Practical Arduino
Engineering

End to End Development with the
Arduino, Fusion 360, 3D Printing,
and Eagle

Second Edition

Wmis

Practical Arduino
Engineering

End to End Development
with the Arduino, Fusion 360,
3D Printing, and Eagle

Second Edition

Harold Timmis

Apress’

Practical Arduino Engineering: End to End Development with the Arduino,
Fusion 360, 3D Printing, and Eagle

Harold Timmis
Jacksonville, FL, USA

ISBN-13 (pbk): 978-1-4842-6851-3 ISBN-13 (electronic): 978-1-4842-6852-0
https://doi.org/10.1007/978-1-4842-6852-0

Copyright © 2021 by Harold Timmis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Practical Arduino Engineering: End to End Development with the Arduino, Fusion360, 3D Printing,
and Eagle is an independent publication and is not affiliated with, nor has it been authorized,
sponsored, or otherwise approved by Microsoft Corporation. LabVIEW is a trademark of National
Instruments, Eagle and Fusion 360 are trademarks of Autodesk and Simplify3D is a trademark of
Simplify3D. This publication is independent of National Instruments, Autodesk, and Simplify3D, which
is not affiliated with the publisher or the author, and does not authorize, sponsor, endorse, or otherwise
approve this publication.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6851-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6852-0

To my friend A]. I love you and miss you.
May you rest in peace.

Table of Contents

About the AUthOrccccviiisemmmmmisssnnnmnsssssnmsssssn s ansnessnans xi
About the Technical REVIEWErccursssssssssssssnssssssssnnsssssssnssssssssnnsnsssss xiii
Acknowledgments........cccuussssssmnnnmmmmmsssssssssnsnnnnssssssssssssnnnnnnsssssssssnnnnns XV
[() £ - Xvii
Chapter 1: The Process of Arduino Engineeringcccsessssessssssssnsssasas 1
Gathering YOUr HArdWAreccccrecrncnnesessse st sesss e sessesessenens 2
Gathering YOUr TOOIS........ccueriinnnienesn e s se s snes 10
Understanding the Engineering ProCess.........ccoverrverereneresesssesessesesesesesenenns 17
Requirements Gathering..........cccoovereernrnnesr s 18
Creating the Requirements DOCUMENTccovveerenrnscrnneser e 18
Gathering the Hardware ... 19
Configuring the Hardwarecooeerenmrencrnnenesesers s e sennes 20
Writing the SOftWArE........cccoeeereeeee e 22
Debugging the Arduino SOFIWare.........c.cocerererercrrcrr e 23
Troubleshooting the Hardware ... 24
Finished Prototype........cccorinininnnsrcne e 25
SUMMANY....eieeereere s s e e e e 25
Chapter 2: Understanding the Arduino Software..........ccccuseennrisssnnnna 27
Getting Started with setup() and 100P() ...cecevererrerieriernrrsre e 28
Initializing Variables ... 29
Writing Conditional Statements..........cccvvrrevnrnienienssnsesese s sessesessens 31

TABLE OF CONTENTS

TIMErs VS. DEIAYS.....ccccvveriririrsie e s 33
Finite-State Machineg..........cooveceinnnsc s 38
Working With LOOPSccccoeriiiininnnsinsene e sss s 42
Communicating Digitallyccorermrnrrnrereresere e 45
Communicating with Analog Components........ccccvvvevnenmnesesnsesessesessesessssesenns 46
Serial CommUNICALION........ccccevrir s ——————— 46
SEHAIEVENT.......ccoviecccci s 50
Using Arduino LIDraries.......cccvevvvvrreeneniirses e sserses e ssessessse e sessesssesnessesns 51
T o 51
Putting Together the Arduino Language BasiCsc..cccceevrnrernnnsensesesnnsensennens 52
SUMMANY....eieeereserre e r e n e sre e 55
Chapter 3: Modeling with Fusion 360.........ccccusseemmmmsssssnnmsssssssssssssnnnns 57
Installing and Setting Up FUSion 360c.ccoeorenernnennenmnene e sssesens 58
Download FUSION 360..........ccruruimmnermmmnssssess s sesssssssas 58
Installation Procedures for FUSIon 360coouernnnnnennnennsesese e 63
Getting to Know FUSION 360..........ccovevirnnennncnnenesssesse e ses e e sessssesens 64
Fusion 360’s USEr INTEITACEcccoereerererererereree e 65
Fusion 360 SKEICh TOOISc.cccoereierecrreerese e 72
FUSION 360 3D TOOISccerreerrresrrresersssesessessssesessssesssessssssn s sessessssesessssessssesenns 78
FUSION 360 TOOISocvviviiiirirrssssse s 85
IMPOMING FIlES ...eevereerte et se s a e e sae e e e saenne e 86
Your First 3D Model in FUSION 360ccccocoerenernnmrereeree e 96
Creating @ SKetCh.........cccvriinrri s 97
Using the Extrude FUNCHION........ccovorreeerecrrcresee e 103
Parametric Modeling in FUusion 360ccoovermenmnenesnsesenesesese s 106
SUMMANY ...t e e np e 126

TABLE OF CONTENTS

Chapter 4: 3D Printingcccussemmmmsssnnnmmssssssnsmssssssssessssssssssssssssnsssssnns 129
What IS 3D Printingccocevvininincnr s snes 129
TYPES OF 3D PrINTEIS ... 130
TOOIS OF the Tradecoveeeereereee e 133
Parts of @ 3D PrINter........ccocviiserrrrnes e 138
WHAL IS @ SHCEN ... s 145
Different SICING PrOgrams........ccccvrerevernenseressssessesesssssssessessessssessessessssessessenes 145
SIMPLITY3D ... s 146
The MaiN SCIEEN ..o e 146
COMMON SELHNGS...cvieereeerrrrererese e 149
TroubIESNOOTING ..cveeeereireere e e 163
Over/Under EXIIUSIONcucceevenerinsesesesssssesrssessse s sss e sssse s s ssssesessssessans 163
L1101 o OSSN 168
Parts Do Not Stay on Build PIate..........ccecvrerernnnseniensnenseresessssesessessssesessenes 169
L0 T | TS 169
SUMIMANY....eeeererereree e e s s e s e re e re e e e e 182
o] (o1 ST 182

Chapter 5: PCB DeSigN.....ccussrmsssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnsssssnnssss 183
WRAL IS @ PCB.......cccecicccce s 183
PCB DESign SOtWAIEccveerrerrererserersessssessessessssessessesssssssessessesssssssessessssessessenes 184
EAQIE ... 185
Eagle’s Main Windows ... ssssessesse s 185
LoAdING @ LIDIArYceeecreecerceris e 189
Creating @ SChEMALIC........ccooveererierereer e 196
Laying QUL @ PCB........covcriererrrirrere s s se s saesas e s s sassessesse s 229

vii

TABLE OF CONTENTS

EXPOrting GErhEr FIlES.......cvieverrrerereninsereressssesesse s sessessessessssessessesssssssessenes 256
PCB ManUFACIUFEISccverecirrcriec st se st se s sse s 261
SUMMAIY..c..citiiiire e bbb b e R r s e e nne s 263

Chapter 6: Robhot Engineering Requirements: Controlling Motion 265

Hardware Explained: The H-Bridgeccccovvvrnnenenienesnseseneses e sessesessesesennes 265
Chapter Project: Creating the First Prototype.......c.cccvvvnvninnnninsenienesseniennens 275
Controlling Motors with Serial Commands.........c.ccccoevrernrenernsennsesessesensnns 275
Requirements Gathering..........ccuevviennesninsssseses e 275
Outlining the Software Requirementsccccvvvrnnennnesesnnsesenseseseseseenes 277
Creating an H-Bridge PCB ... sessessssesessnnes 279
Designing @ RODOt ChasSiS........cooueererererresernsesnesessse s sesseses e sesessenens 319

FE TS T 1110 SRS 350
SUMMANY....ctiiierreerirese e e p e e e e 381
(=] (1] 382
Chapter 7: Final Project PCB...........ccccunmnmennnmsssssnnssssssssssssssssssssssssnns 383
Creating Schematic Sheets..........cccovcrnvnrerrinsrr e 383
Final Project: NatBOtcoveereecrrc e 385
Requirements Gathering (PCB).......c.coccorerrnncrnnerereneresesesese e 385
Outlining the Hardware Requirementsccccvvevnnniniennsnsensesssessensenns 386
Creating the NatBot PCB........c.ccooevrinininnnnrnn s 389
Hardware Explained: The NatBot PCB............cccccoviinininnnnsnicnesinsensennens 399
PCB Bill of Materials (BOM)cccocrereremrsrssrsrnsnsnsssssnssssssesesesesesesesesssssaens 428
SUMMANY....eieeererereree e n e re e e e 430
Chapter 8: Final Project 3D Model............cccennsnmmmnmssssnnnnmsssssssnnsssnnns 431
Final Project: NatBOotcccovivernsesncsens e 431
Requirements Gathering (3D MOdEl)cccoveernerersnernsesrsesesese e 432
Outlining the 3D Model Requirements.........cccuueererernsenesesesssesessessssnessnnes 433

viii

TABLE OF CONTENTS

Fusion 360 Functions EXplained...........cccceverinvninneninsensee s e sesenens 435
Features of the NatBot 3D Model Explained............ccccvvrvrrininsnnnnieniennens 451

3D Printing the NatBOt............ccccvvvvenirirrr s 467

Fit Check and ASSEMDIYcccccvvererervriere e se e ssesnens 469

£ 14114 7 488
Chapter 9: Final Project Software.......c..ccccurmmmnsmmmsssmsmssssssssssssssssnsnns 489
Final Project: NatBOt ..o 489
Requirements Gathering (Firmware)coooeereererencrnscsenseseseseses e 490
Outlining the Software Requirementsccccoveernnenrresereseresseseseeneenes 491
Reviewing the Arduino Libraries for the NatBotccccocevvvnininncniennens 492
Writing the NatBot Firmware...........ccccovvnvnininnsnsnssssnsesses s sessesnens 495
Uploading and Testing the NatBot Firmware............ccccrinvinvnccnnesnsensennn, 516
SUMMANY....eveerieereree e e e pe e e e 517
Chapter 10: Final Project Putting It All Togetherccccussneenrinssanns 519
Introduction to the LabVIEW Environment.............ccovveernsennenennnsesnsesesesensnnes 519
The Front Panel ..o snens 520
The Controls Paletteccovevrereresernsesrse s s 521
The BIOCK Diagramccccvuverenesmsnsesnsesssssssssesssssssssssesssssssssssssssssssssessnns 522
The FUNClions Palette...........cccoveeerinernsesnesess s s 523
The TOOIS PaIEHE ..o 524
LabVIEW Functions EXpIained.......c.ccccovvvrverennnnsenens s sesessesessessessees 525
THEe WHIlE LOOP ..ccuereerierirrerere e s e sse e sss e s saessssessesaesasssssesnesnens 526
The Case STTUCLUIEcecervcerrrc e e 526
The Sequence STFUCTUE........ccoveeerererr e 527
Numerical FUNCLIONS........coccoiirerierineserese s s snsseens 528
SING FUNCHONS ..cveeeeccerese s 529
Comparison FUNCHIONS.........ccverinnsren s 531

ix

TABLE OF CONTENTS

Serial FUNCHONS.......cccoviccr s 532
Input Device Control FUNCHIONS.........ccvvevevvnnieniere e seesessesaesnes 533
Gathering Requirements and Creating the Requirements Document............... 535
SOMWAE ... s 535
Writing the SOfIWArE........cccvirevrrrere s se e ssesnens 536
GEtting STAEdccvcerere e ——————— 536
Designing the GUI.......ccceeevrererreriererenseresessssesessessesesessesssssssessessessssessessens 538
Programming the Applicationcccvveveririnrn e 539
Adding Serial FUNCLIONS......ccccovverierierereesessereressssessessessessssessessessessssessessens 543
Completing the While Loop Condition...........ccevrerevenserierenessensessesessessessenses 548
Adding a Merge Errors FUNCTION.........cccceverinvnnnne s sses e ssesaens 548
AddINg @ SUDVI ... ssssssssssssees 550
(0l o 1410 T o S 551
Read FUNCHON.........ccoiirctr e 552
Uploading the Code t0 the ArdUuingc.ccoveerverierenenserseneses s seesessessenees 558
00T 0] 569

RS 11111 572
1T - 573

About the Author

Harold Timmis, since he was a small child,
has fostered a curiosity for technology,
taking apart everything in his parents’ house
just to see how it all worked. This fueled his
thirst for knowledge of computer science,
programming, and its uses. He has worked
with LabVIEW and Arduino for the past

13 years. During that time, he has been

involved in several professional projects using
LabVIEW, as well as many hobbyist projects utilizing both Arduino and
LabVIEW. Harold attended the Florida Institute of Technology, where
he studied computer engineering and was introduced to LabVIEW and
Arduino. Later, he worked at the Harris Corporation and General Electric,
where he created several LabVIEW projects for trains and became very
interested in the Arduino, data acquisition, and control theory.

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial
gases company in Buffalo, NY. His interests, deeply rooted in DIY and
Open Source Hardware, include developing gadgets that aid behavior
modification. He has published two books with his brother, and in his
spare time, he likes to contribute to build things that improve quality of
life. You can find his project portfolio at http://saiyamanoor.com.

xiii

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=

Acknowledgments

I would like to thank my beautiful wife Alexandria for being very patient
with me while I wrote this book. I also want to thank my daughter Natalie
for inspiring me every day. As always, I want to thank my mom (Bonnie),
dad (George), sister (Amanda), and brother (George) for always believing
in me.

I'want to thank the Apress team for helping me complete this book.

It was rough with COVID, but we finally finished the book! I want to
personally thank Natalie Pao and Jessica Vakili. They helped me navigate
through this process again effectively and efficiently. Also, I want to thank
my Technical Editor Sai Yamanoor. His thoughts were insightful and made
this book much better.

I want to thank the Arduino Team for developing a truly revolutionary
product. I want to thank SparkFun, Pololu, PCBWay, Autodesk, Simplify3D,
National Instruments, and Adafruit. You all make making so much more
enjoyable and attainable.

Preface

Hello reader! Welcome to the wonderful world of engineering. First off,
this book is divided into two main sections: the first section will teach you
about the various bits of software and hardware that we will be using in
this book. The topics in this section include

e The Engineering Process

e An Arduino Software Review

e 3D Modeling with Autodesk Fusion 360
e PCB Design with Autodesk Eagle

o First Section Final Project

Once those are completed, we move to the final project where you
will be given a requirements document that you will need to interpret and
understand to make the final project all while using the skills you obtained
in the previous section of this book. The topics in this section are

e Final Project PCB

o Final Project 3D Model

» Final Project Software

o Final Project Putting It All Together

Once completed, you will have a unique robot that you can modify and
elaborate on for future projects. So without further ado, let’s get started
with the engineering process.

xvii

CHAPTER 1

The Process of
Arduino Engineering

In this chapter, we will discuss the engineering process and how you can
use it to streamline your prototypes by avoiding problems with hardware
and software and keeping to a fixed schedule. Throughout this book, you
will have projects that will be organized into a sequence I like to call the
“engineering process.” Here’s a quick summary of the sequence:

1. Requirements gathering

2. Creating the requirements document
3. Gathering hardware

4. Configuring the hardware

5. Writing the software

6. Debugging the Arduino software

7. Troubleshooting the hardware

8. Finished prototype

As you can imagine, even this summary of the engineering process
is very effective when prototyping, which is why we will use it with
the Arduino in this book. What is the Arduino? The Arduino is a very
customizable microcontroller used by hobbyists and engineers alike. Also,
itis open source, which means that the source code is available to you for

© Harold Timmis 2021
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_1

https://doi.org/10.1007/978-1-4842-6852-0_1#DOI

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

your programming needs; the integrated development environment (IDE)
(where you will be writing your software) is free, and most resources you
can find are open source. The only thing you have to buy is the Arduino
microcontroller itself. The Arduino is supported very well on the Web

and in books, which makes it very easy to research how-to topics; a few
sites that will help you get started are www.arduino.cc and http://
tronixstuff.wordpress.com/tutorials/. But this book is more than
simply a how-to reference; this book is going to teach you the engineering
process—a skill that is useful for making projects more readable, efficient,
and reliable. This book will also focus on end to end development, another
useful skill (or skills as the name implies) that will allow you to create
robust prototypes and/or fully developed hardware and software, but first
we will take a look at the engineering process.

Gathering Your Hardware

Before we examine the engineering process steps, it’s important to know
some of the parts and materials you'll need. Throughout this book, you
will need the following pieces of hardware to complete the various projects
we'll be working on (for a complete list of hardware used in this book):

e Arduino: Since the first edition of this book, there
have been many new developments in the Arduino
product line (a lot from other vendors as well); there
are many flavors of the “Arduino” out in the wild. For
the purposes of this book, the MEGA 2560 Pro will be
used. This is because it has a very small form factor,
and it has a ton of IO (inputs/outputs). Really though
as we are designing through this book, you may want
to experiment with other Arduino boards; that is fine
and encouraged since most of the code in this book will

http://www.arduino.cc
http://tronixstuff.wordpress.com/tutorials/
http://tronixstuff.wordpress.com/tutorials/

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

work with the standard Arduino UNO form factor; that
is not to say other form factors will not work as well.
See Figure 1-1.

i
- | e
o
Ho
-
L} o
=
H
-
o
= =

Figure 1-1. 1. Arduino Pro Mini, 2. MEGA 2560 Pro, 3. Bluetooth
Arduino, and 4. Arduino UNO

o Bluetooth Mate Silver or RN-42: Since this book will
focus on end to end development while still keeping in
mind the engineering process to prototype your circuit,
you may want to purchase a Bluetooth Mate Silver, but
when we design actual PCBs (Printed Circuit Boards),
we will need to use a module that we can quickly and
effectively use just like the Bluetooth Mate Silver, which

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

is the RN-42. This module has a small footprint which
will be nice because we want to use as little space on
the PCB as possible. See Figure 1-2.

Figure 1-2. 1. RN-42 Bluetooth Module, 2. Bluetooth Mate Silver

o Solderless breadboard: Another very important
piece of hardware is the solderless breadboard (see
Figure 1-3), which is used to implement your circuitry.
For this book, you need to have a midsize solderless
breadboard. It will be used in both the design and
troubleshooting phases of the projects and will allow
you to create a proof of concept for when we create the
PCB in Eagle.

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-3. An example of some solderless breadboards

o Wire: We will use a large quantity of wire in this
book; you can get a wire jumper kit at almost any
electronics store.

e Arduino shields: Unlike the first edition of this book,
we will not focus too much on shields; they are very
useful and can make validating firmware a breeze, but
this edition will focus on creating a couple of shields
for the MEGA 2560 Pro. See Figure 1-4 for a couple of
examples of shields, and underneath that picture, you
will find a few descriptions of useful shields for this
book. Please note that it is not necessary to purchase
these shields, but they are still valuable tools.

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

T, AT

Figure 1-4. 1. Motor shield, 2. GPS shield, 3. GSM shield

e Motor shield: This shield is used to control motors up
to 18V. It includes a surface mount H-bridge, which
allows for a higher power motor to be used as well as
for control of two motors.

o GPSshield: This shield is used to get positioning
information from GPS satellites. It uses the National
Marine Electronics Association (NMEA) standard,
which can be parsed to tell you any number of things
such as longitude and latitude, whether the GPS has
a fix, what type of fix, a timestamp, and the signal-to-
noise ratio.

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

o Sensors: These are very important because they
give your projects life. Some sensor examples are
PIR (Passive Infrared), sonar, and temperature (see

Figure 1-5).

Figure 1-5. 1. GPS module with breakout board, 2. accelerometer, 3.
photoresistor, 4. temperature sensor, 5. flex sensor, 6. PIR sensor, 7. tilt
sensor, 8. humidity sensor, 9. FSR (force sensitive resistor)

o PIRsensor: This is an outstanding sensor for detecting
changes in infrared light and can detect changes in
temperature. It is also great at detecting motion, and
that’s what we will use it for.

CHAPTER 1

THE PROCESS OF ARDUINO ENGINEERING

Sonar sensor (not pictured): Sonar sensors are good
at detecting objects in their surroundings. The sonar
sensor we will use is a Parallax sensor that uses digital
pinging to tell how far away an object is.

Temperature sensor: These sensors are used to read
temperature. To use them, you first scale the voltage to
the temperatures you want to record.

Accelerometer: This sensor can detect acceleration

in multiple directions, that is, in the X, Y, and Z
directions. There are accelerometers that have more
degrees of freedom. These sensors can be used to
measure motion, vibration, or shock. For example,
accelerometers are used in Fitbits and other exercise
tracking hardware to keep track of your step count or
even what exercise you are doing. We will be using an
accelerometer later in this book on the main shield that

we will create.

GPS module: The GPS module that will be used in this
book is the EM-506; it has a UART interface which will
make it very easy to interface with the Arduino.

Photoresistor: These sensors are used to sense
brightness and dimness.

Tilt sensor: This sensor is used to detect if a system
has flipped over which can be useful if you don’t have
access to an accelerometer.

Flex sensor: As this sensor is flexed, the resistance
increases, which can then be read by the Arduino on
one of its ADCs (Analog to Digital Converters) to keep
track of how much flex a system has.

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

e Humidity sensor: The RHT03 humidity sensor can read
both temperature and relative humidity and is accurate
(+/-2%RH for humidity and +/-0.5C for temperature)
for a low-cost sensor.

o FSR (force sensitive resistor): This sensor is great to
detect force. A good use for this sensor may be a scale
or to detect pressure points.

e Servos and motors: We will be using motors and servos

to control many aspects of the projects (see Figure 1-6).

Figure 1-6. 1. 12V DC motor, 2. 9g servo motor, 3. 24V DC pancake
stepper motor

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

e Miscellaneous: These are the most common
components, such as resistors, capacitors, LEDs,
diodes, headers, push buttons, and transistors. You can
buy many kits that will supply you for a while on all this

hardware at a low cost (see Figure 1-7).

Figure 1-7. Miscellaneous pieces of hardware (various terminal
blocks/connectors, diodes, headers, push buttons)

Gathering Your Tools

You will also use a variety of tools; this section will briefly describe them.
An (*) will be placed next to the hardware that is not required, but is a good
tool to have.

10

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Electronic Hardware

Soldering iron: This tool is used to connect circuits
to each other; we will use it mostly to connect wire to
circuits (see Figure 1-8).

Solder: You will use this in conjunction with the
soldering iron; it is the metal that connects the circuits
together. Solder has a very low melting point.

Needle-nose pliers: These pliers are very important;
they are used to hold wire and circuits in place, wrap
wire around circuitry, and so on.

*Third hand: This is a very useful tool when you are
trying to solder a PCB together (see Figure 1-12 #2).

Cutters: These are used to cut wires
(see Figure 1-12 #1).

Wire stripper: This tool is used to take off wire
insulation (see Figure 1-12 #3).

Multimeter: Possibly the most important tool you can
own; this tool allows you to read voltage (AC (alternate
current) and DC (direct current)), amps (ampere), and
ohms (see Figure 1-10).

*Scientific calculator: This allows you to do various
calculations (Ohm’s law, voltage divider, etc.).

*Adjustable DC power supply: With a power supply,
you can give your projects continuous power; this is
normally only used for testing circuits (see Figure 1-9).

*Microscope: Can be very useful for checking leads on
circuits to make sure they are soldered properly (see
Figure 1-11).

11

CHAPTER 1

12

THE PROCESS OF ARDUINO ENGINEERING

*Logic analyzer: Another very useful tool; a logic
analyzer will read back data coming off of various 10
lines. For example, the one pictured in Figure 1-13 #1
can read eight lines of IO simultaneously; these IO lines
could be UART, I2C, SPI, and so on. We will discuss
these protocols later in this book.

*AVR programmer (AVRISP mkII): This programmer
can be used to upload code into various Atmel uC
(microcontrollers). It is also able to upload the Arduino
Bootloader onto the ATMEGA2560 or ATMEGA328p.

*FTDI programmer: Another programmer, if the board
you are working on does not have an ISP (in-system
programmer), it may have a five-pin header that you
can connect an FTDI programmer to. Make sure you
get the correct voltage level FTDI programmer for your
system. Normally, they come in 5V and 3.3V levels (see
Figure 1-14).

*Oscilloscope: The multimeter and the oscilloscope
are probably the most important tools when debugging
electronics. The Oscope, as it is sometimes referred to
as, allows you to measure voltage vs. time. This can be
useful when reading back digital or analog signals. For
example, you may want to read the output of a digital
pin to make sure it is triggering at the correct intervals.
This is an example where a multimeter would not be as
useful as an Oscope because the Oscope will show you
voltage over time (such as transitions from high to low
states) for a set interval, and the multimeter will just
display the latest voltage output.

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-8. A soldering iron and its stand

Figure 1-9. Adjustable DC power supply (3, 4.5, 6, 7.5, 9, and 12V)

13

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-10. Multimeter

14

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-11. USB microscope

Figure 1-12. 1. Cutters, 2. third hand with magnifying glass,
3. wire strippers

15

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-14. FTDI programmer

16

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Figure 1-15. A two-channel 70MHz digital oscilloscope (note how
the Oscope is displaying the high to low transitions 0 to 5V at a
frequency of 1kHz and a 50% duty cycle)

Understanding the Engineering Process

The engineering process is very useful in making your designs more
efficient, streamlined, and comprehensible. The process consists of
gathering requirements, creating the requirements document, gathering
the correct hardware, configuring the hardware, writing the software,
debugging the software, troubleshooting the hardware, and the signing off
on the finished prototype.

17

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Requirements Gathering

One day, when you're an engineer, you may be asked to go to a company
and assess its needs for a particular project. This part of the engineering
process is crucial; everything will depend on the requirements you gather
at this initial meeting. For example, assume you learn that your client
needs to blink an LED at a certain speed, and for that task, you and the
client determine that the Arduino microprocessor is the best choice. To use
the Arduino to blink the LED, a customer needs an LED to blink at 100ms

intervals.

Creating the Requirements Document

Based on the client’s needs and your proposed solution, the following is a
very simple requirements document:

¢ Hardware
e Arduino

« LED

9V battery

9V battery connector
e 330ohm resistor
o Software
e A program that blinks an LED at 100ms intervals

Mind you, this is a very simple example, but we will be using
this format for the rest of this book. One of the reasons you create a
requirements document is to stop feature creep. This happens when
a customer keeps adding features to the software and/or hardware.
This is, of course, a problem because you will be working more hours

18

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

without more pay on a project that may never end. You should create a
requirements document, so you and the client know what you are doing
and the features you will be creating for your project. After you have
created the requirements document, you can create a flowchart that will
help you debug the software later in the design process (see Figure 1-16).

Setup

Delay 100ms Delay 100ms

Figure 1-16. Blinking LED processes

Gathering the Hardware

The next very important part of the engineering process is making sure you
have the right hardware. Your hardware needs should be decided as you
gather requirements, but it is important to make sure all your hardware is
compatible. If it is not compatible, hardware changes may be necessary,
but you should consult the company you are working with to make sure it
is satisfied with any hardware changes.

19

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Configuring the Hardware

Once you have the correct hardware, it is time to configure it. Depending
on the hardware required for the project, the configuration can change.
For example, let’s take a look at the hardware configuration for the blinking
LED project:

e Arduino

e LED

e 3300hm resistor
e USBcable

To set up the hardware, we need to connect the LED to the solderless
breadboard, then attach the 330ohm resistor to the anode (+) of the LED;
next, take a male to male wire and attach it from the cathode (-) of the LED
to the GND (ground) pin on the Arduino UNO. Finally, take another male
to male wire and attach it from the other end of the resistor to pin 13 of the
Arduino (see Figures 1-17 and 1-18).

20

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

LED

B

- ||+

43300hm

Figure 1-18. Wiring guide for the Arduino LED project

21

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Alright, now that the hardware is finished, we need to get the Arduino
IDE software up and running on Windows. To do this, go to www.Arduino.
cc/en/Main/Software. The Arduino IDE will work with Windows 8 or 10
(it will even work with older versions of Windows as well), Mac OS X, and
Linux systems. After the Arduino IDE is downloaded to your desktop, it will
be in a zipped format, so unzip the Arduino folder to your desktop. The
Arduino IDE is now installed.

Now that you have the Arduino IDE installed on your computer,
you need to make sure it is configured correctly. To do this, open the
Arduino IDE, and go to Tools » Port; select the serial port your Arduino
is connected to. Next, select Tools » Board, and select the Arduino
board you are using; for this project and this project only, we will use the
Arduino UNO. Later projects will use the MEGA 2560 Pro board. Once your
hardware is configured, it is time to write the software.

Writing the Software

Now, let’s consider the software we need to write. This part of the
engineering process is crucial. Let’s take a look at the blinking LED
software requirements document to decide what the software will need
to do: the LED needs to blink in 100ms intervals. The software might look
something like this:

// This code blinks an LED at 100ms
const int LEDdelay = 100; // delay time

void setup()

{
pinMode(13, OUTPUT); // makes pin 13 an output

22

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

void loop()

{
digitalWrite(13, HIGH); // this writes a high bit to pin 13
delay(LEDdelay); // delay 100ms
digitalWrite(13, LOW);
delay(LEDdelay) // this will throw a syntax
error due to a missing semicolon
}

Note When you try to compile this program to your Arduino, it gives
you an error. This is because of a syntax error that we will debug in
the next section.

Debugging the Arduino Software

The last program failed to compile because of a syntax error. This type of
error is because of incorrectly formatted code, such as a missing semicolon
(which is why the last program didn’t compile). Here is the revised code:

// This code blinks an LED at 100ms
const int LEDdelay = 100; // delay time

void setup()

{
pinMode(13, OUTPUT); // makes pin 13 an output

23

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

void loop()

{
digitalWrite(13, HIGH); // this writes a high bit to pin 13
delay(LEDdelay); // delay 100ms
digitalWrite(13, LOW);
delay(LEDdelay); // the semicolon is now present
and the code will compile
}

Syntax errors are not the worst errors out there. The worst errors you
can receive are logical errors; these errors allow the code to compile, but
the end result is unexpected. For example, using a greater-than symbol
instead of less-than is a logical error, and if it is in a project with thousands
of lines, it can be almost impossible to fix.

Note A logical error in the blinking LED project would be if you put
digitalWrite(13, HIGH); for both digital write functions.

We can debug logical errors in an Arduino program by using a
flowchart to figure out where the values are not lining up.

Troubleshooting the Hardware

The number one tool used to troubleshoot hardware is the multimeter.
This tool can save your hardware from being damaged. For instance, if
your multimeter detects that your power supply is more than is required,
the hardware setup for the blinking LED project could use a 330ohm
resistor to keep the LED from burning out. Also, an Oscope could be
valuable as we can make sure the intervals are correct at 100ms on and
100ms off.

24

CHAPTER 1 THE PROCESS OF ARDUINO ENGINEERING

Finished Prototype

Once you have finished debugging the software and troubleshooting the
hardware, you should have a completed prototype that will work under
most circumstances. In this chapter, we used a very simple project,

but in future chapters, the projects will get more complicated, and the
engineering process will become even more necessary to make sure our
code is efficient, streamlined, and comprehensible.

Summary

In this chapter, you learned the different pieces of hardware and various
tools such as the Arduino, Arduino shields, multimeter, and needle-nose
pliers, just to name a few that will be used throughout this book. We then
went over the engineering process, which is a sequence you can use to solve
problems that provides the format for this book. The steps in the process are
requirements gathering, creating the requirements document, gathering the
hardware, configuring the hardware, writing the software, debugging the
Arduino software, troubleshooting the hardware, and finished prototype. I
also defined a few new terms that will help you understand the engineering
process, and you learned the differences between logical and syntax errors.
In the next chapter, we will go over some of the software that we will use
throughout this book. We will also use a different programming technique
that will allow our code to have multitasking capabilities; this is called a
finite-state machine or FSM for short.

25

CHAPTER 2

Understanding the
Arduino Software

In this chapter, we will discuss the various programming components
that will be used throughout this book. If you have programmed in C,
you will find that programming for the Arduino is very similar. If not, this
chapter will teach you the basic concepts. Why is it important for you to
learn the basics of programming the Arduino? In the long run, this will
help keep your code clean and readable. Also, learning the basic loops
and structures initially will allow us to focus more on the libraries later.
Libraries can be sets of classes, types, or functions and can be called by
using keywords in your program. The purpose of a library is to readily
add more functionality to your program by using code that has been
created previously; this promotes code reuse. We will also take a look at
the new TinyGPS++ library.

© Harold Timmis 2021 27
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_2

https://doi.org/10.1007/978-1-4842-6852-0_2#DOI

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Getting Started with setup() and loop()

All Arduino programs must have two main components to work properly—
setup() and loop()—and they are implemented like this:

// Basic Arduino Program

void setup()

{
// Set up I/0s here
}
void loop()
{
// Do something
}

setup() is used to set up your I/O ports such as LEDs, sensors, motors,
and serial ports. Careful setup is important because in order to use the pins
on the Arduino, we need to tell the Arduino that they are going to be used.

loop() holds all of the code that controls your I/O ports. For instance,
here, you'd tell your motor to go a certain speed. I will explain how to set
up and control your I/Os in the next sections.

Arduino programs also have subroutines—very useful extra functions
you can call within loop() or its subroutines. To use a subroutine, you must
first initialize it at the beginning of your program; this initial mention is
called a function prototype. Here is an example:

// Function Prototype
void delayLED();

void setup()
{

}

28

void loop()

{
}

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

// Subroutine Example

void delayLED()

{

// This will go after the loop() structure.

Initializing Variables

Variables are the most basic programming building blocks; they are used

to pass data around your program and are used in every program we will

write in this book. We can write several types of variables to the Arduino

language; Table 2-1 illustrates them.

Table 2-1. Types of variables

Type Name Type Value Type Range

char ‘a -128 to 127

byte 1011 0to 255

Int -1 -32,768 10 32,767

unsigned int 5 010 65,535

long 512 —2,147,483,648 t0 2,147,483,647
unsigned long 3,000,000 010 4,294,967, 295

float 2.913 —-3.4028235E+38 10 3.4028235E+38
double 2.513 —-3.4028235E+38 to 3.4028235E+38

29

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Now that you know what types of variables are out there, you need to
know how to declare those variables. In order to declare them, you need
to know in what scope those variables can be used and then specify (or
declare) the scope that meets your needs. In this book, we will declare two
scopes for variables: local variables and global variables. A local variable
only works in its given scope. For instance, a for loop keeps its declared
variables only within its parentheses, so those variables are local to the
for loop. A global variable can be called at any point in your program. To
define a global variable, initialize it at the beginning of your program. The
following program illustrates how to initialize local and global variables:

// Initialize Variable

int x; // This variable is declared globally and is available
for access throughout this program.

void setup()

{
}
void loop()
{
X =1+ 2; // Assigns the value 3 to x
for(int i; i <= 100; i++)
{
// 1 is a local variable and can only be called in this
for loop.
}
}

30

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

The rest of the declarations are set up the same way until you start
using arrays. Arrays allow you to pass multiple values of the same type, for
example, if you want to pass multiple digital pins without having to declare
each one individually:

int pins[] = {13,9,8};

It is a good idea to declare the size of the array, as in the following

example:
const int NumOfPins = 3;
int pins[NumOfPins] = {13,9,8};

This will allow you to access your array’s information, and then you
can pass that information to a digital pin or whatever else you want. Now
that you have declared variables, how do you use them? This will be
discussed in the next few sections of this chapter.

Note WWhitespacing means that you’ve added blank lines and
spaces in your code to make it more readable.

Writing Conditional Statements

Conditional statements can be used to control the flow of your program.
For instance, say you want to turn a motor on only when a button is
pressed; you can do so using a conditional statement. We will discuss
the following conditional statements: if, if-elseif, if-else, and switch

statements.

31

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

An if statement is a very important conditional statement; it can be
used in any Boolean capacity for a variety of reasons, such as limiting
testing. Here is an example of an if statement:

int i;
if (i < 10)
{
1+4;
}

You can also add elseif statements to the end of your if statement to
add other conditions to your program and create an if-elseif statement, for

example:
int i;
if (i < 10)
{
i++;
}
else if (i > 10)
{
i--5
}

A practical use of a conditional statement would be to read a value
from a potentiometer, as in the following example:

potValue = analogRead(potPin);

if (potValue <= 500)
{

digitalWrite(motorpin, 1);

32

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

else

digitalWrite(motorpin, 0);

Note You must remember to set up your Arduino’s pins before you
call them in a loop.

A switch statement is used if you have multiple conditions because it
cleans up your code. Here is an example of a switch statement:

switch (potValue){

case 500;
digitalWrite(motorPin,1);

case 501,
digitalWrite(ledPin,1);
break;

default:
digitalWrite(motorPin,0);
digitalWrite(ledPin,0);

In this example, if potValue is equal to 500, the motor will turn on, and
if potValue is equal to 501, an LED will turn on. The default case is true
when the potValue equals neither 500 nor 501, and in that case, the motor
and LED are both turned off.

Timers vs. Delays

When you are writing code, you may get used to using delays to pause
when an LED turns on or off. This is not very efficient; what we should be
using is timers instead. The reason behind this is so that your code is not

33

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

stuck in a delay and can move on with other tasks. For example, say you
want to blink an LED at a 10-second interval and turn a motor on and off at
a 2-second interval. You may think that this code would suffice:

int LED = 13;
int motorPin = 5;

void setup()

{
pinMode(led, OUTPUT);
pinMode(motorPin, OUTPUT);

}

void loop()
{
// turn on LED for 5s and then turn off LED for 5s
DigitalWrite(LED, HIGH);
delay(5000);
DigitalWrite(LED, LOW);
delay(5000);

// turn on motor for 1s and then turn off motor for 1s
DigitalWrite(motorPin, HIGH);

delay(1000);

DigitalWrite(motorPin, LOW);

delay(1000);

34

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

The code does compile, and the LED does turn on and off in 10s
intervals, but you may notice that the motor has to wait until the LED code
finishes; this is because we used a delay and can be fixed by using a timer
instead. Let’s take a look at some of the functions we can use to accomplish
this task:

o millis() function: This function will return the amount
of milliseconds that have passed since the Arduino
program started. It is also important to note that this
function will overflow in 50 days as an unsigned long
can only hold 0 to 4,294,967,296.

o micros() function: This function will return the amount
of microseconds that have passed since the Arduino
program started. It is also important to note that this
function will overflow in 70 minutes as an unsigned
long can only hold 0 to 4,294,967,296.

We will need to handle overflow (this is when a value returns to 0) of the
micros() and millis(), and we will do this in the new LED/motor example:

// initialize the led and motor pins
int LEDPin = 13;
int motorPin = 5;

// keep track of the current state of the led and motor
int LEDState = 0;
int motorState = 0;

// store led and motor previous time value
unsigned long prevLEDTime = 0;
unsigned long prevMotorTime = 0;

// interval declaration can be changed if needed
const long LEDInterval = 5000;
const long motorInterval = 1000;

35

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

\'J¢]

}

VO

36

id setup() {

// set up motor and led pins to be outputs
pinMode(LEDPin, OUTPUT);
pinMode(motorPin, OUTPUT);

id loop() {

// get current time for the led and motor pin
unsigned long curLEDTime = millis();
unsigned long curMotorTime = millis();

// this is a delta of the current time and previous time for
the led circuit

// this will also handle overflow

if (curLEDTime - prevLEDTime >= LEDInterval)

{
// set the previous time to the current time to keep track

of the led's state

prevLEDTime = curLEDTime;

// set the led state to high or low depending on what its
previous state was.
if(LEDState == LOW)

{

LEDState = HIGH;
}
else
{

LEDState = LOW;
}

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

// turn on or off the led
digitalWrite(LEDPin, LEDState);

}

// this is a delta of the current time and previous time for
the motor circuit
// this will also handle overflow
if (curMotorTime - prevMotorTime >= motorInterval)
{
// set the previous time to the current time to keep track
of the motor's state prevMotorTime = curMotorTime;

// set the motor state to high or low depending on what its
previous state was.
if(motorState == LOW)

{

motorState = HIGH;
}
else
{

motorState = LOW;
}

// turn on or off the motor
digitalWrite(motorPin, motorState);

With this new code, we are running true timers that will keep track
of the LED and motor states with no delay in between; that is, the
LED conditional statement will occur, and then the motor conditional
statement will occur in quick succession rather than like the previous code

37

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

where the motor had to wait 10 seconds before it could turn on and off.
This is the power of timers, and we will continue to use them throughout
this book.

Finite-State Machine

With a finite-state machine (FSM for short), you can make your code

more readable and split your tasks into much smaller blocks while still
accomplishing the multitasking like we did in the previous section with the
millis() function. Take a look at the following code:

// initialize the led and motor pins
int LEDPin = 13;
int motorPin = 5;

// Keep track of Prev States of the LED and Motor
int prevLEDState = 0;
int prevMotorState = 0;

// Keep track of the current states of the LED and Motor
int currLEDState = 0;
int currMotorState = 0;

// store led and motor previous time value
unsigned long initLEDTime = O;
unsigned long initMotorTime = 0;

// store led and motor previous time value
unsigned long currLEDTime = 0;
unsigned long currMotorTime = 0;

// interval declaration can be changed if needed
const long LEDInterval = 5000;
const long motorInterval = 1000;

38

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

void setup() {

// set up motor and led pins to be outputs
pinMode(LEDPin, OUTPUT);
pinMode(motorPin, OUTPUT);

void loop() {
// Run State Machines

LE

D State Machine();

MOT_State Machine();

void
pr
//

//

//
Sw

LED State Machine(){
evLEDState = currLEDState;

current state will always be preserved, so when in
currLEDState = 2 the
switch statment will always go back to that state until
set to a new state
in this case state 3.
itch(currLEDState){
case 0: // Init State
currLEDState = 1;
break;
case 1: // Set State 1
// Set initial time and Set the LED to High
initLEDTime = millis();
digitalWrite(LEDPin, HIGH);
currLEDState = 2;
break;

39

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

case 2: // Update State 1
// get current time and compare time to interval
currLEDTime = millis();
if (currLEDTime - initLEDTime > LEDInterval)

{
currLEDState = 3;

}

break;

case 3: // Set State 2
// Set initial time and Set the LED to Low
initLEDTime = millis();
digitalWrite(LEDPin, LOW);
currLEDState = 4;

break;

case 4: // Update State 2
// get current time and compare time to interval
currLEDTime = millis();
if (currLEDTime - initLEDTime > LEDInterval)
{

currLEDState = 0;

}

break;

}
}

void MOT_State Machine(){
prevMotorState = currMotorState;

// current state will always be preserved, so when in
currMotorState = 2 the

// switch statment will always go back to that state until
set to a new state

40

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

// in this case state 3.

switch(currMotorState){
case 0: // Init State
currMotorState = 1;
break;
case 1: // Set State 1
// Set initial time and Set the Motor to High
initMotorTime = millis();
digitalWrite(motorPin, HIGH);
currMotorState = 2;
break;
case 2: // Update State 1
// get current time and compare time to interval
currMotorTime = millis();
if (currMotorTime - initMotorTime > motorInterval)

{

currMotorState = 3;
}
break;
case 3: // Set State 2
// Set initial time and Set the Motor to Low
initMotorTime = millis();
digitalWrite(motorPin, LOW);
currMotorState = 4;
break;
case 4: // Update State 2
// get current time and compare time to interval
currMotorTime = millis();
if (currMotorTime - initMotorTime > motorInterval)

41

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

{

currMotorState = 0;

}

break;

You will notice a few differences between the previous sketch and
this sketch; first off, the loop function has been taken from several lines to
two lines of code. Also, there are two functions that now control the state
of the LED (LED_State_Machine()) and motor (MOT_State_Machine()).
Finally, the if statements have been replaced with a switch statement that
has cases of values 0 through 4. You will also notice that each case has very
simple blocks of code; this is where the readability comes into play. If you
run this code, you will notice that both the LED and the motor will update
independently just like the previous example. We will be utilizing the FSM
in later projects.

Working with Loops

Loops have many uses including getting rid of redundant code and
iterating through arrays. The loops we will use are for, while, and do...
while. These loops will allow us to run through code while a condition is
true (or false, in some circumstances).

o forloop: This loop is used to repeat a block of code a
fixed number of times. The for loop’s basic setup is

for(int i = 0; i <= 10; i++)

{

// Place statements here

42

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

A practical application for a for loop is to use it to
update multiple pinMode settings:

int pins[] = {13,9,8};

void setup()

{
for(int i = 0; i<=2;i++) // Sets up each pin
{
pinMode(pin[i], OUTPUT);
}
}
void loop()
{
// Put code here
}

Note

pinMode is used to set up your I/0 pins on the Arduino.

while loop: This loop will run until a condition has
been met; if its first condition is false, it will not run at
all. For example, you'd use a while loop if you wanted to
run code until a certain value came from a sensor. The
following example illustrates this principle:

int potPin = A1;
int motorPin = 9;
int potVal;

43

CHAPTER 2

44

UNDERSTANDING THE ARDUINO SOFTWARE

void setup()

{
pinMode(motorPin,OUTPUT);
pinMode(potPin, INPUT);
}
void loop()
{
potVal = analogRead(potPin);
while(potVal <= 100) // Runs until potVal is
greater than 100
{
digitalWrite(motorPin,1);
}
}

The first thing this code does is initialize the
potentiometer and motor pins; then, it declares potVal,
our variable that holds the potentiometer value. Next,
we set the motorPin to an output and the potPin to an
input. Finally, we use a while loop with a condition
potVal <= 100, and while that condition is true, the
motor will be on.

do...while loop: This is the same as the while loop
except that the conditional statement is checked at the
end of the loop, so this loop will run at least one time.
Here’s an example:

do
{

i++; // Increment i
}while(i <= 100);

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Communicating Digitally

Throughout this book, we will be communicating different types of

1/0 through the digital pins, so it is important to understand how that
communication works. Specifically, we use the digitalWrite(pin, HIGH/
LOW) and digitalRead(pin) commands to communicate with the digital
pins. An example of this is shown in Listing 2-1.

Listing 2-1. Digital commands

int button = 12;
int led = 13;
int buttonState;

void setup()

{
pinMode(button, INPUT);
pinMode(led,OUTPUT);
}
void loop()
{
buttonState = digitalRead(button); // Assigns button to
buttonState
if(buttonState == 1)
{
digitalWrite(led,HIGH); // Writes a 1 to pin 13
}
Else
{
digitalWrite(led,LOW); // Writes 0 to pin 13
}
}

45

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

This program uses digitalWrite() and digitalRead() to get the value of
the button pin and writes a new value to it (in this case, high or low).

Note Use the PWM digital pins to control motor speed and LED
brightness.

Communicating with Analog Components

You can also use analog communication with sensors and motors,
meaning you can connect potentiometers to control motor speed
through a pulse width modulation (PWM) pin on the Arduino. The
functions for analog communication are analogRead(value) and
analogWrite(pin,value). The only thing you need to remember is that
a potentiometer will give a value of 0 to 1024, so you will have to scale
analogWrite from 0 to 255, for example:

analogWrite(LED,ledValue/4); // 1024/4 = 255

Serial Communication

We will be using serial communication throughout this book. Serial
communication allows us to communicate with a computer, LCD, and
many other devices, as you will see in the next several chapters. Some
serial commands are Serial.begin(baud), Serial. Println(“anything you want
to write to the serial pin”), Serial.read(), Serial.write(Binary data), Serial.
available(), and Serial.end(). These commands allow us to read and write
to any serial peripheral we want. Here is a brief description of each of these

serial commands:

46

Or...

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Serial.begin(baud): You will put this command
inside your setup() structure and put the appropriate
baud rate for the device with which the serial will be

communicating, for example:

void setup()

{
Serial.begin(9600); // 9600 baud rate to

communicate with a computer

}

Serial.println(): Use this command to write values to
the serial port, for example:

void loop()

{

Serial.println("Hello, World"); // Writes Hello,
World to the
serial port

}

void loop()

{
Serial.println(potVal); // Writes potVal to the

serial port

Serial.read(): This reads in a value from the serial port.
For example, you could use this to read something from
your computer that you'd then want to write to an LCD
on the Arduino.

47

CHAPTER 2

UNDERSTANDING THE ARDUINO SOFTWARE

void loop()
{

char var = Serial.read(); // Read incoming byte
from serial port

}

Serial.write(): Use this to write binary data to a serial
port, for example:

void loop()

{
while(Serial.available() > 0)
{
char var = Serial.read(); // Reads incoming
byte from
serial
Serial.write(var); // Writes binary data to
serial
}
}

Note

In this book, most of the time, you will use Serial.printin()

because we will be writing int or string values to the serial monitor.
The Serial.write() function is used to send binary data to the serial
monitor or any other serial port program.

48

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

e Serial.available(): This function checks to see if there
are any incoming bytes at the serial port, for example:

void loop()
{

while(Serial.available() > 0)
// This makes sure there is at least one byte at the
// serial port.

// Put code here

}

e Serial.end(): This disables serial communication.

Now that you have seen the command set for serial communication,
we can use them in our programs. Listing 2-2 illustrates most of the
functions we have been discussing.

Listing 2-2. Serial communication

int incomingByte;
const int ledPin = 13;
void setup() {

Serial.begin(9600); // Opens serial port, sets data
rate to 9600 bps

pinMode(ledPin, OUTPUT);

49

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

void loop()
{

while(Serial.available() > 0)

{

incomingByte = Serial.read(); // Reads incoming byte
Serial.println(incomingByte, BYTE); // Prints incoming
byte to serial port
digitalWrite(ledPin, incomingByte); // Write to LED pin
}

This program is the foundation of serial communication: it initializes
incomingByte and ledPin. Next in the setup structure, the baud rate is set
to 9600. When we get inside the loop structure, the while loop is checking
to see if anything is at the serial port. If there is, it assigns the information
on the serial port to incomingByte. Finally, the program prints the data to
the serial port and writes data to ledPin (in this case, 1 or 0).

SerialEvent

SerialEvents are pretty cool if you need some code to run whenever you
send data to the Arduino via the serial port. Here is how it is used:

Void setup()

{

// code here
}
Void loop()
{

// code here
}

50

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

void serialEvent() {
// code here

What this will allow you to do is trigger an event if the serial port reads
any data. You can then take that data and pass it into various functions
such as a parser, or you can turn different hardware on, and so on. We can
use this, for instance, to read a certain NMEA string from a GPS with a code
sent over the Arduino’s serial port; more on this later. Oh! One more thing,
since we will be using the MEGA 2560 Pro, we will have multiple UARTs
which means we can use the serialEvents for each of these ports; all you
need to do is add the functions for each UART you will use: serialEventl,
serialEvent2, serialEvent3.

Using Arduino Libraries

Now that you know the basics of Arduino programming, I want to at least
describe one important library in this chapter called the TinyGPS++
library, and in later chapters I will expand on other libraries as we add
more components to our design. To use the TinyGPS++ library, you will
need to download it and unzip it into the Libraries folder in the Arduino
directory. After you do that, you should be able to do this with many other
libraries.

TinyGPS++

This library parses NMEA data, such as longitude, latitude, elevation, and
speed, into a user-friendly style. All you need to do now is download the
TinyGPS++ library from http://arduiniana.org/libraries/tinygpsplus
(we need to thank Mikal Hart).

51

http://arduiniana.org/libraries/tinygpsplus

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Putting Together the Arduino Language
Basics

You should now know how to create the most basic Arduino program,

so let’s take a moment to recap some of the key programming points just
discussed. You can use this recap to help you program throughout this
book and through creating your own projects. Here is an example of that
program:

void setup()

{
// Setup I/0s here
}
void loop()
{
// Put code here
}

We also went over declaring variables and using them globally, as in
the following example:

char ch

IAI;
int pin

1]
=
w
- e

These values have types of character and integer.
You also learned about if and if-else statements and how to use them:

if (condition)

{
// Put code here

}

else
// Put code here

52

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

Also, you can now add elseif statements to create if-elseif statements to
add more conditions, if you need them:

else if(condition)

{
// Put code here

We then went over the switch statement, another type of conditional
statement that is used sometimes to clean up larger if statements; it has
this format:

switch(value)
{
case value:
// Put code here
break;

case: value:
// Put code here
break;

default:
// Put code here
break;

After the conditional statements were explained, we discussed timers
vs. delays and how to use the millis() and micros() functions to accomplish
multitasking within the Arduino. That then leads us to the finite-state
machine (FSM) which made multitasking and readability much better

53

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

compared to the nested if statement version. We then went over the
various loop structures you can use to parse or iterate through code. The
first loop we discussed was the for loop:

for(initialization;condition;Variable Manipulation

{
// Put code here

}
We then went over the while loop and its functions:
while(condition)
{
// Put code here
}

After that, you learned about a close relative of the while loop called
the do...while loop; it has the following format:

do

{
// Put code here

Jwhile(condition);

Next, you needed to learn about different ways to communicate with
sensors and other peripherals, so we discussed the digitalRead() and
digitalWrite() functions, which follow:

digitalRead();
digitalWrite(pin,state);

We then discussed communicating with the analog pins on the
Arduino. The analog pins use these commands:

analogRead();
analogWrite(pin,value);

54

CHAPTER 2 UNDERSTANDING THE ARDUINO SOFTWARE

After learning about the different ways to communicate with sensors,
we needed a way to communicate with serial communication. Here are the
commands for serial communication:

Serial.begin(baud);
Serial.println(value);
Serial.read();
Serial.write(value);
Serial.available();
Serial.end();

We also discussed the SerialEvent function and how it can be used
to trigger code based off of data received by the serial port. Finally, you
learned a little about the TinyGPS++ library that will be used throughout
this book.

Summary

In this chapter, you learned about the Arduino language. Specifically,
you learned how to get your programs set up and how to use conditional
statements, the differences of timers and delays, and how to utilize a
finite-state machine and loops to refine them. You also learned how to
communicate with different types of hardware pins using digital, analog,
and serial communication. Finally, we discussed the TinyGPS++ library
and its use. In the next chapter, we will be switching gears from the
Arduino to 3D Modeling using Fusion 360.

