


ESP32 HOME AUTOMATION
WITH ARDUINO

Building a Smart Home with ESP32, Arduino, FreeRTOS, and
Twilio SMS Messaging Real-Time Notifications for Your Smart

Home

By
Janani Selvam



TABLE OF CONTENTS
INTRODUCTION INSTALLING VSCODE AND PLATFORMIO,
LAUNCHING AN EXAMPLE PROJECT              5
PRIORITIES OF TASKS             10
MUTEXES             13
EXAMPLE DUMMY CODE             19
SPINLOCK, CRITICAL SECTION, MULTICORE             20
EXAMPLE DUMMY CODE             25
SEMAPHORES AND QUEUES             26
EXAMPLE DUMMY CODE             32
EVENT FLAGS             34
EXAMPLE DUMMY CODE             37
HARDWARE INTERRUPTS             38
INTRODUCTION             43
GETTING STARTED             45
TWILIO SET UP             47
CODE SETUP FOR ESP32 USING TWILIO             49
EXAMPLE DUMMY CODE             51
TESTING CODE SETUP FOR ESP32 USING TWILIO             53
EXAMPLE DUMMY CODE             55
SEND SMS ON PUSH BUTTON             57
EXAMPLE DUMMY CODE             59
TWILIO SET UP             61
SEND SMS CONTROLLED BY DHT22             62
EXAMPLE DUMMY CODE             65
INTRODUCTION TO HOME AUTOMATION             67
GETTING STARTED WITH ESP32             71
MASTERING GPIO PINS             73



HARDWARE REQUIREMENTS FOR THE COMPLETE
PROJECT             77
CONNECTING AND VERIFYING THE USB TO UART CHIP IN
ESP32             83
ARDUINO INSTALLATION             85
EXAMPLE DUMMY CODE             87
SETTING UP ESP32 IN ARDUINO IDE             89
TESTING THE ESP32 BOARD (PART 1)             92
TESTING THE ESP32 BOARD (PART 2)             95
INTRODUCTION TO RELAY             98
UNDERSTANDING THE CIRCUIT DIAGRAM TO TEST ONE INPUT
OF 4 CHANNEL RELAY              100
UNDERSTANDING THE CODE TO TEST ONE INPUT OF 4
CHANNEL RELAY              103
OUTPUT - TESTING ONE INPUT OF 4 CHANNEL
RELAY             105
RESOLVING THE INVERSE OPERATION OF THE
RELAY             108
2 NODE SMT SMART HOME-AUTOMATION PCB             110
MANUAL CONTROL HOME-AUTOMATION SYSTEM USING
ESP32             114
EXAMPLE DUMMY CODE             118
8 NODE SMT SMART HOME-AUTOMATION PCB             120
8 NODE SMT SMART HOME AUTOMATION PCB             127
HOME AUTOMATION SYSTEM USING ESP32             131
HOME AUTOMATION SYSTEM USING ALEXA ESP32             134
HOME-AUTOMATION PCB FOR HEAVY LOAD
APPLIANCES             137
ALEXA MANUAL CONTROL HOME AUTOMATION SYSTEM
USING ESP32              141



MANUAL CONTROL HOME-AUTOMATION SYSTEM USING ESP
RAIN-MAKER              145
AUTOMATION SYSTEM WITH MANUAL CONTROL             149
ANDROID APP BLUETOOTH CONTROLLED HOME-DEVICES
USING ESP32              153
EXAMPLE DUMMY CODE             157
BEST HOME AUTOMATION PCB WITH SMD COMPONENTS_
ESP32 CHIP              162
BIOMETRIC FINGERPRINT DOOR LOCK CONTROL             166
BLUETOOTH _ MANUAL CONTROL HOME
AUTOMATION             170
BLUETOOTH _ MANUAL CONTROLLED HEAVY LOAD
DEVICES             176
8 NODE SMT HOME AUTOMATION PCB             180
SMT SMART HOME-AUTOMATION PCB ESP32             183
DIGITAL CLOCK USING  NETWORK TIME PROTOCOL             187
DIY PCB FOR ESP8266 WIFI MODULE             191
ESP32 BLUETOOTH CONTROLLED AUTOMATION SYSTEM
USING ANDROID APP              194
ESP32 INTERNET REAL TIME FEEDBACK USING REYAX MQTT
CLOUD             195



INTRODUCTION INSTALLING
VSCODE AND PLATFORMIO,
LAUNCHING AN EXAMPLE

PROJECT
I will tell you how to write Arduino programs for ESP32 using the
FreeRTOS real-time operating system. To develop programs, I
suggest you use VS Code with the PlatformIO extension, which has
more advanced functionality compared to the original Arduino IDE.

At the same time, all sketches made in VS Code are fully compatible
with the Arduino IDE and can be easily transferred from one IDE to
another. The same goes for libraries. All Arduino. PlatformIO
extension. PlatformIO is installed. Let's restart VS Code.



Here we can see the PlatformIO extension. Next, we'll open some
Arduino projects. To do this, navigate to Open and here select
Project Examples. And here we can select some examples. Let it be
Arduino Wi-Fi Scan. Import. Yes, I trust the author. Let's enlarge the
window a bit. Let's take a look at the PlatformIO project. Of...
Arduino.ino file. This one. And a PlatformIO.ini file. This one. We can
see the IntelliSense warning that it does not support the .ino file. So
we can rename it to CPP.



Now IntelliSense will work. Let's look at platformio.ini file. We can
see 4 different configurations of 4 different boards in this file. I'm
using the first version of ESP32. This is the first configuration. We
don't need the others, I can just delete them. Let's add another
parameter to this configuration. With this parameter we'll enable
logging of the monitored text information with time indication and
decoding of ESP32 exceptions. Further I'll show how to use it. Let's
compile this project and see how it works.
To do this, I go to platform.io icon and first I choose the client and
then build. Build is successful. Cleaning is necessary only at the first
compilation. Then it's not needed. Next we can upload the program
to ESP32. Loading. Let's open the terminal or serial monitor. Restart
ESP. Scan start. This is my Wi-Fi net. Again the scan starts. As we
can see, everything is working. Let's stop monitoring and look at the
log file. Log file is here. I can open it. Here is everything that was
written to monitor.



Let's move this project to the original Arduino IDE. First let's see
where platform.io projects are located. Hover the cursor over the file
header and see the path to it. This path to it. Open this folder and
copy the CPP file. This is my platform.io project. This is a Wi-Fi scan.
SRC. Wi-Fi scan. CPP. Copy. And paste it to any other folder.



I paste it here. Let's rename it back to Inno. Ok, now we have an
Arduino file. Double click it. I click OK and Arduino creates a folder
with the name of our file. Wi-Fi scan. Wi-Fi scan. We can compile
now.
Ah, we have to select a board. I have to do it. Yes, P32, DevKit
version 1. Ok, again compile.
Okay, it's compiled. Let's upload it to ESP32. First, select the port
and upload. And then we start the serial monitor and restart ESP. As
we can see, it's working. Scan done. This is my Wi-Fi net. Let's open
any example program in Arduino IDE and import it in platform IO.
Here are many examples. I'll open something simple.

I think timer. Repeat timer. Let's save it. Arduino. Okay, repeat timer.
Documents. Arduino. The path. Repeat timer. Okay, and close this
all. This is also close. And then we import this project. Platform IO.
Open. Import Arduino project.
Let's find the path to our project. Users. Name of PC. Documents.
Arduino. And our repeat timer. Import. Ah, no, no, no. Select the
board. My board is a DUET. This one. And set this. Use libraries
installed by Arduino IDE. If we set this, we can use all libraries



installed in Arduino. And now import. Now we can see the repeat
timer. Let's look at the platform IO.ini file. Here we can see that the
path of the Arduino libraries has been added. We also need to
specify the monitor settings. Now we can compile and upload. And
then upload and monitor.
First compiling, then uploading, and then starting to monitor. Reset
ESP32. Here we can see that the timer is working. In the next lecture
we will write a simple program with Arduino and FreeRTOS.



PRIORITIES OF TASKS
Now let's take a closer look at the tasks in this program. As
mentioned in the previous lecture, three tasks are launched in the
program. The first starting task is the Arduino task. It's started in the
file main.cpp. Let's look at this parameter. This is the priority of the
task. The lower this value, the lower the priority in FreeRTOS. Now
let's look at the priority of the tasks we create. It's the same as the
Arduino task. Here is also one.

Therefore, all three running tasks will be executed sequentially,
switching with each clock cycle of the task scheduler. If you look at
the output of the program in the terminal, we will see that all three of
our tasks are performed simultaneously. This one. Job 1, Job 2, Job
2. Main loop job. Job 1, Job 2, Job 1, Job 2. And so on. Now let's
raise the priority of one of the tasks and see what changes. I will set
the priority for Job 1 equal to 3. This one. 3. Update and monitor.
Sorry, I disconnected the ESP. I connect it and upload and monitor
again.



Restart ESP. As we can see, at first only Job 1 is executed. And
then, after it finishes, the Job 2 and Arduino loop tasks begin to
work. Thus, it turns out that a task with a high priority completely
displaces tasks with a low priority. Thus, in this case, tasks with a
low priority will not work until the task with a high priority finishes
working.



But what if tasks with a low priority should also work when tasks with
a high priority are working? In this case, the work of a task with a
high priority can sometimes be blocked.
To do this, there are various functions in FreeRTOS, the simplest of
which is a delay for the time specified in milliseconds.
500 ms delay to the task of the first job. We can use the Arduino
delay function here. Upload and monitor. Restart ESP. As we can
see, all three tasks have started working, despite the fact that one of
them has a higher priority. Thus, we blocked job 1 by delay, allowing
the work of other tasks.

As I said, we used the usual Arduino delay function. Let's see what it
has inside. To do this, press the left control and click on it.



And here we see the FreeRTOS delay function, which performs the
delay not through the for loop, like this delay for loop, but by blocking
the task for a given number of ticks. This blocking allows tasks with a
lower priority to work. Now let's replace the delays on the for loops
with a delay function. Let it be 1 second delay. And here. Let it be
here for 3 seconds. Upload and monitor. Restart ESP. As we can
see, all three tasks are executed simultaneously, despite the fact that
one of them has a higher priority.



MUTEXES
Let's change our program now. Let the tasks in it increment the
same variable. But first I'll rename the file blink.cpp because we no
longer use the red. Let it be called tasks.cpp. Rename tasks.cpp.
Also we don't need this. And we don't need this. Let's create one
variable of type int and call it cnt. That means counter. This one. And
let our program increment this counter 10 million times in each task.
10 million. And here 10 millions. Here cnt++. Let's give these tasks
the same priority, equal to 3. At the same time the Arduino... 1.

Therefore our tasks will work first and then the Arduino loop will start.
Also in the Arduino loop let's output the resulting value of the counter
cnt to the monitor. And then stop the program. Compile the program
and see how it works. Restart ESP. As we can see both tasks did not
start at the same time. But the result of the increment of the counter
is correct, 20 million. This one. Why did not the tasks start
simultaneously? Let's look at the sequence of launching tasks. First,
the Arduino setup task starts with a low priority of 1.



Then it creates a job 1 task with a higher priority of 3. This one. This
task displaces the Arduino task. In this case the job 2 task will not be
created until the job 1 task finishes working. Therefore in order for
the second task to start, the first one needs to be blocked for a short
period of time. By inserting a delay of 1 ms at its beginning. I insert a
delay here. And in order for the tasks to start at the same time, the
same delay must be inserted into the second task. I'll insert it here.
Also, in order for the compiler not to optimize the counter, we need to
put it with the volatile keyword. It's here. Ok, now we can compile,
upload and monitor.



Restart ESP. Now we see that the tasks are running simultaneously.
Starts both and finishes both. But an Arduino task is started before
them, which outputs the counter value to the monitor before it has
changed. Here. Therefore we also need to insert a delay in the
Arduino loop. Here.
Upload and monitor. Restart ESP. Now our program works correctly.
Both tasks start at the same time. At the end the result is displayed
on the monitor. Only the result itself does not match the expected 20
million. Why did this happen? This happens because both tasks
access the same cell in the memory. At the same time they can
interrupt each other. In such a way that one task starts the operation
but does not have time to finish because another task starts working
with this variable. Thus, as a result, an incorrect value is written to
the variable.
To solve this problem, tasks need to organize access to this memory
cell in turn. That is, when one task is working with this variable, the
second one should go into standby mode so that it does not conflict
with the first one.



Mutexes are used for this purpose. Let's create a mutex and test
how it works. To define a mutex in FreeRTOS, the semaphore
handle T type is used. Let's call our mutex xMutex. Now we have to
create it. This is done by the xSemaphore Create Mutex function. It
should be done in an Arduino setup. And now we can use it in our
tasks.
Now, when a task needs to access a shared resource, in our case a
memory cell, it must first take the mutex. And if the mutex is taken by
another task, then the current task will be blocked until the mutex is
released. At the end of working with the resource, the task must
release the mutex. Taking a mutex is performed by the
xSemaphoreTake function in FreeRTOS. To do this, I insert this line
here. Here and here. With this function we take a mutex. Here. We
also need to give it away. The xSemaphore Give function is used for
this.



I insert it here and here. Let's look at the function of taking mutex.
Two parameters are passed to it. This is the mutex itself and the
timeout in milliseconds. If the mutex is taken by another task, the
task will be blocked until the mutex is released or for the time passed
to it in this parameter. Therefore, in the case of a successful mutex
taking, the function returns pdTrue. And in the case of a timeout exit,
pdFalse. Now compile, upload and monitor. GSP starts. And it's
been working for a long time because we have mutex. Let's wait.
The program finished its work with the correct counter value. 20
millions. Only it worked for almost 2 minutes. As we can see, using a
mutex allows sharing access to a resource. But at the same time
slows down the program. This should be taken into account when
using it. In the next project we'll run the same tasks on different
ESP32 cores.



EXAMPLE DUMMY CODE
Mutexes (short for "mutual exclusion") are
synchronization primitives used in multi-threaded
programming to prevent multiple threads from accessing
shared resources simultaneously. Here's an example in
C++ that demonstrates how to use mutexes to protect a
shared resource (a simple counter) from concurrent
access:

Cpp

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;  // Declare a mutex

int sharedCounter = 0;

void incrementCounter(int id, int iterations) {
for (int i = 0; i < iterations; ++i) {

mtx.lock();  // Lock the mutex to protect the shared
resource

sharedCounter++;
mtx.unlock();  // Unlock the mutex when done

}
}

int main() {
const int numThreads = 4;
const int iterations = 10000;



std::thread threads[numThreads];

for (int i = 0; i < numThreads; ++i) {
threads[i] = std::thread(incrementCounter, i,

iterations);
}

for (int i = 0; i < numThreads; ++i) {
threads[i].join();

}

std::cout << "Final Counter Value: " << sharedCounter
<< std::endl;

return 0;
}

In this example, we have a shared integer sharedCounter
that multiple threads will try to increment. To ensure that
the counter is updated safely, we use a std::mutex named
mtx to lock and unlock access to the shared resource.
Each thread locks the mutex before accessing the
counter, increments it, and then unlocks the mutex when
it's done.

By using the mutex, we guarantee that only one thread at
a time can access and modify the sharedCounter,
preventing data races and ensuring thread safety.

Keep in mind that using mutexes can introduce potential
bottlenecks and performance issues, and it's important to
use them judiciously in your multithreaded applications.
In practice, you might also consider using higher-level
abstractions like std::lock_guard for safer and more
convenient mutex management.



SPINLOCK, CRITICAL
SECTION, MULTICORE

The previously discussed synchronization of tasks using mutexes
slows down the program when they are called frequently. This is
because the process of blocking and unblocking the thread is quite
expensive. And if I do it often, the performance of the program will
decrease. Let's now look at another synchronization method based
on critical sections and spinlocks. A critical section is a section of the
test code for which other tasks are stopped and most hardware
interrupts are disabled. I will talk about interrupts in the following
lectures.
On a processor with one core, it is enough to disable interrupts and
the task schedule. To enter the critical section. But in ESP32,
interrupts can be disabled from one core only on the same core. And
they will remain enabled on the other. Therefore, a spinlock is added
to the entrance to the critical section. Spinlock is similar in
functionality to a mutex. It also needs to be taken and given. The
only difference is that when the mutex could not be taken, the task is
blocked.
And if it was not possible to take the spinlock, then the blocking does
not occur. And the program continues to check whether it has been
released.



Therefore, for short sections of code with frequent access to a
shared resource, it is preferable to use spinlock. Let's create a
spinlock and replace the mutex with a critical section. The port mux
type is used for the spinlock. I'll call it simply spin. Then we have to
create a spinlock. This creates a spinlock function. And then we
replace mutex by a critical section. I removed this. And here enter
critical.



And here exit critical. And same for job 2. Let's compile it. Restart
ESP. Waiting for the job to finish. It's finished. As we can see, the
program performance has increased significantly. Let's
approximately measure the time of its execution. The time can be
detected by the Windows clock. I restart the ESP32.



In 40 seconds it's restarted. Let's look when it's finished. The
program completed its work within 20 seconds, which is much faster
than the previous version. Now let's run one of the tasks on another
core.
Let's see which core the Arduino is running on. To do this, press
CTRL and click on the last parameter in the task creation function.
We can see that Arduino runs on core number 1.

And we will launch Job 2 on core 0, another core. Upload and
monitor. Restart ESP. As we can see, the program is already
restarting. This happened because both of our tasks have a higher
priority than the system task that should restart the watchdog timer.
Therefore, our task should sometimes give time for tasks with a low
priority. Therefore, let's call the delay for 1 millisecond 10 times in
each of our tasks. Let's modify our code and insert a delay of 1
millisecond 10 times. First, I'll make 1 million here instead of 10
million. And here.
And I'll add 1 for the cycle. And here delay for 1 millisecond. And
same for Job 2. And here should be 10, not 1 million. This one and
here. Now we can compile and monitor. Job starting. Now we see
that ESP32 is no longer rebooting.



But the result appeared on the monitor before the end of our tasks.
So let's add a delay of 15 seconds before the output of the result.
Here 15 seconds. Upload and monitor again. It's working. Let's
measure the time of its execution. I'll start in 20 seconds. Restart
ESP. And we are waiting for our jobs to finish.
Ok, it was 14 seconds. Thus, our program runs even faster on two
cores. This is because no time is wasted switching between tasks.



EXAMPLE DUMMY CODE
provide you with an example that combines spinlocks,
critical sections, and demonstrates their use on a multi-
core system. In this example, we'll use C++ and the C++11
standard library to create a simple program with two
threads running on multiple CPU cores, contending for a
shared resource within a critical section using a spinlock.

Cpp

#include <iostream>
#include <thread>
#include <atomic>

// Define a simple spinlock using std::atomic_flag
std::atomic_flag spinlock = ATOMIC_FLAG_INIT;

const int iterations = 10000;
int sharedResource = 0;

void incrementSharedResource(int threadID) {
for (int i = 0; i < iterations; ++i) {

// Acquire the spinlock
while

(spinlock.test_and_set(std::memory_order_acquire)) { }

// Critical Section
sharedResource++;

// Release the spinlock
spinlock.clear(std::memory_order_release);

}



}

int main() {
std::thread thread1(incrementSharedResource, 1);
std::thread thread2(incrementSharedResource, 2);

thread1.join();
thread.join();

std::cout << "Final sharedResource value: " <<
sharedResource << std::endl;

return 0;
}

In this example, we use a simple spinlock implemented
with std::atomic_flag to protect access to the
sharedResource. The spinlock is used to prevent
concurrent access to the critical section. Each thread
tries to acquire the spinlock with spinlock.test_and_set()
(spin-waiting) before entering the critical section and
releases it with spinlock.clear() when it's done.

Both threads increment the sharedResource within the
critical section, and due to the spinlock, only one thread
can execute the critical section at any given time. The
iterations variable controls how many times each thread
accesses the critical section.

This code demonstrates the use of spinlocks to protect a
shared resource while running on multiple CPU cores
(multi-core). The program simulates contention between
threads, highlighting the importance of synchronization
mechanisms like spinlocks when dealing with shared
resources in multi-threaded applications.



SEMAPHORES AND QUEUES
We used a delay of 15 seconds to output the counter value after the
end of our tasks. But is there a way to know exactly when our tasks
will finish working? Yes, for this we can use a semaphore. A
semaphore is similar to a mutex. But unlike a mutex, a semaphore
does not need to be given away. Therefore, with the help of a
semaphore, one task can signal another about the occurrence of an
event. semaphore handle type. This one is semaphore. And then we
can create it. Now we can use it. Let's send it at the end of the job1
task.

This timeout in milliseconds. If the timeout has expired, then pd
false. If the timeout is not needed, then it can be replaced with the
maximum possible value of port max delay. This one. Now we can
compile and test. Sorry, ESP is disconnected. Restart again. Restart
ESP. Waiting for it to finish its job.



As we can see, at the end of task1, a semaphore was received. At
the same time, task2 has not finished its work yet. So the counter
value is not yet equal to 20 million. Let's add semaphore sending to
the second task. We can simply copy it from here.



Also, we have to accept this semaphore. In our case, there is no
need to check the value returned by this function. Therefore, this
record can be simplified.
I'll copy and paste this line. Here we will receive both semaphores
one by one, regardless of the order in which they arrive.

Let's upload and monitor. Job started. As we can see, the counter
value is displayed correctly. Thus, the semaphore helped us to
synchronize the end of the work of both tasks running on different
cores with the Arduino task. Now let's consider the case when our
tasks send both semaphores, while the Arduino task has not yet
received any. 15 seconds in the Arduino task before receiving
semaphores. Here.
And then output messages about receiving semaphores. Here is a
delay. And here are messages. Semaphore 1. And semaphore 2.
Upload and monitor. Restart. Waiting for my job to be finished. As we
can see, the program has received only the first semaphore, and is
waiting for the second one. This happened because we used a
binary semaphore that can only be set once. But we need to send
two semaphores. And we also need to accept two. To do this, we



need to use a counting semaphore. Let's change the binary
semaphore to a counting one.
A counting semaphore is almost the same as a binary one. It uses
the same data type. Let's define it. I'll call it counting sem. It differs
only in the function of creating a semaphore.

