/III MANNING

You will learn how to create
many different robotics projects
in this book.

Projects inside the book

Project Chapter

Create a robot that can move forward, backward, turn and spin using | 3. Driving the robot
Python code

Implement a robot controlling command line shell with auto complete | 4. Creating a robot shell
REPL and script file execution

Control a robot remotely over the network using the SSH and HTTP 5. Controlling robots remotely
protocols
Build a web application to remotely control robots from desktop 6. Creating robot web apps

computers and mobile devices

Remotely control a robot over the network using a joystick controller | 7. Joystick-controlled robots

Use a keyboard to pan, tilt and take photos with a servo attached 8. Keyboard-controlled camera
camera

Use computer vision and servo motors to create a face following 9. Face-following camera
camera

Create a robot that can move around in search of a matching QR 10. Robotic QR code finder

code in its environment

Build a snack pushing robot that can be controlled by a web-based 11. Building a snack-pushing robot
Python application

Build Your Own Robot

USING PYTHON, CRICKIT, AND RASPBERRY PI

MARWAN ALSABBAGH

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

/I/I Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical editor: Alexander Ryker
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 and Dunja Nikitovi¢

Production editor: Andy Marinkovich
Copyeditor: Lana Todorovic-Arndt
Proofreader: Melody Dolab
Technical proofreader: Alexander Ryker
Typesetter and cover designer: Marija Tudor

ISBN 9781633438453
Printed in the United States of America

To my loving family.

brief conients

What is a robot? 1

Getting started 8

Driving the robot 17

Creating a robot shell 37
Controlling robots remotely 49
Creating robot web apps 70
Joystick-controlled robots 86
Keyboard-controlled camera 112
Face-following camera 131
Robotic QR code finder 154
Building a snack-pushing robot 177

iv

contents

preface x

acknowledgments — xit

about this book xiii

about the author xvi

about the cover illustration xvii

What is a robot? 1
1.1 Why robots are amazing 1

1.2 Owur approach to making robots 3

Learning from failures 3 = What will you

gain? 3 = Prototyping 3 = Teaching 3 = Production
ready 4 = Limitations 4

1.3 What are robots made of? 4

The robot building blocks 4 = Servos and DC motors on a

Raspberry Pi 4 = Hardware stack 5 = Python and Linux 6
Software stack 6

Getting started 8
2.1 Introducing our robotic hardware 9
Raspberry Pi 9 = Adafruit CRICKIT HAT 10
2.2 Configuring the software for our robots 11
2.3 Changing Neopixel colors 11
2.4 Checking the touch sensor state 13

CONTENTS

2.5 Controlling DC motors 14

2.6 Controlling motors with the touch sensor 15

Driving the robot 17
3.1 What’s a robot chassis kit? 18
3.2 Hardware stack 18
3.3 Software stack 19
3.4 Writing a move forward function 19
3.5 Using environment variables for configuration 21
3.6 Controlling the speed and duration of movements 25
3.7 Moving backward 26
3.8 Turning right 28
3.9 Moving left and spinning in either direction 29
3.10 Refactoring by finding common logic 31
3.11 Refactoring by using functools 33

Creating a robot shell 37
4.1 What’s a REPL or shell? 38
4.2 Benefits of a REPL 38
4.3 Hardware stack 38
4.4 Software stack 39
4.5 Creating the robot shell 39
4.6 Handling command arguments 42
4.7 Adding a speed argument 43
4.8 Running robot shell scripts 45

Controlling robots remotely 49
5.1 Hardware stack 50
5.2 Software stack 50
5.3 Robot testing tips 51
5.4 Controlling robots over SSH 52

Creating the server-side script 53 = Running the script
remotely 55 = Creating the client-side script 56

5.5 Creating web services for robots 58

Creating our first web service 58 = Creating web services
to perform robot movements 60

CONTENTS

5.6 Calling web services from Python 61

Using the read—evaluate—print loop to call web services 62
Creating a basic web service client 63 = Creating a web service
client with persistent connections 64 = Measuring client
performance 66

Creating robot web apps 70
6.1 Hardware stack 71
6.2 Software stack 71
6.3 Moving robots forward and backward over the web 72

Creating a basic web application 72 = Detecting failed
requests 75 = Moving robots forward with web apps 75

6.4 Creating a full-movement web app 78

Creating the full-movement application 78 = Web interface
design 82 = Measuring application performance in the
browser 83 = Web hardware devices 84

Joystick-controlled robots 86
7.1 Hardware stack 87
7.2 Software stack 88
7.3 Joystick events 88
7.4 Reading joystick events using Pygame 89
Detecting events in Pygame 89 = Detecting joystick events 92
7.5 Reading Linux joystick events 93

Exploring the Linux input subsystem 94 = Unpacking joystick
events 96 = Mapping joystick events 97 = Working with axis
events 99

7.6 Measuring the rate of joystick events 101
Calculating the event rate 102 = Calculating the level rate 104

7.7 Moving robots with joysticks 107
Creating the joystick client 107

Keyboard-controlled camera 112
8.1 Hardware stack 113
8.2 Software stack 113
8.3 Capturing images using OpenCV 114

Exploring the OpenCV library 114 = Drawing shapes and
displaying text with OpenCV 116 = Taking snapshots with
OpenCV 119

viii CONTENTS

8.4 Moving a camera with servos 122

Exploring the servo motors with the CRICKIT library 122
Performing a pan-and-tilt sweep 124 = Controlling servos
and the camera together 127

Face-following camera 131
9.1 Hardware stack 132
9.2 Software stack 132
9.3 Detecting faces in an image 133
Exploring face detection 133 = Marking detected faces 136
9.4 Detecting faces in live video 139

Measuring face detection performance 139 = Reducing
the number of pixels to process 141 = Optimizing face
detection performance 143 = Showing detected faces

in live video 146

9.5 Creating a face-following robot 147

Zoning the face detection 147 = Moving motors
to follow faces 149

Robotic QR code finder 154
10.1 Hardware stack 155
10.2 Software stack 155
10.3 Detecting QR codes in an image 156

Exploring QR codes 156 = Marking detected QR
codes 157

10.4 Streaming live video to multiple applications 160

Saving the video stream to a ramdisk 160 = Walching the
filesystem for changes 163 = Streaming to a graphical
application 165 = Detecting QR codes in a video stream 167
Streaming to a web browser 169

10.5 Moving the robot to a target QR code 172
Find the QR code 172

Building a snack-pushing robot 177
11.1 Hardware stack 178
11.2 Software stack 178
11.3 Finding and pushing snacks 179
Reading the list of snacks 179 = Pushing snacks 181

appendix A
appendix B
appendix C
appendix D

CONTENTS

Creating the snack-pushing application 186

Selecting snacks with the application 186 = Styling the web
application 189 = Adding the live video stream to the
application 191

Hardware purchasing guide 195
Configuring the Raspberry P 199
Robot assembly guide 205
Mocking the CRICKIT library 216

index 221

preface

I'love learning how to create things with computers, whether these are video games or
web applications. When I became a father, I also started creating fun crafting projects
with my daughters. As they grew, our projects became increasingly ambitious, until we
started building robots together. One of these fun robotics projects was creating a
robot that could drive around and fetch books from a high bookshelf my daughter
couldn’t reach. The books would come flying off the shelf at high speed, and she
would have to either catch or dodge them.

I presented the code and process of creating these projects at different Python
conferences, much to the amusement of the audience. This is what opened up the
idea of writing a book on creating robotics from scratch for people like me with no
prior background in robotics. All you would need is to be familiar with Python and
have a passion for learning new and fun ways of building interesting projects with the
language.

There were a number of qualities that I wanted to make sure this book had. These
were based on what I felt worked best when learning a new topic, and I also wanted to
address certain shortcomings of some of the learning material already out there:

Offer results as early as possible. From the second chapter, you’ll be able to write
and run Python code that will move motors and interact with sensors.

Be hands-on. The book takes a very practical approach to building a robot from
scratch.

Be accessible. No special robotics, soldering, or electronics knowledge is required
to create the projects in the book. Any Python developer can get started build-
ing these robots.

PREFACE xi

Offer many projects. There are nine different projects covered in the book, and
after the initial getting-started chapter, each chapter ends with a newly com-
pleted project.

With these guiding principles, the structure and content of the book took form. I
hope you enjoy reading and running the projects as much as I did creating them.

acknowledgments

I’d like to thank Karen Miller, my editor at Manning. This has been my first book with
Manning, and you have been incredibly patient and supportive throughout the pro-
cess. Thank you for all the support and valuable feedback! I'd also like to extend my
thanks to the technical editor, Alexander Ryker, for the excellent feedback and testing
that he performed on the code in the book. A special thanks to the teams that worked
on the promotion and production of the book. You helped me dig deep to understand
why I am so passionate about this book and to share that passion with my readers.

I’d also like to thank the reviewers who gave such detailed and excellent feedback.
To Alain Couniot, Alena Coons, Alex Lucas, Amitabh Cheekoth, Ben McNamara, Chad
Yantorno, Cosimo Attanasi, Darrin Bishop, Erico Lendzian, Fernando Bernardino,
James Black, James Matlock, Jeremy Chen, Jests Juarez, Jon Choate, Jonathan Reeves,
Julien Pohie, Keith Kim, Marc Taylor, Marcus Geselle, Martin Dehnert, Mohana
Krishna BG, Patrice Maldague, Patrick Regan, and Richard Tobias, your comments
were varied and helped me see the book from another angle. The changes and improve-
ments we made wouldn’t have been possible without your valuable observations.

about this book

Build Your Own Robot is a DIY guide for bringing your first Python-based robots to life.
Starting with the basics, you’ll teach your new friend how to spin, move around, and
find its way. You’ll then quickly progress to controlling your robot remotely using your
phone, computer, or joystick. You’ll even set up a camera to broadcast what it sees
right to your computer screen. Clever computer vision tricks will get your robot track-
ing faces, looking for QR codes, and maybe even fetching some snacks.

Who should read this book?

This book is geared toward software developers, and the reader should be familiar
with Python. No prior knowledge or experience in robotics or electrical engineering
is required. All the hardware assembly in the book can be performed with simple tools
such as a screwdriver. No special tools or skills such as soldering are required for any
of the wiring or assembly of the robots. This book is very well suited for

Python developers
Robot enthusiasts
University students

How this book is organized: A roadmap
The book has 11 chapters. Both beginner and experienced Python developers can

learn from the software techniques used in the book to bring the robotics projects to
life:

Chapter 1 explains why robots are so amazing and why they have so much
potential. It also discusses the building blocks of the robots and the approach
that will be taken to building the robots in the book.

ABOUT THIS BOOK

Chapter 2 covers the initial steps to setting up a robot and getting started with
robotic projects. Creating software to control the DC motors and change
Neopixel colors based on touch sensors will also be covered.

Chapter 3 explores the topic of making your robot move around. You will learn
how to control the DC motors to make the robot move forward and backward,
as well as turn left and right. All these different movement functions will be put
into a library so that you can reuse the code in later chapters.

Chapter 4 covers the basics of creating an interactive custom shell in Python so
that you can create a robot shell. The shell will support commands to perform
different robot movements and have a command history and the ability to exe-
cute custom shell scripts to make the robot perform a sequence of movements.
Chapter 5 discusses the topic of creating software to control robots remotely.
The SSH and HTTP network protocols will each be used as popular options for
remote control.

Chapter 6 discusses how to create robot web apps that can be used to control
the robot with a phone or computer web browser. Topics such as measuring
web application performance using web browser tools will also be covered.
Chapter 7 covers the topic of controlling robots with joysticks. Different
approaches to reading and responding to joystick events in Python will be
examined. Then, an application to respond to joystick events with different
robot movements over the network will be created.

Chapter 8 discusses how to control a set of servo motors to perform movements
in a pan and tilt directions with a keyboard. A camera mounted to the robot
servo motors can then be controlled to display a live video stream and take
snapshots.

Chapter 9 covers the topic of building a robot that moves the camera in the
direction of a detected face so that the camera will follow it. Machine learning
will be used to perform face detection and move the camera based on the loca-
tion of the detected face in the captured video frame.

Chapter 10 sets out to build a robot that can move around in search of a match-
ing QR code in its environment. Techniques for generating and detecting QR
codes in Python are covered, as well as how to build an application that will
drive the robot around until it finds a matching QR code.

Chapter 11 discusses how to build a snack-pushing robot that reads a list of snacks
from a CSV file. A desired snack can then be selected from a web application to
make the robot take action and drive to the selected snack and push it.

About the code

This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

You can get executable code snippets from the liveBook (online) version of this
book at https://livebook.manning.com/book/build-your-own-robot. The complete

https://livebook.manning.com/book/build-your-own-robot

ABOUT THIS BOOK XV

code for the examples in the book is available for download from the Manning web-
site at www.manning.com and from GitHub at https://github.com/marwano/robo.

liveBook discussion forum

Purchase of Build Your Own Robot includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning
.com/book/build-your-own-robot/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

Software/Hardware requirements

The hardware purchasing guide in appendix A covers the hardware requirements for
the book projects. It shows which hardware is needed for different chapters. It also has
some recommendations for optional purchases that can help improve robot projects.
Appendix B provides detailed instructions for the installation and configuration of
the Raspberry Pi and the related software requirements. For details on assembling
and configuring the robot hardware, check the robot assembly guide found in appen-
dix C. Finally, appendix D provides a mechanism to mock the robotic hardware and
run all the code in the book on any laptop or desktop computer.

https://livebook.manning.com/book/build-your-own-robot/discussion
https://livebook.manning.com/book/build-your-own-robot/discussion
https://livebook.manning.com/book/build-your-own-robot/discussion
https://livebook.manning.com/discussion
http://www.manning.com
https://github.com/marwano/robo

about the author

MARWAN ALSABBAGH is a seasoned software developer. He studied
mathematics and computer science at McGill University and is pas-
sionate about teaching and learning by building projects using
Python, with a focus on microcontrollers and robotics.

ABOUT THE TECHNICAL EDITOR

ALEX RYKER is a consulting systems engineer working in the industrial automation sec-
tor. He majored in computer science at Purdue University and has co-authored
research papers in the fields of computer security and robotics.

xvi

about the cover illustration

The figure on the cover of Build Your Own Robot, titled “L’Etalagiste,” is taken from a
book by Louis Curmer, published in 1841. Each illustration is finely drawn and col-
ored by hand.

In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xvii

1.1

What 1s a robot ?

This chapter covers

= What robots are made of

= Why robots have so much potential

Hardware and software components used by
robots

Recently, the field of robotics has grown tremendously, with robots for consumer
usage being increasingly replaced by those for industrial application. The hardware
and software behind these robots have also become more accessible, and for this rea-
son, these are exciting times to learn about robotics. This book employs the power
of the Python programming language to bring a wide variety of robotics projects to
life using software and hardware that embrace the open source philosophy. By the
end of the book, you will learn how to build nine different robotics projects.

Why robots are amazing

Computers have changed the lives of every human on this planet in ways their
creators could not have even imagined decades ago. Robot technology gives those

CHAPTER 1 What is a robot?

computers the arms and wheels to move
around and achieve things beyond our
imagination. In many ways, robots are the
future. This book allows you to build
robots from the ground up and see them
come to life in the real world. The code
you write will make your computer drive
around and knock over items of your
choosing. Figure 1.1 provides a visual illus-
tration of different ways in which we can
use the power of robots.
Robots can do many things:

Robots move. They have wheels and
are not afraid to use them. This
mobility gives rise to having them
perform all sorts of tasks, from
transporting packages in a ware-
house to transporting people in self-
driving cars.

Robots can see. With a camera on
board and powerful computer
vision software, robots can see the
world around them. They can see
our faces, detect them, and react to
them by moving their camera in our
direction using motors.

[Wheels that move] [Cameras that see }

Figure 1.1 Power of robots: robots use
different hardware to move and see the world
around them.

Robots can find. Using QR code stickers on objects in the real world, we can send

our robot off to find and interact with objects of our choosing. Robots use their
cameras and QR detection software to find what they are looking for and per-
form the task at hand once they have arrived at their destination.

Robots can be controlled. Human-operated robots let us perform all kinds of jobs

that were not possible before (e.g., controlling robots in areas too hazardous

for humans to enter or performing medical procedures too delicate for human
hands). In this book, we will use keyboards, mice, and joystick controllers to
control robots from computer screens and mobile phones. Each device has its
benefits and tradeoffs, which will be explored in each implementation.

Robots can be commanded remotely. One of the most powerful computer innova-

tions of our times is the TCP/IP internet communication protocols. Using
HTTP and SSH, which are built on top of TCP, we will implement different ways
of remotely communicating with and controlling our robots. Whether the
human operator is in the same room or miles away, these robots will be able to

be controlled.

1.2

121

122

1.2.3

124

1.2 Our approach to making robots 3

Our approach to making robots

This book takes a very hands-on approach to learning how to build robots and write
software to control and interact with them in Python. By the end of the next chapter,
you will assemble and connect enough components of the robot to write and run your
first Python script. This script will read the state of the onboard touch sensor as input
and turn on the DC motor when it detects a touch event. Each remaining chapter
ends with a fully functional project that is either directly interacting with the robot or
is a stepping stone to adding more functionality to other robots later in the book.
Each of these project-based chapters will introduce the project at hand and then
guide the reader step by step as the solution gets constructed.

Learning from failures

The most direct approach will often fail because of hardware constraints in processing
power or inherent limitations in a certain technology. These situations will be used as
learning opportunities to see how to overcome these constraints by using more sophis-
ticated approaches or by optimizing the implementation to gain major performance
boosts to work under constrained hardware requirements. The reader will be brought
along on the ride of diagnosing, precise measuring, and benchmarking these prob-
lems and their associated solutions. The reader will be able to use these skills to pre-
dict, diagnose, and debug similar problems in their own projects. Many of these
performance problems and solutions are not limited to working on robots and apply
to many different computer vision, networking, and computation projects.

What will you gain?

By reading this book, you will be exposed to a wide variety of hardware and software
challenges. Many of the Python libraries in this book are widely used and are suitable
for projects involving robots and beyond. Many problem-solving techniques for deal-
ing with hardware and software problems are also covered in the book, which will be
beneficial to the reader.

The field of robotics is a very broad field with a wide variety of applications. In
terms of the software and hardware covered in this book, a specific set of hardware
and software will be used.

Prototyping

Using the hardware and software covered in this book, there is a wide variety of proto-
typing projects that can be completed. Because of the inexpensive but powerful hard-
ware in use, many ideas can be tested by building a prototype to test drive the design
or approach before committing to more involved or expensive production hardware.

Teaching

The projects in the book can be used to teach students in a classroom setting or even
for selfstudy to gain reallife experience with building robots. The underlying

1.2.5

1.2.6

1.3

13.1

1.3.2

CHAPTER 1 What is a robot?

technology of robots is the same, whether you create a small robot or a larger one for
industrial use. By building these robots, you will also gain knowledge related to chassis
design, motor and computer power needs, battery power capacity, weight, and porta-
bility. The lessons learned on a small scale are still very applicable to larger or produc-
tion robots.

Production ready

As for the software, much of the software used in the book is directly suitable for large-
scale production. Software such as Linux, Python, and the Tornado web framework
are used in many mission-critical applications. As for the hardware, the Raspberry Pi is
used in many end-user products, and the Raspberry Pi Compute Module is heavily
used for industrial applications.

Limitations

There are inherent hardware limitations in the output and power capacity of the
motors used in this book, which will directly limit the types of projects that can be
executed with this hardware. The computing power of the Raspberry Pi is also inher-
ently more limited, as it is designed to be small and lightweight with low power
consumption.

What are robots made of?

Robots frequently have processors, memory, and storage like any laptop or desktop
computer. But what sets them apart are their motors and sensors, which let them do
things no regular computer could. Add some powerful software to the mix, and they
will be able to perform all sorts of feats.

The robot building blocks

It is valuable to build a mental model of the hardware and software used in this book.
It will help you understand which part of the software and hardware stack we are oper-
ating in. Linux and Python are an ecosystem of incredibly powerful software modules
and libraries that are well tested, versatile, and well documented. We will take advantage
of this and combine many different modules to achieve the functionality we need.

Servos and DC motors on a Raspberry Pi

DC motors turn the wheels in robots and help them drive around. Whether they drive
in all different directions or along a fixed path or track, it is DC motors that make it
possible. Servos are more sophisticated motors with built-in sensors that allow precise
movements. They can be controlled to turn to specific angles. Robotic arms are often
built from several servo motors. The projects in the book will cover heavily both servo
and DC motors and will control them from Python scripts to perform a wide variety of
tasks. The robots in the book will have a small but powerful single-board computer
(SBC), called the Raspberry Pi, at the heart of their operation.

1.3 What are robots made of? 5

1.3.3 Hardware stack

Figure 1.2 shows different hardware components that will be used for different proj-
ects in this book.

Human interface device

[Joystick I Keyboard I Mouse]
[NeopixelIm%%rIServo] t i i i v

[CRICKIT ICamera Ethernet | Wi-Fi [Bluetooth usB
Figure 1.2 Hardware stack: the

Raspberry Pi Raspberry Pi is the main computer,
and the CRICKIT handles the motors.

Each hardware component is described as follows:

Raspberry Pi—An SBC that has a CPU, RAM, and several different input/output
interfaces.

CRICKIT—The Adafruit CRICKIT HAT for Raspberry Pi is an add-on board
that attaches to the general-purpose input/output (GPIO) connector of the Pi.
It powers and controls the servo and DC motors.

Neopixel—The CRICKIT HAT comes with an RGB LED. Its color and brightness
can be changed in the software.

DC motor—Multiple DC motors can be connected to the CRICKIT HAT. They
will provide power to the left and right wheels to drive the robot.
Servo—Multiple servo motors can be connected to the CRICKIT HAT. They can
be used for the camera pan and tilt of the servo motors.

Camera—The Raspberry Pi Camera Module is created by the Raspberry Pi
Foundation and is used for computer vision.

Ethernet—The gigabit Ethernet port is built into the Pi board and provides high-
speed, low-latency reliable network communication.

Wi-Fi—Provides dual-band 2.4 GHz and 5 GHz wireless LAN.
Bluetooth—Bluetooth 5.0, BLE

USB—The keyboard, mouse, and joysticks can be connected directly using
USB.

Different projects will have different sets of required hardware components. Each
chapter will present the hardware components that will be used for a particular
project. The hardware-purchasing guide in appendix A provides good advice on the
specific models of products needed for the projects, as well as details on online
resellers.

1.34

1.3.5

CHAPTER 1 What is a robot?

Python and Linux

The robots will be running their software on top of the Linux operating system. Linux
is a feature-rich and versatile operating system that powers robots and supercomput-
ers alike. This opens the door to a wide variety of mature and well-tested software and
features that will be used throughout the book—everything from live video processing
from the camera feed to using the Bluetooth protocol to wirelessly control the robot’s
movements using highly sensitive analog joystick controllers.

Python is a very expressive language with a wide selection of mature and powerful
software libraries. We will use these libraries to incorporate rich functionality into the
robot-like computer vision and the ability to detect and decode QR codes so that the
robot can search for and find specific QR-tagged objects in its surroundings. The
libraries for creating and consuming web applications will also be used so that the
robot can be controlled over a local or remote network.

Software stack

Figure 1.3 shows different pieces of software that will be used
throughout the projects in the book. [Application }
The software components of a robot are as follows: [Libraries }
Linux—The Raspberry Pi OS Linux distribution will be
used as the operating system. [Python }
Python—The Python interpreter will run as an execut- [i]
able on Linux and execute the robot Python
applications. [Hardware }
Libraries—These are a variety of Python libraries that
will be used and incorporated into the robot projects, Figure 1.3 Software
all running within the Python interpreter. The Tor- :;ack: Linux manages
e hardware and runs
nado web framework will be used to build web applica- the Python interpreter.

tions to control the robot. The OpenCV computer

vision library will be used for face detection and QR code decoding. The Ada-
fruit CRICKIT library will be used to control servo and DC motors.
Application—The code driving the robot projects in this book will be operating
at this level.

Summary
With a camera on board and powerful computer vision software, robots can see
the world around them.
By scanning QR code stickers on objects in the real world, robots can find and
interact with objects in their environment.
Human-operated robots let us perform all kinds of previously impossible jobs,
whether these imply controlling robots in areas too hazardous for humans to
enter or performing medical procedures too delicate for human hands.

Summary 7

Using internet protocols such as HTTP and SSH, we will implement different
ways of remotely communicating with and controlling our robots.

Many different types of prototyping projects can be executed using the hard-
ware and software covered in this book.

Many of the Python libraries in this book are widely used and can be employed
for projects involving robots and beyond.

Robots frequently have processors, memory, and storage like any laptop or
desktop computer.

Robots also often run Linux, a feature-rich and versatile operating system that
powers robots and supercomputers alike.

DC motors are what turn the wheels in robots and help them drive around.

Getting staried

This chapter covers

Assembling and configuring the core hardware
and software of the robot

Controlling the Neopixel color and brightness

Reading sensor data from the four onboard touch
sensors

Controlling DC motors with Python

Creating your first Python robotics program that
interacts with sensors and motors

In this chapter, you will learn how to connect and configure the main hardware
and software components used for the robots in this book. Once the hardware and
software are set up, we’ll get straight into interacting with the hardware using
Python by reading sensor data from the onboard touch sensors. Then, you will
learn how to control the Neopixel lights and a DC motor. Finally, all these different
hardware components and Python scripts will come together to create a robotics
program that controls the Neopixel and DC motors based on touch sensor input.

2.1

211

2.1 Introducing our robotic hardware 9

Introducing our robotic hardware

Figure 2.1 shows the hardware stack discussed in the previous chapter, with the spe-
cific components used in this chapter highlighted in the boxes with darker text. The
components with grayed-out text will be used in later chapters.

[Joystick I Keyboard I Mouse]
. DC
[NeoplxelImotor [Servo] t i i i

[CRICKIT ICameraIEthernet Wi-Fi [Bluetooth USB Figure 2.1 Hardware stack: the
Raspberry Pi will handle network

communication using Ethernet and
Wi-Fi.

Raspberry Pi }

The Linux operating system will be installed on the Raspberry Pi. The Ethernet and
Wi-Fi hardware components will be used to connect the machine to the network and
allow other computers on the network to connect to it. The CRICKIT HAT will then be
connected to the Raspberry Pi and used to control the Neopixel and attached motor.
Make sure to check the hardware purchasing guide found in appendix A before
buying the hardware needed in this chapter. The appendix shows which hardware is
needed for the different chapters and also has some recommendations for optional
purchases that can improve robot projects. Appendix B provides detailed instructions
for the installation and configuration of the Raspberry Pi and Adafruit CRICKIT HAT.
It is also worth noting that appendix D provides a mechanism to mock the robotic
hardware and run any code in the book on any laptop or desktop computer.

Raspberry Pi

The Raspberry Pi is a small single-board computer created by the Raspberry Pi Foun-
dation (https://raspberrypi.org). The Raspberry Pi 4 with 2 GB or more of RAM is the
recommended model to use for the projects. Figure 2.2 shows a photo of the Rasp-
berry Pi 4 for reference. The attributes of these computers that make them an ideal
choice for robotics projects are the following:

Their small size and lightweight structure are important for mobile robots.
Running Linux and Python opens the door to a wide array of powerful software
to build robot projects on.

Versatile robot chassis kits compatible with the Raspberry Pi allow different con-
figurations of board, motor, and battery.

Powerful CPU and memory make intensive applications such as real-time com-
puter vision and machine learning possible.

https://raspberrypi.org

10 CHAPTER 2 Getlling started

= Good camera support allows the robots to see their environment.

= They have built-in and flexible connectivity options such as Ethernet, Wi-Fi,
Bluetooth, and USB.

= A general-purpose input/output (GPIO) connector provides a powerful mech-
anism to add hardware features to the board utilized by the Adafruit CRICKIT.

GPIO

Ethernet

2x USB 3.0

: | 2xusB 2.0

Power in Camera
connector

Figure 2.2 Raspberry Pi: the main hardware interfaces on the board are labeled.

2.1.2 Adafruit CRICKIT HAT

The Adafruit CRICKIT HAT is a
hardware add-on for the Raspberry
Pi created by Adafruit Industries
(https://adafruit.com; figure 2.3).
The CRICKIT HAT connects to the
GPIO connector on the Raspberry Pi
and provides the following features
used by the projects in the book:

= Up to two bi-directional DC
motors can be connected,
powered, and controlled.

= Up to four servo motors can
be connected, powered, and
controlled.

= Four capacitive touch input

sensors are built into the g 023 Adafruit CRICKIT HAT: the DC motors and
board. servo motors are connected to this board.

https://adafruit.com

2.2

2.3

2.3 Changing Neopixel colors 11

A Neopixel RGB LED is built into the board.
Python support is provided by the Adafruit Python library to control and inter-
act with the motors, capacitive touch, and Neopixels.

Configuring the software for our robots

Figure 2.4 shows the software stack presented in the previous chapter. Details of the
specific software used in this chapter are described in the following text.

[Application I blink, touch]

[Libraries Ii adafruit_crickit library]

[Python 1 Python t ime module J

[Linux I 12C device interface] Figure 2.4 Software stack: this
chapter will cover the installation

[Hardware I Neopixel LED, touch input sensors J and configuration of Linux and
Python.

Once Linux is installed, Python will be configured to have a dedicated virtual environ-
ment where Python libraries can be installed. The Adafruit CRICKIT library will be
installed, which will then be used to run the Python code to interact with the
CRICKIT hardware components such as the Neopixel LED and the touch input sen-
sors. The blink and touch applications will then be created using Python and the
Adafruit libraries to communicate with the CRICKIT board using the 12C device inter-
face in Linux. The Python time module will be used to control the time duration of
different actions. Before continuing with the chapter, make sure to follow the installa-
tion and configuration instructions in appendix B for the Raspberry Pi and the Ada-
fruit CRICKIT HAT.

Changing Neopixel colors

The CRICKIT library offers several different ways to interact with the Neopixel LED.
We can explore these options in a REPL (read—evaluate—print loop) session. Check
appendix B for help activating the Python virtual environment and opening a REPL
session. The Neopixel can be quite bright, so we will lower the brightness to 1% and
then set the color to blue:

>>> from adafruit_crickit import crickit

>>> crickit.onboard_pixel.brightness = 0.01
>>> crickit.onboard pixel.fill (0x0000FF)

So far, we have set the color using the RGB hexadecimal color code. It would be nice if
we could set colors using human-readable color names. This functionality isn’t

12

CHAPTER 2 Getting started

directly available through the CRICKIT library, but we can create a simple dictionary
to store and look up common color names:

>>> RGB = dict (red=0xFF0000, green=0x00FF00, blue=0x0000FF)
>>> crickit.onboard pixel.fill(RGB['red'])

We can now create a simple script to continually loop through each color name and
set the color. This code will create a multicolor blinking effect with the LED. During
each loop, the script will print out the color name, set the color, and pause for 0.1 sec-
onds before setting the next color. Save the following script in a file called blink.py
on the Pi.

Listing 2.1 blink.py: Creating a multicolor blinking effect with the LED

#!/usr/bin/env python3
import time
from adafruit crickit import crickit

RGB = dict (red=0xFF0000, green=0x00FF00, blue=0x0000FF)

crickit.onboard pixel.brightness = 0.01
while True:
for name in RGB:
print (name)
crickit.onboard pixel.fill (RGB[name])
time.sleep(0.1)

The file can be given execute permission by running
$ chmod a+x blink.py

Then run the Python script:

$./blink.py

The reason the script can be executed directly is that the first line is using a Unix fea-
ture called shebang, which tells Linux that the script should be executed through the
Python interpreter python3. Make sure to activate the Python virtual environment
before running the script, as shown in appendix B. We can exit the script by pressing
Ctrl+C, which will force the script to exit. When saving the script on the Pi, place it in
the /home/robo/bin/ directory, which can also be accessed as ~/bin. This is a stan-
dard location on Linux systems to place user scripts such as these, and it will be the
convention followed in the book. The blink.py file and all the code for the projects
in this book can be found on GitHub (https://github.com/marwano/robo).

Going deeper: The 12C communication protocol

The CRICKIT HAT has its own microcontroller on the board and uses the 12C commu-
nication protocol to enable communication between the Raspberry Pi and its micro-
controller. This is all taken care of by the Python Adafruit CRICKIT library. Being very

https://github.com/marwano/robo

2.4 Checking the touch sensor state 13

powerful and flexible, 12C protocol is a popular choice for communication between
integrated chips. The SparkFun website has a great guide (https://learn.spark
fun.com/tutorials/i2¢) on I2C. It can be interesting and useful to learn what is going
on under the hood with these low-level hardware protocols.

The Adafruit site has a good hands-on guide (http://mng.bz/g7mV) to communicating
with 12C devices in Python. We can use this guide to do some basic interaction with
12C on the Pi with the CRICKIT HAT. Let’s first open a REPL and import the board
module:

>>> import board
We can now create an 12¢ object to scan for the CRICKIT HAT:
>>> 12c = board.I2C()

We can now scan for 12C devices and save the result in devices. We can see from
the results that one device was found:

>>> devices = i2c.scan()
>>> devices

[73]

From appendix B, we know that the 12C address for the CRICKIT HAT is expected to
be 0xa9. We can confirm the device we found is the CRICKIT HAT by calculating its
hexadecimal with the following line:

>>> hex(devices[0])
'0x49'"

The 12C protocol is a powerful protocol that can support up to 1,008 peripheral
devices connected on just two wires.

Checking the touch sensor state

There are four capacitive touch input sensors on the CRICKIT. Figure 2.5 shows their
close-up view. From Python, each sensor can be checked individually to see whether it
is currently detecting a touch event. Without touching the touch sensor, run the fol-
lowing code in a REPL session:

>>> from adafruit crickit import crickit

>>> crickit.touch 1.value
False

Now run the last line again while touching the first touch sensor:

>>> crickit.touch 1.value
True

When the value attribute is accessed, the CRICKIT library checks the touch sensor
state and returns a Boolean value of either True or False depending on the sensor
data.

http://mng.bz/g7mV
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c

14

2.5

CHAPTER 2 Getting started

Figure 2.5 Capacitive touch
sensors: these sensors can detect
touch events.

Controlling DC motors

Connect the two wires of a DC motor into the DC motor connector port 1. Figure 2.6
shows the location of these motor connections on the CRICKIT. The two wires can be
connected either way into the CRICKIT motor port; it won’t cause any problems.
Make sure to use the M/M extension jumper wires mentioned in appendix A, as this
will ensure the male and female ends match. Once connected, run the following lines
in a REPL session:

>>> from adafruit_crickit import crickit
>>> crickit.dc motor 1.throttle =1

The DC motor will now run at full speed. To stop the motor running, use

>>> crickit.dc_motor 1.throttle = 0

Figure 2.6 DC motor connections:
" - y the connection points for DC motors
. % ’ are screwed in place.

2.6

2.6 Controlling motors with the touch sensor 15

Controlling motors with the touch sensor

We can take what we have learned so far and combine these different parts of the
CRICKIT library to make an application that continually checks the touch sensor and
starts or stops the motor based on whether the sensor is being touched. We will also
change the LED color whenever the motor is started or stopped. Let’s start construct-
ing this application piece by piece.

First, we’ll import the CRICKIT library to control the motors and the time library
to pause between checking for touch events:

import time
from adafruit crickit import crickit

Next, we’ll define RGB so that we can set colors by name and save how long we wait
between checking touch events in a setting called poLL._DELAY. The poll delay value is
set at 0.1 seconds, which is fast enough to make the experience of touching the sensor
and starting the motor responsive:

RGB = dict (red=0xFF0000, green=0x00FF00, blue=0x0000FF)
POLL DELAY = 0.1

Before starting the main loop of the program, we set the brightness of the LED:
crickit.onboard pixel.brightness = 0.01

The remainder of the program runs in this infinite loop:

while True:

In the first line of the loop, we check whether the sensor is being touched and set the
throttle variable accordingly. In Python, this syntax is called a conditional expression:

throttle = 1 if crickit.touch 1.value else 0

We take the same approach to set the LED to red when the motor is on and blue when
it is off using the color variable:

color = RGB['red'] if crickit.touch_1l.value else RGB['blue']

After calculating the throttle and color values, we apply them to the motor and
LED:

crickit.onboard pixel.fill (color)
crickit.dc_motor 1.throttle = throttle

Finally, we sleep for POLL_DELAY seconds before starting the next loop iteration:
time.sleep (POLL_DELAY)

The full application can be saved as touch.py on the Pi and then executed.

16

CHAPTER 2 Getting started

Listing 2.2 touch.py: Starting the motor when the touch sensor is pressed

#!/usr/bin/env python3
import time
from adafruit crickit import crickit

RGB = dict (red=0xFF0000, green=0x00FF00, blue=0x0000FF)
POLL_DELAY = 0.1

crickit.onboard pixel.brightness = 0.01

while True:
throttle = 1 if crickit.touch 1.value else 0
color = RGB['red'] if crickit.touch 1.value else RGB['blue']
crickit.onboard pixel.fill (color)
crickit.dc motor 1.throttle = throttle
time.sleep (POLL_DELAY)

When you run the script, you will see that the o~

motor is initially not moving, and the LED color @j i El]
will be blue. If you press the touch sensor, the LED True Red on
color will change to red, and the motor will start

moving at full speed. If you stop touching the sen- False Blue Off

sor, the LED will return to the initial blue color,

and the motor will come to a full stop. Figure 2.7 Figure 2.7 Touch state diagram:

maps the touch sensor state to the color of the LED the LED and motor state changes in
and the motor running state. reaction to touch events.
Summary
= The Raspberry Pi is a single-board computer created by the Raspberry Pi Foun-
dation.
= The Adafruit CRICKIT HAT is a hardware add-on for the Raspberry Pi created
by Adafruit Industries.

= The CRICKIT HAT, once connected to the Raspberry Pi, can be used to control
the Neopixel and attached motors.

= The Adafruit Python CRICKIT library can be used to run Python code that
interacts with the CRICKIT hardware components.

= The Raspberry Pi Imager is software that can be used to prepare the installation
media (microSD card/USB flash drive) with the Raspberry Pi OS image.

= The CRICKIT HAT is connected to the Raspberry Pi using the GPIO connector.

= Neopixel colors can be changed in Python using the RGB hexadecimal color
codes.

= When checking the touch sensor state, the CRICKIT library returns a Boolean
value of either True or False, depending on the touch sensor state.

= DC motors can be turned on and off by setting the throttle attribute to 1 or o.

= A connected motor can be turned on and off based on touch events using a
loop that continually polls for touch events and sets the throttle for the motor
accordingly.

Driving the-robot

This chapter covers

Controlling DC motors to make robots move
forward and backward

Implementing software-configured motor power
adjustments

Turning the robot left and right
Spinning the robot in place
Refactoring the code using the functools library

This chapter will teach you how to move the robot in different directions using the
Python code to control the power given to DC motors. The left and right wheels of
the robot each have a dedicated motor attached to them. Controlling the motors
makes a whole array of movements possible. Python functions will be generated for
each of the main movement operations to create an easy-to-use and readable set of
methods to control the robot’s movements. Once all these functions have been
implemented, a number of refactoring techniques will be applied to simplify and
consolidate the code base.

17

18

3.1

3.2

CHAPTER 3 Driving the robot

What’s a robot chassis kit?

Robot chassis kits are a great way to build mobile robots. In the previous chapter, we saw
how the Raspberry Pi provides computing power for the robot and how the CRICKIT
HAT add-on controls connected motors. The chassis kit provides the body, motors,
and wheels to get your robot moving around. There are many different robot chassis
kits that can be used with the Raspberry Pi. The one recommended in this book is an
inexpensive and flexible option that lets you build many different robot configura-
tions. The kit comes with the following main parts:

Two DC motors

Two wheels

One caster ball that acts as a third wheel

Three aluminum frames and mounting hardware to create a three-layer robot

Figure 3.1 shows the main parts
that come with the kit. Having
three layers as opposed to a two-
layer arrangement provides the
expanded space and flexibility to
install the Raspberry Pi and power
hardware on different layers. The
DC motors are kept on the bottom
layer. These layers in the robot
chassis can be seen in the images
found in the robot assembly guide
that is part of appendix C. Check
the hardware-purchasing guide in

Figure 3.1 Chassis kit: the kit comes with three appendlx A for more details on the
aluminum frames to support three-layer robots. recommended chassis kit.

Hardware stack

Figure 3.2 shows the hardware stack discussed, and the specific components used in
this chapter are highlighted. As the book progresses, more hardware components will
be incorporated into the robot projects.

[JoystickIKeyboard Mouse]
[NeopixelI DC IServoJ ¢ ¢
motor

[CRICKIT Camera | Ethernet | Wi-Fi || Bluetooth | USE
Figure 3.2 Hardware stack: the

Raspberry Pi } robot will move around using two
DC motors.

3.3

3.4

3.4 Writing a move forward function 19

As mentioned in the previous section, two DC motors will be used in this chapter. One
will be attached to the left wheel and the other to the right wheel. The center wheel
will use a caster ball that can turn smoothly in any direction and has no motor
attached. The DC motors will be connected to the CRICKIT HAT, which will power
and control them. Ethernet can be used to connect to the robot, but a Wi-Fi connec-
tion provides the ability for the robot to move around untethered.

For details on assembling and configuring the robot hardware, check the robot
assembly guide in appendix C. It shows how to assemble the robot used in this and
other chapters.

Software stack

Details of the specific software used in this chapter are illustrated in figure 3.3 and
described in the text that follows. The application layer makes use of the libraries and
the Python interpreter below it. The Python interpreter runs on Linux, which in turn
runs on the hardware.

Application I motor.py

Libraries I adafruit_crickit library

Linux I Environmental variables
Figure 3.3 Software stack: this

chapter covers how to control DC
motors with Python.

Python I Python t ime module]

Hardware I DC motors, CRICKIT board

Building on the knowledge from chapter 2, we will continue using the Python Ada-
fruit CRICKIT library to interact with DC motors. In this chapter, we will control mul-
tiple DC motors using the same script. We will also learn how to control the motor
direction and speed. On the Linux level, we will use environment variables such as
ROBO_DC_ADJUST R to pass configuration values to our Python scripts to set motor
power adjustments. In this way, we don’t have to hard-code configuration values
directly into our Python code. The Python time module will be used to control the
duration of the motor running during different movement operations. The time
module is part of the Python standard library and provides a standard mechanism to
pause script execution through the sleep function. Finally, we will bring all these
pieces together to create the motor.py script and library at the end of the chapter.

Writing a move forward function

In this section, we will learn how to create a Python function that will make the robot
move forward when called. We do this by turning on both the left and right DC
motors at the same time, letting them run for a specific time, and then stopping them.
This will make the robot move forward and come to a stop.

20

CHAPTER 3 Driving the robot

An important safety aspect when dealing with robots is having a mechanism to per-
form an emergency stop. The CRICKIT HAT has a hardware switch to turn the board
on and off. We can use the switch as our emergency stop, as it will cut power to all con-
nected motors. It has the added benefit that we can turn the board right back on and
start our applications again without having to reboot the Raspberry Pi.

First, we’ll import the CRICKIT library to control the motors and the time library
to control how long we move forward:

from adafruit crickit import crickit
import time

Next, we’ll define MOTOR_R and MOTOR_L, which will map to the right and left motors.
When wiring the robot, make sure to connect the right DC motor to motor connec-
tion 1 and the left DC motor to motor connection 2. All the code in the book will fol-
low this convention:

MOTOR_R crickit.dc_motor 1
MOTOR_L = crickit.dc_motor_2

Then, we define a helper function called set_throttle, which accepts two arguments
and sets the throttle for the specified motor to the specified value:

def set throttle(motor, value):
motor.throttle = value

We can now define the forward function itself, which will move the robot forward.
When called, it first sets both motors to run at the 90% speed in the forward direction
by calling set_throttle on both motors. Then, by calling sleep, it waits for 0.2 sec-
onds. Finally, calling set_throttle again on both motors ends the movement. In this
way, calling the forward function will move the robot forward for 0.2 seconds and
then cause it to come to a full stop:

def forward() :
set_throttle (MOTOR_R, 0.9)
set_throttle (MOTOR L, 0.9)
time.sleep(0.2)
set_throttle (MOTOR_R, 0)
set throttle (MOTOR L, 0)

The full script can be saved as forward.py on the Pi and then executed.

Listing 3.1 forward.py: Making the motors move forward with a function

#!/usr/bin/env python3
from adafruit crickit import crickit
import time

MOTOR_R = crickit.dc_motor 1
MOTOR_L = crickit.dc_motor_2

3.5

3.5 Using environment variables for configuration 21

def set_ throttle(motor, value):
motor.throttle = value

def forward() :
set_throttle (MOTOR_R, 0.9)
set_throttle (MOTOR_L, 0.9)
time.sleep(0.2)
set_throttle (MOTOR_R, 0)
set_throttle (MOTOR_L, 0)

forward ()

When running the script, both motors should move in the forward direction, making
the whole robot move forward. If one of the wheels is moving in the backward direction
instead of forward, just switch the connecting wires for that DC motor. The DC motor
wires can be connected either way, and flipping the connected wires will also flip the
direction of a positive throttle. The book follows the convention that a positive throttle
results in a forward movement and a negative throttle results in a backward movement.
If the wheel direction has not yet been confirmed, be mindful not to put your robot on
the edge of a table, as it might drive in the wrong direction and fall off the table.