55

CHAPTER 3

Modeling with
Fusion 360

Here we go!!! Now we will learn about 3D CAD; [will first introduce a few
different pieces of software that you can use to create 3D objects that can
then be sent to your 3D printer. The 3D CAD software used in this book will
be Fusion 360; this is a very powerful piece of software that will allow you
to make pretty much anything you can think of. After going over some of
the basics of Fusion 360, such as menus, how to navigate around a model,
and so on, we will go through a project that will have you make your first
3D object from sketch to a 3D model; this will include a section on how

to constrain your model which will also help when using the parametric
paradigm. We will be using the parametric 3D Modeling paradigm
throughout this book, which will allow us to make quick changes to our 3D
model by adjusting sketches or features of the model. Here are a couple
more examples of other 3D CAD software used in the industry:

Solidworks: This is probably the most used
industrial 3D CAD software on the market. One

of the main reasons it is not used in this book is
because it can be a bit pricey; that is not to say it is
not worth the price; I just want to make sure all the
readers of this book can utilize 3D Modeling without
breaking the bank.

© Harold Timmis 2021 57
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_3

https://doi.org/10.1007/978-1-4842-6852-0_3#DOI

CHAPTER 3 MODELING WITH FUSION 360

DesignSpark Mechanical: This software is
specifically made for 3D printing; it includes a lot
of nice features and is also free to use. It uses more
of a direct modeling approach as opposed to the
parametric 3D Modeling paradigm. DesignSpark
Mechanical is a good piece of software, but it does
not have the number of features that Fusion 360 has
with the same price tag.

Onshape: This is another powerful piece of 3D CAD
software; it is also free to use, but it is a web browser
program which means you need to be connected to
the Internet to use it. Also, if you want to store your
files locally, you must pay.

There are many other pieces of software out there that will allow you to
create 3D objects and then save them as STL files (see Chapter 4).

Installing and Setting Up Fusion 360

First things first, we need to download and install Fusion 360; this is an
easy process and works just like any other program you would install on
your PC other than the fact that you need to create an Autodesk account,
which is still pretty straightforward. So, let’s get started.

Download Fusion 360

Now we can go ahead and download Fusion 360 from this URL: www.
autodesk.com/products/fusion-360. Let’s start by creating an account.
Click the “SIGN IN” button at the top-right corner of the screen; a drop-
down menu will display; click the “Sign In” portion of the drop-down
menu. See Figures 3-1 and 3-2.

58

http://www.autodesk.com/products/fusion-360
http://www.autodesk.com/products/fusion-360

CHAPTER 3 MODELING WITH FUSION 360

£ FUSION 360

Figure 3-1. Click the SIGN IN link

£ FUSION 360

ntegra

Figure 3-2. SIGN IN drop-down menu

Next, click the “CREATE ACCOUNT” hyperlink under the email
address text box, or if you think you have an account, type it in and click

“NEXT” If you have an account, great! Move to Figure 3-5. Otherwise, see
Figure 3-3.

59

CHAPTER 3 MODELING WITH FUSION 360

Sign in A

Press "CREATE ACCOUNT

Figure 3-3. Autodesk login screen

Now you will need to supply a few things: your first and last name,
email address, and the password you want to use. After you add the
previous data, make sure you read the Privacy Statement and click the “I
Agree” checkbox. See Figure 3-4.

Craate aceount a

Figure 3-4. Click the “CREATE ACCOUNT” button

60

CHAPTER 3 MODELING WITH FUSION 360

After that, click the “CREATE ACCOUNT” button. This will then send
you an email asking you to verify your account; click the “VERIFY EMAIL”
button in the email you received from Autodesk, which will bring you back
to Autodesk and tell you whether you were successful or not.

Alright! Now that you have an account, you can download Fusion
360. Go back to this URL: www.autodesk.com/products/fusion-360; you
should already be signed in, but if you are not, go ahead and sign in to
your account. Now go ahead and click the “FREE TRIAL” button, and it
will bring you to a new site (Figure 3-6). Click the “NON-COMMERCIAL
USE” button, and again you will go to a new page. You should be able to
click the “Get started” button. This will bring you to a new page and start
downloading the client that will be used to download and then install
Fusion 360. See Figures 3-5, 3-6, and 3-7.

P\ AUTODESK

Figure 3-5. Click the “FREE TRIAL” link

61

https://www.autodesk.com/products/fusion-360

CHAPTER 3 MODELING WITH FUSION 360

Start your free 30-day trial of Fusion 360

(3] wom-commercia use fr=T eoucaronaL use

B\ AUTODESK

Thank you for downloading
Fusion 360

Download, sian-in, and start designing!

Figure 3-7. Fusion 360 will begin to download

Now that the download is completed, you will need to install Fusion
360 which will be discussed in the next section.

62

CHAPTER 3 MODELING WITH FUSION 360

Installation Procedures for Fusion 360

Okay, so let’s start by going to our downloads folder and double-click the
“Fusion 360 Client Downloader.” See Figures 3-8 and 3-9. Fusion 360 will
begin to set up its files.

Figure 3-8. Install Fusion 360

63

CHAPTER 3 MODELING WITH FUSION 360

nerenT

Figure 3-9. When Fusion 360 is done installing, sign in and the main
screen will appear

Once that is done, Fusion 360 should start up automatically. You
may notice a lot of buttons and menus on the screen now; these will be
discussed in the next section.

Getting to Know Fusion 360

Before we get into designing 3D objects in Fusion 360, it is important to
know the various interfaces/controls that you will be using in order to
manipulate your models. This section will go over several areas in Fusion
360; it won't be a complete reference to Fusion 360 as that could be and
has been the talk of many books, but it will get you started, so that you can
begin to work with Fusion 360.

64

CHAPTER 3 MODELING WITH FUSION 360

Fusion 360’s User Interface

Figure 3-10 will give you a basic understanding of the layout of Fusion
360. This may be useful later if you need a reference of the various menus,

controls, and so on (see Figure 3-10).

.Ewé‘fszéﬁrh—flunnions L - + . T 9
wl e FEDOUPE -+ W = B R

Mavigation Bar
EoLa FEw

i+ b » i T Design History Bar

Figure 3-10. Layout of Fusion 360

Let’s first talk about the mouse gestures you will need in order to
maneuver around in Fusion 360.

Right mouse click: This will pop up the quick menu in Fusion 360,
which will allow to navigate through Fusion quicker, but for now we will

use the regular menus to get around. See Figure 3-11.

65

CHAPTER 3 MODELING WITH FUSION 360

B o o B0 Barip s
T

T W Wi ¥ O tmerm -0

- BBRPCS ¥FOTeErEn O = B W

HerenT

Figure 3-11. Right mouse click

Left mouse click from the top left to the bottom right: This will create a
blue box around an object and select just the object that is completely in the
window when the left mouse button is released. See Figures 3-12 and 3-13.

O — - o
L T RO Bumwer 8 e @
. p! [i [*I - 1 b .ﬁ. .'_I. S ' :_:I _hl !. 4 -a :
'.J -L-,HTH-:
b O e
P
13 -
pies
-
»
@
®
2
L
warea B

Haren T

Figure 3-12. Make selection with left mouse click and drag top left to
bottom right

66

CHAPTER 3 MODELING WITH FUSION 360

- &
N » e 4B e @

o/
LR}

T

Herew T

Figure 3-13. Only lines completely in the window will be selected

Left mouse click from the top right to the bottom left: This will create
a dashed box around an object, but when the mouse button is released,
it will select all objects within the box even if the object is only partially
selected. See Figures 3-14 and 3-15.

- o x
L R BCEa P EL T ']

~ SCQUAHCI€LLo=sx@n0yar = B B e

LR

Figure 3-14. Make selection with left mouse click and drag top right
to bottom left

67

CHAPTER 3 MODELING WITH FUSION 360

werer B

Figure 3-15. Will select entire shape

Center mouse button: Usually, the wheel on the mouse is also a center
mouse button; when you click this in Fusion 360, you can pan the object.
This will be denoted by this % pointer image.

Center mouse button + Shift: Holding down the center mouse button
while also holding down the Shift key will allow you to rotate the field of
view in 360 degrees. It will be denoted by this © mouse pointer.

Mouse roller: Use this to zoom in and out of an
object. Roll forward to zoom in and roll backward to

Zoom out.

Now that that is over, we can start to talk about the
many menus and icons on the Fusion 360. Let’s start
with the ViewCube.

ViewCube: This visual aid is located in the top-
right corner of the screen and will show you the
current view of the object or plane; you can select
Top, Bottom, Front, Back, Right, and Left, and the

68

CHAPTER 3 MODELING WITH FUSION 360

view will switch immediately to the selected view.
Also, you will see arrows that allow you to turn the
object clockwise or counterclockwise. Then there is
a Home button that will take you to the Top-Front-
Right corner of the object or plane. Finally, there is a
drop-down menu that will allow you to change how
you see your objects, and you can also set a new
home for the 3D object. See Figure 3-16.

Figure 3-16. ViewCube

Browser: This menu will allow you to create a

new component which will have sketches and
bodies that can be manipulated. Also, the planes
are located here under the Origin submenu and if
selected will display a demo of the plane. The final
thing I want to say about the Browser menu is that
under the Document Settings submenu, you will
find the Units control which will allow you to switch
from inches to millimeters or vice versa. This will be
used throughout this book, so you will get plenty of
practice with navigating its options. See Figure 3-17.

69

CHAPTER 3 MODELING WITH FUSION 360

D Bl Named Views
D Bl Origin
D © [Sketches

Figure 3-17. Browser

Design History Bar: This is very important when it
comes to parametric 3D Modeling as this will allow
you to move back and forth from one feature to the
next. For example, say you want to modify a sketch
at the very beginning of a component and you also
want the features that you have done to also apply
to these new dimensions; you would use the Design
History Bar to move back to that sketch, modify the
dimensions needed, and then move the bar back

to the last feature, and that’s it! The model will use
those new dimensions and apply all the features you
have already created. You can also move features
and sketches around and delete features as needed.

See Figure 3-18.

€« > > b r‘T

Figure 3-18. Design History Bar

70

CHAPTER 3 MODELING WITH FUSION 360

Navigation Bar: Instead of using the mouse, you
can use this menu to select ways to move around a
component or sketch. The selections are

Orbit: Allows you to rotate around a component

Look At: Select a face or sketch, and the view will be
switched to that face.

Pan: When this is selected, hold the left mouse
button and move the mouse to view an object in the
left, right, up, and down directions.

Zoom: When selected, zooms in and out of a
component.

Zoom Window: This will allow you to zoom in to a
region of a component or sketch.

Display Settings: This allows you to change effects,
environment, visual style, object visibility, and so
on; the most used feature here is the visual style
which will allow you to change to a wireframe to
see hard-to-see areas of a component.

Grid and Snaps: Allows you to change where
components or sketches snap to; initially, this is set
to 10mm, which is what we will use for this book.

Viewports: This will allow you to see a component
from multiple angles.

71

CHAPTER 3 MODELING WITH FUSION 360

Fusion 360 Sketch Tools

Now we can get down to the nitty-gritty of parametric design. By using
sketches and sketch features, we can create a 2D model that can be
extruded, revolved, loft, and so on to create a 3D object, so that later on
if we need to make changes to the model, we only need to change the
dimensions on the sketch. For now, we will go over the basics and move to
more sophisticated tools in later chapters.

All these functions are under the “CREATE” tab:

Create Sketch: This is the first thing you will do after
making/naming components needed for the model.
This will put you into sketch mode automatically,
and the only thing you need to do to begin drawing
is to select a plane.

5

Line: This allows you to create a line on the plane
you selected; just left-click where you want the
line to start and then left-click again to select
where you want the line to end. Later, we will use
the dimensioning tool to constrain our sketches.
Equally important to note is that there are two
types of line; one is a regular line, and the other is
a construction line. A construction line will not be
a part of your overall sketch, and because of that
when you extrude your sketch, the dimensions of

72

CHAPTER 3 MODELING WITH FUSION 360

the construction lines will not be included. To turn a
line into a construction line, select the line and press
the “x” key on your keyboard. See Figure 3-19 for an

example of a normal line and a construction line.

~Normal Line —

Construction Line

Figure 3-19. Normal and construction lines

Rectangle: There are a few types of rectangles, and
each one has its benefits in certain situations; we
will be going over these different benefits later

in this book. For now, it is important to know the
center rectangle which will create a rectangle from
the inside out. The other rectangle is the two-point
rectangle; this will allow you to select two points

in a plane that will create a length and width for a
rectangle.

73

CHAPTER 3 MODELING WITH FUSION 360

74

o Line E l

Rectangie >
Circle »

{1 2-Point Rectangle R

> 3-Point Rectangle
Arc 1 3

Polygon »
> Elpse

Slot »

Spline >

[Z1 Center Rectangle

(\ Conic Curve

-4~ Point

A Text

i:g Fit Curves to Mesh Section

A Mieror

2°% Circular Pattern

5.2 Rectangular Pattern

Project / include »

[Sketch Dimension 1]

Circle: There are several options here; for the most
part, we will stick with the center diameter circle
which, just like the center rectangle, will create a
circle from the inside out.

=) Line L
Rectangle]
Circle P(() Center Diameter Circle C

e ¥ () 2-Point Circle
Polygon

s (> 3-point Circle
(- Elipse

Slat
Spline
.r’\ Conic Curve

Q 2-Tangent Circle
13

I 3-Tangent Circle
L3

-?- Point

A Text

1% Fit Curves to Mesh Section
A Mirror

£.2 Circular Pattern

7% Rectangular Pattern

Project / Include [3

1 Sketch Dimension D

CHAPTER 3 MODELING WITH FUSION 360

Arc: Mainly, we will be using the three-point arc which
will create an arc based on three individual points.

2 Line | 2
Rectangle >
Circle
Arc
Polygon

=+ Elipse
Slot

Splne 3
£\ Conic Curve
-4~ Point
A Text
L. Fit Curves to Mesh Section

A\ Mirror

3°% Circular Pattern

5.5 Rectangular Pattern

Project / include >

|| Sketch Dimension D

Polygon: Create a specific number of sides sketch,
for example, a hexagon.

) Line L
Rectangle >
Circie L4
are > |
Polygon ’I (Cy Circumscrived Polygon

(& Elipse | €9 inscribed Potygon
Slot

4) Edge Polygon
Spline »

.r"\ Conic Curve

-t- Point
A Text
17" Fit Curves to Mesh Section

A Mirror

272 Circular Pattern

Ei: Rectangular Pattern

Project / Include >

[Sketeh Dimension D

75

CHAPTER 3 MODELING WITH FUSION 360

Text: This is a great feature for adding text sketches
onto your models, which just recently became
available.

.-.) Line

Rectangle
Circle

Arc

vy ¥ v v

Polygon
¢ Elipse
Slot 4
Sphne »
,.-"'\, Conic Curve
—+- Point
A Text

[Ft Curves to Mesh Section

A\ Mirror
5% Circular Pattern

:: Rectangular Pattern

Project / Include 4

[—{ sketch Dimension D

Mirror: This is a great time savings tool; it allows you
to duplicate lines from one side of a centerline to
the other side, so you will only need to create half a
sketch if the sketch is symmetric.

76

CHAPTER 3 MODELING WITH FUSION 360

|.=2 Line

Rectangle
Circle

Arc

vy ¥ v v

Polygon
| & Elipse
Siot »
Spine »
.-"'\, Conic Curve
| =2~ Point
A Text

| T Fit Curves to Mesh Section

A\ Mirror

| 222 Circular Pattern

| &% Rectangular Pattern

Project / include »

:|—1 Sketch Dimension D

All these functions are found under the “MODIFY” tab:

Fillet: This will create an arc with a specific radius.
All you must do is select two coincident lines like a
corner of a rectangle.

Trim: This is a very useful tool when you need to
clean up your sketch by trimming lines that are
not needed, but be careful if those lines are used
to constrain your sketch; you might be better off
making them a construction line.

%

77

CHAPTER 3 MODELING WITH FUSION 360

Offset: To use this feature, select the outline/lines
you want to offset and then put in the dimensions
needed; you should then see a demo of what to
expect when you accept the offset. This is a great
time saver if you need to, for example, make a small
border around a sketch or object.

(@

This should be enough to get started with as we will be using most
of these functions throughout this book, but don’t be discouraged; I will
be introducing more features in later projects. This is just a good set of

features to start with.

Fusion 360 3D Tools

Alright, now once you finish creating your sketch, you will need tools to
make a 2D image a 3D object. This can be done several ways in Fusion 360;
we will discuss a few of them in this section, as well as a few features that
will allow you to modify a 3D object without using the sketch.

All these functions are found under the “CREATE” section in the
“SOLID” tab:

New Component: This is used when you first

start to make your model. You should separate
your 3D project into several components if it is
required, which most of the time it is. Also, give the
component a well-defined name, so that you know
what that component’s 3D model is; you do this by
going to the Browser menu on Fusion 360 (see the
“Getting to Know Fusion 360” section) and double-
clicking the new component and renaming it.

78

&) New Component

CHAPTER 3 MODELING WITH FUSION 360

14 Create Sketch
i‘, Create Form

&) Derive

B! Extrude
@ Revolve
i‘él Sweep
b_,_\d Loft

(k. Rib
Web

Hole

:'__.-': Thread

i 5ox
B Cylinder
& Sphere
@ Torus
; Coil

« Pipe

Pattern
A\ Mieror
&P Thicken
@' Boundary Fil

5 Create Mesh

&7 Create Mesh Section Sketch

() Create Base Feature

i Create PCB

N

Extrude: Probably the most used method of going
from a 2D sketch to a 3D object. This will allow you
to extrude a sketch to a desired height. There are
also other settings here that will allow you to extrude
to another 3D object surface; also, if you want to
make a hole, you can extrude into a 3D object, and it
will cut out material instead of adding it.

79

CHAPTER 3 MODELING WITH FUSION 360

80

Revolve: This will allow you to select a sketch and
revolve it around an axis. Very useful when you want
to make a cylindrical object.

(B

Sweep: Create a 3D object by selecting a sketch and
a path (a line) for the sketch to follow.

&) New Component
I-{ Create Sketch
s Create Form
%) Derive
W Extrude E

@ Revolve
%) Sweep
i}j‘ Loft

(& Rib
Web
Hole H
'_.': Thread
i sox
& Cylinder
& Sphere
@ Torus
§ Coil

« Pipe

Pattern 4
Ak Mieror
9 Thicken

@' Boundary Fil

& Create Mesh

&7 Create Mesh Section Sketch

3 Create Base Feature

i Create PCB

CHAPTER 3 MODELING WITH FUSION 360

Loft: Create a 3D object by selecting multiple
sketches on multiple planes; this will then create a
3D object with those shapes as profile.

B New Component
I-{ Create Sketch
i} Create Form

%) Derive

W extrude E
@ Revolve

-
f5) Sweep

WA Lott

(k. Rib

Web

Hole H
'_: Thread

o o

B Cylinder

& Sphere

@ Torus
§ Coil

& Pipe

Pattern »
Ak Mirror
& Thicken
@' Boundary Fil

&5 Create Mesh

&7 Create Mesh Section Sketch

() Create Base Feature

i Create PCB

Rectangular Pattern: Just like in the sketch mode,
you can create patterns that will allow you to quickly
replicate 3D objects; this also works for holes. This
function creates a rectangular pattern. You can also

81

CHAPTER 3 MODELING WITH FUSION 360

82

choose how many objects are replicated, which axis
to create the sketches on, and what type of pattern
to create.

O—n

Circular Pattern: Just like in the sketch mode, you can
create patterns that will allow you to quickly replicate
3D objects; this also works for holes. This function
creates a circular pattern. You can also choose how
many objects are replicated, which axis to revolve
around, and what type of pattern to create.

) New Component

I-4 Create Sketch

6, Create Form

%) Derive

'I Extrude E
@ Revolve

) sweep

A Lott

[k Rib

web

@] tioke H
£ Thread

' Box

@ Cyinder

& Sphere

@ Torus

= Coi

- Ppe

Pattern ¥ 272 Rectangular Pattern

AN Wirror 72 Circular Pattern

@ Thicken 22 Pattern on Path

E_-;"‘ Boundary Fill
@5 Create Mesh

& Create Mesh Section Sketch

() Create Base Feature

i Create PCB

CHAPTER 3 MODELING WITH FUSION 360

All these functions are found under the “MODIFY” section in the
“SOLID” tab:

Press Pull: This will allow you to extend a face or
retract a face. Useful if you need to make a quick
modification to a face.

(4

Fillet: Adds a radius to one or more edges. This can
be used to strengthen corners by adding a bit more
material between two faces.

|[v Press Pull Q
p Filet F

O Chamfer

@ Shell

I:‘\ Draft

0l Scale

‘ Combine

O offset Face
@ Replace Face

]
| Spit Face

5 Spiit Body

& Sihouette Spit

0$~ Move/Copy ']
= Align

X Delete Del
€5 Physical Material

@ Appearance A

Manage Materiais

fr Change Parameters

B compute Al Ctri+B

83

CHAPTER 3 MODELING WITH FUSION 360

Chamfer: Will create a bevel on one or more edges.
This can be used just like the fillet; it will create an
angled feature as opposed to a round feature.

[‘- Press Pull Q
(Y Fibet B

@ Chamfer I
@ Shell

(¥ Dratt

0l Scale
' Combine

O offset Face

fg‘ Replace Face
]

] Spit Face

5 Spiit Body

& Sihouette Spit

3> Move/Copy M

S Align

X Delete Del

€5 Physical Material
@ Appearance A
Manage Materiais

fr Change Parameters

B compute Al Ctri+B

Shell: This tool is very useful if you need to make a
hollow object. All you need to do is select the face to
shell and then specify the inside thickness and voila!
You have a hollow object.

-

84

CHAPTER 3 MODELING WITH FUSION 360

Combine: If you need to merge two or more objects,
this tool will allow you to do that.

4

Well, T know this might all seem like a lot, but with a little practice and
patience, you will be able to create a lot of different models even with this
short list of functions. Next up! I will explain a few tools that you can use to
measure and review your models.

Fusion 360 Tools

There are a lot of useful functions in the Tools tab; they can be used for
many things like checking out a section of a model or measuring distances
between two or more points. You will want to get used to using these as it
will be important later when you are making your own models or working
on someone else’s model. Here is a short list of Fusion 360 tools:

All these functions are found under the “INSPECT” section in the
“TOOLS” tab:

Measure: Measure the distance, angle, and area of
two points.

L":'» Measure | I

L_':l Interference

& Curvature Comb Analysis
m Zebra Analysis

& DraftAnalysis

= .

B Curvature Map Analysis

& Accessbilty Analysis

#4 Minimum Radius Analysis
T3 section Analysis

G_‘, Center of Mass

&} Component Color Cycling Toggle Shift=N

85

CHAPTER 3 MODELING WITH FUSION 360

Section Analysis: Allows you to see your object in

a cutaway view; you can move the arrow to view
different areas of an object. For example, say you
have a hollow box and you want to make sure there
are no other structures within the hollow box; you
can use this feature to look inside the box and verify
no other structures are in it.

= Measure |

L_':l Interference

&~ Curvature Comb Analysis
m Zebra Analysis

& DraftAnalysis

&S Curvature Map Analysis
-‘gf Accessibilty Analysis

#4 Minimum Radius Analysis

A3 Section Analysis I

G_‘, Center of Mass

&P Component Color Cycling Toggle Shift=N

Alright, that was short and right to the point. There are many other
tools in this menu, but for starters these are the key tools, so I wanted to go
over them first. The final portion of this section will go over how to import
various files into Fusion 360.

Importing Files

Sometimes, you may need to import a STEP file, a DXF file, or maybe even
an SVG file. Here are some functions that will help make adding these files
possible:

To add a STEP file to your project:

1. Go to the Data Panel by clicking the Data Panel
button at the top left of the screen. See Figure 3-20.

86

CHAPTER 3 MODELING WITH FUSION 360

< 2 Work Projects ca "‘ Ll . S
- - GERYLS FOUSSEmie o = E B
[I - s Muas: comers ams | mews | wmees
= 5
Sk 4 o OE==Ne
e
P p——
b o

om0 B W

P

Figure 3-20. Select Data Panel

2. Select New Project. See Figure 3-21.

Harold Timmis) el

ALL PROJECTS W

Figure 3-21. Select New Project

3. Name the project.

4. Click the “Upload” button. See Figure 3-22.

- 8
AW e @

87

CHAPTER 3 MODELING WITH FUSION 360

< A Work Projects (o e

Data People

m New Folder | 8%

A Book

Figure 3-22. Select Upload

5. A pop-up window will appear, and you can drag and
drop or select the STEP file you want to use in this
project. See Figure 3-23.

88

CHAPTER 3 MODELING WITH FUSION 360

Upload

Drag and Drop Here

Location:

Change Location

Work Projects » Book

Cancel

Figure 3-23. Drag and drop the STEP file or browse to the file

6. Click the Upload button, and you will see this screen
which will tell you the progress of your import.
When the STEP file is finished, click the “Close”

button. See Figure 3-24.

89

CHAPTER 3 MODELING WITH FUSION 360

Job Status

Data Generative Designs

Name Status

s0d8821_p0-65_I1_w0-6_h0-45 stp oY

Figure 3-24. When finished, click the Close button

To insert a DXF file:

Simulations

Close

1. Go tothe “SOLID” tab in Fusion 360. See Figure 3-25.

SURFACE SHEET METAL TOOLS

@Ol FOUPFES B W =

CREATE » MODFY ~ ASSEMBLE * CONSTRUCT = INSPECT =

Figure 3-25. Go to the “SOLID” tab

& N

MSERT * SELECT*

2. Go to the “INSERT” drop-down menu. See Figure 3-26.

a

INSERT ¥

Figure 3-26. Click the “INSERT” drop-down menu

3. Select the “Insert DXF” option. See Figure 3-27.

90

CHAPTER 3 MODELING WITH FUSION 360

E “

%] Insert Derive

E_j Decal

B canvas

T insert Mesh
¥ Insert SVG

T Insert DXF
Insert McMaster-Carr Component

) Insert a manufacturer part

Figure 3-27. Click the “Insert DXF” button

4. Select the plane/sketch that you want the DXF
image to be placed on to. See Figure 3-28.

S M
R e

O
LR RO W
e NSNS FOUPSEBEM W o= B Ty
4 = DT
[t T
[
13 -
T
el |
-
L
~ =
e o o Pt
¢ @ROYT PE--
-

Hers]

Figure 3-28. Select the plane that the DXF will display on
91

CHAPTER 3 MODELING WITH FUSION 360

5. Select the DXF file. See Figure 3-29.

T R . e e @
 GERUE® FOUPSEH @ = EH .
4 = ETTNS
T
R 4
-
a -
[Fem *
1| + s - b F
N 1 8
- I - —
/‘
| maw
e o o an
Iy
R0 -

werpen]

Figure 3-29. Select the DXF file from your computer

6. Then click the “OK” button. See Figure 3-30.

Tt s 393 e Lo - 5 =
BEa 8 e Powe W wews @
— HNRSUC® BOUPSE M 0 = B Ly
4 o (E=TTR =
L el
0
e -
nim "
e
Tl i
8
& =,
2, R

B0 G EE

meren

Figure 3-30. Click the “OK” button

92

CHAPTER 3 MODELING WITH FUSION 360

7. You should now see your DXF file on the plane you
chose earlier. See Figure 3-31.

- o x
O e D B TR

RS FOUF=s+ i ¥ = W

H
1
¥

BT L O EE
marewn T o

Figure 3-31. DXF is loaded into Fusion 360
To insert an SVG file:

1. Go to the “SOLID” tab in Fusion 360. See Figure 3-32.

SURFACE SHEET METAL TOOLS

o F0FEn 0 = E B

CREATE = MODFY * ASSEMBLE = CONSTRUCT = INSPECT = MNSERT * SELECT™

Figure 3-32. Go to the “SOLID” tab

2. Go to the “INSERT” drop-down menu. See Figure 3-33.

a

INSERT ~

Figure 3-33. Click the “INSERT” drop-down menu

93

CHAPTER 3 MODELING WITH FUSION 360
3. Select the “Insert SVG” option. See Figure 3-34.
= @

%CT SELECT ¥

%) Insert Derive

E_‘j Decal
& canvas

W& Insert Mesh
pr—

"'_1_4 Insert SVG I

‘B Insert DXF

‘a insert McMaster-Carr Component

F3 insert a manufacturer part

Figure 3-34. Click the “Insert SVG” button

4. Select the plane that you want the SVG image to be
placed on to. See Figure 3-35.

T R L p— ¥ 8 e @

v EESIL® FOUPSLE @ = B .
;I«-E.Iilr.
b O swwsuwre
-
b
L] -
e
-~ d
S

AT B BB
meren] o

Figure 3-35. Select plane

94

CHAPTER 3 MODELING WITH FUSION 360

5. Select the SVG file. See Figure 3-36.

B R A Do e e P

2 + i = ﬁ =]
FRges ——- 1
b O Sweseians
5 I
13 - e
oo e .
S |
I =
‘
i + oy
i
s -

+ BP0 BEE

maerew T

Figure 3-36. Select the SVG file from your computer

6. Then click the “OK” button. See Figure 3-37.

- 8 =
0 B BT P AW wee— @

@020 O EE

Marsew T o

Figure 3-37. SVG will be added to Fusion 360

95

CHAPTER 3 MODELING WITH FUSION 360

7. You should now see your SVG file on the plane you
chose earlier. See Figure 3-38.

waren T

Figure 3-38. SVG is ready to be extruded

Alright, now that you have a little understanding of Fusion 360, you
can move on to the exciting part, making your first 3D model. After reading
through this chapter, you may feel you are not ready to make a model yet,
but don’t worry; it won't be that complicated, and you can always look
back if you need to know where a function is, so without further ado let’s
get modeling!

Your First 3D Model in Fusion 360

Alright, let’s get started with a simple 3D model, and then we will move to a
more complex 3D model (don’t worry; it won’t be too complex). Go ahead
and open Fusion 360 so we can create our first sketch.

96

CHAPTER 3 MODELING WITH FUSION 360

Creating a Sketch

1. Save this project as “Cube” by pressing Ctrl-S.

2. Click the “Create Sketch” icon under the “SOLID”
tab. See Figure 3-39.

L B

werpen]

Figure 3-39. Left-click “CREATE SKETCH”

3. Select a plane to draw your sketch on. In this
example, I chose the XZ plane. See Figure 3-40.

97

CHAPTER 3 MODELING WITH FUSION 360

P — .
" a8 - . W + W wme— @
w EFSROCD FOUPESmM W = B .
4 o (T

B O towmstorm

=

phefome

==

ot
P

i-mBEd- BB
werenT

Figure 3-40. Select plane from the grid or the Browser menu

4. Now select the Rectangle tool under the “SKETCH”
tab. See Figure 3-41.

U BN RO Fowr 4 e @

T O O

weren T

Figure 3-41. Select a two-point rectangle from the “SKETCH” tab

98

CHAPTER 3 MODELING WITH FUSION 360

5. Putarectangle anywhere on the grid; don’t worry
about the dimensions yet. Press “Enter” when you
are finished. See Figure 3-42.

p—]
LR W e e

Hapew

Figure 3-42. Add a rectangle to the grid

Now I want to give this next part a bit of context. You may notice
that the square’s lines are all blue; blue lines mean that the sides are
not constrained, which can be a problem if you are trying to make
a maintainable 3D model. You can constrain sketches using several
different methods, for example, by defining the square’s dimensions and
referencing the origin. Let’s give that a try and see what happens.

6. Click a single point of your sketch and the origin.
See Figure 3-43.

99

CHAPTER 3 MODELING WITH FUSION 360

meres]

e s @

Figure 3-43. Left-click a single point on the rectangle and a point on

the origin

7. Go to the “CONSTRAINTS” menu under the
“SKETCH” tab. See Figure 3-44.

L
O N A C iy = | 1. 1 S
FEde - -
Pl
3 --

¢ 88 Ea- B

Wb w O]

Figure 3-44. Select the “CONSTRAINT” drop-down menu

100

e e

CHAPTER 3 MODELING WITH FUSION 360

8. Select the “Coincident” selection, then select the
origin, and you will notice that your square has
moved to the origin and two of the four sides of your
square have turned black which indicates those
sides are now constrained. See Figure 3-45.

: 8 =
LR DL R E e e @

BP0 BEE

maren T

Figure 3-45. Select Coincident from the drop-down menu

9. Now let’s constrain the other two sides. Press the
“D” key. Select one of the blue sides and enter
the value 5. (I am using millimeters; this can be
switched in the Browser menu under Document
Setting » Units). Now three sides are constrained.
See Figure 3-46.

101

CHAPTER 3 MODELING WITH FUSION 360

L e

be@ 80 S
Hak e

Figure 3-46. Add dimensions for one side of the rectangle

10. Finally, let’s constrain the last side by pressing
the “D” key and selecting the final blue side and
entering a 5 into the text box. See Figure 3-47.
Congratulations! Your sketch is fully constrained
now.

T

@ e O
Webew T

Figure 3-47. Add dimensions to the last side of the rectangle

102

CHAPTER 3 MODELING WITH FUSION 360

11. Select the “FINISH SKETCH” button to get out of
sketch mode. See Figure 3-48.

' - 8
0 T IO Pt £ 8 wmes @

+BO0 BEE

maren T

Figure 3-48. Click “FINISH SKETCH”

Okay, now that the sketch is done, you can move on to the next part
which will have you create a 3D model from the sketch you just completed.

Using the Extrude Function

1. Select the “Extrude” function from the “SOLID” tab.
See Figure 3-49.

103

CHAPTER 3 MODELING WITH FUSION 360

R R Cp— e v @

e E:\““i- FDUSSL i @ = BB

w0 O

maren T

Figure 3-49. Select the Extrude function
2. The “Extrude” function has a lot of options, but

for now let’s just move to the distance text box and
enter “5” and press enter. See Figure 3-50.

B T

L8 L BRI »

- GHeEdl® SIF] Sl W = =

o D

I s ¥

i m S—
C ~ =
- T~ i
- S e
- i A

werew W

Figure 3-50. Extrude out 5mm

104

CHAPTER 3 MODELING WITH FUSION 360

3. You can get a better angle on the 3D model by
pressing the Shift key and holding down your
mouse’s center button and moving the mouse
toward your computer screen. You could also select
the “Home” button next to the ViewCube. See

Figure 3-51.

e He =l
~ HHRYCS FOUPS+ s @ = B 3
.[lme ’ ."’.""""
e &
,, R T
e e
.G s

o
merew B =

Figure 3-51. Select “HOME” on ViewCube

4. Ifeverythinglooks fine, press the Enter key or click
the “OK” button under the “EXTRUDE” menu. See
Figure 3-52.

105

CHAPTER 3 MODELING WITH FUSION 360

L
4+ 8 e @

o0 O B

Marews ool

Figure 3-52. Final cube

Alright! That was your first 3D model. Great job! Now I want to move
on to a bit of a more complex example that will be used in the following
chapter. Also, it will be a good segue into parametric 3D Modeling as we
will use the “Cube” project to make a keychain.

Parametric Modeling in Fusion 360

1. Let’s start by opening our Cube project. Go to the
Data Panel » My Recent Data; the Cube project
should be the most recent project. See Figure 3-53.

< (B My Recent Data o oQ "E
&

‘ @ Cube
Viw 4

Figure 3-53. Go back to the Cube project

106

CHAPTER 3 MODELING WITH FUSION 360

2. Double-click the Cube project and close the Data
Panel.

3. Go to the Browser menu and go to the folder
Sketches and double-click Sketch1. This will take
you to the Sketch view, and you can start to modify
your sketch. See Figure 3-54.

-
PO Tt

R

Figure 3-54. Select Sketchl

4. We want to change this square into a rectangle; let’s
change (double left-click) the X axis dimension to
20mm and the Z dimension to 10mm. To do this,
press the “D” key and select the X axis dimension
and type in 20mm, then change the Z dimension
to 10mm. Press “Enter” when you are finished. See
Figure 3-55.

107

- 8 =
4+ 8 wme— @

CHAPTER 3 MODELING WITH FUSION 360

i

i
i
i

+ROLL- OE@E

marpew o T

Figure 3-55. Change dimensions for the X and Z axis

5. Click the “FINISH SKETCH” button. See Figure 3-56

- 8 =
48 e @

e
A @3 T = .

+BE0 OEE

marew o T
Figure 3-56. Click the “FINISH SKETCH” button

108

CHAPTER 3 MODELING WITH FUSION 360

6. You will notice that your 3D model has changed to
a shape that is 10mm x 20mm x 5mm. This is the
power of parametric 3D Modeling; it allows you to
make quick changes to your sketch and then applies
these dimensions through the rest of the history of
the 3D object.

7. Now double-click the Extrudel icon in the History
Bar at the bottom of the screen. See Figure 3-57.

w— DRSS FOULSLEn0 W = B
= 2 i . :
4 o OEETN=
e
T
b
4 © s L
T = T
Lo
Pyt
s
°
Ao |
E-J-_l m Ne YO e e
wer s BET o

Figure 3-57. Select the Extrudel in the Design History Bar

8. [Edit this to be 3mm instead of 5mm in the Distance
text box and press enter. See Figure 3-58.

109

CHAPTER 3 MODELING WITH FUSION 360

e wmem @

.
T Cv
o e e W
- &S FOUFEpn W o= B L
et weee pre S e T

A—]

4 @ CHETG

PO et

T

- . wwam. L -
- = -~ O
N —
e (A
- =

+BOILL- O EE

Mﬁ. b + v W7 o
Figure 3-58. Extrude only 3mm
9. Click the “Create Sketch” button at the top left under
the “SOLID” tab.
10. Select the top of the 3D object, and this will put you
into sketch mode. See Figure 3-59.

Hapen ool

Figure 3-59. Select the top of the 3D object

110

CHAPTER 3 MODELING WITH FUSION 360

11. Under the Create menu, select the Offset function
and click the edge of the 3D object. See Figure 3-60.

- o
Wi A e e @

00T 0 OEE e
Heren omil

Figure 3-60. Select the Offset function

12. Notice that there is now a box around your 3D
object. To change this, put -1.00mm into the Offset
position text box, or just click the “Flip image.” Press
“Enter” when you are finished. See Figure 3-61.

111

CHAPTER 3 MODELING WITH FUSION 360

®
LH T B Wi
5

- SOQNAH S ILO=/s/x@aA0ymN = B i 18

e

B0 d0- OEE

marsy omil

Figure 3-61. Edit the dimension to -1mm

13. Click OK.

14. Now select the Center Diameter Circle by going
here: SKETCH » CREATE » Circle » Center
Diameter Circle, or just press the “C” key. See
Figure 3-62.

112

CHAPTER 3 MODELING WITH FUSION 360

- Line L
Rectangle)
Arc () 2-Point Circle
Polygon (> 3-point Circle
(> Elipse i) 2-Tangent Circle

Slot
i) 3-Tangent Circle
Spline

7\ Conic Curve

-4~ Point

A Text

17 Ft Curves to Mesh Section
A\ Mieror

822 Circular Pattern

vw

% Rectangular Pattern

Project / Include

[sketch Dimension D

Figure 3-62. Select the Center Diameter Circle

15. Place a circle on the top face, just like the offset.
See Figure 3-63.

,,,,, . e Lh OEe

Figure 3-63. Place a circle on the grid

113

CHAPTER 3 MODELING WITH FUSION 360

16. Now you will notice the circle is not constrained;
let’s fix this. First, press the “D” key and select the
circle’s edge; type in 3mm. Press “Enter” when you
are finished. See Figure 3-64.

i
0
ie
il
1
1]
[]
[
e
il

- @ o

Lt R =Sl

marey cmil

Figure 3-64. Add a dimension to the circle (3mm)

17. Let's make some construction lines, so that we know
where the center of this rectangle is. First, select the
Line function from the “CREATE” menu or press the
“L” key, and place a line from one side of the rectangle
to the other side. You will see this symbol £ | when you
have selected the center for an edge; once you see that,
left-click and move to the other side and left-click
again. See Figure 3-65.

114

- a =
R T

CHAPTER 3 MODELING WITH FUSION 360

* = il
N T R [T CE e wees @
o

- | SOA AN AH 1,_1 LO=S2XBAGY MY

e waree nmee e e Pmssee

,,,,, . +aeLh OEe

Figure 3-65. Find the horizontal center of the rectangle

18. Do the same for the top and bottom of the sketch.
See Figure 3-66.

sreeny . LAl R =Sl ol g

Figure 3-66. Find the vertical center of the rectangle

115

CHAPTER 3 MODELING WITH FUSION 360

19. Exit out of the Line function by pressing the “Esc”
key.

20. Select the two lines you created and press the “x”
key. This will make both of those lines construction
lines. See Figure 3-67.

- 8 x
L B RS W AW = @
» s

I Lo PR —
weren Cmi] o

Figure 3-67. Make both the horizontal and vertical center lines
construction lines

21. Now while pressing the “Ctrl” key, select the center
of the circle and the horizontal construction line;
then select the coincident constraint from the
“CONSTRAINTS” menu. See Figure 3-68.

116

CHAPTER 3 MODELING WITH FUSION 360

— "
[B TN R P CE e e @
o L i s =L o= nd fa PN = -]
Zingtulls LS] /85
pra— ==
b O st 0 e
- A
B i)
i g i

.......

i

MmO R

weren omcl

Figure 3-68. Constrain the circle to the horizontal center line

22. Next, press the “D” key and select from the center
of the circle to the edge of the left side of the vertical
offset and put 3mm into the text field and press
enter. See Figure 3-69.

¥ bt St 5 et Lo - *
o e e @

dmAO- R

werew owcl °

Figure 3-69. Add the dimension from the left offset to the center of the
circle to 3mm

117

CHAPTER 3 MODELING WITH FUSION 360

23. Now click the “FINISH SKETCH” button.
24. Make sure you press Ctrl-S to save your progress.

25. Now click the Extrude button on the “CREATE”
menu and click the border area we created with
the Offset function; extrude the border Imm. Press
“Enter” when you are finished. See Figure 3-70.

L ——
Cl TR -

~ RHRYCS #DUeSEmi 0 = B

4 = (ST
b8 St

¢ HmOAT- O

Herew ol

- 8 =
B T

Figure 3-70. Extrude the border to Imm

26. Once you press the “Enter” key, the sketch goes

away; to bring the sketch back up, all you need to do

is go to the Browser menu and go to Sketches and
click this button on Sketch2 to view the sketch.
See Figure 3-71.

118

CHAPTER 3 MODELING WITH FUSION 360

TR A — L
LB L B o e e @

— EN®UL®S FOuLS+min = B B

e LR - 1

merew cmoal o

Figure 3-71. Show Sketch using the Browser menu

27. Next, select the circle and click the Extrude button.
This will be a bit different as you are going to create
a hole. Rotate the 3D object so you can see the
bottom of the 3D object and left-click the bottom
of the 3D object and click OK; this will create a hole
that is 3mm in diameter. Press “Enter” when you are
finished. See Figure 3-72.

119

CHAPTER 3 MODELING WITH FUSION 360

o i
WORe B s C TR 1

wapen Cu@nT o

Figure 3-72. Extrude the circle to the bottom face

28. You can hide your sketch again by clicking the same
icon shown in step 26.

29. Now to make this keychain template more
appealing, let’s add a fillet to one side. Using the
Design History Bar, move the slider right after the
Sketchl. See Figure 3-73.

4« » > » 1.‘_‘-T

Figure 3-73. Go to Sketchl in the Design History Bar

30. Double-click the Sketchl icon in the Design History
Bar, and you will be able to edit this sketch. See
Figure 3-74.

120

CHAPTER 3 MODELING WITH FUSION 360

= =
- He v B

]
o
1
0]
2]
A
i
. |
‘G

80T 0 O @
marewn T

Figure 3-74. Select Sketchl
31. Add afillet by going to the “MODIFY” tab and
clicking the Fillet button. See Figure 3-75.

Figure 3-75. Add fillet

121

CHAPTER 3 MODELING WITH FUSION 360

32. Click the top horizontal line, then the left vertical
line, and finally the bottom horizontal line. See
Figure 3-76.

BT L O EE

maeren

4.

—— @

Figure 3-76. Select left-side outlines

33. Inthe text box, put 2mm and press enter (don’t
mind the warning that you may get when you do
this). Press “Enter” when you are finished. See
Figure 3-77.

122

CHAPTER 3 MODELING WITH FUSION 360

B -u--u L]

B0 G O @
warew T

Figure 3-77. 2mm fillets

34. Click the “FINISH SKETCH” button.

35. Now drag the Design History Bar slider to the right
after Sketch2 and double-click the Sketch2 icon in
the Design History Bar. See Figure 3-78.

=
7 CHe e @
el M SRR S

. - Lal Rt -

Figure 3-78. Select Sketch2 in the Design History Bar

123

CHAPTER 3 MODELING WITH FUSION 360

36. Do the same thing to Sketch2 that we did to Sketchl.
See Figure 3-79.

WS
E l]

ERENE --.qI

Lol R 8-t -0~

Figure 3-79. Add 2mm fillets

37. Click the “FINISH SKETCH” button.

38. Move the History slider to the very end and see the
result! See Figure 3-80.

124

CHAPTER 3 MODELING WITH FUSION 360

39. Make sure you save the project (Ctrl-S).

[T rep—— - a x
e e o e e O

— LERUC® FOUPEE LM # = B R

e R a-o - N

Inobbn ‘. --‘|'| o

Figure 3-80. Move the Design History Bar slider all the way to the
right

So, with parametric 3D Modeling, we were able to change our
simple cube into a keychain template very quickly and with only a few
modifications to the original model.

Now we have a blank keychain template that we can use as an example
in the next chapter to 3D print. We will also add an image to this keychain
in that chapter.

125

CHAPTER 3 MODELING WITH FUSION 360

Summary

Great job! You now have a better understanding of Fusion 360. This
chapter was a bit long, but there was a ton of material to cover. Here is a
brief list of what was covered in this chapter; these items will be important
moving forward as we will be doing 3D Modeling in several chapters:

o Creating a user account for Autodesk
e Downloading and installing Fusion 360
e Understanding the Fusion 360 user interface
o Fusion 360 sketch tools
o C(Create Sketch
e Line
e Rectangle
o (ircle
o Fusion 360 3D tools
¢ New Component

Extrude

Revolve

Sweep

Loft

e Fusion 360 tools

e Measure

126

CHAPTER 3

Importing files into Fusion 360
o STEP, DXF SVG

Creating a sketch

Extruding a sketch

Parametric 3D Modeling in Fusion 360

MODELING WITH FUSION 360

127

CHAPTER 4

3D Printing

Alright! It is now time to learn a bit about a very cool engineering tool
called a 3D printer. We will start with a look at what 3D printing is and
what type of 3D printing this book will focus on, which is Fused Filament
Fabrication (FFF). After that, we will investigate the tools needed by
anyone who wants to use a 3D printer. Then I will discuss the various
parts and upgrades a printer can have to allow for faster printing times,
easy printing setup, and better print quality. Then we will discuss what a
slicer is and the various slicers available on the market. Once we have all
that knowledge, we can focus on troubleshooting common issues with 3D
printers and prints. Finally, we will update and print the keychain we made
in Chapter 3. This chapter will be filled with tons of information; you don'’t
need to memorize it, but you can use this as a reference when using your
3D printer in the future.

What Is 3D Printing

Well, you can think of Fused Filament Fabrication as a hot glue gun with
an XYZ table. The extruder will lay down plastic onto the build plate in

the X and Y coordinates in a 2D fashion, but then when the first layer has
completed, the Z axis will move up a predetermined amount, and another
2D layer will go on top of the previous 2D layer; this will continue until the
model is completed, and a 3D object will be the final product. You can also

© Harold Timmis 2021 129
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_4

https://doi.org/10.1007/978-1-4842-6852-0_4#DOI

CHAPTER 4 3D PRINTING

use many types of 3D filament. This book will mainly focus on using PLA
plastic as it is easy to get and very easy to use. The only real downside to
PLA is it is not very heat resistant, so don’t leave the parts in your car on a
hot day. See Figure 4-1.

Figure 4-1. FDM printer with its axes labeled

Types of 3D Printers

There are many types of 3D printers, but I want to talk about two main
types of 3D printing for hobbyists; they are FFF and SLA.

130

CHAPTER 4 3D PRINTING

FFF (Fused Filament Fabrication): As stated earlier,
this is a process that takes plastic filament and
places molten plastic onto a build plate, and when it
is finished with that layer, it then melts plastic onto
the previous layer, and over time (sometimes hours
or days) a completed 3D model is created. FFF
printing is great for printing tools, fixtures, and toys,
especially when real high resolution is not needed.
Normally, you can print at 50 microns with a good
FFF printer. See Figure 4-2.

Figure 4-2. Example of an FDM printer

131

CHAPTER 4 3D PRINTING

SLA (Stereolithography): This is a process that
includes a vat of photochemical (chemicals

that harden with light) and a galvanometer. The
galvanometer has a laser that uses two mirrors to
move around the resin and hardens it over time.
Then the Z moves up (like on an FDM printer), and
the process starts all over again until you have a 3D
model. The 3D model comes up out of the resin and
will be printed upside down. An SLA printer is great
at fit check assemblies, high-definition models, and
anything with high amounts of detail. SLA printers
have a very high resolution, usually around 10
microns. See Figure 4-3.

Figure 4-3. Example of an SLA printer

132

CHAPTER 4 3D PRINTING

We will go into more depth of what is required to doing FFF printing,
but for SLA printing I would suggest looking at Formlabs white paper on
the subject at this web address: https://formlabs.com/blog/ultimate-
guide-to-stereolithography-sla-3d-printing/.

For FFF printers, there are also a variety of filament feeding styles; they
are direct drive (what this book will focus on) and Bowden style of feeding
filament. Direct drive as its name states will push filament directly from the
extruder to the cold break. Bowden extruder assemblies will normally be
on the back side of the printer, and the cold break and hot end will be on
the gantry; this is ideal for speed, but some filaments do not work well with
this style of filament feeding. These are the main two types; there is also
the Wade style extruder, but it is not used as often.

Now we can talk about the various tools you will need in order to 3D
print successfully.

Tools of the Trade

On the journey of becoming a 3D printing guru, you will need many tools;
some of the more common tools are as follows.

Needle-nose pliers: Great for removing support material and other
excess of plastic the 3D model does not need. See Figure 4-4.

133

https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/
https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/

CHAPTER 4 3D PRINTING

Figure 4-4. Needle-nose pliers

Paint spatula: Great for taking 3D models off the
build plate. See Figure 4-5.

Figure 4-5. Paint spatula

134

CHAPTER 4 3D PRINTING

Wire cutters: Again, these can help you take off
support material. See Figure 4-6.

Figure 4-6. Wire cutters

Allen wrenches: These are a must as you will need to
maintain your 3D printer which almost always use
hex cap screws. See Figure 4-7.

135

CHAPTER 4 3D PRINTING

Figure 4-7. Allen wrenches both SI and metric sets

Tweezers: Great for cleaning plastic off the
extruder’s nozzle. See Figure 4-8.

—

—

Figure 4-8. Few types of tweezers

X-Acto knife: This is a must-have tool when you are
cleaning up 3D prints, but be careful. See Figure 4-9.

136

CHAPTER 4 3D PRINTING

Figure 4-9. X-Acto knife. BE CAREFUL; these are very sharp

Calipers: This tool is used to measure the parts
coming off the printer as well as debugging some
common issues a printer might have. See Figure 4-10.

Figure 4-10. Digital calipers

137

CHAPTER 4 3D PRINTING

These tools should get you started on the right foot when it comes to
3D printing. In the next section, we will discuss the most important parts of
a 3D printer.

Parts of a 3D Printer

A 3D printer has many parts; I would like to go over the key components.
These components make up most of the functionality of the printer; they
are the hot end, cold break, extruder assembly, gantry, and control board.

Hot end: This component has a heater cartridge

and a thermistor attached to an aluminum block
that has a nozzle at the bottom. This is where plastic
is melted and placed on the build plate. Common
issues with this include plastic seeping out of the

top of the nozzle or at the top of the aluminum block
because the nozzle or the block has not been tighten
down. See Figure 4-11 for an example of a hot end.

138

CHAPTER 4 3D PRINTING

Figure 4-11. Hot end with silicone cover

Cold block: This part of the extruder allows pressure
to build up in the hot end, so you never run out

of plastic. It does this by acting as a heat sink and
drawing out the heat that may creep up from the

hot end. One key issue that you can run into is heat
creep; this is when heat from the hot end softens the
plastic too much in the cold block, and a jam occurs.
See Figure 4-12.

139

CHAPTER 4 3D PRINTING

Figure 4-12. Cold block

140

Extruder assembly: The extruder assembly draws
plastic in from a spool of plastic filament that is
either 1.75mm or 3mm. It does this by using a
hob gear and a pully under tension; plastic is fed
between these two parts and fed into the cold
break. The hob gear is normally mounted to a
stepper motor that feeds the plastic filament at

a set rate (steps/mm). Common issues with the
extruder assembly are jams; sometimes, the hob
gear can get plastic bit in its teeth, and because of

CHAPTER 4 3D PRINTING

this, plastic will slip. Also, when loading the plastic,
you can sometimes miss the hole to the cold break,
and no plastic will ever make it to the hot end. See
Figure 4-13.

Extruder . *’

AsSembly

Figure 4-13. E3D brand extruder assembly

Gantry: With some printers, the X and Y axes move
on the same apparatus, and the Z moves up and
down on an acme screw or a ball screw. Other
printers have the X and Z axes mounted together,
and the build plate moves along the Y axis. Both
styles of machine work well; I personally like the

141

CHAPTER 4 3D PRINTING

former to the latter, but it is up to you to decide
which style of printer is right for you. Common
issues with the gantry include screws loosening due
to vibrations, axes getting jackknifed or misaligned,
very noisy due to lack of lubrication, and/or motor
driver being set to high/low on its reference voltage.
See Figure 4-14.

