips over or if the robot

crashes. The ADXL362 works with 3.3V microcontrollers, so since the

MEGA 2560 Pro is a 5V device, we will need to use a level shifter to make

sure we do not fry the ADXL362. The ADXL362 uses SPI, which means we

will need to connect it to the MEGA 2560 Pro’s SPI pins and a CS pin.

ADXL362

Schematic:

There are a few things to consider for the schematic. One is that there

is a level shifter that connects to MOSI, SCK, and CS. You may notice that

MISO is not connected to the level shifter; this is on purpose as the MEGA

2560 is the master device, and the ADXL362 is the slave device, hence the

name Master In Slave Out (MISO). A filter cap is added to remove any

noise from the 3V3 power bus. See Figure 7-24.

Figure 7-24.  Accelerometer schematic with level shifter

Chapter 7 Final Project PCB

https://www.digikey.com/product-detail/en/analog-devices-inc/ADXL362BCCZ-RL7/ADXL362BCCZ-RL7CT-ND/3758437

410

Layout:

The layout is pretty uneventful other than the fact that the pads of the

ADXL362 are very small, which means we need to use smaller traces, so

we don’t short any pins together. For that, we will be using 12mil traces for

the signal wires and 16mil traces for the 3V3 power bus. The level shifter

is much easier to route as it has larger pads and has plenty of room in

between the pads. See Figure 7-25.

Figure 7-25.  Accelerometer layout

IO on MEGA 2560:

MOSI D51

MISO D50

SCK D52

CS D27

Chapter 7 Final Project PCB

411

Charging Circuit

Description:

The charging circuit is actually the same circuit found on the SparkFun

LiPo Charger Basic; the only difference is how it is connected to the

boost regulators. The IC we are using to charge the 2000mAh battery is a

MCP73831 which is a single-cell charger for Li-Ion and Li-Poly batteries.

Since we are going to use a single-cell Li-Poly battery, this is the perfect

charge management controller. We will keep it set at a charge rate of

500mAh, which means if the 2000mAh battery is completely depleted, it

will take 4 hours to charge. It is also important to note that you should look

at the datasheet of each of these ICs for layout guidelines.

MCP73831T

Schematic:

The schematic is pretty simple; you charge the battery over USB at

500mAh, which is set by the 2.0k resistor on the programming line (Pad 5).

Also, S1 is used to send the VCC line to the VCCP which is connected to the

two boost regulators, or it will disconnect power from the boost regulators

for charging purposes. See Figure 7-26.

Figure 7-26.  Charge circuit schematic

Chapter 7 Final Project PCB

https://www.digikey.com/product-detail/en/microchip-technology/MCP73831T-2ACI-OT/MCP73831T-2ACI-OTCT-ND/1979802

412

Layout:

The layout is very similar to the recommended layout in the datasheet

minus the vias for heat dissipation. See Figure 7-27.

Figure 7-27.  Charge circuit layout

Buck/Boost Regulator

Description:

There are two boost regulators on the NatBot; one is for stepping up

the 3.7V single-cell Li-Poly battery to 6V for the DC motors and the servo

motors, and the other is used to power the MEGA 2560 Pro. The first boost

regulator is the S18V20F6 regulator which will boost our 3.7V to 6V for the

DC motors and the servo motors and will allow for up to 2A to be drawn.

The second boost regulator is a S9V11MA and can be adjusted using a

small screwdriver. The input for this will be the batteries’ voltage, and the

output will be 8V at about 1.5A. Setting this should be done on a solderless

breadboard with a meter reading the output voltage.

Chapter 7 Final Project PCB

413

8V Boost Regulator
6V Boost Regulator

Schematic:

This is a very simple schematic for the 8V regulator as it is just a five-

pin header with a 0.1in pitch. The 6V regulator requires a special footprint,

which can be found in the course materials for this book and was supplied

by SnapEDA. Both enables for the regulators are broken out, and the

PG (Power Good indicator) is also broken out and is very useful to test

brownout conditions for the 8V regulator. See Figure 7-28.

Layout:

The layout for the 8V regulator will require us to route VCCP to

VIN, and VOUT is connected to the VIN of the MEGA 2560 Pro. GND is

connected to the ground, and EN and PG are broken out on a header.

For the 6V regulator, VIN is connected to VCCP, and VOUT is connected

to each of the micro motor 6V pins and each of the 6V Servo pins. GND

is connected to the ground, and the EN is broken out to a header. See

Figures 7-29A and 7-29B.

Figure 7-28.  Buck/boost schematic

Chapter 7 Final Project PCB

https://www.pololu.com/product/2869
https://www.pololu.com/product/2575

414

Figure 7-29A.  6V boost regulator layout

Chapter 7 Final Project PCB

415

IO on MEGA 2560:

8V regulator VOUT VIN

Bluetooth

Description:

We will be using the RN-42 for our Bluetooth communication module.

It will allow us to control the robot with another application. The RN-42

is a UART Bluetooth module that has four connections to the MEGA 2560

Pro. The first line is 3.3V; this is power from the linear regulator on the

MEGA 2560 Pro. The second is an RX which will receive messages from

our program and then relay those messages to the MEGA 2560 Pro, for

example, when we want to tell the robot to turn. The TX will transmit data

back to our program, for example, sending GPS data back to the program.

There is a level shifter on the TX; this is so when we send data to the RN-42,

we don’t damage it as it cannot handle the 5V signal from the MEGA

2560 Pro. The reset line for the Bluetooth module is also broken out for

Figure 7-29B.  8V boost regulator layout

Chapter 7 Final Project PCB

416

debugging purposes. The Bluetooth module will use Serial1. You may

wonder why this is connected to Serial1 and not Serial0; this is so we can

program the MEGA 2560 Pro without having to disconnect anything from

the TX and RX lines.

RN-42

Schematic:

This is a pretty easy schematic because the RN-42 can be found in

the SparkFun library. Remember to flip the TX and RX signals at the

microcontroller’s headers. See Figure 7-30.

Layout:

The footprint for the RN-42 is a bit different than the actual footprint

we will use; this can be changed, or if you are like me, you can ask the

board manufacturer to put Kapton tape over the pads to make sure they

don’t short to anything, and also make sure you do not route these pads as

the GND will then be right under the antenna and may cause intermittent

issues. Also, you will notice a keepout zone around the antenna; this just

means no routes can go under the antenna. See Figure 7-31.

Figure 7-30.  Bluetooth schematic

Chapter 7 Final Project PCB

https://www.mouser.com/ProductDetail/Microchip-Technology/RN42-I-RM?qs=L6Bu%2BmzjsgnB3cElw8OrzA==&gclid=CjwKCAjw4rf6BRAvEiwAn2Q76r17s-Md38pD4WdZfoES1u2ni1Yy5-n__HWJM3DQlKjDlW2k6K6xNhoCbIIQAvD_BwE

417

IO on MEGA 2560:

RX_BT D18

TX_BT D19

Ultrasonic Sensor

Description:

This sensor will allow us to detect items in front of the robot; the sensor we

will be using is the Parallax PING Ultrasonic sensor. This sensor uses a digital

line to pulse out a high-frequency sound that sound bounces back and based

on the amount of time it takes for the sound to get back is the distance of the

object in front of the robot. The PING can sense objects from 2cm to 3m.

Figure 7-31.  Bluetooth layout

Chapter 7 Final Project PCB

418

Parallax Ping Ultrasonic Sensor

Schematic:

The header will have three pins; they are 5V, GND, and U_SIG. The

only thing extra is a filter capacitor for noise reduction. See Figure 7-32.

Layout:

This device needs to sit at the front of the robot and not too close to the

RN-42 as we do not want to interfere with the antenna. Other than that, it is

a pretty easy layout. See Figure 7-33.

Figure 7-32.  Ultrasonic schematic

Chapter 7 Final Project PCB

https://www.robotshop.com/en/parallax-ping-ultrasonic-sensor.html?utm_source=google&utm_medium=surfaces&utm_campaign=surfaces_across_google_usen&gclid=CjwKCAjw4rf6BRAvEiwAn2Q76rCSaoDMFl-usX8L5lTE3GndL7Og_Vtl8BGollabKJ1qgg5NJNgdkhoCtn8QAvD_BwE

419

IO on MEGA 2560:

U_SIG D22

Temperature Sensor

Description:

We will be using a TMP36 for our temperature sensor, which can

read a range of temperatures from –40C to 125C; it uses an analog input,

which means we will scale this range from 0 to 1023 and should get a

good accuracy +/–2C. With a simple equation, you can calculate the

temperature: C = 100 * (Voltage) – 50.

Figure 7-33.  Ultrasonic layout

Chapter 7 Final Project PCB

420

TMP36

Schematic:

It is a very simple circuit; all it requires is the TMP36 and a filter cap.

The TMP36 has three pins; they are 5V, GND, and signal. The signal line

will go into the A0 pin of the MEGA 2560 Pro. See Figure 7-34.

Layout:

The TMP36 is a pretty small package, so it does not take up too much

board space; also, its routing is very easy as it only has three pins. See

Figure 7-35.

Figure 7-34.  Temperature sensor schematic

Chapter 7 Final Project PCB

https://www.adafruit.com/product/165?gclid=Cj0KCQjwhb36BRCfARIsAKcXh6H5mUj-XKBvsFpV-xYuN2Kh9_4rGtaDCciz-etyhL7mQT3tXp2aFQ0aArc9EALw_wcB

421

IO on MEGA 2560:

TMP36 A0

OLED Display

Description:

The OLED display that will be used is a combination OLED SD card

read/write which will allow us to do some data logging as well as display

data on the OLED. The OLED we will use is a 16-bit color OLED from

Adafruit, which also includes a nice library for adding text and shapes to

the OLED. This is an SPI device, so it will use MOSI, MISO, SCK, and two

CS pins, one for the OLED and the other for the SD card. This breakout

board also already has on board level shifting, so there is no need for

extra components on the main board. DC (Data/Command) when this

pin is high, it interprets data as a command, and when this pin is low,

it interprets that data as data; more on this later when we get into the

software. The Res pin is also broken out; this is a reset pin for the OLED—

when it is held low, the chip is reset. A normal operation for the reset pin is

held high.

Figure 7-35.  Temperature sensor layout

Chapter 7 Final Project PCB

422

OLED

Schematic:

This device will connect to SPI and will have two CS pins, one for the

OLED and the other for the onboard SD card read/write. See Figure 7-36.

Layout:

The layout is just as easy as it is a ten-pin header. See Figure 7-37.

Figure 7-36.  OLED schematic

Chapter 7 Final Project PCB

https://www.adafruit.com/product/684

423

IO on MEGA 2560:

SDC D30

OC D31

DC D28

R D29

Figure 7-37.  OLED layout

Chapter 7 Final Project PCB

424

GPS

Description:

The GPS we are using is a UART GPS, which means it will again use a

serial line just like the Bluetooth module. TX_GPS and RX_GPS are used to

send and receive information from the GPS module. Hardware wise, this

device is very simple to connect to. The software on the other hand may be

a bit more challenging.

UART GPS

Schematic:

We are going to use a six-pin JST header that will connect the GPS

module directly to the Serial2 and is powered by 5V from the MEGA 2560

Pro. See Figure 7-38.

Figure 7-38.  GPS schematic

Chapter 7 Final Project PCB

425

Layout:

The layout is also nice as it is just a 90-degree JST six-pin header with a

filter capacitor. We must make sure we watch out for electrical noise on the

RX and TX lines. See Figure 7-39.

IO on MEGA 2560:

TX_GPS D17

RX_GPS D16

Figure 7-39.  GPS layout

Chapter 7 Final Project PCB

426

Headers

Description:

The headers for the MEGA 2560 Pro are Samtec connectors that can be

ordered with these part numbers:

SSW-121-02-T-D	 42  pin header	 2 x 21

SSW-103-02-T-D	 6   pin header	 2 x 3

SSW-116-02-T-D	 32  pin header	 2 x 16

Schematic:

This is where we tie everything together to communicate with the

NatBot. It may look complex, but it is very simple. Normally, this is the last

page that is finished because it has all the signal lines going to and from in.

See Figure 7-40.

Figure 7-40.  Header schematic

Chapter 7 Final Project PCB

427

Layout:

The layout is very simple as there is already a nice footprint for the

MEGA 2560 Pro here:

https://robotdyn.com/mega-2560-pro-mini-atmega2560-16au.html

See Figure 7-41.

IO on MEGA 2560:

The entire MEGA 2560 Pro

Figure 7-41.  Header layout

Chapter 7 Final Project PCB

https://robotdyn.com/mega-2560-pro-mini-atmega2560-16au.html

428

�PCB Bill of Materials (BOM)
The PCB Bill of Material is included with this book online; make sure you

get it if you plan on having PCBWay or some other board manufacturer.

One thing to make sure you do is reply to the board manufacturer if

they have any questions about the board. For example, they may ask for

images of the orientation of the LEDs. They may also ask if they can use

an alternative device. Another question could be about the footprints

mismatching, which in the NatBot’s case the Bluetooth module has those

three extra pads, so I asked them to put some Kapton tape down over

them, and PCBWay did exactly that. So just make sure you stay in contact

with them as they will always have questions about the board you want

manufactured. The BOM included with this book was the actual BOM I

used with PCBWay in order to create the NatBot board. If you wanted to

do this from scratch, you would need to source each of the components

used on the NatBot; one thing to make sure is that the parts are in stock.

This may seem like a simple task, but sometimes it is not trivial as parts go

out of stock very often, and you will need to find another source for that or

those components.

�Finished Prototype

Alright, assuming everything went well with the manufacturing of the

PCB, we should have a fully functioning NatBot PCB. Later on, we will

test to make sure everything is working as expected, and if there are any

issues, they will need to be fixed, and the PCB will need to be REVed. See

Figures 7-42 and 7-43.

Chapter 7 Final Project PCB

429

Figure 7-42.  Manufactured board from PCBWay

Chapter 7 Final Project PCB

430

�Summary
Well, this chapter started off with a review on making schematic sheets for

the NatBot. We then dived headfirst into the requirements document for

the NatBot; after that, we looked at how we will meet those requirements.

Next, we looked at a few new functions that will help us make the

dimensions of the NatBot as well as how to make sure nothing is routed

under the Bluetooth antenna. Then we took a look at the main individual

hardware that will be used for the NatBot; this included a discussion on

what device would be used, what the schematic looks like, the layout of the

hardware, and finally the pins used from the device to the MEGA 2560 Pro.

I then discussed the BOM for the NatBot and some pointers on how to get

it manufactured. Finally, we took a look at the prototype PCB that will be

tested in the integration phase of this project.

Figure 7-43.  Final board with all PCB level hardware soldered

Chapter 7 Final Project PCB

431© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_8

CHAPTER 8

Final Project 3D Model
In this chapter, we will explore the 3D Modeling and printing of the NatBot.

Just like the previous chapter, I will explain all new features used to create

the 3D models. The first thing we will talk about is the requirements for

the 3D chassis of the NatBot. Then we will look at the new functions used

to create all the 3D models for the NatBot. Next, we will talk about each

individual model and what measurements are important in order to

make each of these mounts, brackets, and so on. After that, we will take

a look at setting up the 3D printer to print each of these models using

the Simplify3D slicer. Finally, we will look at the assembly of the NatBot

which will include a short list of hardware needed in order to put together

the NatBot. If you do have any issues with the model, don’t worry; the

full model is supplied with this book. If you need to reference it, that is

perfectly fine. So, now that the introduction is completed, let us take a look

at the requirements for the NatBot.