WARNING The motor speed was set at 90% strength instead of a full 100%
strength. This is done for power safety reasons. Using certain USB power
banks to power the CRICKIT HAT and rapidly switching DC motor directions
will cause power disruptions and disconnection to the I2C connection
between the Raspberry Pi and CRICKIT HAT. The 90% strength provides a
high level of throttle and a good level of safety to protect against these prob-
lems. You could use even higher values, but the mentioned values have been
tested and are reliable in practice.

Using environment variables for configuration

Frequently, some configuration values, specific to a particular machine or hardware
device, will need to be set and read by a Python application. Some examples are secu-
rity credentials or configurable settings that should not have values hard-coded
directly into your Python scripts.

In our case, our robot needs a power configuration setting for each of the two DC
motors. In the physical world setting, the same throttle on two motors often won’t
make them move at exactly the same speed. This is due to slight variations in the phys-
ical motors. Because one motor will often spin a little faster than the other, it will
make the robot veer a little to the left or right instead of moving in a perfectly straight
line. The solution is to tweak the throttle settings between the two motors to get them
spinning at similar speeds. Then the robot will drive more on a straight path when
moving forward. We will create two configuration values to adjust the power of each
motor. This is a pragmatic and simple solution that will meet the needs of the projects
in this book. A more advanced solution would require us to add hardware sensors and
logic in our software to constantly adjust the power on the two motors by taking sensor
data into account to keep the robot driving straight.

CHAPTER 3 Driving the robot

To solve this problem, we implement a common technique using environment
variables in Linux to set our configuration values and then read and use these values
in Python. The solution should meet the following requirements:

Configuration values should be read in Python from a specific set of named
environment variables.

Configuration values should be optional, and if environment variables are not
set, they should fall back to specific default values.

All environment variables are string values. Type casting should be performed
to set them to an appropriate data type, such as floating-point values.

Environment variables can be set and viewed in a terminal session. This can be a local
terminal session or a remote session over SSH. The default terminal or shell software
on the Raspberry Pi OS is called Bash. For more details and help with terminal use
and software, see the Raspberry Pi Documentation (https://raspberrypi.com/docu
mentation/usage/terminal).

First, we will define the naming of the environment variables and how they will be
set. It is often a good idea to let all your environment variables start with the same pre-
fix. This way, when listing all the existing environment variables, it will be easy to find
the ones that are ours. We will use the prefix RoBo_ for all our variables. Run the com-
mand $ env.

Execute this command to set a new environment variable that will adjust the amount
of power given to the right DC motor. The value of 0.8 will make the throttle lower for
the right DC motor and 80% of the normal throttle to slow down the right motor. This
could be an adjustment made when you find your right motor moving faster than the
left one and want to slow it down so that the two motors have similar speeds:

$ export ROBO_DC ADJUST R="0.8"

When executing the env command again, you should see our new variable in the out-
put. We can take the output of this command and use the Bash | feature to pipe the
output into another command that will filter the output. The grep command filters
the output and only shows lines that have the rRoBoO_ text in them. We can run the fol-
lowing command to filter the output of the env command and only list our variables:

$ env | grep ROBO

These values are only available in our current Bash session. If you open a new session
or reboot the machine, these values will be lost. To make the environment variable
permanent, it should be placed in your .bashrc file. Edit this file and add the export
line. Now open a new Bash session and confirm the value has been set.

We can now dive into a Python REPL (read-evaluate—print loop) and start reading
the values from these environment variables. We will import the os module and then
start accessing the values:
>>> import os

>>> os.environ['ROBO DC ADJUST R']
'0.8"

https://raspberrypi.com/documentation/usage/terminal
https://raspberrypi.com/documentation/usage/terminal
https://raspberrypi.com/documentation/usage/terminal

3.5 Using environment variables for configuration 23

When we access a value that has not been set, a KeyError exception will be raised:

>>> os.environ['ROBO_DC_ADJUST_L']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3.9/os.py", line 679, in _ getitem
raise KeyError (key) from None
KeyError: 'ROBO DC ADJUST L'

The way to deal with optional values is to use the get method that provides default val-
ues when the environment variable does not exist:

>>> os.environ.get ('ROBO_DC_ADJUST L', '1')
|1|

>>> os.environ.get ('ROBO_DC ADJUST R', '1l"')
'0.8"'

We can now typecast our variable into a float:

>>> float (os.environ.get ('ROBO_DC ADJUST R', '1'))
0.8

Now that we have everything in place, we can upgrade our previous implementation
of the forward function with these new changes. It is important to note that we don’t
have to set both environment variables, as each of them is optional. We will save our
two configuration values into variables:

DC_ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC_ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))

We will keep our power adjustment values in a dictionary called ADJUST so that they
can be accessed more easily:

ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

In a similar fashion, we will access our DC motor objects through a dictionary called
MOTOR!

MOTOR = dict (R=crickit.dc_motor_ 1, L=crickit.dc_motor_2)

The implementation of the set_throttle function can now be updated to receive the
name of the motor as a string and apply a throttle value that gets adjusted based on
the values in ADJUST:

def set throttle(name, value):
MOTOR [name] .throttle = value * ADJUST [name]

Finally, our forward function can be updated to refer to motors using the values 'R’
and 'L':

def forward() :
set throttle('R', 0.9)
set_throttle('L', 0.9)
time.sleep(0.2)

24

CHAPTER 3 Driving the robot

set_throttle('R', 0)
set_throttle('L', 0)

The full script can be saved as envforward.py on the Piand then executed.

Listing 3.2 envforward.py: Reading configuration values from environment variables

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC_ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC _ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc _motor 1, L=crickit.dc_motor_ 2)

def set throttle(name, value):
MOTOR [name] .throttle = value * ADJUST [name]

def forward() :
set_throttle('R', 0.9)
set_throttle('L', 0.9)
time.sleep(0.2)
set_throttle('R', 0)
set_throttle('L', 0)

forward ()

When the script is run, the robot will move forward based on the specific power
adjustments defined for each motor in the environment configuration values. This
will enable power adjustments on each wheel and allow it to drive in more of a straight
line.

Going deeper: The physics of robotic motion

As your robot projects tackle more complex tasks in challenging environments, the
topic of the physics of how robots move becomes increasingly important. For exam-
ple, if your robot needs to drive on a variety of surfaces that might be slippery at
times, then a traction control system can be incorporated into the robot to handle
these different surfaces.

Another scenario might be driving the robot over a surface that is not level but has a
slope. The slope might be downward or upward. If the slope is upward, we may want
to provide more power to the DC motors to achieve the same speed we would have
on a level surface. If, on the other hand, the robot is driving downward, then we would
want to reduce the power provided to the DC motors so that we don’t go too fast.
This type of control is a standard feature that is part of the cruise control systems
found in many cars. The same systems can be applied to our robots. We would need

3.6

3.6 Controlling the speed and duration of movements 25

to add sensors to measure our
speed and adjust power accord-
ingly. The following figure provides
an illustration of the additional
power and force that must be given
to the motors when robots drive
uphill to counter the force of gravity.

The guide on electric traction and
steering for robotic vehicles pro-
vided by Allied Motion (http:/
mng.bz/ZRoZ) is an excellent refer-
ence on the topics of both steering Driving on a slope: when driving up a slope, more
and traction control in robotics. power needs to be given to the motors.

Topics such as the characteristics

of the wheels and operating sur-

faces are covered. It also includes a comparison of the different ways in which trac-
tion solutions can be created with their associated tradeoffs.

Controlling the speed and duration of movements

In the next upgrade, we will add the ability to control the speed and duration at which
we move the robot forward. Currently, the duration is hard-coded in the forward
function and is set at 0.2 seconds. We will add an optional argument to the function so
that it will still default to 0.2 seconds, but the code calling the function can provide
other values. The speed at which the robot moves forward can be controlled by chang-
ing the level of throttle provided to the motors. We will define three speed settings—
low, medium, and high—and then one of these levels can be specified when calling
movement functions.

We will add the optional duration argument to control how long we run the
motors:
def forward(duration=0.2):

set_throttle('R', 0.9)

set_throttle('L', 0.9)

time.sleep (duration)

set_throttle('R', 0)
set_throttle('L', 0)

The THROTTLE_SPEED dictionary will map the three speed levels to their associated
throttle levels. The speed level 0 is used to stop the motors:

THROTTLE SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}
We can now update our forward function to set the desired speed:
def forward(duration=0.2, speed=3):

set throttle('R', speed)
set_throttle('L', speed)

http://mng.bz/ZRoZ
http://mng.bz/ZRoZ

26

3.7

CHAPTER 3 Driving the robot

time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

The set_throttle function will now use the new THROTTLE_SPEED dictionary too:

def set throttle(name, speed):
MOTOR [name] . throttle = THROTTLE SPEED [speed] * ADJUST [name]

The full script can be saved as speedforward.py on the Pi and then executed.

Listing 3.3 speedforward.py: Controlling the speed of motors moving forward

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc_motor_1, L=crickit.dc_motor_2)
THROTTLE SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed):
MOTOR [name] .throttle = THROTTLE SPEED [speed] * ADJUST [name]

def forward(duration=0.2, speed=3):
set_throttle('R', speed)
set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

print ('move forward for 0.5 seconds')
forward (duration=0.5)

for speed in [1, 2, 3]:
print ('move forward at speed:', speed)
forward (speed=speed)

The script makes some function calls to forward to demonstrate the new functionality.
It will move the robot for a custom duration of half a second. Then it will move the
robot forward at each of the three speed levels. The robot will stop moving once the
last call to the forward function is made because the function ends by stopping both
motors.

Moving backward

Now that we have implemented a function for forward movement, we will move on to
implement a function to make the robot move backward. These are some of the main
movement functions we need to implement to achieve a full range of motion.

3.7 Moving backward 27

First, we will enhance the set_throttle function with a factor argument. This
argument will be used to control whether the throttle will have a positive value to
move the motor forward or a negative value to move the motor backward:

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE_SPEED [speed] * ADJUST [name] * factor

Next, we need to implement the new backward function. It is very similar to the
forward function, with the main difference being the value of the factor parameter:

def backward(duration=0.2, speed=3):
set throttle('R', speed, factor=-1)
set throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set throttle('L', 0)

The full script can be saved as backward.py on the Pi and then executed.

Listing 3.4 backward.py: Making the motors move in a backward direction

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1l'))
DC ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc_motor_ 1, L=crickit.dc_motor 2)
THROTTLE SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE SPEED [speed] * ADJUST [name] * factor

def forward(duration=0.2, speed=3):
set throttle('R', speed)
set_throttle('L', speed)
time.sleep (duration)
set throttle('R', 0)
set_throttle('L', 0)

def backward(duration=0.2, speed=3):
set_throttle('R', speed, factor=-1)
set throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

for i in range(3):
forward ()
time.sleep (1)
backward ()
time.sleep(1)

28

3.8

CHAPTER 3 Driving the robot

The script demonstrates the use of the new function by moving the robot forward and

backward three times.

Turning right
Turning right requires providing different throttle
levels to the left and right motor. To better under-
stand the forces at play, we can have a look at the
wheel layout in figure 3.4. The left and right wheels
have the motors attached to them and can have vary-
ing levels of throttle applied. The center wheel is a
caster ball that can move freely in any direction. The
figure shows that to turn right, we should apply a
stronger throttle to the left wheel motor. This will
make the left wheel turn faster and thus turn the
robot right.

Now we have everything we need to implement
the function to move the robot right.

The new right function has some similarities to
previous functions. Essentially, we are moving in a

N

Figure 3.4 Wheel layout: a
stronger throttle on the left wheel
turns the robot right.

forward direction but turning right. This is done by giving twice as much throttle to

the left wheel:

def right (duration=0.2, speed=3):
set_throttle('R', speed, factor=0.5)
set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set throttle('L', 0)

The full script can be saved as right.py on the Pi and then executed.

Listing 3.5 right.py: Turning the robot right

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC _ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC_ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))

ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc _motor 1, L=crickit.dc_motor_ 2)

THROTTLE_SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE SPEED [speed]

def forward(duration=0.2, speed=3):
set_throttle('R', speed)

* ADJUST [name] * factor

3.9

3.9 Moving left and spinning in either direction 29

set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

def backward(duration=0.2, speed=3):
set_throttle('R', speed, factor=-1)
set throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set throttle('L', 0)

def right (duration=0.2, speed=3):
set_throttle('R', speed, factor=0.5)
set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

right (1)

The script calls the right function to make the robot turn right for 1 second.

Moving left and spinning in either direction

We can now implement a complete set of functions to perform all the movements
needed for our robot. Here are the requirements we would like to be fulfilled by our

set of functions:

Creating a set of Python functions to make the
robot move forward, backward, right, and left,
as well as spin right and left.

Each of these functions should allow us to set
the duration and speed of the movement
operation.

We have written much of what we need to complete our
set of functions. We can now implement the remaining
three movement functions. Figure 3.5 shows the direc-
tion of throttle that needs to be applied on each motor
to make the robot spin to the right.

The new left function is essentially just like the
right function, except with the stronger throttle
being put on the right wheel so that the robot will
turn left:
def left (duration=0.2, speed=3):

set_throttle('R', speed)
set throttle('L', speed, factor=0.5)
time.sleep (duration)

set_throttle('R', 0)
set throttle('L', 0)

Figure 3.5 Spinning: throttle
needs to be applied on the left

and right motors to make the
robot spin.

30

CHAPTER 3 Driving the robot

The spin_right function will make the robot spin in place by having the wheels turn
at full speed in opposite directions. The right wheel will spin backward, and the left
wheel will spin forward, making the robot spin clockwise:

def spin right (duration=0.2, speed=3):
set_throttle('R', speed, factor=-1)
set throttle('L', speed, factor=1)
time.sleep (duration)
set_throttle('R', 0)
set throttle('L', 0)

The spin_left function will spin the robot, but this time in an anticlockwise direction:

def spin left (duration=0.2, speed=3):
set_throttle('R', speed, factor=1)
set_throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

The full script can be saved as fullmotor.py on the Pi and then executed.

Listing 3.6 fullmotor.py: Creating functions to perform all supported robot movements

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC _ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC_ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc _motor 1, L=crickit.dc_motor_ 2)
THROTTLE SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE SPEED [speed] * ADJUST [name] * factor

def forward(duration=0.2, speed=3):
set_throttle('R', speed)
set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

def backward(duration=0.2, speed=3):
set_throttle('R', speed, factor=-1)
set_throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

def right (duration=0.2, speed=3):
set_throttle('R', speed, factor=0.5)

3.10

3.10 Refactoring by finding common logic

set_throttle('L', speed)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

def left (duration=0.2, speed=3):

set_throttle('R', speed)
set throttle('L', speed,
time.sleep (duration)
set_throttle('R', 0)
set throttle('L', 0)

def spin_right (duration=0.2,
set throttle('R', speed,
set_throttle('L', speed,

factor=0.5)

speed=3) :
factor=-1)
factor=1)

31

time.sleep (duration)
set throttle('R', 0)
set_throttle('L', 0)

def spin left (duration=0.2, speed=3):
set_throttle('R', speed, factor=1l)
set_throttle('L', speed, factor=-1)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

if __name_ == "_main_ ":
left (1)
spin _right (0.5)
spin_left (0.5)

The script now has all the movement functions implemented. It can even be imported
as a Python module and used by other Python scripts. When the script is run directly,
it will make the robot turn left and then spin right and left. If, however, the module is
imported to be used as a library, then it won’t perform those demonstration move-
ments. This is achieved by checking the value of the _ name_ _ variable to detect
whether the Python code is being run directly or imported as a library.

Refactoring by finding common logic

Code refactoring is the process of changing or simplifying how your application is
implemented internally without changing any of its external behavior. In our case, we
want to simplify the implementation of the motor library without changing any of the
names of the functions or the arguments they receive. We will do this by making a sim-
pler, more readable, and more maintainable version of this library.

One way to refactor code is to look for logic that is similar or shared between dif-
ferent functions and then centralize that logic in one function to avoid duplication.
We can see that our movement functions all share a very similar structure of setting
the throttle on the left and right motors, sleeping for some period, and then stopping
the throttle on both motors. Let’s create a centralized function to implement this
functionality and then have the other functions call the main centralized function.

32

CHAPTER 3 Driving the robot

The centralized movement function must take the duration and speed arguments
like the other functions, but it also receives the factor values for both the left and right
motors, as these vary within different functions. With this implementation, it should
meet the needs of all the functions we have implemented:
def movement (duration=0.2, speed=3, factor r=1, factor 1=1):

set_throttle('R', speed, factor_r)
set_throttle('L', speed, factor_1)
time.sleep (duration)

set_throttle('R', 0)
set_throttle('L', 0)

We can now call the movement function from a new version of the forward function.
The implementation is very simple and essentially passes all its arguments as is. We
can implement a similar set of changes to migrate all the old functions to use the new
approach:

def forward(duration=0.2, speed=3):
movement (duration, speed)

The full script can be saved as commonmotor.py on the Pi and then imported.

Listing 3.7 commonmotor.py: Consolidating common logic into a common function

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

DC _ADJUST R = float (os.environ.get ('ROBO_DC ADJUST R', '1'))
DC_ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc _motor 1, L=crickit.dc_motor_ 2)
THROTTLE SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE SPEED [speed] * ADJUST [name] * factor

def movement (duration=0.2, speed=3, factor r=1, factor 1=1):
set_throttle('R', speed, factor_r)
set_throttle('L', speed, factor_1)
time.sleep (duration)
set_throttle('R', 0)
set_throttle('L', 0)

def forward(duration=0.2, speed=3):
movement (duration, speed)

def backward(duration=0.2, speed=3):
movement (duration, speed, factor r=-1, factor 1=-1)

def right (duration=0.2, speed=3):
movement (duration, speed, factor r=0.5)

3.11

3.11 Refactoring by using functools 33

def left(duration=0.2, speed=3):
movement (duration, speed, factor 1=0.5)

def spin right (duration=0.2, speed=3):
movement (duration, speed, factor r=-1, factor 1=1)

def spin left (duration=0.2, speed=3):
movement (duration, speed, factor r=1, factor_ 1l=-1)

The implementation for each function is much simpler now. This will make the code
much more maintainable, as all the real work is being done by the set_throttle and
movement functions. It is also more readable, as each call is essentially just changing
some parameters on the movement function call.

Going deeper: Code refactoring

The process of code refactoring is an important part of software development. The
Agile Alliance (https://www.agilealliance.org/glossary/refactoring) has a nice defini-
tion of what refactoring is and some of its benefits. When we first implement a piece
of software, our goal is often just to get the thing working. Once we have it working,
the code base will naturally grow as we add more features to the software. Refactor-
ing is when we make the time to step back and not add any new functionality but think
of ways of cleaning up or simplifying our code base.

One of the benefits of a cleaner code base is improved maintainability. In the long
run, having a cleaner code base will save us a lot of time as the code becomes more
manageable. It can make the software more reliable by making it easier to find and
fix bugs.

Another important concept related to refactoring is the design principle of Don’t
Repeat Yourself (DRY). When we apply the DRY principle to our code, we want to
avoid repetition in our code and logic. In section 3.10, we found logic that was dupli-
cated and reduced that duplication by integrating it into one common function. Many
good-quality frameworks and libraries apply a DRY philosophy to their software design
and support creating projects that avoid repetition. The Python Django web framework
is a good example of this, and its documentation (https://docs.djangoproject.com)
has a page dedicated to its design philosophies. It mentions DRY and other design
principles that create a cleaner code base.

Refactoring by using functools

The functools module is part of the Python standard library, and it provides several dif-
ferent functionalities around callable objects and functions. Specifically, we will use
partial to simplify the way we define functions, which is a perfect tool for scenarios
where one function is essentially very similar to a call to another function, as is our case.

The way partial works is that it takes some existing function as its first argument
and a set of positional and keyword arguments. Then it returns a new function that
would call the original function with those provided arguments. We can use it to sim-
plify our function definitions. For more details on partial and example functions

https://www.agilealliance.org/glossary/refactoring
https://docs.djangoproject.com

34

CHAPTER 3 Driving the robot

created using partial, check the Python documentation (https://docs.python.org/
3/library/functools.html) on the functools module.
We first import partial from the functools module:

from functools import partial

The new definition of the forward function is now essentially a direct call to movement,
as it has default values that directly map to the defaults of the forward function:

forward = partial (movement)

In the case of backward, the only change to the arguments of movement is to set both
the left and right motors to turn in reverse:

backward = partial (movement, factor r=-1, factor 1=-1)

We continue the process for right and left, which use all the default values except
for reducing the right and left motor speeds to make the robot turn:

right = partial (movement, factor r=0.5)
left = partial (movement, factor 1=0.5)

The spin_right and spin_left are created using a similar approach:

spin right = partial (movement, factor r=-1, factor 1=1)
spin_left = partial (movement, factor r=1, factor 1l=-1)

We also add a noop function that will help us with performance testing in later
chapters:

noop = lambda: None

The full script can be saved as motor.py on the Pi and then imported.

Listing 3.8 motor.py: Simplifying the way functions are defined

#!/usr/bin/env python3

from adafruit crickit import crickit
import time

import os

from functools import partial

DC_ADJUST R = float (os.environ.get ('ROBO_DC_ADJUST R', '1'))
DC_ADJUST L = float (os.environ.get ('ROBO_DC ADJUST L', '1'))
ADJUST = dict (R=DC_ADJUST R, L=DC_ADJUST L)

MOTOR = dict (R=crickit.dc_motor_ 1, L=crickit.dc_motor_ 2)
THROTTLE_SPEED = {0: 0, 1: 0.5, 2: 0.7, 3: 0.9}

def set throttle(name, speed, factor=1):
MOTOR [name] .throttle = THROTTLE_ SPEED [speed] * ADJUST [name] * factor

def movement (duration=0.2, speed=3, factor_r=1, factor_ 1=1):
set_throttle('R', speed, factor_r)
set throttle('L', speed, factor_ 1)

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html

forw
back
righ
left
spin
spin
noop

3.11 Refactoring by using functools 35

time.sleep (duration)
set throttle('R', 0)
set_throttle('L', 0)

ard = partial (movement)
ward = partial (movement, factor r=-1, factor 1=-1)
t = partial (movement, factor r=0.5)
= partial (movement, factor 1=0.5)
_right = partial (movement, factor r=-1, factor 1=1)
left = partial (movement, factor r=1, factor_ l=-1)
= lambda: None

We can take the final version of our motor library for a spin by starting a Python REPL

session in the same path. In the following session, the robot is moved forward and

backward. Then it turns right for half a second and then left at the lowest speed. Next,

it spins right for a second and spins left for 2 seconds. The last call will perform no

operation but should execute successfully with no errors:

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

You

import motor
motor. forward ()
motor.backward ()
motor.right (0.5)
motor.left (speed=1)
motor.spin right (1)
motor.spin_ left (2)
motor.noop ()

can import this library into all sorts of applications and call different movement

functions to create many different projects. You could write a program that responds
to user input to move the robot in different directions. Or you could program the
robot to drive around an obstacle course with the correct forward and turn move-

men

G
It

ts so as not to collide with any objects.

oing deeper: The power of libraries
is one thing to write a standalone program and a very different thing to write a library

that provides functionality for many different pieces of software. The earlier scripts in
this chapter were standalone scripts that could be executed to move the robot
around. They were limited in the actions they could perform but were a great starting
point. As we built up the functionality, we were able to package it all into a library. As
we create the different projects in the book, we will often import the motor library
from this chapter and use its functionality.

Well-designed libraries can provide a bundle of reusable functionality that we can eas-
ily incorporate into our own programs. We can combine them to create all sorts of
powerful and complex applications by building on the great works of others or, as
Isaac Newton said, “by standing on the shoulders of giants.” In this book, we will use
libraries we create as well as a rich set of open source Python libraries that we can
easily install and incorporate into our robot projects.

36

CHAPTER 3 Driving the robot

Summary

Robot chassis kits are a flexible and inexpensive way to build mobile robots.
The right and left wheels each have their own dedicated DC motor.
Environment variables in Linux can be used to pass configuration values to
Python scripts, which can then be used to configure motor power adjustments.
Configuration values can be made optional by detecting missing environment
variables and setting default values to fall back on.

By simultaneously turning on the left and right DC motor, forward motion of
the robot can be achieved.

The robot’s speed can be controlled by changing the throttle level of DC
motors.

Backward motion can be achieved by reversing the throttle direction of both
DC motors.

To turn the robot right, we need to apply a stronger throttle to the left wheel
motor in comparison to the right wheel motor.

To make the robot spin, we need to apply a throttle on both motors in an oppo-
site direction.

Refactoring code can simplify how your application is implemented without
altering the way the functions in your library get called.

Creating functions can become faster and simpler using partial.

Creating a robot shell

This chapter covers

The basics of creating interactive custom shells in
Python

Creating a command loop for moving the robot
forward and backward

Handling command arguments in shell commands

Centralizing argument-handling logic in code
shells

Executing custom shell scripts in Python

This chapter will teach you how to create a custom interactive REPL (read-—
evaluate-print loop) robot shell. Shells provide a powerful interactive interface
that enables direct interaction with software or, in this case, robotic hardware. They
are a tried-and-true method for user interaction, and the Python standard library
provides a built-in functionality to create custom shells. The chapter starts with a
simple robotic shell and then progresses to add more movement functions with
more customized options. The chapter ends by showing how a set of commands
can be saved and run in one go in the shell, as is done in many other shells.

37

38

4.1

4.2

4.3

CHAPTER 4 Creating a robot shell

What’s a REPL or shell?
A REPL or command-line shell is a
program that loops endlessly, wait- / \

ing to receive user input, which is
then taken and executed, and the

output is printed as needed. They

are also called line-oriented command Figure 4.1 Read-evaluate—print loop: the REPL goes
interjweters because they take com- endlessly between the read-evaluate—-print states.

mands as a line of user input and
interpret or execute the given line. Figure 4.1 illustrates the three states that a REPL
goes through.

Benefits of a REPL

In the book so far, we have already interacted with two very popular programs that
provide a REPL interface: Python and Bash. Here are some of the features and bene-
fits of the shells created in this chapter:

Fast and direct execution of commands.

Simple line-by-line execution.

The live help command lists available commands.

Tab auto-completion of commands.

Command history, which can be accessed with up and down keys.
Optional arguments for each command.

Execution of commands in a script file.

These features will be used by the robot shell created in this chapter. With our robot
shell, we will be able to issue movement commands quickly and easily to our robot
from the terminal. We can also use the command history feature to replay past move-
ments we have applied to the robot.

Hardware stack

Figure 4.2 shows the hardware stack discussed, with the specific components used in
this chapter highlighted. The REPL utilizes keyboard interaction by employing Tab
auto-completion and arrow keys to access the command history.

[JoystickIKeyboardlMouseJ
[NeopixelI LS IServo] ¢ ¢ ¢ t
motor

[CRICKIT Camera | Ethernet | Wi-Fi || Bluetooth [USE
Figure 4.2 Hardware stack: the

robot shell controls the DC motor
through the CRICKIT board.

Raspberry Pi

4.4

4.5

4.5 Creating the robot shell 39

The robot shell will be running on the Raspberry Pi hardware. The commands exe-
cuted through the shell will communicate with the CRICKIT board, which will then
send the signals to the DC motors to make the requested motor movements.

Software stack

Details of the specific software used in this chapter are illustrated in figure 4.3 and
described in the text that follows. With each new application, we will add more fea-
tures and enhancements to our shell implementations.

Application Ibasic_shell, arg_shell, speed_shell, shell

Libraries I motor

Linux I readline library

A A AL A

[Python I Python cmd module

Hardware I DC motors

Figure 4.3 Software stack: the robot shell will run on the Python interpreter.

Python and Bash both have a REPL feature, and both run directly on Linux using the
readline library. The motor module from the previous chapter will be used to control
the DC motors. The robot shell in this chapter will be implemented using Python, so
it will be running on top of Python. Users do not have to worry about how it is imple-
mented and can interact with it as with any other shell program on their computer.

Creating the robot shell

In this section, we will use Python to write a program that implements a custom REPL
robot shell to obtain basic robot actions of forward and backward movements. This
script requires two modules, which we import as shown in the following code. The cmd
module is part of the Python standard library and provides a framework for creating
REPL applications such as the robot shell. The emd module (https://docs.python.org/
3/library/cmd.html) documentation is an excellent resource for learning more about
the library. The motor module is the library created in the previous chapter for con-
trolling the robot:

import cmd
import motor

Next, we define our RobotShell class, which is a subclass of cmd.cmd. The intro pro-
vides a welcome message when the shell is first started. The prompt text appears when
the user is prompted, indicating they are now in the robot shell. Each method that
starts with the name do_ is automatically called to handle its related command. In this

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

40

CHAPTER 4 Creating a robot shell

way, the do_forward method gets called to handle forward commands. Each time it is
called, it moves the robot forward by calling motor. forward:

class RobotShell (cmd.Cmd) :
intro = 'Welcome to the robot shell. Type help or ? to list commands.'
prompt = ' (robot) '

def do_ forward(self, line):
motor. forward ()

Next, we define the do_backward method to handle the backward command:

def do backward(self, line):
motor.backward ()

The final line of code will run the event loop that starts the shell, read commands
from user input, and execute the corresponding command method:

RobotShell () .cmdloop ()

The full script can be saved as basic_shell.py on the Pi and then executed.

Listing 4.1 basic_ shell.py: Providing basic robot movements in a shell

#!/usr/bin/env python3
import cmd
import motor

class RobotShell (cmd.Cmd) :
intro = 'Welcome to the robot shell. Type help or ? to list commands.'
prompt = ' (robot) '

def do_ forward(self, line):
motor. forward ()

def do backward(self, line):
motor.backward ()

RobotShell () .cmdloop ()

When executing the script, make sure that motor.py is in the same directory so that it
can be imported by basic_shell.py. The following code shows an example of a ses-
sion in the robot shell where help and movement commands have been executed:

$ basic_shell.py
Welcome to the robot shell. Type help or ? to list commands.
(robot) help

Documented commands (type help <topics):

backward forward

(
(
(
(

robot
robot
robot
robot

4.5 Creating the robot shell 41

forward
backward
backward
forward

)
)
)
)

We can run the shell remotely over an SSH connection like any other Python script.
When running the shell, the Tab key can be pressed to use the auto-complete feature,
and the up and down arrows can be used to access the command history feature. Press
the F key and then the Tab key to have the command forward get auto-completed.
When you finish using the robot shell, you can press CTRL+C to exit like you would in

other programs.

Going deeper: Importing libraries

In this chapter, we are building on the code from the previous chapter by importing
the motor library. We can keep all the scripts and libraries we create in the /home/
robo/bin/ directory to simplify the process of importing modules. But where are the
other libraries we have been using located, and how does the Python interpreter fig-
ure out where to find them when we import modules?

We can pop into the REPL to get answers to these questions. We import the sys mod-
ule and then inspect the contents of sys.path:

>>> import sys

>>> gys.path

[''", '"/usr/lib/python39.zip', '/usr/lib/python3.9',
'/usr/lib/python3.9/1ib-dynload’,
' /home/robo/pyenv/1lib/python3.9/site-packages']

In sys.path, there is a list of strings that are the paths to be searched when import-
ing modules. If we check out these directories, we will find the modules that we have
been importing in the book. For example, the location of the cmd module that is part
of the standard library can be listed using

$ 1s /usr/lib/python3.9/cmd.py
/usr/lib/python3.9/cmd.py

We can open this file and investigate its source code like any other Python script. We
can also find the location of third-party libraries that we have installed in our virtual
environment using the pip command. Here is the location of the Adafruit CRICKIT
library that we used to control the DC motors:

$ 1ls /home/robo/pyenv/lib/python3.9/site-packages/adafruit_crickit.py
/home/robo/pyenv/1lib/python3.9/site-packages/adafruit_crickit.py

We can see that the libraries in the Python standard library are in the system location
shared by all virtual environments, while the third-party packages installed in our vir-
tual environment are all located in the /home/robo/pyenv location we created for our
virtual environment. For further details on importing packages in Python, the docu-
mentation for the importlib (https://docs.python.org/3/library/importlib.html)
module is a great resource.

https://docs.python.org/3/library/importlib.html

42

4.6

CHAPTER 4 Creating a robot shell

Handling command arguments

We have implemented a basic robot shell with the two movement commands, forward
and backward. However, they can’t handle any arguments provided after the move-
ment command. We will add support for providing the duration argument for each
movement command. We will also improve the way we exit the shell by properly han-
dling end-of-file (EOF) on input.

We now enhance the do_forward method to check if a duration has been pro-
vided. The text after the forward command will be provided in the line argument,
which we can parse to get the duration. If a duration is found, it will be converted into
a float value and used when calling the motor. forward function:

def do_ forward(self, line):
if line:
duration = float (line)
motor. forward (duration)
else:
motor. forward ()

The same process is then applied to the do_backward method:

def do backward(self, line):
if line:
duration = float (line)
motor.backward (duration)
else:
motor.backward ()

The do_EOF method is added to the class to handle when an EOF condition is encoun-
tered in the input data. The method returns a True value to signal to the event loop
that the shell is to be exited:

def do EOF(self, line):
return True

The full script can be saved as arg_shell.py on the Piand then executed.

Listing 4.2 arg shell.py: Supporting command arguments in the shell

#!/usr/bin/env python3
import cmd
import motor

class RobotShell (cmd.Cmd) :
intro = 'Welcome to the robot shell. Type help or ? to list commands.'
prompt = ' (robot) '

def do EOF (self, line):
return True

def do_ forward(self, line):
if line:

4.7

4.7 Adding a speed argument 43

duration = float (line)

motor. forward (duration)
else:

motor. forward ()

def do_backward(self, line):
if line:
duration = float (line)
motor.backward (duration)
else:
motor.backward ()

RobotShell () .cmdloop ()

What follows is an example of a session in the robot shell where movement commands
with different durations are called:

$ arg_shell.py
Welcome to the robot shell. Type help or ? to list commands.

(robot) forward 0.2
(robot) forward 1
(robot) backward 0.5
(robot) backward
(robot) forward

In the example session, the movement commands were called with durations
expressed as integers and floats. The commands can also be called without providing
any duration that will use the default duration value. When you want to exit the robot
shell, you press CTRL+D instead of CTRL+C. This will exit the shell in a much cleaner
fashion, as CTRL+D will send an EOF, whereas pressing CTRL+C will end the shell
spitting out a Traceback error. Using CTRL+D to exit a shell is a standard procedure,
and the same process will work with Bash and the Python REPL.

Adding a speed argument

To support multiple optional arguments, we will have to do a little extra work. As we
need to upgrade our argument-handling behavior, it would be better if we don’t have
to change it in multiple places. So the first step will be to centralize our argument-
handing code for all movement commands in one function and then upgrade that
function.

We create a new function, get_kwargs, that will take the line value and return a
dict object with all the required key-value pairs. The following definition will cover
the existing behavior of taking the first optional argument as the value for duration:
def get kwargs(line) :

if line:
return dict (duration=float (line))

else:
return dict ()

44

CHAPTER 4 Creating a robot shell

We then update the definitions of do_forward and do_backward to use get_kwargs.
They call get_kwargs and directly use what is returned as the keyword arguments for
the function call to their associated movement functions:

def do forward(self, line):
motor. forward (**get kwargs (line))

def do_backward(self, line):
motor.backward (**get kwargs(line))

At this stage, we could run the shell, and it would work with the previous behavior. We
can now upgrade the get_kwargs function and add the handling of the second key-
word argument speed. This argument is expected to be of type int, so itis typecast to
that data type:

def get kwargs(line):
kwargs = dict ()
items = line.split ()
if len(items) > O:

kwargs ['duration'] = float (items[0])
if len(items) > 1:
kwargs ['speed'] = int(items([1])

return kwargs

The full script can be saved as speed_shell.py on the Piand then executed.

Listing 4.3 speed shell.py: Controlling movement speed in the shell

#!/usr/bin/env python3
import cmd
import motor

def get kwargs(line):
kwargs = dict()
items = line.split()
if len(items) > O:

kwargs ['duration'] = float (items[0])
if len(items) > 1:
kwargs['speed'] = int (items[1])

return kwargs

class RobotShell (cmd.Cmd) :
intro = 'Welcome to the robot shell. Type help or ? to list commands.'
prompt = ' (robot) '

def do EOF(self, line):
return True

def do_ forward(self, line):
motor. forward (**get kwargs (line))

def do backward(self, line):
motor.backward (**get kwargs(line))

RobotShell () .cmdloop ()

4.8

4.8 Running robot shell scripts 45

Here is an example of a session in the upgraded robot shell:

$ speed_shell.py
Welcome to the robot shell. Type help or ? to list commands.

(robot) forward 0.2 1
(robot) forward 0.2 3
(robot) backward 0.5 1
(robot) backward 1 2
(robot) backward 0.5
(robot) forward

In the example session, the movement commands can now be called with the dura-
tion specified and default speed, with a specific duration and speed or with the default
duration and speed settings.

Running robot shell scripts

In this section, the challenge is to make the robot shell have the capability of execut-
ing a script of commands and adding the remaining movement commands. We add
the methods do_right, do_left, do_spin right, and do_spin_left. They follow the
same style as our previous movement methods:

def do right(self, line):
motor.right (**get_kwargs (line))

def do_left(self, line):
motor.left (**get_ kwargs (line))

def do spin right (self, line):
motor.spin right (**get kwargs (line))

def do spin left(self, 1line):
motor.spin left (**get kwargs(line))

When we have the shell execute the commands in a script file, it would be great to get
some visual feedback regarding which command is being executed. We can do this by
adding a precmd method. This method gets called before executing any command. It
is a feature that comes as part of the cmd.cmd object. We will use it to print the com-
mand that is about to be executed. It must return the value of line to have the event
loop process the command:

def precmd(self, line):

print ('executing', repr(line))
return line

The full script can be saved as shell.py on the Pi and then executed.

Listing 4.4 shell.py: Creating a shell supporting all robot movements

#!/usr/bin/env python3
import cmd
import motor

CHAPTER 4 Creating a robot shell

def get kwargs(line) :
kwargs = dict ()
items = line.split ()
if len(items) > 0:
kwargs ['duration'] = float (items[0])
if len(items) > 1:
kwargs ['speed'] = int (items([1])
return kwargs

class RobotShell (cmd.Cmd) :
intro = 'Welcome to the robot shell. Type help or ? to list commands.'
prompt = ' (robot) '

def do EOF(self, line):
return True

def precmd(self, line):
print ('executing', repr(line))
return line

def do forward(self, line):
motor.forward (**get kwargs (line))

def do backward(self, line):
motor.backward (**get kwargs (line))

def do_right (self, line):
motor.right (**get kwargs(line))

def do left (self, line):
motor.left (**get kwargs (line))

def do_spin right(self, line):
motor.spin right (**get kwargs(line))

def do_spin left(self, line):
motor.spin left (**get kwargs (line))

RobotShell () .cmdloop ()

The following text file of commands should be saved as move . txt on the Pi:

spin right
spin left
right

left

forward 0.2 1
forward 0.2 3
backward 0.5 1
backward 0.5

As an initial test, we can use echo to feed a single command into the robot shell:

$ echo forward | shell.py
Welcome to the robot shell. Type help or ? to list commands.

4.8 Running robot shell scripts 47

(robot) executing 'forward'
(robot) executing 'EOF'

We can also use cat to feed a whole set of saved commands into the robot shell:

$ cat move.txt | shell.py
Welcome to the robot shell. Type help or ? to list commands.
(robot) executing 'spin right'
robot) executing 'spin_ left'
robot) executing 'right'
robot) executing 'left'
obot) executing 'forward 0.2 1°'

)

)

)

)

2]

(
(
(
(
(
(
(
(

robot) executing 'forward 0.2 3'
robot) executing 'backward 0.5 1°'
robot) executing 'backward 0.5'
robot) executing 'EOF'

In this way, we can design our own shell using a set of commands that best suits our
needs. A set of robot shell commands can either be run interactively or saved in a sin-
gle file to be executed directly by the robot shell.

Going deeper: Enhancing the shell

We can take our shell further and add some more powerful features. In the documen-
tation for cmd (https://docs.python.org/3/library/cmd.html), there is one feature that
is very useful for our robot use case. The documentation shows how a REPL session
can be recorded and then played back later by creating commands that record and
play back the session. Let’s say we are using the robot shell to move the robot around
a physical course with a certain set of movements that work. Instead of having to retype
them all, we can record and play back the robot’s movements whenever we want.

Another common and powerful feature is to execute robot commands through com-
mand line arguments. The Python Module of the Week website is a great resource for
diving deeper into different parts of the Python standard modules, and their documen-
tation on the cmd module (https://pymotw.com/3/cmd/) shows many different ways
of using the module, including how to parse commands from the command line argu-
ments. The Python interpreter itself has this functionality. We have used the REPL
before in the book, but we can also evaluate Python code by passing the code as a
command line argument to the interpreter directly. What follows is a simple example
demonstrating how to use this feature:

$ python -c 'print (1+1)'
2

A third useful feature we could add to the shell is the ability to retain our command
history between shell sessions. Currently, when we use our shell, we can use the up
and down arrows to go back through commands we have issued. But once we exit
our shell, we lose this history. Other shells such as the Python REPL retain the history
between REPL sessions. This is done by saving a history file when we exit the shell
and loading it back when we start a new shell. We can see this in action with the
Python REPL. Open a REPL and evaluate some Python expressions. Now exit the REPL

https://docs.python.org/3/library/cmd.html
https://pymotw.com/3/cmd/

CHAPTER 4 Creating a robot shell

(continued)

and open a new one. If you press the up arrow, you will find the commands in your
history. We can find the file that stores this history and output its contents using the
following commands:

$ 1ls ~/.python_history
/home/robo/.python_history
$ cat ~/.python_history

To implement this feature in our robot shell, we would use the readline module
(https://docs.python.org/3/library/readline.html), which is what is handling the com-
mand history functionality of our shell. It has a set of functions that will let us save
and load the history to a history file. The Python Module of the Week page for the
readline module (https://pymotw.com/3/readline/) has an excellent example that
implements this feature. We would only need to add a few lines of code to our shell
startup to load the history file and then some code when we exit the shell to save the
history file.

Summary

A REPL is a program that loops endlessly, waiting to receive user input.

The commands executed through the robot shell will communicate with the
CRICKIT board, which will then send the signals to the DC motors to make the
requested motor movements.

Python and Bash both have a REPL feature, and both run directly on Linux.
The cmd module is a part of the Python standard library and provides a frame-
work for creating REPL applications such as the robot shell.

The do_EOF method is used to handle EOF conditions encountered in the
input data.

Optional arguments make it possible to call movement commands with dura-
tion specified and default speed, with a specific duration and speed, or with
default duration and speed settings.

The cat command can be used to feed a set of saved commands into the robot
shell.

https://docs.python.org/3/library/readline.html
https://pymotw.com/3/readline/

Controlling robots remotely

This chapter covers

Executing robot commands over the network
using SSH

Creating web services to control robots
Calling robot web services from Python

Creating Python-based remote execution
functions

Measuring the execution time of local and remote
HTTP commands

Building a high-performance Python client with
low-latency calls

This chapter will teach you how to share your robot over your network so that
remote Python clients can issue movement commands to control it. Both SSH and
HTTP protocols will be used, meaning that two solutions from a protocol perspec-
tive will be offered, each with its own set of benefits and tradeoffs. For the HTTP
solution, a simple Python client will be created first, followed by a more complex,
higher-performance low-latency client. Furthermore, different techniques for

49

50

5.1

5.2

CHAPTER 5 Controlling robots remotely

measuring the execution time will be covered as well. This will provide a quantitative
basis to compare the performance of different protocols and clients.

Controlling robots remotely is an essential part of many projects, such as using
apps on mobile phones and laptops to control robots, as well as controlling a fleet of
robots using a central robot server. The projects in this chapter make it possible to
control robots in the same room or many miles away. Unlike short-range protocols
such as Bluetooth, both SSH and HTTP support short- and long-range connectivity.

Hardware stack

Figure 5.1 shows the hardware stack, with the specific components used in this chap-
ter highlighted. The robot will be connected to wired networks using the Ethernet
port and wireless networks using the Wi-Fi hardware. The Wi-Fi connectivity gives the
robot the greatest freedom of movement, allowing it to move around without any
attached wires. However, wired Ethernet connections at times can give better perfor-
mance. This chapter will show how to take network performance measurements so
that these two options can be compared.

[JoystickIKeyboardIMouse]
[NeopixelI DC IServo] ¢ ¢
motor

{ CRICKIT ICameraIEthernet Wi-Fi | Bluetooth | USB Figure 5.1 Hardware stack:
remote clients will connect

] using either the Ethernet or
Wi-Fi hardware.

Raspberry Pi

Software stack

Details of the specific software used in this chapter are illustrated in figure 5.2 and
described in the text that follows. The three main applications in this chapter will

[Application I ssh client, robows, client persist]
[Libraries I Tornado web framework]
[Python Isubprocess, http.client, urllib, argparse]
{ Linux I TCP/IP network stack]
[Hardware I Network hardware (Ethernet/Wi-Fi)]

Figure 5.2 Software stack: the Tornado web framework will expose robot
commands over the HTTP protocol.

5.3

5.3 Robot testing tips 51

implement a remote client over the rotocol (ssh client. serving robo
pl t te client the SSH protocol (ssh_cl py), g robot

web services (robows.py), and a web service client using persistent connections
(client_persist.py). The Tornado web framework will be used to create the HTTP solu-
tion. The subprocess and argparse Python modules will be used in constructing the
SSH solution. The first HTTP client will use the urllib module, and then a more
advanced version will use the http.client module.