When creating it, we must specify the maximum number of
semaphores and the initial value of its counter. I'll create it here. This
is the maximum number of semaphores, and 0 is the initial value of
the counter. Now we can simply change our binary semaphore to a
counting semaphore. Here, here and sending it. Here and here.
Upload and monitor. ESP. Waiting for our semaphores. As we can
see, the semaphores with the semaphore we need to transmit data
with some kind of work result. For this purpose a queue is used,
which allows us to exchange data between tasks. Let's replace our
semaphore with a queue. Type of queue is the queue handle. Let's
define a queue. I'll call it xQueue. To create a queue we need to
specify the type of data being stored in it and the size of the queue.
The queue size is the maximum amount of data of the specified type
that it can store. The queue is created by the function
xQueueCreate.



I specify the queue size of 10 and data type UN32. Now we can
transmit and receive data using this queue. Let's pass the counter
value at the end of each of our tasks. Next we'll receive it and output
to the monitor. The sending will be performed by the function
xQueueSend. I'll insert it here and here.

I pass to this function name of the queue, reference to our counter
and timeout. We don't need timeout, it's null. Now we can accept the
passed counter value by the function xQueueReceive. We don't
need this delay and we'll receive it here.
I have created a received counter variable here in which the received
value will be written. The queue handler and timeout are also passed
to this function. Next we'll output this value to the monitor. And the
same for the second job. Also we don't need these entities. Let's
upload and monitor. Restart ESP. We see that the counter value is
passed from the first task because it finishes its work faster. At the
same time the counter value is not yet equal to 20 million. Then we
get a message from the second task. And now we see that the
calculation is finished.



EXAMPLE DUMMY CODE
Semaphores and queues are often used in concurrent
programming to coordinate the execution of multiple
threads or processes. Here's an example in Python that
demonstrates how to use semaphores and a simple
queue:

Python

import threading
import time
import queue

# Define a semaphore with an initial value of 2
semaphore = threading.Semaphore(2)

# Define a thread-safe queue
my_queue = queue.Queue()

# Function to simulate a task that consumes an item from
the queue
define consumer(thread_id):

while True:
item = my_queue.get()
if item is None:

break

with semaphore:
print(f"Thread {thread_id} is consuming item:

{item}")
time.sleep(1)



# Function to simulate a task that produces items and
adds them to the queue
def producer():

for item in range(1, 6):
my_queue.put(item)
print(f"Produced item: {item}")
time.sleep(0.5)

# Create consumer threads
consumers = []
for i in range(3):

t = threading.Thread(target=consumer, args=(i,))
consumers.append(t)
t.start()

# Create a producer thread
producer_thread = threading.Thread(target=producer)

# Start the producer
producer_thread.start()

# Wait for the producer to finish
producer_thread.join()

# Signal consumers to exit by adding None to the queue
for _ in range(3):

my_queue.put(None)

# Wait for consumer threads to finish
for t in consumers:

t.join()

print("All threads have finished.")

In this example, we have three consumer threads and one
producer thread. The producer produces items and adds
them to the queue, while the consumers consume items



from the queue. We use a semaphore with an initial value
of 2 to limit the number of consumers that can access the
queue concurrently. The producer produces items at a
faster rate than consumers consume them, which
demonstrates how semaphores can control access to a
shared resource.

The queue (my_queue) is thread-safe and ensures that
items are added and removed in a synchronized manner.

The program also uses None as a signal to tell the
consumer threads to exit once all items have been
consumed. This is a common pattern for gracefully
terminating consumer threads in a producer-consumer
scenario.

This code showcases the use of semaphores and queues
for coordinating multiple threads in a concurrent
program.



EVENT FLAGS
Earlier we looked at synchronization between three RTOS tasks
using semaphores and queues. There is another possibility of
synchronization using flags. The flag is a single bit that is set by the
program when an event occurs. Then this flag can be checked
elsewhere in the program. The flags are combined into a group
called event group. In ESP32 there can be 24 flags in such a group.
Using flags is similar to using semaphores or queues. First we need
to define a handle for a group of flags. This event group handle.

Speaker 1 (00:00:57) - Then we can create this group in setup. We
don't need semaphores. I removed it. And here I remove
semaphores and queues. We also need to define the bits
themselves. Each task will have its own bit. This bit for job 1 and for
job 2. We can assign them any numbers. Let it be 5. It can be any.
Within 24. Now we can set these bits instead of semaphores or
queues. Here. It's a bit for job 1 and the same for job 2. Now we This



is done by the function xEventGroupWaitBits. We don't need this all.
I replaced it with the function. bit weighting function.

If this parameter is passed equal to pdTrue, the received bit will be
reset upon exiting the function. And if this is true, then the function
waits for all specified bits to be set. The bits themselves are set here.
These bits. Also they handle groups of bits and a timeout is passed
to the function. And timeout. Thus, in our case, the function will not
reset the received bits and will wait for all bits to be set.



Let's compile. First I'll uncomment this. Now compile and monitor.
This comfort is busy. Compile again. It's loaded with ResetESP.
And waiting for our bits. As we can see in the terminal, the program
worked correctly and both specified bits were set. These bits.



EXAMPLE DUMMY CODE
Event flags are synchronization mechanisms used to signal
between different threads or processes when a particular
event or condition occurs. Here's an example in Python that
demonstrates how to use event flags using the threading
module:

Python

import threading

# Create an event flag
event = threading.Event()

# Function that waits for the event
def wait_for_event():

print("Thread A is waiting for the event to be set.")
event.wait()  # Blocks until the event is set
print("Thread A: Event is set, continuing.")

# Function that sets the event
def set_event():

print("Thread B is setting the event.")
event.set()

# Create two threads
thread_a = threading.Thread(target=wait_for_event)
thread_b = threading.Thread(target=set_event)

# Start both threads
thread_a.start()
thread_b.start()



# Wait for both threads to finish
thread_a.join()
thread_b.join()

print("Main thread: All threads have finished.")

In this example, we create an event flag using
threading.Event(). Thread A is waiting for the event to be set
using event.wait(), which will block until the event is set by
Thread B using event.set().

Here's the expected execution flow:

Thread A starts and prints that it is waiting for the event to be
set.
Thread B starts and sets the event flag.
Thread A, once the event is set, continues executing and
prints that the event is set.
Both threads finish their work.
The main thread prints that all threads have finished.
Event flags are often used to coordinate activities between
multiple threads or processes, allowing them to signal each
other when specific conditions are met.



HARDWARE INTERRUPTS
Let's now look at hardware interrupts. As you know, interrupts allow
you to suspend the main program in order to perform a short function
of the interrupt source handler. Also, interrupts can interrupt each
other, depending on their priority. Interrupts with high priority can
interrupt them with low priority. The FreeRTOS task priority and
interrupt priority are two different systems. Any hardware interrupt
with low priority will always interrupt the task with high priority.
Unfortunately, the Arduino functions do not allow setting the priority
of interrupts. Therefore, we will not change it. We will use the default
one.

Each ESP32 core has its own interrupt system. Now we will look at
the operation of interrupts using the example of a timer. Let's add an
interrupt from the timer to our program. Let the interrupt happen
every second and the LED will toggle in the interrupt. To define a



timer, use the HardwareTimer type. Let's define an interrupt function
for the timer. Now it's doing nothing.
And I'll add a prototype for it. And then we can create and start the
timer. Here, with these functions. The first function initializes the
timer. It sets the timer number, 0, divider and the direction of the
count, up or down. Then the interrupt function that we created earlier
is attached to the timer.

Next, the timer is set to the value to which it will count. This one. It's
selected so that an interruption occurs every second. And then the
timer starts with the function TimerAlarmEnable. Now let's add an
LED to the interrupt. Initialize it first.
This initialization of the LED. Now we insert the toggling of the LED
in the interrupt function. I'll also add an output to the monitor, a
message about switching the LED.
Now we can compile and test how it works. Upload and monitor.
toggling. On which core does the interrupt processing function work?
We can find out by using the function exportGetCoreId. It returns the
number of the core it's running on. I'll output this number to the
monitor. This exportGetCoreId. Upload and monitor. Restart ESP.



We see that the number of the core is 1. At the same time, the setup
task in which the timer was initialized runs on the same core. Thus,
the interrupt function will be run on the core on which the interrupt
was initialized.

Let's check it out and start the timer on another core. This can be
done at the beginning of task 2, which runs on core 0. remove these
functions to the beginning of task 2. Here. Upload and monitor.
Restart ESP. As we can see, our interrupt works now on core 0. Our
interrupt handler has a print output function to the monitor. This
function runs for a relatively long time. So, it's better not to use it in
interruptions. So, let's create another task and transfer the
functionality from the interrupt handler to this task.
And in the handler itself, we will only set a flag that will be received in
the task. I'll call it letTask and run it on core 1, which Arduino runs.
And adding the task. It's an empty letTask. Define a flag for the timer.
Let it be number 2.



Then we can set this flag in our interrupt function here. Now this flag
can be accepted in the late task here. Note that this parameter is set
to pdTrue. So the flag will be reset when exiting this function. Now
we can transfer functions from the interrupt handler to the late task.
These are all functions.



And now we can upload and monitor. As we can see the late task is
running on core 1. Also all our tasks continue to be performed
without interfering with each other. Let's restart ESP32 and take a
look at their work. Restarted.
Thus we have created a program running simultaneously on two
processor cores and performing several tasks. Now let's look at the
flag setting function that we call it from the interrupt. This one. We
can see that it's different from the one we call in the task. I will copy
and place these two functions side by side so that the difference is
visible. Firstly, the function called from the interrupt has the same
name. Only from ISR this has been added to it.
It should be borne in mind that all similar FreeRTOS functions have
the phrase fromISR in their name. Therefore, only fromISR functions
should be called in the interrupt. Secondly, fromISR function has
another parameter. This. It's designed to quickly switch to the task
with the highest priority at the end of the interrupt. This parameter is
optional. I recommend not using it and passing null to functions
instead. This one, null. I'll comment on this. Don't use it. Mark here.



INTRODUCTION
Hello and welcome to this new series, where we will learn how to
send SMS without the use of a GSM module. We will do this using
the ESP32 board and the online simulation platform known as
Wokebeam. With this, it is easier to send SMS. We do not have to go
through the process of getting a GSM module. We don't have to buy
a SIM card and then go to the extent of recharging the SIM card.
With just our ESP32, we will be able to do this with a software known
as Twilo.
ESP32 is a low-powered, low-cost microcontroller which has both
WiFi and Bluetooth built-in. It houses the ESP32 chip. It has a similar
board... ESP8266 board. They are all suitable for IoT-based projects.
As shown in this picture, we will be using the ESP for this project.
This is the Twilo software which we will be using to send the
messages. We will be using Twilio to achieve this. With just Twilo
and the ESP board, we will be able to send messages by using just
one board.



Speaker 1 (00:01:39) - With this, we will achieve a lot of stuff like
sending and receiving SMS to control teams or just for
communication. Twilo also saves costs. I said this earlier in the
introduction. When using Twilio, we do not have to buy a GSM
module. The GSM module is ruled out in this case. We don't have to
buy a SIM card and we don't have to spend money recharging the
SIM card to enable us to... for making and receiving phone calls.
They also provide the tool for sending and receiving text messages
and performing other communication functions.
Using its web service APIs. Throughout this tutorial, we will use their
programmable messaging services. Before we go further, let's go
over to the Twilo website and see what it looks like. In my browser,
I'm going to search for twilo.com. That is their website. This is
Twilio's website. We will be setting up later. I will show you how to do
that. For now, let's just go to the website and see what it looks like.
You can go to the website. You can see the services they offer.
Book, SMS, You can use it to improve your contact center.
WhatsApp messages and all that. This is the Twilo website. If you
haven't seen the Twilo website, which



GETTING STARTED
So for the software requirements for this project, we'll be using the
Arduino IDE with the ESP32 board manager. We'll need internet
connectivity and we'll be using Wokui. For those of us that will be
using ESP32 board, the physical board there with
our Arduino IDE. For those that will be using the ESP32 install the
Arduino IDE, for those of us that will be using the ESP32 hardware,
we'll go to our browser.

We'll search for an Arduino IDE download. So we'll click on the first
link. So look for Windows installation. Windows 10 and newer 64
bits. So you can look for the one that is suitable for your PC. I'll just
click on download. Next, Or you can, yeah, just close that. The
download will begin in a moment. So while it is downloading. Another
software which we won't use in this series, but it's helpful.



For those that will be using the physical ESP setup. You will need
the Freezin. Freezin is used for drawing circuit diagrams. So Freezin
download. So we open the first link. So Freezin, some websites will
require you to pay before you're able to download it. So this website
actually has the paid version for it. So we'll go back. We'll go back
and look for another website that has the free version. Or the trial
version. Okay, good. So we can download from this website. So just
download. is quite simple. Open the... and get started. So now in the
Arduino IDE We'll have to install the ESP board manager. So go to
tools first of all go to preferences So once you connect your ESP
board Everything will be set for you as once you plug in your ESP
board into your USB port This link is gonna change to ESP and
some details So that we'll go to tools Tools, we are looking for board
info Keyboard manager I think that should be board manager Okay
So search for ESP ESP 32 So this is it We'll install it
How to install the ESP 32 board manager including the Arduino IDE?
Let's go ahead and test our... with our computer PC because Wokui
is a software that we'll be using to simulate... Let's head on to
Wokui.com But this is what the website looks like We'll click on sign
in or sign up if you're a first-timer you sign up So I'm gonna sign up
with So I'm in



I'm in so you can see and project templates over here Project
templates, you can just pick any one you want and edit to your taste
So I'll just pick ESP 32 Arduino the one with an LED so we can see
on the left hand side we have the Code side while on the right hand
side we have the simulation part so Let's simulate this and see how
it works. This is just to blink an LED. So it's blinking So now we can
change the color of the LED from diagram.json We can change it
from
0.5 seconds to 1000 1000 microseconds that is a second Sorry 1000
milliseconds Or one second rather So let's simulate again So this is
what we that is what we'll... this series.



TWILIO SET UP
So we have tested our ESP online simulation with the WOPI
software So we will go... Twilio... to We will go to the official website
twilio.com So this is the website We'll click on sign up and start
building. So when you click on sign up, you are going to fill out all
these informations here I Start a free trial So I already have an
account which I'm gonna log in with So I'll put my password
So verify your identity So after signing up on your new account and
when you're logging in for the first time you have to register a phone
number Which you will be using. So I'll put in a phone number and
verify So a code will be sent to my phone. This is the code that has
been sent to my phone So now I'm going to put in their code here 8
9 We will answer a basic question here. We are using the SMS
products Alert and notification. We don't need code So get started
with Twilio So skip this, we don't need all this Done.



So when we enter our Twilio account First we'll go to phone numbers
so that we can purchase a number and manage Buy a number. So
we'll search for the number that has SMS Compactivity. So this one
has SMS. We can use it to send SMS. So click on buy Click on buy
Scroll down to where we have the buy button. We'll buy this So
we've bought this now we can send SMS using this number that
we've bought So let's go back Let's go to messaging Get set up Start
set up message service name we'll just give it We'll just look for a
simple name and give it.
We'll just give it ESP alerts ESP... this is a number. We'll add this
number, the number we purchased so then this is our... my notepad
Paste it in SID. Next I'll view my authentication token. I'll copy, open
notepad And paste So try SMS After that you get to this point where
you're trying to send SMS. So body of text can be anything can be
hello from Hello from my ESP Testing Hello from my ESP test. So
let's send the SMS. So the SMS has been sent to our phone So let
me get a screenshot from my phone So that's the SMS and See how
it comes in in the phone See how



CODE SETUP FOR ESP32
USING TWILIO

So now having set up our Twilio account Let's head over to the
wokwi... code for ESP using Twilio. We will be writing a sample code
For ESP32 to send SMS using Twilio on the wokwi software So let's
get rid of the code in the setup and the loop... Twilo ESP client library
Then we come back and include that library Twilo.hpp So next we
declare our account SID and the authentication token that we have
in our Dashboard, so from number, that is the number we purchased
on the
Twilo software Then static constant char, the number we are sending
to which is our number just as you registered on the Twilo software
Then... the... for now.

Come back to it later than Twilio, Twilo So in the setup we initialize
our Twilio monitor first Then we set up a connection for the ESP32 to
connect to the internet So on wokwi simulation, it has in-built internet



connection for the ESP32 so Wi-Fi does begin It needs no password
SSID is wokwi, guest is in capital letter Then 6, with this the ESP32
will connect to the in-built internet connection of the wokwi software
So why Wi-Fi, why the ESP is not connected to Wi-Fi? It will keep
printing connecting delay 0.
5 seconds Then when... in line 24, we initialize the connection
between the wokwi or the ESP32 and the Twilo. So the delay is a
second. Then next is the message function that will send the
message to our phone So if the message was sent successfully, it
will print Send message successfully else serial.print will respond So
that is it for the sample code.
Speaker 1 (00:04:03) - So we get rid of the... LED and the resistor,
we don't need that so our account's SID will copy it from where we
saved it We'll paste We'll copy the authentication token And paste it
there as well Then the number we purchased on our Twilio account
We'll put it and the number we are sending to Then the body of the
message We'll just use message using Twilio then in brackets
testing.



EXAMPLE DUMMY CODE
To set up an ESP32 using Twilio, you would typically use
the ESP32's capabilities to connect to the internet (Wi-Fi)
and send HTTP requests to Twilio's API. Below is a
simplified example using the Arduino framework for
ESP32.

Before starting, make sure you have the following
information:

Twilio Account: Create an account on Twilio.
Twilio Phone Number: Obtain a Twilio phone number.
Account SID and Auth Token: Obtain your Twilio account
SID and Auth Token from the Twilio console.
Here's an example Arduino code using the Arduino IDE
for ESP32:

Cpp

#include <WiFi.h>
#include <HTTPClient.h>

const char *ssid = "your_wifi_ssid";
const char *password = "your_wifi_password";

// Twilio Account SID and Auth Token
const char *accountSid = "your_twilio_account_sid";
const char *authToken = "your_twilio_auth_token";

// Twilio phone number and recipient phone number
const char *twilioPhoneNumber =
"your_twilio_phone_number";



const char *recipientPhoneNumber =
"recipient_phone_number";

void setup() {
Serial.begin(115200);
delay(1000);

// Connect to Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(1000);
Serial.println("Connecting to WiFi...");

}
Serial.println("Connected to WiFi");

}

void loop() {
// Replace this message with the content you want to

send
String message = "Hello from your ESP32!";

// Build the Twilio API URL
String url = "https://api.twilio.com/2010-04-

01/Accounts/" + String(accountSid) + "/Messages.json";

// Set up the HTTP client
HTTPClient http;
http.begin(url);

// Set up Twilio authentication
String credentials = String(accountSid) + ":" +

String(authToken);
String encodedCredentials =

base64::encode(credentials);
http.addHeader("Authorization", "Basic " +

encodedCredentials);



// Set up the message parameters
http.addHeader("Content-Type", "application/x-www-

form-urlencoded");
String postData = "To=" +

String(recipientPhoneNumber) + "&From=" +
String(twilioPhoneNumber) + "&Body=" + message;

// Send the POST request to Twilio
int httpResponseCode = http.POST(postData);

// Check for success
if (httpResponseCode > 0) {

Serial.print("Twilio API response code: ");
Serial.println(httpResponseCode);
String payload = http.getString();
Serial.println("Twilio API response: " + payload);

} else {
Serial.print("Twilio API request failed. HTTP response

code: ");
Serial.println(httpResponseCode);

}

// Clean up
http.end();

// Wait for a while before sending the next message
delay(5000);

}

Please replace the placeholder values with your actual
Wi-Fi credentials, Twilio account SID, auth token, Twilio
phone number, and recipient phone number.

This example sends a simple SMS message to the
specified recipient phone number using Twilio's API. Note



that Twilio's API requires HTTPS, so make sure the ESP32
supports HTTPS.

Also, keep in mind that handling sensitive information
like Twilio credentials on an embedded device requires
careful consideration of security. In a production
environment, it's essential to implement secure practices
for handling credentials and ensure the overall security of
your IoT application.



TESTING CODE SETUP FOR
ESP32 USING TWILIO

In this episode, we'll be testing the sample code we wrote in episode
4 So that's my mobile phone by the side. Let's simulate it So that it's
connected. API of Twilio to send us... you can see Twilio again and
we've received SMS and you can see the feedback on the serial
monitor to send a message successfully so now let's Move this
message.

Let's move it out from setup and move it to loop so that We don't
have to restart the simulation to keep receiving the messages So we
just copy it We just copy it from the setup Come down to the loop
and paste it in the loop so same thing for the success condition if it is
a success it should give us feedback and The serial monitor Then
I'm gonna add a general delay so that it doesn't keep sending
immediately. So a delay of 3 seconds Let's simulate So connecting
to Twilio So we've received the message.



So now we are not going to refresh the simulation and the messages
will keep coming in Because now we put it in the loop so that is it
for... ESP32 with Twilio software.



EXAMPLE DUMMY CODE
Testing an ESP32 code setup that uses Twilio involves
verifying that the ESP32 can connect to Wi-Fi, send HTTP
requests to Twilio's API, and receive the expected
responses. Below is an example code to test the setup for
sending a message using Twilio. This code can be run on
your ESP32 to test the Twilio integration.

For testing, you may want to use a development board
with serial communication capabilities, such as the
ESP32. You can view the serial monitor output to check
the status of your tests.

Please ensure you have already set up the Twilio and Wi-
Fi configurations in your main code, as mentioned in the
previous response.