�Final Project: NatBot
The NatBot requires a modular chassis that will allow for later updates to

be implemented when necessary. This chassis should be able to be 3D

printed on most standard 3D printers. The NatBot chassis should resemble

a rover-style robot with four wheels that can be independently controlled.

See Figure 8-1.

https://doi.org/10.1007/978-1-4842-6852-0_8#DOI

432

�Requirements Gathering (3D Model)
Naticom has put together a requirements document for the 3D model

portion of the design. They are

•	 Mounts for the motors should be independent of the

chassis for easy printing and to make the NatBot more

modular.

•	 The PCB should sit on top of the NatBot chassis for easy

access.

•	 The GPS needs a mount hovering over the NatBot PCB.

•	 The LCD needs a mount hovering over the NatBot PCB.

•	 The Ultrasonic Sensor needs to be placed in the front of

the NatBot chassis.

•	 The NatBot needs to have a rover-like appearance.

Figure 8-1.  A fully assembled NatBot

Chapter 8 Final Project 3D Model

433

•	 The battery needs to be secure and located close to

power input.

•	 The NatBot needs to have a panel mount micro USB

port for ease of programming the robot.

•	 The NatBot should not be more than 200 x 150 x

175mm.

•	 Wheels should be modular and generic and do not

exceed 60mm in diameter.

Okay! So, we have our requirements; we should be able to think

through them and start to design the NatBot. In the next section, we will

discuss each requirement and come up with a solution for each.

�Outlining the 3D Model Requirements
Alright, we have several requirements; let us go through each of the bullet

points and start putting together a robot chassis:

•	 Mounts for the motors should be independent of the

chassis for easy printing and to make the NatBot more

modular.

This pretty much means we need to have the

motor mounts separate from the main chassis to

make them easy to print, and also if the customer

(Naticom) wants to add or update the mounts later,

they can. The motors need to be independent and

should resemble a rover-style set of motor mounts.

•	 The PCB should sit on top of the NatBot chassis for easy

access.

Chapter 8 Final Project 3D Model

434

Another easy requirement, just make the PCB the

“Lid” of the chassis; we will need to make sure that

we have at least four of the five mounting holes on

the PCB and have mounting posts, so the board is

secured. We might even use brass inserts for more

rigidity.

•	 The GPS needs a mount hovering over the NatBot PCB.

•	 The LCD needs a mount hovering over the NatBot PCB.

•	 The Ultrasonic Sensor needs to be placed in the front of

the NatBot chassis.

We will need to create mounts for the GPS, LCD,

and Ultrasonic Sensor; these can be fastened with

hardware so the mounts should be able to handle

vibration. We will also need to make sure each of

these components is away from other hardware on

the NatBot PCB. The Ultrasonic Sensor needs to be

placed at the front of the NatBot which will also help

with the rover appearance requirement.

•	 The NatBot needs to have a rover-like appearance.

As stated earlier, all features will give the appearance

of a rover-style robot.

•	 The battery needs to be secure and located close to

power input.

The battery will need to be in an easy access area

and secured to the chassis; it should also be close to

its input as the battery cable is not very long.

•	 The NatBot needs to have a panel mount micro USB

port for ease of programming the robot.

Chapter 8 Final Project 3D Model

435

The NatBot will have a panel mount micro USB port

at the front of the robot to make it easier to program;

without this panel mount, the user would have to

remove the NatBot PCB every time they wanted to

program it.

•	 The NatBot should not be more than 200 x 150 x

175mm.

The NatBot cannot be more than 200mm long,

150mm wide, and 175mm tall. This will be a small

rover, but it will still be a challenge to meet this

requirement with such a large PCB.

•	 Wheels should be modular and generic and do not

exceed 60mm in diameter.

They do not give us too much information on this, so we will just

develop a simple 50mm wheel that will directly connect to the metal hubs

we used for the previous project.

�Fusion 360 Functions Explained
In order to create some of the 3D models, you will need to understand a

few different functions in Fusion 360 that we have not used yet. The first

function we will talk about is copying and pasting a 3D component, the

second function is creating and using offset planes, and the third is using

the Circular Pattern function. Let us get started with the first function,

copying and pasting a 3D component.

	 1.	 First, open Fusion 360 if it is not already opened.

	 2.	 Create a new component and name it “Cube.” See

Figure 8-2.

Chapter 8 Final Project 3D Model

436

	 3.	 Create a 5mm by 5mm by 5mm cube. See Figure 8-3.

Figure 8-2.  Create a new component named “Cube”

Chapter 8 Final Project 3D Model

437

	 4.	 Right-click the cube component and select “Copy.”

Figure 8-3.  5 x 5 x 5mm cube

Chapter 8 Final Project 3D Model

438

	 5.	 Then right-click the Cube_Copy assembly and

select “Paste New.” This will create a new body that

is separate from the original cube. This is important

if you want to modify just one of the components.

This was used with the wheelbases of the rover.

See Figure 8-5.

Figure 8-4.  Select “Copy”

Chapter 8 Final Project 3D Model

439

	 6.	 Notice that if you select the copied cube and change

it, the original does not change with it. See Figure 8-6.

Figure 8-5.  Select “Paste New”

Chapter 8 Final Project 3D Model

440

	 7.	 If you do want all of the components to match, then

all you need to do is select “Paste” instead of Paste

New.” See Figure 8-7.

Figure 8-6.  The pasted component is a completely separate
component

Chapter 8 Final Project 3D Model

441

So that is how you can copy a component; most of the time, you

probably won’t mind if all of the components are identical, but sometimes

(like in the case of the wheelbase models) you will want to copy a model

just to modify that specific model and not the original. Next, let us talk

about how to create an offset plane.

	 1.	 Using the same example from the previous section,

select one of the faces on a cube. See Figure 8-8.

Figure 8-7.  If you just paste a component, both components will
share dimensions

Chapter 8 Final Project 3D Model

442

	 2.	 Select Construct ➤ Offset Plane. See Figure 8-9.

Figure 8-8.  Select a face on a cube

Chapter 8 Final Project 3D Model

443

	 3.	 Now move the offset plane to 10mm. See Figure 8-10.

Figure 8-9.  Select the “Offset Plane”

Chapter 8 Final Project 3D Model

444

	 4.	 Now with this plane, you can create a sketch; you

can even project faces onto the offset plane that can

be used to make other bodies.

Offset planes can be used for a number of things for the rover; it was

used to create the rover wheels. It made it easy to capture a center point for

the motor shaft. Finally, we can talk about the last Fusion 360 function, the

Circular Pattern function.

	 1.	 Create a new model in Fusion 360.

	 2.	 Create a cylinder with a diameter of 50mm and a

height of 10mm. See Figure 8-11.

Figure 8-10.  Make the offset plane 10mm from the cube

Chapter 8 Final Project 3D Model

445

	 3.	 Create a new sketch and make a 10mm circle

around the center point of the top of the cylinder.

See Figure 8-12.

Figure 8-11.  Create a new component and make a cylinder

Chapter 8 Final Project 3D Model

446

	 4.	 Make this circle a construction line by selecting it

and pressing the “x” key.

	 5.	 Draw a 3mm circle on the perimeter of the 10mm

circle. See Figure 8-13.

Figure 8-12.  Create a 10mm circle on the cylinder

Chapter 8 Final Project 3D Model

447

	 6.	 Select the Circular Pattern from the CREATE menu

at the top. See Figure 8-14.

Figure 8-13.  Create a 3mm circle on the perimeter of the 10mm
circle

Chapter 8 Final Project 3D Model

448

	 7.	 Select the 3mm circle as the “Object,” and the

“Center Point” will be the center of the 10mm circle.

You will notice once you select these, you will have

three circles on the screen; you can add more just by

increasing the quantity. See Figures 8-15 and 8-16.

Click “OK” when you are done, and you will see that

these circles have been populated.

Figure 8-14.  Select “Circular Pattern”

Chapter 8 Final Project 3D Model

449

Figure 8-15.  Notice three circles populate on the cylinder

Chapter 8 Final Project 3D Model

450

	 8.	 Click Finish Sketch.

	 9.	 Select the six circles and press the “E” key. Extrude

these holes to the bottom side of the cylinder. See

Figure 8-17.

Figure 8-16.  For the quantity, put “6”

Chapter 8 Final Project 3D Model

451

Alright! That puts us in a good spot to start to talk about the various

models you will be creating in this chapter. The next section will discuss

each of these models.

�Features of the NatBot 3D Model Explained
In this section, we will go through each 3D model that is needed to create

the NatBot. Each part is explained, and each important dimension is

discussed to make it easier to create the 3D model. Remember, you have

some creative license here; you can make the NatBot exactly as this book

does, or you can make the NatBot your own. It is entirely up to you. Let us

get started.

Figure 8-17.  Extrude to make six holes

Chapter 8 Final Project 3D Model

452

NatBot Chassis

So the NatBot needs to have a few features that will hold the PCB and the

battery in place. The motor assemblies and the GPS, LCD, and Ultrasonic

mounts need to attach to it. Finally, there needs to be a place for a micro

USB panel mount. The nice thing is the GPS, LCD, Ultrasonic Sensor, and

the motor assembly mounts are all going to be designed by us, so we can

make them any style we want. The same goes for the PCB, but we have

already designed it a certain way, so we need to make sure we capture the

PCB properly. The micro USB panel mount will need to have a spot made

for it as we had to source that component.

Let us look at each section of the chassis.

Battery Holder

This is a simple holder as it captures the battery and then has four holes for

zip ties to keep the battery contained. See Figure 8-18.

Chapter 8 Final Project 3D Model

453

Figure 8-18.  Dimension of the battery holder on the NatBot
chassis

The key measurements are the batteries’ length, width, and height.

Chapter 8 Final Project 3D Model

454

Motor Assembly Mounts

The motor assemblies are our creation. Naticom has suggested they do

want to keep it modular for future upgrades, and the PCB does include

four servo motor channels, so we might want to make the mounts the same

as a small servo, so if they want to use those mounts with servos, they can.

See Figure 8-19.

The key dimensions are the small Servo that could be used later for the

NatBot. This includes the length, width, and height of the servo motor.

Ultrasonic Sensor Mount

To mount this, we can just use two holes that will attach the mount to the

chassis. See Figure 8-20.

Figure 8-19.  Hole mount for wheelbase assemblies

Chapter 8 Final Project 3D Model

455

Figure 8-20.  Ultrasonic Sensor Mount chassis mount

The key dimensions are the size of the screw.

LCD Mount

The LCD will be mounted on the top of the robot and needs to find a

position on one of the PCB mounting posts and then be captured on one of

the motor cable passthroughs. See Figure 8-21.

Chapter 8 Final Project 3D Model

456

The key dimensions are the M5 screw and the distance from the M5

hole to the motor cable passthrough.

Micro USB Panel Mount

The micro USB panel mount will need to have holes to mount it and a center

hole that will give the user access to the micro USB port. See Figure 8-22.

Figure 8-21.  LCD PCB mount

Chapter 8 Final Project 3D Model

457

The key dimensions are the length between the two mounting holes

and the height and width of the access hole.

PCB Mounting

The PCB will be mounted using brass inserts to all for more rigidity in case

the PCB ever needs to be removed and then reassembled. The PCB will

dictate how large this chassis is as it needs to be roughly the same size in

the length and width. Four of the five holes used on the PCB will have a

post that will attach the PCB to the chassis. See Figure 8-23.

Figure 8-22.  Micro USB panel mount

Chapter 8 Final Project 3D Model

458

The key dimensions are the hole locations on the PCB, the motor

passthrough locations, the length, height (with and without the Arduino

attached), and width of the PCB. Using the DXF function to capture the

PCB is a good practice as it will give you all of these dimensions minus the

height of the PCB.

The last key dimension is the brass inserts that we plan to use for the

project. See Figure 8-24.

Figure 8-23.  Make sure to use a DXF export in order to get the exact
dimensions of the NatBot PCB

Chapter 8 Final Project 3D Model

459

This chassis will also need a post to hold the Arduino to the PCB. See

Figure 8-25.

Finally, remember that the NatBot can only be so tall; the current

height of the PCB is 28.22mm with a plastic thickness of 3mm, which

should make the NatBot strong enough to withstand some impact.

Figure 8-24.  Hole diameter of brass inserts

Figure 8-25.  Arduino post

Chapter 8 Final Project 3D Model

460

NatBot Ultrasonic Sensor Mount

The ultrasonic mount should be light and require little to no support

material for 3D printing. Key dimensions include the length and width of

the ultrasonic sensor, the hole positions of the ultrasonic sensor, and the

height of the tallest component on the back of the ultrasonic sensor. See

Figures 8-26 and 8-27.

Figure 8-26.  Ultrasonic Sensor Mount dimensions

Chapter 8 Final Project 3D Model

461

This mount needs to attach to the front of the NatBot.

NatBot LCD Mount

The LCD will be mounted to the top of the PCB. The key dimensions are

the position of the M5 PCB hole and the motor passthrough width. Also,

we need to make sure the LCD is at an angle that will make it easy to see

when looking down at it. We also need to make sure the mount is high

enough so that it does not interfere with other components and can be

connected to the PCB using a dupont connector. The hole positions on the

LCD are also important. Finally, make sure there is clearance between the

LCD and any components on the back, including but not limited to the SD

card holder. See Figures 8-28 and 8-29.

Figure 8-27.  Ultrasonic Sensor Mount dimensions (Cont.)

Chapter 8 Final Project 3D Model

462

Figure 8-28.  LCD mount dimensions

Figure 8-29.  LCD mount dimensions (Cont.)

Chapter 8 Final Project 3D Model

463

NatBot Front and Rear Wheelbase

We will need four separate wheelbases: front right, front left, rear right, and

finally rear left. Take advantage of the copy and paste features discussed

earlier in this chapter. The key dimensions will be the size of the micro

geared motors (length, width, and height), the motor shaft length and

width, the mounting hole positions of the micro motors, the total height of

the wheelbase model, the motor cable passthrough position, and finally

the chassis mounting dimensions created during the chassis portion of

development. See Figures 8-31 through 8-34.

NatBot GPS Mount

The GPS mount will be above where the GPS connects. Key dimensions

include the location of the GPS header on the NatBot PCB, the height from

the PCB to the GPS module, the length and width of the GPS module, and

hole positions on the NatBot chassis. See Figure 8-30.

Figure 8-30.  GPS mount dimensions

Chapter 8 Final Project 3D Model

464

Figure 8-31.  Front wheelbase dimensions

Figure 8-32.  Front wheelbase dimensions (Cont.)

Chapter 8 Final Project 3D Model

465

The total height of the NatBot cannot exceed 175mm, so make sure you

do not make these wheelbases too tall.

NatBot Wheels

These wheels will need to be attached to the same wheel couplers used in

the first project of this book. Key dimensions include the motor coupler

threaded holes and the distance between the wheel and the bottom of the

NatBot chassis. See Figures 8-35 and 8-36.