Going deeper: Web frameworks

When creating a web application in Python, it is almost always a good idea to use a
web framework. There are so many details that need to be taken care of when creat-
ing a web application, and web frameworks do a great job of addressing these needs.
In Python, we have many great options to choose from, such as the Django (https://
www.djangoproject.com) and Flask (https://flask.palletsprojects.com) web frame-
works.

In our case, we will use the Tornado web framework (https://www.tornadoweb.org)
because it has a special feature that makes it perfect for our needs. Most web frame-
works, such as Django and Flask, do not come with a production-ready web applica-
tion server that can safely control hardware such as our robot motors. Tornado,
however, offers such options. It lets our web application run in a single long-running
process for the whole life cycle of the web server. This process also gets exclusive
access to our robot motors, as it will only allow one web request to move the robot
motors at a time. In this way, we can avoid race conditions and keep our web appli-

cation safe and simple to implement.

Robot testing tips

For details on assembling and configuring the robot hardware, check the robot assem-

bly guide in appendix C. There are two tips that can help you when working with the

assembled robot in this chapter.
The first tip is to place the robot
on a stand when initially testing
your code base. Figure 5.3 shows
the robot placed on a stand that
lets its wheels move freely with-
out the robot moving around. In
this way, you can safely place the
robot on a table during testing
and not worry about accidentally
driving it off the table and dam-
aging it. This is particularly use-
ful when you have new, untested
code that might enter into a state
of starting the motors and not

Figure 5.3 Robot stand: for safety, the robot can be
placed on a stand.

https://www.djangoproject.com
https://www.djangoproject.com
https://flask.palletsprojects.com
https://www.tornadoweb.org

52

5.4

CHAPTER 5 Controlling robots remotely

stopping them, which may send the robot in some direction only to crash into a wall
or some other object.

The second tip is to use SlimRun Ethernet cables instead of standard ones. These
cables are lighter and thinner than standard network cables, which gives the robot
more maneuverability when driving with a wired network connection. Figure 5.4
shows a SlimRun network cable connected to the robot.

Figure 5.4 Robot network cable: the
network cable is connected to the
Ethernet port on the robot.

Using these two tips can protect your robot against unnecessary damage and make it
more maneuverable over wired connections. Keep your robot safe because a broken
robot is no fun.

Controlling robots over SSH

We will use the SSH protocol for our first solution to control robots over a network.
SSH is easier to get started with because we already have our SSH server setup in
place, and we will use SSH clients and connections throughout the book to connect to
our robot. We need to create some Python code on top of SSH to meet the following
requirements:

= Create a Python script that will be executed on the SSH server receiving the
movement action and optional movement arguments, and perform the robot
movements.

= Create a Python function for the SSH client that receives the name of the move-
ment action and connects to the robot and remotely executes the same
movement.

54.1

5.4 Controlling robots over SSH 53

Creating the server-side script

The first step is to import all the necessary modules. We import ArgumentParser from
the argparse module that is part of the Python standard library and that will perform
all the heavy lifting for parsing command line arguments. The motor module is the
library created in chapter 3 for controlling the robot:

from argparse import ArgumentParser
import motor

The function parse_args is then defined, and it takes care of all the command line
argument parsing. It first creates an ArgumentParser object and then configures the
parser. One required argument called name will capture the name of the movement.
Then the optional --duration and --speed arguments are configured. They are both
configured with their correct data type and a help message. The last line of the func-
tion will perform the actual parsing, and it uses the vars function to return the result
as a dict object:

def parse args():
parser = ArgumentParser (description='robot cli')
parser.add_argument ('name', help='name of movement')
parser.add argument ('--duration', type=float, help='movement duration')
parser.add _argument ('--speed', type=int, help='movement speed')
return vars (parser.parse_args())

The main function will first call parse args and save the result in the args variable.
The name of the movement function to be called is then removed from args and
saved in the name variable. Now the movement function can be looked up from the
motor module using getattr. The next step is to collect all the optional arguments
that have been specified and save them in a dictionary called kwargs. Finally, the func-
tion to be called is printed and called:

def main() :
args = parse_args()
name = args.pop ('name')
func = getattr (motor, name)
kwargs = {k: v for k, v in args.items() if v}
print (f'calling {name} with kwargs {kwargs}')
func (**kwargs)

The full script can be saved as c1i.py on the Pi and then executed.

Listing 5.1 cli.py: Creating command line interface to perform robot movements

#!/usr/bin/env python3
from argparse import ArgumentParser
import motor

def parse args():
parser = ArgumentParser (description='robot cli')
parser.add_argument ('name', help='name of movement')

54

CHAPTER 5 Controlling robots remotely

parser.add argument ('--duration', type=float, help='movement duration')
parser.add argument ('--speed', type=int, help='movement speed')
return vars (parser.parse_args())

def main() :
args = parse_args ()
name = args.pop ('name')
func = getattr (motor, name)
kwargs = {k: v for k, v in args.items() if v}
print (f'calling {name} with kwargs {kwargs}')
func (**kwargs)

main ()

The following code is a session in the terminal demonstrating different calls to the
script:

S cli.py

usage: cli.py [-h] [--duration DURATION] [--speed SPEED] name

cli.py: error: the following arguments are required: name

$ cli.py --help

usage: cli.py [-h] [--duration DURATION] [--speed SPEED] name

robot cli

positional arguments:
name name of movement

optional arguments:

-h, --help show this help message and exit
--duration DURATION movement duration
--speed SPEED movement speed

$ cli.py forward

calling forward with kwargs {}

$ cli.py forward --duration=0.5

calling forward with kwargs {'duration': 0.5}

$ cli.py forward --speed=1

calling forward with kwargs {'speed': 1}

$ cli.py forward --duration=0.5 --speed=1

calling forward with kwargs {'duration': 0.5, 'speed': 1}

The script is first called without any arguments, which shows that the required argu-
ment validation is working. Next, the script is called with the help option, which shows
the automatically generated help and usage messages. The robot is then requested to
move forward with default and custom duration and speed options.

Going deeper: Functions as first-class objects in Python

In this section, we were able to use getattr to look up a function and save it in a
variable. This is not possible in all programming languages but is fully supported in
Python because functions are treated as first-class objects. This means they can be
assigned to variables, placed in lists, or passed as arguments to other functions like

54.2

5.4 Controlling robots over SSH 55

any other value. The post “First-class Everything” (http://mng.bz/g7BI) by the creator
of the Python language, Guido van Rossum, is a great read to learn more about this
feature in Python. In fact, this feature applies to all objects in Python, not just func-
tions. It makes the language very versatile in terms of how we interact with functions.

Running the script remotely

Now that we have our script in place, we will start calling it from our SSH client. The
SSH client can be any computer that is on the same network as the robot. On the cli-
ent machine, run the following commands to generate SSH keys and transfer them to
the robot:

ssh-keygen -t rsa
ssh-copy-id robo@robopi

The hostname of the Pi was set as robopi as part of the installation process docu-
mented in appendix B. You can now add a line to your client machine’s hosts file with
the robopi hostname and its associated IP address. In this way, you can follow the
examples and connect to the robot using the name robopi instead of the robot’s IP
address. The How-To Geek website provides an excellent guide on how to edit the
hosts file on Windows, Mac, and Linux (http://mng.bz/5owz).

At this point, you will be able to execute commands on the robot from the client
machine without having to enter a password and with a non-interactive session. What
follows is a terminal session run from the client machine:
$ ssh robo@robopi whoami
robo

$ ssh roboe@robopi '~/pyenv/bin/python --version'
Python 3.9.2

In this session, different remote commands are executed to get the name of the cur-
rent user and the version of the Python interpreter. The Python virtual environment
used here is the same as the one created during the installation process covered in
appendix B. Next, we can try to execute the robot script. We will be running the script
from the standard script location ~/bin as described in chapter 2:

$ ssh robo@robopi '~/pyenv/bin/python ~/bin/cli.py --help'
usage: cli.py [-h] [--duration DURATION] [--speed SPEED] name

robot cli

positional arguments:
name name of movement

optional arguments:

-h, --help show this help message and exit
--duration DURATION movement duration
--speed SPEED movement speed

$ ssh robo@robopi '~/pyenv/bin/python ~/bin/cli.py forward'
calling forward with kwargs {}

http://mng.bz/5owz
https://www.howtogeek.com/27350/beginner-geek-how-to-edit-your-hosts-file/%22
http://mng.bz/g7Bl

56

543

CHAPTER 5 Controlling robots remotely

We have generated the script’s help message and requested the robot to move forward
remotely over an SSH connection. We can now use the time command to measure the
execution time when commands are run locally and when they are run remotely over
SSH. The time command is available on both Mac and Linux. If you are using Windows,
you can employ the PowerShell Measure-Command instead to measure the execution
time. The output first shows the time needed to run the command locally on the robot
and then the time needed to establish an SSH connection and execute the command.
The timing that we care about is listed under the label real. In this session, local exe-
cution took 10 ms, while the same command over SSH took 314 ms:

$ time whoami

robo

real 0m0.010s
user 0m0.001s
sys 0m0.010s

$ time ssh robo@robopi whoami

robo

real 0m0.314s
user 0m0.084s
sys 0m0.004s

The reason for this additional time is that in this approach, a new SSH connection has
to be established each time a new command is to be executed. It is useful to make
these measurements to know what the overhead of this approach is. The motor mod-
ule has a noop function that performs no operation and is perfect for measuring the
execution times of purely calling functions in the module:

$ time cli.py noop
calling noop with kwargs {}

real 0m0.713s
user 0m0.128s
sys 0m0.066s

$ time ssh robo@robopi '~/pyenv/bin/python ~/bin/cli.py noop'
calling noop with kwargs {}

real Oml.036s
user 0m0.083s
sys 0m0.005s

From the output, we can see that a local call takes 713 ms and a remote one takes
1,036 ms. The difference is 323 ms, which is in line with our previous sampling of SSH
overheads. The time command is a great way to take quick performance measure-
ments. Later in the chapter, as we improve on these performance numbers, we will
explore more accurate ways to measure performance within Python itself.

Creating the client-side script

The next step will be implementing the Python function that runs on the client
machine, connects to the robot SSH server, and executes the robot commands. The

5.4 Controlling robots over SSH 57

check_output function is imported from the subprocess module, which is part of the
Python standard library. We can use check_output to execute the required SSH client
commands:

from subprocess import check output

Three constants are then defined. The ssH_USER and SSH_HOST specify the user and
host, respectively, to be used for the SSH connections. The ssu_cLI_cMD has the path
to the Python interpreter and robot script to be remotely executed on the robot:

SSH_USER = 'robo'
SSH_HOST = 'robopi'
SSH CLI CMD = '~/pyenv/bin/python ~/bin/cli.py’

Next, we define the call ssh that will SSH as the user user to the host host and exe-
cute the provided remote_cmd on that remote server:
def call ssh(user, host, remote cmd) :

cmd = ['ssh', f£'{user}@{host}', remote cmd]
check_output (cmd)

The remote_robot receives the name of the robot movement command to perform
and executes that movement on the remote robot:

def remote_ robot (robot cmd) :
call ssh(SSH USER, SSH HOST, SSH CLI CMD + ' ' + robot cmd)

Finally, the main function loops through a list of movements and calls remote_robot
for each movement to perform a demonstration:

def main() :
commands = ['forward', 'backward',K 'spin right', 'spin left']
for command in commands:
print ('remote robot command:', command)

remote_robot (command)

The full script can be saved as ssh_client.py on the client machine and then executed.

Listing 5.2 ssh client.py: Executing remote script over an SSH connection

#!/usr/bin/env python3
from subprocess import check output

SSH_USER = 'robo'
SSH_HOST = 'robopi'
SSH CLI CMD = '~/pyenv/bin/python ~/bin/cli.py’

def call ssh(user, host, remote cmd):
cmd = ['ssh', f£'{user}@{host}', remote cmd]
check_output (cmd)

def remote_ robot (robot cmd) :
call ssh(SSH USER, SSH HOST, SSH CLI CMD + ' ' + robot cmd)

58

5.5

5.5.1

CHAPTER 5 Controlling robots remotely

def main() :
commands = ['forward', 'backward',6 'spin right', ‘'spin left']
for command in commands:
print ('remote robot command:', command)

remote_ robot (command)

main ()

This script issues remote commands to the robot, making it move forward, backward,
and then spin right and left.

Creating web services for robots

We will now use the HTTP protocol to create web services to control the robot remotely.
A web service allows machines to make calls to each other over a network. We need to
implement a set of web services in Python that meet the following requirements:

A set of web services should be created in Python that can be called with a
movement action and be given optional speed and duration parameters.

The web services should use the HTTP methods correctly. Specifically, calls
using the GET method should not change the state of the robot, and all move-
ment requests should be processed using the POST method.

All web service calls should return their data in the JSON format, and any
expected input data to the web services should also be encoded in the JSON
format.

Creating our first web service

When creating a web application in Python, it is often a good idea to use a web frame-
work. There are many popular options to choose from. We will use the Tornado web
framework, as it has many features and can safely interact with the robot hardware.
Run the following line on the Pi to install the Tornado Python package:

$ ~/pyenv/bin/pip install tornado

We can start creating our first web application. This web application will expose a sin-
gle web service that returns the current time on our robot server. First, we import the
required modules. The datetime module will let us get the current time on the server.
The Tornado I0Loop is needed to run the web server. The RequestHandler and
Application objects will help us define the behavior of our web application:

from datetime import datetime

from tornado.ioloop import IOLoop
from tornado.web import RequestHandler, Application

The next step is to define the MainHandler object that will handle incoming requests.
We define one method called get to handle incoming HTTP GET requests. Each time
it is called, it will save the current time as a string and then call the write method with
the time stamp in a dictionary. In the Tornado framework, whenever you provide the
write method with a dictionary object, it will automatically convert the output to the

5.5 Creating web services for robots 59

JSON format and set the appropriate HTTP response headers to indicate the content
type is JSON:
class MainHandler (RequestHandler) :

def get (self):

stamp = datetime.now() .isoformat ()
self.write(dict (stamp=stamp))

We then create a Tornado application which will route incoming requests for the root
path to MainHandler. After that, we set the web server to listen on port 8888 and start
the main event loop, which will kick off the web server and handle incoming web
requests:

app = Application([('/', MainHandler)])
app.listen(8888)
IOLoop.current () .start ()

The full script can be saved as datews.py on the Pi and then executed.

Listing 5.3 datews.py: Creating web service to report time on the robot server

#!/usr/bin/env python3

from datetime import datetime

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application

class MainHandler (RequestHandler) :
def get(self):
stamp = datetime.now() .isoformat ()
self .write(dict (stamp=stamp))

app = Application([('/', MainHandler)])
app.listen(8888)
IOLoop.current () .start ()

Leave the script running in one terminal, and from another terminal connected to
the Pi, run the following command to test the new web service:

$ curl http://localhost:8888/
{"stamp": "2022—11—27Tl6:52:36.248068"}

The terminal session is using the curl command, which is an excellent tool for making
HTTP requests in the terminal and viewing their responses. The first call shows the
JSON data returned with a time stamp showing the current time on the robot server. We
can now run the following command to get more details on the response headers:

$ curl -i http://localhost:8888/

HTTP/1.1 200 OK

Server: TornadoServer/6.2

Content-Type: application/json; charset=UTF-8
Date: Sun, 27 Nov 2022 16:52:49 GMT

Etag: "d00b59ccd574e3dc8f86dcadbld349f53e7711lec"

60

5.5.2

CHAPTER 5 Controlling robots remotely

Content-Length: 39

{"stamp": "2022-11-27T16:52:49.683872"}

This call displays the response headers where we can see that the response content
type has been correctly set for the JSON output. You can make these web requests
from any web browser on your network by replacing localhost with the IP address of
the robot on your network.

Creating web services to perform robot movements

We have implemented a simple web service. Now we can upgrade the code to add web
services to make the robot move around. We must import two more modules. We will
use the json module to parse JSON request data. The motor module will be used to
control the robot motors as in previous chapters:

import json
import motor

We change the URL pattern to accept any string and then pass that as an argument
when calling the method to handle the request. We do this so that the name of the
movement to perform can be provided as the URL:

app = Application([('/(.*)', MainHandler)])

This means we also need to update our previous request method to accept a name
argument:

def get (self, name):

The movement web services will change the state of the robot, so we will perform
them when we get POST requests. The post method will handle these requests by first
reading the request data and parsing it as JSON data. If the web service request has no
input data, it will default the value to an empty dictionary. The next step is to take the
name of the movement function and retrieve the function from the motor module
using getattr. We can now call the function using the arguments provided in the web
service request. The final line of code returns a success status message:
def post (self, name) :
args = json.loads (self.request.body or '{}')
func = getattr (motor, name)

func (**args)
self.write(dict (status="'success'))

The full script can be saved as robows.py on the Pi and then executed.

Listing 5.4 robows.py: Creating web service to perform robot movement commands

#!/usr/bin/env python3
from datetime import datetime
from tornado.ioloop import IOLoop

5.6

5.6 Calling web services from Python 61

from tornado.web import RequestHandler, Application
import json
import motor

class MainHandler (RequestHandler) :
def get(self, name):
stamp = datetime.now() .isoformat ()
self.write(dict (stamp=stamp))

def post (self, name) :
args = json.loads(self.request.body or '{}")
func = getattr (motor, name)
func (**args)
self .write(dict (status="'success'))

app = Application([('/(.*)', MainHandler)])
app.listen(8888)
IOLoop.current () .start ()

We can again leave the script running in one terminal and run the following com-
mands from another terminal to test the web services:

cur p: ocalhost:
$ 1 htt //1 1h t 8888/
"stamp": "2022-11-27T17:54:30.658154"
P

$ curl localhost:8888/
{"Stamp": "2022—11—27Tl7:54:30.658154"}

$ curl -X POST localhost:8888/forward
{"status": "success"}

$ curl -X POST localhost:8888/backward
{"status": "success"}

$ curl -X POST localhost:8888/forward -d '{"speed": 1}'
{rstatus": "success"}

$ curl -X POST localhost:8888/forward -d '{"duration": 0.5, "speed": 1}
{"status": "success"}

In the terminal session, we first check whether our time web service is still working.
The second call demonstrates a shorter way to refer to a URL by not specifying the
protocol. We then make a web service call to move the robot forward and then back-
ward. The last two calls show how we can provide custom speed and duration settings
for our movements.

Calling web services from Python

Now that we have these powerful web services in place, we can move on to create code
that calls them from anywhere in the network to make the robot move around. We need
to implement a web service client in Python that meets the following requirements:

We should implement a function in Python that will receive the movement
name and a set of optional movement arguments and then place the needed
HTTP call to the robot web service to execute this movement.

62

5.6.1

CHAPTER 5 Controlling robots remotely

The implementation should use HTTP persistent connections to have a better
network performance by having a lower latency when issuing multiple move-
ment calls.

Using the read-evaluate-print loop to call web services

As a starting step, it will be helpful to start making calls to the web server using the
Python REPL (read-evaluate—print loop). In this way, we can explore the different
ways we can call web services and the results and data structures they will return. Open
a REPL session on the client machine. The first part of our REPL adventure will be
importing the modules we need. The command urlopen will be used to make calls to
the web server, and json will be used to parse the JSON responses:

>>> from urllib.request import urlopen
>>> import json

The next line we execute will connect to the web server and consume the web service
that returns the current time on the robot server. The raw JSON response is returned
as bytes:

>>> urlopen ('http://robopi:8888/"') .read ()
b'{”stamp": "2022—11—28T14:30:41.314300"}'

We can save this response into a variable and then parse it so that we can access the
time stamp value itself:

>>> response = urlopen ('http://robopi:8888/"') .read()
>>> response

b'{"stamp”: ”2022—11—28T14:31:08.859478"}'

>>> json.loads (response)

{rstamp': '2022-11-28T14:31:08.859478"'}

>>> result = json.loads (response)

>>> result

{rstamp': '2022-11-28T14:31:08.859478"'}

>>> result['stamp']

'2022-11-28T14:31:08.859478"

Now, let’s move on to calling some web services to make the robot move around. When
we provide a value for the data argument, urlopen will automatically set the HTTP
method to be a POST method. The following call will make the robot move forward:

>>> urlopen ('http://robopi:8888/forward', data=b'').read()
b'{"status": "success"}'

We can set custom movement options such as the speed with

>>> urlopen ('http://robopi:8888/forward', data=b'{"speed": 1}').read()
b'{"status": "success"}'

We have now done enough exploring to slap together the first implementation of our
web service client.

5.6.2

5.6 Calling web services from Python 63

Creating a basic web service client

The initial version of the client will have everything we need, except persistent con-
nections. We import the same modules as in the REPL session to make requests to the
web server and deal with JSON data:

from urllib.request import urlopen
import json

Next, we define the ROBO_URL constant providing the base part of the URLs that we
will use to make our calls:

ROBO URL = 'http://robopi:8888/"'

The call_api will place the actual calls to the web service API. It receives the full URL
and the requested data as a dictionary. It converts the received data to a JSON format
and then calls the encode method to convert it to a bytes data type as expected by
urlopen. Then, urlopen is called with the associated URL and request data:

def call api(url, data):

data = json.dumps (data) .encode ()
urlopen (url, data) .read()

The call_robot function receives the movement name and any optional movement
arguments. The URL for the related movement is generated, and then call_api is
called:

def call robot (func, **args):
call api(ROBO_URL + func, args)

The remaining parts of the script demonstrate the usage of the client by making dif-
ferent calls to call robot:

call robot
call_ robot
call_robot
call robot
call_ robot
call_robot

'forward')

'backward')

'forward', duration=0.5, speed=1)
'backward', duration=0.5, speed=1)
'spin_right")

'spin_left!')

The full script can be saved as client_basic.py on the Piand then executed.

Listing 5.5 client basic.py: Calling a remote web service on the robot from a client

#!/usr/bin/env python3
from urllib.request import urlopen
import json

ROBO_URL = 'http://robopi:8888/"'

def call api(url, data):
data = json.dumps (data) .encode ()
urlopen (url, data) .read()

64

5.6.3

CHAPTER 5 Controlling robots remotely

def call_ robot (func, **args):
call api(ROBO URL + func, args)

call robot
call robot
call robot
call robot
call robot
call robot

'forward')

'backward')

'forward', duration=0.5, speed=1)
'backward', duration=0.5, speed=1)
'spin_right')

'spin_left')

When the script is run, it will make the robot move forward and backward using the
default duration and speed settings. Next, forward and backward will be called again
with custom settings. Finally, the robot will be made to spin right and left.

Robots in the real world: Robot swarms

Having the ability to communicate with our robots in our software is a powerful and
essential feature for a number of robotic applications. Swarm robotics is one of the
fields that become possible once you have a mechanism to have robots in your
swarm communicate with each other. By using the swarm intelligence or collective
behavior of a swarm of robots, we start getting the emergence of intelligent global
behavior. This swarm intelligence is found in nature with the sophistication in the
design of ant colonies and beehives.

The real-world applications of these robot swarms vary from search-and-rescue mis-
sions to different medical applications. The Big Think (http://mng.bz/6nDy) article on
this subject shows a nice example of a robot swarm and has a good discussion of
the different practical applications of the technology.

Creating a web service client with persistent connections

Now that we have a basic client working, we can upgrade it to have persistent connec-
tions to improve the performance of our requests. The approach for this client will be
very similar to the previous one but will use a different set of libraries. The first step
will be to import the HTTPConnection object that offers persistent connection
capabilities:

from http.client import HTTPConnection

import json

The call_api function will need to be changed to accept a connection object. After
encoding the request body as JSON, we then send the request to the web server using
the provided connection object. The request will use a POST method and will make a
call to the provided URL with the generated request body. Then, we can use the
getresponse method to read the response:

def call api(conn, url, data):

body = json.dumps (data) .encode ()
conn. request ('POST', url, body)

http://mng.bz/6nDy

5.6 Calling web services from Python 65

with conn.getresponse() as resp:
resp.read ()

The call_robot function receives the connection object as an argument and passes
the movement name as the requested URL and the movement arguments as the
request body:

def call robot (conn, func, **args):
return call api(conn, '/' + func, args)

We then create an HTTPConnection object with the robot hostname and web server
port number. A number of calls are then made to call_robot to demonstrate its
functionality:

conn = HTTPConnection ('robopi:8888")

for speed in [1, 2, 3]:
call robot (conn, 'spin right', speed=speed)
call _robot (conn, 'spin_left', speed=speed)

The full script can be saved as client_persist.py on the Piand then executed.

Listing 5.6 client persist.py: Using persistent connections to call web services

#!/usr/bin/env python3
from http.client import HTTPConnection
import json

def call api(conn, url, data):
body = json.dumps (data) .encode ()
conn.request ('POST', url, body)
with conn.getresponse() as resp:
resp.read ()

def call robot (conn, func, **args):
return call api(conn, '/' + func, args)

conn = HTTPConnection ('robopi:8888")

for speed in [1, 2, 3]:
call robot (conn, 'spin right', speed=speed)
call robot (conn, 'spin_left', speed=speed)

When the script is run, it will go through three different speed settings and make the
robot spin right and left at each setting.

Going deeper: Persistent connections

Under the hood, HTTP requests are transmitted over a TCP connection. Back in the
day, each HTTP request would need to go through a new TCP connection. The HTTP
protocol was then enhanced to allow for persistent connections or the ability to make
multiple requests over a single TCP connection. This improved the network perfor-
mance of web clients such as web browsers, as it cuts out the overhead of opening

66

5.6.4

CHAPTER 5 Controlling robots remotely

(continued)

a new TCP connection for additional HTTP requests. The Mozilla Foundation documen-
tation on the HTTP protocol (https://developer.mozilla.org/Web/HTTP) covers the
topic very well and is an excellent reference for getting more low-level details on the
subject.

The performance benefits of using persistent connections make it well worth the
effort. It is a standard feature in all modern web browsers and will help us in building
time-sensitive real-time robotic applications later in the book.

Measuring client performance

We have gone through all this trouble to add persistent connections. It’s worthwhile
to create a script to measure the performance of this client. We can use the script to
compare the timing of a fresh connection compared to reusing a persistent connec-
tion. These timings can also be compared to the results we obtained from the SSH cli-
ent earlier in the chapter. Finally, we can make a comparison of local web service calls
and remote calls over Wi-Fi and wired Ethernet connections.

We will import mean to calculate the mean or average of our performance timings
and stdev to calculate their sample standard deviation. The perf_counter function
in the time module is to record the start and end times of function calls to measure
performance. The documentation (https://docs.python.org/3/library/time.html)
on perf_counter provides guidance on using it when doing performance
measurements:

from statistics import mean, stdev
import time

The get_noop timing function starts by saving the current time using the
perf counter function. Then, a call will be made to the noop movement function on
the robot server. This is a no-operation call that we can use to measure performance
between our client and server. Then, we calculate the time elapsed and multiply it by a
thousand so that the return value is expressed in milliseconds:

def get noop timing(conn) :

start = time.perf counter()
call robot (conn, 'noop')
return (time.perf counter() - start) * 1000

We create a HTTPConnection object and make a call to the web server. We do this so
that the next calls give more consistent results. Next, we create the connection object
that we will use for all our measurements. The measurement for the first web service
call is saved in the variable init so that we can keep track of how long the initial con-
nection establishment and first call took. Then, we take one hundred timing samples
and save them in stats. Now we can output the initial, maximum, average, minimum,
and standard deviation of samples:

https://developer.mozilla.org/Web/HTTP
https://docs.python.org/3/library/time.html

5.6 Calling web services from Python 67

conn_initial = HTTPConnection ('robopi:8888")
get_noop_timing(conn_initial)

conn = HTTPConnection ('robopi:8888"')

init = get noop_ timing(conn)

stats = [get_noop timing(conn) for i in range(100)]
print (' init:', init)

print (' max:', max(stats))

print (' avg:', mean(stats))

print (' min:', min(stats))

print ('stdev:', stdev(stats))

The full script can be saved as client_measure.py on the Pi and then executed.

Listing 5.7 client measure.py: Measuring performance when calling web services

#!/usr/bin/env python3

from http.client import HTTPConnection
from statistics import mean, stdev
import time

import json

def call api(conn, url, data):
body = json.dumps (data) .encode ()
conn.request ('POST', url, body)
with conn.getresponse() as resp:
resp.read ()

def call robot (conn, func, **args):
return call api(conn, '/' + func, args)

def get noop timing(conn) :

start = time.perf counter()

call robot (conn, 'noop')

return (time.perf counter() - start) * 1000
conn_initial = HTTPConnection ('robopi:8888")

get_noop_ timing(conn initial)
conn = HTTPConnection ('robopi:8888")
init = get_noop_timing (conn)

stats = [get noop timing(conn) for i in range(100)]
print (' init:', init)

print (' max:', max(stats))

print (' avg:', mean(stats))

print (' min:', min(stats))

print ('stdev:', stdev(stats))

When we run the script, it will collect all the performance measurement timings and
output them to the terminal. The following script was run locally on the robot server
itself:

$ client measure.py
init: 2.5157280000485116

max: 1.9314019999683296

avg: 1.8538593599976139

min: 1.812051000001702
stdev: 0.028557077821141714

68

CHAPTER 5 Controlling robots remotely

These numbers give us a sense of the overhead in making the web requests end to
end, even before having any network packets exit the robot onto the network. Let’s
look at the numbers we get when we connect to the robot server from a wired Ether-
net connection on the network:

$ client measure.py
init: 4.3936739675700665

max: 3.5557260271161795
avg: 2.244193991064094
min: 1.503808016423136
stdev: 0.5216725173049904

Compared to the SSH timings of 1,036 ms, these numbers show a huge difference in
performance and overhead between the two approaches. We can also see that the
standard deviation has increased, which is expected when moving to a physical net-
work. Next, we measure the timings across a wireless Wi-Fi network:

$ client measure.py

init: 8.047391020227224
max: 8.70389404008165

avg: 4.211111041367985
min: 3.290054970420897
stdev: 0.8859955886558311

These numbers demonstrate that wired network connections can offer better perfor-
mance then wireless ones. Namely, the initial connection time and average and stan-
dard deviation are all better with a wired connection. Standard deviation measures
how much variation we have in our measurements. We can see from the standard devi-
ation numbers that performance varies more on a wireless network compared to a
wired network. By comparing the timing of initially establishing a connection (8.05
ms) to the average timing on a persistent connection (4.21 ms), we can see we get an
almost double performance gain when using persistent connections.

Robots in the real world: Real-time computing

The ability to have low latency communication with our robots makes time-sensitive
applications such as real-time computing possible. An example of one of these types
of applications is using analog joysticks to control robot movements, which we will
do later in the book. This is a very time-sensitive application, and if there is a signif-
icant lag between joystick interactions and robot movements, the whole application
will fail to function correctly.

Another example is automotive manufacturing where multiple robots are working
together on a production line to assemble a car. Different robots will weld, drill, and
pass parts to each other. It is critical that these different tasks are performed within
set time frames, or the process along the assembly line will be disrupted. This article
on realtime systems (http://mng.bz/or1M) covers the topic well in the context of
robotics and computer vision.

http://mng.bz/or1M
https://intel.com/content/www/us/en/robotics/real-time-systems.html%22
https://intel.com/content/www/us/en/robotics/real-time-systems.html%22
https://intel.com/content/www/us/en/robotics/real-time-systems.html%22

Summary 69

Summary

Wi-Fi connectivity gives the robot the greatest freedom of movement.

Tornado is a feature-rich web framework that can safely interact with the hard-
ware on the robot.

The argparse module is part of the Python standard library and can be used to
parse command line arguments.

The time command can be used to measure the execution time when com-
mands are run locally and when they are run remotely over SSH.

The json module is used to parse JSON request data.

The urlopen module can be used to make calls to the web server.

The use of persistent connections provides significant performance gains.

Creating robot web apps

This chapter covers

= Creating a desktop- and mobile-friendly web
application to control robots

= Measuring web application performance using
web browser tools

= Creating dynamic pages using Tornado templates

= Enabling enhanced web logging to detect web
request failures

This chapter will teach you how to build a web application to control your robot.
The application will work equally well on desktop computers and mobile phones.
The full range of robot movements will be available through the application, along
with commands that can be used to measure the network performance of the appli-
cation, end to end. As we build the application, you will learn useful techniques for
measuring the application performance, as well as detecting and fixing certain
types of web request failures.

Web applications provide a powerful platform to build a mechanism for con-
trolling the robot by a human operator. Web apps are accessible both from the

70

6.1

6.2

6.2 Software stack 71

desktop application and mobile devices. They also work consistently across the main
desktop operating systems (i.e., Windows, Mac, and Linux).

Hardware stack

Figure 6.1 shows the hard-
ware stack, with the specific
components used in this

[Joystick I Keyboard I Mouse]

chapter highlighted. In this [Neopixe|I DC IServo] i i i t
motor

chapter, we can use the

mouse as a human-interactive [CRICKIT Camera | Ethernet | Wi-Fi || Bluetooth | USE

device to interact with the
robot through our web app.

The web application can
be accessed either through
wired networks using the
Ethernet port or wireless net-
works using the Wi-Fi hardware. The best user experience for the mobile access is over
the Wi-Fi connection, as it offers full portability. When the web interface is accessed
from a desktop, a mouse can be used as the human interface device to control the
robot by clicking on the desired robot movement buttons. In later chapters, we will
control the robot using a keyboard and a joystick.

Raspberry Pi

Figure 6.1 Hardware stack: the DC motors will be controlled
over the network using a web interface.

Software stack

Details of the specific software used in this chapter are described in figure 6.2. There
are three main applications that will be created here. The first is a basic web applica-
tion that displays the current time on the robot server (basic_web). Then, we will cre-
ate an application to move the robot forward and backward (forward_web). Finally, a
mobile-friendly application will be created with a full range of robot movement com-
mands (full web). The Tornado web framework will be used to create these web
applications. The built-in template feature of the framework will be used to create
dynamic content. The datetime and os Python modules will be used to calculate the
time on the server and read values from environment variables.

[Application Ibasic_web, forward web, full web]
[Libraries I Tornado web framework J
[Python I datetime, os.path, os]
Figure 6.2 Software stack:
[Linux I TCP/IP network stack] web browsers on the
network will connect
[Hardware I Network hardware (Ethernet/Wi-Fi) J through a Tornado web

application.

72

6.3

6.3.1

CHAPTER 6 Creating robot web apps

Moving robots forward and backward over the web

The first web application we create will perform the basic forward and backward robot
movements. We need to create a web application to meet the following requirements:

A Python web application that allows users to move the robot forward and back-
ward should be created.
The web app should use the HTML5 standard.

The user interface must be desktop and mobile friendly.

HTMLS5 is the latest version of the markup language used on the web, and it offers
richer features compared to the older versions. For this reason, we have put it as a
requirement for the application.

Creating a basic web application

Let us take some simple first steps and create a web application that displays the time
on the robot web server. The first step is to import all the required modules. From
Tornado, we import I0Loop, RequestHandler, and Application, as we have done in
previous chapters to set up and run our web application. We then import
enable_pretty logging to enable logging output. The datetime object will be used
to get the current time. The dirname function will get the directory name of a path.
The os module will be used to access environment variables:

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

from datetime import datetime

from os.path import dirname

import os

The Tornado web framework has a powerful debug mode offering features such as
automatic reloading and generated error pages that help both when developing and
debugging a web application. The next line of code sets the global variable DEBUG to
be true or false, depending on whether the environment variable ROBO_DEBUG has
been defined. In this way, the same code can be used for development or production
use, and its debugging behavior can be defined outside the code base through envi-
ronment variables:

DEBUG = bool (os.environ.get ('ROBO_DEBUG'))

The next step is to set TEMPLATE_PATH to the path of the templates directory. This
directory will contain the Tornado template files that will be used to generate HTML
content. This path is automatically calculated as a subdirectory called templates in
the same directory as the Python code. Place all HTML template files in this directory:

TEMPLATE PATH = (dirname(_ file) + '/templates')

We can now define the MainHandler object that will handle incoming requests. It will
calculate the current time and save the value as a string in a variable called stamp.

6.3 Moving robots forward and backward over the web 73

Then, the basic.html template is rendered with the stamp variable and sent to the
web browser:

class MainHandler (RequestHandler) :
def get (self):
stamp = datetime.now() .isoformat ()
self.render('basic.html', stamp=stamp)

The last block of code calls enable_pretty_logging to enable logging output and
defines settings with the application settings. These settings are then provided to
Application, and the application server is started:

enable pretty logging()

settings = dict (debug=DEBUG, template path=TEMPLATE_PATH)
app = Application([('/', MainHandler)], **settings)
app.listen(8888)

IOLoop.current () .start ()

The full script can be saved as basic_web.py on the Pi.

Listing 6.1 basic web.py: Web application that displays the time on the robot

#!/usr/bin/env python3

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

from datetime import datetime

from os.path import dirname

import os

DEBUG = bool (os.environ.get ('ROBO_DEBUG'))
TEMPLATE PATH = (dirname(_ file) + '/templates')

class MainHandler (RequestHandler) :
def get (self):
stamp = datetime.now() .isoformat ()
self.render('basic.html', stamp=stamp)

enable pretty logging()

settings = dict (debug=DEBUG, template path=TEMPLATE_ PATH)
app = Application([('/', MainHandler)], **settings)
app.listen(8888)

IOLoop.current () .start ()

Before we can execute the script, we should create the basic.html template. We will
run through each part of this template file. The first line of the file is required to
declare to the web browser that this file is using HTML5. Then, we have our opening
html tag, which defines the document language as English:

<!DOCTYPE HTML>
<html lang="en">

74

CHAPTER 6 Creating robot web apps

The next part is the head section of the HTML document. The website title is pro-
vided, and the meta tag is then used to set the viewport metadata so that the web
application will be displayed correctly on both desktop and mobile browsers. Next,
the font for the page is set as Verdana using the style tag:

<head>
<title>Robot Web</title>
<meta name="viewport" content="width=device-width">
<style>
body {
font-family: Verdana, sans-serif;
1
</style>
</head>

The last part of the template contains the body portion of the document. The h1 tag is
used to provide header content, and finally, the stamp template variable is then placed
under this header to display the current time on the robot:

<body>

<hl>Robot Web</hl>
{{ stamp }}
</body>

</html>

The template can be saved as basic.html on the Piin the templates directory.

Listing 6.2 basic.html: HTML user interface that displays the time on the robot

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Robot Web</titles>
<meta name="viewport" content="width=device-width">
<style>
body {
font-family: Verdana, sans-serif;
}
</style>
</head>
<body>
<hl>Robot Web</hl>
{{ stamp }}
</body>
</html>

We can now execute basic_web.py to run the web server. You can access the web
application by visiting the address http://robopi:8888 from a computer on your net-
work. Make sure to update the hosts file on the computer to have an entry for robopi,
as described in chapter 5. You can also access the web app by replacing robopi in the
URL with the IP address of your robot. When accessing the web app from a mobile
device, using the IP address will be an easier option.

6.3.2

6.3.3

6.3 Moving robots forward and backward over the web 75

When you access the web application, it RO e =M B
will display the current time on the robot ElefEafviewiiistoryE LooknaiKsRICOSRLIER
server. Refresh the page to see the updated ‘7R°b°t WES * I v
time and confirm that the server is respond- « > C [Q http:/irobopi:8888/ N

ing to multiple requests. Figure 6.3 shows

what the application will look like. Ro bot we b

Detecting failed requests

Because we have called enable pretty 2022-12-14T15:16:54.181446

logging, we get the benefit of outputting
the server logs to the terminal. We can Figure 6.3 basic web: it displays the
inspect this output to see all the incoming current time on the robot server.

requests to the web server and the given

responses. Try to access the web application again from multiple browsers or comput-
ers. What follows is the log output after the application has been accessed from multi-

ple browsers and computers:

$ basic_web.py

[T 221213 17:20:27 web:2271
W 221213 17:20:27 web:2271
I 221213 17:20:33 web:2271
W 221213 17:20:34 web:2271

200 GET / (10.0.0.30) 7.99ms
404 GET /favicon.ico (10.0.0.30) 1.27ms
200 GET / (10.0.0.30) 2.21ms
404 GET /favicon.ico (10.0.0.30) 1.84ms

1
]
1
1
]
221213 17:20:35 web:2271] 200 GET / (10.0.0.30) 2.23ms
1
]
1
1

[

[

[

[T 221213 17:20:35 web:2271] 200 GET / (10.0.0.30) 1.98ms

[T

[W 221213 17:23:51 web:2271] 404 GET /favicon.ico (10.0.0.15) 1.82ms
[T 221213 17:23:53 web:2271] 200 GET / (10.0.0.15) 2.36ms

[T 221213 17:23:54 web:2271] 200 GET / (10.0.0.15) 2.32ms

[T 221213 17:23:55 web:2271] 200 GET / (10.0.0.15) 2.23ms

We can see that after the page is loaded, the browser tries to fetch a file called
favicon.ico and fails with a “404 not found” HTTP error. This is because we haven’t
defined a proper way to handle these requests, so they are failing. In the next
upgrade, we can address this problem and check the server logs after the change to
confirm that the situation has been resolved. This log output is also a great way to see
how long it takes for Tornado to provide a response, as the response times also appear
in the log output.

Moving robots forward with web apps

Now we will add the forward and backward movements to our application. We will
once again import the motor module to control the robot’s movements:

import motor

The Application object will be enhanced to handle different request URLs and parse
the action from the path being requested. The regular expression / ([a-z_]*) is used
to match a path consisting of lowercase letters and the underscore character. This pat-
tern will match all the available movement commands:

76

CHAPTER 6 Creating robot web apps

app = Application([('/([a-z_]*)', MainHandler)], **settings)

We now update the get method to receive the name argument and to render the
forward.html template:
def get (self, name):

stamp = datetime.now () .isoformat ()
self.render ('forward.html', stamp=stamp)

As done in previous chapters, we will only process movement commands when they
come in as post requests. The post method will then check the value of the name vari-
able and call the related movement function. It will then redirect the browser to the
web application home page using the redirect method:

def post(self, name) :

if name == 'forward':
motor. forward ()
if name == 'backward':

motor.backward ()
self.redirect ('/")

The full script can be saved as forward_web.py on the Pi.

Listing 6.3 forward web.py: Web application to move the robot forward and backward

#!/usr/bin/env python3

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

from datetime import datetime

from os.path import dirname

import os

import motor

DEBUG = bool (os.environ.get ('ROBO_DEBUG'))
TEMPLATE PATH = (dirname(_ file) + '/templates')

class MainHandler (RequestHandler) :
def get(self, name) :
stamp = datetime.now() .isoformat ()
self.render ('forward.html', stamp=stamp)

def post (self, name) :

if name == 'forward':
motor. forward ()
if name == 'backward':

motor.backward ()
self.redirect('/")

enable pretty logging()

settings = dict (debug=DEBUG, template path=TEMPLATE PATH)
app = Application([('/([a-z_]*)', MainHandler)], **settings)
app.listen(8888)

IOLoop.current () .start ()

6.3 Moving robots forward and backward over the web 77

We can now upgrade the HTML template. To resolve the favicon problem, we use the
following HTML in the head portion of our template. This sets no icon for the page and
thus instructs the web browser not to fetch the favicon file from the web server:

<link rel="icon" href="data:,">

In the main body of the document, we add two forms. Each form will submit its data,
using the post method, to either the forward path or the backward path. The submit
buttons for each form have a label that matches the movement action for that form:

<form method="post" action="forward">
<input type="submit" value="Forward"s>

</form>

<form method="post" action="backward"s>
<input type="submit" value="Backward"s

</form>

The template can be saved as forward.html on the Pi in the templates directory.

Listing 6.4 forward.html: HTML to move the robot forward and backward

<!DOCTYPE HTML>
<html lang="en">
<heads>
<title>Robot Web</title>
<meta name="viewport" content="width=device-width">
<link rel="icon" href="data:,">
<style>
body {
font-family: Verdana, sans-serif;

}

</style>
</head>
< body > ¥ RGBGIVNED WGzl oX o
<hl>Robot Web</hls> File Edit View History Bookmarks Tools ﬂelp|
{{ stamp }} . ‘@RobotWeb |+ v
<form method="post" action="forward"s>

<input type="submit" value="Forward"s « > C [a nttp:iirobopi:8888/ | 4 =
</form>

<form method="post" action="backward"s>

<input type="submit" value="Backward"s> RObot Web

</form>
</body> 2022-12-14T15:18:51.445876
</html>

Backward
We can now execute forward web.py to run

the web server. When you access the web

application, press the forward and backward i . .

Figure 6.4 forward web: it provides
buttons to move the robot backward and for-) si00c 40 move the robot forward and
ward. Figure 6.4 shows what the application backward.

78 CHAPTER 6 Creating robot web apps

will look like now with these new buttons. We can inspect the log output from a session
using the application:

$ forward web.py

[T 221213 17:37:29 web:2271] 200 GET / (10.0.0.30) 7.99ms

1
[T 221213 17:37:34 web:2271] 302 POST /forward (10.0.0.30) 222.82ms
[T 221213 17:37:34 web:2271] 200 GET / (10.0.0.30) 2.28ms
[T 221213 17:37:35 web:2271] 302 POST /backward (10.0.0.30) 223.56ms
[T 221213 17:37:35 web:2271] 200 GET / (10.0.0.30) 2.25ms
[T 221213 17:37:36 web:2271] 302 POST /backward (10.0.0.30) 224.18ms
[T 221213 17:37:36 web:2271] 200 GET / (10.0.0.30) 2.22ms

In the log output, we can see the robot was moved forward once and then backward
twice. From the logs, we can see that it usually takes 2 ms to render the main page. It
takes around 224 ms to perform a robot movement. The default duration set for a
robot movement in the motor module is 200 ms. Therefore, these numbers are what
we would expect. Finally, we can see the “favicon not found errors” have also been
resolved, as they are no longer appearing in the request logs.