Cpp

#include <Arduino.h>
#include <WiFi.h>
#include <HTTPClient.h>

const char* ssid = "your_wifi_ssid";
const char* password = "your_wifi_password";
const char* accountSid = "your_twilio_account_sid";
const char* authToken = "your_twilio_auth_token";
const char* twilioPhoneNumber =
"your_twilio_phone_number";
const char* recipientPhoneNumber =
"recipient_phone_number";



void setup() {
Serial.begin(115200);
delay(1000);

// Connect to Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to WiFi...");

}
Serial.println("Connected to WiFi");

testTwilioIntegration();
}

void loop() {
// Not used in this test

}

void testTwilioIntegration() {
String message = "Testing Twilio integration from

ESP32";

// Build the Twilio API URL
String url = "https://api.twilio.com/2010-04-

01/Accounts/" + String(accountSid) + "/Messages.json";

// Set up the HTTP client
HTTPClient http;
http.begin(url);

// Set up Twilio authentication
String credentials = String(accountSid) + ":" +

String(authToken);
String encodedCredentials =

base64::encode(credentials);



http.addHeader("Authorization", "Basic " +
encodedCredentials);

// Set up the message parameters
http.addHeader("Content-Type", "application/x-www-

form-urlencoded");
String postData = "To=" +

String(recipientPhoneNumber) + "&From=" +
String(twilioPhoneNumber) + "&Body=" + message;

// Send the POST request to Twilio
int httpResponseCode = http.POST(postData);

// Check for success
if (httpResponseCode > 0) {

Serial.print("Twilio API response code: ");
Serial.println(httpResponseCode);
String payload = http.getString();
Serial.println("Twilio API response: " + payload);

} else {
Serial.print("Twilio API request failed. HTTP response

code: ");
Serial.println(httpResponseCode);

}

// Clean up
http.end();

}

Upload this code to your ESP32 and open the serial
monitor. The ESP32 will attempt to connect to Wi-Fi and
send a text message using Twilio's API. You can observe
the serial monitor output to check if the ESP32
successfully connects and sends the message. Be sure



to replace the placeholder values with your actual Twilio
and Wi-Fi credentials.

Keep in mind that testing Twilio integration often requires
an active internet connection and valid Twilio credentials,
and it may incur costs, depending on your Twilio usage.



SEND SMS ON PUSH BUTTON
In this episode we are going to send the SMS by pressing a push
button. When a... SMS will go through. there. So connect the pin to
digital pin 2... to the ground. There you go. You can see the inputs.
So this is the code we used in episode 5. We'll be making some
slight changes here. We'll change the message details to be button
pressed. Then we'll come down and... resistor. So int... then button
state which is a variable. We did not assign any value to it.
So in the loop we'll comment this out and then the int button state is
going to be a digital read button. Then if button state is low. So when
it is low we'll call the SMS function. Let's send the SMS. When the
button state is high it does nothing. It's just blank. So it only sends
the SMS when the button is pressed. That's when it's going to send
the SMS. So let's simulate it and see what happens. And we have
our mobile phone set up. It's connected to the internet. So now we
are going to press the button.



So you press the... Twilio to be able to send the message. So we
have received the message. That is the message but there is no
indicator over this side that the message was sent successfully. So
let's simulate again. So we'll press the button now. We'll press the
button again. So in the code we did not put a condition that if SMS
was successful, that is if the message was sent successfully, it
should print SMS sent successfully. So we did not include that in our
code. So that is why when we receive another message it won't...
the serial monitor.
So we'll pause the simulation and we'll go back to our code. We'll
just copy the one we commented on there. Copy and we'll paste it
just below the SMS function. So we'll paste it and we'll remove the
comments. Okay so let's simulate again. This time around we should
get feedback from the serial monitor when the SMS has been sent
successfully. So it's connected. Let's press our push button. Alright
we press it and it's connecting to Twilio to send the
SMS. So we've received the message and you can see the feedback
on the serial monitor sent message successfully. So if we press... will
see the feedback on the serial monitor as well. So that Send SMS on
the push button.



EXAMPLE DUMMY CODE
To send an SMS when a push button is pressed, you'll
need an Arduino board (e.g., Arduino Uno), a GSM
module (e.g., SIM800L), a push button, and a working
knowledge of the Arduino IDE. Here's a basic example
using Arduino and the SIM800L GSM module:

Cpp

#include <SoftwareSerial.h>

// Define the GSM module's TX and RX pins
SoftwareSerial mySerial(7, 8); // RX, TX

const int buttonPin = 2; // The push button is connected
to digital pin 2
int buttonState = 0; // Store the current button state
int lastButtonState = 0; // Store the previous button state
unsigned long lastDebounceTime = 0; // The last time the
button state changed
unsigned long debounceDelay = 50; // Minimum time
between button state changes

void setup() {
mySerial.begin(9600); // Initialize GSM module

communication
pinMode(buttonPin, INPUT);
// Make sure the GSM module is ready (wait for a few

seconds)
delay(2000);

}



void loop() {
int reading = digitalRead(buttonPin);

if (reading != lastButtonState) {
lastDebounceTime = millis();

}

if ((millis() - lastDebounceTime) > debounceDelay) {
if (reading != buttonState) {

buttonState = reading;

if (buttonState == HIGH) {
sendSMS(); // When the button is pressed, send an

SMS
}

}
}

lastButtonState = reading;
}

void sendSMS() {
mySerial.println("AT"); // Test the GSM module
delay(1000);

mySerial.println("AT+CMGF=1"); // Set SMS mode to text
delay(1000);

mySerial.print("AT+CMGS=\"+1234567890\"\r"); //
Replace with the recipient's phone number

delay(1000);

mySerial.print("Hello, this is an SMS sent from your
Arduino!"); // SMS content

delay(1000);

mySerial.write(0x1A); // Ctrl+Z to end the SMS



delay(1000);
}

In this code, we are using the SoftwareSerial library to
communicate with the SIM800L GSM module. Connect the
GSM module's TX to pin 7 and RX to pin 8 on the Arduino.

The push button is connected to pin 2 and configured
with a debounce mechanism to avoid false readings.

When you press the button, it triggers the sendSMS
function. Modify the recipient's phone number and the
SMS content as needed.

Note that you should have a working SIM card with a data
plan and activated GSM module for this to work. Also, the
power requirements of the GSM module may require an
external power source, depending on your setup. Make
sure to consult your GSM module's datasheet and
documentation for proper setup and power
considerations.



TWILIO SET UP
So we have tested our ESP online simulation with the WOPI
software So we will go... Twilio... to We will go to the official website
twilio.com So this is the website We'll click on sign up and start
building. So when you click on sign up, you are going to fill out all
these informations here I Start a free trial So I already have an
account which I'm gonna log in with So I'll put my password
So after signing up on your new account and when you're logging in
for the first time you have to register a phone number Which you will
be using. So I'll put in a phone number and verify So a code will be
sent to my phone. This is the code that has been sent to my phone
So now I'm going to put in their code here 8 9 We will answer a basic
question here. We are using the SMS products Alert and notification.
We don't need code So get started with Twilio So skip this, we don't
need all this Done.



So when we enter our Twilio account First we'll go to phone numbers
so that we can purchase a number and manage Buy a number. So
we'll search for the number that has SMS Compactivity. So this one
has SMS. We can use it to send SMS. So click on buy Click on buy
Scroll down to where we have the buy button. We'll buy this So
we've bought this now we can send SMS using this number that
we've bought So let's go back Let's go to messaging Get set up Start
set up message service name we'll just give it We'll just look for a
simple name and give it.
We'll just give it ESP alerts ESP... this is a number. We'll add this
number, the number we purchased so then this is our... my notepad
Paste it in SID. Next I'll view my authentication token. I'll copy, open
notepad And paste So try SMS After that you get to this point where
you're trying to send SMS. So body of text can be anything can be
hello from Hello from my ESP Testing Hello from my ESP test. So
let's send the SMS. So the SMS has been sent to our phone So let
me get a screenshot from my phone So that's the SMS and See how
it comes in in the phone See how



SEND SMS CONTROLLED BY
DHT22

In this episode The DHC 11 temperature and humidity sensor will be
used to control the SMS that will be sent to our mobile phones. So
when the temperature rises above a certain threshold, which we are
going to set It will trigger the SMS. So let's begin. So that we are
able to input our own code So let's install the library, the Flare library.
Install the Twilio ESP clients library first Then we'll install the DHC
sensor library. So let's begin the code Include the Twilio library which
we already installed.
Next we'll include the DHC... DHC pin which is connected to pin 15
The DHC type is DHC 22. That's what we'll be using

Then we are going to declare the temperature threshold for the
upper value Which is 60. Then lower the value we'll use 30 Okay,
let's leave it at 30. So float temperature that is. We've declared the
Variable but we've not assigned any value to it So now the account's



SID which we... So be careful not to make mistakes. It's best you
Copy and paste it Just type in mine out then my Authentication
token. So
Next I'll declare another variable, the number which I'm sending from
as the number which I purchased on the Twilio platform. I'll put it
there and then the number which will be sent to which is my
registered phone number Same as on the Twilio platform So the
message content, it can be anything you want. So ours will be room
temperature is too high so for the void setup Initialize the serial
monitor Initialize the temperature and humidity sensor. Then initialize
the connection.
The loop will set a delay in between the readings which is 2 seconds
then temperature is equal to DHT read temperature Temperature
was the float variable we... read from the DHT sensor so else our
first condition if the temperature is above the temperature... 60
Serial.

print room temperature is too high and Then the send message
function will follow else If temperature is lower than the temperature
threshold lower Serial.print room temperature is normal. It won't
send any SMS. the simulation



is coming up, okay So let's simulate connecting to the network So
you can see the temperature is below 60 and the Serial.print room
temperature is normal. So let's increase it above 60 So once you
increase it above 60, it initializes the SMS system. It's connecting to
Twilio... see the message has come into our mobile phone. So open
it Room temperature is too high. As you see, let's take the
temperature, let's take it lower. So after sending the SMS, it has
come back.
It's gonna go back to room temperature. So the SMS is automated In
regards to the level or how hot or cold the room is. So that is it for
this project.



EXAMPLE DUMMY CODE
To send an SMS controlled by a DHT22 temperature and
humidity sensor, you'll need an Arduino board (e.g.,
Arduino Uno), a GSM module (e.g., SIM800L), a DHT22
sensor, and a working knowledge of the Arduino IDE.
Here's a basic example using Arduino and the SIM800L
GSM module:

Cpp

#include <SoftwareSerial.h>
#include <DHT.h>

// Define the GSM module's TX and RX pins
SoftwareSerial mySerial(7, 8); // RX, TX

// Define the DHT22 sensor
DHT dht(2, DHT22);

// Set your phone number here
const char* phoneNumber = "+1234567890"; // Replace
with your recipient's phone number

void setup() {
Serial.begin(9600);
mySerial.begin(9600); // Initialize GSM module

communication
dht.begin();
// Make sure the GSM module is ready (wait for a few

seconds)
delay(2000);

}



void loop() {
float temperature = dht.readTemperature();
float humidity = dht.readHumidity();

if (!isnan(temperature) && !isnan(humidity)) {
// Check if temperature exceeds a certain threshold
if (temperature > 30.0) {

sendSMS("Temperature is too high. Current
Temperature: " + String(temperature) + "°C");

}

// Check if humidity is too low
if (humidity < 30.0) {

sendSMS("Humidity is too low. Current Humidity: " +
String(humidity) + "%");

}

// Delay between readings
delay(5000); // Adjust as needed

}
}

void sendSMS(String message) {
mySerial.println("AT"); // Test the GSM module
delay(1000);

mySerial.println("AT+CMGF=1"); // Set SMS mode to text
delay(1000);

mySerial.print("AT+CMGS=\"");
mySerial.print(phoneNumber);
mySerial.println("\"");
delay(1000);

mySerial.print(message); // SMS content
mySerial.write(0x1A); // Ctrl+Z to end the SMS



delay(1000);
}

In this code, we are using the SoftwareSerial library to
communicate with the SIM800L GSM module. Connect the
GSM module's TX to pin 7 and RX to pin 8 on the Arduino.

The DHT22 sensor is connected to pin 2 and configured
to read temperature and humidity.

The loop function reads temperature and humidity from
the DHT22 sensor and checks whether they exceed
certain thresholds. If the conditions are met, it sends an
SMS with the sensor data to the specified phone number.

Replace phoneNumber with the recipient's phone number.
Adjust the temperature and humidity thresholds as
needed. The delay functions control how often the sensor
readings and SMS sending are performed. Make sure you
have a working SIM card with a data plan and an activated
GSM module for this to work.

Keep in mind that the power requirements of the GSM
module may require an external power source, depending
on your setup. Make sure to consult your GSM module's
datasheet and documentation for proper setup and power
considerations.



INTRODUCTION TO HOME
AUTOMATION

As we are going to develop a home automation project, it is crucial to
have a clear understanding of the concept behind this technology.
Home automation is a system that enables the control and
automation of various electrical devices and appliances in a home.
This technology uses different types of sensors, controllers, and
actuators to provide greater control and convenience to
homeowners.

With home automation, one can control lights, heating and cooling
systems, security cameras, smart locks, and other appliances using
a smartphone, tablet, or a computer. Home automation systems
typically consist of a central hub or controller that serves as the brain
of the system.



The hub connects to various devices and sensors throughout the
home and can be programmed to perform a wide range of actions,
such as turning on lights when someone enters a room, adjusting the
thermostat based on the temperature outside, or even starting the
coffee maker in the morning. Home automation systems can also be
integrated with voice assistants like Amazon Alexa or Google
Assistant, allowing users to control their smart home devices using
voice commands.
Overall, home automation can provide greater convenience, comfort,
and security to homeowners while also helping to save energy and
reduce utility bills. Applications of Home Automation Lighting Control
Home automation allows you to control your lights remotely or
automatically according to preset schedules or conditions. For
example, you can set your lights to turn on when you arrive home or
turn off when you leave. Climate Control Home automation lets you
control your heating, ventilation, and air conditioning system
remotely or automatically.



You can adjust the temperature and humidity levels in your home
according to your preferences or occupancy patterns. Security and
Surveillance Home automation enables you to monitor your home
security and surveillance systems from anywhere using your mobile
device or computer.



You can receive alerts when there is motion or noise detected, or
when doors and windows are opened or closed.
Entertainment Systems Home automation allows you to control your
audio and video systems, such as TVs, speakers, and gaming
consoles from a central hub or remote control.

You can stream music and videos from your smartphone or tablet to
your home theater system or play your favorite games on your big
screen TV. Energy Management Home automation helps you to
conserve energy and reduce your utility bills by automatically turning
off lights, appliances, and other devices when not in use, or by
optimizing the use of renewable energy sources such as solar
panels and wind turbines.
Health and Wellness Home automation can support your health and
wellness by tracking your fitness and health data, such as heart rate,
blood pressure, and sleep patterns, and providing you with
personalized recommendations and feedback. You can also connect
with health and wellness professionals remotely for consultations
and support.



GETTING STARTED WITH
ESP32

Before proceeding with the setup and testing of the ESP32, it is
essential to gain a comprehensive understanding of this
development board. The ESP32 is a powerful microcontroller that is
designed to be low power and energy efficient.

It features two 32-bit processor cores and runs at clock speed of up
to 240 MHz. This makes the ESP32 much more powerful than many
other microcontrollers in the market and allows it to handle complex
tasks and applications. One of the key features of the ESP32 is its
built-in Wi-Fi and Bluetooth connectivity.
This allows the ESP32 to connect to the internet and communicate
wirelessly with other devices, such as smartphones, tablets, and
other IoT devices. The Wi-Fi connectivity also allows the ESP32 to
act as an access point or a station, making it easy to integrate into



existing networks. The ESP32 also has a number of built-in
peripherals, including GPIO, SPI, I2C, UART, ADC, and more.

These peripherals make it easy to connect the ESP32 to a wide
range of sensors, actuators, and other devices, and enable it to
perform a variety of tasks, such as reading sensor data, controlling
motors, and communicating with other devices. The ESP32 also has
a real-time operating system that allows it to manage multiple tasks
and run them simultaneously. This is important for IoT applications,
which often involve multiple sensors and devices that need to be
monitored and controlled.
Overall, the ESP32 is a powerful and flexible microcontroller that
offers a wide range of features and capabilities for IoT applications.
Its built-in Wi-Fi and Bluetooth connectivity support for multiple
peripherals and real-time operating systems make it a popular
choice for developers and hobbyists alike.



MASTERING GPIO PINS
When it comes to developing a hardware project, the general-
purpose input-output pins play a crucial role. These pins serve as the
interface between the board and the external components, making
them a critical component of any project. Thus, gaining an in-depth
understanding of the various functionalities of these pins is essential
to the success of the project.
The ESP32 microcontroller has a wide range of GPIO pins that can
be used for a variety of purposes, including interfacing with sensors,
controlling motors and actuators, and communicating with other
devices.

The ESP32 development boards come with so many versions, pin-
outs, shapes, etc. In this project, we are going to use the ESP32 30-
pin DevKit version 1 development board. This board is embedded
with the microcontroller ESPWROOM32. This ESPWROOM32 IC



contains a 4MB SPI flash memory IC and a 40MHz crystal oscillator,
PCB antenna, etc.
As the ESP32 board consists of a 4MB flash memory to store its
primary program, some GPIO pins are directly connected to this
flash memory. So, these pins can be used only for the programming
of the board.

These pins cannot be used for other functions. Here you can see the
pin-out diagram of the ESP32 DevKit development board. You can
see each of the pins of this board as multiple functions. Each
function is clearly noted with different colors.
Now, let us discuss these functions with respective pins to
understand how to and which pins should be used. The term GPIO is
abbreviated as General Purpose Input Output. board, 25 GPIO pins
are available to connect with external circuits.



It also has some other GPIO pins that are connected internally with
some ports and ICs. The GPIO pins are also used for other functions
such as analog-to-digital converter, digital-to-analog converter, real-
time clock, etc. But only one function will work at a time.
So, we can configure the GPIO pin as an ADC or an UART in the
program. You can see in the diagram that pin number 13 to 36 on
the left and 15 to 23 on the right have GPIO functionality. ADC
means analog-to-digital converter.



The ADC pins help to connect external analog devices and
components with this board. So, it can measure analog values such
as voltage, current, etc. These ADC pins are also used in the sleep
mode for low power consumption. The GPIO pins from 13 to 36
PWM control, etc. PWM means Pulse Width Modulation.



There is a difference between a normal digital signal and a pulse
width modulated signal, although they look the same. The digital
signal has a constant or fixed time period and frequency, whereas
the PWM signal has a variable time period and frequency. The PWM
function is very useful in applications such as motor speed control,
brightness control, variable load controls, etc. In the ESP32 board,
almost all the pins are PWM enabled except the EN, GND and VN
on the left and GND and VDD on the right hand side.
The 30-pin ESP32 board is equipped with 9 touch sensor pins, which
are distributed across the board. The touch sensor pins are located
on both the left and right sides of the board, with GPIO pin numbers
13, 12, 14, 27, 33 and 32 on the left side and pin numbers 15, 2 and
4 on the right side. These touch sensor pins can be used to detect
touch inputs and enable touch-based user interfaces for various
applications.



HARDWARE REQUIREMENTS
FOR THE COMPLETE

PROJECT
Let us see the ESP32 Development Board. This is the actual
microcontroller board that will be used for programming and
deploying the main project. Micro USB Cable. This will be used to
power the ESP32 board along with that it will also help us to deploy
the program on the board. Jumper wires.

These are used to create the connection between the ESP32 board
and the relay. Approx 15 jumper wires are required for the project. 4-
channel relay. This will act as a virtual switch to control AC
appliances with ESP32. Bulbs. You can connect any appliances to
the relay whose capacity is up to 10 amps.



For the demonstration of the project, we are using four different
colors of night bulbs whose voltage ratings are 240 volt AC. Bulb
holders. These will be used for connecting the 240 volt bulbs. You
should have four different holders to connect the four bulbs. Kindly
note, if you are using a B22 type bulb, it is recommended to use
holders that are specifically designed for B22 bulbs. Similarly, if you
are using an E27 type bulb, it is best to use holders that are
compatible with E27 bulbs.
This ensures a proper fit and secure connection between the bulb
and the holder, allowing for safe and efficient operation. Electrical
switch. In situations when internet connectivity is unavailable, we can
use an electrical switch to manually control AC appliances. For this
purpose, we require five switches. Four switches will be installed
together in one board and the fifth switch on a separate board.



By keeping two ways to control AC appliances, we can ensure that
our system remains reliable and functional even when the failure of
internet connectivity occurs. Switch mounting box. To accommodate
our switching needs, we will require two different types of switch
mounting boxes. The first type will be used to hold an individual
switch, while the second type will be capable of holding up to four
switches. Copper wire 0.5 mm2. This will help us to connect the
mains power supply with the AC appliances and the relays.



It is recommended that you obtain a high-quality twisted wire that is
3 meters in length. Using a reliable and durable wire ensures that
you can effectively and safely connect your devices. Two-pin plug.
This will help us to connect the wire with the 240V mains power
supply socket. External power supply. The USB port on a laptop or
desktop computer typically supplies a maximum of 5V and 0.5A of
current.
This is sufficient to control a single-channel relay, but when we
connect four relays to the ESP32, the board may not be capable of
providing enough current to drive them all. In such a scenario, it is
necessary to use an external power supply to provide the necessary
current to all the four-channel relays, ensuring that they can function
reliably and effectively.



We need a 5V 2A power adapter. 220V table fan. During the final
project demonstration, we will be replacing the fourth bulb that is
currently connected to the relays with the fan.

This change will enable us to showcase the system's ability to
connect and control a broad range of AC appliances, as long as their



load capacity is under 10A. It is important to note that we have
deliberately chosen to limit the load capacity to 10A, as this is the
maximum load capacity for the 5V relays that are commonly
available for project purposes. Additionally, these relays are rated to
handle up to 250V AC, making them suitable for a wide range of
applications.

By paying close attention to the load capacity and voltage ratings of
the components we use, we can ensure the safe and reliable
operation of our system. Wire Stripper. A wire stripper is an essential
tool that allows us to remove the outer plastic layer from a wire,
enabling us to connect the wire to various components such as
plugs, holders and relays. We will be also using this tool when we
need to add jumper wires to the output of an external power adapter.
Electrical Tape.
We will be using this tape to provide insulation and protection for
electrical connections and wires. Screwdriver. We just need a
general-purpose star-head screwdriver for tightly fixing the wire on
the relays and a flat-head screwdriver to fix the switches on the
board. Electrical Safety Hand Gloves. Working with a 240V mains
power supply can be hazardous, which is why it is essential to take



appropriate precautions. In such situations, an electrical hand glove
comes handy.
These gloves are designed to protect you from electrical shocks and
other electrical hazards that may arise during the electrical
connection. By wearing electrical safety gloves, you can significantly
reduce the risk of electrical accidents and ensure that you can work
safely and confidently on your project.