Figure 8-34.  Wheelbase motor depth

Figure 8-33.  Rear wheelbase dimensions

Chapter 8 Final Project 3D Model

466

Figure 8-35.  Wheel dimensions

Figure 8-36.  Wheel dimensions (Cont.)

Chapter 8 Final Project 3D Model

467

�3D Printing the NatBot
Well, now it is time to test these dimensions and try to print the NatBot. In

this section, I will explain what to print together, how to print, what infill %

to use, and where to put support structures. Let us get started with printing

the chassis:

Printing the chassis:

Infill % should be 25 to 30%.

Use PLA at 190 to 220C.

Estimated time to print: 4hrs.

You only really need to have support structures where the micro USB

panel mount is because of the overhang. See Figure 8-37.

Figure 8-37.  Printing the NatBot chassis

Printing the wheels and wheelbases:

Infill 25 to 35%.

Use PLA at 190 to 220C.

Estimated time to print: 7hrs.

Chapter 8 Final Project 3D Model

468

Auto generate support material; use 2mm for the “Support Pillar

Resolution” and 35 degrees as the “Max Overhang Angle.”

Also, turn all the wheelbases 90 degrees so that the support structure

inside the micro motor cavity can be removed easily. See Figure 8-38.

Printing the LCD, GPS, and Ultrasonic Sensor Mounts:

Infill % should be 25 to 30%.

Use PLA at 190 to 220C.

Estimated time to print: 1hr.

The only part that needs support structures is the LCD mount; use

2mm pillar resolution with a max overhang limit of 35 degrees. See

Figure 8-39.

Figure 8-38.  Printing the wheels and wheelbases

Chapter 8 Final Project 3D Model

469

That should be all of the printable components. The next section will

discuss assembling the robot.

�Fit Check and Assembly
Let us first talk about some hardware you will need in order to assemble

this robot:

4 x M5 10mm pan head screws (for PCB mounting)

4 x M5-0.8 OAL 5.83mm brass inserts (for PCB

mounting)

12 x M2 10mm pan head screws (for wheelbase,

Ultrasonic, GPS)

14 x M2 nuts

2 x M2 12mm pan head screws (for LCD mounting)

Figure 8-39.  Printing the mounts

Chapter 8 Final Project 3D Model

470

2 x M3 10mm pan head screws (for micro USB panel

mount)

8 x M1.6 4mm (can be cut down from a longer M1.6

screw)

4 x 30mm gasket or rubber bands (for wheels)

1 x Adafruit micro USB panel mount cable (pn:)

4 x micro motor couplers (pn: Servo City 545348)

4 x micro geared motors (pn: Pololu 2209)

2 x 145 by 2.5mm zip ties

4 x JST SH Jumper Wire (pn: SparkFun GPS-09123)

1 x GPS module (pn:)

1 x Ultrasonic Sensor (pn:)

1 x Adafruit OLED LCD (pn:)

1 x 2Ahr Lithium Ion (pn: SparkFun PRT-13855)

2 x 10 position dupont housing

26 x female dupont crimps

2 x 3 position dupont housing

Small piece of Velcro

24 AWG wire

	 1.	 Press four of the brass inserts into the NatBot chassis

using a small hammer or a vise to evenly push them

into the PCB mounting posts. See Figure 8-40.

Chapter 8 Final Project 3D Model

471

	 2.	 Insert the micro motors into the wheelbases; they

should fit snuggly. If they do not fit, try and use a file

or X-Acto knifetm to clean the area around the motor

housing on the wheelbase. If you have the rotary

encoders for the motors, make sure they are already

attached. See Figure 8-41.

Figure 8-40.  Press the brass inserts into the chassis

Chapter 8 Final Project 3D Model

472

	 3.	 Using eight of the M1.6 4mm screws, attach the

wheelbase to the micro motors. See Figure 8-42.

Figure 8-41.  Insert each of the geared motors into the wheelbases

Figure 8-42.  Use the M1.6 4mm screws to attach the motor to the
wheelbase

Chapter 8 Final Project 3D Model

473

	 4.	 Attach the wheelbase prints to the NatBot chassis.

They should be a bit of a tight fit, but if you are

having trouble fitting them in, you can sand down

the top a little to help them fit better. See Figure 8-43.

	 5.	 Use eight of the M2 10mm bolts and eight of the

M2 screws to secure the wheelbases to the chassis.

See Figure 8-44.

Figure 8-43.  Attach the wheelbases to the NatBot chassis

Chapter 8 Final Project 3D Model

474

	 6.	 Attach the Ultrasonic Sensor to the Ultrasonic

Sensor Mount using two of the M2 10mm screws

and two M2 nuts. See Figure 8-45.

Figure 8-44.  Secure the wheelbases to the chassis using 8 x M2 10mm
screws and nuts

Figure 8-45.  Attach the Ultrasonic Sensor to the mount

Chapter 8 Final Project 3D Model

475

	 7.	 Attach the GPS module to the GPS mount using a

small piece of Velcro. Use scissors to cut the Velcro

to size. See Figure 8-46.

	 8.	 Attach the LCD to the LCD mount using two M2

12mm screws and two M2 nuts. See Figure 8-47.

Figure 8-46.  Attach the GPS module to the GPS mount using
Velcro

Chapter 8 Final Project 3D Model

476

	 9.	 Using crimpers, create a wire harness for the

Ultrasonic Sensor. It will need 2 x 3 position dupont

housings and 6 dupont female crimps. You will also

need about 3 x 5in of 24 AWG stranded wire. See

Figures 8-48 through 8-53.

Figure 8-47.  Attach the LCD to the LCD mount

Chapter 8 Final Project 3D Model

477

Figure 8-48.  Cut off 1/8in insulation

Figure 8-49.  Insert a wire and use pliers to gently squeeze the
insulation crimp to hold the wire in place

Chapter 8 Final Project 3D Model

478

Figure 8-50.  Crimp the contact onto the wire

Figure 8-51.  Finished crimp

Chapter 8 Final Project 3D Model

479

Figure 8-53.  Make sure the connector has this pinout

Figure 8-52.  Insert crimped wire into 3 position housing

Chapter 8 Final Project 3D Model

480

	 10.	 Create the wire harness for the LCD using 2 x 10

position dupont headers and 20 female dupont

crimps. You will also need 10 x 3in 24 AWG stranded

wire. See Figure 8-54. Use the same method to create

the wiring harness as you did in the previous step.

Figure 8-54.  LCD cable

	 11.	 Attach the Ultrasonic Sensor Mount to the chassis

using 2 x M2 10mm screws and 2 x M2 nuts. See

Figure 8-55.

Chapter 8 Final Project 3D Model

481

	 12.	 Put the battery into the battery holder and use the

two zip ties to secure it to the NatBot chassis. See

Figure 8-56.

Figure 8-55.  Attach the Ultrasonic Sensor Mount

Figure 8-56.  Attach the battery to the chassis using two zip ties

Chapter 8 Final Project 3D Model

482

	 13.	 Attach the four JST cables to each of the four motors

in the wheelbases and put them through the motor

cable passthrough holes on the NatBot chassis. See

Figure 8-57.

	 14.	 Wrap each of the JST wire with a zip tie to make

them a bit shorter. Do not tighten too much because

you can break the cable. See Figure 8-58.

Figure 8-57.  Attach the JST cables to the four motors

Figure 8-58.  Zip tie the JST cables to shorten them

Chapter 8 Final Project 3D Model

483

	 15.	 Mount the micro USB panel mount with 2 x M3

10mm screws. See Figure 8-59. Then attach it to the

MEGA 2560 Pro microcontroller. See Figure 8-60.

	 16.	 Attach the NatBot PCB to the NatBot chassis and

use 3 x M5 screws to attach the PCB to the NatBot

chassis. See Figure 8-61.

Figure 8-59.  Attach the micro USB panel mount

Figure 8-60.  Attach the panel mount to the MEGA 2560 Pro

Chapter 8 Final Project 3D Model

484

	 17.	 Attach the LCD mount to the NatBot by using an M5

screw. See Figure 8-62.

Figure 8-61.  Attach the PCB to the chassis using three M5 screws

Figure 8-62.  Attach the LCD mount to the chassis

Chapter 8 Final Project 3D Model

485

	 18.	 Connect the other side of the LCD wiring harness to the

PCB. Use a multimeter just to make sure all contacts are

making the proper connection. See Figure 8-63.

	 19.	 Attach the GPS mount to the chassis using 2 x M2

10mm screws and 2 x M2 nuts. See Figure 8-64.

Figure 8-63.  Attach the LCD connector to the PCB

Figure 8-64.  Attach the GPS mount to the chassis

Chapter 8 Final Project 3D Model

486

	 20.	 Attach the Ultrasonic Sensor wiring harness to the

PCB. See Figure 8-65.

	 21.	 Connect all of the motor cables to the correct

connector on the NatBot PCB. See Figure 8-66.

Figure 8-65.  Attach the Ultrasonic Sensor cable to the PCB

Figure 8-66.  Attach the JST cables to the motor headers on the PCB

Chapter 8 Final Project 3D Model

487

	 22.	 Attach the motor couplers to the four motor shafts.

See Figure 8-67.

	 23.	 Attach the four wheels to the motor couplers. See

Figure 8-68.

	 24.	 Add the 30mm rubber bands or gaskets to the

NatBot wheels. See Figure 8-69.

Figure 8-67.  Attach the motor couplers to the geared motor shafts

Figure 8-68.  Attach the wheels to the couplers

Chapter 8 Final Project 3D Model

488

Well, that should be it for the assembly of the NatBot; the only thing

left is to write some software that will bring the NatBot to life. See you in

the next chapter.

�Summary
Alright, we covered a few things in this chapter. Let’s take a look at them:

•	 Looked at the mechanical requirements for the NatBot

chassis and mounts.

•	 Brainstormed how we can bring this robot to life and

make it look like a rover.

•	 Took a look at all the important dimensions needed in

order to create the NatBot chassis and mounts.

•	 Went into what it will take to print each of these

components.

•	 Finally, we assembled the NatBot using a Bill of

Materials (BOM).

Figure 8-69.  Add 30mm rubber bands to give tires more traction

Chapter 8 Final Project 3D Model

489© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_9

CHAPTER 9

Final Project Software
Well, here we are ready to get started on the software portion of the final

project. In this chapter, we will review the requirements for completing

the software for the NatBot, as well as putting together a test plan to

make sure each component works as expected. We will also explore a few

APIs that will help us create the firmware for the NatBot. Finally, we will

finish the NatBot’s firmware and upload it to the NatBot. This chapter

is going to have a lot of information and a lot of code, so take your time

when reviewing the software. Let’s get started by going over the software

requirements for the NatBot.

�Final Project: NatBot
The NatBot will require some sophisticated firmware that will control all

of the various actions of the sensors, motors, and other peripherals. It also

needs to be well documented so that if another developer/student wants

to update the code, they could.

https://doi.org/10.1007/978-1-4842-6852-0_9#DOI

490

�Requirements Gathering (Firmware)
Naticom has put together a requirements document for the firmware

portion of the design. They are

•	 The motors should be controlled with the following

serial command: Motor 1 Direction, Motor 2 Direction,

Motor 3 Direction, Motor 4 Direction, Motor 1 Speed,

Motor 2 Speed, Motor 3 Speed, Motor 4 Speed. The

string example will look like this:

1,1,1,1,255,255,255,255

Using serial communication over Bluetooth.

•	 Accelerometer should record the X, Y, and Z

acceleration every time a “y” character is sent to the

NatBot. It will also save this data to an SD card.

•	 The driving direction will be saved to the SD card every

time an “x” command is received by the NatBot.

•	 GPS data will save to the SD card every time the “g”

command is sent to the NatBot. It will save longitude

and latitude data.

•	 When an “a” command is received by the NatBot, the

Ultrasonic Sensor will tell the user if there is an object

within 2 inches of the NatBot.

•	 The temperature will be displayed on the LCD every

time the NatBot receives new trajectory commands.

Chapter 9 Final Project Software

491

�Outlining the Software Requirements
Alright, we have several requirements; let us go through each of the bullet

points and start putting together the firmware for the NatBot:

•	 The motors should be controlled with the following

serial command: Motor 1 Direction, Motor 2 Direction,

Motor 3 Direction, Motor 4 Direction, Motor 1 Speed,

Motor 2 Speed, Motor 3 Speed, Motor 4 Speed. The

string example will look like this:

1,1,1,1,255,255,255,255

Using serial communication over Bluetooth.

This requirement talks about how the user will control each

motor on the NatBot over Bluetooth. A single serial command

will be used to control each motor’s direction and speed. It may

also make sense to print this string onto the serial monitor to

make sure the correct functions are happening.

•	 Accelerometer should record the X, Y, and Z

acceleration every time a “y” character is sent to the

NatBot. It will also save this data to an SD card.

Every time the NatBot receives the “y” character over Bluetooth,

the NatBot will save the data to the SD card in the following

format: X, Y, Z.

•	 The driving direction will be saved to the SD card every

time an “x” command is received by the NatBot.

Trajectory data will be saved to the SD card every time the “x”

command is sent to the NatBot, in the following format: Motor

A = 1 Motor B = 1 Motor C = 1 Motor D = 1

•	 GPS data will save to the SD card every time the “g”

command is sent to the NatBot. It will save longitude

and latitude data.

Chapter 9 Final Project Software

492

Longitude and latitude data will be saved to the SD card every

time the “g” command is sent to the NatBot.

•	 When an “a” command is received by the NatBot, the

Ultrasonic Sensor will tell the user if there is an object

within 2 inches of the NatBot.

The Ultrasonic Sensor will send the user notification over

Bluetooth that an object is within 2 inches of the NatBot.

•	 The temperature will be displayed on the LCD every

time the NatBot receives new trajectory commands.

The temperature will be read and displayed onto the LCD every

time new trajectory data is received.

Okay, now that we have a good idea of what we need to do, I want to

introduce you to each of the libraries we will use to make this robot come

to life. See you in the next section.

�Reviewing the Arduino Libraries for the NatBot
In this section, we will discuss the various libraries used for the NatBot. I

want to give a brief description of the library followed by some of the key

functions that the NatBot will use.

ADXL362 Library
With this library, we will read data back from the accelerometer. Here

are a few of the important commands:

ObjectName.Begin(): Sets up the SPI protocol

ObjectName.beginMeasure: Switches ADXL362 to

measurement mode

ObjectName.readXYZData(X value, Y Value, Z

Value, Temperature): Reads the values for the X, Y,

and Z planes and then also reads the temperature

Chapter 9 Final Project Software

493

These are the main commands we will use for the NatBot when using

the accelerometer. These commands should be enough to accomplish

all of the requirements for the accelerometer besides the SD and LCD

portions.

Adafruit SSD1331 Library
In this section, we will take a look at the SSD1331 Library; this library

is used to control the OLED screen we have on the NatBot. There are

two other libraries that you need in order to use this library; they are the

Adafruit GFX and Adafruit BusIO.

ObjectName.Begin(): This is used to start

communication with the OLED display.

ObjectName.setCursor(x position, y position):

This will set the move of the cursor to the desired

location.

ObjectName.fillScreen(color): This will set the

screen to a particular color.

ObjectName.print(“text”): This will put text on the

OLED display.

ObjectName.println(“text”): This will put text on the

OLED display and add a carriage return.

ObjectName.setTextColor(color): Sets the text color.