Going Deeper: HTML5

HTMLS5 is the latest version of the markup language used on the web. The standard
is maintained by the Web Hypertext Application Technology Working Group (WHATWG),
which is a consortium of major browser vendors (Apple, Google, Mozilla, and Micro-
soft). The HTML Living Standard (https://w3.org/TR/htmlI5) provides full details on
the HTML elements and syntax. It is a comprehensive reference on the standard.

HTML forms are used heavily in this chapter to submit the desired movement actions
to the robot server. The Mozilla guide on web forms (https://developer.mozilla.org/
Learn/Forms) is an excellent resource to explore how forms with different submission
options can be created, as well as different input elements contained within the form
itself.

6.4 Creating a full-movement web app

We can now move on to create a web application that can call all the robot movement
functions. We need to create a web application to meet the following requirements:

A Python web application that allows users to move the robot forward, back-
ward, right, left, and to spin in both directions should be created.

A button to call the no-operation noop function should be created so that per-
formance measurements can be made within the web browser.

The buttons in the user interface should use a layout that comfortably supports
both mobile touch and desktop mouse interactions.

6.4.1 Creating the full-movement application

On the Python side, we are almost there. We can make some small modifications to
our previous application to enable all the movement functions. We will make a small
modification to the get method so that it uses our new full.html template:

https://w3.org/TR/html5
https://developer.mozilla.org/Learn/Forms
https://developer.mozilla.org/Learn/Forms

6.4 Creating a full-movement web app 79

def get(self, name):
stamp = datetime.now() .isoformat ()
self.render('full.html', stamp=stamp)

The post method will now be enhanced to look up the required movement function
from the motor module and then call the function. After that, we will be redirected to
the application home screen:
def post (self, name) :
func = getattr (motor, name)

func ()
self.redirect ('/")

The full script can be saved as full_web.py on the Pi.

Listing 6.5 full web.py: Web application that supports all robot movement actions

#!/usr/bin/env python3

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

from datetime import datetime

from os.path import dirname

import os

import motor

DEBUG = bool (os.environ.get ('ROBO_DEBUG'))
TEMPLATE PATH = (dirname(_ file) + '/templates')

class MainHandler (RequestHandler) :
def get(self, name):
stamp = datetime.now() .isoformat ()
self.render ('full.html', stamp=stamp)

def post (self, name):
func = getattr (motor, name)
func ()
self.redirect ('/")

enable pretty logging()
settings = dict (debug=DEBUG, template path=TEMPLATE_PATH)

app = Application([('/([a-z_]*)', MainHandler)], **settings)
app.listen(8888)
IOLoop.current () .start ()

The next step will be to upgrade the HTML template. The contents in the body will
have a number of enhancements made. The text in the title of the page will be given a
link so that users can click on the page title to reload the page. A button for each move-
ment function is placed on the screen. The layout of the screen is designed so that sim-
ilar actions are grouped together in the same row. The first row has the forward and
backward buttons. The second row has the buttons to turn left and right. The third row
shows buttons to spin left and right. The final row presents the no-operation button.

80

CHAPTER 6 Creating robot web apps

The buttons use HTML5-named character references so that the buttons have a graph-
ical indication of what they do:

<body>

<hls>Robot Web</hl>

{{ stamp }}

<form method="post">
<button formaction="forward">▴</buttons>
<button formaction="backward"s▾</buttons>

<button formaction="left">◂</button>
<button formaction="right"s>▸</buttons>

<button formaction="spin left">↺</button>
<button formaction="spin right"s↻</button>

<button formaction="noop">X</buttons>

</form>

</body>

Now we can style the content on the page by updating the style tag. We center the con-
tent in the page and remove the default underline text decoration style from links on
the page. Next, we move on to style the buttons on the page. Their font size is made
three times larger, and a good amount of margin is added to provide a healthy
amount of spacing between the buttons. This layout and spacing make it easier to
press the buttons with your finger on a touch interface, as the buttons aren’t bunched
up next to each other. Finally, all the buttons are given the same height and width of
60 px to create a uniform look:

<style>

body, a {
font-family: Verdana, Arial, sans-serif;
text-align: center;
text-decoration: none;

}

button {
font-size: 300%;
margin: Opx 10px;
height: 60px;
width: 60px;

}

</style>

The template can be saved as full.html on the Pi in the templates directory.

Listing 6.6 full.html: HTML user interface that supports all robot movement actions

<!DOCTYPE HTML>

<html lang="en">

<head>
<title>Robot Web</titles>
<meta name="viewport" content="width=device-width">
<link rel="icon" href="data:,">

6.4 Creating a full-movement web app

<style>

body, a {
font-family: Verdana, Arial, sans-serif;
text-align: center;
text-decoration: none;

1

button {
font-size: 300%;
margin: Opx 10px;
height: 60px;
width: 60px;

1

</style>

</heads>

<body>

<hl>Robot Web</hl>
{{ stamp }}
<brs>
<form method="post">

<button formaction="forward">▴</buttons>
<button formaction="backward"s▾</button>

<brs<brs>

<button formaction="left"s◂</button>
<button formaction="right"s>▸</button>

<brs><brs>

81

<button formaction="spin left">↺</buttons>
<button formaction="spin right"s↻</buttons>

<button formaction="noop">X</button>
</form>
</body>
</html>

We can now execute full_web.py to run the web server. When you access the web

application, press different movement buttons to make the robot perform each avail-

able movement. What follows is the log output from a session using the application:

$ full web.py

[T 221214 15:37:32 web:2271] 200 GET / (10.0.0.30) 4.75ms

[T 221214 15:37:34 web:2271] 302 POST /forward (10.0.0.30) 223.77ms
[T 221214 15:37:34 web:2271] 200 GET / (10.0.0.30) 5.26ms

[T 221214 15:37:35 web:2271] 302 POST /backward (10.0.0.30) 223.29ms
[T 221214 15:37:35 web:2271] 200 GET / (10.0.0.30) 4.77ms

[T 221214 15:37:35 web:2271] 302 POST /left (10.0.0.30) 222.85ms

[T 221214 15:37:35 web:2271] 200 GET / (10.0.0.30) .78ms

[T 221214 15:37:36 web:2271] 302 POST /right (10.0.0.30) 222.96ms

[T 221214 15:37:36 web:2271] 200 GET / (10.0.0.30) .81ms

[T 221214 15:37:40 web:2271] 302 POST /spin left (10.0.0.30) 223.67ms
[T 221214 15:37:40 web:2271] 200 GET / (10.0.0.30) .80ms

[T 221214 15:37:41 web:2271] 302 POST /spin right (10.0.0.30) 223.42ms
[T 221214 15:37:41 web:2271] 200 GET / (10.0.0.30) 4.84ms

[T 221214 15:37:41 web:2271] 302 POST /noop (10.0.0.30) 1.83ms

[T 221214 15:37:41 web:2271] 200 GET / (10.0.0.30) 4.87ms

From the logs, we can see each of the different movement functions being successfully

executed and then the main page loading after each function is called. It is also of

82

6.4.2

CHAPTER 6 Creating robot web apps

note that the call to the noop page loads in around 2 ms, which indicates a good level
of performance.

Web interface design

Figure 6.5 shows how the web application will appear for desktop and laptop users.
The icons used for each button reflect the movement that will be performed. Thus,
arrows pointing forward and backward indicate the forward and backward robot
movements. The right, left, and spin functions have similar graphical representations.
The no-operation action is presented with an X to indicate that it will not result in a
movement.

Figure 6.6 shows how the application will appear on a mobile device. The buttons
use larger fonts and are given a good amount of width and height so that they are
large enough to be comfortably pressed on a touch screen. The generous spacing
between the buttons also prevents their crowding. The whole application fits on one
screen so that all functions can be accessed without the need to scroll.

® Robot Web x|+ N 3 A 10002148888 +

Robot Web

2022-12-14715:54:37.355787

« > G [0 & hitp.irobopi 8888/ w) » =

Robot Web

2022-12-14T15:45:17.330006

A \4

A |V

4 b

J U
X

I O <
Figure 6.5 Desktop interface: each robot Figure 6.6 Mobile interface: the spacing
movement can be called by its related between the buttons makes touch

button. interaction easier.

6.4.3

6.4 Creating a full-movement web app

Robots in the real world: Controlling robots with web applications

Controlling robots with a web application can provide more convenient access than
using a desktop application, as they can be accessed by mobile devices. Operating
robots on a factory floor by accessing and controlling the robot from a smartphone
gives a greater freedom of movement to the operator than lugging around a laptop.

When needed, they also support the access from devices with larger screens, such
as tablet computers or laptops. Different user interfaces can be designed to better
support devices with larger screens. In this way, users get the best of both worlds.

Modern web applications are also very extensible. We'll see in the later chapters how
to add video streaming from the robot camera to our web applications. This gives the

robot operator the ability to see exactly what the robot

Measuring application performance in the browser

Figure 6.7 shows how to measure web application performance in the browser. Both
the Firefox and Google Chrome web browsers have a built-in function called Devel-

Sees.

83

oper Tools, which provides many rich features, such as measuring application perfor-
mance. Once the tool is accessed in the browser, click on the Network tab. Figure 6.7

Robot Web

2022-12-14T15:50:25.757018

AV

4 p

W Fiter URLs I+ Q @ [JDisable Cache
Al HTML CSS JS XHR Fonts Images Media WS Other

Status Method Domain File Type Size

302 POST {‘/ robopi:8888 spin_right html 872B

200 GET # robopi:8888 / html 872B

W {3 inspector () Console [Debugger {3} Style Editor TN Network D> 0] e X

No Throtiing s ¥

Duration
229 ms

14 ms

® 2 requests 1.74 kB / 2.10 kB transferred Finish: 246 ms DOMContentLoaded: 259 ms load: 263 ms

Figure 6.7 Measuring performance: the load times of a page can be measured

in the browser itself.

84

6.4.4

CHAPTER 6 Creating robot web apps

shows a sample measurement taken when the robot was requested to spin right. From
the measurements, we can see that it took 229 ms to call the spin right action and then
14 ms to redirect and load the main page. These figures match the ones that we could
see on the server from the log output in the terminal. This tool can be very handy
when trying to diagnose performance problems with web applications.

Web hardware devices

Figure 6.8 shows how the web application will appear on a smartphone running the
i0S operating system. Smartphones offer the greatest level of portability, as they are
small enough to fit in your pocket. The downside of using them is their smaller
screen, and we are also limited to only using a touch screen interface for interacting
with the application.

Figure 6.9 shows the application running on a
tablet computer. These types of hardware devices
offer much larger screens, which allows us to put
many more controls in our user interface.

It is often a good idea to try out your web
432250 M application on a variety of devices with different
screen sizes and web browsers so that you can
discover any problems that might occur on spe-
cific devices or browsers.

Robot Web

2
023-08-24T19: 10:06

Robot Web

2023-08-24T19:06:16.996387

Figure 6.8 Smartphone device: Figure 6.9 Tablet computers: tablets offer bigger screens
smartphones can be used to control then smartphones but are still quite portable.
the robot.

Summary 85

Summary
Accessing the robot over Wi-Fi gives the best user experience, as both the robot
and mobile phone have full portability.
The built-in template feature of the Tornado web framework is used to create
dynamic content in the application.
One of the benefits of outputting the server logs is that we can see all the
incoming requests to the web server and the given responses.
The buttons use larger fonts and are given a good amount of width and height
so that they are large enough to be comfortably pressed on a touch screen.
Both the Firefox and Google Chrome web browsers have a built-in function
called Developer Tools, which provides many rich features, such as measuring
application performance.

Joystick-conirolled robots

This chapter covers

Reading joystick data using Pygame
Reading and parsing raw joystick event data
Measuring the rate of joystick events
Creating a remote joystick robot controller

Joysticks are one of the most powerful input devices. When it comes to controlling
robot motors, they offer much more superior control compared to keyboards and
mice. The scenarios covered in this chapter will help you create a fully functional
joystick-controlled robot. This chapter will teach you multiple ways of reading
events from joystick hardware. We can then create our own event handlers that will
perform different robot movements based on specific joystick movements. Along
the way, we will also learn how to measure the number of joystick events triggered
per second and optimize our code so that it prevents the robot motors from getting
flooded with movement requests. Finally, we end the chapter by creating an appli-
cation that moves the robot using a joystick over the network.

Joystick-controlled robots have a wide array of applications, ranging from
remotely operating heavy vehicles on factory floors to performing delicate medical

86

7.1

7.1 Hardware stack 87

procedures using robotic arms. In the case of robot-assisted surgery, by controlling
very small robotic arms, the doctor can perform surgical procedures that would not
be possible otherwise.

Hardware stack

Figure 7.1 shows the hardware stack, with the specific components used in this chap-
ter highlighted. The joystick hardware can be connected to the Raspberry Pi using
either a wired USB or a wireless Bluetooth connection. The joystick can also be con-
nected to a remote computer, and the robot movement requests will be transmitted
over the network using either Wi-Fi or Ethernet.

Human interface device

)
|

[JoystickIKeyboardIMouse] !
1
1

[NeopixelI 26 IServo] i t i i

motor
[CRICKIT ICameraIEthernet Wi-Fi [Bluetooth usSB
[Figure 7.1 Hardware stack: the

Joystick will be used to control

Raspberry Pi
the robot movements.

The Joystick hardware to be used for this chapter is either the Sony PlayStation 4/5
controller or an Xbox controller. Figure 7.2 shows a photo of a PlayStation 4 control-
ler, and figure 7.3 shows a photo of an Xbox controller. Make sure to check the hard-
ware purchasing guide in appendix A before buying the hardware needed in this
chapter.

Figure 7.2 PlayStation 4 controller: this controller is Figure 7.3 Xbox controller: this controller is like the
widely available and has good Linux support. PlayStation controller, but it has two analog sticks.

88

7.2

7.3

CHAPTER 7 Joystick-controlled robots

When connecting the controller to the Raspberry Pi over USB, all you need to do is
connect the USB cable between the controller and the Raspberry Pi. No additional
software or configuration is required. The Sony PlayStation controller supports a
Bluetooth connection. To make use of it, you must first follow the instructions for
your controller to put it into a pairing mode. Then you can search and pair the con-
troller like any other Bluetooth device using the graphical Bluetooth application that
comes with the Raspberry Pi OS. The final application in the chapter also supports
connecting the controller to a remote Linux computer on the same network. On that
computer, the same USB and Bluetooth options can be used.

Software stack

Details of the specific software used in this chapter are provided in figure 7.4. The first
few applications will use the Pygame library, as it is a great starting point to work with
joystick devices. Then, we will use the struct Python module to directly read and
parse joystick events from the Linux input subsystem. The sys and time modules will
be used when we create the joystick_levels application that measures the rate at
which joystick events are generated. The Bluetooth hardware and associated Blue-
tooth Linux drivers will be used to create a wireless connection for the controller. The
chapter ends with the joystick_remote application that controls the robot motors
using the joystick hardware.

[Application I joystick_ levels, joystickiremote]

[Libraries I pygame]

[Python I struct, sys, time, collections J

[Linux I Linux input subsystem (joystick drivers)] Figure 7.4 Software stack:
the Linux input subsystem

[Hardware I Bluetooth hardware] will be used to read joystick
events.

Joystick events

Figure 7.5 shows the specific joystick events we are most
interested in. There are many buttons and sticks on the
controller, and each can send events to the connected
computer when they are pressed or moved. For the
applications in this chapter, we are most interested in
the events related to the two analog sticks on the con-
troller. There is one stick for the left and another for

Figure 7.5 Joystick events: the
sticks generate y-axis events
the right hand. We will control the robot’s movements when moved up and down.

74

74.1

7.4 Reading joystick events using Pygame 89

by having the throttle on each motor set based on the position of the stick. If the right
stick is pushed fully forward, the right motor will be given full throttle power in the for-
ward direction. If the right stick is pulled all the way back, the right motor will be given
full throttle power in the backward direction. The same will be done for the left stick
and left motor. We will also set the throttle speed or level based on how far each stick
is pushed forward or backward. In this way, you can use the joystick to control forward,
backward, turn, and spin movements. You can also perform these movements at a
slower or faster speed, depending on how far you push the sticks. When the sticks are
moved, the stick axis and position are provided as an event. Each stick has the y- and
x-axes. Changes in the vertical position of a stick relate to a y-axis event, and changes in
the horizontal position of the stick relate to an x-axis event.

Reading joystick events using Pygame

Pygame is a very popular Python module used for writing video games. It has built-in sup-
port for reading joystick events and is an excellent starting point for working with joy-
sticks in Python. We need to create an application to meet the following requirements:

It is necessary to create a Python application that uses the Pygame library to
read joystick events.

We should create an event-handler function in the application that will get
called every time there is a stick movement or button-press event.

Detecting events in Pygame

This first program will have an event loop that reads all the events detected and prints
them out. Once we have it in place, we can move on to the next section that will focus
on joystick events. Run the following line to install the Pygame Python package in our
virtual environment:

$ ~/pyenv/bin/pip install pygame
The first part of our application will import the pygame module:
import pygame

When we run the main event loop, we will need to set how frequently the loop will
check for events. This rate is called the frame rate, and we set it in a variable called
FRAME_RATE. It is set at 60 frames per second, which is a common value for creating a
responsive application. If this value is too small, the application will not be very
responsive, and if too high, it would put an unnecessary load on the computer without
providing an improved user experience. Human beings cannot perceive frame rates
beyond 60 frames per second. We save the window height and width in the variable
called winpow_s1zk. The size of the window isn’t too important in our application
because we won’t be drawing anything in the window:

FRAME RATE = 60
WINDOW_SIZE = [100, 100]

90

CHAPTER 7 Joystick-controlled robots

We now define the function main that is at the heart of our program. We call the
pygame.init function to initialize the Pygame module. Then, we create a window
called screen. We then create a Clock object that will be used in our event loop to
process events at the desired frame rate. The next block is the main event loop, which
is run constantly until the application is exited. The subsequent available event is
fetched by calling pygame . event .get. The details of this event are then printed. The
type of event is checked to see whether it is a pygame.QUIT type of event. If so, the
application is exited by calling pygame.quit, and then we return from the main func-
tion. Finally, the last line of the loop calls clock. tick with the configured frame rate:

def main() :
pygame.init ()
screen = pygame.display.set mode (WINDOW SIZE)
clock = pygame.time.Clock ()
while True:
for event in pygame.event.get () :

print ('event detected:', event)
if event.type == pygame.QUIT:
pygame.quit ()
return

clock.tick (FRAME RATE)

The last line of the application calls the main function:
main ()

The full script can be saved as pygame_events.py on the Pi and then executed.

Listing 7.1 pygame events.py: Using the Pygame library to print joystick events

#!/usr/bin/env python3
import pygame

FRAME RATE = 60
WINDOW SIZE = [100, 100]

def main() :
pygame.init ()
screen = pygame.display.set mode (WINDOW_SIZE)
clock = pygame.time.Clock ()
while True:
for event in pygame.event.get () :

print ('event detected:', event)
if event.type == pygame.QUIT:
pygame.quit ()
return

clock.tick (FRAME RATE)

main ()

The application requires a graphical environment to run as it creates windows. You
can run it on the desktop environment on the Pi directly or remotely over a VNC

7.4 Reading joystick events using Pygame 91
session. The output is taken from a session of running the command. In the session
that follows, the application was started, and the letter A was pressed down and
released on the keyboard. The mouse was moved around the application, and then
the window was closed. The keyboard, mouse, and window close events can be seen in
the output as being detected:

$ pygame events.py

pygame 2.1.2 (SDL 2.0.14, Python 3.9.2)

Hello from the pygame community. https://www.pygame.org/contribute.html
event detected: <Event (32774-WindowShown {'window': None}) >

event detected: <Event (32777-WindowMoved {'x': 464, 'y': 364, 'window':
event detected: <Event (32770-VideoExpose {})>

event detected: <Event (32776-WindowExposed {'window': None}) >

event detected: <Event (32768-ActiveEvent {'gain': 1, 'state': 1})>
event detected: <Event (32785-WindowFocusGained {'window': None}) >

event detected: <Event (32788-WindowTakeFocus {'window': None})>

event detected: <Event (768-KeyDown {‘unicode': 'a', 'key': 97, 'mod':
event detected: <Event (771-TextInput {'text': 'a', 'window': None}) >
event detected: <Event (769-KeyUp {‘unicode': 'a', 'key': 97, 'mod': 0,
event detected: <Event (32768-ActiveEvent {'gain': 1, 'state': 0})>
event detected: <Event (32783-WindowEnter {'window': None}) >

event detected: <Event (1024-MouseMotion {‘pos': (99, 2), 'rel': (0, 0),
event detected: <Event (32768-ActiveEvent {'gain': 0, 'state': 0})>
event detected: <Event (32784-WindowLeave {'window': None}) >

event detected: <Event (32788-WindowTakeFocus {'window': None}) >

event detected: <Event (32787-WindowClose {'window': None}) >

event detected: <Event (256-Quit {})>

Going deeper: Frame rate

Frame rate is often measured in frames per second. It is a very important aspect of
human interaction with computers. In this chapter, we focus on creating applications
that read joystick events and react to them fast enough to create real-time applica-
tions. If our frame rate drops to a very low level, it will be visible to our robot operator.
There will be a noticeable lag in our application reacting to our actions.

Even though we have set the frame rate in the initial application to 60 frames per
second, a lower frame rate of 30 frames per second is still popular and comfortable
for many applications. In the coming chapters, the default frame capture rate of the
Pi camera is 30 frames per second. Images displayed at this rate will appear as a
smooth video feed. As we perform demanding tasks like face detection and frame
rates drop to much lower levels, it will become very noticeable and disruptive. Thus,
we will solve these problems as we encounter them through software optimization.

Whether we deal with video playback, joystick events, or any other highly interactive
user application, it will often boil down to measuring the frame rates and making sure
the software design maintains the target frame rate so that the user experience is
not affected.

92

74.2

CHAPTER 7 Joystick-controlled robots

Detecting joystick events

We can now add the capability to detect and handle joystick events to our application.
The following two lines are added to the main function. The first line calls Joystick to
set up the controller device object and saves it in the joystick variable. We then out-
put the name of the joystick controller device:

joystick = pygame.joystick.Joystick(0)
print ('joystick name:', joystick.get name())

One line is added to our previous event loop to call the handle_event function each
time we detect a new event:

while True:
for event in pygame.event.get () :
if event.type == pygame.QUIT:
pygame.quit ()
return
handle_event (event)
clock.tick (FRAME RATE)

The event-handler function can now be defined. It will focus only on joystick events
and print a different message when a button is pressed or when one of the sticks on
the controller is moved around:

def handle event (event) :

if event.type == pygame.JOYBUTTONDOWN :
print ('button pressed', event.button)
if event.type == pygame.JOYAXISMOTION:

print ('axis motion', event.axis, event.value)

The full script can be saved as pygame_joystick.py on the Pi and then executed.

Listing 7.2 pygame joystick.py: Detecting specific joystick events with Pygame

#!/usr/bin/env python3
import pygame

FRAME RATE = 60
WINDOW SIZE = [100, 100]

def handle_ event (event) :

if event.type == pygame.JOYBUTTONDOWN ::
print ('button pressed', event.button)
if event.type == pygame.JOYAXISMOTION:

print ('axis motion', event.axis, event.value)

def main() :
pygame.init ()
screen = pygame.display.set mode (WINDOW_SIZE)
clock = pygame.time.Clock ()
joystick = pygame.joystick.Joystick(0)
print ('joystick name:', joystick.get name())

7.5

7.5 Reading Linux joystick events 93

while True:
for event in pygame.event.get () :
if event.type == pygame.QUIT:
pygame.quit ()
return
handle_ event (event)
ClOCk.tiCk(FRAME_RATE)

main ()

In the session that follows, the application was started, four different buttons were
pressed, and the stick was moved around to different positions. We can see that each
button has a unique identifier, and the stick movements have details to identify the
axis of movement and the position the stick was moved to:

$ pygame_events.py

pygame 2.1.2 (SDL 2.0.14, Python 3.9.2)

pygame 2.1.2 (SDL 2.0.14, Python 3.9.2)

Hello from the pygame community. https://www.pygame.org/contribute.html
joystick name: Sony Interactive Entertainment Wireless Controller
button pressed 0

button pressed 3

button pressed 2

button pressed 1

axis motion 0 -0.003936887722403638

axis motion 0 -0.003936887722403638

axis motion 4 0.003906369212927641

axis motion 4 -0.027466658528397473

In the following sections, we will learn how to read the event data in more detail.

Reading Linux joystick events

Using Pygame gave us a good introduction into interacting with joystick events in
Python and creating a graphical application, which we will be doing more in the com-
ing chapters. However, it is a library focused more on creating video games, so it is not
perfectly suitable for our needs. Luckily, on Linux, there is very good support for joy-
stick devices, and their event data can be directly read by Python applications. The ben-
efit of doing this is that we can avoid the overhead and complexity of running a whole
video game engine and can instead focus purely on the task at hand of reading joystick
events. We will parse the joystick event data and focus on handling joystick events on the
y-axis, which are the stick movements we are most interested in for our robot applica-
tion. We need to create an application to meet the following requirements:

The Python application should directly read Linux joystick events.

It should differentiate whether the event was a button-press or a stick move-
ment event.

It should filter axis events to handle only y-axis events on both sticks.

It should be able to calculate the direction and percentage of movement on the
y-axis.

94

75.1

CHAPTER 7 Joystick-controlled robots

Exploring the Linux input subsystem

To read the joystick event data, we first need to explore the Linux input subsystem.
The documentation (https://www.kernel.org/doc/html/latest/input/) is very com-
prehensive and will be the basis for our exploration and implementation. Everything
we are interested in is covered in the “Linux joystick support” chapter. From the docu-
mentation, we can see that each connected joystick is exposed as a device file on the
filesystem. This is a common approach on Unix systems. The joystick devices are auto-
matically created when joysticks are connected, and a common naming convention is
followed. This makes it easy to list them. The following terminal session shows how we
can list the joystick devices on a system:

$ 1ls /dev/input/js*
/dev/input/js0

From the output, we can see that one joystick is connected. If additional joysticks were
connected, they would be called /dev/input/jsl and /dev/input/js2. The docu-
mentation also covers the jstest command that can be used to connect to the joy-
stick in the terminal and see details of the generated joystick events. Run the following
line to install the command:

$ sudo apt install joystick

We can now run jstest to obtain a live view of the joystick events in our terminal:

$ jstest /dev/input/jso0
Driver version is 2.1.0.
Joystick (Wireless Controller)
has 8 axes (X, Y, Z, Rx, Ry, Rz, HatO0X, HatO0Y)
and 13 buttons (BtnA, BtnB, BtnX, BtnY, BtnTL, BtnTR, BtnTL2, BtnTR2,
BtnSelect, BtnStart, BtnMode, BtnThumbL, BtnThumbR) .
Testing ... (interrupt to exit)
Axes: 0:0 1:0 2:-32767 3:0 4:0 5:-32767 6:0 7:0
Buttons: O0:o0ff 1:0ff 2:0ff 3:0ff 4:0ff ©5:0ff 6:0ff
7:0ff 8:0ff 9:0ff 10:0ff 11l:0ff 12:0ff

From the output, we can see the different buttons and axes that have been detected.
We can see that all the buttons are off because none of them are pressed. Each button
has a specific number used to identify it. The value of each button is either on or off.
If we press and hold down the cross button on a PlayStation controller, we get the fol-
lowing output:

Buttons: O0O:on l:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
7:0ff 8:0ff 9:0ff 10:0ff 11l:0ff 12:0ff

We can see that the button number 0 is on, which means the cross button is mapped
to this button. If we now press the circle button, we will get the following output:

Buttons: O0O:off 1:on 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
7:0ff 8:0ff 9:0ff 10:0ff 11l:0ff 12:0ff

https://www.kernel.org/doc/html/latest/input/

7.5 Reading Linux joystick events 95

The output indicates the circle button is mapped to button number 1. If we continue
this process, it will show that the triangle button is mapped to button number 2, and
the square button is mapped to button number 3. We can make note of these map-
pings and use them in our application to map the button numbers to button labels. If
you are using an Xbox controller, you can follow the same procedure for the A, B, X,
and Y buttons.

Next, let’s explore the axes values. When nothing is pressed, we get the following
values:

Axes: 0:0 1:0 2:-32767 3:0 4:0 5:-32767 6:0 7:0

From the documentation, we can see that when the stick is in the center position, the
value of the axis is 0. When the stick is pushed to the furthest direction along a spe-
cific axis, the value is 32767, and when put in the opposite direction, it becomes
-32767. Other positions of the stick will be represented between these values, depend-
ing on how far the stick is from the center. We can see from the output that two axes
have a value of -32767, even though we are not moving the stick. The reason for this is
that these two axes are mapped to the trigger buttons on the controller, which have
hardware that can detect to what extent the button has been pressed, unlike the other
buttons on the joystick. We don’t need to use the triggers for our robot application, so
we can ignore them. If we push the right stick to the most forward position, we get the
following output:

Axes: 0:0 1:0 2:-32767 3:0 4:-32767 5:-32767 6:0 7:0

We can see that the y-axis for the right stick is mapped to axis number 4, which has the
value -32767. This means the forward position in the y-axis is mapped to the value
-32767. Let us now move the right stick to the furthest position backward and see the
results:

Axes: 0:0 1:0 2:-32767 3:0 4:32767 5:-32767 6:0 7:0

The same axis now has the value 32767. The backward position is mapped to the value
32767. By doing the same process for the x-axis on the right stick, we see it is mapped
to axis number 3. Similarly, we can discover that the left stick x-axis is mapped to axis
number 0, and the y-axis is mapped to axis number 1.

The documentation has an excellent section called “Programming interface” that
will give us everything we need to write our application. The general approach will be
to open the joystick device file in the binary mode and read a fixed length of bytes
from the device file. Each chunk of data we read is a single joystick event. The struc-
ture of the binary data we are reading is in the following format:

struct js_event

_u32 time; /* event timestamp in milliseconds */
__sle value; /* value */
__u8 type; /* event type */

__u8 number; /* axis/button number */

}i

96

7.5.2

CHAPTER 7 Joystick-controlled robots

Python has a built-in module to read binary data in the Clanguage struct format and
convert it to its related Python value. At this stage, we just need to make note of the
data types and their meanings. The first value is a time stamp that we won’t need.
Then, value will have the same button and axis values we saw using the jstest com-
mand. By inspecting type, we can tell whether the event is a button or an axis event.
The documentation states that for the type variable, button events will have a value of
1 and axis events will have a value of 2. Finally, number indicates which button or axis
the event is for in the same way we saw for the jstest output. Now, we have all the
required information to put together our implementation.

Unpacking joystick events

This script will have the core logic of reading joystick events from the Linux input sub-
system and converting the event data to Python. We will import the struct module
that is part of the Python standard library. This module provides the functionality to
convert C structs data to Python values:

from struct import Struct
We then save the path to the joystick device file in a variable called DEVICE:
DEVICE = '/dev/input/jso0'

We now define the function main, which first creates a struct object and saves it in
the event_struct variable. The Python documentation for the struct module shows
how to map different C data types. The first value is a u32, which is an unsigned inte-
ger of the 32-bit length, and so it maps to I. The next value isa __si16, which is a 16-bit
integer and thus maps to h. Finally, the last two values are both us, which is an 8-bit
integer and thus maps to B. This makes the struct object created with the format
'I h B B.' We now open the device file with the mode 'rb' so that the file can be
opened for reading in the binary mode. We then enter into a while loop that continu-
ously reads event data from the device file. Next, we read the event_struct.size
number of bytes from the file and save it into the bytes variable. This value is the
exact size of the C structs data in bytes. By reading this exact size, we are reading a
single joystick event in each loop. Next, we use the unpack method to convert the data
in bytes to a set of Python values that are saved in data. Then, we save each part of the
event data into individual variables. Finally, we print out value and number when a
button press event is detected, which correlates to type being 1:

def main() :
event struct = Struct('I h B B')
with open(DEVICE, 'rb') as js device:
while True:
bytes = js_device.read(event_ struct.size)
data = event struct.unpack (bytes)
time, value, type, number = data
if type ==
print (f'value:{value} number: {number}')

7.5.3

7.5 Reading Linux joystick events 97

The last line of the application calls the main function:
main ()

The full script can be saved as joystick_unpack.py on the Pi and then executed.

Listing 7.3 joystick unpack.py: Unpacking raw joystick events on Linux

#!/usr/bin/env python3
from struct import Struct

DEVICE = '/dev/input/js0'

def main() :
event struct = Struct('I h B B')
with open(DEVICE, 'rb') as js_device:
while True:
bytes = js_device.read(event_ struct.size)
data = event_struct.unpack (bytes)
time, value, type, number = data
if type == 1:
print (f'value: {value} number:{number}')

main ()

The output shows a session where the script was run and then the cross and circle but-
ton were pressed. The first two lines of output relate to the cross button that has
number:0 as its button number. We can see that the value for the button changes
from 1 to 0 as it is pressed and then released. The last two lines show the same, except
with number: 1, which indicates the circle button being pressed and released:

$ joystick unpack.py
value:1 number:0

value:0 number:0
value:1 number:1
value:0 number:1

Mapping joystick events

The next step is mapping the values in the events to more readable names for the but-
tons and axes, as well as the event types. This will make our code more readable and
provide us with the ability to produce more readable output in the terminal. We will
also create a dedicated function that will be called to handle joystick events as we
receive them.

We will import the namedtuple object from the collections module, which is part
of the Python standard library. This object provides a great way to convert a Python
tuple object to a more readable namedtuple:

from collections import namedtuple

We save the values for button and axis type events in TYPE_BUTTON and TYPE AXIS. We
use a dictionary to map the name of each button in the BUTTON variable. The first

98

CHAPTER 7 Joystick-controlled robots

version of BUTTON has the mapping for the PlayStation controller, while the second
commented-out version has the mapping for the Xbox controller. You can use either
one as needed. Then, we create a dictionary called AXIs to obtain the name of an axis
for axis events:

TYPE_ BUTTON 1

TYPE AXIS = 2
BUTTON = {0: 'cross', 1: 'circle', 2: 'triangle', 3: 'square'}
BUTTON = {0: 'A', 1: 'B', 2: 'X', 3: 'Y'}

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}

A namedtuple called Event is created, and it will be used to save event data in a more
readable data structure:

Event = namedtuple('Event', 'time, value, type, number')

The main function is largely the same as the previous script. The main difference is
that an Event object is created for each new event, and then the handle_event func-
tion is called with this object:
def main() :

event struct = Struct('I h B B')

with open(DEVICE, 'rb') as js_device:

while True:
bytes = js_device.read(event_struct.size)

event = Event (*event struct.unpack (bytes))
handle event (event)

When the handle_event function encounters a button event, it will look up the name
of the button using the BUTTON dictionary. We use the get method so that if a button we
haven’t defined is pressed, it doesn’t cause an error; instead, the None value is returned.
In this way, we can define the names of buttons we care most about. We then output to
the terminal that a button event was encountered and provide the button name and
dump of the event variable. When an axis event is detected, the name of the axis is
retrieved, and similar details of the axis name and event variable are outputted:

def handle event (event) :

if event.type == TYPE BUTTON:
name = BUTTON.get (event .number)
print ('button -', name, event)
if event.type == TYPE AXIS:
name = AXIS.get (event.number)
print ('axis -', name, event)

The full script can be saved as joystick_map.py on the Pi and then executed.

Listing 7.4 joystick map.py: Map joystick events to button and axis names

#!/usr/bin/env python3
from struct import Struct
from collections import namedtuple

7.5.4

7.5 Reading Linux joystick events 99

DEVICE = '/dev/input/js0'

TYPE BUTTON = 1

TYPE AXIS = 2

BUTTON = {0: 'cross', 1: 'circle', 2: 'triangle', 3: 'square'}
BUTTON = {0: 'A', 1: 'B', 2: 'X', 3: 'Y'}

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}

Event = namedtuple('Event', 'time, value, type, number')

def handle_ event (event) :

if event.type == TYPE BUTTON:
name = BUTTON.get (event.number)
print ('button -', name, event)
if event.type == TYPE AXIS:
name = AXIS.get (event.number)
print ('axis -', name, event)
def main() :

event struct = Struct('I h B B')
with open(DEVICE, 'rb') as js_device:
while True:
bytes = js_device.read(event_ struct.size)
event = Event (*event struct.unpack (bytes))
handle event (event)

main ()

The following session shows the output when the cross and circle buttons are pressed.
Then, the right stick is moved along the y and the xaxes. Finally, the left stick is
moved again on both the axes:

$ joystick map.py

button - cross Event (time=16675880, value=1l, type=1l, number=0)
button - cross Event (time=16676010, value=0, type=1, number=0)
button - circle Event (time=16676400, value=1l, type=1l, number=1)
button - circle Event (time=16676500, value=0, type=1l, number=1)
axis - right x Event (time=16677540, value=-1014, type=2, number=3
axis - right y Event (time=16677540, value=-1014, type=2, number=4

(
axis - right x Event (time=16677540, value=-2365, type=2, number=3
axis - right y Event (time=16677540, value=-2027, type=2, number=4
axis - right x Event (time=16677550, value=-3041, type=2, number=3

)
)
)
)
)
)

axis - right y Event (time=16677550, value=-2703, type=2, number=4
axis - left x Event (time=16681520, value=7769, type=2, number=0)
axis - left_y Event (time=16681520, value=-19932, type=2, number=1)
axis - left x Event (time=16681520, value=5067, type=2, number=0)
axis - left_y Event (time=16681520, value=-12500, type=2, number=1)
axis - left x Event (time=16681530, value=0, type=2, number=0)

axis - left_y Event (time=16681530, value=-2365, type=2, number=1)

Working with axis events

We can now delve more deeply into the axis events and calculate the direction and
how far the stick was moved. For controlling the robot, we only care about the stick
moving on the yaxis, so we will only focus on the events on that axis. The MAX VAL

100

CHAPTER 7 Joystick-controlled robots

variable can be used so that we can compare the stick position to the maximum possi-
ble value to calculate the percentage of movement:

MAX VAL = 32767

The handle_event function has been changed to only focus on axis events. Once the
name of the axis is obtained, it is checked to make sure that it is either left_y or
right_y. In this way, only y-axis events are processed. The direction variable will keep
track of whether the stick is being pushed forward or backward. This value is calcu-
lated based on whether event.value is negative or positive. The absolute value of
event.value is taken and divided by MAX VAL to calculate the fractional position of
the stick away from center. This value is multiplied by a hundred and rounded to two
decimal points to express it as a percentage. These three variables are then outputted
to the terminal:

def handle event (event) :
if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name in ['left y', 'right y']:
direction = 'backward' if event.value > 0 else 'forward'
percent = round((abs(event.value) / MAX VAL) * 100, 2)
print (name, direction, percent)

The full script can be saved as joystick_axis.py on the Piand then executed.

Listing 7.5 joystick axis.py: Controlling direction and movement percentage

#!/usr/bin/env python3
from struct import Struct
from collections import namedtuple

DEVICE = '/dev/input/jso0'

TYPE _AXIS = 2

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}
MAX VAL = 32767

Event = namedtuple('Event', 'time, value, type, number')

def handle_ event (event) :
if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name in ['left y', 'right y']:
direction = 'backward' if event.value > 0 else 'forward'
percent = round((abs(event.value) / MAX VAL) * 100, 2)
print (name, direction, percent)

def main() :
event struct = Struct('I h B B')
with open (DEVICE, 'rb') as js_device:
while True:
bytes = js_device.read(event_ struct.size)

7.6

7.6 Measuring the rate of joystick events 101

event = Event (*event_ struct.unpack (bytes))
handle event (event)

main ()

The following session shows the output generated during script execution when the
right stick is moved forward to the fullest position and then back to center. The right
stick is then moved backward a bit and back to center. Finally, the left stick is also
moved forward and backward:

$ joystick axis.py
right y forward 13.4
right y forward 40.21
right y forward 79.38
right_y forward 100.0
right y forward 95.88
right y forward 35.05
right y forward 0.0
right y backward 18.56
right y backward 48.45
right y backward 22.68
right y backward 9.28
right y forward 0.0
left_y forward 29.9
left y forward 56.7
left_y forward 83.51
left_y forward 100.0
left y forward 97.94
left_y forward 86.6
left_y forward 28.87
left y forward 0.0
left_y backward 16.5
left_y backward 28.86
left_y backward 41.24
left_y backward 19.59
left_y forward 0.0

Measuring the rate of joystick events

The sensors on the analog sticks are extremely sensitive and can detect hundreds of
different positions. Such sensitivity generates a very high rate of joystick events per
second. We want to be mindful of this, as it could flood our robot with requests to
change the throttle on the motors even for very small changes in stick positions. In
the motor module, we have included three levels of speed. We can apply a similar
approach to solve our joystick problem by calculating three levels of joystick position
for each direction and only requesting a robot movement when one of these levels has
changed. Each of the levels will be directly correlated with a speed level.

Another common solution used with joysticks is creating a configurable joystick
dead zone. This dead zone is how far the stick needs to be moved from the neutral
position before the application will treat it as a movement.

We will write a script to measure and report how many axis events are generated per
second so thatwe can quantify the problem. Then, we will enhance the script to calculate

102

7.6.1

CHAPTER 7 Joystick-controlled robots

changes on three defined levels and the rate at which the levels change. With these mea-
surements, we will have data to conclude whether this solution solves the problem. The
script will focus only on the y-axis on a single stick to make implementation and mea-
surement simpler. The application will need to meet the following requirements:

A Python application should read 100 axis events and record the time taken.
The event rate should be calculated as new events per second.

The level rate should be calculated as new levels per second.

Only axis movements on the right-stick y-axis should be recorded.

Calculating the event rate

The initial task at hand will be to calculate the number of new axis events per second.
The script will build on the work from the script in the previous section. We will import
the sys module so that we can exit the script when all measurements have been taken.
The time module is imported to measure the time. The SimpleNamespace object is
imported from the types module and will be used to keep track of our statistical data:
import sys

import time
from types import SimpleNamespace

The main function is very similar to what we have seen in the previous script, with
some small additions. The data variable will keep track of the number of events
encountered so far and the start time of the first event:

def main() :

data = SimpleNamespace (events=0, start=None)

event struct = Struct('I h B B')

with open(DEVICE, 'rb') as js device:

while True:

bytes = js_device.read(event_ struct.size)
event = Event (*event struct.unpack (bytes))
handle event (event, data)

The handle_event will check for any yaxis events on the right stick. Each time it
detects one, it will call the update_counter function so that it can update the counter
statistics:

def handle event (event, data):

if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name == 'right y':

update_ counter (data)

The update counter function increments the data.events counter variable to
record the new event. The number of counted events is then outputted. If this is the
first event encountered, then the starting time of the sample is saved in the
data.start variable. If a hundred samples have been collected, then the stop_
counter function is called to end measurement and report the results:

7.6 Measuring the rate of joystick events 103

def update_ counter (data) :
data.events += 1

print ('events:', data.events)
if data.events == 1:

data.start = time.perf counter()
if data.events == 100:

stop_counter (data)

The stop_counter function first calculates how much time has elapsed while count-
ing the new events and saving the results in duration. Then, the number of new
events per second is calculated and saved in event_rate. Finally, the time taken, total
number of events, and event rate are printed, and the script is exited:

def stop counter (data) :

duration = time.perf counter() - data.start
event rate = data.events / duration
print('---------- STATS ---------- ')

print (£ time: {duration:0.3f}s")
print (£ events: {data.events}')

print (f'event rate: {event rate:0.1f}')
sys.exit ()

The full script can be saved as joystick_stats.py on the Pi and then executed.

Listing 7.6 joystick stats.py: Collecting and reporting joystick statistics

#!/usr/bin/env python3

import sys

import time

from struct import Struct

from collections import namedtuple
from types import SimpleNamespace

DEVICE = '/dev/input/js0'

TYPE AXIS = 2

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}
MAX VAL = 32767

Event = namedtuple('Event', 'time, value, type, number')

def stop counter (data) :

duration = time.perf counter() - data.start
event rate = data.events / duration
print('---------- STATS ---------- ")

print (£ time: {duration:0.3f}s")
print (£ events: {data.events}')

print (f'event rate: {event rate:0.1f}')
sys.exit ()

def update counter (data) :
data.events += 1
print ('events:', data.events)
if data.events == 1:
data.start = time.perf counter()

104 CHAPTER 7 Joystick-controlled robots

if data.events == 100:
stop_ counter (data)

def handle event (event, data):

if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name == 'right y':

update_ counter (data)

def main() :

data = SimpleNamespace (events=0, start=None)

event struct = Struct('I h B B')

with open(DEVICE, 'rb') as js_device:

while True:

bytes = js device.read(event struct.size)
event = Event (*event struct.unpack (bytes))
handle_event (event, data)

main ()

When you execute the script, take the right stick and continually push it forward and
backward until 100 events have been detected. Then, the script will exit and print the
measurement results. The session shows the results of axis measurements that were
taken. As expected, the number of events per second is quite high for our purposes
and could pose a challenge for our robot motor server to keep up with if we send a
throttle request for every stick movement:

$ joystick stats.py

events: 1

events: 2
events: 3

events: 98
events: 99
events: 100
—————————— STATS ----------
time: 0.722s
events: 100
event rate: 138.5

7.6.2 Calculating the level rate

We can now enhance our script to calculate the three different levels of the stick posi-
tion for each direction of movement along the y-axis. Then, we can calculate the num-
ber of new levels per second.