CONNECTING AND
VERIFYING THE USB TO

UART CHIP IN ESP32
As you can see, we have an ESP32 microcontroller board and a
microUSB cable. Upon closer inspection of the ESP32 board, we
can see that it has 30 pins and the label ESP32 DEV KIT V1 is
clearly visible when the board is inverted. To connect the ESP32
board to the USB port of your PC or laptop, we need to use a
microUSB cable. At the edge of the board, there is a microUSB
female port where we need to insert a male microUSB connector.
Now connect the cable to the ESP32 board making sure that it fits
properly.
Next we need to connect the other end of the USB cable to a USB
port on our computer. Once connected, a red LED on the ESP32
board should light up indicating that the board is powered on. Before
we proceed ahead, can you please tell me how you will make sure
which USB to UART chip is embedded in your ESP32? Many ESP32
boards come equipped with a CP2102 USB to UART chip that allows
them to communicate with a computer through a serial interface
using a COM port. However, some boards may have a CH340 chip
instead.



Before installing the appropriate driver, it is important to verify which
chip is embedded in your ESP32. To do this, closely inspect the chip
to determine its identity. Secondly, the device manager will also help
you to find the same. Now let me check mine. Click on the Start
menu and search for the device manager. Upon opening the
application, you can find that in the Other Devices section, CP2102
USB to UART Bridge Controller is listed. So it confirms that I have
CP2102 based ESP32. Upon clicking on it, you can see its
properties.
Error device status. It is mentioned that the device driver is not
installed along with the error code 28. Please note that whenever
you see the error code 28, it simply means that the driver for the
particular device is not installed on your computer or the installed
driver is corrupted or outdated.



ARDUINO INSTALLATION
Before installing the driver for the device, let us just check if the
driver comes along with the Arduino IDE. So go to your web browser
and type Arduino. Now we can see that the first web link is the
official URL for Arduino. So click on it. On the home page, go to the
software menu. Here we can see that we have a download section
and the latest version of Arduino IDE is mentioned. On the right hand
side, we can download the IDE based on different operating
systems. In our case, we are going ahead with the first option.

It will take you to the download page. You may donate some amount
to the Arduino team to support the ongoing development. It is
optional and we can skip this by clicking on just download. The
system will ask for the path where to download the file and after
choosing the desired path click on save and it will start downloading.
After successful download, open the installer. Click on I agree. Then
on the next screen, we can see two options available, all users and
current user.



If the PC is being accessed by multiple users, then you can go
ahead with the first option. Here I am the only user, so I am going
ahead with the second option. After making the choice, click on the
next button. Thereafter, we can see the destination folder of the
installation. We keep it as it is and click on install. It will start the
installation, so wait for its completion. After successful installation,
you have the option to tick whether you want to run Arduino IDE or
not.
I am unticking this so it will not open this time and click on the finish
button. Now let's again open the device manager and click on scan
for hardware changes. As you can see, the driver for this device is
still not installed even after the installation of the Arduino. This
confirms that Arduino doesn't come with a CP2102 driver. Now let us
open our Arduino IDE. We will see a blank sketch. Since the font
size is small, we can increase the same.
Go to the edit menu and you can see here the increased font size
option with a shortcut of ctrl plus equal to. We can use both ways by
clicking the increase font size option or by using the keyboard
shortcut.



EXAMPLE DUMMY CODE
To set up an ESP32 board in the Arduino IDE, follow these
steps:

1. **Install the Arduino IDE**:
If you haven't already installed the Arduino IDE,

download and install it from the [Arduino website]
(https://www.arduino.cc/en/software).

2. **Install ESP32 Board Support**:
To add support for the ESP32 boards in the Arduino

IDE, you'll need to install the ESP32 board package.
Follow these steps:

- Open the Arduino IDE.
- Go to "File" > "Preferences."
- In the "Additional Boards Manager URLs" field, add

the following URL:
```
https://dl.espressif.com/dl/package_esp32_index.json
```

- Click "OK" to close the Preferences window.

3. **Install ESP32 Board Package**:
Now, you need to install the ESP32 board package.

Here's how:

- Go to "Tools" > "Board" > "Boards Manager..."
- In the "Boards Manager" window, type "esp32" into

the search bar.
- You should see "esp32" by Espressif Systems. Click

the "Install" button to install the package.



4. **Select Your ESP32 Board**:
After the installation, you can now select your specific

ESP32 board from the list. Here's how:

- Go to "Tools" > "Board."
- Select your ESP32 board model from the list. For

example, "ESP32 Dev Module" or "NodeMCU-32S."

5. **Select the COM Port**:
- Go to "Tools" > "Port" and select the COM port to

which your ESP32 is connected. The COM port number
will vary depending on your system.

6. **Write and Upload Code**:
You can now write your code for the ESP32 in the

Arduino IDE. Here's a simple "Hello, World!" example for
the ESP32:

```cpp
void setup() {

Serial.begin(115200);
}

void loop() {
Serial.println("Hello, World!");
delay(1000);

}
```

7. **Upload Code**:
- Click the right-facing arrow icon (or "Upload" in the

"Sketch" menu) to upload your code to the ESP32.

8. **Monitor Serial Output**:
- After successfully uploading your code, open the

Serial Monitor (Tools > Serial Monitor) to view the serial



output. Set the baud rate to 115200 to match your code's
configuration.

Your ESP32 is now set up in the Arduino IDE, and you can
start developing and uploading code to it. Make sure you
have the necessary drivers installed for your ESP32
board if you encounter any connectivity issues.



SETTING UP ESP32 IN
ARDUINO IDE

Now, we are ready to set up ESP32 in the Arduino IDE. So, let's
start. Go to the File menu and select the Preferences option. It will
open a small window. Scroll down and you can see there are
additional board manager URLs that are currently empty. Please
note that the Arduino IDE doesn't come with an ESP32 board library.
Hence, to enable the ESP32 board compatibility with the Arduino
IDE, it is necessary to install the ESP32 board library. We will do this
by adding the ESP32 board's URL here.

I have the URLs written in the notepad, which I will share with you in
the resource section of this lecture. Just copy the two URLs one by
one and paste them into the preferences window. As it is separated
by a comma, the IDE will automatically consider it as two different
URL links. Now click on OK and it will start downloading some
packages required for ESP32 boards. After the download gets



completed, click on the board manager icon located on the left side.
Type ESP32 in the search box.
It will show a board having the name ESP32 by Espressif Systems. If
we click on the More Info link, it will open the GitHub repository of
ESP32 in the browser. Go back to the IDE. Please note that the
latest version of the ESP32 board library is not compatible with our
ESP Rainmaker program and installing the latest version will result in
unexpected errors during development. So select version 2.0.3 from
the drop-down menu and click on Install. It will start downloading
packages for the board.

It will take some amount of time, so kindly wait for its completion.
When the installation is complete, you can notice that it is showing
version 2.0.3 installed. In place of the install button, it is now showing
the update button. Kindly note that since we have installed an older
version of the ESP32 board library, you may get an update
notification in your Arduino IDE. Please make sure you always avoid
the same. Now let's go to the board and port option.
If we type dev, we can see the ESP32 dev module is listed in the
boards, but there is no port available in the list. If we check the port
from the device manager, we can still see that the CP2102 is listed in



other devices and it is showing the same message that the drivers
for this device are not installed. So we need to manually install the
driver for this chip.

Go to the browser and search for CP2102 driver and you can see
the official web link from Silicon Labs. Go to this link and click on the
Downloads menu.
Here we can see the list of software download links. We will go
ahead with the universal driver. Upon clicking on it, it will ask you to
choose your destination folder. Click on the save button and the
download will start.



After the download gets completed, open the folder where the file
has been downloaded. This is a zip file, so first extract it and we can
see all the extracted files here. Now go to the device, right click and
choose the update driver. Click the second option and browse the
location of the CP2102 driver which you had extracted earlier.
Choose the parent folder, click ok and then click on the next button.
The driver will be installed and a message will be displayed
confirming that the driver has been updated successfully. You will
notice that in the device driver hardware list, the CP2102 device is
now listed inside the ports section and upon clicking on it, it shows
that the device is working properly and the virtual com port number 3
is allocated to this device. Now in the Arduino ID, inside the board
and port window, the same USB COM port is visible.
This means that our ID also detected the port, so select the same
and click on ok. You can notice that on the bottom side, there is
written ESP32 dev module on COM3. It indicates that the computer
has recognized the connected ESP32 board and is ready to
communicate with it.



TESTING THE ESP32 BOARD
(PART 1)

Now that our ESP32 board is properly set up, we can proceed to test
it with a basic program. This program is responsible for blinking the
inbuilt LED on the ESP32 board. Carrying out this test will ensure
that the board which we have purchased online or from a local
market is functioning properly or not. In case it is not working, you
can immediately ask the seller for a replacement. Let us now go
through the code. In the first line of code, we are declaring a
variable.

This is the data type of a variable followed by the name of the
variable and then the assignment operator and finally the value of
the variable. So the onboard LED variable will store the inbuilt LED
pin number 2. We have mentioned this because the LED is internally
connected to pin number 2 and we don't have to make any external
connection. This variable is declared above void setup so that we



can access this global value from anywhere in our program. This is
the default setup function which does not return any value.
That is why you can notice that it is mentioned as void before the
function name. The pin mode function is used to configure the mode
of a digital input or output pin. The function sets the pin mode as
either input, output or input pull up. The first argument takes the
digital pin number that we want to configure and the second
argument specifies the mode of the pin. The possible modes are.
Input This mode is used for a digital input pin. The pin will be
configured to read the state of an external device connected to it.

Output This mode is used for a digital output pin. The pin will be
configured to send a digital signal to an external device connected to
it. Input Pull-up This mode is used for a digital input pin with an
internal pull-up resistor. The pin will be configured to read the state
of an external device connected to it with an input pull-up resistor
connected internally. Since an LED is an output device, we need to
send a signal to light it. That's why we have mentioned it as an
output.
This function is used to initialize the serial communication at a
specific baud rate between the ESP32 and the connected device,



such as a computer, another microcontroller, or a sensor module.
Inside the parenthesis, we have passed the baud rate. The baud rate
is the speed of the serial communication measured in bits per
second. Common baud rates include 9600, 115200, 57600, and
38400. The recommended baud rate for ESP32 and PC
communication is 115200.
This baud rate ensures reliable and fast communication between the
ESP32 and the PC, and it is widely used in many ESP32 projects.



TESTING THE ESP32 BOARD
(PART 2)

The loop function is a built-in function that runs continuously after the
setup function has been completed. The loop function is where we
put the main code of our program and it repeats itself until the
microcontroller is powered off or reset. Here we have created a
variable named time underscore delay and its value is set to 1000.
We will use its value in the upcoming code. The digitalWrite function
is used to set the voltage level of a digital pin on the microcontroller.

Digital pins can be either input or output and digitalWrite is used only
with output pins. Here the pin is the number of the digital pin to be
set and the value is either high or low to set the voltage level of the
pin. In our case, we have passed onBoard underscore led, the
variable contains the value 2, so here pin number is 2 and the value
is high, this means it will glow. Then we simply print the message on



the console that the onBoard led is on. Next we have written the
delay function.
This function is used to pause the program for a specified amount of
time.

The delay function takes one argument which is the amount of time
to pause the program in milliseconds. In our case, we have passed
the variable time underscore delay as the parameter, which means
that the program will pause for 1000 milliseconds which represents 1
second. So this means that the lead will remain on for 1 second.
Now we are using all the three functions again but with different
parameters.



Inside the digitalWrite function, we have passed onBoard underscore
led as the first parameter and the value low as the second
parameter. This line of code will turn off the led and it will print the
message onBoard led is off. To read the message properly and to
keep the led turned off, we will pause execution for 1000
milliseconds. You can change the duration as per your convenience.
So when this part of the code is repeated continuously, it will create
a blinking pattern. Now before executing this program, first save it.
Go to the file menu and click on the save option. Choose the desired
folder where you want to save the program. Here I am saving this file
inside the ESP32 code directory and renaming it as testing
underscore ESP32. If you navigate to this specific directory, you will
notice that the Arduino software has automatically created a new
folder with the same name that you have given while saving the
program. Apart from that, the program is also moved inside this
newly created folder. So this is how Arduino saves the program.
The Arduino file needs the same name as the parent folder for the
execution. Now go back to the Arduino ID, select the board and port
option and type deb on the board search box. Select the ESP32 dev



module and virtual com port and then click on the ok button. Now we
are ready for the code execution.

Let us first compile it using the right symbol icon and you can see
that in the output terminal window no errors were found. So finally
click on the arrow key button to upload the code on the ESP32
board.
After uploading begins, wait for the output message on the output
console window. When it shows 100% completion then go to the
tools menu and select the serial monitor. This will open one more
console window beside the output console. Here you can see the
message onboard LEDs on and onboard LEDs off getting printed
one by one. On the hardware side, we can notice that the blue LED
on the ESP32 is turning on and off creating a blinking pattern. So
this confirms that our ESP32 is working fine and we can proceed
ahead with the project development.



INTRODUCTION TO RELAY
As you already know that we are developing a project for controlling
home appliances. So in this project relay plays an important role. So
before going ahead with the testing of this device, let us gain some
knowledge about it. A relay is an electrical device that is used to
control the flow of current between two circuits by opening or closing
a switch. It is essentially an electromechanical switch that is
controlled by an electrical signal. Relays have two main parts, the
coil and the contacts.

The coil is typically a wire wrapped around a core that produces a
magnetic field when an electrical current is applied. The contacts are
the switch that opens and closes based on the state of the coil. An
electromechanical relay transfers signals between its contacts
through mechanical movement. It has three sections i.e. input
section, control section and output section. A simple relay is a two-
way switch making the connection with a different circuit on either
side.



It has three contacts, normally closed, common and normally open,
which are abbreviated as NC, COM and NO, respectively. Initially,
when no power is supplied to the activated coil, contact is made
between NC and COM terminals. If you connect a bulb with COM
and NC, at that time it will glow. And also by the name, you can
understand that normally closed means it is connected by default.
Similarly, when the relay coil receives power, the COM inside the
relay leaves the normally closed NC connection and makes contact
with the normally open NO terminals.

This allows current to flow through the NO terminal and power the
bulb, causing it to light up. Relays are commonly used in applications
where it is necessary to control a high current or voltage with a low
current or voltage signal. Relays are often used in industrial control
systems, home automation and automotive applications. For
example, a relay can be used to turn on a light or a motor when a
switch is pressed or to activate a solenoid valve to control the flow of
a liquid or gas.



UNDERSTANDING THE
CIRCUIT DIAGRAM TO TEST
ONE INPUT OF 4 CHANNEL

RELAY
Now that we have covered the theory behind relays, it's time to put it
into practice and test its functionality. This testing will serve two
purposes. Firstly, it will help us to determine if the relay we
purchased is functioning correctly or if we need to request a
replacement from the e-commerce site. Secondly, by performing a
basic test, we will gain a better understanding of how the relay
operates. To test the relay, let us understand a circuit diagram that
shows the connection of a single relay from a set of four relays.



Speaker 1 (00:01:02) - The purpose of demonstrating a single
connection is to provide a practical understanding of how the relay
operates. Once you understand the principle of this, programming
the remaining relays will become a simple task. We are using a
micro USB cable which will be used to power the ESP32 from the
PC or laptop and along with that, it is also used for uploading the
code into the ESP32 board.



The ESP32 is connected to the USB cable and 4-channel relay. The
5V pin of ESP32 is connected to the VCC pin of the relay.

The GND of ESP32 is connected to the GND of the relay. Please
note that the GND remains common throughout the board. You can



also share the GND present on the other side of the board. The D19
pin of ESP32 is connected to the data pin IN1 of the relay.
The IN1 represents the first relay that is present on this side and it
goes on sequentially as IN2, IN3 and IN4. In the 4-channel relay
module, we are using only one relay, where normally open is
connected with one of the terminals of the 220V bulb and the
common is connected with the positive live terminal of the 220V
power supply. The negative neutral of the 220V power supply is
connected to the other end of the 220V bulb. So, the relay is acting
as a switch between the bulb and the power supply.



UNDERSTANDING THE CODE
TO TEST ONE INPUT OF 4

CHANNEL RELAY
In the previous lecture, we discussed the connections required for
the project. Now we will focus on the code which will make the entire
circuit work. Once we have a clear understanding of this code, we
will proceed with the deployment and observe its functioning. Here
we are declaring a static variable named relay of type 8-bit unsigned
integer that is initialized with the value of 19. This is because the
input pin IN1 is connected to the D19 pin of the ESP32 board. You
may be wondering why we are using this complex data type instead
of a simple int.

However, there are specific reasons for this choice. Memory usage.
It uses less memory than an int. In embedded systems with limited
memory resources, this will be an important consideration. Data



range. It is an unsigned 8-bit integer data type which means it can
store value from 0 to 255.

This can be useful in situations where you need to work with data
that falls within this range. The operation of an 8-bit unsigned integer
can be faster than int operations on some processors including the
ESP32. Code clarity.

Using this, we can improve code clarity and reduce the risk of
unintended consequences. By explicitly specifying the variable type
and scope, it can be easier to understand and maintain the code
over a period of time. We have already understood these lines of
code in the previous lecture.



You can just notice that we have mentioned the relay as output
because we are sending the signal to the relay to turn the device on
or off. We are not reading any incoming signal from the relay. We
have also understood the loop function in the previous lecture.
So, let us go ahead. Here we can observe that these lines of code
are similar to the previous program to blink led with the same
duration of 1000 milliseconds. Here we are displaying the message
bulb is off and bulb is on one by one with one second of delay. So,
this is the code for testing one input of the 4-channel relay with
normally open connectivity. In the next lecture, we will execute and
check the output of our program.



OUTPUT - TESTING ONE
INPUT OF 4 CHANNEL RELAY

Before going ahead with the final output, let me first explain to you
how I have made the connection. So this is the mains AC power
supply of 220V via the board. The plug is connected to the 220V
bulb as we have already shown in the circuit diagram. Also we can
see that this is the USB cable connected to the USB port of the
laptop. The other end of the USB cable is connected to our ESP32
board. The board is connected to the 4-channel relay using the
jumper wires.

The black color of the wire is connected between ESP32 and the
relay, which is a ground connection. The red color of the wire is
connected from 5V of the ESP32 to the VCC of the relay. And the
blue color of the wire is connected from input pin IN1 of the relay to
the digital pin 19 of the ESP32. So let us see the output after
uploading the program into the ESP32 board. Please pay attention



here. Sometimes after opening the Arduino IDE, it will ask to update
the packages or boards.
You have the option to choose whether you want to update one
library or more or you can skip the update. Here we strongly
recommend that you don't click on install or choose any update
message because it will update the ESP32 board. And then the
program will not execute properly and you may encounter a lot of
errors. To prevent any such issues from occurring, avoid clicking on
any update prompts that may appear. In the system, we can see this
is the source code of testing one input of 4-channel relay using
normally open connectivity.
Before uploading the code, first compile it to make sure that there
are no errors in our program. When the message done compiling
appears, it means that we have no errors in our code. So let's go
further and upload our program. Now upload the code into our
ESP32 board. But please make sure that all the components are
connected properly as mentioned in the entire circuit diagram.
After clicking on the upload button, it will start uploading code inside
the board and when it will show 100% completion, then go to the
tools menu and select the serial monitor.



This will open a new console window where you can see all the
outputs of the program. Here we can see it is showing the bulb is off
and the bulb is on one by one. Apart from that, on the hardware side,
the bulb is also turning on and off as per the delay specified in the
program. But if you observe closely, you will realize that it is not
working as per the program.
Speaker 1 (00:03:52) - The message is showing in the opposite way.
It means when the bulb is on, the printing bulb is off and when the
bulb is off, the printing bulb is on. Let us see how we can fix this
problem in the next lecture.



RESOLVING THE INVERSE
OPERATION OF THE RELAY

Let us now explore how we can fix the relay that is currently
operating in the opposite direction. We can solve this problem in two
ways. Method 1 The first method is quite simple. You don't have to
make any changes on the hardware side. We will simply modify our
code by adding a logical NOT operator in our code. It is used to
reverse the logical state of the operand and is denoted by the
symbol !. Go back to your program and here we are changing the
value inside the digitalWrite function using an !.

So, adding a logical NOT in front of low will give the value high which
means it will reverse the output of the bulb. So, the bulb will glow
instead of turning off. Similarly, we will change here also. We will
prefix the exclamation mark with high. This will turn off the bulb
instead of turning it on. We are done. We don't need to make any



more changes to the code. Now we can compile the program and
when the compilation is done, click on the upload button.
After 100% completion of the upload, go to the serial monitor and
you can see that this time the output is showing correctly i.e. when
the bulb is on, the... and when the bulb is off, the message is
displaying the bulb is off. Method 2 Now let us explore the second
method which involves a hardware change.

This approach doesn't require any modifications to the code.
Instead, we need to revisit the relay connection point. In our previous
setup, the second terminal of the bulb was connected to the normally
open pin of the relay.
To implement this method, we need to disconnect the connection
and shift it to the normally closed pin instead. It is crucial to ensure
that the mains power supply is disconnected while making this
change for safety purposes. Once the modification is done, you can
upload the previous code and you will observe that it is functioning
correctly with the updated relay configuration.



2 NODE SMT SMART HOME-
AUTOMATION PCB

Hello, welcome back to another project. Now in this project, I am
going to introduce my newly designed fully SMT component using 2-
channel remotely and manually controlled home automation PCB. I
have also made an 8-channel SMT home automation PCB, a 4-
channel SMT Home automation PCB, and also a TMT component
used home automation PCB. Now in this project, I will show you a 2-
channel fully SMT component using another home automation PCB. 