Figure 4-14. FT5gantry X, Y, and Z axes

Control board: This is the brain of the 3D printer;
it controls all aspects of the printer. There are a
few components on here of note. For starters, the

142

CHAPTER 4 3D PRINTING

motor drivers are located here; the MOSFETs that
control both the build plate and hot end heaters are
here, and all the sensors used to home the printer
are on the control board as well. Common issues
with the control board are: the voltage reference on
the motor drivers is not dialed in all the way, loose
thermistor wires can cause thermal runaway, and
noisy (electrically noisy) power supply can cause

your printer to restart at inopportune times. See
Figure 4-15.

Figure 4-15. Duet Wifi 2 control board

Build plate: This is where the print will be created.
The most important thing to know about it is
whether it is heated and the build envelope. It is also

143

CHAPTER 4 3D PRINTING

important to note the different materials used on a
build plate. For example, the image in Figure 4-16
shows a mirror being used as a build plate. Other
materials that are used for 3D printing build plates

are borosilicate glass, aluminum, and PEI. See
Figure 4-16.

Figure 4-16. Build plate, with heated bed

Now that we have a basic understanding of the various components of
a 3D printer, we can move on to the software side of things. The software
we are going to talk about is very important as it will convert an STL file
into G-code.

144

CHAPTER 4 3D PRINTING

What Is a Slicer

A slicer is a program that takes a 3D image normally and an STL file
(stereolithography file); this file is then converted into layers (slices) of the
3D object. The slicer also contains all kinds of settings that you can use to
make your print quality better, print speed faster, and so on. For this book,
I will be using Simplify3D; this application does cost 150 USD, but it is
worth it in the long run. I also recommend Cura as it is a free slicer and has
a ton of settings as well. Let’s get started by talking about these two slicers
in a little more detail.

Different Slicing Programs

Cura: As stated earlier, it is a free software from Ultimaker that a
community of hobbyists, makers, and engineers update on a regular basis,
which is nice because you normally get a lot of new features with each
release. Now, that being said, Cura offers a lot of features in the magnitude
of 100s of settings, so it can be a bit overwhelming, but there is also a
lot of forums that you can go to, to get help. Visit https://community.
ultimaker.com/forum/107-ultimaker-software/ for any help with Cura,
or if your printer has a forum, I would suggest visiting that forum as well.
Simplify3D: Unlike Cura, Simplify3D is not freeware and costs about
150 USD, but I think it is worth it for one key feature which is it allows you
to add and remove support structures (we will go over this in the next
section). It also has a forum and regular releases; it works well with most
printers, and there are some that have full libraries of material profiles that
you can use. The next section will cover everything you need in order to get
started with Simplify3D.

145

https://community.ultimaker.com/forum/107-ultimaker-software/
https://community.ultimaker.com/forum/107-ultimaker-software/

CHAPTER 4 3D PRINTING

Simplify3D

For this book, I will be using Simplify3D; you can use any slicer you would
like, but I prefer Simplify3D because it is really easy to use and has some
great functionality. First off, I want to explain all the function of the main
screen. Then I'will go into details of the various settings that you may or
may not use when using Simplify3D. Finally, I will import the 3D model
we made in the previous chapter to demonstrate the preview mode on
Simplify3D. So, let’s get started with the Simplify3D’s main screen.

The Main Screen

In Figure 4-17, you will see an illustration of the main screen of
Simplify3D. This screen has many buttons, drop-down menus, selection
boxes, and so on. I want to go over each of these, so you have a better
understanding of the software when we use it later in this chapter as well
as in chapters to come.

e D Lcamad 15 et Tl
T e

s e

F - Racl Vo T E T Nel-Eot

Figure 4-17. Main Simplify3D screen

146

CHAPTER 4 3D PRINTING

1. Models selection box: This is where you add your
STL file to Simplify3D. You can drag and drop your
files into this box, or you can use the “Import”
button; once you do that, the part will be added
to the build area. You can also use the “Remove”
button if you want to remove a model from the
build area.

2. Processes selection box: This is where all the
processes for the various plastics go. They are
created by clicking the “Add” button and deleted by
clicking the “Delete” button. The next section will
have a more in-depth look at the various settings in
these processes.

3. Build area: This is where the 3D model will be
viewed; you can manipulate the position of the
3D object by double-clicking it and changing the
rotation on the X, Y, and Z plane. This menu will
also allow you to change the scale and position. If
you have a part that is too large for the build area,
Simplify3D will tell you, and you can adjust the 3D
object accordingly (but only upon inserting the 3D
model, not when you scale a model already on the
build area).

4. Side bar: This bar has several functions; they are

e Normal selection: This will allow you to select the
various models in the build area.

e Translate models: Move a modelin X, Y, and Z
directions.

e Scale models: Make a model larger or smaller in all
directions.

147

CHAPTER 4 3D PRINTING

o Rotate models: Allow you to rotate a model.

e Default view: This will take you to the home view.
o Top view: Rotates the view to the top.

o Front view: Rotates the view to the front.

o Side view: Rotates the view to the side.

o Coordinate axes: Toggles the X, Y, and Z coordinate

image.
o Solid model: Toggles the solid models on and off.
o Wireframe: Toggles the wireframe of the model.

o Show normals: Will toggle the normal on a 3D
model.

o Cross-section view: Very important function; it can
be used to see cross-sections of the 3D model in the
X, Y, and Z directions. Useful when you want to see
support material within the 3D model.

e Machine control panel: Here, you can control your
printer over a USB cable. Very useful if you need to
debug a problem.

e Support generation: This is a great function; it
allows you to add or remove support structures,
and it also allows you to change the density of
support structure.

In the next section, we will discuss common settings needed in order

to create the best print possible.

148

Common Settings

CHAPTER 4 3D PRINTING

Click the “Add” button on the main screen under the processes selection

box (see Figure 4-18). You may be in the basic setting menu. To get into the

advanced menu, click the “Show Advanced” button, and you will see a lot

of new settings.
0l FFF Settings ? X
: rP!_.;_FotéaolE _ B .

Select Profile: | Folger Tech FT-5 (modified) ¥ | Update Profile Save as New Remove

Auto-Configure for Material Auto-Configure for Print Quality
PLA >0 e Medium Qe

General Settings
Infill Percentage: l 15% [indlude Raft [] Generate Support
Show Advanced Select Models OK Cancel

Figure 4-18. Click the Show Advanced button for more functions

1. Tab 1: Extruder (see Figure 4-19)

e Extruder List: This is where you will select which
extruder you want these settings to apply to. If
you only have a single extruder, only the primary
extruder will be available.

¢ Nozzle Diameter: This is the diameter of the nozzle
at the end of the extruder.

¢ Retraction Distance: How much plastic to suck
back into the extruder.

149

CHAPTER 4 3D PRINTING

e Retraction Vertical Lift: The nozzle will lift up when
aretraction occurs. This is very useful when you are
printing multiple parts, so the nozzle will not hit

other parts.

Retraction Speed: How fast the extruder will retract.

W8 FFF Settings ?
Process Name: [PLA for Bock . i i
Select Profile: | Folger Tech FT-5 (modified) ~ | Update Profile| | Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quality
PLA > Qe Medum >0 e
General Settings
Infil Percentage: I 15% [Indude Raft [] Generate Support
Extruder Layer Addiions Infil Support Temperatwe Cooing G-Code Soipts Speeds Other Advanced
—
Extruder List =
(@ckiten 1o eatsstingsy | PTimMary Extruder Toolhead
Primary Extruder Overview
Extruder Toohead Index |Tool 0 2
[rozzevameter o0 =] |
Extrusion Multipier [0.90 =
Extrusion Width ® Aute O Manual 0.48 mm
Qoze Control
[Retraction Imacnon Distance |0.50 | mm I
Extra Restart Distance |0.00 =1 mm
Retraction Vertical Lit (0,30 [$] mm
Retraction Speed 30.0 | wemfs |
Add Ext [] coast atEnd Coasting Distance : mm
[wipe Mozze Wipe Distance 5.00 S omm
st | [omal

Figure 4-19. Extruder tab

150

CHAPTER 4 3D PRINTING

Tab 2: Layer (see Figure 4-20)

Primary Extruder: Select the extruder that these
settings apply to.

Primary Layer Height: Layer height for the z axis.

Top Solid Layers: How many top solid layers to
print.

Bottom Solid Layers: How many solid layers to
print.

Outline/Perimeter Shells: How many perimeters to
print. Good for making bosses for threaded inserts
OI SCrews.

Single outline corkscrew printing mode (vase
mode): Increment the Z axis so that the print will be
seamless. Note that this will mean there is no infill.

First Layer Speed: Slow down or speed up the first
layer by a certain percentage.

151

CHAPTER 4 3D PRINTING

M FFF Settings ? X

Process Name: [PLA for Book

Select Profile: | Folger Tech FT-5 (modified) ¥ Update Profile. Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quality
PLA hall(+ IR Medium 0@
General Settings
Infil Percentage: l 15% [IncudeRaft [Generate Support

Extruder Layer Addtions Infl Support Temperatre Cooing G-Code Soipts Speeds Other Advanced

Layer Settings First Layer Settings
Primary Extruder Primary Extruder e FirstlayerHeight 90 & | %

; — FrstLayer Width 100 |2 %
Primary Layer Height [0. 2000 v | mm —

[Frstiayer speed (50 2] %]

Top Solid Layers |4 = |
Bottom Solid Layers 13 Gl Start Ponts.
Qutine Perimater Shells '2 :: C)Uselmdmsm\ponlsfualwmm
Outine Direction: (@) Inside-Out () Outside-in (® Optimize start points for fastest printing speed

O Printisd tially without optimization (O Choose start point dosest to spedific location

EEl Snge outine ¢ it I(vasemode}l X: 0.0 = ¥: 0.0 s mm

tode Advanced | | Select Models [Cox]| caneel

Figure 4-20. Layer tab

3. Tab 3: Additions (see Figure 4-21)

e Use Skirt/Brim: This will purge some plastic at the
beginning of the print. It will outline the entire print.
Normally, this is set to two or three outlines. If you
set the “Skirt Offset from Part” to zero, it will create a
brim which is useful for keeping a print from warping.

o Use Raft: Raft is very useful when you need to keep
a print from warping. Normally, I don'’t like to use
them, and if you have a well-leveled build plate,
you should not need to use a raft.

152

CHAPTER 4 3D PRINTING

W FFF Settings ;] *®
Process Name: [PL& for Baok]
Select Profile: | Folger Tech FT-5 (modified) ¥ | |Update Profile| | Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quality
FLA > Qe Medum Qe
General Settings
Infill Percentage: . 15% [Indude Raft [] Generate Support
Extruder Layer Addions Infll Support Temperatwe Cooling G-Code Sopts Speeds Other Advanced
Skirt Extruder Primary Extruder > P ser | Al Extruders
Skirt Layers 1
Skirt Offset from Part |4.00 2l m North-West
Skirt Outines 3 3]
[Juse Raft
All Extruders uf
Waterfal
30
100
Hide Advanced | | Select Models []| con

Figure 4-21. Additions tab

4. Tab 4: Infill (see Figure 4-22)

Infill Extruder: Extruder that will be used for
infilling the part.

Internal Fill Pattern: What fill pattern will be used.
For now, rectilinear will be used.

External Fill Pattern: This is the pattern that will be
used for the top and bottom fill.

Interior Fill Percentage: The amount of plastic infill
used on the interior of the print.

153

CHAPTER 4 3D PRINTING

[X

Process Name: [PLA for Book

Select Profile: | Folger Tech FT-5 (modified)
Auto-Configure for Material

PLA

General Settings
Infill Percentage:

Extruder Layer Additons Infil Support

~ |Update Profie| SaveasNew | | Remove
Auto-Configure for Print Qualty
-] Medum * 0@

15% [JindudeRaft [] Generate Support

Temperatre Cooling G-Code Scripts Speeds Other Advanced

General Internal Infil Angle Offsets
Infil Extruder | Primary Extruder - o Telaeg |45
Internal Fil Pattern | Rectiinear - e |
External Fill Pattern | Rectilinear x Remove Angle
Interior Pl Percentage (15 2| % [Print every infil angle on each layer
Outine Overlap 0] %
Infll Extrusion Width (100 2] % L e O
mm

Mnimum Infll Length [5.00 |3
Combine Infil Every 1 : layers

[indude solid diaphragm every 20

Select Models

[o T2 [as |
-5
Add Angle
layers Remave Angle

Figure 4-22. Infill tab

154

5. Tab 5: Support (see Figure 4-23)

Generate Support Material: Toggle whether to add

support material to a print.

Support Extruder: Which extruder will be used to

print the support material.

Support Infill Percentage: How dense the support

material will be.

CHAPTER 4 3D PRINTING

W8 FFF Settings ? X

Select Profile: | Folger Tech FT-5 (modified) ¥ | Update Profile| | Save as New Remove
Auto-Configure for Material Auto-Configure for Print Qualty
PLA > 0@ Medum Qe
General Settngs
il Prceniaei | 15% [JincudeRaft [Generate Support

-~
Extruder Layer Addions Infll Support Temperatwe Coolng G-Code Saipts Speeds Other Adv ik

Support Material Generation Automatic Placement
[[] Generate Support Material Only used if manual support & not defined

Support Type | Normal Y.
Support Extruder |Primary Extruder e

Support Pillar Resolution 4.00 * mm
Support Infill Percentage 30 1% =

Max Overhang Angle 45 : deg
Extra Inflation Distance 0.00 5 mm
Support Base Layers 0 = Separation From Part
Combine SupportEvery |1 = layers Horizontal Offset From Part 0.3 % mm

Upper Vertical Separation Layers 1 -
Dense Support

Lower Vertical Separation Layers 1 =
Dense Support Extruder | Primary Exfruder i
Dense Supportlayers 0 = Support Infill Angles
Dense Infill Percentage 70 = % 0 s deg [0

Add Angle
Remove Angle |
v
Hde Advanced | | Select Models o][conc

Figure 4-23. Support tab

6. Tab 6: Temperature (see Figure 4-24)

o Temperature Controller List: List of heaters on the
3D printer. Select one and update the settings for it.

e Temperature Identifier: Identifies the temperature
controller.

o Temperature Controller Type: Select whether the
type of heater is for an extruder or heated build
plate.

155

CHAPTER 4 3D PRINTING

o Per-Layer Temperature Setpoint List: Displays the
various temperature setpoints and which layer it

will set.

e Layer Number: What layer number you want the

temperature to change.

o Setpoint: What temperature you want to set.

W8 FFF Settings ? X
Process Name: IPL.‘\ for Book
Select Profile: | Foiger Tech FT-5 (modified) | [UpdateProfie. | SaveasNew | | Remove
Auto-Configure for Material Auto-Configure for Print Quality
PLA - o e Medum 0@
General Settings
Infil Percentage: I 15% [incude Raft [] Generate Suppert
-~
Extruder Layer Additons Infl Support Temperatre Cooling G-Code Soipts Speeds Other Adv ' Pl
o Heated Bed Temperature
Primary Extruder Ouerview
Hested Bed Temperature Identifier [T0 -1
=
Temperature Controlier Type: () Extruder (®) Heated buid platform]l
A wait for temperature controller to stablize before beginning buld
PerLayer Temperature Setpoints
Layer Temperature Add Setpoint
L o Remove Setpoint
Layer Number |1 B
Temperature [0 T2] =
Add Temperature Controller
Remove Temperature Controller

Hide Advanced | Select Models

Figure 4-24. Temperature tab

156

CHAPTER 4 3D PRINTING

7. Tab 7: Cooling (see Figure 4-25)

e Per-Layer Fan Speed List: Displays what percentage
the cooling fan will be set and at what layer

e Layer Number: Layer number to set the percentage
of the cooling fan speed

o Fan Speed: The percentage to set the cooling
fan speed

M FFF Settings ? X

Process Name: [PLA for Book

Select Profile: | Folger Tech FT-5 (modified) ~ | Update Profile. | Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quakity
PLA e e Medum v |0 e
General Settings
Infil Percentage: l 15% [Indude Raft [Generate Support
-~
Extruder Layer Addtions Infl Support Temperatwre Coolng GCode Saipts Speeds Other Adv'.P|
Per-Layer Fan Controls Fan Options
Layer Fan Speed Add Seftpoint [8lip fan to full power when increasing from idle
1 100
Remove Setpoint o
'-"“'N‘-"""’“:‘ :: [0 increase fan speed for layersbelow 45.0 = sec
o Soead ke > Maximum cocling fanspeed 100 = %
[Bridging fan speed override 100 + %
v
ride Advanced | | Select Models [Cox]| conee

Figure 4-25. Cooling tab

157

CHAPTER 4 3D PRINTING

8. Tab 8: G-Code (see Figure 4-26)

e Build Volume: You can adjust the build volume of
your printer if the configuration assistant had the
incorrect build volume or you have updated the
printer’s build envelope.

Wl FFF Settings ? X

Process Name: [PLAforBook

Select Profile: | Folger Tech FT-5 (modified) ¥ Update Profile. Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quality
PLA hall+ IR Medium > O @
General Settings
Infil Percentage: I 15% [IndudeRaft [Generate Support

~

Extruder Layer Addions Infil Support Tempsratwe Cooing G-Code Saipts Speeds Other Advanced

G-Code Options Update Machine Definition

A 5D frmware (indude E-dmension) Machine type |Cartasian robot (rectangular volume) -

[Relative extrusion distances X-Aoxis ¥-Axis Z-Axis

[Allow zeroing of extrusion dstances (1.e. G92E0) Buidvoume (3000 82000 [#|ls000 & mm

[[] Use independent extruder axes Orign offset 0.0 : :0.0 =00 s mm

[tnciude M101M102/1103 commands Homing di Mo = - | IMn -

Do bt comis | | PO sanne Clx @1 O -
Toohead offsets Tool0 *Ixfw Elvlw F

Global G-Code Offsets

s Vs e EA Update Firmware Configuration
offset [p00_ %] [000 =] [o00] Frrmere type (B RISIREREAS) -
GPX profie Replicator 2 {default config) o
Baud rate | 250000 * | bitsfsec
v
Hide Advanced | | Select Models [Cox]| conce

Figure 4-26. G-Code tab

9. Tab 9: Scripts (see Figure 4-27)

o Starting Script: This script will run at the very
beginning of the print. Useful for setting up auto
leveling or purging plastic.

158

CHAPTER 4 3D PRINTING

o Ending Script: This script will run at the end of the
print. Useful for turning off hot ends and moving
the extruder to the home position.

Wl FFF Settings

Process Name: [PLAFoerk

Select Profile: | Folger Tech FT-5 (modified) ¥ | |Update Profile | Save asNew Remave

Auto-Configure for Material Auto-Configure for Print Quality

PLA v 0@ [Medum e e
General Settings
Infil Percentage: .

15% [Indude Raft [[] Generate Support

Extruder Layer Additons Infil Support Temperatre Coolng G-Code Soibts

T

G32

G1X0 Y5 20.2F3000 ; get ready to prime
G2 ED ; reset extrusion distance
G1X250 E20 F500 ; prime nozzle

Speeds Other Advanced

Post Processing
Export file format | Standard G-Code (.gende) -

dd celebration at end of buld (for .x3g fles only] | Random Song

terminal for post pr

vide Advanced | | Select Models [Cx 1| caxa

Figure 4-27. Scripts tab

10. Tab 10: Speeds (see Figure 4-28)

e Defaulting Printing Speed: Initial speed used for all
printing movements.

e Outline Underspeed: Speed that the outline of the
print is printed at.

159

CHAPTER 4 3D PRINTING

e Solid Infill Underspeed: The infills print speed.

e X/Y Axis Movement Speed: How fast the extruder
will move when it is not printing.

e 7 Axis Movement Speed: Speed of the Z axis
movement.

o Adjust Printing Speed for Layers below: Very useful

when you have small features of parts that need a

bit more cooldown between layers.

Wl FFF Settings

Process Name: lPLHoerk

Select Profile: Folger Tech FT-5 (modified)
Auto-Configure for Material
PLA
General Settings
Infill Percentage: .

Extruder
Speeds

Layer Additions Infil

Support

Default Printng Speed |es.0

Outine | 3 ss 3|

Sobd Infil Underspeed

| 100 +

Support Structure Underspeed [0 15

X[Y Axis Movement Speed

2 Axis Movement Speed

|es.0 3|
e F

Hide Advanced Select Models

Temperature

* Update Profile | Save as New

Auto-Configure for Print Quality
Medum

15% [Incude Raft

Cocing Speeds

Speed Overrides

GCode Sapts

Remove

e e

[] Generate Support

Other Advanced

[Adjust printing speed for layers below (5.0 & sec

Allow speed reductions dovn to (15 (2| %

~

Figure 4-28. Speed tab

160

CHAPTER 4 3D PRINTING

11. Tab 11: Other (see Figure 4-29)

¢ Filament Diameter: For most printers set to a value
close to 1.75mm, it is best to check the filament
with calipers to get an average of the filament
diameter and then update this setting.

Wl FFF Settings T *

Process Name: [PLA for Book

Select Profie: | Folger Tech FT-5 (modified) ¥ | Update Profle | Save as New Remove

Auto-Configure for Material Auto-Configure for Print Quality

PLA v Q@ [Medum e e
General Settings

Infil Percentage: | 15% [JindudeRaft [Generate Support

-

Extruder Layer Additions Infll Suppart Temperature Cooling G-Code Seripts Speeds Other Advanced

Bridging Filament Properties

Unsupported area threshold (0.0 |3 samm Fiament Toohead Index |Tool 0 -
Exvainfatondstance (000 [3]mm | Frament dameter [1.7500 5] ma]

Bridging xtrusion multipher [100 =l % Filament price 45.00 .:.}m,lnq
Bridging speed multipher | 100 s % Fiament density |1.25 | gramsfem~3

[use fixed bridging infil angle [0 ‘.‘_:dgg

[Apply bridging settings to perimeters Todh Chonge: Scliaction

Dimensional Adjustments Tool change retracton distance (12,00 [mm
Horizontal size compensation |0.00 3| mm Tool change extra restart distance 050 [&]

Tool change retraction speed 10.0 + | mmjs

tide Advanced | | Select Models x| con

Figure 4-29. Other tab

12. Tab 12: Advanced (see Figure 4-30)

o Start Printing at Height: The height that the current
process will begin at.

161

CHAPTER 4 3D PRINTING

o Stop Printing at Height: The height that the current

process will end at.

e Only Retract when Crossing Open Spaces: Will

retract when extruder is moving from one part to

another.

Wl FFF Settings

Process Name: [PLAfoerl:

Select Profie: | Folger Tech FT-5 (moddfied)
Auto-Configure for Material

General Settings
Infil Percentage: [|

Extruder Layer Additons Infll Suppart
Layer Modifications
|E Start printing at height 0.60 $ mm

[stop printing at height 125,77 =

Thin Wall Behavior

Extemal Thin Wal Type |Perimeters only -
Internal Thin Wall Type | Allow gap fil v
Alowed perimeter overlap @ %

Single Extrusaons
Minimum Extrusion Length :1._____=-] mm
Mirirmum Printing Width [0 =
Maximum Printng Width (200 15 %
Endpoint Extenson Distance [0.20 3 | mm

Hide Advanced Select Models

PLA “r

¥ | Update Profile| | Save as New Remove
Auto-Configure for Print Quality
Medum 0o e

15% [Jinduderaft [Generate Support

Coolng G-Code Scripts Speeds Other Advanced
Ooze Control Behavior
r@wretrmmenamopenml

[Force retraction between layers

[Minimum travel for retraction .00 = mm

[Perform retraction during wipe movement

[#] Only wipe extruder for outer-most perimeters

Movement Behavior
[Avoid crossing outline for travel movements

Maximum allowed detour facter 3.0 =

Sicing Behavior
Nor-manifold segments: () Discard (8) Heal

[Merge all outiines into a single solid model

o1/ o

Figure 4-30. Advanced tab

162

CHAPTER 4 3D PRINTING

Troubleshooting

Alright, let’s get started with a simple 3D model, and then we will move to a
more complex 3D model (don’t worry; it won’t be too complex). Go ahead
and open Fusion 360 so we can create our first sketch.

Over/Under Extrusion

If you have an over extrusion, it means you have too much plastic being
pushed out of the nozzle. If you have an under extrusion, you will notice
gaps in the print. You may want to first check the Extrusion Multiplier in
the Extruder tab of settings. See Figure 4-31.

W FFF Settings 1 *
Process Name: [PLA for Book

Select Profile: | Folger Tech FT-5 (modified) ¥ | Update Profile. | Save asNew Remove

Auto-Configure for Material Auto-Configure for Print Quality

PLA -2 e Medum -2 e
General Settings

Infil Percentage: I 15% [indudeRaft [Generate Support

-

Extruder Layer Additions Infll Support Temperature Cooling G-Code Scripts Speeds Other Advanced

Gk tom et etings) PTimMary Extruder Toolhead
[Primary Extruder Ovenvew
Extruder Toohead Index | Tool D -

Mozzie Diameter {0.10 < | mm

[Exlrusu'll\'\dbdu _'0.90 =]

Extrusion Width @ Auto O Manual 0,48 & mm

Figure 4-31. Adjust the Extrusion Multiplier to increase or decrease
the flow of plastic

If that does not help, you may want to make sure the filament is
consistent ~1.75mm,; if it is not correct, make sure the Filament Diameter
setting in the “Other” tab of the processes window is updated to the correct
value. See Figure 4-32.

163

CHAPTER 4 3D PRINTING

Figure 4-32. Check the filament in three areas, average the value,
and update the Filament Diameter property

For under extrusion, you may also want to make sure your thermistor
is calibrated properly. If, for example, the thermistor is reading 220C and
the heater cartridge is only getting to 180C, you may notice gaps in the
print due to the printer not being able to push plastic out as smoothly as
it should be. You can make sure this is not the issue by taking a laser temp
gun and checking the hot end for consistency.

If none of those are working for you, you may need to adjust the steps/
mm in the firmware of the printer. This is an advanced task, so I would
make sure none of the other adjustments won'’t fix the problem before
attempting this.

1. Find the steps/mm perimeter in the firmware for
your printer, change the value, and upload the
firmware to your printer. See Figure 4-33.

164

CHAPTER 4 3D PRINTING

& Marlin_ft5_stock - Configuration.h | Arduino 1.8.9 (Windows Store 1.8.21.0)
File Edit Sketch Tools Help

i Configuration.h

0 #define DEFAULT_AXIS_STEPS_PER UNIT | 80, g0, 400§ 837

Figure 4-33. Update steps/mm value of the extruder motor

2. Decrease this value (because you are over extruding
or increase the value if the printer is under
extruding) and recompile and upload into your
printer.

3. Mark a distance of 100mm on the filament going

into the extruder. See Figure 4-34.

Figure 4-34. Puta mark at 100mm

165

CHAPTER 4 3D PRINTING

4. Extrude 100mm of material using the machine
control panel (also, make sure your extruder is

heated up; otherwise, the extruder will not extrude);

you will also need to have the printer connected to

your computer for this process. See Figure 4-35.

W Machine Control Panel T
Intiakzaton Posibon Readaut 08,
d’owm ’ Frt “ Paune % NI Zerok 3 o
Port |1, \COM1 | Refresn Y 0.00 Zero ¥ aroy"
Baud Rate | 250000 v bisjsec £ Verbose Z R e v
< . & Plat Jog Controls Accessory Control
W 2 Retact Active Toohesd Tool 0 -
N ® 7 0 Bl e EE T o
0 0 | -» @ eoedredfso 2] [[on off
Xt 7 | = setransoeed ||
e
A O i O O Disabie Motors Enable Motors
Print from SO Card PPause Current SO Print
ool I e
/ -10 | -1 | 0 Macro 1 Macro 2 Macro 3
/ E N\ g e
k; = S Movement: 100% Extuson: 100%
- [B . s]
Xt-Aois Z-hois Extruder < S
Speed (mmjs) [s0.0 2.0 3.0 K]_ = }'
__H_/" ____._//’
o b Hoak posl 1% 0% 0% 150%

Figure 4-35. Open the machine control panel to control your printer

5. Ifthe 100mm mark is above or below the entrance

into the extruder, then you will need to adjust the

steps/mm setting again. See Figures 4-36, 4-37,

and 4-38.

166

CHAPTER 4 3D PRINTING

Figure 4-37. If you see this, decrease the value of the steps/mm

167

CHAPTER 4 3D PRINTING

Figure 4-38. If you see this, increase the value of the steps/mm

Ghosting

Ghosting is when you see outlines of the print on the exterior of the print;
for example, you may see outlines of holes next to a physical hole in your
print. See Figure 4-39. The most important setting to adjust here would be
the speed at which you are printing.

Figure 4-39. Ghosting example

168

CHAPTER 4 3D PRINTING

Parts Do Not Stay on Build Plate

The first thing to do is to make sure your build plate is true/level to the
extruder’s nozzle. Normally, this means moving the nozzle to the Z Offset
(or 0) and using a piece of paper at each side and then finally in the center.
You want to make it to where the paper just barely drags on the nozzle at
all points. To do this, you adjust the thumb screws under the build plate to
either lift the build plate or lower the build plate. Today’s printers normally
have automatic bed leveling, and I would highly recommend the BLTouch
as it works great on all build plates. There are also tons of videos on how
to level a build plate; if you are having issues leveling your build plate, I
recommend going to the companion YouTube channel for this book and
watching the “Build Plate Leveling Tutorial.”

If that does not work, I would recommend adjusting your Z Offset.
Again, this will be a firmware update on most printers. I would
recommend going to the companion YouTube channel for this book and
watching the “Z Offset Adjustment Tutorial.”

Finally, if you are still having issues, make sure you have a nice even
amount of Elmer’s “Disappearing Purple” glue on the build plate.

Our First Print

So here we are ready to try our first print. The first thing you will want to

do is set your printer up in Simplify3D. To do this, you can go through

the “Configuration Assistant” in the Help » Configuration Assistant; this
will bring up a menu that will have you select your printer, and it should
automatically create a profile for your printer. 10 to 1 that your printer will
work even if it is not on the list as it is probably a copy of another printer,
for example, the Wanhao Duplicator 4S is a remake of the MakerBot
Replicator 2X and the FlashForge Creator. Next, we will need to open
Fusion 360 and load our project from the previous chapter. See Figure 4-40.

169

CHAPTER 4 3D PRINTING

- GERJILS FOUPSEmio ¥ = B R

4 = CNETEG
b O tmemaiann

went . Lat B =S8 4

- 8 %
e e @

Figure 4-40. Open the Fusion 360 project from Chapter 3

1. Go to the Tools » MAKE drop-down menu and
select “3D Print.” See Figure 4-41.

F Autodesk Fusion 36
E R ar P
SOLD SURFACE SHEET METAL
DESIGN = 3 = |
o B BE =
MAKE * ADD-INS ~ UTILTY
«« BROWSER

Get A Quote From Protolabs®
RS c.ohd

D £ Docum.s"‘" for Fusion 360

D il Named 4 Get Quotes From 100kGarages.com
D al CI @ Get parts made with MakeTime
> © M Bodes
D © @l Skeiches

Figure 4-41. Select the 3D Print function

170

CHAPTER 4 3D PRINTING

2. Select the 3D object you want printed.
See Figure 4-42.

@ 3D PRINT

Preview Mesh m)
Refinement High -

» Refinement Options

¥ Output

Send to 30 Print Utiity ()

[i] OK Cancel

Figure 4-42. Select the model you want converted to an STL

3. If“Send to 3D Print Utility” checkbox is selected,
remove the check. See Figure 4-43.

171

CHAPTER 4 3D PRINTING

@ 2D PRINT

Selection
(]

Preview Mesh

Refinement High b
P Refinement Options

¥ Qutput

I Sendto 3D Print Utity () I

Figure 4-43. Deselect the “Send to 3D Print Utility” and click OK

4. Click “OK” and select where you want the STL to go.
See Figure 4-43.

5. Go back to Simplify3D and click the “Import”
button. See Figure 4-44.

172

CHAPTER 4

W8 Simplify3D (Licensed to Harold Timmis)

File Edit View Mesh Repair Tools

Models (double-click to edit)

W oot

=J Remove

8- Center and Arrange

3D PRINTING

Figure 4-44. Go back to Simplify3D and click the “Import” button

6. Find the STL file you just created, select it, and then
click the “Open” button. See Figure 4-45.

173

CHAPTER 4 3D PRINTING

8 Open File X
Lo - » ThisPC » Desktop » Chapterd 30 Files w & Search Chapterd 3D Files ¥l
Organize » New folder - M @
~

Desitop A Name Date modified Tpe Size

@ Onchive-Persor |8 Tog TempsTLat 224/220%4PM 30 Model File
¥ 30 Objects

L |

& Downloads

8 Geloxy Netes
B Music

=] Pictures

B videos

‘= Windows (C)
- mrcool (T3

- mrcool (T) w

File name: !'&g._‘lempS‘l'L.ﬂl

v] 13D Models (st “.obj *3mf) ~

o
Figure 4-45. Select the STL file that was created by Fusion 360

7. You will notice that the tag will be put on its side; this is
suboptimal since there is an overhang. To fix this, press
Ctrl-L and select the bottom of the tag; this will put the
bottom of the tag to the top of the build plate which is
a much more efficient orientation for this part to be
printed in. See Figure 4-46.

Figure 4-46. Orient the part in this position using the Ctrl-L quick key

174

CHAPTER 4 3D PRINTING

8. Now select or create a new process. For the first
process, use the following settings. I would also
recommend searching Google for your printer’s
profiles as there is a good chance someone has
already made a profile for the particular printer
you have; remember not all printers are the same,
and my settings may not work for your printer. See
Figures 4-47 through 4-51.

W FFF Settings ? *®

Process Name: [PLlfctBook

Selact Profile: | Folger Tech FT-5 (modified) * | |Update Profile| | Save as New Remove
Auto-Configure for Material Auto-Configure for Print Quality

FLA -0 e Medum -0 e
General Settings

Infill Percentage: I 15% [Indude Raft [[] Generate Support

Extruder Layer Addtons Infl Support Temperatwe Cooing G-Code Saipts Speeds Other Advanced

EA use Skart/Brim [use Prime Pilar

Skirt Extruder Primary Extruder - -
Skt Layers THE |

Skirt Offset from Part [4.00 |2 mm v
Skirt Outines |

Above Raft Speed

tide Advanced | | Select Models []| con

Figure 4-47. Add a “Skirt/Brim” to the print to purge some plastic

175

CHAPTER 4 3D PRINTING

alb FFF Settings X
Process Name: [PLA for Book |
Select Profle: | Folger Tech FT-5 (modfied) ~ | [UpdateProfie |SaveasNew | Remove |
Auto-Configure for Material Auto-Configure for Print Quality
o |0/ [@] [Heam -l e
General Settings
Infl Percentages [| 15% [Jindudersft [Generate Support
Extruder Laysr Additons Infil Support Temperaturs Coolng G-Code Scipts Speeds Other Advanced
General Internal Infil Angle Offsets
Infil Extruder |Primary Extruder - o [slaeg [45
Internal Fil Pattern | Rectinesr =] [addange | |
External Fl Pattern Rectinear o | Remave Angle |
Interior Fill Percentage % [Print every infil angle on each layer
Outneoverep [0 [F]%
S v a External Infill Angle Offsets
e et [500] b_Eow 14
Combine Infill Every Iwets | AddAngle |
[0 include sobd disptragmevery 20 3 layers “m"‘*l
| Hde Advanced | | Seect Models | o[coma |

Figure 4-48. 15% is more than enough for this part

176

CHAPTER 4 3D PRINTING

Ml FFF Settings

Process Name: |PLA for Book

Select Profie: |Foger Tech FI-S (nadified)

Auto-Configure for Material
A S ~llellel
General Settings
Infil Percentage: I
Extruder Layer Addions Infil Support Temperature
Support Material Generation
[Generate Support Material
Support Extruder | Primary Extruces X
SupportInfil Percentage 30 T %
Extra Inflation Distance 0.00 = mm

Support Base Layers 0 -

Combine Support Every 1 < layers
Dense Support
Dense Support Extruder |Primary Extruder 2

Denss SupportLayers 0 =
Dense Infil Fercentage 70 = %

| Hide Advanced Select Modes

Auto-Configure for Print Quality

15% [Indude Raft [[] Generate Support
Cocing GCode Saipts Speeds
Automatic Placement
Oy wsed if manual support & not defined
Support Type | Normal &
Support Pillar Resolution 5.00
Max Overhang Angle 45

Other Advanced

- mm

* deg

Separation From Part
Horizontal Offset From Part 0.30 S mm
Upper Vertical Separation Layers |1 =

Lower Vertical Separation Layers 1 =

Support Infil Angles
t dep [0

Add Angle
Remave Angle

v

I

Figure 4-49. Support tab (just remove the “Generate Support

Material” check)

T Tox

= Usisetvote Sevmtes | N

e G b PRSTS———

En T =@le
Crwsbrn

[p— 1 s Orasien [oewmbome

B Lo Mdtes W feven Twowsss Cuby Gl foew feeh Obe Memd

Tarswstrs Contie Lat
it v) Primary Extruder Temperature
Py Ecnder s
—— e eite T
S pioe Cortrie Tam ® Danuce) Heated buld et
] e bt s i ek g
e Pt et
= -
' m
A Tomomretre Comte
inirce e W8 et
e Advanced | et Sade o Caoni

Figure 4-50.

@ o s ox
SO vy

Seectvohe: Pager Teh 175 oo

] Ecortre b v

Eny 88 s s ele
el Setegt

I P [] % Oleswenen [crwrtesooet

Bince L Astes B Geewt Tewedlss Dakg Gl el Gee Ofw Aeaecd

- Heated Bed Temperature
v

Tt it
o e a2

P Bt
Hh T et T
Trows () Bewncer
2 a0 gt comvsor 5 b et e Bt
e]
Lo po—— .
L -]
P |
Tammitrs [(5]
T e Corcer
B Temcarstrs Covtrty
[rrepry [I)

Make sure the temps are correct for your printer

177

CHAPTER 4 3D PRINTING

Wl FFF Settings

Process Name: |PLA for Book

Select Profie: | Folger Tech FT-5 (modified)
Auto-Configure for Material

PLA Qe

General Settings

Infil Percentage: .

Extruder

Layer Addons Infl Support Temperature

Speeds

Default Printing Speed
Outine Underspeed |85
Sobd Infil Underspeed 100
Support Struchure Underspeed (50 ©
XY Aods Movement Speed 65.0 s

I Axis Movement Speed 16.7

s50] wess

F

a0

i

%
mens

bl

Hide Advanced | | Select Models

¥ | UpdateProfie | Save as New Remave

Auta-Configure for Print Quality
Medum

e e

15% [JindudeRaft [Generate Support

Cooling
Speed COverrides

£ Adjust printing speed for layers below (5.0 3] sec
Alow speed reductions down to [15 = %

Co]

GCode Sapts Speeds Other Advanced

Figure 4-51. 65mm/s work very well for most printers

178

9.

Now that you have the process sorted out, you will

need to click the “Prepare to Print!” button which
you will then need to select the process you want to

use for this print. See Figure 4-52.

CHAPTER 4 3D PRINTING

W Simpity3D (Lic & Harold m}
Podels (ouble-cick to edit) x
[El g Temp ST xa
&=
] C
W Sedect Frocesses for Printing ?
Process Selecton .
Plaage select the processes you would ike to use for this print. .
e B v
PLA-Start-1 -~
PLA-Middle-2 .
PLA-Fanush-3
—— Delnin_first k
FCew. . |[ow. Deln nd
(O] (@ | piEEE—— | 9
e e v
| ot - T @
It
Processes (double-cick to edt) 'J-
HName Type a -
PLA_300urm.. FFF Q
PLA Rest_of... FFF
PLA Sl the... FFF L}
ninjaflex FFF
PETG FFF
PLA Center... FFF
PLA-Stan-1 FFF
PLA-Middie-2 FFF
PLA-Finish-3 FFF
Delrin_fist FFF i
[
P | Posm |

P et e

o Prepare to Pt

Figure 4-52. Click the “Prepare to Print!” button and select the
process and click OK

10. Nextwill be sent to the Print Preview mode. The
Print Preview mode is very important as you can use
the Layer Range to Show » Max slider to show you
what your print will look like just by sliding it back
and forth. You can also use the “Play/Pause” button
to run through the print at an accelerated speed.
You may also notice small dots on your print; these
are retraction points. On the left side of the window,
you will notice several checkboxes; these control
what you are seeing on the build plate, for example,
the retraction points. See Figure 4-53.

179

CHAPTER 4 3D PRINTING

f0o i@ aeaaOR+E -

Figure 4-53. Print Preview functions

11. Finally, you will need to create the G-code your
printer will use to create the 3D object. Click the
“Save Toolpaths to Disk” button and save the file to
your computer or an SD card. See Figure 4-54.

80 = -Hgr aeaa 0T~

P
oo

bt Pt

| ——F e

Figure 4-54. When ready, click the “Save Toolpaths to Disk” button

180

CHAPTER 4 3D PRINTING

12. You will also need to make sure your printer is
mechanically configured, meaning the build plate
is level, there is plastic loaded into the extruder, and
the build plate is ready to have plastic extruded onto
it (see the “Parts Do Not Stay on Build Plate” section
of this chapter for more information).

13. Then you will need to follow your printer’s
instructions on how to start the print from an SD
card or over Wifi if your printer is wireless. This print
should be quick between 2 and 10 minutes; once it
is done, use the paint spatula to take the print off the
build plate. See Figure 4-55.

Figure 4-55. Finished print

181

CHAPTER 4 3D PRINTING

Before we get to the summary of this chapter, I just want to say that
this chapter had a ton of information, and there is still a lot more about 3D
printing that I want to go through before the end of this book. 3D printing
has a lot to it, and one chapter would not do 3D printing justice. So, let’s
review what we have learned in this chapter.

Summary

Alright, another chapter bites the dust. This chapter had a ton of material,
so feel free to go over it again. Let’s take a look at the summary of this
chapter:

e Learned about the different types of 3D printers

e Discovered new tools that will help when 3D printing

o Learned about the different parts of a 3D printer

o Talked about what a slicer is

o Went over a lot of the functions in Simplify3D

o Went over a few troubleshooting tips when 3D printing
e Learned how to create a process in Simplify3D

e Printed our first object

Exercise

1. You may have noticed the print came out a bit
smaller than you may want a keychain to be. How
could you modify this with either Fusion 360 or
Simplify3D to make it larger?

182

CHAPTER 5

PCB Design

Now that we have taken some time to learn about Fusion 360 and
Simplify3D, we need to focus on the electrical aspects of this book. First,
we will investigate what a PCB is and briefly describe how it is designed.
Then I want to go over PCB Design software that will be used to create
PCBs in this book. After that, we will have an in-depth discussion on

Eagle and how to make your first PCB, as well as how to load libraries into
Eagle. Then we will learn how to export the Gerber files for the final board.
Finally, we will review how to get this board manufactured using PCBWay.
There is a lot to cover just like the previous chapters, so let’s get started.

What Is a PCB

PCB stands for Printed Circuit Board; PCBs are created using PCB Design
software. The design software will have both a schematic section and a
board section. The schematic section will have a diagram like reference

to all connections such as: integrated circuit (IC), passive electrical
component, and so on. The board section will have the component layout,
wiring, drills, and so on that are needed to create the actual board. Once
both sections are completed, the board file will be compiled into a Gerber
file which will hold all the information that the PCB manufacturer needs
to create the PCB. All of these will be explained in detail in this chapter.
Figure 5-1 illustrates some examples of PCBs manufactured by PCBWay.

© Harold Timmis 2021 183
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_5

https://doi.org/10.1007/978-1-4842-6852-0_5#DOI

CHAPTER5 PCB DESIGN

Figure 5-1. Examples of PCB boards including an Arduino board,
battery tester (courtesy of David Segal and Chris Defant), H-bridge,
rotary encoder breakout

PCB Design Software

There are a lot of PCB Design software on the market, such as Altium,
KiCAD, and what this book will utilize: Eagle. PCB Design software allows
you to create schematics and board layouts. These can then be converted
into Gerber files which will then be sent to the board manufacturer. There
is a lot to learn with PCB Design software; this chapter will give you a good
glimpse and get you ready for the next chapters that will have several board
designs.

184

CHAPTER 5 PCB DESIGN

Eagle

Eagle has a monthly subscription program, so if you only want to use it
for this book, you can purchase a monthly license for 15 USD. Eagle is a
professional PCB software that can even link to Fusion 360, so you can
make sure a PCB fits in its enclosure. It also allows you to connect to
various component libraries, so you do have to create every component
your board needs. So, let’s get started with Eagle.

Eagle’s Main Windows

Did I say windows? Yes, Eagle has two main windows that you will be using
to create PCBs. The first window we will talk about allows you to create
a schematic of the PCB. A schematic is a drawing of all the ICs, resistors,
capacitors, headers, and their connections; these connections are called
nets. The second window we will discuss focuses on the physical layout
of the board; this is important because it will become the Gerber files you
send off to the PCB manufacturer.

Schematic Window

As stated earlier, the schematic window will allow you to create a
logical diagram of your circuit. This will also connect all the various
components using nets that will then become routes when you switch over
to the Board Layout window. Let’s look at the schematic window and its
various menus and controls. See Figure 5-2.

185

CHAPTER 5

PCB DESIGN

Figure 5-2. Schematic window

186

1. Action bar: This bar has a couple of important

buttons on it. They are

a.

Open/Save/Print: This is where you can save your
progress.

Schematic/Board: This button allows you to toggle
between the board window and the schematic

window.

Parameters bar: This bar holds all the functions for:

control grid settings and layer control.

a.

Layer settings: Allows you to show or hide layers
(most of the time, this is used in the board window).

Grid: Allows you to change the resolution of the grid
and change the units of measurement.

Layer selection box: Select which layer to edit.
Normally set to “Nets” for the schematic window.

CHAPTER 5 PCB DESIGN

3. Command buttons bar: I will not spend too much
time here listing all of the commands (there are a
ton), but instead will show you these as we create
PCBs throughout the book, but here are a few very
common commands:

a. Info: Allows you to check various properties of a
component.

b. Add Part: Allows you to select the component you
want to add to the schematic window.

c. Delete: Deletes a component from the schematic
window and the board window.

d. Show: Select a net with this option selected, and all
nets with that name will be highlighted.

e. Group: Use this function to select multiple objects.

f. Net: Nets are used to connect your circuit together;
we will be using this function a lot in the coming
projects.

4. Command texts bar: In this text box, you can type
out commands to quickly move through schematic
development. These are typically used when you
get a bit more experience in Eagle. If you want to see
a list of the commands, go here: http://web.mit.
edu/xavid/arch/i386_rhel4/help/24.htm.

5. Simulation bar: This bar allows you to evaluate your
circuit to make sure it will work as expected.

Board Window

The board window is where you will create the layout of the board
with the various layers and routes. Also, you will add any holes or special
features that your board may need. See Figure 5-3.

187

http://web.mit.edu/xavid/arch/i386_rhel4/help/24.htm
http://web.mit.edu/xavid/arch/i386_rhel4/help/24.htm

CHAPTER 5

PCB DESIGN

Figure 5-3. Board window

188

Actions bar: This bar is just like the one found on the
schematics window but has one function I want to
mention.

a. CAM Processor: This is the function that will be used to
create the final Gerber file that will be sent to the board
manufacturer.

Parameters bar: See the “Schematic Window”

section.

Command buttons: Several of the command
buttons are the same, but there are a few that differ.

a. Route Airwire: These are used to physically connect the
circuit from the schematic view together.

b. Ripup: This will not delete nets; that is to say, this will not
remove the connection from component to component; it
will just delete the routing of the net and leave a yellow line
where the two components terminate.

CHAPTER 5 PCB DESIGN

4. Command texts bar: See the “Schematic Window”
section.

Alright, now that we know about the layout of the two main windows
in Eagle, we can start to discuss how to add libraries that have already been
created to Eagle.

Loading a Library

Now another essential thing you need to know how to do is to have the
ability to add libraries to Eagle. This is important because sometimes
the components that come with Eagle are not enough, so you have two
options: find a library that has the component and add it to Eagle or
create the part yourself.

1. Open Eagle. See Figure 5-4.

E Contrel Pantl - EAGLE 9.60 standad - o x|

Fie View Options Window Help

Nama Home Preview * harod s
» Ubrares S

» Dosgn Blocks

» Desgn Ruies s s

& Vet aackmon Poocaers EAGLE users - the full power of Fusion 360 is in your hands!

* Scrgts

* CAM Jobs

» SPICE Hodak
» Projects

Beginning January 2020, your EAGL

Learn

Figure 5-4. Open Eagle

189

CHAPTER5 PCB DESIGN

2. Open a new File Explorer and navigate to “My
Documents.”

3. Create a new folder called “Extra Libraries.” See
Figure 5-5.

% | Extra Libraries

Home Share View

& < 4 Q> ThisPC > Documents > ExtraLibranies | v O

A Name Date modified Type
o Quick access

B Desktop o
& Downloads
%| Documents o
= Pictures *
& iCloud Photo #
& iCloud Drive #
l Book images no
CH3_First Draft
CH5_PCB

Processed Imag
&# Dropbox

@ OneDrive-NA v ¢
0 items
—

Figure 5-5. Create the Extra Libraries folder

4. Go to thislink: https://github.com/sparkfun/
SparkFun-Eagle-Libraries. See Figure 5-6.

190

https://github.com/sparkfun/SparkFun-Eagle-Libraries
https://github.com/sparkfun/SparkFun-Eagle-Libraries

CHAPTERS5 PCB DESIGN

) GtHob spedduriSparkFon-ie; X | 4 b B 2%
> 0 &g 2 ySparkFun-Eaghe-Li o @ -:-
B dses G copaels-GoogheSes B Mimmbaog-WEL. BN fSostmadn o AmdttxTued. [0 Boiegietesal. [UDMR-LackyPuse. [Casturing Audof. - Cther boekrads |
B .
Join GitHub today 'ﬁ
GitHub i3 home b cver 41 millon deelopers working together b host
AN revarw Code. Manage propects. and build softwane together.
SparkFun's Public Eagle PCB Footprints hitp:/fwww.sparkfun.com
wagieibory pcbyout eaglecad
0 2.287 commins ¥ 2 brancres. 190 packages 9 redeases &L 53 comnibutors
-]
[l roviche famone crvar from very nall Q024052 bt poet Latest commit #hactec yesierday
. g Adgerg mmages for wiks 3 yours ago
[& gitignoes addded in standard gitignore shuff 4 ywars ago
=] LeyPad Wearables tbr Updating libeary descripbons. moving Vout to PowerSymbo! library 3 years ago
Bl SparkFun-Aesthetics. lis Comitebbit kg el bt 4 manths aga
[E Sparidun-Battermsine Adg ik to SMD super cap. -
Fi G he URL
igure 5-6. Go to the U.
= Y
() Gl - spaidnSedfunle; ¥ 4 2 |
@0 @ gt sparkfunySparkFun-Eag anu‘:-z;
i Apen G copeels- GoogleSe. @ Minowbeees - WL B Bockmeds 4 Ancroid SDKTuteri. [fiching Futhwayi b [UDSR-LRe by Poie— [Copturing Sudio &. - Cther bockmara.

E:I Join GitHub today e

GitHuls s home ta over 40 milion developers working togethes to host
0 rview code. manage projects. snd buld scftware together. i

SparkFun's Public Eagle PCB Footprints httpe/fwww.sparkfun.com

wagledbeary piteliout sagie-cad

< 2,287 commits 2 brarches B0 package 39 rebeaser 41 53 contribudeni
—— o
IS o e R cosam Srom vay smad 065002 tast point Clane with HTTPS &
i images Adding images for wiki Ui Gt or chackout with $VN i th wet Lk

RS LA ELTT, Con sparichen SSparaFun-Eag | [}
a gignoe acided in standaed grtignore stust

LilyPad-Wearsbies Ies pdating lizrary descriptions, maving Vout 10 Powmrsym L o
& SparcFun-Assthetics ibr Centtrokbit logo to Controllerbit

QA O LU B i un £ag € LD s i vt P D Add ik to SMO super cap

Figure 5-7. Download the SparkFun Eagle library

191

CHAPTER5 PCB DESIGN

6. Unzip and put the folder “SparkFun-Eagle-
Libraries-master” into the “Extra Libraries” folder.
See Figure 5-8.

- = | Extra Libraries
n Home Share View 0

- I » ThisPC » Documents » Extra Libraries

il Name Date modified Type Size

Quick access

I Desktop +

¥ Downloads
o

% Documents

I SparkFun-Eagle-Libraries-master 3/28/2020 E:45 PM File folder I

= Pictures +

& iCloud Photo #

a iCloud Drive #
Book images no
CH3_First Draft
Chapter 5 preprc

1]
Processed Image
X3 Dropbox

I
@ Onelrive-NA v < |
Titem

Figure 5-8. Copy to the Extra Libraries folder

7. Go to Eagle and select Options » Directories, and
the Directories window will appear. See Figure 5-9.

192

CHAPTER 5 PCB DESIGN

E " y i 0 |
]
o) o e |
Hama Home Preview ¥ harold timmss |~ |
» Lbrares AL
» Desgn Biocks
* Desgn Rules E Dwectonies % b
» User Languaga Programs F
5
Sty Lraries SHOME\EAGLE braried o
» SPICE Models \EAGLE da: X
» Projects Desgn Blocks SHOME\EAGLE\design blocks truly
Crasign Rules SHOME\EAGLE\design rules
User Language Programs | SHOME\EAGLE\Wips P
assive
Serpts SHOMEVEAGLE\sCots
CAM Jobs SHOME\EAGLE\carm
Projects SHOME\EAGLE\projects
Simulator Path SEAGLEDIR\ngspicabin
SPICE Models SHOME\EAGLE\spice
~) Include EAGLE xamples remium -
€3 and
1 E Browse... Set to defauls Canced
i —

Learn

Figure 5-9. Open Directories

8. Copy the link address from your File Explorer to
the Libraries text box in the Directories window.
Remember to add the “;” after the “SHOME\EAGLE\
libraries” See Figure 5-10.