The data variable has some additional attributes to keep track of the number of
new levels and the last level that was encountered. The rest of the function is
unchanged:

def main() :
data = SimpleNamespace (events=0, levels=0, last level=0, start=None)
event struct = Struct('I h B B')
with open(DEVICE, 'rb') as js device:
while True:

7.6 Measuring the rate of joystick events 105

bytes = js_device.read(event_ struct.size)
event = Event (*event struct.unpack (bytes))
handle_ event (event, data)

The handle_event function will calculate the level by taking the distance the stick has
moved from the center and dividing it by three. This value is then saved in the level
variable and given to the update_counter function when called:

def handle_ event (event, data):

if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name == 'right y':

level = round((event.value / MAX VAL) * 3)
update counter (data, level)

The update_counter function will now also increment data.levels every time a new
level is encountered. On each call, the event and level counts are printed. The rest of
the logic in the function remains the same:

def update counter(data, level):
data.events += 1
if data.last_level != level:
data.last level = level
data.levels += 1

print ('events:', data.events, 'level:', level)
if data.events ==

data.start = time.perf counter()
if data.events == 100:

stop counter (data)

The stop_counter function will now also calculate the level rate and output the rate
and total number of new levels encountered:

def stop counter (data) :
duration = time.perf counter() - data.start
event rate = data.events / duration
level rate = data.levels / duration

print ('---------- STATS ---------- ")
print (£' time: {duration:0.3f}s')
print (£ events: {data.events}')
print (f'event rate: {event rate:0.1f}')
print (£' levels: {data.levels}')
print (f'level rate: {level rate:0.1f}')
sys.exit ()

The full script can be saved as joystick_levels.py on the Pi and then executed.

Listing 7.7 joystick levels.py: Applying levels to joystick movements

#!/usr/bin/env python3
#!/usr/bin/env python3
import sys

import time

from struct import Struct

106 CHAPTER 7 Joystick-controlled robots

from collections import namedtuple
from types import SimpleNamespace

DEVICE = '/dev/input/js0'

TYPE AXIS = 2

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}
MAX VAL = 32767

Event = namedtuple('Event', 'time, value, type, number')

def stop counter(data) :
duration = time.perf counter() - data.start
event rate = data.events / duration
level rate = data.levels / duration

print ('---------- STATS ---------- ")

print (£' time: {duration:0.3f}s"')

print (£’ events data.events}')

print (f'event rate event rate:0.1f}"')
(

A
A
A
A

print (£' levels: {data.levels}"')
print (f'level rate level rate:0.1f}")
sys.exit ()

def update counter (data, level):
data.events += 1

if data.last_level != level:
data.last level = level
data.levels += 1
print ('events:', data.events, 'level:',6 level)
if data.events == 1:
data.start = time.perf counter()
if data.events == 100:

stop counter (data)

def handle event (event, data):

if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name == 'right y':

level = round((event.value / MAX VAL) * 3)
update_counter (data, level)

def main() :

data = SimpleNamespace (events=0, levels=0, last_level=0, start=None)

event struct = Struct('I h B B')

with open(DEVICE, 'rb') as js_device:

while True:

bytes = js_device.read(event_struct.size)
event = Event (*event struct.unpack (bytes))
handle_event (event, data)

main ()

We can now execute the new script and move the right stick again until 100 events
have been detected. The session shows the results of event measurements that were
taken again with level measurements being calculated this time. We can see from the

7.7

7.7.1

7.7 Moving robots with joysticks 107

results that the level rate of 10.3 is 14 times lower than the event rate of 146.6. By only
sending robot movement requests when levels have changed instead of on every
event, we can make very significant improvements on the request load on our robot
motor server. With this performance enhancement, we still support all the three
motor speed levels and will be able to provide a responsive experience for using the
joystick across the network to move the robot:

$ joystick levels.py

events: 1 level: 0

events: 2 level: 0
events: 3 level: 0

events: 98 level: -3

events: 99 level: -3
events: 100 level: -3
—————————— STATS ----------

time: 0.682s
events: 100
event rate: 146.6
levels: 7
level rate: 10.3

Moving robots with joysticks

We now have what we need to connect our joystick to our robot. The task at hand is to
create an application that will meet the following requirements:

We should create a Python application that moves the right motor forward and
backward when the right stick moves forward and backward.

The left motor should be moved based on leftstick movements in the same
fashion.

The joystick application should send the movement requests over HTTP to the
robot server running the robows server.

Creating the joystick client

All the logic to send movement requests to the robows server is taken from
client_persist.py in listing 5.6. The json and http.client modules are imported
to make the needed HTTP requests. The Struct and namedtuple objects are
imported to help in reading the joystick event data:

import json

from http.client import HTTPConnection

from struct import Struct
from collections import namedtuple

The MOTOR_AXIS dictionary is used to map the joystick axis to its associated motor on
the robot. The left stick y-axis maps to the left motor, and the right stick y-axis maps to
the right motor:

MOTOR_AXIS = dict(left_y='L', right y='R')

108

CHAPTER 7 Joystick-controlled robots

The main function is very similar to the ones we saw previously in this chapter. An
HTTP connection to the robot server is made and saved in HTTPConnection. Then, a
dictionary called data is created to keep track of the position levels on the left and
right sticks y-axis. The rest of the function is unchanged:

def main() :
conn = HTTPConnection ('robopi:8888")
data = dict(left_y=0, right y=0)
event struct = Struct('I h B B')

with open (DEVICE, 'rb') as js_device:
while True:
bytes = js device.read(event struct.size)
event = Event (*event struct.unpack (bytes))

handle_event (event, data, conn)

The handle event function will be called each time a new event is detected. It will
check whether the event is an axis event on the y-axis of either the stick or right stick.
If so, it will then calculate the level of the stick from the center position. The previous
level is compared, and if the level has changed, it will then prepare to make a change
to the throttle on the robot motor. The new level is saved in data. The name of the
motor to move is looked up using MOTOR_2AX1S. The value of factor is calculated based

on whether the level is positive or negative
turned in the forward or backward direction
be based on the absolute value of the level
nary called args. The call_robot function
set_throttle on the robot server is made:
def handle event (event, data, conn):

if event.type == TYPE AXIS:
name = AXIS.get (event.number)

. This will dictate whether the motor is
. The speed of the motor movement will
. These arguments are saved in a dictio-
is then called so that a request to call

if name in ['left y', 'right y']:

level = round((event.value / MAX VAL) * 3)

if datal[name] != level:
print ('level change:', name, level)
data[name] = level
motor = MOTOR_AXIS [name]
factor = 1 if level <= 0 else -1
args = dict (name=motor, speed=abs(level), factor=factor)

call robot (conn,

The call api and call robot functions are

'set throttle',

**3rgs)

as presented in chapter 5. They will send

an HTTP request to the robot server to request changes in the motor throttle:

def call api(conn, url, data):
body = json.dumps (data) .encode ()

conn.request ('POST', url, body)
with conn.getresponse() as resp:
resp.read ()
def call robot (conn, func, **args):

return call api(conn, '/' + func,

args)

7.7 Moving robots with joysticks 109

The full script can be saved as joystick_remote.py on the Pi and then executed.

Listing 7.8 joystick remote.py: Remotely controlling the robot motors

#!/usr/bin/env python3

import json

from http.client import HTTPConnection
from struct import Struct

from collections import namedtuple

DEVICE = '/dev/input/js0"

TYPE AXIS = 2

AXIS = {0: 'left x', 1: 'left y', 3: 'right x', 4: 'right y'}
MOTOR AXIS = dict (left y='L', right y='R')

MAX VAL = 32767

Event = namedtuple('Event', 'time, value, type, number')

def call api(conn, url, data):
body = json.dumps (data) .encode ()
conn.request ('POST', url, body)
with conn.getresponse() as resp:
resp.read()

def call robot (conn, func, **args):
return call api(conn, '/' + func, args)

def handle_ event (event, data, conn):
if event.type == TYPE AXIS:
name = AXIS.get (event.number)
if name in ['left y', 'right y']:
level = round((event.value / MAX VAL) * 3)
if data[name] != level:
print ('level change:', name, level)
data[name] = level
motor = MOTOR_AXIS [name]
factor = 1 if level <= 0 else -1
args = dict (name=motor, speed=abs(level), factor=factor)
call_robot (conn, 'set_ throttle', **args)

def main() :

conn = HTTPConnection ('robopi:8888")

data = dict(left_y=0, right y=0)

event struct = Struct('I h B B')

with open (DEVICE, 'rb') as js_device:

while True:

bytes = js_device.read(event_ struct.size)
event = Event (*event_struct.unpack (bytes))
handle event (event, data, conn)

main ()

As was done in chapter 5, make sure to keep the robows server running in one termi-
nal and then run this script in another. In the following session, we can see the output

110

CHAPTER 7 Joystick-controlled robots

from the script. The right stick was pushed all the way forward and then brought back
to center to make the right motor move forward. Then, the right stick was pulled

backward and returned to center to make the right motor turn backward. Finally,

both the right and left sticks were pushed forward together to make both motors drive
forward, and then both were returned to center to make the robot come to a full stop:

$ joystick remote.py

level change: right y -1
level change: right y -2
level change: right y -3
level change: right y -2
level change: right y -1
level change: right y 0
level change: right y 1
level change: right y 2
level change: right y 3
level change: right y 2
level change: right y 1
level change: right y 0
level change: left y -1
level change: left y -2
level change: left y -3
level change: right y -1
level change: right y -2
level change: right y -3
level change: right y 0
level change: left y -1
level change: left y 1
level change: left y 0

Robots in the real world: Remote forklift operators

A number of robotics startup companies have begun providing services for vehicles
such as forklifts to be operated remotely. The remote driver can see the area around
the vehicle using multiple cameras and drive the forklift using a joystick controller.
This opens the potential to match drivers from many remote locations to different
sites, which has become an important technology for addressing shortages in heavy
vehicle drivers. The BBC article (https://www.bbc.com/news/business-54431056)
on the subject mentions many of the opportunities this approach offers, as well as
the risks.

Safety features, such as having microphones on the vehicles so that remote drivers
can hear if anyone around the vehicle is calling for them to stop the vehicle, are
essential. Security measures are also put in place at the software and network levels
to prevent unauthorized access to the vehicles by malicious parties.

https://www.bbc.com/news/business-54431056

Summary 111

Summary
Joysticks offer superior control over keyboards and mice when used to control
the motors of a robot.
The joystick hardware can be connected to the Raspberry Pi using either a
wired USB or a wireless Bluetooth connection.
The struct Python module can be used to directly read and parse joystick
events from the Linux input subsystem.
Pygame is a very popular Python module used for writing video games.
Linux provides very good support for joystick devices, and their event data can
be read directly by Python applications.
The sensors on the analog sticks of the controller are extremely sensitive and
can detect hundreds of different positions.
To remotely control the robot motors, the joystick application must send move-
ment requests over HTTP to the robot server running the robows server.

Keyboard-controlled
camera

This chapter covers

= Capturing images and streaming live videos from
the camera

= Drawing shapes and writing text using the
OpenCV library

= Moving servo motors to specific angles and
positions

= Using keyboard events in OpenCV to make servo
movements

In this chapter, we will build a robot with a camera attached to two servo motors.
One servo will allow us to pan the camera, and the other will apply a tilt motion. In
this way, we can point the camera in many different directions. In addition, we will
detect and use keyboard events to move the motors in different directions and cap-
ture and save photos from the live camera stream.

We have explored the use of touch screens on mobile devices and joysticks as
human interaction devices. Now we will use a keyboard to control our robot move-
ments and camera. Keyboards are one of the oldest and most established input

112

8.1

8.2

8.2 Software stack 113

devices. Compared to joysticks, they come with every desktop computer and laptop
and have excellent built-in support in most software, not requiring much additional
effort. This makes them an excellent alternative to joysticks when we either don’t want
to add additional hardware requirements or just want to simplify our device handling.

Hardware stack

Figure 8.1 shows the hardware stack, with the specific components used in this chapter
highlighted. The camera can be directly connected to the Raspberry Pi using the cam-
era connector. The camera used in this chapter is the Raspberry Pi Camera Module 2.

[JoystickIKeyboardIMouse]
[NeopierI bC IServo] i i i i
motor

[CRICKIT ICameraIEthemet Wi-Fi [Bluetooth USB

Figure 8.1 Hardware stack: the
Raspberry Pi camera and servo will be controlled
using the keyboard.

The servo motors are part of a Pan-Tilt Kit that comes fully assembled. The camera
will be mounted to this kit. For further details on the robot assembly, check the robot
assembly guide in appendix C. It shows how to assemble the robot used in this chap-
ter. Also, make sure to check the hardware purchasing guide in appendix A before
buying the hardware needed in this chapter. Any keyboard can be used for the robot;
whether it is a USB or Bluetooth keyboard, there are no special requirements.

Software stack

Details of the specific software used in this chapter are described in figure 8.2. The
draw and snapshot applications in this chapter will use the OpenCV and NumPy
libraries to capture images from the camera and draw shapes and write text on

[Application I draw, snapshot, sweep, pan]
[Libraries I OpenCV, NumPy]
[Python I datetime, time]
[Linux I Linux kernel video subsystem]
Figure 8.2 Software stack: the
[Hardware I Camera, servo motors] OpenCYV library will capture images

from the camera.

114

8.3

83.1

CHAPTER 8 Keyboard-controlled camera

images. We will also learn how to read keyboard events using the OpenCV library and
perform actions such as taking photos when specific keyboard events are detected.
The OpenCV library will be used to interact with the Linux kernel video subsystem to
capture images from the camera hardware. The sweep and pan applications come
later in the chapter and will let us control the servo motor hardware, as well as take
photos with the camera.

Capturing images using OpenCV

OpenCV is a very popular and powerful computer vision library. We will use it to inter-
act with the camera to show a live video stream and save snapshots. In later chapters,
we will expand our usage to perform face detection and QR code detection and
decoding. We need to create an application to meet the following requirements:

A Python application that uses the OpenCV library to show a live video feed
from the camera should be created.

It should be possible to save a snapshot image with a time stamp whenever the
user presses the spacebar.

A text message should be displayed every time an image is saved.

The application should terminate whenever we press the Esc key or the letter Q.

We are creating this application to have some fundamental pieces in place that we can
use to build more complex applications. Interacting with live video from the camera
will give us exposure to the camera frame rates and prepare for face and QR code
detection from a live video feed. Doing all these operations using OpenCV is strategic,
as it is the library of choice for computer vision in Python.

Exploring the OpenCYV library

To work with the camera in OpenCV, we will first have to enable legacy camera sup-
port on the Raspberry Pi. Use the raspi-configin a terminal and enable the Legacy
Camera option in the Interface
Options menu. Figure 8.3 shows a
photo of the Raspberry Pi Camera
placed in an Adafruit camera case to
protect it and make it easier to attach
to the robot.

The OpenCV library uses the
Python NumPy library heavily. The
NumPy user guide (https://numpy
.org/doc/stable/user/) is an excel-
lent resource for NumPy manage-
ment offering details on the
installation procedure. As per the

n
cu

E£305654 PA®
K02 J4V-0
22 942

(*)
3
Ea-
e
@
a
-
=

Figure 8.3 Raspberry Pi camera: the camera is guide, it requires the 1libatlas
enclosed in an Adafruit camera case. -base-dev package to be installed

https://numpy.org/doc/stable/user/
https://numpy.org/doc/stable/user/
https://numpy.org/doc/stable/user/

8.3 Capturing images using OpenCV 115

before NumPy. OpenCV requires the 1ibgtk2.0-dev package to support its graphical
interface features. Run the following command to install these two packages:

$ sudo apt install libatlas-base-dev libgtk2.0-dev

We can now install OpenCV with the following command:
$ ~/pyenv/bin/pip install opencv-python

The same command also installs NumPy automatically, as it is an adjunct of OpenCV.
OpenCV has a large code base, and its installation on the Raspberry Pi can take up to
70 min to complete; keep this in mind when you perform the installation.

We can now dive right into a REPL session and start interacting with OpenCV and
the camera. We start our adventure by first importing cv2 and calling videoCapture
with 0 as an argument to open the default camera. We save the videoCapture object
in a variable called cap:

>>> import cv2
>>> cap = cv2.VideoCapture (0)

We can check whether the camera was initialized correctly and is open by calling the
isOpened method. It will return True if the camera was initialized correctly:

>>> cap.isOpened/()
True

We can also inquire about different properties relating to the video capture device.
The following session shows that the size of images to be captured is set at the width
640 and height 480. We can also check the frame rate of the video, which is set at 30
frames per second in our case:

>>> cap.get (cv2.CAP_PROP_FRAME WIDTH)
640.0

>>> cap.get (cv2.CAP_PROP_ FRAME HEIGHT)
480.0

>>> cap.get (cv2.CAP_PROP_FPS)

30.0

Next, we call the read method to grab and decode the next video frame. It will return
two values. The first is a Boolean value indicating whether the call was successful. The
second value is the image itself. By inspecting the value of ret, we can see that the call
was successful. If we check what data type frame is, we see it reported as a numpy
.ndarray. This data structure is at the heart of NumPy and provides an n-dimensional
array of data types that perform very efficiently:

>>> ret, frame = cap.read()

>>> ret

True

>>> type (frame)
<class 'numpy.ndarray'>

116

8.3.2

CHAPTER 8 Keyboard-controlled camera

Whenever we work with images in OpenCV, we will be using ndarray objects. There are
some useful attributes we can inspect to get more details about the image we have just
captured. The shape attribute is showing us that as expected, our image has a height of
480 and a width of 640. The last part showing 3 indicates thatitis a color image and has
the three color components: red, green and blue. The dtype indicates the data type of
each item in the array. The uints data type shows that each value is an 8-bit integer,
which relates to each color component being a value ranging from 0 to 255:

>>> frame.shape

(480, 640, 3)

>>> frame.dtype
dtype ('uint8')

We can now save our image data to disk by calling the imwrite method with our file-
name. This method will use the file extension to encode the image data in the
expected image format. Next, we will find an image called photo.jpg in our current
directory that is a snapshot taken from the camera:

>>> cv2.imwrite ('photo.jpg', frame)
True

Once we are done working with the camera, it is always a good idea to close the video
stream in a smooth fashion by calling the release method. We can see that the video
stream state is closed when we call isOpened after closing the capture device:

>>> cap.release ()

>>> cap.isOpened ()
False

This gave us some good exposure to both OpenCV and NumPy. We were able to get
familiar with the core objects and operations required for capturing images using
OpenCV.

Drawing shapes and displaying text with OpenCV

When performing computer vision activities such as facial detection, it is very useful to
be able to draw shapes, such as rectangles, over the exact parts of an image that has
been detected. Placing text on an image is another common drawing operation to dis-
play a message. We will write a script to call the main drawing functions in OpenCV
and demonstrate how they are used. First, we import the string module from the
Python standard library that we will use to display the lowercase letters. Then we
import the cv2 and numpy modules:

import string

import numpy as np
import cv2

Next, we define three colors as constants to be used for drawing our shapes. As in
most systems, colors are represented by their red, green, and blue elements. Most

8.3 Capturing images using OpenCV 117

systems use an RGB encoding, and it is important to keep in mind that the default
color encoding in OpenCV is BGR:
BLUE = (255, 0, 0)

GREEN = (0, 255, 0)
RED = (0, 0, 255)

To create a new image, we call np. zeros, which will create a new ndarray object filled
with zero values. When all the color components of an image have a zero value, the
color will be black. The shape of the array is the same as the one we used with the cap-
tured image from the camera. This array is a black-colored BGR image with a width
640 and height 480:

img = np.zeros (shape=(480, 640, 3), dtype=np.uints)

We can now start drawing shapes on the image. The next line will draw a red circle
with a radius of 100 px centered at the (X, y) coordinates (200, 110):

cv2.circle(img, center=(200, 110), radius=100, color=RED)

Next, we draw a green line from the top-left part of the image at coordinates (0, 0) to
the center of the circle at (200, 110):

cv2.line(img, ptl=(0, 0), pt2=(200, 110), color=GREEN)

We then call rectangle to draw a blue box under the circle with one cornerat (50, 250)
and the other at (350, 350). This creates a box with a width 300 and height 100:

cv2.rectangle (img, ptl=(50, 250), pt2=(350, 350), color=BLUE)

The last thing we will place on the image is some text by calling the putText function.
We will display the alphabet in lowercase letters using the FONT HERSHEY SIMPLEX font
at the position (10, 380) with a normal scale and the color red:

text = string.ascii_ lowercase
font = cv2.FONT HERSHEY SIMPLEX
pos = (10, 380)

cv2.putText (img, text, org=pos, fontFace=font, fontScale=1, color=RED)

The last two lines of the script will display the image and wait for a key to be pressed
before exiting the application:

cv2.imshow ('preview', img)
cv2.waitKey ()

The full script can be saved as draw.py on the Piand then executed.

Listing 8.1 draw.py: Drawing shapes of different sizes and positions using OpenCV

#!/usr/bin/env python3
import string

import numpy as np
import cv2

118

CHAPTER 8 Keyboard-controlled camera

BLUE = (255, 0, 0)
GREEN = (0, 255, 0)
RED = (0, 0, 255)

img = np.zeros (shape=(480, 640, 3), dtype=np.uints)

cv2.circle(img, center=(200, 110), radius=100, color=RED)
cv2.line(img, ptl=(0, 0), pt2=(200, 110), color=GREEN)
cv2.rectangle (img, ptl=(50, 250), pt2=(350, 350), color=BLUE)

text = string.ascii lowercase
font = cv2.FONT_HERSHEY SIMPLEX
pos = (10, 380)

cv2.putText (img, text, org=pos, fontFace=font, fontScale=1l, color=RED)

cv2.imshow ('preview', img)
cv2.waitKey ()

This script will create a window, so it needs to be run in an environment that supports
creating graphical windows. There are three options supported by OpenCV:

= Run the script directly on the Raspberry Pi in a desktop environment with a
connected keyboard, mouse, and monitor.

= Run the script remotely over VNC using a VNC viewer.

= Run the script remotely with SSH X11 forwarding using ssh roboe@robopi -X.

It is very handy to have multiple ways to run these graphical scripts, as you can choose
whichever approach best suits the hardware and software you have on hand. Figure
8.4 shows what the window and image generated by the script will look like.

Figure 8.4 Drawing shapes:
OpenCYV supports drawing shapes
and text on images.

Now that we have the fundamentals of drawing shapes using OpenCV out of the way,
we can move on to the next task at hand. In the next sections, we will use some of
these functions to help us display text in the application as we take snapshots.

8.3.3

8.3 Capturing images using OpenCV 119

Taking snapshots with OpenCV

We have now done enough exploration to create our camera application that will let
us take photo snapshots from the live camera video feed. We import datetime to help
us generate filenames with time stamps. We also import the OpenCV module:

from datetime import datetime
import cv2

For readability, we save the key code for the escape key in a constant called Esc_KEY.
We also save the color code for blue and save the font we will use in FONT. When we dis-
play text messages in the application, we will position them in the top left corner using
TEXT_POS. We will be capturing and displaying images from the camera at the default
frame rate of 30 frames per second. We want to show our text messages for a specific
number of frames. We save this setting in a constant called MSG_FRAME_COUNT. It is set
at 10 frames, so it will show the messages for one-third of a second:

ESC_KEY = 27

BLUE = (255, 0, 0)
FONT = cv2.FONT HERSHEY SIMPLEX
TEXT _POS = (10, 30)

MSG_FRAME COUNT = 10

The function main is at the heart of our application. It opens the default camera as a
VideoCapture object in the variable cap. We then use the assert statement to make
sure the camera was initialized correctly; otherwise, we exit with a 'Cannot open
camera' message. The assert statement is a great way to ensure certain conditions
are met at different points in your program:

def main() :
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'

In the same function, we then initialize the messages variables as an empty list that
will store any text messages to be displayed in the application. Next, we enter our
main event loop that calls waitkey during each loop. In the previous section, we
called it with no arguments, so it would wait indefinitely until a key is pressed. Here,
we call it as waitKey (1), which will make it wait for 1 ms and return. If a key is pressed,
it will return the code of the pressed key; otherwise, it will return the value -1. Calling
waitKey also serves the important purpose of fetching and handling GUI events on
the window. We save the returned value using the Python walrus operator into the
variable key. We then check whether the key pressed is either the Esc key or the letter
Q. The loop is then exited:

messages = []
while (key := cv2.waitKey (1)) not in [ord('qg'), ESC_KEY]:

Once we enter the event loop, we capture an image from the camera and save it in
frame. Like before, we use assert to make sure our call to cap.read was successful. If
the space key was pressed, we call the save_photo function to save the image. We then

120

CHAPTER 8 Keyboard-controlled camera

call set_message to set the text message in the application to the value 'saving
photo. .. '. At the end of the loop, we call show_image to display the image. When the
loop is exited, cap.release is called to close the video capture stream:

ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
if key == ord(' '"):

save photo (frame)

set_message (messages, 'saving photo...')
show image (frame, messages)

cap.release()

Next, we define the function save_photo that receives the image data in an argument
called frame. We generate a time stamp using datetime.now().isoformat () and
replace all the occurrences of ':' with ' .. This is so that we can avoid putting the :
character in the image filename. Some software does not play well with filenames that
have colons in the filename. We then call imwrite to save the image data to the cur-
rent directory with a time-stamped file name:

def save_photo (frame) :
stamp = datetime.now() .isoformat () .replace(':', '.')
cv2.imwrite (f'photo_ {stamp}.jpg', frame)

We now define show_image to display the image with the given text in messages. If
messages has any text items, they are removed from the list by calling pop and are dis-
played on the image with putText. Then, the image is displayed by calling imshow:
def show_ image (frame, messages) :

if messages:

cv2.putText (frame, messages.pop (), TEXT POS, FONT, 1, BLUE)
cv2.imshow ('preview', frame)

The function set_message is defined next. It will take the argument text and will set
the contents of the messages list to be a list of the value text repeating 10 times as
defined in the MSG_FRAME_COUNT variable. This will display that message text for 10
frames.

def set message (messages, text):
messages[:] = [text] * MSG_FRAME_ COUNT

The full script can be saved as snapshot.py on the Pi and then executed.

Listing 8.2 snapshot.py: Taking a snapshot when the space key is pressed

#!/usr/bin/env python3
from datetime import datetime
import cv2

ESC _KEY = 27
BLUE = (255, 0, 0)
FONT = cv2.FONT HERSHEY SIMPLEX

8.3 Capturing images using OpenCV 121

TEXT_POS = (10, 30)
MSG_FRAME_COUNT = 10

def save photo (frame) :
stamp = datetime.now() .isoformat () .replace(':', '.")
cv2.imwrite (f'photo {stamp}.jpg', £frame)

def show_image (frame, messages) :
if messages:
cv2.putText (frame, messages.pop (), TEXT_POS, FONT, 1, BLUE)
cv2.imshow ('preview', frame)

def set message (messages, text):

messages[:] = [text] * MSG_FRAME COUNT
def main() :
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'
messages = []
while (key := cv2.waitKey(1l)) not in [ord('qg'), ESC_KEY]:

ret, frame = cap.read()
assert ret, 'Cannot read frame from camera’'
if key == ord(' "):

save_photo (frame)

set_message (messages, 'saving photo...'")
show_image (frame, messages)

cap.release ()
if _ name_ == "_ main_ ":

main ()

When you run this application, it will show a window with images being captured and
displayed at a rate of 30 frames per second, which will create a live video feed. You can
wave your hands at the camera

Rreview!(onirapop!)

to test the latency and response
of capturing and displaying the
images in the application.
Then, strike different poses and
press the spacebar to take snap-
shots of each. You will find each
photo saved in your current
directory. You can then exit the
application by pressing either
the Esc key or the Q key on
your keyboard. Figure 8.5 shows
what the snapshot application
will look like as a photo is being

saved. Figure 8.5 Taking a snapshot: a photo preview is shown

in the snapshot application.

122

8.4

84.1

CHAPTER 8 Keyboard-controlled camera

Moving a camera with servos

We will now combine OpenCV and the CRICKIT library by having OpenCV capture
images from the camera and the CRICKIT library issue movement instructions to the
servo motors. We need to create an application that meets the following requirements:

= Pressing the left and right keys will pan the camera with servos in that direction.

= Pressing the up and down keys will tilt the camera with the servos in that direc-
tion.

= Pressing the spacebar will save a snapshot image from the camera.

= Movement and snapshot actions should be displayed as text messages in the
application.

Creating this application will let us combine the camera and motor libraries we have
used so far to create an application that lets us control what the camera is pointing at
using our keyboard and motors. We get a live preview of what the camera is seeing and
then can use the keyboard to save snapshot images from the camera.

Exploring the servo motors with the CRICKIT library

Servo motors have a DC motor in them. They, however, also have a sensor built into
the hardware that can detect their exact position. So unlike the DC motors that we
have worked with in previous chapters, we can move servo motors to exact positions.
This makes them ideal for applications such as robotic arms, where you want to move
the arm to a specific place. The Pan-Tilt Kit that we will be using in this chapter comes
with two servo motors. Figure 8.6
shows a photo of the Pan-Tilt Kit.
With the camera attached to the Kkit,
we will be able to move the camera
in many different directions. The
bottom servo will pan the camera
left and right, while the top servo
will tilt the camera up and down. In
this way, we can use the motors to
point the camera in many different
directions. It can be difficult to move
the servos in their full range of
motion with the camera attached, as
the camera has a ribbon that isn’t
always long enough for all the posi-
tions the kit will get in. For this rea-
son, it is a good idea to remove the

camera when you first experiment

Figure 8.6 Adafruit Pan-Tilt Kit: the kit has two with the full range of motion the kit
servo motors included. provides.

8.4 Moving a camera with servos 123

We can use the read—evaluate—print loop (REPL) to dive right into the CRICKIT
library. We first import the crickit module:

>>> from adafruit crickit import crickit

The servo that will pan the kit is connected to the first servo connection and is
accessed using crickit.servo_1. We move the servo by setting the angle we would
like to position it in. By default, the CRICKIT library sets the lowest angle or position
of a servo as 0 degrees and the highest as 180 degrees. We can set the servo position by
setting a value to angle. Run the following in the REPL to move the servo to the low-
est angle:

>>> crickit.servo 1.angle = 0

Now we can move the motor to the middle position by setting the value to 90:
>>> crickit.servo 1l.angle = 90

If we set the value to 180, the servo will move to its highest position:

>>> crickit.servo_1.angle = 180

If we measure how far the physical servo actually moved, we will see it wasn’t 180
degrees. The pan servo we are using has an actual range that goes from 0 to 142
degrees. The CRICKIT library has a feature where we can set the actual real-world
value on a software level. Once we do this, the angle values we set in software will
match the real-world angle values. We now move the servo back to the lowest position
and then set the actuation range of the servo with the following lines:

>>> crickit.servo_1l.angle = 0
>>> crickit.servo_1l.actuation range = 142

We can again move the servo to the lowest, middle, and highest angles:

>>> crickit.servo 1l.angle = 0
>>> crickit.servo_1l.angle = 142
>>> 142/2

71.0

>>> crickit.servo_1l.angle = 71

If, however, we try to set a value beyond the actuation range, the library will raise a
ValueError exception to stop us:

>>> crickit.servo 1.angle = 180
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/robo/pyenv/lib/python3.9/site-packages/adafruit motor/

servo.py", line 136, in angle
raise ValueError ("Angle out of range")

ValueError: Angle out of range
>>>

124

8.4.2

CHAPTER 8 Keyboard-controlled camera

We can move the other servo as well to control the tilt position of the camera. The
lowest tilt position is correlated with the highest angle value of 180. Run the following
line to set this position:

>>> crickit.servo 2.angle = 180

The highest tilt position that would point the camera upward is correlated with the
angle value of 90:

>>> crickit.servo 2.angle = 90

Unlike the pan, the tilt is more limited in range, and we won’t need to set an actuation
range for it. We now have enough info to put together a script to move our servos in
different directions.

Going Deeper: Servo motors

The CRICKIT board supports many different servo motors. It can have up to four dif-
ferent servos connected at the same time. It is quite flexible in the types of servos
you can connect, as it supports any 5V-powered servo motor. The Adafruit online
store offers a wide range of servo motors (https://adafruit.com/category/232) in the
servo section of their store. The two servos that come as part of the Pan-Tilt Kit used
in the book are called micro servos. They are smaller and less powerful than other
servos. The strength of a servo is specified by the servo torque rating. Some of the
standard servo motors will have more than double the power of a micro servo.
Depending on the weight a servo must carry or push, you might want to get a larger
and more powerful servo.

The Motor Selection Guide (http://mng.bz/YRRB) on the Adafruit site is a great
resource for learning more about how servo motors work. It also provides good infor-
mation on the variety of sizes, torque, and speed ratings of different servo motors.

Performing a pan-and-tilt sweep

Ultimately, we want to control the servo pan and tilt movements with our keyboard
arrow keys. Something that will help us move in that direction would be to translate
up- and down-movement requests to their associated angle changes in the tilt servo.
Also, to do the same for the left and right movements on the pan servo, we will create
a script that issues a bunch of movement commands in those four directions and then
translates them to the needed servo angle changes. First, we import the crickit mod-
ule to control the servos and the time module to pause between movements:

from adafruit crickit import crickit
import time

We control how much of an angle change each movement will cause with ANGLE_STEP.
Then we define pPaAN and TILT as data structures for each servo. Each one is a dict that
uses servo to refer to its related servo motor, min to control the lowest allowed angle,

http://mng.bz/YRRB
https://adafruit.com/category/232

8.4 Moving a camera with servos 125

and max to set the highest allowed motor. In the dict, the value of start will place the
servo at that angle when the application starts, and range will be the value used to set
the actuation range for that servo. MOVE maps each of the four movements to the
related servo and the direction of movement for that servo:

ANGLE_STEP = 2

PAN = dict (servo=crickit.servo_ 1, min=30, max=110, start=70, range=142)
TILT = dict(servo=crickit.servo 2, min=90, max=180, start=180, range=180)
MOVE = dict(left=(PAN, -1), right=(PAN, 1), up=(TILT, -1), down=(TILT, 1))

When the script starts, we call init_motors to set the actuation range for each motor
and position the motor in the specified starting angle:
def init_motors():

for motor in [PAN, TILT]:

motor ['servo'] .actuation range = motor['range']
motor ['servo'] .angle = motor['start']

We now define move_motor that will be called with one of the four accepted move-
ments. It will then use the MOVE dictionary to look up the related servo and factor to
set which way the angle will be changed. Next, we calculate new_angle that indicates
what the new angle would be. We then check if the new angle is within the defined
range of min and max. If the new angle is allowed, we apply it by setting the value of
angle of the related servo:

def move motor (direction) :
motor, factor = MOVE[direction]
new_angle = motor(['servo'].angle + (ANGLE STEP * factor)
if motor['min'] <= new angle <= motor['max']:
motor['servo'] .angle = new_angle

The main function first calls init_motors to initialize each motor’s actuation range
and starting position. We then enter a loop for 20 iterations, making the camera move
left and up in each. We print out details of our movements in each loop and then
pause for 0.1 seconds before performing the next iteration of movements. The same
style of loop is performed again, but for the right and down movements:

def main() :
init_motors ()

for i in range(20) :
print ('moving left and up')
move motor ('left')
move motor ('up')
time.sleep(0.1)

for i in range(20) :
print ('moving right and down')
move motor ('right')
move_motor ('down')
time.sleep(0.1)

126

CHAPTER 8 Keyboard-controlled camera

The full script can be saved as pan.py on the Pi and then executed.

Listing 8.3 pan.py: Performing pan and tilt movements with the servo motors

#!/usr/bin/env python3
from adafruit crickit import crickit
import time

ANGLE STEP = 2

PAN = dict (servo=crickit.servo 1, min=30, max=110, start=70, range=142)
TILT = dict (servo=crickit.servo 2, min=90, max=180, start=180, range=180)
MOVE = dict (left=(PAN, -1), right=(PAN, 1), up=(TILT, -1), down=(TILT, 1))

def move motor (direction) :
motor, factor = MOVE[direction]
new_angle = motor['servo'].angle + (ANGLE STEP * factor)
if motor['min'] <= new_angle <= motor['max']:
motor ['servo'] .angle = new angle

def init motors():
for motor in [PAN, TILT]:
motor ['servo'] .actuation range = motor['range']
motor['servo'] .angle = motor['start']

def main() :
init_motors()

for i in range(20) :
print ('moving left and up')
move motor ('left')
move motor ('up')
time.sleep(0.1)

for i in range(20) :
print ('moving right and down')
move_motor ('right!')
move motor ('down')
time.sleep(0.1)

if name == " main ":
main ()

When we execute this script, it will run a movement demonstration of the servo move-
ments. The first set of movements will move the camera left and up 20 times until it
reaches the maximum position we have set for panning left. Then, we will move right
and down 20 times back to our starting position. The following session shows the out-
put generated by the script:

$ pan.py

moving left and up

moving left and up
moving left and up

8.4.3

8.4 Moving a camera with servos 127

moving right and down
moving right and down
moving right and down

Robots in the real world: Robotic arms

Servo motors are at the heart of robotic arms. The arms are made up of multiple
joints, which give the arm full freedom of movement. The servos in this chapter gave
the camera the ability to pan and tilt in any direction. In the case of robotic arms, four
servos at the different joints would be enough to give the arm a full range of motion.

The article (http://mng.bz/G99v) on robotic arms by Intel covers some of the many
benefits of using robotic arms in different industries, ranging from manufacturing to
agriculture. Older robotic arms were limited in their applications because of the lack
of computer vision in software. This means the arms could only pick up items placed
in exact locations and in a specific orientation. Combining robotics with powerful com-
puter vision software gave the robots the ability to detect the location of objects and
adjust to different orientations. The applications of robotics and computer vision go
hand in hand to make more versatile robotics solutions.

Controlling servos and the camera together

We can now pull all our work together and create the final application that will let us
move the camera around using our keyboard and take snapshots on command. We
start by importing the modules we need. We use datetime for time stamps like before,
cv2 to work with the camera and keyboard, and the crickit module to control the
servo motors. We will be able to reuse the functionality we have written in this chapter
by importing the needed functions from our snapshot and pan modules:

from datetime import datetime

import cv2

from adafruit crickit import crickit

from snapshot import save_ photo, show_image, set_message
from pan import move motor, init motors

The Esc_xev value is the key code for the Esc key, as we have seen before. The
ARROW_KEYS dictionary will be used to map the key codes for the arrow keys to their
related key names. The names of the keys also directly pair up with our four sup-
ported movement actions:

ESC_KEY = 27
ARROW KEYS = {81: 'left', 82: 'up', 83: 'right', 84: 'down'}

The handle_key function will handle any key press events that occur. If the key pressed
is the spacebar, the save_photo function will be called so as to save a snapshot. If one
of the arrow keys is pressed, the move_motor function will be called with the associated
key name that was pressed. After handling each of these key events, the set_message
function will be called to update the text message displayed in the application:

http://mng.bz/G99v

128

CHAPTER 8 Keyboard-controlled camera

def handle key(key, frame, messages) :
if key == ord(' '):
save_photo (frame)
set message (messages, 'saving photo...')
elif key in ARROW_KEYS.keys () :
move motor (ARROW_KEYS [key])
set message (messages, f'moving {ARROW KEYS[key]}...')

Finally, the main function will first call init_motors to initialize the servo motors.
Then, the video capture device will be created, and the messages list will be initialized.
At this point, we enter our main event loop, which loops until the Esc or Q key is
pressed. In each loop, a frame will be captured from the camera, and handle_key will
be called to process any keyboard events. The last part of the loop is to call show_image
to display the latest captured image and any text messages. When this loop is exited,
cap.release is called to release the video capture device:

def main() :
init_motors ()
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'

messages = []
while (key := cv2.waitKey (1)) not in [ord('g'), ESC_KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
handle key(key, frame, messages)
show_image (frame, messages)

cap.release()

The full script can be saved as servocam.py on the Pi and then executed.

Listing 8.4 servocam.py: Controlling camera position with a keyboard

#!/usr/bin/env python3

from datetime import datetime

import cv2

from adafruit crickit import crickit

from snapshot import save photo, show_image, set message
from pan import move motor, init motors

ESC_KEY = 27
ARROW_KEYS = {81: 'left', 82: 'up', 83: 'right', 84: 'down'}

def handle key(key, frame, messages):
if key == ord(' '):
save_photo (frame)
set message (messages, 'saving photo...')
elif key in ARROW _KEYS.keys () :
move_motor (ARROW_KEYS [key])
set message (messages, f'moving {ARROW KEYS[key]}...')

8.4 Moving a camera with servos 129

def main() :
init motors()
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'

messages = []
while (key := cv2.waitKey (1)) not in [ord('g'), ESC KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
handle key(key, frame, messages)
show image (frame, messages)

cap.release ()
main ()

When we run this script, the pan and tilt servos will move to their starting positions.
You can now press the left and right arrow keys to pan the camera. Pressing the up
and down keys will tilt the camera up and down. Experiment with panning and tilting
to the furthest acceptable positions. The script will detect and reach these limits safely
without going beyond the allowed servo angles. Press the spacebar at different angles
to take snapshots at different camera positions. Figure 8.7 shows the message that is
displayed when the tilt on the camera is moved upward.

Figure 8.7 Moving the camera: a
text message is shown when a
camera movement action is taken.

By creating this application, we have learned how to react to keyboard events to con-
trol our robot motor and camera hardware, perform motor movements, and capture
images from the camera using different keyboard control keys.

130

CHAPTER 8 Keyboard-controlled camera

Going Deeper: Robot kinematics

As you create robot projects that incorporate many servo motors acting as joints in a
robotic arm, the field of robot kinematics has become increasingly important. By cre-
ating a model that incorporates the length of each link in the robotic arm and where
each joint is, we can calculate at what angles to set each of our servos to move the
robotic arm into different positions.

Forward kinematics work by taking the angle of each servo joint and then calculating
where they would position the servo arm. Inverse kinematics work in reverse by taking
a desired end position of the robotic arm and calculating what joint movements are
required to get the arm into that position.

The Robotic Systems Guide (https://motion.cs.illinois.edu/RoboticSystems) by the
University of lllinois at Urbana-Champaign provides an excellent reference on the
topic of robot kinematics. Chapters 5 and 6 are dedicated to the topics of forward
and inverse kinematics. The mathematical equations behind these calculations are
presented with detailed visual diagrams of the robotic arms.

An interesting application of kinematics is creating a type of robot called a SCARA
robot that only moves in the X-Y direction. This limitation makes the kinematics cal-
culations simpler and requires fewer servo motors to create a functioning robot. The
SCARA robot project (http://mng.bz/z00B) on the Instructables website uses servo
motors like the ones covered in this book to create this robot. Only two servo motors
are required to move the robotic arm in the X-Y direction. One additional servo is
used to lower and raise the pen for drawing operations.

Summary

There is a dedicated servo to perform the tilt movement on the camera.

The OpenCV library is used to interact with the Linux kernel video subsystem.
The data structures in the NumPy library are heavily used in the OpenCV
library.
Placing text on an image is one of the common drawing operations to display a
message in an OpenCV application.
The Raspberry Pi camera will capture video images at the default frame rate of
30 frames per second.
Unlike DC motors, we can move servo motors to exact positions because of
their hardware sensors.

http://mng.bz/z00B
https://motion.cs.illinois.edu/RoboticSystems

Face-following camera

This chapter covers

= Using the OpenCV library to detect faces in
images

= Measuring and optimizing face detection
performance

= Performing face detection in live videos

= Using servo motors to make a face-following
camera

This chapter will first show how to use the OpenCV library to detect faces in
images. Then, we will extend this functionality to detecting faces in a live video
stream and measure and optimize our face detection process. Once we have a fast
face detection mechanism in place, we will create an application to perform face
detection in a live video stream. The last part of the chapter includes creating an
application that can detect face movements and move the camera with motors in
the direction of the detected face. Face detection is a demanding computer vision
activity using machine learning to detect faces.

131

132

9.1

9.2

CHAPTER 9 Face-following camera

Machine learning plays an important role in the field of artificial intelligence, and
it has many applications in robotics. In this chapter, we will create a robot that uses
motors to move its camera based on the face it sees through image input data received
from the camera. This is a powerful technique that can be extended to many robots
that can automatically react and take action based on events detected in the environ-
ment. There are many autonomous robot systems created by taking sensor inputs
robots are receiving, and they employ machine learning to decide what actions the
robots should take to achieve their goals. These range from food delivery to construc-
tion, with robots preforming complex tasks such as bricklaying.

Hardware stack

Figure 9.1 shows the hardware stack, with the specific components used in this chap-
ter highlighted. The robot will use a servo motor to move the attached camera in the
direction of a detected face. Depending on whether the detected face is on the left or
the right side of the camera, the servo will move the motor in the direction of the face.
The initial applications in the chapter will focus on using the camera hardware to per-
form face detection, and later, the related servo movements will be added to the robot
functionality.

