<packn

Hands-on

ESP32 with Arduino IDE

Unleash the power of loT with ESP32 and build exciting
projects with this practical guide

<> ASIM ZULFIOQAR

<packmn

Hands-on ESP32 with Arduino IDE
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja
Publishing Product Manager: Suwarna Rajput
Senior Editor: Sayali Pingale

Technical Editor: Yash Bhanushali

Copy Editor: Safis Editing

Project Coordinator: Uma Devi

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca
Marketing Coordinator: Rohan Dobhal
First published: January 2024

Production reference: 1141223

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83763-803-1

www.packtpub.com

http://www.packtpub.com/

Dedicated to my parents, Zulfiqar Ahmed and Aneela Zulfiqar, as well as my
wife, Alfiya Shaikh, for their continuous support and encouragement.

Contributors

About the author

Asim Zulfiqar is a blogger and tech content creator who has been writing tutorials
on embedded systems and the loT on his blog and YouTube channel, High
Voltages. Currently, he is working as a scientific programmer for 0T research
projects.

He completed his bachelor’s degree in electronic engineering at Sir Syed
University of Engineering and Technology, Pakistan. After that, he completed his
Erasmus Mundus joint master’s degree program in photonics integrated circuits,
sensors, and networks at Scuola Superiore Sant’Anna (Italy), Aston University
(UK), and Osaka University (Japan).

| express my sincere gratitude to my parents and family for their continuous
support and encouragement during this project.

| would also like to extend my thanks to Uma Devi, Suwarna Patil, Sayali
Pingale, Aryaa Joshi, Shagun Saini, and the entire Packt team for their

invaluable guidance throughout this project, as well as Kalbe Abbas and
Vishwavardhan for their technical insights.

About the reviewers

Vishwavardhan Yeseskar has worked in the design and development of
embedded systems for more than 12 years, especially focused on loT. He has
work experience with some of the best German companies in this domain, and he

has been a part of teams that have rolled out multiple embedded devices with lIoT
integration.

He has a bachelor’s degree in electronics and communication from Visvesvaraya
Technological University and a postgraduate diploma in artificial intelligence and
machine learning from Amity University. He is currently employed as a product
architect at a leading German firm.

| would like to thank my wife, who encouraged me to contribute to the learning
community by active participation, and also for her patience during the period
of review of this book.

Kalb e Abbas, Jafferi is an embedded systems engineer with more than five
years of experience working in the embedded systems domain. His main interest
is creating networks of devices using wireless technologies such as BLE, Wi-Fi,
and LPWAN, and monitoring these devices remotely.

He has collaborated with many web and application developers that required
integration of data collection and monitoring using embedded devices.

| am indebted and thankful to my parents, friends and colleagues, and all the
employers who saw potential in me and always made me feel special.

I am very much thankful to the author of the book and my friend, Asim
Zulfiqar. His knowledge, experience, and humbleness have inspired me in
many ways.

Table of Contents

Preface

Part 1 — Introduction: Getting Familiar with ESP32

loT with ESP32 using Arduino IDE

A brief introduction to loT

loT and its main characteristics

The basic architecture of loT

Applications of loT
Understanding the capabilities of ESP32 for loT

A brief overview of the ESP32 board and its
variants

ESP32 versus other development boards

Deep dive into the Arduino IDE 2.0 to program

How can ESP32 be programmed?
The Arduino IDE 2.0
Installing the Arduino IDE 2.0

An overview of the Arduino IDE 2.0 user interface

Setting up the Arduino IDE 2.0 for ESP32
ESP32 “Hello World” example using the Arduino

Bonus — Simulating ESP32 projects

Summary

Connecting Sensors and Actuators with ESP32

Technical requirements

Getting hands-on with ESP32 GPIO pins and an
overview of them

ESP32 peripherals
ESP32 basic input/output example
ESP32 PWM example

Mastering UART communication

How the UART protocol works

UART communication between two ESP32s

Sensors that use UART communication
12C communication with ESP32

How I2C communication works

An I12C communication example using ESP32

Devices that use I12C communication with ESP32

Understanding SPI communication

How does SPlI communication work

SPl communication example using ESP32

Devices that use SPl communication

Summary

Interfacing Cameras and Displays with ESP32

Technical requirements

Using the ESP32 camera module
How to use ESP32-CAM with the Arduino IDE

ESP32 camera example

Interfacing displays with ESP32

Interfacing a 16x2 LCD with ESP32 using 12C
Interfacing an OLED with ESP32 using 12C
Interfacing a TFT display with ESP32 using SPI and

Comparison of displays

Summary

Part 2 — IoT Protocols and ESP32

Implementing Network-Based Protocols with ESP32

Technical requirements

Types of networks

Exploring wireless capabilities with Wi-Fi

How the Wi-Fi protocol works
ESP32 built-in Wi-Fi capabilities
Using Wi-Fi Direct for P2P connections

Creating a personal area network with BLE

How the BLE protocol works

ESP32 BLE capabilities

BLE server and client using ESP32

ESP32 as BLE Beacon advertiser

Expanding ESP32 connectivity beyond Wi-Fi and

The LoRaWAN protocol
Comparison of protocols

Summary

Choosing the Right Data-Based Protocols for Your
ESP32 Projects

Technical requirements

Exploring HTTP with ESP32 — enabling IoT devices
to communicate with web servers

What is HTTP?

How does HTTP work?

ESP32 as an HTTP web server
ESP32 as an HTTP client

Configuring and managing Wi-Fi using the HTTP
protocol in ESP32

Exploring MQTT for loT communication with ESP32

What is MQTT?
How does MQTT work?
MQTT pub-sub example

Adding real-time notifications using webhooks

What are webhooks and how do they work?

Webhook example
A real-life analogy of HTTP, MQTT, and webhooks
Comparing HTTP, webhooks, and MQTT

Summary

Part 3 — Practical Implementation

Project 1 — Smart Plant Monitoring System Using
ESP32, Messaging Services, and the Twitter API

Technical requirements

Interfacing sensors with ESP32

Connecting the sensors

Reading the sensor data

Sending emails using SMTP

Setting up a Gmail account to send emails using

Writing code for sending emails using ESP32

Using the CallMeBot APl to send WhatsApp and
Telegram messages

Setting up WhatsApp messages

Setting up Telegram messages

The ESP32 code to send messages on WhatsApp
and Telegram

Publishing update tweets on Twitter
Setting up the Twitter API
Code for publishing the plant updates on X/Twitter

Summary

Project 2 — Rent Out Your Parking Space

Technical requirements

Interfacing sensors with ESP32

The connection diagram

Reading the distance using the ultrasonic sensor

Reading the push button and controlling the Servo

Showing a QR code on the OLED
Integrating the PayPal API

Receiving PayPal notifications in ESP32

Creating a user-friendly experience for potential

Real-world implementation and project limitations

Current project limitations

Security concepts in loT

Summary

Project 3 — Logging, Monitoring, and Controlling
using ESP32

Technical requirements

Interfacing sensors and actuators with ESP32

Connection diagram

Reading the sensor data

Setting up InfluxDB Cloud and logging the data

Cloud database setup

Logging data to InfluxDB

Monitoring and visualization using the Grafana

Creating a dashboard and visualizing the data

Controlling the main entrance gate using the MQTT
protocol

Summary

From Arduino IDE to Advanced IoT Development —
Taking the Next Steps

Power of ESP-IDF

What is ESP-IDF?

ESP-IDF versus the Arduino ESP32 core
Understanding RTOS use cases and features
FreeRTOS

FreeRTOS example using the Arduino IDE

PlatformlO — an alternative to the Arduino IDE
Using PlatformlO to upload code to ESP32

Enterprise clouds

AWS loT services

Azure loT services

A complete lIoT embedded and software roadmap

Roadmap for loT embedded development

Roadmap for loT applications development

loT protocols

Message brokers

Databases

loT platforms

loT cloud providers

Summary

Other Books You May Enjoy

Preface

The ESP32 is a great microcontroller for learning and creating Internet of Things
(loT) applications. It's especially good for beginners in the loT world. Setting up
and connecting sensors to the ESP32 can be complicated, but the Arduino IDE
makes it easier to write code, upload it to the ESP32, and use its features. This
book is designed to help you understand the basics of using sensors, connecting
to networks, processing data, and creating applications with the ESP32, giving you
a solid foundation for loT development.

Starting with the basics of the ESP32 and the Arduino IDE 2.0, you'll learn how to
connect sensors to the ESP32 through practical examples. Then, the book shows
you how to use the ESP32 camera and display modules with examples. It also
explains loT networks and data protocols, providing you with different options for
various loT applications. Toward the end of the book, you’ll use your knowledge to
work on exciting projects, from smart connected devices to data loggers and
automation, experiencing real-world applications.

By the end of the book, you’ll be able to confidently work on ESP32 projects,
choose the right loT protocol for your application, and successfully create and
deploy your own |oT projects.

Who this book is for

This book is for people who like electronics and loT, whether you're just a fan,
enjoy it as a hobby, or work in the field. It's written to help you really understand
ESP32 and loT protocols by giving you practical examples. You should know a bit
about electronics and have some experience with programming, but it's designed
to be easy for beginners. So, if you're interested in learning about ESP32 and loT,
this book is a good choice for you.

What this book covers
Chapter 1, loT with ESP32 using Arduino IDE, begins with an introduction to loT,

outlining its characteristics and various applications. Following that, the ESP32 is
introduced, and its capabilities are explored in detail. The chapter concludes by

explaining and utilizing the Arduino IDE for a “Hello World” example.

Chapter 2, Connecting Sensors and Actuators with ESP32, provides an overview
of the ESP32’s General Purpose Input/Output (GPIO) and peripherals. The
chapter also explores communication protocols used to connect different sensors,

including examples of UART, 12C, and SPI.

Chapter 3, Interfacing Cameras and Displays with ESP32, offers both theoretical

insights and practical guidance on utilizing the ESP32-CAM board, along with
various display modules in conjunction with the ESP32.

Chapter 4, Implementing Network-Based Protocols with ESP32, provides an
overview of network-based protocols such as Wi-Fi, Bluetooth Low Energy
(BLE), Cellular (5G and NB-IoT), and LoRaWAN. The chapter also explores the
distinctions between these protocols, offering insights to help you select the most

suitable network protocol for your upcoming projects.

Chapter 5, Choosing the Right Data-Based Protocols for Your ESP32 Project,
explores various data-based protocols such as HTTP, MQTT, and webhooks. The
chapter outlines the differences between these protocols, aiding you in selecting

the most appropriate data-based protocol for your ESP32 projects.

Chapter 6, Project 1— Smart Plant Monitoring System Using ESP32, Messaging
Services, and the Twitter API, offers a step-by-step guide to reading environmental
parameters such as temperature, humidity, and soil moisture using ESP32.
Additionally, the chapter covers how to share these status updates on Twitter,

Email, WhatsApp, and Telegram using ESP32.
Chapter 7, Project 2 — Rent Out Your Parking Space, provides a step-by-step

guide to creating a prototype system. This system enables you to accept payments

via PayPal to rent out your parking space.

Chapter 8, Project 3 — Logging, Monitoring, and Controlling Using ESP32, outlines
a step-by-step approach to reading data from various sensors in different locations
within a house, such as the kitchen and bedroom, using ESP32. Moreover, the
chapter covers how to log this data in a database, visualize and monitor it, and

control components using your smartphone.

Chapter9 From Arduino IDE to Advanced loT Development — Taking the Next

Steps, offers a roadmap to advance your IoT development skills and suggests the
next steps you can take to build on the knowledge gained from this book.

To get the most out of this book

This book is designed for beginners, so you only need a little knowledge about
electronics and programming. To work on the projects in the book, you’ll also need
some devices listed in the following table. For the software part, you'll need the
Arduino IDE, which works on all major operating systems. Additionally, the book
mentions some free third-party services in different chapters, such as the
OpenWeatherMap API, Twitter API, CallMeBot API, InfluxDB, Grafana, and
PayPal API.

Software/hardware covered in the book Operating system

requirements

An ESP32 development board Windows, macQOS, or

Linux

An ESP32-CAM board

Display modules

Sensors and actuators

Free API services (OpenWeatherMap, Twitter,

CallMeBot, and PayPal APlIs)

InfluxDB Cloud and Grafana Cloud

If you are using the digital version of this book, we advise you to type the
code yourself or access the code from the book’s GitHub repository (a link is
available in the next section). Doing so will help you avoid any potential
errors related to the copying and pasting of code.

The specific uses of both software and hardware are thoroughly explained in their
respective chapters with detailed instructions.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE. If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: “The wiFi.softaP () function is used to set up the

ESP32 as an access point.”

A block of code is set as follows:

#include <WiFi.h>
const char* ssid = "MyESP32AP";
const char* password = "passwordl23";
void setup () {
Serial.begin(115200) ;
WiFi.softAP(ssid, password);

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE
https://github.com/PacktPublishing/

IPAddress apIP (192, 168, 4, 1);
IPAddress subnet (255, 255, 255, 0);
WiFi.softAPConfig(apIP, aplP, subnet);
Serial.print ("Access Point IP Address: ");
Serial.println(WiFi.softAPIP());

}

void loop () {
// Your code goes here

}

Bold: Indicates a new term, an important word, or words that you see on screen.
For instance, words in menus or dialog boxes appear in bold. Here is an example:
“Now, you can upload the code using Arduino IDE and open Serial Monitor."

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be
grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com/

Share Your Thoughts

Once you’ve read Hands-on ESP32 with Arduino IDE, we’d love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book

and share your feedback.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that
book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from
your favorite technical books directly into your application.

The perks don'’t stop there, you can get exclusive access to discounts, newsletters,
and great free content in your inbox daily

Follow these simple steps to get the benefits:

¢ Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837638031

https://packt.link/r/1837638039
https://packt.link/free-ebook/9781837638031

e Submit your proof of purchase

e That's it! We'll send your free PDF and other benefits to your email directly

Part 1 — Introduction: Getting Familiar with
ESP32

In this section, you’ll familiarize yourself with the fundamental elements of this
book, including ESP32, the Internet of Things (loT), and the Arduino IDE 2.0.
Additionally, you’ll learn the utilization and integration of sensors, actuators,
cameras, and displays with ESP32 and the Arduino IDE. By the end of this part,
you’ll have acquired the necessary hardware-interfacing knowledge, enabling you
to move on to exciting loT projects.

This part has the following chapters:

e Chapter 1, IoT with ESP32 using Arduino IDE

loT with ESP32 using Arduino IDE

The Internet of Things (loT) has revolutionized the way we interact with everyday
objects, making them smarter, more efficient, and more connected. One of the key
components of |oT is the microcontroller, which is required for the collection and
processing of data from sensors and other devices. The ESP32 microcontroller,
a product of Espressif, is one of the most popular choices for [oT projects due to
its low cost, high performance, and built-in Wi-Fi and Bluetooth connectivity.

Through this chapter, we will take a deep dive into ESP32 and compare it with
other microcontroller units (MCUs) available on the market. We will also explore
the power of ESP32 and discuss why it is the ideal choice for loT projects.

Furthermore, we will introduce you to the world of loT and its application in various
domains, including healthcare, agriculture, and smart homes. This section will help
you understand how loT is revolutionizing the world and how you can contribute to
it.

Lastly, we will introduce you to the Arduino Integrated Development
Environment (IDE) 2.0, one of the most popular programming platforms for loT
projects and a beginner-friendly environment. We will discuss various other
available options for programming ESP32.

In this chapter, we’ll cover the following topics:

A brief introduction to lIoT
» Understanding the capabilities of ESP32 for loT

» Deep dive into the Arduino IDE 2.0 to program ESP32

By the end of this chapter, you will have achieved the following:

» Gained knowledge about |oT and its applications in various domains

» Understood the features and advantages of ESP32 over other microcontrollers

» Become familiar with the Arduino IDE 2.0
e Learned how to program ESP32 using the Arduino IDE

» Written a Hello World program using ESP32 and the Arduino IDE

We hope this chapter will be informative and will inspire you to explore the endless
possibilities of loT with ESP32. Let’s get started!

A brief introduction to loT

Before diving into the main subject of this book, which is using ESP32 with the
Arduino IDE 2.0 for IoT projects, it's important to first learn about IoT.
Understanding the basics of 10T will help us see why it is important to pick the right
microcontroller and the best communication method for our project. By knowing
the basics of 10T, we can better use its potential in our ESP32 projects with the
Arduino IDE 2.0. Additionally, knowledge of 1oT and its applications will provide a
sense of motivation and direction for getting started.

To keep this introduction brief, in this section, we are going to describe what 10T is,
its main characteristics, and the basic architecture of loT technology, which
includes all the core parts and key components of [oT. Then, we will discuss the
applications of loT in different sectors and domains.

loT and its main characteristics

loT refers to a network of physical objects, devices, and systems that are
connected to the internet and are equipped with sensors, software, and network
connectivity, enabling them to collect and exchange data. To simplify it, a thing can
be a smartwatch you wear that tracks your activity and health data and sends that
information to your phone or your doctor using the internet or a network. Overall,
loT is about making things more connected, efficient, and convenient for people in
their everyday lives.

After explaining what 10T is, it's important to understand the main characteristics of
loT to explain the idea of loT in more detail; this will help you distinguish it from

other technologies and develop effective 10T solutions that can deliver real value
and impact. The main characteristics of IoT are connectivity, sensing and
perception, data collection and perception, interoperability, security and privacy,
scalability, and user experience. These characteristics enable 10T to be used in a
wide range of applications, and it has use cases in various domains, from
healthcare to agriculture and smart homes.

To give you a better understanding of these characteristics, each of these is
described as follows, with a real-world example in the field of smart farming or
agriculture:

« Connectivity: As we discussed, IoT is a network of physical objects; connectivity is a
fundamental trait of l10T. loT devices are connected to each other, to the internet, and to other
networks, which allows them to exchange data and communicate in real time through
automation. In the context of smart agriculture, wireless sensor networks for real-time
monitoring, remote access, and control of irrigation systems using mobile or web-based
interfaces are examples of connectivity.

« Sensing and perception: Another important trait of 10T is that it enables devices to collect
data and analyze it to gain insights, make decisions, and automate processes. Sensing
involves the collection of data from the physical environment using sensors, while perception
involves processing and analyzing data to derive insights and take action. One example of
sensing and perception in IoT can be seen in smart agriculture, where sensors are used to
monitor soil moisture, temperature, and humidity, and a perception algorithm analyzes this data
to determine the optimal time for watering and adjusting the temperature of a greenhouse.

» Data collection and analysis: Data collection and analysis is a characteristic that enables
devices and systems to collect large amounts of data from various sources and analyze it to
generate insights and support decision-making. Data collection and analysis in smart
agriculture can involve processing the data collected by sensors and using it to make decisions
about crop management. For example, by analyzing data on soil moisture and weather
patterns, farmers can determine when to plant, irrigate, or fertilize crops. This is where

machine learning (ML) algorithms can be applied for enhanced decision-making.

 Interoperability: Interoperability is the ability of different devices and systems to communicate
with each other seamlessly, enabling them to work together to achieve common goals and
improve overall efficiency. For example, in smart farming, farmers can collect and analyze data
from multiple sources that are interconnected and work together to make informed decisions
about crop management, such as soil moisture, temperature, and weather conditions.

« Security and privacy: Security and privacy are important characteristics of 0T as they ensure
that the data collected and transmitted by IoT devices is secure and private. In smart
agriculture, security and privacy can include encryption and authentication protocols to prevent
unauthorized access to data, as this data could be exploited by malicious attacks for financial
gains or to cause harm to farmers.

« Scalability: Scalability in loT refers to the ability to handle a growing number of devices and
data traffic in a network without a significant decrease in performance. Scalability in the case of
smart agriculture can include the addition of more sensors to cover larger areas of the farm and
the integration of new technologies as they become available.

» User experience: User experience in loT refers to the ease of use and convenience of the
technology for the end user. In the context of smart agriculture, it includes providing a simple
and intuitive interface for farmers to access and interpret the data collected by sensors; for
example, designing a user-friendly mobile application, providing real-time alerts and
notifications in case of issues, or creating a customizable dashboard to view and analyze data.
This characteristic plays a vital role in the adoption or success of loT applications.

All these characteristics are crucial for the successful implementation and
operations of loT applications. Without all the aforementioned characteristics, loT
systems cannot function effectively. Their characteristics ensure that loT devices
and systems are reliable, efficient, and secure, ultimately leading to better user
experiences and outcomes.

The basic architecture of loT

The architecture of IoT can be defined as the components of loT interconnected
with each other and how they interact to provide a complete solution. The
components that make up the loT architecture include devices, sensors,
connectivity, applications, storage, and so on. The |loT architecture can be divided
into four layers at a high level:

» Sensing or perception layer: The perception layer is responsible for sensing the environment.

Sensors and actuators are the core components of this layer, and this stage of the layers is
responsible for data gathering.

« Network layer: The network layer is responsible for data transmission by providing connectivity
between devices. It includes internet gateways, network gateways, and network technologies

such as Bluetooth, Wi-Fi, Zigbee, and cellular networks, which we are going to discuss in
upcoming chapters in detail.

» Data processing layer: The data processing layer is responsible for processing data,
managing storage, and making decisions. The task of this layer is to process information and
make required decisions.

» Application layer: The application layer is the bottommost layer, and it makes a bridge
between the end user and the loT system. The application layer also includes various software
applications that run on devices and servers, such as mobile applications, web applications,
dashboards, and analytics tools.

Figure 1.1 shows the basic architecture of loT. The arrow on the left of the diagram
shows the data flow or control flow:

Basic loT Architecture

Sensing or perception layer

Control flow

Data flow

Application layer

Figure 1.1 — Basic architecture of loT

The data flows from top to bottom, where the sensor collects data, the network
layer transmits the data, the data processing layer analyzes and stores the data,
and the application layer is responsible for showing that data to the end user,
whereas the control flow is from bottom to top; take an example of a thermostat.

In the case of controlling a thermostat using a mobile application, the process
involves several layers of interaction. At the application layer, the user interacts
with the mobile application to adjust the thermostat’s temperature setting. The
user’s command is then analyzed and translated into a specific action at the data
processing layer. This action includes determining which thermostat device to
control based on the user’s input. Subsequently, at the network layer, the
command is sent over a network connection to the designated thermostat device.
The thermostat device receives the command and adjusts its temperature settings
accordingly, effectively regulating the temperature in response to the user’s input.
This layered approach ensures seamless control of the thermostat through the
mobile application.

Applications of loT

loT has changed the way we live, work, and interact with the world around us.
From smart homes and wearables to smart cities and industrial automation, loT is
making its way into every aspect of our lives. The applications of loT are
continuously evolving and diverse, with new use cases emerging every day. loT
has the potential to gather significant amounts of data, and data being the new
gold can help transform everything around us.

In this section, we will explore some of the most exciting and innovative
applications of loT and how they are transforming the way we live and work. Since
the number of IoT applications is enormous, we are going to discuss selective
applications categorized in the form of the following industries:

+ Smart homes: Smart homes are a popular application of loT, which involves the use of

interconnected devices to manage, optimize, and automate various things in your daily life. In

smart homes, home automation is one example of l0T that allows users to control various
devices and systems such as lights, heating, and entertainment systems through mobile or
other interfaces. Security, surveillance, and energy management are other examples that make
our home smarter, more secure, and energy-efficient, which results in reduced energy bills and
a smaller carbon footprint.

« Healthcare: IoT has revolutionized the healthcare industry by introducing remote health
monitoring and patient tracking. loT-enabled devices or, more specifically, wearable IoT devices
these days can monitor patients’ vital signs and send the data to healthcare providers in real
time, enabling them to be proactive. Additionally, IoT can help improve asset management so
that all the required equipment is available when needed.

« Industrial automation: 0T technology has played a vital role in bringing significant
advancements in predictive maintenance, which has ensured the continuity of production. Also,
loT helps in supply chain management and quality control. All these applications of loT in
industries have reduced downtime and increased productivity and cost savings.

« Transportation and logistics: 0T has helped the transportation and logistics sector as well by
offering efficient ways of managing fleets, tracking assets, and improving parking management
systems. With the help of IoT devices and sensors such as GPS trackers, fleet managers can
track the location, speed, and condition of their vehicles in real time, which makes it easier for
them to plan routes and manage fuel. Asset tracking enables logistics managers to track and

monitor shipments and ensure they are in good condition.

« Agriculture: 0T has a lot of potential to increase productivity in the agriculture sector, with
applications such as precision farming, livestock monitoring, and crop management. Farmers
can use loT sensors and data analytics to monitor the growth and health of crops, irrigation and
fertilization processes can be optimized, and it also aids in the detection of diseases and pests.

The aforementioned applications are the most popular ones, but loT has helped
other businesses and industries as well. In the last part of this book, we will make
our own projects that will use the potential of 10T to help us with different daily
tasks.

In this section, we learned what |oT is and what its main characteristics are, and
we discussed the basic architecture of IoT, from the sensing layer to the
application layer. Toward the end of the section, we familiarized ourselves with loT
applications and discussed how these applications can contribute to our daily lives
and make them easier. In the next section, we will discuss the capabilities of

ESP32 and will learn why it is one of the best candidates for loT-enabled
applications.

Understanding the capabilities of ESP32
for loT

In the previous section, we discussed a lot about loT. ESP32 is equipped with
built-in Bluetooth (supporting Low Energy, or LE), and Wi-Fi makes it the perfect
candidate for loT use cases. It can help in various layers of the loT architecture.
For example, it can serve as a sensor node in the sensing layer, which can help us
collect and transmit data from various sensors; it can also work as a gateway or a
hub in the network layer, collecting data from multiple nodes and forwarding it to
the cloud or other devices; it can be used for data analysis and processing, and
can also be used in the application layer in the form of wearable devices or
robotics.

The versatility of ESP32 makes it an ideal candidate for loT applications, and in
this section, we will be discussing more details about ESP32, its different variants,
and a brief comparison of ESP32 with other development boards available for [oT
development.

A brief overview of the ESP32 board and its variants

As discussed in the introduction, ESP32 helps a lot in loT development, but there
are several variants of ESP32 microcontrollers on the market. Some popular ones
include ESP32-WROOM, ESP32-WROVER, ESP32-DevKitC, and ESP32-SOLO.
The difference between all these variants is in their features, such as the amount
of memory and number of pins, but the features that make it perfect for loT
development are common in almost all these variants. All variants of ESP32 are
based on the same chip (that is, the ESP32 System on chip (SoC), which has a
dual-core processor), and all variants have built-in Wi-Fi and Bluetooth LE (BLE)
support and various input/output interfaces such as Universal Asynchronous
Receiver-Transmitter (UART), Serial Peripheral Interface (SPI), Inter-

Integrated Circuit (12C), analog-to-digital converters (ADCs), digital-to-analog

converters (DACs), and pulse-width modulation (PWM). You can read more

about this at

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.p

ESP32 versus other development boards

When we say ESP32 is a perfect candidate for loT development, it is not the only
one. There are other options for 0T use cases. The following table will conclude

why ESP32 is the best beginner-friendly option for getting started with IoT:

Development

Board

ESP32

Processor

Dual-core Xtensa
LX8, up to 240

Connectivity

Wi-Fi, Bluetooth,

Power

Consumption

Low power
consumption

$4-310

MHz

ons)

BLE
MHz modes
MNone (can be
AT 328P
Arduino UNe TRg added with Low $20
shields)
SAMD2] Cortex- Wi-Fi
Arduine MKR 1000 MO+ Low $35
Tensilica L10&, up o
ESP8248& t0 160 MHz Wi-Fi Low $2-%5
Broadcom
Wi-Fi, Bluetooth
Raspberry Pi Zere BCM2835, up to | : . iy Moderate $5-310
(with add-ons)
GHz
MNone (can be
RP2040, up to 133
Raspberry Pi Pico i added with add- Low $4-%10

Figure 1.2 — Comparison of ESP32 with other loT-enabled development boards

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

From the comparison table shown in Figure 1.2, we can see that ESP32
outperforms the other available development boards for 0T development in terms
of price, power consumption, and connectivity options. However, other boards
have other features that make them suitable for other applications; for example,
Raspberry Pi Zero has a microprocessor and can run on the Linux OS, making it
suitable for applications that require more computation power, and can be used to
perform more complicated tasks.

To conclude, ESP32 provides Wi-Fi, Bluetooth, and BLE connectivity and provides
interfaces for connectivity such as 12C, SPI, and UART, which can be used to
connect other connectivity options such as a 5G shield, NarrowBand-loT (NB-
loT) shield, or Long Range (LoRa) transmitter and receiver. Another advantage of
using ESP32 is it provides low power consumption modes, such as deep sleep,
and so on, which is one of the required features for loT development.

In this section, we learned that built-in Wi-Fi and BLE capabilities enable ESP32 to
be used in loT-based applications, and the low power consumption and low prices
make it one of the best development boards for loT-based projects. Furthermore,
we compared ESP32 with other development boards on the market. In the next
section, we will learn about the capabilities of the Arduino IDE and program ESP32
using it.

Deep dive into the Arduino IDE 2.0 to
program ESP32

In this section, we will discuss the ESP32 board and its programming using the
Arduino IDE 2.0. As discussed in the previous section, ESP32 is a powerful
microcontroller and can be programmed in several ways. We will discuss some
common ways in which we can program ESP32 and discuss why the Arduino IDE
is a beginner-friendly IDE to get started with ESP32. We will have a brief
introduction to the Arduino IDE, install the Arduino IDE, and will get ourselves
familiarized with the Arduino IDE user interface. Then, we will move on to setting
up the IDE for programming ESP32, and finally, we will walk through a simple

“Hello World” example using an LED to demonstrate the basics of ESP32

programming with the Arduino IDE.

How can ESP32 be programmed?

ESP32 can be programmed in several ways, including the Arduino IDE, the Python

programming language, the Expressif-loT Development Framework (ESP-IDF,

the official development framework by Espressif), and many more. Some of the

most common and widely used methods are described as follows:

e Arduino IDE: A beginner-friendly IDE that can help you write, compile, and upload code to

ESP32 using the Arduino programming language.

» MicroPython: A Python-based interpreter that runs on ESP32, allowing developers to write

Python code and execute it directly on the device.

o ESP-IDF: The official development framework for ESP32 offers several APIs for low-level

hardware access and allows for more flexibility in programming and debugging.

o Other programming options: Other ways can be used to program ESP32, such as Visual
Studio Code with PlatformlO, JavaScript and Node.js, and Rust.

The following table differentiates the three most common options for programming:

Parameter Arduino IDE MicroPython ESP-IDF
Language C++ Python C

IDE support Yes No No
Community support High Moderate High
Low-level access Limited Limited Full
Learning curve Easy Easy Moderate

Table 1.1 — Comparison of programming options for ESP32

Table 1.1 compares the three most common options for programming ESP32. The
Arduino IDE and MicroPython are beginner-friendly options, while ESP-IDF
provides you complete access to the functionalities of ESP32. However, the
absence of IDE support in ESP-IDF and MicroPython makes it difficult for
beginners to get started.

The Arduino IDE 2.0

The Arduino IDE 2.0 is the latest version of the popular open source software
(OSS) for programming Arduino boards. The IDE is an easy-to-use platform for
programming microcontrollers and creating interactive electronic projects. It has
many new features as compared to the previous versions, it is more user-friendly
and powerful, and you can use and manage libraries (libraries are pre-written code
modules that simplify the development of Arduino projects by providing functions
for various tasks), boards, and projects in a single place, making it easier to find
and organize your work.

It is an official software for programming Arduino boards, but you can add support
for other boards such as ESP32, ESP8266, Network Repository Function (NRF)
boards, and Synchronous Transport Module (STM) boards, and its user-friendly
interface helps beginner-level developers get started easily.

Installing the Arduino IDE 2.0

Installing the Arduino IDE 2.0 is a very straightforward process that is like installing
any other software. Following are summarized steps you can follow to install the
Arduino IDE 2.0 on your system:

1. Go to the Arduino software page on the Arduino website (https://www.arduino.cc/en/software).

2. Scroll down to the download options and select an option based on your operating system:

https://www.arduino.cc/en/software

Arduino IDE 2.1.0

The new major release of the Arduino IDE is faster and even more powerful! In addition
to a more modern editor and a more responsive interface it features autocompletion,
code navigation, and even a live debugger.

For more details, please refer to the Arduino IDE 2.0 documentation.

Nightly builds with the latest bugfixes are available through the section below.
SOURCE CODE

The Arduino IDE 2.0 is open source and its source code is hosted on GitHub.

DOWNLOAD OPTIONS

Windows win 10 and newer, 64 bits
Windows Msl installer
Windows ziPfile

Linux Appimage 64 bits (X86-64)

Linux ziP file 64 bits (X86-64)

macOS intel, 10.14: “Mojave” or newer, 64 bits
macOS Apple silicon, 11: “Big Sur” or newer, 64 bits

Release Notes

Figure 1.3 — Arduino IDE download options

3. For Windows, run the installer and follow the prompt. For Linux, extract the downloaded file and
run the arduino -ide script. For macOS, open the downloaded . dmg file and drag the

application’s Arduino IDE 2.0 icon into the application folder.

IMPORTANT NOTE

Depending on your system configuration, you may need to install additional dependencies or
drivers. Refer to the Arduino installation documentation (https://docs.arduino.cc/software/ide-

v2/tutorials/getting-started/ide-v2-downloading-and-installing) or Arduino Forum for more details.

Hopefully, you have successfully installed the Arduino IDE, and in the next section,
we will have an overview of the Arduino IDE user interface.

An overview of the Arduino IDE 2.0 user interface

https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-downloading-and-installing

The IDE 2.0 is divided into four main sections: the menu bar, the left sidebar, the
editor area, and the bottom panel. The menu bar provides access to all functions
and tools available in the IDE, including opening and saving files, compiling code,

Serial Monitor
File Edit etch Tools Help

A~ Arduino J\ Q

Project Explorer hello_world_Esp32.ino
)l
D_BUILTIN, OUTPUT);
Board Manager
Library Manager {
f i ite(LED_BUILTIN, HIGH);
7 3);
Run and debug) LED_BUILTIN,

!] re ved e for f he
Output Window) n IRA
| 4 I r
Ln 7, Col 36 Arduino [not connected]) B

Figure 1.4 — Overview of the Arduino IDE 2.0 user interface

and uploading it to the board:

The left sidebar contains the project explorer, which shows the structure of the
project, the board manager, which can help you install new boards’ support, the
library manager, which will help you to include, search for, and install new libraries,
and debugger and search options, which help while writing code and debugging
errors.

The editor area is where code is written and edited, and features such as syntax
highlighting and autocompletion make it easy to write code.

The bottom panel displays the console output, debugging information, and serial
monitor, which we will be using a lot in upcoming chapters for debugging our code.

Setting up the Arduino IDE 2.0 for ESP32

To use ESP32 in the Arduino IDE, we will first have to install the ESP32 board

support, which helps us to compile, build, and upload the ESP32 program. The
board support can be installed using the following steps:

1. Once the Arduino IDE is installed, launch Arduino IDE.

2. Go to File | Preferences...:

File | Edit Sketch Tools Help

New Sketch

Open...

Open Recent

Sketchbook

Examples

Close Ctrl+W
Save Ctrl+S

Save As... Ctrl+Shift+S

Preferences... Ctrl+Comma

Advanced

Quit

Ln 10, Col 1 Arduino [not connected] Q

Figure 1.5 — Preferences in the Arduino IDE

3. Paste the following link into the Additional boards manager URLs section:
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-

pages/package _esp32_index.json

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Preferences

Settings | Network

Sketchbook location:
c\Wsers\asimz\OneDrive\Documents\Arduino

B Show files inside Sketches
Editor font size: 14
Interface scale: ¥ Automatic 100 %

Theme: Dak |

Language: v"] (Reload required)

Show verbose output dunng Il compile Il upload

Compiler wamnings |None ~

B Verify code after upload
¥ Auto save

B Editor Quick Suggestions

Additional boards manager URLs:| hitps./iraw githubusercontent. com/espressiffarduino-esp32/gh-pages/package_e

Figure 1.6 — Pasting URL into the Additional boards manager URLs section

4. After adding the URL to the Additional boards manager URLs section, go to BOARDS
MANAGER, which can be accessed from the left-hand side menu, type esp32, and install the

board support:
File Edit Sketch Tools Help

Arduino

sketch_mayida.ino

ESP32 Dev Board, ESP32-52 Dev
Board, ESP. Dev Board.,...

209 w

Ln 10, Col 1 Arduino [not connected] [

Figure 1.7 — Installing ESP32 board support in the Arduino IDE

5. It will be installed in a few minutes, and you will see the results in the output window:

File Edit Sketch Tools Help
2) Arduino -
BOARDS MANAGER sketch_may14a.ino
esp32 1 setup() {
7 // put your set

Type: [All

esp32 by Espressif -
Sys loop() {

Boards included in this package:
ESP3252 Native USB, Heltec WiFi
Kit 32, u-blox NORA-W10 series...

1208 v| REMOVE

Output
UL CApLLMRAPLL | SERUL 2.3 Gl Cauy AlaLasicu
Tool esp32:mklittlefs@3.@.8-gnul2-dc7f933 already installed
Downloading packages
esp32:esp32@2.0.9
Installing platform esp32:esp32@2.0.9
Configuring platform.
Platform esp32:esp32@2.0.9 installed

) indexing: 19/84 Ln 1, Col 1 Arduino [not connected] (21 B

Figure 1.8 — ESP32 board support installed in the Arduino IDE

IMPORTANT NOTE

If you have multiple URLs in the Additional boards manager URLs section (for example, if you
have ESP8266, NRF boards, or other boards support installed), you can separate the URLs using
a comma between them.

You have now installed the board support for ESP32 and are ready to write and
upload exciting loT programs to ESP32 using the Arduino IDE. In the next part, we
will write a “Hello World” example for ESP32.

ESP32 “Hello World” example using the Arduino IDE
2.0

In other programming languages, the Hello World program is the simplest program
that serves as an introduction to the programming language and mostly prints
“Hello World." In the case of ESP32 and the Arduino IDE, the equivalent to the
Hello World program is a blinking LED as it is the simplest and most basic program

to test the functionality of the board and its ability to communicate with the IDE. If
the LED blink is successful, the developer can verify that the board and IDE are
working as expected and can proceed to more complex projects.

You can follow the next steps to run the “Hello World” example:

1. Open a new sketch by clicking File | New in the Arduino IDE.

2. Type the following code in the new sketch:

void setup () {
pinMode(LED_BUILTIN, OUTPUT) ;

}

void loop () {
digitalWrite(LED_BUILTIN, HIGH) ;
delay (1000) ;
digitalWrite(LED_BUILTIN, LOW) ;

delay (1000) ;

}

The Hello World code is made up of two parts or functions: the setup ()
function and the 100p () function.

The setup () function runs only once when the ESP32 board is powered up or
reset. In our previous code, we used the setup () function to initialize the LED
pin as an output.

The 1o0p () function runs continuously after the setup () function has been
executed. In our last example, we first turn on the LED using the

digitalwrite () function and set the digital pin to r1GH. Then, using the delay ()
function, we wait for 1000 milliseconds or 1 second before setting the state of
the LED to orF by setting the digital pin to Low and wait for another short

amount of time to use the de1ay () function. The process is repeated, resulting
in the LED blinking.

3. Make sure you have selected the right version of the ESP32 board and the correct COM port.

4. Upload the sketch to the ESP32 board by clicking on the Upload button in the Arduino IDE and
wait for the upload process to complete.

5. Once the upload is complete, you will see the built-in LED in ESP32 should start blinking:

W BND R O e OO O Ol OGO Dol De Y W BN
WY Y Dd R TR D8 OM AW D D TR ONE DN

&
L
L4
i
F
2
i
’
2
B
i
E
i
i
L

WD O Dd W THD DS O DR R A T DN O

Figure 1.9 — Built-in LED state OFF (left ESP32) and built-in LED state ON (right ESP32)

Congratulations! You have run your first project using ESP32 and the Arduino IDE.
You are on the right track to build exciting loT projects. In the next section, you will
learn a bonus skill; that is, simulating your project in a browser.

Bonus — Simulating ESP32 projects

This book is written to give you practical knowledge of ESP32 and encourages you
to build projects using real hardware, but simulating ESP32 projects can be
advantageous in several ways as compared to using actual hardware. Simulation
can save costs and allows you to do rapid testing and debugging without hardware

damage, and it provides an interactive way for beginners to learn and experiment
with ESP32 and the Arduino IDE.

Let’'s simulate the Hello World program in the ESP32 simulator. You could follow
the next steps to simulate your ESP32 projects:

1. Visit https://www.wokwi.com, which is an Arduino and ESP32 simulator and is designed to

simulate loT projects in a browser:

WOKWI

Simulate loT Projects in Your Browser

scord Community Facebook Group

We're adding new stuff all the time, want us to tell You?

Featured Simulation Projects

0

o

e -
[]

agheE
= 0
EFas .D.

-

Simon Game with Score Nano Pong

Figure 1.10 — Wokwi loT simulator

2. Sign up for a new account and then log in:

https://www.wokwi.com/

Sign up / Sign in

Welcome! How would you like to sign-in today?

[y GOOGLE () GITHUB EMAIL

Featured Simulation Projects

Figure 1.11 — Signing up for or signing in to Wokwi

3. After logging in, navigate to https://wokwi.com/dashboard/projects and click on + NEW
PROJECT:

YOUR PROJECTS YOUR LIKES v

+ NEW PROJECT

Figure 1.12 — Creating a new project in Wokwi

4. When it asks for boards, select ESP32 if you want to simulate using the Arduino programming
language:

https://wokwi.com/dashboard/projects

Arduino Uno
Arduino Mega
Arduino Nano
ATtinyBS
ESP32
ESP32-82
ESP32-53 (beta)
ESP32-C3

MicroPython on ESP32

Raspberry Pi Pico

Raspberry Pi Pico (SDK)
MicroPython on Raspberry Pi Pico
CircuitPython on Raspberry Pi Pico
Raspberry Pi Pico W

Raspberry Pi Pico W (SDK)
MicroPython on Raspberry Pi Pico W
STM32 Nucleotd CO31C6

Franzininho

Franzininho WiFi (ESP32-52)

Figure 1.13 — Selecting the ESP32 board in Wokwi

5. In the sketch. ino file, paste the Hello World code:

Figure 1.14 — Writing code in Wokwi

6. Click on the green button that says Start the simulation, and you will see that the built-in LED
will start blinking:

| wokw! [N

shetch o @ SRR Son & Sl ation

Figure 1.15 — Running a simulation in Wokwi

If you would like to add more parts, you can click on the blue + button, and you will
see many peripheral options such as buttons, switches, LEDs, LCDs, different
sensors, and so on:

WOKWI [save | v | 4 SHAaRE

shkatch.ino » diggrarn json & Litrary Manager

‘,D,’ Pushbutton
)\s‘ Resistor

Display

. RGB LED

:E:;E-‘: 55D1306 OLED display
LCD T6x2
LCD 16x2 (12C)
LCD 20x4

LCD 20x4 (12C)

Figure 1.16 — Adding a new part in Wokwi

This simulation tool will help you debug code without actually making circuits. All
the examples that we will perform in this book can be simulated using Wokwi.

Summary

In this chapter, we discussed the basics of 0T, including its main characteristics
that distinguish it from other technologies, and we discussed the architecture of
loT and learned the directions of data flow and control flow in the IoT architecture.
Then, we explored some common and popular applications of IoT such as smart
homes, healthcare, industrial automation, transportation, logistics, and agriculture.

After discussing loT, we discussed the ESP32 board, compared it with other
microcontrollers, and discussed the different variants of ESP32 boards and how
ESP32 can be programmed. We then discussed the Arduino IDE 2.0, which is the
latest version of the Arduino official board programmer, installed the ESP32 board
support to set it up for using ESP32, and finally, we ran a “Hello World” example on
ESP32 and simulated it using an ESP32 simulator, which can help us in cost
savings, testing, and debugging.

In the next chapter, we will be discussing how to interface sensors with ESP32.

2

Connecting Sensors and Actuators with
ESP32

In this chapter, we will dive into the world of sensors and actuators with the
ESP32, a highly versatile and powerful microcontroller. By exploring its built-in
features and connectivity options, you will develop a fundamental understanding of
how to interact with the physical world using advanced pieces of hardware.

We will start with the introduction to the ESP32’s general purpose input/output
(GPIO) pins and their functionality. Next, we will learn about universal
asynchronous receiver-transmitters (UART) and serial communication, which
will enable us to exchange data between devices. After mastering UART, we will
turn our attention to the serial peripheral interface (SPI) communication protocol,
a method commonly used to send data between microcontrollers and small
peripherals. Finally, we will delve into 12C communication, a highly efficient two-
wire protocol used for short-distance data transmission.

To truly understand these concepts, we will bring them to life using real-world
sensor examples. By directly applying these communication protocols to tangible
scenarios, you will be able to better understand and remember their functionality.

By the end of this chapter, you will not only have a deep understanding of these
key communication methods, but you will also have hands-on experience using
them with the ESP32. The practical skills acquired here will be invaluable, as they
form the basis for creating a wide range of internet of things (loT) devices and
applications, from home automation systems to environmental sensors and
beyond.

In this chapter, we are going to cover the following main topics:

e Getting hands-on with ESP32 GPIO pins and an overview of them

o Mastering UART and serial communication

e Understanding SPI communication
e [2C communication with ESP32
Through these topics, we will traverse from the basics of the ESP32 to more

complex, real-world applicable sensor and actuator interfaces, shaping you into a
capable ESP32 developer.

Technical requirements

For this chapter, we will need the following components:
« ESP32 dev kit

Push button

e« LED

DS1307 RTC module

PN532 RFID module

Getting hands-on with ESP32 GPIO pins
and an overview of them

GPIO is a fundamental feature found in microcontrollers and other embedded
systems. It refers to the ability of the microcontroller to interact with the external
world by providing a flexible set of input and output pins. GPIO pins can be
configured to either read or write digital signals, allowing the microcontroller to
communicate with various devices and peripherals. As input, GPIO pins can detect
the state of external sensors, switches, or digital signals. For example, we can
read the temperature from temperature sensors. As outputs, they can drive LEDs,
control motors, or interface with other electronic components. The versatility of
GPI1O pins makes them essential for a wide range of applications, enabling the
microcontrollers to interact with and control the physical environment.

In this section, we will dive into ESP32 GPIO pins and explore their potential. By
understanding this topic, you will be able to control various electronic components

and devices. Let’s take a moment to familiarize ourselves with the GPIO pins
available in the ESP32 dev Kit.