] = | Extra Libraries

n Home Share View 2]

ers\Pc\Documents\Extra Libraries L] Search Extra Libraries ye

a iCloud Drive # » Mame Date modified Type Size

Boakiniages no SparkFun-Eagle-Libraries-master 3/28/2020 6:45 PM File folder
CHS_First Draft
Chapter 5 preprc
Processed Imagt

23 Dropbox

& OneDrive - NA
Desktop

@ OneDrive - Persor

0 This PC
B 3D Objects
B Desktop
2] Documents v < >
item T

Figure 5-10. Copy Libraries directory

193

CHAPTER5 PCB DESIGN

9. Click the “OK” button on the Directories window.

See Figure 5-11.

E Cont
Fle View Options Window Help

| Mame

Home Preview

* harold timms |

s!

0!

| ftruly

al
assive

* Lbranes —_—
» Design Blacks
> Design Rules E Directories x
* Lisar Language Programs
e KHOME\EAGLE loraries;C: rs\PC\DoG its\Extra Lraries\SparkFun-Eagle-Lbra
» CAM Jobs Lbraries I ME\EAGLE ibraries;C:\Users\Pc\Documents\Extra Lbraries\SparkFun-Eagle- rores-rrl
| » SPICE Models 3 \ \
» Projects Design Blocks $HOME\EAGLE\design blocks
Design Rules $HOME\EAGLEdesign rules
User Language Programs | $HOME\EAGLE\ulbs
Secrpts SHOME\EAGLE\scrpts
| CAM Jobs SHOME\EAGLE\cam
|
Projects SHOME\EAGLE \projects
| Simultor Path $EAGLEDIR\ngspice\bin
|
SPICE Modeks $HOME\EAGLE\spice
(%] Include EAGLE examples
I oK I Browse... i Set to defauls Cance!
F
Learn

Figure 5-11. Paste directory

10. On the front screen of Eagle, go to the Libraries

drop-down and click the arrow. See Figure 5-12.

194

CHAPTER 5 PCB DESIGN

E Control Panel - EAGLE 9.6.0 standard

Fle View Options Window Hep

Narne

¥ _Lbranes
inraries
e

¥ | SparkFun-Eaghe-Libranes-master §
Teve

M LiyPad-Wearables.br

8l SparkFun-Aesthetics.br

SparkFun-Battenes. br

i Sparkfun-Boards.br

SparkFun-Burzard.br

SparkFun-Capacitors.br

Bl SpariFun-Clocks.br

8 SparkFun-Cols.lbr

SparkFun-Connectors.br

8 SparkFun-DiscreteSemibr

B SparkFun-Dsplays.br

SparkFun-Electromechanicallbr

SparkFun-Fuses.br

8 SparkFun-GPS.br

B SparkFun-Hardware.br

i SparkFun-1C-Ampifiers.br

SparkFun-IC-Comms. br

B SparkFun-1C-Comverson.br

SparkFun-IC-Logic.br

SparkFun-IC-Memory. br

SparkFun-IC-Microcontroler. br

Y Y Y Y Y YN Y XYY XYY YN YY YV

Home Preview

| user Libraries
This folder contains user Libraries files.

* harold timms |

C:\Users\PeiDoc Lbraries\Adafrut-Eagle-Lirary-master

Figure 5-12. Shows the SparkFun Eagle library loaded

11. You should now see the SparkFun library. Right-

click it and click “Use all” One thing to note is that

you will need to select “Use all” on each library

when you want to use this for each project. See

Figure 5-13.

195

CHAPTER5 PCB DESIGN

E Control Pand - EAGLE 9.6.0 standard - [u] x
Fle View Options Window Help
. - S

Namme Home Preview * harold tmmss | v

¥ Libraries
» Ibranes
dic Tipkon
Use al
Use none
Search in foldar

M SparkFun-Buzzard,br

B SparkFun-Capacttors.br
B SparkFun-Oacks.br

M sparkFun-Cols.br

B SparkFun-Connectors.br

B sparkFun-DiscrateSemibr

M sparkFun-Dephys.br

B SsparkFun-Blectromechanicalbr
B sparkFun-Fuses.br

M SparkFun-GPS.br

B sparkFun-Hardware.br

B sparkFun-IC-Ampifiers.br

B sparkFun-1c-Comms.br

B sparkFun-IC-Canverson.br
B sparkFun-IC-Logic.lbr

B SparkFun-IC-Memory.br

‘E SparkFun-IC-Microcontroler. br

Y YT Y Y Y Y YN YN XNY YT YT YYYY

C:\Users\PciDoc Libraries\SparkFun-Eagle-Librares-master

Figure 5-13. Select “Use all”

12. The library has now been added and is ready to use.

Alright! Now that we know how to add libraries to Eagle, we can start
to create schematics and layouts, but first I would recommend adding the
Adafruit library to Eagle. The link for which can be found here: https://
github.com/adafruit/Adafruit-Eagle-Library.

Creating a Schematic

Finally, we are ready to start creating schematics and board layouts. We
will start with the schematic. What we will be making is an LED board with
a push button and a terminal block for easy connection to a power supply.
So, let’s get started.

1. Open Eagle. See Figure 5-14.

196

https://github.com/adafruit/Adafruit-Eagle-Library
https://github.com/adafruit/Adafruit-Eagle-Library

CHAPTER 5 PCB DESIGN

E Control Panel - EAGLE $.6.0 standard

Fle View Options Window Help

Narne

» Liraries

» Design Blocks
» Design Rules
* User Languzge Programs
» Scripts

*» CAM Jobs

» SPICE Models

» Projects

Home Preview = harold tmmis |~

EAGLE users - the full power of Fusion 360 is in your hands!
Beginning January 2020, your EAGLE account entitles you to Fusion 3601

Student, startup, hobbyist, or professional - get started using the first truly
end 1o end, whole-product design & manufacturing platform.

Electronics Design, eCooling / Thermal Analysis, 30 Modeling, Industrial
Design, CNC Machining, 3D Printing, Sheet Metal - one platform, one massive
stepup!

Autodesk EAGLE now included with Fusion 360.

Recent Files ¥

& untitled.brd Do more with EAGLE Premium -
4 S get unlimited board area and 16
8 LED_Board.brd Ensiinee

#8 LED_Board.sch

Learn

Figure 5-14. Open Eagle

2. Go to the Libraries drop-down and right-click the
SparkFun library we added in the previous section
and click “Use all” See Figure 5-15.

197

CHAPTER5 PCB DESIGN

E Contrel Penel - EAGLE 8,60 standard

Fie View Options Window Help

Marre:
¥ Liiariks
¥ [ibranies

Home Preview

* harold timmis |

C\Users\Po\Documents\Extra Librarias| SparkFun-Eagle-Lbraries-master

Figure 5-15. Select “Use all”

Figure 5-16. Create a new schematic

198

3. Select File » New » Schematic; this will open a

schematic window. See Figure 5-16.

E Contrcl Panel - EAGLE 3,60 standard

View Options Window Help

Home Preview

A E project
| = Ooen . Sch
Open recent projects b ey |
Save al i
Chose project B wonary
Exx AR+X (™9 Desgn Biock
» Projects 2] cam Job
6 we
O sern
& 1o
 —

step up!

* harold tmms | v

EAGLE users - the full power of Fusion 360 is in your hands!
Beginning January 2020, your EAGLE account entitles you to Fusion 360!

tudent, startup, hobbyist, or professional - get started using the first truly
end ta end, whole-product design & manufacturing platform.

Electronics Design, eCooling / Thermal Analysis, 3D Modeling, Industrial
Design, CNC Machining, 3D Printing, Sheet Metal - one platform, one massive

Autodesk EAGLE now included with Fusion 360.

Recent Files

0 untitled brd
& LED_Boardbrd
8 LED_Board.sch

>
¥ Upgrade Now

Do more with EAGLE Premium -
getu d board area and 16

signa

Learn

4. Press Ctrl-S and save this schematic as LED_Board.

See Figure 5-17.

CHAPTER 5

PCB DESIGN

B Saveas x
- - 4 » ThisPC » Desktop > LED Board v U A
Organize = Mew felder o 0
Book images no Mame Date modified Type Size
CH3_First Draft
Mo iterms match your search.
Chapter 5 prepre

Processed Image
23 Dropbox
@ OneDrive - NA
Desitop
@ OneDrive - Persor
W This PC
B 3D Objects
B Desitop

% Decuments v

File pame: I LED_Board.sch I

Save asfype: Schematics [".sch)

~ Hide Felders

Cancel

5. Click the Add Part button, and the ADD window will
appear. See Figure 5-18.

Figure 5-17. Save the new schematic

199

CHAPTER5 PCB DESIGN

-
T G Do Ve Tooe. ks Ogtons Wrdon fies

SHe H- @ BDEAAaaa ® 5 ommoEm,
ERY v lnw | S HEE AR RARS
s [= it

L

Figure 5-18. ADD window

6. Scroll down to the SparkFun-PowerSymbols
selection. Then double-click the “5V” text. See
Figure 5-19.

= s0p

Hame
¥ SparkFun-PowerSymbols
Lo

5V

5V Supply Symbal
Power suoply symbel for 3 soecficaly-stated SV source,

| oK]nn-rlhmum;ui{ Cancel

Figure 5-19. Select 5V symbol

200

CHAPTER 5 PCB DESIGN

7. Add two of the “5V” symbol onto the schematic
window by left-clicking the screen. See Figure 5-20.

B 1 Schematic - C\Users\P\Desktop\LED Board\LED_Board.sch - EAGLE 9.6.0 standard = a x

Fle Edt Draw View Took Lbrary Options Window Help
GHeE H»n @ BE aQQQe « e @ | o =iy
£ H Y e [l e Jlve R ® S E R

D.Abch(-0512) ||

> e

>

R+ L @B ®@7 O+ A0

Left-chck & drag to define group (or laft-chick to start defining a group polygon) o

Figure 5-20. Add 5V symbols to the schematic window

8. Pressing escape will bring you back to the ADD
window where you can double-click GND. See
Figure 5-21.

201

CHAPTER5 PCB DESIGN

= snp

Harne Managed
¥ Sparun-PowerSymbaks

10V

1.8V

2.8V
2PT_GND_TIE
aw

v

e >VALUE

E]

Ground Supply Symbaol
VICCA Generc signal ground supply symbol.

Attrbute Value

[¥IPads [v| Smds [v| Descrption | Hide Unpopubir Parts [~) Preview
search E3 | |
Artrbutes B

[ok][ooen torary manager | [cancel |

Figure 5-21. Select GND symbol

9. Add two “GND” symbols to the schematic window, just
as you did with the “5V” symbol. See Figure 5-22.

202

CHAPTER 5 PCB DESIGN

-k - CA\Users\Pe\Desktop\LED BoarchLED_B - EAGLE .60 standard o x
Fie Edt Draw Vew Tools Library Options Window Help
BHG B @ B0acQQA’ «- O O ot R
& H Y e [l o e -EBE e BE| v ER
o ® 0.1nch (05-04) ||
=1
+ A
2]
hB
8
a g
8 {
e A%
+ @ |
€u do
- @.
B
=
..
Left-cick to place 'GND' 0 |

Figure 5-22. Add GND symbols to the schematic window

10. Press escape again, which will open the ADD
window again. See Figure 5-23.

203

CHAPTER5 PCB DESIGN

= 200

Hams 3 Managed I
* 19nch & Eagl Pcb
» 4o & Eaghe Pch
* 4l & Eagle Pcb
» 450 & Eagle Pch
* Tdacdogic & Eagh Pcb
» 74ttHin & Eagk Pch
* Tdo-au & Eagle Pcb
» Tancitte-de & Eagk Pch
» Thoittieus & Eagh Pcb
* TE0Cus & Eagk Pch
* 7ol & Eagh Pch
> adafu
» advanced-tast-technobogies & Eaght Pch
» aglent-technologies & Eagk Pch
> alegro & EagePch
» aken & Eagk P
* akera-cyclone-Tl & Eagle Pcb
* akera-cyckne-m & Eagle Pdb
*3ker-gTrakee-n & Eage Pcb
* am20-memory & Eagk Pdb
* amd-mach & Eagle Pcb
* ams & Eaglk Pch
* analog-dewces & Exgk Pch
* aplus & Eaghk Pcb
= atmel & Eagke Pch
* austramicrosystems & Eagle Pch

el P]] n_| r P L] Preview

search BB | v
Arbutes B .

——
Attrbute Value

ok || Ooen Lbrary Manager || Cancel

Figure 5-23. Go to the ADD window again

11.
Figure 5-24.

In the search bar, type in “LED” and press enter. See

741430
Txeus
741430
adafrur
* LED
HCPTIRIL2
HCPP3E31/OT
* RGBLED_CA
SEGMENT_BXE_BICOLOR_ROWCA THODEMEZABEIN!
* SEGMENT_8X8_ROWCATHODE
SEGMENT_128AR_BICOLORAR1 273010
SFV4R-1STEILF
» TH1B04

Eagle Pch

amus-logic
» (D161*-F52
con-emultiple
* XRIF
KRIK-5-01-5-4-0-0042
KRIK-5-01-6-6-0-262-HO
dsplay-tp
HOMS 200X
HOMS230X
HD-AL0L
HO-A103
HD-AL07

Esgle Pch

Eagle Pcb

L] oo] aple | b Lopos b bacte

Tax-eu (Version 4)
TTL Devices, 740 Series with European Symbols
Based on the folowng scurces:

= Texas Instruments T7L Data Sook Volume 1, 1996,

+ TTL Diata Book, Volume 2, 1993

+ Hational Seminconductor Databook 1994, ALS/LS Logic

« 1l 74er digital data cictionary, ECA Electronic = Acustic GmoH, 15BN 3.88109-032:0
* http: ficmaster comViewCompate 250

[attrute vae

serch B

Attrbutes B |

I oK I | Dpen Lbrary uanan!r] | Cancel

Figure 5-24. Search for LED

204

CHAPTER 5 PCB DESIGN

12. Scroll down to the SparkFun-LED » LED drop-

down and double-click the “LED3MM.” See

Figure 5-25.

= a0

Harre Maraged
| * SparkFunED
» 7.SEGMENT-LOIGIT-1INCH
» 7-SEGMENTADIGIT-10MM
» 7-SEGMENT-DIGIT-20MM
» APALO2
v D
LED-3HM-NO_SILK
LED-SMM-KIT-NO-SILK.

e

» LEI -C
LED-RGLTST-CI95KGIRKT

Swrch B | LED

[FlPads 7| Smds (] Descrption | Hide Unpopube Parts (] Preview
1

Amrbutes O |

>UALUE

[——

LED

LED (Generic)

Standard schematc glements and footonnts for Smm, 3mm, 1206, and 0603 seed LEDS.

Genenc LEDS wth no color speched.

Footprint: LED_3MM
LENIMM DTH.

Attrbute Value
PROD_ID DIO-08794

oK][ngmmnrmmg.—:_ Cancel

Figure 5-25. Select LED3MM

205

CHAPTER5 PCB DESIGN

13. Now if you right-click, you will notice that the LED
symbol will turn 90 degrees. Do this once. See
Figure 5-26.

B 1 Schematic - C:\Users\Pc\Desktop\LED Board\LED_Boasd.sch - EAGLE 9.6.0 standard - o x
Fle Edit Draw View Toos Lbrary Options Window Help
(Ho By @ B8R aaaae «- 0 @ mm =m
ZHY e [l Nets AP E S
= 0.1 nch (0.1-04) |
i) @ =
=
L3
4+ A
9]
[o
w A
5 g
a i
A A
e ¥ s -
+ @ 1
T s o
*, -~
o Om,
. D
I 7
A=
T O e T = o

Figure 5-26. Add LED3MM symbol to the schematic window

14. Press escape again (or click the “ADD” button). In
the search bar, type in “button” and press enter. See
Figure 5-27.

206

CHAPTER 5 PCB DESIGN

Managed

& Eghid
& EghPc

¥ SparkFun-Senson
* AT42QT1010
ATIQTION-TSHR
¥ SparkFun-Swiches
BUTTON-CONDUCTIVESHMD
* BUTTONPAD-2X2-LED
* BUTTONPAD-2G-RGB
* BUTTONPAD-AX4-RGE

adafruit

arbute Vabe

| ok | Ooen Losey Maager :

Cancel

Figure 5-27. Search for button

15. Scroll down to SparkFun-Switches and locate
MOMENTARY-SWITCH-SPST. Then locate
MOMENTARY-SWITCH-SPST-SMD-4.5MM and
double-click it. See Figure 5-28.

= 2pp

| Narre Managed
*» TAC_SWITCH
* SparkFun-Sensors
» AT42QT1010
AT42QT1012-TSHR.
¥ SparkFun-Switches
BUTTON-CONDUCTIVESMD
» BUTTONPAD-DX2LED
* BUTTONPAD-2X2-RGE
» BUTTONPAD-AX4-RGE
J0YSTICK_THUNS
¥ MOMENTARY-SWITCH-5PST
HOMENTARY-SWITCH-SPST-PTH-E.0MH
HOMENTARY-SWITCH-SPST-P TH-E.0MHKIT
HOMENTARY-SWITCH-SPST-PTH-12HM
MOMENTARY-SWITCH-SPST-P TH-RIGHT-ANGLE

HOMENTARY-SWITCH-SPST-SMD-5.2-REDUNDANT
HOMENTARY-SWITCH-5PST-5MD-5.2-TALL-REDUNDANT
HOMENTARY-SWITCH-SPST-SMD-5.2MM
MOMENTARY-SWITCH-SPST-SMD-5.2MM-TALL
HOMENTARY-SWITCH-SPST-SMD-6.000.5MM
HOMENTARY-SWITCH-SPST-5MD-6.2HM-TALL
HOMENTARY-SWITCH-5PST-5MD-12MM

LY-SWITCH-5PS T-SMD-RIGHT-ANGLE

[#lPads [+ Smds _[~| Descrption] | Hide Unpoputar Parts (] Preview
Seasch B3| button |
Attrbutes B |

*Nane

2Value

—is—

MOMENTARY-SWITCH-SPST

|| variants

PTH-12MH - 13mm square, through-hole
Swech

| Momentary Switch (Pushbutton) - SPST
Mormaly-open (HO) $#5T momentary swiches (buttons, pushbuttons).

-2 Squarg (COM-09190)

| Atrbute Vale
PROD_ID SWOH-09213

1 oK i .Oun Library Hn\oﬂ-. [Cancel]

Figure 5-28. Select the Momentary button

207

CHAPTER5 PCB DESIGN

16. Right-click three times on the schematic window to
orient the switch correctly and then place the switch
symbol. See Figure 5-29.

2 1 Schematic - C\Users\Pc\Desidop|LED Board\LED_Board.sch - EAGLE .60 standard - o x
Fle Edt Draw View Took Lbrary Options Window Hep
IS EH- |§BE&cQa8 «~00|0|smr no
ZHY oo [lans | BEMNMEN NHE YA LESE
E ke (0.1-03) ||
L @®
=
3 A
)
[u v
&
s
me t 1 b4
1 %
(aa]
:l :;' GHD I"-—u"lT'r 51
oz S, MOMENTARY - 'af’fﬁ':‘s—FST—SHD—#.SMH
PR
7 2
A5 *
reate 3 module and 3dd a moduke nstance 0 |

Figure 5-29. Add the Momentary button to the schematic window

208

CHAPTER 5 PCB DESIGN

17. Click the Info button and then click the switch you
just placed. The info dialog window will open. See

Figure 5-30.

Fie Edt Draw View Took Lbrary Oplions Window Help
@ EDeaQQas «
NS S

0.1 inch (4.4 2.2) Oick o press Ctrlel kay to actiate command ine mode

TH= Hw»
& T e [

i) ®

-

CHE SR T W R
N

@ EiEL &

<
N

L.5MM

Left-chck to select object to get info for

Figure 5-30. Update the value of the button

@ || sl B8

B Properties *
Attribute

Hame

Value TTO4-57 4. 5MM
Postion 24 0.48

Ange o

MirTor

Sire 007

Rt 8%

Font wactor

Aign hop-center

Layer W 36 vanes

[aksg

Part

Hame 51

Gate 51

Device 404

Footprnt TAC

Lbrary DandFun -5

Description Momentary Switch (Pushbutton) - SPST

ok Cancel

209

CHAPTER5 PCB DESIGN

18. Ifthe Properties window you are seeing is not
correct, try right-clicking the switch near the “+”
symbol; you should see this menu. Make sure you
try and right-click the bottommost “+” symbol. See

Figure 5-31.

B | Schematic - C PLED Board\LED_Board.sch - EAGLE 5.6.0 standard - o X%

Fie Edt Draw View Took Lbrary Oplions Window Help
GHe EHn @ BE 6QaQqaQe8§ = e @) | omrT FE
& H Y e W ornens Ve S S

inch(z202) |l

E

-

S1
o /-n
ARY -SWITCH=-SPST-S|

tq iz
e I

=

Rt L =@ @3 0+ A0
[=T

Actvate another gate from a devace o

Figure 5-31. Right-click the “+” next to the button’s name

210

19. The Properties menu should have the value of

CHAPTER 5 PCB DESIGN

“VALUE! See Figure 5-32.

B properties x
Attribute
Name I VALUE I
Value MOMENTARY-SWITCH-SPST-5MD-4.5MM
poston (24 1 ose]
Angle o :

) Mirror

Sge | 0.07 v
Ratio i 8% v
Font [VECtUI 'l
Algn | top-center .
Layer i! 96 \'all;:es v
Display Ivalue b4
Part
Name | s1 |
Gate [651 (SWITCH-MOMENTARY-2) |
Device | MD-4.5MM {'-1DI"'.EHT»'«F~"|'-S\‘.ITCI[-SPST}‘
Footprint i TACTILE_SWITCH_SMD_4.5MM |
Library | Stiarkrun-ST'\':-:hes o _]
Description Momentary Switch (Pushbutton) - SPST

I oK H Cancel H Apply |

Figure 5-32. When the proper area of the button is selected, the name

will be “VALUE”

211

CHAPTER5 PCB DESIGN

20. Select the “Display” drop-down menu and select
“oft” See Figure 5-33.

B properties ¥
Attribute
& o 7
Value | MOMENTARY-SWITCH-SPST-SMD-4.5MM|
Postion | 24 [0.48 |
Angle o .
|| Mirror
sze | 0.07 .
Ratio | 8% *
Font [vectm vl
Algn | top-center ¥
Layer . 96 Values '-
Display value -
Part
Name | s1 |
Gate [651 (SWITCH-MOMENTARY-2) |
Device [MD-4.5MM {“DME!JTARY-S\‘.‘ITCH-SPSTI}J
Footprint | TACTILE_SWITCH_SMD_4.5MM |
Library I SparkFun-Switches]
Description] y Switch (Pushbutton) - SPST
I oK] [Cancel] [Apply |

Figure 5-33. Select “off”

21. Click the ADD button again. See Figure 5-34.

212

CHAPTERS5 PCB DESIGN

o a0 2
Mane: Managed
akara & Eagebch
» aker-oycicns-I & Eage Pob
*» akera-cycione-Ill . EagePcd
» aker-ram & Eage b
» am25-memocy & Eage Pch
*» amd-mach & EagePdd
» ams B CagePeb
» anabgcerces & FagePch
> aphs & Eagepch
» atmel & Eagepch
* AUSTRTKORRETE & Eage b
» avago & Eage Peh
» pattary & Eagapcd
* BeRon-engneeng . Eagle Pch
» bumbrown & Eagh Pcb
*» bustae B Eage Pch
» bumer & Eage b
» ctrmm 8 Esgepch
* cailfornamico-devices & Eage bch
» caactonwiTe 8 Eage Peb
* chpcrd-semens & Eagebch
* crusogc & EaghPod
e a o Atrbute Valse
* conducen - Eaga P
* conamp & EagkPcd
* conamp-chamo & Eagh Pcb
B]
[Zlpacs (< smds | Descrpton | Hde Unpopulsr Parts [Preaen
search D] .
attrtutes B | *|
[ox][ooen Lomey Marager || cance

Figure 5-34. ADD window

22. Inthe search bar, type in “connector” and press
enter. See Figure 5-35.

- - AP eakiegALED BoardhLID Bosrdach - EAGLE S0 risad
Fle Bt Drow Viw Tooh Livery Options Window Help
qu *

|| 19imch (versica 3)
YR
|| 100 x 160 rrm wth D 41612 esenectons
WME BUS-Cncs - hiepy) v Cartacabus. 0omCOTs_Cards_VME btmi
WTESO516 ‘ Created by aran@cadee® de

Aribute Vake

Figure 5-35. Search connector

213

CHAPTER5 PCB DESIGN

23. Scroll to the SparkFun-Connectors drop-down; then
select the CONN-02 drop-down. See Figure 5-36.

= 200

Hame
WIe1IM
* SoariFun-Connectors
ATX24RH
AUDIO_JACK_TRS_0.25"_FTH_RA
* AVR_SPI_PROG_3X2
BATTERY_CONN_DEANS
BHCPTH
COMPUTER_PERIPHERAL_POWERRA-NT
» COHN_O1
* CONN_02
CONN_02
CONN_02-5T-2-FTH-NO_SILK
CONN_02-15T-2MM-5MT
COHN_02ST-PTH-2
CONN_0215T-TH-2-KIT
COHN_0ZLATCH 2
CONN_0ZLDCK
CONN_02LOCK_LONGPADS.
CONN_0ZPOGO_PIN_HOLES_CHLY

COHN_0ZSPRING-2.54-RA.
OHN_021X00_HO_SILK
CONN_022.54MM_SCREWTERM
COMN_0Z3.568
CONN_023.5MM-NO_SILK
CONN_023.5MM_LOCK

Margged

[#lPags [~ 5mes [~] Descripton| | Hide Unpopubir Parts [~] Praview

Search B | connector

Attrbutes B

G$1 >NANE
2 >UALUE o~
e .
>UALUE -

CONN_D2

Multi connection point. Often used as Generic Header-pin footprint for 0.1
inch spaced/style header connections

On any of the 0.1 inch spaced packages, you can populate with these:

» Brazk Aveay Headers - Straight (PRT-00116)
« Brak Avay Hgls Headers - Rght Angls (PRT-00553)

chire Pin (PRT-D0117)

* Braak Ay Ferrale Heacers - Swiss Machng Pin (PRT-00743)

Attrbute Value
SF_SKU PRT-0B432

[][comismimmmon][ool |

Figure 5-36. Select the 5mm terminal block

214

CHAPTER 5

24. Double-click the “CONN_025MM” and add it to the
schematic window. See Figure 5-37.

B | Schernatic - C\lsers\Pe\ Desiacp'LED Board\LED Boardusch - EAGLE 9.6.0 standard

Fie Edt Draw View Took Lbrary Options Waklow Help
GHE HEH» @ BB aaQaea « (-] @) SHE E
£ H T e [l I = N TR

nlnch(08L0 ||

®

EQ®mo o4 AO

JeénRpEpRLOY 3

t4(2

-e I

=

Shce Ines.

PCB DESIGN

Figure 5-37. Add the 5mm terminal block to the schematic window

215

CHAPTER5 PCB DESIGN

25. Click the ADD button again and type in resistor into
the search box and press enter. See Figure 5-38.

Name Hanaged

FLIPFLOP-RES
» RAUS_
* ducrete
* THERMISTOR_
* docu-dummy

Eagle Peh
Eagle Peh
¥ !ali'l‘lﬂxe Eagle Pcd
v h:e:-:emnnhw

» LT1168
¥ ngspee-smulton
R

Eagle Pca
Eagle Pcy

¥ pte-ntc
PTC-50070
v
» REU_
* R-TRIMM
» RUS_
¥ resstor & Eagle P
* REU_

Eagle Peh

Eagie P || adafrui

* R-TRIMM
* RUS_

¥ resstorBoumS & EagePo
2NBS08-7
2NBS08-TE
INBS16-8
2NB516-8E
INBS16-15
2NBS16-15E
2Q5P16-8
205P16-8E
205P16-15
205P16-15E
2Q5P20-10
2Q5P20-108
205020-19
205P20-19€
4814P-T01
4B14P-TO1E

Attrbute Vaie

LB AR R R EE

oK | Open Library Manager Cancel

Figure 5-38. Search resistor

216

CHAPTER 5 PCB DESIGN

26. Go to Resistor » R-US » R-US_R0805 and add it to
the schematic window. See Figure 5-39.

Managed
R-US_0613/5V
RAIS_0613/15 -
R-US_0617/5V
R-US_0617/17 -
R-US_0617/22
RUS_D817/7V
R-US_0817/22
R-US_0922/22
RUS_0922v
R-US_01005
R-IS_1B12X7R
R-US_MOB0S
RUS_M1206
RAUS_M1406
R-US_M2012

LA AR R RN

RAJS_MELFO204R.
R-UUS_MELFO204W
R-US_MELFO207R
RAUS_MELFO207W
RAUS_R0201
RUS_RD402

LA R R AR RR]

|

R-US_R1206
RUS_RI206W
RUS_RI210
RUS_RIZIOW
RUS_RI2IE
RUS_R2010
R-US_R2010W
RUS_R2012
R-US_R2012W

SAMNANAAN

[l Pads (] Smds [~] Description | Hide Unpopular Parts [+ Preview
Search ED | resstor -
Attrbutes B | ¥,

>NAME
[§ |
>VALUE
G$1 —E— |
>VALUE
R-US_ (Version 3}
RESISTOR, American symbol
Footprint: ROS0S (Verson 1)
RESISTOR
3D Package: ROG05 (Verson 2)
RESISTOR
I“'Q;t! “\'il.le
l oK I[Open Library Manager | | Cance

Figure 5-39. Select the RO805 resistor

217

CHAPTER5 PCB DESIGN

27. Press escape and click the cancel button. See
Figure 5-40.

= oo X

Hame Managed
RUS_0613/5V >NAME
RAUS_0613/15 -]
ReAUS_0617/SV
ReUES_0817/17 - -
RANS_0617/22 VA L U E
RAIS_0817/TV G$1
RAUS_0817/22 L.
ReUS_0922/22 -

RANS_0922v
R-US_01005
RUS_1812X7R
ReUS_MOB05
ReIS_M1206
Fell5_M1406
RUS_M2012
FellS_M2309 US_ (Version
RAUS_M3218 RS 3
R-UIS_M3516 RESISTOR, Amarican symbal

>VALUE

(L LR RN

R-US_MELFO102AX Footprint: ROS0S (Version 1)
RESISTOR

30 Package: ROBOS (Version 2)
RESISTOR

s
£
ARANANAND

Attrbute Valug

x
&
=
B
2
ARANAANRARY

i

(¥l Pads (] Smés [Descrption | Hide L

Search ED | resstor
Attrbutes €D |]

| Preview

oK I Open Library Manager]I_W I

Figure 5-40. Get out of the ADD window

218

CHAPTER 5 PCB DESIGN

28. Click the “Move” button and configure the symbols
like Figure 5-41. Rotate any symbols as needed by
selecting the symbol and using a right mouse click.

| 88 1 Schematic - CAUsers\Pe\Desktop\LED Board\LED_Boardsch - EAGLE 5,50 standard - o X
Fie Edt Draw View Took Lbrary Options Window Help
tHG Hn @ OO AaQaae - () @ | 2B Bl
Z WY e [lones ||| v| Style: |contrucus v Metcass: [0defaut v| O— Radus: 0 JILALR || S @
. 0inch{0.025)] |
@ @
§
4 A %
(o]
—
h B -4
WA
2 2, GND
2 4
=
+ = T
< =]
| m S R1
- — — —ANAN— —>
|33 &n Y
| & GND
I [2
[
| i
[¢4 €2
e ¥
=
;Le"tclr:‘cwm‘\r-elv\'lu o

Figure 5-41. Configure the symbols in these orientations

219

CHAPTER5 PCB DESIGN

29. Click the “Net” button; we are now in the
phase where we will be connecting the various
components together. Pay special attention to each

of these connections as an incorrect connection

here means an incorrect connection on the board
layout, which can cause serious problems with your

board. See Figure 5-42.

: = 1 Schematic - (\Users\Po\Desktop\LED Eoard'LED_Board.cch - EAGLE 3.6.0 standard
Fie Edt Draw View Took Libvary Options Window Help

BHS En - @ B aaaag « e

_ 0amch(0.025) I

]
*u

[® & —F— S

&Y e s w|| | v| Stye: |contnuous v ek chss: |0 defaut

| Lefi-chck to start nat wie

3 | cHE% Bl

o= Radux 0 | L 7

Figure 5-42. Click the “Net” button

220

CHAPTER 5 PCB DESIGN

30. Connect 5V to the 5mm terminal block. See
Figure 5-43.

B 1 Schematic - CAUsens\Pe\Desktop\LED Boare LED_Boardach - BAGLE 9.6.0 standard

Fie Edt Draw View Took Lbrary Options Window Help

4_ m_ Y Layer: i 91 Hats
= 01men(0414) ||
@ ®

o
*

+ A
L)

[o]
WA
o &

4 1
=h
+ ®
a1 .
&,
.o
I 7
L5

tf

e ¥

w||_1 +| Stie: |contuous

CHS Ev @ @Eaaaas « @ Osm nu.

ot coss: [0 defauk +| O Radus: [0

R1

Lefe-chck to start net wie

| 71

Figure 5-43. Connect the 5V net to the terminal block

221

CHAPTER5 PCB DESIGN

31. Ifyouwantyour schematic to look just like Figure 5-43,
you can cycle through the different directions of
net shapes by right-clicking while the net button is

active.

32. Connect 5V to the left side of the switch symbol. See
Figure 5-44.

-._ ;m-c:\uwl\N'\D«hep\Llﬂ BewdLED Beard.sch - EAGLE 060 standied - o x ?
Fle Edt Draw View Todk Lbrary Options Window Help

BHS E» - @ BEeQQAase « © O o 5

£ HT e [ones v|| | +| stde: |contwous +| Metcess: [0defak +| O Radus: |0 Jilg Al % =

A CREE]
®

......

Draw an electrical connection [!]

Figure 5-44. Connect 5V to the right side of S1

222

CHAPTER 5

33. Connect the right side of the switch symbol to the
left side of the resistor. See Figure 5-45.

PCB DESIGN

B | Schematic - C\Users\Pe\DesktophLED BoardILED Board.sch - EAGLE 3,60 standard

Fie Ede Draw View Took Library Options Window Help
BHe E+ @ AEAa’”QQq -
ZH Y e W [

Hat ciss: | O defauk -

(@) | oHE BB

v | Sty |contiuous v o= Rdus 0

. Dama(os403) ||
i ®

S 4 .0
-

B B

@ L =

r+leB®>

P nF

>
%

N

Swap equivalent gates

Figure 5-45. Connect the left side of S1 to the right side of R1

223

CHAPTER5 PCB DESIGN

34. Connect the right side of the resistor symbol to the
anode (left side) of the LED symbol. See Figure 5-46.

B8 1 Schematic - C\lsers\Pe\DesbtophLED BoardLED_Board.sch - EAGLE %50 standard
Fle Edt Draw \View Toos Lbrary Options Window Help
2He EHy @ B0 aQRQQa «~ 0 [0 e =
.‘5' # Y e W s e vl _| +| ste: |contnuous v | Metchss: |0defak ¢ ©— Radus |0 | LA
0.1 nch (1.6 0.8) |
(i) ®
+ A i
- r
I P
b B =
s e GND
1 {1
.
+@ x
S R1
r RS ==
O | M
. D1
. B GHC
I+ 7
A\
o
£ 4
e |
T
t3
Leﬂ-mto‘mnu:m

Figure 5-46. Connect the left side of R1 to the right side of D1

224

CHAPTER 5 PCB DESIGN

35. Connect the GND symbol to the 5mm terminal
block. See Figure 5-47.

B 1 Sehematic - ¥ ED_Board.sch - EAGLE .60 standard - o x

Fie Edt Draw Vew Toos Lbrary Options Window Help

GHs By @ BE acaaas « O @ | oo =i

ZH T e :.‘)Ifim «H_] -|Srn— continucus -;Mm: Ocetmi v| O= fadus 0 JIEE A % »

0.1 nch (1.0 0.1) II .|

5y
s

D 11
GND

T Sl R1
: ————AWW—

el AP
-

r+lsaeo

4’#

1 CRERL O% D

N s
@)
=

it <+
~
L)

“U

¢ 02
~ -

-]

Draw an electrical connection (1]

Figure 5-47. Connect GND to the terminal block

225

CHAPTER5 PCB DESIGN

36.

Connect the GND symbol to the cathode (right side)
of the LED. See Figure 5-48.

B 1 Senemnatic - C:

YRR G

|
o)

D BeaedILED Beard.ach - EAGLE -

Fie Edt Draw View Toos Lbrary Options Window Help
LHS Buw @ OEaaqaae « - |0
ZHEY | e [l ST A

_ Oinch(-0403) ||

PHEY W i

=)

Move an object

Figure 5-48. Connect the left side of D1 to GND

37.

226

In order to add a value to the resistor, right-click the
“+” on the resistor and select “Value” on the pop-up
menu. Then enter “330o0hm” and click “OK.” See
Figure 5-49.

CHAPTER 5 PCB DESIGN

{Fle Edt Draw View Took Lbrary Oplions Window Help
| GHs Bn - @ B0 a’aaas « - @ || ¢y E5n
Z U Y e Pl Ve SRS

1<+ A
o]
(il

@ H

3
N

0.1 neh (1.8 1.0) Ok o pross CbL key to actvate command ine moda
=

= aive bl
'T‘ o New value for RI:
S Bl

T

Left-chck to select object to changs valia (1]

Figure 5-49. Set the value of R1

38.

The schematic is now done, but in order to create a
board file for the next section, we need to click the
“Generate/Switch to Board” button. A dialog will
come up asking you if you would like to create a
board file; click the “Yes” button. See Figure 5-50.

227

CHAPTER5 PCB DESIGN

P Desitcp\LED BowdLED Boardusch - EAGLE 9.6.0 standard

Fie Edt Draw View Tock Lbrary Options Window Help

cEsE: e mmeacaaaa « 0 @ om=s.
Z H Y e W ot e B "R N A
® 0.1 nch (0.12.5) | ok or press Cirel kay ta actuate command ine mode -
LR
5 e -
+ /A 3y l The baard C:\Users\Pc\Desktop|LED Board\LED_Baard.bed does not exiss.
) { 1 %R Create from schematic?
[0l o} T [v]
[] .'5). GND
A i
=L
+ @ PN
e 3300hm \&:1
Y GND
% [2
v
t3 (2
ot n
=

Figure 5-50. Create a *.brd file

228

39. This file will automatically be saved as LED_Board.

brd. See Figure 5-51.

CHAPTER 5 PCB DESIGN

= 2 Board - C\Users\ P Desitop\LED Board\LED_Board brd - EAGLE 5.6.0 standard - o ®

Fie Edkt Draw View Tooks Lbrary Options Window Help
s HE B8 e @ B e Qe o X e 7 || LM B

ANTHNLIVINNYIN O

oee No1SNd [

&
2
£

Left-chck & drag to define group (or left-cick to start definng 2 group polygon) + o

Figure 5-51. Board window for LED_Board

Now that the schematic is done and we have a board file, we can focus
on the board layout for this project, which is what the next section will

Ccover.

Laying Out a PCB

We have a schematic, but we still need to create a board layout so that a
Gerber file can be created and sent off to the board manufacturer. This
section will cover several important functions. It is alright if you must do
these steps a few times before you get the hang of it; try to follow the layout
as best you can.

229

CHAPTER5 PCB DESIGN

1. Go to the Board Layout window if you are already
not there. See Figure 5-52.

= 2 Board - C\Users\ P Desitop\LED Board\LED_Board brd - EAGLE 5.6.0 standard - o ®
Fie Edkt Draw View Tooks Lbrary Options Window Help
s HE B8 e @ B e Qe o X e 7 || LM B

ANTHNLIVINNYIN O

oee No1SNd [

&
2
£

Left-chck & drag to define group (or left-cick to start definng 2 group polygon) + o

Figure 5-52. Board window

230

CHAPTER 5

2. Click the Grid button and make sure it looks like
Figure 5-53.

i

Fle Edit Draw View Took Library Options Window Help
BHE M ¢ @ B & QAQ
=] rY taver: ([1 Top

50 mi (5993 193)

& Grid b ¢

Display

+ A

%
3\
© (@]
O A

Figure 5-53. Make sure the grid is the same

PCB DESIGN

231

CHAPTER5 PCB DESIGN

3. Once the Board Layout window is open, click the
“Info” button. See Figure 5-54.

2 Board - C:\Users\Pc\Desktop\LED Board\LED_Board.brd - EAGLE 9.6.0 standard

Fie Edit Draw View Tools Lbrary Options Window Help
LHS 5 g @ BE A
" Eii.' Y aver: ([iTor .

50 mil (-2100 -100) |

)
=)

= F O -{» '.IEH
>

b 1
3

O3]
> e

Figure 5-54. Select the “Info” button

232

CHAPTER 5 PCB DESIGN

4. Click the left vertical line, and a menu should
appear. See Figure 5-55.

-
Fle Edt Draw View Toos Lbrary Opbons Window Help

L HES B ¢ @ B0 aQaaagsX) D | oW B b
& #H YT e [l

S0 mil (0 2600)

SNIINLVANNYA D

W properties

(F]
g
g
£

Left-cick to select object to get info for + 0

Figure 5-55. Select the left vertical line

233

CHAPTER5 PCB DESIGN

5. Inthe second text box next to “From,” type in 542 (if
this value makes your board huge, please make sure
you change your “Grid” to “mil”) and click “OK.” See
Figure 5-56.

=

Fle Edt Draw View Took Lbrary Options Window Help

<sHe B ¢vel @ B & Qa6 & 8 o X @ ? PHRY T B
ZHY e Wi
50 i (0 2600)

B Properties

INIHNLIVANNYIN O

Line

From

o9t NOISRd B0

(F]
g
g
£

Left-clck to select object to get nfo for +0

Figure 5-56. Update vertical line value

234

CHAPTER 5 PCB DESIGN

6. Now click the bottom horizontal line, and the same
box should appear. See Figure 5-57.

-

Fie Edt Draw View Took Library Options Window Help
< H=e B ¢ @ BE Qo - (-] 2 SHES o
£ H Y ue .

= Properties

DNIENLIVINNYN 1

o9 NOISNd)

B
g
§

Left-chck to select object to get nfo for +0

Figure 5-57. Select bottom horizontal line

235

CHAPTER5 PCB DESIGN

7. Type 1294 into the box right next to the “to” and
click “OK.” See Figure 5-58.

Fie Edt Draw View Took Lbrary Options Window Help

st HE B oy @ BE & Qo - (-] 2 W W
ZHY e Wit
50 mi (2300 0)
i)
&
) £
4 A
0 | ™ Properties é
W
A% [P
. &
+ 2
o
[+ LF]
g
\ ¥
.U E
a2
-
r o
Left-cick to select object to get nfo for +0

Figure 5-58. Update horizontal line value

236

CHAPTER 5 PCB DESIGN

8. Now click the top horizontal line (or what would be
horizontal had we not updated the other lines). See
Figure 5-59.

-

Fie Edt Draw View Took Library Options Window Help

s He Bosd @ @0 8600aesX « =] Y W S
23y = Properties X i
| ine F
(=]
- z
A z
= é
* i". E
WM
__ 8 ST pee— i?
= 2 g
:
® o 3
O A
- [/ |_3
&
= g
5 g
L.k &
o G
-
T
Left-cick to select object to get nfo for +0

Figure 5-59. Select top horizontal line

237

CHAPTER5 PCB DESIGN

9. Type 1294 into the box right next to “From” and click
“OK” See Figure 5-60.

-
Fie Edt Draw View Took Library Options Window Help

. i L0 [N [f
- | = 3 =

&

~ £
+
=
2| 5
DB
W M
b g z
o o é
O A
I @
v W :
5 I, g
i
-,
Eie
L aft-chck to selct object to get nfo for *> 0

Figure 5-60. Update top horizontal line value

238

CHAPTER 5 PCB DESIGN

10. Click the right-side vertical line. See Figure 5-61.

-

Fie Edt Draw View Took Lbrary Options Window Hep

it HEG BH e @ B0 Qo)X «) 5 smEe m
ZHY we B
50 mil (1300 1750) % T + key t r T

ONTHNLIVINNYIN O

D9t NOISNd [

(F]
g
S
g

Left-cick to select object to get nfo for % o

Figure 5-61. Select right vertical line

239

CHAPTER5 PCB DESIGN

11. Type 542 into the second box next to “To,” and
you now have the dimensions for the PCB. See
Figure 5-62.

-

Fie Edt Draw View Took Library Options Window Hep
stHs B ¢l @ B &QaaQaaaoX « =l 7 | W = Ew
ZEY e Wi

50 mi (1300 1750

= Properties

ONTHALIVANNY A O

Line

ose NoISnd [

(F]
g
g
£

Lafi-clck to select object to get nfo for I (1]

Figure 5-62. Update right vertical line value

240

CHAPTER 5 PCB DESIGN

12. Click the “Move” button and select the terminal
block. See Figure 5-63.

™ 2 Board - C:\Users\Pe\Desktop\LED Board\LED_Board.bed - EAGLE 9.6.0 standard - [n] x |
Fle Edit Draw View Took Lbrary Options Window Help |
s H=E H &g @ BE aQaanX - (-] 7) | PHE
ZEY e |l *| Ange: |0 +| M= @ B 80 & & ¢
S0 mi (600 100)
i @
(-]
g E
.
A
= -
B
z

> A g
=

o @ g
C A [
o @
[y} & E
Rz

o
-
[

TERMINAL-5MM-2, SparkFun-Connectors, Vakie: (Left-chck to place object +0

Figure 5-63. Select the “Move” button

241

CHAPTER5 PCB DESIGN

13. Rotate the terminal block and move it onto the
PCB. You can use the “Info” button and type in the
position “155” and “365,” or you can move it with the
mouse and hold the Alt Key to get more precision.
See Figure 5-64.

-
Fie Edt Dvaw View Took Library Opbons Window Help
stHs M Ay @ B0 aaaaaas) « (- 7| CH E e
" H T e [l

50 mi (150 350) K of press Crhd. key to 3ctW ! P g
D" & properties b

Description Screw Terminal Smm Prch -2 Pn PTH
OHENTARY SHO=4.5 Attributes

Select ‘Element: 11, SCREWTERMIMAL-5MM-2, SparidFun-Connectors, Value: 7 (lefr=yes, nght=next, ESC=cancel) e 0

Figure 5-64. Move terminal block

242

CHAPTER 5 PCB DESIGN

14. Next, move the push button onto the PCB. Pay
attention to the yellow lines going from one
component to the next. These lines are the nets you
created in the schematic. The position for the button
should be “540” and “265.” See Figure 5-65.

-

Fle Edt Draw View Took Lbvary Options Window Hep

+Hes H gl @ BE @A as X w (-] 7) | LB W
: | = = =
ZHY e Wi

_ somi| ™ Properties)(i..

DONIHNLIVANNYIN D

Populate
Locked

Momantary Swech (Pushbuston) - SPST -

Description $MD, 4.5mm Square

Attributes

HOMENTARY-SWITCH-SPST-JoHO-AS5HH

Left-cck to suhct object to get nfo for +0

Figure 5-65. Move button

243

CHAPTER5 PCB DESIGN

15. You may notice that the push button’s device name

is very long and not necessary to put on the PCB. If

you zoom in to the PCB and right-click the “+” right

next to the name, you can select “Delete,” and this

will remove the name from the PCB. See Figure 5-66.

B 2 Board - C\Users\ P Desitop\LED Board\LED_Board brd - EAGLE 5.6.0 standard

Fie Edkt Draw \View Toolks Lbrary Options Window Hep

1t HE B8 Ay 8 BN QaageanX -
2 Y e [l
0 250)

Attrbuta of Element: 51, TACTILE_SWITCH_SMD_4.5MM, SparkFun-Switches, Vauue: MOMENTARY-SWITCH-SPST-5M0-4.5MM Left-chck to select object to get nfo for

Figure 5-66. Delete button name value

244

4 Dtsie
......

+0 |

CHAPTER 5 PCB DESIGN

16. Now add the resistor to the PCB, positioned at “860”
and “270.” See Figure 5-67.

=

Fle Edt Draw View Toos Lbrary Options Window Help

sHe M o] @ B0 aaaagoal - = 7 SHE" E e
£ H Y e Wi .
) | = properties x

ONTHNLIVINNYIN O

\, (F]
. B
\ &
b]
Fopubire =
L] Locked E
TN Description
% Attributes
- 7 (F]
= g
2
-ra 4} > E
nz
L
o
+ Ol
-
Select ‘Element: R1, ROS0S, resistor, Value: 3300hm'? (left=yes, nght=next, ESC=cancel) + 0

Figure 5-67. Move resistor

245

CHAPTER5 PCB DESIGN

17. Now add the LED to the PCB, positioned at “1135”
and “280.” You have now finished arranging the
parts onto the PCB. See Figure 5-68.

=

Fle Edt Draw View Took Lbrary Options Window Help

2 HE B oo @ B@acaaagqoeX « @ ST
ZH Y we Wi
50 mi {1150 300) B Properties ><|l

ONTENLIVINNY I 0

Footprnt

Library

Vaue

Populate

Locked

Description LED 3MM PTH
Attributes

09E NOISNd [

PROD_ID

weal woisnd [

Figure 5-68. Move LED

246

CHAPTER 5 PCB DESIGN

18. Select the “Route Airwire” button. See Figure 5-69.

™ 2 Board - C\Users\ P Desitop\LED Board\LED_Board brd - EAGLE 5.6.0 standard - o *

Fe Edkt Draw View Took Lbrary Options Window Hep

it HE B Ay @9 BN QA eanX - (-] 7| S =
ZHY e [P

50 mil {-1100 500) I

o

ANTHALIVANNYIN

oee No1SNd [

(F]
2
£

Fouts Arwre +0

Figure 5-69. Select the Route Airwire button

247

CHAPTER5 PCB DESIGN

19. At the top, select 12 from the “Width:” drop-down
menu, or you can just enter “12” See Figure 5-70.

B 2 Board - C:\Users\Pe\ Desktop\LED Board\LED Board brd - EAGLE 9.6.0 standard - [=] *

Fe Edit Draw View Took Library Options Window Help
LHS B oo @ BmaaaaaeX «- @ |0 om =g
’_ ‘:.::..Y aver: |1 es |l Z D KR -] e |6 @ | Dt |1377952 +| Demeter | auto | @

50 mi (-100 1100)

INIHALIVANNYN 0

L £
o 3\ g
-

E

< [/ |-3

ol

= W H

a9 4 §
8 %
5,

*
i
-
P i

Left-chck to select signal object to route +0

Figure 5-70. Select 12mil route

248

CHAPTER 5 PCB DESIGN

20. Left-click the 5V contact on the terminal block (J1),
then move your mouse over to the top-left contact of
the push button (S1), and left-click that contact. See
Figure 5-71.

[B 2 Beard - C:Alksers\Pe\DesktopLED Board\LED Board brd - EAGLE 5.6.0 standard - o x
Fle Edt Draw View Took Library Options Window Help
s He 8 ¢l @ B & aQaen) - (-}
ZHY we [l - 205 |/ -] wen | @ | om 1377952 - D

z 50 mi (- 650)
(=]
. £
+ A £
>
O |= 5
[~ g
™ . z
& F
- A [?
o R1 §
O A aTls
[F]
? L L]
3303
= W A
- :
D & E
L.F3
'Ol‘
o &
4
e
}g- 3% 5V, Cliss: 0 defauk Laft-chek to sebect signal object to route +0 |

Figure 5-71. Connect terminal block to 5V

249

CHAPTER5 PCB DESIGN

21. Left-click from the 5V contact on the push button
(S1) and drag your mouse to connect the route to
the other 5V contact on the push button (S1). See
Figure 5-72.

™ 2 Board - C:\Wsers\Pe\DesitophLED Board\LED_Beard.brd - EAGLE 5.6.0 stendard - o ®

Fie Edkt Draw \View Toolks Lbrary Options Window Help
s HE M My @ Bl @ ageoaX - [-]
ZHY e (Bt 20 G|/ v w12 *|@ +| Dk 1377953 -

50 mi (-250 0) |

ONTHALIVINNYH O

-
R1 &
&
3308
1
g

Signak 5V, Class: 0 defaukt Left-cick to select signal object to route + 0

Figure 5-72. Connect 5V lines

250

CHAPTER 5 PCB DESIGN

22. Left-click the top-right contact on the push button
and connect it to the left contact of the resistor (R1).
See Figure 5-73.

B 2 Board - C:\Users'Po DesktoptLED Board\LED Board.brd - EAGLE 5.6.0 standard - (u] e

Fie Edt Draw View Took Library Options Window Help

3 HS B oe @ @M aeaaaqoX « | © D | oM B |
’_ 5.::..7 Layer: ._":,;- | Z 0 > |G /el width: |12 «||@ +| Dk 1377952 ~+| Dometer | aute v »

50 mi (200 0)

i
]
- £
[g
| O |= 3
= s
AR H
a F
E F]
s = B . ,E'
PR AN =
J . :
® g
o A
= 7 ?
= W o4
£ g
:.ﬂ 1 ;‘
B2
i,
o
+ -
-
‘} "~
:so’!: M§1, Chass: 0 default Left-cick to select signal object to route +0

Figure 5-73. Connect button to resistor

251

CHAPTER5 PCB DESIGN

23. Left-click the top-right contact on the push button
again and connect it to the right-bottom contact
“N$1” See Figure 5-74.