This home automation PCB is very small in size and compact, which
can easily fit in your electrical switchboards. This PCB has an inbuilt
OTA button, that is, you can update the code wirelessly over the air.
There are 2 onboard LEDs which you could use according to your
need, like testing your code or something else. In my case, I have
used it as a Wi-Fi indicator, that is, if a Wi-Fi connection is available,
then both the LEDs will glow as only a single LED will glow.  By



using this PCB, I will make a small home automation system that is
an Internet and manually controlled home automation system using
the BlinkIoT cloud platform. In this home automation system, we can
control our home appliances using the Blink smartphone application
from anywhere in this world. Apart from this, we can also control our
home appliances through manual switch buttons that we generally
use in our homes, and we can also monitor the real-time status on
the Blink smartphone.   Also, this PCB is compatible with all the
smart speakers available in the market like Amazon Alexa, Google
Home, and Apple series. During the project, I will explain the circuitry
of this home automation system, how we can connect our home
appliances to this PCB, and also I will let you know how to flash the
code. So let's get into this project.   JLC PCB is a fast electronic
manufacturing company. JLC PCB SMT services fulfill customers'
money and time-saving needs. Customers enjoy low-cost, high-
quality, and fast assembly services at $8 setup fees. At the same
time, they assemble electronic products from PCB design to PCB
assembly production on the same online platform. JLC PCB provides
a one-stop service from PCB design and PCB prototype to PCB
assembly. And you can track their electronic manufacturing process
in real-time.  JLC PCB takes 24-hour SMT build time and provides
the fastest delivery. Get your PCB assembly product in one week
from ordering, power sourcing, assembly, and PCB assembly
prototyping. Thousands of components supported by JLC PCB and
its reliable component partners like Digikey and Mouser 2000. In-
stock components available in the JLC PCB SMT parts library. This
benefits customers to source components much faster and easier,
bringing you a shorter PCB assembly production time. JLC PCB
provides free PCB design software, cheap PCB prototypes, fast and
low-cost SMT services, saving your electronic product cost.  With 16
years of PCB manufacturing experience, JLC PCB also establishes
a well-trended engineer and customer support team devoted to
ensuring PCB assembly services are faster and cheaper. 



 
To ensure assembly of your PCB in the best service, this is the
schematic of today's home automation PCB. If you want, you can
download this schematic from the description to design your own
custom PCB. Now convert this schematic into a PCB. After
completing the design of your PCB, you can directly order the PCB
from JLC PCB or just download the Gerber file from here. After that,
go to the JLC PCB website, then click on the Quote Now button
under the summit assembly. After that, upload the Gerber file of your
PCB. After that, select the number of PCBs and color masking of
PCB if you want. After that, select the summit assembly service, and
here you have to select on which surface you want your components
to be soldered, either top surface or bottom. After that, click on the
confirm button.  



 
Now here you have to upload two more files. One is the CPL, that is
the pick and place file, and another one is BOM, that is the Bill of
Materials. You can download these files from your EasyEd account.
Just open that PCB project on your EasyEd account and then click
on Fabrication, then BOM. Now click on Export. Now click on Export
BOM to download the BOM file. Similarly, download the CPL file.
After downloading both the files, just upload both the files here onto
this page. After that, select next. Here, it will show all the SMT
components which are to be soldered, and also we can select which
components will be soldered or not. Select the components
according to your preference. After that, click on the next button,
then click save to cart to complete your order. After a week, my PCB
arrived at my place in a new blue box from JLC PCB.  Let me open
the box. The packaging of the PCB in bubble wrap is very good.
Here it is, our home automation PCB. The quality of the PCB is
good, and the SMT components are soldered well after soldering.
The rest of the components PCB looks like this. Neat, clean, and
well-arranged. To flash the code into the ESP32 chip, I will use an
ESP32 Development Board. Now make the connections according to
this schematic. 



MANUAL CONTROL HOME-
AUTOMATION SYSTEM USING

ESP32
Now in this project, we are going to make an Android app-controlled
home automation system using ESP 32's inbuilt Bluetooth feature.
Along with this, we can also control our home appliances through
regular switch buttons that are generally used in our home. Our
Android application will communicate with the ESP 32 via Bluetooth.
Hence, no Wi-Fi is required. For the making of this project, I will use
my newly designed 4-node SMT home automation PCB. Now let's
get into this project.  This project is sponsored by JLC PCB. JLC
PCB is a well-known PCB prototype company in China. It specializes
in quick PCB prototypes and small-batch production. You can now
order a minimum of five PCBs for just $2. For more details, check
the description.  This is the schematic of today's home automation
PCB. If you want, you can download this schematic from the
description to design your own custom PCB. Now convert this
schematic into a PCB. 



After completing the design of your PCB, you can directly order the
PCB from JLC PCB or just download the Gerber file from here. After
that, go to the JLC PCB website, then click on the Quote Now button
under the summit assembly. After that, upload the Gerber file of your
PCB.  After that, select the number of PCBs and color masking of
PCB if you want. After that, select the summit assembly service, and
here you have to select on which surface you want your components
to be soldered, either top surface or bottom. After that, click on the
confirm button. Now here you have to upload two more files. One is
the CPL, that is the pick and place file, and another one is BOM, that
is the Bill of Materials.  You can download these files from your
EasyEDA account. Just open that PCB project on your EasyEDA
account and then click on Fabrication, then BOM. Now click on
Export. Now click on Export BOM to download the BOM file.
Similarly, download the CPL file. After downloading both the files,
just upload both the files here onto this page. After that, select next.
Here it will show all the summit components which are to be
soldered, and also we can select which components will be soldered
or not. Select the components according to your preference. After
that, click on the next button, then click save to cart to complete your
order. After a week, my PCB arrived at my place in a new blue box
from JLC PCB.  Let me open the box. The packaging of the PCB in



bubble wrap is very good.  

 
Here it is, our home automation PCB. The quality of the PCB is
good, and the summit components are soldered well after soldering.
The rest of the components of the PCB look like this. Neat, clean,
and well-arranged.  To flash the code into the ESP 32 chip, I will use
an ESP 32 Development Board. Now make the connections
according to this schematic. This is the code for our today's home
automation project. You can download this code from the link given
in the description here. In this section of the code, you have to enter
the name of your Bluetooth device. 



 
This Bluetooth device name will appear when we pair our
smartphone with ESP 32. Now this code is ready. Hit the upload
button after selecting the right board and comport. After clicking the
upload button onto the PCB, I will press and hold the boot button and
press the reset button once to make this module go into the boot
mode. As you can see, the code starts uploading. Download the
APK file of this mobile application from the given link in the
description and install it on your smartphone. Now open the
Bluetooth settings of your phone and click on a new device.  



 
Here, the Bluetooth device with the same name that we gave in the
code. Now tap on this pair. Now tap on this and pair your phone with
the ESP 32 after successful pairing of the Bluetooth device. Now
open the app again and tap on connect. Here, select ESP 32. The
Bluetooth is connected message is shown, which means the ESP 32
is successfully connected to the app. Now connect all the bulbs and
switches according to this circuit diagram. 



I'm trying. To think. About it but I. Would like to. To.  



EXAMPLE DUMMY CODE
A home automation system using an ESP32 can be quite
complex, as it involves various sensors, actuators, and
communication protocols. However, I can provide a basic
example to get you started with controlling a single device
(e.g., a light) via a web interface. In this example, we'll use the
ESP32, a relay module to control a light, and the Arduino IDE.
Additionally, you can enhance the system by adding more
devices, sensors, and features.

Here's a simple code example for controlling a light via a web
interface using the ESP32:

```cpp
#include <WiFi.h>
#include <ESPAsyncWebServer.h>
#include <ArduinoOTA.h>

// Replace with your network credentials
const char* ssid = "Your_SSID";
const char* password = "Your_PASSWORD";

const int relayPin = 2; // Pin connected to the relay module (for
controlling the light)

AsyncWebServer server(80);

void setup() {
Serial.begin(115200);

pinMode(relayPin, OUTPUT);
digitalWrite(relayPin, LOW); // Initialize the relay as OFF



// Connect to Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(1000);
Serial.println("Connecting to WiFi...");

}
Serial.println("Connected to WiFi");

// OTA (Over-the-Air) update setup
ArduinoOTA.onStart([]() {

Serial.println("OTA update started");
});
ArduinoOTA.onEnd([]() {

Serial.println("\nOTA update finished");
});
ArduinoOTA.onError([](ota_error_t error) {

Serial.printf("OTA update error[%u]: ", error);
if (error == OTA_AUTH_ERROR) Serial.println("Auth

Failed");
else if (error == OTA_BEGIN_ERROR)

Serial.println("Begin Failed");
else if (error == OTA_CONNECT_ERROR)

Serial.println("Connect Failed");
else if (error == OTA_RECEIVE_ERROR)

Serial.println("Receive Failed");
else if (error == OTA_END_ERROR) Serial.println("End

Failed");
});
ArduinoOTA.begin();

// Web server setup
server.on("/", HTTP_GET, [](AsyncWebServerRequest

*request){



String state = (digitalRead(relayPin) == HIGH) ? "ON" :
"OFF";

String html = "<html><body>";
html += "<h1>Light Control</h1>";
html += "<p>Light is currently " + state + "</p>";
html += "<a href=\"/toggle\">Toggle Light</a>";
html += "</body></html>";
request->send(200, "text/html", html);

});

server.on("/toggle", HTTP_GET, [](AsyncWebServerRequest
*request){

digitalWrite(relayPin, !digitalRead(relayPin));
request->redirect("/");

});

server.begin();
}

void loop() {
ArduinoOTA.handle();

}
```

This code sets up a web server on your ESP32 that allows
you to control a light. You can access the ESP32's web
interface by navigating to its IP address. The interface will
display the current state of the light and allow you to toggle it.

Make sure to replace `"Your_SSID"` and
`"Your_PASSWORD"` with your Wi-Fi credentials.

To upload the code to your ESP32, follow the instructions
provided in the previous response about setting up the ESP32
in the Arduino IDE.



Once the code is uploaded, open the Serial Monitor to find the
ESP32's IP address. Use a web browser to access the IP
address, and you'll be able to control the light via the web
interface.



8 NODE SMT SMART HOME-
AUTOMATION PCB

Hey, hello friends, welcome to another project. In this project, we are
going to make a home automation project using the new Blink 2.0
and an eight-node SMT home automation PCB. In this home
automation project, we can control our home appliances via the Blink
smartphone application, Blink dashboard, from anywhere in this
world. We can also control our home appliances via manual switch
buttons and monitor the real-time status in the Blink app.  During the
project, I will explain the circuitry, code, and how to set up the Blink
dashboard. 

  Now let's get into this project.  This is the schematic of today's
home automation PCB. If you want, you can download this
schematic from the description to design your own custom PCB.
Now convert this schematic into a PCB. After completing the design
of your PCB, you can directly order the PCB from JLCPCB or just



download the Gerber file from here. After that, go to the JLCPCB
website. Then click on the Quote Now button under the summit
assembly. After that, upload the Gerber file of your PCB. After that,
select the number of PCBs and color masking of the PCB if you
want. After that, select the summit assembly service, and here you
have to select on which surface you want your components to be
soldered, either the top surface or bottom. After that, click on the
Confirm button.  Now here you have to upload two more files. One is
the CPL, that is the pick and place file, and another one is BOM, that
is the Bill of Material. You can download these files from your
EasyEDA account. Just open that PCB project on your EasyEDA
account and then click on Fabrication, then BOM. Now click on
Export. Now click on Export BOM to download the BOM file.
Similarly, download the CPL file. After downloading both the files,
just upload both the files here onto this page. After that, select next.
Now here it will show all the summit components which are to be
soldered and also we can select which components will be soldered
or not. Select the components according to your preference. After
that, click on the next button. Then click Save to cart to complete
your order. After a week, my PCB arrived at my place in a new blue
box of JLCPCB. Let me open the box. The packaging of the PCB in
bubble wrap is very good. 

 



Here it is, our home automation PCB. The quality of the PCB is
good, and the summit components are soldered well.  

  After soldering, the rest of the components on the PCB look like
this. Neat, clean, and well-arranged.  Open this Blink Cloud webpage
from the link given in the project description, and here you have to
log in with your email ID and password. In case you are new, just
create a new account. It will take a few seconds. I already have an
account on Blink, so I am directly logging in.  Now click on a new
template. Now give the name of your template on which your project
is based. I am naming it "8 Node Blink". Then select the hardware
type, in my case, it is ESP 32, then connection type, and the
connection type is Wi-Fi. After that, click on the done button. Here
we have successfully created the template for our project. Now click
on data streams.  



  Then click on new data streams, select Virtual pin. Here you have
to give the name of the data stream. Give any conventional name
you want. Now select the pin on which you want to control your relay.
I am selecting virtual pin V0, and here select data type as integer.
Now click on create. Here we have successfully created the first data
stream. Again, click on the new data stream, select Virtual pin. Now
give the name of the second data stream. Select the pin for the
second data stream. I am selecting virtual pin V1, and here again
select data type as integer, then click on create button below. Here
we have successfully created two data streams.  



  Now,
in a similar manner, create six more data streams as we need to
create a total of 8 relays in our project. Here we have successfully
created the total eight data streams. Now go to the web dashboard
to configure the web dashboard. As we need to control a total of 8
devices, we need a total of 8 switches for this. Drag and drop 8
switches from the widget box, one by one.  Now, if you hover on the
Switch widget, you'll find a setting icon. Click on this setting icon to
set up the switch widget for the web dashboard. Now again, give
here any name for this switch widget. Select the data stream for this
switch widget and enable the show on/off labels. After that, click on
the save button. In a similar way, set up all the rest of the switch
widgets.

Designing a complete 8-node Smart Home Automation
PCB is a complex task that involves hardware design,
component selection, and embedded programming. While
I can provide a basic outline of the components you may
need, a full design would require detailed knowledge of
your specific requirements and constraints. Here's a
simplified example outline for an 8-node smart home
automation PCB using a microcontroller like the ESP32:

**Components:**



1. **Microcontroller:** ESP32 is a popular choice due to
its Wi-Fi and Bluetooth capabilities.

2. **Relays:** Use relay modules for controlling
appliances or devices.

3. **Sensors:** Depending on your requirements, you may
need various sensors such as PIR motion sensors,
temperature and humidity sensors (DHT22), light sensors,
etc.

4. **Power Supply:** Ensure a reliable power supply for
the PCB, considering the power requirements of the
components.

5. **Connectors:** Terminal blocks or connectors for easy
wiring of devices.

6. **LED Indicators:** Indicators to show the status of
each node.

7. **Wi-Fi/Bluetooth Antenna:** To ensure good
connectivity for wireless communication.

8. **Voltage Regulators:** To regulate power for different
components.

**PCB Layout:**

- Plan the layout of your PCB, considering the placement
of components, traces, and spacing between them.

- Pay attention to thermal management, especially if
relays or other components generate heat.

- Ensure proper grounding and power planes.

**Circuit Design:**



- Create the circuit diagram using a tool like KiCad or
Eagle.

- Connect the microcontroller to the relays, sensors, and
other components.

- Design power distribution and regulation circuits.

- Include pull-up/pull-down resistors where needed.

**Embedded Software:**

- Develop firmware for the ESP32 using the Arduino IDE
or the ESP-IDF (Espressif IoT Development Framework).

- Implement Wi-Fi or Bluetooth communication for remote
control.

- Write code to read data from sensors and control relays
accordingly.

- Implement a user-friendly interface, such as a web
server, to control the devices.

**Testing:**

- Rigorously test your PCB to ensure that all components
work as expected.

- Verify the reliability and safety of the system.

**Production:**

- Once your prototype works as expected, you can
proceed to mass production if needed.

This is a high-level outline to get you started, and
creating a full 8-node Smart Home Automation PCB is a
significant project. It's crucial to consider safety and



security aspects, as well as relevant industry standards if
applicable.

Please note that this project can be quite complex, and it
may be advisable to work with a team with expertise in
hardware design, embedded programming, and PCB
manufacturing. Additionally, ensure that your project
complies with all relevant regulations and safety
standards in your region.



8 NODE SMT SMART HOME
AUTOMATION PCB

Hey, hello friends, welcome to another project. In this project, I am
gonna introduce my newly designed fully summit component used
home automation PCB. This is an 8-node home automation PCB.
The size of this PCB is very small due to summit components, and it
will easily fit inside your electrical switchboard. This PCB has an
inbuilt OTA button, meaning you can update the code wirelessly over
the air, and there are 2 onboard LEDs. You could use them
according to your need, like testing your code or something else. In
my case, I have used them as a Wi-Fi indicator. That is, if Wi-Fi
connection is available, then both the LEDs will glow. As only a
single LED will glow, we can give input to control our devices via
manual switch button. This feature is useful when there is no Internet
connection available. And we can also monitor the real-time status of
appliances in the app, whether it is on or off. So we can control our
appliances manually as well as through the Internet from anywhere
in this world. This PCB is compatible with all the smart speakers
available in the market like Amazon Alexa, Google Home, Apple Siri.
If you want, I can make a project on how to control our home
appliances using these smart speakers. Just let me know in the
comment section below. And now, let's get started with this project. 
This project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It is specialized in quick PCB prototype
and small batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description.  This is the
schematic of today's home automation PCB. If you want, you can
download this schematic from the description to design your own
custom PCB.  



  Now convert this schematic into a PCB. After completing the design
of your PCB, you can directly order the PCB from JLC PCB or just
download the Gerber file from here. After that, go to the JLC PCB
website, then click on the Quote Now button under the summit
assembly. After that, upload the Gerber file of your PCB. After that,
select the number of PCBs and color masking of the PCB if you
want. After that, select the summit assembly service, and here you
have to select on which surface you want your components to be
soldered, either the top surface or bottom. After that, click on the
confirm button.  



  Now here you have to upload two more files. One is the CPL. That
is the pick and place file, and another one is BOM. That is the Bill of
Material. You can download these files from your easyEDA account.
Just open that PCB project on your easyEd account and then click
on Fabrication then BOM. Now click on export. Now click on Export
BOM to download the BOM file. Similarly, download the CPL file.
After downloading both the files, just upload both the files here onto
this page. After that, select next.  Now here it will show all the
summit components which are to be soldered and also we can select
which components will be soldered or not. Select the components
according to your preference. After that, click on the next button,
then click save to card to complete your order. After a week, my PCB
arrived at my place in a new blue box of JLC PCB. Let me open the
box. The packaging of the PCB in bubble wrap is very good.    



  Here it is, our home automation PCB. The quality of PCB is good,
and the summit components are soldered well. After soldering, the
rest of the components PCB will look like this. Neat, clean, and well-
arranged. To flash the code into the ESP 32 chip, I will use an ESP
32 Development Board. Now make the connections according to this
schematic. This is the code for our today's home automation project.
Download this code from the description and open it in the Arduino
IDE.  



  Before you upload the code, you need to make a few changes in it.
First, in this section, you need to enter the SSID and password of
your router or hotspot. After that, here you have to enter the
authentication token sent by Blink on your registered email ID. Just
copy and paste it here, and the rest should be okay. After selecting
the right board and COM port, hit the upload button. 



  After clicking the upload button onto the PCB, I will press and hold
the boot button and press the reset button once to make this module
go inside the boot mode. As you can see, the code starts uploading.
Now connect all the bulbs and switches according to this circuit
diagram. Now everything is done. Let's see the project in action.



HOME AUTOMATION SYSTEM
USING ESP32

This project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It is specialized in quick PCB prototype
and small batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description.  In my sum
of last projects, I had used this 4-channel PCB to control the home
appliances. But what if we want to control more than four
appliances? So to solve this issue, we have another PCB in which
we are able to control a total of 10 devices using this single PCB.
Now in this project, we are going to build a 10-channel home
automation system using the BlinkIoT cloud platform. Now we can
control our home appliances from anywhere in this world using this
PCB and Blink mobile application. So let's get started.  

  For this project, I am going to use my old PCB. You can download
the Gerber file of this PCB from the description. For designing my



PCB, I am using EasyEDA. EasyEDA is very easy and simple for
designing the PCB. After designing the PCB, I directly ordered it
from GLC PCB for manufacturing of PCB. After uploading the Gerber
file, the software automatically detects the default settings. However,
if you want, you can change these settings now. Save to cart to
complete your order. After seven days, my PCB arrived at my place. 
Connect all the bulbs in this manner. Download the Blink mobile
application on your smartphone. This app is available for both
Android as well as for iOS. After installing the app, let's set it up. Tap
on a new project. Give the name of your project. I am giving it "10-
channel home automation". Now select the hardware type. In my
case, it is the ESP 32 Development Board. Now select the
connection type.  

   Choose the theme: Dark or Light, whatever you want. Now tap on
create project. We have successfully created the project, and for this
project, an authentication code is sent to our registered email ID. We
need this code at the time of coding, so keep it.  Now tap on the
screen to open the widget box. Select button. Tap on the button for
its settings. Give an appropriate display name to this button. I am
giving it "Button One". After this, select the Digital pin, GP26 mode,
switch, and off/on level, leaving it as it is. Now tap on OK. Here we



have successfully set up "Button One".  In the same way, set up nine
more buttons as we need to control 10 relays in our project. Here we
have successfully set up all the 10 switches.  Coding is the easiest
part of this project, and first of all, we need to have the Blink library
installed in our Arduino IDE. For that, we need to go to Sketch >
Include Library, then click on Manage Libraries. Here we have to
search for "Blink". This is the Blink library that we need to install in
our Arduino IDE. Select the latest version and click on install. 

  After installing the library, click on the close button. Now go to Files
> Examples. Here we have to navigate to Blink, then BoardsWi-Fi,
and then into ESP 32 Wi-Fi. This is the code for today's project. Now
here you need to add the authentication token, which is already sent
to you on your registered email ID. Just copy and paste it in your
code.  After that, in this section, you have to enter the access ID and
password of your router or hotspot. That's it. Our coding is complete.
Now hit the upload button after selecting the right board and COM
port. Everything is done. Now let's see our project in action.