[JoystickIKeyboardIMouse]

[Neopixe\I b5 IServo] ¢ ¢ ¢ t
motor

[CRICKIT ICameraIEthernet Wi-Fi [Bluetooth usB

[Figure 9.1 Hardware stack: servo

motors will be used to move the

Raspberry Pi
camera toward a detected face.

Software stack

Details of the specific software used in this chapter are described in figure 9.2. We
start the chapter by creating the detect_face application that will perform face detec-
tion using the OpenCV library on a single image. Then, we use the measure_face
script and the statistics and time modules to measure the performance of our face
detection process. Once we apply some performance enhancements, we will create
the face library that can perform fast face detection, thus making the live face
application possible. The live face application performs face detection in a live
video stream. The chapter ends with the follow application that moves the servo
motors to follow face movements. We will use the Linux video subsystem and camera
hardware for the face detection. The crickit library will be used to control the servo
motors.

9.3

9.3.1

9.3 Detecting faces in an image 133

[Application Idetect_face, measure_face, live face, folloxa
[Libraries I OpenCV, crickit, face j
[Python I statistics, time]
[Linux I Linux kernel video subsystem]
[Hardware I Camera, servo motors]

Figure 9.2 Software stack: the OpenCYV library will be used to perform face detection.

Detecting faces in an image

The first step is to perform face detection on a single image. We need to create a
Python application that meets the following requirements:

The OpenCV computer vision library should be used to detect the location of a
face in an image.

The application should be able to draw a rectangle around the detected face
and place a marker on its center.

The x,y coordinates of the center of the face should be calculated and
returned.

The final requirement of calculating the center of the face will be very helpful later in
the chapter, as we will use it to decide in which direction to move the servo motor.

Exploring face detection

The OpenCV documentation (https://docs.opencv.org/4.x/) is an excellent source
that provides good tutorials on common topics such as face detection. Under the
Python tutorials section, it mentions that face detection is covered by the objdetect
module. Specifically, the tutorial on the objdetect cascade classifier gives a detailed
explanation of both theory and face detection application in OpenCV.

OpenCV performs face detection using the Haar feature-based cascade classifiers.
This approach uses machine learning to train a cascade function from a large set of
positive and negative images of faces. The positive images contain faces, and the nega-
tive images have no faces in them. Once the function is trained, we can then use it to
detect faces in any image we provide.

Pretrained models are shipped as part of the OpenCV library and can be used
directly. These models are XML files that can be found in the data directory of the
OpenCV installation. We can start working with these models and performing face
detection in the read—evaluate—print loop (REPL). The first step is to import the cv2
package:

>>> import cv2

https://docs.opencv.org/4.x/

134

CHAPTER 9 Face-following camera

To locate the path of the OpenCV installation, we can inspect the __path__ attribute:

>>> cv2._ path
['/home/robo/pyenv/1lib/python3.9/site-packages/cv2"']

The __path__ attribute provides a list of locations for the cv2 package. The first item
in the list is what we are interested in. We can save it in the cv2_DIR variable for fur-
ther use:

>>> CV2 DIR = cv2._ path [0]

>>> CV2_DIR
' /home/robo/pyenv/1lib/python3.9/site-packages/cv2"'

Now we can calculate the path of the model XML file for face detection and save it in
a variable called CLASSIFIER PATH:
>>> CLASSIFIER PATH = f'{CV2 DIR}/data/haarcascade frontalface default.xml'

We can now create a classifier from the model file using the cascadeClassifier func-
tion. Once created, we save the classifier in a variable called face classifier:

>>> face classifier = cv2.CascadeClassifier (CLASSIFIER_ PATH)

This classifier can be used to detect faces in images. Let’s take the classifier for a spin
and start detecting faces. Take a photo of a face with the camera, and save the image
as photo. jpg in the same directory as the REPL session. We can open this image using
the imread function:

>>> frame = cv2.imread('photo.jpg')

As expected, when we check the shape attribute of the image, we can see that the res-
olution of the image is 640 by 480 px with the three color components for each pixel.
Figure 9.3 shows the image we are using in this REPL session:

>>> frame.shape
(480, 640, 3)

Figure 9.3 Image of face: an image
of a face is taken with the Raspberry
Pi camera.

9.3 Detecting faces in an image 135

Our classifier will check the pixel intensities in different regions of the image. To do
this, you want the image to be represented as a grayscale image instead of color. We
can convert our color image to grayscale by calling cvtcolor:

>>> gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)

If we inspect the shape attribute of our new gray image, we can see that it no longer
has the three color components for each pixel. Instead, it has a single value for pixel
intensity ranging from o to 255, indicating a value from o for black, then higher values
for gray, all the way to white at 255.

>>> gray.shape
(480, 640)

The second operation we will perform on the image before face detection is histo-
gram equalization. This operation improves the contrast in an image, which in turn
improves the accuracy of our face detection. We save the prepared image into a vari-
able called clean. Figure 9.4 shows what the resulting image will look like after we
have applied histogram equalization:

>>> clean = cv2.equalizeHist (gray)

Figure 9.4 Equalized histogram: the
contrast of the image is improved
after histogram equalization.

We can now call the detectMultiScale method on our classifier that will perform
face detection on our image and return the results as a list of detected faces:

>>> faces = face classifier.detectMultiScale (clean)

When we inspect the length of faces, we can see that a single face was successfully
detected in the image:

>>> len(faces)
1

136

9.3.2

CHAPTER 9 Face-following camera

Inspecting faces shows that for each detected face, a set of values is provided relating
to that detected face. Each set of values relates to a matching rectangle:

>>> faces
array ([[215, 105, 268, 268]])

We can save the rectangle values for the first detected face into variables indicating
the top left coordinates x, y of the rectangle, as well as the variables w, h for the width
and height of the rectangle:

>>> x, y, w, h = faces[0]

We can see the top-left corner of the matching face is located at coordinates (215,
105) :

>>> X, Y
(215, 105)

We now have enough to slap together our first face detection application. Let’s take
what we have learned and bring it all together into a script to detect faces in an image.

Going deeper: Machine learning with OpenCV

The OpenCV documentation has a comprehensive Machine Learning Overview
(https://docs.opencv.org/4.x/dc/dd6/mi_intro.html) that is a great launching point
to delve deeper into the topic of machine learning in OpenCV.

At the heart of machine learning are algorithms that use training data to build and
train models that can then make predictions based on that data. Once these trained
models are in place, we can feed them new data that has not been seen before by
the algorithms, and they can make predictions based on the data. In this chapter, we
used a model that was trained on a set of face images to detect the presence and
locations of faces in new images.

Another computer vision application is performing OCR (optical character recognition)
on hand-written digits. The OpenCV project has samples of 5,000 handwritten digits
that can be used as training data to train our models. The k-nearest neighbors algo-
rithm can be used to train our models and then use them to recognize the digits in
images. There is an excellent example of this in the Python tutorials of the OpenCV
documentation under the Machine Learning section.

Marking detected faces

We will create a script to perform face detection on an image and then draw a rectan-
gle around the matching face. We will also calculate the center of the matching rect-
angle and place a marker at the center point. Once we complete the detection and
shape drawing, we will display the final image in our graphical application. The first
step will be to import the cv2 library:

import cv2

https://docs.opencv.org/4.x/dc/dd6/ml_intro.html

9.3 Detecting faces in an image 137

The value for the color blue is saved in the variable BLUE, and the location of the cv2
library is saved in cv2_DIR. We can now set our CLASSIFIER PATH by using Cv2_DIR.
Our face classifier is then created and saved in face classifier:

BLUE = (255, 0, 0)

CV2 DIR = cv2._ path [0]

CLASSIFIER_PATH = f'{CV2_DIR}/data/haarcascade_frontalface_default.xml'
face classifier = cv2.CascadeClassifier (CLASSIFIER_ PATH)

The prep_face function will prepare an image for face detection by converting it to
grayscale and applying histogram equalization. The prepared image is then returned:
def prep face(frame) :

gray = cv2.cvtColor (frame, cv2.COLOR BGR2GRAY)
return cv2.equalizeHist (gray)

We will then define get_center to calculate the center coordinates of a rectangle. We
can use it to calculate the center of a detected face. The function receives the stan-
dard values relating to a rectangle and then returns the center point as an x,y coordi-
nate pair:

def get center(x, y, w, h):
return int(x + (w / 2)), int(y + (h / 2))

The detect_face function receives an image and returns the center coordinates of a
matching face. It first calls prep_face to prepare the image for face detection, and
then detectMultiScale is called to detect faces in the image. If a face is found, we
save the rectangle values of the first matching face into the variables x, y, w, h. Then,
we calculate the center of the face and save this value in center. The rectangle func-
tion is used to draw a rectangle around the face, and drawMarker is used to place a
marker at the center of the face. Finally, the coordinates of the center of the face are
returned:

def detect face(frame) :

clean = prep face (frame)

faces = face classifier.detectMultiScale(clean)

if len(faces) > 0:
X, Yy, w, h = faces[0]
center = get_center(x, y, w, h)
cv2.rectangle (frame, (x, y), (x + w, y + h), BLUE, 2)
cv2.drawMarker (frame, center, BLUE)
return center

The main function loads our face image into a variable called frame. Then, detect_
face is called to perform face detection, and the center of the face is saved in the
center variable. These coordinates are printed out, and an image of the face is shown
using imshow. The waitKey function is called to display the image until a key is pressed
in the application:

138 CHAPTER 9 Face-following camera

def main() :
frame = cv2.imread('photo.jpg!')
center = detect face(frame)
print ('face center:', center)
cv2.imshow ('preview', frame)
cv2.waitKey ()

The full script can be saved as detect_face.py on the Piand then executed.

Listing 9.1 detect face.py: Detecting a face and marking a matching face

#!/usr/bin/env python3
import cv2

BLUE = (255, 0, 0)

Cv2 DIR = cv2._ path [0]

CLASSIFIER PATH = f'{CV2 DIR}/data/haarcascade frontalface default.xml'
face classifier = cv2.CascadeClassifier (CLASSIFIER_ PATH)

def get center(x, y, w, h):
return int(x + (w / 2)), int(y + (h / 2))

def prep face(frame) :
gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
return cv2.equalizeHist (gray)

def detect face (frame) :

clean = prep face(frame)

faces = face classifier.detectMultiScale (clean)

if len(faces) > 0:
x, vy, w, h = faces[0]
center = get center(x, y, w, h)
cv2.rectangle (frame, (x, y), (x + w, y + h), BLUE, 2)
cv2.drawMarker (frame, center, BLUE)
return center

def main() :
frame = cv2.imread('photo.jpg!')
center = detect face(frame)
print ('face center:', center)
cv2.imshow ('preview', frame)
cv2.waitKey ()

main ()

When this script is run, it will perform face detection on the photo.jpg image and
draw the matching rectangle and marker around the detected face. Figure 9.5 shows
what the application will look like once it has completed face detection and drawn
shapes around the matching face.

Now that we have the groundwork in place for face detection in images, we can
move on to the exciting task of performing face detection in a live video stream.

9.4

9.4.1

9.4 Detecting faces in live video 139

Figure 9.5 Face detection: rectangle
and marker show the location of the
detected face.

Detecting faces in live video

Detecting faces in live video follows a similar approach to detecting faces in a single
image. The main difference is the more demanding performance requirements of
doing face detection fast enough to keep up with a live video stream. We need to cre-
ate a Python application that meets the following requirements:

= Face detection should be performed on each frame captured from the camera
video stream.

= Face detection should be fast enough to keep up with the camera frame rate.

= The live video stream in the application should be displayed with any detected
faces shown with a matching rectangle and marker.

The first task at hand will be to measure the performance of our face detection to see
whether it is executed fast enough to keep up with the rate of the images we will
receive from the video stream.

Measuring face detection performance

We know from the previous chapter that our camera will be capturing images at a rate
of 30 frames per second. We need the face detection process to run faster than this
frame rate so that it can keep up with the video stream. We will create a script to per-
form face detection multiple times and then report the average frame rate achieved
for face detection.

The cv2 library is imported to perform face detection. The mean function is
imported to calculate the average frame rate. The time module will be used to mea-
sure the execution time of the face detection operation:
import cv2

from statistics import mean
import time

140

CHAPTER 9 Face-following camera

The functions and process of face detection are identical to what was used in the
detect_face.py script. We will use the get_detect_timing function to measure the
execution time of face detection. This function records the start time and then makes
a call to the detect_face function. At the end, it calculates the elapsed time in sec-
onds and returns the value:

def get detect timing(frame) :

start = time.perf counter()
center = detect face (frame)
return time.perf counter() - start

Our main function will, as before, open the photo.jpg image and save it in frame.
Then we make an initial call to detect_face and print out the coordinates of the cen-
ter of the matching face. Next, we make repeated calls to get_detect_timing to cap-
ture a sample of 10 execution times. We take the average of this sample and calculate
and report the average frames per second achieved. During each face detection, we
use frame.copy () to provide a clean copy of the frame on each face detection:

def main() :

frame = cv2.imread('photo.jpg')
center = detect face(frame.copy())

print ('face center:', center)
stats = [get detect timing(frame.copy()) for i in range(10)]
print ('avg fps:', 1 / mean(stats))

The full script can be saved as measure_face.py on the Pi and then executed.

Listing 9.2 measure face.py: Measuring face detection performance

#!/usr/bin/env python3
import cv2

from statistics import mean
import time

BLUE = (255, 0, 0)

CV2 DIR = cv2. path [0]

CLASSIFIER PATH = f'{CV2 DIR}/data/haarcascade frontalface default.xml'
face classifier = cv2.CascadeClassifier (CLASSIFIER_ PATH)

def get center(x, y, w, h):
return int(x + (w / 2)), int(y + (h / 2))

def prep face(frame) :
gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
return cv2.equalizeHist (gray)

def detect face (frame) :
clean = prep face(frame)
faces = face classifier.detectMultiScale (clean)
if len(faces) > 0:
x, y, w, h = faces[0]
center = get_center(x, y, w, h)

9.4.2

9.4 Detecting faces in live video 141

cv2.rectangle (frame, (x, y), (x + w, y + h), BLUE, 2)
cv2.drawMarker (frame, center, BLUE)
return center

def get detect timing(frame) :

start = time.perf counter()
center = detect_ face (frame)
return time.perf counter() - start
def main() :
frame = cv2.imread('photo.jpg')
center = detect_ face(frame.copy())
print ('face center:', center)
stats = [get_detect_ timing(frame.copy()) for i in range(10)]
print('avg fps:', 1 / mean(stats))
main ()

When this script is run, it will perform face detection on the photo.jpg image. The
coordinates of the center of the detected face are printed out in the terminal. Then,
we take 10 samples of measuring the time required to detect a face. Based on the aver-
age of these samples, the frame rate is calculated and reported. We can see that the
reported frame rate of 10.1 frames per second is well below the 30 frames per second
that we need:

$ measure_ face.py
face center: (349, 239)
avg fps: 10.104761447758944

Now that we have quantified our face detection performance, we can see that there is
a performance problem, and we can get to work at improving the performance of our
face detection process so that we can meet, and hopefully exceed, the 30 frames per
second requirement.

Reducing the number of pixels to process

Our face detection operation does not need a large image to accurately detect faces. If
we call our face classifier with a smaller image, it will have less pixels to process and
will return the results faster. So the strategy we will take is to perform the face detec-
tion on an image that has been resized to be much smaller and thus processed faster.

We will resize the image to be 20% percent the size of the original image. We can
find through experimentation that if this value is significantly smaller than 10%, it will
affect detection accuracy. We will see that setting the value at 20% meets our perfor-
mance needs and is within a safe range.

We can open a REPL session and do some calculations to get a sense of how much
we have reduced the quantity of pixels in the image by doing this scaling. Our 20%
scaling is equivalent to reducing the width and height of the image by a factor of 5. We
can easily see this with the following calculation:

>>> 1/5
0.2

142

CHAPTER 9 Face-following camera

The captured image has a width of 640 and a height of 480. We can calculate the
height and width of the scaled-down image with the following calculations:

>>> 640/5

128.0

>>> 480/5
96.0

We can see that the resized image will have a width of 128 and a height of 96. We can
now calculate the total number of pixels in the original and the resized image:

>>> 640*480

307200

>>> 128*96
12288

Now, we can take these two pixel counts and divide them to find out by what factor we
have reduced the total number of pixels:

>>> 307200/12288
25.0

We have reduced the total number of pixels to process by a 25x factor. This is a big
reduction in data to process and should yield a big improvement in processing speed.
Figure 9.6 shows the significant difference in image sizes when we place the two
images side by side. We can cross-check this figure by squaring the reduction factor on
the width and height:

>>> 5%5

25
25.0

As expected, it produced the same result of a 25x reduction factor.

Figure 9.6 Image reduction: the
original and reduced images are
kept side by side for comparison.

9.4.3

9.4 Detecting faces in live video 143

We can take the smaller image and run it through our face detection script to inspect
the results. Figure 9.7 shows that the image is clearly pixelated, but this doesn’t pose a
problem for the face detection procedure.

preview

Figure 9.7 Detection on smaller
images: face detection is
successful for images with
smaller resolution.

Now that we have our initial calculations out of the way, we can move on to implement
the new faster version of our application.

Optimizing face detection performance

This implementation will build on the previous one and mainly add the image reduc-
tion steps to gain a performance boost. First, we will import the cv2 library to perform
face detection:

import cv2
The scaling factor is saved in the DETECT_SCALE variable:
DETECT_SCALE = 0.2

The resize function receives the image and the desired scale to resize the image and
return the new smaller image. The new width and height of the image are calculated
based on the provided scale and saved in size. The cv2.resize function is then
called on the image. The OpenCV documentation (https://docs.opencv.org/4.x) on
the resize function gives guidance to use the INTER_AREA interpolation when shrink-
ing an image and INTER_CUBIC when enlarging it. We are shrinking the image, so we
use INTER_AREA:

def resize(img, scale):
size = (int(img.shape[l] * scale), int(img.shape[0] * scale))
return cv2.resize(img, size, interpolation=cv2.INTER AREA)

https://docs.opencv.org/4.x

144 CHAPTER 9 Face-following camera

The detect_face function now has a performance enhancement. After prep_face is
called, a call is made to resize to create a smaller image before face detection. Then,
detectMultiScale is called using small. When the rectangle values are returned, we
divide them by DETECT ScALE so that they can be mapped again to the original full-
resolution image. In this way, we can show details of the detected face on the full-sized
original image but obtain a performance gain by doing face detection on a smaller
image. The rest of the code remains the same:

def detect face (frame) :

clean = prep face (frame)

small = resize(clean, DETECT SCALE)

faces = face classifier.detectMultiScale (small)

if len(faces) > 0:
x, Yy, w, h = [int(i / DETECT SCALE) for i in faces[0]]
center = get_ center(x, y, w, h)
cv2.rectangle (frame, (x, y), (x + w, y + h), BLUE, 2)
cv2.drawMarker (frame, center, BLUE)
return center

The library can be saved as face.py on the Pi to be imported by other applications.

Listing 9.3 face.py: Providing a fast face detection library

import cv2

BLUE = (255, 0, 0)

Cv2 DIR = cv2._ path [0]

CLASSIFIER PATH = f'{CV2 DIR}/data/haarcascade frontalface default.xml'
face classifier = cv2.CascadeClassifier (CLASSIFIER_ PATH)

DETECT_SCALE = 0.2

def resize(img, scale):
size = (int(img.shape[l] * scale), int(img.shape[0] * scale))
return cv2.resize(img, size, interpolation=cv2.INTER AREA)

def get center(x, y, w, h):
return int(x + (w / 2)), int(y + (h / 2))

def prep face(frame):
gray = cv2.cvtColor (frame, cv2.COLOR BGR2GRAY)
return cv2.equalizeHist (gray)

def detect face (frame) :

clean = prep face (frame)

small = resize(clean, DETECT_ SCALE)

faces = face classifier.detectMultiScale (small)

if len(faces) > 0:
x, y, w, h = [int(i / DETECT_SCALE) for i in faces[0]]
center = get center(x, y, w, h)
cv2.rectangle (frame, (x, y), (x + w, y + h), BLUE, 2)
cv2.drawMarker (frame, center, BLUE)
return center

9.4 Detecting faces in live video 145

To see this library in action, we will create a new script that will import the library and
make multiple calls to the face detection functions and measure their performance.
We first import cv2, mean, and time as we have done before to open images, calculate
averages, and measure execution times. We then import the detect_face function
from our new face library:

import cv2

from face import detect face

from statistics import mean
import time

The rest of the application has the same functions as those created in the measure
_face.py script to measure execution time and report the average frame rate
achieved.

The full script can be saved as fast_face.py on the Pi and then executed.

Listing 9.4 fast face.py: Reporting performance of the fast face detection functions

#!/usr/bin/env python3
import cv2

from face import detect face
from statistics import mean
import time

def get_detect_timing(frame) :

start = time.perf counter()

center = detect_ face (frame)

return time.perf counter() - start
def main() :

frame = cv2.imread ('photo.jpg')
center = detect face(frame.copy())

print ('face center:', center)
stats = [get detect timing(frame.copy()) for i in range(10)]
print('avg fps:', 1 / mean(stats))

main ()

When this script is run, it will call our new faster face detection implementation. We
can see from the results that a big performance gain has been achieved, as now we
have reached a frame rate of 75.6 frames per second. This gives us a performance
boost that is over seven times faster than the previous approach to face detection:

$ fast_ face.py

face center: (347, 242)
avg fps: 75.63245789951259

This frame rate is also way above the 30 frames per second target that we were hoping
to achieve. We can now proceed to use this new improved approach to face detection
in a live video stream.

146

9.4.4

CHAPTER 9 Face-following camera

Showing detected faces in live video

In the following script, we will capture images from the camera video stream face
detection and then show the detected faces in an application window. The cv2 library
is imported to capture images from the camera video stream. The detect_face func-
tion is imported to perform face detection:

import cv2
from face import detect face

As we have done before, the key code for the Esc key is saved in Esc_kry. It will be
used to exit the graphical application by pressing the Esc key:

ESC_KEY = 27

The main function will save a video capture object in the variable cap. We then check
whether the capture device was opened correctly. We enter an event loop that we con-
tinue looping in until the Esc or Q key is pressed. In each loop iteration, we capture a
frame from the video stream and call the detect_face function on the captured
image. We then call imshow to show the captured image with any detected faces
marked. When this loop is exited, we release the video capture device by calling the
cap.release function:

def main() :

cap = cv2.VideoCapture (0)

assert cap.isOpened(), 'Cannot open camera'

while cv2.waitKey (1) not in [ord('g'), ESC_KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
detect_face (frame)
cv2.imshow ('preview', frame)

cap.release()

The full script can be saved as 1ive_face.py on the Pi and then executed.

Listing 9.5 1live face.py: Showing detected faces in a live video stream

#!/usr/bin/env python3
import cv2
from face import detect face

ESC_KEY = 27

def main() :

cap = cv2.VideoCapture (0)

assert cap.isOpened(), 'Cannot open camera'

while cv2.waitKey (1) not in [ord('qg'), ESC KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
detect_face (frame)
cv2.imshow ('preview', frame)

cap.release()

main ()

9.5

9.5.1

9.5 Creating a face-following robot 147

When this script is run, it will contin-
ually capture images from the video
stream. Each image is passed
through our face detection func-
tions. If a face is detected, a rectangle
is drawn around the detected face
with a marker placed at its center.
The video stream with face detection
is shown in the application window
until the Esc key or Q key is pressed
to exit the application.

Figure 9.8 shows what the camera
looks like once it is mounted on the
Pan-Tilt Kit. The two servo motors

Figure 9.8 Camera on Pan-Tilt Kit: the camera is

give the camera the ablhty to be mounted on the kit to enable camera movements.

moved in different directions.
In the next section, we will use the servo motor to move the camera in the direc-
tion of the detected face.

Creating a face-following robot

Now that we can detect faces fast enough to process live video, we can take our code to
the next level and have the robot react to where you position your face. The robot will
move the camera to follow your face. We need to create a Python application that
meets the following requirements:

It should be able to recognize whether a face is detected in the left, center, or
right of frame.

When the face is detected in the left or right, the camera should move toward
the face.

In the application, a live video stream with detected faces marked and a grid
showing the three zones (left, center, and right) should be displayed.

Showing the three zones in the application will make the application more interactive,
as people will be able to tell which zone their face has been detected in and where the
camera will move.

Zoning the face detection

We can split up what the robot sees into three areas or zones. When a face is detected
in the center zone, we don’t have to do anything because the camera is facing the per-
son. If the face is detected in the left zone, then we will move the servo so that the
camera places the face in the center zone. If the face is detected in the right zone, we
will move the servo again but in the opposite direction. We will focus only on moving
the camera left and right using the pan movements of the servo motor. Figure 9.9
shows the three zones for face detection.

148

CHAPTER 9 Face-following camera

Figure 9.9 Camera zones: the camera area is split
into three detection zones.

-
ol

Now, let’s pop into a REPL session and see how we can split the camera viewing area
into these three zones. First, we will import cv2 for drawing on images and numpy for
creating a new blank image:

>>> import cv2
>>> import numpy as np

We will save the width and height of our camera images into the variables IMG_WIDTH
and 1MG_HEIGHT. This will make our code more readable:

>>> IMG _WIDTH = 640
>>> IMG_HEIGHT = 480

We can get the center or halfway point of the width by dividing IMG_WIDTH by two:

>>> (IMG_WIDTH / 2)
320.0

Now, let’s take this center position and move left 50 px to get the position of the line
between the left and center zones. We will save this value in a variable called LEFT x:

>>> LEFT X = int((IMG WIDTH / 2) - 50)
>>> LEFT X
270

By moving right 50 px from the center, we get the position of the line between the
center and right zones. We save this value in RIGHT_X:

>>> RIGHT X = int ((IMG WIDTH / 2) + 50)
>>> RIGHT_X
370

We can save the value for the color green in a variable called GREEN:
>>> GREEN = (0, 255, 0)

Next, let’s create a blank color image with our desired dimensions:
>>> img = np.zeros (shape=(480, 640, 3), dtype=np.uint8)

We can draw a grid showing the three zones by drawing a rectangle around the center
zone:

9.5.2

9.5 Creating a face-following robot 149

>>> cv2.rectangle (img, (LEFT X, -1), (RIGHT X, IMG HEIGHT), GREEN)

The last step will be to save what we have created so that we can see the image. We will
use imwrite to save the image as the filename zones. jpg:

>>> cv2.imwrite ('zones.jpg', img)

Figure 9.10 shows what the image will
look like once we have drawn the zone
grid. The center zone is set to be nar-
rower than the left and right zones. In
this way, we can make the camera more
sensitive to moving left and right when
the face moves around the frame.

Moving motors to follow faces

We can now have a go at tackling the

script to follow the person’s face as
they look at different zones within the
camera’s Viewing area. We can build on Figure 9.10 Zone grid: the zone grid is drawn
the experimentation we did in the pre- using the rectangle method.
vious section.

We import the cv2 library to capture images from the camera. The detect_face
function is imported and will perform face detection as we have seen before. Finally, we

use the crickit module to control the servo motor that has a camera attached to it:
import cv2

from face import detect face
from adafruit crickit import crickit

Next, we define EsC_KEY and GREEN to store the key code for the Esc key and the value
for the color green. The image height and width are defined in IMG_WIDTH and
IMG_HEIGHT. We then calculate the values for LEFT X and RIGHT X to help keep track
of the zone the face is detected in:

ESC_KEY = 27

GREEN = (0, 255, 0)

IMG WIDTH = 640

IMG_HEIGHT = 480

LEFT X = int((IMG WIDTH / 2) - 50)

RIGHT X = int ((IMG WIDTH / 2) + 50)

As we have done in chapter 8, we create a variable called paN to keep track of values
relating to our servo that performs the pan movement. Namely, we keep a reference
to the servo object to the minimum, maximum, and starting angles of the servo. We
also keep the actuation range setting in range. As done in the previous chapter, we
store the value of the angle changes at each step in ANGLE_STEP. We use MOVE to map
the left, center, and right zones to their associated servo movements:

150

CHAPTER 9 Face-following camera

PAN = dict (servo=crickit.servo_ 1, min=30, max=110, start=70, range=142)
ANGLE_STEP = 2
MOVE = dict (L=ANGLE_STEP, C=0, R=-ANGLE_STEP)

The get_zone function will return the zone of the detected face based on the values
of LEFT_x and RIGHT X:
def get_ zone (face_x):
if face x <= LEFT X:
return 'L’
elif face x <= RIGHT X:
return 'C'

else:
return 'R’

The init_motors function is used to initialize the servo motor’s starting position and
actuation range:

def init motors():
PAN['servo'] .actuation range = PAN['range']
PAN['servo'] .angle = PAN['start']

We will use the move_motor function to move the servo based on the position of the
detected face. We first calculate the zone by calling get_zone. Then, we look up the
angle change and save it in change. Next, we apply the new angle if a change is
detected and if the new angle falls within our minimum and maximum angle range:
def move motor (face x):

zone = get zone (face_x)

change = MOVE [zone]

if change and PAN['min'] <= PAN['servo'].angle + change <= PAN['max']:
PAN['servo'] .angle += change

When we create a new video capture object, we call check_capture_device to check
the device. We check whether it was opened successfully and whether the width and
height of images being captured by the device match our IMG_WIDTH and IMG_HEIGHT
values:

def check capture device (cap) :

assert cap.isOpened(), 'Cannot open camera'
assert cap.get (cv2.CAP_PROP FRAME WIDTH) == IMG WIDTH, 'wrong width'
assert cap.get (cv2.CAP_PROP_FRAME HEIGHT) == IMG_HEIGHT, 'wrong height'

The main function first calls init_motors to initialize the servo motors. Then we create
avideo capture device and checkit by calling check_capture_device. We then enter an
event loop that we only exit if either the Esc or the Q key is pressed. In each loop, we
grab an image from the video stream and save itin frame. We then call detect_face to
perform face detection and return us to the position of the center of the detected face.
If a face was detected, we call move _motor with the x coordinate of the detected face. We
then draw our zone grid onto the image by calling cv2.rectangle with the related
dimensions. The last step of the loop is to show the latest video frame in the application

9.5 Creating a face-following robot 151

by calling imshow. When we exit the loop, we call cap.release to release the video
capture device:

def main() :
init_motors ()
cap = cv2.VideoCapture (0)
check_capture device (cap)

while cv2.waitKey (1) not in [ord('g'), ESC KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'

center = detect_face (frame)
if center:
move_motor (center [0])
cv2.rectangle (frame, (LEFT_X, -1), (RIGHT X, IMG_HEIGHT), GREEN)
cv2.imshow ('preview', frame)
cap.release ()

The full script can be saved as follow.py on the Pi and then executed.

Listing 9.6 follow.py: Moving the camera to follow detected faces

#!/usr/bin/env python3

import cv2

from face import detect face

from adafruit crickit import crickit

ESC_KEY = 27

GREEN = (0, 255, 0)

IMG_WIDTH = 640

IMG_HEIGHT = 480

LEFT X = int ((IMG WIDTH / 2) - 50)

RIGHT X = int ((IMG_WIDTH / 2) + 50)

PAN = dict (servo=crickit.servo_ 1, min=30, max=110, start=70, range=142)
ANGLE_STEP = 2

MOVE = dict (L=ANGLE_STEP, C=0, R=-ANGLE_STEP)

def get_ zone(face_x):
if face_x <= LEFT_X:
return 'L’
elif face x <= RIGHT_X:
return 'C'
else:
return 'R’

def move motor (face x) :
zone = get_zone (face_x)
change = MOVE [zone]
if change and PAN['min'] <= PAN['servo'].angle + change <= PAN['max']:
PAN|['servo'] .angle += change

def init motors() :
PAN['servo'] .actuation range = PAN['range']
PAN['servo'].angle = PAN['start']

def check capture_device (cap) :
assert cap.isOpened(), 'Cannot open camera'

152

CHAPTER 9 Face-following camera

assert cap.get (cv2.CAP_PROP_FRAME WIDTH) == IMG_WIDTH, 'wrong width'
assert cap.get (cv2.CAP_PROP_FRAME HEIGHT) == IMG_HEIGHT, 'wrong height'
def main():

init_motors()
cap = cv2.VideoCapture (0)
check capture device (cap)

while cv2.waitKey (1) not in [ord('g'), ESC_KEY]:
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'

center = detect_ face (frame)
if center:
move motor (center [0])
cv2.rectangle (frame, (LEFT_X, -1), (RIGHT_ X, IMG_HEIGHT), GREEN)
cv2.imshow ('preview', frame)
cap.release()

main ()

When this script is run, you can look into the camera and see your face in the live cam-
era feed with a border placed around your detected face. The center of the face is also
marked on the live image with a crosshair. From this marker, we can tell which zone
the face is in. If you move the face outside the center zone, the servo will automatically
reposition the camera to put your face back in this zone. Figure 9.11 shows a face that
has been detected and marked in the left zone, which then makes the servo motors
move the cameras to place the face back in the center zone.

Figure 9.11 Zoned face: the
face is detected and marked in
the left zone.

This application gave us a chance to apply machine learning to our robotics project by
using computer vision and face tracking. In the coming chapters, we will use other com-
puter vision functionalities, such as QR code detection, to help our robot interact even
further with its environment by using the camera as a way to see their environment.

Summary 153

Robots in the real world: Robotics vision processing

Robots can use computer vision to do feature detection to extract visual features
such as corners and edges of objects. With this feature detection in place, robots
can detect and classify objects they see in their environment.

One application of this object interaction is creating robots that can pick and place
objects in manufacturing and logistics. Using computer vision, they identify an object,
grab it, and then move it from one location to another.

Inspection robots are another case that combines computer vision and robotics to
create robots that can be used as part of the quality control process in manufacturing
to perform fully automated inspections of manufactured products.

Summary
A fast face detection mechanism is required to perform face detection in a live
video stream.

Servo motors are used to move the attached camera in the direction of a
detected face.

Haar feature-based cascade classifiers are used in OpenCV to perform face
detection.

Histogram equalization improves the contrast of an image and helps to improve
the accuracy of face detection.

Detected faces will have a matching rectangle and marker drawn around them.
The face detection must be able to handle a camera image rate of at least 30
frames per second for live face recognition to work.

Calling the face classifier with smaller images can make face detection faster.

Robotic QR code finder

This chapter covers

= Generating QR codes
= Detecting and decoding data in QR codes
= Streaming live video using Motion JPEG

= Creating a robot that can search for specific QR
codes in its environment

We start this chapter by exploring the QR code standard and learning how to gen-
erate our own QR codes. Then, we use the OpenCV computer vision library to
detect QR codes in images, as well as to read the data encoded in the QR code
itself. We will then learn how to save the video stream data from the camera to the
filesystem so that multiple applications can simultaneously read live video data.
This will allow us to check the video stream for QR codes we are interested in, as
well as stream the video to desktop and web applications at the same time. We will
use the Tornado web framework to create a Motion JPEG video server that can be
accessed from any mobile device or computer on the network to get a live view of
the robot’s camera video stream. Finally, we end the chapter by creating a robot
that can move around in search of matching QR codes in its environment.

154

10.1

10.2

10.2 Software stack 155

Bringing all these technologies together helps us solve the problem of having robots
use computer vision to investigate their environment and move around to different
desired locations by looking for matching QR codes. This is a core functionality for
many robots that must perform autonomous navigation in warehouses or factories.

Hardware stack

Figure 10.1 shows the hardware stack, with the specific components used in this chap-
ter highlighted. The robot will use the DC motors to move back and forth along a set
track. The camera is mounted on the side of the robot and can capture objects next to
the robot as the robot drives past them. The robot will be checking the images from
the live video feed, looking for a matching QR code. Once the code is found, the
robot can stop the motors, as it has reached its desired destination.

[JoystickIKeyboardIMouse]

[Neopixel] oe IServo] ¢ ¢ ¢ ¢
motor

[CRICKIT ICameraIEthemet Wi-Fi [Bluetooth USB

[} Figure 10.1 Hardware stack: the

camera will be used to capture live

Raspberry Pi) X
images for QR code detection.

For further details on the robot assembly, check the robot assembly guide in appendix
C. It shows how to assemble the robot used in this chapter. It also gives tips on how to
create a track for the robot so that it can travel back and forth on a controlled path.

Software stack

Details of the specific software used in this chapter are described in figure 10.2. We
start the chapter by creating the detect_gr application that will perform QR code
detection and decoding using the OpenCV library on a single image. Then, we will

[Application I detect_gr, stream save, goto_qr]
[Libraries I OpenCV, tornado, watcher]
[Python I sys, time]
[Linux I Linux kernel video subsystem]
Figure 10.2 Software stack:
[Hardware I Camera, DC motors] the OpenCV library will be used

to perform QR code detection.

156

10.3

10.3.1

CHAPTER 10 Robotic QR code finder

use the stream_save script to capture the video stream to the filesystem. The watcher
library uses the sys module to read command line arguments and watch for changes
on the streaming image file. We then create streaming applications for both web and
graphical applications. We end the chapter by using the camera and DC motors hard-
ware in the goto_gr application to move the robot to a specific target location marked
by a QR code.

Detecting QR codes in an image

The first step is to perform QR code detection and decoding on a single image. We
need to create a Python application that meets the following requirements:

The application should use the OpenCV computer vision library to detect the
location of a QR code in an image.

A rectangle should be drawn in the image around the detected QR code.

The application should decode and return the data stored in the QR code.

The last requirement of decoding data stored in the QR code will be very helpful later
in the chapter, as we will use it to decide whether we have reached our desired QR
code or whether the robot should keep moving down the track.

Exploring QR codes

The first step in our QR code adventure is to install the grcode Python package. This
module will let us generate QR codes. Run the following command to install the
package:

$ ~/pyenv/bin/pip install grcode

This package can be imported in Python code or executed directly in the command
line. Let’s start by generating some QR codes in the terminal. When we run the next
command, a QR code encoded with the text hello will be generated and outputted to
our terminal:

$ ~/pyenv/bin/gr hello

You can test the QR code by scanning it using a smart-
phone. Once you scan the QR code, the text hello E § E

should appear on your device. When we run the next

command, it will save the generated QR code to an
image instead of outputting it to the terminal:
$ ~/pyenv/bin/gr hello > hello.png ﬁ

You can open the hello.png image and test it again.

This is a useful way for generating QR codes, as we can

print the image and stick it to the objects we want to tag Figure 10.3 Generated QR
. . code: the example QR code

with QR codes. Figure 10.3 shows the QR code gener- has the text hello encoded

ated using this command. in it.

10.3.2

10.3 Detecting QR codes in an image 157

Next, we will pop into a read—evaluate—print loop (REPL) session to explore using the
package from a Python application. The first step is to import the grcode library:

>>> import grcode

The next line will create a QR code with the text hi again and save it into an image
called hi_again.png:

>>> grcode.make ('hi again') .save('hi again.png')

For more advanced applications, we use a QRCode object. Through this object, we can
set different options relating to the error correction, box size, and border of the QR
code. In the example that follows, we create a QrRCode object and use the add_data
method to set the content of the QR code:

>>> gr = grcode.QRCode ()
>>> gr.add_data('www.python.org!')

Next, we call the make method to generate the QR code. Once generated, we can
obtain details about the generated QR code, such as the symbol version that was used.
In this example, the version attribute reports the QR code is using symbol version 1:
>>> gr.make ()

>>> gr.version
1

The official website for the QR code standard (https://www.qrcode.com) gives exact
details on each symbol version and how much data it can store. Essentially, the more
data you put in a QR code, the larger the symbol version, which in turn generates a
denser QR code. It is useful to be able to check this value when we generate QR code
images, as the lower-version numbers are less dense and will be easier to read even
with low-resolution images. The next line in our REPL will save the QR code to an
image called python.png:

>>> gr.make image () .save ('python.png')

On most smartphones, if you read this QR code, it will be detected from the text as a
URL, and you will be directed to the Python website (https://www.python.org). Now
that we have generated some QR codes, let’s move on to detecting and decoding them.

Marking detected QR codes

We will create a script to perform QR code detection and decoding on an image and
then to draw a rectangle around the matching QR code. We will also display the decoded
data as text on the image. The image will then be displayed in our graphical application.

Take the image generated in the previous section that has the text hello encoded
in it, and print it out. Then, take a photo of it using the Pi camera, and save the image
in a file called hello.jpg. You can use the snapshot.py application from chapter 8 to
take the image. Alternatively, a hello.jpg image is also provided in the folder for this
chapter in the book’s GitHub repository.

https://www.qrcode.com
https://www.python.org

158

CHAPTER 10 Robotic QR code finder

The first step will be to import the cv2 library:
import cv2

The value for the color blue is saved in the variable BLUE, and the font for displaying
text in the application is saved in FONT. We then instantiate a QRCodeDetector object
and save it in decoder. Methods on this object will be called to perform the QR code
detection and decoding:

BLUE = (255, 0, 0)

FONT = cv2.FONT HERSHEY SIMPLEX
decoder = cv2.QRCodeDetector ()

The draw_box function will draw a box around the detected QR code in the image.
The image is provided in the frame argument, and the four points of the detected
quadrangle are provided in points. The color and thickness of the box are set using
the color and thickness arguments. The point values are first converted to integers,
as this is what is expected by the cv2.1line function. We then save each of the four
points of the quadrangle into its own variable. Next, we draw four lines to connect
these four points:

def draw box(frame, points, color, thickness):
points = [(int(x), int(y)) for x, y in points]
ptl, pt2, pt3, pt4 = points
cv2.line (frame, ptl, pt2, color, thickness
cv2.line (frame, pt2, pt3, color, thickness
cv2.line (frame, pt3, pt4, color, thickness
cv2.line (frame, pt4, ptl, color, thickness

)
)
)
)

We will then define decode_grcode, which calls the detectAndbecode method to detect
and decode QR codes in the frame image. Decoded data is stored in the variable data,
and a list of matching points is stored in matches. If we find decoded data, we display
it as text using putText and draw a box around the matched area by calling the draw_
box function. We finally end the function by returning the decoded data:

def decode grcode (frame) :

data, matches, _ = decoder.detectAndDecode (frame)

if data:
cv2.putText (frame, f'data: {data}', (30, 30), FONT, 1, BLUE)
draw_box (frame, matches[0], BLUE, thickness=3)

return data

The main function loads our photo of a QR code into a variable called frame. Then
decode_grcode is called to perform the QR code detection and decoding. The
decoded data is stored in a variable called decoded data and printed out. The image
is then shown using imshow. The waitKey function is called to display the image until
a key is pressed in the application:

def main() :

frame = cv2.imread('hello.jpg')
decoded data = decode grcode (frame)

10.3 Detecting QR codes in an image 159

print ('decoded data:', repr(decoded data))
cv2.imshow ('preview', frame)
cv2.waitKey ()

The full script can be saved as detect_gr.py on the Pi and then executed.

Listing 10.1 detect qgr.py: Detecting and decoding QR codes in an image

#!/usr/bin/env python3
import cv2

BLUE = (255, 0, 0)
FONT = cv2.FONT HERSHEY SIMPLEX
decoder = cv2.QRCodeDetector ()

def draw box (frame, points, color, thickness):
points = [(int(x), int(y)) for x, y in points]
ptl, pt2, pt3, pt4 = points
cv2.line (frame, ptl, pt2, color, thickness
cv2.line (frame, pt2, pt3, color, thickness
cv2.line (frame, pt3, pt4, color, thickness
cv2.line (frame, pt4, ptl, color, thickness

def decode_grcode (frame) :

data, matches, _ = decoder.detectAndDecode (frame)
if data:
cv2.putText (frame, f'data: {data}', (30, 30), FONT, 1, BLUE)

draw_box (frame, matches[0], BLUE, thickness=3)
return data

def main() :
frame = cv2.imread('hello.jpg')
decoded_data = decode_grcode (frame)
print ('decoded data:', repr(decoded data))
cv2.imshow ('preview', frame)
cv2.waitKey ()

main ()

When this script is run, it will perform
the QR code detection on the
hello.jpg image and draw a box
around the matching quadrangle. The
decoded data is also displayed in the
top-left corner of the image. Figure 10.4
shows what the application will look like
once it has completed detection and
decoding of the QR code.

We now have a solid foundation in QR

code detection and decoding. We will

Figure 10.4 Detected QR code: the application
have multiple applications, all wanting draws a box around the detected QR code.

160

10.4

104.1

CHAPTER 10 Robotic QR code finder

to access the live video stream. Thus, the next step will be to design a system to capture
and distribute images from the live video stream to multiple applications.

Streaming live video to multiple applications

We will approach this problem by saving the images from the live video stream to the
filesystem. Then, multiple applications can simultaneously read these images from the
filesystem and use them to stream to desktop or web applications. We can use the
same mechanism to detect QR codes in the live stream and control the robot’s move-
ments. We need to create a Python application that meets the following requirements:

The latest frame from the camera video stream should be captured and saved to
the filesystem.

The frame should be saved to a ramdisk in order to not create any additional
disk workload.

The image data should be saved as an atomic operation to ensure data
consistency.

The first step is to create an application to save the frames from the video stream to
the filesystem. We can then create applications to stream the video stream to desktop
and web applications. By using a ramdisk, we will get better I/O performance for
video streaming and won’t create a slowdown for other applications that are trying to
read and write from the disk.

Saving the video stream to a ramdisk

One thing to keep in mind is that the camera on the robot is positioned upside down
so that there can be enough space for the camera connector to be connected to the
Raspberry Pi. This will make our captured images appear upside down. This problem
can be solved by correcting the image orientation in software and flipping the image
after we capture it.