ESP32 peripherals

The peripherals available on the ESP32 microcontroller may vary depending on

the specific version or variant of the ESP32 module. However, in general, almost
all versions of the ESP32 contain a rich set of peripherals that greatly enhance the

capabilities of the microcontroller. These commonly found peripherals include but

are not limited to the following:

UART: A hardware communication interface that allows serial data transmission between
devices

Inter-Integerated Circuit (12C): A synchronous, multi-master, multi-slave communication
protocol used for connecting multiple devices on the same bus

SPI: A synchronous, full duplex communication protocol for high-speed data exchange
between a master and multiple slave devices

Analog-to-digital convertor (ADC): A device or component that converts analog signals into
digital values for processing

Digital-to-analog converters (DAC): A device that converts digital values into corresponding
analog signals

Pulse - width modulation (PWM): A technique to control analog devices using digital signals
by varying the duty cycle of a square wave

Timers and counters: Components used to measure time and intervals and count events in
embedded systems

We will start with a basic input/output example with the ESP32.

ESP32 basic input/output example

In this example, we will interface a push button and LED with the ESP32. We will

write an Arduino program to read the button status. If the LED is on and the button

is pressed, the LED will turn off. If the LED is off and the button is pressed, the

LED will turn on. This means that we will be using the button as a toggle switch:

1. Firstly, we will interface the push button. We will connect one terminal of the push button to a
GPIO pin (D12) on the ESP32 and connect the other terminal to the ground (GND) pin on the
ESP32.

2. Next, we will interface the LED. Connect the anode (longer leg) of the LED to a GPIO pin (D13)
on the ESP32 and connect the cathode (shorter leg) of the LED to the GND pin on the ESP32.

The circuit diagram is shown in the following figure:

ESE32

]

¥ D4 DET DS Dod D6

Figure 2.1 — Interfacing a button and LED with ESP32

3. Then, we will open Arduino IDE. Write the following code and upload it to the connected ESP32
board as explained in the hello world example in Chapter 1. The code can be found on

GitHub at https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%202/ESP32_button_and_LED:

// Digital input and output pin definitions
#define BUTTON PIN 12
#define LED PIN 13
void setup () {
// Set the button pin as input

pinMode (BUTTON PIN, INPUT PULLUP);

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/ESP32_button_and_LED

// Set the LED pin as output

pinMode (LED PIN, OUTPUT) ;

void loop () {
// Read the state of the button
int buttonState = digitalRead (BUTTON PIN);
// If the button is pressed (LOW state), turn on the LED
if (buttonState == LOW) {
digitalWrite (LED PIN, HIGH);
} else {
// Otherwise, turn off the LED

digitalWrite (LED PIN, LOW);

}

In this code, we first define the pin numbers for the button input (BurToN_PIN)
and LED output (Lep_p1n). For the setup () function, we set the button pin as
input with a built-in pull-up resistor using the InpuT purLrup mode. A pull-up
resistor is enabled for the specified input pin (BurToN_PIN). It ensures that when
the button is not pressed, the pin is pulled up to a high logic level (typically
representing 1 or 3.3v, and when the button is pressed and connects the pin to
the ground, it reads as a low logic level (typically representing o or ov). This
configuration helps avoid floating inputs and provides a known high-level
voltage when the button is not pressed.

IMPORTANT NOTE

Alternatively, you could have used the pull-down configuration (INPUT PULLDOWN) to achieve a
similar result, where the pin would be pulled down to a low logic level (‘0 or ‘0V’) when the button is
not pressed and read as high (“1’ or ‘3.3V’) when the button is pressed. The choice between pull-up
and pull-down depends on the specific circuit requirements and design preferences.

Then, in the 100p () function, it reads the state of the button. If it is pressed (row
state), it turns on the LED by setting the LED pin to r1Ga. Otherwise, it turns off the
LED by setting the LED pin to row.

There are several sensors that act as normal switches and can be interfaced in a
similar way as capacitive touch sensors, hall effect sensors, optical sensors,

proximity sensors, and force sensing resistors.

Moving from the basic input-output example to the PWM example, let’s explore a
more advanced and efficient method of controlling electronic devices using varying
duty cycles.

ESP32 PWM example

Pulse-width modulation (PWM) is a technique that allows for the control of the
average power delivered to a load by varying the width of the pulses in a periodic
signal. This is typically used to control the intensity of LEDs, the speed of motors,
and other analog-like functions in digital systems.

To demonstrate the example, we will connect the LED with ESP32 and write a
program to increase/decrease the intensity of the LED by changing the PWM
values:

1. LEDs have two legs, with the longer leg being the anode (positive) and the shorter leg being
the cathode (negative). Connect the anode of the LED to a digital output pin (D13) on the
ESP32 board. Connect the cathode of the LED to a current-limiting resistor, which is required to
protect the LED from excessive current and to ensure it operates within its specified voltage
and current ratings. Connect the other end of the current-limiting resistor to the GND pin on the
ESP32 board, as shown in the following figure:

n
-]
)
o
=
o
-
G
=
&
o
£
=
o
E
-1
o
o
=
o
2
3

14 DT D24 024 O

o

WiN GNO On)

Figure 2.2 — Interfacing the LED with the ESP32

2. Then, we will write the following code in Arduino IDE and upload it to the selected ESP32 board
as explained in the hello world example in Chapter 1. The code can be found on GitHub at

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%202/ESP32_PWM:

#define PWM PIN 13
void setup () {

pinMode (PWM_PIN, OUTPUT) ;

void loop () {
for (int dutyCycle = 0; dutyCycle <= 255; dutyCycle++) {
analogWrite (PWM_PIN, dutyCycle);

delay (10) ;

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/ESP32_PWM

}

This code uses PWM on the ESP32 to generate a varying duty cycle signal on
pin 13.

The duty cycle can be represented mathematically as follows:
Duty cycle (%) = Time on _ period x 100%

The duty cycle is often represented using an 8-bit value, which can range from 0 to
255. This 8-bit value allows for 256 possible levels of duty cycle, where 0
represents fully off (0% duty cycle) and 255 represents fully on (100% duty cycle).
In the preceding code, because of the for loop, the duty cycle value gradually
increases in steps of one, resulting in a fading effect when connected to an output
device such as an LED. The following diagram illustrates the intensity of the LED

by varying the duty cycle:
LED intensity will be 100%
LED intensity will be 50% j
50%) 75% 50% 100% 100%

1 P > P > LT » PP TP TP PP [CLTTTTTTITITTrrrr T »

> |
o |©9|©°

Period

Figure 2.3 — Duty cycle and fading in and out of an LED

PWM could be used for LED dimming, motor speed control, audio generation,
power control, and analog simulations.

Now that we have covered the basic input-output example and PWM example,
let’s take a step further into the basics of communication by exploring UART.

Mastering UART communication

A UART is a hardware device or a protocol that manages asynchronous serial
communication between devices. It facilitates data transmission by converting
bytes of data from the CPU into a continuous stream of bits suitable for transfer via
communication links. One of the key features of UART is that it does not require a
clock signal. This simplifies hardware, reduces power consumption, and allows
flexible data rates but may also lead to potential timing and synchronization issues
between the sender and receiver, requiring additional overhead for start and stop
bits and making it less suitable for high-speed or long-distance communication.
The absence of a clock signal makes this protocol asynchronous. This simple yet
powerful communication protocol is commonly used in microcontroller-based
projects for inter-device communication, making it an essential part of our ESP32
study.

In this section, we will cover the following topics related to UART in the context of
ESP32 and Arduino IDE:

 How a UART protocol works
o UART communication between two ESP32 modules

» Sensors that use the UART protocol

By the end of this section, you will have a solid understanding of how the UART
protocol works, how to utilize it with ESP32 using Arduino IDE, and how to
establish communication between two ESP32 modules. Additionally, you will be
familiar with some common sensors that employ UART and can be easily
interfaced with ESP32 for various applications.

How the UART protocol works

As already mentioned, UART is a serial communication protocol that enables the
transmission and reception of data between devices. Since it is an asynchronous
protocol, no clock is involved in the transmission. Instead, UART uses two data

lines: the receiver (Rx) line for receiving data and the Tx line for transmitting data.

The data format in UART consists of a start bit, data bits (typically 8 bits), an
optional parity bit for error detection, and one or more stop bits. The start bits,
which are always low (0), mark the beginning of the data frame. The data bits
represent the actual information being transmitted, and the optional parity bit can
be used for error checking by adding an extra bit (odd or even) to each transmitted
byte. The parity bit is set in a way that ensures the total number of bits (including
the parity bit) in each byte is either even or odd. Upon reception, the receiver
checks the parity of the received byte; if it doesn’t match the expected parity, an
error is detected, allowing for basic error detection in the data transmission
process. Finally, the stop bits, typically one or two bits high (1), indicate the end of
the data frame. The data format of UART can be seen in Figure 2.4

Data bits

Start bit ﬁ Parity cgtliznal
log|c0 /

START DO D1 D2 D3 D4 D5 Dé D7 PB STOP

N\

Stop bits
1 or 2 bits
Logic 1l

Figure 2.4 — UART data format

For example, if we would like to send the word 1ot using UART, the transmission
would take the following approach:

1. Convert each character of loT to its ASCII equivalent:

Character ASCII Code Binary

“I” 73 01001001
“0” 111 01101111
“T” 84 01010100

Concatenate the ASCII codes together:

IOT
01001001 01101111 01010100

2. Add the start bit, parity bit (if applicable), and stop bit to the data:
 Start bit: 0
o Data bits: 01001001 01101111 01010100
« Parity bits (if used): Not included in this example

o Stop bits: 1
The complete UART data frame for loT would be the following:

0 01001001 1 O 01101111 1 O 01010100 1

This data will be transmitted at a certain speed, which is called the baud rate. It
represents the number of bits per second (bps) that can be transferred. Common
baud rates include 9600, 115200, and 921600 bits per second.

UART communication between two ESP32s

In the context of working with UART in Arduino IDE and ESP32, the process of
converting strings and handling start and stop bits is automated, relieving
developers of manual conversion. The UART hardware module in the ESP32 and
the accompanying software libraries in Arduino IDE take care of these tasks
seamlessly. When transmitting data, you can simply provide the string or data to
be sent, and the UART library takes care of converting it into the appropriate data
format, including the start and stop bits. On the receiving end, the UART library

receives the data frame, extracts the information, and provides it in a usable
format, such as a string or individual bytes.

We will take the following steps to make two ESP32s communicate using the
UART protocol:

1. Since we already discussed that UART uses the two data lines Rx and Tx, we will first create a
circuit in which two ESP32s are connected to each other using these two datelines.

The Rx of the first ESP32 should be connected to the Tx of the other ESP32.
The Tx of the first ESP32 should be connected to the Rx of the other ESP32.
To ensure the circuit is completed, the GND of both ESP32s should be
common. Figure 2.5 shows the circuit diagram:

GND

ESP- WROOM-32

1)

@ %] 205 - o005t

FCC 90:2ACT2-ESPWROOM 32

BERAREGRAREERHER
T Y =y Y r-1T-Vo

2C NOOMSZ T JVZ:06 394
615000 - 502 ()

CED

ZE-WOOHM ~dS3

ESP32.1 ESP32 2

L+] o
fritzin »
Figure 2.5 — ESP32-to-ESP32 UART communication

2. Now, we will write the following code in the Arduino IDE to send the word IoT over the UART

communication. The code can be found on GitHub at

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%202/UART%20Communication/Sender:

void setup () {

// Set UART baud rate to 9600

Serial.begin (9600) ;

void loop () {

// Send the string "IoT" over UART

Serial.println("IoT");

// Wait for a moment before sending again
delay (1000) ;

}
In this code, the serial.begin (baudrate) function helps us set the baud rate,
the serial.println() function helps us send the data, and the delay function
makes us wait a certain number of milliseconds (in this case 1000 ms) before
sending data again.

3. You will have to upload this code, using Arduino IDE, to the first ESP32. Make sure you have
selected the right ESP32 variant and COM PORT.

IMPORTANT NOTE

While uploading the code, make sure that the ESP32 Rx and Tx pins are not connected to the
other ESP32 because this can interfere with the uploading process.

4. Once the code is uploaded successfully, you can open Serial Monitor by going to the Tools
menu and clicking on Serial Monitor in Arduino IDE (or pressing Ctrl + Shift + M on
Windows/Linux or Cmd + Shift + M on macOS). Set the baud rate to 9600 and you will see the

output IoT, as seen in Figure 2.6:

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/UART%20Communication/Sender

File Edit Sketch Tools Help

¥ ESP32-WROOMDAMo... ~

ESP32_1.ino
il setup() {

Serial.begin(9600);

¥
loop() {

Serial.println("IoT");
y(1008);

Senal Monitor X

Ln1,Col 1 ESP32-WROOM-DA Module on COM6& [

Figure 2.6 — The first ESP32 transmitting the word loT using UART

5. Similarly, connect the second ESP32 and upload the following code, making sure that the
board variant and COM PORT are selected properly. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%202/UART%20Communication/Receiver:

void setup () {
// Set UART baud rate to 9600

Serial.begin (9600) ;

void loop () {
if (Serial.available() > 0) {
// If data is available to read
String receivedData = Serial.readString();

// Process or use the received data

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/UART%20Communication/Receiver

// Example: Print the received data
Serial.print ("Received Data: ");

Serial.println (receivedData) ;

}
In this code, we have set up the baud rate as in the code of the first ESP32.
Make sure both boards use the same baud rate and the serial.available ()
function to make sure that the data is being received. The
serial.readstring() function helps us to read strings from the other ESP32.
In the end, we are printing that data to the Serial Monitor. There are several
other serial functions, which you can learn about from the documentation
(https://reference.arduino.cc/reference/cs/language/functions/communication/s

. After uploading the code, make sure both ESP32s are connected as described in the circuit
diagram and open the serial port of the second ESP32. You will see the output in Figure 2.7:

https://reference.arduino.cc/reference/cs/language/functions/communication/serial/

File Edit Sketch Tools Help

¥ ESP32-WROOM-DAMo... ~

ESP32_2.ino
il setup() {

Serial.begin(960@);

F

loop() {
if (Serial.available() > @) {

String receivedData = Serial.readString();

print("Received Data: ™);
println(receivedData);

Sernal Monitor x

Received Data: IoT

Received Data: IoT

Ln1,Col 1 ESP32-WROOM-DA Module on COM7 [22

Figure 2.7 — The second ESP32 receiving the word loT using UART

Now you have learned how to send and receive data in the ESP32 using UART
communication in Arduino IDE. In the following section, we will discuss some of
the sensors that can be interfaced with the ESP32 and can use UART
communication.

Sensors that use UART communication

Several sensors use UART communication and can be interfaced with ESP32:

e GPS modules: Many GPS modules use UART communication to send location data to ESP32.

ublox NEO 6m and NEO 7m are examples.

¢ RFID readers: Some RFID readers use UART to communicate with ESP32, such as MFRC522
and PN532.

» Bluetooth modules: Certain Bluetooth modules, such as HC-05 and HC-06, use UART
communication to enable wireless connectivity, but the ESP32 already has Bluetooth
capabilities. Knowing this can help you with other microcontrollers that do not have Bluetooth
capabilities.

o GSM/GPRS modules: UART can be used to interface the ESP32 with GSM/GPRS modules
for cellular communication. Modules such as SIM800OL and SIM900A can be connected to the
ESP32 via UART to enable SMS, voice calls, internet connectivity, or NB-loT.

« Thermal printers: Some thermal printers use UART for data transfer. By connecting a thermal
printer, such as the popular Adafruit thermal printer or similar modules to the ESP32 via UART,
you can print text, images, barcodes, and WR codes.

In this section, we have learned what the UART communication protocol is, how it
works, and how to use the UART communication protocol to make two ESP32s
communicate. We have also familiarized ourselves with some of the devices that
use the UART communication protocol. In the next section, we will explore the 12C

communication protocol.

|12C communication with ESP32

I2C is another serial communication protocol, but unlike the UART protocaol, it is a
synchronous communication protocol that is used for communications between
integrated circuits or devices on a shared bus. Since it is a synchronous
communication protocol, it requires a clock signal and works in the master-slave
architecture. Therefore, it is commonly used in scenarios where multiple devices
need to communicate with the master/central device.

In this section, we will explore the following topics related to 12C communication in
the context of ESP32 and Arduino IDE:

e How I2C communication works
e |12C communication example using ESP32

o Sensors that use 12C communication

By the end of this section, you will be able to explain the 12C protocol, differentiate
it from UART, use it with ESP32 using Arduino IDE, and understand some of the
common sensors available on the market that can be interfaced using 12C.

How I12C communication works

As already discussed, 12C communication works through a master-slave
architecture, where one device acts as the master and there can be one or
multiple slave devices. Communication takes place using two wires, SDA and
SCL:

» Serial data line (SDA): This is used for transmitting and receiving data between devices. It
carries the actual data being transferred.

» Serial clock line (SCL): This is responsible for providing a clock signal that synchronizes the
data transfer between devices.

The master-slave architecture of 12C can be seen in Figure 2.8.

Master
device

.91* OLED Display
. < gi’iﬂll: fanochr one .

0x70 0x37

Slave devices

Figure 2.8 — 12C master-slave architecture

IMPORTANT NOTE

In addition to SDL and SCL connections, a common ground connection is required between
devices using the 12C protocol. The GND connection provides a reference voltage level that
ensures reliable and accurate data transfer between the devices. A pull-up resistor is also needed
to keep the communication stable and prevent data clashes. Most modules have a built-in pull-up
resistor.

The master device initiates communication with the slave devices. The following is

a step-by-step explanation of how the 12C protocol works, which is also depicted in
Figure 2.9:

Start condition.
SDA goes from high to low.
Read/write bit.

7-bit address Acknowledgement
................................ 8-bit data

scL i

Figure 2.9 — 12C waveform

1. Start condition: The master device initiates communication by sending a start condition on the
bus. It consists of a high-to-low transition on the SDA line while the SCL line remains high.

2. Addressing: After the start condition, the master sends the 7-bit or 10-bit address of the slave
address it wants to communicate with. The address is sent with the most significant bit
(MSB) first. In Figure 2.8, you will see the addresses of each device. These addresses help us
identify the device.

3. Read/write bit: The master sends a read or write bit after the slave address. The read bit (1)
indicates that the master wants to read the data from the slave device, while the write bit (0)
indicates that the master wants to write the data to the slave.

4. Data transfer: Depending on the read/write bit, data transfer occurs between the master and
slave. In a write operation, the master sends data bytes to the slave. In a read operation, the
slave sends data bytes to the master. The data is sent in packets of eight bits, with each bit
followed by an acknowledgment bit.

5. Acknowledgment: After each byte transfer, the receiving party (either the master or slave)
sends an acknowledgment (ACK) bit. If the ACK bit is low, it indicates that the data byte was
received successfully. If it is high, it indicates no acknowledgment (NACK), signaling an error.

6. Stop condition: To end the communication, the master sends a stop condition. This consists of
a high-to-low transition on the SDA line while the SCL line remains high. The stop condition
allows other devices on the bus to resume communication.

It is worth noting that, throughout the communication process, the SDA line carries
the data while the SCL carries the clock signal generated by the master. The clock

signal synchronizes the data transfer between devices. The sequence of the start
condition, address, data transfer, acknowledgment, and stop condition repeats for
each transaction on the 12C bus. 12C communication allows for multi-master
configurations, which allow multiple master devices to share a common SPI bus,
each capable of initiating communication independently. This makes it a versatile
protocol for inter-device communication in various applications.

An 12C communication example using ESP32

To demonstrate how 12C communication works on ESP32, we will be using an
example of the DS1307 real-time clock (RTC) module. An RTC is a hardware
device that keeps track of the current date and time, even when the system is

powered off or restarted:

1. Firstly, we will make a connection between the DS1307 RTC and the ESP32. RTC modules
consist of five pins:

e VCC: A power pin that requires 5V or 3.3V in the case of the ESP32
e GND: Connect this pin to the GND of the ESP32

e SDA: Connect this pin to the SDA pin of the ESP32

e SCL: Connect this pin to the SCL pin of the ESP32

* SQW/OUT: Provides square wave or interrupt output, though it is optional and we will

not be using this pin in our example

Figure 2.10 shows the circuit diagram of an ESP32 and a DS1307 RTC module:

ESP-WROOM-32

[®] 205 - 000518
FCC 9D:2AC T2-ESPWROOM 32

=] =]
fritzin o
Figure 2.10 — ESP32 and DS1307 12C circuit diagram

2. Now we will write code in the Arduino IDE for the ESP32 to read the date and
time information from the RTC module. But first, we will have to install two libraries
so we can access the pre-defined I12C and RTC functions:

e Wire

e RTCLib by Adafruit
You will have the wire library already installed. You can install rrcrib from the
library manager as follows:

I. Go to the library manager

Il. Search for RTC1lib

lll. Install RTC1ib by Adafruit

The steps are marked in the following figure:

File Edit Sketch Tools

0OOM-DA Module -

Esp32_i2c_RTC.ino

Ln1,Col 1 ESP32-WROOM-DA Module [not connected] 0

Figure 2.11 — How to install RTCLib in Arduino IDE

Once you have installed the library, you can write the code. The code can be found
on GitHub at https://github.com/PacktPublishing/Programming-ESP32-with-
Arduino-IDE/tree/main/Chapter%202/12C%20Communication/ESP32_RTC:

1. We will start by importing two libraries, Wire and RTClib:

e The Wire library enables I2C communication and the RTC1ib library provides the

necessary function to interface with the DS1307 RTC module

e The RTC_DS1307 rtc line initializes an instance of the RTC_DS1307 class, which
represents the RTC module:

#include <wire.h>
#include <RTClib.h>

RTC DS1307 rtc;

2. Then, we will initialize the setup function and initialize the serial communication at a baud rate
of 9600 to show the current date time in the Serial Monitor:

void setup () {

Serial.begin (9600) ;

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/I2C%20Communication/ESP32_RTC

Wire.begin () ;

// Uncomment the following line if the RTC has not been
initialized

// rtc.adjust (DateTime (F(DATE), F(_ TIME)));
if (!'rtc.begin()) {
Serial.println("Couldn't find RTC");

while (1);

if (!rtc.isrunning()) {
Serial.println("RTC is not running!");

// Uncomment the following line to set the RTC to the date and
time at the moment of uploading the code

// rtc.adjust (DateTime (F(_ DATE), F(_ TIME)));

Let’s briefly discuss the various functions used:
e Wire.begin (): Initializes the 12C communication.

e if ('rtc.begin()): Checks if the RTC module is detected and properly connected. If not, it
prints an error message and enters an infinite loop.

e If ('rtc.isrunning): Checks if the RTC is running. If not, it prints a message that the
RTC is not running. You can uncomment the rtc.adjust () line to set the RTC to the current
date and time.

1. Now, we will write the 1oop function to read the date and time and print it on the serial monitor:
void loop () {

DateTime now = rtc.now();

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial

.print ("Current Date and Time:

.print (now.year (), DEC);

.print ('/");

.print (now.month (), DEC);

.print ('/");

.print (now.day (), DEC);

.print ("' ");

.print (now.hour (), DEC);

.print (':");

.print (now.minute (), DEC);

.print(':");

.print (now.second(), DEC);

.println();

delay (1000) ;

")

* The loop () function, as discussed, is executed repeatedly.

DateTime now = rtc.now () retrieves the current date and time from the RTC

module and stores it in the now variable of type DateTime.

The subsequent Serial.print () statement displays the current date and time in
the serial monitor. DEC is used to specify the format in which the value should be

printed, that is, decimal (base 10) format.

The delay (1000) ; line adds a one-second delay before the next iteration of the

loop.

2. Now, you can upload the code and open the serial monitor to see the results. You will see the

following results:

Serial Monitor X

Current Date and Time:
Current Date and Time:
Current Date and Time:
Current Date and Time:
Current Date and Time:

Ln9g, Col 1 ESP32-WROOM-DA Module on COM6 [2 1

Figure 2.12 — Current Date and Time using the RTC module and ESP32

You could also simulate the project in the Wokwi simulator. Figure 2.13 shows the
simulation of this project in the Wokwi simulator and the results:

sketch.ino @ diagramjson @ Library Manager Simulation

2023/6/25 13:39:51
urrent Date and Time: 2023/6/25 13:39:52
urrent Date and Time: 2023/6/25 13:39:53
e and Time: 2023/6/25 13:39:54
e and Time: 2023/6/25 13:39:55
e and Time: 2023/6/25 13:39:56
e and Time: 2023/6/25 13:39:57
e and Time: 2023/6/25 13:39:58
e and Time: 2023/6/25 13:39:59
e and Time: 2023/6/25 13:40:0
e and Time: 2023/6/25 13:40:1
e and Time: 2023/6/25 13:40:2
e and Time: 2023/6/25 13:40:3
e and Time: 2023/6/25 13:40:4
ale and Time: 2023/6/25 13:40:5

[en]o
Figure 2.13 — Simulation of the project

In this example, we did not use the address of our slave device, which is the RTC
module (0x68) in the code. It was taken care of by rRTC1ib.

The RTC module will be a useful addition is some of your loT projects. It can
provide accurate timekeeping, allowing devices to synchronize actions, schedule
tasks, and coordinate events within the loT network. Also, it enables devices to
maintain the correct date and time, ensuring data logging, event sequencing, and
time-sensitive operations.

Devices that use 12C communication with ESP32

The following are some of the devices that utilize I2C communication with ESP32:

e Sensors: Examples include temperature and humidity sensors, barometric pressure sensors
(BMP180, BMP280), accelerometers and gyroscopes (MPU6050, MPU9250), magnetometers
(HMC5883L), ambient lights (TSL2561), proximity sensors (VL53L0X), gas and air quality
sensors (CCS811, MQ Series Gas Sensor), and many more available on the market

« Display modules: Examples include LCD screens (16x2 LCD) and OLED displays (SSD1306)

 RTC modules: These maintain accurate timekeeping, even during power loss (DS1307,
DS3231)

« EEPROM and FRAM memory modules: These provide non-volatile storage for data retention
(24LC256 EERPROM)

» 1/O expanders: These expand the number of input/output pins of the ESP32 (MCP23017)

In this section, we explored 12C communication. We learned how to use the 12C
communication protocol in ESP32 and we learned about some of the devices that

use 12C communication. In the next section, we will dive into SPI communication.

Understanding SPI communication

SPl is a synchronous serial communication protocol widely used for connecting
microcontrollers or other digital devices with peripheral devices. It provides a
straightforward and efficient means of data transfer, making it suitable for
applications that require high-speed and full- duplex communication.

Like the 12C communication protocol, the SPI protocol uses a master-slave
architecture, where one device acts as a master, controlling the communication,
and one or more devices act as slaves, responding to commands from the master.

In this section, we will explore the following topics related to the SPI
communication and ESP32:

e How SPI communication works
e SPI communication example using ESP32

e Sensors or devices that use SPI communication

By the end of this section, you will be able to understand what the SPI
communication protocol is, how it works, how we can use it in ESP32-based
projects, and some common peripherals in which we use the SPI protocol to

communicate.

How does SPlI communication work

SPI communication works through a master-slave architecture, where one device
acts as the master and controls the communication while one or more devices act
as slaves and respond to commands from the master. SPI uses four primary pins
for communication:

* SCLK (serial clock): The clock signal generated by the master device
e MOSI (master out/slave in): The line through which the master sends data to the slave
e MISO (master in/slave out): The line through which the slave sends data back to the master

e SS/cCs (slave select/chip select): The line used by the master to select the desired device for

communication

Figure 2.14 shows the master-slave architecture of SPI communication between a

master and multiple slaves:

SPI
SCLK

Master ;o

MISO
CS/SS 1
CS/SS 2__

Figure 2.14 — SPI communication in a master-slave architecture
Here’s a step-by-step explanation of how SPI communication works:
1. Configuration: The master device sets up the communication settings.
2. Chip select: The master selects the slave device to communicate with.
3. Clock generation: The master generates a clock signal.

4. Clock polarity and phase: Clock polarity (CPOL) and clock phase (CPHA) are crucial in
SPI communication, as they determine the timing and synchronization between devices. CPOL
sets the idle state of the clock, ensuring both devices agree on when data transmission begins.
CPHA determines when data is sampled, ensuring that data bits are captured at the correct

clock edges, maintaining synchronization between the sender and receiver.
5. Frame format: The number of bits and data format is defined.

6. Data validity and synchronization: Timing is synchronized for proper data interpretation.

7. End of Communication: The master deactivates the slave device’s chip select line to indicate
the end of communication. The following figure shows the waveform that illustrates the working
of read and write requests in SPI communication:

! s A '
0 4 2 3 4 8 & T & § 10 11 12 13 14 18 46 97 4 W W N B N
o i BOK
erte E |“ Instruction to write "+“ Data Byte 2 "'I“ Data Byte 1
: Mosl) 0909900090@@0060
E Mlso H|Eh Impedance
&

ss# |\ [

0 414 2 3 4 8§ & T 2 % 110 1M 12 13 4 185 ¥ 17 M M NN AN

SCK

R e ad o _{_ Instruction to ;f"\-/':l\(

- Data Byte 2 - Data Byte 1 -

MISO S e 0.0.00000000000000

Figure 2.15 — SPI read and write waveform

In Figure 2.15, you can see that SS# goes from high to low when selecting the
chip.

For the transmission of instructions and data, the Master Output/Slave Input
(MOSI) line sends instructions to write, followed by the associated data.
Meanwhile, the Master Input/Slave Output (MISO) line remains at high
impedance during this phase.

Conversely, during the reading of data, the MOSI line sends an instruction to read,
and the MISO line transmits the data back to the master.

Now you have learned how SPI communication works, let’s apply it in ESP32
using Arduino IDE.

SPI communication example using ESP32

There are several peripherals that use SPI communication. For the sake of this
example, we will be using a PN532 NFC reader and ESP32.

An NFC reader is a device that communicates with NFC tags or devices in
proximity. It enables secure data exchange over short distances, typically a few
centimeters. NFC readers are used in various applications such as access control,
mobile payments, and loT devices for contactless interactions and data transfer.

To use the NFC module with ESP32, we will take the following steps:

1. Firstly, let's make a connection between the PN532 NFC reader and ESP32. We will be using
the following connections, as shown in Figure 2.16:

» SCK: Connected with GPIO 14

e MISO: Connected with GPIO 12

e MOSI: Connected with GPIO 13

e S8S: Connected with GPIO 15 of the ESP32
» GND: Connected with GND of the ESP32

e Vvcc: Connected with the ESP32 VIN or 3.3V

ESP-WROOM-32

(€

@ [®] 205 - 000519

FCC 90:2ACT2-ESPWROOM 32

Figure 2.16 — ESP32 and PN532 circuit diagram

The PN532 module can be connected to the ESP32 using SPI, 12C, or UART
communication, and the communication method can be configured using the

ssssscssee

fritzing

switches on the module. The following table shows the switch configuration:

Communication protocol Switch 1 Switch 2
UART(HST) 0 0
12C 1 0
SPI 0 1

Table 2.1 — PN532 communication protocol settings

We are using SPI communication, therefore, the first switch should be set to 0 and

the other should be set to:1.

Now we will write code to scan the RFID card and print the scanned card ID on the
serial monitor. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%202/SP1%20Communication/ESP32_NFC.

1. First, we will have to include a couple of libraries:

#include <SPI.h>

#include <Adafruit PN532.h>

We are using two libraries: sp1 for using SPI communication and
adafruit_PN532 for using the functions of the NFC module. You will have to
install the adafruit_pN532 library. You can use this library by searching for the
adafruit PN532 library in the library manager and then installing it.

2. Then, we define the pins specified for SPI communication with the PN532 NFC module:

fdefine PN532 SCK (14)
#define PN532 MOSI (13)
#define PN532 SS (15)

#define PN532 MISO (12)

3. Next, we create an instance of the Adafruit_ PN532 class with the specified SPI pins:

Adafruit PN532 nfc(PN532 SCK, PN532 MISO, PN532 MOSI, PN532 SS);

4. In the setup function, we initialize the serial communication and NFC module using the
nfc.begin () function. It checks for the firmware version of the PN532 module, and if the

version data is not obtained (indicating a problem), it prints an error message and halts the
program. If the version data is obtained successfully, it prints the chip type and firmware
version and writes Waiting for a card to indicate that it is ready to detect a card:

void setup (void) {
Serial.begin(115200) ;
nfc.begin();

uint32 t versiondata = nfc.getFirmwareVersion();

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%202/SPI%20Communication/ESP32_NFC

if (! versiondata) {
Serial.print ("Didn't find PN53x board");

while (1); // halt

// Got ok data, print it out!

Serial.print ("Found chip PN5"); Serial.println((versiondata>>24) &
OxFF, HEX):;

Serial.print ("Firmware ver. "); Serial.print((versiondata>>16) &
OxFF, DEC);

Serial.print('.'); Serial.println((versiondata>>8) & OxFF, DEC);
Serial.println("Waiting for a Card ...");

}

5. Then, we define the 1oop () function, which will be executed repeatedly:

void loop (void) {
uint8 t success;
uint8 t uid[] = { 0, O, O, O, O, O, 0 };
uint8 t uidLength;

success = nfc.readPassiveTargetID(PN532 MIFARE IS0O14443A, uid,
&uidLength) ;

if (success) {
Serial.println ("Found a card");

Serial.print (" UID Length: ");Serial.print (uidLength,
DEC) ;Serial.println (" bytes");

Serial.print (" UID Value: ");

nfc.PrintHex (uid, uidLength);

if (uidLength == 4)

// We probably have a Mifare Classic card ...
uint32 t cardid = uid[0];

cardid <<= 8;

cardid |= uid[1];

cardid <<= 8;

cardid |= uid[2];

cardid <<= 8;

cardid |= uid[3];

Serial.print ("Seems to be a Mifare Classic card #");

Serial.println (cardid) ;

Serial.println("");

}
First, we declare the success, uid, and uidLength variables. uid is an array
used to store the unique identifier (UID) of the detected card, and uidLength
represents the length of the UID. Using the nfc.readPassiveTargetID ()
function, it attempts to read the UID and its length. If a card is successfully
detected, it prints a message indicating the card’s presence, the UID length,
and the UID value. If the UID length is 4 bytes, it assumes it's a MIFARE
Classic card and extracts the individual bytes to form a 32-bit card ID, which is
then printed along with a descriptive message. Finally, it prints a blank line for
separation before checking for the presence of the next card.

6. Now, you can upload the code to the ESP32 using Arduino IDE. Open the serial monitor, and
once you scan an RFID or NFC card, you will see the output on the serial monitor, as shown in
Figure 2.17:

Output Serial Monitor X

Found chip PN532
Firmware ver. 1.6
Waiting for an <Card ...
Found a card
UID Length: 4 by
UID Value: 0xA3 3 0x1D

Seems to be a Mifare ic card #2741256989

Found a card
UID Length: 4 by
UID Value: O0xA3 3 0x1Dp
Seems to be a Mifare ic card #2741256989

Found a card

Figure 2.17 — PN532 NFC card read serial monitor result

Now you have learned how SPI communication works and how to use it with
ESP32 using the SPI library. TheNFC and RFID modules will be very useful
additions to your loT-based projects for secure and contactless access control,
allowing for the authentication and identification of users and devices. It can also
be used to enable seamless data exchange and tracking in loT applications, such
as inventory management, supply chain, and asset tracking.

Devices that use SPlI communication

There are several peripherals that can be interfaced with ESP32 using SPI
communication. Some of the common devices are as follows:

« TFT LCD displays: 1LI9341, ST7789, SSD1306
o SD card modules: MicroSD card adapter

» ADC chips: MCP3008, ADS1115

o RFID readers: MFRC522, PN532

» Ethernet controllers: ENC28J60

o LoRa transceivers: SX1276, SX1278

» DAC chips: MCP4922, MAX521

e Pressure sensors: BMP280, MS5611
» Accelerometers and gyroscopes: MPU9250, ADXL345

o Temperature sensors: MAX31855

In this section, we have learned how the SPI communication protocol works, how
we can use it with ESP32, and what some of the commonly available devices that
can be interfaced with ESP32 using SPI communication are.

Summary

In this chapter, we learned about ESP32 peripherals and the functions of those
peripherals. We learned how to use the |I0s of ESP32 and how to use PWM.
Furthermore, we discussed the most common serial communication protocols,
such as UART, 12C, and SPI, in detail to help you connect many peripherals not
only with ESP32 but also with other microcontrollers. We also learned how we can
make two ESP32s communicate and how to interface RTC modules and
RFID/NFC modules. The learnings of this chapter will make a strong foundation for
developing loT.

In the next chapter, we will discuss how to interface displays and cameras with
ESP32.

3

Interfacing Cameras and Displays with
ESP32

In this chapter, we embark on an exciting journey of connecting cameras and
displays to the ESP32 microcontroller. As we explore the features of ESP32 and
the Arduino IDE, we will uncover the ability to capture and show visual information.
This will enable us to create even more dynamic and interactive projects.

We will begin by familiarizing ourselves with the ESP32 camera module and its
capabilities. We will explore how to program the ESP32 camera, enabling us to
capture images. Additionally, we will delve into integrating a motion sensor with the
ESP32 camera module and create a program that triggers image capture
whenever motion is detected. This comprehensive approach will allow us to gain a
thorough understanding of the ESP32 camera, program it effectively, and
implement motion-based image capture functionality.

Following our exploration of the camera, we will shift our focus to display
interfaces. We will discover the different types of display interfaces, including
Serial Peripheral Interface (SPI), Inter-Integrated Circuit (12C), and parallel,
and gain insights into their respective advantages and complexities. By examining
popular display modules compatible with ESP32, we are introduced to a wide
range of options for visual output.

With this knowledge in hand, we will learn the process of interfacing displays with
ESP32. We will explore display libraries specific to the EPS32 platform, learn how
to configure display pins and connections, and how to initialize the display module.
Displaying text and graphics on the screen becomes a more seamless process as
we make ourselves familiar with the power of ESP32. We will also explore
advanced display features such as touchscreen integration.

By the end of this chapter, you will have gained a solid foundation in the ESP32
camera module and displays with ESP32. The skills and knowledge acquired will
empower you to create a wide range of projects.

In this chapter, we are going to cover the following main topics:

e Using the ESP32 camera module
« Interfacing displays with ESP32

e Comparison of displays

By covering these topics, we will advance from the fundamentals of camera and
display interfaces to practical implementations that will enhance your skills as an
ESP32 developer.

Technical requirements

In this chapter, for the projects that require a camera, we will be using the ESP32-
CAM board, which has a built-in camera and SD card support. Furthermore, we
will use the ESP32 DevKit board and 16x2 LCD, SSD1306 organic light-emitting
diode (OLED), ILI9341 TFT Touchscreen, and e-paper displays.

All the code files used in this chapter will be available at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter3.

Using the ESP32 camera module

The ESP32-CAM is a versatile and compact development board that combines an
ESP32 microcontroller with a camera module, making it an ideal choice for
projects involving image and video processing. This small yet powerful board
offers a wide range of features, including built-in Wi-Fi and Bluetooth connectivity,
which enable seamless communication with other devices. ESP32-CAM’s camera
module boasts a resolution of up to 2 megapixels and supports various image
formats, allowing for the capture of high-quality photos and videos. Additionally, it
features a microSD card slot for local storage, making it suitable for applications

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3

that require data logging or recording. With its rich set of capabilities, ESP32-CAM
is a popular choice for projects such as surveillance systems, remote monitoring,
loT applications, and even robotics. Its open source nature and extensive
community support further enhance its appeal, providing developers with a vast
array of resources and libraries to accelerate their development process:

ESP32-CAM

Figure 3.1 — ESP32-CAM

Next, let’'s understand how to use it.

How to use ESP32-CAM with the Arduino IDE

The ESP32-CAM board is distinct from the ESP32 development kit and requires a
different approach to programming. Unlike the dev kit, the ESP32-CAM board

does not have a built-in USB-to-serial converter, so an FTDI module is necessary
to establish communication between the board and your computer. FTDI, which
stands for Future Technology Devices International, is a company that
specializes in USB interface technologies. Their FTDI modules act as bridges,
allowing the conversion of USB signals into serial signals compatible with ESP32-
CAM. To program the ESP32-CAM board, follow these steps:

1. Connect the FTDI module to your computer’s USB port.
2. ldentify the FTDI module’s pinout, which typically includes TX (transmit), RX (receive), GND
(ground), and VCC (power) pins.

3. Make the necessary connections between the FTDI module and the ESP32-CAM board.
Connect the TX pin of the FTDI module to the RX pin of the ESP32-CAM board, the RX pin of
the FTDI module to the TX pin of the ESP32-CAM board, and connect the GND and VCC pins

appropriately. Figure 3.2 shows the circuit.

4. Launch the Arduino IDE and select the ESP32-CAM board and port settings.

The program will be transferred to the ESP32-CAM board via the FTDI module,
and once the upload is complete, the board will restart and begin executing the

program:

3

by Adafruit

GND

o
=
[

o
L

[T

Lo

=]

-

w

v
w
e
J
@

ESP32-CAM

Figure 3.2 — Interfacing ESP32-CAM with FTDI module to program it using the Arduino IDE

Let’'s understand this with the help of an example.

ESP32 camera example

To demonstrate the use of the ESP32 camera, we will write a program to capture
an image when there is motion. The example will involve a passive infrared (PIR)
motion sensor, an SD card, and an ESP32-CAM board.

The ESP32 camera module is configured to capture images using the OV2640
camera sensor, which communicates with the ESP32 microcontroller over the
Serial Camera Control Bus (SCCB). SCCB is a simple, two-wire serial protocol
like 12C and is used to configure and control the camera module, setting
parameters such as exposure, gain, and image size. The pixel data from the
camera sensor is read out and processed, then the image is stored on an SD card.
The communication between the ESP32 board and the camera sensor occurs
through SCCB for control and configuration, but the actual image data transfer is
handled by the camera module and ESP32’s camera library, which abstracts these
details and provides a convenient interface for capturing and saving images.

We will follow the following steps to use ESP32 camera module in this example,

1. Firstly, we will have to make the following connections:

Figure 3.3 — Interfacing a PIR motion sensor with ESP32-CAM

2. The PIR motion sensor’s data pin is connected to the 102 pin on the ESP32-CAM board, while
its VCC and GND pins are connected to the 3.3V and GND pins of the ESP32-CAM board, as
shown in Figure 3.3. The FTDI module employs the same pin configuration as depicted in
Figure 3.2. Connect the TX pin of the FTDI module to the RX pin of the ESP32-CAM board, the
RX pin of the FTDI module to the TX pin of the ESP32-CAM board, and connect the GND and
VCC pins appropriately.

3. After making the connections, we will have to install the esp_camera and SD_MMC libraries.

4. After installing the libraries, make sure the SD card is plugged into the board and then upload
the following code (the code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter3/PIR%20motion%20Sensor%20and%20camera):

#include "esp camera.h"
#include <SD MMC.h>

#define CAMERA MODEL AI THINKER
#define PWDN_GPIO NUM -1

#define RESET GPIO NUM -1

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/PIR%20motion%20Sensor%20and%20camera

#define XCLK GPIO NUM 4

#define SIOD GPIO NUM 18
#define SIOC GPIO NUM 23
#define Y9 GPIO NUM 36
#define Y8 GPIO NUM 37
#define Y7 GPIO NUM 38
#define Y6 GPIO NUM 39
#define Y5 GPIO NUM 35
#define Y4 GPIO NUM 14
#define Y3 GPIO NUM 13
#define Y2 GPIO NUM 34

#define VSYNC GPIO NUM 5
#define HREF GPIO NUM 27
#define PCLK GPIO NUM 25
// Motion sensor configuration

#define MOTION SENSOR_PIN 2

Serial.println("Image captured and saved");

// Delay for a short time before checking for motion again

delay (100) ;

}

This code sets up an ESP32-based camera module to capture images when
motion is detected. It includes the necessary libraries and pin configurations.

In the setup () function, it initializes the serial communication, initializes the SD
card using sp_MMc.begin (), and configures the camera module using
camera_config_t. It also initializes the motion sensor using

pinMode (MOTION_ SENSOR PIN, INPUT) ;.

In the 1oop () function, it checks whether motion is detected by calling if
(digitalRead (MOTION SENSOR_PIN) == HIGH). If motion is detected, it proceeds
to capture an image. It retrieves the image using esp_camera fb _get() and
checks whether the capture was successful. If so, it opens a file named
image.jpg on the SD card using sp_mmMc.open () . If the file is opened
successfully, it writes the image data to the file using file.write (), closes the
file with file.close (), and releases the image buffer using
esp_camera_fb_return(). Finally, it prints a message indicating that the image
was captured and saved.

5. The code then waits for a short period (100 milliseconds) using delay (100) before checking

for motion again. This loop continues indefinitely, monitoring for motion and capturing images
accordingly.

In the following section, we will learn about the different visual options available for
ESP32 and learn how to use them.

Interfacing displays with ESP32

Displays are beneficial for loT projects involving ESP32 due to their ability to
provide visual feedback and enhance user interaction. With displays, real-time
sensor data, system status, and notifications can be easily conveyed, improving
user experience. Additionally, displays enable the creation of intuitive user

interfaces, allowing users to interact with the l1oT system directly and access
information conveniently.

In this section, we will discuss various display options that can be interfaced with
ESP32 and cover the following topics:

e 16x2 LCD display

OLED display

TFT display with touch integration

E-paper display

« Comparison of all the aforementioned displays

By the end of this section, you will have a solid understanding of how displays are
interfaced with ESP32, and you will be able to select a suitable display for your
next project.

Interfacing a 16x2 LCD with ESP32 using 12C

A 16x2 LCD with an 12C interface is a commonly used and versatile device for
displaying information in embedded systems and microcontroller-based projects. It
consists of an LCD with two rows, each capable of displaying up to 16 characters.
The 16x2 LCD 12C is widely used in applications such as temperature monitoring,
data logging, menu interfaces, and system status displays, providing a convenient
and compact solution for visual information output in embedded projects.

This type of LCD relies on an integrated controller, often the HD44780, to facilitate
character display on its two rows. In operation, the microcontroller sends
commands and data via 12C to the LCD, allowing it to display alphanumeric
characters, numbers, and symbols as needed.