HOME AUTOMATION SYSTEM
USING ALEXA ESP32

Hey, hello friends, welcome to another project. Now in this project,
we will make a home automation project using Alexa and ESP 32.
This is the 10-channel home automation system in which we control
our home appliances by giving voice commands to the Alexa smart
speaker. And the best part of this project is we don't need any third-
party IoT cloud platform like Blink, Cynric, or IFTTT.  

  We just need ESP 32 with this custom-made PCB and Alexa smart
speaker. Let me show you how it works.  "Alexa, all lights on. Alexa,
light three off. Alexa, light one off. Alexa, light 5 off. Alexa, light four
off. Alexa, light two off." You can give instructions even in Hindi. Let
me show you: "Sari light on karo, Alexa. Sari light band karo, Alexa.
Light 4 on karo, Alexa. Sari light on karo, Alexa. Sari lights off karo,
Alexa."  This project is sponsored by JLCPCB. JLCPCB is a well-
known PCB prototype company in China. It is specialized in quick



PCB prototype and small batch production. You can now order a
minimum of five PCBs for just $2. For more details, check the
description.   

  For this project, I'm going to use my old PCB. You can download
the Gerber file of this PCB from the description. For designing my
PCB, I'm using EasyEDA. EasyEDA is very easy and simple for
designing the PCB. After designing the PCB, I directly ordered it
from GLC PCB for manufacturing of PCB. After uploading the Gerber
file, the software automatically detects the default settings. However,
if you want, you can change these settings now. Save to cart to
complete your order. After seven days, my PCB arrived at my place. 
Connect all the bulbs in this manner.  This is the code for today's
project. Let me explain a little bit about this code. Here, we added
some basic libraries that are needed to run the code, like WiFi.h and
ESP8266WiFi.h. The ESP8266WiFi.h is used for NodeMCU. 



  That means you can use the NodeMCU board. If you don't have an
ESP32 board, this code will work for both. This is the ESP Alexa
library. This library must be added in your Arduino IDE. To add this
library, go to Sketch > Include Library > Manage Libraries. A pop-up
will come out. In the search field, type "ESP Alexa." Select the latest
version and click on install. It will take a few seconds to install the
library. Now click on close.  In this section, you have to add the SSID
and password of your router or hotspot. Here, we give the name of
all the 10 devices:  



  light one, light two, light three, light 4, and so on. That's it. Now,
after selecting the right board and COM port, hit the upload button.
Open the Alexa app. Tap on devices. Tap on the add button to add
devices. Now click on "Add devices." Select light. 

  Scroll down and click on "other." Now click on "Discover devices." It



will take some time to connect all the devices. Here, you can see ten
devices. Now tap on next. Here, you can see these are the devices
that we created in our code. Now set up all the devices one by one.



HOME-AUTOMATION PCB
FOR HEAVY LOAD

APPLIANCES
Hey, hello friends, welcome to another project. In this project, I am
going to introduce my newly designed 30 MPR home automation
PCB. I have also designed loads of other home automation PCBs
like 2 node, 4 node, and 8 node home automation PCBs. These
PCBs are fully tested and work very well. These PCBs are best for
home automation systems. But these PCBs could handle only up to
10 ampere load. So we can only use this PCB for small load
appliances like light bulbs and televisions which consume less
power. But if you want to automate heavy-load appliances like air
conditioners, washing machines, and more, then in that case, we
couldn't connect to these PCBs. These PCBs will not handle such
heavy loads and eventually the relay will burn out.  

  So to
solve this problem, I have designed a brand new home automation
PCB which can easily handle up to 30 Mpereload. Most of the
heavy-load appliances that we use in our homes consume current



under 30 Amperes. So this PCB is perfect for those appliances. In
this way, we can connect any heavy-load appliances. This PCB is
compatible with all the popular IoT platforms like Blink, ESP
Rainmaker, and more. In this way, we can easily integrate this PCB
with Alexa and Google Assistant. Apart from this, we can also give
manual input to this PCB and connect via Bluetooth to control the
appliances from a smartphone application in a local area network.
And the size of this PCB is very small and can easily fit inside the
electrical switchboard. And there are 2 onboard LEDs which we can
use in many ways like for testing code and Wi-Fi indicator. 

 
During the project, I will let you know how to upload the code, the
circuitry, and the connection of relays and switches. So I recommend
that you watch the complete project till the end. Now let's get into
this project.  This is the schematic of the PCB. If you want your own
custom-designed PCB, then you can download this schematic from
the link given in the project description. After making the schematic,
convert it into PCB. Arrange and place all the components in
desirable places. Once the layout is ready, route the wiring and
complete the design of the PCB. After the completion of PCB design,
you need to download 3 files which will be required during the PCB
order. These files are BOM, Gerber, Cpl (pick and place file). Now go
to the JLCPCB website and click on the Quote Now button under
PCB assembly. Click here to upload the Gerber file of your PCB. 



Here, JLC PCB will automatically set all the parameters of the PCB.
Select the PCB quantity and color masking of the PCB by yourself. I
am selecting the purple color. Scroll down below and select PCB
assembly. Here, you have to select on which side you want the PCB
assembly: Top side, bottom side, or on both sides. 

 
In my case, I want only the top side. After that, click on the confirm
button. For PCB assembly, we need two more files: one is BOM (Bill
of Material) and the second one is Cpl (pick and place file). Upload
these two files one by one. Here, you need to give the description
about your PCB for which purpose you want to make this PCB. I am
giving it a "30 MPR Home Automation PCB". After that, click on the
next button. All the components were shown here that are to be
assembled. In case you do not want to assemble any particular
component, then you can deselect that component. After checking
all the components, click on the next button.  Here, you will see a
computer version of components placement which seems not
accurate. This is only for reference purposes. Now click on "save to
cart" to complete your order after seven days. PCBs arrived at my
place. 



 
As usual, the quality of the PCB is very premium and the
components are soldered very well. Traces are perfect, silk screen is
fine, purple color, PCB masking looks very beautiful, and PCBs look
pretty professional. To upload the code into ESP 32 chip, I will use
ESP 32 Development Board. Connect the PCB to the ESP 32 board
as per the circuit diagram. This is the example code which I am
going to upload in the PCB. This code is for controlling 2 relays using
the ESP Rainmaker app. I have explained this code in detail and
also explained how to add the latest ESP 32 library in your Arduino
IDE in my previous project.   The link of that project is available in
the description as well as in the card section. If you want, you can
check out that project.  Now go to tools and select the right board
that is ESP32 development module and then select the partition
scheme as Rainmaker. And in the last, select the right
communication port, then click on the upload button to upload the
code. After clicking the upload button on the PCB, press and hold
the boot button and press the reset button once to make the module
go inside the boot mode. Here, as you can see, the code is
successfully uploaded.  After uploading the code, you need to
configure the ESP Rainmaker app. But I am skipping this
configuration part because the configuration is the same as in the
two-channel relay. Just check out that project. You can find the link to



that project in the description as well as in the card section. After
configuring the ESP Rainmaker app, you will be able to control your
heavy-load appliances from the smartphone application as well as
from the smart speakers.  Now connect all the switches and
appliances as per this connection diagram. Here, I am using a light
bulb to demonstrate this project. Now everything is done. Let's see
the project in action. "Turn on the light one." "Got it, Turning the light
one on."



ALEXA MANUAL CONTROL
HOME AUTOMATION SYSTEM

USING ESP32
Hey, hello friends, welcome to another project. Now in this project,
we will be going to make a voice control plus manual control home
automation system. We will use Alexa as a Voice Assistant, and for
manual control, we will use switch buttons that we regularly use in
our homes. And for the making of this project, we don't need any
third-party IoT cloud platforms like IFTTT, Cylindrical Blink. And the
best part of this project is we can give instructions even in English as
well as in Hindi. Let me show you.   

 
"Alexa, all lights off." "Alexa, light 2 on." "Alexa, light 4 on." "Alexa,
light 2 on." "Alexa, light 3 on Karo." "Alexa, saari light on Karo." This
project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It specializes in quick PCB prototypes
and small-batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description.  For this



project, we need ESP32, high link A/C to DC converter, 5V relay,
BC547 NPN transistor, 540007 diode, 10K and 1K ohm resistors, 2
terminal connectors, female header, and a custom-designed PCB.
Ordering PCBs from JLCPCB is very easy. Just upload your Gerber
file. JLCPCB automatically recognizes all the features of the PCB.
Choose the PCB color and other extra features, and after that, click
on "Save to Cart" to complete your order. After a few days, here are
the PCB boards in the new blue box of JLCPCB. 

  Now
solder the components on the PCB. After soldering the components,
the PCB looks like this, neat and clean. Connect all the bulbs and
switches in this manner. This is the code for today's project. Let me
explain a little bit about this code. Here, we added some basic
libraries that are needed to run the code, like WiFi.h and
ESP8266WiFi.h. ESP8266WiFi.h is used for NodeMCU. That means
you can use a NodeMCU board if you don't have an ESP32 board. 



 
This code will work for both. This is the ESP Alexa library. This
library must be added in your Arduino IDE. To add this library, go to
Sketch, then Include Library, Manage Libraries. A pop-up will come
out. In this search field, type "ESP Alexa," select the latest version,
and click on "Install." It will take a few seconds to install the library.
Now click on "Close."  In this section, you have to add the SSID and
password of your router or hotspot. Here, we give the name of all the
four devices: Light one, Light two, Light three, and Light 4. You can
give it any name you want according to your need. That's it. Now
after selecting the right board and COM port, hit the upload button. 



 
Open the Alexa app. Tap on Devices. Tap on the Add button to add
devices. Now click on Add devices. Select light. Scroll down and
click on Other. Now click on Discover devices. It will take some time
to connect all the devices. Here you can see it found four devices.
Now tap on Next. Here you can see these are the devices that we
created in our code. Now set up all devices one by one. Now, if you
click on Lights, here you can see all the devices are added. With
Alexa, everything is done. Let's see how it works. "Alexa, all light
on." "Alexa, all light off." "Alexa, saari light on Karo." "Alexa, saari
light band Karo." "Alexa, saari light band Karo."



MANUAL CONTROL HOME-
AUTOMATION SYSTEM USING

ESP RAIN-MAKER
Controlling our home appliances from Alexa and Google Assistant is
fun, and these smart speakers are very popular nowadays, almost
everyone has them in their houses. Controlling home appliances
from these smart speakers is pretty amazing and also very
convenient. So in this project, I am going to make a home
automation system in which we will control our home appliances
from these smart speakers. "Alexa, turn on the light one."  Turn on
the light, too. And apart from these smart speakers, we can also
control our home appliances from a smartphone application and also
with the regular manual switches. And the best part of this home
automation project is that you can easily make this home automation
system even if you don't know anything about coding. This project is
as simple as that. In this home automation project, I am going to use
the ESP RainMaker app, which is free and available for both iOS
and Android.  



  In
this project, we will control 2 relays. As this PCB has only two relays,
and apart from this, I also have eight-node and four-node home
automation PCBs. The codes for all these PCBs are available in the
description. These PCBs are fully tested and work very well. If you
purchase this PCB, you will get a QR code along with it. Just scan
this QR code with the ESP RainMaker app and easily integrate the
Alexa smart speaker and Google Assistant to it. Make your devices
smart. During the project, I will show you these steps in detail. I will
also explain the code, circuitry, and connection of all the switches.
So I recommend you watch the complete project till the end. Now,
let's go into this project.  This is the schematic of the PCB. If you
want your own custom-designed PCB, then you can download this
schematic from the link given in the project description. After making
the schematic, convert it into a PCB. Arrange and place all the
components in desirable places. Once the layout is ready, route the
wiring and complete the design of the PCB. After the completion of
the PCB design, you need to download 3 files which will be required
during the PCB order. These files are BOM, Gerber, Cpl (pick-and-
place) files.  Now, open the JLC PCB website and click on the
"Quote Now" button under PCB assembly. Click here to upload the
Gerber file of your PCB. Here, JLC PCB will automatically set all the
parameters of the PCB. Select the PCB quantity and color masking
of the PCB by yourself. I am selecting white color. Scroll down and



select "PCB Assembly." Here, you have to select on which side you
want the PCB assembly: top side, bottom side, or on both sides. In
my case, I want it only on the top side. After that, click on the
"Confirm" button. 

 
For PCB assembly, we need two more files: BOM (Bill of Materials)
and Cpl (pick-and-place) file. Upload these two files one by one.
Here, you need to give a description about your PCB, for which
purpose you want to make this PCB. I am giving it as "2-node SMT."
After that, click on the "Next" button. All the components were shown
here that are to be assembled. In case you want to not assemble a
particular component, then you can deselect that component here.
After checking all the components, click on the "Next" button. Here,
you will see a computer version of components placement, which
seems not accurate. This is only for reference purposes. Now click
on "Save to Cart" to complete your order. After seven days, the
PCBs arrived at my place 



 
As usual, the quality of the PCBs is very premium and the
components are soldered very well. Traces are perfect, the silk
screen is fine, and the white-colored PCB masking looks very
beautiful. The PCBs look pretty professional. Make all the
connections of the bulbs and switches as per this circuit diagram. To
upload the code into the ESP 32 chip, I will use the ESP 32
Development Board. Connect the PCB to the ESP 32 board as per
the circuit diagram.  This is the code for our today's home
automation project. Before you upload the code, first, you need to
update the ESP 32 boards' library in your Arduino IDE. Now copy
this link provided in the code. Now open Arduino Preferences and
paste the copied link here. Then click "OK." Now go to "Tools" and
then click on "Board Manager." Here, search for ESP 32. Install the
latest ESP 32 boards in your Arduino IDE. Close this window after
installation. Here, I have to find the names of devices, like Light one,
Light 2, and so on. You can give any name you want.  Here, I have
defined the pins for relays and switches. If you are using my PCB,
then there's no need to change anything; just upload the code as it
is. One thing you could change here is the setup part of the code,
the name of the node. This name will appear in the app as the name
of the device. After that, there is no need to change anything. Now
go to "Tools" and select the right board, which is the ESP 32 Dev



module. Now click on the "Partition Scheme" and select
"Trendmaker." 

  Now
select the right port. Here, we are good to go. Now click the "Upload"
button.  Once the code is successfully uploaded, open the serial
monitor. Now press the reset button on the PCB for five seconds. As
you can see, a QR code is printed on the serial monitor. I have to
scan this QR code, but this QR code is not clearly visible. To view
this QR code clearly, copy this link and open it in your browser. Now
with this QR code, we can easily enter the Wi-Fi credentials to the
ESP 32 chip using the ESP RainMaker app. And this ESP
RainMaker app is available for both Android and iOS.  Now open this
app and click on "Add Device." Scan the QR code. It will take a few
seconds to connect with the ESP 32 chip. Now select your Wi-Fi
network and enter the password of your Wi-Fi. It will take a few
sequences to configure the Wi-Fi credentials in ESP 32. As you can
see, all the devices are successfully added. Now tap on "Done."
Here, both the devices that we have defined in the code are added
and ready for control.



AUTOMATION SYSTEM WITH
MANUAL CONTROL

"Alexa, all lights off." Hey, hello friends, welcome to another project.
Nowadays, almost everyone has smart speakers in their houses, like
Amazon Alexa or Google Assistant. I have Amazon Alexa in my
house. The quality of the Voice Assistant is amazing. You can ask
anything to Alexa, and Alexa will give responses in no time. Talking
to Alexa is always fun. Apart from this, we can also use Alexa to
automate our home appliances. That means we can control our
home appliances by just giving voice commands to Alexa. Just like
this, "Alexa, all lights on."  "Alexa, light one off." "Alexa, light two off."
And apart from this, we can also control these appliances using
manual switch buttons that we traditionally do. We can also control
these appliances using the Alexa smartphone application. In this
project, we will learn how to make a home automation system using
Alexa and ESP 32. 

 To
make this project, I will use my 4-node safety home automation PCB.
Apart from this 4-node PCB, I also have eight-node and two-node
home automation PCBs. These PCBs are fully tested and work very



well. These PCBs have all the safety features like A/C electrical
isolation. So if you want to purchase these PCBs, just check the link
given in the project description. During the project, I will explain the
code, circuitry, and connection of bulbs and switches. 

 So,
I will recommend that you watch the complete project till the end.
Now, let's get into this project. This is the schematic of the PCB. If
you want your own custom-designed PCB, then you can download
this schematic from the link given in the project description. After
making the schematic, convert it into a PCB, arrange and place all
the components in desirable places. Once the layout is ready, route
the wiring and complete the design of the PCB. After the completion
of the PCB design, you need to download 3 files which will be
required during the PCB order. These files are BOM, Gerber, and
Cpl (pick-and-place) files.  Now, open the JLC PCB website and click
on the "Quote Now" button under PCB assembly. Click here to
upload the Gerber file of your PCB. Here, JLC PCB will automatically
set all the parameters of the PCB. Select the PCB quantity and color
masking of the PCB by yourself. Scroll down below and select "PCB
Assembly." Here, you have to select on which surface you want the
PCB assembly, either on the top side or bottom side. In my case, it is
the top side. After that, click on the "Confirm" button.  For PCB
assembly, we need two more files. One is BOM (bill of materials),
and the second one is Cpl (pick-and-place) file. Upload these two



files one by one. Here, you need to give a description about your
PCB, for which purpose you want to make this PCB. I am giving it as
"ESP 32 Home Automation." After that, click on the "Next" button. All
the components were shown here that are to be assembled. In case
you want to not assemble a particular component, then you can
deselect that component. After checking all the components, click on
the "Next" button. Here, you will see all the components that have to
be assembled by JLCPCB along with pricing. Now click on "Save to
Cart" to complete your order. 

 
After seven days, PCBs arrived at my place. As usual, the quality of
the PCBs is very premium, and the components are soldered very
well. To upload the code into the ESP 32 chip, I will use a USB to
TTL converter. Connect the PCB to the USB to TTL converter as per
this circuit diagram. In case you don't have a USB to TTL converter,
you can upload the code using the ESP32 Development Board. Just
make the connections as per this circuit diagram, and the rest of the
process is the same.  This is the code for this home automation
project. Before you upload the code, you need to add the ESP Alexa
and ACE button libraries in your Arduino IDE. To add these libraries,
go to "Tools" and click on "Manage Libraries." A pop-up will come up.
Here, in the search box, type "ESP Alexa" and install this library after
selecting the latest version. I have already installed this library, so I
am leaving it. After installing this library, search for the "AceButton"



library by typing "AceButton" in the search box. Now install this
library also by selecting the latest version of it. After installing both
libraries, close this window.   

 
Here, in this section of the code, you have to enter the SSID and
password of your router or hotspot. And here, we have defined a
total of 4 devices and also we give the name of each device. These
names will appear in the Alexa app when we connect the ESP 32
with Alexa. After that, the code will remain the same. No need to
change anything. Just download this code from the project
description and make the changes that I just told you and
straightforwardly upload this code after selecting the right board and
COM port.  While uploading the code, press and hold the boot button
and press the reset button once to make this module go into the boot
mode. Download the Amazon Alexa app on your smartphone. This
app is available for both iOS and Android. In the app, tap on
"Devices," then tap on the plus icon on the top right corner of the app
to add devices. 



 
Here, you scroll down and select "Other." Here, click on "Discover
Devices." Here, the Alexa speaker is searching for the devices. It will
take a few seconds to find the devices. Here, you can see Alexa
found a total of 4 devices. Now tap on the "Next" button. Here, a total
of 4 devices are connected to Alexa. Make the connections of all the
bulbs and switches as per this schematic diagram. Now, everything
is done. Let's see the project in action.



ANDROID APP BLUETOOTH
CONTROLLED HOME-

DEVICES USING ESP32
Hello, friends! Welcome to another home automation project project.
In this project, we are going to make an Android app-controlled
home automation system using Bluetooth. Now, we can control our
home appliances through our smartphone using the Bluetooth
feature of the ESP32. Apart from this, we can also control our
devices using manual switch buttons that we conventionally do. For
the making of this home automation system, I will use my two-node
SMT home automation PCB and a custom-designed Android app.
And the best part of this project is that we don't need any Internet
connection or local server to connect the Android application to
ESP32. This is especially useful for people who don't have an
Internet connection, making this home automation system perfect for
them.  The app will directly communicate with the ESP32 via
Bluetooth. Using Bluetooth is a very convenient way of creating a
home automation system for local control. 



 
And the only downside of this project is that it is limited to a local
range. Apart from this two-node version, 4-node and 8-node versions
of the home automation PCB are also available. If you want to
purchase this PCB, please check the project description. All the
necessary links are available there. Now, let's get into this project. 
This is the schematic of today's home automation PCB. If you want,
you can download this schematic from the description to design your
own custom PCB. 



  Now, convert this schematic into a PCB. After completing the
design of your PCB, you can directly order the PCB from JLC PCB,
or you can download the Gerber file from here. After that, go to the
JLC PCB website and click on the "Quote Now" button under the
PCB assembly section. Upload the Gerber file of your PCB. After
that, select the number of PCBs and the color masking of the PCB if
you want. Then select the PCB assembly service, and here, you
have to choose whether your components will be soldered on the top
or bottom surface of the PCB. After that, click on the "Confirm"
button.  Now, here, you need to upload two more files: one is the Cpl
(pick-and-place) file, and another one is the BOM (Bill of Material)
file. You can download these files from your EasyEDA account. Just
open the PCB project on your EasyEDA account, go to Fabrication,
then BOM. Click on "Export BOM" to download the BOM file.
Similarly, download the Cpl file. After downloading both files, upload
them here onto this page. Then select "Next." Now, here, it will show
all the components that are to be soldered. You can also select
which components will be soldered or not. Select the components
according to your preference. After that, click on the "Next" button,
and then click "Save to Cart" to complete your order.  After a week,
my PCB arrived at my place in a new blue box from JLCPCB. Let me
open the box. The packaging of the PCB in bubble wrap is very



good. Here it is, our home automation PCB. The quality of the PCB
is good, and the surface-mounted components are soldered well.
After soldering the rest of the components, the PCB looks neat,
clean, and well-arranged. 