ObjectName.setTextSize(text size): Sets the text size.

These are the main functions that we will use for the NatBot project

and should satisfy all of the requirements.

Chapter 9 Final Project Software

494

TinyGPS Library
The NatBot requires software that will parse NMEA data from a

GPS module. To do this, we will use the TinyGPS library. Here are some

commands we will use to meet the requirements:

ObjectName.encode(): If encode returns “true” then

a valid GPS sentence has been received.

ObjectName.f_get_position(Latitude, Longitude,

age): Returns the latitude, longitude, and age of the

encoded data

These commands should give us everything we need to meet the

requirements for Naticom.

SD Library
The SD Library will be used to store data onto an SD card. There are

a few commands you need to be familiar with before we start to use this

library; they are

ObjectName.begin(ChipSelect Pin): This will start

communication between the Arduino and the SD

card reader.

ObjectName.open(filepath, mode): This will open

a file. If the file is being opened in write mode, then

the file will be created if it does not exist.

ObjectName.close(): Closes an opened file.

With these functions, we should be able to write to an SD card which

will satisfy the requirements for this project.

These libraries will make up a lot of the functionality of the NatBot,

and they all will be used to accomplish the requirements that are specified

earlier.

Chapter 9 Final Project Software

495

�Writing the NatBot Firmware
So, the code for this robot has some complexities to it, but it is actually

rather quite simple. Here is the code for the NatBot:

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1331.h>

#include <TinyGPS.h>

// Adafruit Display

#define sclk 52

#define mosi 51

#define cs 31

#define rst 29

#define dc 28

// Color definitions

#define BLACK 0x0000

int numCount = 0;

// Motor IO

const int fields = 8; // how many fields are there? right now 8

int motorPins[] = {42,44,40,46,25,12,26,13}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

// Object Creation

TinyGPS gps;

ADXL362 accel;

Chapter 9 Final Project Software

496

Adafruit_SSD1331 display = Adafruit_SSD1331(cs, dc, mosi, sclk, rst);

// SD Card Chip Select

int SDCS = 30;

// Ultrasonic Sensor Pin

int pingPin = 22;

// Accelerometer variables

int16_t XValue, YValue, ZValue, Temperature;

// GPS data

char LatData[50]; // data buffer for Latitude

char LongData[50];

//Latching Variables

char prevState;

int prevAutoState;

// Data buffer for saving drive data

char driveData [50];

// TMP36 Variables

int tempPin = A0;

int sensorValue = 0;

void setup() {

 // Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS

 Serial.begin(9600);

 Serial1.begin(115200);

 Serial2.begin(4800);

 // CS Pins of SPI devices

 pinMode(SDCS, OUTPUT);

Chapter 9 Final Project Software

497

 pinMode(cs, OUTPUT);

 pinMode(27, OUTPUT);

 // set Motor pinMode to output

 for(int i; i <= 7; i++)

 {

 pinMode(motorPins[i], OUTPUT);

 digitalWrite(motorPins[i], LOW);

 }

 // Check for Card availability

 if (!SD.begin(SDCS)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 while (1);

 }

 // Turn off SD Chip Select

 digitalWrite(SDCS, HIGH);

 Serial.println("card initialized.");

 �Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,

MotoBSpe\n");

}

void loop() {

 if(Serial1.available())

 {

 char ch = Serial1.read();

 if (ch == 'y' || prevState == 'y') // if Serial reads y

 {

 accel.begin(10); // �Setup SPI protocol, issue

device soft reset

Chapter 9 Final Project Software

498

 accel.beginMeasure(); // Switch ADXL362 to measure mode

 // �read all three axis in burst to ensure all

measurements correspond to same sample time

 accel.readXYZTData(XValue, YValue, ZValue, Temperature);

 Serial.print("XVALUE=");

 Serial.print(XValue);

 Serial.print("\tYVALUE=");

 Serial.print(YValue);

 Serial.print("\tZVALUE=");

 Serial.print(ZValue);

 Serial.print("\tTEMPERATURE=");

 Serial.println(Temperature);

 delay(100); // �Arbitrary delay to make serial

monitor easier to observe

 // Stop communication with accelerometer

 digitalWrite(27, HIGH);

 // Store data into SD card

 // �open the file. note that only one file can be open at

a time,

 // so you have to close this one before opening another.

 SD.begin(SDCS);

 File accelFile = SD.open("Accel.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (accelFile) {

 accelFile.print(XValue);

 accelFile.print(" , ");

 accelFile.print(YValue);

 accelFile.print(" , ");

 accelFile.println(ZValue);

Chapter 9 Final Project Software

499

 accelFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

 else if (ch == 'a') // if Serial reads a

 {

 if (prevAutoState == 0)

 {

 prevAutoState = 1;

 // put your main code here, to run repeatedly:

 float duration, inches;

 pinMode(pingPin, OUTPUT);

 digitalWrite(pingPin, LOW);

 delayMicroseconds(2);

 digitalWrite(pingPin, HIGH);

 delayMicroseconds(2);

 digitalWrite(pingPin, LOW);

 pinMode(pingPin, HIGH);

 inches = duration / 74 / 2;

 if (inches >= 2)

 {

 Serial1.println("Object Near!!");

 }

 }

Chapter 9 Final Project Software

500

 else if (prevAutoState == 1)

 {

 prevAutoState = 0;

 }

 }

 else if (ch == 'g' || prevState == 'g') // if Serial reads g

 {

 if (Serial2.available() > 0) // now gps device is active

 {

 int c = Serial2.read();

 if(gps.encode(c)) // New valid sentence?

 {

 // �Initialize Longitude and Latitude to floating

point numbers

 float latitude, longitude;

 // Get longitude and latitude

 gps.f_get_position(&latitude,&longitude);

 Serial.print("Lat: ");

 // �Prints latitude with 5 decimal places to the

Serial Monitor

 Serial.println(latitude,7);

 Serial.print("long: ");

 // �Prints longitude with 5 decimal places to the

Serial Monitor

 Serial.println(longitude,7);

 // Store data into SD card

 // �open the file. note that only one file can be

open at a time,

 // so you have to close this one before opening another.

Chapter 9 Final Project Software

501

 SD.begin(SDCS);

 File GPSFile = SD.open("GPS.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (GPSFile) {

 GPSFile.print(latitude, 7);

 GPSFile.print(" , ");

 GPSFile.println(longitude,7);

 GPSFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 }

 }

 prevState = ch;

 }

 else if(ch >= '0' && ch <= '9') // �If the value is a number

0 to 9

 {

 // add to the value array

 values[index] = (values[index] * 10) + (ch - '0');

 }

 else if (ch == ',') // if it is a comma

 {

 if(index < fields -1) // If index is less than 4 - 1...

 index++; // increment index

 }

 else

 {

Chapter 9 Final Project Software

502

 for(int i=0; i <= index; i++)

 {

 if (i == 0 && numCount == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

 }

 if (i == 2)

 {

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

 if (i == 4)

 {

 Serial.println("Motor C");

 Serial.println(values[i]);

 }

 else if (i == 5)

 {

 Serial.println(values[i]);

 }

 if (i == 6)

 {

Chapter 9 Final Project Software

503

 Serial.println("Motor D");

 Serial.println(values[i]);

 }

 else if (i == 7)

 {

 Serial.println(values[i]);

 }

 �if (i == 0 || i == 2 || i == 4 || i == 6)

// If the index is equal to 0 or 2

 {

 �digitalWrite(motorPins[i], values[i]);

// Write to the digital pin 1 or 0

 // depending on what is sent to the arduino.

 }

 �if (i == 1 || i == 3 || i == 5 || i == 7)

// If the index is equal to 1 or 3

 {

 �analogWrite(motorPins[i], values[i]);

// Write to the PWM pins a number between

 // 0 and 255 or what the person has entered

 // in the serial monitor.

 }

 values[i] = 0; // set values equal to 0

 �sprintf(driveData, "Motor A = ", values[0], "Motor B = ",

values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

 // Send temperature to the LCD

 sensorValue = analogRead(tempPin);

Chapter 9 Final Project Software

504

 display.begin();

 display.fillScreen(BLACK);

 display.setCursor(0,0);

 display.print(sensorValue);

 digitalWrite(cs, HIGH);

 }

 index = 0;

 numCount = 0;

 }

 if (ch == 'x' || prevState == 'x') // if Serial reads x

 {

 SD.begin(SDCS);

 File driveFile = SD.open("Drive.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (driveFile) {

 driveFile.println(driveData);

 driveFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

 }

}

Chapter 9 Final Project Software

505

The first bit of code is all the includes for the program; these includes

allow us to use various functions from other libraries. You will notice the

libraries for SPI, SD, ADXL362 accelerometer, and the TinyGPS library are

all accounted for.

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1331.h>

#include <TinyGPS.h>

The next section of code will define and initialize all of the global

variables we need in order to control the NatBot. The first variables are

defined with the define directive which will set each of these variables

to a specific value. The next section deals with creating new instances of

objects; these objects are then used with the API to call certain functions,

for example:

gps.f_get_position(&latitude,&longitude);

This function will return the longitude and latitude data. Finally, we

start to declare the global variables. These variables can be used anywhere

in the program which is great, but if you don’t want somebody accessing

this variable, your best bet would be to use a local variable which would

be placed within that function instead of on the outside of the setup() and

loop() functions. You will notice several variables have integers associated

with them; these are the pin numbers assigned to the Arduino.

// SD Card Chip Select

int SDCS = 30;

// Ultrasonic Sensor Pin

int pingPin = 22;

Chapter 9 Final Project Software

506

// Accelerometer variables

int16_t XValue, YValue, ZValue, Temperature;

// GPS data

char LatData[50]; // data buffer for Latitude

char LongData[50];

//Latching Variables

char prevState;

int prevAutoState;

// Data buffer for saving drive data

char driveData [50];

// TMP36 Variables

int tempPin = A0;

int sensorValue = 0;

Now in the setup loop, we will find several different functions and

variables that we need in order to get the NatBot up and running. First,

serial ports 0 through 2 are started. The first serial port is set to a baud rate

of 9600, which is okay for the main RX/TX lines. The second serial port is

for the Bluetooth module, and the third serial port is for the GPS module.

Next, the CS (chip select pins) are set up as outputs, and the motor pins are

all set to LOW. The next bit of code checks that an SD card is present, if it is

the code will continue and if it is not the program will send out an SD card

failed command. Then the SDCS (SD card chip select pin) is set to high,

which will stop communication between the Arduino and the SD card.

Finally, the card will say it is initialized and will also ask the user to enter

trajectory information in a particular manner.

void setup() {

 // Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS

 Serial.begin(9600);

Chapter 9 Final Project Software

507

 Serial1.begin(115200);

 Serial2.begin(4800);

 // CS Pins of SPI devices

 pinMode(SDCS, OUTPUT);

 pinMode(cs, OUTPUT);

 pinMode(27, OUTPUT);

 // set Motor pinMode to output

 for(int i; i <= 7; i++)

 {

 pinMode(motorPins[i], OUTPUT);

 digitalWrite(motorPins[i], LOW);

 }

 // Check for Card availability

 if (!SD.begin(SDCS)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 while (1);

 }

 // Turn off SD Chip Select

 digitalWrite(SDCS, HIGH);

 Serial.println("card initialized.");

 �Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,

MotoBSpe MotoCDir,MotoCSpe,MotorDDir,MotoDSpe \n");

}

Now we enter the loop structure which is the main portion of the software

for the NatBot. The first small section of this code relates to checking the

availability of bytes coming in from Serial1; if there are bytes, then they will be

passed through all of the if statements within the loop structure.

Chapter 9 Final Project Software

508

void loop() {

 if(Serial1.available())

 {

 char ch = Serial1.read();

The next section of code runs if the “y” command is received over

Serial1. If it is, the accelerometer is enabled with a begin function, and the

readXYZData() function is called to read the X, Y, Z, and temperature data.

Then the accelerometer is disabled by setting its CS pin to “High.” Next, the

SD card is enabled with a begin function; a file is created called Accel.txt.

Then the X, Y, and Z data is sent to the SD card. Finally, the previous state

is monitored so that this block of code only runs once.

if (ch == 'y' || prevState == 'y') // if Serial reads y

 {

 accel.begin(10); // �Setup SPI protocol, issue

device soft reset

 accel.beginMeasure(); // Switch ADXL362 to measure mode

 // �read all three axis in burst to ensure all measurements

correspond to same sample time

 accel.readXYZTData(XValue, YValue, ZValue, Temperature);

 Serial.print("XVALUE=");

 Serial.print(XValue);

 Serial.print("\tYVALUE=");

 Serial.print(YValue);

 Serial.print("\tZVALUE=");

 Serial.print(ZValue);

 Serial.print("\tTEMPERATURE=");

 Serial.println(Temperature);

 delay(100); // �Arbitrary delay to make serial

monitor easier to observe

Chapter 9 Final Project Software

509

 // Stop communication with accelerometer

 digitalWrite(27, HIGH);

 // Store data into SD card

 // �open the file. note that only one file can be open at

a time,

 // so you have to close this one before opening another.

 SD.begin(SDCS);

 File accelFile = SD.open("Accel.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (accelFile) {

 accelFile.print(XValue);

 accelFile.print(" , ");

 accelFile.print(YValue);

 accelFile.print(" , ");

 accelFile.println(ZValue);

 accelFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

The next section of code will only run if the “a” command is received.

If it is received over Serial1, then the ultrasonic sensor will pulse once and

check the distance to the nearest object. If 2 inches or less is detected,

Serial1 will be sent a message “Object Near!!”

Chapter 9 Final Project Software

510

else if (ch == 'a') // if Serial reads a

 {

 if (prevAutoState == 0)

 {

 prevAutoState = 1;

 // put your main code here, to run repeatedly:

 float duration, inches;

 pinMode(pingPin, OUTPUT);

 digitalWrite(pingPin, LOW);

 delayMicroseconds(2);

 digitalWrite(pingPin, HIGH);

 delayMicroseconds(2);

 digitalWrite(pingPin, LOW);

 pinMode(pingPin, HIGH);

 inches = duration / 74 / 2;

 if (inches >= 2)

 {

 Serial1.println("Object Near!!");

 }

 }

 else if (prevAutoState == 1)

 {

 prevAutoState = 0;

 }

This section focuses on the GPS; it will be activated if the “g” command

is received over Serial1. Two floating-point local variables are created

called the latitude and longitude; these variables are fed into the f_get_

position(&latitude, &longitude) function. We then print latitude and

longitude data to the main serial port for debugging purposes. Finally, we

initialize the SD card again and save the latitude and longitude data to the

Chapter 9 Final Project Software

511

SD card. One thing to also note is we shut down the SD card again with a

digitalWrite(SDCS, HIGH).

else if (ch == 'g' || prevState == 'g') // if Serial reads g

 {

 if (Serial2.available() > 0) // now gps device is active

 {

 int c = Serial2.read();

 if(gps.encode(c)) // New valid sentence?

 {

 // �Initialize Longitude and Latitude to floating

point numbers

 float latitude, longitude;

 // Get longitude and latitude

 gps.f_get_position(&latitude,&longitude);

 Serial.print("Lat: ");

 // �Prints latitude with 5 decimal places to the

Serle ial Monitor

 Serial.println(latitude,7);

 Serial.print("long: ");

 // �Prints longitude with 5 decimal places to the

Serial Monitor

 Serial.println(longitude,7);

 // Store data into SD card

 // �open the file. note that only one file can be

open at a time,

 // so you have to close this one before opening another.