How to interface a 16x2 LCD with ESP32

A 16x2 LCD could be interfaced with ESP32 using 12C communication, which we
discussed in Chapter 2. We will make use of the Serial Clock Line (SCL) and

Serial Data Line (SDA) pins of our LCD and make the connections explained in
Table 3.1:

LCD Pins ESP32 Pins
VCC 3.3V or 5V
GND GND

SDA D21 (SDA)
SCL D22 (SCL)

Table 3.1 — How to interface a 16x2 LCD with ESP32

The connections defined in the preceding table are depicted in Figure 3.4:

ESP32

2
FRRRRRRRNAER P

Figure 3.4 — Interfacing a 16x2 LCD with ESP32 using 12C

After making the connection, we will install the Liquidcrystal_z12c library and
upload the following code, in which we will show text on the LCD, scroll text, and
show customized icons on the LCD.

The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/16x2%20LCD

IDE/tree/main/Chapter3/16x2%20LCD:

#include <Wire.h>
#include <LiquidCrystal I2C.h>
const int LCD ADDRESS = 0x27;
const int LCD:COLS = 16;
const int LCD ROWS = 2;
LiquidCrystal_IZC lcd(LCD_ADDRESS, LCD COLS, LCD_ROWS);
void setup () {
lcd.init () ;
lcd.backlight () ;
lcd.setCursor (0, 0);
lcd.print ("Hello, ESP32!");
lcd.setCursor (0, 1);
lcd.print ("LCD Example");
delay (3000) ;
lcd.clear () ;
lcd.print ("Scrolling Text:");
lcd.autoscroll () ;
for (int i = 0; 1 < 16; i++) {
lcd.scrollDisplayLeft () ;
delay (500) ;
}
lcd.noAutoscroll () ;
lcd.clear () ;
byte heart[8] = {
B000O0O,
B01010,
B11111,
B11111,
BO1110,
B0010O,
B0O00O0OO,
}i
lcd.createChar (0, heart);
lcd.setCursor (0, 0);
lcd.print ("I ") ;
lcd.write (byte(0));
lcd.print (" ESP32!");
}
void loop () {
// Do nothing in the loop
}

The code begins by defining constants for the LCD address (0x27) and the number
of columns (16) and rows (2) of the LCD. An instance of the Liquidcrystal 12C
class named 1cd is created, specifying the LCD address and dimensions.

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/16x2%20LCD

In the setup () function, the LCD is initialized with 1cd.init (). The backlight of the
LCD is turned on using 1cd.backlight (). The cursor is positioned at the beginning
of the first row using 1cd.setcursor (0, 0), and the text "Hello, EsP32!" is printed
using lecd.print (). The cursor is then moved to the beginning of the second row,
and the text "Lcp Example” is printed. A delay of 3 seconds is introduced with
delay (3000). The result is shown in Figure 3.5 (a).

Next, the 1cd.clear () function is called to clear the LCD. The text "scrolling
Text:" iS printed using 1cd.print (). The lecd.autoscroll () function is called to
enable the automatic scrolling of text. A for loop is used to scroll the text to the left
by one position at a time, with a delay of 500 milliseconds between each scroll.
After scrolling 16 positions, the 1cd.noautoscroll () function is called to disable
automatic scrolling. The 1cd.clear () function is called again to clear the display.
The output is shown in Figure 3.5 (b).

A custom character representing a heart shape is defined using an array of bytes.
The 1cd.createchar () function is used to create a custom character at index o
using the heart array. The cursor is positioned at the beginning of the first row, and
the text "1 " is printed using 1cd.print (). The custom character representing a
heart is displayed using 1cd.write (byte (0)). Finally, the text * Esp32!" is printed.
The output is shown in Figure 3.5 (c).

In the 100p () function, nothing is done, and the program remains idle, effectively

creating an infinite loop:

Figure 3.5 — (a) Text on 16x2 LCD, (b) Scrolling text, and (c) showing customized characters

In the next section, we will explore and learn how to use an 12C OLED display with
ESP32, which offers better contrast and visibility than the 16x2 LCD.

Interfacing an OLED with ESP32 using 12C

An OLED display is a compact and versatile device for visual output in various
electronic projects. We will be using the SSD1306 OLED display. It features a
small OLED screen that offers high contrast and excellent visibility, even in low-
light conditions. The 12C interface makes it easy to integrate the SSD1306 OLED
display with a wide range of microcontrollers, including popular ones such as
Arduino and ESP32. By using libraries such as adafruit_ssp1306, developers can
easily control the display, allowing for tasks such as displaying text, graphics,
icons, and even animations. The SSD1306 OLED display with an 12C interface is
commonly used in applications such as wearable devices, loT projects, digital
meters, and portable electronic gadgets, providing a compact, energy-efficient,
and visually appealing solution for displaying information.

The SSD1306 OLED works by emitting light from individual LEDs to create a
visible image. Each pixel in the OLED display emits its own light and can be
controlled individually. The SSD1306 is a display driver chip that controls the
OLED display, taking in data from a microcontroller and translating it into signals
that instruct the individual pixels to emit light at varying intensities, creating text,
images, and graphics. It communicates with the microcontroller using
communication protocols such as 12C or SPI to receive data and commands for
pixel control.

How to interface the SSD1306 OLED with ESP32

The SSD1306 OLED can be interfaced with ESP32 using 12C communication,
which we discussed in Chapter 2 and used in the previous section to interface the

16x2 LCD. We will make use of the SCL and SDA pins of our OLED and make the
following connections explained in Table 3.1 and Figure 3.6:

ESP32

20 0= W W e

Figure 3.6 — Interfacing SSD1306 with ESP32 using 12C

After making the circuit, we will install the adafruit GFx and adafruit_SSD1306
libraries. Then, we will upload the following code, which will show text, change the
font size of text, draw shapes, and draw bitmap images on the OLED.

The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter3/SSD1306%200LED:

#include <Wire.h>

#include <Adafruit GFX.h>

#include <Adafruit SSD1306.h>

#define SCREEN WIDTH 128

#define SCREEN HEIGHT 64

Adafruit_SSDl306 display(SCREEN_WIDTH, SCREEN_ HEIGHT, &Wire, -1);
const unsigned char logo [] PROGMEM = {

display.clearDisplay () ;
display.drawBitmap (0, 0, logo, 128, 64, SSD1306 WHITE);
display.display();
delay (2000) ;
}

This code demonstrates the usage of the adafruit_ssp1306 library to control a
128x64 OLED display using an ESP32 microcontroller. It includes the necessary

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/SSD1306%20OLED

libraries, a wire.n file for I2C communication, and adafruit GFx.h and
Adafruit_SsD1306.h files for graphics functions and OLED display control. Make
sure to install these libraries from the library manager.

The code sets the screen width and height constants based on the display’s
dimensions. An instance of the adafruit _ssp1306 class named display is created,
specifying the screen width, height, Wire object, and 12C address (-1 for the
default).

In the setup () function, display initialization is performed. If the initialization fails,
an error message is printed, and the program enters an infinite loop. After
successful initialization, the display is cleared, the text size is set to 1, and the text
color is set to white. Text is printed on the screen using the display’s println ()
function, as can be seen in Figure 3.7 (a). The display is then updated with
display.display(), and a 2-second delay is introduced.

The 100p () function is where the main display operations occur. First, the display
is cleared. Text size is increased to 2, and esp32 is printed at the specified position.
Text size is reset to 1, and oLED Display is printed at a different position, as can be
seen in Figure 3.7 (b). The display is updated with display.display (), and a delay
is introduced.

The process is repeated for several other graphical operations. These include
drawing a rectangle (Figure 3.7 (c)), filling a circle (Figure 3.7 (d)), drawing a line,
and displaying a bitmap in Figure 3.7 (e). Each operation involves clearing the
display, performing the specific graphical action using the appropriate function,
updating the display, and introducing a delay before moving on to the next
operation.

IMPORTANT NOTE

You could convert your BMP image to an array using this online tool:
https://javl.github.io/image2cpp/.

This loop of displaying different graphics on the OLED display continues
indefinitely, with each operation being displayed for 2 seconds before transitioning
to the next:

https://javl.github.io/image2cpp/

ueoe
Yuuet @ @ yved 9 @ vuvd @9 @ Yuue @

OLED Display |

Figure 3.7 — (a) Text on OLED, (b) changing text size, (c) drawing a rectangle, (d) drawing a
circle, and (e) showing Packt bitmap logo
In this section, we have learned how to interface an OLED with ESP32 and show
text, draw shapes, and show bitmap images. In the next section, we will explore
the thin-film-transistor (TFT) display, which will enable us to interact with our
projects using a touch interface.

Interfacing a TFT display with ESP32 using SPI and
12C

The ILI9341 SPI TFT display with 12C touch interface combines the benefits of
both SPI and [2C communication protocols to provide a comprehensive visual and
touch input solution. The display utilizes the SPI protocol for fast and efficient data
transfer between the microcontroller and the display module. This enables high
refresh rates and smooth graphics rendering on the TFT screen. Additionally, the
touch input is facilitated through an 12C interface, allowing for precise and
responsive touch interaction. By employing libraries such as adafruit 1L19341
and adafruit_FT6206, developers can easily control both the display and the touch
functionality. This combination of SPI for display communication and 12C for touch
input provides seamless integration of visual output and user interaction in projects
ranging from embedded systems and portable devices to interactive displays and

user interfaces.

How to interface ILI9341 with ESP32

As mentioned previously, the ILI9341 TFT display uses SPI communication for
display functions and 12C communication for touch integration. To interface |LI19341
with ESP32, follow the connection guide in Table 3.2:

Touchscreen Pins ESP32 Pins (SPI)
VCC 3.3V or 5V
GND GND

CS D15

RST D4

DC/RS D2
SDI/MOSI D23 (MOSI)
SCK D18 (SCK)
LED NC
SDO/MISO D19 (MISO)
SCL D22 (SCL)
SDA D21 (SDA)

Table 3.2 — Connection guide for ESP32 and ILI9341 TFT display

The same connections are depicted in Figure 3.8:

ILTI9341 Cap Touch

ESP32

Figure 3.8 — Interfacing ILI9341 TFT display with ESP32

After making the circuit, make sure to install the adafruit ILI9341, Adafruit GFX,
and adafruit FT6206 libraries and upload the following code, which shows a
menu; on clicking a certain item, it performs actions.

The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter3/TFT%20Touchscreen:

#include <Adafruit ILIS9341.h>

#include <Adafruit:GFX.h>

#include <Adafruit FT6206.h>

#define TFT CS 15

#define TFT DC 2

#define SCREEN WIDTH 320

#define SCREEN HEIGHT 240

#define BACKGROUND COLOR ILI9341 BLACK
#define TEXT COLOR ILI9341 WHITE
#define HIGHLIGHT COLOR ILI9341 YELLOW

tft.setTextSize (5);

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/TFT%20Touchscreen

tft.setCursor (30, 100);
tft.setTextColor (TEXT COLOR) ;
tft.print(temperatureT 1);
tft.setTextSize (3);
tft.setCursor (200, 105);
tft.print ("C");
tft.setTextSize (2);

}

The preceding code uses several libraries: adafruit ILI9341, Adafruit_GFX, and
adafruit FT6206. Make sure to install them using the library manager before
uploading the code. The TrT_cs and TrT_bc constants represent the chip’s select
and data/command pins, while scrREeN_wiDpTH and scREEN_HEIGHT define the
dimensions of the display.

The code defines some additional constants for colors, such as BACKGROUND _COLOR,
TEXT_COLOR, and HIGHLIGHT COLOR. It also sets minimum and maximum touch
coordinates for the x and y directions using Ts_MINX, TS_MAXX, TS_MINY, and

TS_MAXY.

The ts object is used to handle the touch input, and the t£t object controls the
display. The menuoption array holds the text for different menu options. The
currentOption and numoption variables keep track of the currently selected option
and the total number of options.

In the setup () function, the display is initialized, its rotation is set to o0, and the
screen is filled with the specified background color. Text-related settings, such as
text size and color, are configured. The LED pin is set as an output, and if the
touchscreen fails to initialize, the code enters an infinite loop.

The 100p () function continuously checks whether the touchscreen is touched. If a
touch is detected, the coordinates are mapped to the screen dimensions. If the
touch falls within the range of the menu options, the corresponding option is
identified, and the menu is redrawn with the selected option highlighted. The code
then performs a specific action based on the selected option, such as toggling an
LED, showing the temperature, changing the background color (shown in Figure
3.9 (¢)), and rotating the screen, as can be seen in Figure 3.9 (d), or restarting
ESP32.

The drawMenu () function is responsible for drawing the menu options on the
screen. It clears the screen, iterates through the menu options, sets the text color
based on the current option, and prints the menu text at the appropriate position.
The menu is shown in Figure 3.9 (a).

The Toggle LED () function toggles the state of an LED connected to pin 5. It
updates the LED_state variable and sets the digital output of the LED accordingly.

The showTemp () function displays a temperature reading on the screen. It fills the
screen with background color, sets the text size and color, and prints the text
Temperature at a specific position. It then displays a temperature value (25.5 in
this case) with one decimal place, followed by the c unit at another position on the
screen, as can be seen in Figure 3.9 (b):

ILI9341 Cap Touch ILIS341 Cap Touch ILI9341 Cap Touch ILI9341 Cap Touch

Fremperature

Figure 3.9 — (a) Main menu on the TFT screen, (b) showing temperature on the TFT, (c)
changing colors, and (d) rotating screen

In this section, you have learned how to use the visual and touch interface of the
TFT touchscreen. In the next section, we will interface an e-paper display, which is
a very popular display for reading devices, such as Amazon Kindle.

Interfacing an e-paper display with ESP32

An e-paper display, also known as an electronic paper display or e-ink display, is a
unique type of display technology that mimics the appearance of traditional ink on

paper. E-paper displays such as e-ink work by manipulating charged pigment
particles within tiny microcapsules to create visible text or images. It offers several
advantages, including low power consumption and a wide viewing angle. An e-
paper display is particularly well suited for applications where static or slowly
changing content is sufficient, such as e-readers, electronic shelf labels, and
signage. It operates by manipulating charged particles within microcapsules,
resulting in a visible change in the display’s appearance. One popular variant is an
e-paper display with a 2.9” size, which provides a compact yet readable screen
area. It can be interfaced with microcontrollers such as ESP32, enabling control
over the display’s content and appearance. With the help of libraries such as
GxEPD2, developers can easily update the e-paper display with new information,
create simple graphics, and showcase text-based content. An e-paper display
offers a unique and eye-friendly visual experience, making it a popular choice in
applications where power efficiency, readability, and durability are key
requirements.

How to interface an e-paper display with ESP32

To interface an e-paper display with ESP32, we will use the SPI communication
protocol. Follow the connection guide in Table 3.3:

E-Paper Display Pins ESP32 Pins
VCC 3.3V

GND GND

DIN D23

CLK D18

CS D5

DC D17

E-Paper Display Pins ESP32 Pins

RST D16

BUSY D4

Table 3.3 — Connection guide to interface an e-paper display with ESP32

The same connections are depicted in Figure 3.10:

Hello World

®
]
=
-}
-~
]
&
o
-
=
£
=
~
®

0T oo B p I3 omm OB VR VP BN

o
ARLARNENERER

%]
g%

RN NNY YNy
ou DU O s TER

T o RN]

Figure 3.10 — Interfacing an e-paper display with ESP32

After making the connection, make sure to install the cxeEpp2_Bw and adafruit GFX
libraries and the required fonts and then upload the code, which will print Bel1o
world on the e-paper displays.

The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter3/E-paper:

#include <GxEPD2 BW.h>
#include <Adafruit GFX.h>
#include <Fonts/FreeMonoBoldl2pt7b.h>
#include <Fonts/FreeSerif9pt7b.h>
GxXEPD2 BW<GxXEPD2 290, GxEPD2 290::HEIGHT> display (GxEPD2 290 (/*CS=*/ 5,
/*DC=*/ 17, /*RST=*/ 16, /*BUSY=*/ 4));
void setup () {
Serial.begin(115200) ;
display.init();
display.setRotation (1) ;
}
void loop () {
display.fillScreen (GXEPD WHITE) ;
display.setFont (&FreeMonoBoldl2pt7b) ;
display.setTextColor (GxEPD BLACK) ;
display.setCursor ((display.width() - 11) / 2, display.height() / 2);
display.println ("Hello World");
display.display();
delay (10000) ;
}

The code uses several libraries to control an e-paper display. The cxEpp2_Bw
library is used to interface with the display, and the adafruit GFx library provides
graphics functions. Two different fonts are included for text rendering. The display
object is initialized with the necessary pins for communication with the e-paper
display. In the setup () function, serial communication is initiated, and the display is
initialized and set to a specific rotation. The 100p () function continuously clears the
screen, sets the font and text color, positions the cursor, prints the text rel1o
World (as can be seen in Figure 3.10), updates the display, and adds a delay of 10
seconds before repeating the process.

In the next section, we will compare all the displays we have interfaced with
ESP32.

Comparison of displays

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter3/E-paper

This section compares all the displays you have learned about in previous
chapters and interfaced with ESP32. Table 3.4 will help you understand which
display will fit your needs for a certain type of project. These displays are
compared based on type, resolution, communication protocol, power consumption,

price, and applications:

Feature 16x2 LCD SSD1306 ILI9341 TFT |2.9” E-Paper
12C OLED I2C Touchscreen | Display

Display Type LCD OLED TFT E-paper

Resolution 16x2 128x64 320x240 296x128

Communication | 12C 12C SPI SPI

Protocol

Touch No No Yes No

Capability

Color Support | Monochrome | Monochrome | Color Monochrome

Power Low Low Medium Ultra-low

Consumption

Refresh Rate N/A N/A High Medium
Visibility in Good Poor Good Excellent
Bright Light

Price Low Low Medium High
Memory Low Low Medium Low

Requirement

Feature 16x2 LCD SSD1306 ILI9341 TFT |2.9” E-Paper
12C OLED I12C Touchscreen | Display
Suitable for Yes Yes Yes Highly
Battery- recommended
Powered
Projects
Application Simple text- | Small Larger touch- | Low-power and
based graphical enabled high-contrast
display displays displays displays for e-
books, signage,
and so on

Table 3.4 — Comparing different display options that can be interfaced with ESP32

The table shows that the 16x2 LCD and SSD1306 OLED are cheap options and
will provide a reasonable monochrome display for ESP32 projects, but if you are
willing to add a touch interface and would like to show colorful graphics, a TFT
touchscreen will be the best option, and for ultra-low power applications, an e-
paper display will be the most suitable choice.

Summary

In this chapter, we explored the capabilities of the ESP32 microcontroller when it
comes to connecting cameras and displays. We began by understanding the
ESP32 camera module and its features. We learned how to program the ESP32
camera to capture images and integrate a motion sensor for triggering image
capture based on motion detection.

Moving on to display interfaces, we discussed various types of display interfaces,
such as SPI, 12C, and parallel. We examined popular display modules compatible
with ESP32 and the options they offer for visual output. With this knowledge, we
learned how to interface displays with ESP32, configure display pins and

connections, and initialize the display module. We also delved into advanced
display features such as touchscreen integration.

In the next chapter, we will take our first step toward loT development with ESP32
by learning about network-based protocols.

Part 2 — loT Protocols and ESP32

In this part, you will familiarize yourself with loT protocols, and you will learn the
theory of these protocols from an ESP32 perspective. By the end of this part, you
will be able to select the appropriate network and data-based protocol for your loT

projects.
This part has the following chapters:

o Chapter 4, Implementing Network-Based Protocols with ESP32

4

Implementing Network-Based Protocols
with ESP32

In this chapter, we will climb the first stairs toward internet of things (loT)
development and explore network-based protocols with the versatile ESP32
microcontroller. Throughout this journey, we will uncover the power of wireless
communication and its potential to transform your loT projects into dynamic
connected systems.

Our exploration begins by diving into the ESP32’s built-in Wi-Fi capabilities. We’'ll
learn how to harness the potential of Wi-Fi by configuring the ESP32 as both a
client and an access point. This will enable us to connect to existing networks and
create personalized local networks for our 0T devices. But our exploration doesn’t
stop there; we will also venture into more advanced features, such as Wi-Fi Direct
and peer-to-peer communication, to make our devices communicate seamlessly.

Next, we’'ll delve into Bluetooth Low Energy (BLE), a crucial technology for short-
range communication. By enabling BLE on the ESP32, we can create personal
area networks, connecting our devices to smartphones and sensors. We’ll cover
BLE server and client modes, mastering the art of establishing connections and
exchanging data efficiently.

The world of |oT is not confined to local networks; it extends to vast cellular
networks. In this chapter, we’ll show you how to utilize the ESP32’s capabilities to
connect to 4G networks, opening a world of possibilities for remote and mobile IoT
applications.

Moreover, we’'ll uncover the potential of narrowband loT (NB-loT), a low-power,
wide-area network technology perfect for specific loT use cases. By integrating
NB-loT communication with the ESP32, we can take advantage of its energy

efficiency and wide coverage, making our projects more sustainable and far-
reaching.

But our exploration doesn’t stop at cellular networks; we’ll also understand
LoRaWAN. Each of these protocols brings unique strengths, catering to specific
loT applications. With the ESP32, we will explore how to integrate these protocols,
understand their characteristics, and leverage their advantages to create a diverse
range of loT solutions.

As with every chapter, we will provide comprehensive examples and step-by-step
instructions to guide you through the implementation of Wi-Fi and BLE protocols.
For other protocols, we will provide a general overview. By the end of this chapter,
you will have acquired a solid foundation in network-based protocols, expanding
your skills as an ESP32 developer.

In this chapter, we will cover the following topics:
e Types of networks
» Exploring wireless capabilities with Wi-Fi

o Creating a personal area network with BLE

« Expanding ESP32 connectivity beyond Wi-Fi and BLE

By covering these topics, you will understand the fundamental differences between
these protocols and be able to select the best protocols according to the
requirements of their projects.

Technical requirements

For this chapter, we will need the following components:
« ESP32x2
« A smartphone
+ A BGO5 shield

e A LoRaWAN module

The code files for this chapter are available at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter4.

First, let’s explore the types of networks.

Types of networks

Networks can be categorized into various types based on their geographical
coverage and communication characteristics. Local area networks (LANs) cover
a small area, such as homes or offices, enabling devices within the network to
communicate directly. Wide area networks (WANs) span across large
geographical areas and connect distant locations, such as the via the internet.
Personal area networks (PANs) are small, localized networks that typically span
a person’s immediate surroundings. Metropolitan area networks (MANs) cover
larger cities or metropolitan regions, and campus area networks (CANs) link
multiple LANs within educational institutions or large organizations. Storage area
networks (SANs) are specialized networks for data storage and retrieval.

In our book, we will be focusing on three main types of networks:

« LAN: LANSs are crucial for connecting devices within a limited geographic area, such as homes,
offices, or schools. They allow for the seamless sharing of resources such as files, printers, and
internet access among connected devices. In our exploration of LANs, we will utilize protocols
such as Wi-Fi, BLE, and Zigbee.

« WAN: WANS play a vital role in connecting networks over large geographical distances,
enabling global communication. The internet itself is a prime example of a WAN, linking
devices and networks worldwide. We will delve into WANSs using protocols such as cellular (4G,
5G), NB-loT, and LoRaWAN.

e PAN: PANs focus on connecting devices within a small personal space, such as a person’s
workspace or immediate surroundings. We will explore PANs using technologies such as
Bluetooth and near-field communication (NFC), which enable seamless connections between
smartphones, tablets, and wearable devices.

By understanding these network types and their associated protocols, you will be
well-equipped to create a wide range of projects, empowering you to develop

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter4

innovative loT applications and communication solutions. Now let’s explore Wi-Fi.

Exploring wireless capabilities with Wi-Fi

Wi-Fi, short for wireless fidelity, is a wireless communication technology that
allows devices to connect to the internet and local networks without using physical
cables. It operates on radio frequency signals, typically in 2.4 GHz and 5 GHz
bands, and enables data transmission between devices such as smartphones,
laptops, and loT devices. Wi-Fi provides high-speed and reliable internet access,
facilitating seamless connectivity and enabling users to access online resources,
stream media, and communicate with other devices within the network range. In
this section, we will explore how Wi-Fi protocols work, the capabilities of ESP32
Wi-Fi, and a few practical examples of using ESP32 as an access point and client.
But first, let’'s see how the Wi-Fi protocol works.

How the Wi-Fi protocol works

TheWi-Fi protocol, based on IEEE 802.11 standards, works by enabling devices to
communicate wirelessly over radio frequencies. When a Wi-Fi-enabled device
(such as a smartphone or laptop) wants to connect to a Wi-Fi network, it first
sends a probe request to discover available networks. The access point (AP),
acting as the network’s base station, responds with a probe response containing
network details.

Once the device chooses a network and requests to join, a process called
authentication and association takes place. The device and AP exchange
authentication frames to establish trust, followed by association frames to finalize
the connection. After successful association, data frames are used to transfer
information between the device and the AP, allowing internet access and
communication within the local network. The Wi-Fi request and response flow is
shown in Figure 4.1:

ESP32as [l ° I I WIFI Access
Wi-Fi Client - M)\ Point (AP)

robe Response

Authenticatfon Request

Authentication Respones

Association Request

Association Response

Figure 4.1 — How the Wi-Fi protocol works

The Wi-Fi protocol handles data integrity, flow control, and error correction to
ensure reliable and efficient wireless communication between devices and access
points.

Now that we understand how the Wi-Fi protocol works, let's explore the features
offered by the built-in Wi-Fi module in ESP32.

ESP32 built-in Wi-Fi capabilities

One of the key features that sets ESP32 apart is its built-in Wi-Fi capabilities,
making it a popular choice for loT projects that require wireless connectivity.

The ESP32’s built-in Wi-Fi module supports the 802.11b/g/n Wi-Fi standard and
allows it to act both as a Wi-Fi client and an access point. As a client, it can
connect to existing Wi-Fi networks, enabling it to access the internet and
communicate with other devices on the network. This makes it possible for the
ESP32 to retrieve data from online servers, send sensor data to cloud platforms,
and interact with web services.

Additionally, the ESP32 can be set up as a Wi-Fi access point, allowing other
devices to connect directly to it. In this mode, it acts as a hub, enabling devices to
communicate with each other and access resources hosted by the ESP32. This
feature is particularly useful for creating a LAN in loT applications, where devices
need to interact without accessing the internet.

The ESP32’s Wi-Fi implementation supports various security protocols, such as
WPA2, WPA3, and WEP, ensuring that data transmitted over the network is
encrypted and secure. This is crucial for protecting sensitive information and
preventing unauthorized access to connected devices.

Furthermore, the ESP32’s Wi-Fi stack offers several advanced features, such as
Wi-Fi Direct, which enables direct communication between devices without the
need for a traditional Wi-Fi network infrastructure. This feature is useful for
scenarios where devices need to establish peer-to-peer connections quickly and
efficiently.

First, let’s look at how we could use the ESP32 as an access point.

ESP32 as Wi-Fi access point

In this example, we will create our own access point using the ESP32. An access
point, commonly referred to as an AP, is a wireless communication device that
functions as a central hub for connecting other devices to a local network. In this
scenario, the ESP32 will act as an access point, allowing other devices to connect
to it directly for communication and data exchange.

To enable Wi-Fi functionalities on the ESP32, the wiri library is essential. This
library integrates seamlessly into Arduino IDE when we set up support for the
ESP32 board, as we accomplished in Chapter 1.

We will upload the following code to the ESP32 using Arduino IDE, which will help
us create a Wi-Fi access point:

#include <WiFi.h>
const char* ssid = "MyESP32AP";
const char* password = "passwordl23";
void setup () {
Serial.begin(115200) ;

WiFi.softAP(ssid, password);

IPAddress apIP (192, 168, 4, 1);

IPAddress subnet (255, 255, 255, 0);
WiFi.softAPConfig(apIP, aplP, subnet);
Serial.print ("Access Point IP Address: ");
Serial.println(WiFi.softAPIP());

}
void loop () {
// Your code goes here

}
In this code, the wiFi.softap () function is used to set up the ESP32 as an access
point. The ssid variable represents the name of the access point (SSID =
MyESP32AP), and the password variable is the password required to connect to the
access point. You can change these values to set your desired SSID and
password.

After setting up the access point, the code configures a static IP address for the
access point using wiFi.softAPConfig (). In this example, the access point IP
address is set t0 192.168.4.1.

When the ESP32 is powered on with this code, it will start broadcasting the
specified SSID, and other devices can connect to it using the provided password.
Once connected, devices will be assigned IP addresses from the specified subnet,
allowing them to communicate with the ESP32 acting as the access point.

Once the code has been uploaded, you will be able to see the myEsp32apr Wi-Fi on
your laptop, mobile phone, or any device that supports a Wi-Fi connection, as
seen in the following figure:

FRITZ'Box 6660 Cable IF
Connected, secured

Disconnect

FRITZ!'Box 7530 KG

FRITZ!Box Fon WLAN 7360

MyESP32AP

Figure 4.2 — MyESP32 as a Wi-Fi access point

If we connect to the MyEsp32ap network, we will not be able to access the internet.
However, we will still be able to connect to the services and devices within the
local network. Now, let’s understand using an example how we can utilize the
ESP32 as a Wi-Fi client.

ESP32 as a Wi-Fi client

In this example, we will write code to use the ESP32 as a Wi-Fi client. A Wi-Fi
client is a device that connects to an existing wireless network, such as your home
Wi-Fi network, a public hotspot, or the access point we just made using ESP32. As
a Wi-Fi client, the ESP32 will be able to access the internet and interact with

services outside of its local network, if the AP provides internet connectivity. This
mode allows the ESP32 to join an existing network, just like your smartphone or
laptop does, enabling it to browse the web, send data to online servers, and
perform various internet-related tasks.

Like in the previous example, we will utilize the Wi-Fi library for the demonstration.

We will upload the following code in the second ESP32 using Arduino IDE:

#include <WiFi.h>

const char* ssid = "MyESP32AP";
const char* password = "Passwordl23";
void setup () {

Serial.begin(115200) ;
WiFi.begin(ssid, password);
Serial.print ("Connecting to WiFi...");
while (WiFi.status() != WL _CONNECTED) {
delay (500) ;
Serial.print(".");

}

Serial.println () ;
Serial.print ("Connected to WiFi network with IP address: ");
Serial.println (WiFi.localIP());

}
void loop () {
// Your code goes here

}

In this code, replace Yourwirissip with the name of your Wi-Fi network (SSID)
and YourWiFiPassword With the password required to connect to your Wi-Fi
network.

For this example, we can use ssip = "MyESP32AP" and Password =
"Password123", which we set in the ESP32 as an AP example. But, if you would
like to connect your ESP32 to the internet, you could replace the SSID and
password with the SSID and password of your home Wi-Fi network, which in most
cases will be printed on the back of your Wi-Fi router.

The wiFi.begin () function is used to initiate the connection to the Wi-Fi network
using the specified SSID and password. The code then waits until the connection
is established, checking the connection status with wiFi.status (). Once the

connection is successful, the ESP32 will print the local IP address obtained from
the Wi-Fi router.

When you upload this code to your ESP32, it will act as a Wi-Fi client and attempt
to connect to the specified Wi-Fi network. After connecting successfully, you will be
able to see the results on Serial Monitor, as seen in Figure 4.3:

Serial Monitor x

Connected to WiFi network with IP address: 192.168.4.2

Figure 4.3 — ESP32 as a Wi-Fi client

A Wi-Fi client can be used in both LANs and WANSs to enable devices to connect
to the internet and communicate with other devices. In a LAN, a Wi-Fi client
connects to a local Wi-Fi router or access point, allowing devices such as
smartphones, laptops, and loT devices to access resources and share data within
the network. In a WAN, the Wi-Fi client connects to a remote Wi-Fi router or
access point, enabling devices to access the internet and communicate with other
devices across long distances.

Using Wi-Fi Direct for P2P connections

Now let’s utilize the two examples to create a peer-to-peer (P2P) connection and
share data.

We will upload the following code in the first ESP32 to create a Wi-Fi server using

Arduino IDE:

#include <WiFi.h>
WiFiServer server (80);

const char* ssid = "MyESP32Direct";
const char* password = "passwordl23";
void setup () {

Serial.begin(115200) ;
WiFi.softAP(ssid, password);

IPAddress apIP (192, 168, 4, 1);

IPAddress subnet (255, 255, 255, 0);
WiFi.softAPConfig(apIP, aplP, subnet);
server.begin () ;

Serial.print ("WiFi Direct Group Owner IP Address: ");
Serial.println(WiFi.softAPIP());

}
void loop () {
WiFiClient client = server.available();
if (client) {
Serial.println("Client connected.");
client.println("Hello from Group Owner!");
while (client.connected()) {
if (client.available()) {
String message = client.readStringUntil('\n"');
Serial.print ("Received message: ");
Serial.println (message) ;

}

}
client.stop();

Serial.println("Client disconnected.");

}

In the setup function, the code starts by initializing the serial communication for
debugging purposes. It then configures the ESP32 to function as a Wi-Fi Direct
access point using the wiFi.softapr () function. The SSID (network name) and
password are set using the ssid and password variables.

An IP address (ap1P) and subnet (subnet) are defined for the access point using
the wiFi.softaPconfig () function. These settings establish the IP configuration for
devices connecting to this access point.

The code initializes a wiFiserver Object named server on port 80. This server will
handle incoming client connections and requests.

The serial output displays the IP address of the Wi-Fi Direct access point, which
will be used by connected devices to communicate.

In the 1oop function, the code continually checks for incoming client connections
using the server.available () function. If a client connects, it enters a loop that

handles the client's communication.

Upon client connection, the code prints a message indicating that a client has
connected. The server sends a simple Hello from Group Owner! message to the

connected client.

Inside the inner loop for the connected client, the code checks if there’s data
available from the client using client.available (). If data is available, it reads the
incoming message until it encounters a newline character.

The received message is then printed to Serial Monitor to display the content of
the message.

Once the client has finished transmitting data or disconnected, the code stops the
client connection using client.stop () and prints a message indicating that the
client has been disconnected.

Then, we will upload the following code to the second ESP32 using Arduino IDE
so we can use ESP32 as a Wi-Fi client and connect to the Wi-Fi server we just
created and share the data:

#include <WiFi.h>

const char* ssid = "MyESP32Direct";
const char* password = "passwordl23";
void setup () {

Serial.begin(115200) ;
WiFi.begin (ssid, password);
Serial.print ("Connecting to WiFi Direct Group Owner...");
while (WiFi.status() != WL _CONNECTED) {
delay (500);
Serial.print(".");
}
Serial.println () ;
Serial.print ("Connected to WiFi Direct Group Owner with IP address:
")
Serial.println(WiFi.localIP())
}
void loop () {
// Check if there is a connection to the server
if (WiFi.status() == WL CONNECTED) {
WiFiClient client;
// Connect to the server on the Group Owner's IP address and port
80
if (client.connect("192.168.4.1", 80)) {
// Read and print the message from the Group Owner

while (client.connected()) {
if (client.available()) {
String message = client.readStringUntil('\n'");

Serial.print ("Received message: ");
Serial.println (message) ;

// Send a response message to the Group Owner
client.println("Hello from Client!");

}
}
client.stop();
} else {
Serial.println("Connection to server failed.");

}
} else {
Serial.println ("WiFi connection failed.");

}
}

In this example, the first ESP32 acts as a group owner in SoftAP mode, and the
second ESP32 connects to it as a client. The group owner waits for the client to
connect and then sends a Hello from Group Owner! message. The client then
reads the message and sends a Hello from Client! response message back to

the group owner.

NOTE

Please make sure you have the correct Wi-Fi credentials (SSID and password) for both ESP32
boards and upload the corresponding code to each board. Additionally, ensure that both boards are

within range and can communicate with each other over Wi-Fi.

After uploading the code, you will see the following outputs on Serial Monitor. The

following screenshot shows the serial output of the Wi-Fi server:

yut Sernal Monitor

192.168.4.1

Client connected.

Received message: Hello from Client!

Figure 4.4 — ESP32 P2P connection using Wi-Fi server or AP Serial Monitor

The following figure shows the serial output of the Wi-Fi client and the received

message from the server:

Seral Monitor X

New Line

Connected to WiFi Direct Group Owner with IP address: 192.168.4.2
Connecting to WiFi Direct Group Owner.. ..

Connected to WiFi Direct Group Owner with IP address: 192.168.4.2

Received message: Hello from Group Owner!

Figure 4.5 — ESP32 P2P connection using Wi-Fi client Serial Monitor

In this section, we have explored how the Wi-Fi protocol works, what the
capabilities of ESP32 built-in Wi-Fi are, and how we can use ESP32 as an access
point and Wi-Fi client. In the next section, we will explore the Bluetooth Low
Energy protocol.

Creating a personal area network with BLE

BLE stands for Bluetooth Low Energy, which is a wireless communication
technology designed for low-power, short-range data exchange between devices.
It is a subset of the classic Bluetooth technology, optimized for battery-powered
devices and applications that require intermittent data transmission. BLE enables
devices such as smartphones, smartwatches, and IoT sensors to establish
connections and exchange data efficiently, making it ideal for applications such as
fitness tracking, home automation, and proximity-based interactions. Its low energy
consumption allows devices to operate for extended periods on small batteries,
making BLE a popular choice for various wireless applications.

To get started with BLE, let’'s see how the BLE protocol works on a fundamental
basis.

How the BLE protocol works

This initial explanation gives you a general understanding of the concepts and
mechanisms behind BLE. The actual implementation and functioning of BLE
involve intricate technical details and processes. This explanation will provide you

with a foundational understanding of how BLE works, serving as a starting point for
your exploration of the BLE protocol.

The BLE protocol works based on a master-slave architecture, where one device
acts as the master and one or more devices act as slaves. The master initiates
communication and controls data exchange with the slaves. BLE uses small
packets of data, called advertising packets, to broadcast information about the
device’s presence and capabilities. When a slave device receives an advertising
packet from the master, it can request a connection, and the master can accept or
reject the request. Once connected, devices can exchange data in small packets,
minimizing power consumption. BLE uses quick connection and disconnection
cycles to save energy, making it ideal for low-power applications such as smart
home devices, wearables, and beacons.

Now, let’s explore the capabilities of the BLE module present in the ESP32.

ESP32 BLE capabilities

The ESP32 microcontroller has excellent capabilities for BLE communication,
making it a popular choice for loT projects that require wireless connectivity. Here
are some key features and capabilities of the ESP32 for BLE:

o Dual-mode Bluetooth: The ESP32 supports both Bluetooth Classic (BR/EDR) and BLE. This
dual-mode capability allows it to communicate with a wide range of devices, including
smartphones, Bluetooth audio devices, and other BLE-enabled loT devices.

o BLE central and peripheral: The ESP32 can operate as both a central device and a
peripheral device in a BLE network. As a central device, it can scan for and connect to other
BLE devices. As a peripheral, it can advertise its services and data, allowing other central

devices to connect to it.

» High-level APIs: The ESP32’s BLE stack comes with high-level APIs that simplify the
development process. This allows developers to focus on application logic rather than dealing
with low-level Bluetooth protocol intricacies.

e Generic Attribute Profile (GATT) support: The ESP32 supports GATT, which is a key feature
of BLE that defines how devices exchange data and interact with each other. GATT profiles
allow the ESP32 to define its services, characteristics, and attributes, making it easy to create
custom data exchange protocols.

» Low-power capabilities: The ESP32’s BLE implementation is optimized for low power
consumption. It supports various power-saving modes, allowing the device to operate efficiently
on small batteries and prolonging the battery life of battery-powered devices.

o BLE security features: The ESP32 provides various security mechanisms for BLE
communication, such as encryption, authentication, and pairing. These features help ensure
the confidentiality and integrity of data exchanged between BLE devices.

« Beacon support: The ESP32 can act as a BLE beacon, broadcasting advertising packets to
nearby devices. BLE beacons are commonly used for location-based services and proximity
marketing.

With its powerful BLE capabilities, the ESP32 offers a flexible and efficient solution
for developing BLE-enabled loT applications. Whether you need to create a BLE
peripheral to collect sensor data or a BLE central to interact with other devices, the
ESP32’s BLE features provide the necessary tools to build innovative and
connected solutions.

With a grasp of how BLE operates and an understanding of ESP32’s BLE
capabilities, let’s dive into the practical aspects of utilizing BLE as both a server
and a client on the ESP32 platform.

BLE server and client using ESP32

In this section, we will delve into the concepts of the BLE server and client using
the ESP32 microcontroller platform in conjunction with Arduino IDE. The ESP32’s
built-in Bluetooth capabilities allow us to create robust wireless communication
setups. Let’s start with a BLE server. The following figure shows a BLE server and
client communication:

server

Client Request

b 4

Server Response

Figure 4.6 — BLE client request and server response

BLE server

A BLE server is a fundamental component of the Bluetooth ecosystem that plays a
pivotal role in enabling efficient and low-power wireless communication between
devices. In essence, a BLE server is a device or software entity that offers specific
services and data to other devices, referred to as BLE clients, within its proximity.
These services encapsulate various functionalities, with each service containing
characteristics that represent specific data points or attributes. The BLE server’s
role is to respond to read and write requests from clients, allowing them to retrieve
data or modify settings.

The applications of BLE servers span across a wide spectrum of industries and
use cases. In the realm of loT, BLE servers facilitate seamless communication
between smart home devices, enabling users to control lights, thermostats, and
locks from their smartphones. In healthcare, BLE servers can be integrated into
wearable health trackers to transmit real-time data, such as heart rate and activity
levels, to monitoring apps. Retail environments leverage BLE servers for location-
based services, offering tailored promotions to customers as they move through
stores. Moreover, BLE servers are vital in asset tracking systems, enabling
efficient monitoring and management of inventory in warehouses. From
automotive to logistics, and from entertainment to industrial automation, BLE
servers provide the foundation for creating interconnected and efficient systems

that enhance user experiences, optimize processes, and conserve energy.

We will use the following BLE server code to demonstrate an example BLE server.
Note that this code is the modified version of the BLE library example code:

#include <BLEDevice.h>
#include <BLEUtils.h>
#include <BLEServer.h>

#define SERVICE UUID "4fafc201-1fb5-459e-8fcc-c5¢c9¢c331914b"
#define CHARACTERISTIC UUID "beb5483e-36el-4688-b7f5-eal07361b26a8"
void setup () {

Serial.begin(115200) ;

Serial.println("Starting BLE work!"™);

BLEDevice::init ("Long name works now") ;

BLEServer *pServer = BLEDevice::createServer();

BLEService *pService = pServer->createService (SERVICE UUID) ;

BLECharacteristic *pCharacteristic = pService->createCharacteristic(

CHARACTERISTIC UUID,
BLECharacteristic::PROPERTY RE
AD |
BLECharacteristic: : PROPE

RTY WRITE) ;

pCharacteristic->setValue ("Hello World");

pService->start () ;

BLEAdvertising *pAdvertising = BLEDevice::getAdvertising() ;

pAdvertising->addServiceUUID (SERVICE UUID) ;

pAdvertising->setScanResponse (true) ;

pAdvertising->setMinPreferred (0x06); // functions that help with
iPhone connections issue

pAdvertising->setMinPreferred (0x12) ;

BLEDevice: :startAdvertising () ;

Serial.println("Characteristic defined! Now you can read it in your
phone!™) ;
}
void loop () {

// put your main code here, to run repeatedly:

delay (2000) ;
}

At the start of the code, the necessary BLE libraries are imported: BLEDevice.h,
BLEUtils.h, and BLEServer.h. These libraries provide essential functions and
classes for handling BLE communication.

The code defines two important Universally Unique Identifiers (UUIDs).
SERVICE UUID and CHARACTERISTIC UUID are used to uniquely identify the service
and characteristic provided by the BLE server. UUIDs are crucial for ensuring
proper communication between BLE devices.

Moving to the setup () function, the serial communication is initialized with a baud
rate of 115200, which is a common speed for debugging and communication with
the Serial Monitor in Arduino IDE.

The BLE device is initialized using BLEDevice: :init ("Long name works now").
Here, a name is assigned to the BLE device to allow other devices to identify it
during discovery processes.

A BLE server is then created using BLEDevice: :createServer (), and a
corresponding service is instantiated using the createService (SERVICE UUID)
method of the server instance.

Inside the service, a characteristic is defined using pservice-
>createCharacteristic (CHARACTERISTIC_UUID, ...). This characteristic is
configured to have both read and write properties, enabling bi-directional data
exchange.

The value of the characteristic is set t0o "Hello World" USing pCharacteristic-
>setValue ("Hello World"). This initial value represents the data that can be read
from the characteristic by a client device.

Once the characteristic is defined and configured, the service is started using

pService->start().

The BLE server’s advertising parameters are configured, including the service
UUID, scan response, and preferred connection parameters. After the setup is
complete, the server initiates advertising with BLEDevice: : startAdvertising().

To provide additional information for debugging and user feedback, a message is
printed to the serial monitor, indicating that the characteristic is ready for
interaction by client devices.

The 100p () function, though currently empty, is where repeated tasks can be
placed. In this example, it includes a delay of two seconds between iterations
using delay (2000).

Now, you can upload the code using Arduino IDE and open Serial Monitor. You
will be able to see the following results in Serial Monitor:

Sernal Monitor

load:0x40078000, len:13964
load:0x40080400, len:3600
entry 0x400805f0
Starting BLE work!

Characteristic defined! Now you can read it in your phone!

Figure 4.7 — ESP32 BLE server Serial Monitor

Now that the server has been started, let’'s connect our mobile to the server and

read the message.

Testing it on the mobile app

To test our ESP32 server, we will install the nRF Connect for Mobile app on our
smartphone. You will be able to find this app in the Google Play Store or Apple
App Store, as shown in Figure 4.8:

nRF Connect for Mobile

cg Nordic Semiconductor ASA

4.7% M+ H

2.66K reviews @ Downloads PEGI3 ©

BT < -

L0 This app is available for your device

. ° sems

Figure 4.8 — nRF Connect for Mobile application

Once the app has been installed, take the following steps:

1

2.

. Turn on Bluetooth.

Open the application.

. Give the necessary permission to the application when it asks you to access Bluetooth.

. Navigate to the device, and find the Long Name works now device, as shown in the first

screenshot in Figure 4.9.

. Click on CONNECT.

. You will be able to see the data from the device, such as generic attributes, access, and the

service UUID. The service UUID is the same as we defined in the code in the second
screenshot in Figure 4.9.

. Clicking on the service will open the characteristic. The UUID of the characteristic will be

shown, which we defined in the code, as shown in the third screenshot in Figure 4.9.