 
To flash the code into the ESP32 chip, I will use an ESP32
Development Board. Now, make the connections according to this
schematic. This is the code for today's project. Download this code
from the link given in the project description. Before you upload the
code, you need to make some changes in the code. First of all, you
need to add the ESP32 boards in your Arduino IDE. Also, you need
to add the AceButton library in your Arduino IDE to run this code. To
do this, go to "Tools," then "Manage Libraries." A pop-up will come
up. Type "AceButton" in the search box. Now install this library by
selecting the latest version of it.   I have already installed this library,
so I am skipping it. After installing the library, close this window. The
rest of the code is okay; no need to change it. There is one little
change you could make here in the section of the code that specifies
the Bluetooth device name. The name we give here will be the name
of the Bluetooth device, and this name will appear when we pair the
ESP32 with our smartphone.  Now, upload this code after selecting
the right board and COM port. After clicking the upload button, I will
press and hold the boot button and press the reset button once to



make this module go into boot mode. As you can see, the code
starts uploading. I have made this custom Android app using Code
Ruler. 

 
I will put the AIA and APK files of this app in the project description.
If you want, you can download and customize it according to your
needs. Download the APK file of this app and install it on your
Android smartphone. After installing the app, open the Bluetooth
settings of your phone. Click on "Pair new device." A Bluetooth
device with the same name that we mentioned in the code will
appear. Now tap on this device and click on "Pair" to pair the ESP32
with our smartphone.



EXAMPLE DUMMY CODE
Creating a complete Android app for Bluetooth-controlled home
devices using an ESP32 involves both Android app development and
programming the ESP32. It's a relatively complex project, so I'll
provide a simplified example outline and code snippets to get you
started. You will need to have some knowledge of Android app
development using Java or Kotlin and the Arduino IDE for ESP32
programming.

**Android App Development (Android Studio):**

1. **Set Up Your Android Project:**
- Create a new Android project in Android Studio.
- Set up your app's user interface (UI) with buttons, switches, or

other controls to control your home devices.

2. **Bluetooth Setup:**
- Implement Bluetooth connectivity. Request Bluetooth permissions

and enable Bluetooth on the Android device.

3. **Device Discovery:**
- Discover available Bluetooth devices (ESP32) and list them in your

app.

4. **Device Pairing:**
- Pair your Android device with the ESP32.

5. **Bluetooth Communication:**
- Establish a Bluetooth connection with the ESP32 and send

commands to control your devices.

6. **User Interface (UI):**
- Update the UI to reflect the status of your home devices and

provide controls for turning them on/off or adjusting settings.



7. **App Logic:**
- Implement the app's logic to send commands to the ESP32 based

on user interactions.

Here's a simplified example of Android app code for Bluetooth control
(Java):

```java
import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothSocket;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

import java.io.IOException;
import java.util.UUID;

public class MainActivity extends Activity {
Button connectBtn, onBtn, offBtn;
BluetoothAdapter bluetoothAdapter;
BluetoothDevice bluetoothDevice;
BluetoothSocket bluetoothSocket;

private static final String DEVICE_ADDRESS =
"00:00:00:00:00:00"; // Replace with your ESP32's Bluetooth MAC
address

private static final UUID UUID_SERIAL =
UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);



connectBtn = findViewById(R.id.connectBtn);
onBtn = findViewById(R.id.Btn);
offBtn = findViewById(R.id.offBtn);

bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

connectBtn.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {

if (!bluetoothAdapter.isEnabled()) {
Intent enableBT = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableBT, 1);

} else {
bluetoothDevice =

bluetoothAdapter.getRemoteDevice(DEVICE_ADDRESS);
try {

bluetoothSocket =
bluetoothDevice.createRfcommSocketToServiceRecord(UUID_SERIA
L);

bluetoothSocket.connect();
Toast.makeText(getApplicationContext(),

"Connected to device", Toast.LENGTH_SHORT).show();
} catch (IOException e) {

Toast.makeText(getApplicationContext(),
"Connection failed", Toast.LENGTH_SHORT).show();

}
}

}
});

onBtn.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {

sendCommand("ON");
}



});

offBtn.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {

sendCommand("OFF");
}

});
}

private void sendCommand(String command) {
if (bluetoothSocket != null) {

try {
bluetoothSocket.getOutputStream().write(command.get

Bytes());
Toast.makeText(getApplicationContext(), "Sent: " +

command, Toast.LENGTH_SHORT).show();
} catch (IOException e) {

Toast.makeText(getApplicationContext(), "Error sending
command", Toast.LENGTH_SHORT).show();

}
}

}
}
```

**ESP32 Programming (Arduino IDE):**

Here's a simplified example of Arduino code for ESP32 to receive
commands over Bluetooth and control a device (e.g., an LED):

```cpp
#include <BluetoothSerial.h>

BluetoothSerial SerialBT;

void setup() {
Serial.begin(115200);



SerialBT.begin("ESP32_BT"); // Bluetooth device name

pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, LOW);

}

void loop() {
if (SerialBT.available()) {

char cmd = SerialBT.read();
if (cmd == 'ON') {

digitalWrite(LED_BUILTIN, HIGH); // Turn the LED on
} else if (cmd == 'OFF') {

digitalWrite(LED_BUILTIN, LOW); // Turn the LED off
}

}
}
```

Please note that this is a simplified example to get you started. In a
real-world scenario, you would have to handle exceptions, error
recovery, and possibly implement more secure communication
between the app and ESP32, especially if you're controlling critical
home devices.



BEST HOME AUTOMATION
PCB WITH SMD

COMPONENTS_ ESP32 CHIP
Hey, hello friends! Welcome to another project. Now in this project, I
will introduce a home automation PCB, which is the smallest home
automation PCB I have ever used. By using the ESP32 chip and the
summit components, I am able to reduce the size of the PCB. With
this PCB, we can create an Internet and manual control home
automation system. 

 
We can control our appliances via the Blink app as well as through
manual switches. Additionally, we can monitor the real-time status of
appliances in the Blink app. The two onboard LEDs are used for Wi-
Fi status. If the ESP32 is connected to Wi-Fi, both LEDs will glow.
But if Wi-Fi is not available, only a single LED will glow. Let me show
you. Now, I am turning off the hotspot. Here, you can see only one
LED is turned on. Let me turn on the hotspot again. Now you can
see both LEDs are glowing, indicating that the ESP32 is connected



to Wi-Fi.  This project is sponsored by JLCPCB. JLCPCB is a well-
known PCB prototype company in China. It specializes in quick PCB
prototype and small-batch production. You can now order a minimum
of five PCBs for just $2. For more details, check the description. 

 
This is the schematic of today's home automation PCB. If you want,
you can download this schematic from the description to design your
own custom PCB. Now, convert this schematic into a PCB. After
completing the design of your PCB, you can directly order the PCB
from JLC PCB or just download the Gerber file from here. After that,
go to the JLC PCB website, then click on the "Quote Now" button
under the summit assembly section. Upload the Gerber file of your
PCB. After that, select the number of PCBs and color masking of the
PCB if you want. Then select the summit assembly service, and
here, you have to select on which surface you want your
components to be soldered, either the top surface or bottom. After
that, click on the "Confirm" button.  Now, here, you need to upload
two more files: one is the Cpl (pick-and-place) file, and another one
is the BOM (Bill of Material). 



 
You can download these files from your EasyEDA account. Just
open the PCB project on your EasyEDA account, then click on
"Fabrication," then "BOM." Click on "Export BOM" to download the
BOM file. Similarly, download the Cpl file. After downloading both
files, upload them here onto this page. Then select "Next." Now,
here, it will show all the summit components that are to be soldered,
and you can also select which components will be soldered or not.
Select the components according to your preference. After that, click
on the "Next" button, and then click "Save to Cart" to complete your
order.  After a week, my PCB arrived at my place in a new blue box
from JLCPCB. Let me open the box. The packaging of the PCB in
bubble wrap is very good. Here it is, our home automation PCB. The
quality of the PCB is good, and the summit components are soldered
well. The summit assembly service of JLCPCB is great. After
soldering the rest of the components, the PCB looks neat, clean, and
well-arranged. 



 
Now, open the Blink app. Click on "New Project." Give it any name;
I'm calling it "Home Automation." Select the board as ESP32
Development Board and connection type as Wi-Fi. Click OK. An
authentication token will be sent to your email ID, which you'll require
for coding. After that, click here and add a button. Likewise, add
three more buttons. After that, set up a button for configuration, give
it a name like "Relay One." Select the pin as virtual, select virtual pin
V1, change 0 to 1 and 1 to 0 for reverse logic, and select the mode
as switch. That's it. Likewise, to configure all the buttons  To flash the
code into the ESP32 chip, I will use an ESP32 Development Board.
Now, make the connections according to this schematic. This is the
code for our today's home automation project. Download this code
from the description and open it in the Arduino IDE. Before you
upload the code, you need to make a few changes in it.  



 
First, in this section, you need to enter the SSID and password of
your router or hotspot. After that, here, you have to enter the
authentication token sent by Blink to your registered email ID. Just
copy and paste it here, and the rest of the code is okay.  After
selecting the right board and COM port, hit the upload button. After
clicking the upload button, on the PCB, I will press and hold the boot
button and press the reset button once to make this module go into
boot mode. As you can see, the code starts uploading. Now, connect
all the bulbs and switches according to this circuit diagram. Now,
everything is done. Let's see the project in action.



BIOMETRIC FINGERPRINT
DOOR LOCK CONTROL

 Hey, hello friends! Welcome to another project. In this project, we
are going to make a home automation system in which we are able
to control our appliances through a smartphone. This project has one
more interesting addition, that is a biometric door unlocking system.
Now, we can easily unlock the door using our fingerprint through the
CM app from which we control our home appliances. So, we don't
need separate apps. To unlock the door, we will use our
smartphone's fingerprint sensor. Let me show you how this will work.
To unlock the door, just put your registered finger on the smartphone
sensor. As you see, the solenoid door lock is unlocked by biometric
fingerprint. If, in any case, an unauthorized person tries to unlock the
door, their fingerprint will not be recognized by the app.
Consequently, they are not able to unlock the door. As I told you, we
can control our appliances through a smartphone. Apart from this,
we can also control our appliances through switch buttons. So,
without any further delay, let's get started with this project.  This
project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It specializes in quick PCB prototype
and small batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description. 



 
This is the schematic of today's home automation PCB. If you want,
you can download this schematic from the description to design your
own custom PCB. Now, convert this schematic into a PCB. After
completing the design of your PCB, you can directly order the PCB
from JLC PCB or just download the Gerber file from here. After that,
go to the JLC PCB website, then click on the "Quote Now" button
under the summit assembly section. Upload the Gerber file of your
PCB. After that, select the number of PCBs and color masking of the
PCB if you want. Then select the summit assembly service, and
here, you have to select on which surface you want your
components to be soldered, either the top surface or bottom. After
that, click on the "Confirm" button.  Now, here, you need to upload
two more files: one is the Cpl (pick-and-place) file, and another one
is the BOM (Bill of Material). 



 
You can download these files from your EasyEDA account. Just
open the PCB project on your EasyEDA account, then click on
"Fabrication," then "BOM." Click on "Export BOM" to download the
BOM file. Similarly, download the Cpl file. After downloading both
files, upload them here onto this page. Then select "Next." Now,
here, it will show all the summit components that are to be soldered,
and you can also select which components will be soldered or not.
Select the components according to your preference. After that, click
on the "Next" button, and then click "Save to Cart" to complete your
order. After a week, my PCB arrived at my place in a new blue box
from JLCPCB.  



  Let
me open the box. The packaging of the PCB in bubble wrap is very
good. Here it is, our home automation PCB. The quality of the PCB
is good, and the summit components are soldered well. The summit
assembly service of JLCPCB is great. After soldering the rest of the
components, the PCB looks neat, clean, and well-arranged.  To flash
the code into the ESP32 chip, I will use an ESP32 Development
Board. Now, make the connections according to this schematic. This
is the code for today's project. You don't need to make any changes
in this code if you are using the same PCB that I used in the project.
One thing, if you want, you can change the name of the Bluetooth
device. You can give it any name you want, and the rest of the code
is okay. After selecting the right board and COM port, hit the upload
button. 



 
After clicking the upload button onto the PCB, I will press and hold
the boot button and press the reset button once to make this module
go into boot mode. Connect the solenoid, door lock, and all the bulbs
and switches according to this schematic. You can download this
schematic from the description, download the APK file of this app
from the description, and install it on your phone.  

 
After installing the app, we need to pair the ESP32 with our
smartphone. Now open the Bluetooth setting of your phone and pair



with the ESP32. After that, open the app and connect it with the
ESP32 via Bluetooth. Now, everything is done. Let's see the project
in action.



BLUETOOTH _ MANUAL
CONTROL HOME

AUTOMATION
Hey, hello friends! Welcome to another project. In this project, I am
going to make a very useful and very easy home automation system.
In this home automation system, we will control our home appliances
from the Android app through Bluetooth, and we can also control the
appliances via manual switch buttons that we regularly do. Now you
are thinking, "We already made this project." Yes, you were right. 

 
But in this home automation project, we have updated something.
Now we can get real-time feedback in the app. Yes, you had that
right. Apart from controlling through the app, now we can also get
real-time feedback of appliances in the app. To get real-time
feedback, we have modified the app. Here I am using the inbuilt
Bluetooth connectivity of the ESP32. So, Internet or Wi-Fi is not
required in this project. And also, we don't require any IoT or cloud
platform. Most people don't have Internet or Wi-Fi connectivity, so



this home automation project is perfect for them. The only downside
of this project is that we are using Bluetooth. So in this project, we
can only control our appliances in the local area network, not
globally. Apart from this, everything is great in this project. This app
is absolutely free, and you can download it from the Play Store. I will
be linking all the important links down in the description of this
project. During the project, I will show you how to pair the app with
ESP32, and also I will explain the code, circuitry, and connection of
bulbs and switches. So, I recommend that you watch the entire
project. Now let's get into this project.  This is the schematic of the
PCB. If you want your own custom-designed PCB, then you can
download this schematic from the link given in the project
description. After making the schematic, convert it into a PCB,
arrange and place all the components in desirable places. Once the
layout is ready, route the wiring and complete the design of the PCB.
After the completion of PCB design, you need to download three files
which you will require during the PCB order. These files are BOM,
Gerber, Cpl (pick-and-place file). Now open the JLCPCB website
and click on the "Quote Now" button under PCB assembly. 

  Click here to upload the Gerber file of your PCB. Here, JLCPCB will
automatically set all the parameters of the PCB. Select the PCB
quantity and color masking of the PCB by yourself. I am selecting the



green color. Scroll down below and select the PCB assembly
options. Here you have to select on which side you want to do PCB
assembly—top side or bottom side, or both sides. In my case, I want
only the top side. After that, click on the "Confirm" button.  Now, for
PCB assembly, we need two more files. One is BOM (Bill of
Material), and the second one is Cpl (pick-and-place file). Upload
these two files one by one. Here, you need to give the description
about your PCB for which purpose you want to make this PCB. I am
giving here that the 4-node is empty. After that, click on the "Next"
button. All the components were shown here that are to be
assembled. In case you want to not assemble a particular
component, then you can deselect that component. After checking
all the components, click on the "Next" button. Here, you will see a
computer version of component placement which seems not
accurate. This is only for reference purposes now. Click on "Save to
Cart" to complete your order.  After seven days, PCBs arrived at my
place. As usual, the quality of PCBs is very premium and the
components are soldered very well. Traces are perfect. Silk screen is
fine. 

 
And green PCB masking looks very beautiful, and PCB looks pretty
professional. The PCB assembly service of JLCPCB is fabulous.  To
upload the code into the ESP32 chip, I will use an ESP32



Development Board. Connect the PCB to the ESP32 board as per
this circuit diagram. This is the code for our today's home automation
project. And this code is very simple. Before you upload the code, in
this section of the code, if you want, you can change the Bluetooth
device name. This name will appear as the name of your Bluetooth
device when we pair ESP32 with our smartphone. After this, no need
to change anything. Now, straightforwardly upload the code to your
ESP32 board after selecting the right board and the right
communication port after hitting the upload button.   

  After clicking the upload button onto the PCB, I will press and hold
the boot button and press the reset button once to make this module
go into the boot mode. Here, as you can see, the code is
successfully uploaded. Go to the Play Store and download this app.
The download link of this app is available in the description. After
installation, open the app and give the required permission. Now,
open the Bluetooth setting of your phone, then click on "Pair New
Device." As you can see, a Bluetooth device having the same name
that we mentioned in the code is now showing. Now, tap on this
device to pair with your phone. Once the ESP32 is paired with the
phone, open the app again. Now, in the app, click on "Connect."
Select your Bluetooth device. As you can see, Bluetooth is
connected. A message is shown here. This means now our ESP32



is connected with the app. Here, we did all the configuration, code
uploading, and app pairing. Now, let's connect our devices and
switches, and finally, we'll see how this project works. 

 
Now, connect all the bulbs or any of your home appliances and
switches as per this circuit diagram. Here, everything is done. Let's
see this project in action. As you can see, I am able to control the
bulbs through the Android app and manual switches, and we are
also getting real-time feedback in the app. This home automation
project is very interesting and very useful. This home automation
PCB is available for sale. You can easily purchase this board from
our website. And apart from this module, we have many other
interesting and useful modules in our store. Do check them out. Use
coupon code "Welcome30" to get a 30% extra discount on all the
products.



BLUETOOTH _ MANUAL
CONTROLLED HEAVY LOAD

DEVICES
In this project, I am going to make a home automation system in
which we control heavy-load appliances like A/Cs and washing
machines from an Android smartphone. And for the making of this
home automation system, we don't require any IoT platform like
Blink or ESP Rainmaker. Instead, we use the inbuilt Bluetooth
feature of ESP32. So, in this way, we can easily connect the
smartphone application to the ESP32 via Bluetooth and control the
appliances from the app. This home automation system is very
useful for those people who live in rural areas or don't have an
Internet connection. We all know very well that automating devices
using IoT platforms like Blink and ESP Rainmaker requires an
Internet connection, so for people who live in areas where they don't
have Internet access, this home automation system is very useful.
They can automate their appliances from this PCB. The only
drawback of this home automation system is that we can only control
the appliances from the local area network.  In this home automation
system, we can easily control the appliances from the Android
smartphone application, and apart from this app, we can also control
it through the manual switch buttons, like we usually do. So here, we
can easily control the devices from the smartphone application as
well as from the manual switch buttons. Apart from this PCB, I have
other home automation PCBs. These PCBs are fully tested and work
very well. These PCBs are best for any kind of home automation.
These PCBs are available for sale. Please check the description for
more details, and during the project, I will let you know how to upload
the code, circuitry, and connection of bulbs and switches. 



 
So, I recommend that you watch the complete project until the end.
Now, let's get into this project.  This is the schematic of the PCB. If
you want your own custom-designed PCB, then you can download
this schematic from the link given in the project description. After
making the schematic, convert it into a PCB, arrange and place all
the components in desirable places. Once the layout is ready, route
the wiring and complete the design of the PCB. After the completion
of PCB design, you need to download 3 files which will be required
during the PCB order. These files are BOM, Gerber, and Cpl (pick
and place file). Now, go to the JLCPCB website and click on the
"Quote Now" button under PCB assembly. Click here to upload the
Gerber file of your PCB. Here, JLC PCB will automatically set all the
parameters of the PCB.



Select the PCB quantity and color masking of the PCB by yourself. I
am selecting the purple color. Scroll down below and select PCB
assembly options. Here, you have to select on which side you want
to do PCB assembly—top side, bottom side, or on both sides. In my
case, I want only the top side. After that, click on the "Confirm"
button. For PCB assembly, we need two more files. One is BOM (Bill
of Material), and the second one is Cpl (pick and place file). Upload
these two files one by one. Here, you need to give the description
about your PCB for which purpose you want to make this PCB. I am
giving here "30 MPL Home automation PCB." After that, click on the
"Next" button. All the components were shown here that are to be
assembled.  In case you want to not assemble any particular
component, then you can deselect that component. After checking
all the components, click on the "Next" button. Here, you will see a
computer version of components placement which seems not
accurate. This is only for reference purposes now. Click on "Save to
Cart" to complete your order. After seven days, PCBs arrived at my
place. As usual, the quality of the PCB is very premium and the
components are soldered very well.   Traces are perfect, Silk screen
is fine, purple color PCB masking looks very beautiful, and PCBs
look pretty professional. To upload the code into the ESP32 chip, I
will use an ESP32 Development Board. Connect the PCB to the



ESP32 board as per the circuit diagram. This is the code for today's
project. Download this code from the link given in the visual
description. Before you upload the code, you need to make some
changes in the code. First of all, you need to add the ESP32 boards
in your Arduino IDE, and also, you need to add the "is button" library
in your Arduino IDE to run this code. For this, go to tools, then
manage libraries. A pop-up will come here, type "is button." Now,
install this library by selecting the latest version of it.  I have already
installed this library, so I am skipping it. After installing the library,
close this window. Rest of the code is OK, no need to change. One
little change. If you want, you could make changes in the section of
code that is the Bluetooth device name. 

 
The name we give here will be the name of the Bluetooth device,
and this will appear when we pair ESP32 with our smartphone. Now,
upload this code after selecting the right board and COM port. After
clicking the upload button onto the PCB, I will press and hold the
boot button and press the reset button once to make this module go
into the boot mode. As you can see, the code starts uploading. I
have made this custom Android app from Code Ruler. 



  I
will put the AIA and APK file of this app in the project description. If
you want, you can download and customize it according to your
needs. Download the APK file of this app and install this app on your
Android smartphone. After installing the app, open the Bluetooth
setting of your phone. Click on "Pair New Device." A Bluetooth
device with the same name that we mentioned in the code will
appear. Now, tap on this device, click on "Pair"



8 NODE SMT HOME
AUTOMATION PCB

Hey, hello friends! Welcome to another home automation project
project. In this project, we are going to make an Android app
Bluetooth controlled home automation system. For making this home
automation system, I will use my 8-node Summit home automation
PCB and a custom-designed Android app. Everything is available in
the description. You can download them from there. If you wish to
make this home automation system, the best part of this project is
that we don't need any Internet connection or any local server to
connect the Android application and ESP32. The app will directly
communicate with the ESP32 via Bluetooth. The only downside of
this home automation system is that it will only work in a local range.
If you want to purchase this 8-node Summit home automation PCB,
then contact me. All the necessary details are available in the
description. Now let's get into this project. 