 SD.begin(SDCS);

 File GPSFile = SD.open("GPS.txt", FILE_WRITE);

 // if the file is available, write to it:

Chapter 9 Final Project Software

512

 if (GPSFile) {

 GPSFile.print(latitude, 7);

 GPSFile.print(" , ");

 GPSFile.println(longitude,7);

 GPSFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 }

 }

 prevState = ch;

 }

The next section will parse out any numbers 0 to 9 and store that value

into the values array which will be used later to control the motors.

else if(ch >= '0' && ch <= '9') // If the value is a number 0 to 9

 {

 // add to the value array

 values[index] = (values[index] * 10) + (ch - '0');

 }

This else if section will parse out the ‘,’ character; they will not be

needed to control the NatBot.

else if (ch == ',') // if it is a comma

 {

 if(index < fields -1) // If index is less than 4 - 1...

 index++; // increment index

 }

Chapter 9 Final Project Software

513

The final section will print a script out of each of the motors’ direction

and speed. Then, each of the indexes will be parsed into a direction

bit which will go to a digitalWrite function or will be passed into an

analogWrite function for the speed of the motors. Next, a sprintf function

is used to concatenate all of the motor directions into a string that will

later be sent to the SD card. Finally, the TMP36 is read, and the LCD

is initialized; then the sensorValue (which is the analog temp value) is

displayed on the LCD.

else

 {

 for(int i=0; i <= index; i++)

 {

 if (i == 0 && numCount == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

 }

 if (i == 2)

 {

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

Chapter 9 Final Project Software

514

 if (i == 4)

 {

 Serial.println("Motor C");

 Serial.println(values[i]);

 }

 else if (i == 5)

 {

 Serial.println(values[i]);

 }

 if (i == 6)

 {

 Serial.println("Motor D");

 Serial.println(values[i]);

 }

 else if (i == 7)

 {

 Serial.println(values[i]);

 }

 �if (i == 0 || i == 2 || i == 4 || i == 6)

// If the index is equal to 0 or 2

 {

 �digitalWrite(motorPins[i], values[i]);

// Write to the digital pin 1 or 0

 // depending on what is sent to the arduino.

 }

 �if (i == 1 || i == 3 || i == 5 || i == 7)

// If the index is equal to 1 or 3

 {

 �analogWrite(motorPins[i], values[i]);

// Write to the PWM pins a number between

Chapter 9 Final Project Software

515

 // 0 and 255 or what the person has entered

 // in the serial monitor.

 }

 values[i] = 0; // set values equal to 0

 �sprintf(driveData, "Motor A = ", values[0], "Motor B = ",

values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

 // Send temperature to the LCD

 sensorValue = analogRead(tempPin);

 display.begin();

 display.fillScreen(BLACK);

 display.setCursor(0,0);

 display.print(sensorValue);

 digitalWrite(cs, HIGH);

 }

 index = 0;

 numCount = 0;

 }

The final section of this code will activate if the “x” character is

received by Serial1. If it is, the SD card will activate, and the trajectory

data will be saved to the SD card. Finally, the SD card is closed with the

digitalWrite(cs, HIGH).

if (ch == 'x' || prevState == 'x') // if Serial reads x

 {

 SD.begin(SDCS);

 File driveFile = SD.open("Drive.txt", FILE_WRITE);

Chapter 9 Final Project Software

516

 // if the file is available, write to it:

 if (driveFile) {

 driveFile.println(driveData);

 driveFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

Alright, so that is the code for the NatBot; the only thing left to do is to

upload it to your Arduino. The next section will go over that process.

�Uploading and Testing the NatBot Firmware
Just like you did with the previous projects, you will need to make sure

the Arduino is plugged into your computer and the correct COM port is

selected. If you are having trouble finding the correct COM port, use the

device manager and look for the port named USB-SERIAL CH340 (COM#).

Then select the correct board which is an Arduino Mega or Arduino MEGA

2560; the processor should be an Atmega2560. Once all of that is settled,

click the “Upload” button and the code will be sent to the Arduino.

Chapter 9 Final Project Software

517

�Summary
Alright! The firmware portion of this project is completed, but we will still

use some of it to help us create an application on a computer to control the

NatBot, but first let’s review what we covered in this chapter:

•	 Learned how to send string commands over the serial

port (Bluetooth)

•	 Learned how to send text to an LCD and change it at a

rapid pace

•	 Learned how to use multiple SPI connections in order

to talk to several devices

•	 Learned how to use the TinyGPS library and get

longitude and latitude data

•	 Learned how to get accelerometer data by using the

ADXL362 library

•	 Learned how to use the Ping Ultrasonic sensor

Chapter 9 Final Project Software

519© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_10

CHAPTER 10

Final Project Putting
It All Together
In this chapter, you will learn about a new piece of software (LabVIEW)

that will allow us to integrate the NatBot with a computer and an Xbox

controller, per our Naticom’s requirements document. LabVIEW is a very

powerful programming language, as well as a powerful testing tool. In this

chapter, we will use LabVIEW to interface with the Xbox controller so that

we can control the NatBot’s movements. We will not need to write any

new Arduino code for this chapter, as we will be using the same code from

Chapter 9, so we will first go over the basics of the LabVIEW environment

and programming language so that you are more comfortable with the

Naticom’s project for this chapter.

Note  I suggest visiting www.ni.com, as they will have a large
selection of tutorials and videos.

�Introduction to the LabVIEW Environment
We will first need to install the LabVIEW Student Edition onto a computer.

You can get a great bundle from SparkFun at www.sparkfun.com/

products/10812. If you don’t want to buy the bundle, you can

download a 30-day trial from www.ni.com/labview. This process is very

https://doi.org/10.1007/978-1-4842-6852-0_10#DOI
http://www.ni.com
http://www.sparkfun.com/products/10812
http://www.sparkfun.com/products/10812
http://www.ni.com/labview

520

straightforward. Simply put the LabVIEW CD into your DVD-ROM drive,

and follow the onscreen instructions.

Now that we’ve installed the LabVIEW Student Edition, we can

start using it for various projects, but first let’s take a look at some of the

fundamentals of LabVIEW. The next section will discuss the various parts

of the LabVIEW environment that we will use in this chapter. They are the

Front Panel, the Controls Palette, the Block Diagram, the Functions Palette,

and the Tools Palette.

Note  If you ever need help in LabVIEW, all you need to do is press
Ctrl-H, and a help box will pop up. Anything you run your mouse
over—a control, indicator, function, structure, and so on—the help
box will give you information on.

�The Front Panel
After you open LabVIEW, a screen will open. Click the “Blank VI”

option on the screen, and two windows will open, one of them being

the Front Panel. The Front Panel is where we will put all of the controls

and indicators for our projects. When we are finished with the design

of the Front Panel, we will have completed our GUI. You can also align

the controls and indicators on the Front Panel by using Align Functions

buttons at the top of the Front Panel. You will be starting your program

from the Front Panel using the white arrow button in the upper-left corner

of the window (you must click this white arrow in order for the program to

start). Figure 10-1 shows the Front Panel.

Chapter 10 Final Project Putting It All Together

521

Note  If you have a broken arrow instead of a solid white arrow in
the Front Panel, that means that your code has an error and will not
run. If you click the broken arrow, an error dialog box will pop up and
tell you what errors you have.

�The Controls Palette
In this palette, you will find all of the controls and indicators that you will

use to create your GUI. Some of these controls and indicators include

toggle switches, numerical indicators, string controls and indicators, and

much more (I suggest playing around with this palette). To get to this

palette, go to View ➤ Controls Palette. We will be using only a few controls

and indicators in this chapter, but if you want to learn more, I suggest

Figure 10-1.  The Front Panel

Chapter 10 Final Project Putting It All Together

522

visiting www.ni.com, as they have a large selection of tutorials and videos.

Figure 10-2 shows the Controls Palette.

�The Block Diagram
This is where all the magic happens. The Block Diagram is where we code

the application and make the Front Panel do something (this can range

from turning on an LED to GPS data analysis). It contains the white arrow

button to run the program, and it also has a few debugging functions (we

will talk about those later). The Block Diagram also has a palette that we

will discuss in the next section. Figure 10-3 shows the Block Diagram.

Figure 10-2.  The Controls Palette

Chapter 10 Final Project Putting It All Together

http://www.ni.com

523

�The Functions Palette
This palette has all of the various functions that you might or might not

need. We will be going over only a few functions, but it is also a good

idea to play around with this palette. You can find this palette by going to

View ➤ Functions Palette. You will find functions for strings, numerical,

Boolean, comparison, serial communication, and much more. Figure 10-4

shows the Functions Palette.

Figure 10-3.  The Block Diagram

Chapter 10 Final Project Putting It All Together

524

Next, we will discuss the Tools Palette, which is used to control what

your mouse will do.

�The Tools Palette
This palette can be used in either the Front Panel or the Block Diagram,

although most of the options will work only in the Block Diagram. You

can view this palette by clicking the View ➤ Tools Palette. For the most

part, we will not be using this palette because it defaults to Automatic Tool

Selection, which means it will automatically select the best tool for what

you are doing. Figure 10-5 shows the Tools Palette.

Figure 10-4.  The Functions Palette

Chapter 10 Final Project Putting It All Together

525

Now that you are a bit more familiar with the LabVIEW environment,

let’s go over some of the functions we’ll be using in this chapter.

�LabVIEW Functions Explained
LabVIEW uses a different approach to programming; it uses the Data Flow

Process, which means data will “flow” from left to right on the screen. This

makes code very easy to read and understand. The following functions will

be used in the project for this chapter, as we will be creating software to

scale values from the Xbox controller.

Note  It is always a good idea to wire error clusters and error wires
to keep data flow moving from left to right. We will see an example of
this later in this chapter.

To find the first function that we will discuss, go to Block Diagram ➤

Functions Palette ➤ Programming ➤ Structures. Here, you will see several

types of loops and conditional structures. We will be using the While Loop,

the Case Structure, and the Sequence Structure for this chapter. The next

section will discuss the While Loop.

Figure 10-5.  The Tools Palette

Chapter 10 Final Project Putting It All Together

526

�The While Loop
This loop operates like any other While Loop, except that it is a visual

While Loop. In order to use it with other functions, you simply place the

functions within the While Loop. The While Loop will run at least one

time, and has many uses, just as in our Arduino programs. We can use a

conditional terminal to stop the While Loop, and we can use an iteration

terminal to check what iteration the While Loop is on. Figure 10-6 shows

the While Loop.

In the next section, we will discuss the Case Structure and its functions.

�The Case Structure
This is a conditional structure much like the switch statement or the

if-else-if statements. You can have a true or false Case Structure, or you

can use enumerated data to have multiple case statements, such as a

State Machine; however, we will not go over State Machines in this book.

To use a Case Structure, you will need to select the Case Structure from

the Functions Palette ➤ Programming ➤ Structures, and drag the Case

Structure to the appropriate size that you need. You can then switch from

the true case to the false case by clicking the arrow at the top center of the

Case Structure. The Case Structure uses the Selector Terminal to select the

Figure 10-6.  A While Loop

Chapter 10 Final Project Putting It All Together

527

case that the Case Structure will call (we will see an example of this in the

project for this chapter). Figure 10-7 shows a Case Structure.

�The Sequence Structure
This structure is used to force code to flow in a sequential manner (as the

name suggests). It is not a good LabVIEW programming practice to have

multiple Sequence Structures or Stacked Sequences, as they hide code and

alter the Data Flow Process. However, a one-frame Sequence Structure

used well, such as for initializing values, is not a bad practice. You can find

the Sequence Structure by going to the Functions Palette ➤ Programming

➤ Structures. Figure 10-8 shows a Sequence Structure.

Figure 10-7.  A Case Structure

Figure 10-8.  A Sequence Structure

Now that we have discussed the While Loops, Case Structures, and

Sequence Structures, we can move on to the rest of the functions we will

use for this chapter.

Chapter 10 Final Project Putting It All Together

528

�Numerical Functions
We will use a few Numerical Functions that will help us in the final

project. To get to the Numerical Functions, we need to first go to the Block

Diagram, then go to the Functions Palette ➤ Programming ➤ Numeric.

Figure 10-9 shows the Numeric Palette.

In here, you will see functions ranging from decrementing to a random

number function. We will use these functions to scale values from the

Xbox controller to work with the Arduino. Now, we need to discuss a few

functions from this palette that we will use in this chapter:

•	 Divide: This function is used to divide numerical values

(see Figure 10-10(a)).

Figure 10-9.  The Numeric Palette

Chapter 10 Final Project Putting It All Together

529

•	 Multiply: This function is used to multiply numerical

values (see Figure 10-10(b)).

•	 Decrement: This function is used to subtract by one or

decrement by one (see Figure 10-10(c)).

�String Functions
We use String Functions to manipulate strings. We will use a few of

these functions to create the protocol so that the Xbox controller can

communicate with the Arduino. You can find the String Functions by going

to the Functions Palette ➤ Programming ➤ String (see Figure 10-11).

Figure 10-10.  (a) The Divide Function, (b) the Multiply Function,
and (c) the Decrement Function

Chapter 10 Final Project Putting It All Together

530

We’ll be using the following String Functions for this chapter:

•	 Concatenate String: This function is used to combine

two or more strings (see Figure 10-12(a)).

•	 Number to Decimal String: This function converts a

numerical value to a string value (see Figure 10-12(b)).

Figure 10-11.  The String Palette

Figure 10-12.  (a) The Concatenate String Function and (b) the
Number to Decimal String Function

Chapter 10 Final Project Putting It All Together

531

�Comparison Functions
We use Comparison Functions to compare types to one another, for

example, whether 2 > 1. You can find the Comparison Functions by going to

the Functions Palette ➤ Programming ➤ Comparison (see Figure 10-13).

We will be using the following Comparison Functions:

•	 Less?: This function compares a value x to a value y

and tests whether x is less than the y value (see

Figure 10-14(a)).

•	 Greater?: This function compares a value x to a value y

and tests whether x is greater than y (see Figure 10-14(b)).

•	 Less than 0?: This function compares a value x to zero

(see Figure 10-14(c)).

Figure 10-13.  The Comparison Palette

Chapter 10 Final Project Putting It All Together

532

Now that we have some of the fundamentals of LabVIEW covered, we

can move on to Serial Functions and Input Device Control Functions.

�Serial Functions
We can use these functions to communicate with USB devices. We will

use these functions to write data from the Xbox controller to the Arduino.

You can find the Serial Functions by going to the Functions Palette ➤

Instrument I/O ➤ Serial. Figure 10-15 shows the Serial Palette.

Figure 10-14.  (a) The Less? Function, (b) the Greater? Function, and
(c) the Less than 0? Function

Figure 10-15.  The Serial Palette

Chapter 10 Final Project Putting It All Together

533

In this chapter, we will use the following Serial Functions:

•	 Virtual Instrument Software Architecture (VISA)

Configure Serial Port: This function sets up the serial

port’s resource name, baud rate, parity, stop bits, flow

control, and data bits (see Figure 10-16(a)).