. Click on the read (down arrow) button, as marked in the third screenshot.

9. You will see the properties and value in the form of a hex and the string "Hello World", as
shown in the fourth screenshot in Figure 4.9.

CONMNECTED
Mo filter - CONNECTED 4 CONNECTED . CLIENT SERVER
SR NS R: NOT BONDED EEIR RS SEIRRH S ¢ NOT BONDED
Long name works now Generic Attribute Generic Attribute G":"": Atributa
0CB8:1507-FBE2 UUID: 0x1801 UUID: 0x1801 uuin cma:m‘
NOT BONDED A-41Bm adms PRIMARY SERVICE PRIMARY SERVICE PRIMARY SERVICE
Generic Access Generic Access Generic Access
e ; UUID: 0x1800 UUID: 0x1800 MURE L
ISECT8:20:00:03 e R e A PRIMARY SERVICE
NQT BONDED A-52dBm 187 ms
Unknown Service Unknown Service u"‘f‘"m Service
N/A (Nearby) UUID: 4fafc201-1bS5-459%-8fcc-cScae3dla1ab UUID: 4fafc201-1fb5-459e-Blec-c5c9c33191db LR SR AR O
AF-SD:C1:9A:95:84 PRIMARY SERVICE PRIMARY SERVICE PRIMARY SERVICE
NATEONOED 451D Unknown Characterlstic © Unknown Characteristic I 1
UUID: bebS4836-36¢1 -4638-0715-6307: 50 UUID: beb5483e-36e1-4688175al7361b26a8
N/A (Nearby) Properties: READ, WRITE Properties: READ, WRITE
SE23CEAADTAZ Value: (ﬂ:}{ll-biéc—ecﬁﬁzo-suﬁ-‘rz-&c—ag
NOT BONDED “Hello World

Figure 4.9 — Using the nRF Connect application to see BLE server data

The mobile application connects to the ESP32 as a client where the ESP32 was
acting as a server. Now let’'s see how we can use ESP32 as a BLE client in the
next example.

BLE client

A BLE client is a key participant in the Bluetooth ecosystem that plays a vital role
in establishing communication with BLE servers. A BLE client is typically a device
or software component that initiates connections to BLE servers to retrieve data,
interact with services, and control various functionalities. Unlike traditional
Bluetooth connections, BLE clients are designed to consume minimal power,
making them ideal for scenarios where energy efficiency is a priority.

BLE clients interact with BLE servers by discovering available services and their
corresponding characteristics. Once a connection is established, a BLE client can
perform several actions:

« Service discovery: The BLE client can scan for nearby BLE devices and discover the services
they offer. Each service represents a specific set of features or capabilities.

o Characteristic interaction: Within each service, there are characteristics that contain data or
provide control points. A BLE client can read data from characteristics, write data to them, and
sometimes enable notifications or indications to receive real-time updates.

» Data exchange: BLE clients can exchange data with BLE servers, enabling applications such
as health monitoring, home automation control, and remote device management.

 Remote control: BLE clients can control various aspects of BLE servers. For instance, a BLE
client might control the brightness of smart lighting or adjust settings on a wearable device.

« Background interaction: BLE clients can perform tasks even when they are not actively
connected to a BLE server, allowing for periodic data synchronization or background updates.

BLE clients are commonly found in a wide range of devices and applications,
including smartphones, tablets, smartwatches, fitness trackers, medical devices,
loT devices, and more. Their lightweight nature and ability to efficiently
communicate with BLE servers have enabled the proliferation of innovative

solutions that rely on low-power, short-range wireless communication.

We will use the following BLE client code to demonstrate an example of ESP32 as
a BLE client, which is a modified version of examples provided by the BLE library:

#include "BLEDevice.h"

static BLEUUID serviceUUID("4fafc201-1fb5-459%9e-8fcc-c5¢9c331914b") ;
static BLEUUID charUUID ("bebb5483e-36el1-4688-b7f5-cal07361b26a8") ;
static boolean doConnect = false;

static boolean connected = false;

static boolean doScan = false;

static BLERemoteCharacteristic* pRemoteCharacteristic;

static BLEAdvertisedDevice* myDevice;

if (connected) {

String newValue = "Time since boot: " + String(millis()/1000);

Serial.println("Setting new characteristic value to \"" + newValue
Fom

pRemoteCharacteristic->writeValue (newValue.c str (),
newValue.length()); B
}else if (doScan) {

BLEDevice::getScan()->start(0); // this is just example to start
scan after disconnect, most likely there is better way to do it in
arduino

}
delay (1000); // Delay a second between loops.
} // End of loop

You can find the entire code in the chapter’s GitHub repository.

The provided code exemplifies an Arduino-based BLE client application. Its
purpose is to establish communication with a targeted BLE server, facilitating
interactions with its services and characteristics. The code employs the BLEDevice
library and adopts a modular structure with predefined UUIDs, callback functions,
and control flags.

Initially, the script defines essential UUIDs (serviceuuibp and charuuib) to uniquely
identify the remote service and characteristic the client intends to connect with and
manipulate. Subsequently, the code initializes Boolean flags such as docConnect,
connected, and doscan to manage the application’s logical flow.

Two callback functions are introduced: notifycallback and MyClientCallback.
The former handles notifications received from the remote characteristic, while the
latter extends the BLEC1lientCallbacks class to manage connection and
disconnection events.

The connectToserver () function encapsulates the procedure of establishing a
connection with the remote BLE server. It creates a BLE client, establishes a
connection, retrieves references to the desired service and characteristic, reads
the characteristic’s value if permitted, and registers a notification callback if
applicable.

The setup () function initializes serial communication and the BLE device and
configures a BLE scanner to actively search for devices advertising the target
service UUID. Scanning parameters are set, and scanning is initiated for a brief
period.

In the 100p () function, the code checks the doconnect flag. If set, it invokes the
connectToServer () function to establish a connection with the desired BLE server.
Upon successful connection, the code updates a remote characteristic with the
current time since boot. Disconnected clients initiate scanning again if doscan is
set.

A brief delay is inserted between iterations of the loop to manage processing
frequency.

Now, we will upload the code to ESP32 using Arduino IDE and open Serial
Monitor. We will see the following results in Serial Monitor:

it Serial Monitor X

to "Time since boot: 2"

Figure 4.10 — ESP32 BLE client Serial Monitor

Since we already defined in our code which service and characteristics we would
like to read, this code reads that and prints it in Serial Monitor. This code could be
modified to write the characteristics as well.

ESP32 as BLE Beacon advertiser

Beacon advertising is a fundamental feature of BLE technology that enables
devices to broadcast their presence and information to nearby devices in a power-
efficient manner. A BLE beacon is a small, battery-operated device that
periodically emits short packets of data, known as advertisements, which can be
detected by other BLE-enabled devices, such as smartphones, tablets, or other
beacon receivers. These advertisements contain information about the beacon
itself, such as its identity, location, and additional data. The data is typically
organized into a specific format, including fields such as the beacon’s UUID and
major and minor values for more refined identification and signal strength
information (RSSI). This data is usually broadcast using a low transmission
power to minimize power consumption, allowing beacons to operate for extended
periods on a single battery.

BLE beacon advertising serves various purposes and applications:

« Proximity sensing: Beacons enable devices to detect their proximity to specific locations or
objects. This is widely used in retail environments for location-based marketing, guiding

customers to specific products, or offering personalized promotions based on their location
within a store.

« Indoor navigation: Beacons can assist in indoor navigation by providing contextual
information to users within large indoor spaces such as malls, airports, and museums. Apps on
users’ smartphones can use beacon data to help navigate them through complex indoor
environments.

« Asset tracking: Organizations can use beacons to track the movement of assets within a
confined area, such as in warehouses or factories. This improves inventory management and
optimizes processes.

» Attendance and check-ins: Beacons enable automated attendance tracking in classrooms,
conferences, and events. Attendees’ devices can automatically check in when they come within
range of a beacon.

« loT integration: Beacons facilitate interaction with IoT devices. For instance, a beacon near a
smart home device could trigger actions such as turning on lights or adjusting thermostats
when a user’s smartphone comes into proximity.

« Location analytics: Businesses and organizations can gather data on user behavior and
movement patterns by analyzing the interactions between users’ devices and beacons. This
data can be used to make informed decisions for improving user experiences.

A BLE client actively connects to and communicates with BLE peripherals (such as
beacons) to exchange data, while a BLE beacon is a passive device that
broadcasts data for nearby BLE clients to receive and use, such as for location or
sensor information.

For the BLE beacon example, we will use the following code, which is a modified
version of the example code provided in the BLE library:

#include <BLEDevice.h>

#include <BLEServer.h>

#include <BLEUtils.h>

#include <BLE2902.h>

finclude <BLEBeacon.h>

#define DEVICE NAME "ESP32"

#define SERVICE UUID "7A0247E7-8E88-409B-A959-AB5092DDBRO3E"
#define BEACON_GUID "2D7A9F0C-EOE8-4CC9-A71B-A21DB2D034A1"
#define BEACON UUID REV "A134D0B2-1DA2-1BA7-C94C-E8EQQCOF7A2D"
#define CHARACTERISTIC UUID "82258BAA-DF72-47E8-99BC-B73DTECDO8AS"
BLEServer *pServer;

BLECharacteristic *pCharacteristic;

bool deviceConnected = false;

uint8 t value = 0;
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect (BLEServer* pServer) {
deviceConnected = true;

void loop () {
if (deviceConnected) {
Serial.printf ("*** NOTIFY: %d ***\n", value);
pCharacteristic->setValue (&value, 1);
pCharacteristic->notify () ;
value++;

}
delay (2000) ;

}

You can find the entire code in the chapter’s GitHub repository.
What follows is a detailed explanation of the code’s functionality.

At the beginning of the code, various UUIDs are defined, such as bEVICE NaME,
SERVICE UUID, BEACON UUID, BEACON UUID_ REV, and CHARACTERISTIC UUID. |hese
UUIDs are crucial for uniquely identifying the device, the service, and the
characteristic being created.

The sketch establishes a BLE server instance, pserver, and defines a boolean
variable, deviceconnected, to track whether a device is connected to the server.

Two callback classes are created:

e MyServerCallbacks: This class extends BLEServerCallbacks and includes methods to
manage device connections and disconnections. Upon a device connecting, the onConnect ()
method sets deviceConnected to true, and upon disconnection, the onDisconnect ()
method sets deviceConnected to false and restarts advertising to make the device visible
and connectable again.

e MyCallbacks: This class extends BLECharacteristicCallbacks and defines an

onWrite () method to handle incoming data when the characteristic is written to.

The init_service () function is responsible for creating the BLE service and
characteristic, as well as the associated descriptor and starting advertising. It
constructs the service, defines the characteristic with read, write, and notify
properties, attaches callback functions, and starts both the service and advertising.

The init beacon() function configures the BLE advertising data to create an
iBeacon using the BLEBeacon class. It sets the iBeacon’s manufacturer ID, major
and minor values, signal power, and proximity UUID. This function stops the
previous advertising and starts a new one with the updated iBeacon data.

In the setup () function, serial communication is initialized, and the BLE device and
server are initialized using BLEDevice: :init () and BLEDevice: :createServer (),
respectively. Callbacks are assigned, and the init service() and init beacon ()

functions are called to initialize the BLE service and iBeacon.

Finally, in the 100p () function, if a device is connected (deviceConnected iS true),
the code sends notifications to the connected device using the characteristic’s
notify () method. The characteristic’s value is updated incrementally, and a delay
of two seconds is introduced between iterations.

Now, we will upload the code using Arduino IDE and open Serial Monitor. We will
see the following results in Serial Monitor:

Output Serial Monitor X

New Line

Initializing.- ..

iBeacon + service defined and advertising!

deviceConnected = true
AT ITSHEIE O () L
e e]!
=k NG Tt
A ESNOTTLEY: ek
4
5

L2 &4

* ko

**kk NOTIFY: 4 %%*
**% NOTIFY:

ok

Figure 4.11 — ESP32 beacon service started

Now, we can open the nRF Connect app to read the advertised data:

Devices STOP SCANMING
SCANMER
Mo filter -
o N/A (Nearby) CONNECT
56:AB:BD:74:CB:AB

NOT BONDED 4-51dBm € 275ms

O o
0C:EB8:15.06:38:22

NOT BONDED 4-56dBm €43 ms

Device type: CLASSIC and LE

Advertising type: Legacy

Flaos: GeneralDiscoverable,
LeAndBrErdCapable (Controller),
LeAndBrErdCapable (Host

Beacon:

Company: Apple, Inc. <0x004C>

Type: Beacon <0x02=

Length: 21 bytes

uunp:
2d7a9f0c-e0eB-4cc9-a71b-a21db2d034a1
Major: 5

Minar: B8

RSSl at Tm:-59 dBm

Complete Local Name; ESP32

Tx Power Level: 9 dBm

Complete list of 128-bit Service ULIDs:
7a0247e7-8e88-409b-a959-ab5092ddb03e

CLONE RAW MORE

Devices DISCONMNECT

BEOMDED

CONNECTED .
NOT BONDED CLIENT SERVER -

Generic Attribute
UJID: 0x1801
PRIMARY SERVICE

Generic Access
LI 0x1800
PRIMARY SERVICE

Unknown Service
LUID: 7a0247e7-8e88-409b-2959-ab5092ddb03e
PRIMARY SERVICE

Unknown Characteristic LI B 4
UUID: 82258baa-df72-47e8-99bc-h73d7ecd08as
Properties: MOTIFY, READ, WRITE

Value: (0x) OC

Descriptors:

Client Characteristic Configuration IS
LILID: 0x2902

Value: Notifications enabled

6 N/A
29:64:4D:F9:43:F1

Figure 4.12 — Reading the beacon advertised data in the nRF Connect application

In the first screenshot, you can see the advertised data under the beacon, such as
the UUID and list of services. In the case of multiple BLE devices, this information

will be useful to see which services are being advertised so we can connect only to

the device we need data from. When we connect to the device, the ESP32 will

start notifying. You will observe the value changing, as in the second screenshot of

Figure 4.12, and observe the following results in Serial Monitor:

Output Senal Monitor X

New Line

Initializing--.

iBeacon + service defined and advertising!
deviceConnected = true
e T TR <=) e e e
LS OO ETE T L
INCFTETRIENG=R X
NOTIFY: e
NOTIFY: 2Ea
NOTIFY: 5 ***

AAMTIWw . £ i

Figure 4.13 — ESP32 beacon sending notifications to the device after connection

In this section, we have learned the fundamentals of BLE and how we can use
BLE as a server, client, and beacon using ESP32. Considering that BLE is quite
extensive, information on it could fill a whole book. However, these examples
provide a starting point for your BLE journey. If you're interested in diving deeper
into BLE, you can explore additional examples available in the BLE library to
expand your understanding further.

In the next section, we will explore how we can expand ESP32 connectivity
beyond built-in Wi-Fi and BLE.

Expanding ESP32 connectivity beyond Wi-
Fi and BLE

We have already explored ESP32 Wi-Fi and BLE capabilities. While the built-in
Wi-Fi and BLE capabilities of the ESP32 offer robust connectivity options, there
are scenarios where these technologies alone may not suffice:

» Remote and disconnected areas: In remote or rural areas with limited Wi-Fi infrastructure,
establishing a reliable internet connection can be challenging. Here, cellular communication
comes to the rescue.

» Long-range communication: While Wi-Fi and BLE are suitable for short-range
communication, they may not be ideal for applications requiring long-range connectivity.

» Contactless and close proximity interaction: In scenarios where physical contact or
proximity is not feasible, NFC presents an excellent option.

In each of these scenarios, the ESP32, when combined with additional
communication modules, can overcome the limitations of Wi-Fi and BLE and
enable connectivity in diverse and challenging environments.

In this section, we explore the exciting realm of alternative communication
protocols that can be integrated with the ESP32 to transcend the limitations of Wi-
Fi and BLE. We will see how these protocols work and how they can be interfaced
with ESP32 without going into much detail. These communication protocols are
dependent on the module used and the code, and the interfacing depends on the
type of module being used.

Cellular communication with ESP32

Cellular communication offers a compelling solution for extending the connectivity
of the ESP32 microcontroller beyond the limitations of traditional Wi-Fi and
Bluetooth. By integrating a cellular module, such as a 2G, 3G, or 4G/LTE modem,
the ESP32 gains the ability to access the internet and transmit data over cellular
networks. This capability is particularly valuable in scenarios where Wi-Fi
connectivity is unavailable or impractical, such as in remote areas or mobile
applications. With cellular communication, the ESP32 can seamlessly
communicate with cloud services, exchange data with remote servers, and enable
real-time monitoring and control of 0T devices from virtually anywhere. Moreover,
the ubiquity of cellular networks ensures that ESP32-based devices can remain
connected and operational across vast geographic regions, making cellular
communication an essential enabler for a wide range of loT applications, including
asset tracking, smart agriculture, and remote monitoring systems.

Different generations of cellular networks

« 1G: The first generation of cellular networks, 1G, was an analog-based system that enabled
basic voice communication.

» 2G: The second generation, 2G, brought digital cellular networks. 2G enabled text messaging
(SMS) and provided improved voice quality and security.

e 3G: The third generation, 3G, marked a significant leap in mobile data capabilities. It offered
faster data transfer rates, enabling basic internet access, email, and multimedia messaging.

» 4G: The fourth generation, 4G, brought long-term evolution (LTE) technology. 4G networks
provided high-speed data transmission, enabling seamless video streaming, mobile app
functionality, and enhanced mobile internet experiences.

» 5G: The fifth generation, 5G, is continuing to expand globally and represents a significant
advancement in cellular technology. 5G offers ultra-fast data rates, ultra-low latency, and
massive device connectivity. 5G is expected to power transformative applications such as
augmented reality, smart cities, autonomous vehicles, and advanced industrial automation.

Then, there is a specific variant of cellular technology designed to cater to the
unique requirements of loT applications. NB-loT operates within the licensed

cellular spectrum and provides long-range, low-power communication for loT

devices.

NB-loT

NB-IoT is a low-power wide area network (LPWAN) technology designed to
enable efficient and low-cost communication for IoT devices. It is a part of the 3rd
Generation Partnership Project (3GPP) standards, specifically developed for loT
applications that require long-range connectivity, low power consumption, and
support for a massive number of connected devices.

Key characteristics of NB-IoT include the following:

» Low power consumption: NB-loT is optimized for low -power operation, allowing loT devices
to operate on batteries for extended periods, often lasting several years, without frequent
recharging or replacement.

« Long range: NB-loT provides excellent coverage and penetration capabilities, enabling
communication over long distances and through obstacles such as buildings and walls, making
it suitable for applications in urban and rural environments.

« Narrowband transmission: As the name suggests, NB-loT uses narrowband transmission,
which allows it to operate in a limited frequency range. This narrow bandwidth optimizes the
network’s capacity, making it ideal for 10T applications that transmit small amounts of data
infrequently.

» Low cost: Due to its simplified architecture and use of existing cellular infrastructure, NB-loT
offers cost-effective solutions for loT connectivity, making it attractive for a wide range of
applications.

« Massive connectivity: NB-loT supports a massive number of connected devices within a
single cell, accommodating the anticipated growth of IoT devices in the future.

NB-loT is particularly well-suited for applications that involve remote monitoring,
smart metering, asset tracking, agricultural monitoring, and other scenarios where
devices need to be deployed over large areas and operate with minimal power
consumption. It co-exists with other cellular technologies, such as 2G, 3G, and
4G/LTE, making it a versatile choice for IoT deployments across different regions
and networks.

As a result of these advantages, NB-loT has gained significant traction in the loT
industry and is being adopted by telecommunication operators and device
manufacturers to build robust and scalable 10T networks.

How to connect ESP32 with a cellular network

To connect the ESP32 with cellular networks such as 3G, 4G, or LTE technology,
the first step is to select a compatible cellular module from popular options such as
SIM800, QuectelEC25, or QuectelBG95. Once chosen, the cellular module needs
to be connected to the ESP32 using the appropriate hardware interfaces, such as
UART, SPI, or 12C, with specific pin connections and communication protocols
outlined in the module’s datasheet.

For the sake of a practical example, we will use a QuectelBG-95 shield, which can
be attached to an ESP32 board. The BG95 shield is an advanced cellular
communication module that offers seamless integration with the ESP32
microcontroller, providing reliable and high-speed data connectivity over 2G, 3G,
4G, and LTE-M/NB-loT networks.

The BG95 shield offers compatibility with the ESP32 HUZZAH board, allowing for
easy integration by simply placing it on top of the ESP32. We will also have to use
a 4G-enabled SIM card to access the 4G cellular network.

Figure 4.14 — ESP32 connected to a BG95 shield

Connecting ESP32 to cellular networks (4G/NB-loT)

Once the shield has been connected to the ESP32, we will need AT commands to
send signals to the BG95 module. AT commands, short for ATtention

commands, are a set of instructions used to communicate with and control
modems, cellular modules, and other communication devices. The name AT
originates from the two-character prefix ar that is added before each command to
get the attention of the device.

AT commands follow a specific syntax, typically starting with aT. This is followed by
a command name and optional parameters and ends with carriage return (CR)
and line feed (LF) characters (\r\n). Here's an example:

AT+CGATT=1\r\n
This command instructs the device to attach to the GPRS service.

AT commands are usually sent over a serial communication interface (such as
UART) to the device, and the device responds with a corresponding result or

status. The response typically includes an ok message to indicate the command

was successful or an error code if there was an issue.

You will find the specific commands for connecting to the 2G, 3G, 4G, and LTE
networks in the datasheets of the modules, but for the sake of this simple example,
here is how to send ar commands using Arduino IDE:

#include <SoftwareSerial.h>
SoftwareSerial BG95Serial (2, 3); // RX, TX pins for BG95 Shield
const int baudRate = 9600;
void setup () {
Serial.begin(115200) ;
BG95Serial .begin (baudRate) ;
// Wait for the BG95 module to initialize
delay (1000) ;
Serial.println("Initializing BG95...");
sendATCommand ("AT") ;
sendATCommand ("AT+CPIN?") ;
}
void loop () {
// Your code goes here
}
void sendATCommand (String command) {
BG95Serial.println (command) ;
delay (500) ;
while (BG95Serial.available()) {
Serial.write (BG95Serial.read())

}
In this code, we use the softwareserial library to communicate with the BG95
module through its Rx and Tx pins (pins 2 and 3 on the ESP32). We establish a
serial connection at a baud rate of 9600, which is the default baud rate for the Bc95
module.

The sendaTcommand () function sends aTr commands to the Bc9s module and prints
the response to Serial Monitor for debugging purposes. The AT commands used
in the setup function are basic commands to initialize and configure the BG95
module to connect to the 4G network.

NOTE

The preceding code only establishes the connection to the 4G network. To perform other
operations, such as sending and receiving data, making HTTP requests, or configuring the BG95

module further, you will need to send additional AT commands as per the BG95 module’s
documentation and specifications.

The LoRaWAN protocol

The long range wide area network (LoRaWAN) protocol is a low-power, long-
range wireless communication technology designed to connect battery-operated
devices over large distances. LoRaWAN operates using unlicensed industrial,
scientific, and medical (ISM) bands, allowing for global deployment without the
need for cellular network subscriptions. The protocol’s strength lies in its ability to
provide long-range communication while maintaining a low data rate and ultra-low
power consumption, making it suitable for 0T applications in smart cities,
agriculture, asset tracking, environmental monitoring, and more. LoRaWAN
operates in a star-of-stars topology, where end devices communicate with one or
more gateways, which, in turn, forward data to a central network server. This
architecture allows for efficient and scalable data transmission over large
geographic areas. LoORaWAN's robustness in challenging environments, low cost,
and ease of deployment have contributed to its growing popularity, fostering the
expansion of loT networks and unlocking new possibilities for innovative and
connected solutions across various industries.

ESP32 with LoRaWAN: the general process

To use the ESP32 with LoRaWAN, you’ll need to follow a few steps to set up the
hardware and software components:

1. Hardware: We will need ESP32 and a LoRa transceiver module that supports the LoRaWAN
protocols, and we will need an antenna for the LoRa module.

2. LoRaWAN network provider: LoRaWAN devices need to connect to a LoRaWAN network
server. Choose a LoRaWAN network provider (such as The Things Network, ChirpStack, etc.)

and create an account. You will need to set up your device on their platform.

3. Hardware Connectivity: Connect the LoRa module to the ESP32 using appropriate pins.
Refer to your module’s documentation for pin connections. Attach the antenna to the LoRa
module.

4. Libraries and code: You could use libraries such as 1mic for LoRaWAN and libraries for your
specific LoRa module. Write code using the installed libraries to configure the LoRaWAN
parameters, such as keys, frequency, data rate, and so on. The exact code will depend on the

library you’re using and the LoRaWAN provider.

It's important to note that this is a general example intended to provide you with an
overview of the various connectivity options available when using the ESP32. Your
specific project requirements and goals will influence the choice of connectivity
protocol and implementation details.

Now let’'s compare different network protocols in terms of technology, range, data
rate, power consumption, and application.

Comparison of protocols

The following table provides a comparison between different connectivity options
for loT using ESP32 protocols:

Protocol | Technology Range Data |Power Application
rate consumption
Wi-Fi IEEE 802.11 Short (Up to | High Moderate to | Internet
100m) (Mbps) | high connectivity,
local area
networks
BLE Bluetooth Low | Short (up to | Low Low Wearables,
Energy 100m) (Kbps) loT devices,
proximity-
based apps
Cellular LTE Long (up to | High Moderate to | Mobile
4G) several (Mbps) | high internet,
kilometers) voice, video
streaming

NB-loT LTE Long (up to |Low Ultra-low loT devices,
several (Kbps) smart
kilometers) metering,

agriculture

Zigbee IEEE 802.15.4 | Moderate Low Low Smart home
(up to (Kbps) automation,
100m) industrial

automation

LoRaWAN | LoRa Long Low Ultra-Low Smart
(several (Kbps) agriculture,
kilometers asset
to tens of tracking,
kilometers) smart cities

NFC Near-field Very Short | Low Low Contactless

communication | (Up to (Kbps) payment,
10cm) access
control

Table 4.1 — Different connectivity options for ESP32

From Table 4.1, you will get an idea of which network protocol is suitable for
certain applications. While BLE and Wi-Fi are built into ESP32, and we will be
focusing more on these two in the projects, having a general idea of other

protocols will help you take on the next steps.

Summary

In this chapter, we delved into various connectivity options that allow us to

establish connections between the ESP32 and diverse networks. We delved deep

into the Wi-Fi and BLE protocols, performing hands-on exercises to grasp their

practical applications.

However, there are scenarios where these options might not suffice or are
unavailable. To address such situations, we expanded our knowledge to
encompass cellular communication and the LoRaWAN protocol. These additional
protocols empower us to broaden the ESP32’s connectivity by leveraging external

modules.

In the forthcoming chapter, we’ll take a closer look at data-based protocols. This
exploration will shed light on how we can effectively exchange data across
different devices using these network protocols.

5

Choosing the Right Data-Based Protocols
for Your ESP32 Projects

In this chapter, we embark on a pivotal journey to empower your ESP32 projects
with the most suitable data-based protocols. This chapter delves into the
fundamental understanding of essential protocols that drive the communication
backbone of IoT systems. We will explore key protocols such as Hypertext
Transfer Protocol (HTTP), Message Queuing Telemetry Transport (MQTT),
and webhooks, equipping you with the knowledge to make informed decisions in
selecting the right protocol for your ESP32 projects.

Our exploration begins with a comprehensive exploration of HTTP. You will gain
insights into HTTP’s request-response mechanism for seamless communication
between ESP32 devices and web servers.

The journey continues with a deep dive into the MQTT protocol. We will delve into
MQTT’s publish-subscribe (pub-sub) architecture for real-time loT
communication and implement MQTT on ESP32 devices, enabling dynamic
network creation and responsive loT apps.

Webhooks emerge as another vital aspect of this chapter. We will uncover the
potential of webhooks as a mechanism to trigger actions in response to specific
events.

Throughout this chapter, our approach remains consistent: providing step-by-step
instructions, real-world examples, and hands-on guidance. By the conclusion of
this chapter, you will have gained a profound understanding of HTTP, MQTT, and
webhooks.

In this chapter, we will cover and understand the following topics with their
applications:

e Exploring HTTP with ESP32 — enabling IoT devices to communicate with web servers

Exploring MQTT for [oT communication with ESP32

Adding real-time notifications using webhooks

A real-life analogy of HTTP, MQTT, and webhooks

Comparing HTTP, webhooks, and MQTT

By covering these topics, readers will understand the fundamental differences
between these protocols and can select the best protocols or use them together
according to the requirements of the project.

Technical requirements

For this chapter, we will require the following hardware and software components:
« ESP32
e AnLED
o OLED SSD1306 display
e Servo motor
e Push button
o OpenWeather API

« HiveMQ public MQTT broker

Now, let’s explore the most common protocol widely used by web applications: the
HTTP protocol.

Exploring HTTP with ESP32 — enabling IoT
devices to communicate with web servers

In the interconnected world of loT, efficient communication between devices and
web servers is paramount. One of the foundational protocols that has powered the
internet since its beginning is HTTP. In the context of loT, HTTP plays a pivotal role
in facilitating communication between resource-constrained devices, such as the
ESP32 microcontroller, and remote web servers. This section dives into the details
of HTTP communication, specifically tailored for ESP32 projects. We'll explore

how ESP32 can seamlessly interact with web servers, enabling loT devices to
exchange data, retrieve information, and contribute to the ever-expanding
landscape of loT. First, let’s explore what the HTTP protocol is and how it works.

What is HTTP?

HTTP is the foundation of data communication on the World Wide Web. It is an
application layer protocol that defines how clients (typically web browsers) request
resources from servers and how servers respond to these requests. HTTP enables
the exchange of various types of data, including text, images, videos, and more,
making it the backbone of web communication.

How does HTTP work?

HTTP uses the request-response model for data transfer. Figure 5.1 shows the
request, response, and server processing involved in the HTTP protocol:

Server

Server
Processing

Figure 5.1 — HTTP request-response model

Let’s understand how it works:

1. Client-server interaction: Communication in HTTP revolves around a client-server model. The
client, often a web browser or an IoT device in the case of 0T projects, initiates a request for a
specific resource located on a server.

2. Request: The client sends an HTTP request to the server. This request contains several
components:

 HTTP method: Specifies the action the client wants to perform (for example, GET to
retrieve data, POST to submit data, or PUT to update data)

» Uniform Resource Identifier (URI): A unique address that identifies the resource the
client wants to access

» Headers: Additional information about the request, such as user-agent, accept-
encoding, and more

« Body (optional): Used in methods such as POST to send data to the server

3. Server processing: Upon receiving the request, the server processes it. It identifies the
requested resource, performs any necessary server-side actions, and prepares a response.

4. Response: The server sends an HTTP response back to the client. This response also
includes several components:

« Status code: A numerical code indicating the outcome of the request (for example,
200 OK, 404 Not Found, or 500 Internal Server Error)

« Headers: Metadata about the response, including content type, length, and server
information

» Body: The actual data being sent back to the client — for example, in the case of a
web page, the HTML content

5. Client rendering: The client (web browser or IoT device) receives the response. If the
response includes HTML content, the client renders it into a human-readable format. Other
resources such as images, style sheets, and scripts referenced in the HTML are subsequently
requested by the client using additional HTTP requests.

6. Resource retrieval: The client may need to retrieve additional resources linked in the original
response. This involves sending more HTTP requests for each resource and receiving
corresponding HTTP responses.

HTTP is a stateless protocol, meaning each request-response cycle is
independent, and the server doesn’t inherently retain information about previous
interactions. To maintain state and enable more complex interactions (for example,
user authentication), techniques such as cookies and session management are
used.

In the context of ESP32 projects, understanding HTTP is crucial for enabling loT
devices to interact with web servers, retrieve data, send data, and contribute to the
larger network of interconnected devices and services.

Now, we will learn how we can use ESP32 as an HTTP web server.

ESP32 as an HTTP web server

An HTTP web server is a software application that receives and processes HTTP
requests from clients (typically web browsers) and responds by delivering web
content such as HTML pages, images, and other resources. It acts as an
intermediary between clients and the requested resources, facilitating the transfer
of data over the internet. By interpreting incoming HTTP requests and generating
appropriate responses, an HTTP web server enables the hosting and access of
web content, forming the foundation of the World Wide Web and supporting
seamless interaction between users and online resources.

In the following example, we will create a simple web server to control an LED
attached to ESP32. Users can access ESP32’s IP address from their web browser,
view the LED’s status, and toggle it on and off using the provided button on the
web page.

For this example, we will use the same circuit that we used in the ESP32 basic
input/output example in Chapter 2. The circuit diagram can be found in Figure 2.1.
Then, we will upload the following code to ESP32 using the Arduino IDE. The code
is available at https://github.com/PacktPublishing/Programming-ESP32-with-

Arduino-IDE/tree/main/Chapter%205/ESP32_webserver:

#include <WiFi.h>
#include <WebServer.h>
const char* ssid = "YourWiFiSSID";
const char* password = "WIFIPASSWORD";
WebServer server (80);
const int ledPin = 13;
const int buttonPin = 12;
bool ledState = false;
void setup () {
Serial.begin(115200) ;

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%205/ESP32_webserver

pinMode (ledPin, OUTPUT) ;
pinMode (buttonPin, INPUT PULLUP) ;
digitalWrite (ledPin, ledgtate);
WiFi.begin (ssid, password);
while (WiFi.status() != WL _CONNECTED) {
delay (1000) ;
Serial.println("Connecting to WiFi"..");
}
Serial.print"n("WiFi connec"ed");
Serial.print"n ("IP addres": ");
Serial.println (WiFi.localIP());
server."n""/", HTTP GET, handleRoot);
server."n("/tog"le", HTTP GET, handleToggle);
server.begin () ; B
}
void loop () {
server.handleClient () ;
int buttonState = digitalRead (buttonPin);
if (buttonState == LOW) {
ledState = !ledState;
digitalWrite (ledPin, ledState);
}

}
vold handleRoot () {

String html"= "<html><bo"y>";

html "= "<hl1>ESP32 LED Control</"1>";

html "= "<p>LED Statu": " + String(ledState)"+ "<"p>";
html "= "<form meth'd=''et' acti'n='/tog'l"'>";

html "= "<button ty'e='sub'it'>Toggle LED</butt"n>";
html "= "</fo"m>";

html "= "</body></ht"1>";

server.send (20", "text/h"ml", html);

}
void handleToggle () {

ledState = !ledState;

digitalWrite (ledPin, ledState);

server.send (20", "text/pl"in", "LED togg"ed");
}

At the beginning of the preceding code, the necessary libraries, wiri.h and
WebServer.h, are included. These libraries empower ESP32 to handle Wi-Fi
connectivity and web server functionalities.

The code establishes the credentials for connecting to a Wi-Fi network by setting
the ssid and password variables. Make sure to enter your Wi-Fi details.

The webserver instance, initialized on port 80, serves as the backbone for
processing incoming HTTP requests and providing appropriate responses.

The assignment of pins to control the LED and read the button input follows. The
LED is linked to pin 13, while the button is connected to pin 12. The 1edstate
Boolean variable is introduced to keep track of the LED’s on/off status.

In the setup () function, serial communication is initiated for debugging purposes.
The pinMode () function is used to configure the LED pin as an output and the
button pin as an input with a pull-up resistor enabled. The LED is set to its initial
state based on the 1edstate variable. ESP32 begins connecting to the specified
Wi-Fi network, and a loop waits until a successful connection is established. Once
connected, ESP32’s local IP address is printed, signifying successful network
integration. The server.on() statements define the route handlers for the root (/)
and /toggle routes. The server.begin () function initiates the web server.

In the 100p () function, the server continuously processes client requests using
server.handleClient (). Additionally, the code monitors the button’s state using
digitalRead (buttonPin). If the button is pressed (indicated by a Low state), the
ledstate Vvariable is toggled, and the LED is updated accordingly.

The nandleroot () function generates an HTML response when the root (/) route is
accessed. This response displays the current LED status and offers a button to
toggle it. The handleToggle () function responds to the /toggle route, toggling the
LED’s state and sending a confirmation message.

Once the code has been uploaded, and ESP32 is successfully connected to the
Wi-Fi network, you will see an |IP address in the serial monitor, as shown in Figure
5.2

Connecting to WiFi...

WiF1 connectead
TP addr

192.168.52.1

Figure 5.2 — ESP32 connected to the Wi-Fi network

When you enter this IP address in any browser, such as Chrome, you will see a
web page hosted by ESP32:

192.168.52.7

ESP32 LED Control

LED Status: 1

| Toggle LED

Figure 5.3 — Web server hosted by ESP32

If you press the toggle LED button, the LED will change its state; if it is off, it will
turn on or vice versa. The LED could be controlled by the physical button; in this
case, you will be able to see the status on the web page.

Next, we will see how we can use ESP32 as an HTTP client.

ESP32 as an HTTP client

An HTTP client is a software application or a program that initiates HTTP requests
to interact with web servers and retrieve information or resources from them.
Acting as a client-side component, it sends specific HTTP requests, typically in the
form of URLs, to designated servers. These requests can include commands to
retrieve web pages, images, videos, or other data. Upon receiving the requested
data from the server, the HTTP client processes and utilizes the received
information for display, processing, or further interaction within the application or
user interface.

For this example, we will read the temperature, humidity, and pressure values
using the web API:

1. To carry out this example, you’ll need to register on the OpenWeatherMap website and obtain
an API key from https://openweathermap.org/:

https://openweathermap.org/

Guide APl Dashboard Marketplace Pricing Maps
OpenWeather

Qur Initiatives Partners Blog For Business Sign in Support ¥

For Enterprise level projects we provide Enterprise license, which is included all forecast preducts and current state, along with alerts, maps, and

other products. Learn more

You can read the How to Start guide and enjoy using our powerful weather APIs right now.

Current & Forecast weather data collection

Current Weather Data Hourly Forecast 4 days

() D) D

« Access current weather data for any Hourly forecast is available for 4 days
location Forecas!t wealher dala for 96

» We collect and process weather data timestamps

from different sources such as global JSON and XML formats

and local weather models, satellites, Included in the Developer, Professicnal

radars and a vast network of weather and Enterprise subscription plans

stations

JSON, XML, and HTML formats

Included in both free and paid

subscriptions

Climatic Forecast 30 days Bulk Download

(o) D () D

Daily Forecast 16 days
(o)

« 16 days forecast is available for any
location on the globe

« 1-day step for 16 days

« JSON and XML formats

« Included in all paid subscription plans

Global Weather Alerts
Push notifications

Figure 5.4 — OpenWeatherMap dashboard

2. You will have to create an account to access the API, so click on Sign in to sign in or create a

new account.

3. It will show you different plans; for this example, we can use the free plan. We will click on the

Get API key under the Free option, as shown in Figure 5.5:

Current weather and forecasts collection

Free

Get APl key

60 calls/minute
1,000,000 calls/month

Current Weather

3-hour Forecast 5 days

Basic weather maps

Weather Dashboard

Air Pollution API

4. It will ask you to sign up, so enter your details and click on Create Account:

Startup
35 EUR/ month

600 calls/minute
10,000,000 calls/month

Current Weather

3-hour Forecast & days

Daily Forecast 16 days

Basic weather maps

\Weather Dashboard

Air Pollution API

Developer
160 EUR/ month

3,000 calls/minute
100,000,000 calls/month

Current Weather

3-hour Forecast 5 days
Hourly Forecast 4 days
Daily Forecast 16 days

Climatic Forecast 30 days

Advanced weather maps

Historical maps

Weather Dashboard

Air Pollution AP

Professional
410 EUR/ month

30,000 calls/minute
1,000,000,000 calls/month

Current Weather

3-hour Forecast 5 days
Hourly Forecast 4 days
Daily Forecast 16 days
Climatic Forecast 30 days

Bulk Download (global
cities)

Advanced weather maps
Historical maps

Global Precipitation Map -
Historical data

Weather Dashboard

Air Pollution AP1

Figure 5.5 — OpenWeatherMap API pricing options

Enterprise
1750 EUR/ month

200,000 calls/minute
5,000,000,000 calls/month

Current Weather

3-hour Forecast 5 days
Hourly Forecast 4 days
Daily Forecast 16 days
Climatic Forecast 30 days

Bulk Downlead (global cities
+ ZIPs of US, EU, UK)

Advanced weather maps
Historical maps

Global Precipitation Map -
Historical data

Weather Dashboard

Road Risk API (basic
configuration)

Air Pollution AP1

Create New Account

| Lsemame |

| Enter email |

| Password | | Repeat Password |

We will use information you provided for management and
administration purposes, and for keeping you informed by mail,
telephone, email and SMS of other products and services from us
and our partners. You can proactively manage your preferences
or opt-out of communications with us at any time using Privacy
Centre. You have the right to access your data held by us or to
request your data to be deleted. For full details please see the
OpenWeather Privacy Policy.

J 1 am 16 years old and over

O | agree with Privacy Policy, Terms and conditions of
sale and Websites terms and conditions of use

| consent to receive communications from OpenWeather Group of
Companies and their pariners:

O System news (API usage alert, system update, temporary
system shutdown, etc)

O Product news (change to price, new product features, etc)

O Corporate news (our life, the launch of a new service, etc)

D I'm not a robot e

Create Account

Figure 5.6 — Creating a new account

5. After creating a new account, you will have to sign in, and after signing in, you will see a
dashboard. Click on the API keys tab. It will show the following screen:

Mew Products Senices AP keys Billing plans Payments Block logs My orders. My peofie Ask 3 guestion

‘fou can generate as many AP keys as needed for your subscription. Wie accumulate the total load from all of them.

Key Hame Status Actions Create key

365 TFfrascds1eETaTa2se3fBhdh el Default Artive o AP key name

Figure 5.7 — Getting the API key from OpenWeatherMap

6. Copy the key as we will need this in our code. Figure 5.8 shows how we could use the API

request:

Built-in APl request by city name

You can call by city name or city name, state code and country code. Please note that
searching by states available only for the USA locations.

API call

https://api.openweathermap.org/data/2.5/weather?q={city
name Mappid={APT key}

https://api.openweathermap.org/data/2.5/weather?g={city
name}, {country code}Rappid={API key}

https://api.openweathermap.org/data/2.5/weather?q={city
name},{state code},{country code}Rappid={API key]}

Parameters

q required City name, state code and country code divided by comma, Please
refer to IS0 3166 for the state codes or country codes.
You can specify the parameter not only in English. In this case, the
APl response should be retumed in the same language as the
language of requested location name if the location is in our
predefined list of more than 200,000 locations.

appid | regquired Your unigue APl key (you can always find it on your account page
under the "API key" tab)

mode optional Response format Possible values are | xml | and | hitml |. If you don't
use the | mode | parameter format is JSON by default. Learm more

units | optional Units of measurement. | standard |, | metric | and | imperial units
are available. If you do not use the | units | parameter, | standard
units will be applied by default. Learn more

lang | optional You can use this parameter to get the output in your language. Learn
more
Figure 5.8 — API request by city name

7. To test our API key, go to the web browser and enter the following URL (make sure to enter
your city and APl key): https://api.openweathermap.org/data/2.5/weather?qg=
{City} &appid={API-key}.

You will see a weather report in the form of JSON data, as in the following
figure:

<« C' @& apiopenweathermap.org

// 28238828120233
2 // https://api.openweathermap.org/data/2.5/weather?g=London&appid=5ae492edb5f4618f24bc7406f01leele2

"coord":
6 "lon"™: -6.1257,
7 "lat": 51.56885

"weather": |

11 "id": 8e3,

12 "main": "Clouds",

13 "description”: "broken clouds"”,
"icon": "e4d"

"base": "stations",
"main": {

19 "temp": 290.79,
"feels_like": 296.46,
21 "temp_min": 289.1,

22 "temp_max": 292.18,
"pressure”: 1012,
"humidity": 71

[+

(]
(]

26 "visibility": 16666,

"wind": {
28 "speed": 3.09,
29 "deg": 31e

Figure 5.9 — API response in the browser

It shows that our API request has been responded to, and now our task is to read
this data using ESP32 and show it on the OLED display.

8. We will upload the following code in our ESP32 project using the Arduino IDE to read the
weather data in ESP32. The code is available at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%205/ESP32_as_HTTP_client:

#include <WiFi.h>
#include <HTTPClient.h>
#include <Arduino JSON.h>

#include <Adafruit GFX.h>

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%205/ESP32_as_HTTP_client

#include <Adafruit SSD1306.h>
#include <Wire.h>

#define SCREEN WIDTH 128
#define SCREEN HEIGHT 64
#define OLED RESET -1

Adafruit SSD1306 display (SCREEN WIDTH, SCREEN HEIGHT, &Wire,
OLED RESET) ;

const char* wifiSSID = "WIFI SSID";

const char* wifiPassword = "WIFI PASSWORD";
String openWeatherMapApiKey = "Your API Key";
String city = "London"; //change city name
String jsonBuffer;

void setup () {

Serial.begin(115200) ;

http.end() ;
return payload;

}

The preceding code uses several libraries, including wiFi.h for Wi-Fi
connectivity, BTTPClient.h for making HTTP requests, arduino JsoNn.h for
JSON parsing, and adafruit_ssp1306.h for driving an OLED display.

After initializing the necessary constants and variables, the code’s setup ()
function establishes a connection to a Wi-Fi network. It then initializes the
OLED display and clears any existing content.

In the 100p () function, if a Wi-Fi connection is established, the code constructs
an API request URL specific to the desired city and country. It uses the
httpGETRequest () function to make an HTTP ceT request to the
openWeatherMap API using the constructed URL. The response, which contains
weather data in JSON format, is parsed using the Arduino JSON library.

The parsed JSON data is extracted to obtain temperature, pressure, humidity,
and wind speed information. This data is both printed to the serial monitor and
displayed on the OLED screen using the adafruit_ssp1306 library.

If the Wi-Fi connection is lost, the code indicates wiFi Disconnected in the
serial monitor. The loop continues to execute, fetching and displaying weather
data at regular intervals.

The nttpGETRequest () function is responsible for making HTTP ceT requests to
the specified server. It uses the ETTPClient library to establish a connection
and retrieve data. The response is processed, and the payload is returned.
. Upon uploading the code to ESP32, the device effectively accesses the OpenWeatherMap API,

extracts relevant weather data, and seamlessly presents this information on both the serial
monitor and the connected OLED screen, as shown in the following figure:

Connecting to WiFi...