The cv2 library is imported to capture frames from the video stream. The os mod-
ule is imported so that we can access environment variables:

import os
import cv2

A ramdisk is created by default on Linux systems, and we can access its location by
reading the value of the XDG_RUNTIME DIR environment variable. The files in the ram-
disk are stored in memory and not on physical disks. In this way, we can work with
them as we would with any other file on the filesystem but get the added benefit of
not putting any additional load on the physical disks. We will place our image in this
directory and use the IMG_PATH variable to keep track of its path. We also need to save
the image data to a temporary file located in TMP_PATH before saving it to its final
location:

IMG_PATH os.environ['XDG RUNTIME DIR'] + '/robo_ stream.jpg'
TMP_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream tmp.jpg'

10.4 Streaming live video to multiple applications 161

We will set the sizes of the images we capture to be half the size of the default resolu-
tion. This will make the size of data saved and streamed smaller and more efficient.
The image will still be large enough to get a good view of what the robot sees as well as
accurately perform QR code detection and decoding. We save these values in the vari-
ables FRAME_WIDTH and FRAME HEIGHT:

FRAME WIDTH = 320
FRAME HEIGHT = 240

The init_camera function is used to create the video capture object and set the video
capture dimensions to FRAME_WIDTH and FRAME HEIGHT. The video capture object is
then returned:

def init cameraf():
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'
cap.set (cv2.CAP_PROP_FRAME WIDTH, FRAME WIDTH)
cap.set (cv2.CAP_PROP_FRAME HEIGHT, FRAME HEIGHT)
return cap

The save_frames function enters into an infinite loop and captures a frame from the
video stream in each loop. The variable counter keeps track of the number of frames
captured so far. We save the captured image in frame and then flip the image by call-
ing cv2.flip. We use imwrite to save the image to our temporary file. Then, we call
os.replace to place our temporary file in its final destination. This call is guaranteed
to be an atomic operation on Unix operating systems such as Linux, which our Pi is
running on. Then, we print out how many frames we have captured so far. We use the
carriage return as the end character when printing the output so that the same line in
the terminal gets updated with our frame counter:

def save_ frames (cap) :

counter = 0

while True:
counter += 1
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
frame = cv2.flip(frame, -1)
cv2.imwrite (TMP_PATH, frame)
os.replace (TMP_PATH, IMG PATH)
print ('frames:', counter, end='\r', flush=True)

Finally, we end with our main function that first initializes the video capture device and
then calls the save frames function to save frames from the video stream. We use
finally to ensure that we release the video capture device upon exiting the
application:
def main() :

cap = init_camera ()

try:

save_frames (cap)

162

CHAPTER 10 Robotic QR code finder

finally:
print ('releasing video capture device...')
cap.release ()

The full script can be saved as stream_save.py on the Pi and then executed.

Listing 10.2 stream save.py: Saving captured video frames to the filesystem

#!/usr/bin/env python3
import os
import cv2

IMG PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
TMP_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream tmp.jpg'
FRAME WIDTH = 320

FRAME HEIGHT = 240

def save frames(cap) :

counter = 0

while True:
counter += 1
ret, frame = cap.read()
assert ret, 'Cannot read frame from camera'
frame = cv2.flip(frame, -1)
cv2.imwrite (TMP_PATH, frame)
os.replace (TMP_PATH, IMG_PATH)
print ('frames:', counter, end='\r', flush=True)

def init cameraf() :
cap = cv2.VideoCapture (0)
assert cap.isOpened(), 'Cannot open camera'
cap.set (cv2.CAP_PROP_FRAME WIDTH, FRAME WIDTH)
cap.set (cv2.CAP_PROP FRAME HEIGHT, FRAME HEIGHT)
return cap

def main() :
cap = init_camera()
try:
save_ frames (cap)
finally:
print ('releasing video capture device...')
cap.release ()

main ()
This will continuously capture and save frames from the video stream to the ramdisk.
We can execute the following command to list the location of our stream image:

$ 1s -alh $XDG_RUNTIME DIR/robo_stream.jpg
-rw-r--r-- 1 robo robo 23K Mar 14 21:12 /run/user/1000/robo_stream.jpg

We can see from the output that the image size is 23K, and the file location is /run/
user/1000/robo_stream.jpg. Each time we open this file in an image viewer, it will
show the latest image being captured by the camera.

10.4 Streaming live video to multiple applications 163

Going deeper: Atomic operations

Atomic operations are a very powerful and useful feature found in software such as
operating systems and databases. They are particularly useful when you have multi-
ple processes accessing the same data at the same time and you want to be sure
that you won’t face data corruption when reading and writing data. In our case, we
want to avoid having one of the streaming applications reading image data that
hasn’t fully been written to disk. Reading such half-written image data into our appli-
cations would cause them to fail. The OSDev website has an excellent page on
Atomic operations (https://wiki.osdev.org/Atomic_operation) from an operating sys-
tem perspective. It is a good resource for further details on the topic.

The Python os module documentation (https://docs.python.org/3/library/o0s.html)
covers the os.replace function that we use in this section to write the image data
to disk as an atomic operation. It mentions that replacing a file on systems such as
Linux that follow the Portable Operating System Interface (POSIX) standard will be an
atomic operation.

The strategy employed in this chapter of writing to a temporary file and then renaming
the file to its final destination is a very common approach used by many applications,
such as word processors and web browsers, to ensure data consistency in the final
output file.

10.4.2 Watching the filesystem for changes

Now that we have our video stream saved to the filesystem, we can read these live video
images and display them in different applications. However, to do this, we would need
some mechanism where, by polling the filesystem, we could check on a regular basis
whether a new image has been made available. One simple and efficient way to do this
is to check the modification time of the image file. Whenever it has changed, we know
there is a new image available for us. To help the different applications perform this
task, we will put the functionality into a library that they can all import and use.

The sys module will be used to read command line arguments, and the time mod-
ule will be used to pause between checks for file changes. The getmtime function will
give us the modification time of the image file:
import sys

import time
from os.path import getmtime

The Filewatcher class receives the path to watch and initialize the last mtime attri-
bute to None when a new instance is created. Each time the has changed method is
called, it gets the current modification time of the file being watched and returns
whether this value has changed since it was last checked:

class FileWatcher:
def init_ (self, path):
self.path = path
self.last mtime = None

https://wiki.osdev.org/Atomic_operation
https://docs.python.org/3/library/os.html

164 CHAPTER 10 Robotic QR code finder

def has_changed (self) :
mtime = getmtime (self.path)
last_mtime = self.last mtime
self.last mtime = mtime
return (mtime != last mtime)

The library has a main function that can be used to test the FileWatcher class. It saves
the first command line argument in the path variable. Then, it creates a FileWatcher
instance to watch the specified path. Next, it loops 10 times and checks the file for
changes at a rate of 60 frames per second. In each loop, it prints out whether a change
was detected:

def main() :
path = sys.argv[1l]
print ('path:', path)
watcher = FileWatcher (path)
for i in range(10) :
print (i, watcher.has changed())
time.sleep(l / 60)

The full script can be saved as watcher.py on the Pi and then executed.

Listing 10.3 watcher.py: Watching a file for changes

#!/usr/bin/env python3
import sys

import time

from os.path import getmtime

class FileWatcher:
def init (self, path):
self.path = path
self.last mtime = None

def has changed(self) :
mtime = getmtime (self.path)
last_mtime = self.last mtime
self.last mtime = mtime
return (mtime != last mtime)

def main() :
path = sys.argv[1l]
print ('path:', path)
watcher = FileWatcher (path)
for i in range(10) :
print (i, watcher.has changed())
time.sleep(l / 60)

if _ name_ == "_main_":
main ()

In one terminal, keep our previous stream save.py running so that it keeps saving
the latest frames to the robo_stream.jpg file. Then, execute the watcher.py script in

10.4.3

10.4 Streaming live video to multiple applications 165

another terminal and provide it with the stream image to watch. The following session
shows the script being executed and the output generated:

$ watcher.py $XDG RUNTIME DIR/robo stream.jpg
path: /run/user/1000/robo_stream.jpg
0 True

False

True

False

True

False

True

False

True

False

W W J 0 Ul WN P

The camera is capturing images at a rate of 30 frames per second, and we are polling
the image file for changes at a rate of 60 frames per second. This creates the expected
pattern of the file alternating between changed and not changed to exactly match the
rate of images being captured from the video stream.

Streaming to a graphical application

With the watcher library in place, we can move on and create a graphical application
that uses it to watch for changes in the streaming image and display the updated
image whenever it changes. The os module is imported so that we can access environ-
ment variables. The cv2 module will be used to display images in the application, and
the Filewatcher will detect changes to the streaming image file:

import os

import cv2
from watcher import FileWatcher

The IMG_PATH variable points to the streaming image file path. Esc_xry has the value
for the key code of the Esc key:

IMG PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
ESC_KEY = 27

The main function creates a FileWatcher object in the variable watcher and then
enters into an event loop. The event loop will keep looping until the Esc key or Q key
is pressed. In each loop cycle, the image file is checked for a change by calling the
has_changed method. If a change is detected, the imread function is called to read
the new image, and then imshow is called to display the image:

def main() :
watcher = FileWatcher (IMG_PATH)
while cv2.waitKey (1) not in [ord('qg'), ESC_KEY]:

if watcher.has_ changed() :
img = cv2.imread (IMG PATH)
cv2.imshow ('preview', img)

166 CHAPTER 10 Robotic QR code finder

The full script can be saved as stream_view.py on the Piand then executed.

Listing 10.4 stream view.py: Showing video streaming in a graphical application

#!/usr/bin/env python3

import os

import cv2

from watcher import FileWatcher

IMG PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
ESC_KEY = 27

def main() :
watcher = FileWatcher (IMG_PATH)
while cv2.waitKey (1) not in [ord('g'), ESC _KEY]:

if watcher.has changed() :
img = cv2.imread (IMG_PATH)
cv2.imshow ('preview', img)

main ()

Make sure to have stream_save.py running in another terminal. Now, when you run
stream_view.py, you can see a live view of the video streaming coming from the cam-
era. Unlike the camera applications in previous chapters, you can start the application
multiple times, and each one will stream the video images simultaneously. If you try to
do this with the snapshot.py application from chapter 8, it will fail because you can-
not have more than one application directly capturing frames from the video stream
at the same time. With this filesystem-based mechanism of sharing video stream
images, we can safely have as many applications as we like accessing and working with
live video images. Figure 10.5 shows multiple graphical applications running at the
same time and being able to stream the same video stream simultaneously.

e preview (on robopi) X

Figure 10.5 Graphical application video streaming: multiple windows can read the video stream.

10.4.4

10.4 Streaming live video to multiple applications 167

Since we’ve got our videos streaming in graphical applications, we can now try and
add QR code detection functionality to our video streaming applications.

Detecting QR codes in a video stream

This next application will let us do QR code detection on the live video stream. Any
detected QR codes will be marked on the image, and the decoded text will be dis-
played in the application. This application essentially combines the code and logic
from the scripts detect_gr.py and stream view.py. We import and use the same
three modules from the stream_view.py script:

import os

import cv2
from watcher import FileWatcher

The MG PATH and ESC_KEY variables are taken from stream view.py and serve the
same purpose. The BLUE and FONT variables will be used to set the color and font for
drawing in the application. The decoder object will perform our QR code decoding:

IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
ESC_KEY = 27

BLUE (255, 0, 0)

FONT = cv2.FONT HERSHEY SIMPLEX

decoder = cv2.QRCodeDetector ()

The first four lines of the main function are identical to the ones in stream view.py
and will take care of detecting new images and handling the event loop. Once a new
image is detected, the decode_grcode function is called to decode the QR code and
draw a box around any detected codes. The decode_grcode and draw_box functions
are identical to the ones defined in detect_gr.py. The last part of the function dis-
plays the image by calling cv2 . imshow:

def main() :
watcher = FileWatcher (IMG_PATH)
while cv2.waitKey (1) not in [ord('qg'), ESC_KEY]:

if watcher.has changed() :
img = cv2.imread (IMG_PATH)
decode_grcode (img)
cv2.imshow ('preview', img)

The full script can be saved as stream_gr.py on the Pi and then executed.

Listing 10.5 stream gr.py: Detecting QR codes in a streaming video

#!/usr/bin/env python3

import os

import cv2

from watcher import FileWatcher

IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
ESC_KEY = 27

168

CHAPTER 10 Robotic QR code finder

BLUE = (255, 0, 0)
FONT = cv2.FONT HERSHEY SIMPLEX
decoder = cv2.QRCodeDetector ()

def draw_box (frame, points, color, thickness):

points = [(int(x), int(y)) for x, y in points]
ptl, pt2, pt3, pt4 = points
cv2.line (frame, ptl, pt2, color, thickness)
cv2.line (frame, pt2, pt3, color, thickness)
cv2.line (frame, pt3, pt4, color, thickness)
cv2.line (frame, pt4, ptl, color, thickness)

def decode grcode (frame) :
data, matches, _ = decoder.detectAndDecode (frame)

if data:

cv2.putText (frame, f'data: {data}',
draw_box (frame, matches[0], BLUE,

return data

def main() :
watcher = FileWatcher (IMG_PATH)
while cv2.waitKey (1) not in
if watcher.has_ changed() :

(30, 30),
thickness=3)

FONT, 1, BLUE)

[ord('g'), ESC_KEY]:

img = cv2.imread (IMG_PATH)

decode_grcode (img)
cv2.imshow ('preview',

main ()

Make sure to have stream save.py
running in another terminal. Now,
when you run stream gr.py, you can
see a live view of the video streaming
coming from the camera. Any QR
codes detected in the image from the
video stream will be marked. Figure
10.6 shows the QR code for the QR
code used to mark the starting position
of the track being detected.

This script can come very much in
handy to test the QR code detection for
the printed-out labels. When printing
the labels, it is important to not print
them out too small, or the camera will
not be able to easily detect them. A

img)

Figure 10.6 Detecting QR codes in live video:
detected QR codes are marked on live video.

width and height of 6 cm for the QR codes have been tested and work well. Figure
10.7 shows how the exact dimensions of a QR code label can be set in LibreOffice

Writer.

10.4.5

10.4 Streaming live video to multiple applications 169

Type Options Wrap Hyperlink Image Crop
Size
. Width [600 +]
it .00 cm -
| |
n g;Remm@tO{Pamgmphawa v}
Height [6000m - +]
u [] Relative to {Paragraph area vJ
L (¥ Keep ratio
L?nmnmsae

Figure 10.7 QR code label size: it is important to correctly set the size of printed QR codes.

We can now move on to the next challenge of getting the images from the camera to
stream into web browsers.

Streaming to a web browser

Streaming the camera video to a format that web browsers can understand opens new
and powerful functionality for our robotic web applications, namely, the ability for a
web application to get a live video feed and see exactly what the robot sees at that
point in time. This will be a new functionality that wasn’t available in our previous
robot web applications.

The Motion JPEG video format will be used in this application to transmit a contin-
uous stream of video images to the connected web browser. This format is widely used
for video streaming and sends a series of JPEG images to the web browser, which are
then played back in the web browser like any other video content.

The os module will be used to read environment variables, and FileWatcher will
watch for changes in the image file. The Tornado web framework will be used to cre-
ate the web application. The asyncio is part of the Python standard library and will be
used to run the tornado main event loop:
import os
import asyncio

import tornado.web
from watcher import FileWatcher

The 1MG_PATH variable points to our image file that we will use to check for new
images and read them as they are detected. The frequency of polling for changes is
defined in poLL_DELAY and is set at 60 times per second. It is twice the speed of the
camera frame rate, so it should be more than sufficient to detect any new video
frames:

170

CHAPTER 10 Robotic QR code finder

IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
POLL_DELAY = 1 / 60

The CONTENT_TYPE variable stores the HTTP content type for Motion JPEG content. It
also defines the boundary value that will be used to mark new images. BOUNDARY con-
tains the boundary value and the bytes that need to be sent between images. The JpEG_
HEADER has the content type for each JPEG image that will be sent in the video stream:

CONTENT TYPE = 'multipart/x-mixed-replace;boundary=image-boundary'
BOUNDARY = b'--image-boundary\r\n'
JPEG_HEADER = b'Content-Type: image/jpeg\r\n\r\n'

The MainHandler class implements the get method, which is called when an incom-
ing HTTP GET request comes to the server and will respond by streaming video con-
tent to the browser. It first sets the Content-Type of the response to Motion JPEG and
then creates a FileWatcher object to watch for changes to the stream image file. Next,
it enters an infinite loop where, whenever a new image is detected, it is read and sent
to the browser with the associated boundary and JPEG HTTP headers. We then call
self.flush to send the content to the browser. asyncio.sleep is called to sleep for
the specified polling duration:

class MainHandler (tornado.web.RequestHandler) :
async def get (self):
self.set header ('Content-Type', CONTENT_ TYPE)
watcher = FileWatcher (IMG_PATH)
while True:
if watcher.has_ changed() :
img bytes = open(IMG PATH, 'rb').read()
self.write (BOUNDARY + JPEG HEADER + img_ bytes)
self.flush()
await asyncio.sleep (POLL DELAY)

The main function first defines a tornado.web.Application object that maps the top-
level path to the MainHandler class. It then listens on port 9000 for incoming HTTP
requests and then calls shutdown_event.wait () to wait for a shutdown event:

async def main() :
app = tornado.web.Application([('/', MainHandler)])
app.listen(9000)
shutdown_event = asyncio.Event ()
await shutdown event.wait ()

The full script can be saved as stream_web.py on the Pi and then executed.

Listing 10.6 stream web.py: Streaming video to web applications

#!/usr/bin/env python3

import os

import asyncio

import tornado.web

from watcher import FileWatcher

10.4 Streaming live video to multiple applications 171

IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
POLL_DELAY = 1 / 60

CONTENT TYPE = 'multipart/x-mixed-replace;boundary=image-boundary'
BOUNDARY = b'--image-boundary\r\n'

JPEG_HEADER = b'Content-Type: image/jpeg\r\n\r\n'

class MainHandler (tornado.web.RequestHandler) :
async def get (self):
self.set_header ('Content-Type', CONTENT TYPE)
watcher = FileWatcher (IMG_PATH)
while True:
if watcher.has changed() :
img bytes = open(IMG_PATH, 'rb').read()
self.write (BOUNDARY + JPEG HEADER + img bytes)
self.flush()
await asyncio.sleep (POLL_DELAY)

async def main() :
app = tornado.web.Application([('/', MainHandler)])
app.listen(9000)
shutdown_event = asyncio.Event ()
await shutdown event.wait ()

asyncio.run(main())

In one terminal, keep our previous stream_save.py running so that it keeps saving the
latest frames to the robo_stream.jpg file. Then execute the stream_web.py script in
another terminal. You can access the web application by visiting the address http://
robopi:9000 from a computer on your network. You can also access the web app by
replacing RoboPi in the URL with the IP address of your robot. When accessing the
web app from a mobile device, using the IP address will be an easier option. Figure
10.8 shows what the video stream looks like when accessed on a mobile device. In this
example, the live video stream was viewed on an Android mobile device over a Wi-Fi
network.

23:45 0N A2 63%m

0 A 10.0.0.241:9000 < @

Figure 10.8 Web
application video
streaming: the image
shows streaming over the
web to a mobile device.

172

10.5

10.5.1

CHAPTER 10 Robotic QR code finder

Compared to the graphical application, the web-based approach offers greater flexibil-
ity, as any modern web browsers on any mobile or desktop computer can be used to
access the video stream. Once again, there is the added benefit that many computers
and devices can access and view the video stream simultaneously without any problems.

Moving the robot to a target QR code

We can now take on the final challenge in this chapter of driving the robot along the
track until it finds a specific QR code. We need to create a Python application that
meets the following requirements:

The name of the target QR code should be provided as the first command line
argument.

The robot should be driven in the forward direction while continually scanning
for QR codes.

The robot should stop when the target QR code is first detected.

We can place many objects with QR codes on them along the robot track and use this
technique to ask the robot to go to one of these specific locations.

Find the QR code

As the robot moves along the track, it will
keep checking the video stream for any
detected QR codes. If it finds a QR code, it
will compare its value to the target that we
are looking for. If it finds a match, we stop
the robot. For safety, we will also provide a
maximum number of moves the robot can
make so that it doesn’t crash into the end of
the track. Figure 10.9 shows the camera
mounted on the side of the robot right above
the wheel so that it can capture QR codes of
the objects it drives by.

The os module will be used to read envi-
ronment variables, and sys will get command
line arguments. We will use cv2 to do the QR
detection and motor to move the robot
motors:
import os
import sys

import cv2
import motor

Figure 10.9 Side camera: the camera is
mounted on the side of the robot above the
moves before the robot gives up on finding wheel.

The MAX MOVES variable sets a limit of 20

10.5 Moving the robot to a target QR code 173

its target. IMG_PATH points to the video stream image, and decoder will be used to
decode the QR codes:

MAX MOVES = 20
IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
decoder = cv2.QRCodeDetector ()

The decode_gr function reads the latest image from the video stream and attempts to
decode any QR codes found in the image. The decoded data is then returned:

def decode gr() :
img = cv2.imread (IMG_PATH)
data, points, _ = decoder.detectAndDecode (img)
return data

The goto function loops the number of times specified in MAX_MOVES. In each loop, it
moves the robot forward at the lowest speed for 0.1 seconds. It then decodes QR code
data from the latest video image and prints out its progress so far, as well as whatever
data it has just decoded. If the decoded data matches the value of target, we return
the True value to indicate a successful search. If we have exceeded MAXx MOVES. then we
return False to indicate the search for target was unsuccessful:

def goto(target) :

for i in range (MAX MOVES) :
motor. forward (speed=1, duration=0.1)
data = decode_gr ()
print (f'searching {i + 1}/{MAX MOVES}, data: {data}')
if data == target:

return True
return False

The main function gets the value of target from the first command line argument. It
prints out the value and then calls goto with target. Finally, the result of the search is
saved and printed out:

def main() :
target = sys.argv[1l]
print ('target:', repr(target))
found = goto(target)
print ('found status:', found)

The full script can be saved as goto_gr.py on the Piand then executed.

Listing 10.7 goto gr.py: Searching and going to the target QR code

#!/usr/bin/env python3
import os

import sys

import cv2

import motor

MAX MOVES = 20
IMG PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'

174 CHAPTER 10 Robotic QR code finder

decoder = cv2.QRCodeDetector ()

def decode gr() :
img = cv2.imread (IMG_PATH)
data, points, _ = decoder.detectAndDecode (img)
return data

def goto(target) :

for i in range (MAX MOVES) :
motor.forward (speed=1, duration=0.1)
data = decode_gr()
print (f'searching {i + 1}/{MAX MOVES}, data: {data}')
if data == target:

return True
return False

def main() :
target = sys.argv([1l]
print ('target:', repr (target))
found = goto(target)
print ('found status:', found)
main ()

Make sure to keep stream save.py running in another terminal so that it keeps sav-
ing the latest frames to the filesystem. Then, execute the goto_gr.py script in another
terminal. You can also watch what the robot is seeing by using either stream view.py
or stream_web.py. The following session shows the script being executed and the out-
put it generated:

$ goto_gr.py start

target: 'start'

searching 1/20, data:
searching 2/20, data:
searching 3/20, data:
searching 4/20, data: start
found status: True

We asked the robot to search for a target called start. The robot made four move-
ments before successfully going to the marker with the start QR code. The search
then ended and was reported as a success. Let’s see what happens when we search for
a target further down the track:

$ goto_gr.py end

target: 'end'

searching 1/20, data:
searching 2/20, data:
searching 3/20, data:
searching 4/20, data: start
searching 5/20, data: start
searching 6/20, data: start
searching 7/20, data: start
searching 8/20, data: start
searching 9/20, data:

10.5 Moving the robot to a target QR code 175

searching 10/20, data:
searching 11/20, data:
searching 12/20, data: end
found status: True

We can see that the robot encountered the start marker again during movement
number 4. As it kept searching, it finally got to the target end at movement number
12. Like before, it then returned with a return value indicating a successful search.
Let’s try asking the robot to find a target that doesn’t exist and see what happens:

$ goto_gr.py never find me
target: 'never find me'
searching 1/20, data:
searching 2/20, data:
searching 3/20, data:
searching 4/20, data:
searching 5/20, data: start
searching 6/20, data: start
searching 7/20, data: start
searching 8/20, data: start
searching 9/20, data: start
searching 10/20, data:
searching 11/20, data:
searching 12/20, data:
searching 13/20, data:
searching 14/20, data: end
searching 15/20, data: end
searching 16/20, data: end
searching 17/20, data: end
searching 18/20, data:
searching 19/20, data:
searching 20/20, data:
found status: False

The robot has exceeded the maximum number of permitted movements without find-
ing its target. It returned with a False value to indicate the search was unsuccessful.
This covers the scenario of searching for an object that does not exist.

Robots in the real world: Warehouse robots

Robots have been increasingly used in warehouses to retrieve items that are to be
shipped to customers. The Smart Warehouse (http://mng.bz/ored) article by Supply
Chain Today shows different types of automation that Amazon uses in its warehouse.

The mobile robots used in the warehouse to move items around different locations
employ an interesting navigation mechanism. They have cameras on the bottom that
read QR codes on the floor. The warehouse floor is filled with QR codes in a grid pat-
tern that the robots can read to find out exactly where they are in the warehouse. This
approach is very similar to how the robot in this chapter reads QR codes in its envi-
ronment to navigate to a specific location.

http://mng.bz/ored

176

CHAPTER 10 Robotic QR code finder

Summary

The OpenCV computer vision library is used to detect QR codes in images, as
well as to read the data encoded in the QR code itself.

The robot will use the DC motors to move back and forth along a set track.
The more data you put in a QR code, the larger the symbol version becomes,
which in turn generates a denser QR code.

Detected QR codes have four points relating to the four corners of a quadran-
gle.

A ramdisk is used to stream video images, as this will not create additional disk
workload.

Changes to the streaming image are checked by polling the filesystem on a reg-
ular basis.

The Motion JPEG video format is used in web video streaming applications to
transmit a continuous stream of video images to web browsers.

Building a
snack-pushing robot

This chapter covers

Reading a list of QR codes and icons from a CSV file
Locating and pushing selected objects

Creating a user interface for video streaming and
shack selection

Building a snack-pushing robot

This chapter aims to build a snack-pushing robot that can be controlled by a web-
based Python application. The chapter starts by reading a list of snacks from a CSV
file. Each snack will have a QR code and icon assigned. The QR code will be used to
help the robot find the snack. The snack icon will be displayed with the code in the
web application. Then, we take on the challenge of moving the robot to the
selected snack and positioning it in an ideal position to push the snack off the
ledge and into the hands of a hungry snack-eating human. The robot will then
return to the starting position and wait for another snack request. In the final part
of the chapter, we create a user interface and a web application that shows a live
video stream from the robot camera and provides a list of available snacks. Select
the snack, and watch the robot push it off the edge of the table.

177

178

11.1

11.2

CHAPTER 11 Building a snack-pushing robot

This application can be used as a launching point to create many different types of
applications that can be controlled from a mobile device and have the robot seek and
fetch different items from its environment. Robots that can drive around and use an
arm to interact with their surroundings are quite versatile in their use.

Hardware stack

Figure 11.1 shows the hardware stack, with the specific components used in this chapter
highlighted. The robot will use the DC motors to move along the track in search of a
specific target QR code. Images will be captured from the camera, and QR code detec-
tion will be applied on these images until a match is found. Next, the robot’s motors will
stop. The robot will then use the motors to position the servo arm in an ideal position
to push the detected snack. At this stage, the arm attached to the servo motor will be
moved up and down to push the snack off the counter. For tips on how to position the
snacks so that the robot can detect and push them with ease, refer to appendix C.

[JoystickIKeyboardIMouse]
[Neopixeq DC ISewo] A R B
motor

[CRICKIT ICameraIEthernet WiFi [Bluetooth | USB

Figure 11.1 Hardware stack: the
servo motors will be used to push

Raspberry Pi
the snacks.

Software stack

Details of the specific software used in this chapter are shown in figure 11.2. We first
read the list of snacks from a CSV file using the csv library. Each snack has an emoji
icon that is converted using the emoji library. Next, we create the pusher_gr library
that will detect QR codes using OpenCV and push the snacks using the servo motors.
We will employ the Tornado web framework to create the pusher_web application to
allow users to control the robot from their mobile devices.

[Application I pusher gr, pusher web]

[Libraries I OpenCV, tornado, emoji]

[Python I csv]

[Linux I Linux kernel video subsystem] Figure 11.2 Software stack:
The emoji library will be used

[Hardware I Camera, DC motors, servos] to convert emoji short codes

for the icons.

11.3

11.3.1

11.3 Finding and pushing snacks 179

Finding and pushing snacks
The first step will be to create a library to locate and push snacks based on their QR
code. We need to create a Python library that meets the following requirements:
= It should read the list of snacks from a CSV file and convert any emoji short
codes found.
= The library should have a function that will swing the servo arm up and down.

= The library should have a function that looks for a matching QR code and
swings the arm when the code is found.

This library will provide us with the core functionality for our robot. Figure 11.3 shows
a side view of the robot with the camera used to detect QR codes and the servo arm to
push snacks.

Figure 11.3 Snack-pushing robot:
the servo motor is used to push
shacks.

Once the library is in place, we will be able to develop a web application to call differ-
ent robot functions as needed.

Reading the list of snacks

The first step is to install the emoji Python package. This module will let us convert
emoji short codes to Unicode characters. We will use this package to create the icons
in the application for each snack. Run the following command to install the package:

$ ~/pyenv/bin/pip install emoji

Now that we have everything we need installed, let’s open a read—evaluate—print loop
(REPL) session and get to it. First, we will tackle the task of reading and parsing the
snack list from a CSV file. We import the DictReader object to read CSV data as a list

180

CHAPTER 11 Building a snack-pushing robot

of dictionaries. We then import the function pprint to do a pretty print of our data
structures:

>>> from csv import DictReader
>>> from pprint import pprint

The CSV file should be saved as items.csv on the Pi with the contents presented in
listing 11.1.

Listing 11.1 items.csv: List of snack QR codes and icons

code, icon

grapes, :grapes:
carrots, :carrot:
candy, :candy:
lollipop, :1lollipop:

The first line of the file contains the field names. The code field stores the value for
the QR code, and the icon field stores the value of the icon as an emoji short code.
The first step will be to read the lines from the CSV file with the following line of code:

>>> lines = list (open('items.csv'))

We can now have a peek at what is in lines. It contains a list of strings. Each string is
one line in the file:
>>> pprint (lines)
['code, icon\n',
'grapes, :grapes:\n',
'carrots, :carrot:\n',
'candy, :candy:\n',
"lollipop, :1lollipop:\n']
We use DictReader to parse the lines and return a list of dictionaries:

>>> items = list(DictReader (lines))

We can now pretty print items to get a better look at what is inside:

>>> pprint (items)

[{'code': 'grapes', 'icon': ':grapes:'},
{'code': 'carrots', 'icon': ':carrot:'},
{'code': 'candy', 'icon': ':candy:'},
{'code': 'lollipop', 'icon': ':lollipop:'}]

We can grab the first item from the list and inspect the code and icon for that item:

>>> items[0]

{'code': 'grapes', 'icon': ':grapes:'}
>>> items[0] ['code']
'grapes'

>>> items[0] ['icon']
':grapes:'

11.3.2

11.3 Finding and pushing snacks 181

Now, let’s move on to converting emoji short codes. We will import the emojize func-
tion to convert the short codes and use pathlib to save a test HTML file to disk:

>>> from emoji import emojize
>>> from pathlib import Path

The emoji package page (https://pypi.org/project/emoji/) provides good documen-
tation on using the module and links to the Unicode consortium pages that have a list
of the official emoji short codes. Let’s convert some text by calling the emojize
function:

>>> text = emojize('Have some :pie: with your pi!'")

We want to see what the end result will look like in our web browser, so let’s add the
text to some HTML and save it to a file:

>>> html = '<!DOCTYPE htmls<title> </title>' + text
>>> Path('pie.html') .write_ text (html)

Now, when we open the pie.html file in our web

browser, we will be able to see what these emoji Have some 9

icons will look like. Figure 11.4 shows this HTML . .

file as it would be displayed in a web browser. Wlth YOUI' pl!
Now that we have read our list of snacks and

figured out how to create some emoji icons, let’s Figure 11.4 Emoji short codes:

move on to finding and pushing snacks with the the emoji short code for pie was

robot. converted to Unicode.

Pushing snacks

We will create a library with several functions to help us locate and push snacks. We
import the dirname function to get the path of our Python file and csv to parse our
CSV snacks list. Then, we import emojize to help with the emoji icons and crickit to
control the servo motors:

from os.path import dirname

from csv import DictReader

from emoji import emojize
from adafruit crickit import crickit

Next, we import motor to handle the forward and backward movements on our DC
motors. The os module will access environment variables, and time will be used to
pause between the servo arm movements. The cv2 module will help perform QR code
detection:

import motor
import os
import time
import cv2

https://pypi.org/project/emoji/

182

CHAPTER 11 Building a snack-pushing robot

The constant ITEMS_FILE points to our CSV file and IMG_PATH to our streaming image
file. We limit the movement of the robot with Max_MOVES and define the servo angles
to move the servo arm up and down in SERVO_ANGLES. The decoder object will decode
our QR codes:

ITEMS FILE = dirname(_ file) + '/items.csv'

IMG _PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
MAX MOVES = 20

SERVO_ANGLES = dict (up=70, down=180)

decoder = cv2.QRCodeDetector ()

The get_items function opens our CSV file and converts all the emoji short codes for
every line in the file. Next, we call DictReader to parse the CSV content and return a
list of dictionaries:

def get items():

lines = [emojize(i) for i in open(ITEMS_ FILE)]
return list (DictReader (lines))

Our reliable decode_gr function will do the job of decoding any QR codes we
encounter:

def decode qgr():
img = cv2.imread (IMG_PATH)
data, points, _ = decoder.detectAndDecode (img)
return data

The goto function moves the robot in the provided direction looking for a
QR-code-matching target. We use direction to look up our movement function and
save it in motor_func. Then, we loop through moving our robot in the desired direc-
tion and calling decode_gr to check whether we have encountered any QR codes. If
we find a code-matching target, we return with a True value. Otherwise, if we are
moving forward and reach the end of the track, we return with False. Likewise, if we
have exceeded MAX_MOVES movement attempts, we return with False:
def goto(target, direction):

motor func = getattr(motor, direction)

for i in range (MAX MOVES) :

motor func (speed=1, duration=0.1)
data = decode_gr()

if data == target:
return True
if data == 'end' and direction == 'forward':

return False
return False

We use swing_arm to swing our servo arm up and knock the snacks over. We pause for
half a second and swing the arm back down to its original position. The same servo
motor is used to move the arm to the up and down positions. Figure 11.5 shows the
arm in the down position, which is used when driving along the track. Figure 11.6
shows the arm in the up position, which is used to knock over the snacks:

11.3 Finding and pushing snacks 183

def swing arm() :
crickit.servo 2.angle = SERVO ANGLES['up']
time.sleep(0.5)
crickit.servo 2.angle = SERVO _ANGLES|['down']
time.sleep(0.5)

The push_item function is used to drive the robot forward in search of a
OQR-code-matching code. If found, we move the robot backward to position the servo
arm in the center of our snack, and then we swing the arm by calling swing_arm.
Finally, we call goto to drive the robot back to the starting position:

def push item(code) :
found = goto(code, 'forward')
if found:
motor.backward (speed=1, duration=0.3)
swing_arm()
goto('start', 'backward')

Figure 11.5 Arm down: the arm is kept Figure 11.6 Arm up: the arm is placed in the up position
in the down position when the robot is to knock over snacks.
moving on the track.

The full script can be saved as pusher_gr.py on the Pi and then executed.

Listing 11.2 pusher qgr.py: Library to detect and push matching snacks

#!/usr/bin/env python3
from os.path import dirname
from csv import DictReader

184 CHAPTER 11 Building a snack-pushing robot

from emoji import emojize

from adafruit crickit import crickit
import motor

import os

import time

import cv2

ITEMS FILE = dirname(_ file) + '/items.csv'

IMG_PATH = os.environ['XDG RUNTIME DIR'] + '/robo stream.jpg'
MAX MOVES = 20

SERVO_ANGLES = dict (up=70, down=180)

decoder = cv2.QRCodeDetector ()

def get items():
lines = [emojize(i) for i in open (ITEMS_FILE)]
return list (DictReader (lines))

def decode qgr():
img = cv2.imread (IMG_PATH)
data, points, _ = decoder.detectAndDecode (img)
return data

def goto(target, direction):
motor func = getattr (motor, direction)
for i in range (MAX_ MOVES) :
motor func (speed=1, duration=0.1)
data = decode_gr()

if data == target:
return True
if data == 'end' and direction == 'forward':

return False
return False

def swing arm() :
crickit.servo_2.angle = SERVO_ANGLES['up']
time.sleep(0.5)
crickit.servo 2.angle = SERVO_ANGLES ['down']
time.sleep(0.5)

def push item(code) :
found = goto(code, 'forward')
if found:
motor.backward (speed=1, duration=0.3)
swing arm()
goto('start', 'backward')

We can take this library for a test drive now. Just like we have done in the previous
chapter, make sure to have stream_save.py running in another terminal. Place the
robot at the starting position of the track pointing at the starting QR code. We can try
out the library in a REPL session. First, we import the pusher_gr library:

>>> import pusher gr

11.3 Finding and pushing snacks 185

We call the decode_gr function, and it returns the code for our starting position as
start:

>>> pusher gr.decode_gr ()
'start’

We can now ask the robot to go to the end of the track with the following function
call:

>>> pusher gr.goto('end',6 'forward')
True

The function returned True, which means it successfully reached the end position. We
can call decode_gr to confirm this. The function returns the end value:

>>> pusher gr.decode_gr ()
'end'

Next, we return to the start position:

>>> pusher gr.goto('start', 'backward')
True

Now, let us push the snack with code candy by calling the push_item function. The
robot will move to the snack with QR code candy, push it with the servo arm, and then
return to the starting position:

>>> pusher gr.push item('candy')
Like before, we can confirm the robot is at the starting position by calling decode_qr:

>>> pusher gr.decode gr ()
'start!’

This session was a good way to take the library and the robot for a test drive before
putting our web application in place as a front end to control the robot.

Robots in the real world: Pick-and-place robots

One very popular category of robots is pick-and-place robots. They are often used in
manufacturing settings where produced items need to be packed so that they can be
shipped. The robot in this chapter has the ability to locate specific items and push
them off a counter. Imagine pushing the items onto a conveyor belt so that they can
be taken to another part of a factory for further processing.

Some of the benefits of rolling out pick-and-place robots are the increased speed and
reliability compared to manual picking and placing. They come in many shapes and
sizes, depending on the types of items they need to pick up and their characteristics.
The 6 River Systems site (https://6river.com/what-is-a-pick-and-place-robot) covers
the topic of pick-and-place robots very well and is a good place to learn more about
different types of robots that are commonly used and their applications.

https://6river.com/what-is-a-pick-and-place-robot

186

114

114.1

CHAPTER 11 Building a snack-pushing robot

Creating the snack-pushing application

We can now dive into creating our web application to control our snack-pushing
robot. We need to create a Python application that meets the following requirements:

It should show a list of snacks as buttons for selection to be made.

Once a snack is selected, the robot should drive to the snack and push it. Then
it should return to the starting position.

A live video stream of the robot camera should be included in the application.

There are a number of challenges ahead of us, so let’s break up the problem a bit.
First, we will tackle listing and selecting items. Then, we will focus on how to use
stylesheets to better control the layout and design of our user interface. Finally, we will
add the live video stream to the application.

Selecting snacks with the application

We will first focus on reading the list of snacks and presenting them as a series of but-
tons. Clicking on one of these snack buttons will then have our robot drive to the
snack and do its magic.

As we have done before, we import a number of functions and objects from the
Tornado web framework to help us create our web application. These are all the same
functions and objects we have used in previous chapters:
from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

We then import from the os module to obtain directory names and environment vari-
ables. We import get_items and push_item to list the available and push selected
items:

from os.path import dirname
import os
from pusher gr import get items, push item

We save the settings for our application in SETTINGS. We use static_path so that we
can serve static content like stylesheets:
SETTINGS = dict (

debug=bool (os.environ.get ('ROBO_DEBUG')),

template path=dirname(file) + '/templates',

static_path=dirname(file) + '/static',

)

The MainHandler object will handle incoming requests. For GET requests, we save the
list of snacks and pass it in items to the template to render. When the index page is
accessed, name will be blank, so we set it to the value index. Otherwise, the name of
the page being accessed is directly mapped to the template name. When the snack
selection form is submitted, the post method will handle the request by calling

11.4 Creating the snack-pushing application 187

push_item to push the item and then calling redirect to take the browsers to the
page listing all the items:

class MainHandler (RequestHandler) :
def get (self, name) :
name = name or 'index'
self.render (f'{name}.html', items=get items())

def post(self, code):
push_item(code)
self.redirect ('items"')

The final step is like the one we have already seen. We enable pretty logging and then
create our application objection and have it listen on port 8888 for incoming
requests:

enable pretty logging()

app = Application([('/([a-z_1*)', MainHandler)], **SETTINGS)

app.listen(8888)
IOLoop.current () .start ()

The full script can be saved as pusher_web.py on the Pi and then executed.

Listing 11.3 pusher web.py: Handling requests for the snack-pusher application

#!/usr/bin/env python3

from tornado.ioloop import IOLoop

from tornado.web import RequestHandler, Application
from tornado.log import enable pretty logging

from os.path import dirname

import os

from pusher gr import get items, push_item

SETTINGS = dict(
debug=bool (os.environ.get ('ROBO_DEBUG'))
template path=dirname(_ file) + '/templates',
static_path=dirname(file) + '/static',

class MainHandler (RequestHandler) :
def get(self, name):
name = name or 'index'
self.render (f'{name}.html', items=get items())

def post(self, code):
push_item(code)
self.redirect ('items')

enable pretty logging()

app = Application([('/([a-z_]*)', MainHandler)], **SETTINGS)
app.listen(8888)

IOLoop.current () .start ()

188

CHAPTER 11 Building a snack-pushing robot

Before running this script, we will need to at least create one HTML template to be
served to the web browser. Ultimately, the application will have a template to display
the index page and one to display the list of snacks. We will tackle the list of snacks
template first. Let’s have a look at the contents of this HTML template.

We start with the header portion of the HTML document. Here, we set the title of
the page and use the meta tag to ensure the page renders well on mobile devices. Like
before, we set a blank icon for the page. We then point to a stylesheet called
style.css that will be part of our static content. We use the Tornado static_url
function to generate the URL for this static content:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Snack Pusher</title>
<meta name="viewport" content="width=device-width">
<link rel="icon" href="data:,">
<link rel="stylesheet" href="{{ static url('style.css') }}">
</head>

We now move on to the body of the document, which contains a form to be submitted
using the POST method. We loop through each snack in the items variable. For each
snack, we output a button with action defined by code. The text of the button will
show both the value of icon and code:

<body>
<form method="post">
{$ for item in items %}
<button formaction="{{ item['code'l }}">
{{ item['icon'] }}

{{ item['code']l }}
</button>
{% end %}
</forms>
</body>
</html>

The full template can be saved as items.html in the templates folder of the
application.

Listing 11.4 items.html: HTML template showing the list of available items

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Snack Pusher</title>
<meta name="viewport" content="width=device-width">
<link rel="icon" href="data:,">
<link rel="stylesheet" href="{{ static url('style.css') }}">
</head>
<body>
<form method="post">

11.4.2

11.4 Creating the snack-pushing application 189

{$ for item in items %}
<button formaction="{{ item['code']l }}">
{{ item['icon'] }}

{{ item['code'] }}
</buttons>
{% end %}
</form>
</body>
</html>

Now, we have enough of our application in place to run it and start testing parts of its
functionality. Like before, make sure to have stream_save.py running in another ter-
minal. Now go ahead and run our new pusher_web.py application. We can access the
web application using a web browser on any computer or mobile device on the same
network as the robot. Access the web application by visiting the address http://robopi
:8888/items or by replacing robopi in the URL with the IP address of your robot. Figure
11.7 shows what this part of the applica-
tion looks like. It has a list of our four
defined snacks in our CSV file. Each O A 10002418888 < :
snack has its icon and name shown.
Press one of these buttons, and the &
robot will drive along, find the selected ‘
snack, and push it off of the counter.

We have a good level of functional-

1ty' m place-. Now, let’s add some style to Figure 11.7 Item listing: the list of snacks is
this app using stylesheets. shown in the application.

;

carrots

@
lollipop

”’!

candy

grapes

Styling the web application

We will create one stylesheet to style both our pages. We have some style elements
common to both pages, so it makes sense to keep all the styles in one stylesheet.

We first style the content in the main body, links, and buttons. We set the font to use,
center the text, and remove the link underlining by setting text-decoration to none:

body, a, button {
font-family: Verdana, Arial, sans-serif;
text-align: center;
text-decoration: none;

}

We will double the font size on the buttons and add a healthy amount of margin and
padding to make them bigger and easier to press on mobile devices. We set them all to
the same width of 140 px so that they can have a uniform size:

button {
font-size: 200%;
padding: 10px;
margin: 10px;
width: 140px;

190

CHAPTER 11 Building a snack-pushing robot

In the next section, we will add a template for the index page. That page has an
iframe that we would like to style. We make the iframe take up the full screen width
and have a height of 300 px. We also remove the border so that it fits the look of the
page more naturally:

iframe {
width:100%;
height:300px;
border:none;

}

The stylesheet can be saved as style.css in the static content folder of the application.