•	 VISA Flush I/O Buffer: This function deletes the

data that is stored on the buffer, allowing for more

information to take its place (see Figure 10-16(b)).

•	 VISA Write: This function writes data to the serial

port you specified in the VISA Configure Serial Port

Function (see Figure 10-16(c)).

•	 VISA Close: This function closes out the serial

communication session (see Figure 10-16(d)).

Figure 10-16.  (a) The VISA Configure Serial Port Function, (b) the
VISA Flush I/O Buffer Function, (c) the VISA Write Function, and (d)
the VISA Close Function

Now that we understand the functions that we will need to

communicate with a serial port, we can move on to understanding the

functions that are necessary for the Xbox controller to work with the

application for this chapter.

�Input Device Control Functions
We can use these functions to communicate with HIDs (Human Interface

Devices), such as a mouse, keyboard, or joystick. We will use these

functions to communicate with the Xbox controller. You can find the Input

Chapter 10 Final Project Putting It All Together

534

Device Control Functions by going to the Functions Palette ➤ Connectivity

➤ Input Device Control. Figure 10-17 shows the Input Device Control

Functions.

In this chapter, we will use the following Input Device Control

Functions:

•	 Initialize Joystick: This function starts the communication

between the computer and the joystick that you selected

with the device index (see Figure 10-18(a)).

•	 Acquire Input Data: This function gets the data from

the joystick device, such as button information and axis

information (see Figure 10-18(b)).

•	 Close Input Device: This function closes out the input

device session (see Figure 10-18(c)).

Figure 10-17.  The Input Device Control Palette

Chapter 10 Final Project Putting It All Together

535

With a primer of the LabVIEW software environment under our belts,

we can apply our newfound knowledge to our customer’s project. Let’s first

gather the requirements and then address hardware and software details.

�Gathering Requirements and Creating
the Requirements Document
Naticom wants an application that can control the NatBot from a computer

using an Xbox controller; this application needs to control the movements

of the NatBot and also be able to send the various commands that will save

data to the SD card or check if an obstacle is in the NatBot’s way.

�Software
Here are the software requirements for this project:

•	 Write LabVIEW software that allows the Xbox controller

to control the Arduino’s motion, and control the x, a, y,

and g commands that can be sent to the NatBot.

•	 The NatBot will also send a message back to the

LabVIEW application if the “a” command is sent to

the NatBot and will say if an object is too close to the

NatBot.

Figure 10-18.  (a) The Initialize Joystick Function, (b) the Aquire
Input Data Function, and (c) the Close Input Device Function

Chapter 10 Final Project Putting It All Together

536

•	 Display scaled data from the joystick in a

String Indicator in the following format:

1,255,1,255,1,255,1,255.

•	 Use the same code from Chapter 9 for the Arduino.

We should now have everything we need to move forward with this

project. In the next section, we will begin writing the application software

that will control the NatBot.

�Writing the Software
This section is a bit different from what you normally see in this book; this

is because we will not be writing any Arduino code. Instead, we will be

writing code in LabVIEW, which will let us use the Xbox controller with the

Arduino.

�Getting Started
Use the following steps to get started writing the software in LabVIEW:

	 1.	 First, you will need to start LabVIEW by double-

clicking the LabVIEW icon.

	 2.	 After LabVIEW starts, click the “Blank VI” option.

Figure 10-19 shows this process.

	 3.	 A Front Panel and a Block Diagram should appear

on the screen, ready to be added to. Figure 10-20

shows the Front Panel and Block Diagram.

Note  A black-outlined box within a figure indicates where you should
click with your mouse, or it denotes new code that has been added.

Chapter 10 Final Project Putting It All Together

537

Figure 10-19.  The start screen for LabVIEW (double-click
“Blank VI”)

Chapter 10 Final Project Putting It All Together

538

�Designing the GUI
Now we need to design the GUI for this project:

	 1.	 First, go to the Controls Palette ➤ Modern ➤

Boolean ➤ Stop Button, and click the Stop Button

and drag it to the Front Panel.

	 2.	 After that, we need to add the String Indicator to the

Front Panel. Go to the Controls Palette ➤ Modern ➤

String & Path ➤ String Indicator, and drag the String

Indicator to the Front Panel. If you want to resize

Figure 10-20.  Block Diagram (top) and Front Panel (bottom)

Chapter 10 Final Project Putting It All Together

539

any controls or indicators, simply hover your mouse

over the edge of the control or indicator and drag it

out to the size that you want.

	 3.	 Next, add the Write Button to the Front Panel by

going to the Controls Palette ➤ Modern ➤ Boolean

➤ OK Button and dragging the OK Button to the

Front Panel.

	 4.	 Then, you can rename the OK Button by clicking

the text and changing it to “Write.” After that, right-

click the Write Button, and a pop-up menu should

appear; click Mechanical Action ➤ Switch when

Pressed.

�Programming the Application
For now, the Front Panel is complete, and we are going to move on to

programming our LabVIEW application. Figure 10-21 shows the GUI for

this project.

Chapter 10 Final Project Putting It All Together

540

	 1.	 Go to your Block Diagram. You should have three

controls on it because we added them on the Front

Panel.

	 2.	 First, go to the Functions Palette ➤ Programming ➤

Structures ➤ While Loop, and drag the While Loop

onto the Block Diagram. Figure 10-22 shows this

process.

Figure 10-21.  Partially completed Front Panel

Chapter 10 Final Project Putting It All Together

541

	 3.	 Next, go to the Functions Palette ➤ Connectivity ➤

Input Device Control ➤ Initialize Joystick. Drag this

function to the Block Diagram on the outside of the

While Loop. Then, click the device ID terminal on

the Initialize Joystick Function and drag the wire to

the While Loop.

	 4.	 Next, click the error out terminal and drag the wire

to the While Loop.

	 5.	 After that, go to the Functions Palette ➤

Connectivity ➤ Input Device Control ➤ Acquire

Input Data, and drag this function to the Block

Diagram, inside the While Loop.

Figure 10-22.  Add a While Loop to the Block Diagram

Chapter 10 Final Project Putting It All Together

542

	 6.	 Then, attach the device ID from the Initialize Joystick

Function that we wired to the While Loop to the device

ID terminal on the Acquire Input Data Function.

	 7.	 Then, attach the error wire from the Initialize

Joystick Function to the error in (no error) terminal

on the Acquire Input Data Function.

	 8.	 Finally, go to the Functions Palette ➤ Connectivity

➤ Input Device Control ➤ Close Input Device,

and drag this function to the Block Diagram to the

outside of the While Loop on the right.

	 9.	 Then, connect the device ID from the Acquire

Input Data Function to the device ID terminal on

the Close Input Device Function. These terminals

are on the edges of the functions. This particular

terminal controls which device will be used.

	 10.	 After that, connect the error out terminal on the

Acquire Input Data Function to the error in (no

error) terminal on the Close Input Device Function.

	 11.	 After that, right-click the device ID on the left side

of the Initialize Joystick Function, and a pop-up

menu should appear. Go to Create ➤ Control on

the pop-up menu; this will add a control to your

Block Diagram and Front Panel. Figure 10-23 shows

adding the Input Device Control Functions to the

Block Diagram. (Make sure you leave plenty of

space on the Block Diagram, as we still have some

functions to add to it.)

Chapter 10 Final Project Putting It All Together

543

�Adding Serial Functions
Now that we have our Input Device Control Functions added and

connected on the Block Diagram, we can move on to adding the Serial

Functions to the Block Diagram.

	 1.	 First, go to the Functions Palette ➤ Instrument I/O

➤ Serial ➤ VISA Configure Serial Port, and drag this

function to the outside of the While Loop on the left.

	 2.	 Then, go to the Functions Palette ➤ Instrument

I/O ➤ Serial ➤ VISA Flush I/O Buffer, and drag this

function to the right side of the While Loop, after the

VISA Configure Serial Port Function.

Figure 10-23.  Add Input Device Functions to the Block Diagram

Chapter 10 Final Project Putting It All Together

544

	 3.	 Connect the VISA resource name out terminal from

the VISA Configure Serial Port Function to the VISA

resource name terminal on the VISA Flush I/O

Buffer Function.

	 4.	 Connect the error out (no error) terminal from the

VISA Configure Serial Port Function to the error in

terminal on the VISA Flush I/O Buffer Function.

	 5.	 Add a Case Structure to the Block Diagram inside

the While Loop. Go to the Functions Palette ➤

Programming ➤ Structures ➤ Case Structure, and

drag it out a little on the Block Diagram.

	 6.	 Connect the Write Button to the conditional

terminal on the Case Structure (it is the small square

with a question mark in it). In the true case, we

will need to add a VISA Write Function. Go to the

Functions Palette ➤ Instrument I/O ➤ Serial ➤

VISA Write, and drag this function to the inside of

the Case Structure to the True Condition.

	 7.	 Now we need to connect the VISA resource name

out terminal on the VISA Flush I/O Buffer Function

to the VISA resource name terminal on the VISA

Write Function. Connect the error out terminal on

the VISA Flush I/O Buffer Function to the error in

(no error) terminal on the VISA Write Function.

	 8.	 Wire the VISA resource name out terminal on the

VISA Write Function to the right wall of the Case

Structure, and do the same for the error out terminal

on the VISA Write Function. You will notice that

there are two white squares on the right wall of the

Case Structure; this is because your false statement

Chapter 10 Final Project Putting It All Together

545

has not been wired yet. Go to the false case of the

Case Structure and wire from the VISA resource

name out terminal on the VISA Flush I/O Buffer

Function to the right wall of the Case Structure

where the white square is located (these squares are

called tunnels). Do the same thing for the error out

terminal in the false case of the Case Structure.

	 9.	 Add a Sequence Structure to the Block Diagram. To

do this, go to the Functions Palette ➤ Programming

➤ Structures ➤ Sequence Structure, and drag this

function out a little, inside the While Loop next to

the Case Structure.

	 10.	 Add a Wait(ms) Function to the inside of the

Sequence Structure. To do this, go to the Functions

Palette ➤ Programming ➤ Timing ➤ Wait(ms), and

drag it to the inside of the Sequence Structure.

	 11.	 Right-click the milliseconds to wait terminal on the

Wait(ms) Function; a pop-up menu will appear.

Go to Create ➤ Constant; a small constant box will

appear next to the Wait(ms) Function. Double-click

this box and type in “100.”

	 12.	 Now wire the data that is coming from the Case

Structure through the Sequence Structure (both

error out and VISA reference name out).

	 13.	 Then, add another VISA Flush I/O Buffer Function

after the Sequence Structure. To do this, go to the

Functions Palette ➤ Instrument I/O ➤ Serial ➤

VISA Flush I/O Buffer, and drag it to the Block

Diagram, after the Sequence Structure.

Chapter 10 Final Project Putting It All Together

546

	 14.	 Connect the wires from the Sequence Structure to

the VISA Flush I/O Buffer Function.

	 15.	 Add a VISA Flush I/O Buffer Function to the outside

of the While Loop, on the right side of the While

Loop.

	 16.	 Add a VISA Close Function after the VISA Flush I/O

Buffer Function. You can find this function by going

to the Functions Palette ➤ Instrument I/O ➤ Serial

➤ VISA Close.

	 17.	 Right-click the VISA resource name terminal on the

left side of the VISA Configure Serial Port Function;

a pop-up menu will appear. Go to Create ➤

Control on that pop-up menu, and a control will be

created on the Block Diagram and the Front Panel.

Figures 10-24 and 10-25 illustrate adding the Serial

Functions to the Block Diagram.

	 18.	 Then, right-click the error on the left side of the VISA

Configure Serial Port Function; a pop-up menu

will appear. Go to Create ➤ Control on the pop-up

menu, and a control will be created on the Block

Diagram and Front Panel. Figures 10-24 and 10-25

show the process of adding the error cluster to the

Block Diagram.

Chapter 10 Final Project Putting It All Together

547

Figure 10-24.  Add serial communication to the Block Diagram (part
1 of 2)

Figure 10-25.  Make sure you wire the false condition of the Case
Structure (part 2 of 2)

Chapter 10 Final Project Putting It All Together

548

�Completing the While Loop Condition
Now, we need to complete the While Loop condition:

	 1.	 First, add an Or Function to the Block Diagram. To

do this, go to the Functions Palette ➤ Programming

➤ Boolean ➤ Or, and drag it next to the conditional

terminal of the While Loop.

	 2.	 Then, connect the x.or.y? terminal to the conditional

terminal on the While Loop.

	 3.	 After that, connect the Stop Button to the bottom

terminal on the Or Function.

	 4.	 Next, add an Unbundle by Name Function to the

Block Diagram. To do this, go to the Functions

Palette ➤ Programming ➤ Cluster, Class, &

Variant ➤ Unbundle by Name, and drag it to the

Block Diagram, next to the top terminal on the Or

Function.

�Adding a Merge Errors Function
Now, we need to add a Merge Errors Function to the Block Diagram. To do

this, follow these instructions:

	 1.	 Go to the Functions Palette ➤ Programming ➤

Dialog & User Interface ➤ Merge Errors, and drag

it to the Block Diagram and connect the error out

terminal to the Unbundle by Name Function.

	 2.	 Then, connect the status terminal of the Unbundle

by Name Function to the top terminal on the Or

Function.

Chapter 10 Final Project Putting It All Together

549

	 3.	 Connect the error out terminal from the Acquire

Input Data Function to the first terminal on the

Merge Errors Function.

	 4.	 Then, attach the error out terminal from the VISA

Flush I/O Buffer Function (the one inside the While

Loop) to the second terminal on the Merge Errors

Function. Figure 10-26 shows the completed While

Loop condition.

Next, we need to add a SubVI to our program.

Figure 10-26.  Complete the While Loop by adding in stop
conditions

Chapter 10 Final Project Putting It All Together

550

�Adding a SubVI
A SubVI is much like the subroutines we create when we program with

the Arduino IDE. Every function that we have put on the Block Diagram

has been a SubVI, but we are about to add a SubVI that LabVIEW does not

come with. You can find this SubVI with the source code from Chapter 10

at www.apress.com.

	 1.	 Once you have downloaded the SubVI (the SubVI’s

name is ScaleandControl.vi) to your desktop, you

can drag and drop it onto the Block Diagram.

	 2.	 Then, connect the axis info terminal on the Acquire

Input Data Function to the axis info terminal on the

Scale and Control Function.

	 3.	 Next, connect the button info terminal on the

Acquire Input Data Function to the button info

terminal on the Scale and Control Function.

	 4.	 After that, connect the string terminal on the Scale

and Control Function to the Write Data String

Indicator.

	 5.	 Finally, connect the string terminal on the Scale

and Control Function to the write buffer terminal

on the VISA Write Function. Figure 10-27 shows the

completed SubVI.

Chapter 10 Final Project Putting It All Together

http://www.apress.com

551

�Error Handling
Now, we need to complete the error handling for this project.

	 1.	 First, add a Merge Errors Function to the outside of

the While Loop, after the VISA Close Function.

	 2.	 Next, attach the error out terminal on the VISA

Close Function to the second terminal on the Merge

Errors Function.

	 3.	 Then, attach the error out terminal on the Close

Input Device Function to the first terminal on the

Merge Errors Function.