Connected to WiFi network. IP Address: 16.108.0.2
HTTP Response code: 288

"coord":{"lon":-8.1257,"1at":51.5885}, "weather":
[{"id":884,"main":"Clouds","description™: "overcast

clouds™ ,"icon":"@4d"}],"base": "stations","main":
{"temp":16.26,"feels_like":15.95,"temp_min":14.92,"temp_max":18.21, "pressure™:10813,"humidity"
277}, "visibility":16000, "wind": {"speed":4.63,"deg":308}, "clouds":
{"all":10@},"dt":16932130883,"sys":

{"type™:2,"id" : 2875535, "country” : "GB" , "sunrise" :1693199174, "sunset":1693249677},"timezone":36
068,"id":2643743,"name” : "London" , "cod" : 208}

JSON object = {"coord":{"lon":-8.1257,"1at":51.5885}, "weather":
[{"id":884,"main":"Clouds","description": "overcast
clouds™,"icon":"@4d"}], "base": "stations","main":

{"temp™:16.26,"feels like":15.95,"temp_min":14.92,"temp _max":18.21,"pressure™:1013,"humidity"
177}, "visibility":10600, "wind" : {"speed":4.63,"deg":368}, "clouds":
{"all":1@@},"dt":1693213083, "sys"

{"type™:2,"id":2@75535, "country” : "GB" , "sunrise":1693199174, "sunset":1693249677},"timezone": 36
06,"1d" :2643743, "name" : "London" , "cod" : 268}
Temperature: 16.26

Pressure: 1013
Humidity: 77
Wind Speed: 4.63

Figure 5.10 — API request and response in the serial monitor

10. Now, we could add an OLED using 12C communication, which we learned about in Chapter 3,

as in Figure 5.11. The OLED shows the weather data:

oD B3 O3E B33 OOF PN W BN

i o TED DN D

Figure 5.11 — Weather data on OLED

This practical illustration highlights the combination of loT capabilities, HTTP
communication, and data visualization in a succinct and coherent manner. Now,
let’'s go through another bonus example that uses the HTTP protocol and will be
helpful in other loT projects.

Configuring and managing Wi-Fi using the HTTP
protocol in ESP32

In the previous examples, when we were making loT devices connect to Wi-Fi, we
were putting the Wi-Fi details directly into the device’s code. However, this could
be a problem if we wanted to use the device in different places with different Wi-Fi
networks. We would have to change the code each time, which can be tricky.
Here’s where the wiFiManager library comes in. It's like a helpful tool that lets us
set up Wi-Fi for our device using a website so that we don’t need to change the

code every time. wiFiManager uses HTTP to talk to our device and make sure it
connects to the right Wi-Fi network.

The following example will show you how wiFiManager uses HTTP to make
connecting to Wi-Fi super easy, even if we move our device around:

1. We will upload the following code in ESP32 using the Arduino IDE. Make sure to install the
WiFiManager library by tzapu using the Arduino library manager, as we did in Chapter 2. The

code is available at https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%205/ESP32_WiFiManager:

#include <WiFi.h>

#include <WiFiManager.h>

void setup () {
Serial.begin(115200) ;
WiFiManager wifiManager;

// Uncomment the following line to reset Wi-Fi settings and enter
configuration mode

//wifiManager.resetSettings () ;

wifiManager.autoConnect ("ESP32-Config"); // Access point name
Serial.println ("Connected to Wi-Fi!");

Serial.print ("IP Address: ");

Serial.println(WiFi.localIP())

void loop () {

// Your code goes here

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%205/ESP32_WiFiManager

This code showcases the utilization of the wiFiManager library to simplify the
process of connecting an ESP32 device to a Wi-Fi network. wiFiManager
employs the HT TP protocol to establish communication between the device
and a web-based configuration page, ensuring seamless Wi-Fi setup without
requiring manual code modifications.

Upon initiating the code, the setup () function commences with serial
communication setup for debugging purposes. An instance of the wiFiManager
class is created, effectively initializing the wiFiManager tool.

Within the setup () function, you can uncomment the
wifiManager.resetSettings () ; line if needed. This line instructs the
WiFiManager class to reset any previous Wi-Fi settings and enter configuration
mode. This can be useful when you want to change the Wi-Fi network the
device connects to.

The core of the Wi-Fi configuration process is carried out by the
wifiManager.autoConnect ("ESP32-Config") ; line. This line prompts ESP32 to
automatically connect to the saved Wi-Fi network if the credentials are
available. If not, ESP32 enters configuration mode, creating an access point
(AP) named Esp32-config to which a user can connect. The user can then
access a web page served by ESP32 through their web browser to enter the
required Wi-Fi details without needing to modify the device’s code.

After a Wi-Fi connection is successfully established, the serial monitor prints
out a message indicating the connection status along with the assigned IP
address.

In the 100p () function, which is currently empty, you can add your own code for
further functionality.
. When you upload the code to ESP32, if it is not connected to the Wi-Fi network, it will open a

Wi-Fi AP, which we discussed in the previous chapter. We will connect to the AP opened by
ESP32 (in this case, ESP32-Config), as shown in Figure 5.12:

FRITZ!Box 6660 Cable IF

Disconnect

Figure 5.12 — ESP32 as AP

3. After connecting to the ESP32-Config AP, we will see the following data in the serial monitor:

Connected to Wi-Fi!

IP Address: 192_.168.178.26
:resetSettings
:SETTINGS ERASED
:AutoConnect
:No wifi saved, skipping
:AutoConnect: FAILED for 20

:StartAP with SSID: ESP32-Config
:AP TP address: 192.168.4.1

:Starting Web Portal

: [ERROR] scan waiting

Figure 5.13 — Starting the ESP32 web portal

4. Also, a web portal as shown in Figure 5.14 will be opened automatically in the web browser;

you can click on Configure WiFi:

192.168.4.1

WiFiManager
ESP32-Config

Configure WiFi
Info

Exit

Update

No AP set

Figure 5.14 — ESP32 WiFiManager portal

5. It will show you a list of all the Wi-Fi networks available. Click on the one you would like to
connect to, enter a password, and click on Save:

OnePlus Nord2 5G

FRITZ!Box 7530 KG
FRITZ!Box 6660 Cable IF
WLAN-189230
BROADCOM_GUEST_1_EADO1
Bibanu28

PYUR Community
WLAN-572077

DIRECT-80-HP ENVY 4520 series
Cauchy

WLAN-L5R2AX
PS4-ABBA3F64B306

SSID

[OnePIus Nord2 5G

—

Password

g

U Show Password

Save

Figure 5.15 — Connecting to a Wi-Fi network

6. After clicking on Save, you will be able to see in the serial monitor that you are connected to
the Wi-Fi network, as shown in Figure 5.16:

*wm: -2 networks found

*wm: 13 networks found

*wm: 12 networks found

*wm:Connecting to NEW AP: OnePlus NordZ2 5G

*wm: connectTimeout not set, ESP waltForConnectResult...
*wm:Connect to new AP [SUCCESS

*wm:Got IP Address:

*wm:192.168.52.7

*wm: config portal exiting

Connected to Wi-Fi!
TP Address: 192.168.52.7

Figure 5.16 — Connected to the Wi-Fi network

7. Once you are connected to the Wi-Fi device, the Wi-Fi AP will be closed.

In summary, this code exemplifies how wiriManager employs the HTTP protocol to
facilitate the setup of Wi-Fi connections for an ESP32 device. By allowing users to
access a web page served by ESP32 to input Wi-Fi credentials, the process of
configuring Wi-Fi becomes hassle-free, eliminating the need to modify code when
changing network environments. This approach enhances user-friendliness and
adaptability, making it particularly useful for IoT devices that may be relocated or
used in various settings.

In the next section, we will explore the MQTT protocol, which works on the pub-

sub model.

Exploring MQTT for loT communication
with ESP32

Among the many different protocols used in IoT, MQTT stands out as a powerful
option. MQTT, with its lightweight and pub-sub messaging paradigm, has found its

place as a go-to protocol for enabling efficient communication between resource-
constrained devices such as ESP32 and remote servers.

This section takes an in-depth journey into the domain of MQTT communication,
purposefully tailored for ESP32 projects. We will explore the mechanisms through
which ESP32 can seamlessly engage with MQTT brokers, granting loT devices
the capability to share data, receive updates, and actively participate in the
dynamic ecosystem of loT.

What is MQTT?

MQTT is a lightweight and efficient messaging protocol designed for the efficient
exchange of data between devices, especially in scenarios where bandwidth and
resources are limited. It was originally developed by IBM in the late 1990s and has
since become a widely adopted protocol in the realm of IoT and machine-to-
machine (M2M) communication.

Key characteristics of MQTT include the following:

e Pub-sub model: MQTT follows a pub-sub model, where devices communicate through a
central broker. Devices that want to share information (publishers) send messages to specific
“topics” on the broker, and other devices interested in that information (subscribers) can
subscribe to those topics to receive messages.

« Quality-of-service (QoS) levels: MQTT supports different levels of QoS (that is, QoS 0, 1, and
2) for message delivery, which are explained in the next section of this chapter:

» Retained messages: MQTT allows publishers to mark a message as “retained.” This
means that the last message sent on a topic will be stored on the broker and sent to
new subscribers immediately upon subscription.

« Last will and testament (LWT): Clients can specify a “last will” message that will be
sent by the broker if the client unexpectedly disconnects. This can be used to indicate
the client’s status or take appropriate actions.

» Low overhead: MQTT is designed to be lightweight, making it suitable for scenarios where
bandwidth and resources are limited, such as loT devices. The reason for the low overhead in
MQTT is a small packet header (2 bytes) and pub-sub model.

» Persistent connections: Clients can establish long-lived connections to the broker, reducing
the overhead of repeatedly establishing new connections for each message.

o Security: MQTT can be used with SSL/TLS encryption for secure communication, ensuring the
confidentiality and integrity of the data exchanged.

» Topic-based filtering: Subscribers can use wildcard characters to subscribe to multiple topics
that match a certain pattern.

MQTT has found widespread use in loT applications where devices need to
exchange information and control messages efficiently and reliably. It is commonly
used for scenarios such as remote device monitoring, home automation, industrial
automation, and more. To implement MQTT communication, devices need an
MQTT broker that acts as a message hub, routing messages between publishers
and subscribers.

Overall, MQTT’s efficiency, simplicity, and flexibility make it a popular choice for
loT communication, especially in resource-constrained environments.

How does MQTT work?

The MQTT protocol operates on the principles of a pub-sub messaging model,
facilitating efficient communication between devices in the 10T ecosystem. At its
core, MQTT comprises three key components: publishers, subscribers, and a
central broker. Let’s look at this in more detail:

o Publishers are devices that generate data and wish to share it with other devices. To initiate
communication, a publisher sends a message to a specific “topic” on the MQTT broker. This
topic acts as a channel through which information is categorized and organized.

o Subscribers are devices interested in receiving specific types of data. They subscribe to topics
on the broker to indicate their interest in particular information. When a publisher sends a
message to a topic, the broker ensures that all relevant subscribers are notified.

» The MQTT broker plays a pivotal role in this architecture. It serves as an intermediary,
receiving messages from publishers and forwarding them to the appropriate subscribers. It
manages the routing of messages, allowing devices to communicate without needing to know
the identities or addresses of individual recipients.

When a publisher sends a message to a topic, the broker receives it and evaluates
which subscribers are interested in that topic. The broker then forwards the
message to all subscribers of that topic. Subscribers can choose the level of QoS
they desire for message delivery:

* QoS 0: The message is delivered at most once, and no acknowledgment is required.

* QoS 1: The message is delivered at least once, and an acknowledgment is sent back to the
publisher.

* QoS 2: The message is delivered exactly once, utilizing a four-step handshake to ensure
reliability. The four-step handshake involves the following:

» The publisher sends a PUBLISH message
* The receiver acknowledges the message
» The publisher resends the PUBLISH message

« The receiver confirms with a final acknowledgment

Furthermore, MQTT supports “retained” messages. When a publisher sends a
retained message, the broker stores it as the “last-known value” for that topic. New
subscribers immediately receive this retained message upon subscribing, ensuring
they have the latest data.

Additionally, MQTT provides the concept of LWT. Clients can specify a message
that the broker will send on their behalf if they disconnect unexpectedly. This
feature is useful for conveying the status or availability of a device.

Overall, MQTT’s operation is centered on the broker, which orchestrates the flow
of messages between publishers and subscribers. This lightweight protocol excels
in scenarios with limited bandwidth and resources, making it a preferred choice for
loT communication, where devices need to exchange information seamlessly and
efficiently.

Figure 5.17 shows how we can use the MQTT protocol:

MQTT client MQTT broker MQTT web client

@HIVEMQ At
B ===
Publish R Sumhlcﬂpdm- ES
e T em e
= o
Messages
s
I

» Connect to broker.

« Subscribe to topic "LED" and "servo". + Connect to broker.

 Publish temperature data on "Tempdata" topic. + Subscribe to topic "Tempdata".

* Publish angle on "servo" topic and light
status on "light" topic.

Figure 5.17 — How the MQTT protocol works

There are two clients: one uses ESP32 with other devices and sensors, while the
other is a web client for MQTT. In the center, there’s something called an MQTT
broker. The ESP32 MQTT client subscribes to the LEp and servo topics. Whenever
a message shows up on these topics, ESP32 does things such as turning the LED
on/off and moving the servo. Additionally, ESP32 regularly sends temperature data

to the Tempdata topic. In the next example, we’ll write code and do the same thing
shown in Figure 5.17.

MQTT pub-sub example

Firstly, we will need an MQTT broker for the communication using the MQTT
protocol. You could install the MQTT broker on your laptop or Raspberry Pi, or you
could use the free public cloud MQTT brokers. We will be using the HiveMQ free
MQTT cloud broker.

You can get details of the free MQTT broker at https://www.hivemq.com/public-
mqtt-broker/, as shown in the following figure:

https://www.hivemq.com/public-mqtt-broker/

You can access the MQTT broker securely at:

Host: broker.hivemq.com

TCP Port: 1883
Websocket Port: 8eee
TLS TCP Port: 8883
TLS Websocket Port: 8884

Figure 5.18 — HiveMQ free public broker

Now, we will use these details in our ESP32 code to connect to the MQTT broker
and pub/sub messages. But first, let's make a circuit diagram:

3 oo OB VN WP BN
AARRRARR

a
2
2
=
a
o
a8
=
&
g
&
n

¥B GND D18 042 o

Figure 5.19 — ESP32 connected to DHT22 sensor and servo motor
We’ve set up the connections like this:
e The SDA pin of the DHT22 sensor is linked to the D12 pin of ESP32
» The data pin of the servo is connected to D2 on ESP32

» The negative (cathode) side of the LED is attached to the GND pin

e The positive (anode) side of the LED is connected to the D2 pin

» Both the servo and DHT22 use the VIN or 3.3V pin for their power, and their GND pins are
connected to the ground

You can see this arrangement in Figure 5.19. Let’'s move to the next stage:

1. Now, we will upload the following code in our ESP32 project using the Arduino IDE. Make sure
to change the Wi-Fi details. The code is available at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%205/ESP32_MQTT:

#include <Adafruit Sensor.h>
#include <DHT U.h>

#include <WiFi.h>

#include <PubSubClient.h>
#include <Servo.h>

#define DHTPIN 12

#define LED 26

#define SERVO PIN 2

#define DHTTYPE DHT22

DHT Unified dht (DHTPIN, DHTTYPE);

msgStr = String(temp) + "," + String(hum) + ",";
byte arrSize = msgStr.length() + 1;
char msglarrSize];

msgStr.toCharArray (msg, arrSize);

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%205/ESP32_MQTT

client.publish(topic, msqg);
msgStr = "";

delay (1) ;

}

Let’s break down the code step by step:

o Library inclusions: The code begins by including necessary libraries for different
functionalities. Make sure to install them using the library manager. The libraries
include the following:

* Adafruit Sensor.h and DHT_U.h for using the DHT temperature and
humidity sensor

e WiFi.h for connecting to a Wi-Fi network
e PubSubClient.h for MQTT communication

e Servo.h for controlling a servo motor

« Pin definitions: Various pins are defined using constants. These pins are used to
connect different components such as the DHT sensor, LED, and servo motor

+ Sensor and actuator initialization: The code initializes the DHT sensor and a servo
motor using the defined pins

« Wi-Fi and MQTT configuration: In this part, we configure Wi-Fi and MQTT as
follows:

o Wi-Fi credentials (ssid and password) are set to connect ESP32 to a Wi-
Fi network

 The MQTT broker’s address (mgttServer) and the client ID (clientID)
are defined

» A topic name (topic) is specified for publishing data to the MQTT broker

» Wi-Fi setup function: The setup_wifi () function is defined to establish a Wi-Fi
connection. It waits for ESP32 to successfully connect to the network and then prints

the local IP address.

o MQTT reconnect function: The reconnect () function handles MQTT

reconnection. If the client is not connected to the broker, it attempts to reconnect.

Subscriptions to MQTT topics (1ights and servo) are done upon successful

reconnection.

 MQTT callback function: The callback () function is called when a message is

received on subscribed topics. It processes incoming messages to control the LED

and servo motor based on the received commands.

o Setup function: In this function, we set up the inputs and outputs as follows:

Serial communication is initiated

The DHT sensor is initialized, and its sensor details are retrieved
The LED pin is set as an output and turned off

The servo motor is attached to its pin and set to the initial position

A Wi-Fi connection is established using the setup_wifi () function

The MQTT client’s server address and callback function are set using the
client.setServer () and client.setCallback () functions

e Loop function: In the 1oop () function, we connect to the MQTT broker and perform

the following tasks:

If the MQTT client is not connected, the reconnect () function is called to

attempt reconnection

The MQTT client’'s Loop () function is called to handle MQTT

communication

The code periodically reads the temperature and humidity values from the
DHT sensor

If valid temperature and humidity values are obtained, they are printed

The temperature and humidity values are concatenated as a string and
published to the specified MQTT topic

A non-blocking delay is used to control the timing of data publication

2. After uploading the code, you will see the following results in the serial monitor:

WiFi connected

IP address:

16.18.6.2

MQTT connected

Topic Subscribed
Temperature: 26.28°C
Humidity: 25.80%

PUBLISH DATA: 26.20,25.08,
Temperature: 26.28°C
Humidity: 25.80%

PUBLISH DATA: 26.20,25.08,
Temperature: 26.28°C
Humidity: 25.80%

PUBLISH DATA: 26.20,25.08,

Figure 5.20 — ESP32 publishing DHT22 data

3. Now, we will set up the web client to see the results. We will open the free MQTT web client
provided by HiveMQ by going to https://www.hivemqg.com/demos/websocket-client/. You will

see a dashboard, as shown in Figure 5.21:

https://www.hivemq.com/demos/websocket-client/

@ H Iv E I v IQ Websockets Client Showcase

35 Need a fully managed MQTT broker?
< Get your own Cloud broker and connect up to 100 devices for free.
Connection @ disconnected aN
Host Port ClientID
‘ broker.hivemg.com ‘ ‘ 8884 ‘ ‘ clientld-bYBVczdW6EB ‘
Username Password Keep Alive SSL Clean Session
| N B | & =
Last-Will Topic Last-Will QoS Last-Will Retain
| | L o .
Last-Will Messsage
A
Publish M Subscriptions N
Messages M

Figure 5.21 — HiveMQ free MQTT web client

4. We will enter the host (broker.hivemq. com) and port (8883) details and click on Connect.

Once we are connected, we will add a new topic subscription by clicking on the button shown in
Figure 5.22:

Subscriptions A\

Add New Topic Subscription

Figure 5.22 — Adding a new topic subscription

5. We will subscribe to the Tempdata topic on which we are publishing temperature and humidity
values, as shown in Figure 5.23, and we will keep QoS at 0:

Color QoS

= = ==

Topic

Tempdata

Figure 5.23 — Subscribing to a topic

6. After a while, you will start seeing messages, as shown in Figure 5.24:

Messages

»

2023-08-28 13:56:17 Topic: Tempdata Qos: 0
26.20,25.00,

2023-08-28 13:56:15 Topic: Tempdata Qos: 0
26.20,25.00,

2023-08-28 13:55:58 Topic: Tempdata Qos: 0
26.20,25.00,

Figure 5.24 — Messages received on subscribed topic

7. Now, let’'s publish some messages. We will send 52 messages to the servo topics with QoS 0,
as shown in Figure 5.25:

Publish A
Topic QoS Retain

o -/ 0 N
Message

52

Figure 5.25 — Publishing MQTT messages on the servo topic

8. The message will be received in ESP32, and the servo motor will move to 52 degrees, as can
be seen in Figure 5.26:

Message arrived in topic: servo
Message: 52

Message size: 2

52
Moving servo to degree: 52
Figure 5.26 — Message arrived in ESP32 servo topic
9. Let's also send a message on the 1ights topic, and we will receive the following message on

the LED topic and the LED will be turned on:

Message arrived in topic: lights
Message: 1
Message size: 1

Figure 5.27 — Message arrived in ESP32 LED topic

Now, we will move on to the next section of this chapter, in which we will learn how
to send alerts using webhooks in our loT projects.

Adding real-time notifications using
webhooks

In the ever-changing world of 10T, it's important for devices and faraway servers to
talk effectively. Among the many ways they communicate, webhooks are useful.
Webhooks help devices send quick alerts and instructions to faraway servers, like
sending a text message when something happens. In this section, we’ll dive into
how webhooks work in 10T projects, showing how devices such as ESP32 can use

them to send messages and get things done on faraway servers in real time. This
helps devices stay connected and responsive in the loT world.

What are webhooks and how do they work?

Webhooks are like virtual messengers in the world of technology. Imagine you
have a friend who keeps an eye on your favorite website for you. Whenever
something new happens on that site, your friend quickly sends you a message to
let you know. In the digital realm, webhooks play a similar role. They allow different
services and apps to communicate with each other in real time.

Here’s how they work. Let’s say you have an online store and want to know
whenever a new order is placed. You set up a webhook that tells your store’s
system to send a message to another service whenever an order is made. When
an order happens, the store quickly sends a message to that other service, almost
like tapping them on the shoulder. This way, you get instant notifications without
having to constantly check your store. Webhooks make it easy for different
systems to talk to each other and share important information as soon as things
happen.

Webhook example

In the following example, we will send a random number of webhooks whenever a
button is pushed. We will make the following circuit:

W IR

L]

ESP32

ARRRRRRERENR
RNy Ye Yy
O MK THZ ©4 090 D10 OF1 B0 TH pgg Dad

Figure 5.28 — ESP32 connected to push button

VI GMO CN3 O3 g4 DT O D28 Ooad D32 pad O34

e GRD DN 2

We have interfaced the push button to pin D35 using the internal pull-up
configuration as we interfaced it in Chapter 2.

€ = C @ webhooksite/#!/ 022-40a2-9126- 0d/2¢14313c-d158-48ad-ac37-b o/ Qn @ »000:
@Webhcok site Docs &API CustomActions W Script ~ Terms & Privacy ~ Support SiCopy~ (Edit «New *JLogin -

d | Alias | Schedule | CSVExport | B Custom Actions Setiings . RunNow | B XHR Redirect Settings_ RedirectNow | B CORS Headers | W Auto Navigate | W Hide Details | More~

REQUESTS (0/500) Newest First Webhook.site lets you easily inspect, test and create advanced scripts and workflows for any incoming HTTP request or e-mail. What's a webhook?

Soarch Query Any requests or emails sent to these addresses will be logged here instantly — you don't even have to refresh!

+ Waiting for first request..
Your unique URL.

https://webhook.site/8c355085-4e22-4ea2-91a6-8c1363a6020d & €5 Ope

Your unique email address

©c359085-4e22-4ea2-91a6-8c1363a6020d@email .webhook.site s copy X

To change the response (status code, body content) of the URL, click Edit above.

With Webhook site Pro, you get more features like Custom Actions that lets you extract JSON or Regex values and use them to send push notifications and emails, convert and forward the request to
another URL, send data to Google Sheets, Dropbox, databases like MySQL, PostgreSQL and write custom scripts using WebhookScript, and more. Read more or Upgrade now.

Headers

Query strings Form values

(empty) (empty)

No content

Figure 5.29 — webhook.site dashboard

We will copy our unique URL, as we will need this in our code. We will upload the
following code to ESP32 using the Arduino IDE. The code is available at

https://webhook.site/

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%205/ESP32_webhook:

#include <WiFi.h>
#include <HTTPClient.h>

const char* ssid = "WiFi SSID";
const char* password = "WiFi Password";
const char* webhookURL = "Your Unique URL";

const int buttonPin = 35;
int buttonState = HIGH;
int lastButtonState = HIGH;
unsigned long lastDebounceTime = 0;
unsigned long debounceDelay = 50;
void setup () {
Serial.begin(115200) ;
pinMode (buttonPin, INPUT_PULLUP) ;
digitalWrite (buttonPin, HIGH) ;
WiFi.begin(ssid, password);
while (WiFi.status() != WL CONNECTED) {
delay (1000) ;

}
void loop () {
int reading = digitalRead(buttonPin);
if (reading != lastButtonState) {
lastDebounceTime = millis () ;
}
if ((millis() - lastDebounceTime) > debounceDelay) {
if (reading != buttonState) {
buttonState = reading;
if (buttonState == LOW) {
sendWebhookRequest (buttonState) ;

}
lastButtonState = reading;

}
void sendWebhookRequest (int switchStatus) {
HTTPClient http;

String url = String(webhookURL) + "?random=" + String(random(30)) ;

http.begin (url) ;

int httpResponseCode = http.GET();

if (httpResponseCode > 0) {
Serial.print ("Webhook request sent. Response code: ");
Serial.println (httpResponseCode) ;

} else {

Serial.print ("Error sending webhook request. HTTP response code:

Serial.println (httpResponseCode) ;

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%205/ESP32_webhook

http.end () ;
}

At the beginning of the code, the necessary libraries for Wi-Fi and HTTP

communication are included. The Wi-Fi credentials, including the network’s SSID
and password, are set up. The webhookURL variable is used to hold the URL of the
webhook endpoint, which is the address where the webhook request will be sent.

The button’s pin number is defined as buttonpin, and initial values for various
variables are set. The debouncebelay variable controls the time interval during
which button debounce is considered.

In the setup () function, serial communication is initialized, and the pinMode
variable is set for the button pin. The InpuT_pPuLLUP Mode is used, which enables
the internal pull-up resistor for the button. This ensures a stable reading when the
button is not pressed.

ESP32 then tries to connect to the specified Wi-Fi network using the provided
credentials. The code enters a loop until a successful Wi-Fi connection is
established. During this time, the serial monitor outputs connecting to WiFi... to
provide feedback on the connection process. Once connected, the monitor
displays connected to WiFi.

Moving to the 1o0p () function, the code continuously reads the current state of the
button using the digitalread () function. It also checks whether the button’s state
has changed since the last reading. If a change is detected, 1astbebounceTime iS
updated with the current time in milliseconds.

Inside another conditional check, the code verifies whether enough time has
passed to ensure the button has been debounced. If the button’s state is found to
be different from the last state and the debounce time has passed, buttonstate is
updated with the current button reading. If the button is pressed (low state), the
code calls the sendwebhookRequest () function, which is responsible for initiating
the webhook.

The sendWebhookRequest () function creates an urTeclient instance and forms the
URL for the webhook request, adding a random value to the URL parameters. The

HTTP client then initiates a connection to the specified URL using the begin ()
function. A GeT request is made to the webhook endpoint, and the HTTP response
code is checked. If the response code is greater than o, the serial monitor outputs
Webhook request sent. Response code:followed by the actual response code. If
there’s an error, the monitor displays Error sending webhook request. HTTP
response code: along with the response code. Finally, the HTTP client connection
is closed using the end () function.

After uploading the code, when we push the button on pin D35, we will be able to
see the alerts in the webhook . site user interface, as shown in the following figure:

Request Details Headers
Host

[GET #35097 136.144.48.177 Lok
08/28/2023 3:46:58 PM Size 0
ID 35007012-b0bf-4675-bd3e-b6c24b32405a content-length

#c893d 136.144.48.177 Files content-type
08, 023 3:46:44 PM
Query strings Form values

random 3 (empty)

No content

Figure 5.30 — Webhook received at webhook.site

We can see the random numbers in the user interface. Webhooks are a useful
addition to loT projects, and we will make use of them in the following chapters for
real applications.

In the next section, we will discuss a real-life analogy that could explain HTTP,
MQTT, and webhooks altogether.

A real-life analogy of HTTP, MQTT, and
webhooks

Imagine you’re hosting a big party at your house. The party invitations are like
HTTP requests. You send out invitations (requests) to your friends, telling them
about the party details and asking them to reply. When your friends arrive at the
party, they bring gifts (data) and hand them over to you, just like how a web server
receives and processes HTTP requests.

Now, let’s add webhooks to the mix. Think of webhooks as a special guest list you
have. You've asked your friends to not only come to the party but also let you know
when they’re on their way so that you can be prepared. With webhooks, your
friends send you messages whenever they’re leaving their homes (events
happening in their systems). This way, you can get ready to welcome them and
ensure everything is in place when they arrive.

Lastly, imagine your party has a live band that plays music for everyone to enjoy.
This band represents MQTT. Instead of you telling each guest when to dance, the
band plays music that everyone can dance to. Similarly, MQTT is like a constant
stream of music that devices listen to. If any device wants to dance (share
information), it just needs to join the rhythm by subscribing to the band’s music
(subscribing to MQTT topics). This way, devices can communicate without needing
to send individual messages, just like how everyone at the party can dance to the
same music without needing personal instructions.

This analogy could be very useful for understanding these protocols; in the next
section, we will compare all these protocols so that we can differentiate them
better and select the best one according to our needs.

Comparing HTTP, webhooks, and MQTT

The following table compares the HTTP, webhooks, and MQTT protocols in terms
of use case, communication style, protocol type, security, and scalability:

Aspect HTTP Webhooks MQTT

Communication | Request-Response | Event-Driven Pub-sub

Style

Use Case Data Retrieval, Real-Time Real-time data
Information Notifications, exchange, iot
Exchange Automation

Protocol Type | Stateless Stateless Stateful

Payload Type

Typically, JSON or
XML

Custom Data

Custom Data

API Calls, Web
Apps

Third-Party Apps

Security Encrypted over Limited Security Encrypted over
SSL/TLS TLS

Scalability Suitable for Limited, | Can Handle Large | Highly Scalable
Concurrent Number of
Requests Requests

Connection Request-Response | External Event Persistent

Data Flow One-way One-way Two-way

Error Handling |HTTP Status Codes | Manual Handling MQTT

Acknowledgments
Examples Browser Requests, | Notifications from loT Device

Communication

Table 5.1 — Comparison of HTTP, webhooks, and MQTT protocols

The preceding table gives us a good idea of all the protocols discussed in this

chapter. While all these protocols are used in lIoT development, they have different

use cases and communication styles. The HTTP protocol works on a request-

response model and is a web-browsing protocol. Webhooks are event-driven and

are mostly used for notifications, and MQTT is based on a pub-sub model and is

used for real-time data transfer.

Summary

In this chapter, we explored different data-based protocols for loT applications. We
first explored the HTTP protocol and learned how we could use HTTP with ESP32

to communicate with web servers and use ESP32 as a web server or HTTP client.

Continuing our exploration, we learned about the MQTT protocol, highlighting its
real-time capabilities through the pub/sub model. By learning how to implement
MQTT clients on ESP32, we acquired the ability to build dynamic and responsive
loT applications. Additionally, we harnessed the power of webhooks, using them to
trigger actions based on events, thereby enhancing interactivity and connectivity
with external services. This chapter equipped us with the expertise to choose the
right protocol for specific project requirements.

In the next chapters, we’ll use all the resources we have learned about in this
chapter and previous chapters to work on some real-life practical projects using
ESP32.

Part 3 — Practical Implementation

Now that you've grasped the fundamentals of ESP32, interfacing with sensors and
displays, and explored data and network-oriented IoT protocols, it's time to apply
this knowledge in practical, full-scale projects.

This part has the following chapters:

e Chapter 6, Project 1 — Smart Plant Monitoring System Using ESP32, Messaging Services, and

the Twitter API

o Chapter 7, Project 2 — Rent Out Your Parking Space

6

Project 1 — Smart Plant Monitoring System
Using ESP32, Messaging Services, and the
Twitter API

In this chapter, we will use all the knowledge we gained in the previous chapters
and complete an innovative project where we’ll integrate various sensors with a
plant to create a smart and interconnected ecosystem.

Our project revolves around the concept of enhancing plant care and
communication. We will dive into the details of interfacing sensors with an ESP32
microcontroller, enabling the plant to gather and process data about its
environment. The data will be sent to the owner of the plant, which will set the
foundation for informed decision-making.

What sets this project apart is its extensive use of messaging services and APIs to
establish communication channels between the plant and the digital world. We will
explore how the plant can send real-time updates via Gmail, WhatsApp, and
Telegram, ensuring that you are always in the know of your plant’s wellbeing, no
matter where you are.

Furthermore, we’ll harness the power of the Twitter API to enable our plant to
communicate with the global community. The plant will autonomously tweet its
updates, sharing its growth, health, and experiences with the world, thereby
becoming a part of the vibrant online ecosystem.
In this chapter, we will cover the following topics:

« Interfacing sensors with ESP32

» Sending emails using SMTP

« Sending WhatsApp and Telegram messages using the Messaging Services API

o Writing tweets

Throughout this chapter, we will provide comprehensive step-by-step instructions,
practical examples, and hands-on guidance to help you create a smart plant
monitoring system. By the end of this journey, you will not only have a flourishing
plant but also a deeper understanding of loT, messaging services, and the
integration of APIs, making you a proficient developer in the realm of loT and
smart systems.

Technical requirements

For this chapter, we will need the following hardware and software components:
o ESP32 dev kit
o Capacitive soil moisture sensor
o DHT22 temperature and humidity sensor
» Google account
e The CallMeBot API
e The Twitter API
« WhatsApp and Telegram accounts
All the code files used in this chapter will be available at

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter6

First, let’s interface the sensors that will help us gather some useful data from our
plant.

Interfacing sensors with ESP32

In our first topic, we’ll dive into the foundational step of our project: connecting and
interfacing two crucial sensors with the ESP32 microcontroller. These sensors —
the moisture sensor and the DHT22 temperature and humidity sensor— play pivotal
roles in providing essential data for our smart plant monitoring system. The

moisture sensor allows us to monitor soil moisture levels, ensuring our plant

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter6

receives the optimal amount of hydration, while the DHT22 sensor provides
valuable insights into the surrounding environment, including humidity and
temperature data. This initial phase sets the stage for our project’s success by
establishing the means to gather critical information about the plant’s well-being
and its immediate surroundings. We’ll explore the wiring, configuration, and data
retrieval from these sensors, laying a strong foundation for the interconnected
ecosystem we aim to create for our smart plant.

In this section, we will learn how to connect these sensors with ESP32 and read
the data from these sensors. Let’s start by connecting them to ESP32.

Connecting the sensors

In the previous chapters, we interfaced the DHT22 sensor with ESP32, which
helps us to read environmental data such as temperature and humidity. We will
also be adding the moisture sensor. When choosing the moisture sensors, there
were two options: capacitive and resistive. We chose to use capacitive moisture
sensors, which operate on the principle of capacitance. This is the ability of two
conductive materials separated by a non-conductive material (dielectric) to store
electrical charge. In the context of a capacitive moisture sensor, the sensor’s
probes or electrodes act as the conductive plates, and the soil or medium being
measured acts as the dielectric. When the sensor is inserted into the soil, the
moisture content in the soil affects its dielectric properties. Dry soil has a low
dielectric constant, while moist soil has a higher dielectric constant. As the
moisture level changes, the capacitance between the sensor’s electrodes also
changes. The sensor measures this change in capacitance, which is then
correlated to the soil’'s moisture content. By monitoring the capacitance variations,
the sensor provides an accurate and real-time indication of soil moisture levels,
making it a valuable tool for applications such as plant monitoring and irrigation
control.

The following figure provides a visual guide, specifying the pins and their
corresponding functions:

Capacitive Soil e.
Moisture Sensor v1.0

fritzing
Figure 6.1 — ESP32 connection diagram with moisture and DHT22 sensors

Let’'s summarize the connection.

DHT22 has four pins; VCC is connected to 3.3V, though you could connect it to the
Vin pin of ESP32. The SDA of DHT22 is connected to the D13 pin of ESP32, and
the GND of DHT22 is connected to the GND of ESP32. There is one more pin in
DHT22 labeled as NC that will not be connected to any pin. The DHT22 sensor
uses the single-wire serial communication protocol in which only one data line is
applied for data exchange and data control in the system (SDA).

The capacitive soil moisture sensor has three pins. VCC is connected to the Vin
pin of ESP32, GND is connected to the GND of ESP32, and AOUT is the analog
output pin that we connected to the D34 pin of ESP32.

After making the connection, you will have to place the soil moisture sensor inside
the soil of the plant, as shown in the following figure:

Figure 6.2 — How to place the moisture sensor

After making the connections, we must write the code to read the environmental
values of the plant.

Reading the sensor data

Let’s open the Arduino IDE and upload the following code to the ESP32
microcontroller. This code will help us read the sensor data and print it on the
serial monitor. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%206/Read_sensors:

#include <DHT.h>
//Sensors interfacing & parameters

#define DHTPIN 13 // DHT22 data pin

#define DHTTYPE DHT22 // DHT22 sensor model

#define MoistureSensor 34 // Moisture pin

DHT dht (DHTPIN, DHTTYPE);

int moisturePin = MoistureSensor;

int moistureThresholds[] = {300, 700}; // Adjust these thresholds for

your setup
int tempThreshold = 30;
int humidityThreshold = 40;

String getMoistureStatus (int value) {

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%206/Read_sensors

if (value < moistureThresholds[0]) {
return "Dry";
} else 1f (value >= moistureThresholds[0] && value <=

moistureThresholds[1]) {
return "Ok";
} else {

return "Wet";
}
}

This program continuously reads sensor data and generates messages about the
plant’s condition, particularly its moisture status. Let’s break down the code step by
step:
 Library and sensor definitions:
e The code includes the DHT library for the DHT22 sensor

» |t defines the DHT22 data pin as DHTPIN (pin 13) and specifies the sensor model as
DHT22

|t also defines the moisture sensor pin as MoistureSensor (pin 34)

o The thresholds for moisture levels are set in moistureThresholds, the
temperature threshold is set as tempThreshold, and the humidity threshold is set
as humidityThreshold

The setup () function:

e The setup () function initializes the serial communication for debugging and starts
the DHT22 sensor

The loop () function:

» Inthe loop () function, sensor readings are continuously taken at regular intervals

Sensor readings:

e The readTemperature and readHumidity functions read the temperature and

humidity values from the DHT22 sensor

¢ The readMoisture function reads the moisture value from the moisture sensor

The PlantMessages function:

 The PlantMessages function generates a message based on the sensor readings
and thresholds

« |t also checks if the temperature is above the threshold and if the humidity is below
the threshold, appending messages accordingly

+ Finally, it compiles all the messages into a summary message, including moisture

status, values, and environmental conditions, and returns it

e The getMoistureStatus function:

e The getMoistureStatus function determines the moisture status (Dry, Ok, or Wet)
based on the moisture value and predefined thresholds

o Serial output:

 The summary message generated in the PlantMessages function is printed to the
Serial Monitor

o Delay:

* The code includes a delay of 20 seconds (delay (20000)) to control the rate at
which sensor readings and messages are generated

This code essentially monitors the plant’s vital parameters, checks if the soil is dry,
and provides messages regarding the plant’s condition, helping users decide when
to water the plant based on temperature, humidity, and soil moisture.

Now, we will upload the preceding code to ESP32 using the Arduino IDE and open
the serial monitor. Depending on the plant’s environment status, we will receive
messages such as those as shown in the following figure:

Moisture Status is Dry. I need Water MNow.

The weather is hot, which causes the soil to dry out more quickly. I will need
water more frequently.

Low Moisture Level, Water evaporates quickly. I will need water Frequently.
Summary of Data:

Moisture Status : Dry

Moisture Value : 8

Temperature : 42.18

Humidity : 18.88

Moisture Status is Dry. I need Water MNow.

The weather is hot, which causes the so0il to dry out more quickly. I will need
water more frequently.

Low Moisture Lewvel, Water evaporates quickly. I will need water Frequently.
Summary of Data:

Moisture Status : Dry

Moisture Value : @

Temperature : 42.18

Humidity : 18.06

Figure 6.3 — Sensor data on the serial monitor

This figure shows that the sensors have been interfaced successfully, and we can
see the relevant messages on the serial monitor. In the next section, we will send
these messages to the email address.

Sending emails using SMTP

Simple Mail Transfer Protocol (SMTP) is a fundamental communication protocol
that’s used for sending electronic mail (email) messages over the internet. It
operates as a set of rules and conventions that enable email clients or servers to
transmit messages to their intended recipients. SMTP governs the process of
routing, relaying, and delivering emails, making it a core component of email
communication worldwide. Its simplicity and efficiency make it a widely adopted
protocol for ensuring the reliable exchange of electronic messages across diverse
email platforms and services.

In this section, we’ll dive into the integration of SMTP within our ESP32-powered
smart plant monitoring system. Email communication proves to be an invaluable

tool in keeping plant enthusiasts informed about the well-being of their green
companions. By harnessing the power of SMTP, our system can send email
notifications and updates directly to the user’s inbox. Whether it’s alerting you
about dry soil conditions or extreme temperatures, or simply sharing routine plant
health reports, SMTP enables seamless communication between your ESP32
device and your preferred email service.

To enable email sending through ESP32, we’ll need to configure our Gmail
account to grant access to the ESP32 application by setting up the necessary
authentication credentials.

Setting up a Gmail account to send emails using
ESP32

Follow these steps to configure our Gmail account for sending emails:

1. First, go to https://myaccount.google.com/u/1/.

2. Click on the Security tab.

3. Under How you sign into Google, click on 2-Step Verification:

How you sign in to Google

Make sure you can always access your Google Account by keeping this information up to date

@ 2-Step Verification 2-Step Verification is off >
2 Passkeys Start using passkeys >
==+ Password Last changed Aug 20, 2022 >

Figure 6.4 — Setting up 2-Step Verification in our Google account

4. Follow the required steps to enable 2-step verification. It will probably ask you to enter your
phone number.

5. Once 2-step verification has been enabled, search for app password and select it from the

search results:

https://myaccount.google.com/u/1/

Google Account Q_ app password X

4 RESULTS
@ Home A Password Manager
“ Security
|;§| Personal info

— Password

r“ Personal infa, Security
Data & privacy FA—1

l::a pPpp

Security

> 0

Security
E Web & App Activity

’ Data & privac
2 People & sharing A

@

Payments & subscriptio Q_ Search Help Center for "app password" >

About

©

Basic info

Figure 6.5 — Setting up an app password for ESP32

6. In the App passwords area, select the other (custom name) and write the name of the device
— for example, ESP32:

< App passwords

App passwords let you sign in to your Google Account from apps on devices that don't support 2-Step
Verification. You'll only need to enter it once so you don't need to remember it. Learn more

You don't have any app passwords.
Select the app and device you want to generate the app password for.

ESP32 X

GENERATE

Figure 6.6 — Setting up app passwords

7. Then, click on GENERATE; the password for your device will be generated, as shown here:

Generated app password

Your app password for your device

...

How to use it

Go to the settings for your Google Account in

securesally@gmail.com the application or device you are trying to set
up. Replace your password with the 16-
Password character password shown above.

Just like your normal password, this app
password grants complete access to your
Google Account. You won't need to remember
it, so don't write it down or share it with
anyone.

DONE

Figure 6.7 — App password for ESP32

8. Copy the app password for your device; we will use this in our code.

Now that we have configured the password for ESP32 to send emails, we will
move on to the next step and write the code for sending the messages.

Writing code for sending emails using ESP32

We will upload the following code to ESPP32 using the Arduino IDE. This code will
help us send emails using our Gmail account. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%206/Send_Email:

#include <DHT.h>

#include <WiFi.h>

#include <ESP Mail Client.h>
//Sensors interfacing & parameters
//WiFi Credentitals

#define WIFI SSID "Your WIFI SSID"
#define WIFI PASSWORD "WIEFI PASSWORD"

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%206/Send_Email

//Email Credentials

Serial.println (msqg);

sendEmail (msqg) ;

delay (10000) ;
}
//readTemperature function
//readHumidity () function
//readMoisture () function
//PlantMessages function
//getMoistureStatus function

Here’s an explanation of the code:

e The following libraries are included:

o DHT.h: This library is used to interface with the DHT22 temperature and humidity
sensor

e WiFi.h: This library provides the functions needed to connect ESP32 to a Wi-Fi
network

e ESP_Mail Client.h: This library enables ESP32 to send emails using the SMTP
protocol

o Sensor and parameter definitions:

* The code defines some parameters related to sensors and Wi-Fi credentials. Use the
sensor and parameters variables from the previous code (which we used in the
Reading the sensor data section); we also defined WIFI_SSID, WIFI_PASSWORD,
SMTP_server, SMTP_Port, sender email, sender password,
Recipient_email, and Recipient_name. These parameters are used to

configure the Wi-Fi connection and the email-sending process.

o Wi-Fi connection:

e connectWiFi (): This function is responsible for connecting the ESP32
microcontroller to the Wi-Fi network specified by WIFI_SSID and WIFI_PASSWORD.
It continuously attempts to connect to Wi-Fi and prints status messages until a
successful connection is established.

e Sending emails:

e sendEmail (const String& messageText): This function is used to send an
email. It sets up an SMTP session with the SMTP server, configures the email
message (sender, recipient, subject, and content), and then sends the email. If the
email is sent successfully, it prints a message. If there’s an error, it prints the error

reason.

e The setup () function:

e setup (): Inthe setup () function, ESP32 initializes serial communication, connects
to Wi-Fi using connectWiFi () and initializes the DHT sensor (temperature and

humidity sensor) with dht.begin ().

e The loop () function:

e loop(): The main loop () function continuously reads temperature, humidity, and
soil moisture values, creates a message using the PlantMessages function, prints
the message to the serial monitor, and sends the message as an email using the
sendEmail function. It then waits for 10 seconds before repeating the process.

IMPORTANT NOTE

The code references functions such as readTemperature (), readHumidity (),
readMoisture (), PlantMessages, and getMoistureStatus. You could place these
functions from the previous code. Also, copy the sensor and parameters definition from the
previous code.