B 2 Board - C\Users\Pe\Desktop’ LED Board LED_Board bed - EAGLE 9.6.0 standard - o >

Fie Edit Draw View Took Library Options Window Help
LHS B o @ @M eaQaaaqeX - O
’_ i.::..Y aver: |1 es o Z D g | wek |12 @ | Dk |1277952 +| Dameter |auto | @

ONIENLIVANNYIN D)

o9 NoISnd [

(F]
g
£

sgnai M§1, Class: 0 defauk Left-cick to sefect sgnal object to routs +0

Figure 5-74. Connect buttons right side

252

CHAPTER 5 PCB DESIGN

24. Next, left-click the right contact of the resistor and
connect the other end to the top contact of the
LED (D1). See Figure 5-75.

B 7 Board - C:\lksers\Pc\ Deskbop’LED Board\LED_Board bed - EAGLE 9.6.0 standsrd - o x
Fle Edt Draw View Took Library Options Window Hep
tHS B oe] @ B0 Qaaaaoe) - & oy, e

FHYTY e [l @D e S | w12 o|@ | o [1377953 +| Dameter |auts | B

DONIINLIVANNYW O

09t NOISNd)

(F]
g
g

Sgnat N§2, Class: 0 defauk Left-chck to select signal object to route +0

Figure 5-75. Connect resistor to LED

253

CHAPTER5 PCB DESIGN

25. To select the bottom layer, go to the top and
change the “Layer:” drop-down to “16 Bottom.” See
Figure 5-76.

% 2Board - C\Users\Pe\DesitephL ED Board\LED_Board.brd - EAGLE 5.6.0 standard

Fle Edt Draw View Took Lbrary Options Window Help
LHE B e @ Bl acaaagaX « O ?

ZHY e Wit | 20 |/ - w2 *||@ | ok |13.77983 ~+| Demete

50 mi (450 650
.

Signat N$2, Class: 0 default Left-cick to select sgnal object to route

Figure 5-76. Select the bottom layer

254

NTHALIVANNYN [0

[F]
g
g
g

wraL wotsnd g

+0 |

CHAPTER 5 PCB DESIGN

26. Select the bottom contact on the terminal block (J1)
and connect the other end to the bottom contact of
the LED (D1). Because this is on the bottom layer
of the board, you can pass right through top layer
contacts and routes as long as the contacts are not
on the bottom layer as well. A good example of this
is that when you pass underneath an SMT (surface
mount) part which is only on the top layer, but if
there is a through-hole contact, you will have to go
around that part. See Figure 5-77.

B 2 Board - C:\Users\Pe\Desktop\LED Board\LED_Board bed - EAGLE 9.6.0 standard - [u] »

Fle Edt Draw View Took Lbrary Options Window Help

L2HE B e @ AR acacaags X -« @ D SHE T b

ONTHNLIVANNYIN (D

09E NOISRd [

(F)
-
g

| Defne attkutes ~ + 0

Figure 5-77. Connect the terminal block to GND

255

CHAPTER5 PCB DESIGN

27. The board is now ready to be made into a Gerber

file. See Figure 5-78.

B 2 Board - C\lUsers\Pe\Desktop'LED Board\LED_Board bed - EAGLE 9.6.0 standard

Fle Edt Draw View Took Lbrary Options Window Help

s Hs H ¢l @ B0 &€QAQ 8o X w (-] 7) | PN EEh

& (9

3300hm”*®

wy3L NoTSnd [

+ 0

Define attrbutes

Figure 5-78. Final board

Exporting Gerber Files

Creating a Gerber file is very simple in Eagle and is also a very important
step as it is the file that you will eventually send to the board manufacturer.

1. Go to the Board Layout window for your project. See
Figure 5-79.

256

CHAPTER 5 PCB DESIGN

B 2 Board - C:\Users\Pe\Desktop\ LED Board\LED_Board bed - EAGLE 9.6.0 standard - [u] »
Fle Edt Draw View Took Lbrary Options Window Help

LHS B ¢ @ BE aaaas X - =) enE m A

& H Y e Paseoon | F O 8|S o w12 «|@ | ok 1377953 +| Dameter | auto - »

50 il (500 -150) |

ONTHNLIVINNYIN D

D9E NOISRY [

R1

il

3300hm/™®

weaL woTsnd)

| Defne attrbutes + 0

Figure 5-79. Final board

2. Goto File » CAM Processor. Make sure your current
project is saved. See Figure 5-80.

257

CHAPTER5 PCB DESIGN

& 2 Board - C:\Users\Pc\DesktophLED Boardh\LED Board brd - EAGLE 9.6.0 standard - O ¥

[E3 edt Draw view Took Lirary Options Window Help
o ey

PO | (- B B O TR B 0 @ (-] 7) | U W B
|20 &G/ +| wen e @ < ok [1377953 - Demeter | ato - »

e

E

E

N Bios =

z

i E

g

|

Empor =

Expar . &

BB Execute Sert. 2
r) BN

3300hm/*®

WL wotsnd)

Start CAM Processor +0 |

Figure 5-80. Select CAM Processor...

3. Atthe top, you will see the “Job” file that is currently
being utilized, “template_2_layer.cam.” This job will
work for the current PCB we have created, but if we
say had a four-layer board, this job would need to
be modified to include those layers, as well as any
other layers, such as soldermask or silkscreens those
layers may also employ. See Figure 5-81.

258

CHAPTER 5 PCB DESIGN

B CAM Processor -] x
| tempte_2_kyer.cam | :-'l B | O ExwortasziP [Export to Project Directory Units: lMem: v|
Output Fies | Gerber Fie
= Gerber Name: | Top Copper Function: | Copper | &
g:’:::m Coppes | Layertype: |Top v | Gerberyernumber: (L1 | [0 Negatwe mage
Soldermask Top |
Soldermask Bottom =
Solderpaste Top 2 Layer
Solderpaste Bottom i = ‘:‘
Sikscreen Top - __"_’:K
Sikscreen Bottom L
v Dril & | 18 Vias
Auto Dril
¥ Assembly
8 of Materil
Pick and Place | \—' .—I.
Drawings . .
Legacy
-
| |_| Board Shape || Cutouts
. = + + Qutput
EAGLE default 2 kyer CAM job. Gerber flename: | 9%PREFI{/copper_top.gbr | | Export Fie |
Resolved fie path: | CAMOutputs/GerberFies/copper_top.gbr |
P Advanced
| Edt Descrption... |
| Select Board... l [cancel |
C:/Users/Pc/Desktop/LED Board/LED_Board.brd

Figure 5-81. CAM Processor window with “Job” name highlighted

4. Ifyou select the “Top Copper” layer, you will see a
preview of that layer. Same thing goes for any of the
other selections that the CAM Processor shows. See
Figure 5-82.

259

CHAPTER5 PCB DESIGN

_, CAM Processor =

template_2_kyer.cam ;JB, | Export as ZIP [Export to Project Directory

(m] X

Units: | Metric + |

| Edt Descrption... |

| Select Board... |

Output Files | Gerber Fie
Name: Top Copper Function: | | &
pmf:m i Layer type: | Top * | Gerber yer number: (L1~) Negative image
Soldermask Top
Layers
Soldermask Bottom
Solderpaste Top =
Solderpaste Bottom ;
Sikscreen Top o
Sikscreen Bottom x
v Dl & 10 5
Auto Dril
¥ Assembly
6il of Materil
Pick and Place
Drawings . .
Legacy
-
— Board Shape |_J Cutouts
*] = + 4 Output
EAGLE default 2 ayer CAM job | Gerber flename: | %PREFIX/copper_top.gbr | Export Fie
Resolved file path: | CAMOutputs/GerberFies/copper_top.gbr
| P Advanced

C:/Users/Pc/Desktop/LED Board/LED_Board.brd

Figure 5-82. Preview of the Top Copper of the PCB

5. Click the “Process Job” button, and Gerber files will
be generated after you select where you want them
to be stored and what name you want to give them.
See Figure 5-83.

260

CHAPTER 5 PCB DESIGN

Fle Edt Draw View Took Ubrary Options Window Help

Units: | Metric

DKIHNLIVINKYIN O

- =
~H= |~
&£ o || 3 H D epotasze Export to Project Diectory
T | Select output directory
i) @| € « 4 | > ThsPC » Desktop » LED Bourd
" Ovganize » Mew folder
~ am Diat. il
+ :k & OneDiive - NA Name Date modifie
o= Desktop
= go| @ oo pumer
% | = mispc
8 3 30 Objects
"'\' = [Deskiop
. 2 Documents
S :\ & Downloads
© @ b owsic
’\ A & Pictures
- B videos
s = Windows (C:)
% 4] = ot
e dlr| = mrcool T v
: Foldery LED Beard

weaL no1snd @

I Salect Folder I Cancel

T
P Advanced

Edr Descriotion...

Selsct Boart...

C:/Users/Po/ Desktop/LED Board/LED_Board.brd

Figure 5-83. Save Gerber files

6. When done, just exit out of the CAM Processor

window and close out Eagle.

PCB Manufacturers

There is a plethora of board manufacturers in the United States and

in China. I personally use PCBWay for both professional and personal
projects, but there are 100s of board manufacturers ready to make your
board. Figure 5-84 illustrates what I used to create this board.

261

CHAPTER5 PCB DESIGN

282020
PCB Prototype the Easy Way
Ful ratury casioen PCE proiotype sandce
Online Quole Upload Gerber File Payment

Prototype PCB - Online PCB Quote - Full feature custom PCB prototype service at low cost - PCBWay

Mobide Help EN ot I

Fabrication Shipment Confirm a

andard PCB ! . Advanced PCB A FPC/Rigid-Flax v Assembly | <8 SMO-Stenci - PeBI

Reset

| Pricing And Build Time

PCE Prce Price Comp.
@ PcB specification Selection) Galethavster PCBGarer Viswssr) Build Time ay
2hours]
Board iypa - Paned by PCEWaY
Extra Urgent!]
Dot Design ¥ [2] | 2] hae| L= e eg.
in Panel -
* Slze {single): 13.78 X | 3286 mn ek omm Eipping e
0 UNITED STATES OF AMERICA w | DHL
. Bngle Saw
Quantity (single) 5 pes SREL > 15Den. w008
Layers: 1 Layer dloyers Glayes Slayers W0Lapees 12Loyers 1 Layers CHA Time Zone{GMT) 20200428 §
Payman bafon 20000329 0800 (GMT
Delrvery time: Fecel
Matesial: 020/330 AM 20204
Gy Avminom I Rogers .:E.['B_u.wmm G covperBase
dorwi, HOH iabi Ror 4-Jaryer of Mo, PCE Cost
Pt Aoward
FRA-TG: a1 140 TG1 15 170-1i
v [win -
Total:
Thickness: 02 04 08 08 10 12 El 20 24 26 28 30 32
21180 'I.InI'mm-'[| Addto C
Min Track/Spacgi() Wamd AMmi Mmrﬂ
Min Hole Sz oismm 02mm 0.28mm 08mmt 10mmi NoDil b
Sokder Mask: Red Welow Bl Wl Bleck
Pupic Matiopiack Mabegresn None
N
Gokd firgers: Yes EI
Surtbea Finish: HASLwih ead | HASL bead fies | Immersion gok(ENIG) ~ OSP Hardgold Immarsion siveriAg)
ENEFIG NonoiPlain copper)
) Tick rmars. yene HASL® 1 ENIG watra charge
Via Process Phuged vias Vias not covered
“For Gartes b, this choice b ssimss it wil be made sceonsinsg 1o fies as defaul
Finished Copper: Zor€u do2Cu deeCu SozCu BozCu TerCu
fozCu BozCu Worce MoxCe 2ac Bece (PR
“Min zoeml 3§ PO
1 aspx 12

Figure 5-84. Common settings for board manufacturing

262

CHAPTER 5 PCB DESIGN

Summary

Well, you have made it through all of the first five chapters which I know

contained a ton of information, and I am sure not all of it has been

retained, which is fine because in the next five chapters we will be focusing

on using and reinforcing these new skills to do some pretty cool project,

but first let’s take a look at some of the highlights of this chapter:

Looked at what a PCB is and what kind of software is
needed in order to make a PCB

Took a tour of Eagle and some of the most important
functions

Learned how to load a third-party library into Eagle
Learned the basics on how to create a schematic
Learned the basics on how to create a board layout
Learned how to export Gerber files

Took alook at PCBWay as a board manufacturing
company

263

CHAPTER 6

Robot Engineering
Requirements:
Controlling Motion

Alright, we have made it through several chapters of basic knowledge to
continue through this book. From now on, I will be explaining only new
concepts; for everything else, I would suggest looking at the previous five
chapters for assistance. In this chapter, we will be using all the knowledge
we gained in those previous chapters to work on a project for a company
named Naticom. Naticom is a robotics company, and they want you to
develop several prototypes and updates of a robot; for this chapter, that
robot will be the first prototype and will require you to create a PCB,
design a robot chassis, write some Arduino code, and physically make the
prototype with a 3D printer. So, let’s get started with this chapter as we
have a lot to cover.

Hardware Explained: The H-Bridge

An H-bridge gets its name from the configuration of the npn and pnp
transistors that make it. See Figure 6-1.

© Harold Timmis 2021 265
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_6

https://doi.org/10.1007/978-1-4842-6852-0_6#DOI

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

|;-f-\

Figure 6-1. Simple H-bridge circuit

Note If you search Google for “TB6612FNG,” the first item should
be Digi-Key; from this website, you can view the datasheet.

This is a very cool and important circuit to know how to use because it
allows you to control DC motors, and it is even possible to control a stepper
motor. The H-bridge we will use for this project will be the TB6612FNG. This
is a very good and easy-to-use H-bridge. Let’s look at the datasheet to see
what this H-bridge is capable of (see Figures 6-2 through 6-8).

266

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Tosuisa
/- Open in Acro]

Toshiba Bi-CD Integrated Circuit Silicon Monolithic

TB6612FNG

Driver IC for Dual DC motor

TBGG1ZFNG is a driver IC for DC motor with output
transistor in LD MOS structure with low ON-resistor. Two
input signals, IN1 and IN2, can choose one of four modes
such as CW, CCW, short brake, and stop mode.

Features

* Power supply voltage ; VM=15V [Max.)
+ Output current lout=1.2Alave) / 3.2A (peak)

SS0P24-P.300-0.654

s Output low ON resistor 0.50 (upper + lower Typ. @VM
V)

Standby (Power save) system (004 g()
CWICCWishort brake/stop function modes

Built-in thermal shutdown circuit and low voltage detecting circuit

Small faced package (SSOP24 : 0.65mm Lead pitch)

Response to Pb free packaging

Figure 6-2. First page of datasheet

The first thing that is important to note is on page 2 which shows the
pinout of the TB6612FNG, which is very useful when you are trying to
figure out what signals need to be connected and what signals can be left
floating or set to GND (0V) or +5V.

267

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

TOSHIBA TB6612FNG

Block Diagram

VN1 PRMA AINZ AINY u'“. STEY ‘-'-: BINY BIN2 PINE W3 W

pYoYeYoleYofoYoloYo!
111 el]

Logie ol Logic

D I 0 I
L% Il = |
@—.}—m—lé—lhl—l
OJOJOYOXOJOLOLOJOYOIO)C)

AD1 PGNDIPGNDY AD2 AD2 BO2 BO2 PGND2B01 BO1

ofe
“
=

Pin Functions
o Symibol Reemar!
NO ¥
3 AT
+] A output
FTell tou
PGNDT T
Power GN
4 PGND1
5 AO2 e
;3 e A output?
7 BO2
- > o
g 8Os
] PGND2
= e Power GND 2
10 PGNOD2
n n
o 8 outputl
12 BO1
13 v
"
o Vi3 supply |23V v
15 FaME 1 A0
Bl 1
17 BNl 1 2
18 GND Small signal GND
STRY 1 *L * =standby UCI(‘p..lea nternal
Ve — Smad viona +|J = 5.5V
AN | chA input] / Jh".l pui-down 3t internal
AN | JchAimpu2 / 2000 pul-down ot .A:a.—.s
PMA 1 chA PWM ingut / 200k() pull-down 3t nternal
u VM1 Motor supply |25V = 135V

2

Figure 6-3. Second page of datasheet

The third page is also very important because it explains what
operating voltages will work with the TB6612FNG. For example, the supply
voltage for this H-bridge can be between 6 and 15V, which means VM1
must be connected to a supply voltage of 6V to 15V. The rest of the pins
that will be connected to power can have a value of -0.2 to 6V, which is

268

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

fine because the Arduino we are using will use 0 to 5V to control these
pins. AIN1, AIN2, BIN1, and BIN2 are used to control the direction of the
motor and will eventually be connected to a logical NOT circuit that will
turn a bit from 1 (+5V) to 0 (GND) or 0 (GND) to 1 (+5V), creating a motor
that will go clockwise (CW) or counterclockwise (CCW). The PWM pins
will control the amount of power the motor will have using a duty cycle

of 0 to 100% which will be represented by the Arduino program as a value
from 0 to 255. Also, on this page is the “operating range.” The values to pay
attention to here are the supply voltages both VCC and VM. Then the most
important value in this datasheet is the output current which is set to 1A
for each channel of this H-bridge, which means each motor can draw 1A
continuously without hurting this driver.

269

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

TBE612FNG l

Absolute Maximum Ratings (Ta = 25°C)
Characteristics Syral Rating Unit Rerarks
Ve &
VIN 2=
Vout 15
lout 1.2
Tout F I 2 208
(peak) 3.2 Mg Single puls
0.78 IC only
Poser dissipation 0.89 S0=50 t1=1.6 4% PO mounting
1.36 6.2=114 C 30 P8 monting
Operating temperature Topr 20- 85 <
Storage tesperature Tstg 55 - 150 b
Operating Range (Ta=-20~85C)
Characteristics Sy=bol Min Tve Vax Remar ks
Vee 5.5
Spply voltge 45 5 3
= = 1.0 WS
e 0.4 A Sow s
Swi (] 1
Input pin; |1, IN2,PAN_5TE Output pin; 01,02
> | -
1z 5.0 -
—O O
45% &4k
3

Figure 6-4. Third page of datasheet
The fourth page shows us how to use the H-bridge; for example, in
order to turn the motor CCW, AIN1 needs to be low (GND), AIN2 needs

to be high (+5V), PWM needs to be some voltage from 0.1V (motor low
power) to 5V (motor full power), AO1 is LOW (GND), and AO2 is HIGH

270

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

(+6V to +13V). Finally, there are some nice diagrams to show you what the
circuit looks like in the various states of this H-bridge.

TOSHIBA TB6612FNG
H-SW Control Function
Irput Qutput
m 2) STEY T ode
L Short brake
L o
L
L Short braks
L - =
L Short brake
5F 2
. . ” = (High inpedance) 9
WL HL WL L (High I":Nr“: Standby
H-SW Operating Description

To prevent penctrating current, dead time t2 and 14 is provided in switching to cach mode in the IC.

Figure 6-5. Fourth page of datasheet

271

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

The fifth page will show you the various characteristics of the H-bridge.

TOSHIBA TB6612FNG l

Electrical Characteristics (unless otherwise specified, Ta = 25°C, V=3V, VM=5V)

Characteristics Symbo Test Condition Win Typ Max Unit
deel 3} STEY=Vec=IV. V=SV 1.1 [LE] &
leotS 5V STBY=Veo=5 5V, V=5V 1§ 22
Supply current
i STE) p—— - - 1
uh
IASTE) — i
Vil Vees0. 7 = Vege0 2
at neut vol tage
ViL 02 Veo=0 3
. i Vi3V s 15 25
Control irgut current uh
n VIO - = 1
5TB) Vee=0u7 - Vez+02
Standby irput woltage ks
VIL(STH) 02 - Veo=0 3
IM(STE) ViN=3V 5 15 25
Standby input current uh
ILISTE) ViV - 1
Qutput saturating VaatiUs)t o= LA VereVide Sy = o8 0.7
ol Vaat(UsL 12 lowd JA Voo V=5 015 o2
. VMeVoute 15 1
Output |eakage current | uh
ILL} V= 15V Vout=OW -1
VR 1 1
Regenerative diode VF 1A
VL) 1 [X]
ow voltage detecting [. \ - L2
voltage Desigred value
Recover ing voltage wmAc - 22
L3 =
Designed value =
Response spee: ¥ =
Response speed i
Dead | HioL | Peretrationprotect time 50y
e |LoH Designed value) 230)
TS0 175
Designed value
TSD 0
5

Figure 6-6. Fifth page of datasheet
Skipping to the seventh page, we can see a typical application for this

H-bridge, which can be very useful when you are creating a PCB for this
H-bridge.

272

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

TOSHIBA TB6612FNG l
Typical Application Diagram

3—1||}—;

Note. Condensers for noise absorpton (C1. €2, C3, and C4) should be conmected as close as possible 1o e IC

F]

Figure 6-7. Seventh page of datasheet

Lastly, we get to page 8 which has the measurements of the H-bridge,
which is very useful when you need to make a footprint for a component.
Luckily, this H-bridge has several devices already created for us in Eagle, so
we will not have to recreate this footprint or symbol for this H-bridge.

273

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

TOSHIBA TB6612FNG
Package Dimennsions
$SOP24.P-300-0.65A Unit : mm l
24 13 _
RARAAARARRR
LT
g g
O i
jjﬂHH”HHHHH -
1 | 12
0.325TYP |i 0.2220.1 #10.13G)
0.65
B.3MAX
7.820.2

210.2
1.6MAX

|
S

0.4540.2

Weght: 0.14 g (1yp)

8
Figure 6-8. Eighth page of datasheet

Well, now that we know a bit more about this H-bridge, we can move
on to the fun part and create a motor driver board that we can use to create

the robot for Naticom.

274

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Chapter Project: Creating the First Prototype

Here, we are now at the start of a project; the first thing we will work on is
gathering the requirements for this project; then we will start to work on
the various parts to complete this project such as designing the H-bridge,
designing the chassis, printing the chassis, assembling the chassis, and
finally troubleshooting the first prototype.

Controlling Motors with Serial Commands

Now that you understand what an H-bridge is, we can visit our Naticom to
see if it has any projects for us to complete that require using the Arduino
to control motors. It does! So, our first steps are gathering the requirements
and creating the requirements document.

Requirements Gathering

Now, the customer has set up a meeting and has several requirements for a
robot controlled by the Arduino using serial communication; the Arduino will
drive two motors with the help of a custom H-bridge PCB. The client’s project
also requires that the user send the motor’s parameters in a comma-separated
format to the serial monitor (shown in Figure 6-9) as follows:

1,255,1,255

In this format, the first parameter is the direction of motor A, the
second parameter is the speed of motor A, the third is the direction
of motor B, and the fourth is the speed of motor B. The serial monitor
displays the information in this format:

Motor A
1
255

275

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Motor B
1
255

Note Comma-separated format is a very common way for data
to be passed and collected from the Arduino and many other
peripherals.

Naticom wants each of the comma-separated parameters to go to these
specific pins. The pins are 12, 3, 13, and 11. Another requirement is that
the final prototype needs to be configured on a custom chassis once the
hardware and software have been tested.

& com? - o ®
| Send

15:37:40.085 -> The Format is: MotoADir, MotoASpe,MotorBDir,MotoBSpe
15:37:40.119 >

15:37:45.406 -> Movor A

15:37:45.406 —> 1

15:37:45.406 -> 255

16:37:45.406 -> Motor B

15:37:45.406 -> 1

19:37:45.406 -> 255

[Autoscroll] Show tmestamp Newlne ~ | |9600baud Clear output

Figure 6-9. The user will type values for the direction and speed of
the motors into the serial monitor shown here

276

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Note When using the serial monitor, make sure that newline is
selected in the line ending parameter.

Now that you have notes for this project, we can configure them into a

requirements document.

Outlining the Software Requirements

The following are the software requirements:

Create a program that sends comma-separated data to
the Arduino to control the speed and direction of two
motors. The user should enter the data in this format:

1,255,1,255

The first and third parameters in the comma-separated
values are the direction of motors A and B, and the second
and fourth parameters are the speeds of motors A and B.

The serial monitor should output the data in this format:

Motor A
1

255
Motor B
1

255

The overall purpose of this program is to control the
speed and direction of two 6V motors.

277

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Now that we have the hardware and software requirements, we can create
the software’s flowchart. Figure 6-10 shows the flowchart for this project.

Back to Loop
Begin

No

Sarial.Available

Loop Begin Add to Value

Back to Loop
begin

Index++

Motor A + Value

Value

Motor B + Value

Value

Write to digital
pin

Write to analog
pin

Figure 6-10. Flowchart for this project
278

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Alright, the next section will cover designing the H-bridge for this
project.

Creating an H-Bridge PCB

First, let’s get all the circuits we will need for this PCB on the schematic
by using the “ADD” button. Configure it in the orientations seen in
Figure 6-11. For the parts used on this PCB, look at the Bill of Materials
found in this chapter’s source and look up each part using the “Found”
column.

el

Jde2 o Ll
T‘ u T)II‘I_T
e b b

= = S

ST = O

= = e}

e i O

Q

. O

X 1 L

Figure 6-11. Schematic layout

279

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Next, let’s add the nets to each of these components. See Figure 6-12.

i ' J
£2 _Lcl & I['q i —
-—w 1u @.1uF !1@.1.—’
GRD GRD GHD
IP3
pal 1 1~
- B2 :
B
PGNI Ty,
PGNI L
Bl .
-L_ : bl JP
PGNI 1 P :
PGND PWM P2 ____OO
) [Vl
L e I r—
i '..'.".. :
:."-\r'.l) O:
S SR

Figure 6-12. Add nets to the components

Now I want to explain what is happening in this circuit, mainly the
inverters for AIN1 and AIN2 (BIN1 and BIN2 have identical circuitry). If
AIN1 is HIGH (+5V), then AIN2 is LOW (GND); this is a logical not or an
inverter due to the pull-up resistor R9. When AIN1 is LOW, AIN2 will be
pulled to +5V, and if AIN1 is HIGH, the transistor will activate and force
AIN2 to GND. This allows us to control the direction of the motor with only

280

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

the use of one pin per motor instead of using two pins; this can be very
useful if you do not have a ton of GPIO (general-purpose input/output)
pins. You may also notice some capacitors on the +5V and VIN nets. These
are here to filter electrical noise as we do not want the H-bridge to act in an
unexpected way.

Next, go ahead and click the “Value” button for both of the two-pin
headers and update its value to “609-1317-ND.” Do this also for the seven-
pin header, but update its value to “WM4205-ND.” This will be used later
when you need to get the parts for this board, or you need to tell the PCB
manufacturer what parts to buy.

Now that the schematic is done, we can move on to laying out the
PCB. Here are the coordinates of each component and the size of the
current PCB. It is also very important to get the correct orientations of the
components, so make sure all the components are in the right orientation
and that all the yellow wires look the same as well. See Figure 6-13 for the
component orientations.

Table 6-1.

Component X Y Unit
U$1 400 500 Mil
C1 450 300 Mil
C2 325 300 Mil
C4 400 200 Mil
JP2 100 611.81 Mil
JP3 100 392.913 Mil
JP1 920 480 Mil
R1 650 600 Mil
R2 775 750 Mil

(continued)

281

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Table 6-1. (continued)

Component X Y Unit
R3 750 375 Mil
R4 775 250 Mil
T 650 750 Mil
T2 650 250 Mil
PCB 1000 1000 Mil

[@N
@
L |
=
 —
S
 —
o
o
L |

Figure 6-13. Configure the components like this

282

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Let’s move on to the routing of this board as it has a few very important
elements to it. You will notice there are two pins for each of the motor
pins (A01, A02, BO1, B02). This is not on accident; this is to ensure that
when the motors are encountering a load, the traces do not burn up, so
itis important to give these pins larger traces to allow more current to be
drawn (remember that the max current draw for each channel is 1A). Let’s
go ahead and add 24mil traces to A01 of JP2 to the A01 of the H-bridge
(connect A02 of JP2 to A02 on the H-bridge), and do the same for the B0O1
and B02 signals; only they attached to JP3. See Figure 6-14.

Figure 6-14. Connect A01, A02, BO1, and B02

283

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Now we can route those filter caps we talked about during the
schematic portion of this project. Connect +VIN of the 10uF capacitor to
+VIN of the 0.1uF filter cap. This will finally be connected to the +VIN pin
on the H-bridge (all of this using the 24mil trace). Switching to a 16mil
wire for the +5V routes. Let’s connect the 0.1uF cap’s +5V pad to the +5V
pins of the H-bridge (just remember you do not have to follow my routing
perfectly; just be sure not to short any of the traces). Next, connect the +5V
pad from the 1kohm resistor of the INV4 to the +5V pad of the 0.1uF filter
cap we just connected to the H-bridge. See Figures 6-15 and 6-16.

Figure 6-15. Connect VIN to the filter caps

284

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-16. Connect +5V

Now we are going to do something a little different. We are going to
use a “via” to pass a signal from the top of the PCB to the bottom of the
PCB; this will allow us to get under other routes that would otherwise
cause a short which would cause the H-bridge circuit not to work. See
Figure 6-17 if you want to see what a short would look like. We will start
with the resistor for the INV4 that we hooked up in the previous paragraph.
First, connect the +5V pad to the +5V header. See Figure 6-16. Switch
to a 12mil route. Connect the INV4 from the 1k resistor to the collector
of the transistor. This is the pull-up resistor we discussed earlier. Now
select the collector of the transistor, move the route close to the +VIN
route then place the route, next press the wheel button on your mouse;
this will automatically create a via (don’t worry if it is large or a square
shape); place the via on top of the route you just placed (you are now on
the bottom side of the PCB) and drag the route toward the INV4 pad of the

285

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

H-bridge. Press the wheel of your mouse again, and you will move back
to the top layer of the PCB, and you can connect to the INV4 pad of the
H-bridge. Now to make these vias smaller and of the correct shape, click
the “Info” button and select the via next to the transistor. For shape, select
“round.” For drill, select 13.77; if 13.77 is not an option, you can just type
13.77 into the drill text box. Do the same for the other via next to the INV4
pad of the H-bridge. See Figures 6-18 and 6-19.

Figure 6-17. This is a short and should always be avoided

286

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

1K

N~
— | =
22

-

< .

RS

INV4 INV4

Figure 6-18. Connect INV4

287

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

-

Via

Position

Diameter

Quter Layer Dam. | 29

Inner Layer Diam.

Dril

Shape

Layer

Locked
Stop i > 0)

Signal

Name

Net Class

Airwires hidden

Figure 6-19. Update the vias for INV4

Note You may find it difficult to select a via to get the Properties
menu. If you find yourself selecting the trace instead of the via, you
can cycle through the various components by right-clicking until the
via is highlighted and then selecting it with a left-click.

Now let’s connect the base of the transistor (N$17) to the base resistor’s
N$17 pad. Again, a via will be needed in order to avoid other routes. You

288

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

can use the same 12mil vias. Next, connect the INV3 pad of the resistor to
the INV3 header pin and then connect to the INV3 of the H-bridge. See
Figures 6-20 and 6-21.

INV4 INV4

Figure 6-20. Connect the N$17 using vias

289

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

INV3 INV3

Figure 6-21. Connect INV3

When you place a route, you may have to remove it because it
interferes with another signal or it is not in the most optimal position. This
is when the “Ripup” button comes into use, and trust me you will use it a
lot during the routing process of a PCB. See Figures 6-22a and 6-22b.

Befo_re Ripup

INV3

Figure 6-22a. Before the Ripup tool is used

290

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

After Ripup

Figure 6-22b. After the Ripup tool is used

Let’s move on to the other inverter circuit. Switch to a 16mil trace.
Then route the +5V pad of the resistor in front of the transistor to the +5V
pad of the H-bridge. Switch to a 12mil trace. Then take the INV2 pad of that
same resistor and connect it to the INV2 of the H-bridge and the INV2 of
the transistor. Next, connect the PWM1 signal from the header pin to the
PWM1 pad of the H-bridge. See Figures 6-23, 6-24, and 6-25.

291

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-23. Route +5V from R1 to the H-bridge

292

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

N
>
<
S
>
2
— -

Figure 6-24. Connect INV2 from R1 to T1

293

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-25. Connect PWMI1 from JP1I to the H-bridge

Stay on the 12mil trace and connect the N$15 signal of the transistor
to the N$15 of the resistor next to the transistor. Connect INV1 to the INV1
header pin. Then connect the INV1 pad of the resistor to the INV1 pad of
the H-bridge; this will require you to use a couple of vias to get past the
PWMI signal. Use the same specs for the vias as the other inverter circuit.
See Figures 6-26, 6-27, and 6-28.

294

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-26. Route N$15

295

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-27. Route INV1 to JP1

296

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

O
=
LL
o
—
©
©

B

Figure 6-28. Route the rest of INV1 to the H-bridge

Note While you have been routing, you may have noticed there is a
new menu bar at the top; this menu has a lot of cool features such as
routing avoidance settings, route shape, route width, via shape, and
via drill.

Now let’s connect PWM2 from the H-bridge to the PWM2 header using
a 12mil trace; again you will need to use a via, but this time you will not
need to switch back from the bottom because the header is on both sides
of the PCB. See Figure 6-29.

297

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

i

| INV1

PwM2 P \‘."‘1 2

(NS 1

Figure 6-29. Connect PWM2 from the H-bridge to JP1

Now we need to connect all the +VIN signals together; to do this,
switch to a 24mil trace and select the +VIN pad at the top of the PCB
(pin 24 of the H-bridge). Using a via, go from the top to the bottom of the
PCB, move through the center of the H-bridge, and use another via to
get back to the top of the PCB and connect to the other +VIN pads on the
H-bridge. Finally, connect the +VIN pad (pads 13 and 14 of the H-bridge)
to the header pin marked +VIN; you may have to use a via. These vias will
be much larger than the 12mil vias that we previously used; they will be
25.59mil vias. See Figures 6-30, 6-31, and 6-32.

298

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

B,
z
LL
N
=i
©
©
0
|_

AR
Figure 6-31. Connect the +VIN pin of the H-bridge to the header
pin (+VIN)

299

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

B2 properties

Via

Position
Diameter
Quter Layer Dam. | 4

Inner Layer Diam.

Layer
Locked

Stop (not applcable £ dril > 0)
Signal

Name +VIN

Net Clss 0 default

Airwires hidden

Figure 6-32. Make the routes 25.59055mils

That should do it for the routing, but there are a few more things to do
before we move on. It is always a good idea to make sure all your routes
have been made. To do this, click the “Layer Settings”; this will open a
menu that will allow you to hide layers of the PCB. See Figure 6-33. Go
ahead and select the “Hide Layers” button. You will notice that all your
hard work has disappeared; well not really, it is just hidden. See Figure 6-34.
Go ahead and click the “19 Unrouted” layer. If you see any yellow, this
means that you have a trace that needs to be routed; otherwise, your circuit
will not work correctly. See Figure 6-35. We have several traces that need

300

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

to be connected, and they are all GND. In order to make sure all GNDs are

connected, we need to create vias that will connect the GNDs together.

¥ A e
>ON AN B

@73
oSN

S 8

NGV Y

N\
)

B visible Layers ®
Fiter: | All Layers v
® #
® 16l Bottom :
@ 17 rads
® 18l ves
® 19 unrouted
® 20 [l Dimension
@® 21] tPhce
@ 22 bplace
® 22 torigins
® 24l borigns
& S5l thames
® 26l bMames
® 27l tvalues
® 28l bvalues
22 tStop
30l bstop
31 | tCream
32 W bCream
3P tFnsh
34l bFnsh
IS tGue
36 W bGhe
37l tTest
38 bTest
® 39 tKeepout
® 40l bKeepout
® 41l tRestrict
® 42 bRestrict
® 3 Restrict
44l s
45 [l Holes
46l ming
| New Layer ! | Show Layers l| Hide Layers |
| Layer sets v| | New Set || Remove Set |

=

—_

Figure 6-33. Hide all of the layers

301

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-34. Screen after all layers are hidden

302

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

2

B
7 .
PR
20
N v
7R
SE -
]
B v
BE b

shdnzsyy
EEEEE

Figure 6-35. Shows all of the unrouted traces

Go ahead and show all the layers by going to the “Layer Settings”
window and clicking “Show Layers,” then click “OK.” See Figure 6-36. Now
go ahead and click the “Via” button; add vias near the unrouted areas of the
PCB. See Figure 6-37. Now click the “Name” button and select one of the
new vias and name it “GND”; do this for each of the vias. See Figure 6-38.

303

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

0 Jisible Layers x

Fiter: | Al Layers

'] Harme
Ll e
16l Bottom
17l rads
1Bl ves
19 unrouted
20 Dmension
2 tPiace
22 bRlaca

23 todgins
24l borgns
23 tHames

2% bNames
27 @ tvaues
28 | bVakses
290 tswe
30 bstep
N roream
328 blream
BP trnzh
3 brsh
ISP teue
358 boue

5l mang

Hide Layers

Layer Sets v || Mew Set || Remove Set

Figure 6-36. Select “Show Layers” and click “OK”

304

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

B 2 Board - C\Users\Pc\Desktop\Motor Driver\Motor_Driver.bed - EAGLE 9.6.0 standard

Fle Edt Draw View Toos Library Options Window Hep
LHE ®B e @ B0 acaaagqoX «+ 0 ? SHE™N G

H Y e |l 16 sotom

~ 50mi {50 1000) |

Figure 6-37. Add some vias to the layout

305

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

=

Fie Edit Draw View Tools Lbrary Options Window Help
+sH=e B de @ BE QA QggaX « & DRI Bt
"‘ E'::'. Y Layer . 16 Bottom

50 mi (S50 750)

Figure 6-38. Name all of those new vias “GND”

We need to add holes at these coordinates: y-axis: 100mil x-axis: 900mil
and y-axis: 100mil x-axis: 100mil. To do this, click the “Hole” button and
place itin an open area on the PCB. Click the “Info” button and select the
hole. See Figure 6-39. For position, type 100 for the first value and 900 for
the second value. Then put the drill size 118.11024 and click “OK.” See
Figure 6-40. Do this for the second hole except the values will be 100mil and
100mil. See Figure 6-41. You may also have to move a via out of the way.

306

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

-

Fle Edt Draw View Took Library Options Window Help
LHE M o @ BMeaQaQaaeoX « - O
" 'Eff' Y Layer . 16 Bottom

50 md (150 900)

BE properties

Hole

Position

Cancel

8\

an

=
=\

Figure 6-39. Add holes to the layout

307

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

= Properties

B properties

Hole

Drill

Locked

Figure 6-41. Create a second hole

308

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Now if you see any text on the outside of the PCB, go ahead and move
it onto the PCB; just make sure it is close to the component it represents.
See Figure 6-42.

Figure 6-42. Move the header labels and the via that is interfering
with the second hole

Finally, the last thing we need to do is create some ground planes for
the PCB; this is very important as it will connect those GND vias together
so that we do not have any floating grounds. First, select the “Polygon”

309

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

button and select the origin of the PCB. See Figure 6-43. Now go ahead and
place a square along the perimeter of the PCB. If you need more precision
while you are placing this outline, you can hold the “Alt” key and you
should be able to make a close to perfect perimeter around the PCB; just
make sure you close the square where the PCB’s origin is. See Figure 6-44.
You will know that the polygon has been closed because a window will
pop up asking you to name the polygon. Name it GND. See Figure 6-45. Do
this for the bottom layer as well; just make sure you select the bottom layer
in the Layers selection box. See Figure 6-46. Finally, click the “Ratsnest”
button, and you will see that a top and bottom ground plane has been
added to your PCB. See Figure 6-47. You should check that you have no
unrouted traces.

310

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-43. Start to make the polygon on the top layer

311

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

8.1uF (1=
s B

Figure 6-44. Make sure the polygon ends at the origin

312

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-45. Name the plane GND

313

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

" ';-*'Y Layer: -lﬁao:tam (] +| width: |24 v

50 mil (0 0) |

Figure 6-46. Create a GND plane for the bottom layer

314

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-47. Click the “Ratsnest” button

You will notice that there is indeed some unrouted traces for GND; to
fix these, we need to reconfigure the traces for A01, A02, B01, and B02. See
Figure 6-48. Then add two vias between the two sets of signals and click
the “Ratsnest” button. See Figure 6-49. If you need to use a 12mil trace to
connect the new vias to the GND pads on the H-bridge. See Figure 6-50.

315

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-48. Redo the A01, A02, BO1, and B02 routes using the ripup
tool and the route tool

316

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-49. Add vias in between A01 and A02 and BO1 and B02

317

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-50. Add 12mil traces to connect the GNDs

Now you will need to send this board to be made; as I have stated
before, I use PCBWay quite often, and they work very well for me. You can
also get this board assembled by them which I recommend if you are a
novice at soldering surface mount hardware (SMT). Also, you will need to
extract the Bill of Materials. To do this, go to CAM Processor again, select
“Bill of Material,” then select your name and location for the file, and click
the “Export File” button. This will be a text document. If you are unsure,
you can download the content for this book and look under:

318

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Chapter 6\CH6_PCBs\driver with TB6621FNG\Gerber\CAMOutputs\
Assembly. When purchasing the connectors for this motor driver, make
sure you purchase these connectors:

2x609-1317-ND: This is the FCI two-pin header.

1 x WM4205-ND: This is the main connector for the
motor driver.

Both are Digi-Key part numbers.

Wow! That was a lot of work well done, but the job is not over yet; we
still need to create the first prototype of the robot chassis, which is the
subject of the next section.

Designing a Robot Chassis

Well, the wait is over; we need to make the 3D model that will be the
chassis we develop through the entire book. This is just the first version of
the chassis, but we still want to get it as right as we can. For this chassis, the
customer wants a three-wheeled robot controlled by an Arduino. Let’s go
ahead and get started on the 3D model.

1. Go ahead and open Fusion 360 and create a new
project; name it Chassis_v1.

2. Create a new component by right-clicking the
main component at the top of the browser. See
Figure 6-51. You can name that component
“Chassis.”

319

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

F Autodesk Fusion 3560

i R 8 "o~ @ Chassis_v1v16*
soLD SURFACE SHEET METAL TooLs

wo- @O FOMPE 85

CREATE ¥ WODIFY
<« BROWSER el
4
D £ Do [New Component
|> i Nard E Create Drawing
D - (§ Create Selection Set
m Rigid Group
=) Physical laterial
@ Appearance A
Properties
Export...
Save Copy As

Display Detal Control

@ ShowMHide v
& Show All Components
@ Show All Bodies

Opacity Control »

Find in Window
Find in Timeline

72 Do not capture Design History

Figure 6-51. Create a new component

3. Start a new sketch and create a rectangle 160mm by
140mm. See Figure 6-52.

320

ASSEMBLE *

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

160.00

ooorl

Figure 6-52. Create a rectangle

4. Extrude that rectangle out 5.08mm.

5. Create two 4mm holes for the caster wheel. They
should be 39.45mm apart and 15mm away from
the front edge of the chassis. See Figure 6-53.
Remember to use the distancing tool (press the “d”
key) to create the constraints in Figure 6-53. Also,
convert all non-essential lines to construction lines

“u_n”

by selecting the line and pressing the “x” key.

321

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

<« BROWSER Ll

4 © (b chassis_vivie
D %% o Settings ‘
[> @@ Named Views
D | orign
e @®

ol #-0 O Q- O @8

COMMENTS

Figure 6-53. Add the holes for the caster wheel

6. Extrude to the bottom surface of the chassis. This

will make two 4mm holes.

322

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

7. Let’s make a spot for the Arduino to go. We need
two holes again. Follow Figure 6-54. Remember
you want to make sure the rectangle and holes are
constrained. You can tell this sketch is constrained

because all lines are black.

4 ® lb Chassis_v1 v16

YT chossist [O)

Figure 6-54. Add the holes for the MEGA 2560 Pro

323

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

8. Extrude the two 4mm holes again to the bottom of
the chassis.

9. Flip to the bottom of the chassis and start a new
sketch. Draw two 10mm circles around the two
Arduino holes you already made. See Figure 6-55.

+ BROWSER L

A ©® (b crasss_vivis

{ @ SKETCH PALETTE -
¥ Options.
Conatruction
Lock At

Setch Gra

Snap

Sice

Show Profie
Show Pords
Show Dimensions.
Show Constrants

Show Projected Geometries

D88 8908/ F A

30 Skeich

Finish Skeich

Figure 6-55. Move to the bottom and create some circles that will
hide the screws from view

10. Extrude these 3mm into the chassis.

11. Make a 50mm chamfer &) €hamfer ¢ the front of the

chassis. See Figure 6-56.

324

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

. X
ToP

y

Figure 6-56. Add two 50mil chamfers

12. Go back to the top of the chassis and create a
rectangle to represent the battery holder and then
two more rectangles that will be holes for a zip tie.
See Figure 6-57 for the measurements.

325

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

@ [} Chassis_vivie
D

» -0 .- Chasnis:d -@

Figure 6-57. Add the holes for zip tie that will hold the battery

pack

13.

14.

326

Extrude the two small rectangles to the bottom of
the chassis.

Now let’s make the holes and the stand for the
H-bridge we created in the previous section. It is
easy to get these measurements as we created the
board. Use Eagle to get these distances if you want
some practice. See Figure 6-58. The platform is used
to make sure the PCB is stable.

[R I - T R I O~ I 8

i

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

O 398808 @@ A

Figure 6-58. Add the holes and support for the motor driver

15. Extrude the holes to the bottom of the chassis and
extrude the rectangle up 14.45mm. If you have
different standoffs, you should measure them and
use that value here instead.

16. Switch to the bottom of the chassis and create a
sketch around the holes you just extruded for the
H-bridge. 10mm holes will work. See Figure 6-59.

327

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Wl tHamed Views
i oron |
Q‘ © [EINIIEE © | @ SKETCH PALETTE =]

¥ Options

» CEEETY
» CH=T

Constructon
Lok AL
Sketch Grid
Snap

sice

Show Profie

AR08 a8F A

Show Points
Show Diranscas
Show Constrants

Show Projected Geometnes

O8 88

30 Sketeh

Finish Sketch

Figure 6-59. Add two more holes that will hide the screws from
view

17. Extrude the circles 3mm into the chassis.

18. Create a few more components named Motor_
Bracket_Left, Motor_Bracket_Right, Motor_Right,
and Motor_Left. See Figure 6-60.

328

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

<« BROWSER e/
40 ®
D %+ Document Settings
D B Named Views
D B Origin

Chassis:1

N ©

Motor_Bracket_Left:1
Motor_Bracket_Right:1

Motor_Right:1

VOO D
e @
ajujujai a)

Motor_Left:1

Figure 6-60. Create four more components

19. Select the Motor_Right component.

20. Create a rectangle 49mm from the back of the
chassis. See Figure 6-61 for all the measurements of
the motor. Where did I get these measurements? I
went to the distributer and looked at the datasheet
of the motor. Later, in this book, I will show you how

to import 3D models that have already been created.

Making this representation of the motor is nice
because it allows us to create a model around it.

329

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

d © (b chasssvivig
[£F Document Settings

[B HomedViews Z
(53 M Orgn | |
> ® () chassis | i iCCE N
[@ (O] Molor_Bracket_Left 1 I ¥ Options
13 () Motor_Bracket_Right 1 : Censtructon 3
b e @
— | Look At =
b @ () wotor_Lers |
: Sketch Grid %)
: Srap 2
I Shce a
: Shaw Profie]
I Show Points @
: Shaw Dumensions 2
| Shaw Constraints @2
o
I_ - Show Projecied Geometres (@)
: 30 Sketch @
|
=] | =
g | B Finish Sketch
i I
|
|
e
4
LEALL 4900

Figure 6-61. Create a rectangle for the right motor

21. Extrude the rectangle out 10mm.
22. Switch to the Motor_Left component.

23. Make the same drawing on the other side of the
chassis. Use the mirror tool, or you can just draw it
out again. See Figure 6-62.

330

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

A ® [} chasss_vivie

[£F Cocument Settngs

[W named views 3

Do W onge

D ® [chassis @ SHETCH PALETTE b
¢ ¥ Options

Comstruction

Look&1

Shetch Grid

e A

Srap

Skce

Show Profie

Show Pointe

Show Drensions

Show Corstraints

Show Progcted Geometnes

088880

30 Shetch

Figure 6-62. Create the rectangle for the left motor

24. Extrude the Motor_Left out 10mm.
25. Select the Motor_Bracket_Left component.
26. Create a sketch on the front face of the Motor_Left.

27. Use the outline tool to create a 0.03mm outline of
the front of the motor.

28. Use the trim tool to remove the bottom and top
pieces of the outline.

29. Use theline tool to create half of the bracket, and
then use the mirror tool to create the second half
of the bracket. Make sure it is fully enclosed. See
Figure 6-63. Extrude this -16mm.

331

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

d ® (5 chassavivie

D £ Oocument Setings. pACK|
[B NemedViews X g
3 i Orgn
0 ® () chassa i @ SKETCH PALETTE
PR @ Motor_Bracket_Leftt [O] ¥ Options
v () motor_Bracket_Fight) Construction <
[@ [wotor_Righes
_U Look At =
D@ () wMotorLert
Sketen Grg 2
3748
Snap 2
Sice ™}
1841 Show Profie =4
1 Show Feints @
R S e Y i o e
! Shew Drnensions (=]
=] | = Show Constraints =)
2 | -]
. 9525 !,] Show Projcted Geometries @)
=] X
=4 y f 30 Sketch a
101

I 12.70 b 11 11 Finigh Skalch

Figure 6-63. Create the outline of the left motor bracket

30. We need something to hold the motor in the bracket
from the front, so make a rectangle on the front of
the bracket. See Figure 6-64.

332

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

4 © [} Chesss vivie .
[## Document Semngs | BACK
[Wl Mamed Views X =

[Ml ongn

I ® () chassa i @ SKETCH PALETTE

PRCA B votor oocket Lot 10 v optons

I3 () Motor_Bracket Rignt1 i <

D @ [0 Moter_Right1 i .
ool

P ® () Mobor_Lert =
Sicetch Grid =]
Snap
Skee @
Shew Profie
Shew Points =]

(1841) Show Denensions (=]

Show Constrants
Show Projecied Geometries)
30 Sketch a

Finish Sketch

Figure 6-64. Create the front stop rectangle for the motor
bracket

31. Extrude out 2.5mm.

32. Make a small rectangle on the bottom of the bracket
that will allow full access to the shaft of the motor for
the wheel couple. See Figure 6-65.

333

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

4 @ (B Chassi_vivie
[£ Document Settings
[Wl HamedViews

4 B Orign
D © (D chassit { @ SKETCH PALETTE
V- N @ Motor_Bracket_Left1 [0 ¥ Options.
(1] {C) etor_Brackes Rignt1 Construction
P @ () uecwr_Right
Lock At
e Q Metor_Left:1
Saich Grid
Snap
Sace
Snow Profie
Show Fonts

Show Dimensions

Show Constrants

30 Sketch

Show Prapcied Geometries

‘ﬂl}ul}!
X

08 A8 @808 8@ A

Figure 6-65. Create a rectangle that will be used to make clearance

for the motor axle

33. Extrudeitup -1.84mm.

34. Make two 3mm holes in the center of each of the
wings of the bracket. See Figure 6-66.

334

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

d @ [} Chasss_vivie ——uy
D % Document Sesings | TOP
D B Nomed Views |
b onge
D © (J chassss 1 @ SKETCH PALETTE "
PN Motor_Sracket Let:t [O) ¥ Options
D (O ustor Sracket Right1 Corstructon <
g :D i Look At =]
Sketch Grid =]
Snap =]
Sice 2
Shew Profie =
Shew Ports (]
Show Dimensions]
Shew Constrants =4
Shew Projecied Geometres.)
30 Steten 2

Finish Skatch

Figure 6-66. Create the holes for the motor bracket
35. Extrude them to the bottom of the bracket. If you
must make the chassis invisible, that is fine.

36. Extend the back of the bracket by 10.03mm. Use the
extrude tool to do this.

37. Create another brace for the back of the bracket; this
will make sure the motor does not slip out the back
of the bracket. See Figure 6-67.

335

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

S s pney

j DS RO0EEEA

i
i

Figure 6-67. Create a rectangle that will hold in the back of the
motor

38. Extrude it out 2.5mm.

39. Extrude 0.03mm of plastic from the back of the
two braces at the front of the motor bracket. See
Figure 6-68. If you need to hide the motor and
chassis, that is fine.

336

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

4 © TR © :
[43 Document Setings FRONT
D B NamesViews X

¥ Orign
» PR

o O woommmient |
» eI
» R

)

() uetor_Left1

Figure 6-68. Cut 0.03mm from the front brace of the motor
bracket

40. Go back to the chassis component.

41. On the top of the chassis, create two 4.3mm holes
where the motor bracket wing holes are. You can use
the sketch of the motor bracket; just make sure you
select the top of the chassis as your plane; otherwise,
you may be drawing on the top of the motor bracket
which will not work. See Figure 6-69.

337

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

4 ® (I Chassavivie T
D 4+ Documert Setings

|
» CXERTE
» CYERTTT

08 8880880 A

i
g

Figure 6-69. Create the holes for the chassis that will hold the motor
bracket

42. Mirror these two holes to the other side of the
chassis. See Figure 6-70.

338

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

03338880/ AEA

i
L

Figure 6-70. Mirror these holes for the other motor bracket

43. Select these circles on the top of the chassis and
extrude into the chassis 3.43mm.

44. Select the Motor_Bracket_Left component and
sketch on the frontmost rectangle.

45. Sketch a small rectangle. See Figure 6-71.

339

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

4 @ (B Cossssvivie [
[£# Document Setiings | BACK

[W Hemed Views X

[T I T T o T T T

Finish Sketch

Figure 6-71. Make a small rectangle that will allow you to tighten the
set screw of the wheels

46. Cut (opposite of extrude) into the bracket -2.5mm.
47. Select the chassis component.

48. Create a center rectangle next to the Arduino holes.
See Figure 6-72 for the measurements.

340

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

ﬂ.
®
%]
%]
(w]
@
=
@2
@
@
m]
Finish Skekch

Figure 6-72. Create a rectangle that will be the support of the MEGA
2560 Pro

49. Extrude the rectangle out 14.45mm.

That was a lot of steps, and I have a few more things for you in this
section. I don’t just want to give you the measurements, I also want you to
learn how to take measurements. So here are a few examples of how [was
able to get the measurements of hole locations and object sizes.