Figure 10-27.  Add a SubVI to the Block Diagram that will scale the
Xbox controller’s values and dictate which direction to move the robot

Chapter 10 Final Project Putting It All Together

552

	 4.	 Finally, right-click the error out terminal on the

Merge Errors Function, and a pop-up menu should

appear. Go to Create ➤ Indicator, and an error

indicator should be added to your Block Diagram

and Front Panel.

Now, you can modify the Front Panel as you see fit because we have no

more controls or indicators to add to it. That should do it for the LabVIEW

software. See Figure 10-28.

�Read Function
Now, we need to complete the error handling for this project.

	 1.	 First, let’s expand the Front Panel a bit to accommodate

the new string indicator that we will need.

Figure 10-28.  Finish error handling of the LabVIEW software to
finish the program

Chapter 10 Final Project Putting It All Together

553

	 2.	 Now add another string indicator onto the Front

Panel and name it “Serial Read.”

	 3.	 Go ahead and stretch it to be the same width as the

“Write Data” string indicator and about half of its

height. See Figure 10-29.

	 4.	 Add a little flare to the Front Panel by double-

clicking the Front Panel and writing “NatBot

Interface” onto the Front Panel. See Figure 10-30.

Figure 10-29.  Expand the Front Panel

Chapter 10 Final Project Putting It All Together

554

	 5.	 You can increase the size of the text by selecting the

text and pressing Ctrl and +.

	 6.	 To add a vertical scrollbar to the “Serial Read”

indicator, right-click the indicator and go to Visible

Items ➤ Vertical Scrollbar, and the scrollbar will

appear. See Figures 10-31 and 10-32.

Figure 10-30.  Add the text “NatBot Interface” to the Front Panel

Chapter 10 Final Project Putting It All Together

555

Figure 10-31.  Make the vertical scrollbar visible

Figure 10-32.  Vertical scrollbar

Chapter 10 Final Project Putting It All Together

556

	 7.	 Move to the Block Diagram and remove the wires

between the sequence structure and the flush buffer,

and expand the while loop a bit. See Figure 10-33.

Figure 10-33.  Expand the while loop

	 8.	 Add a VISA Read Function to the Block Diagram.

See Figure 10-34.

Chapter 10 Final Project Putting It All Together

557

	 9.	 Add a VISA Property Node to the Block Diagram.

This will be a “Bytes at Port” function which will set

the size of the buffer that we will be looking for on

the serial port. See Figure 10-35.

Figure 10-34.  Add a VISA Read Function

Figure 10-35.  Add the “Bytes at Port” property

Chapter 10 Final Project Putting It All Together

558

	 10.	 Connect all the necessary wires for the “Bytes at Port”

function and also connect the “Serial Read” indicator

to the VISA Read Function. See Figure 10-36.

�Uploading the Code to the Arduino
Now that we have written our LabVIEW software, we need to make sure the

correct code is uploaded to the Arduino. Listing 10-1 shows the Arduino

code for this project.

Listing 10-1.  Same firmware from Chapter 9 will be used

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1331.h>

#include <TinyGPS.h>

// Adafruit Display

#define sclk 52

Figure 10-36.  Make sure your Block Diagram looks like this

Chapter 10 Final Project Putting It All Together

559

#define mosi 51

#define cs 31

#define rst 29

#define dc 28

// Color definitions

#define BLACK 0x0000

int numCount = 0;

// Motor IO

const int fields = 8; // how many fields are there? right now 8

int motorPins[] = {42,44,40,46,25,12,26,13}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

// Object Creation

TinyGPS gps;

ADXL362 accel;

Adafruit_SSD1331 display = Adafruit_SSD1331(cs, dc, mosi, sclk,

rst);

// SD Card Chip Select

int SDCS = 30;

// Ultrasonic Sensor Pin

int pingPin = 22;

// Accelerometer variables

int16_t XValue, YValue, ZValue, Temperature;

// GPS data

char LatData[50]; // data buffer for Latitude

char LongData[50];

Chapter 10 Final Project Putting It All Together

560

//Latching Variables

char prevState;

int prevAutoState;

// Data buffer for saving drive data

char driveData [50];

// TMP36 Variables

int tempPin = A0;

int sensorValue = 0;

void setup() {

 // Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS

 Serial.begin(9600);

 Serial1.begin(115200);

 Serial2.begin(4800);

 // CS Pins of SPI devices

 pinMode(SDCS, OUTPUT);

 pinMode(cs, OUTPUT);

 pinMode(27, OUTPUT);

 // set Motor pinMode to output

 for(int i; i <= 7; i++)

 {

 pinMode(motorPins[i], OUTPUT);

 digitalWrite(motorPins[i], LOW);

 }

 // Check for Card availability

 if (!SD.begin(SDCS)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

Chapter 10 Final Project Putting It All Together

561

 while (1);

 }

 // Turn off SD Chip Select

 digitalWrite(SDCS, HIGH);

 Serial.println("card initialized.");

 �Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,

MotoBSpe\n");

}

void loop() {

 if(Serial1.available())

 {

 char ch = Serial1.read();

 if (ch == 'y' || prevState == 'y') // if Serial reads y

 {

 accel.begin(10); // �Setup SPI protocol, issue

device soft reset

 accel.beginMeasure(); // Switch ADXL362 to measure mode

 // �read all three axis in burst to ensure all

measurements correspond to same sample time

 accel.readXYZTData(XValue, YValue, ZValue, Temperature);

 Serial.print("XVALUE=");

 Serial.print(XValue);

 Serial.print("\tYVALUE=");

 Serial.print(YValue);

 Serial.print("\tZVALUE=");

 Serial.print(ZValue);

 Serial.print("\tTEMPERATURE=");

 Serial.println(Temperature);

Chapter 10 Final Project Putting It All Together

562

 delay(100); // �Arbitrary delay to make serial

monitor easier to observe

 // Stop communication with accelerometer

 digitalWrite(27, HIGH);

 // Store data into SD card

 // �open the file. note that only one file can be open at

a time,

 // so you have to close this one before opening another.

 SD.begin(SDCS);

 File accelFile = SD.open("Accel.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (accelFile) {

 accelFile.print(XValue);

 accelFile.print(" , ");

 accelFile.print(YValue);

 accelFile.print(" , ");

 accelFile.println(ZValue);

 accelFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

 else if (ch == 'a') // if Serial reads a

 {

 if (prevAutoState == 0)

Chapter 10 Final Project Putting It All Together

563

 {

 prevAutoState = 1;

 // put your main code here, to run repeatedly:

 float duration, inches;

 pinMode(pingPin, OUTPUT);

 digitalWrite(pingPin, LOW);

 delayMicroseconds(2);

 digitalWrite(pingPin, HIGH);

 delayMicroseconds(2);

 digitalWrite(pingPin, LOW);

 pinMode(pingPin, HIGH);

 inches = duration / 74 / 2;

 if (inches >= 2)

 {

 Serial1.println("Object Near!!");

 }

 }

 else if (prevAutoState == 1)

 {

 prevAutoState = 0;

 }

 }

 else if (ch == 'g' || prevState == 'g') // if Serial reads g

 {

 if (Serial2.available() > 0) // now gps device is active

 {

 int c = Serial2.read();

 if(gps.encode(c)) // New valid sentence?

 {

Chapter 10 Final Project Putting It All Together

564

 // �Initialize Longitude and Latitude to floating

point numbers

 float latitude, longitude;

 // Get longitude and latitude

 gps.f_get_position(&latitude,&longitude);

 Serial.print("Lat: ");

 // �Prints latitude with 5 decimal places to the

Serle ial Monitor

 Serial.println(latitude,7);

 Serial.print("long: ");

 // �Prints longitude with 5 decimal places to the

Serial Monitor

 Serial.println(longitude,7);

 // Store data into SD card

 // �open the file. note that only one file can be

open at a time,

 // �so you have to close this one before opening

another.

 SD.begin(SDCS);

 File GPSFile = SD.open("GPS.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (GPSFile) {

 GPSFile.print(latitude, 7);

 GPSFile.print(" , ");

 GPSFile.println(longitude,7);

 GPSFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

Chapter 10 Final Project Putting It All Together

565

 else {

 Serial.println("error opening datalog.txt");

 }

 }

 }

 prevState = ch;

 }

 else if(ch >= '0' && ch <= '9') // �If the value is a number

0 to 9

 {

 // add to the value array

 values[index] = (values[index] * 10) + (ch - '0');

 }

 else if (ch == ',') // if it is a comma

 {

 if(index < fields -1) // If index is less than 4 - 1...

 index++; // increment index

 }

 else

 {

 for(int i=0; i <= index; i++)

 {

 if (i == 0 && numCount == 0)

 {

 Serial.println("Motor A");

 Serial.println(values[i]);

 }

 else if (i == 1)

 {

 Serial.println(values[i]);

Chapter 10 Final Project Putting It All Together

566

 }

 if (i == 2)

 {

 Serial.println("Motor B");

 Serial.println(values[i]);

 }

 else if (i == 3)

 {

 Serial.println(values[i]);

 }

 if (i == 4)

 {

 Serial.println("Motor C");

 Serial.println(values[i]);

 }

 else if (i == 5)

 {

 Serial.println(values[i]);

 }

 if (i == 6)

 {

 Serial.println("Motor D");

 Serial.println(values[i]);

 }

 else if (i == 7)

 {

 Serial.println(values[i]);

 }

 if (i == 0 || i == 2 || i == 4 || i == 6) // �If the

index is

equal to

0 or 2

Chapter 10 Final Project Putting It All Together

567

 {

 digitalWrite(motorPins[i], values[i]); // �Write to

the digital

pin 1 or 0

 // depending on what is sent to the arduino.

 }

 if (i == 1 || i == 3 || i == 5 || i == 7)

// If the index is equal to 1 or 3

 {

 analogWrite(motorPins[i], values[i]); // Write to

the PWM pins a number between

 // 0 and 255 or what the person has entered

 // in the serial monitor.

 }

 values[i] = 0; // set values equal to 0

 �sprintf(driveData, "Motor A = ", values[0], "Motor B = ",

values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

 // Send temperature to the LCD

 sensorValue = analogRead(tempPin);

 display.begin();

 display.fillScreen(BLACK);

 display.setCursor(0,0);

 display.print(sensorValue);

 digitalWrite(cs, HIGH);

 }

 index = 0;

 numCount = 0;

 }

Chapter 10 Final Project Putting It All Together

568

 if (ch == 'x' || prevState == 'x') // if Serial reads x

 {

 SD.begin(SDCS);

 File driveFile = SD.open("Drive.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (driveFile) {

 driveFile.println(driveData);

 driveFile.close();

 digitalWrite(SDCS, HIGH);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 prevState = ch;

 }

 }

}

If you would like to read the discussion of this program, please read the

“Writing the Software” section in Chapter 9’s final project.

Note  Make sure the Arduino and the Xbox controller are connected
to your computer.

Chapter 10 Final Project Putting It All Together

569

�Operation
The following steps will guide you through the operation of this project:

	 1.	 To operate the LabVIEW software, you will need to

first know the serial com port to which the Arduino

is connected. Go to the Front Panel of the LabVIEW

software and click the arrow on the VISA resource

name control; a drop-down menu will appear, and

you can select the correct serial port to which the

Arduino is connected.

	 2.	 After that, you need to select the correct number ID

with which the Xbox controller is associated. To do

this, click inside the white area of the device index

control and type in the number (the best thing to

do is type in 1; if that doesn’t work, type in 2; if that

doesn’t work, type in 3; repeat these steps with a

larger number each time).

	 3.	 Then, click the white arrow at the top left of the

screen. After that, your program should run. Click

the Write Button, and the robot should move when

you move the joystick up, down, left, and right.

Now that we have written the LabVIEW software and Arduino software,

we can move on to fixing any bugs or issues we might have had with both

the hardware and software. In the next section, we will discuss how to

debug the software.

�Debugging the LabVIEW Software

LabVIEW has several built-in debugging tools. I will explain only two of

them: Highlight Execution and probes.

Chapter 10 Final Project Putting It All Together

570

Highlight Execution is used to see the flow of your program and to

find where errors are occurring. It slows the program down considerably

and runs through the code function by function. To use this debugging

method, click the Highlight Execution button at the top of the Block

Diagram (the button has a light bulb on it). If you click this function while

the program is running, you will see bright lines showing you where you

are in the code.

Probes are used to see specific values that controls or indicators are

giving or receiving. For instance, if you wanted to see at what point a

logical error is occurring in your code, you could use a probe to view data

on the wires to figure out where the mistake is. To use probes, right-click

any wire on the Block Diagram. A pop-up menu will appear. Click probe,

and a display will pop up with an indicator showing you the value on that

wire.

We can use these tools to figure out issues that the LabVIEW software

might be having. If you have a broken arrow, you might have connected

something incorrectly, or you forgot to connect a terminal on one of the

functions. Make sure your code is exactly like that shown in Figure 10-36.

Now, if you have a white arrow, and you are still having issues with your

LabVIEW software, you might have encountered a logical error. Use

probes and Highlight Execution to find these issues. Because every Xbox

controller will have different calibration, you might need to adjust the

limits on the Xbox controller. To do this, double-click the Scale and Control

SubVI, and the Block Diagram for this SubVI should appear. Then adjust

the constants, shown in Figure 10-37, to a higher or lower value, depending

on what your Xbox controller is doing.

Chapter 10 Final Project Putting It All Together

571

If the software is working, and you are still having issues, refer to the

next section on troubleshooting the hardware.

�Finished Prototype

Well, if everything is working, you have a finished prototype ready to

deliver to the customer. Figure 10-38 shows the finished prototype.