This code provides a basic framework for monitoring environmental conditions and
sending email notifications using an ESP32 microcontroller. To use it, you will need
to customize credentials so that they match your specific setup.

After uploading the code, the following results will be sent to the email you

provided:

¢« @ 0 §F B8 0 ¢ @ D

ESP32 Plant Updates bes s

{0 Mg -

@ = ——

Morsture Status s Dry. | need Water Now
Summary of Data:

Maosture Status © Dry

Molsture Value © 0

Tempemature - 24 00

Humedity - 40.00

. ~
(h Reply ,: (r’ Forward II

Figure 6.8 — Receiving emails from ESP32 regarding plant updates

In this section, we learned how to send an email using ESP32 using SMTP. In the
next section, we will move forward and use the CallMeBot API to send WhatsApp
and Telegram messages.

Using the CallMeBot API to send
WhatsApp and Telegram messages

The CallMeBot API is a powerful tool that enables users to seamlessly send
WhatsApp and Telegram messages programmatically. This versatile API simplifies
the process of integrating messaging services into applications, making it
accessible for a wide range of purposes. Whether it's sending automated
notifications, alerts, or personalized messages, developers can harness the
capabilities of CallMeBot to enhance user engagement and communication. By
leveraging this API, businesses and individuals can create innovative solutions
that connect with their target audience via WhatsApp and Telegram, enriching their
digital interactions and streamlining communication channels. With the CallMeBot

API, messaging integration has never been easier, providing a versatile platform
for modern messaging needs.

In this section, we will add more functions to our project that will enable us to send
WhatsApp and Telegram messages. We will start with the WhatsApp messages.

Setting up WhatsApp messages

To send WhatsApp messages using the CallMeBot API, follow these steps to set
up the environment:

1. First, we will have to add +34 644 51 95 23 as a phone number to our phone contacts:

1:00 R W R Ad12%0

X Create contact :

Add picture

— First name

= WhatsApp bot

Last name

E Company

— Phone

Ra | +34644 519523 X

— Label
Mobile v l

Phone l

— Label
Work v l

B | Email \

— Label ‘

Home v

Figure 6.9 — Saving the CallMeBot API's WhatsApp number

2. Then, send a message stating I allow CallMeBot to send me messages {0 the new

contact that we created using WhatsApp:

& Messages are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them. Click to learn more.

+ (2) 1allow callmebot to send me messages

Figure 6.10 — Giving permission to CallMeBot

3. Wait until you receive a message stating API Activated for your phone number.
Your APIKEY is XXXXXX from the bot:

CallMeBot API Activated for [N

Your apikey is: 7380670

You can now send messages using the APL
i.callme tsapp.php?

Send Stop to pause the Bot.
Send Resume to enable it again.

Figure 6.11 — Receiving the API key for WhatsApp from CallMeBot

4. Now, paste the link provided into your browser:

= C @& apicallmebot.com/w -

Message to: —-—I--LE
Text to send: This is a test

Message queued. You will receive it in a few seconds.

Figure 6.12 — Testing the API using a browser

5. You will receive a WhatsApp message:

| allow callmebot to send me messages |, oy, ./

CallMeBot API Activated for 447
Your apikey is: 7380670

You can now send m es using the API.
p?

Send Stop to pause the Bot.
Send Resume to enable it again.

1UNREAD MESSAGE

This is a test ,

:03 PM

Figure 6.13 — Receiving a test message from the CallMeBot APl on WhatsApp

As you can see, we have received a message on our WhatsApp account. In the
following section, we will set up the environment for receiving Telegram messages,
followed by the ESP32 code for both.

Setting up Telegram messages

Now, we will set up the CallMeBot API to send Telegram messages. Follow these
steps:

1. Paste https://api.CallMeBot.com/text.php?

user=@myusernameé&text=This+is+a+test+from+CallMeBot into your browser (replace the

username with your own):

veer: HEEEEN

Teals Thiv iv a Losl [oum CallM=Bul
ETML format: no

Freview Links: no

Ezxzor: Pormission denicd fox _ You mecd to authorize CallMcBot to contact this wosex - s

Click hers to Authenticate _md then try again.

Telegram Error Code: 400

Figure 6.14 — Setting up the CallMeBot Telegram API

2. If you get a permission denied error, click here to authenticate; an authentication page will
Q o

Telegram Authentication

Hello, Login using the button below to allow CallMeBot

open:

APl to send you messages

+gd Log in with Telegram

By signing up, you are indicating that you have read and

agree to the Terms of Use and Privacy Policy.

Figure 6.15 — Telegram Authentication

https://api.callmebot.com/text.php?user=@myusername&text=This+is+a+test+from+CallMeBot

3. Click on Log in with Telegram; you will receive a request via Telegram:

A, we received a request to log in on
api2.callmebot.comwith your Telegram account. |

To authorize this request, use the 'Confirm' button I
below.

Browser: Chrome 116 on Windows |
IP: 2a02:2455:179f:5200:1ddc:31ab:0c5F:3117
(Ismaning, Germany)

If you didn't request this, use the 'Decline’ button
or ignore this message. 1:55 pm

Decline Confirm

Figure 6.16 — Authentication request on Telegram

4. Click Confirm. Now, if you paste the aforementioned URL again, you will see the following
page:

E-Q

Telegram Authentication

You are currently logged in CallMeBot as A
(@Photon67000)

You can now send Text Messages to
@Photon67000 using the APl URL below:
http://api.callmebot.com/text.php?
user=Photon670008&text=This+is+a+test+from+CallMeBot

Send a Test Message

By signing up, you are indicating that you have read and

agree to the Terms of Use and Privacy Policy.

Log out”

Figure 6.17 — Authentication successful — Send a Test Message

5. Click on Send a Test Message; you will receive the following message in Telegram:

CaliMeBot API

bot Q

What can this bot do?

CallMeBot can be used to make Telegram voice calls using

aweb API (HTTP GET). Very easy to integrate with your loT
devices and receive calls directly in your phone. Send
/start to get started or /help to get the list of commands.

August 31

You allowed this bot to message you when you logged in on
api2.callmebot.com.

This is a test from Callmebot 1:57 pm

This is a test from Callmebot 1:58 pm

@ Write a message... @ '\QJ

Figure 6.18 — Message received via Telegram

With that, we have received the test messages for both Telegram and WhatsApp
by using a web browser. In the next section, we will update our previous code so
that it will send messages on both platforms using ESP32.

The ESP32 code to send messages on WhatsApp and
Telegram

In this section, we’ll write some code to send Telegram and WhatsApp messages
from the ESP32 microcontroller. We will upload the following code to ESP32. The
code can be found on GitHub at https://github.com/PacktPublishing/Programming-
ESP32-with-Arduino-IDE/tree/main/Chapter%206/Whatsapp_Telegram:

#include <DHT.h>

#include <WiFi.h>

#include <ESP Mail Client.h>
#include <HTTPClient.h>

finclude <UrlEncode.h>

//Sensors interfacing & parameters
//WiFi Credentitals

if (httpResponseCode == 200) {

Serial.println("Telegram message sent successfully!");
} else {

Serial.print ("Error sending Telegram message. HTTP code: ");
Serial.println (httpResponseCode) ;
}

http.end () ;
}
Let’s break down the code step by step:
e The sendWhatsAppMessage function is as follows:

» This function sends a WhatsApp message using an external API

» Input: Message content

It constructs an API URL, makes an HTTP request, and checks the response code

It prints success or error messages accordingly

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%206/Whatsapp_Telegram

e The sendTelegramMessage function is as follows:

It sends a Telegram message using an external API

Input: Message content

It constructs an API URL, makes an HTTP request, and checks the response code

It prints success or error messages accordingly

These functions enable automated messaging through WhatsApp and Telegram,
utilizing external APIs. You need to replace placeholders with your authentication
details and customize message content as needed for your application. Also, we
will have to call these functions in the 100p () function to allow them to send
messages.

Now, we will upload the code to ESP32 and receive the messages via WhatsApp:

WhatsApp bot

& Messages are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them. Click to learn more.

1 allow callmebot to send me messages .., o,
1:02 PM &/

CallMeBot API Activated for 44
Your apikey is: 7380670

Send Stop to pause the Bot.
Send Resume to enable it again.

Thisis atest 2o

Moisture Status is Dry. | need Water Now.

The weather is hot, which causes the soil to dry out more quickly. | will need water more
frequently.

Summary of Data:

Moisture Status : Dry

Moisture Value : 0

Temperature : 47.70

Humidity : 40.00

Figure 6.19 — Plant updates message on WhatsApp

Let’s do the same for Telegram:

CallMeBot API

o Q @ :

What can this bot do?

CallMeBot can be used to make Telegram voice calls using
aweb API (HTTP GET). Very easy to integrate with your loT
devices and receive calls directly in your phone. Send
/start to get started or /help to get the list of commands.

August 31

You allowed this bot to message you when you logged in on
api2.callmebot.com.

This is a test from Callmebot 1:57 pm

This is a test from Callmebot 1:58 pm

September 3

Moisture Status is Ok.

The weather is hot, which causes the soil to dry out
more quickly. | will need water more frequently.
Low Moisture Level, Water evaporates quickly. | will
need water Frequently.

Summary of Data:

Moisture Status : Ok

Moisture Value : 693

Temperature : 40.90

Humidity : 29.00

Figure 6.20 — Plant update message on Telegram

With that, we have learned how to send messages to Telegram and WhatsApp
using ESP32. In the next section, we will use and set up the Twitter API to send
tweet messages.

Publishing update tweets on Twitter

Using the Twitter APl and ESP32, you can easily post tweets, providing a quick
and efficient way to share updates and information on Twitter. In this section, we
will set up the Twitter API so that we can publish the tweets from ESP32.

Setting up the Twitter API

Firstly, we will set up the Twitter API:

1. To publish the tweets on Twitter (now known as X), we will have to create an account. | have
already created an account called @plantNeedWater:

&«

| Edit profile

Figure 6.21 — Twitter @PlantNeedWater account

2. After making an account, sign up for a developer account at https://developer.twitter.com/en.

3. Select the Free account and click on Get started:

XDeveluperPlatfarm Products v Docs v Use Cases v Community v Supportv Developer Portal %

Find the right access for you

Free Basic Pro Enterprise
For write-only use cases and For hobbyists or prototypes For startups scaling their For businesses and scaled
testing the Twitter API business commercial projects
* Rate limited access to suite of
* Rate limited access to v2 v2 endpoints * Rate-limited access to suite of ~« Commercial-level access that

tweet posting and media v2 endpoints, including search meets your and your
upload endpoints 3,000 Tweets per month -

posting limit at the user level

and filtered stream customer's specific needs

« 1,500 Tweets per month -

1,000,000 Tweets per month - « Managed services by a
+ 50,000 Tweets per month

posting limit at the app level Gt at the app level dedicated account team
posting limit at the app level
e 1appID « 300,000 Tweets per month - » Complete streams: replay,
» 10.000 Tweets per month - posting limit at the app level engagement metrics, backfill,
e Login with Twitter read-limit rate cap Sribimore featires
e 3applDs
s Free e 2appIDs

» Monthly subscription tiers

Login with Twitter

Login with Twitter
Get started
« $5,000 per month Apply now

« 3100 per month

Subscribe now

Figure 6.22 — Twitter API plans

4. Click on Sign up for Free Account and then accept the agreement and policy:

https://developer.twitter.com/en

Ready to build on Twitter?

Basic Pro HEW

Twitter's v2 API

Bauild using all of Twitter's powerful v2 AF1 endpaints

Write: 3,000 Tweets per month
Faoet up to 3,000 Tweets per manth

Read: 10,000 Tweets per month

Reftrieve up ta 10,000 Tweste par month

0 It you nead higher levels of accees, click hera to contact us and X
tell ue more about your needs.

510000 USD/month

Subscribe to Basic

Sign up for Free Account

Figure 6.23 — Sign up for Free Account

5. Now, you will have to describe your use case of Twitter’s data and API. You could explain the
project you are doing and, depending on your case, explain it in 250 characters:

Developer agreement & policy

Describe all of your use cases of Twitter's data and AP1:
We need e formahon For dete profecton. Ll mone

B Prgurcd

U | . Tl i :
WO O T Y MO NN B E FECERS VWl TN TWITERF AN

' You wBerEta A piy? Do per BO00unR may B berminaled # you vidlete The Deveioper
Agrermant o by oF the Ingarpioaied Develsper Terma

B vou sccest the Terma & Conditions

[y chouny o B bes, ard by ot wa scoreny B wieng By boerand M rel you rdoats the you
Full [N NPT A A P [LW e N TP TarTee [e e

el -
Figure 6.24 — Developer agreement & policy

6. A developer portal like this will open. Click on Projects & Apps:

Dos v Conmety v Upsass v suwor

Developer
Dashboard
Projects
Default project-1697185026717134848 ,
Sample Apps
bbbt Check out our Bbrary of sample Apes on Gtch and slone ane 1o get started
J—— Pa——— viewsompe A
© 1997185026717135848planiNeedWa & P Bl wetptordons
Docs hame
Make your first request
What to bulld
Piatform overview
About the Twitter API
Aot Projects
AP rafaranca index o
— cooes T — P —— s roms TR [P — R — ~

Figure 6.25 — Twitter developer portal

7. Click on the application ID; it will open this portal. Then, click on Set up under User
authentication settings, as shown in Figure 6.26.

vocs v communty v Upastes v suppor

Developer
Portal

169718502671713484 8plantNeedWa

Settings Keys and tokens

Da
Projects & Apps.

App details
Authentication docs

1697185026717134848pla...
i B AP 1CON
1697185026717134848plantNeedWa Authentication methods

V2 endpoints available with OAuth 2.0

)
27708238

DESCRIPTION
Thi:informtion il be visibi to Beople who've Suthorized your App

This app was created to use the Twitter API

User authentication settings

User authentication not set up
Authentication allows users to log in to your App with Twitter. It also allows your App to make specific requests for
authenticated users.

prvacy coones TwiTTER TEAMS & Conpmons oeveLoPER PouCY B TERMS © 2023 TwrTTER . Fouow swirTeRoEY susscAmE TO DevELOPER NEWS v

Figure 6.26 — Twitter project and apps

8. Specify Read and write under App permissions:

¥ Developer Portal

1697135026717124848plantMNeedWa

User authentication settings

You can change these selections anytime.

App PermissIons (required)
These permissions enable OAuth 1.0a Authentication. ®

() Read
Read Tweets and profile information

@ Read and write
Read and Post Tweets and profile information

(0 Read and write and Direct message
Read Tweets and profile information, read and post Direct messages

* Request email from users
To request email from users, you are required to provide URLs to your
App's privacy policy and terms of service.

Type of App {required)

The type of App enables OAuth 2.0 Authentication. @&
@ Native App @
Public client ®
(O Web App, Automated App or Bot @
Confidential client @
Figure 6.27 — User authentication settings — App permissions

9. For Website URL, enter your website URL or https://www.google.com; write the same for
Callback URI / Redirect URL. The other fields are optional. Then, click Save:

https://www.google.com/

App info

Callback URI f Redirect URL (required) (D

https:/fwww.google.com

+ Add another URI / URL
Website URL (required)

https:/fwww.google.com

Organization name (optional)
This name will be shown when users authorize your App

Organization URL (optional)
This link will be shown when users authorize your App

https://

Terms of service (optional)
A link to your terms of service will be shown when users authorize your App.

https://

Privacy policy (optional)
Alink to your privacy policy will be shown when users authorize your App.

https://

Cancel Save

Figure 6.28 — User authentication settings — App info

10. Now, click on Regenerate under Consumer Keys; then, under Authentication Tokens, click
Generate. This will generate access tokens and secret keys:

1697185026717134848plantNeedWa

Settings Keys and tokens

Consumer Keys
API Key and Secret ® Y TET e gl Regenerate

Authentication Tokens
Bearer Token @ Revoke
Generated August 31, 2023
Access Token and Secret ®

For @plantNeedWater

OAuth 2.0 Client ID and Client Secret

Client ID ® LW1jUUFKemNEV2pvdERGTTNNRTYSMTpjaQ

Client Secret ©® @ Revesl Client Secret hint

Figure 6.29 — Generating leys

11. Copy the generated consumer keys and secrets and access tokens and secrets:

|

Did you save your Access Token and
Access Token Secret?

Did you save your APl Key and APl Key
Secret?

+ Save them in a secure location Save them in a secure [ocation

o T hem like a password or a set of keys
» [f security has been compron generate them
* DO NOT store them in public places or shared docs

s Treat them like a password or a s
* If security has been compromis:
= DO NOT sto

et of keys
regenerate them
hem in public places or shared docs

Access Token

APl Key ®
16! 3312- 5 cof
j4ipQINKyxZHFUacnodMy38wWe Copy i anQxKezZe@OlaF %
API Key Secret) Access Token Secret
! nYBHRX0OKtPTMYF O copy

9DnlbfemRMvruXZEm3pbpHKUFRLTZQVRIY [m] Copy

Yes, | saved them Yes, | saved them

Figure 6.30 — Keys generated

Now that we have created the API keys, we will move on to the next part, in which
we will write code for publishing the tweets.

Code for publishing the plant updates on X/Twitter

We have already set up the API keys that we need to publish the tweet. Now, we
will write the code using the Arduino IDE so that ESP32 can publish the updates
on Twitter as well. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/Chapter%206/twitter:

#include
#include
#include
#include
#include
#include
#include
finclude
#include
#include
#include

<DHT.h>

<WiFi.h>

<ESP Mail Client.h>
<HTTPClient.h>
<UrlEncode.h>
<WiFiClientSecure.h>
"time.h"
<TweESP32.h>
<TwitterServerCert.h>
<UrlEncode.h>
<ArduinoJson.h>

//Sensors interfacing & parameters

//send Tweet

vold sendTweet (const char* tweetText) {
twitter.timeConfig();
client.setCACert (twitter server cert);

bool

success =

twitter.sendTweet (const cast<char*>(tweetText));

if (success) {

Serial.println ("Tweet Sent");

}

Let’s break down the newly added sendTweet function:

e void sendTweet (const char* tweetText): This function is defined with the name
sendTweet. It takes one parameter, const char* tweetText, which is a pointer to a

constant character array. This parameter represents the text of the tweet that you want to send.
The function does not return any value (void).

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%206/twitter

e twitter.timeConfig () ;: This line appears to be a call to a function or method named
timeConfig of an object or library named twitter. It is related to configuring time settings,

for authentication or timestamping purposes when interacting with the Twitter API.

e client.setCACert (twitter_server_ cert) ;: This line sets the Certificate Authority
(CA) certificate for a client object named client. In secure communication, especially when
dealing with APIs over HTTPS, a CA certificate is used to verify the authenticity of the server’s
certificate. twitter_ server cert is likely a variable that holds the CA certificate required to
establish a secure connection with the Twitter APl server.

* bool success = twitter.sendTweet (const_cast<char*>(tweetText)) ;: This line
calls the sendTweet function of the twitter object or library, passing in tweetText as its

argument. However, there’s a type conversion happening here. The function returns a Boolean
value (bool) indicating whether the tweet was sent successfully, and this value is stored in the

success variable.

e if (success) { Serial.println("Tweet Sent"); }: This conditional statement
checks the value of the success variable. If the value is true, it means that the tweet was
sent successfully, and as a result, it prints "Tweet Sent" to the serial monitor as a
confirmation message.

We must make sure that the credentials in the code are updated. Also, it is
necessary to install the TweESP32 library. You can download that by downloading
it as a ZIP file from https://github.com/withessmenow/TweESP32. Then, you can

go to the library manager in the Arduino IDE and click on Add .zip library to
upload the library from the ZIP file. Make sure you install the other libraries in the
code.

IMPORTANT NOTE

Change all the credentials for sending and receiving the messages, such as Telegram username,
WhatsApp number, WhatsApp API key, sender email, sender email password, receiving email,
recipient name, and Twitter APl keys and secrets so that you can use them with your accounts.

After uploading the code, you will be able to see the tweet on your account:

https://github.com/witnessmenow/TweESP32

PlantNccdWater
Moisture Status is Dry. | need Water Now.Summary of Data: Moisture

Status : Dry Moisture Value : 0 Temperature : 24.00 Humidity : 40.00

Figure 6.31 — Plant updates tweet published
Not only the tweet, but the final code will also publish the messages on WhatsApp,
Telegram, and email, as can be seen in Figure 6.32. The final code can be found
on GitHub at https://github.com/PacktPublishing/Programming-ESP32-with-
Arduino-IDE/tree/main/Chapter%206/Final_code:

Message is sent to WhatsApp and Telegram

H } Serrrere s
numbprequest . & sending Mail Recelving Mail H
e"ﬂnd W’h‘:p H Server Internet Server Email Recaive d .
Pimpitone E : @, |

= M =
et ?;: EmailSent : =, > =" > :
A\ o . . \Hﬁ/ — .

.
Email Communication 2
:

Figure 6.32 — Complete project overview

In essence, the project involves utilizing SMTP to dispatch emails through a Gmail
account, as illustrated in the preceding figure. ESP32 interfaces with the
CallMeBot API through HTTP requests, facilitating the transmission of messages
to both WhatsApp and Telegram. Additionally, the project incorporates the
configuration of a Twitter developer account, which furnishes secure credentials for

composing tweets via requests.

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/Chapter%206/Final_code

Summary

In this chapter, we embarked on a comprehensive exploration of loT applications,
focusing on the vital task of environmental monitoring. We began by delving into
the intricacies of reading moisture levels, as well as tracking temperature and
humidity data. These critical measurements provide us with invaluable insights into
our surroundings, enabling us to make informed decisions and take appropriate
actions.

Building upon this foundation, we explored the power of email communication by
employing SMTP. This allowed us to send messages and alerts directly to email
recipients, providing a reliable means of information dissemination and
communication.

Furthermore, we dived into the exciting realm of communication and automation.
Leveraging the CallMeBot API, we honed our skills in sending specific messages
through popular messaging platforms such as WhatsApp and Telegram.

In addition to real-time messaging, we dived into the world of social media and
harnessed the Twitter API to publish tweets. This not only enabled us to share
data and updates with a broader audience but also added an element of public
engagement to our loT projects.

Collectively, this chapter has equipped us with a diverse set of tools and skills for
monitoring environmental conditions and orchestrating meaningful responses.
Whether it's moisture levels, temperature, humidity, or instant messaging through
WhatsApp, Telegram, email, or Twitter, we are now well prepared to design and
implement loT applications that are both informative and interactive.

In the next chapter, we will do another exciting loT project using ESP32 in which
we will learn how to integrate the payment option in our loT projects.

/

Project 2 — Rent Out Your Parking Space

In this chapter, we will complete another exciting project that explores the
intersection of technology, convenience, and practicality. Our mission is to create a
prototype to rent out your parking space, with the help of an ESP32 microcontroller
and the versatile PayPal API.

The concept of renting out your parking space might seem simple, but it's a
brilliant example of how |oT and APIs can be harnessed to streamline everyday
tasks and even generate income. This project not only serves as a prototype but
also lays the foundation for a real-world application that can benefit both parking
space owners and those in need of parking.

In this chapter, we will dive into the details of interfacing the ESP32 with the
parking space, setting up a payment system using the PayPal API, and creating a
seamless user experience for potential renters. We will explore the technical
aspects of monitoring parking availability, accepting payments, and providing
access control to the rented parking space.

However, the real beauty of this project lies in its potential for real-world
application. As we conclude this chapter, we will discuss how this prototype can be
extended to a fully functional service. Imagine a future where your vacant parking
space generates income while helping others find convenient and secure parking.
It's a win-win scenario that embodies the essence of 10T and the power of APlIs in
shaping our daily lives.

In this chapter, we will cover and perform the following applications:
« Interfacing sensors with ESP32
« Integrating the PayPal API

» Creating a user-friendly experience for potential renters

» Real-world implementation and project limitations

« Security concepts in loT

Just like in the previous chapters, we will provide comprehensive step-by-step
instructions, practical examples, and hands-on guidance to help you build your
own parking space rental system. By the end of this chapter, you will not only have
a working prototype but also the knowledge and skills to potentially launch a
profitable parking space rental service. This chapter brings us one step closer to
becoming proficient developers in the world of loT and smart systems, making our
daily lives smarter and more connected. Let’s dive in and discuss the technical
requirements for this project.

Technical requirements

For this project, we will need the following:

e An ESP32 Dev kit board
» A Servo motor

» An ultrasonic sensor

¢ A push button

* An RGB LED

e An SSD1306 OLED

e A PayPal account

Interfacing sensors with ESP32

In this section, we will dive into the hardware of our parking space rental project.
Here, we will explore the integration of a diverse array of sensors and actuators
with the ESP32 microcontroller, enabling us to enhance the functionality and user
experience of our prototype.

Our project relies on the seamless coordination of various components to monitor
parking space availability, handle secure payments through the PayPal API, and
ensure a user-friendly experience. To achieve this, we will connect the ESP32 with

essential components, including an ultrasonic sensor, an SSD1306 OLED 12C
display, a Servo motor, an RGB LED, and a push button.

The ultrasonic sensor enables precise measurement of distances, a crucial aspect
of monitoring parking spaces. The SSD1306 OLED I2C display provides visual
feedback to users, displaying relevant information about parking availability and
transactions. The Servo motor gives us the ability to control physical barriers,
allowing for secure access to rented parking spaces. The RGB LED serves as a
visual indicator, guiding users through the parking process. Finally, the push button
offers a convenient way for users to interact with the system.

Throughout this section, we will explore how to connect and configure each of
these sensors and actuators with the ESP32. We will provide you with detailed,
step-by-step instructions and hands-on guidance, ensuring that you not only grasp
the technicalities of interfacing these components with the ESP32 but also
understand how they contribute to the overall functionality and efficiency of our
parking space rental system.

Let’s start with the connection diagram.

The connection diagram

In this system, the connection diagram is the roadmap to make all the components
work together seamlessly. The SSD1306 display is linked to the I2C pins for data
transmission, and it's powered through VCC and GND to maintain electrical
stability. The button, serving as a user interface element, connects to pin D5 in a
pull-up configuration, and the other pin is connected to GND. Our RGB LED, a
common cathode type,is connected to pin D4 (red), D2 (green), and D15 (blue),
providing a spectrum of visual cues. The Servo motor, facilitating controlled
movement, relies on a power supply connected to GND and VCC, controlling what
happens through pin D14. Lastly, the ultrasonic sensor, the distance-measuring
workhorse, interfaces with the ESP32 by connecting its trigger to D13 and its echo
to D12, allowing us to gauge distances with precision. This meticulously designed
connection diagram is the backbone of our parking space rental system, ensuring

each component collaborates harmoniously in delivering a user-friendly and
efficient experience.

The following figure provides a visual guide, specifying the pins and their
corresponding functions.

Figure 7.1 — The connection diagram

To summarize the connection, the SSD1306 OLED has four pins, and VCC is
connected to the 3.3V; alternatively, you could connect it to the Vin pin of ESP32.
SDA is connected to the D21 pin of ESP32 and SCL is connected to the D22 pin of
ESP32, and we have connected the GND pin to the GND of ESP32 to make sure
the GND is common. The OLED is employed for the user interface of the system.

The ultrasonic sensor, which is used here for the distance measurement, has four
pins as well. The trigger pin of the ultrasonic sensor is connected to the D13 pin of
ESP32, and the echo pin is connected to the D12 pin of ESP32. Furthermore, the
VCC pin and GND pin are connected to the VCC and GND of ESP32, respectively,
for the power. The ultrasonic sensor operates by emitting high-frequency sound
waves, beyond the range of human hearing, measuring the time it takes for these

waves to bounce off an object and return to the sensor. By calculating the “time of
flight” and using the known speed of sound in the air, the sensor can precisely
determine the distance to the object. This distance measurement is then provided
as an output. The trigger pin is used to send the ultrasonic pulse, and the echo pin
outputs the status of the received wave.

The push button is connected to the D5 pin of ESP32 and GND of ESP32; we are
using the internal pull-up for the configuration of the button. The button will be
used to open and close the Servo barrier.

A common cathode RGB LED is an LED with a shared cathode (negative) terminal
for all three-color channels (red, green, and blue), allowing control of each color by
applying a positive voltage independently. The common cathode RGB LED is used
to indicate whether the parking space is available or occupied. It has four terminals
and is connected to the GND of ESP32, while the D4, D2, and D15 pins of ESP32

are connected to the red, green, and blue of the LED, respectively.

The Servo motor is used in this project so we can open and close the barrier, since
we are prototyping this project. The Servo motor has three terminals. VCC and
GND are connected to the VCC and GND of ESP32, and the data pin is connected
to D14 of ESP32.

After making the connections, we can write the code to read the distance using the
ultrasonic sensor.

Reading the distance using the ultrasonic sensor

We will open the Arduino IDE and upload the following code to the ESP32 to read
the distance, using the ultrasonic sensor. The code is available on GitHub
(https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%207/Reading_distance):

const int trigPin
const int echoPin
const int redPin = 4;

const int greenPin = 2
const int bluePin = 15;

= 13;
=12

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%207/Reading_distance

int distanceRange = 50;
void setup () {
Serial.begin(115200) ;
pinMode (trigPin, OUTPUT) ;
pinMode (echoPin, INPUT) ;
pinMode (redPin, OUTPUT) ;
pinMode (greenPin, OUTPUT) ;
pinMode (bluePin, OUTPUT) ;
}
void loop () {
int distance = getdistance();
delay (1000) ;
}
int getdistance () {
long duration;
int distance;
digitalWrite (trigPin, LOW) ;
delayMicroseconds (2) ;
digitalWrite (trigPin, HIGH) ;
delayMicroseconds (10) ;
digitalWrite (trigPin, LOW) ;
duration = pulseln(echoPin, HIGH);
distance = (duration / 2) / 29.1;
Serial.println("Distance: " + String(distance));
if (distance > distanceRange) {
digitalWrite (redPin, LOW) ;
digitalWrite (greenPin, HIGH) ;
} else {
digitalWrite (greenPin, LOW) ;
digitalWrite (redPin, HIGH) ;
}

return distance;

}
The code begins by defining some constants — trigpPin and echoPin specify the
pins for the ultrasonic sensor, and redpin, greenPin, and bluePin Specify the pins
for the RGB LED. distanceRange is set to 50, representing the threshold distance
to change the LED color.

In the setup () function, the serial communication is initiated at a baud rate of
115200, and the specified pins are set to either output (to trigger the ultrasonic
sensor and control the LED) or input (to read the echo from the ultrasonic sensor),
as already discussed in the The connection diagram section.

The 100p () function continuously runs the main logic. It starts by calling the
getdistance () function to measure the distance using the ultrasonic sensor. Then,

there’s a one-second delay before the next measurement.

The getdistance () function triggers the ultrasonic sensor by sending a pulse from
trigPin. It measures the time taken for the ultrasonic waves to bounce off an
object and return to the sensor via echorin. The distance is calculated using the
speed of sound (29.1 ms for a meter) and the time of flight, which is equal to
duration, and for our calculation, we have used duration / 2 because the pulse
will travel to the object and, after reflection, will travel back to the sensor. The
distance is printed to the serial monitor in cm.

Depending on the measured distance, the code changes the LED color. If the
distance is greater than distanceRange, it turns the LED green (indicating that the
object is far). If the distance is less than or equal to distanceRange, it turns the
LED red (indicating that the object is within the specified range).

The distance value is then returned from the getdistance () function.

You will see the following distance results on the serial monitor:

Distance: 46
Distance: 46
Distance: 46
Distance: 46
Distance: 46
Distance: 46
Distance: 106
Distance: 106
Distance: 106

Figure 7.2 — The distance in cm on the serial monitor

Make sure to change the distanceRrange value according to your requirements. In
the next section, we will interface the Servo motor and push button.

Reading the push button and controlling the Servo
motor

Next, we will upload the following code to the ESP32, using the Arduino IDE, to
read the push button and open or close the barrier. The code is available on
GitHub (https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%207/Reading_Pushbutton_controlling_servo):

#include <ESP32Servo.h>
#define BUTTON 5

Servo myservo; // Create a Servo object
const int servoPin = 14;
bool barrier = false;

void setup () {
Serial.begin(115200) ;
pinMode (BUTTON, INPUT PULLUP) ;
myservo.attach (servoPin); // Attaches the servo on the specified pin

}
void loop () {
if (!barrier) {
if (!'digitalRead (BUTTON)) {
openServo () ;
barrier = true;
delay (1000) ;
}
}
if (barrier) {
if (!digitalRead (BUTTON)) {

closeServo() ;
barrier = false;
}
}
}
void openServo () |

Serial.println("Servo open");
myservo.write (0);

}

void closeServo () {
delay (1000) ;
Serial.println("Servo closed");
myservo.write (180);

}
Let’s look at the code:

e #include <ESP32Servo.h>: This line includes the Servo library, which is used for
controlling the Servo motor. Make sure to install this library using the Arduino Library Manager.

e #define BUTTON 5: This defines a BUTTON constant with the value 5, representing the GPIO

pin where the button is connected.

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%207/Reading_Pushbutton_controlling_servo

e Servo myservo;: This line creates a Servo object called myservo, which will be used to

control the servo motor.

e const int servoPin = 14;: This defines another constant, servoPin, which specifies

the GPIO pin where the servo motor is connected.

bool barrier = false;: This Boolean variable barrier is used to keep track of the state

of the barrier (Servo). When the barrier is £alse, the barrier is considered closed, and when

it's true, the barrier is open.

e void setup(): The setup () function is used for initialization tasks. It does the following:

Initializes serial communication at a baud rate of 115200.

Sets the BUTTON pin as an input with a pull-up resistor. This means that the button

will read LOW when pressed and HIGH when released.

Attaches the myservo object to the GPIO pin specified in servoPin.

» void loop(): The loop () function is where the main program logic is executed repeatedly.

It does the following:

Checks the state of the barrier

If the barrier is not currently open and the button is pressed (i.e., the !barrier and
'digitalRead (BUTTON) conditions are met), it calls the openServo () function,
which opens the barrier, sets the barrier to true, and adds a delay of one second

If the barrier is open (the barrier is true) and the button is pressed, it calls the

closeServo () function, which closes the barrier and sets the barrier to £false

The following truth table shows the status of the barrier and the button.

Barrier | Button Status

0 0 Button is pushed to open the barrier.

1 0 Button is pushed to close the barrier.

0 1 Barrier is open. Waiting for the button press.
1 1 Barrier is closed. Waiting for the button press.

Table 7. 1 — The truth table for the status of the barrier and the button

» void openServo (): This function is responsible for opening the Servo barrier. It sets the
angle of the Servo motor to 0 degrees, representing the open position. It also prints "Servo

open" to the serial monitor.

e void closeServo (): This function is used to close the Servo barrier. It sets the angle of the
Servo motor to 180 degrees, representing the closed position. It adds a delay of one second to
give the barrier time to close and then prints "Servo closed" to the serial monitor.

In the next section, we will display a Quick Response (QR) code on the SSD1306
OLED, which will open a PayPal payment link when scanned.

Showing a QR code on the OLED

QR codes function as two-dimensional barcodes that encode information in a
matrix of black squares arranged on a white background. Each QR code can store
various types of data, such as text, URLs, or contact information. The code’s
pattern serves as a visual representation of data that can be quickly and
accurately scanned by a QR code reader, typically found in smartphones. The
information is then decoded, enabling users to access the embedded content, link
to websites, or perform other actions without manual input.

Next, we will upload the following code, using the Arduino IDE, to the ESP32,
showing the PayPal payment link as a QR code on the SSD1306 OLED. The code
is available on GitHub (https://github.com/PacktPublishing/Programming-ESP32-
with-Arduino-IDE/tree/main/chapter%207/QRCode_OLED):

finclude <Wire.h>

#include <Adafruit GFX.h>

#include <Adafruit SSD1306.h>

#include "qrcode.h"

#define SCREEN WIDTH 128

#define SCREEN HEIGHT 64

#define OLED RESET -1

Adafruit_SSDl306 display(SCREEN_WIDTH, SCREEN_ HEIGHT, &Wire,
OLED_RESET) ;

QRCode grcode;

String paypallLink = "https://paypal.me/username"; //insert your paypal
link from here

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%207/QRCode_OLED

void setup ()
{
Serial.begin(115200) ;
if (!display.begin(SSD1306 SWITCHCAPVCC, 0x3C)) {
Serial.println(F("SSD1306 allocation failed"));
for (;;);
}
showScantoPay () ;
}
void loop ()
{
}
void showScantoPay (void)
display.clearDisplay ()
display.setTextSize(2); // Change the font size to 2
display.setTextColor (WHITE) ;
uint8 t grcodeData[qgrcode getBufferSize(3)];
grcode initText (&grcode, grcodeData, 3, 0, paypallink.c str());
int scale = 2; // Change this for different sizes
for (uint8 t y = 0; y < grcode.size; y++)
{
for (uint8 t x = 0; x < grcode.size; x++)

{

{

’

if (grcode getModule (&grcode, x, Vy))
{
display.fillRect(x * scale, y * scale, scale, scale, WHITE);

}
display.setCursor (65, 5); // Adjust the position as needed
display.println ("Scan") ;
display.setCursor (65, 25); // Adjust the position as needed
display.println("to");
display.setCursor (65, 45); // Adjust the position as needed
display.println("Open.");
display.display () ;

}

Let’s review the code:
e The libraries include:
* Wire.h: This library is used for 12C communication

e Adafruit GFX.hand Adafruit_ SSD1306.h: These libraries are used to control
and display graphics on the SSD1306 OLED display

e "grcode.h": This is a custom library for generating QR codes

Make sure to install these libraries using the Arduino Library Manager.

o The constants:

* SCREEN_WIDTH and SCREEN_ HEIGHT: These constants define the width and height
of the OLED display in pixels.

* OLED_RESET: This constant specifies the reset pin for the OLED display. In this code,
it's set to -1, which means it's not used.

e Object initialization:

» Adafruit SSD1306 display (SCREEN WIDTH, SCREEN HEIGHT, &Wire,
OLED_RESET): An instance of the Adafruit_SSD1306 class is created. This object
is used to control the OLED display.

¢ Global variables:

e QRCode grcode: An instance of the QRCode structure is created. This is used to

generate the QR code.

e String paypalLink: This variable holds the URL or text that will be encoded into
the QR code. Make sure to add your username at the end of the PayPal link.

e The setup () function:
o Serial communication is started at a baud rate of 115200.

» The OLED display is initialized using display.begin (SSD1306_SWITCHCAPVCC,
0x3C) . If the initialization fails, it prints an error message and enters an infinite loop.

* The showScantoPay () function is called to display the QR code and message on
the OLED screen.

e The loop () function:

e The loop () function is empty, as there are no continuous tasks to perform in this

code

e The showScantoPay () function:

I. This function displays the QR code and message on the OLED display.

I. It clears the display using display.clearDisplay ().

[ll. The QR code is generated using the qrcode_initText () function from the custom
QRCode library. The QR code is created based on the paypalLink string.

IV. The QR code is then displayed on the OLED screen by drawing white rectangles for
the QR code modules, using display.fillRect ().

V. A text message, "Scan to open the barrier", is added to the display, using

display.setCursor () and display.println().

VI. Finally, the content is displayed on the OLED using display.display ().

The output of the code is shown in the following figure:

Em‘:\ﬁ; Open .

Figure 7.3 — The QR code on the SSD1306 OLED

In the next section, we will set up Webhooks to receive a PayPal notification
whenever someone makes a payment.

Integrating the PayPal API

In this section, we will set up the Webhooks that will enable us to receive a
notification related to the payment in the ESP32. To set up the Webhooks, we will
complete the following steps:

1. Firstly, we will go to https://www.webhook.site and get a unique URL, as highlighted in the

following figure:

https://www.webhook.site/

B XHR Redirect Settings B CORS Headers | W Auto Navigate = M Hide Details | More ~

Webhook.site lets you easily inspect, test and create advanced scripts and wt or any incoming HTTP request or e-mail. V a webhook?

Any requests or emails sent to these addresses will be logged here instantly — you don't even have to refresh!

" Waiting for first request.
Your unique URL

https://webhook.site/df23f2ff-1b38-452c-8c4b-928elc437ced

Your unique email address

df23f2ff-1b38-452c-8c4b-928elc437ced@email .webhook.site

Figure 7.4 — A unique URL on Webhook.site

2. Then, to test our Webhook, we will use the PayPal Instant Payment Notification (IPN)
simulator. It will help us to simulate the payment notification for testing. To access the IPN
simulator, go to https://developer.paypal.com/dashboard/ipnsimulator using your web browser.

3. Paste the unique URL into the IPL URL handler, and select Web Accept as the transaction
type.

Instant Payment Notification (IPN) simulator

@ On December 8 we will stop supporting IPN Simulator. You can bookmark the page to keep accessing

Trigger a simulated payment to view payment notifications instantly. Confirm that fields are being parsed correctly

using the IPN simulator.

General information

IPN handler URL
https://webhook.site/df23f2ff-1b38-452c-8c4b-928e1c437ced

Transaction type

Web Accept

Figure 7.5 — The PayPal IPN simulator

4. For testing, leave all other values to default, and then go to the bottom of the page and click on
Send IPN.

https://developer.paypal.com/dashboard/ipnsimulator

Show all fields

Figure 7.6 — Sending an IPN using the IPN simulator

5. You will receive the data at https://www.webhook.site, as shown in the following figure:

Request Details Headers
connection
hos

#00c9a 66.211.170.66 content-length

10/22/2023 7:01:07 PM

3925df3e4b content-type

accept

Query strings Form values
(empty) payment_type
payment_date Oct 21, 2023 PDT
payment_status
address_status
payer_status

first_name

payer_email sandbox.com
payer_id
address_name

untry

untry_code

Figure 7.7 — The IPN received at Webhook.site

Now, we have set up the Webhook, and we have successfully received the data at
Webhook . site but we will need to receive this data in ESP32 to decide whether the
payment has been made or not.

Receiving PayPal notifications in ESP32

The notifications received from PayPal are in the JavaScript Object Notation
(JSON) format. JSON is a lightweight data-interchange format that is easy for
humans to read and write, and also straightforward for machines to parse and
generate. It is primarily used to transmit data between a server and a web
application as an alternative to XML. JSON employs a simple and clear structure,
representing data as key-value pairs within objects, which can be nested to create
complex structures. Arrays, which are ordered lists of values, also play a crucial

https://www.webhook.site/

role in JSON. The format supports various data types, including strings, numbers,
Booleans, objects, arrays, and null values. Its simplicity, universality, and human-
readable nature make JSON widely adopted in web development and data

exchange scenarios.

To receive the PayPal notification in ESP32, we will upload the following code in
the ESP32 using the Arduino IDE. The code is available on GitHub
(https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%207/Reading_webhook_paypal):

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>

#include <NTPClient.h>

#include <WiFiUdp.h>

#include <time.h>

WiFiUDP ntpUDP;

NTPClient timeClient (ntpUDP, "pool.ntp.org");

bool parseTimestamp (String timestampStr, struct tm &createdTime) {
if (strptime(timestampStr.c str(), "%Y-%m-%d SH:%M:%S",
&createdTime)) {
return true;
} else {
Serial.println("Failed to parse timestamp.");
return false;

}

Let’s review the code:
» We have included the following libraries:

e #include <WiFi.h>: This includes the Wi-Fi library to enable wireless network

communication

¢ #include <HTTPClient.h>: This imports the HTTPClient library to make HTTP

requests

¢ #include <ArduinoJson.h>: This includes the ArduinodJdson library to parse
JSON data

e #include <NTPClient.h>: This imports the NTPClient library for time
synchronization using the Network Time Protocol (NTP)

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%207/Reading_webhook_paypal

#include <WiFiUdp.h>: This includes the WiFiUdp library for UDP
communication

#include <time.h>: This imports the time library for time-related functions

¢ Global variables and constants:

WiFiUDP ntpUDP: This defines a UDP object for NTP time synchronization

NTPClient timeClient (ntpUDP, "pool.ntp.org"): This initializes the NTP
client with the UDP object and NTP server address

ssid and password: Variables that store the Wi-Fi network SSID and password
apiKey: A variable that stores an API key used for authentication
url: The URL of the web service where payment data is retrieved

LastModifiedHeader: Stores the “Last-Modified” header received from the server

Make sure to change apikey, url, ssid, and password.

e The setup () function:

Initializes serial communication with a baud rate of 115200
Connects to the specified Wi-Fi network (ssid and password)

Uses a while loop to wait until the ESP32 successfully connects to the Wi-Fi

network

Prints a message to the serial monitor when the connection is established

e The loop () function:

Repeatedly calls the checkPayment () function at a regular interval of 6 seconds
(6,000 milliseconds)

e The checkPayment () function:

Responsible for checking and processing payment data.
Declares a string variable, amountPaid, to store the payment amount.

Sets the timeLimitMinutes to 2, which is the time limit for processing payment
data. Data older than two minutes will be considered old.

Updates the time using NTP and gets the current epoch time.

Checks whether the ESP32 is connected to the Wi-Fi network.

Creates an HTTPClient object called http to make an HTTP GET request to the
specified URL.

Adds headers to the HTTP request, including "accept," "api-key," and “If-
Modified-Since’ if lastModifiedHeader is not empty.

Executes the HTTP GET request and stores the HTTP response code in httpCode.

If the request is successful (HTTP_CODE_OK), it parses the JSON response using the

parseJsonData () function.

If the response indicates that there is no new data (HTTP_CODE_NOT MODIFIED), it
prints a message.

If there is an HTTP error, it prints the error code.
If the request fails to connect, it prints a failure message.

The function ends by closing the HTTP connection and returning the payment amount
as an integer.

e The parseJdsonData () function:

This parses the JSON response received from the server to extract payment data

The function takes the JSON payload, a reference to amountPaid, the current time,

and the time limit as parameters
It uses the ArduinoJson library to deserialize the JSON data

It parses timestamp, calculates the time difference, and checks whether the data is
within the time limit

If the data is within the time limit, it extracts and prints the payer’s name, email, and
amount paid

If the data is too old, it prints a message and returns false

e The parseTimestamp () function:

This parses a timestamp string and populates the createdTime structure

The function returns true if parsing is successful and false otherwise

After uploading the code, send an IPN notification using the IPN simulator, and you
will see a similar output in the serial monitor. Test it a few times by changing the
payer's name, email, and mc_gross (i.€., Amount paid):

Connecting to WiFi...
Connected to WiFi

Mame: Asim Zulfigar

Email: buyer@paypalsandbox.com
Amount Paid: 12.34

Figure 7.8 — An IPN notification in the ESP32 serial monitor

Now that we have completed and understood the important parts of this project,
we will combine everything to complete it.