Caster wheel:

341

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

i

inchiF

Figure 6-73. Get the width of one hole

342

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-74. Press the zero button without moving the calipers

343

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-75. Measure from one hole to the other

MEGA 2560 Pro:

344

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-76. Measuring the Arduino 1

345

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-77. Measuring the Arduino 2

346

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-78. Measuring the Arduino 3

347

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-79. Measuring the Arduino 4

Micro motor:

348

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-80. Micro motor measurement 1

349

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-81. Micro motor measurement 2

Now that you understand how some of these parts were measured, you
can measure other objects and get good at it. The next section will focus on
3D printing the chassis and motor brackets.

Assembly

Before we get started with the assembly of the chassis, please look at
the Bill of Materials for this chapter and make sure you have all the
components needed.

Now on to the assembly, gently take the 3D printed hardware off your
build plate. Use a painter’s spatula this will save you time and will be less
likely to break your build plate. Clean off any glue that may be on your
print before you try to assemble.

350

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

The first thing we are going to add onto the chassis is the M2.5 brass
inserts; this can be done with a hammer or with a vise. See Figure 6-82.

Figure 6-82. Press the four brass inserts into the chassis
Next, solder the wires (wires should be no more than 10” long) onto the

micro motor; make sure you try to avoid melting the plastic housing on the
back of the motor. See Figure 6-83. Do this for both motors.

351

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-83. Solder the motors

Now take one of the female to female wire and cut two 2” pieces and
solder one side to the power side (red wire) of the 9V connector, and the
other will be soldered to the GND (black wire). See Figure 6-84. Use some
heat shrink to make sure there is no exposed wire.

352

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-84. Create the power cable

Now crimp the other side of the 28 AWG wire with the FCI female
sockets. See Figure 6-85. Do this for all four wires.

353

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

.
A

Figure 6-85. Crimp the FCI sockets to the motor wire

(o))

Now insert these sockets into the blue FCI housing. Make sure the “+
wire in the second hole (right side) of the FCI housing.

Go ahead and do this for the second wire as well, except put it in the
first hole (left side) of the FCI housing. See Figure 6-86.

354

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-86. Put the FCI sockets into the FCI housing

Now go ahead and put the motor into the motor bracket. Be careful
with the wires as you don’t want to shear them off the motor. It is a snug fit,
but that is what we want. See Figure 6-87.

355

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-87. Put the micro motors into the motor brackets

Attach the motor brackets to the chassis, with the 2.5mm x 8mm
screws. See Figure 6-88.

356

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

SR

Figure 6-88. Attach the motor brackets to the chassis

Attach the motor driver and the MEGA 2560 Pro to the chassis, with
the standoffs. It is easier to add the standoffs to the chassis first and then
attach the components to them. See Figure 6-89.

357

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-89. Attach the motor driver and the MEGA 2560 Pro to the
chassis

Next, let’s attach the battery pack to the chassis. Use a zip tie to secure
it to the chassis. Make sure the 9V connector on the battery packis on
the right side of the chassis and that the batteries are in the holder. See
Figure 6-90.

358

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-90. Attach the 6V battery pack

Now attach the caster wheel to the chassis, using the M3 x 10mm
screws and 25mm standoffs. See Figure 6-91.

359

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-91. Attach the caster wheel

Next, attach the two wheels to the two motors, using the wheel couples
and wheel set. See Figure 6-92.

360

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-92. Attach the two 4” disk wheels; make sure you tighten the
set screws!

Connect the FCI connectors from the motors to the motor driver. See
Figure 6-93.

361

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-93. Attach the two motors to the two motor channels on the
motor driver

Now it is time to connect the wires from the motor driver to the MEGA

2560 Pro. Connect GND from the motor driver to the GND on the MEGA
2560 Pro. See Figure 6-94.

362

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-94. Attach GND from the motor driver to the GND of the
MEGA 2560 Pro

Next, wire the motor controller in this configuration.

363

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Table 6-2. Motor Driver Pinout

Motor Driver Pin MEGA 2560 Pro

GND GND

+5V +5V

+VIN +VIN

INV3 Digital Pin 12
INV1 Digital Pin 13
PWM2 Digital Pin 3
PWM1 Digital Pin 11

Now connect the positive side of the 9V connector to the +VIN of the
MEGA 2560 Pro, and finally connect the negative side of the 9V connector
to the GND of the MEGA 2560 Pro. See Figure 6-95.

364

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-95. Connect the 6V power from the battery pack to the VIN
on the Arduino and then connect GND from the 6V battery pack to
GND on the Arduino

And that is it! The first prototype chassis is finished as far as the hardware
is concerned; now it is time to tackle the software portion of this chapter.

Writing the Software

Now, we will move on to the software for this project. We need to
communicate with both digital and analog pins. For this project, we will

be interfacing data by means of serial communication, so we must send in
multiple sets of data, specifically the direction of motor A, speed of motor A,
direction of motor B, and speed of motor B. We need to use comma-separated

365

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

format to parse the data to their respective digital or analog pins. After that, we
need to display the data on the serial monitor in this format:

Motor A
1

255
Motor B
1

255

Listing 6-1 shows the code.

Listing 6-1. Code for the client’s project

const int fields = 4; // amount of values excluding the commas
int motorPins[] = {12,13,3,11}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

void setup()
{

Serial.begin(9600); // Initialize serial port to send and
receive at 9600 baud

for (int i; i <= 3; i++) // set LED pinMode to output
{

pinMode(motorPins[i], OUTPUT);
}

Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,Mo
toBSpe\n"); // \n is a new
// line constant that will output a new line

}
void loop()

366

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

{

if(Serial.available())
{

char ch = Serial.read();
if(ch >= '0" & ch <= '9") // If it is a number 0 to 9
{

// add to the value array and convert the character to an

integer
values[index] = (values[index] * 10) + (ch - '0");
}
else if (ch == ',") // if it is a comma increment index
{

if(index < fields -1)
index++; // increment index

}
else
{
for(int i=0; i <= index; i++)
{
if (i == 0)
{

Serial.println("Motor A");
Serial.println(values[i]);

}
else if (i == 1)
{
Serial.println(values[i]);
}
if (i == 2)
{

367

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Serial.println("Motor B");
Serial.println(values[i]);

}

else if (i == 3)

{

Serial.println(values[i]);
}
if (i ==0 || i ==1) // If the index is equal to 0 or 2
{
digitalWrite(motorPins[i], values[i]);
// Here we see a logical error

}

if (i == 2 || i == 3) // If the index is equal to 1 or 3
{

analogWrite(motorPins[i], values[i]);
// Here we see a logical error
}
values[i] = 0; // set values equal to 0
}
index = 0;
}
}
}

Notice that the code will run—with unexpected results. Look at the
initialization of motorPins, and you'll see that the array is out of order
with the format we were given: motor A direction, motor A speed, motor
B direction, motor B speed. This is one of those pesky logical errors, and it
brings us to the next section, debugging the Arduino software.

368

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Debugging the Arduino Software

Now that we have discovered the logical error, we need to fix it. Listing 6-2
contains the corrected array in bold.

Listing 6-2. Corrected code for project 1

const int fields = 4; // amount of values excluding the commas.
int motorPins[] = {12,3,13,11}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

void setup()

{

Serial.begin(9600); // Initialize serial port to send and
receive at 9600 baud

for (int i; i <= 3; i++) // set LED pinMode to output
{

pinMode(motorPins[i], OUTPUT);
}

Serial.println("The Format is:
MotoADir,MotoASpe,MotorBDir,MotoBSpe\n");

}

void loop()

{

if(Serial.available())
{

char ch = Serial.read();
if(ch >= '0"' &&% ch <= '9"') // If the value is a number 0 to 9

{
// add to the value array

369

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

values[index] = (values[index] * 10) + (ch - '0");
}
else if (ch == "',") // if it is a comma
{
if(index < fields -1) // If index is less than 4 - 1
index++; // increment index

}

else

{

for(int i=0; i <= index; i++)
{
if (i == 0)
{
Serial.println("Motor A");
Serial.println(values[i]);

}

else if (i == 1)

{

Serial.println(values[i]);

}
if (i == 2)

{
Serial.println("Motor B");

Serial.println(values[i]);

}
else if (i == 3)

{

Serial.println(values[i]);

}

if (i ==0 || 1 ==2) // If the index is equal to 0
or 2

370

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

{

digitalWrite(motorPins[i], values[i]);
// Write to the digital pin 1 or 0
// depending what is sent to the Arduino.

}

if (i ==1 || i ==3) // If the index is equal to 1
or 3

{

analoghrite(motorPins[i], values[i]);
// Write to the PWM pins a number between
// 0 and 255 or what the person entered
// in the serial monitor.

}

values[i] = 0; // set values equal to 0

}

index = 0;

}

At this point, I want to discuss the finer details of this code. The first thing
I'want to point out is where we parse the data to be sent to the correct pins:

if(ch >= '0"' &&% ch <= '9") // If the value is a number 0 to 9

{
// add to the value array

values[index] = (values[index] * 10) + (ch - '0");
}
else if (ch == ',") // if it is a comma

{
if(index < fields -1) // If index is less than 4 - 1

index++; // increment index

}

371

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

else
// This is where the data is passed to the digital
and analog pins

This part of the code first checks to see if an input character from 0 to 9
exists. If so, it converts the character type to an integer type by subtracting
by 0, which has an integer value of 48, and tells the microcontroller to see
this value as an integer instead of a character. Next, it checks to see if the
character is a comma. If so, it will check to see if the index is greater than or
equal to 3. If the value is less than 3, it will increment the index value. The
if-elseif statement handles any other values such as numerical values,
which is what the characters are converted to.

Next, [would like to discuss the parsing of the data to the digital and
analog pins and how we formatted the data on the serial monitor. The code
looks like this:

for(int i=0; i <= index; i++)
{
if (i == 0)
{
Serial.println("Motor A");
Serial.println(values[i]);

}
else if (i == 1)
{
Serial.println(values[i]);
}
if (i == 2)
{

Serial.println("Motor B");
Serial.println(values[i]);

372

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

else if (i == 3)

{
Serial.println(values[i]);
}
if (i ==0 || 1 ==2) // If the index is equal to 0
or 2
{

digitalWrite(motorPins[i], values[i]);
// Write to the digital pin 1 or 0
// depending what is sent to the Arduino.

}
if (i==1]]1==23)
// If the index is equale to 1 or 3

analogWrite(motorPins[i], values[i]); // Write
to the PWM pins a number between
// 0 and 255 or what the person entered
// in the serial monitor.

}

The for loop iterates through all the indexes (in this case, 0-3). The
first and second if statements and if-elseif statements are printing the
data to the serial monitor, which is where we get the format:

Motor A
1

255
Motor B
1

255

373

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Do you see an easier way of programming this format? (Hint: Use
switch.) After those if statements, we come to the code that separates the
data to its appropriate pin, which is what the company asked for, so the
format this code accepts is motor A direction (0 or 1), motor A speed (0 to
255), motor B direction (0 or 1), and motor B speed (0 to 255). Now that we
have the software sorted out, we can focus on testing the hardware.

Troubleshooting the Hardware

When debugging, first start with the software unless there is an obvious
issue with the hardware. For example, a wire is not connected to the
correct pin. If you copied the code straight from this book, chances are it is
not a software issue. Next, we need to make sure we are entering data into
the serial monitor correctly. Type 1,255,1,255 into the serial monitor and
press the “Enter” key. Also, make sure the serial monitor is in “Newline”
configuration at the bottom right of the serial monitor. Now if none of that
resolves your issues, we need to move on to checking the hardware.

The first thing to check with the hardware is that the power and ground
are not shorted. There is an easy way to check this. Disconnect all power
from the Arduino and motor driver by disconnecting the 6V connector
on the battery pack. Configure your multimeter to check for continuity.
Continuity will check to see if a signal is connected to another signal.
Check your multimeter’s user manual to see which setting you need to be
in to check for continuity; normally, it is a secondary test to resistance or
sometimes the diode test. Now take the positive lead of the multimeter
and put it on the positive side of the 6V connector (the connector that
should now be disconnected from the battery pack). Go ahead and put the
negative lead of the multimeter to the GND side of the 6V connector. If you
see 0ohms or hear a beeping, you have a short somewhere between the 6V
battery pack and the Arduino or even the motor controller. See Figure 6-96.
Now if you want to check to see if the Arduino has the short, disconnect
VIN and GND from the motor controller to the Arduino. See Figure 6-97.

374

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Connect the two leads from the multimeter to the 6V power connector. See
Figure 6-98. If you get a short still, then chances are the Arduino you have
is defective, or you have a wire connected incorrectly (this has a higher
probability of being the problem than the first case). If you find that the
short is not on the Arduino, then it must be on the H-bridge itself. Check
the H-bridge orientation on the PCB and make sure the first pin is where it
is supposed to be. See Figure 6-99. Next, check the soldering of the IC and
make sure there are no shorts between pins that should not be connected
to each other. See Figure 6-100. You can use the large connector and make
sure none of these are shorted as well. I hope this helped to isolate the
problem if your problem was a short between +VIN and GND. If you don’t
find a short between +VIN and GND but instead have a short from +5V to
GND, do the same exact steps, just instead of connecting the multimeter to
+VIN, connect it to +5V on the Arduino.

Figure 6-96. Check if there is a short between VIN and GND

375

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-97. Disconnect the VIN and GND from the motor
driver

376

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-98. Then check if there is a short between
VIN and GND

377

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-99. Make sure the chip is oriented in the correct
manner

378

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

't.
g
"
g
il !
)

-_

Figure 6-100. Check for any shorts on the H-bridge

Now if you do not have a short at all, chances are you just have
something wired incorrectly; make sure your wiring matches Table 6-1
found in the “Assembly” section of this chapter.

If all wires are correctly in place, make sure they are connected by
using a continuity test from each of the wire’s destination. For example,
make sure you are getting a short when you connect +VIN from the motor

controller (pins 13 and 14 of the H-bridge) to the +VIN of the MEGA 2560
Pro. See Figure 6-101.

379

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Figure 6-101. Make sure all the pins are connected where they should
be. VIN is just one example

Finally, you may need to make sure your motor controller is
manufactured correctly. If you did the soldering, then you can fix this
on your own, but if you had PCBWay or another board manufacturer
assemble your boards, you may want to make sure all the components are
on the board correctly and are the right parts.

Note If you need to, copy and paste the code from the “Debugging
the Arduino Software” section to the Arduino IDE to make sure
everything is correct.

380

CHAPTER6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Finished Prototype

Naticom should be very happy with the first prototype as it has all the
features that Naticom wanted. Figure 6-102 shows the final first prototype.

Figure 6-102. Final prototype

Summary

This was a very large chapter and covered a lot of old and new material.
Let’s review what we learned:

o Learned about what an H-bridge was and how it is used

o Learned about gathering requirements from a company

381

CHAPTER 6 ROBOT ENGINEERING REQUIREMENTS: CONTROLLING MOTION

Learned how to create a schematic and reinforced skills
learned in Chapter 5

Learned how to create a multicomponent 3D model

Learned how to take measurements of various pieces of
hardware

3D printed and assembled a 100% custom chassis
Learned how to control motors over the serial monitor

Learned how to troubleshoot hardware and how to find
continuity issues within a circuit

Exercise

382

Create your own 3D printed wheel that will still
connect to the aluminum motor couple. Be creative
as really you can make almost any kind of wheel you

want.

CHAPTER 7

Final Project PCB

Moving into the major project for this book will not be easy as it will
involve a lot of different pieces, the first of which is the PCB for the MEGA
2560 Pro Arduino board. In this chapter, we will explore what it takes to go
from a requirements document to a finished PCB. Do not get discouraged
and always know that the final PCB can be downloaded, so that you can
review it and compare it to what you are currently doing. Like before, not
everything will be shown in this chapter for creating the schematic or
laying out the PCB, but anything that is new will be explained, so that you
don’t get lost in the schematic or layout because compared to the other
schematics in this book, it is the largest and most complex, which will lead
me to the next item on the agenda, creating different schematic pages.

Creating Schematic Sheets

We have not covered sheets yet; they are very easy to use. All you need to
do is turn on the sheets window (if it is not already on); to do this, right-
click anywhere on the menus of the schematic page, and a window will
pop up. Select the “Sheets” option, and the Sheets window will appear.
See Figure 7-1. Now to make a new sheet, all you must do is right-click

a sheet and select “New” from the pop-up window. See Figure 7-2. That
about does it for Sheets; let us get into the project and see what we will be
making.

© Harold Timmis 2021 383
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_7

https://doi.org/10.1007/978-1-4842-6852-0_7#DOI

CHAPTER 7 FINAL PROJECT PCB

L CAlleard PAAD: ts\EAGLE\projects\untitled.sch - EAGLE 9.6.0 standard

yjectshuntitled.sch - EAGLE 9.6.0 standard

| Q

| %

| & B ®
@ ®

hB
WA
o 2
2 3
-

+ @

Bz B1

Figure 7-2. Right-click a sheet and select “New”

384

CHAPTER 7 FINAL PROJECT PCB

Final Project: NatBot

The NatBot product is an open source robot that will allow students or
professionals to gain experience with robots. Naticom wants you to design
and build this product to their specifications.

The NatBot is a complex robot that will require a PCB to be developed,
3D hardware to be designed and printed, and lastly software needs to be
created to control and receive information from the NatBot. Let us take a
deeper look at the requirements in the sections that follow.

Requirements Gathering (PCB)

Naticom has put together a requirements document for each phase of the
NatBot. They are PCB, 3D model, software, and finally hardware/software
integration. For this chapter, we will be focusing on the requirements for
the PCB which are the following:

e Needs to run on four independent wheels that can be
controlled individually.

e Needsto be able to sense acceleration in X, Y, and Z
directions.

e Must use arechargeable battery, preferably a single-
cell Li-Poly battery, and the battery must be able to be
charged on the NatBot via USB.

e« Must be able to send and receive information over
Bluetooth.

e Must be able to detect objects in front of it at a range of
1.5in to 25in and must be able to work in sunlight.

e« The robot must be able to run for 20mins.

385

CHAPTER 7 FINAL PROJECT PCB

e The robot must have a temperature sensor with a
temperature sensing range of 0 to 100C with a +/- 5C
accuracy.

e Therobot needs an OLED display to give some feedback
as to what the robot is doing. Must be around a 1in screen.

e Receive GPS information and store it on an onboard SD
card.

o Therobot may need to have some breakouts for future
hardware/software updates.

Alright, those are not all very specific requirements, but they are
enough for us to start imagining what this PCB would need to fulfill these
requirements. In the next section, we will dive into the requirements and
lay out a plan to meet each of them.

Outlining the Hardware Requirements

Alright, so we have several requirements; let us go through each bullet
point and put together a road map that will lead us to success:

e Needs to run on four independent wheels that can be
controlled individually.

This one is relatively straightforward; the NatBot
requires four wheels that will steer independently. This
can be accomplished using some geared DC motors and
maybe some Servos to turn the wheels.

¢« Needs to be able to sense acceleration in X, Y, and Z
directions.

Another straightforward request! We can use an
accelerometer to meet these requirements; there are plenty
of good accelerometers that are inexpensive and effective.

386

CHAPTER 7 FINAL PROJECT PCB

Must use a rechargeable battery, preferably a single-
cell Li-Poly battery, and the battery must be able to be
charged on the NatBot via USB.

This is also straightforward but will still be difficult
because we have so much hardware to power, and a 3.7V
2Ahr battery is still limited. We will need to use a couple
of boost regulators to power the various systems of the
NatBot. For example, we will need a separate regulator
for the microcontroller, the motors, and the servos as they
will run on different voltages. The charging circuit is very
straightforward as there are several circuits we can use.

Must be able to send and receive information over
Bluetooth.

Again, this is a pretty simple request; we can use an
RN-42 Bluetooth module that will connect to the
Arduino via UART and fulfill this requirement.

Must be able to detect objects in front of it at a range of
1.5in to 25in and must be able to work in sunlight.

Alright, this one could have multiple answers, but
because the product owner wants the device to work in
the sunlight, an ultrasonic sensor would probably work
the best as it does not require any light to determine
distance and is also affordable.

The robot must be able to run for 10 to 20mins.

This is more of a power requirement than anything
else. We just need to calculate the current draw of
each device we choose and make sure it falls into the
threshold 10 to 20mins.

387

CHAPTER 7

388

FINAL PROJECT PCB

The robot must have a temperature sensor with a
temperature sensing range of 0 to 100C with a +/- 5C
accuracy.

Okay, here is another sensor for the robot that will be
easy to furnish. There are many temperature sensors
we can choose from, and many of them check all the
boxes of this requirement.

The robot needs an OLED display to give some
feedback as to what the robot is doing. Must be around
a lin screen.

This can be tricky to find, but there are a lot of drop-in
LCDs that we can use to fulfill this requirement.

Receive GPS information and store it on an onboard
SD card.

This requirement is straightforward as well; we will
probably use a drop-in GPS module that will only

require us to route a single connector.

The robot may need to have some breakouts for future
hardware/software updates.

We will need to make sure we add some duplicate
headers to the PCB so that the users can add their
own hardware if needed.

Okay, now that we have a good idea as to what we
will need to do in order to fulfill these requirements,
we can start to talk about the actual hardware we
are going to implement and how we will implement

each piece of hardware.

CHAPTER 7 FINAL PROJECT PCB

Creating the NatBot PCB

In this section, I want to go over creating the PCB’s dimensions because
there are a few new things that need to be explained. Figure 7-3 shows the
dimension layer of the NatBot; you will notice the additional holes that are
used to pass wires from the servo motors and the DC motors to the main
board.

Figure 7-3. Final board dimensions

Let us look at how to make these four rectangles into the PCB

dimensions.

1. Create a new schematic and board file and name it
NatBot v1.0.

2. Open the board file in Eagle.

3. The size of the NatBot will be 160mm by 100mm,
which is the initial board size that Eagle starts with,
so you should not have to change these dimensions.
See Figures 7-4 and 7-5.

389

CHAPTER 7 FINAL PROJECT PCB

B properties 72
Line
From 0 0
o G 1.]
Length 160
Angle [o |
Width [o =
Style |conl:nuous -
CGp Itound ¥
Layer - 20 Dimension -
Curve [o |
Locked O

] oK |[Cancel][Apply]

Figure 7-4. Horizontal length

& properties b4
Line
From [0 [f 100 |
To oo]
Length | 100 |
Angle [270 |
Wwhdth [0 |
Style |contnuous o
Cap | round v
Layer i 20 Dimension vJ
Curve]—6 |
Locked O

o J)Comen J o

Figure 7-5. Vertical length

390

CHAPTER 7 FINAL PROJECT PCB

4. Select the “Rect” function. See Figure 7-6.

Figure 7-6. Select Rect from the functions menu

391

CHAPTER 7 FINAL PROJECT PCB

5. Select the Holes layer. See Figure 7-7.

#¥ 2 Board - C:\Users\Pc\Documents\EAGLE\projects\untitled.brd - EA

Fie Edt Draw View Tools Library Options Window Help
s He B g @ 8
> " Y I Layer: . 45 Holes v I

Figure 7-7. Select the “Holes” layer

6. Left-click within the board perimeter and create a

rectangle. Do not make it too large. See Figure 7-8.

Figure 7-8. Add a rectangle to the layout

392

CHAPTER 7 FINAL PROJECT PCB

7. Create three more of these rectangles. See Figure 7-9.

Figure 7-9. Add the rest of rectangles to the layout

8. Click “Info” and select the bottom-left rectangle.
Enter in these values. See Figure 7-10.

S Properties
Rectangle
From
To
Wwidth
Height

Angle

Layer

Locked

Apply

Figure 7-10. Dimensions of the bottom-left rectangle

393

CHAPTER 7 FINAL PROJECT PCB

9. Here are the top-left rectangle values. See Figure 7-11.

= Properties X
Rectangle
From 19.05] 86.36
To 36,83 |[96.52
width
Height
Angle 0
|_| Mirror
Layer B 45 Holes -
Locked .
oK | Cancel | | Apply

Figure 7-11. Dimensions of the top-left rectangle

10. Here are the top-right rectangle values. See Figure 7-12.

B properties X

Rectangle
From 114.3 86.36

To 130.81 96.52

Width
Height 10.16
Angle 0

) Mirror
Layer . 45 Holes
Locked L

oK I Cancel | Apply

Figure 7-12. Dimensions of the top-right rectangle

394

CHAPTER 7

11. Here are the bottom-right rectangle values.
See Figure 7-13.

= properties »
Rectangle
From 114.3 3.81
To 130.81 13.97
Width
Height 10.16
Angle 1]
Mirror

Layer . 45 Holes >
Locked |

|- Cance 1(Apply .

Figure 7-13. Dimensions of the bottom-right rectangle

12. Now we just need to add dimension lines to each
of the rectangles. To do this, select the “Line”
function and trace around each of the rectangles.
See Figures 7-14 and 7-15.

f

ERC DRC
v
!

Figure 7-14. Select the Line function

FINAL PROJECT PCB

395

CHAPTER 7 FINAL PROJECT PCB

Figure 7-15. Add the outline to each of the four rectangles

13. That should do it; the final product should look
something like this. See Figure 7-16.

Figure 7-16. Final dimension layout

396

CHAPTER 7 FINAL PROJECT PCB

Alright, now that that part is squared away, we can take a look at the
ground planes for the NatBot. This will be a little different as we have an
antenna that cannot have anything under it; this is so there is no distortion
in the signal. Let us take a look on how to accomplish this.

1. Select the “Polygon” function, select the tKeepout
layer, select the right-angle trace, and select a
0.254mm as the trace width. See Figure 7-17.

Layer: .39t<eepou v] * | Width: 0.254|

m (7.62 67.31)

Figure 7-17. Select the Polygon function and use these perimeters

2. Create a polygon like the one shown in Figure 7-18.

Figure 7-18. Add a top layer keepout zone under the Bluetooth
antenna

397

CHAPTER 7 FINAL PROJECT PCB

3. Do the same for the bKeepout layer.

4. Now select the “Polygon” function again, and start
to make the top GND plane, but once you get to the
keepout zone, go around it. See Figure 7-19.

Figure 7-19. Route the ground plane around the keepout zones

5. Do the same for the bottom ground plane.

6. Thatwill do it for the ground plane. One thing to
make sure is that you do not clip out any used pins
with the keepout zone.

398

CHAPTER 7 FINAL PROJECT PCB

That sums up all the new techniques we need in order to create the
NatBot. The next section will cover the new hardware for this project, what
the schematic should look like, and finally how each of the components
should be routed.

Hardware Explained: The NatBot PCB

In this section, we are going to explore the hardware that we will use to
fulfill all the requirements of the NatBot project. This will also include the
schematic and routing of the various pieces of hardware. All the knowledge
you learned in the previous chapters will be used here; if there is anything
new to explain, it will be in the next section of this chapter. If you find that
you are stuck, you may want to look at Chapters 5 and 6.

DC Motor

Description:

We will be using a geared micro motor at 180 rpm that has a no-load
current of 20mA; these motors will meet all requirements by the product
owner. The following link will direct you to the seller of this product:

Micro DC Motors

Schematic:

There are four of these motors, so we will need to use two H-bridges
to control all four motors. We will also need four PWM outputs and
four regular digital outputs. Figure 7-20 illustrates the schematic for the
H-bridges.

399

https://www.pololu.com/product/2209

CHAPTER 7 FINAL PROJECT PCB

B[] I T

Figure 7-20. H-bridge and motor header schematic

Layout:

The layout for the H-bridges is much like the layout of the previous
chapters’ H-bridge. One thing to be concerned about is if you have other
signal wires under the H-bridge because it can spike and cause noise on
signal lines that can cause problems with other circuits. Figures 7-21A
through 7-21F illustrate the layout of both H-bridges and motor connectors.

¢
10uf , 20V |

e R

E iZ1)
N RIZ_GR15

P

Figure 7-21A. Bottom H-bridge configuration

400

CHAPTER 7 FINAL PROJECT PCB

I“\']
@

10uf , 24V fad o

"__'l "“"_'1.; _lT::.[_ _1Tl
l;\ o

Figure 7-21B. Top H-bridge configuration

Figure 7-21C. Bottom-left motor header

401

CHAPTER 7 FINAL PROJECT PCB

Figure 7-21E. Top-right motor header

402

CHAPTER 7 FINAL PROJECT PCB

Figure 7-21F. Bottom-right motor header

10 on MEGA 2560:
M1PWM D44
MI1DIR1 D42
M2PWM D46
M2DIR1 D40
M3PWM D12
M3DIRI D25
M4PWM D13
M4DIR1 D26

403

CHAPTER 7 FINAL PROJECT PCB

Servo

Description:

We will be using a micro servo for our robot because we need it to be
able to power four of these at the same time, and larger servos require a lot
of power; a simple hobby servo can draw 1 to 2 amps which is quite a bit
for our tiny robot. The GH-S37D micro servo is perfect for our applications
as they are small and require a lot less power >300mA to start and to run
around 40mA with no load. One thing to also be careful with is the torque
and strength of the servo motor. We cannot make the apparatus that holds
these servos too heavy, and the robot itself must not be too heavy as the
servo motors will have a hard time turning the wheels of the robot. A lot of
design will need to go into figuring out a suitable mount for these servos.

Micro Servos

Schematic:

The schematic for the four servos is very simple, just a header with
GND, +6V, and signal; also, adding a 0.1uF capacitor to lower the noise is a
good practice. See Figure 7-22.

404

https://www.amazon.com/YoungRC-Aeromodelling-Aircraft-Direction-Helicopter/dp/B082SM99HL/ref=pd_ybh_a_4?_encoding=UTF8&psc=1&refRID=T7SX3BXNQZVMTJSHWTQ8

CHAPTER 7 FINAL PROJECT PCB

Figure 7-22. Servo header schematic

Layout:

The layout for the servos needs to be a bit strategic because both the
DC motors and the Servos need to be in the same area, and we need an
area for the servo motor wires to come up through the PCB and the chassis.
We also need to make sure we do not put any Servo signal wires under any
high noise hardware such as the H-bridges. Figures 7-23A through 7-23E
illustrate the layout of the Servo headers and the connection to the MEGA
2560 Pro.

405

CHAPTER 7 FINAL PROJECT PCB

Figure 7-23B. Top-left Servo header (Servol)

406

CHAPTER 7 FINAL PROJECT PCB

JPH

(a3 W)
ToOV

Figure 7-23D. Bottom-right Servo header (Servo4)

407

CHAPTER 7 FINAL PROJECT PCB

SERVEL SERVE3

Figure 7-23E. Servo headers connected to the MEGA 2560 Pro

10 on MEGA 2560:
SERVO1 D4
SERVO2 D5
SERVO3 D6
SERVO4 D7

408

CHAPTER 7 FINAL PROJECT PCB

Accelerometer

Description:

The accelerometer is a very cool piece of hardware that allows you to
detect acceleration in the X, Y, and Z plane. The particular accelerometer
we will be using is an ADX1.362; this accelerometer will allow us to detect
certain acceleration, for example, if the robot flips over or if the robot
crashes. The ADX1.362 works with 3.3V microcontrollers, so since the
MEGA 2560 Pro is a 5V device, we will need to use a level shifter to make
sure we do not fry the ADXL362. The ADXL362 uses SPI, which means we
will need to connect it to the MEGA 2560 Pro’s SPI pins and a CS pin.

ADXL362

Schematic:

There are a few things to consider for the schematic. One is that there
is a level shifter that connects to MOSI, SCK, and CS. You may notice that
MISO is not connected to the level shifter; this is on purpose as the MEGA
2560 is the master device, and the ADXL362 is the slave device, hence the
name Master In Slave Out (MISO). A filter cap is added to remove any
noise from the 3V3 power bus. See Figure 7-24.

|
HEEN

| (=2 S R

EREFTFET
|

g -

Figure 7-24. Accelerometer schematic with level shifter

409

https://www.digikey.com/product-detail/en/analog-devices-inc/ADXL362BCCZ-RL7/ADXL362BCCZ-RL7CT-ND/3758437

CHAPTER 7 FINAL PROJECT PCB

Layout:

The layout is pretty uneventful other than the fact that the pads of the
ADXIL362 are very small, which means we need to use smaller traces, so
we don’t short any pins together. For that, we will be using 12mil traces for
the signal wires and 16mil traces for the 3V3 power bus. The level shifter
is much easier to route as it has larger pads and has plenty of room in
between the pads. See Figure 7-25.

L~
(2]
®
o
d
=
3
r~

Figure 7-25. Accelerometer layout

I0 on MEGA 2560:
MOSI D51
MISO D50
SCK D52
CS D27

410

CHAPTER 7 FINAL PROJECT PCB

Charging Circuit

Description:

The charging circuit is actually the same circuit found on the SparkFun
LiPo Charger Basic; the only difference is how it is connected to the
boost regulators. The IC we are using to charge the 2000mAh battery is a
MCP73831 which is a single-cell charger for Li-Ion and Li-Poly batteries.
Since we are going to use a single-cell Li-Poly battery, this is the perfect
charge management controller. We will keep it set at a charge rate of
500mAh, which means if the 2000mAh battery is completely depleted, it
will take 4 hours to charge. It is also important to note that you should look
at the datasheet of each of these ICs for layout guidelines.

MCP73831T

Schematic:

The schematic is pretty simple; you charge the battery over USB at
500mAh, which is set by the 2.0k resistor on the programming line (Pad 5).
Also, S1 is used to send the VCC line to the VCCP which is connected to the
two boost regulators, or it will disconnect power from the boost regulators
for charging purposes. See Figure 7-26.

.. N

useag| §
g
l
i
1

-_;:’F

Figure 7-26. Charge circuit schematic

411

https://www.digikey.com/product-detail/en/microchip-technology/MCP73831T-2ACI-OT/MCP73831T-2ACI-OTCT-ND/1979802

CHAPTER 7 FINAL PROJECT PCB

Layout:
The layout is very similar to the recommended layout in the datasheet
minus the vias for heat dissipation. See Figure 7-27.

JP1®

Figure 7-27. Charge circuit layout

Buck/Boost Regulator

Description:

There are two boost regulators on the NatBot; one is for stepping up
the 3.7V single-cell Li-Poly battery to 6V for the DC motors and the servo
motors, and the other is used to power the MEGA 2560 Pro. The first boost
regulator is the S18V20F6 regulator which will boost our 3.7V to 6V for the
DC motors and the servo motors and will allow for up to 2A to be drawn.
The second boost regulator is a S9V11MA and can be adjusted using a
small screwdriver. The input for this will be the batteries’ voltage, and the
output will be 8V at about 1.5A. Setting this should be done on a solderless
breadboard with a meter reading the output voltage.

412

CHAPTER 7 FINAL PROJECT PCB

8V Boost Regulator
6V Boost Regulator

Schematic:

This is a very simple schematic for the 8V regulator as it is just a five-
pin header with a 0.1in pitch. The 6V regulator requires a special footprint,
which can be found in the course materials for this book and was supplied
by SnapEDA. Both enables for the regulators are broken out, and the
PG (Power Good indicator) is also broken out and is very useful to test
brownout conditions for the 8V regulator. See Figure 7-28.

Figure 7-28. Buck/boost schematic

Layout:

The layout for the 8V regulator will require us to route VCCP to
VIN, and VOUT is connected to the VIN of the MEGA 2560 Pro. GND is
connected to the ground, and EN and PG are broken out on a header.
For the 6V regulator, VIN is connected to VCCP, and VOUT is connected
to each of the micro motor 6V pins and each of the 6V Servo pins. GND
is connected to the ground, and the EN is broken out to a header. See
Figures 7-29A and 7-29B.

413

https://www.pololu.com/product/2869
https://www.pololu.com/product/2575

CHAPTER 7 FINAL PROJECT PCB

Figure 7-29A. 6V boost regulator layout

414

CHAPTER 7 FINAL PROJECT PCB

Figure 7-29B. 8V boost regulator layout

10 on MEGA 2560:
8V regulator VOUT VIN

Bluetooth

Description:

We will be using the RN-42 for our Bluetooth communication module.
It will allow us to control the robot with another application. The RN-42
is a UART Bluetooth module that has four connections to the MEGA 2560
Pro. The first line is 3.3V; this is power from the linear regulator on the
MEGA 2560 Pro. The second is an RX which will receive messages from
our program and then relay those messages to the MEGA 2560 Pro, for
example, when we want to tell the robot to turn. The TX will transmit data
back to our program, for example, sending GPS data back to the program.
There is a level shifter on the TX; this is so when we send data to the RN-42,
we don’t damage it as it cannot handle the 5V signal from the MEGA
2560 Pro. The reset line for the Bluetooth module is also broken out for

415

CHAPTER 7 FINAL PROJECT PCB

debugging purposes. The Bluetooth module will use Seriall. You may
wonder why this is connected to Seriall and not Serial0; this is so we can
program the MEGA 2560 Pro without having to disconnect anything from
the TX and RX lines.

RN-42

Schematic:

This is a pretty easy schematic because the RN-42 can be found in
the SparkFun library. Remember to flip the TX and RX signals at the
microcontroller’s headers. See Figure 7-30.

-

= = E
1] = L L
u] £ Teel ef
il -
" X ls 5] L
: = 3)
24 |28 ! < '-i* — AN —
5 e 19 J_ il

Figure 7-30. Bluetooth schematic

Layout:

The footprint for the RN-42 is a bit different than the actual footprint
we will use; this can be changed, or if you are like me, you can ask the
board manufacturer to put Kapton tape over the pads to make sure they
don’t short to anything, and also make sure you do not route these pads as
the GND will then be right under the antenna and may cause intermittent
issues. Also, you will notice a keepout zone around the antenna; this just
means no routes can go under the antenna. See Figure 7-31.

416

https://www.mouser.com/ProductDetail/Microchip-Technology/RN42-I-RM?qs=L6Bu%2BmzjsgnB3cElw8OrzA==&gclid=CjwKCAjw4rf6BRAvEiwAn2Q76r17s-Md38pD4WdZfoES1u2ni1Yy5-n__HWJM3DQlKjDlW2k6K6xNhoCbIIQAvD_BwE

CHAPTER 7 FINAL PROJECT PCB

Figure 7-31. Bluetooth layout

10 on MEGA 2560:
RX BT D18

TX_BT D19

Ultrasonic Sensor

Description:

This sensor will allow us to detect items in front of the robot; the sensor we
will be using is the Parallax PING Ultrasonic sensor. This sensor uses a digital
line to pulse out a high-frequency sound that sound bounces back and based
on the amount of time it takes for the sound to get back is the distance of the
object in front of the robot. The PING can sense objects from 2cm to 3m.

417

CHAPTER 7 FINAL PROJECT PCB

Parallax Ping Ultrasonic Sensor

Schematic:
The header will have three pins; they are 5V, GND, and U_SIG. The
only thing extra is a filter capacitor for noise reduction. See Figure 7-32.

s
I -
— —i
TR . W—
|
JP14
o\ '_‘_O
U_SIG 20
DNL

Figure 7-32. Ultrasonic schematic

Layout:
This device needs to sit at the front of the robot and not too close to the
RN-42 as we do not want to interfere with the antenna. Other than that, it is

a pretty easy layout. See Figure 7-33.

418

https://www.robotshop.com/en/parallax-ping-ultrasonic-sensor.html?utm_source=google&utm_medium=surfaces&utm_campaign=surfaces_across_google_usen&gclid=CjwKCAjw4rf6BRAvEiwAn2Q76rCSaoDMFl-usX8L5lTE3GndL7Og_Vtl8BGollabKJ1qgg5NJNgdkhoCtn8QAvD_BwE

CHAPTER 7 FINAL PROJECT PCB

Figure 7-33. Ultrasonic layout

10 on MEGA 2560:
U_SIG D22

Temperature Sensor

Description:

We will be using a TMP36 for our temperature sensor, which can
read a range of temperatures from -40C to 125C; it uses an analog input,
which means we will scale this range from 0 to 1023 and should get a
good accuracy +/-2C. With a simple equation, you can calculate the
temperature: C = 100 * (Voltage) - 50.

419

CHAPTER 7 FINAL PROJECT PCB

TMP36

Schematic:

Itis a very simple circuit; all it requires is the TMP36 and a filter cap.
The TMP36 has three pins; they are 5V, GND, and signal. The signal line
will go into the A0 pin of the MEGA 2560 Pro. See Figure 7-34.

LL

Q| =
Sl -
{ Q
e1V4 II GND
U7
5\ 1 Nele
| vout |—IME36
G_.N_D__ GND

Figure 7-34. Temperature sensor schematic

Layout:

The TMP36 is a pretty small package, so it does not take up too much
board space; also, its routing is very easy as it only has three pins. See
Figure 7-35.

420

https://www.adafruit.com/product/165?gclid=Cj0KCQjwhb36BRCfARIsAKcXh6H5mUj-XKBvsFpV-xYuN2Kh9_4rGtaDCciz-etyhL7mQT3tXp2aFQ0aArc9EALw_wcB

CHAPTER 7 FINAL PROJECT PCB

Figure 7-35. Temperature sensor layout

10 on MEGA 2560:

TMP36 A0

OLED Display

Description:

The OLED display that will be used is a combination OLED SD card
read/write which will allow us to do some data logging as well as display
data on the OLED. The OLED we will use is a 16-bit color OLED from
Adafruit, which also includes a nice library for adding text and shapes to
the OLED. This is an SPI device, so it will use MOSI, MISO, SCK, and two
CS pins, one for the OLED and the other for the SD card. This breakout
board also already has on board level shifting, so there is no need for
extra components on the main board. DC (Data/Command) when this
pin is high, it interprets data as a command, and when this pin is low,
it interprets that data as data; more on this later when we get into the
software. The Res pin is also broken out; this is a reset pin for the OLED—
when it is held low, the chip is reset. A normal operation for the reset pin is
held high.

421

CHAPTER 7 FINAL PROJECT PCB

OLED

Schematic:
This device will connect to SPI and will have two CS pins, one for the
OLED and the other for the onboard SD card read/write. See Figure 7-36.

JP13
GND 1
::;]\.‘;'3 ’_8
SDC_| 35
133
STo D
SCK_| 78
MOSI 8
MISO (5’8
cD 10 O

DNL

Figure 7-36. OLED schematic

Layout:
The layout is just as easy as it is a ten-pin header. See Figure 7-37.

422

https://www.adafruit.com/product/684

CHAPTER 7 FINAL PROJECT PCB

Figure 7-37. OLED layout

10 on MEGA 2560:
SDC D30
0CD31
DC D28
R D29

423

CHAPTER 7 FINAL PROJECT PCB

GPS

Description:

The GPS we are using is a UART GPS, which means it will again use a
serial line just like the Bluetooth module. TX_GPS and RX_GPS are used to
send and receive information from the GPS module. Hardware wise, this
device is very simple to connect to. The software on the other hand may be
a bit more challenging.

UART GPS

Schematic:

We are going to use a six-pin JST header that will connect the GPS
module directly to the Serial2 and is powered by 5V from the MEGA 2560
Pro. See Figure 7-38.

Figure 7-38. GPS schematic

424

CHAPTER 7 FINAL PROJECT PCB

Layout:

The layout is also nice as it is just a 90-degree JST six-pin header with a
filter capacitor. We must make sure we watch out for electrical noise on the
RX and TX lines. See Figure 7-39.

Figure 7-39. GPS layout

10 on MEGA 2560:
TX _GPS D17
RX_GPS D16

425

CHAPTER 7 FINAL PROJECT PCB

Headers

Description:
The headers for the MEGA 2560 Pro are Samtec connectors that can be
ordered with these part numbers:

SSW-121-02-T-D 42 pinheader 2x21
SSW-103-02-T-D 6 pinheader 2x3
SSW-116-02-T-D 32 pinheader 2x16

Schematic:

This is where we tie everything together to communicate with the
NatBot. It may look complex, but it is very simple. Normally, this is the last
page that is finished because it has all the signal lines going to and from in.
See Figure 7-40.

Figure 7-40. Header schematic

426

CHAPTER 7 FINAL PROJECT PCB

Layout:
The layout is very simple as there is already a nice footprint for the
MEGA 2560 Pro here:

https://robotdyn.com/mega-2560-pro-mini-atmega2560-16au.html

See Figure 7-41.

Figure 7-41. Header layout

10 on MEGA 2560:
The entire MEGA 2560 Pro

427

https://robotdyn.com/mega-2560-pro-mini-atmega2560-16au.html

CHAPTER 7 FINAL PROJECT PCB

PCB Bill of Materials (BOM)

The PCB Bill of Material is included with this book online; make sure you
get it if you plan on having PCBWay or some other board manufacturer.
One thing to make sure you do is reply to the board manufacturer if

they have any questions about the board. For example, they may ask for
images of the orientation of the LEDs. They may also ask if they can use
an alternative device. Another question could be about the footprints
mismatching, which in the NatBot’s case the Bluetooth module has those
three extra pads, so I asked them to put some Kapton tape down over
them, and PCBWay did exactly that. So just make sure you stay in contact
with them as they will always have questions about the board you want
manufactured. The BOM included with this book was the actual BOM I
used with PCBWay in order to create the NatBot board. If you wanted to
do this from scratch, you would need to source each of the components
used on the NatBot; one thing to make sure is that the parts are in stock.
This may seem like a simple task, but sometimes it is not trivial as parts go
out of stock very often, and you will need to find another source for that or
those components.

Finished Prototype

Alright, assuming everything went well with the manufacturing of the
PCB, we should have a fully functioning NatBot PCB. Later on, we will
test to make sure everything is working as expected, and if there are any
issues, they will need to be fixed, and the PCB will need to be REVed. See
Figures 7-42 and 7-43.

428

FINAL PROJECT PCB

CHAPTER 7

Manufactured board from PCBWay

7-42.

Figure

429

CHAPTER 7 FINAL PROJECT PCB

Figure 7-43. Final board with all PCB level hardware soldered

Summary

Well, this chapter started off with a review on making schematic sheets for
the NatBot. We then dived headfirst into the requirements document for
the NatBot; after that, we looked at how we will meet those requirements.
Next, we looked at a few new functions that will help us make the
dimensions of the NatBot as well as how to make sure nothing is routed
under the Bluetooth antenna. Then we took a look at the main individual
hardware that will be used for the NatBot; this included a discussion on
what device would be used, what the schematic looks like, the layout of the
hardware, and finally the pins used from the device to the MEGA 2560 Pro.
I then discussed the BOM for the NatBot and some pointers on how to get
it manufactured. Finally, we took a look at the prototype PCB that will be
tested in the integration phase of this project.

430

CHAPTER 8

Final Project 3D Model

In this chapter, we will explore the 3D Modeling and printing of the NatBot.
Just like the previous chapter, I will explain all new features used to create
the 3D models. The first thing we will talk about is the requirements for
the 3D chassis of the NatBot. Then we will look at the new functions used
to create all the 3D models for the NatBot. Next, we will talk about each
individual model and what measurements are important in order to

make each of these mounts, brackets, and so on. After that, we will take
alook at setting up the 3D printer to print each of these models using

the Simplify3D slicer. Finally, we will look at the assembly of the NatBot
which will include a short list of hardware needed in order to put together
the NatBot. If you do have any issues with the model, don’t worry; the

full model is supplied with this book. If you need to reference it, that is
perfectly fine. So, now that the introduction is completed, let us take a look
at the requirements for the NatBot.

Final Project: NatBot

The NatBot requires a modular chassis that will allow for later updates to
be implemented when necessary. This chassis should be able to be 3D
printed on most standard 3D printers. The NatBot chassis should resemble
arover-style robot with four wheels that can be independently controlled.
See Figure 8-1.

© Harold Timmis 2021 431
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_8

https://doi.org/10.1007/978-1-4842-6852-0_8#DOI

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-1. A fully assembled NatBot

Requirements Gathering (3D Model)

Naticom has put together a requirements document for the 3D model
portion of the design. They are

e Mounts for the motors should be independent of the
chassis for easy printing and to make the NatBot more
modular.

e The PCB should sit on top of the NatBot chassis for easy
access.

o The GPS needs a mount hovering over the NatBot PCB.
e The LCD needs a mount hovering over the NatBot PCB.

e The Ultrasonic Sensor needs to be placed in the front of
the NatBot chassis.

o The NatBot needs to have a rover-like appearance.

432

CHAPTER 8 FINAL PROJECT 3D MODEL

The battery needs to be secure and located close to
power input.

The NatBot needs to have a panel mount micro USB
port for ease of programming the robot.

The NatBot should not be more than 200 x 150 x
175mm.

Wheels should be modular and generic and do not
exceed 60mm in diameter.

Okay! So, we have our requirements; we should be able to think

through them and start to design the NatBot. In the next section, we will

discuss each requirement and come up with a solution for each.

Outlining the 3D Model Requirements

Alright, we have several requirements; let us go through each of the bullet

points and start putting together a robot chassis:

Mounts for the motors should be independent of the
chassis for easy printing and to make the NatBot more

modular.

This pretty much means we need to have the
motor mounts separate from the main chassis to
make them easy to print, and also if the customer
(Naticom) wants to add or update the mounts later,
they can. The motors need to be independent and
should resemble a rover-style set of motor mounts.

The PCB should sit on top of the NatBot chassis for easy
access.

433

CHAPTER 8 FINAL PROJECT 3D MODEL

Another easy requirement, just make the PCB the
“Lid” of the chassis; we will need to make sure that
we have at least four of the five mounting holes on
the PCB and have mounting posts, so the board is
secured. We might even use brass inserts for more
rigidity.
e The GPS needs a mount hovering over the NatBot PCB.
e The LCD needs a mount hovering over the NatBot PCB.

o The Ultrasonic Sensor needs to be placed in the front of
the NatBot chassis.

We will need to create mounts for the GPS, LCD,
and Ultrasonic Sensor; these can be fastened with
hardware so the mounts should be able to handle
vibration. We will also need to make sure each of
these components is away from other hardware on
the NatBot PCB. The Ultrasonic Sensor needs to be
placed at the front of the NatBot which will also help
with the rover appearance requirement.

o The NatBot needs to have a rover-like appearance.

As stated earlier, all features will give the appearance
of a rover-style robot.

e The battery needs to be secure and located close to

power input.

The battery will need to be in an easy access area
and secured to the chassis; it should also be close to
its input as the battery cable is not very long.

e The NatBot needs to have a panel mount micro USB
port for ease of programming the robot.

434

CHAPTER 8 FINAL PROJECT 3D MODEL

The NatBot will have a panel mount micro USB port
at the front of the robot to make it easier to program;
without this panel mount, the user would have to
remove the NatBot PCB every time they wanted to
program it.

The NatBot should not be more than 200 x 150 x
175mm.

The NatBot cannot be more than 200mm long,
150mm wide, and 175mm tall. This will be a small
rover, but it will still be a challenge to meet this
requirement with such a large PCB.

Wheels should be modular and generic and do not
exceed 60mm in diameter.

They do not give us too much information on this, so we will just

develop a simple 50mm wheel that will directly connect to the metal hubs

we used for the previous project.

Fusion 360 Functions Explained

In order to create some of the 3D models, you will need to understand a

few different functions in Fusion 360 that we have not used yet. The first

function we will talk about is copying and pasting a 3D component, the

second function is creating and using offset planes, and the third is using

the Circular Pattern function. Let us get started with the first function,

copying and pasting a 3D component.

First, open Fusion 360 if it is not already opened.

2. Create a new component and name it “Cube.” See

Figure 8-2.

435

CHAPTER 8 FINAL PROJECT 3D MODEL

- S S— —

IR R Bt Bt t b [TS—_p— D08 -
o senc semese toas
war GESOLS FODFS-HAN B = B
g = iswnts | commmcrs | amcre | smne | sscrs
- Emowus L
4 o [MEXTTEG
e
D ——
] . o
e o
G P
[-]
-
e el
[——
- T
e @
° =
. -8 00 9. e, Come vt
Heren] @

Figure 8-2. Create a new component named “Cube”

3. Create a 5mm by 5mm by 5mm cube. See Figure 8-3.

436

CHAPTER 8 FINAL PROJECT 3D MODEL

LR DR ROERE . ® oo ‘keese -
wa- @SOS FOUPE+we 9 = E R
cman e orY e g T4 CORETRICT = T L L T -4
— i

couvte LN @O 0- P-E-=

Figure 8-3. 5x5x5mm cube

4. Right-click the cube component and select “Copy.”

437

CHAPTER 8 FINAL PROJECT 3D MODEL

PellEmEa 0

Ground
.i. Move/Copy
) New Component
g Create Drawing
I"?.° Create Selection Set
Z‘ Rigid Group
‘:E:' Physical Material
@ Appearance
<f Texture Map Controis
Properties
Export

Save Copy As

Save As STL

Copy

“ [CopyCommand]
X Delste
9 Remove

Display Detail Control

© srownide

G Show All Components

G Show All Bodies
Selectabe/Unseleclable
Opacity Control L]

EE isoiate

Find in Window

Find in Timeine

Figure 8-4. Select “Copy”

5. Then right-click the Cube_Copy assembly and
select “Paste New.” This will create a new body that
is separate from the original cube. This is important
if you want to modify just one of the components.
This was used with the wheelbases of the rover.

See Figure 8-5.