Figure 10-37.  Change the constants on these functions to set the
limits for vertical and horizontal movements of the joystick on the
Xbox controller

Figure 10-38.  The NatBot

Chapter 10 Final Project Putting It All Together

572

�Summary
That’s it! But before you leave, let us recap what we have gone over in this

chapter:

•	 Learned about the LabVIEW environment

•	 Learned how to use serial communication to control

the NatBot with a LabVIEW application

•	 Learned how to structure your code on the Block

Diagram and how to arrange your Front Panel (GUI)

•	 Learned about various functions in LabVIEW

•	 Created your own Serial Interface using LabVIEW

Chapter 10 Final Project Putting It All Together

573© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0

Index
A
Accelerometer, 8, 409, 410, 491
Adafruit SSD1331

library, 493
ADXL362 library, 492
Allen wrenches, 135, 136
Analog communication, 46
Arduino boards, 2, 184
Arduino engineering process

configuring hardware, 20, 21
creating requirements

document, 19
debugging software, 23
finished prototype, 25
gathering hardware, 19
hardware components

ArduinoBT/Bluetooth
Mate Silver, 3

Arduino Duemilanove/
UNO, 2

Arduino shields, 5
GPS shield, 6
miscellaneous

components, 10
Motor shield, 6
servos and motors, 9
solderless breadboard, 4, 5
wire, 5

requirements document,
creation, 18

tools, 10–17
troubleshooting hardware, 24
writing software, 22

Arduino microcontroller, 2
Arduino shields, 5
Arrays, 31

B
Bluetooth Mate Silver, 3, 4

C
Calipers, 137, 161, 343
Capacitors, 10, 185, 281
Case structure, 526–527
Comparison functions, 531–532
Conditional statements, 31–33, 53
Control board, 142, 143
Cura, 145
Cutters, 11, 15

D
DesignSpark Mechanical, 58
Digital calipers, 137
Digital commands, 45

https://doi.org/10.1007/978-1-4842-6852-0#DOI

574

Digital communication, 45
digitalRead(), 46
digitalWrite(), 46
Diodes, 10, 374
do…while loop, 44, 54
Duet Wifi 2 control board, 143

E
Eagle

board window, 187–189
Gerber file, creation, 256–261
libraries, loading, 189–196
PCB software, 185
schematic window, 185, 187

E3D brand extruder assembly, 141
Error handling, 551–552
Extrude function, 103–106
Extruder assembly, 140–141

F
FDM printer, 130–132
Feature creep, 18
Finite-state machine

(FSM), 38–42, 53
Flex sensor, 7, 8
Force sensitive resistor

(FSR), 7, 9
for loop, 42, 43
FTDI programmer, 12, 16
Function prototype, 28
Fused Filament Fabrication (FFF),

129, 131

settings
additions tab, 153
advanced tab, 162
cooling tab, 157
extruder tab, 150
G-Code tab, 158
infill tab, 154
layer tab, 152
scripts tab, 159
speed tab, 160
support tab, 155
temperature tab, 156

Fusion 360
download, 58–62
extrude function, 103–106
importing files, 86–96
installation

procedures, 63, 64
interfaces/controls, 64
parametric modeling

Center Diameter Circle,
selection, 113

change dimensions, 108
circle on grid, 113
circle to bottom face, 120
circle to horizontal center

line, 117
cube project, 106
design history bar, 125
dimension to circle, 114
edit dimension, 112
Extrude1 selection, 109
extrude, border 1mm, 118
fillet, adding, 121

INDEX

575

horizontal center,
rectangle, 115

left-side outlines,
selection, 122

offset function, 111
show sketch, 119
sketch1 selection, 121
sketch2 selection, 123
2mm fillets, 123, 124

rectangle, 115
sketch creation, 97–103
sketch tools

arc, 75
circle, 74
create sketch, 72
fillet, 77
line, 72
mirror, 76
normal and construction

lines, 73
offset, 78
polygon, 75
rectangle, 73
text, 76
trim, 77

3D model, 96
3D tools

chamfer, 84
circular pattern, 82
combine, 85
extrude, 79
fillet, 83
loft, 81
new component, 78

press pull, 83
rectangular pattern, 81
revolve, 80
shell, 84
sweep, 80

tools, functions, 85, 86
user interface

browser, 70
center mouse button, 68
design history bar, 70
layout, 65
left mouse click, 67
mouse pointer, 68
navigation bar, 71
right mouse click, 66
ViewCube, 68, 69

G
Gantry, 141, 142
Ghosting, 168
Global variable, 30, 505
GPS module, 7, 8, 424, 475
GPS mount, 463, 475, 485
GPS shields, 6

H
H-bridge, 265–274
H-Bridge PCB

add nets to components, 280
component orientations, 281
components configuration, 282
connect INV3, 290

INDEX

576

connect INV4, 287
connect +VIN pins, 299
connect VIN to filter caps, 284
GND plane, 314
header labels, 309
hide layers, 300
holes adding, 307
plane GND, 313
polygon on top layer, 311
Ratsnest button, 315
ripup tool, 290, 291
ripup tool and route tool, 316
route +5V, 292
route INV1 to JP1, 296
route N$15, 295
schematic layout, 279
unrouted traces, 303
vias adding, 305

Humidity sensor, 9

I, J, K
Input device control functions,

533–535, 543
Integrated circuit (IC), 183
Integrated development

environment (IDE), 2, 22, 550

L
LabVIEW environment

block diagram, 523
controls palette, 522

front panel, 521
functions palette, 524
tools palette, 525

LabVIEW functions
case structure, 527
comparison

functions, 531, 532
input device control functions,

533–535
numerical functions, 528, 529
sequence structure, 527
serial functions, 532, 533
string functions, 529, 530
while loop, 526

LCD mount dimensions, 462
LED, 10, 18–20, 246, 253
Local variable, 30
Logic analyzer, 12, 16
loop(), 28, 505
Loops, 42–44

M
Magnifying glass, 15
Main Simplify3D

screen, 146–148
Merge errors function, 548–549,

551, 552
micros() function, 35
Micro USB panel mount, 456–457,

483
millis() function, 35, 38
Motor shields, 6
Multimeter, 11, 14, 374, 375

H-Bridge PCB (cont.)

INDEX

577

N
NatBot

boost regulators, 412
hardware, PCB

accelerometer, 409, 410
bluetooth, 416, 417
boost regulator, 414, 415
charge circuit, 411, 412
GPS, 424, 425
GPS header layout, 427
GPS header schematic, 426
H-bridges, 399–401
micro servo, 404
motor connectors, 400
motor header, 401, 402
OLED display, 421–423
sensor, 417
servo header, 405–408
temperature sensor, 419–421
ultrasonic, 418, 419

hardware requirements,
386–388

LabVIEW
adding serial functions,

543–547
Arduino code, 558–568
error handling, 551, 552
GUI, 538
merge errors function, 548
programming, application,

539–543
read function, 552–555,

557, 558

software debugging,
569, 570

software requirements, 535
SubVI, adding, 550, 551
while loop condition, 548
writing software, 536–538

PCB Bill of Materials (BOM),
428, 430

PCB’s dimensions, creation
add rectangle to

layout, 392
Bluetooth antenna, 397
final board dimensions, 389
final dimension layout, 396
functions menu, 391
holes layer, 392
horizontal length, 390
keepout zones, 398
line function selection, 395
polygon function, 397
rectangle, 393–395
rectangles, 389
vertical length, 390

requirements gathering (PCB),
385, 386

software
Arduino libraries, 492–494
code writing, 495–516
requirements gathering

(firmware), 490
requirements outlining,

491, 492
uploading and testing, 516

INDEX

578

3D modeling
assembly, robot, 469–488
battery holder, 452
chassis, 452
front and rear wheelbase,

463–465
Fusion 360 functions,

435–451
GPS mount, 463
LCD mount, 455, 461
micro USB panel mount, 456
motor assembly mounts, 454
outlining requirements,

433–435
PCB mounting, 457
requirements gathering,

 432, 433
ultrasonic sensor

mount, 454
ultrasonic sensor mount

dimensions, 460
wheelbases, 472
wheels, 465

3D printing, 467–469
Naticom, 265, 274–276, 385, 432
Needle-nose pliers, 11, 133, 134
Numeric palette, 528

O
OLED display, 421–423, 493
Onshape, 58
Oscilloscope, 12, 17

P, Q
Painters spatula, 134
Parametric paradigm, 57
Photoresistor, 7, 8
PIR sensor, 7
Printed Circuit Board (PCB) design

Bill of Material (BOM), 428, 430
board layout creation, 229–256
definition, 183
design software, 183

Eagle (see Eagle)
manufacturers, 261, 262
schematics creation

add 5V symbols, 201
add GND symbols, 203
add LED3MM symbol, 206
ADD window, 200, 213
*.brd file, 228
button search, 207
connect GND to terminal

block, 225
5mm terminal block, 214, 215
5V net connect to terminal

block, 221
5V symbol selection, 200
GND symbol selection, 202
LED_Board, 228, 229
LED3MM selection, 205
LED search, 204
Momentary button, 207, 208
open eagle, 197
R1 value, 227
R0805 resistor, 217

NatBot (cont.)

INDEX

579

search connector, 213
search resistor, 216
symbols configuration, 219
value of button, 209

properly—setup(), 28
Pulse width modulation (PWM),

46, 269, 270

R
Read function, 552–555, 557, 558
Resistors, 10, 185
Robot chassis, designing

Arduino measuring, 345–348
component, creation, 320, 329
50mil chamfers, adding, 325
front brace, motor

bracket, 337
front stop rectangle, motor

bracket, 333
hide screws from view, 328
holes add, caster wheel, 322
holes adding, Mega 2560 Pro, 323
holes, chassis, 338
holes, motor bracket, 335
micro motor measurement,

349, 350
mirror, 339
motor bracket, outline, 332
motor driver, 327
rectangle, creation, 321,

330, 341
width of hole, 342
zero button, 343

Robot engineering requirements
assembly

debugging, Arduino
Software, 369–374

troubleshooting hardware,
374–380

writing software, 365–368
controlling motors, serial

commands, 275
H-bridge circuit, 265–274
requirements gathering, 275, 276
software requirements, 277, 279

S
Schematic sheets, 383–384
Scientific calculator, 11
SD library, 494
Sensors, 7, 8
Sequence structure, 527, 545
Serial communication, 46–50
SerialEvents, 50–51
Serial functions, 532–533
Servos and motors, 9
setup(), 28
Simplify3D, 145–147
Slicer, 145, 146
Solder, 11, 351, 352
Soldering iron, 11, 13
Solderless breadboard, 4, 5
Sonar sensors, 8
SparkFun Eagle library, 191, 195
Stereolithography (SLA) printer, 132
String functions, 529–530

INDEX

580

SubVI, 550–551
Surface mount hardware (SMT), 318
Switch statement, 33, 53

T
Temperature sensor, 8, 419–421
3D Cad software

DesignSpark mechanical, 58
Onshape, 58
Solidworks, 57

3D printer
build plate, 169
definition, 129
FDM, 130
FFF, 131
first print, 169–182
functionality, components

build plate, 143
cold block, 139
control board, 142
extruder assembly, 140
gantry, 141
hot end, 138

ghosting, 168
over/under extrusion, 163–168
SLA, 132
tools

Allen wrenches, 135
calipers, 137
needle-nose pliers, 133
painters spatula, 134
tweezers, 136
wire cutters, 135

X-Acto knife, 136
troubleshooting, 163

Tilt sensor, 7, 8
Timers vs. Delays, 33–38
TinyGPS++ library, 51
TinyGPS library, 494
Transistors, 10, 265
Troubleshoot hardware, 24
Tweezers, 136

U
Ultrasonic sensor, 417, 434, 455,

460, 474, 476
USB microscope, 15

V
Variables

array, 31
conditional statements, 31–33
declarations, 31
declare, 30
local and global variables, 30
types, 29

W
while loop, 43, 54, 526, 548
Wire cutters, 135
Wire stripper, 11, 15

X, Y, Z
X-Acto knife, 136, 137

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: The Process of Arduino Engineering
	Gathering Your Hardware
	Gathering Your Tools
	Understanding the Engineering Process
	Requirements Gathering
	Creating the Requirements Document
	Gathering the Hardware
	Configuring the Hardware
	Writing the Software
	Debugging the Arduino Software
	Troubleshooting the Hardware
	Finished Prototype

	Summary

	Chapter 2: Understanding the Arduino Software
	Getting Started with setup() and loop()
	Initializing Variables
	Writing Conditional Statements

	Timers vs. Delays
	Finite-State Machine
	Working with Loops
	Communicating Digitally
	Communicating with Analog Components
	Serial Communication
	SerialEvent
	Using Arduino Libraries
	TinyGPS++

	Putting Together the Arduino Language Basics
	Summary

	Chapter 3: Modeling with Fusion 360
	Installing and Setting Up Fusion 360
	Download Fusion 360
	Installation Procedures for Fusion 360
	Getting to Know Fusion 360
	Fusion 360’s User Interface
	Fusion 360 Sketch Tools
	Fusion 360 3D Tools
	Fusion 360 Tools
	Importing Files
	Your First 3D Model in Fusion 360
	Creating a Sketch
	Using the Extrude Function
	Parametric Modeling in Fusion 360
	Summary

	Chapter 4: 3D Printing
	What Is 3D Printing
	Types of 3D Printers
	Tools of the Trade
	Parts of a 3D Printer
	What Is a Slicer
	Different Slicing Programs
	Simplify3D
	The Main Screen
	Common Settings
	Troubleshooting
	Over/Under Extrusion
	Ghosting
	Parts Do Not Stay on Build Plate
	Our First Print
	Summary
	Exercise

	Chapter 5: PCB Design
	What Is a PCB
	PCB Design Software
	Eagle
	Eagle’s Main Windows
	Loading a Library
	Creating a Schematic
	Laying Out a PCB
	Exporting Gerber Files
	PCB Manufacturers
	Summary

	Chapter 6: Robot Engineering Requirements: Controlling Motion
	Hardware Explained: The H-Bridge
	Chapter Project: Creating the First Prototype
	Controlling Motors with Serial Commands
	Requirements Gathering
	Outlining the Software Requirements
	Creating an H-Bridge PCB
	Designing a Robot Chassis
	Assembly
	Writing the Software
	Debugging the Arduino Software
	Troubleshooting the Hardware
	Finished Prototype

	Summary
	Exercise

	Chapter 7: Final Project PCB
	Creating Schematic Sheets
	Final Project: NatBot
	Requirements Gathering (PCB)
	Outlining the Hardware Requirements
	Creating the NatBot PCB
	Hardware Explained: The NatBot PCB
	DC Motor
	Micro DC Motors
	Servo
	Micro Servos
	Accelerometer
	ADXL362
	Charging Circuit
	MCP73831T
	Buck/Boost Regulator
	8V Boost Regulator 6V Boost Regulator
	Bluetooth
	RN-42
	Ultrasonic Sensor
	Parallax Ping Ultrasonic Sensor
	Temperature Sensor
	TMP36
	OLED Display
	OLED
	GPS
	UART GPS
	Headers

	PCB Bill of Materials (BOM)
	Finished Prototype

	Summary

	Chapter 8: Final Project 3D Model
	Final Project: NatBot
	Requirements Gathering (3D Model)
	Outlining the 3D Model Requirements
	Fusion 360 Functions Explained
	Features of the NatBot 3D Model Explained
	NatBot Chassis
	Battery Holder
	Motor Assembly Mounts
	Ultrasonic Sensor Mount
	LCD Mount
	Micro USB Panel Mount
	PCB Mounting
	NatBot Ultrasonic Sensor Mount
	NatBot LCD Mount
	NatBot GPS Mount
	NatBot Front and Rear Wheelbase
	NatBot Wheels

	3D Printing the NatBot
	Fit Check and Assembly

	Summary

	Chapter 9: Final Project Software
	Final Project: NatBot
	Requirements Gathering (Firmware)
	Outlining the Software Requirements
	Reviewing the Arduino Libraries for the NatBot
	Writing the NatBot Firmware
	Uploading and Testing the NatBot Firmware

	Summary

	Chapter 10: Final Project Putting It All Together
	Introduction to the LabVIEW Environment
	The Front Panel
	The Controls Palette
	The Block Diagram
	The Functions Palette
	The Tools Palette

	LabVIEW Functions Explained
	The While Loop
	The Case Structure
	The Sequence Structure
	Numerical Functions
	String Functions
	Comparison Functions
	Serial Functions
	Input Device Control Functions

	Gathering Requirements and Creating the Requirements Document
	Software
	Writing the Software
	Getting Started
	Designing the GUI
	Programming the Application
	Adding Serial Functions
	Completing the While Loop Condition
	Adding a Merge Errors Function
	Adding a SubVI
	Error Handling
	Read Function
	Uploading the Code to the Arduino
	Operation
	Debugging the LabVIEW Software
	Finished Prototype

	Summary

	Index