Creating a user-friendly experience for
potential renters

By now, you will have noticed that the code contained in each of the preceding
sections was just a small part of this project. In this section, we will combine
everything to create a user-friendly experience for potential renters. The following
is the flow chart for this project:

Program running

show SCREEN_PAYMENT

payment successful

show SCREEN_PAYMENT SUCCESS

car is inside parking

show SCREEN_CLOSE

barmier 1s closed

show SCREEN_OPEN

car is not inside parking

show SCREEN_CLOSE

delay(6000)

end

Figure 7.9 — The project flow chart

The preceding flow chart shows the flow of the commands and instructions for
various scenarios — that is, when the payment has not been made and the car is
not parked or parked, and when the payment has been made and the car is
parked or not. The flow chart will help us understand and create a logic to write the
final code of the project. The final code has all the functionalities that we have
previously discussed in this chapter. It will wait for the button press, read the
sensor data, wait for the payment, and show the parking status on the OLED. The
code is available on GitHub (https://github.com/PacktPublishing/Programming-
ESP32-with-Arduino-IDE/tree/main/chapter%207/Rent_out_Parking_Complete):

#include <Wire.h>
#include <Adafruit GFX.h>
#include <Adafruit SSD1306.h>
#include "grcode.h"
#include <WiFi.h>
#include <HTTPClient.h>
#include <Arduinodson.h>
#include <NTPClient.h>
#include <WiFiUdp.h>
#include <time.h>
#include <ESP32Servo.h>
enum ScreenStatus

case SCREEN OTHER:
display.setTextSize (1) ;
display.println("Some other screen");
break;

}
display.display () ;

}
The libraries that are included in this code were discussed in the previous section.
An enum named screenstatus is defined to represent different screen states of
the parking system. We have used two flag variables, parked and barrier, to track
the parking status:

» The main loop function operates in two main states — when the car is not parked and when

the car is parked. The flow chart in Figure 7.9 illustrates the flow of the main 1oop function:

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%207/Rent_out_Parking_Complete

+ While the car is not parked:
» Continuously checks for the barrier to be lifted (using a button press)

« If the button is pressed, it opens the barrier, updates the screen, and sets
the barrier flag to true

* While the car is parked:

« Displays the payment screen, checks for the payment status using
checkPayment (), and waits for successful payment

» When payment is successful, it opens the barrier, updates the screen, and
waits for the car to leave before resetting the parking state

» The updateDisplay () function is responsible for updating the OLED display to show
different screens or information based on the current currentScreen state.

e Screen detection:

« The function begins by checking whether currentScreen is different from
lastScreen. This check ensures that the display is only updated when the screen

state changes.

* QR code generation (SCREEN_PAYMENT):

e When currentScreen is set to SCREEN_PAYMENT, the code generates a QR code
with the PayPal payment link (paypalLink) and displays it on the OLED screen.

This allows users to scan the QR code for payment.

« Displaying content:

» For each screen state, specific content is printed on the OLED screen. This content
includes instructions, messages, and, in the case of SCREEN_PAYMENT, the QR code.

» Displaying an update:

» After configuring the display for the current screen state, the display.display ()

function is called to update the OLED display with the new content

After uploading the code, you will see the following state — the barrier is closed,
and the OLED shows SCREEN_PARKING.

ESP32

LLLLLLLLL L]

12 e ST [B S OO oop DM v g

Paid parking!

Neess button to open.
Fay while le:ving.
Using Faspzl.

Figure 7.10 — The initial stage of the project

When you push the button, the barrier will open, and the OLED will show
SCREEN_OPEN, as shown in the following figure:

ESP32

TLE
ARRRRRRLRLRR
WA
T

T e DT o e OO

I

|

- n--n: 5
i .

® yuuse
Miewre Ngarad
Park: Car .

PFress kutton
5 Clocs .

Figure 7.11 — The OLED and Servo status when the button is pressed and the barrier is closed

Now, as the OLED suggests that the barrier has opened, you can park your car
now. When the user parks the car and then you press the button again, we will see
the QR code on the OLED and that the barrier is closed, as shown in the following
figure:

Figure 7.12 — The Servo and OLED status when the barrier is closed, and the QR code for the

payment is shown on the OLED

Now, when the user returns, they will not be able to access the door with the
button press. They will have to scan the QR code; when scanned, the PayPal user
interface will open. They will have to pay $1, and once the payment is successful,
we will get a notification in ESP32 using the Webhook, get the following response
on the OLED, and the barrier will open:

Figure 7.13 — The OLED and Servo status when the payment is successful

Now, the OLED suggests the user removes the car from the parking space, and it
will keep the barrier open unless the distance is greater than distanceRange. When
the distance read by the ultrasonic sensor is greater than distancerRange, ESP32
will assume that the car has been removed, and it will go back to the initial screen
and the barrier will close.

Figure 7.14 — The project’s initial stage

Once the project is in its initial stage, the door can be accessed using the push
button. Next, we will discuss future enhancements and real-world implementation.

Real-world implementation and project
limitations

The project we have developed is a prototype that employs a Servo motor to
simulate the function of a barrier gate. In actual operational scenarios, it's
important to note that the SG90 Servo motor used in this prototype is insufficient to
serve as an effective barrier gate. In practical applications, a dedicated parking
barrier system is required, which, depending on its configuration, can be integrated
with the ESP32. An example of a more robust setup might involve using a relay
board to control the barrier, as shown in Figure 7.15.

pay §$1 to access
parking space.

Sean ta Pay an
Paypal.

Figure 7.15 — A practical implementation of the project

Additionally, for real-world scenarios, access to a parking space should only be
granted after a successful payment. In our prototyping, we used the PayPal IPN
simulator to test payment functionality. To get notifications when someone pays
you on PayPal, we will complete the following steps:

1. Log in to your PayPal account and go to Settings.

2. Go to the Seller Tools tab, and then click on the Instant payment notifications option.

’ Home Send and Request Wallet Activity Help [} £ LoGouTt

Account Security Data and Privacy Payments Notifications Seller Tools

]
Seller tools

Sell online easily and grow your business with Seller Tools. Create PayPal buttons, get
instant payment notifications, and do much more.

Selling online

PayPal buttons

Create and manage secure buttons for your customers to add items to their cart, buy, donate,
or subscribe.

.&n Website preferences

Control how you sell online by turning on express checkouts and bringing customers back to
your website after they pay with PayPal.

‘ Instant payment notifications

Stay informed by turning on notifications for payments made on your website.

Figure 7.16 — PayPal | Seller Tools
3. Click on Choose IPN Settings.

<~ Back to My Profile

Instant Payment
Notification (IPN)

Instant Payment Notification (IPN) is a PayPal feature that sends
messages about payments (and other transactional events) directly
from PayPal to your website(s)' back-end systems. You can view up
to 28 days worth of messages. You can also:

» Resend messages not received by your website(s)' back-end
systems

» Temporarily stop receiving messages (useful when performing
maintenance on your back-end systems)

Messages are generated but stored at PayPal until you start
receiving them again.

Use the IPN feature in these situations:

* Your service provider, cart provider or website developer has
asked you to

* You have back-end systems that require IPN messages to
automate business processes, such as creating shipping
notifications and inputs to accounting applications.

Learn more about the IPN feature.

To start or stop receiving IPN messages and to decide where to send
them, click the Choose IPN Settings button.

Choose IPN Settings

Figure 7.17 — PayPal IPN settings

4. Paste your Webhook unique URL into the notification URL and enable the notifications.

<~ Back to My Profile

Edit Instant Payment
Notification (IPN) settings

PayPal sends IPN messages to the URL that you specify below.

To start receiving IPN messages, enter the notification URL and
select Receive IPN messages below. To temporarily stop receiving
IPN messages, select Do not receive IPN messages below. PayPal
continues to generate and store IPN messages until you select
Receive IPN messages again (or turn off IPN).

Notification URL

IPN Messages
) Receive IPN messages (Enabled)

o Do not receive IPN messages (Disabled)

Save Cancel

Figure 7.18 — Setting up IPNs

Now, whenever a payment is made to your account, you will receive an IPN and
will be able to control the barrier accordingly. Next, we will discuss the limitations

of the current setup.

Current project limitations

The project we have completed showcases a parking space prototype with certain
limitations:

« Limited payment security: The prototype lacks a secure payment processing mechanism,
and payment data is exposed through a public webhook service, posing significant security
risks

» User authentication: User authentication and authorization are not implemented in the
prototype, leaving the system open to unauthorized access and usage

« Data privacy concerns: The system does not address data privacy concerns or regulatory
requirements to handle sensitive user and payment data

However, this project will enable you to understand the concept of integrating
payment options into your projects at a basic level. In the next section, we will
briefly discuss security concepts in 10T, just to give you a very basic idea of
security in loT.

Security concepts in loT

In the field of the Internet of Things (loT), ensuring robust security is paramount
to safeguarding connected devices and the data they generate. Several key
security concepts are integral to fortifying loT ecosystems. Some of them are
defined here:

» Authentication: Authentication is a critical security concept in 0T, verifying the identity of
devices and users seeking access to a network. This process involves confirming the
legitimacy of entities through various mechanisms such as passwords, biometrics, or digital
certificates. By implementing strong authentication protocols, 10T systems can stop
unauthorized access and mitigate the risk of compromised devices compromising the entire
network.

« Encryption: Encryption plays a pivotal role in securing data transmitted between loT devices
and networks. Employing encryption algorithms ensures that the information exchanged
remains confidential and tamper-resistant. Both symmetric and asymmetric encryption methods
are applicable in IoT contexts, allowing for the protection of sensitive data from interception and
unauthorized access.

e Public or Private Key Infrastructure (PKI): PKI forms the backbone of secure communication
in loT. PKI utilizes pairs of public and private keys to facilitate secure data exchange. In the loT

context, these keys enable encrypted communication and authentication. The public key is
openly shared, while the private key remains confidential, ensuring the integrity and
confidentiality of the transmitted data.

By integrating these security concepts, 0T ecosystems can establish a robust
defense against unauthorized access, data breaches, and other potential threats,
thereby fostering a secure and trustworthy interconnected environment.

Summary

In this chapter, we embarked on a practical project focused on enabling the rental
of parking spaces, through the integration of Webhooks and PayPal IPN. To bring
this project to life, we used various components, including ultrasonic sensors,
Servo motors, and OLED displays in the prototyping phase. These components
allowed us to create a system that facilitates the access and payment process for
parking spaces.

Looking ahead to the next chapter, we will delve into the development of a data
logger, expanding our exploration of loT applications into a different realm. This
project promises to further extend our understanding and practical skills in the
realm of loT.

8

Project 3 — Logging, Monitoring, and
Controlling using ESP32

In this chapter, we will start another exciting journey to explore the capabilities of
the ESP32 microcontroller in the realm of home automation and monitoring. The
mission of this chapter is to demonstrate how ESP32 can be harnessed to
enhance the convenience, security, and efficiency of your daily life.

Our focus will be on logging, monitoring, and controlling various aspects of your
home using the versatile ESP32 platform. We’ll deploy sensors in key areas such
as the kitchen, bathroom, bedroom, and living room to collect valuable data. This
data will be efficiently stored in an InfluxDB database, providing a robust
foundation for analysis and monitoring.

The heart of our monitoring system lies in Grafana, a powerful tool that allows us
to visualize and gain insights from the data collected. We'll delve into the technical
aspects of setting up Grafana, creating informative dashboards, and setting alert
mechanisms for a proactive approach to home management.

But that’s not all! We’'ll take home automation a step further by integrating a servo
motor to simulate control of the main door. This dynamic feature will be
orchestrated through the Message Queuing Telemetry Transport (MQTT)
protocol, enabling you to remotely manage access to your home with ease and

security.
In this chapter, we will cover the following main topics:

 Interfacing sensors with ESP32 for monitoring temperature, light, and motion in various areas
of the house

o Setting up InfluxDB Cloud and logging the data
e Creating a user-friendly dashboard in Grafana

« Controlling the main entrance gate using the MQTT protocol

Just as in our previous chapters, we'll provide comprehensive step-by-step
instructions, practical examples, and hands-on guidance to assist you in building
your own home monitoring and control system. By the end of this chapter, you'll
not only have a fully functional home monitoring system, but you’ll also possess
the knowledge and skills to extend it to meet your unique needs and preferences.

Technical requirements

For this project, we will need the following:
e An ESP32 board
» Servo motor
* PIR motion sensor
» Light-detecting resistor module
o DHT22 temperature and humidity sensor
« InfluxDB Cloud account (free account)
» Grafana cloud account (free account)

» HiveMQ public MQTT broker

All the code files used in this chapter will be available at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%208

Interfacing sensors and actuators with
ESP32

In this section, we’ll dive into the hardware components of our home monitoring
and control project. Here, we will explore the seamless integration of a wide range
of sensors and actuators with the ESP32 microcontroller, allowing us to transform
our ordinary home into a smart and efficiently managed living space.

Our project hinges on the precise coordination of various elements to log data and
monitor different rooms in our home, offering us valuable insights and control. To

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%208

achieve this, we will connect the ESP32 microcontroller to a set of essential
components, including DHT22 sensors, motion sensors, Light Dependent
Resistor (LDR) modules, and an additional servo motor for the living room.

Each room in our home as depicted in Figure 8.1, will be equipped with a set of
sensors. The DHT11 sensors will provide temperature and humidity data, the
motion sensors will detect human presence, and the LDR modules will measure
light levels. These sensors work in tandem to collect data from each room, giving
us a comprehensive understanding of the environment.

Kitchen Bed Room

Living Room
Entry

G

Grafana

>

Figure 8.1 — Project scenario and technical requirements

In the living room, we’ll take home automation to the next level by incorporating a
servo motor. This motor will be controlled using the MQTT protocol, allowing us to
simulate a door lock. With this added functionality, you can remotely control
access to your living room, enhancing both convenience and security.

Throughout this section, we will guide you through the process of connecting and
configuring each of these sensors and actuators with the ESP32 microcontroller.

Let’s start our journey by examining the connection diagram and bringing our
smart home vision to life.

Connection diagram

For each of the rooms, except the living room, we have a consistent setup of
sensors to log and monitor the environment. Each room features a DHT sensor for
temperature and humidity, an LDR module for light levels, and a motion sensor for
detecting human presence.

The connections for these sensors are as follows and can be seen in Figure 8.2:
o DHT sensor:
e VCC: Connected to a 3.3V or 5V power source

e GND: Connected to the ground (0V)

» Data (D12): Connected to pin D12 on the ESP32 microcontroller

o LDR module:
* VCC: Connected to a 3.3V or 5V power source
e GND: Connected to the ground (0V)

o Data (D13): Connected to pin D13 on the ESP32 microcontroller

+ Motion sensor:
* VCC: Connected to a 3.3V or 5V power source
* GND: Connected to the ground (0V)

o Data (D14): Connected to pin D14 on the ESP32 microcontroller:

L]

m
n
0
W
N

|
i
E
i
:
-1
o
g
=
3
=
B
F
i

8 oid DT DN OB 000 O ool O Y W

Figure 8.2 — Connection diagram for the kitchen, bathroom, and bedroom on the ESP32
microcontroller
For the living room, we introduce an extra component, the servo motor, which is
utilized to simulate a door lock. It will be triggered when we receive an MQTT
message, as shown in Figure 8.3:

Plot all data in the Grafana

Saves all data in InfluxDB dichEasia
database
Kitchen data r\
() 49
A
' ~’ Grafana
P
%“a"oo
&
&
&/ &
F/
S
o
g
x
-
a
4
qi\':"'ﬁ MQTT broker Publish door open value
e’ on button press on topic
07
e -,;035 o \o©
oV e
1‘2"“&‘_:5@%?'&
fﬂﬁ'

Figure 8.3 — Project data flow
The connections for this motor are as follows and can be seen in Figure 8.4
e Servo motor (living room):
« Data (D15): Connected to pin D15 on the ESP32
* VCC: Connected to a 3.3V or 5V power source

* GND: Connected to the ground (0V):

Figure 8.4 — Connection diagram for the living room

This connection diagram ensures that each component in every room works
together seamlessly to log data and provide real-time monitoring, enabling efficient
data collection and control while maintaining electrical stability and user-friendly
functionality.

After making the connections, we can write the code to read the sensor data.

Reading the sensor data

We will open the Arduino IDE and upload the following code to the ESP32
microcontroller so that it can read the sensor data using the DHT22, motion
sensor, and LDR. The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%208/read_sensors:

#include <Adafruit Sensor.h>
#include <DHT U.h>

void setup ()

{

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%208/read_sensors

Serial.begin(115200) ;
setupSensors () ;

}

void loop ()

{

readSensors () ;
delay (1000) ;
}

Let’s review the code:

» The code starts by defining the pins for the sensors: DHTPIN for the DHT22 sensor, LDR for the

light-dependent resistor, and motionsensor for the motion sensor.

» The setupSensors () function is responsible for initializing the sensors. It begins by
initializing the DHT sensor and getting sensor information. It also sets pinMode for the LDR

and motion sensor as inputs.

* The readSensors () function reads data from the sensors. It retrieves temperature and
humidity data from the DHT sensor, motion sensor state, and light level from the LDR. Then, it
prints the data to the Serial Monitor.

e Inthe setup () function, serial communication is initiated at a baud rate of 115200, and the
setupSensors () function is called to initialize the sensors.

e The loop () function continuously reads sensor data using readSensors () and then adds a
delay of 1 second before the next reading.

You will see the following results on the serial monitor:

Temperature : 26.20
Hamidibly = 25.00
Motion @ 1

Laght = 0
Temperature : 26.20

Figure 8.5 — The sensor’s data printed on the serial monitor

Next, we will send the data to the InfluxDB database. For that, we will set up an
InfluxDB Cloud account.

Setting up InfluxDB Cloud and logging the
data

InfluxDB is a high-performance, open source time series database designed for
efficiently storing and querying timestamped data. It is particularly well suited for
applications that collect and analyze data that changes over time, such as sensor
readings, application metrics, and system monitoring data.

Time series data is a type of data where each data point is associated with a
specific timestamp. It is used to record changes or measurements over time,
making it ideal for tracking trends, patterns, and historical data. In time series data,
time is a critical dimension, and the data points are typically sorted in chronological
order.

For example, let’s consider a DHT sensor that measures temperature and
humidity. The sensor records readings at regular intervals and stores them with
timestamps. Here’s a simplified representation of time series data from a DHT

Sensor:
Timestamp Temperature (°C) Humidity (%)
2023-11-01 10:00:00 25.2 45.3
2023-11-01 10:05:00 254 45.2
2023-11-01 10:10:00 25.25 45.6
2023-11-01 10:15:00 25.3 45.2

Table 8.1 — The DHT sensor as time series data

In this example, the DHT sensor records temperature and humidity measurements
at 5-minute intervals, and each data point is associated with a specific timestamp.
This chronological arrangement of data points allows you to analyze how
temperature and humidity change over time, making it a classic example of time

series data. InfluxDB is an ideal database for efficiently storing and querying such
data.

Cloud database setup

First, we will set up the InfluxDB Cloud database to log the data in the database.
To do this, we will follow these steps:

1. First, go to https://www.influxdata.com/products/influxdb-cloud/.

2. Click on Log In and then select Log in to InfluxDB Cloud 2.0, as shown in Figure 8.6:

ContactUs Login

Log in to InfluxDB Cloud 2.0

Log in to InfluxDB Enterprise

| Log in to InfluxDB Cloud 1.x

e ‘

Figure 8.6 — Log in to InfluxDB Cloud 2.0

3. Complete the login procedure using your Google account, Microsoft account, or email address,
as shown in Figure 8.7:

https://www.influxdata.com/products/influxdb-cloud/

Continue with

GOOGLE

MICROSOFT

LOG IN SIGN UP

Work Email Address

Password

Figure 8.7 — InfluxDB login screen

4. If you will be logging in for the first time, it will ask you some questions about your role and
organization.

5. Once you've logged in, you will see the Resource Center, as shown in the following figure:

high < > devteam

Resource Center

What would you like to do?

Manage Databases & Security

Create and manage your buckets (data s) & access tokens.

Add Data

Write data into your database with our reporting agent, programmatically, AP, CLI, or upload a CSV or Line Protocol File.

Query Data

Query your data with the Ul, programmatically, or integrate with 3rd party tools.

Visualize & Alert

Integrate with 3rd party tools to visualize your data or set up alerts.

Figure 8.8 — InfluxDB Resource Center

6. First, we'll create a bucket.

WHAT’'S A BUCKET?

A bucket is a fundamental concept that’s used to organize and store time series data. Buckets act
as containers for data and determine how data is retained and queried. Each bucket has its own
data retention policy, which defines how long data is kept and what happens to older data when
new data arrives. This allows you to efficiently manage historical data within InfluxDB. Buckets also
help in partitioning data and access control, making it easier to organize and secure time series
data.

To create a bucket, click on Manage Databases & Security. Then, under
Database Manager, click GO TO BUCKETS, as shown in Figure 8.9:

<> Manage Databases & Security
=z

Create and manage your buckets (datz s) & access tokens.

Database Manager
GO TO BUCKETS

Access Token Manager

GO TO TOKENS

Figure 8.9 — InfluxDB — Manage Databases & Security

7. There, you will see all your buckets. Let’s create a new bucket. To do so, click + CREATE
BUCKET, as shown in Figure 8.10:

Load Data

BUCKETS

Sort by Name (A » Z) + CREATE BUCKET

House data What is a Bucket?

A bucket is a named
location where time
+ ADD DATA SETTINGS serles data Is stored. All
buckets have a
Retention Period, a
ol duration of time that
_monltorlng each data point persists.
System Bucket
Here's
into your bucket.

_tasks

System Bucket

Figure 8.10 — How to create a bucket in InfluxDB

8. Name the bucket Home data and click on CREATE, as shown in Figure 8.11:

Create Bucket

Name

Home data

Data Retention Preferences

DELETE OLDER THAN

CANCEL CREATE

Figure 8.11 — InfluxDB — Create Bucket

9. Once the bucket has been created, you will see the bucket in the list and some information
under that, such as bucket ID. We will copy and save this bucket ID and the bucket's name,
which is Home data. In this case, we will need this ID while logging data:

Home data

Copy to Clipboard

Click to Copy to Clipboard
+ Add alabel

Figure 8.12 — InfluxDB bucket name and ID

10. Furthermore, we will need the cluster URL and organization ID. To get that, click on the
organization’s name on top, as shown in Figure 8.13 (in my case, it is dev team). Then, click
Settings:

high ¢ > dev team

Reso| @ Settings

) Members
What woul

& Usage

Irity

ases) & access tokens.

MM Add More Organizations

Add Data

Write data into your database with our reporting agent, programmatically, API, CLI, or upload a CSV or Line Protocol File.

Query Data

Query your data with the Ul, programmatically, or integrate with 3rd party tools.

Visualize & Alert

Integrate with 3rd party tools to visualize your data or set up alerts.

Figure 8.13 — InfluxDB organization settings

11. A settings page will open, as shown in the following figure. Copy and save the Organization ID
and Cluster URL (Host Name) values:

Organization Profile Common IDs

Name User ID

dev team @c87ac@lef97chde

COPY TO CLIPBOARD ¢ RENAME COPY TO CLIPBOARD

Cloud Provider Region Location Storage Type Organization ID

AWS us-east-1 US Eas

Cluster URL (Host Name) COPY TO CLIPBOARD dev team | Organization ID

COPY TO CLIPBOARD

Figure 8.14 — InfluxDB — Organization ID and Cluster URL (Host Name)

12. Lastly, we will need an API token. To get that token, click on GO TO TOKENS, as shown in
Step 6 and Figure 8.9. You will see the list of created tokens if you created some previously;
otherwise, click on GENERATE API TOKEN and select All Access API Token, as shown in
Figure 8.15:

+ GENERATE API TOKEN =

All Access APl Token

Custom API Token

Figure 8.15 — GENERATE API TOKEN in InfluxDB

13. Give your token a name and click SAVE:

Generate All Access API Token

This token will be able to create, update, delete, read,
and write to anything in this organization

Description

ESP32 data

CANCEL v SAVE

Figure 8.16 — Generate All Access API Token

14. Now, you need to copy and save the token as you will not be able to access it again. You will
be notified of this, as shown in Figure 8.17:

You've successfully created an API Token X

Make sure to copy your new custom API token now. You won't be able to see it again!

bBMEntYBjCmhEEhcxAcLOFSn4mTsLFuPHUX_XCkr
5071UrnEkQ5yQ4w==

COPY TO CLIPBOARD

Figure 8.17 — Copying the InfluxDB API token

With that, we have set up InfluxDB Cloud to log the data from ESP32 and gathered
the required data, which includes the bucket name, bucket ID, organization ID,
cluster URL, and API token. We will use all these credentials in our code to log
data in the ESP32 microcontroller.

Logging data to InfluxDB

To log the data, we will need the credentials that we gathered in the previous

section and make sure we change them with our credentials. Then, we will upload

the following code using the Arduino IDE to ESP32 so that we can log the sensor
data to the bucket in InfluxDB. The code can be found on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-

IDE/tree/main/chapter%208/kitchen_data:

#include <Adafruit Sensor.h>
#include <DHT U.h>

#include <WiFiMulti.h>
#include <InfluxDbClient.h>
#include <InfluxDbCloud.h>
// InfluxDB configuration

const char* INFLUXDB URL = "ClusterURL"; // cluster URL
const char* INFLUXDB TOKEN = "API Token" //api token
const char* INFLUXDB ORG = "org ID"; //organization ID
const char* INFLUXDB BUCKET = "Home data"; //bucket name
void setup () {

Serial.begin(115200) ;

setupWifi () ;

setupSensors () ;

}

void loop () {
readSensors () ;
writeToInfluxDB () ;
delay (1000) ;

}

Let’s take a closer look at the code:

¢ Include the necessary libraries:

» The code includes several libraries, including Adafruit_Sensor, DHT_U for the
DHT sensor, WiFiMulti for managing Wi-Fi connections, InfluxDbClient for
interfacing with InfluxDB, and InfluxDbC1loud for InfluxDB cloud-specific

functionality. Make sure you install them using the Arduino Library Manager.

» Wi-Fi and InfluxDB configuration:

» This sets up Wi-Fi configuration, including SSID and password.

* The InfluxDB configuration includes the InfluxDB URL, API token, organization 1D,
and the bucket name where data will be stored. Make sure you change them with

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%208/kitchen_data

your credentials.

Pin definitions:

» This defines the pins for various sensors and the DHT sensor type (DHT22)

DHT sensor setup:

» This initializes the DHT sensor, sets its type, and retrieves sensor information for
temperature and humidity

Time zone configuration:

 This sets the time zone information (Tz_INFO) for time synchronization

InfluxDB client configuration:

« This configures the InfluxDB client instance with the provided InfluxDB URL,
organization, bucket, and API token

 This initializes a data point (dbdata) named House_data to store sensor readings

The setupWifi () function:
o |t sets up Wi-Fi in Station mode.

» |t attempts to connect to the specified Wi-Fi network using the wifiMulti object and

prints a message while waiting for a successful connection.

The setupSensors () function:
« ltinitializes the DHT sensor and retrieves sensor information
« |t configures the LDR and motion sensor pins as inputs
» |t synchronizes the time with NTP servers for accurate time tracking

» |t checks the connection to InfluxDB and sets tags for the data point

e The readSensors () function:
« |t clears the fields of the dbdata data point to prepare for new data.

It reads temperature and humidity data from the DHT sensor and adds it to the data

point

It reads the motion sensor state, light level from the LDR, and Wi-Fi signal strength
(RSSI) and adds them to the data point

e The writeToInfluxDB () function:

» |t prints the data point in line protocol format to the serial monitor.

|t attempts to write the data point to the InfluxDB database using the InfluxDB client. If
the write fails, it prints an error message.

e The setup () function:
o |t initializes serial communication at a baud rate of 115200

e |t calls the setupWifi () and setupSensors () functions to configure Wi-Fi and
sensors

e The loop () function:

« In the main loop, it repeatedly reads sensor data using the readSensors () function

|t then sends the data to the InfluxDB database using the writeToInfluxDB ()
function

» There is a 1-second delay between each data transmission to avoid overwhelming
the database with rapid updates

Once the code has been uploaded, you will see the following results on the serial
monitor:

Connecting to Wi-Fi
SyREInGg Elme it

Synchronized time: Fri Nowv 3 09:53:27 2023

Connected to InfluxDB: https://us-east-1-l.aws.cloud?2.influxdata.com

Writing: House data,device=kitchen, SSID_

temperature=26.20,humidity=25.00,rssi=-94i,motion sensor=0i,light=0i

Waiting 1 second

Figure 8.18 — Data written to the InfluxDB serial monitor

Now, when you click on the home data bucket that was indicated in step 9 and
Figure 8.11, you will see the following Ul:

high © > devteam Get $260 free credi

Data Explorer
+ New Script ~ B OPEN B SAVE

Schema Browser @ =soLsync
Bucket
Home data -
There is nothing to
configure here

@ Ready (122ms) L csv @ Pastth = k RUN

humidity

1lght itk - St

motion_sensor
rssi devic h moti sor rssi SSID temperature
temperature
- TagKeys kitchen 25 = Wokwi-GUEST 26.2
- SSID
kitchen 25 - Wokwi-GUEST 26.2

- device

Figure 8.19 — InfluxDB data explorer

In the preceding figure, we set Bucket to Home data and Measurement to
House_data. A query will be created automatically that will show us the logged

data in the form of a table or graph.

In the preceding example, we logged the data of the kitchen. Upload the same
code to the other ESP32 microcontrollers in the living room, bathroom, and
bedroom. Make sure you change the device name concerning the room. You can
change it by modifying the #define DEVICE "kitchen" parameter. The code for the
other rooms is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/tree/main/chapter%208.

Once all the devices have been added, you will be able to see all these devices in
the InfluxDB TABLE area, as shown in Figure 8.20:

https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/tree/main/chapter%208

@ - s

device humidity motion_sensor temperature

bathroom Wokwi-GUEST . 20623-11-83T11:14:55.666Z
bathroom Wokwi-GUEST . 2023-11-083T11:15:18.873Z
bedroom Wokwi-GUEST . 2023-11-083T11:15:12.736Z

kitchen Wokwi-GUEST = 2023-11-83T11:15:27.365Z

livingroom Wokwi-GUEST 4 2023-11-83T11:15:06.,184Z

livingroom Wokwi-GUEST 2 2023-11-83T11:15:42.332Z

Figure 8.20 — Data in the form of a table in InfluxDB

Next, we will set up the Grafana cloud to visualize this data.

Monitoring and visualization using the
Grafana cloud

Grafana is an open source platform for data visualization and monitoring. It allows
users to create interactive and customizable dashboards that display real-time or
historical data from various sources, including databases, time series databases
such as InfluxDB, and more. Grafana is widely used for monitoring system
performance, |oT devices, application metrics, and other data sources, making it a
valuable tool for gaining insights from complex datasets through visually appealing
and customizable graphs, charts, and panels.

First, we will set up the Grafana cloud:

1. Go to https://grafana.com/auth/sign-in. Sign in if you already have an account or register if you

are using Grafana for the first time.

2. Once you've logged in, you will have to click on Add Stack, as shown in the following figure:

Grafana Cloud Portal

Get support
Configure your Grafana Cloud resources and manage users, API keys, billing and more. L

This organization does not have any Grafana Cloud Stacks.
Create a stack to get started.

Add Stack

Figure 8.21 — Grafana Cloud Portal

https://grafana.com/auth/sign-in

3. Give your instance a name and click on Add Stack, as shown in the following figure.

Add a Grafana Cloud Stack

There is no cost for adding another stack. All metrics and logs usage is aggregated across stacks.

Instance URL

‘ housedata ‘.grafana.net

v URL available

Select a region
Stacks cannot be migrated to other regions.

‘ US East v

Add Stack

Figure 8.22 — Add a Grafana Cloud Stack

4. 1t will take some time to launch. Once launched, click on Launch under Grafana, as shown in
Figure 8.23. You can explore other options as well, such as Prometheus, which is used for

monitoring data:

housedata

Manage your Grafana Cloud Stack.

@ Grafana Prometheus
Press Launch to start using Grafana or view Details to manage Grafana Set up and manage your Prometheus metrics service.
Plugins.

|#v Active Users: 0 Current Usage: 0 Current Active Series: 0
|~ Active Users: 0

: { = "
m Loki - %" Graphite
2::= Set up and manage your Loki logging service. Set up and manage your Graphite metrics service.
Send Logs Details Send Metrics Details
X
| Ingest Rate: 0 bytes/hr |#¢ Active Users: 0 Active Series: 0

Figure 8.23 — Launching the Grafana stack

5. Once Grafana has launched, it will ask you to add a new connection, as shown in the following

figure. Search for F1ightSQL and select it:

Add new connection

Browse and create new connections

Q flight

If' View all v) 5 Integration & Custom data 21 Cloud app B Data source

\ vy

All Installed New Updates \= Sort by A-Z

8 Data source

Use data sources to build visualizations and queries for your external service data without having to move the data around. (D Data sources

FlightSQL

Figure 8.24 — Adding a new connection in Grafana

6. Click on Install via grafana.com, as shown in the following figure:

Downloads = [s Signature Install via grafana.com

= Version From g
>>> FllghtSQL 1.0.5 InfluxData, Inc. 160,788 {9 Grafana >=9.2.5 & Signed

Github

® Overview

Figure 8.25 — Installing FlightSQL in Grafana

7. Another window will open. Click Install plugin:

housedata.grafana.net
https://housedata.grafana.net Manage instance ‘

FlightSQL not installed

Figure 8.26 — Installing and managing the FlightSQL plugin

8. Once installed, click Manage instance, then Get plugin, as shown in the following figure:

Plugins } FlightSQL

»

Version 1.0.5 v

Figure 8.27 — Get plugin
9. Once the plugin has been installed, go back to Grafana’s main page and navigate to the Add

new connection page, as shown in step 5 and Figure 8.24. Here, click Add new data source:

FI |g htSQL Uninstall via grafana.com Add new data source

Version From Dow ads Dependencies Signature

105 InfluxData, Inc. 160,801 {5 Grafana >=9.25 | @ Signed | |Level: O ity || Signed by: InfluxData, Inc.

Query databases that support Flight SQL transport.

Github | Docs | License | Arrow

Figure 8.28 — FlightSQL plugin added to Grafana

10. The Settings page will open, as shown in the following figure:

tlf Settings

8 Permissions @® Insights @ Cache

Name @ FlightSQL Default]

FlightSQL Connection

Host:Port
Auth Type
Token

Require TLS / SSL
MetaData

Key

v OK

us-east-1-1.aws.cloud2.influxdata.com:443
token
configured

bucket-name Home data

Next, you can start to visualize data by building a dashboard, or by querying data in the Explore view.

Figure 8.29 — FlightSQL plugin — the Settings page

11. We will have to add the following data:

Host:Port: Add the cluster URL without https: // at the start; at the end, add: 443
to the cluster URL

Auth Type: Select Token here
Token: Paste the API token ID of InfluxDB
Require TLS / SSL: Enable this

In MetaData, we will set Key to bucket-name and Value to Home data

12. After adding this data, click Save; you will see a status of OK, as shown in Figure 8.29. Now,

click on building a dashboard, as shown in Figure 8.29. At this point, we are ready to build

our dashboard, as can be seen in Figure 8.30:

Start your new dashboard by adding a visualization

Select a data source and then query and visualize your data with charts, stats and tables or create lists,
markdowns and other widgets.

Add a library panel Import a dashboard

Add visualizations that are shared with other Import dashboard from file or grafana.com.
dashboards.

‘ 1, Import dashboard

+ Add library panel ‘

Figure 8.30 — Adding a new visualization in Grafana

In the next section, we will add visualizations and build the dashboard.

Creating a dashboard and visualizing the data

In this section, we will visualize the temperature, humidity, motion sensor, and LDR
data:

1. Click + Add visualization, as shown in Figure 8.30. We’'ll be asked for the data source, as
shown in Figure 8.31:

Select data source

Q Select data source

FlightSQL

grafanacloud-housedata-alert-state-history

grafanacloud-housedata-cardinality-management

grafanacloud-housedata-graphite

grafanacloud-housedata-logs

grafanacloud-housedata-profiles

grafanacloud-housedata-prom |default

grafanacloud-housedata-traces

grafanacloud-housedata-usage-insights

Figure 8.31 — Selecting FlightSQL as the data source

2. Select FlightSQL; the following user interface will appear:

FlightSQL

Grafana cardinality

Graphite

Grafana Pyroscope

Prometheus

Tempo

Home > Dashboards > New dashboard > Edit panel

You have uncapped usage until November 14, 2023. Upgrade plans to continue using Grafana Cloud with unlimited, pay-as-you-go usage.

Tab (] Fill Actual @ Last6hours ~

Panel Title

No data

B Query 1

Data source FquhlSQL - > Query options MD = auto erval = 20s Query inspector

Figure 8.32 — Newly created empty panel

3. In the Query section, click Edit SQL, as shown in Figure 8.33:

FROM
SELECT
WHERE
GROUP BY
ORDER BY

LIMIT (optional)

Format As Table SQL ‘ Show Query Help

Query

Preview

+ Add query + Expression + Recorded query

' Time series

~ Panel options

Title

Panel Title

Description

Transparent background

> Panel link:

> Repeat options

Tooltip
Tooltip mode

Single

Figure 8.33 — The Query section in the Grafana panel

Add the following query:

select time, temperature as Kitchen from "House data" WHERE

"device"="kitchen'

4. Once this query has been added, you will see the data in the dashboard:

Al

Hidden

Panel Title

275

25

225

20

11:55

== kitchen

Figure 8.34 — Kitchen data graph in panel

5. Now, we will add more queries for the living room, bedroom, and bathroom. To do that, in the
Query section, click on + Add query, as shown in Figure 8.33, and add the following queries
one by one:

select time,temperature as bedroom from "House data" WHERE
"device"="'bedroom'

select time,temperature as livingroom from "House data" WHERE
"device"='livingroom'

select time, temperature as bathroom from "House data" WHERE
"device"="bathroom!'

Now, you will see all four graphs in the visualization, as shown in Figure 8.35.
In the right-hand area, change the panel’s title and unit to Celsius:

Temperature

275°C

25°C

11:55 12:00

== kitchen == bedroom == livingroom == bathroom

Figure 8.35 — Every room’s temperature data in Grafana

6. Save the panel. Similarly, we will create a panel for humidity data using the following queries:

select time,humidity as Kitchen from "House data" WHERE
"device"="kitchen'

select time,humidity as bedroom from "House data" WHERE

"device"="'bedroom'

select time,humidity as livingroom from "House data" WHERE
"device"="'livingroom'

select time,humidity as bathroom from "House data" WHERE
"device"="bathroom'

7. After adding the queries, change the panel’s title and unit to percentage; you will see the

following panel:

Humidity

== kitchen == bedroom == livingroom == bathroom

Figure 8.36 — Every room’s humidity data in Grafana

8. Save the panel. Similarly, you can add the motion sensor and LDR data. The query for the
kitchen motion sensor is as follows:

select time,motion sensor as kitchen from "House data" WHERE
"device"="kitchen'

For LDR, the query is as follows:

select time,light as kitchen from "House data" WHERE
"device"="kitchen'

9. For the other devices, just change the device’s name. Once you’ve done this, you will see the
following dashboard:

0 0
13:50 13:55 13:50 13:55

== kitchen == bedroom == livingroom == bathroom == kitchen == bedroom == livingroom == bathroom

Figure 8.37 — Temperature, humidity, motion, and temperature data added to the dashboard

Furthermore, you can set up alerts in Grafana by going to the Alerts option. The
user interface is very straightforward, and you will just have to follow the provided
steps to create alerts. These alerts can be sent to your email address.

In the next section, we will focus on controlling the main entrance gate.

Controlling the main entrance gate using
the MQTT protocol

In this section, we will learn how we can control the appliances in 0T projects
using the MQTT protocol. We will use the HiveMQ public MQTT broker, whose
credentials are available at https://www.hivemq.com/mqtt/public-mqtt-broker/.

For the living room ESP32 microcontroller, we will upload the following code so
that we can send the data to InfluxDB as well as receive the MQTT message to
control the door lock. The connection diagram for the living room is provided in
Figure 8.4. The code is available on GitHub at
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-
IDE/blob/main/chapter%208/livingroom/livingroom.ino:

#include <Adafruit Sensor.h>
#include <DHT U.h>

#include <WiFiMulti.h>
#include <InfluxDbClient.h>

https://www.hivemq.com/mqtt/public-mqtt-broker/
https://github.com/PacktPublishing/Programming-ESP32-with-Arduino-IDE/blob/main/chapter%208/livingroom/livingroom.ino

//https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino.git
#include <InfluxDbCloud.h>

#include <PubSubClient.h>

#include <ESP32Servo.h>

// WiFi configuration

WiFiMulti wifiMulti;

#define DEVICE "livingroom" //change device name

// Servo setup
Servo doorLock;

int servoPosition = 90; // Initial position
// MQTT settings

const char *mgttServer = "broker.hivemg.com";
const char *clientID = "client ID";

const char *topic = "/door/lock";

WiFiClient espClient;
PubSubClient mgttclient (espClient) ;

Qoid callback (char *topic, byte *payload, unsigned int length)
{ if (strcmp (topic, "/door/lock") == 0)
{ if (payload[0] == '1")
{ // Open the door lock

doorLock.write (0); // Adjust the servo position for the open
state

Serial.println("door opened");

delay (500) ; // Keep it open for 5 seconds

// Close the door lock
doorLock.write (servoPosition); // Return to the initial position

}
void setup ()

{

Serial.begin(115200) ;

setupWifi () ;

setupSensors () ;

mgttsetup () ;

xTaskCreatePinnedToCore (mgttTask, "MQTT Task", 8192, NULL, 1, NULL,
0);
}

The preceding code is like the previous code, except that we added the MQTT
functionalities using Free Real-Time Operating System (FreeRTOS). This is an

open source and highly configurable operating system that’'s designed for
embedded systems and microcontrollers. It provides a small, efficient, and real-
time kernel that supports multitasking, task prioritization, synchronization, and
interrupt handling. FreeRTOS is commonly used in resource-constrained devices
and applications that require real-time responsiveness and reliability. We are using
FreeRTOS for multitasking — that is, running two loops at once. The first loop is for
MQTT and the other loop is to send the data to InfluxDB. The details of RTOS will
be discussed in the next chapter. Let’s take a look at the new functions that were
added to the previous code:

o MQTT communication:

e This sets up an MQTT client to connect to the MQTT broker (in this case,
broker.hivemq. com) with a specified client ID and topic (" /door/lock"). The
callback function handles incoming MQTT messages. If a message with a payload of
1 is received, it opens a simulated door lock using the servo motor.

¢ Reconnect to MQTT:

e The reconnect () function is responsible for re-establishing the MQTT connection in
case it gets disconnected. It subscribes to the specified MQTT topic after
reconnecting.

o MQTT task:

» The code creates a separate FreeRTOS task called mgttTask that manages the
MQTT communication. This is an example of running MQTT in a separate task to
avoid blocking the main loop.

e The xTaskCreatePinnedToCore function is used in the context of FreeRTOS to
create a new task (a thread-like execution unit) that runs in a separate thread of
execution on a specific core of the microcontroller. Here’'s an explanation of its
parameters:

e mgttTask: This is the task function that you want to create and run in a
separate thread. In your code, mgttTask is the name of the function that
handles MQTT-related logic.

e MQTT Task: This is a human-readable name or description for the task. It's

used mainly for debugging and identifying the task in your code. It does not

affect the task’s behavior.

» 8192: This parameter specifies the stack size for the task in words. The
stack is a memory region where the task’s local variables and execution
context are stored. The size you specify is typically in words, and 8192
words will occupy 8,192 * 4 bytes (32,768 bytes or 32 KB) of memory for the
stack.

e NULL: This is a pointer to any parameters you want to pass to the task
function. If your task function requires any parameters, you can pass them
here as a pointer.

» 1: This parameter specifies the priority of the task. Tasks with higher priority
values will run before tasks with lower priority values. The range of priorities
typically depends on the specific FreeRTOS port and configuration but is
usually 0 (highest priority) to the maximum value supported.

e NULL: This is a pointer to a variable that receives the task’s handle. You can
use this handle to manipulate and control the task later, such as suspending
or deleting it.

» 0: This parameter specifies the core on which the task should be pinned. In
your code, it’s set to 0, indicating that the task should run on core 0. If you
have multiple cores available, you can set this to 1 to run the task on core 1.

» Setup:

e Inthe setup () function, serial communication is initialized, Wi-Fi is configured, the
sensors and InfluxDB are set up, and the MQTT client is initialized. Additionally,
mgttTask is created to run the MQTT communication in a separate task.

o Loop:

e The loop () function reads sensor data and writes it to InfluxDB. The MQTT

communication is handled in mgttTask.

After uploading the code, we can test the servo motor using a smartphone app. To
test this, follow these steps:

1. Install the IoT MQTT panel application from the Play Store or App Store:

Rahul Kundu

Contains ads

4.5% 100K+)
1.47K reviews Downloads Everyone ®

loT MQTT Panel ,/\
-

Install on more devices «§ Share

[0 This app is available for all of your devices

Figure 8.38 — loT MQTT Panel on Android

2. Click on SETUP A CONNECTION, as shown in Figure 8.39:

W R0 O R A4 12%0

Connections

You do not have any connection to
communicate with MQTT broker. If you
are using this application for the first
time, we highly recomend to go through
FAQ and User Guide from main menu.

SETUP A CONNECTION

TonerPartner

[> GroBe Auswahl an Tinte & OFFNEN >
w Toner

Figure 8.39 — SETUP A CONNECTION

3. Fill in the credentials with your MQTT broker details, as shown in Figure 8.40:

R e A4 1250

< Add Connection

Connection name *
hiveemg

Client ID
smartphone app

broker.hivemg.com

Port * Metwork protocol
1883 TCP

@
@
Broker Web/IP address * @
@

Add Dashboard .

Additional options A%

TonerPartner o
[> GroBe Auswahl an Tinte & OFFNEN »

% Toner

Figure 8.40 — Add Connection

4. Click on Add Dashboard; you will see the following screen. Give the dashboard a name and
then click Save:

MR- @ D A.d12%0

Add Dashboard

Dashboard name

Door

(® Set as connection home

Door = Doors =@ 3

q1 W2 e3 r4 t5 y6 u? iB 09 pO
a s df gh j k |

z|x|civ|b|n|m|Es

. i3] EN - DE ; .