438

CHAPTER 8 FINAL PROJECT 3D MODEL

+« BROWSER L
4 ® ([cubecy
D ## Document
[Bl NamedvE
[i origi
D e G Cube
DI @ Copi

@ Activate

;t',New Component
B Create Drawing

I'.o Create Seiection Set
P rigid Group

@ Pnysni Material
@ Appearance

ff Texture Map Controls
Froperties

Export.
Save Copy As
Save As STL

Paste

Paste New

Display Detad Control
© Showitide
@ Show Al Components

@ Show Al Bodies

Opacity Control 3

Find n Window
Find n Timelne

% Do not capture Design History

Figure 8-5. Select “Paste New”

6. Notice thatif you select the copied cube and change
it, the original does not change with it. See Figure 8-6.

439

CHAPTER 8 FINAL PROJECT 3D MODEL

B

[R B P i Bt ® W cuseComrer P ee -
toRfast AT T cEH
w GESSC® 0L+ ¥ = B R
ean® wsorve pro- NS R oes
o =
d & o
D £ Doeren fearge
DM e —y
1] [&
b0 e
¢ o (EETOECER S
o Lt E-d=tm W
Heb e W OOmOgDm™eT o

Figure 8-6. The pasted component is a completely separate
component

7. Ifyou do want all of the components to match, then
all you need to do is select “Paste” instead of Paste
New.” See Figure 8-7.

440

CHAPTER 8 FINAL PROJECT 3D MODEL

B

R B aA W i Bt 82 ® W cuseComrer 0 ee -
oRfasl DT T Tans
coaen e FOUPESLB 0 = B &
= ASNRA® | COMTRSTS | MRCTY | NEETS | WCTe
—
i
it b veme mane
Dracier [y e S
‘ 12e [ZE
Daiarce M-
o
-

-8 0% 0 O-Eo

W
Hebses OOEODOree] o

Figure 8-7. Ifyou just paste a component, both components will
share dimensions

So that is how you can copy a component; most of the time, you
probably won’t mind if all of the components are identical, but sometimes
(like in the case of the wheelbase models) you will want to copy a model
just to modify that specific model and not the original. Next, let us talk
about how to create an offset plane.

1. Using the same example from the previous section,
select one of the faces on a cube. See Figure 8-8.

441

CHAPTER 8 FINAL PROJECT 3D MODEL

- O X
+ D00 -
o | mmme mucrs
- an .
@ [et e
D O Cotmettemng
[e (Y S
[
b e s
D ® (0 cwmisaen
LR ® e 1]
L} @ q g P | Arme | V500]

Keboo OUBODEreE o]

Figure 8-8. Select a face on a cube

2. Select Construct » Offset Plane. See Figure 8-9.

442

CHAPTER 8 FINAL PROJECT 3D MODEL

M = =
naEi::!!ﬂ INSPECT * MNSERT * SELECT™
(# offset Plane :
€ Piane at Angle
A Tangent Pane
09 Widglane
€2 Plane Through Two Edges
% Piane Through Three Points
-fl Plane Tangent to Face at Point
Y Plane Along Path
¥ Axis Through Cylinder/Cone/Torus

f: Axis Perpendicular at Point
) axis Through Two Planes
i:! Axis Through Two Points
fj #Axis Through Edge

G’i Axis Perpendicular to Face at Point

" Point at Vertex

{5 Point Through Two Edges

Point Through Three Planes

0 Point at Center of Circle/Sphere/Torus
i} Point at Edge and Plane

r+J point Along Path

Figure 8-9. Select the “Offset Plane”

3. Now move the offset plane to 10mm. See Figure 8-10.

443

CHAPTER 8 FINAL PROJECT 3D MODEL

L3
BM-@ h e Bita gt * Yo » P et i¥nee -
waracy BeTECL T
. CeFDues+mn W = B
v it el || s B e
- L]
H“"-‘
R
L ¢ -
L b
o
. @2 Q 0 9-E-8- e
MHebsr OORODEre L o

Figure 8-10. Make the offset plane 10mm from the cube

4. Now with this plane, you can create a sketch; you
can even project faces onto the offset plane that can
be used to make other bodies.

Offset planes can be used for a number of things for the rover; it was
used to create the rover wheels. It made it easy to capture a center point for
the motor shaft. Finally, we can talk about the last Fusion 360 function, the
Circular Pattern function.

1. Create a new model in Fusion 360.

2. Create a cylinder with a diameter of 50mm and a
height of 10mm. See Figure 8-11.

444

CHAPTER 8 FINAL PROJECT 3D MODEL

B

popre————

Aatccack Fanon M0
R T L
kAl DT T L

- TWRPCS BOULSten @ = 5 B

4 o men

D £ Doseren Searge » |
O B e Lia
b o \1

b o CEEITNES

RIS B8

comT 1

o

W r e O]

Figure 8-11. Create a new component and make a cylinder

3.

Create a new sketch and make a 10mm circle
around the center point of the top of the cylinder.

See Figure 8-12.

445

CHAPTER 8 FINAL PROJECT 3D MODEL

comeTs

Meren gomo] °

Figure 8-12. Create a 10mm circle on the cylinder

4. Make this circle a construction line by selecting it
and pressing the “x” key.

5. Draw a 3mm circle on the perimeter of the 10mm
circle. See Figure 8-13.

446

CHAPTER 8

FINAL PROJECT 3D MODEL

SO0 AR YEIL] O = #

comee

Heren Oomo]

LT O

Fhen s -

ASWCTE | WEIRTT LECTT

W
2

o

Figure 8-13. Create a 3mm circle on the perimeter of the 10mm

circle

6. Select the Circular Pattern from the CREATE menu

at the top. See Figure 8-14.

447

CHAPTER 8 FINAL PROJECT 3D MODEL

SOLo SURFACE SHEET METAL

= Line L
Rectangle
Circle
Arc
Polygon
I ¢ Enpse
E Slot
| Spline
| n Conic Curve
| "7* Point
il A Text
1l _L. Fit Curves to Mesh Section
] A\ Mirror

2°% Circular Pattern

§.% Rectangular Pattern

Project / Include
[sketeh Dimension D

Figure 8-14. Select “Circular Pattern”

7. Select the 3mm circle as the “Object,” and the
“Center Point” will be the center of the 10mm circle.
You will notice once you select these, you will have
three circles on the screen; you can add more just by
increasing the quantity. See Figures 8-15 and 8-16.
Click “OK” when you are done, and you will see that
these circles have been populated.

448

CHAPTER 8 FINAL PROJECT 3D MODEL

L!Wil‘iﬁ” ﬂi“‘““ T '—"ﬁ@ﬁ‘l’*i

. HJZIQ:\A; 1r-%¢':

| = e

A b wewa
-

comeTs el ® O O P

[
iuqbon Gomc]

Figure 8-15. Notice three circles populate on the cylinder

449

CHAPTER 8 FINAL PROJECT 3D MODEL

At DT A oo savew

SO N At s Tt L

cousTasnTs

| @ cocun e merre

|
5 o T IEE T T
R) ﬁcl_l:‘T

Figure 8-16. For the quantity, put “6”

8. Click Finish Sketch.

9. Select the six circles and press the “E” key. Extrude
these holes to the bottom side of the cylinder. See
Figure 8-17.

450

CHAPTER 8 FINAL PROJECT 3D MODEL

B duvici }

BREn e -a: T e Coord *® [T 009 -
Al LT AL

w FHSPICS FOUPES LM 0 = B

ARRIMRET COMTRATT | AEWCTT

comms T N . e - [Fe—
IR ﬁl!' -

Figure 8-17. Extrude to make six holes

Alright! That puts us in a good spot to start to talk about the various
models you will be creating in this chapter. The next section will discuss
each of these models.

Features of the NatBot 3D Model Explained

In this section, we will go through each 3D model that is needed to create
the NatBot. Each part is explained, and each important dimension is
discussed to make it easier to create the 3D model. Remember, you have
some creative license here; you can make the NatBot exactly as this book
does, or you can make the NatBot your own. It is entirely up to you. Let us
get started.

451

CHAPTER 8 FINAL PROJECT 3D MODEL

NatBot Chassis

So the NatBot needs to have a few features that will hold the PCB and the
battery in place. The motor assemblies and the GPS, LCD, and Ultrasonic
mounts need to attach to it. Finally, there needs to be a place for a micro
USB panel mount. The nice thing is the GPS, LCD, Ultrasonic Sensor, and
the motor assembly mounts are all going to be designed by us, so we can
make them any style we want. The same goes for the PCB, but we have
already designed it a certain way, so we need to make sure we capture the
PCB properly. The micro USB panel mount will need to have a spot made
for it as we had to source that component.

Let us look at each section of the chassis.

Battery Holder

This is a simple holder as it captures the battery and then has four holes for
zip ties to keep the battery contained. See Figure 8-18.

452

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-18. Dimension of the battery holder on the NatBot
chassis

The key measurements are the batteries’ length, width, and height.

453

CHAPTER 8 FINAL PROJECT 3D MODEL

Motor Assembly Mounts

The motor assemblies are our creation. Naticom has suggested they do
want to keep it modular for future upgrades, and the PCB does include
four servo motor channels, so we might want to make the mounts the same
as a small servo, so if they want to use those mounts with servos, they can.
See Figure 8-19.

Figure 8-19. Hole mount for wheelbase assemblies

The key dimensions are the small Servo that could be used later for the
NatBot. This includes the length, width, and height of the servo motor.

Ultrasonic Sensor Mount

To mount this, we can just use two holes that will attach the mount to the
chassis. See Figure 8-20.

454

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-20. Ultrasonic Sensor Mount chassis mount

The key dimensions are the size of the screw.

LCD Mount

The LCD will be mounted on the top of the robot and needs to find a
position on one of the PCB mounting posts and then be captured on one of
the motor cable passthroughs. See Figure 8-21.

455

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-21. LCD PCB mount

The key dimensions are the M5 screw and the distance from the M5
hole to the motor cable passthrough.

Micro USB Panel Mount

The micro USB panel mount will need to have holes to mount it and a center
hole that will give the user access to the micro USB port. See Figure 8-22.

456

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-22. Micro USB panel mount

The key dimensions are the length between the two mounting holes
and the height and width of the access hole.

PCB Mounting

The PCB will be mounted using brass inserts to all for more rigidity in case
the PCB ever needs to be removed and then reassembled. The PCB will
dictate how large this chassis is as it needs to be roughly the same size in
the length and width. Four of the five holes used on the PCB will have a
post that will attach the PCB to the chassis. See Figure 8-23.

457

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-23. Make sure to use a DXF export in order to get the exact
dimensions of the NatBot PCB

The key dimensions are the hole locations on the PCB, the motor
passthrough locations, the length, height (with and without the Arduino
attached), and width of the PCB. Using the DXF function to capture the
PCB is a good practice as it will give you all of these dimensions minus the
height of the PCB.

The last key dimension is the brass inserts that we plan to use for the
project. See Figure 8-24.

458

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-24. Hole diameter of brass inserts

This chassis will also need a post to hold the Arduino to the PCB. See
Figure 8-25.

E
-
i lﬁ

Figure 8-25. Arduino post

Finally, remember that the NatBot can only be so tall; the current
height of the PCB is 28.22mm with a plastic thickness of 3mm, which
should make the NatBot strong enough to withstand some impact.

459

CHAPTER 8 FINAL PROJECT 3D MODEL

NatBot Ultrasonic Sensor Mount

The ultrasonic mount should be light and require little to no support
material for 3D printing. Key dimensions include the length and width of
the ultrasonic sensor, the hole positions of the ultrasonic sensor, and the
height of the tallest component on the back of the ultrasonic sensor. See
Figures 8-26 and 8-27.

Figure 8-26. Ultrasonic Sensor Mount dimensions

460

CHAPTER 8 FINAL PROJECT 3D MODEL

3.85ppm

Figure 8-27. Ultrasonic Sensor Mount dimensions (Cont.)

This mount needs to attach to the front of the NatBot.

NatBot LCD Mount

The LCD will be mounted to the top of the PCB. The key dimensions are
the position of the M5 PCB hole and the motor passthrough width. Also,
we need to make sure the LCD is at an angle that will make it easy to see
when looking down at it. We also need to make sure the mount is high
enough so that it does not interfere with other components and can be
connected to the PCB using a dupont connector. The hole positions on the
LCD are also important. Finally, make sure there is clearance between the
LCD and any components on the back, including but not limited to the SD
card holder. See Figures 8-28 and 8-29.

461

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-28. LCD mount dimensions

13.295mm

Figure 8-29. LCD mount dimensions (Cont.)

462

CHAPTER 8 FINAL PROJECT 3D MODEL

NatBot GPS Mount

The GPS mount will be above where the GPS connects. Key dimensions
include the location of the GPS header on the NatBot PCB, the height from
the PCB to the GPS module, the length and width of the GPS module, and
hole positions on the NatBot chassis. See Figure 8-30.

Figure 8-30. GPS mount dimensions

NatBot Front and Rear Wheelbase

We will need four separate wheelbases: front right, front left, rear right, and
finally rear left. Take advantage of the copy and paste features discussed
earlier in this chapter. The key dimensions will be the size of the micro
geared motors (length, width, and height), the motor shaft length and
width, the mounting hole positions of the micro motors, the total height of
the wheelbase model, the motor cable passthrough position, and finally
the chassis mounting dimensions created during the chassis portion of
development. See Figures 8-31 through 8-34.

463

CHAPTER 8 FINAL PROJECT 3D MODEL

15mm 10.2mm

Figure 8-31. Front wheelbase dimensions

Figure 8-32. Front wheelbase dimensions (Cont.)

464

CHAPTER 8 FINAL PROJECT 3D MODEL

45.701mm

Figure 8-33. Rear wheelbase dimensions

18.841mm

20mm

Figure 8-34. Wheelbase motor depth

The total height of the NatBot cannot exceed 175mm, so make sure you
do not make these wheelbases too tall.

NatBot Wheels

These wheels will need to be attached to the same wheel couplers used in
the first project of this book. Key dimensions include the motor coupler
threaded holes and the distance between the wheel and the bottom of the
NatBot chassis. See Figures 8-35 and 8-36.

465

CHAPTER 8 FINAL PROJECT 3D MODEL

50mm

Figure 8-35. Wheel dimensions

10mm

7mm

Figure 8-36. Wheel dimensions (Cont.)

466

CHAPTER 8 FINAL PROJECT 3D MODEL

3D Printing the NatBot

Well, now it is time to test these dimensions and try to print the NatBot. In
this section, I will explain what to print together, how to print, what infill %
to use, and where to put support structures. Let us get started with printing
the chassis:

Printing the chassis:

Infill % should be 25 to 30%.

Use PLA at 190 to 220C.

Estimated time to print: 4hrs.

You only really need to have support structures where the micro USB
panel mount is because of the overhang. See Figure 8-37.

Figure 8-37. Printing the NatBot chassis

Printing the wheels and wheelbases:
Infill 25 to 35%.

Use PLA at 190 to 220C.

Estimated time to print: 7hrs.

467

CHAPTER 8 FINAL PROJECT 3D MODEL

Auto generate support material; use 2mm for the “Support Pillar
Resolution” and 35 degrees as the “Max Overhang Angle.”
Also, turn all the wheelbases 90 degrees so that the support structure

inside the micro motor cavity can be removed easily. See Figure 8-38.

o
o
]
o
£l
]
o
]

Figure 8-38. Printing the wheels and wheelbases

Printing the LCD, GPS, and Ultrasonic Sensor Mounts:

Infill % should be 25 to 30%.

Use PLA at 190 to 220C.

Estimated time to print: 1hr.

The only part that needs support structures is the LCD mount; use
2mm pillar resolution with a max overhang limit of 35 degrees. See
Figure 8-39.

468

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-39. Printing the mounts

That should be all of the printable components. The next section will
discuss assembling the robot.

Fit Check and Assembly

Let us first talk about some hardware you will need in order to assemble
this robot:

4 x M5 10mm pan head screws (for PCB mounting)

4xM5-0.8 OAL 5.83mm brass inserts (for PCB
mounting)

12 x M2 10mm pan head screws (for wheelbase,
Ultrasonic, GPS)

14 x M2 nuts

2 x M2 12mm pan head screws (for LCD mounting)

469

CHAPTER 8 FINAL PROJECT 3D MODEL

2xM3 10mm pan head screws (for micro USB panel
mount)

8 x M1.6 4mm (can be cut down from a longer M1.6

screw)

4 x 30mm gasket or rubber bands (for wheels)

1 x Adafruit micro USB panel mount cable (pn:)
4 x micro motor couplers (pn: Servo City 545348)
4 x micro geared motors (pn: Pololu 2209)

2 x 145 by 2.5mm zip ties

4 x JST SH Jumper Wire (pn: SparkFun GPS-09123)
1 x GPS module (pn:)

1 x Ultrasonic Sensor (pn:)

1 x Adafruit OLED LCD (pn:)

1 x 2Ahr Lithium Ion (pn: SparkFun PRT-13855)
2 x 10 position dupont housing

26 x female dupont crimps

2 x 3 position dupont housing

Small piece of Velcro

24 AWG wire

1. Press four of the brass inserts into the NatBot chassis
using a small hammer or a vise to evenly push them
into the PCB mounting posts. See Figure 8-40.

470

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-40. Press the brass inserts into the chassis

2.

Insert the micro motors into the wheelbases; they
should fit snuggly. If they do not fit, try and use a file
or X-Acto knife™ to clean the area around the motor
housing on the wheelbase. If you have the rotary
encoders for the motors, make sure they are already
attached. See Figure 8-41.

471

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-41. Insert each of the geared motors into the wheelbases

3. Using eight of the M1.6 4mm screws, attach the
wheelbase to the micro motors. See Figure 8-42.

2

Figure 8-42. Use the M1.6 4mm screws to attach the motor to the
wheelbase

472

CHAPTER 8 FINAL PROJECT 3D MODEL

4. Attach the wheelbase prints to the NatBot chassis.
They should be a bit of a tight fit, but if you are
having trouble fitting them in, you can sand down
the top a little to help them fit better. See Figure 8-43.

| -

Figure 8-43. Attach the wheelbases to the NatBot chassis

5. Use eight of the M2 10mm bolts and eight of the
M2 screws to secure the wheelbases to the chassis.
See Figure 8-44.

473

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-44. Secure the wheelbases to the chassis using 8 x M2 10mm
screws and nuts

6. Attach the Ultrasonic Sensor to the Ultrasonic
Sensor Mount using two of the M2 10mm screws
and two M2 nuts. See Figure 8-45.

Figure 8-45. Attach the Ultrasonic Sensor to the mount

474

CHAPTER 8 FINAL PROJECT 3D MODEL

7. Attach the GPS module to the GPS mount using a
small piece of Velcro. Use scissors to cut the Velcro

to size. See Figure 8-46.

Figure 8-46. Attach the GPS module to the GPS mount using
Velcro

8. Attach the LCD to the LCD mount using two M2
12mm screws and two M2 nuts. See Figure 8-47.

475

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-47. Attach the LCD to the LCD mount

9. Using crimpers, create a wire harness for the
Ultrasonic Sensor. It will need 2 x 3 position dupont
housings and 6 dupont female crimps. You will also
need about 3 x 5in of 24 AWG stranded wire. See
Figures 8-48 through 8-53.

476

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-48. Cut off 1/8in insulation

Figure 8-49. Insert a wire and use pliers to gently squeeze the
insulation crimp to hold the wire in place

477

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-50. Crimp the contact onto the wire

Figure 8-51. Finished crimp

478

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-52. Insert crimped wire into 3 position housing

Figure 8-53. Make sure the connector has this pinout

479

CHAPTER 8 FINAL PROJECT 3D MODEL

10. Create the wire harness for the LCD using 2 x 10
position dupont headers and 20 female dupont
crimps. You will also need 10 x 3in 24 AWG stranded
wire. See Figure 8-54. Use the same method to create
the wiring harness as you did in the previous step.

Figure 8-54. LCD cable

11. Attach the Ultrasonic Sensor Mount to the chassis
using 2 x M2 10mm screws and 2 x M2 nuts. See
Figure 8-55.

480

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-55. Attach the Ultrasonic Sensor Mount

12. Putthe battery into the battery holder and use the
two zip ties to secure it to the NatBot chassis. See
Figure 8-56.

Figure 8-56. Attach the battery to the chassis using two zip ties

481

CHAPTER 8 FINAL PROJECT 3D MODEL

13. Attach the four JST cables to each of the four motors
in the wheelbases and put them through the motor

cable passthrough holes on the NatBot chassis. See
Figure 8-57.

Figure 8-57. Attach the JST cables to the four motors

14. Wrap each of the JST wire with a zip tie to make
them a bit shorter. Do not tighten too much because
you can break the cable. See Figure 8-58.

Figure 8-58. Zip tie the JST cables to shorten them

482

CHAPTER 8 FINAL PROJECT 3D MODEL

15. Mount the micro USB panel mount with 2 x M3
10mm screws. See Figure 8-59. Then attach it to the
MEGA 2560 Pro microcontroller. See Figure 8-60.

Figure 8-60. Attach the panel mount to the MEGA 2560 Pro

16. Attach the NatBot PCB to the NatBot chassis and
use 3 x M5 screws to attach the PCB to the NatBot
chassis. See Figure 8-61.

483

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-61. Attach the PCB to the chassis using three M5 screws

17. Attach the LCD mount to the NatBot by using an M5
screw. See Figure 8-62.

Figure 8-62. Attach the LCD mount to the chassis

484

CHAPTER 8 FINAL PROJECT 3D MODEL

18. Connect the other side of the LCD wiring harness to the
PCB. Use a multimeter just to make sure all contacts are
making the proper connection. See Figure 8-63.

Figure 8-63. Attach the LCD connector to the PCB

19. Attach the GPS mount to the chassis using 2 x M2
10mm screws and 2 x M2 nuts. See Figure 8-64.

Figure 8-64. Attach the GPS mount to the chassis

485

CHAPTER 8 FINAL PROJECT 3D MODEL

20. Attach the Ultrasonic Sensor wiring harness to the
PCB. See Figure 8-65.

Figure 8-65. Attach the Ultrasonic Sensor cable to the PCB

21. Connect all of the motor cables to the correct
connector on the NatBot PCB. See Figure 8-66.

Figure 8-66. Attach the JST cables to the motor headers on the PCB

486

CHAPTER 8 FINAL PROJECT 3D MODEL

22. Attach the motor couplers to the four motor shafts.
See Figure 8-67.

Figure 8-67. Attach the motor couplers to the geared motor shafts

23. Attach the four wheels to the motor couplers. See
Figure 8-68.

ol e,

Figure 8-68. Attach the wheels to the couplers

24. Add the 30mm rubber bands or gaskets to the
NatBot wheels. See Figure 8-69.

487

CHAPTER 8 FINAL PROJECT 3D MODEL

Figure 8-69. Add 30mm rubber bands to give tires more traction

Well, that should be it for the assembly of the NatBot; the only thing
left is to write some software that will bring the NatBot to life. See you in
the next chapter.

Summary

Alright, we covered a few things in this chapter. Let’s take a look at them:

o Looked at the mechanical requirements for the NatBot
chassis and mounts.

e Brainstormed how we can bring this robot to life and
make it look like a rover.

o Took alook at all the important dimensions needed in
order to create the NatBot chassis and mounts.

¢ Went into what it will take to print each of these
components.

o Finally, we assembled the NatBot using a Bill of
Materials (BOM).

488

CHAPTER 9

Final Project Software

Well, here we are ready to get started on the software portion of the final
project. In this chapter, we will review the requirements for completing
the software for the NatBot, as well as putting together a test plan to
make sure each component works as expected. We will also explore a few
APIs that will help us create the firmware for the NatBot. Finally, we will
finish the NatBot’s firmware and upload it to the NatBot. This chapter

is going to have a lot of information and a lot of code, so take your time
when reviewing the software. Let’s get started by going over the software
requirements for the NatBot.

Final Project: NatBot

The NatBot will require some sophisticated firmware that will control all
of the various actions of the sensors, motors, and other peripherals. It also
needs to be well documented so that if another developer/student wants
to update the code, they could.

© Harold Timmis 2021 489
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_9

https://doi.org/10.1007/978-1-4842-6852-0_9#DOI

CHAPTER9 FINAL PROJECT SOFTWARE

Requirements Gathering (Firmware)

Naticom has put together a requirements document for the firmware
portion of the design. They are

e The motors should be controlled with the following
serial command: Motor 1 Direction, Motor 2 Direction,
Motor 3 Direction, Motor 4 Direction, Motor 1 Speed,
Motor 2 Speed, Motor 3 Speed, Motor 4 Speed. The
string example will look like this:

1,1,1,1,255,255,255,255
Using serial communication over Bluetooth.
e Accelerometer should record the X, Y, and Z

acceleration every time a “y” character is sent to the
NatBot. It will also save this data to an SD card.

e The driving direction will be saved to the SD card every

(=)

time an “x” command is received by the NatBot.

u__n

e GPS data will save to the SD card every time the “g
command is sent to the NatBot. It will save longitude
and latitude data.

e When an “a” command is received by the NatBot, the
Ultrasonic Sensor will tell the user if there is an object
within 2 inches of the NatBot.

e The temperature will be displayed on the LCD every
time the NatBot receives new trajectory commands.

490

CHAPTER9 FINAL PROJECT SOFTWARE

Outlining the Software Requirements

Alright, we have several requirements; let us go through each of the bullet

points and start putting together the firmware for the NatBot:

The motors should be controlled with the following
serial command: Motor 1 Direction, Motor 2 Direction,
Motor 3 Direction, Motor 4 Direction, Motor 1 Speed,
Motor 2 Speed, Motor 3 Speed, Motor 4 Speed. The
string example will look like this:

1,1,1,1,255,255,255,255

Using serial communication over Bluetooth.

This requirement talks about how the user will control each
motor on the NatBot over Bluetooth. A single serial command
will be used to control each motor’s direction and speed. It may
also make sense to print this string onto the serial monitor to
make sure the correct functions are happening.

Accelerometer should record the X, Y, and Z
acceleration every time a “y” character is sent to the
NatBot. It will also save this data to an SD card.

u__n

Every time the NatBot receives the “y” character over Bluetooth,
the NatBot will save the data to the SD card in the following
format: X, Y, Z.

The driving direction will be saved to the SD card every

u_n

time an “x” command is received by the NatBot.

Trajectory data will be saved to the SD card every time the “x”
command is sent to the NatBot, in the following format: Motor
A=1MotorB=1Motor C=1MotorD =1

u__n

GPS data will save to the SD card every time the “g
command is sent to the NatBot. It will save longitude
and latitude data.

491

CHAPTER 9

FINAL PROJECT SOFTWARE

Longitude and latitude data will be saved to the SD card every

u__n

time the “g” command is sent to the NatBot.

[}

When an “a” command is received by the NatBot, the
Ultrasonic Sensor will tell the user if there is an object
within 2 inches of the NatBot.

The Ultrasonic Sensor will send the user notification over
Bluetooth that an object is within 2 inches of the NatBot.

The temperature will be displayed on the LCD every
time the NatBot receives new trajectory commands.

The temperature will be read and displayed onto the LCD every
time new trajectory data is received.

Okay, now that we have a good idea of what we need to do, I want to

introduce you to each of the libraries we will use to make this robot come

to life. See you in the next section.

Reviewing the Arduino Libraries for the NatBot

In this section, we will discuss the various libraries used for the NatBot. I

want to give a brief description of the library followed by some of the key

functions that the NatBot will use.
ADXL362 Library
With this library, we will read data back from the accelerometer. Here

are a few of the important commands:

492

ObjectName.Begin(): Sets up the SPI protocol

ObjectName.beginMeasure: Switches ADXL362 to
measurement mode

ObjectName.readXYZData(X value, Y Value, Z
Value, Temperature): Reads the values for the X, Y,
and Z planes and then also reads the temperature

CHAPTER9 FINAL PROJECT SOFTWARE

These are the main commands we will use for the NatBot when using
the accelerometer. These commands should be enough to accomplish
all of the requirements for the accelerometer besides the SD and LCD
portions.

Adafruit SSD1331 Library

In this section, we will take a look at the SSD1331 Library; this library
is used to control the OLED screen we have on the NatBot. There are
two other libraries that you need in order to use this library; they are the
Adafruit GFX and Adafruit BuslO.

ObjectName.Begin(): This is used to start
communication with the OLED display.

ObjectName.setCursor(x position, y position):
This will set the move of the cursor to the desired

location.

ObjectName.fillScreen(color): This will set the
screen to a particular color.

ObjectName.print(“text”): This will put text on the
OLED display.

ObjectName.println(“text”): This will put text on the
OLED display and add a carriage return.

ObjectName.setTextColor(color): Sets the text color.
ObjectName.setTextSize(text size): Sets the text size.

These are the main functions that we will use for the NatBot project
and should satisfy all of the requirements.

493

CHAPTER9 FINAL PROJECT SOFTWARE

TinyGPS Library
The NatBot requires software that will parse NMEA data from a
GPS module. To do this, we will use the TinyGPS library. Here are some

commands we will use to meet the requirements:

ObjectName.encode(): If encode returns “true” then
avalid GPS sentence has been received.

ObjectName.f_get_position(Latitude, Longitude,
age): Returns the latitude, longitude, and age of the
encoded data

These commands should give us everything we need to meet the
requirements for Naticom.

SD Library

The SD Library will be used to store data onto an SD card. There are
a few commands you need to be familiar with before we start to use this
library; they are

ObjectName.begin(ChipSelect Pin): This will start
communication between the Arduino and the SD
card reader.

ObjectName.open(filepath, mode): This will open
a file. If the file is being opened in write mode, then
the file will be created if it does not exist.

ObjectName.close(): Closes an opened file.

With these functions, we should be able to write to an SD card which
will satisfy the requirements for this project.

These libraries will make up a lot of the functionality of the NatBot,
and they all will be used to accomplish the requirements that are specified
earlier.

494

CHAPTER9 FINAL PROJECT SOFTWARE

Writing the NatBot Firmware

So, the code for this robot has some complexities to it, but it is actually
rather quite simple. Here is the code for the NatBot:

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit_GFX.h>
#include <Adafruit_SSD1331.h>
#include <TinyGPS.h>

// Adafruit Display
#define sclk 52
#define mosi 51
#define cs 31
#define rst 29
#define dc 28

// Color definitions
#define BLACK 0x0000

int numCount = 0;

// Motor IO

const int fields = 8; // how many fields are there? right now 8
int motorPins[] = {42,44,40,46,25,12,26,13}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

// Object Creation
TinyGPS gps;
ADXL362 accel;

495

CHAPTER9 FINAL PROJECT SOFTWARE
Adafruit SSD1331 display = Adafruit SSD1331(cs, dc, mosi, sclk, rst);

// SD Card Chip Select
int SDCS = 30;

// Ultrasonic Sensor Pin
int pingPin = 22;

// Accelerometer variables
int16_t XValue, YValue, ZValue, Temperature;

// GPS data
char LatData[50]; // data buffer for Latitude
char LongData[50];

//Latching Variables
char prevState;
int prevAutoState;

// Data buffer for saving drive data
char driveData [50];

// TMP36 Variables
int tempPin = A0;
int sensorValue = 0;

void setup() {
// Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS
Serial.begin(9600);

Seriali.begin(115200);
Serial2.begin(4800);

// CS Pins of SPI devices
pinMode(SDCS, OUTPUT);

496

CHAPTER9 FINAL PROJECT SOFTWARE

pinMode(cs, OUTPUT);
pinMode(27, OUTPUT);

// set Motor pinMode to output
for(int i; i <= 7; i++)
{
pinMode(motorPins[i], OUTPUT);
digitalWrite(motorPins[i], LOW);
}

// Check for Card availability

if (!SD.begin(SDCS)) {
Serial.println("Card failed, or not present");
// don't do anything more:
while (1);

}

// Turn off SD Chip Select

digitalWrite(SDCS, HIGH);

Serial.println("card initialized.");

Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,
MotoBSpe\n");

}

void loop() {
if(Seriali.available())

{

char ch = Seriali.read();

if (ch == "y' || prevState == 'y') // if Serial reads y
{

accel.begin(10); // Setup SPI protocol, issue
device soft reset

497

CHAPTER9 FINAL PROJECT SOFTWARE

498

accel.beginMeasure(); // Switch ADXL362 to measure mode

// read all three axis in burst to ensure all
measurements correspond to same sample time

accel.readXYZTData(XValue, YValue, ZValue, Temperature);

Serial.print("XVALUE=");

Serial.print(XValue);

Serial.print("\tYVALUE=");

Serial.print(YValue);

Serial.print("\tZVALUE=");

Serial.print(ZValue);

Serial.print("\tTEMPERATURE=");

Serial.println(Temperature);

delay(100); // Arbitrary delay to make serial

monitor easier to observe

// Stop communication with accelerometer
digitalWrite(27, HIGH);

// Store data into SD card

// open the file. note that only one file can be open at
a time,

// so you have to close this one before opening another.

SD.begin(SDCS);

File accelFile = SD.open("Accel.txt", FILE WRITE);

// if the file is available, write to it:
if (accelFile) {
accelFile.print(XvValue);
accelFile.print(" , ");
accelFile.print(YValue);
accelFile.print(" , ");
accelFile.println(zValue);

CHAPTER9 FINAL PROJECT SOFTWARE

accelFile.close();

digitalWrite(SDCS, HIGH);

}
// if the file isn't open, pop up an error:
else {

Serial.println("error opening datalog.txt");

}

prevState = ch;
}
else if (ch == 'a') // if Serial reads a
{
if (prevAutoState == 0)
{
prevAutoState = 1;
// put your main code here, to run repeatedly:
float duration, inches;

pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HICH);
delayMicroseconds(2);
digitalWrite(pingPin, LOW);

pinMode(pingPin, HIGH);
inches = duration / 74 / 2;

if (inches »>= 2)

{
Seriali.println("Object Near!!");

}
}

499

CHAPTER9 FINAL PROJECT SOFTWARE

else if (prevAutoState == 1)
{

prevAutoState = 0;

}
}
else if (ch == 'g' || prevState == 'g') // if Serial reads g
{

if (Serial2.available() > 0) // now gps device is active

{
int ¢ = Serial2.read();
if(gps.encode(c)) // New valid sentence?
{

// Initialize Longitude and Latitude to floating
point numbers
float latitude, longitude;

// Get longitude and latitude
gps.f get position(8latitude,8longitude);

Serial.print("Lat: ");

// Prints latitude with 5 decimal places to the
Serial Monitor

Serial.println(latitude,7);

Serial.print("long: ");

// Prints longitude with 5 decimal places to the
Serial Monitor

Serial.println(longitude,7);

// Store data into SD card

// open the file. note that only one file can be
open at a time,

// so you have to close this one before opening another.

500

CHAPTER9 FINAL PROJECT SOFTWARE

SD.begin(SDCS);
File GPSFile = SD.open("GPS.txt", FILE WRITE);

// if the file is available, write to it:
if (GPSFile) {
GPSFile.print(latitude, 7);
GPSFile.print(" , ");
GPSFile.println(longitude,7);

GPSFile.close();
digitalWrite(SDCS, HIGH);
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
}
}
prevState = ch;
}
else if(ch >= '0" 88 ch <= '9") // If the value is a number
0 to9
{

// add to the value array

values[index] = (values[index] * 10) + (ch - '0");
}
else if (ch == ',") // if it is a comma

{
if(index < fields -1) // If index is less than 4 - 1...

index++; // increment index

}

else

{

501

CHAPTER9 FINAL PROJECT SOFTWARE

502

for(int i=0; i <= index; i++)
{

if (i == 0 &% numCount == 0)

{
Serial.println("Motor A");

Serial.println(values[i]);

}
else if (i == 1)
{
Serial.println(values[i]);
}
if (i == 2)
{

Serial.println("Motor B");
Serial.println(values[i]);

}
else if (i == 3)
{
Serial.println(values[i]);
}
if (i == 4)
{

Serial.println("Motor C");
Serial.println(values[i]);

}
else if (i == 5)
{
Serial.println(values[i]);
}
if (i == 6)
{

CHAPTER9 FINAL PROJECT SOFTWARE

Serial.println("Motor D");
Serial.println(values[i]);

}
else if (i == 7)
{
Serial.println(values[i]);
}

if (i==0]|i==2]|1==41]|1-==6)
// If the index is equal to 0 or 2
{
digitalWrite(motorPins[i], values[i]);
// Write to the digital pin 1 or 0
// depending on what is sent to the arduino.

}

if (i==1|li==3]]i==5][1==7)

// If the index is equal to 1 or 3

{
analogWrite(motorPins[i], values[i]);
// Write to the PWM pins a number between
// 0 and 255 or what the person has entered
// in the serial monitor.

}

values[i] = 0; // set values equal to 0

sprintf(driveData, "Motor A = ", values[0], "Motor B = ",
values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

// Send temperature to the LCD
sensorValue = analogRead(tempPin);

503

CHAPTER9 FINAL PROJECT SOFTWARE

display.begin();
display.fillScreen(BLACK);
display.setCursor(0,0);
display.print(sensorValue);
digitalWrite(cs, HIGH);

}
index = 0;
numCount = O;
}
if (ch == 'x" || prevState == 'x') // if Serial reads x
{
SD.begin(SDCS);
File driveFile = SD.open("Drive.txt", FILE_WRITE);
// if the file is available, write to it:
if (driveFile) {
driveFile.println(driveData);
driveFile.close();
digitalWrite(SDCS, HIGH);
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
prevState = ch;
}
}
}

504

CHAPTER9 FINAL PROJECT SOFTWARE

The first bit of code is all the includes for the program; these includes
allow us to use various functions from other libraries. You will notice the
libraries for SPI, SD, ADXL362 accelerometer, and the TinyGPS library are
all accounted for.

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit GFX.h>
#include <Adafruit SSD1331.h>
#include <TinyGPS.h>

The next section of code will define and initialize all of the global
variables we need in order to control the NatBot. The first variables are
defined with the define directive which will set each of these variables
to a specific value. The next section deals with creating new instances of
objects; these objects are then used with the API to call certain functions,

for example:
gps.f_get position(&latitude,&longitude);

This function will return the longitude and latitude data. Finally, we
start to declare the global variables. These variables can be used anywhere
in the program which is great, but if you don’t want somebody accessing
this variable, your best bet would be to use a local variable which would
be placed within that function instead of on the outside of the setup() and
loop() functions. You will notice several variables have integers associated
with them; these are the pin numbers assigned to the Arduino.

// SD Card Chip Select
int SDCS = 30;

// Ultrasonic Sensor Pin
int pingPin = 22;

505

CHAPTER9 FINAL PROJECT SOFTWARE

// Accelerometer variables
int16_t XValue, YValue, ZValue, Temperature;

// GPS data
char LatData[50]; // data buffer for Latitude
char LongData[50];

//Latching Variables
char prevState;
int prevAutoState;

// Data buffer for saving drive data
char driveData [50];

// TMP36 Variables
int tempPin = A0;
int sensorValue = 0;

Now in the setup loop, we will find several different functions and
variables that we need in order to get the NatBot up and running. First,
serial ports 0 through 2 are started. The first serial port is set to a baud rate
of 9600, which is okay for the main RX/TX lines. The second serial port is
for the Bluetooth module, and the third serial port is for the GPS module.
Next, the CS (chip select pins) are set up as outputs, and the motor pins are
all set to LOW. The next bit of code checks that an SD card is present, if it is
the code will continue and if it is not the program will send out an SD card
failed command. Then the SDCS (SD card chip select pin) is set to high,
which will stop communication between the Arduino and the SD card.
Finally, the card will say it is initialized and will also ask the user to enter
trajectory information in a particular manner.

void setup() {

// Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS
Serial.begin(9600);

506

CHAPTER9 FINAL PROJECT SOFTWARE

Seriali.begin(115200);
Serial2.begin(4800);

// CS Pins of SPI devices
pinMode(SDCS, OUTPUT);
pinMode(cs, OUTPUT);
pinMode(27, OUTPUT);

// set Motor pinMode to output
for(int i; i <= 7; i++)
{
pinMode(motorPins[i], OUTPUT);
digitalWrite(motorPins[i], LOW);
}

// Check for Card availability

if (!SD.begin(SDCS)) {
Serial.println("Card failed, or not present");
// don't do anything more:
while (1);

}

// Turn off SD Chip Select

digitalWrite(SDCS, HIGH);

Serial.println("card initialized.");

Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,
MotoBSpe MotoCDir,MotoCSpe,MotorDDir,MotoDSpe \n");

Now we enter the loop structure which is the main portion of the software

for the NatBot. The first small section of this code relates to checking the

availability of bytes coming in from Seriall; if there are bytes, then they will be

passed through all of the if statements within the loop structure.

507

CHAPTER9 FINAL PROJECT SOFTWARE

void loop() {
if(Seriali.available())
{

char ch = Seriali.read();

u__n

The next section of code runs if the “y” command is received over
Seriall. Ifit is, the accelerometer is enabled with a begin function, and the
readXYZData() function is called to read the X, Y, Z, and temperature data.
Then the accelerometer is disabled by setting its CS pin to “High.” Next, the
SD card is enabled with a begin function; a file is created called Accel.txt.
Then the X, Y, and Z data is sent to the SD card. Finally, the previous state
is monitored so that this block of code only runs once.

if (ch == "y' || prevState == 'y') // if Serial reads y
{
accel.begin(10); // Setup SPI protocol, issue
device soft reset
accel.beginMeasure(); // Switch ADXL362 to measure mode

// read all three axis in burst to ensure all measurements
correspond to same sample time

accel.readXYZTData(XValue, YValue, ZValue, Temperature);

Serial.print("XVALUE=");

Serial.print(XValue);

Serial.print("\tYVALUE=");

Serial.print(YValue);

Serial.print("\tZVALUE=");

Serial.print(ZValue);

Serial.print("\tTEMPERATURE=");

Serial.println(Temperature);

delay(100); // Arbitrary delay to make serial

monitor easier to observe

508

CHAPTER9 FINAL PROJECT SOFTWARE

// Stop communication with accelerometer
digitalWrite(27, HIGH);

// Store data into SD card

// open the file. note that only one file can be open at
a time,

// so you have to close this one before opening another.

SD.begin(SDCS);

File accelFile = SD.open("Accel.txt", FILE_WRITE);

// if the file is available, write to it:
if (accelFile) {
accelFile.print(XvValue);
accelFile.print(" , ");
accelFile.print(YValue);
accelFile.print(" , ");
accelFile.println(ZValue);
accelFile.close();
digitalWrite(SDCS, HIGH);

}
// if the file isn't open, pop up an error:
else {

Serial.println("error opening datalog.txt");
}
prevState = ch;

}

The next section of code will only run if the “a” command is received.
Ifitis received over Seriall, then the ultrasonic sensor will pulse once and
check the distance to the nearest object. If 2 inches or less is detected,
Seriall will be sent a message “Object Near!!”

509

CHAPTER9 FINAL PROJECT SOFTWARE

else if (ch == 'a") // if Serial reads a
{
if (prevAutoState == 0)
{

prevAutoState = 1;
// put your main code here, to run repeatedly:
float duration, inches;

pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HICGH);
delayMicroseconds(2);
digitalWrite(pingPin, LOW);

pinMode(pingPin, HIGH);
inches = duration / 74 / 2;

if (inches »>= 2)

{
Seriali.println("Object Near!!");
}
}
else if (prevAutoState == 1)
{
prevAutoState = 0;
}

u__n

This section focuses on the GPS; it will be activated if the “g¢” command
is received over Seriall. Two floating-point local variables are created
called the latitude and longitude; these variables are fed into the f_get_
position(&latitude, &longitude) function. We then print latitude and
longitude data to the main serial port for debugging purposes. Finally, we
initialize the SD card again and save the latitude and longitude data to the

510

CHAPTER9 FINAL PROJECT SOFTWARE

SD card. One thing to also note is we shut down the SD card again with a
digitalWrite(SDCS, HIGH).

else if (ch == 'g"' || prevState == 'g') // if Serial reads g
{
if (Serial2.available() > 0) // now gps device is active
{
int ¢ = Serial2.read();
if(gps.encode(c)) // New valid sentence?
{

// Initialize Longitude and Latitude to floating
point numbers
float latitude, longitude;

// Get longitude and latitude
gps.f_get position(&latitude,&longitude);

Serial.print("Lat: ");

// Prints latitude with 5 decimal places to the
Serle ial Monitor

Serial.println(latitude,7);

Serial.print("long: ");

// Prints longitude with 5 decimal places to the
Serial Monitor

Serial.println(longitude,7);

// Store data into SD card

// open the file. note that only one file can be
open at a time,

// so you have to close this one before opening another.

SD.begin(SDCS);

File GPSFile = SD.open("GPS.txt", FILE WRITE);

// if the file is available, write to it:

511

CHAPTER9 FINAL PROJECT SOFTWARE

if (GPSFile) {
GPSFile.print(latitude, 7);
GPSFile.print(" , ");
GPSFile.println(longitude,7);
GPSFile.close();
digitalWrite(SDCS, HIGH);

}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
}
}
prevState = ch;

}

The next section will parse out any numbers 0 to 9 and store that value
into the values array which will be used later to control the motors.

else if(ch >= '0" 88 ch <= '9") // If the value is a number 0 to 9

{
// add to the value array

values[index] = (values[index] * 10) + (ch - '0");

}

This else if section will parse out the | character; they will not be
needed to control the NatBot.

else if (ch == ',") // if it is a comma

{
if(index < fields -1) // If index is less than 4 - 1...

index++; // increment index

512

CHAPTER9 FINAL PROJECT SOFTWARE

The final section will print a script out of each of the motors’ direction
and speed. Then, each of the indexes will be parsed into a direction
bit which will go to a digitalWrite function or will be passed into an
analogWrite function for the speed of the motors. Next, a sprintf function
is used to concatenate all of the motor directions into a string that will
later be sent to the SD card. Finally, the TMP36 is read, and the LCD
is initialized; then the sensorValue (which is the analog temp value) is
displayed on the LCD.

else
{
for(int i=0; i <= index; i++)
{
if (i == 0 &% numCount == 0)
{

Serial.println("Motor A");
Serial.println(values[i]);

}
else if (i == 1)
{
Serial.println(values[i]);
}
if (i == 2)
{

Serial.println("Motor B");
Serial.println(values[i]);

}
else if (i == 3)
{
Serial.println(values[i]);
}

513

CHAPTER 9

514

FINAL PROJECT SOFTWARE

if (1 == 4)

{
Serial.println("Motor C");
Serial.println(values[i]);

}
else if (i == 5)
{
Serial.println(values[i]);
}
if (i == 6)
{

Serial.println("Motor D");
Serial.println(values[i]);

}
else if (i == 7)
{
Serial.println(values[i]);
}

if (i==0]]i==2]]1==41]]1-==86)
// If the index is equal to 0 or 2
{
digitalWrite(motorPins[i], values[i]);
// Write to the digital pin 1 or 0
// depending on what is sent to the arduino.

}

if (i==1|1i==3]|]i==5]|1==7)
// If the index is equal to 1 or 3
{

analogWrite(motorPins[i], values[i]);

// Write to the PWM pins a number between

CHAPTER9 FINAL PROJECT SOFTWARE

// 0 and 255 or what the person has entered
// in the serial monitor.

}

values[i] = 0; // set values equal to 0

sprintf(driveData, "Motor A = ", values[0], "Motor B = ",
values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

// Send temperature to the LCD
sensorValue = analogRead(tempPin);

display.begin();
display.fillScreen(BLACK);
display.setCursor(0,0);
display.print(sensorValue);
digitalWrite(cs, HIGH);

index = 0;
numCount = O;

}

The final section of this code will activate if the “x” character is
received by Seriall. If it is, the SD card will activate, and the trajectory
data will be saved to the SD card. Finally, the SD card is closed with the
digitalWrite(cs, HIGH).

if (ch == 'x" || prevState == 'x') // if Serial reads x

{
SD.begin(SDCS);
File driveFile = SD.open("Drive.txt", FILE WRITE);

515

CHAPTER9 FINAL PROJECT SOFTWARE

// if the file is available, write to it:
if (driveFile) {
driveFile.println(driveData);
driveFile.close();
digitalWrite(SDCS, HIGH);

}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}

prevState = ch;
}

Alright, so that is the code for the NatBot; the only thing left to do is to
upload it to your Arduino. The next section will go over that process.

Uploading and Testing the NatBot Firmware

Just like you did with the previous projects, you will need to make sure

the Arduino is plugged into your computer and the correct COM port is
selected. If you are having trouble finding the correct COM port, use the
device manager and look for the port named USB-SERIAL CH340 (COM#).
Then select the correct board which is an Arduino Mega or Arduino MEGA
2560; the processor should be an Atmega2560. Once all of that is settled,
click the “Upload” button and the code will be sent to the Arduino.

516

CHAPTER9 FINAL PROJECT SOFTWARE

Summary

Alright! The firmware portion of this project is completed, but we will still
use some of it to help us create an application on a computer to control the
NatBot, but first let’s review what we covered in this chapter:

e Learned how to send string commands over the serial
port (Bluetooth)

e Learned how to send text to an LCD and change it at a
rapid pace

¢ Learned how to use multiple SPI connections in order
to talk to several devices

e Learned how to use the TinyGPS library and get
longitude and latitude data

o Learned how to get accelerometer data by using the
ADXL362 library

o Learned how to use the Ping Ultrasonic sensor

517

CHAPTER 10

Final Project Putting
It All Together

In this chapter, you will learn about a new piece of software (LabVIEW)
that will allow us to integrate the NatBot with a computer and an Xbox
controller, per our Naticom’s requirements document. LabVIEW is a very
powerful programming language, as well as a powerful testing tool. In this
chapter, we will use LabVIEW to interface with the Xbox controller so that
we can control the NatBot’s movements. We will not need to write any
new Arduino code for this chapter, as we will be using the same code from
Chapter 9, so we will first go over the basics of the LabVIEW environment
and programming language so that you are more comfortable with the
Naticom'’s project for this chapter.

Note | suggest visiting www.ni.com, as they will have a large
selection of tutorials and videos.

Introduction to the LabVIEW Environment

We will first need to install the LabVIEW Student Edition onto a computer.
You can get a great bundle from SparkFun at www. sparkfun.com/
products/10812. If you don’t want to buy the bundle, you can

download a 30-day trial from www.ni.com/labview. This process is very

© Harold Timmis 2021 519
H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0_10

https://doi.org/10.1007/978-1-4842-6852-0_10#DOI
http://www.ni.com
http://www.sparkfun.com/products/10812
http://www.sparkfun.com/products/10812
http://www.ni.com/labview

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

straightforward. Simply put the LabVIEW CD into your DVD-ROM drive,
and follow the onscreen instructions.

Now that we've installed the LabVIEW Student Edition, we can
start using it for various projects, but first let’s take a look at some of the
fundamentals of LabVIEW. The next section will discuss the various parts
of the LabVIEW environment that we will use in this chapter. They are the
Front Panel, the Controls Palette, the Block Diagram, the Functions Palette,
and the Tools Palette.

Note If you ever need help in LabVIEW, all you need to do is press
Ctrl-H, and a help box will pop up. Anything you run your mouse
over—a control, indicator, function, structure, and so on—the help
box will give you information on.

The Front Panel

After you open LabVIEW, a screen will open. Click the “Blank VI”

option on the screen, and two windows will open, one of them being

the Front Panel. The Front Panel is where we will put all of the controls
and indicators for our projects. When we are finished with the design

of the Front Panel, we will have completed our GUI. You can also align

the controls and indicators on the Front Panel by using Align Functions
buttons at the top of the Front Panel. You will be starting your program
from the Front Panel using the white arrow button in the upper-left corner
of the window (you must click this white arrow in order for the program to
start). Figure 10-1 shows the Front Panel.

520

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

‘?’ NATIONAL
INSTRUMENTS

LuhﬂEW Student Edition

Figure 10-1. The Front Panel

Note If you have a broken arrow instead of a solid white arrow in
the Front Panel, that means that your code has an error and will not
run. If you click the broken arrow, an error dialog box will pop up and
tell you what errors you have.

The Controls Palette

In this palette, you will find all of the controls and indicators that you will
use to create your GUI. Some of these controls and indicators include
toggle switches, numerical indicators, string controls and indicators, and
much more (I suggest playing around with this palette). To get to this
palette, go to View » Controls Palette. We will be using only a few controls
and indicators in this chapter, but if you want to learn more, I suggest

521

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

visiting www. ni.com, as they have a large selection of tutorials and videos.
Figure 10-2 shows the Controls Palette.

@l

Controls

YK

Modern

System

Classic

Express
Arduino

NXT Rebetics
¥

* v v v v w

Figure 10-2. The Controls Palette

The Block Diagram

This is where all the magic happens. The Block Diagram is where we code
the application and make the Front Panel do something (this can range
from turning on an LED to GPS data analysis). It contains the white arrow
button to run the program, and it also has a few debugging functions (we
will talk about those later). The Block Diagram also has a palette that we
will discuss in the next section. Figure 10-3 shows the Block Diagram.

522

http://www.ni.com

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

3 Untitled 2 Block Diagram [==]E]
Eile Edit View Project D_pua_t_!_ Icols Window Help @
ﬂ}lg w |l| ?l g] I.nlf&hi 15pt Apphication Font "I En‘l E'IF)'"’-‘& |l Q [?J 2|

Main Application Instance « *

Figure 10-3. The Block Diagram

The Functions Palette

This palette has all of the various functions that you might or might not
need. We will be going over only a few functions, but it is also a good

idea to play around with this palette. You can find this palette by going to
View » Functions Palette. You will find functions for strings, numerical,
Boolean, comparison, serial communication, and much more. Figure 10-4
shows the Functions Palette.

523

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Functions 2]

Qla-]

Programming

Measurement I'O
Instrument /O

Vision and Motion
Mathematics

Signal Processing

Data Communication
Connectivity

Contrel Design & Simulation
Express

v v T T T w T T Y T Y

User Libranes
Select a VL.
» Arduing
NXT Robotics
TestStand

¥

- -

Figure 10-4. The Functions Palette

Next, we will discuss the Tools Palette, which is used to control what
your mouse will do.