 
This project is sponsored by JLCPCB. JLCPCB is a well-known PCB



prototype company in China. It is specialized in quick PCB prototype
and small batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description. This is the
schematic of today's home automation PCB. 

 
If you want, you can download this schematic from the description to
design your own custom PCB. Now, convert this schematic into a
PCB. After completing the design of your PCB, you can directly order
the PCB from JLCPCB or just download the Gerber file from here.
After that, go to the JLCPCB website, then click on the "Quote Now"
button under the summit assembly. After that, upload the Gerber file
of your PCB. Then, select the number of PCBs and color masking of
the PCB if you want. After that, select the summit assembly service,
and here, you have to select on which surface you want your
components to be soldered—either top surface or bottom. After that,
click on the confirm button. Now, here you have to upload two more
files. One is the Cpl (pick and place file), and another one is BOM
(Bill of Material). You can download these files from your easyEDA
account. Just open that PCB project on your easyEDA account and
then click on "Fabrication," then "BOM." Now, click on "Export," and
then "Export BOM" to download the BOM file. 



 
Similarly, download the Cpl file. After downloading both the files, just
upload both the files onto this page. After that, select "Next." Now,
here, it will show all the summit components that are to be soldered,
and also, we can select which components will be soldered or not.
Select the components according to your preference. After that, click
on the "Next" button. Then, click "Save to Cart" to complete your
order. After a week, my PCB arrived at my place in a new blue box
from JLCPCB. Let me open the box. The packaging of the PCB in
bubble wrap is very good. 



  
Here it is—our home automation PCB. The quality of the PCB is
good, and the summit components are soldered well. After soldering
the rest of the components, the PCB will look like this—neat, clean,
and well-arranged. To flash the code into the ESP32 chip, I will use
an ESP32 Development Board. Now, make the connections
according to this schematic. This is the code for our home
automation project. This code is pretty simple, no need to explain. 

 



Just download this code and upload it after selecting the right board
and COM port. After clicking the upload button onto the PCB, I will
press and hold the boot button and press the reset button once to
make this module go into the boot mode. As you can see, the code
starts uploading. Now, connect all the bulbs and switches according
to this circuit diagram. Now, everything is done. Let's see the project
in action.



SMT SMART HOME-
AUTOMATION PCB ESP32

Hey, hello friends! Welcome to another project. In this project, we are
going to make a very interesting home automation project. We are
going to make lots of home automation projects with the Blink IoT
cloud platform. Those projects were great. Now Blink comes with an
update, Blink 2.0. Blink 2.0 has lots of amazing features that we
missed in our previous projects. One of the features in Blink 2.0 is
OTA (Over-The-Air). That means we can now update the code or Wi-
Fi credentials over the air. Now, we don't need to hard code the
credentials in the code every time we want to change. This feature is
very useful.  In this project, I will make a home automation project
using Blink 2.0 and my 4-node ESP home automation PCB. If you
want to purchase this PCB, check the description. All the necessary
details are available in the description. 

 
In this home automation project, we can control our home appliances
via the Blink smartphone application from anywhere in the world.



Additionally, we can control our home appliances via manual switch
buttons, and we can also monitor the real-time status in the Blink
app. During the project, I will explain the circuitry, code, and how to
set up the Blink dashboard. So, I recommend you watch the project
till the end. Now, let's get into this project.  JLCPCB is a fast
electronic manufacturing company. JLCPCB SMT services fulfill
customers' money and time-saving needs. Customers enjoy low-
cost, high-quality, and fast SMT services at a dollar-set-off fee. At the
same time, they assemble electronic products from PCB design to
PCB assembly products on the same online platform. JLCPCB
provides a one-stop service from PCB design and PCB prototype to
PCB assembly, and you can track their electronic manufacturing
process in real-time. JLCPCB takes 24-hour summit build time and
provides the fastest delivery. Get your PCB assembly product in one
week from ordering, power sourcing, and assembly. And PCB
assembly prototyping with thousands of components supported by
JLCPCB and its reliable component partners like DigiKey and
Mouser. Over 2000 in-stock components are available in the JLC
PCB SMT parts library. This benefits customers to source
components much faster and easier, bringing you a shorter PCB
assembly production time.  This is the schematic of today's home
automation PCB. If you want, you can download this schematic from
the description to design your own custom PCB. Now, convert this
schematic into a PCB. After completing the design of your PCB, you
can directly order the PCB from JLCPCB or just download the
Gerber file from here. After that, go to the JLCPCB website. Then
click on the "Quote Now'' button under the summit assembly. After
that, upload the Gerber file of your PCB. After that, select the
number of PCBs and color masking of the PCB if you want. After
that, select the summit assembly service, and here you have to
select on which surface you want your components to be soldered—
either top surface or bottom. After that, click on the confirm button. 



 
Now, here you have to upload two more files. One is the Cpl (pick
and place file), and another one is BOM (Bill of Material). You can
download these files from your easyEDA account. Just open that
PCB project on your easyEDA account and then click on
"Fabrication," then "BOM." Now, click on "Export," and then "Export
BOM" to download the BOM file. Similarly, download the Cpl file.
After downloading both the files, just upload both the files onto this
page. After that, select next. Now, here it will show all the summit
components that are to be soldered, and also, we can select which
components will be soldered or not. Select the components
according to your preference. After that, click on the "Next" button.
Then, click "Save to Cart" to complete your order. After a week, my
PCB arrived at my place in a new blue box from JLCPCB. Let me
open the box. The packaging of the PCB in bubble wrap is very
good. 



 
Here it is—our home automation PCB. The quality of the PCB is
good, and the summit components are soldered well. After soldering
the rest of the components, the PCB will look like this—neat, clean,
and well-arranged. Open this page using the link given in the
description. First of all, you have to sign up on this page using your
email ID. Here, we have to verify the email ID. For this, go to Gmail
and open the email sent by Blink. Then click on "Create Password."

  A
new window will open, and here you have to create a password for



the Blink dashboard. Give any name for the dashboard admin, then
click on "Done." Here, we have successfully created the account on
Blink 2.0.  These are some quick tutorials for setting up the Blink
dashboard, but we don't need it, so close these windows. Now click
here on the dotted icons, i.e., the template. Now click on "New
Template." Give the name of your template on which your project is. I
am giving it "4 Node Home Automation." Then select the hardware
type. In my case, it is ESP32, and the connection type is Wi-Fi. After
that, click on the "Done" button. Here, we have successfully created
the template for our project. Now click on "Datastreams," then "New
Data Stream," and select "Virtual Pin." Here, you have to give the
name of the data stream. Give any conventional name you want.
Now, select the pin on which you want to control your relay. I'm
selecting virtual pin V1.



DIGITAL CLOCK USING 
NETWORK TIME PROTOCOL

 This project is sponsored by JLCPCB. JLCPCB is a well-known
PCB prototype company in China. It is specialized in quick PCB
prototype and small batch production. You can now order a minimum
of five PCBs for just $2. For more details, check the description.  Hi,
guys! Today, we will learn about the Network Time Protocol or NTP,
which can provide time using the network, and we will make a clock
using it. So, without wasting any more time, let's do this. So, before
we go into all the stuff, let's understand about NTP. 

 
So basically, NTP is a standard Internet Protocol used to
synchronize computer clocks, and using a cheap RTC module is OK,
but they are not perfectly accurate. So, we will use a NodeMCU to
get the time from the network, and an ESP8266 or NodeMCU just
need a working Wi-Fi connection, that's it. Now open your Arduino
IDE and make sure you have installed ESP8266 boards in your
Arduino IDE. If it is not the case, then refer to the project given in the
card section, and if you want to buy ESP8266, check out the



description given below. Then make sure you install the NTPclient
library in your Arduino IDE, and if not, go ahead and install it.  After
this, you can try the examples provided within the library, or you can
download my code from the description. I modified the example a
little bit to get the time in proper format, and before uploading the
code, make sure you put your Wi-Fi SSID and password in it. And
one more thing you need to edit is the offset time. So, for my country,
the offset is 19800 because my time zone is UTC+5:30. And 5:30
means 5 1/2, which is 5.55 * 60, and again multiplied by 60, which
will give you 19800. So, you can calculate your offset time according
to your time zone. Say your time zone is UTC+1, then your offset
time will be 3600, which is 1 * 60 * 60, equals to 3600. 

 
After editing the offset time, then hit upload to upload the code into
the ESP8266. After uploading the code, open the serial monitor, and
in the serial monitor, we can see we are getting our time on the serial
monitor. To see the output properly on the display, I am going to use
my 1.8-inch display. So, let's connect it all together. You can follow
the schematic shown in the project. I've modified the previous code
for this display. You can get both the code in the description as well
as the display buying link.  So, before we upload the code, make
sure you have the ST7735 libraries in your Arduino IDE. If it is not
the case, then install those libraries, then upload the code. Let's hit



the upload button and wait for a few seconds for the code to get
uploaded. And after uploading the code, we can see our time and
the day on our TFT display. To make it more professional, let's make
a PCB of it. 

 
So, I went to the easyEDA website and selected the components
and made a PCB of it, and then generated the Gerber files. And to
save all this trouble for you guys, I pasted the link of Gerber files and
schematics in the description. So, I uploaded these Gerber files to
the JLCPCB website, and I got these PCBs in a week. So, let's open
the box.  And they sent this small scale with a magnifier on it as a
gift. With it, let's take a look at our PCBs. So, let's cut it open and
take it out. And here we can see our PCBs. Looking good, perfectly
finished. You can also order your PCBs with the Gerber files
provided in the description from JLCPCB website. Now, let's solder
everything together and let's see how it works.  So, I have soldered
everything. It was really easy. Now, let's plug the cable and turn it on,
and here we go. Our perfect desk clock is ready, and it is connected
to my Wi-Fi, so we need not worry about RTC and its coin cell. 



 
All we need is a proper case for this. Since I haven't made a case for
this yet, I'm going to use it this way only for now, but later I'll make a
case for that and use it like a proper desk clock. Well, you can make
a case for yourself, but there's one more thing. To get this kind of
font, you need to do a little more work.  So, get the 7-segment font
file provided in the description and paste that file in the "fonts" folder,
which is inside the "Adafruit-GFX" folder, and then run the other code
provided in the description for digital font, and you will get better
fonts, as well as my fonts, showing on the screen.  So, guys, that's
all for today. I hope you like this project. If you do, then hit like, give
me a share, and don't forget to subscribe and support me on
Patreon to help me make more projects. And I'll see you guys next
time. Till then, keep exploring.



DIY PCB FOR ESP8266 WIFI
MODULE

This project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It specializes in quick PCB prototype
and small batch production. You can order a minimum of 10 PCBs
for just $2. Check the description for more information.  Hey, hello
friends! Welcome to another project. In this project, I will show you
how to design and develop a programming PCB for the ESP8266
Wi-Fi module. If you remember my project on how to program
ESP8266 using Arduino, I mentioned that the pins of the ESP8266
Wi-Fi module are not breadboard-friendly. There, I used jumper
wires and a breadboard for programming the ESP8266 Wi-Fi
module. Apart from the breadboard and jumper wires, 

 
I still had to connect the level converter registers, post button, and
reset the module separately. So, I have decided to make a PCB for
the ESP8266 Wi-Fi module with all the required components, like a
DPDT switch for selecting programming mode and normal mode, a



reset button, headers to insert the ESP8266 Wi-Fi module, and the
level converter registers for the RX pin of the module.  For designing
my PCB, I am using EasyEDA. EasyEDA is very easy and simple for
designing PCBs. After designing the PCB, I directly ordered from
JLCPCB for manufacturing the PCB. After uploading the Gerber
files, the software automatically detects the default settings.
However, if you want, you can change these settings. Now save to
cart to complete your order. After seven days, my PCB arrived at my
place.  "The world ain't all sunshine and rainbows. It will beat you to
your knees and keep you there permanently if you let it. It's about
how hard you can get hit and keep moving forward. That's how we
did this. Done. You're better than that."  After assembling all the
components on the PCB, press the switch button to programming
mode position and press the reset button once. Now the
programming mode is activated. The ESP8266 Wi-Fi module can be
programmed using the Arduino IDE, and in order to do that, we need
to make a few changes to the Arduino IDE.  First, go to File, then
Preferences in the Arduino IDE, and in the Additional Board
Manager URL section, 

 
paste the URL copied from the description, and then click OK. Now
go to Tools, Board, then Board Manager, and search for ESP8266. In
the search field, select the ESP8266 ESP8266 Community, and then



click on install. I already installed it. Now our field is ready to flash
the program.  Let me show you an example by uploading a Blink
sketch. Open the Arduino IDE. In the Board option, go to Tools, then
Board. Look for Generic ESP8266. Select the Generic ESP8266
board. Select the appropriate port number in the IDE. Now open the
Blink sketch and change the LED pin to two. Here, 2 means GPIO2
pin of the ESP8266 module. Hit the upload button, and the code will
take a while to compile and upload. We can see the progress at the
bottom of the IDE. This source program is successfully uploaded.



ESP32 BLUETOOTH
CONTROLLED AUTOMATION

SYSTEM USING ANDROID
APP

 Hello everyone, welcome to another project. In this project, we are
going to make an Android app-controlled home automation system.
We all know ESP32 comes with Wi-Fi, Bluetooth Low Energy, and
Bluetooth Classic. In this home automation project, we are going to
use the ESP32's Bluetooth Classic feature to control our home
appliances using this PCB and an Android app. With this PCB, we
are able to control a total of 10 devices. So let's get started.  This
project is sponsored by JLCPCB. JLCPCB is a well-known PCB
prototype company in China. It is specialized in quick PCB prototype
and small batch production. You can now order a minimum of five
PCBs for just $2. For more details, check the description.  For this
project, I am going to use this old PCB of mine. You can download
the Gerber file of this PCB from the description. For designing my
PCB, I am using EasyEDA. EasyEDA is very easy and simple for
designing PCBs. After designing the PCB, I directly ordered from
JLCPCB for the manufacturing of the PCB. After uploading the
Gerber file, the software automatically detects the default settings.
However, if you want, you can change these settings. 



 
Now save to cart to complete your order. After seven days, my PCB
arrived at my place. Connect all the bulbs in this manner. The code
is very simple and doesn't need any modification. Just download it
from the description and upload to your ESP32 board. One thing you
could change if you want is the name of the Bluetooth device, and
the rest of the things are OK.  Hit the upload button after selecting
the dashboard and COM port. Download this app from the given link
in the description and install it on your Android phone. Now open the
Bluetooth setting of your phone and pair your phone with ESP32.
Now open the app again and tap on connect. Tap on "habt ESP32".
If the app is connected to the ESP32 via Bluetooth, then the
"Bluetooth is connected" message will be shown here.



ESP32 INTERNET REAL TIME
FEEDBACK USING REYAX

MQTT CLOUD
Hello everyone, welcome to another project. In this project, we will
learn how we can make our own home automation system using our
own MQTT cloud broker. In this home automation project, we are
able to control our home appliances by any smartphone and also
control them with manual switches. We can monitor the real-time
status on the smartphone as well. This project works from anywhere
in the world because it's a cloud-based MQTT broker. So let's get
started 

 
For making this home automation project, I am going to use the
RexRYC 1001 MQTT IoT Cloud Platform, which you can easily
purchase from Amazon.com. The link is available in the description.
If, in any case, it's not available in your country or you're facing any
problems while purchasing this IoT cloud platform, then just contact



the sales team of Rex. They will guide you. So for $15.00, we are
getting the RexRYC1001 cloud server for five years, and the monthly
message limit is 100K, which is really affordable in this price range. 
As soon as we make the purchase, we get our own credentials on
our registered email ID. We will receive the username and password
for our MQTT cloud platform, which you should keep confidential.
This is the code for our today's home automation project. Download
this code from the description and open it in Arduino IDE. Now
before uploading the code, you need to make a few modifications in
it.  First of all, you have to add the PubSubClient library in your
Arduino IDE. To add this library, go to Sketch, then Include Library,
Manage Libraries, and search for PubSubClient. Scroll down, find
the PubSubClient library, select the latest version, and click on
Install. 

 
Now close this window. In the code, enter your SSID and password
of your router or hotspot. The MQTT server will be the same for all,
so you don't have to change it. Then, enter the username and
password you received in your registered email ID from Rex. That's
it.  After selecting the right board and COM port, hit the upload
button to control the home appliances through the smartphone. We
also need an MQTT client in our smartphone. For that, I am going to
use the IoT On/Off app. This app is available for both Android and



iOS. You can easily download it from the App Store or Play Store.
The links for both are available in the description. Now open this
app. Tap on the menu button, then click on Settings, Configuration,
and tap on MQTT Broker. Enter the MQTT server details like host,
which is iot.rex.com. The port will be 1883, and turn off the
websocket. Click save to add the broker to the list.  Click on
Authentication, and enter the username and password you received
on your email address. Turn on authentication. If you've entered the
correct details, the status should be connected. Now tap on the
menu button, go to Dashboards, and tap on Garden. First, delete all
the gadgets. Tap on Edit and delete all the gadgets one by one. Now
tap on the plus button and select the switch. Give any display name
you want, such as "Switch 1." Tap on Publish, turn on "Allow
Publish," and tap on Topic String.  Enter the subscriber name, which
is "switch-one." After that, tap on Ready. Tap on Ready again. For
true, enter 0, and for false, enter 1, as I'm using reverse logic. Tap on
the Subscribe option, click on Topic Filter, and enter the publisher
name, which is "switch-one-state." Provide the subscribe values, 0
for true and 1 for false. Click Ready. Repeat this process for the
remaining relays.  

 
Tap on Done. Now we are ready to control the home appliances.
Let's see it in action. This home automation project has lots of cool
features. Let me explain:  As you can see, there are three onboard



LEDs. The first one is the network LED, which glows continuously
when ESP32 is connected to the Internet; otherwise, it starts
blinking, indicating that ESP32 is not connected to the Internet. The
second one is the server LED. This LED glows when ESP32 is
connected to the MQTT server; otherwise, it remains turned off. The
third LED is the message LED, which blinks once whenever a new
topic or message comes from the MQTT server, indicating that a
new topic or message has arrived. Let me show you in action. I'm
going to turn off the hotspot.     


	INTRODUCTION INSTALLING VSCODE AND PLATFORMIO, LAUNCHING AN EXAMPLE PROJECT
	PRIORITIES OF TASKS
	MUTEXES
	EXAMPLE DUMMY CODE
	SPINLOCK, CRITICAL SECTION, MULTICORE
	EXAMPLE DUMMY CODE
	SEMAPHORES AND QUEUES
	EXAMPLE DUMMY CODE
	EVENT FLAGS
	EXAMPLE DUMMY CODE
	HARDWARE INTERRUPTS
	INTRODUCTION
	GETTING STARTED
	TWILIO SET UP
	CODE SETUP FOR ESP32 USING TWILIO
	EXAMPLE DUMMY CODE
	TESTING CODE SETUP FOR ESP32 USING TWILIO
	EXAMPLE DUMMY CODE
	SEND SMS ON PUSH BUTTON
	EXAMPLE DUMMY CODE
	TWILIO SET UP
	SEND SMS CONTROLLED BY DHT22
	EXAMPLE DUMMY CODE
	INTRODUCTION TO HOME AUTOMATION
	GETTING STARTED WITH ESP32
	MASTERING GPIO PINS
	HARDWARE REQUIREMENTS FOR THE COMPLETE PROJECT
	CONNECTING AND VERIFYING THE USB TO UART CHIP IN ESP32
	ARDUINO INSTALLATION
	EXAMPLE DUMMY CODE
	SETTING UP ESP32 IN ARDUINO IDE
	TESTING THE ESP32 BOARD (PART 1)
	TESTING THE ESP32 BOARD (PART 2)
	INTRODUCTION TO RELAY
	UNDERSTANDING THE CIRCUIT DIAGRAM TO TEST ONE INPUT OF 4 CHANNEL RELAY
	UNDERSTANDING THE CODE TO TEST ONE INPUT OF 4 CHANNEL RELAY
	OUTPUT - TESTING ONE INPUT OF 4 CHANNEL RELAY
	RESOLVING THE INVERSE OPERATION OF THE RELAY
	2 NODE SMT SMART HOME-AUTOMATION PCB
	MANUAL CONTROL HOME-AUTOMATION SYSTEM USING ESP32
	EXAMPLE DUMMY CODE
	8 NODE SMT SMART HOME-AUTOMATION PCB
	8 NODE SMT SMART HOME AUTOMATION PCB
	HOME AUTOMATION SYSTEM USING ESP32
	HOME AUTOMATION SYSTEM USING ALEXA ESP32
	HOME-AUTOMATION PCB FOR HEAVY LOAD APPLIANCES
	ALEXA MANUAL CONTROL HOME AUTOMATION SYSTEM USING ESP32
	MANUAL CONTROL HOME-AUTOMATION SYSTEM USING ESP RAIN-MAKER
	AUTOMATION SYSTEM WITH MANUAL CONTROL
	ANDROID APP BLUETOOTH CONTROLLED HOME-DEVICES USING ESP32
	EXAMPLE DUMMY CODE
	BEST HOME AUTOMATION PCB WITH SMD COMPONENTS_ ESP32 CHIP
	BIOMETRIC FINGERPRINT DOOR LOCK CONTROL
	BLUETOOTH _ MANUAL CONTROL HOME AUTOMATION
	BLUETOOTH _ MANUAL CONTROLLED HEAVY LOAD DEVICES
	8 NODE SMT HOME AUTOMATION PCB
	SMT SMART HOME-AUTOMATION PCB ESP32
	DIGITAL CLOCK USING NETWORK TIME PROTOCOL
	DIY PCB FOR ESP8266 WIFI MODULE
	ESP32 BLUETOOTH CONTROLLED AUTOMATION SYSTEM USING ANDROID APP
	ESP32 INTERNET REAL TIME FEEDBACK USING REYAX MQTT CLOUD