Figure 8.41 — Add Dashboard
5. After that, save the connection.

6. You will see the connection in the list; click on the connection you have created.

7. You will see the following screen. Click ADD PANEL.:

W W TR A4 1230

Current dashboard does not have any
panel

ADD PANEL

TonerPartner

[> GroBe Auswahl an Tinte & COFFMNEN 3
w Toner

Figure 8.42 — ADD PANEL

8. Select Button:

MR O TR Ad12%0

Select panel type to add X

[=] Button

@ Switch

—e Slider

B TextInput

= TextLog

Z- Node Status
= Combo Box
® Radio Buttons
8 | ED Indicator

Multi-State Indicator

w
lml

d

Progress

Ty
a
‘.0"

©@ © © © © © © © © ®© ©®© ®©

Gauge

@ Color Picker

®

__ 3 Jahre Garantie. 25 Jahre Erfahrung. Uber 1.500.000
> Kunden. SSL gesicherte Bestellung.
X

Figure 8.43 — Panel options

9. Fill in the data and click Create. We will provide Topic and Payload details. When this button
is pressed, the payload will be sent:

CESE W PR

¢ Add a Button panel

Panel name *
door

[[] Disable dashboard prefix topic @

Topic *
Jdoor/lock

[0 No payload (@)

Payload *
1

Button color -

Button size Medium -

Fit to panel width

Use icons for button

O

L]

[[] Payload is JSON Data
[] show sent timestamp
O

Confirm before publish

[(] Retain QoS 0~

TonerPartner
[> GroBe Auswahl an Tinte & OFFNEN 3

w Toner

Figure 8.44 — Add a Button panel

10. A button will appear, as shown in Figure 8.45. Click on the button to send an MQTT message:

MR LW A 11%0

°
TonerPartner

[> GroBe Auswahl an Tinte & OFFNEN 3

 Toner

Figure 8.45 — A DOOR button to open the door

11. When you send an MQTT message, that will also appear on the serial monitor and the servo
motor will move, as shown in Figure 8.46:

Connecting to Wi-Fi
Syncing time.
Synchronized time: Fri Nov 3 14:21:39 2023

Connected to InfluxDB: https://us-east-1-1.aws.cloud2.influxdata.com

Writing: House_data,device=livingroom, SSID=Wokwi-GUEST temperature=26.20,humidity=25.00,rssi=-831i,motion sensor=0i,light=0i
Received message on topic: /door/lock

Message payload: 1

door opened

Figure 8.46 — The ESP32 serial monitor when the door is opened

With that, we have come to the end of this chapter, where we used an InfluxDB
Cloud database to store data and Grafana to visualize it.

Summary

In this chapter, we delved into the world of data logging and visualization for loT
applications. Our focus shifted toward utilizing InfluxDB Cloud for data logging,
harnessing the power of Grafana to create insightful data visualizations, and
implementing MQTT with the HiveMQ public broker to remotely control a door lock.
This chapter extended our practical |oT skills, enabling us to log, analyze, and
visualize data while also providing the means for remote device control.

In this chapter, our focus revolved around leveraging cloud-based solutions for
data storage and visualization, specifically utilizing InfluxDB Cloud and the
Grafana cloud. These platforms, built on the robust infrastructure of Amazon Web
Services (AWS), offer comprehensive application development services.
However, alternative deployment options are also available to provide flexibility to
users.

One viable option is to harness AWS directly, utilizing services such as AWS EC2,
which functions as a virtual machine on the cloud. This approach allows users to
independently install Grafana and InfluxDB, providing a tailored and controlled
environment. Importantly, the installation process in this scenario is cost-free.
However, there will be a cost for the AWS services.

Alternatively, for those seeking a more localized setup, deploying Grafana and
InfluxDB on a Raspberry Pi or even a personal computer is a viable choice. This
local deployment not only offers greater control over the configuration but also
eliminates cloud-related costs. Users can explore these options based on their
specific needs and preferences.

In the upcoming chapter, we will bring our journey in this book to a conclusion. We
will also explore the next steps we can take to further enhance our understanding
of loT and unlock additional capabilities of the ESP32 platform.

9

From Arduino IDE to Advanced loT
Development — Taking the Next Steps

As we approach the final chapter of this informative and practical journey, it is
valuable to revisit the extensive ground we’ve covered while exploring loT through
the lens of the ESP32 microcontroller with the Arduino IDE. In the preceding
sections, we have dived into the foundational aspects of interfacing with ESP32
using the Arduino IDE, exploring communication protocols to facilitate seamless
interaction, and understanding loT data and network protocols. Now armed with
this foundational knowledge, we are ready for advanced development, prepared to
reveal the next tier of opportunities.

In this concluding chapter, we will enhance our proficiency by exploring advanced
development strategies. We will investigate the capabilities of Espressif loT
Development Framework (ESP-IDF), draw comparisons with Arduino IDE
development, and unlock the potential of FreeRTOS and ESP32 by understanding
their features.

The exploration extends to PlatformlO, a versatile development platform that
unfolds new possibilities for efficient and flexible programming. We will discuss the
tip of some more advanced cloud solutions, providing a comprehensive view of the
extensive possibilities awaiting in the loT domain.

As we conclude this journey, the final chapter will present a comprehensive
embedded loT and software roadmap. This roadmap will synthesize the
knowledge you’ve acquired, furnishing a strategic guide for your ongoing
exploration into the field of loT development. The aim is not only to conclude this
book but to prepare you for a future characterized by innovation and mastery in the
dynamic field of IoT.

In this chapter, we will address the following topics:

Power of ESP-IDF: A comparison with the ESP32 Arduino core

Understanding RTOS use cases and features

PlatformlO — an alternative to the Arduino IDE

Enterprise clouds

A complete IoT embedded and software roadmap

Let’s dive into the concluding chapter and unlock the doors to advanced
development with ESP32, shaping a pathway to limitless possibilities.

Power of ESP-IDF

In the first chapter of this book, I highlighted that when it comes to ESP32
development, there are two paths one can take: the ESP32 Arduino core and
ESP-IDF. These are essentially two different toolkits or approaches you can take
to work with the ESP32 microcontroller, each offering its own set of features and
advantages.

The ESP Arduino core, being beginner-friendly, has been used in this book using
the Arduino IDE, but to unlock the full potential of ESP32, ESP-IDF is
recommended, which provides more features and a low-level approach for ESP32
development. In this section, we will explore the power of ESP-IDF and will
compare it with the ESP32 Arduino core, which will give you a starting point to get
started with ESP-IDF.

What is ESP-IDF?

ESP-IDF is an official development framework for ESP32 microcontrollers and
supplies a collection of libraries, tools, and APls tailored for the development of
applications using ESP32 microcontrollers. It provides a variety of features
typically required for loT applications and is structured to deliver a versatile and
comprehensive platform.

A key benefit of the ESP-IDF framework is its complete support for both standard
C and standard C++ programming languages, enabling the creation of efficient

and high-performance code. Furthermore, the major advantage of ESP-IDF over
the Arduino framework is that it receives updates earlier than the Arduino
framework because of its native support.

Moreover, ESP-IDF offers a range of functionalities for constructing loT
applications, including the following:

« Advanced Bluetooth and Wi-Fi connectivity support

* An extensive set of drivers for diverse sensors, peripherals, and communication protocols

» Backing for over-the-air or OTA updates (the capability of remotely updating and upgrading
software or firmware on a device without requiring physical access) and secure boot

 Integration with FreeRTOS, a real-time operating system for microcontrollers. (FreeRTOS is
discussed in the next section)

For additional information on ESP-IDF, refer to the following resources:

o ESP-IDF programming guide: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

» ESP-IDF GitHub: https://github.com/espressif/esp-idf

» Developing loT Projects with ESP32: https://lwww.packtpub.com/product/developing-iot-

projects-with-esp32-second-edition

 Internet of Things Projects with ESP32: https://www.packtpub.com/product/internet-of-things-

projects-with-esp32/

ESP-IDF versus the Arduino ESP32 core

The Arduino ESP32 core used in this book offers a low barrier to entry and is
beginner-friendly, whereas ESP-IDF, being the official development framework,
provides more features and a low-level approach. There are a few additional
differences, as follows:

o ESP-IDF has full support for C and C++ programming languages, while the Arduino platform

also supports these languages but not in the full implementation of them. Therefore, the full
advantage of C and C++ features can be leveraged using ESP-IDF.

» Another difference is in OTA updates. Both platforms support OTA firmware updates, but with
the Arduino ESP32 core, the process is less optimized compared to ESP-IDF; that is, ESP-IDF
offers a more integrated and efficient experience.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://github.com/espressif/esp-idf
https://www.packtpub.com/product/developing-iot-projects-with-esp32-second-edition
https://www.packtpub.com/product/internet-of-things-projects-with-esp32/

« ESP-IDF, as the official development framework, has consistent support for the latest versions
of ESP32 microcontrollers and their features. Any new release of ESP32 ensures full
compatibility and support within the ESP-IDF framework.

To elaborate more, ESP-IDF has several features that are either not present in the
Arduino ESP32 core or have limited support, such as the following:

FreeRTOS support

Support for multi-core CPUs

Efficient memory management and debugging tools

Frequent updates and faster adoption of new ESP versions

The following table illustrates the advantages and disadvantages of both

development frameworks:

ESP-IDF

Arduino ESP32 core

Native FreeRTOS support

= Limited RTOS support

Task-based applications

— setup () and loop () functions

Multi-core by default

= Single core by default

Support for new ESP32
releases

= Limited support for new ESP32
releases

= Less beginner-friendly

Beginner-friendly

== Smaller community

Large community

Table 9.1 — ESP-IDF and Arduino ESP32 core comparison — advantages, and disadvantages

The ESP Arduino core, utilizing the Arduino IDE, is beginner-friendly and boasts a
large community. It is straightforward to initiate using the Arduino IDE. It employs
the C++ programming language, though not in its complete implementation;
nevertheless, it aids in transitioning to ESP-IDF for advanced development.

In this section, FreeRTOS has been frequently referenced; in the next section, we
will dive into its definition and features.

Understanding RTOS use cases and
features

An RTOS is specialized software that manages tasks with precise timing
requirements, ensuring timely execution in embedded systems and applications. It
is designed for applications where a predictable response time is critical, such as
in robotics and industrial control systems (ICS).

To understand an RTOS, we will take an example of the approach that we have
taken in this book of the “super loop architecture,” in which the main program
consists of a continuous loop (a “super loop” or 100p () function) that executes
sequentially. This loop repeatedly performs tasks, checks conditions, and
responds to events, as can be seen in Figure 9.1:

Entry Point

(—) Task1

Task 2

u

Figure 9.1 — Super loop architecture

In contrast, an RTOS allows for the concurrent execution of multiple tasks. In the
case of a multi-core processor, true multitasking is achievable, as can be seen in
Figure 9.2, while on a single-core processor, multitasking is emulated by dividing
CPU time among tasks based on priority. Tasks with higher priority receive more

CPU time and are executed more frequently:

Entry Point

Task1

Figure 9.2 — Task execution in an RTOS

Now that we understand what an RTOS is, we will discuss FreeRTOS in the next

section, which is a version of RTOS integrated into ESP-IDF.

FreeRTOS

FreeRTOS is an open source RTOS kernel that is integrated into ESP-IDF as a
component. ESP-IDF FreeRTOS is derived from vanilla FreeRTOS but
incorporates substantial modifications to both API and kernel behavior to facilitate
dual-core symmetric multiprocessing (SMP) support. SMP is a computational
design in which a single operating system governs and coordinates the activities of
two or more identical CPUs (cores) that are interconnected and share access to a

central main memory.

FreeRTOS example using the Arduino IDE

We can use FreeRTOS using the Arduino IDE as well, but the support is very
limited. However, to show how task creation and execution work in FreeRTOS, we
will perform the following example in the Arduino IDE.

We will take two LEDs and connect them to the D12 and D13 pins, and the
cathode of both LEDs should be connected to the current limiting resistor and then
to the GND pin, as shown in the following diagram:

ESP32

-
-
-
-
-
-
-

Figure 9.3 — LED blinking using RTOS: connection diagram

For each of these LEDs, we will create a task, and each task will contain its own
loop for LED blinking. Here are the steps:

1. Firstly, we will import the necessary libraries:
include <Arduino.h>

#include <freertos/FreeRTOS.h>

#include <freertos/task.h>

2. Then, we will define the pin numbers of the LEDs:

const int ledlPin 13; // Pin number for the first LED

const int led2Pin = 12; // Pin number for the second LED

3. We will create a task function for the first LED, as follows:

void ledlTask (void *parameter) {
pinMode (led1Pin, OUTPUT) ;
while (1) {
digitalWrite (ledlPin, HIGH);
vTaskDelay (500 / portTICK PERIOD MS) ;
digitalWrite (ledlPin, LOW) ;

vTaskDelay (500 / portTICK PERIOD MS);

}

This task is responsible for toggling the first LED on and off at a 500 ms
interval. The vraskpelay function is a part of FreeRTOS and is used to
introduce a delay in a FreeRTOS task. It takes a parameter representing the

time to delay by in ticks, and portTICk PERIOD MS is a constant that represents
the number of ticks per ms.

4. Similarly, we will create a task for the second LED and toggle the LED after every 1 second, as
follows:

void led2Task(void *parameter) {
pinMode (1led2Pin, OUTPUT) ;
while (1) {
digitalWrite (led2Pin, HIGH) ;
vTaskDelay (1000 / portTICK PERIOD MS) ;
digitalWrite (led2Pin, LOW) ;

vTaskDelay (1000 / portTICK PERIOD MS);

}

5. Finally, we will define tasks in the setup () function, as follows:
void setup () {
xTaskCreate (ledlTask, "LED1 Task", 4096, NULL, 1, NULL);
xTaskCreate (led2Task, "LED2 Task", 4096, NULL, 1, NULL);

}

In the setup () function, we create instances of both LED tasks using
xTaskCreate. Each task is assigned a name, stack size (4096 bytes), and
priority (1). The nuLL parameters are used for task parameters and task
handles, which are not needed in this example.

6. Since we are not using the super loop architecture, the 1oop () function will remain empty:

void loop () {
// Empty loop as tasks handles the work in the background

}

The preceding example demonstrates the use of FreeRTOS tasks to concurrently
control two LEDs with different blinking patterns. The tasks run independently in
the background, allowing for simultaneous execution of LED blinking routines.
Now, when you upload the code, you will see the LEDs blinking at different
frequencies.

In conclusion, this example serves as an introduction to the capabilities of
FreeRTOS within the Arduino IDE, providing a glimpse of its task management
features. However, it's essential to recognize that FreeRTOS offers a vast set of
functionalities that can be further explored within ESP-IDF for ESP32. The true
depth of FreeRTOS implementation and integration with ESP32 is revealed in
ESP-IDF, offering a comprehensive platform for advanced development. For a
deeper exploration, refer to the FreeRTOS documentation within ESP-IDF at

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/system/freertos.html.

PlatformlO — an alternative to the Arduino
IDE

PlatformlO is an open source development ecosystem that simplifies embedded
systems development, including the ESP32 microcontroller, and is an alternative to
the Arduino IDE, which developers often use. Unlike the Arduino IDE, which is
more beginner-friendly and limited in features, PlatformlO provides a more robust
and versatile environment for embedded systems development.

It supports a wide range of microcontrollers, including ESP32, and offers advanced
features such as project configuration management, a powerful build system, and
integrated testing. This alternative is particularly popular among experienced
developers seeking a more flexible and efficient development workflow for their
ESP32 projects.

One key benefit of using PlatformlO is that developers can seamlessly develop
ESP32 applications using either the Arduino core or ESP-IDF within the same IDE,
offering them the flexibility to choose the framework that best suits their project
requirements.

Using PlatformlO to upload code to ESP32

In this section, we will delve into the process of utilizing PlatformlO to harness the
capabilities of the ESP32 Arduino core. Also, this section includes a guide that can
help you upload all the code of this book using PlatformlO. We will follow the next
steps:
1. Firstly, make sure you have installed VS Code. VS Code is a powerful yet simple code editor.
The installation process is simple: just download the installation file for your OS and then install

it by running the executable. The installation file can be downloaded from
https://code.visualstudio.com/.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://code.visualstudio.com/

2. Once VS Code is installed, go to the VS Code extension pack, then find and install PlatformIO
IDE extensions. Complete instructions with visuals can be found at
https://docs.platformio.org/en/latest/integration/ide/vscode.htmli#installation.

3. After installing the extension, you can click on the platform extension and select Create New
Project, as shown in the following figure:

PLATFORMIO
* PROJECT TASKS

You have not yet opened

a PlatformlO project.

You can open an E‘Z':"-.Iil"lt':j
Platform|O-based
project (a folder that
contains

Pick a folder
- Quick Access
YOU Can Create a new
PlatformlO Project or
exp lore exam p les usin g

Platform|O Home.

Create New Project

Figure 9.4 — Creating a new project in the PlatformlO IDE

4. A project wizard will open. Give the project a name, select your ESP32 board from the list, and
select a framework. We are selecting Arduino, but here, you have the option to select ESP-
IDF as well. Click on Finish:

https://docs.platformio.org/en/latest/integration/ide/vscode.html#installation

Project Wizard

This wizard allows you to create new PlatformlO project or update existing. In the
last case, you need to uncheck "Use default location" and specify path to existing

project.

Name:

Board: | DOIT ESP32 DEVKIT V1

Framework: | Arduino

Location: [Use default location

Cancel

Figure 9.5 — Project wizard

5. It will take some time to set up the project. Once the project is ready, you will see the following
file structure. The platformio. ini file serves as a pivotal configuration file where
developers define project settings, target platforms, build options, and library dependencies,
providing a centralized and easily shareable blueprint for their embedded systems projects:

~ LED
.pio
vscode
include
lib
Src
» test

.gitignore

T platformio.ini

Figure 9.6 — PlatformlO project file structure
6. The platformio.ini file generated for this simple hello world project has the following

content:

[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor speed = 115200
lib deps =

Arduino

; Add any additional libraries here if needed.

7. Then, we will paste the hello world code that we wrote in Chapter 1 into the main. cpp file

in the src folder, as can be seen in the following figure:

EXPLORER) We 2 @ PIO Home <o o G main.cpp X
~ LED

» _pio

> vscode

> include

> lib void setup() {

- sre 5 // Set pin mode

G- main.cpp % pinMode(LED,QUTPUT) ;

}

et
DAL void loop({) [{
gitignore delay(500);
& platformio.ini 2 digitalWrite(LED, HIC
delay(50@);
digitalWritei LED,LQOW);

)

Figure 9.7 — PlatformlO main.cpp file

8. Then, to build and upload the code, we will go back to the PlatformlO home page, and from its
menu, we will click on Build, which will build the code and report errors if there are any in the
terminal, as can be seen in the following figure:

PLATFORMIO

v PROJECT TASKS
> @] Default
v @] esp32doit-devkit-v1
v 3 General
Build
Upload
Monitor
Upload and Monitor
Clean
Full Clean
Devices
v 3 Platform
Build Filesystem Image
Program Size
Upload Filesystem Image
Upload Filesystem Image OTA

Erase Flash

F3 Dependencies
F3 Advanced

F3 Remote

F3 Miscellaneous

Figure 9.8 — PlatformlO project tasks

9. When the build is complete, you will see the following output in the terminal:

TERMINAL

[SUCCESS] Took 6.10 se:

Figure 9.9 — PlatformlO build complete

10. Once the build is complete, select Upload to upload the code to ESP32. The LED will start
blinking, and you will see the following output on the serial monitor:

ed 239600 bytes to 131684...
0 11 %)
22 %)
Writing at @x000246b2... (33 %)
Writing at @x@00298b2... (44 %)
Writing at 6xoou

sced) at 8x00010000 in 3.5 seconds (effective 554.5 kbit/s)...

=== [SUCCESS] Took 15.15 seconds ==
Figure 9.10 — PlatformlO upload completion

11. Similarly, clicking on Monitor will open a serial monitor, and you will be able to see the serial
prints.

IMPORTANT NOTE

You can follow the same steps to upload all the code of this book using PlatformlO. You will only
have to add dependencies to the platformio. ini file and replace the main. cpp file with the
code provided in this book.

The PlatformlO IDE is simple to use; most of the features available on the platform
are comparable to the Arduino IDE, plus it contains some additional features. |
hope this small section has provided you with a good starting point to explore
PlatformlO. You can upload and build the examples and projects of this chapter
using PlatformlO. The documentation of PlatformlO is comprehensive and can be
found at https://docs.platformio.org/en/latest/what-is-platformio.html.

https://docs.platformio.org/en/latest/what-is-platformio.html

Enterprise clouds

This book is tailored for beginners, providing a foundation for loT fundamentals.
Throughout our journey, we've explored various data and network-based
protocols, along with incorporating third-party services and databases such as the
HiveMQ Messaging Queuing Telemetry Transport (MQTT) broker, InfluxDB
Cloud, and Grafana Cloud. These services operate on what we call “enterprise
clouds” — large and robust cloud systems commonly employed by businesses. As
we conclude, it’s valuable to introduce the concept of enterprise clouds,
showcasing their significance in the tech landscape.

In this section, we’ll narrow our focus to Amazon Web Services (AWS) and Azure
loT and delve into their loT services. This sneak peek will offer insights into the
workings of these substantial cloud services and how they can be beneficial for
ESP32 and loT projects.

AWS loT services

AWS provides a comprehensive set of loT-related services to enable the
development, deployment, and management of loT applications. Some key AWS
loT services include the following:

* AWS loT Core: AWS loT Core is the central service that enables communication between loT
devices and the cloud. ESP32 devices can connect to AWS loT Core using MQTT or HTTP to
send and receive messages. This allows you to leverage AWS loT Core for device
management, communication, and security.

 AWS loT Device Management: This service helps in onboarding, organizing, and managing
IoT devices at scale and can be used to manage fleets of ESP32 devices, enabling tasks such
as OTA updates and device monitoring.

* AWS loT Greengrass: ESP32 devices can run AWS loT Greengrass core software, extending
AWS |oT services to the edge. This is beneficial for local processing and reducing latency.

« AWS loT Analytics: loT Analytics is a fully managed service that helps process, enrich, store,
and analyze IoT data. ESP32-generated data can be processed and analyzed in AWS loT
Analytics, providing insights into device telemetry.

» AWS loT Events: This service allows you to detect and respond to events from loT sensors
and applications. It enables the creation of complex event-processing logic to trigger actions
based on predefined patterns.

 AWS loT Things Graph: lIoT Things Graph simplifies the integration of different devices and
services by providing a visual representation of loT workflows. It allows developers to model
and deploy loT applications quickly.

These AWS loT services collectively provide a robust platform for building
scalable, secure, and efficient loT applications across various industries.

Azure |IoT services

As with AWS, Microsoft Azure offers a comprehensive suite of 0T services to
support the development and deployment of 10T solutions. Some key Azure loT
services include the following:

o Azure loT Hub: ESP32 devices can connect to Azure loT Hub for bidirectional communication.
Azure loT Hub provides features such as device provisioning, messaging, and device twin
management.

o Azure loT Central: Azure loT Central is a fully managed solution that simplifies the
development and deployment of scalable and secure l0T applications. It can simplify the
development of ESP32-based loT applications with pre-built templates and scalable SaaS
solutions.

o Azure loT Edge: Azure loT Edge extends cloud intelligence to edge devices, allowing them to
run containerized workloads locally. This facilitates real-time analytics and reduces latency by
processing data closer to the source.

e Azure Stream Analytics: Azure Stream Analytics is a real-time analytics service that
processes streaming data from devices and sensors. It can be used to derive insights, detect
anomalies, and trigger actions based on real-time data.

« Azure Time Series Insights: This service provides a fully managed, scalable, and real-time
data analytics platform for IoT applications. It helps analyze and visualize time-series data
generated by loT devices.

These Azure |oT services collectively offer a robust and scalable platform for
building, deploying, and managing loT applications, catering to a wide range of
industries and use cases.

To boost your loT skKills, it’s crucial to learn more about these |oT services and
clouds. While this section mentions the basic idea here, exploring the official
documentation of AWS and Azure is a great next step. The docs provide detailed
insights, clear guidelines, and a variety of features that can really help you get
better at using these platforms for your loT projects.

A complete [oT embedded and software
roadmap

In Chapter 1, we discussed the loT four-layer architecture, including the sensing,
networking, data processing, and application layers. The first three chapters
explained the sensing layer of IoT, in which we learned about the communication
protocols used by sensors and how to interface different sensors with ESP32.

Chapter 4 explained network protocols such as Wi-Fi, Bluetooth Low Energy

protocols such as HTTP, MQTT, and Webhooks. Furthermore, we completed three
projects that explained how data is processed, manipulated, and presented in the
form of visualization. This cumulative approach lays a robust foundation for 0T
development.

Moving forward from our foundational discussions, this section unveils a complete
loT roadmap, carefully crafted by considering various job requirements in these
fields. The roadmap is neatly split into two categories: loT embedded developer
and loT application developer. Think of these categories as friendly guides,
outlining clear paths for those who want to dive deep into the inner workings of
embedded systems or for those who fancy crafting applications in the ever-exciting
field of loT.

Roadmap for loT embedded development

An loT embedded developer is primarily focused on foundational aspects of IoT,
dealing with hardware and low-level software for devices, and requiring expertise

in embedded programming languages and microcontroller architectures. The
roadmap is divided into the programming languages, concepts, and tools required:

Python

Embedded C

Programming Languages C++

Bash Scripting

Rust

RTOS

1oT value chain

loT Security

Wireless communication

0S Fundamentals

N N T T

Concepts Cloud co m puting basics

Linux

Web services

Pub [/ Sub Systems

Embedded design patterns

e T AR

Networks

GPIO
Timers
PWM
ADC
Peripherals DAC

Serial Communication (SPI, 12C, UART))
WIiFi

Memoaory (Flash, SRAM, EEPROM)

BLE

Arduino IDE
PlatformIO
CMake

ESPIDF

ESP32

Raspberry Pi
ReagleRone
Targets

STM32

NRF boards

Jetson Nano

RISC
Target Architecture
cIsc

Figure 9.11 — loT embedded software developer roadmap

Figure 9.11 depicts an loT embedded software developer roadmap, and its
contents are explained in the following sections.

Programming languages

Knowing different computer languages is super important when you’re getting into
embedded systems. Make sure you're good with embedded C and C++ because
they’re like the ABCs of this journey. Python is another important language to
learn, bringing extra flexibility to your skills. While it's not a must, learning the
basics of Bash scripting can be useful, and playing around with Rust can add a
special touch to what you know. Just remember — C++ and embedded C are like
the starting point: the basics you really need to begin your embedded adventure.

Concepts

Understanding specific concepts is key to feeling comfortable in the world of IoT.
You must get the hang of RTOS, the loT value chain, wireless communication, OS
fundamentals, Linux, publish/subscribe (pub/sub) systems, embedded design
patterns, and networks. These are like the must-haves in your toolkit for
developing loT solutions without feeling lost. While it’s nice to know a bit about loT
security, cloud computing basics, and web services, focusing on the must-haves
will give you a solid foundation and make your journey in loT development much
smoother.

Tools

Equipping yourself with the right tools is crucial for navigating the field of
embedded systems. The Arduino IDE serves as a beginner-friendly platform,
allowing you to write, compile, and upload code to your devices effortlessly.
PlatformlO expands your toolkit, offering a versatile ecosystem for loT
development and streamlining the process of managing libraries and projects.
CMake steps in as a powerful tool assisting in the building, testing, and packaging
of software projects. ESP-IDF, tailored for ESP32 development, provides a
comprehensive set of libraries and tools, enhancing your ability to work seamlessly
with ESP32 microcontrollers. These tools collectively empower you to efficiently

develop and deploy your embedded projects, ensuring a smooth and productive
journey in the field of embedded systems.

Targets and peripherals for embedded development

Understanding target architectures is fundamental, with reduced instruction set
computing (RISC) and complex instruction set computing (CISC) standing out
as key concepts. The distinction between these architectures becomes particularly
crucial during the development of embedded IoT solutions.

To put theory into practice, consider experimenting with various targets and
development boards such as STM32 (Blue/Black Pill), ESP32/NodeMCU,
Raspberry Pi, BeagleBone, and Jetson Nano, each offering unique capabilities.

To make meaningful progress with these targets, a grasp of target peripherals is
essential. Dive into the details of microcontroller peripherals, ranging from
general-purpose input/output (GPIO) and timers to pulse-width modulation
(PWM), analog-to-digital converters (ADCs), and digital-to-analog converters
(DACs). Understand the details of serial communication protocols such as Serial
Peripheral Interface (SPI) and Inter-Integrated Circuit (12C), and universal
asynchronous receivers-transmitters (UARTSs), and familiarize yourself with key
functionalities including Wi-Fi, memory (flash, static random-access memory
(SRAM), electrically erasable programmable read-only memory (EEPROM)),
and BLE. This understanding empowers you to harness the full potential of your
chosen targets and peripherals, paving the way for effective and efficient
embedded development endeavors.

Roadmap for loT applications development

An loT application developer works on higher layers of the IoT stack, creating
software applications that collect, process, and visualize data from loT devices.
This role demands proficiency in higher-level programming languages and cloud
platforms and emphasizes software development and user-friendly application
creation. The following diagram shows the roadmap and tech skills required to be
an loT application developer:

Python

Java Script
Programming Language

Type Script

Java

M2M

1oT value chain

Wireless com munication
0S Fundamentals

(
(loT Security
(
(
(

Concepts —f Cloud computing basics
Linux

Web services

Pub / Sub Systems

Embedded design patterns

e

Networks
HTTP/HTTPS
MQTT
Internet Protocols

coAP

AMQP

loT Application developer]— LORS

BIE
Wireless Technologies
WiFi

MySQL
PostgresQL
Databases

MongoDE

InfluxDB

OPS UA
Industrial Protocols {
Modbus

FreeRTOS
RTOS —(
Amazon FreeRTOS

Microservices

Distributed Services kafke

RabbitMQ
Message Brokers
Hive MQ

EMQX

AWS loT
loT Cloud providers —(

Azure loT

Figure 9.12 — loT application developer roadmap

Embarking on the journey of becoming an IoT application developer requires
versatility and a broad range of knowledge. While you don’t need to be an expert
in everything, having a grasp of several areas is beneficial. As an loT application
developer, you'll need to familiarize yourself with frontend and backend
development, and it’s nice to have some familiarity with cross-platform mobile
development.

Programming languages

Consider the TypeScript, JavaScript, Python, and Java programming languages as
essential tools in your toolkit. Feel free to choose from various frameworks based
on your comfort level or prior experience.

Frameworks

When diving into frontend development for loT applications, you have a range of
frameworks to choose from. React, known for its component-based structure,
Angular, offering a comprehensive frontend development environment, Vue, known
for its simplicity and flexibility, and Svelte, recognized for its lightweight and
efficient approach, are all excellent options to consider.

For the backend development aspect of 0T applications, several frameworks cater
to different preferences and needs. ExpressJS, with its minimalist and flexible
design, NestJS, offering a scalable and modular structure, FastAPI, known for its
speed and ease of use, Flask, a lightweight and versatile Python framework,
Django, a high-level Python web framework, Spring Boot, a Java-based framework
designed for simplicity, and Go, renowned for its efficiency and performance,
provide a diverse set of tools to support your backend development endeavors.

Concepts

Dive into the details of the loT value chain, comprehending the journey from data
acquisition to meaningful insights. Prioritize 0T security, understanding the
measures needed to safeguard your applications and devices. Explore the details
of wireless communication, OS fundamentals, and cloud computing basics, each
contributing to the seamless functioning of your loT applications. Familiarize

yourself with Linux, a key operating system in this domain, and grasp the
essentials of web services, pub/sub systems, system integration, networks, and
machine-to-machine (M2M) communication. Embrace design patterns to
enhance the efficiency and structure of your applications. In the realm of RTOSs,
focus on understanding event loops, a crucial aspect that empowers you to work
seamlessly with these systems. These foundational concepts collectively form the
backbone of your knowledge, enabling you to navigate and excel in the dynamic
field of loT application development.

loT protocols

Understanding fundamental internet protocols is important in the field of loT
application development. HTTP and its secure counterpart, HTTPS, serve as the
cornerstone for web communication, enabling seamless data transfer between
clients and servers. MQTT, a lightweight messaging protocol, facilitates efficient
communication in loT networks, allowing devices to publish and subscribe to data.
Constrained Application Protocol (CoAP) is tailored for resource-constrained
devices, ensuring efficient communication in constrained environments.
Additionally, the Advanced Message Queuing Protocol (AMQP) plays a crucial
role in enabling effective message-oriented communication between devices and
systems in loT applications. These protocols collectively provide a robust
foundation for establishing reliable and secure communication channels within loT
ecosystems.

Message brokers

In the domain of loT application development, message brokers play a vital role in
facilitating communication between various components. Explore Kafka,
recognized for its distributed and fault-tolerant design, RabbitMQ, a flexible and
highly available message broker, HiveMQ, designed specifically for MQTT
communication, EMQX, an open source MQTT broker, and enterprise service

bus (ESB) examples such as WSO2, which facilitates the integration of diverse
applications.

Databases

A well-rounded knowledge of databases is crucial for effective 0T application
development. Familiarize yourself with relational databases such as MySQL and
PostgreSQL, each offering robust data management capabilities. Dive into the
realm of NoSQL databases with MongoDB, known for its flexible and scalable
document-oriented structure, and Cassandra, a highly distributed and fault-tolerant
database. Understand the role of Redis Cache in providing fast and efficient in-
memory data storage. Lastly, explore InfluxDB, a time-series database tailored for
handling timestamped data. Additionally, be versed in keystore databases,
essential for the secure storage and management of cryptographic keys. This
diverse range of databases equips you with the flexibility to handle different data
structures and use cases within your loT applications.

loT platforms

Navigating the landscape of loT platforms, also known as application
enablement platforms (AEPs), is crucial for streamlined development. Explore
platforms such as ThingsBoard, offering an open source solution for device
management and data visualization, The Things Industries, specializing in Long
Range Wide Area Network (LoRaWAN) network management, Mainflux, an open
source AEP for industrial 1oT (IIOT), and ThingWorx, renowned for its
comprehensive loT application development capabilities.

loT cloud providers

In the realm of |oT, cloud services play a pivotal role in providing scalable and
efficient solutions. There are two categories of AEPs, one being AEPs, and the
other known as hyperscalers. Familiarizing yourself with these platforms and cloud

providers equips you with the tools to harness the power of the cloud for your loT
applications.

This roadmap serves as a valuable guide to help you make informed decisions
about what to learn next in the dynamic field of loT development. It outlines key
programming languages, concepts, tools, and targets, offering a structured path
for both loT embedded developers and loT application developers. However, it's
important to note that this roadmap represents a starting point, not the end of your
learning journey. The field of l0T is continually evolving, and there’s always more
to explore and discover. As you progress through these foundational elements,
you’ll gain a solid footing to dive deeper into specific areas of interest, adapt to
emerging technologies, and continuously expand your skill set. This roadmap lays
the groundwork for your loT endeavors, providing a foundation upon which you
can build and shape your expertise in the ever-evolving landscape of loT
development.

Summary

In this concluding chapter, we have dived into a comprehensive comparison
between the ESP32 Arduino core and ESP-IDF, gaining insights into their
respective strengths and applications. Our journey led us to become acquainted
with RTOSs and the versatility of PlatformlO as an IDE. Additionally, we
broadened our horizons by learning about enterprise cloud services such as AWS
and Azure and understanding their offerings in the loT landscape. As we wrapped
up, we introduced a final roadmap, a strategic guide to help you navigate the
expansive world of loT development, providing avenues for continuous learning
and exploration beyond the domain of this book.

Furthermore, | would like to congratulate you on reaching and completing this final
chapter. You’ve unlocked the potential to shape the future of interconnected
technology, and as you reflect on your journey, remember that knowledge is a
continuous adventure, and this accomplishment is just one milestone on your path
to personal and professional growth.

May your newfound knowledge of loT pave the way for innovative contributions in
this dynamic field. Well done!

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are
hyperlinked for reference only, based on the printed edition of this book.

Symbols
3rd Generation Partnership Project (3GPP) 98

16x2 LCD display
interfacing with ESP32, 12C used 57-60

A
access point (AP) 75

applications, loT

agriculture 8

Arduino IDE 2.0 3, 11, 12

B

characteristics, loT

connectivity 5

D

devices, using I2C communication

display modules 42

displays, interfacing with ESP32
16x2 LCD, with 12C interface 57-60

comparison 69, 70

ILI9341 TFT display, with SPI and 12C interface 63-66

emails
sending, with ESP32 by setting up Gmail account 150, 151
sending, with ESP32 by writing code 152-154

ESP32 code

used, for sending Telegram messages 161-163

used, for sending WhatApp messages 161-163
ESP32 connectivity

cellular communication 97

exploring 96, 97

ESP32 peripherals

analog-to-digital convertor (ADC) 25

pulse-width modulation (PWM) 25

ESP32 projects

simulating 18-21

ESP32 Series Datasheet

reference link 9

references 243

Gmail account

setting up, to send emails with ESP32 150, 151

Grafana cloud

dashboard, creating 224-228

HTTP request-response model

ILI9341 TFT display
interfacing with ESP32, SPI and 12C used 63-66

InfluxDB
InfluxDB Cloud
database setup 210-215

loT applications development

concepts 259

loT embedded development

concepts 257

programming languages 257

roadmap 255

Low Energy (LE) 9

machine learning (ML) algorithms 5

Master Input/Slave Output (MISO) 45

microcontroller units (MCUs) 3

MicroPython 11

N

NarrowBand-loT (NB-loT) shield 10, 73, 98

characteristics 98

networks

campus area networks (CANs) 74

metropolitan area networks (MANs) 74

personal area networks (PANs) 74

O
OLED display

interfacing with ESP32, 12C used 60 61
open source software (OSS) 12

sensors, interfacing with ESP32 176, 177

PayPal API

integrating, in parking space rental project 186, 188

R

real-time notifications

adding, with webhooks 134

security, Internet of Things (loT)

authentication 202

sensors interfacing, for parking space rental project

connection diagram 177, 178

sensors, with ESP32

connecting 145, 146

Serial Camera Control Bus (SCCB) 54

serial clock line (SCL) 36

SSD1306 OLED display
interfacing with ESP32, 12C used 61-63

T

Telegram messages

ESP32 code, used for sending 161-163

TFT display
interfacing with ESP32, SPI and 12C used 63

third generation (3G) 97

Twitter API

U

UART communication
between two ESP32s 31-34
mastering 29

WhatsApp messages
ESP32 code, used for sending 161-163

X/Twitter
code, writing for publishing plant updates on 170-172

<packn

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

Why subscribe?

» Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

« Improve your learning with Skill Plans built especially for you
» Get a free eBook or video every month
» Fully searchable for easy access to vital information

» Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at packtpub.com

and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

http://packtpub.com/
http://packtpub.com/
http://www.packtpub.com/

Practical Arduino Robotics

Lukas Kaul

Practical
Arduino Robotics

A hands-on guide to bringing your robotics
ideas to life using Arduino

LUKAS KAUL

https://packt.link/9781804613177

ISBN: 978-1-80461-317-7

» Understand and use the various interfaces of an Arduino board

» Write the code to communicate with your sensors and motors

« Implement and tune methods for sensor signal processing

« Understand and implement state machines that control your robot

+ Implement feedback control to create impressive robot capabilities
 Integrate hardware and software components into a reliable robotic system

» Tune, debug, and improve Arduino-based robots systematically

Ardvuino Data
Communications

Learn how to configure databases, MQTT, REST APIs,
and store data over LoRaWAN, HC-12, and GSM

ROBERT THAS JOHN

Arduino Data Communications

Robert Thas John

https://packt.link/9781837632619

ISBN: 978-1-83763-261-9
» Explore data storage formats for both local and remote storage solutions
» Build projects that leverage the variety of communication standards
» Set up a database to host data transmitted from various projects
» Use MQTT and RESTful APIs to send data from devices to remote systems
» Prepare for multiple devices using high availability measures

e Use LoRa by implementing a gateway and a client

o Transmit temperature and humidity data over RS-485 and HC-12

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of

developers and tech professionals, just like you, to help them share their insight
with the global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Hands-on ESP32 with Arduino IDE, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight

to the Amazon review page for this book and share your feedback or leave a

review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure

we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!
Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

http://authors.packtpub.com/
https://packt.link/r/1837638039

Don’t worry, now with every Packt book you get a DRM-free PDF version of that
book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from
your favorite technical books directly into your application.

The perks don'’t stop there, you can get exclusive access to discounts, newsletters,
and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837638031

2. Submit your proof of purchase

3. That's it! We’'ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837638031

	Hands-on ESP32 with Arduino IDE
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1 – Introduction: Getting Familiar with ESP32
	Chapter 1: IoT with ESP32 using Arduino IDE
	A brief introduction to IoT
	IoT and its main characteristics
	The basic architecture of IoT
	Applications of IoT

	Understanding the capabilities of ESP32 for IoT
	A brief overview of the ESP32 board and its variants
	ESP32 versus other development boards

	Deep dive into the Arduino IDE 2.0 to program ESP32
	How can ESP32 be programmed?
	The Arduino IDE 2.0
	Installing the Arduino IDE 2.0
	An overview of the Arduino IDE 2.0 user interface
	Setting up the Arduino IDE 2.0 for ESP32
	ESP32 “Hello World” example using the Arduino IDE 2.0
	Bonus – Simulating ESP32 projects

	Summary

	Chapter 2: Connecting Sensors and Actuators with ESP32
	Technical requirements
	Getting hands-on with ESP32 GPIO pins and an overview of them
	ESP32 peripherals
	ESP32 basic input/output example
	ESP32 PWM example

	Mastering UART communication
	How the UART protocol works
	UART communication between two ESP32s
	Sensors that use UART communication

	I2C communication with ESP32
	How I2C communication works
	An I2C communication example using ESP32
	Devices that use I2C communication with ESP32

	Understanding SPI communication
	How does SPI communication work
	SPI communication example using ESP32
	Devices that use SPI communication

	Summary

	Chapter 3: Interfacing Cameras and Displays with ESP32
	Technical requirements
	Using the ESP32 camera module
	How to use ESP32-CAM with the Arduino IDE
	ESP32 camera example

	Interfacing displays with ESP32
	Interfacing a 16x2 LCD with ESP32 using I2C
	Interfacing an OLED with ESP32 using I2C
	Interfacing a TFT display with ESP32 using SPI and I2C
	Interfacing an e-paper display with ESP32

	Comparison of displays
	Summary

	Part 2 – IoT Protocols and ESP32
	Chapter 4: Implementing Network-Based Protocols with ESP32
	Technical requirements
	Types of networks
	Exploring wireless capabilities with Wi-Fi
	How the Wi-Fi protocol works
	ESP32 built-in Wi-Fi capabilities
	Using Wi-Fi Direct for P2P connections

	Creating a personal area network with BLE
	How the BLE protocol works
	ESP32 BLE capabilities
	BLE server and client using ESP32
	ESP32 as BLE Beacon advertiser

	Expanding ESP32 connectivity beyond Wi-Fi and BLE
	Cellular communication with ESP32
	The LoRaWAN protocol
	Comparison of protocols

	Summary

	Chapter 5: Choosing the Right Data-Based Protocols for Your ESP32 Projects
	Technical requirements
	Exploring HTTP with ESP32 – enabling IoT devices to communicate with web servers
	What is HTTP?
	How does HTTP work?
	ESP32 as an HTTP web server
	ESP32 as an HTTP client
	Configuring and managing Wi-Fi using the HTTP protocol in ESP32

	Exploring MQTT for IoT communication with ESP32
	What is MQTT?
	How does MQTT work?
	MQTT pub-sub example

	Adding real-time notifications using webhooks
	What are webhooks and how do they work?
	Webhook example

	A real-life analogy of HTTP, MQTT, and webhooks
	Comparing HTTP, webhooks, and MQTT
	Summary

	Part 3 – Practical Implementation
	Chapter 6: Project 1 – Smart Plant Monitoring System Using ESP32, Messaging Services, and the Twitter API
	Technical requirements
	Interfacing sensors with ESP32
	Connecting the sensors
	Reading the sensor data

	Sending emails using SMTP
	Setting up a Gmail account to send emails using ESP32
	Writing code for sending emails using ESP32

	Using the CallMeBot API to send WhatsApp and Telegram messages
	Setting up WhatsApp messages
	Setting up Telegram messages
	The ESP32 code to send messages on WhatsApp and Telegram

	Publishing update tweets on Twitter
	Setting up the Twitter API
	Code for publishing the plant updates on X/Twitter

	Summary

	Chapter 7: Project 2 – Rent Out Your Parking Space
	Technical requirements
	Interfacing sensors with ESP32
	The connection diagram
	Reading the distance using the ultrasonic sensor
	Reading the push button and controlling the Servo motor
	Showing a QR code on the OLED

	Integrating the PayPal API
	Receiving PayPal notifications in ESP32

	Creating a user-friendly experience for potential renters
	Real-world implementation and project limitations
	Current project limitations

	Security concepts in IoT
	Summary

	Chapter 8: Project 3 – Logging, Monitoring, and Controlling using ESP32
	Technical requirements
	Interfacing sensors and actuators with ESP32
	Connection diagram
	Reading the sensor data

	Setting up InfluxDB Cloud and logging the data
	Cloud database setup
	Logging data to InfluxDB

	Monitoring and visualization using the Grafana cloud
	Creating a dashboard and visualizing the data

	Controlling the main entrance gate using the MQTT protocol
	Summary

	Chapter 9: From Arduino IDE to Advanced IoT Development – Taking the Next Steps
	Power of ESP-IDF
	What is ESP-IDF?
	ESP-IDF versus the Arduino ESP32 core

	Understanding RTOS use cases and features
	FreeRTOS
	FreeRTOS example using the Arduino IDE

	PlatformIO – an alternative to the Arduino IDE
	Using PlatformIO to upload code to ESP32

	Enterprise clouds
	AWS IoT services
	Azure IoT services

	A complete IoT embedded and software roadmap
	Roadmap for IoT embedded development
	Roadmap for IoT applications development
	IoT protocols
	Message brokers
	Databases
	IoT platforms
	IoT cloud providers

	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