The Tools Palette

This palette can be used in either the Front Panel or the Block Diagram,
although most of the options will work only in the Block Diagram. You

can view this palette by clicking the View » Tools Palette. For the most
part, we will not be using this palette because it defaults to Automatic Tool
Selection, which means it will automatically select the best tool for what
you are doing. Figure 10-5 shows the Tools Palette.

524

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Figure 10-5. The Tools Palette

Now that you are a bit more familiar with the LabVIEW environment,
let’s go over some of the functions we’ll be using in this chapter.

LabVIEW Functions Explained

LabVIEW uses a different approach to programming; it uses the Data Flow
Process, which means data will “flow” from left to right on the screen. This
makes code very easy to read and understand. The following functions will
be used in the project for this chapter, as we will be creating software to
scale values from the Xbox controller.

Note It is always a good idea to wire error clusters and error wires
to keep data flow moving from left to right. We will see an example of
this later in this chapter.

To find the first function that we will discuss, go to Block Diagram »
Functions Palette » Programming » Structures. Here, you will see several
types of loops and conditional structures. We will be using the While Loop,
the Case Structure, and the Sequence Structure for this chapter. The next
section will discuss the While Loop.

525

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

The While Loop

This loop operates like any other While Loop, except that it is a visual
While Loop. In order to use it with other functions, you simply place the
functions within the While Loop. The While Loop will run at least one
time, and has many uses, just as in our Arduino programs. We can use a
conditional terminal to stop the While Loop, and we can use an iteration
terminal to check what iteration the While Loop is on. Figure 10-6 shows
the While Loop.

Iteration Conditional __
[Terminal Terminal W8

Figure 10-6. A While Loop

In the next section, we will discuss the Case Structure and its functions.

The Case Structure

This is a conditional structure much like the switch statement or the
if-else-if statements. You can have a true or false Case Structure, or you
can use enumerated data to have multiple case statements, such as a

State Machine; however, we will not go over State Machines in this book.
To use a Case Structure, you will need to select the Case Structure from
the Functions Palette » Programming » Structures, and drag the Case
Structure to the appropriate size that you need. You can then switch from
the true case to the false case by clicking the arrow at the top center of the
Case Structure. The Case Structure uses the Selector Terminal to select the

526

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

case that the Case Structure will call (we will see an example of this in the
project for this chapter). Figure 10-7 shows a Case Structure.

W True -4

Selector Terminal

Figure 10-7. A Case Structure

The Sequence Structure

This structure is used to force code to flow in a sequential manner (as the
name suggests). It is not a good LabVIEW programming practice to have
multiple Sequence Structures or Stacked Sequences, as they hide code and
alter the Data Flow Process. However, a one-frame Sequence Structure
used well, such as for initializing values, is not a bad practice. You can find
the Sequence Structure by going to the Functions Palette » Programming
» Structures. Figure 10-8 shows a Sequence Structure.

OO0 00000000000

Sequence
Structure

(sfsEsEsEslsisisNsRsisisnn]

Figure 10-8. A Sequence Structure
Now that we have discussed the While Loops, Case Structures, and

Sequence Structures, we can move on to the rest of the functions we will
use for this chapter.

527

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Numerical Functions

We will use a few Numerical Functions that will help us in the final
project. To get to the Numerical Functions, we need to first go to the Block
Diagram, then go to the Functions Palette » Programming » Numeric.
Figure 10-9 shows the Numeric Palette.

Functions fr}

&1

¥ Programming ot | |

L Numeric

alio|
» Measurement 'O
» Instrument V'O ~

Figure 10-9. The Numeric Palette

In here, you will see functions ranging from decrementing to a random
number function. We will use these functions to scale values from the
Xbox controller to work with the Arduino. Now, we need to discuss a few
functions from this palette that we will use in this chapter:

o Divide: This function is used to divide numerical values
(see Figure 10-10(a)).

528

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

e Multiply: This function is used to multiply numerical
values (see Figure 10-10(b)).

e Decrement: This function is used to subtract by one or
decrement by one (see Figure 10-10(c)).

B[]

(@) ®) c)

Figure 10-10. (a) The Divide Function, (b) the Multiply Function,
and (c) the Decrement Function

String Functions

We use String Functions to manipulate strings. We will use a few of

these functions to create the protocol so that the Xbox controller can
communicate with the Arduino. You can find the String Functions by going
to the Functions Palette » Programming » String (see Figure 10-11).

529

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Functions {3

N KT |

m

Measurement /0
Instrument 1'O

Vision and Motion
Mathematics

Signal Processing

Data Communication
Connectivity

Control Design 8 Simulat
Express

»
]
»
»
»
L]
»
(]
»

Figure 10-11. The String Palette

We'll be using the following String Functions for this chapter:

o Concatenate String: This function is used to combine
two or more strings (see Figure 10-12(a)).

e Number to Decimal String: This function converts a
numerical value to a string value (see Figure 10-12(b)).

7
-
(@ (b)

Figure 10-12. (a) The Concatenate String Function and (b) the
Number to Decimal String Function

530

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Comparison Functions

We use Comparison Functions to compare types to one another, for
example, whether 2 > 1. You can find the Comparison Functions by going
the Functions Palette » Programming » Comparison (see Figure 10-13).

Functions =]

Q&]

¥ Programming

S
B R
B B
B> BEE3 B
B b B
B B b

[2]e

Measurement 'O

Instrument VO

Vision and Motion
Mathematics

Signal Processing

Data Communication
Connectivity

Control Design & Simulation

Express

LAE 25 2K 2 28 2R 28 2R 2

Figure 10-13. The Comparison Palette

We will be using the following Comparison Functions:

e Less?: This function compares a value x to a valuey
and tests whether x is less than the y value (see
Figure 10-14(a)).

o Greater?: This function compares a value x to a value y
and tests whether x is greater than y (see Figure 10-14(b)).

e Less than 0?: This function compares a value x to zero
(see Figure 10-14(c)).

to

531

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

=>|[B>)| B

(@) (b)]

Figure 10-14. (a) The Less? Function, (b) the Greater? Function, and
(c) the Less than 0? Function

Now that we have some of the fundamentals of LabVIEW covered, we
can move on to Serial Functions and Input Device Control Functions.

Serial Functions

We can use these functions to communicate with USB devices. We will
use these functions to write data from the Xbox controller to the Arduino.
You can find the Serial Functions by going to the Functions Palette »
Instrument I/O » Serial. Figure 10-15 shows the Serial Palette.

Functions @
Q I Ev i
» Programming
P Measurement 'O
¥ Instrument /O
L Sarial

sl

Vision and Motion
Mathematics

L]
]
¥ Signal Processing
b Data Communication
» Connectivity
¥ Control Design & Simulation
> Express
b User Libraries
Select a VL.
b Arduine
» NXT Robatics
P TestStand
¥

Figure 10-15. The Serial Palette

532

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

In this chapter, we will use the following Serial Functions:

e Virtual Instrument Software Architecture (VISA)
Configure Serial Port: This function sets up the serial
port’s resource name, baud rate, parity, stop bits, flow
control, and data bits (see Figure 10-16(a)).

e VISA Flush I/0 Buffer: This function deletes the
data that is stored on the buffer, allowing for more
information to take its place (see Figure 10-16(b)).

e VISA Write: This function writes data to the serial
port you specified in the VISA Configure Serial Port
Function (see Figure 10-16(c)).

¢ VISA Close: This function closes out the serial
communication session (see Figure 10-16(d)).

A=

(a) (b) (c) (@

Figure 10-16. (a) The VISA Configure Serial Port Function, (b) the
VISA Flush 1/0 Buffer Function, (c) the VISA Write Function, and (d)
the VISA Close Function

Now that we understand the functions that we will need to
communicate with a serial port, we can move on to understanding the
functions that are necessary for the Xbox controller to work with the
application for this chapter.

Input Device Control Functions

We can use these functions to communicate with HIDs (Human Interface
Devices), such as a mouse, keyboard, or joystick. We will use these
functions to communicate with the Xbox controller. You can find the Input

533

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Device Control Functions by going to the Functions Palette » Connectivity
» Input Device Control. Figure 10-17 shows the Input Device Control
Functions.

Functions =]}

ala-|

P Programming

Measurement [/0
Instrument /O
Vision and Motion
Mathematics
Signal Processing

Data Communication

4 v v v v v«

Connectnity
L Input Device Control

» Control Design & Simulation
P Express
P UserLibraries
Select a VL.
¥ Arduino
P NXT Robotics

¥ TestStand
¥

Figure 10-17. The Input Device Control Palette

In this chapter, we will use the following Input Device Control
Functions:

o Initialize Joystick: This function starts the communication
between the computer and the joystick that you selected
with the device index (see Figure 10-18(a)).

e Acquire Input Data: This function gets the data from
the joystick device, such as button information and axis
information (see Figure 10-18(b)).

e Close Input Device: This function closes out the input
device session (see Figure 10-18(c)).

534

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

(@ (b) (c)

Figure 10-18. (a) The Initialize Joystick Function, (b) the Aquire
Input Data Function, and (c) the Close Input Device Function

With a primer of the LabVIEW software environment under our belts,
we can apply our newfound knowledge to our customer’s project. Let’s first
gather the requirements and then address hardware and software details.

Gathering Requirements and Creating
the Requirements Document

Naticom wants an application that can control the NatBot from a computer
using an Xbox controller; this application needs to control the movements
of the NatBot and also be able to send the various commands that will save
data to the SD card or check if an obstacle is in the NatBot’s way.

Software

Here are the software requirements for this project:

e Write LabVIEW software that allows the Xbox controller
to control the Arduino’s motion, and control the x, a, y,
and g commands that can be sent to the NatBot.

o The NatBot will also send a message back to the
LabVIEW application if the “a” command is sent to
the NatBot and will say if an object is too close to the
NatBot.

535

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Display scaled data from the joystick in a
String Indicator in the following format:
1,255,1,255,1,255,1,255.

Use the same code from Chapter 9 for the Arduino.

We should now have everything we need to move forward with this

project. In the next section, we will begin writing the application software
that will control the NatBot.

Writing the Software

This section is a bit different from what you normally see in this book; this

is because we will not be writing any Arduino code. Instead, we will be

writing code in LabVIEW, which will let us use the Xbox controller with the

Arduino.

Getting Started

Use the following steps to get started writing the software in LabVIEW:

1.

First, you will need to start LabVIEW by double-
clicking the LabVIEW icon.

After LabVIEW starts, click the “Blank VI” option.
Figure 10-19 shows this process.

A Front Panel and a Block Diagram should appear
on the screen, ready to be added to. Figure 10-20
shows the Front Panel and Block Diagram.

Note A black-outlined box within a figure indicates where you should
click with your mouse, or it denotes new code that has been added.

536

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

New Latest from ni.com
o

W Emply Project LabVIEW in Action

m V1 from Template. Example Programs

£ More.. Training Rescurces

Online Support
Open :
Discussion Forums
[8) C:\.\Dan McNair's CLD Prep\main.vproj
[B Ci\.\Car Wesh\Car Wash Projecttvpro) et
EnowledgeBase

|wl ChapterTenFinalProject.vi Request Support

&) SealeandCantrolvi Help

B Data Servervi Getting Started with LabVIEW

|l Data Clientvi

; LabVIEW Help

| Clientwi

s} TDMS Advanced - Ring Buffersi bist of All e Features

B Teggingai Q Find Examples...

£ Browse... Q, Find Instrument Drivers...

T R——————

Figure 10-19. The start screen for LabVIEW (double-click
“Blank VI”)

537

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

VNATMNM
INSTRUMENTS

thII:W Student Edition

Figure 10-20. Block Diagram (top) and Front Panel (bottom)

Designing the GUI

Now we need to design the GUI for this project:

1. First, go to the Controls Palette » Modern »
Boolean » Stop Button, and click the Stop Button
and drag it to the Front Panel.

2. After that, we need to add the String Indicator to the
Front Panel. Go to the Controls Palette » Modern »
String & Path » String Indicator, and drag the String
Indicator to the Front Panel. If you want to resize

538

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

any controls or indicators, simply hover your mouse
over the edge of the control or indicator and drag it
out to the size that you want.

3. Next, add the Write Button to the Front Panel by
going to the Controls Palette » Modern » Boolean
» OK Button and dragging the OK Button to the
Front Panel.

4. Then, you can rename the OK Button by clicking
the text and changing it to “Write.” After that, right-
click the Write Button, and a pop-up menu should
appear; click Mechanical Action » Switch when
Pressed.

Programming the Application

For now, the Front Panel is complete, and we are going to move on to
programming our LabVIEW application. Figure 10-21 shows the GUI for
this project.

539

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

File Edit View Project Operate Tools Window Help

Q7 NATIONAL

r H RAEMTC

Figure 10-21. Partially completed Front Panel

1. Go to your Block Diagram. You should have three
controls on it because we added them on the Front
Panel.

2. First, go to the Functions Palette » Programming »
Structures » While Loop, and drag the While Loop
onto the Block Diagram. Figure 10-22 shows this
process.

540

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

3 Untitied 2 Block Disgram * e
Eile Edit View Project Dperate Jook Window Help
(B (B][] e & 3 [spicmionton-][for] -] -] S m—T

Write Data

QK Button

St

Main Application Instance « I

Figure 10-22. Add a While Loop to the Block Diagram

3. Next, go to the Functions Palette » Connectivity »
Input Device Control » Initialize Joystick. Drag this
function to the Block Diagram on the outside of the
While Loop. Then, click the device ID terminal on
the Initialize Joystick Function and drag the wire to
the While Loop.

4. Next, click the error out terminal and drag the wire
to the While Loop.

5. After that, go to the Functions Palette »
Connectivity » Input Device Control » Acquire
Input Data, and drag this function to the Block
Diagram, inside the While Loop.

541

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

542

6. Then, attach the device ID from the Initialize Joystick

10.

11.

Function that we wired to the While Loop to the device
ID terminal on the Acquire Input Data Function.

Then, attach the error wire from the Initialize
Joystick Function to the error in (no error) terminal
on the Acquire Input Data Function.

Finally, go to the Functions Palette » Connectivity
» Input Device Control » Close Input Device,
and drag this function to the Block Diagram to the
outside of the While Loop on the right.

Then, connect the device ID from the Acquire
Input Data Function to the device ID terminal on
the Close Input Device Function. These terminals
are on the edges of the functions. This particular
terminal controls which device will be used.

After that, connect the error out terminal on the
Acquire Input Data Function to the error in (no
error) terminal on the Close Input Device Function.

After that, right-click the device ID on the left side
of the Initialize Joystick Function, and a pop-up
menu should appear. Go to Create » Control on
the pop-up menu; this will add a control to your
Block Diagram and Front Panel. Figure 10-23 shows
adding the Input Device Control Functions to the
Block Diagram. (Make sure you leave plenty of
space on the Block Diagram, as we still have some
functions to add to it.)

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

3 Untitled 2 Block Diagram *
Eile Edit Yiew Project Qperste Jook Window Help

(Bl (@] [@][%5] o & oF [15pt Appication Fom] [$o~][2a~] [€5-]2d] [—Q—I—I‘?’@

o &[]

device index

R

,_
el
EL N &

Main Application Intance. ¢ E.

Figure 10-23. Add Input Device Functions to the Block Diagram

Adding Serial Functions

Now that we have our Input Device Control Functions added and
connected on the Block Diagram, we can move on to adding the Serial
Functions to the Block Diagram.

1. First, go to the Functions Palette » Instrument I/O
» Serial » VISA Configure Serial Port, and drag this
function to the outside of the While Loop on the left.

2. Then, go to the Functions Palette » Instrument
I/0 » Serial » VISA Flush I/0 Buffer, and drag this
function to the right side of the While Loop, after the
VISA Configure Serial Port Function.

543

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

544

3.

Connect the VISA resource name out terminal from
the VISA Configure Serial Port Function to the VISA
resource name terminal on the VISA Flush I/O
Buffer Function.

Connect the error out (no error) terminal from the
VISA Configure Serial Port Function to the error in
terminal on the VISA Flush I/0 Buffer Function.

Add a Case Structure to the Block Diagram inside
the While Loop. Go to the Functions Palette »
Programming » Structures » Case Structure, and
drag it out a little on the Block Diagram.

Connect the Write Button to the conditional
terminal on the Case Structure (it is the small square
with a question mark in it). In the true case, we

will need to add a VISA Write Function. Go to the
Functions Palette » Instrument I/O » Serial »
VISA Write, and drag this function to the inside of
the Case Structure to the True Condition.

Now we need to connect the VISA resource name
out terminal on the VISA Flush I/0 Buffer Function
to the VISA resource name terminal on the VISA
Write Function. Connect the error out terminal on
the VISA Flush I/0 Buffer Function to the error in
(no error) terminal on the VISA Write Function.

Wire the VISA resource name out terminal on the
VISA Write Function to the right wall of the Case
Structure, and do the same for the error out terminal
on the VISA Write Function. You will notice that
there are two white squares on the right wall of the
Case Structure; this is because your false statement

10.

11.

12.

13.

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

has not been wired yet. Go to the false case of the
Case Structure and wire from the VISA resource
name out terminal on the VISA Flush I/0 Buffer
Function to the right wall of the Case Structure
where the white square is located (these squares are
called tunnels). Do the same thing for the error out
terminal in the false case of the Case Structure.

Add a Sequence Structure to the Block Diagram. To
do this, go to the Functions Palette » Programming
» Structures » Sequence Structure, and drag this
function out a little, inside the While Loop next to
the Case Structure.

Add a Wait(ms) Function to the inside of the
Sequence Structure. To do this, go to the Functions
Palette » Programming » Timing » Wait(ms), and
drag it to the inside of the Sequence Structure.

Right-click the milliseconds to wait terminal on the
Wait(ms) Function; a pop-up menu will appear.

Go to Create » Constant; a small constant box will
appear next to the Wait(ms) Function. Double-click
this box and type in “100.”

Now wire the data that is coming from the Case
Structure through the Sequence Structure (both
error out and VISA reference name out).

Then, add another VISA Flush I/0O Buffer Function
after the Sequence Structure. To do this, go to the
Functions Palette » Instrument I/O » Serial »
VISA Flush I/0 Buffer, and drag it to the Block
Diagram, after the Sequence Structure.

545

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

546

14.

15.

16.

17.

18.

Connect the wires from the Sequence Structure to
the VISA Flush I/0 Buffer Function.

Add a VISA Flush I/0 Buffer Function to the outside
of the While Loop, on the right side of the While
Loop.

Add a VISA Close Function after the VISA Flush I/0O
Buffer Function. You can find this function by going
to the Functions Palette » Instrument I/O » Serial
» VISA Close.

Right-click the VISA resource name terminal on the
left side of the VISA Configure Serial Port Function;
a pop-up menu will appear. Go to Create »
Control on that pop-up menu, and a control will be
created on the Block Diagram and the Front Panel.
Figures 10-24 and 10-25 illustrate adding the Serial
Functions to the Block Diagram.

Then, right-click the error on the left side of the VISA
Configure Serial Port Function; a pop-up menu

will appear. Go to Create » Control on the pop-up
menu, and a control will be created on the Block
Diagram and Front Panel. Figures 10-24 and 10-25
show the process of adding the error cluster to the
Block Diagram.

CHAPTER 10

FINAL PROJECT PUTTING IT ALL TOGETHER

£ Untitled 2 Biock Dingram *

(=& (%
B Edit View Project Openite Tools Window Help - e . E@
2@ P P ey e e [CIE 3
True =
=
= = e
I -
[et e « — — —

Figure 10-24. Add serial communication to the Block Diagram (part

10of2)

| B Untited 1 Block Diagram e
B £ Yow Prost Opeste Lok Window Hep FE
B 8 [][R][55] o & o2 15 pplcabon Fort |+ 2 v] (€55 -

OK Button
] Falga)
m]
[Appcstn i « — - T —— e

Figure 10-25. Make sure you wire the false condition of the Case

Structure (part 2 of 2)

547

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Completing the While Loop Condition

Now, we need to complete the While Loop condition:

1. First, add an Or Function to the Block Diagram. To
do this, go to the Functions Palette » Programming
» Boolean » Or, and drag it next to the conditional
terminal of the While Loop.

2. Then, connect the x.or.y? terminal to the conditional
terminal on the While Loop.

3. After that, connect the Stop Button to the bottom
terminal on the Or Function.

4. Next, add an Unbundle by Name Function to the
Block Diagram. To do this, go to the Functions
Palette » Programming » Cluster, Class, &
Variant » Unbundle by Name, and drag it to the
Block Diagram, next to the top terminal on the Or
Function.

Adding a Merge Errors Function

Now, we need to add a Merge Errors Function to the Block Diagram. To do
this, follow these instructions:

1. Go to the Functions Palette » Programming »
Dialog & User Interface » Merge Errors, and drag
it to the Block Diagram and connect the error out
terminal to the Unbundle by Name Function.

2. Then, connect the status terminal of the Unbundle
by Name Function to the top terminal on the Or
Function.

548

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

3. Connect the error out terminal from the Acquire
Input Data Function to the first terminal on the
Merge Errors Function.

4. Then, attach the error out terminal from the VISA
Flush I/0 Buffer Function (the one inside the While
Loop) to the second terminal on the Merge Errors
Function. Figure 10-26 shows the completed While
Loop condition.

13 untitied | Block Disgeam * e—

E—r =
ke
UK Button
- ==
i
o
[Masy Ll nee < m

Figure 10-26. Complete the While Loop by adding in stop
conditions

Next, we need to add a SubVI to our program.

549

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Adding a SubVi

A SubVI is much like the subroutines we create when we program with
the Arduino IDE. Every function that we have put on the Block Diagram
has been a SubVI, but we are about to add a SubVI that LabVIEW does not
come with. You can find this SubVI with the source code from Chapter 10
at www.apress.com.

1. Onceyou have downloaded the SubVI (the SubVI’s
name is ScaleandControl.vi) to your desktop, you
can drag and drop it onto the Block Diagram.

2. Then, connect the axis info terminal on the Acquire
Input Data Function to the axis info terminal on the
Scale and Control Function.

3. Next, connect the button info terminal on the
Acquire Input Data Function to the button info
terminal on the Scale and Control Function.

4. After that, connect the string terminal on the Scale
and Control Function to the Write Data String
Indicator.

5. Finally, connect the string terminal on the Scale
and Control Function to the write buffer terminal
on the VISA Write Function. Figure 10-27 shows the
completed SubVI.

550

http://www.apress.com

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

£ Untitled 2 Block Disgram * =Te s
Fle Edt View Prjct Cperte Jools Window |elp @'
[[db] (1] [@] (5] ho[@lot [15 Application Fomt 'ﬁ—iil!
device index
12]
L i o &

&

cation Instance

Figure 10-27. Add a SubVI to the Block Diagram that will scale the
Xbox controller’s values and dictate which direction to move the robot

Error Handling

Now, we need to complete the error handling for this project.

1. First, add a Merge Errors Function to the outside of
the While Loop, after the VISA Close Function.

2. Next, attach the error out terminal on the VISA
Close Function to the second terminal on the Merge
Errors Function.

3. Then, attach the error out terminal on the Close
Input Device Function to the first terminal on the
Merge Errors Function.

551

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

4. Finally, right-click the error out terminal on the
Merge Errors Function, and a pop-up menu should
appear. Go to Create » Indicator, and an error
indicator should be added to your Block Diagram
and Front Panel.

Now, you can modify the Front Panel as you see fit because we have no
more controls or indicators to add to it. That should do it for the LabVIEW
software. See Figure 10-28.

-)
B Unfitied 2 Block Disgram * e

Ele Ece Wew Ercject Opeate ook Window Help E
=@ o] [§]E ale - el &5+ i Y =

device inde

2 i .

hj

Om:n —
= s
£ o
) oy
SE)
] 3 l g |

IMlm @ n Instance

Figure 10-28. Finish error handling of the LabVIEW software to
finish the program

Read Function

Now, we need to complete the error handling for this project.

1. First, let’s expand the Front Panel a bit to accommodate
the new string indicator that we will need.

552

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

2. Now add another string indicator onto the Front
Panel and name it “Serial Read.”

3. Go ahead and stretch it to be the same width as the
“Write Data” string indicator and about half of its
height. See Figure 10-29.

B ChapterTenfinalProject vi Front Panel * - B X
mmwmmmwm

:::::

Figure 10-29. Expand the Front Panel

4. Add alittle flare to the Front Panel by double-
clicking the Front Panel and writing “NatBot
Interface” onto the Front Panel. See Figure 10-30.

553

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

{3 ChepterTenFinalProjecti Front Panel - o x
B T e PRI OUOR o ke Wi D HOYT

| [&[®] &[] [15er apgscatio

Figure 10-30. Add the text “NatBot Interface” to the Front Panel

5. You can increase the size of the text by selecting the
text and pressing Ctrl and +.

6. To add a vertical scrollbar to the “Serial Read”
indicator, right-click the indicator and go to Visible
Items » Vertical Scrollbar, and the scrollbar will
appear. See Figures 10-31 and 10-32.

554

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

B ChapteiTenFinsProjectvi Front Pand * o x Bl
Emmwmmmu

Figure 10-31. Make the vertical scrollbar visible

{3 ChapterTenFinalProject.vi Front Panel *
mmwmwmwm

Figure 10-32. Vertical scrollbar

555

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

7. Move to the Block Diagram and remove the wires
between the sequence structure and the flush buffer,
and expand the while loop a bit. See Figure 10-33.

B I8 Yem B Opeds Tk e by

[omFE e[0 E T |

L&

[

Figure 10-33. Expand the while loop

8. Add a VISA Read Function to the Block Diagram.
See Figure 10-34.

556

CHAPTER 10

FINAL PROJECT PUTTING IT ALL TOGETHER

[T —

B T T B £ [| w.E_
e —
i '_|[
2 E =
L
T & [
r— ={g) g
= = = ul_ =i
[m il B W
[y i « ¥
Figure 10-34. Add a VISA Read Function
9. Add a VISA Property Node to the Block Diagram.
This will be a “Bytes at Port” function which will set
the size of the buffer that we will be looking for on
the serial port. See Figure 10-35.
B e D S B e EEISE M@
e
- ="
= [~ HE=]
={0] e o
2= . = = IX
== - i -

Figure 10-35. Add the “Bytes at Port” property

557

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

”

10. Connect all the necessary wires for the “Bytes at Port
function and also connect the “Serial Read” indicator
to the VISA Read Function. See Figure 10-36.

[T ————

= l“4-]-;|. \-h:l‘l.?;rh:-.- st Bimcoieac | : g ,J—.]
& 7 — [=z
| g
e [T =
[| R e W
s B s i
G ey —f—ps £ = =l
|
|
Uepe=s
i
[~ =1 T . B —— = e ————————————

Figure 10-36. Malke sure your Block Diagram looks like this

Uploading the Code to the Arduino

Now that we have written our LabVIEW software, we need to make sure the
correct code is uploaded to the Arduino. Listing 10-1 shows the Arduino
code for this project.

Listing 10-1. Same firmware from Chapter 9 will be used

#include <SPI.h>

#include <SD.h>

#include <ADXL362.h>

#include <Adafruit GFX.h>
#include <Adafruit SSD1331.h>
#include <TinyGPS.h>

// Adafruit Display
#define sclk 52

558

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

#define mosi 51
#define cs 31
#define rst 29
#define dc 28

// Color definitions
#define BLACK 0x0000

int numCount = 0;

// Motor IO

const int fields = 8; // how many fields are there? right now 8
int motorPins[] = {42,44,40,46,25,12,26,13}; // Motor Pins

int index = 0; // the current field being received

int values[fields]; // array holding values for all the fields

// Object Creation

TinyGPS gps;

ADXL362 accel;

Adafruit SSD1331 display = Adafruit SSD1331(cs, dc, mosi, sclk,
1st);

// SD Card Chip Select
int SDCS = 30;

// Ultrasonic Sensor Pin
int pingPin = 22;

// Accelerometer variables
int16_t XValue, YValue, ZValue, Temperature;

// GPS data
char LatData[50]; // data buffer for Latitude
char LongData[50];

559

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

//Latching Variables
char prevState;
int prevAutoState;

// Data buffer for saving drive data
char driveData [50];

// TMP36 Variables
int tempPin = A0;
int sensorValue = 0;

void setup() {

// Serial of Arduino, Serial of bluetooth, Fianlly Serial of GPS
Serial.begin(9600);

Seriali.begin(115200);

Serial2.begin(4800);

// CS Pins of SPI devices
pinMode(SDCS, OUTPUT);
pinMode(cs, OUTPUT);
pinMode(27, OUTPUT);

// set Motor pinMode to output
for(int i; i <= 7; i++)
{
pinMode(motorPins[i], OUTPUT);
digitalWrite(motorPins[i], LOW);
}

// Check for Card availability

if (!SD.begin(SDCS)) {
Serial.println("Card failed, or not present");
// don't do anything more:

560

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

while (1);
}
// Turn off SD Chip Select
digitalWrite(SDCS, HIGH);

Serial.println("card initialized.");

Serial.println("The Format is: MotoADir,MotoASpe,MotorBDir,
MotoBSpe\n");

}

void loop() {
if(Seriali.available())
{

char ch = Seriall.read();

if (ch == "y' || prevState == 'y') // if Serial reads y
{
accel.begin(10); // Setup SPI protocol, issue
device soft reset
accel.beginMeasure(); // Switch ADXL362 to measure mode

// read all three axis in burst to ensure all
measurements correspond to same sample time
accel.readXYZTData(XValue, YValue, ZValue, Temperature);
Serial.print("XVALUE=");
Serial.print(XValue);
Serial.print("\tYVALUE=");
Serial.print(YValue);
Serial.print("\tZVALUE=");
Serial.print(ZValue);
Serial.print("\tTEMPERATURE=");
Serial.println(Temperature);

561

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

562

}

delay(100); // Arbitrary delay to make serial
monitor easier to observe

// Stop communication with accelerometer
digitalWrite(27, HIGH);

// Store data into SD card

// open the file. note that only one file can be open at
a time,

// so you have to close this one before opening another.

SD.begin(SDCS);

File accelFile = SD.open("Accel.txt", FILE WRITE);

// if the file is available, write to it:

if (accelFile) {
accelFile.print(XValue);
accelFile.print(" , ");
accelFile.print(YValue);
accelFile.print(" , ");
accelFile.println(zvalue);
accelFile.close();
digitalWrite(SDCS, HIGH);
}

// if the file isn't open, pop up an error:

else {
Serial.println("error opening datalog.txt");

}
prevState = ch;

else if (ch == 'a') // if Serial reads a

{

if (prevAutoState == 0)

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

prevAutoState = 1;
// put your main code here, to run repeatedly:
float duration, inches;

pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HICH);
delayMicroseconds(2);
digitalWrite(pingPin, LOW);

pinMode(pingPin, HIGH);
inches = duration / 74 / 2;

if (inches »>= 2)

{
Seriali.println("Object Near!!");
}
}
else if (prevAutoState == 1)
{

prevAutoState = 0;

}
}
else if (ch == 'g"' || prevState == 'g') // if Serial reads g
{

if (Serial2.available() > 0) // now gps device is active

{

int ¢ = Serial2.read();
if(gps.encode(c)) // New valid sentence?

{

563

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

// Initialize Longitude and Latitude to floating

point numbers
float latitude, longitude;

// Get longitude and latitude

gps.f_get position(&latitude,&longitude);

Serial.print("Lat: ");

// Prints latitude with 5 decimal places to the

Serle ial Monitor
Serial.println(latitude,7);

Serial.print("long: ");

// Prints longitude with 5 decimal places to the

Serial Monitor
Serial.println(longitude,7);

// Store data into SD card

// open the file. note that only one file can be

open at a time,

// so you have to close this one before opening

another.
SD.begin(SDCS);

File GPSFile = SD.open("GPS.txt", FILE WRITE);

// if the file is available, write to

if (GPSFile) {
GPSFile.print(latitude, 7);
GPSFile.print(" , ");
GPSFile.println(longitude,7);
GPSFile.close();
digitalWrite(SDCS, HIGH);

}
// if the file isn't open, pop up an

564

it:

€rror:

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

else {
Serial.println("error opening datalog.txt");
}
}
}
prevState = ch;
}
else if(ch >= '0" 88 ch <= '9") // If the value is a number
0 to 9
{

// add to the value array
values[index] = (values[index] * 10) + (ch - '0");
}
else if (ch == ',") // if it is a comma
{
if(index < fields -1) // If index is less than 4 - 1...
index++; // increment index

}
else
{
for(int i=0; i <= index; i++)
{
if (i == 0 &% numCount == 0)
{

Serial.println("Motor A");
Serial.println(values[i]);

}

else if (i == 1)

{

Serial.println(values[i]);

565

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

}

if (1 == 2)

{
Serial.println("Motor B");
Serial.println(values[i]);

}
else if (i == 3)
{
Serial.println(values[i]);
}
if (i == 4)
{

Serial.println("Motor C");
Serial.println(values[i]);

}
else if (i == 5)
{
Serial.println(values[i]);
}
if (i == 6)
{

Serial.println("Motor D");
Serial.println(values[i]);

}

else if (i == 7)

{

Serial.println(values[i]);

}

if (i==0]|1==21]1==41]|1-==6) //If the
index is
equal to
0 or 2

566

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

{
digitalWrite(motorPins[i], values[i]); // Write to

the digital
pin 1 or 0
// depending on what is sent to the arduino.

}

if(i==1]|i==3]]i==5]]1==7)
// If the index is equal to 1 or 3
{
analoghrite(motorPins[i], values[i]); // Write to
the PWM pins a number between
// 0 and 255 or what the person has entered
// in the serial monitor.

}

values[i] = 0; // set values equal to 0

sprintf(driveData, "Motor A = ", values[0], "Motor B = ",
values[2], "Motor C = ", values[4], "Motor D = ", values[6]);

// Send temperature to the LCD
sensorValue = analogRead(tempPin);

display.begin();
display.fillScreen(BLACK);
display.setCursor(0,0);
display.print(sensorValue);
digitalWrite(cs, HIGH);

}

index = 0;
numCount = O;

}

567

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

if (ch == 'x" || prevState == 'x') // if Serial reads x
{
SD.begin(SDCS);
File driveFile = SD.open("Drive.txt", FILE_WRITE);

// if the file is available, write to it:
if (driveFile) {
driveFile.println(driveData);
driveFile.close();
digitalWrite(SDCS, HIGH);
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");

}
prevState = ch;

If you would like to read the discussion of this program, please read the
“Writing the Software” section in Chapter 9’s final project.

Note Make sure the Arduino and the Xbox controller are connected
to your computer.

568

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Operation

The following steps will guide you through the operation of this project:

1.

To operate the LabVIEW software, you will need to
first know the serial com port to which the Arduino
is connected. Go to the Front Panel of the LabVIEW
software and click the arrow on the VISA resource
name control; a drop-down menu will appear, and
you can select the correct serial port to which the
Arduino is connected.

After that, you need to select the correct number ID
with which the Xbox controller is associated. To do
this, click inside the white area of the device index
control and type in the number (the best thing to
do is type in 1; if that doesn’t work, type in 2; if that
doesn’t work, type in 3; repeat these steps with a
larger number each time).

Then, click the white arrow at the top left of the
screen. After that, your program should run. Click
the Write Button, and the robot should move when
you move the joystick up, down, left, and right.

Now that we have written the LabVIEW software and Arduino software,
we can move on to fixing any bugs or issues we might have had with both

the hardware and software. In the next section, we will discuss how to
debug the software.

Debugging the LabVIEW Software

LabVIEW has several built-in debugging tools. I will explain only two of

them: Highlight Execution and probes.

569

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Highlight Execution is used to see the flow of your program and to
find where errors are occurring. It slows the program down considerably
and runs through the code function by function. To use this debugging
method, click the Highlight Execution button at the top of the Block
Diagram (the button has a light bulb on it). If you click this function while
the program is running, you will see bright lines showing you where you
are in the code.

Probes are used to see specific values that controls or indicators are
giving or receiving. For instance, if you wanted to see at what point a
logical error is occurring in your code, you could use a probe to view data
on the wires to figure out where the mistake is. To use probes, right-click
any wire on the Block Diagram. A pop-up menu will appear. Click probe,
and a display will pop up with an indicator showing you the value on that
wire.

We can use these tools to figure out issues that the LabVIEW software
might be having. If you have a broken arrow, you might have connected
something incorrectly, or you forgot to connect a terminal on one of the
functions. Make sure your code is exactly like that shown in Figure 10-36.
Now, if you have a white arrow, and you are still having issues with your
LabVIEW software, you might have encountered a logical error. Use
probes and Highlight Execution to find these issues. Because every Xbox
controller will have different calibration, you might need to adjust the
limits on the Xbox controller. To do this, double-click the Scale and Control
SubVI, and the Block Diagram for this SubVI should appear. Then adjust
the constants, shown in Figure 10-37, to a higher or lower value, depending
on what your Xbox controller is doing.

570

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

R
q

Figure 10-37. Change the constants on these functions to set the
limits for vertical and horizontal movements of the joystick on the
Xbox controller

If the software is working, and you are still having issues, refer to the
next section on troubleshooting the hardware.

Finished Prototype

Well, if everything is working, you have a finished prototype ready to
deliver to the customer. Figure 10-38 shows the finished prototype.

Figure 10-38. The NatBot

571

CHAPTER 10 FINAL PROJECT PUTTING IT ALL TOGETHER

Summary

That’s it! But before you leave, let us recap what we have gone over in this
chapter:

e Learned about the LabVIEW environment

e« Learned how to use serial communication to control
the NatBot with a LabVIEW application

e Learned how to structure your code on the Block
Diagram and how to arrange your Front Panel (GUI)

¢ Learned about various functions in LabVIEW

e Created your own Serial Interface using LabVIEW

572

Index

A

Accelerometer, 8, 409, 410, 491
Adafruit SSD1331
library, 493
ADXL362 library, 492
Allen wrenches, 135, 136
Analog communication, 46
Arduino boards, 2, 184
Arduino engineering process
configuring hardware, 20, 21
creating requirements
document, 19
debugging software, 23
finished prototype, 25
gathering hardware, 19
hardware components
ArduinoBT/Bluetooth
Mate Silver, 3
Arduino Duemilanove/
UNO, 2
Arduino shields, 5
GPS shield, 6
miscellaneous
components, 10
Motor shield, 6
servos and motors, 9

solderless breadboard, 4, 5

wire, 5

© Harold Timmis 2021

requirements document,
creation, 18
tools, 10-17

troubleshooting hardware, 24

writing software, 22
Arduino microcontroller, 2
Arduino shields, 5
Arrays, 31

B

Bluetooth Mate Silver, 3, 4

C

Calipers, 137, 161, 343
Capacitors, 10, 185, 281

Case structure, 526-527
Comparison functions, 531-532

Conditional statements, 31-33, 53

Control board, 142, 143
Cura, 145
Cutters, 11, 15

D

DesignSpark Mechanical, 58
Digital calipers, 137
Digital commands, 45

H. Timmis, Practical Arduino Engineering, https://doi.org/10.1007/978-1-4842-6852-0

573

https://doi.org/10.1007/978-1-4842-6852-0#DOI

INDEX

Digital communication, 45
digitalRead(), 46
digitalWrite(), 46

Diodes, 10, 374

do...while loop, 44, 54

Duet Wifi 2 control board, 143

E

Eagle
board window, 187-189
Gerber file, creation, 256-261
libraries, loading, 189-196
PCB software, 185
schematic window, 185, 187
E3D brand extruder assembly, 141
Error handling, 551-552
Extrude function, 103-106
Extruder assembly, 140-141

F

FDM printer, 130-132

Feature creep, 18

Finite-state machine
(FSM), 38-42, 53

Flex sensor, 7, 8

Force sensitive resistor
(FSR), 7,9

for loop, 42, 43

FTDI programmer, 12, 16

Function prototype, 28

Fused Filament Fabrication (FFF),
129, 131

574

settings
additions tab, 153
advanced tab, 162
cooling tab, 157
extruder tab, 150
G-Code tab, 158
infill tab, 154
layer tab, 152
scripts tab, 159
speed tab, 160
support tab, 155
temperature tab, 156
Fusion 360
download, 58-62
extrude function, 103-106
importing files, 86-96
installation
procedures, 63, 64
interfaces/controls, 64
parametric modeling
Center Diameter Circle,
selection, 113
change dimensions, 108
circle on grid, 113
circle to bottom face, 120
circle to horizontal center
line, 117
cube project, 106
design history bar, 125
dimension to circle, 114
edit dimension, 112
Extrudel selection, 109
extrude, border 1mm, 118
fillet, adding, 121

horizontal center,
rectangle, 115
left-side outlines,
selection, 122
offset function, 111
show sketch, 119
sketchl selection, 121
sketch?2 selection, 123
2mm fillets, 123, 124
rectangle, 115
sketch creation, 97-103
sketch tools
arc, 75
circle, 74
create sketch, 72
fillet, 77
line, 72
mirror, 76

normal and construction

lines, 73
offset, 78
polygon, 75
rectangle, 73
text, 76
trim, 77
3D model, 96
3D tools
chamfer, 84
circular pattern, 82
combine, 85
extrude, 79
fillet, 83
loft, 81
new component, 78

G

INDEX

press pull, 83
rectangular pattern, 81
revolve, 80

shell, 84

sweep, 80

tools, functions, 85, 86
user interface

browser, 70

center mouse button, 68
design history bar, 70
layout, 65

left mouse click, 67
mouse pointer, 68
navigation bar, 71

right mouse click, 66
ViewCube, 68, 69

Gantry, 141, 142
Ghosting, 168

Global variable, 30, 505
GPS module, 7, 8, 424, 475
GPS mount, 463, 475, 485
GPS shields, 6

H

H-bridge, 265-274
H-Bridge PCB

add nets to components, 280
component orientations, 281
components configuration, 282
connect INV3, 290

575

INDEX

H-Bridge PCB (cont.)
connect INV4, 287
connect +VIN pins, 299
connect VIN to filter caps, 284
GND plane, 314
header labels, 309
hide layers, 300
holes adding, 307
plane GND, 313
polygon on top layer, 311
Ratsnest button, 315
ripup tool, 290, 291
ripup tool and route tool, 316
route +5V, 292
route INV1 to JP1, 296
route N$15, 295
schematic layout, 279
unrouted traces, 303
vias adding, 305
Humidity sensor, 9

,J,K

Input device control functions,
533-535, 543

Integrated circuit (IC), 183

Integrated development

environment (IDE), 2, 22, 550

L

LabVIEW environment
block diagram, 523
controls palette, 522

576

front panel, 521
functions palette, 524
tools palette, 525

LabVIEW functions
case structure, 527
comparison

functions, 531, 532
input device control functions,
533-535

numerical functions, 528, 529
sequence structure, 527
serial functions, 532, 533
string functions, 529, 530
while loop, 526

LCD mount dimensions, 462

LED, 10, 18-20, 246, 253

Local variable, 30

Logic analyzer, 12, 16

loop(), 28, 505

Loops, 42-44

Magnifying glass, 15

Main Simplify3D
screen, 146-148

Merge errors function, 548-549,
551, 552

micros() function, 35

Micro USB panel mount, 456-457,
483

millis() function, 35, 38

Motor shields, 6

Multimeter, 11, 14, 374, 375

INDEX

N software debugging,

NatBot 569, 570

boost regulators, 412
hardware, PCB
accelerometer, 409, 410
bluetooth, 416, 417
boost regulator, 414, 415
charge circuit, 411, 412
GPS, 424, 425
GPS header layout, 427
GPS header schematic, 426
H-bridges, 399-401
micro servo, 404
motor connectors, 400
motor header, 401, 402
OLED display, 421-423
sensor, 417
servo header, 405-408

temperature sensor, 419-421

ultrasonic, 418, 419
hardware requirements,
386-388
LabVIEW
adding serial functions,
543-547
Arduino code, 558-568
error handling, 551, 552
GUI, 538
merge errors function, 548
programming, application,
539-543
read function, 552-555,
557,558

software requirements, 535
SubVi, adding, 550, 551
while loop condition, 548
writing software, 536-538

PCB Bill of Materials (BOM),

428, 430

PCB’s dimensions, creation

add rectangle to

layout, 392
Bluetooth antenna, 397
final board dimensions, 389
final dimension layout, 396
functions menu, 391
holes layer, 392
horizontal length, 390
keepout zones, 398
line function selection, 395
polygon function, 397
rectangle, 393-395
rectangles, 389
vertical length, 390

requirements gathering (PCB),

385, 386

software

Arduino libraries, 492-494

code writing, 495-516

requirements gathering
(firmware), 490

requirements outlining,
491, 492

uploading and testing, 516

577

INDEX

NatBot (cont.)

3D modeling
assembly, robot, 469-488
battery holder, 452
chassis, 452
front and rear wheelbase,

P, Q

Painters spatula, 134

Parametric paradigm, 57
Photoresistor, 7, 8

PIR sensor, 7

Printed Circuit Board (PCB) design

463-465

Fusion 360 functions,
435-451

GPS mount, 463

LCD mount, 455, 461

micro USB panel mount, 456
motor assembly mounts, 454

outlining requirements,
433-435
PCB mounting, 457
requirements gathering,
432,433
ultrasonic sensor
mount, 454
ultrasonic sensor mount
dimensions, 460
wheelbases, 472
wheels, 465
3D printing, 467-469
Naticom, 265, 274-276, 385, 432
Needle-nose pliers, 11, 133, 134
Numeric palette, 528

O

OLED display, 421-423, 493
Onshape, 58
Oscilloscope, 12, 17

578

Bill of Material (BOM), 428, 430
board layout creation, 229-256
definition, 183
design software, 183
Eagle (see Eagle)
manufacturers, 261, 262
schematics creation
add 5V symbols, 201
add GND symbols, 203
add LED3MM symbol, 206
ADD window, 200, 213
*.brd file, 228
button search, 207
connect GND to terminal
block, 225
5mm terminal block, 214, 215
5V net connect to terminal
block, 221
5V symbol selection, 200
GND symbol selection, 202
LED_ Board, 228, 229
LED3MM selection, 205
LED search, 204
Momentary button, 207, 208
open eagle, 197
R1 value, 227
RO805 resistor, 217

search connector, 213
search resistor, 216
symbols configuration, 219
value of button, 209
properly—setup(), 28
Pulse width modulation (PWM),
46, 269, 270

R

Read function, 552-555, 557, 558
Resistors, 10, 185
Robot chassis, designing
Arduino measuring, 345-348
component, creation, 320, 329
50mil chamfers, adding, 325
front brace, motor
bracket, 337
front stop rectangle, motor
bracket, 333
hide screws from view, 328
holes add, caster wheel, 322
holes adding, Mega 2560 Pro, 323
holes, chassis, 338
holes, motor bracket, 335
micro motor measurement,
349, 350
mirror, 339
motor bracket, outline, 332
motor driver, 327
rectangle, creation, 321,
330, 341
width of hole, 342
zero button, 343

INDEX

Robot engineering requirements
assembly
debugging, Arduino
Software, 369-374
troubleshooting hardware,
374-380
writing software, 365-368
controlling motors, serial
commands, 275
H-bridge circuit, 265-274
requirements gathering, 275, 276
software requirements, 277, 279

Schematic sheets, 383-384
Scientific calculator, 11

SD library, 494

Sensors, 7, 8

Sequence structure, 527, 545
Serial communication, 46-50
SerialEvents, 50-51

Serial functions, 532-533
Servos and motors, 9

setup(), 28

Simplify3D, 145-147

Slicer, 145, 146

Solder, 11, 351, 352
Solderingiron, 11, 13

Solderless breadboard, 4, 5
Sonar sensors, 8

SparkFun Eagle library, 191, 195
Stereolithography (SLA) printer, 132
String functions, 529-530

579

INDEX

SubVl, 550-551
Surface mount hardware (SMT), 318
Switch statement, 33, 53

T

Temperature sensor, 8, 419-421
3D Cad software
DesignSpark mechanical, 58
Onshape, 58
Solidworks, 57
3D printer
build plate, 169
definition, 129
FDM, 130
FFE 131
first print, 169-182
functionality, components
build plate, 143
cold block, 139
control board, 142
extruder assembly, 140
gantry, 141
hot end, 138
ghosting, 168
over/under extrusion, 163-168
SLA, 132
tools
Allen wrenches, 135
calipers, 137
needle-nose pliers, 133
painters spatula, 134
tweezers, 136
wire cutters, 135

580

X-Acto knife, 136

troubleshooting, 163
Tilt sensor, 7, 8
Timers vs. Delays, 33-38
TinyGPS++ library, 51
TinyGPS library, 494
Transistors, 10, 265
Troubleshoot hardware, 24
Tweezers, 136

U

Ultrasonic sensor, 417, 434, 455,
460, 474,476
USB microscope, 15

\'

Variables
array, 31
conditional statements, 31-33
declarations, 31
declare, 30
local and global variables, 30

types, 29

W

while loop, 43, 54, 526, 548
Wire cutters, 135
Wire stripper, 11, 15

XY, Z

X-Acto knife, 136, 137

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: The Process of Arduino Engineering
	Gathering Your Hardware
	Gathering Your Tools
	Understanding the Engineering Process
	Requirements Gathering
	Creating the Requirements Document
	Gathering the Hardware
	Configuring the Hardware
	Writing the Software
	Debugging the Arduino Software
	Troubleshooting the Hardware
	Finished Prototype

	Summary

	Chapter 2: Understanding the Arduino Software
	Getting Started with setup() and loop()
	Initializing Variables
	Writing Conditional Statements

	Timers vs. Delays
	Finite-State Machine
	Working with Loops
	Communicating Digitally
	Communicating with Analog Components
	Serial Communication
	SerialEvent
	Using Arduino Libraries
	TinyGPS++

	Putting Together the Arduino Language Basics
	Summary

	Chapter 3: Modeling with Fusion 360
	Installing and Setting Up Fusion 360
	Download Fusion 360
	Installation Procedures for Fusion 360
	Getting to Know Fusion 360
	Fusion 360’s User Interface
	Fusion 360 Sketch Tools
	Fusion 360 3D Tools
	Fusion 360 Tools
	Importing Files
	Your First 3D Model in Fusion 360
	Creating a Sketch
	Using the Extrude Function
	Parametric Modeling in Fusion 360
	Summary

	Chapter 4: 3D Printing
	What Is 3D Printing
	Types of 3D Printers
	Tools of the Trade
	Parts of a 3D Printer
	What Is a Slicer
	Different Slicing Programs
	Simplify3D
	The Main Screen
	Common Settings
	Troubleshooting
	Over/Under Extrusion
	Ghosting
	Parts Do Not Stay on Build Plate
	Our First Print
	Summary
	Exercise

	Chapter 5: PCB Design
	What Is a PCB
	PCB Design Software
	Eagle
	Eagle’s Main Windows
	Loading a Library
	Creating a Schematic
	Laying Out a PCB
	Exporting Gerber Files
	PCB Manufacturers
	Summary

	Chapter 6: Robot Engineering Requirements: Controlling Motion
	Hardware Explained: The H-Bridge
	Chapter Project: Creating the First Prototype
	Controlling Motors with Serial Commands
	Requirements Gathering
	Outlining the Software Requirements
	Creating an H-Bridge PCB
	Designing a Robot Chassis
	Assembly
	Writing the Software
	Debugging the Arduino Software
	Troubleshooting the Hardware
	Finished Prototype

	Summary
	Exercise

	Chapter 7: Final Project PCB
	Creating Schematic Sheets
	Final Project: NatBot
	Requirements Gathering (PCB)
	Outlining the Hardware Requirements
	Creating the NatBot PCB
	Hardware Explained: The NatBot PCB
	DC Motor
	Micro DC Motors
	Servo
	Micro Servos
	Accelerometer
	ADXL362
	Charging Circuit
	MCP73831T
	Buck/Boost Regulator
	8V Boost Regulator 6V Boost Regulator
	Bluetooth
	RN-42
	Ultrasonic Sensor
	Parallax Ping Ultrasonic Sensor
	Temperature Sensor
	TMP36
	OLED Display
	OLED
	GPS
	UART GPS
	Headers

	PCB Bill of Materials (BOM)
	Finished Prototype

	Summary

	Chapter 8: Final Project 3D Model
	Final Project: NatBot
	Requirements Gathering (3D Model)
	Outlining the 3D Model Requirements
	Fusion 360 Functions Explained
	Features of the NatBot 3D Model Explained
	NatBot Chassis
	Battery Holder
	Motor Assembly Mounts
	Ultrasonic Sensor Mount
	LCD Mount
	Micro USB Panel Mount
	PCB Mounting
	NatBot Ultrasonic Sensor Mount
	NatBot LCD Mount
	NatBot GPS Mount
	NatBot Front and Rear Wheelbase
	NatBot Wheels

	3D Printing the NatBot
	Fit Check and Assembly

	Summary

	Chapter 9: Final Project Software
	Final Project: NatBot
	Requirements Gathering (Firmware)
	Outlining the Software Requirements
	Reviewing the Arduino Libraries for the NatBot
	Writing the NatBot Firmware
	Uploading and Testing the NatBot Firmware

	Summary

	Chapter 10: Final Project Putting It All Together
	Introduction to the LabVIEW Environment
	The Front Panel
	The Controls Palette
	The Block Diagram
	The Functions Palette
	The Tools Palette

	LabVIEW Functions Explained
	The While Loop
	The Case Structure
	The Sequence Structure
	Numerical Functions
	String Functions
	Comparison Functions
	Serial Functions
	Input Device Control Functions

	Gathering Requirements and Creating the Requirements Document
	Software
	Writing the Software
	Getting Started
	Designing the GUI
	Programming the Application
	Adding Serial Functions
	Completing the While Loop Condition
	Adding a Merge Errors Function
	Adding a SubVI
	Error Handling
	Read Function
	Uploading the Code to the Arduino
	Operation
	Debugging the LabVIEW Software
	Finished Prototype

	Summary

	Index