Listing 11.5 style.css: Applying a stylesheet to the HTML templates

body, a, button {
font-family: Verdana, Arial, sans-serif;
text-align: center;
text-decoration: none;

}

button {
font-size: 200%;
padding: 10px;
margin: 10px;
width: 140px;

}

iframe {
width:100%;
height:300px;
border:none;

}

Now we can start our pusher web.py
application again to have a peek at our
application. Visit the same URL to see

& f how the page has changed. Figure 11.8

O A 10002418888 <

shows the new look for the page once
gra peS carrots the styles are applied. The buttons will
appear much larger now and will be
much easier to press on mobile devices

% @ with smaller screens.
. With the stylesheets out of the way,
Candy IO”'pOp we can tackle the final part of the

application. The index page will com-
bine the snack list with the live video

Figure 11.8 Styled buttons: the buttons have stream.
been styled with a bigger font and more padding.

11.4 Creating the snack-pushing application 191

11.4.3 Adding the live video stream to the application

Adding the live video stream to web applications is relatively simple. We just put the
URL of the video streaming service into an img tag. The problem is that each time we
select a snack by pressing a button, the web browser will submit the whole page. This
will refresh the whole page and make us miss the most exciting part of the video
stream, which is the robot rolling down its track in search of our snack. We can
address this problem by putting our list of snacks in their own iframe. In that way, our
video stream playback will never be interrupted, no matter how many snacks we select.
We can now have a look at the template for the main index page.

We have our usual tags in the header to set the language and title of the page. All
the tags and values in the header are identical to what we have used in items.html:
<!DOCTYPE HTML>
<html lang="en">
<head>

<title>Snack Pusher</title>
<meta name="viewport" content="width=device-width">

<link rel="icon" href="data:, ">
<link rel="stylesheet" href="{{ static url('style.css') }}">
</head>

In the body, we put a header with the page title at the top of the page. Then, we place
our live video stream right after the header. We make sure to use the host_name value
in the request so that the application works correctly regardless of whether you
accessed it by the name of the host or IP address. Next, we load our page with the list
of snacks in an iframe, right beneath the live video stream:

<body>

<hls>Snack Pusher</hl>

<iframe src="/items"></iframes>

</body>

</html>

The full template can be saved as index.html in the templates folder of the
application.

Listing 11.6 index.html: Template showing the live video stream and snack list

< !DOCTYPE HTML>
<html lang="en">
<head>
<title>Snack Pusher</title>
<meta name="viewport" content="width=device-width">

<link rel="icon" href="data:, ">

<link rel="stylesheet" href="{{ static url('style.css') }}">
</heads>
<body>

<hls>Snack Pusher</hl>

192 CHAPTER 11 Building a snack-pushing robot

<iframe src="/items"></iframe>
</body>
</html>

All the pieces of our application are now in

place, and we can try out the final version. In O A1000241:8888 <
addition to having stream save.py running,

make sure stream web.py is also running so Snack Pusher
that the live video stream can be served to the
application. Run the pusher_web.py script so
that we can try our application. Access the web
application by visiting the address http://
robopi:8888/ or by the IP address of the robot.
Figure 11.9 shows what the full application will
look like. We can now see the live video stream
and make our snack selections in the same
application. We can select any of the snacks,
and as the request is processed by the robot, the & ,‘
video stream will keep playing uninterrupted. grapes carrots

o e
candy lollipop

Figure 11.9 Final application: the live video
stream is shown while snacks are selected.

Going deeper: Video streams in applications

This is the first time that we embed a live video stream into a web application, which
is a very powerful feature of the HTML language. We can expand this functionality in
many ways.

We can create user interfaces with multiple video streams being displayed simulta-
neously. This is particularly useful for robots that have multiple cameras on board,
with one facing forward and another facing backward. By displaying all the video feeds
from the cameras at the same time, we can obtain a full view of the robot’s environ-
ment as it drives around.

Another useful feature that we could add is the ability to continuously record and play
back video streams. This could be done by creating a stream-archiving application
that would save each new frame from the video stream into time-stamped filenames.
Then we would add the option in the user interface to rewind back in time. If we left
the video stream to be continually saved, the disk would eventually fill up, and we
would run out of storage. We could address this by implementing a data-retention pol-
icy where we would only retain video stream data for the past 24 hours. Any older
data would be removed automatically, and then the application could maintain its

Summary 193

record and playback features and not run out of disk space. Alternatively, we could
sync the old video data to a centralized video archive server on the network. This is
another common strategy for dealing with the limited local storage on robots.

This last project has combined many different technologies to create a robot that can
interact with its environment in powerful ways, and its functionality can be extended.
We could add a function where the robot drives around and automatically does a
stock check on the available items. Instead of pushing the items, we could create a
pick-and-place robot that grabs items and places them in another location, similar to
what a warehouse robot would do. There are many ways we could improve our robots,
and we are only limited by our imagination.

And there you have it. This is the end of a long fun journey bringing together a lot
of different hardware and software components to make a robot we can control with a
mobile device over a wireless network. With mobile in hand, select as many snacks as
you like, and enjoy the robot whizzing around, searching and tossing whatever snacks
your heart desires.

Summary

The snack-pushing robot is controlled by a web-based Python application.

The servo motor is used to move the servo arm up and down and push the
snacks.

The emoji Python package is used to convert emoji short codes to Unicode
characters. These are used as icons for the snacks in the application.

The list of snacks is read from a CSV file that contains the QR code and icon for
each snack.

A single stylesheet is used to style both template pages in the application. This is
done because there are common style elements in both pages, so it is easier to
have all styles in one stylesheet.

An iframe is used to help us play the live video stream and submit snack selec-
tions in the same application without any interruption to video playback.

Al

appendix A
Hardware

purchasing guide

This appendix covers different hardware components necessary to build the robots
covered in this book. It provides details on the specific models of products required
for the book projects and links to the product pages for the online retailers who
sell these products. There are three different robot configurations used in the
book, and this appendix covers the hardware needed for all of them. Make sure to
consult this guide before buying the hardware. It is also worth noting that appen-
dix D provides a mechanism to mock the robotic hardware and run all the code in
the book on any laptop or desktop computer.

Raspberry Pi components

The Raspberry Pi is a small single-board computer created by the Raspberry Pi
Foundation (https://raspberrypi.org). It is at the heart of all robot projects in this
book. The Pi also supports an extensive set of add-on hardware boards that add
additional functionality to the computer. We will need the following Raspberry Pi
hardware for our projects:

Raspberry Pi 4 (http://mng.bz/A8aK) with 2 GB or more of RAM

Raspberry Pi Camera Module 2 (http://mng.bz/ZRVO), regular or NoIR
version

Adafruit camera case (https://www.adafruit.com/product/3253) for the Pi
camera

Adafruit CRICKIT HAT for Raspberry Pi (https://www.adafruit.com/
product/3957) to control the DC and servo motors

Pimoroni Pibow Coupe 4 (https://shop.pimoroni.com/products/pibow
-coupe-4) case for the Raspberry Pi 4

195

https://raspberrypi.org
http://mng.bz/A8aK
http://mng.bz/ZRVO
https://www.adafruit.com/product/3253
https://www.adafruit.com/product/3957
https://www.adafruit.com/product/3957
https://www.adafruit.com/product/3957
https://shop.pimoroni.com/products/pibow-coupe-4
https://shop.pimoroni.com/products/pibow-coupe-4
https://shop.pimoroni.com/products/pibow-coupe-4

196

A2

APPENDIX A Hardware purchasing guide

There are a number of local and online retailers of these products around the world.
Here are some helpful tips and sites to choose the best options for your location:

The Raspberry Pi Foundation lists official retailers on each product page, which
can be found when you click to buy a product on their website. The online tool
lists the official retailers for a specific product and country.

Adafruit products can be boughtonline (https://www.adafruit.com/) or through
one of their official distributors (https://www.adafruit.com/distributors).
Pimoroni products are available online (https://shop.pimoroni.com/) or
through a distributor (http://mng.bz/RmNO0).

The Raspberry Pi will need either a microSD card or a USB flash drive as storage.
There are no specific storage requirements for the projects in the book as long as the
space requirements to install the Raspberry Pi OS are met. Here are some points to
keep in mind for different available storage options:

If this is your first time working with a Raspberry Pi, then buying it as a kit pro-
vides a lot of extra items that are helpful for first-time users and are often good
value for money. The kits will often come with a memory card for storage, a
power supply, and an HDMI cable for video output. One such option is the
Raspberry Pi 4 Desktop Kit (http://mng.bz/27gd). The Pimoroni Raspberry Pi
4 Essentials Kit (http://mng.bz/1JaV) is another popular option. This kit is also
a good option if you find the regular Raspberry Pi 4 to be out of stock.

USB flash drives can be significantly faster than microSD cards on the Rasp-
berry Pi, which makes installing and upgrading software on the computer much
faster as well. This article on Raspberry Pi storage performance gives more
details on disk benchmarks and fast USB flash drives (http://mng.bz/PRN9Y).
USB flash drives tend to be easier to change than microSD cards on the Rasp-
berry Pi because of their location on the board. This is particularly true when
the Raspberry Pi is fully assembled into a robotic chassis, as the USB ports are
easier to access than the microSD slot. You might want to remove the storage so
that you can easily take a full backup of the system on another computer, or you
might have multiple USB flash drives, each with a different software setup, that
you can swap out.

Motors, chassis kits, and joystick controllers

The two most common types of motors are DC and servo motors. Both types are used
in this book. A robot chassis is also needed to attach the computer, motors, and batter-
ies to. The recommended chassis kit has three layers, which gives more room for the
board and battery than the smaller two-layer chassis kits:

Adafruit Three-Layer Robot Chassis Kit (https://www.adafruit.com/product/
3244) has two DC motors and wheels included.

Adafruit Mini Pan-Tilt Kit (https://www.adafruit.com/product/1967) comes
assembled with two micro servos that perform the pan and tilt movements.

https://www.adafruit.com/
https://www.adafruit.com/distributors
https://shop.pimoroni.com/
http://mng.bz/RmN0
http://mng.bz/27gd
http://mng.bz/1JaV
http://mng.bz/PRN9
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/1967

A3

A4

A.4 Optional purchases 197

Both kits are quite versatile and support many different hardware platforms. Their
dimensions, connectivity, and power requirements are perfect for the Raspberry Pi
using a CRICKIT HAT.

For chapter 7, which covers controlling robots with joysticks, there are a number of
hardware options for the controller. An original Sony PlayStation 4 or 5 controller can
be used. An Xbox original or compatible controller can be used as well. The following
two Xbox-compatible controllers have been tested and work both with Linux and on
the Raspberry Pi:

W&O wireless controller compatible with Xbox 360 (https://a.co/d/7FA95aj)
YAEYE controller for Xbox 360 (https://a.co/d/8lsabwl)

One thing to make note of is that wireless Bluetooth connectivity only works for the
PlayStation controllers. You can, however, control the robot using a wireless network
connection with any of the controllers using the approach of a Wi-Fi network connec-
tion to remotely control the robot, which is an approach covered in chapter 7.

Power and cabling

The Raspberry Pi and the CRICKIT HAT each need a power supply. There are many
power options ranging from battery packs to connecting power cables to power out-
lets. The recommended approach is to use a single USB power bank to power both
devices. There are a number of power banks that allow two devices to be connected
and powered simultaneously. Power banks are rechargeable and portable. We need a
portable power source to have our robots drive around without attached wires. Any
USB power bank that supports simultaneously charging two devices can be used. The
following power bank has been tested and works well:

Anker PowerCore Select 10000 (https://walmart.com/ip/Anker/211593977)
with Dual 12W output ports and 10000 mAh of power

The CRICKIT HAT receives power using a barrel jack connecter, so a USB to barrel
jack cable is used to connect to the power bank. We also need extension jumper wires,
as the cables that are part of the robot chassis kit will not be long enough to connect
to the CRICKIT HAT once we have assembled all the required parts. The following
are the recommended cables:

USB to barrel jack cable (https://www.adafruit.com/product/2697)

Premium M/M extension jumper wires (https://www.adafruit.com/product/
1956)

Optional purchases

There are a number of items you can use to improve your robot-building experience,
but these are not required. You will often want to take apart and reconfigure your
robot hardware in different arrangements. You might be trying a different layout for
your motors or modifying the position of your batteries to change the center of gravity
of your robot. As you do this, you will want to be able to easily attach and detach your

https://a.co/d/7FA95aj
https://a.co/d/8lsabwI
https://walmart.com/ip/Anker/211593977
https://www.adafruit.com/product/2697
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956

198

APPENDIX A Hardware purchasing guide

Raspberry Pi and power bank from the chassis. Velcro adhesive squares are a great
solution to this problem. When working with the Raspberry Pi, CRICKIT HAT, and
robot chassis, there are a number of spots on each board and along the chassis to
firmly screw parts together. The nylon screw and stand-off set provides many different
screws and standoffs of different lengths for this exact purpose. Magnetic USB cables
offer a clean way to easily connect and disconnect the power bank to and from the
Raspberry Pi and to connect the power bank to a USB charger. The SlimRun Ethernet
cables are lighter and thinner than standard network cables, which gives the robot
more maneuverability when using a wired network connection:

Velcro adhesive squares (https://a.co/d/85z610Mi)

Nylon screw and stand-off set (https://www.adafruit.com/product/3658)
Seven-pack magnetic USB cables (https://a.co/d/cYc3waP)

Monoprice SlimRun Ethernet cable (https://a.co/d/0GBLsyQ)

https://a.co/d/8Sz6OMi
https://www.adafruit.com/product/3658
https://a.co/d/cYc3waP
https://a.co/d/0GBLsyQ

B.1

appendix B
Configuring the
Raspberry P

This appendix covers the installation and configuration of the main pieces of soft-
ware on the Raspberry Pi. First, the Raspberry Pi OS Linux distribution will be
installed on the computer. Then, Python will be configured so as to have a dedi-
cated virtual environment where Python libraries can be installed. The Adafruit
CRICKIT library will be installed next, which will then be used to run Python code
to interact with the CRICKIT hardware.

Setting up the Raspberry Pi
The Raspberry Pi official documentation (https://raspberrypi.com/documenta
tion/) page is an excellent source when working with the Raspberry Pi. The

following sections of the documentation are good to look at for the projects in
the book:

Getting started: This page has detailed information on installing the operat-
ing system and using Raspberry Pi Imager.

Configuration: Details on using the raspi-config tool can be found here.
Remote access: It covers connecting to your Pi with SSH, transferring files,
and using the VNC software to remotely access the desktop.

To install the Raspberry Pi OS, do the following:

Visit http://mng.bz/JdNO.

Click on Raspberry Pi OS link and download the “Raspberry Pi OS with desk-
top” image. This will download the latest release. For reference, the code in
the book was tested with the 2022-04-04 32-bit release of Raspberry Pi OS.

199

https://raspberrypi.com/documentation/
https://raspberrypi.com/documentation/
https://raspberrypi.com/documentation/
http://mng.bz/JdN0

200

APPENDIX B Configuring the Raspberry Pi

The desktop image comes with a desktop environment, which will be useful
when we create graphical applications for the robot projects.

Click on the “Raspberry Pi Imager” link and follow the instructions for down-
loading and installing the Imager software.

The Raspberry Pi 4 can be installed and booted from either a microSD card or
a USB flash drive. USB flash drives offer better performance and are the recom-
mended option.

Use the Imager software to prepare the installation media with the downloaded
image (microSD card/USB flash drive).

Once the Raspberry Pi has booted with the installer, click Next at the welcome
screen.

Set the value for country, and then set the username as robo, and continue with
the configuration steps.

After reboot, we will use the Raspberry Pi configuration tool to configure the Pi
further.

Use the tool to set the hostname to robopi. Figure B.1 shows the screen used to
change the hostname on the Raspberry Pi.

Raspberry Pi Configuration v A X

System Display Interfaces Performance Localisation

i Password: 6hange Password...
Hostname: Change Hostname... i
Boot: ® To Desktop () To CLI ‘
Auto login: ()

Change Hostname v x
Network at

Enter new hostname: robo i
Splash Scre ‘_ £

Cancel

OK

Ol
@

Cancel

OK

Figure B.1 Change hostname: use the Raspberry Pi configuration

tool to change the hosthame.

10 Next, use the configuration tool to enable the SSH, VNC, and I2C interfaces.
Figure B.2 shows what the interfaces screen will look like once we have enabled

these interfaces.

B.2

B.2 Setting up the Adafruit CRICKIT HAT 201

Raspberry Pi Configuration

<
i x

System Display Interfaces Performance Localisation

SPI:
12C:

SSH:
VNC:

Serial Port:
Serial Console:
1-Wire:

Remote GPIO:

0080600686

~

Cancel 0

Figure B.2 Enabling interfaces: This screen can be used to enable
different interfaces.

11
12

13

14

15

16

Now reboot the Pi for the changes to take effect.

Connect the Raspberry Pi to the network either by connecting a network cable
to the Ethernet port or joining a Wi-fi network.

Get the IP address of the machine by running hostname -I in the terminal.
From another computer on the network, test that you can SSH to the Raspberry
Pi using its IP address as the user robo. You can now use SSH to run commands
and execute Python scripts on the Pi from any computer on your network.

You can also connect to the Raspberry Pi using its hostname robopi. To do this,
you will need to add a line to your client machine’s hosts file with the robopi
hostname and its associated IP address. The How-To Geek website provides an
excellent guide on how to edit the hosts file on Windows, Mac, and Linux
(http://mng.bz/50wz).

The sftp command or the FileZilla application are both popular choices to
transfer files to and from the Pi over the network. If your computer is running
Linux, then sshfs is an excellent way to mount and work with remote files on
the Pi as if they were local files.

Now that we have the main configuration steps completed for the Raspberry Pi, we
can move on to configuring the Adafruit CRICKIT HAT.

Setting up the Adafruit CRICKIT HAT

Follow these steps to complete the hardware and software configuration of the Ada-
fruit CRICKIT HAT:

%22
http://mng.bz/5owz

202

APPENDIX B Configuring the Raspberry Pi

There is a very comprehensive guide on the Adafruit website for setting up the
CRICKIT HAT and troubleshooting any issues. We will refer to specific sections
in the next steps (http://mng.bz/wjbq).

Before using the CRICKIT HAT for the first time, it is best to update its firm-
ware. In the Adafruit learning guide, follow the steps in the “Update Your
CRICKIT” section.

Switch off the Raspberry Pi. To attach the CRICKIT HAT to the Raspberry Pi,
first connect the header standoff that comes with the CRICKIT to the Rasp-
berry Pi GPIO connector. Then connect the CRICKIT HAT.

Connect the power cable into the CRICKIT DC jack, and switch on the
CRICKIT power switch. Check whether the CRICKIT LED is green, which indi-
cates there is a healthy power supply.

Power on the Raspberry Pi, and open a terminal or open an SSH connection to it.
Run the i2cdetect command, and check that the i2c address 0x49 appears in
the output. The address will appear as the text 49 as shown:

$ i2cdetect -y 1

0O 1 2 3 4 5 6 7 8 9 a b c¢c d e £
00: e e e mm e e e o o

10: -- —= —= —— —— - - - - - - - - - —- —-
20: —= —= == D= D= Do Do Do Do oo oo —m e —m oo oo

30: -- —=- —— D —— - - S - - - - oo o oo -

S B L T T ep——

50: -- —= —= —— —— - - - - - - - o - - -

60: —=- —= —= D= Do Do D Do Do Do oo oo e —— oo oo

70: == == o= e —m o oo -

Run the following commands to update the software packages:

$ sudo apt update
$ sudo apt upgrade
$ sudo apt autoremove

Run the following command to reboot the machine:

$ sudo reboot

After rebooting, reconnect to the machine, and run the following lines to cre-
ate a Python virtual environment and install the Adafruit CRICKIT library in
that virtual environment:

$ python3 -m venv ~/pyenv
$ ~/pyenv/bin/pip install adafruit-circuitpython-crickit

Run the next line to add the activate Bash alias that can be used to activate
the Python virtual environment whenever needed. After running the com-
mand, open a new terminal for the new alias to take effect:

http://mng.bz/wj5q

B.3

B.3 Activating the Python virtual environment 203

$ echo "alias activate='source ~/pyenv/bin/activate'" >> ~/.bashrc

The next command will start a Python read-evaluate—print loop (REPL) session
in the virtual environment:

$ ~/pyenv/bin/python

Run the following Python code in the REPL, and confirm that the on-board
Neopixel turns red to configure the Adafruit CRICKIT HAT:

>>> from adafruit_crickit import crickit
>>> crickit.onboard_pixel.fill (0xFF0000)

Activating the Python virtual environment

We have now completed the setup and created a Python virtual environment. These
virtual environments are a great way to keep our set of installed Python packages and
environment separate from the system Python environment used by the operating sys-
tem. In this way, we can recreate our robot’s Python environment anytime we want
without impacting the system installation. We can also install whatever packages and
versions of them we want without worrying about breaking the Python packages the
operating system is using. For more details on Python virtual environments, check the
official documentation (https://docs.python.org/3/library/venv.html), which is a
great resource on the topic.

There are some common operations with virtual environments that we will cover
in this section. When you open a terminal or SSH to the Pi, you will get a prompt that
looks like

robo@robopi:~ $

At this point, we have not activated our virtual environment. We can ask the terminal
the location of the Python interpreter it would use with the following command:

robo@robopi:~ $ which python
/usr/bin/python

The output shows the location of the Python interpreter used by the operating system.
Now run the activate command to activate our virtual environment:

robo@robopi:~ $ activate
(pyenv) robo@robopi:~ $

We can see that the text (pyenv) appears at the start of the prompt to indicate that we
are in our Python virtual environment created in the previous section and called
pyenv. We can now check the location of the Python interpreter again with the which
command:

(pyenv) robo@robopi:~ $ which python
/home/robo/pyenv/bin/python

https://docs.python.org/3/library/venv.html

204

APPENDIX B Configuring the Raspberry Pi

We can see whether it is using the Python interpreter in the virtual environment we
have created for our robot projects. Now, we can open a REPL session in our virtual
environment with the following command:

(pyenv) robo@robopi:~ $ python
Python 3.9.2 (default, Mar 12 2021, 04:06:34)
[GCC 10.2.1 20210110] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Press Ctrl+D to exit the REPL session. Now, when we execute Python scripts, they will
run in our virtual environment and will be able to use the Python packages that we
have installed.

C.1

appendix C
Robot assembly guide

This appendix covers how to assemble different hardware components into a com-
pleted robot. There are three different robot configurations used in the book, and
this guide will cover how to build each. Make sure to go through appendixes A and
B before using this guide. Each set of chapters uses a specific robot configuration:

Chapters 2 through 7 use the mobile robot configuration.
Chapters 8 and 9 use the servo camera robot configuration.
Chapters 10 and 11 use the pusher robot configuration.

Building a mobile robot
The mobile robot configuration creates a robot that can drive around with an
on-board power supply and can be controlled over a wireless connection. Follow
these steps to build the robot:

The Adafruit website has an excellent guide on the CRICKIT HAT (http://
mng.bz/qj0w). Follow the instructions in the guide to connect the CRICKIT
HAT to the Raspberry Pi.

Then follow the Pibow Guide (http://mng.bz/7v59) to assemble and place
the Raspberry Pi 4 in the Pibow case.

If you have purchased the optional nylon stand-oft set, you can now place a
stand-off on each of the two corners of the CRICKIT HAT that have no sup-
port to make the HAT sit on the Raspberry Pi in a more secure fashion.
Finally, connect the extension jumper wires to motor connections 1 and 2.
Figure C.1 shows what the Raspberry Pi looks like once these steps have been
completed.

205

http://mng.bz/qj0w
http://mng.bz/qj0w
http://mng.bz/7v59

206

APPENDIX C Robot assembly guide

Figure C.1 Raspberry Pi: the
Raspberry Pi and CRICKIT HAT are
placed in the Pibow case.

The next set of steps involves preparing the power bank:

1 The dimensions, button layout, and port locations of different power banks will
vary. However, fundamentally, the steps will be the same, although you might
need to adjust the power bank placement.

2 The Anker PowerCore Select 10000
power bank has a button and charge
indicator on the top part. We will place
Velcro adhesive squares on the bottom
of the power bank. These squares will
help to attach the extra portions of cable
under the power bank for cleaner cable
management. Place adhesive squares on
the power bank as shown in figure C.2.

We will now proceed to connecting the power
cables to the power bank:

1 Attach a magnetic USB cable to one of
the power bank power output ports.
This cable will be used to power the
Raspberry Pi. The magnetic connector
can be disconnected when the robot is

)] Figure C.2 Power bank with adhesive
not in use to reduce power drain on the squares: the squares are attached to the

power bank. bottom of the power bank.

C.1 Building a mobile robot 207

Plug the USB to Barrel Jack Cable into the other output port of the power bank.
This cable will provide power to the CRICKIT HAT. Unlike the Raspberry Pi, the
CRICKIT HAT has a power switch built into the board that can be used to dis-
connect the power supply, so it does not need to be unplugged when not in use.
Connect a magnet tip to the power bank power input port. This provides a con-
venient way to connect the power bank into a power supply to recharge the
battery.

Figure C.3 shows what the power bank looks like once we have connected all

the power cables.

Figure C.3 Power bank with
cabling: the USB cable is
used to connect power to the
Raspberry Pi.

We can now assemble the robot chassis and attach the power bank:

Follow the guide (http://mng.bz/mjRr) for the robot chassis kit to assemble all
the parts.

The chassis kit is very flexible in that the plates on the chassis support many dif-
ferent arrangements for the screws and brass standoffs. You can experiment
with different arrangements to see what best suits the specific dimensions of
your power bank. The power bank can now be placed in the middle layer of the
chassis.

It is best to keep the power bank in the middle layer instead of the top layer
when possible. It is the heaviest part of the robot, and the robot will be less
likely to tip over when the weight is kept in a lower layer. This is most noticeable
when the robot accelerates to the maximum from a resting position to top
speed or when it decelerates at a high rate to come to a full stop.

Adhesive squares can now be attached to the top layer of the chassis. Four adhe-
sive squares are attached to provide a very firm attachment between the Pibow
case and the chassis.

http://mng.bz/mjRr

208

C.2

APPENDIX C Robot assembly guide

Figure C.4 shows what the robot
chassis looks like with the power
bank in place.

The final part of the assembly is attach-
ing the Raspberry Pi to the chassis:

Attach the Raspberry Pi with its
case to the top layer of the chas-
sis. The USB ports on the Rasp-
berry Pi should be facing the
back of the robot. This keeps the
power connectors for the
CRICKIT HAT and Raspberry Pi

closer to the power bank power Figure C.4 Chassis with power bank: the
cables. Raspberry Pi is placed on the top layer of the
chassis.

Connect the power cables for the
CRICKIT HAT and Raspberry Pi.
Finally, connect the jumper wires to the DC motors. Make sure to connect the
right DC motor to motor connection 1 and the left DC motor to motor
connection 2.

Figure C.5 shows a fully assembled robot.

Figure C.5 Fully assembled

robot: the Raspberry Pi USB

ports are accessible from the
rear of the robot.

Building a servo camera robot

The servo camera robot configuration creates a robot with a camera attached to two
servo motors. One servo will allow us to pan the camera, and the other will apply a tilt
motion. Follow these steps to build the robot:

C.2 Building a servo camera robot 209

The Adafruit Mini Pan-Tilt Kit comes fully assembled. The kit supports mount-
ing different sizes and styles of camera modules. This Adafruit robot assembly
guide (http://mng.bz/500B) uses the Pan-Tilt Kit and has a good explanation
of removing the side tabs that will be needed for the next step.

The kit has two side tabs made of
soft nylon that can be removed.
Remove one of the side tabs either
by twisting it off or by using a wire
cutter. We only need one tab to be
in place.

Place a Velcro adhesive square on
the kit camera mounting point.
The base of the kit should be
attached to a sturdy surface for
better stability. You can cut out a
piece of cardboard and attach the
kit to the cardboard using glue or
double-sided foam tape.

Figure C.6 shows what the Pan-Tilt
Kit will look like at this point.

Figure C.6 Pan-Tilt Kit with Velcro: the Velcro
square will be used to attach the camera.

The next set of steps involves preparing the camera:

1 The Raspberry Pi Camera Module can now be placed inside the Adafruit

camera case.
The camera case is very well suited
for mounting to the kit, as it has
slots on either side of the camera
that fit well into the kit side tabs.
Place a Velcro adhesive square on
the back of the camera case.
Figure C.7 shows what the camera
case should look like with the Vel-
cro squares.

We will now proceed to attach the cam-
era case to the Pan-Tilt Kit:

1 Using Velcro squares will let us

2

attach and detach the camera as
needed.

You can attach the camera case to
the Pan-Tilt Kit now. Make sure
the camera cable is at the bottom.

Figure C.7 Camera case: the Velcro squares
are attached to the back of the camera case.

http://mng.bz/5oOB

210

3

The final steps of the assembly are to
connect the Pan-Tilt Kit to the Rasp-
berry Pi:

1

APPENDIX C Robot assembly guide

This is the correct orientation of
the camera so that images taken
from the camera will be right
side up.

The side tab on the Pan-Tilt Kit
will slide into the slot in the cam-
era case.

Figure C.8 shows what the cam-
era and Pan-Tilt Kit will look like
once attached.

The official documentation on
the Raspberry Pi Camera Mod- Figure C.8 Camera attached to the Pan-Tilt
ule (http://mng.bz/6nY0) offers Kit-: the camera will be attached to the kit

. . using Velcro.
excellent information on how to
connect the camera cable to the
Raspberry Pi.
The CRICKIT HAT has an opening for the camera cable. Pass the camera cable
through the CRICKIT HAT and connect it to the Raspberry Pi. Then attach the
CRICKIT HAT to the Raspberry Pi.
Now place the Raspberry Pi 4 in the Pibow case.
The Adafruit guide on the CRICKIT HAT referred to in the last section is an
excellent resource to look at for connecting the Pan-Tilt Kit to the CRICKIT
HAT. Specifically, the CircuitPython Servos section provides good details on
how to connect the servo motors on the Pan-Tilt Kit to the CRICKIT HAT.
The guide explains the orientation in which to attach the servo connectors to
the CRICKIT HAT. The wires on one side of the servo connector will have dark
colors, such as black and brown. The other side will use lighter color wires, such
as yellow, orange, or white. Connect the dark wires toward the CRICKIT logo
and the light colors toward the DC power jack.
Connect the lower servo connector to servo connection 1 and the upper servo
connector to servo connection 2.
Now connect the power cables for the CRICKIT HAT and Raspberry Pi like we
did in the previous section.
Figure C.9 shows what the fully assembled robot will look like. This robot can
move the attached camera in both the pan and tilt directions using the servo
motors. It does not make use of the DC motors like the previous robot. The
robot configuration in the next section makes use of both the servo and DC
motors.

http://mng.bz/6nYo

C.3

C.3 Building a pusher robot 211

Figure C.9 Servo camera robot: the
camera can move around using the
servo motors.

Building a pusher robot

The pusher robot configuration creates a robot that can drive back and forth along a
track using the DC motors, and then, using the camera, will look for objects with a
matching QR code. Once found, the items can be pushed off a counter using an arm
attached to a servo motor. This robot combines the two previous robot configurations
in many ways. This configuration will take the mobile robot configuration and add a
camera and servo motor to it. Follow these steps to build the robot:

1 Complete the mobile robot configuration. Then detach the Pibow case from
the robot chassis.

2 Cut out a piece of cardboard, attach the cardboard to the chassis, and then
attach the Pan-Tilt Kit to the cardboard using glue or double-sided foam tape.
Figure C.10 shows what this will look like from a top view. The strip of cardboard

Figure C.10 Pan-Tilt Kit attached
to chassis: the photo shows the top
view of the Pan-Tilt Kit and robot
chassis.

212

APPENDIX C Robot assembly guide

is cut so that it can be placed between the Velcro squares and the power bank
button. Alternatively, a short ruler can also be used instead of a cardboard cut-
out. Make sure to place the Pan-Tilt Kit on the side of the Raspberry Pi that has
no ports. It is the side opposite of the one with the HDMI and USB power ports.
This side has no ports, so putting a camera and servo on it won’t block our
access to any ports.

The next steps of the assembly are to attach the camera:

1 We can now reattach the Pibow case to the robot chassis by placing the Velcro
squares on top of each other like before.

2 We then stick some Velcro squares to the side of the Pibow case so that we can
attach the camera to the side of the robot. Figure C.11 shows what the side of
the robot will look like once we attach these adhesive squares.

2 Next, we attach the camera to the side of the robot. Figure C.12 shows what the
robot looks like once the camera is attached. The camera case will rest on the
robot chassis once attached. The ribbon will be coming out at the top of the
camera case. This means the camera will capture video upside down. This won’t
be a problem, as we can correct this in software by flipping the image during
video capture.

Figure C.11 Camera Velcro squares: Velcro Figure C.12 Camera attached: the camera is
squares are attached to the side of the Pibow attached to the side of the robot.
case.

C.4 Creating a track for the pusher robot 213

The final step of the assembly is to create a servo arm for the robot:

1 We will use the tilt servo of the Pan-Tilt Kit as the servo to push detected objects
off the counter. We want to attach an arm to extend the physical range of our
tilt servo. The mounting bracket on the kit has a side tab and slots we can use to
secure an arm on the tilt servo.

2 We can use a pencil for the arm, as it is sturdy and light enough with an appro-
priate length to provide our arm some good pushing range. Position the eraser
at the bottom of the arm, as it will provide a softer surface when it makes con-
tact with the objects we are pushing. Attach the pencil using two zip ties: one zip
tie above the side tab and one below it. Figure C.13 shows the side view of the
robot with the servo arm attached.

3 Figure C.14 shows a rear view of the robot. From this view, you can get a better
view of how one zip tie is placed above the side tab and one below it. This will
hold the arm firmly in place while it is repeatedly raised and dropped. Make

sure to tighten the zip ties so that they can have a firm hold on the servo arm.

Figure C.13 Servo arm side view: the photo Figure C.14 Servo arm rear view: the photo
shows the side view of the robot with the servo shows the rear view of the robot with the servo
arm attached. arm attached.

The robot is now completed and ready to be placed on the track. Check the next sec-
tion for further details on creating a track for the robot.

Creating a track for the pusher robot

The pusher robot drives backward and forward along a track. This is done in the same
way that the path of a train is controlled by restricting its movements to go back and

214

APPENDIX C Robot assembly guide

forth along the path of the train track. We can use two sticks or poles to create a track
for the robot. We’ll put some books at each of the track ends to make sure the track
doesn’t shift around as the robot moves along the track. Follow these steps to create
the track:

1 Take any two sticks or poles and place them parallel to each other on a table.
Figure C.15 shows two sticks placed in parallel on our table. The sticks in the
photo are two broomsticks with the brush screwed off. Any sticks or poles can
be used.

2 Keep the distance between the sticks as close as possible so that they are hug-
ging the tires of the robot. Figure C.15 also shows how the items the robot will
push can be placed along the edge of the table with their QR codes pointing
toward the robot so that it can read their QR codes as it drives down the track.

Figure C.15 Robot track: the track should hug the robot tires.

2 Figure C.16 shows a set of books that have been put on each end of the track.
They will keep the track firmly in place as the robot moves back and forth.

Figure C.16 Track with books: we use books to keep the track firmly in place.

C.4 Creating a track for the pusher robot 215

4 The start marker should be placed at the start of the track, and the end marker
should be placed as the last item along the track. Figure C.15 shows the start
and end markers, as well as four snacks positioned between them.

The last part of the setup is the snack
boxes:

1 Figure C.17 is a photo of one of
the snack boxes. These can be
any container or packet with our
desired QR code placed on the
front of the container. The QR
codes on the label should be
large enough to be easily read by
the camera. A width and height
of 6 cm for the QR codes were
tested and work well.

2 The QR code should face the
robot so that it can see it when it

drives by. During testing, a dis-
tance of 8 cm between the cam-

Figure C.17 Snack box: the snack box has a QR
era and QR codes worked well. code in the front.

D.1

appendix D
Mocking the
CRICKIT Ulibrary

This appendix covers the topic of mocking the Adafruit Python CRICKIT library.
Mocking is a common mechanism used when testing software. It lets us replace a
piece of software with mock objects. In our case, there are a number of benefits to
doing this:

Running code without robot hardware—The mock library in this appendix will
let us run all the code in the book without any robot hardware. This is useful,
as it provides a deeper look at the computer vision, web, joystick, and net-
working portions of the code that don’t need robotic hardware.

Executing the code without a Raspberry Pi—The code is written to run on many
different Linux systems. All the code was tested with Ubuntu 22.04, which
can be run on any laptop or virtual machine under Windows or Mac.

Better coding experience—Running on a modern computer can often be a faster
and more comfortable development experience than executing the code on
slower machines such as the Raspberry Pi. For example, when doing a lot of
work on the web front end of a robot application, the development cycle can
be faster and more productive on a laptop.

Installing the mock CRICKIT library

The mock object library (http://mng.bz/or0d) that comes as part of the Python
standard library will be used to mock the different functions of the CRICKIT
library. The implementation will address mocking the specific functionality used by
the code in this book and not the whole CRICKIT library. This appendix will
mainly focus on using the mock_crickit library and will not cover the implementa-
tion details in great depth. Save the following script in a file called adafruit_
crickit.py.

216

http://mng.bz/or0d

D.1 Installing the mock CRICKIT library 217

Listing D.1 adafruit crickit.py: Mocking the CRICKIT library

#!/usr/bin/env python3

import os

from unittest.mock import Mock, PropertyMock
from functools import partial

DEBUG = bool (os.environ.get ('ROBO_DEBUG'))
PROP_VALUES = {'touch 1l.value': True}

def print msg(msg) :
if DEBUG:
print ('MOCK_CRICKIT:', msg)

def prop access(name, *args):
action = 'set' if args else 'get'
if action == 'set':
PROP_VALUES [name] = args[0]
val = PROP_VALUES.get (name)
print msg(f'{action} crickit.{name}: {valir}")
return val

def pixel fill(val):
print msg(f'call crickit.onboard pixel.fill({vallr})")

def add property (name) :
parent, child = name.split('.')
property mock = PropertyMock (side_ effect=partial (prop_access, name))
setattr (type(getattr (crickit, parent)), child, property mock)

crickit = Mock()
crickit.onboard pixel.fill = Mock(side effect=pixel £ill)

names = [
'onboard pixel.brightness', 'touch 1l.value', 'dc _motor 1.throttle',
'dc_motor_2.throttle', 'servo_l.angle', 'servo_2.angle',
'servo_l.actuation range', 'servo_2.actuation_ range']

for name in names:
add_property (name)

def demo() :
print ('starting mock crickit demo...')
crickit.onboard pixel.brightness = 0.01
crickit.onboard pixel.fill (0xFF0000)
crickit.touch 1.value
crickit.dc_motor_1l.throttle 1
crickit.dc _motor 2.throttle = -1
crickit.servo_1l.angle = 70
crickit.servo 1.angle

crickit.servo 2.angle = 90

crickit.servo_2.angle

crickit.servo 1l.actuation range = 142

crickit.servo 2.actuation range = 180
if name == "_ main_ ":

demo ()

218

APPENDIX D Mocking the CRICKIT library

The library is written as a direct replacement for the adafruit_crickit library, which
is why it has the same name. We can use it in place of the Adafruit library without
changing our Python code. As we have done throughout the book, we can set the
ROBO_DEBUG environment variable to have the mock library print out every mock call it
receives. When the library is directly executed, it will perform the demo function that
demonstrates all the different parts of the CRICKIT library that it mocks. The follow-
ing session shows a sample run of the library:

$ export ROBO_DEBUG=1

$./adafruit crickit.py

starting mock crickit demo...

MOCK_CRICKIT: set crickit.onboard pixel.brightness: 0.01
MOCK CRICKIT: call crickit.onboard pixel.fill(16711680)
MOCK CRICKIT: get crickit.touch 1.value: True
MOCK_CRICKIT: set crickit.dc _motor 1.throttle: 1

MOCK CRICKIT: set crickit.dc motor 2.throttle: -1

MOCK CRICKIT: set crickit.servo_1l.angle: 70
MOCK_CRICKIT: get crickit.servo_l.angle: 70

MOCK CRICKIT: set crickit.servo 2.angle: 90

MOCK CRICKIT: get crickit.servo_2.angle: 90
MOCK_CRICKIT: set crickit.servo_l.actuation range: 142
MOCK_CRICKIT: set crickit.servo_2.actuation_range: 180

We can also install the mock library into any Python virtual environment of our choos-
ing. The code for the library and the installer can be found on GitHub (https://
github.com/marwano/robo). In the next session, we will install the mock_crickit
library using the pip install command. Make sure to run the pip install com-
mand in the same directory as the setup script:

(main) robo@robopi:/tmp$ cd mock_crickit

(main) robo@robopi:/tmp/mock crickit$ pip install
Processing /tmp/mock crickit

Installing build dependencies ... done

Getting requirements to build wheel ... done

Preparing metadata (pyproject.toml) ... done
Building wheels for collected packages: mock-crickit
Building wheel for mock-crickit (pyproject.toml) ... done
Created wheel for mock-crickit: filename=mock crickit-1.0-py3-none-any.whl
Successfully built mock-crickit

Installing collected packages: mock-crickit

Successfully installed mock-crickit-1.0

We can now run pip list to obtain a list of installed packages in our virtual environ-
ment. We can see that we have installed version 1.0 of the mock-crickit library:

(main) robo@robopi:/tmp/mock_crickits$ pip list
Package Version

mock-crickit 1.0

pip 23.1.2

setuptools 59.6.0

https://github.com/marwano/robo
https://github.com/marwano/robo

D.1 Installing the mock CRICKIT library 219

We can verify the library is functioning correctly by calling the demo function with the
following command:

(main) robo@robopi:~$ python -m adafruit_crickit
starting mock crickit demo...

set crickit.onboard pixel.brightness: 0.01
call crickit.onboard pixel.fill(16711680)

MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:
MOCK_CRICKIT:

get
set
set
set
get
set
get
set
set

crickit.
crickit.
crickit.
crickit.
.servo_l.angle: 70
.servo_2.angle: 90
crickit.
crickit.

crickit
crickit

crickit.

touch 1.value: True
dc_motor_ 1.throttle: 1
dc_motor_ 2.throttle: -1
servo_l.angle: 70

servo_2.angle: 90
servo_l.actuation range: 142
servo_2.actuation_range: 180

The projects in the book can be executed with this library on a wide variety of hard-
ware. The joystick hardware mentioned in appendix A can be used with any laptop or

desktop computer running Linux. Furthermore, any standard webcam can be used in
place of the Raspberry Pi Camera Module with no modification to the code in the
book. This enables the computer vision functionality of face and QR code detection.

mdex

Symbols

__name__ variable 31

__path__ attribute 134
—duration argument 53

-speed argument 53
/home/robo/bin/ directory 12
| (pipe) feature 22

~/bin directory 12

Numerics

6 River Systems site 185

A

activate Bash alias 202
activate command 203
Adafruit camera case 195
Adafruit CRICKIT HAT 10
for Raspberry Pi 195
Adafruit robot assembly guide 209
adafruit_crickit library 218
adafruit_crickit.py file 217
add_data method 157
ADJUST dictionary 23
angle variable 125
ANGLE_STEP variable 125, 149
Anker PowerCore Select 10000 power bank 197,
206
application
selecting snacks with 186-189
Application module 72
Application object 58, 75
applications
adding live video stream to application 191-193

creating snack-pushing application 186-193
styling web application 189-190
argparse module 53
argparse Python module 51
args dictionary 108
args variable 53
ArgumentParser object 53
ARROW_KEYS dictionary 127
assert statement 119
asyncio 169
asyncio.sleep 170
atomic operations 163
AXIS dictionary 98

backward function 27
Bash 22

.bashrc file 22
basic.html template 73
blink application 11
blink.py file 12

BLUE variable 137, 158, 167
board module 13
BOUNDARY 170
BUTTON dictionary 98
BUTTON variable 98
bytes variable 96

Cc

call_api function 63-64, 108
call_robot function 63, 65, 108
call_ssh function 57

cap variable 115, 119, 146
cap.release function 146, 151

221

222

capturing images
drawing shapes and displaying text with
OpenCV 116-118
exploring OpenCV library 114-116
taking snapshots with OpenCV 119-121
using OpenCV 114-121
CascadeClassifier function 134
cat command 47
center variable 137
chassis kits 196-197
check_capture_device function 150-151
check_output function 57
CLASSIFIER_PATH variable 134, 137
clean variable 135
client_persist.py 51, 107
Clock object 90
cmd module 41, 47
cmd.Cmd object 45
code field 180
code, refactoring, finding common logic 31-33
collections module 97
color argument 158
color variable 15
colors, changing Neopixel 11-12
command arguments, handling 42-43
command-line shell, overview 38
CONTENT_TYPE variable 170
controlling robots
over SSH 52-58
creating clientside script 57-58
creating server-side script 53-54
robot movement speed and duration 25-26
running script remotely 55-56
counter variable 161
crickit 5, 181
CRICKIT HAT 205
checking touch sensor state 13
controlling motors with touch sensors 15-16
creating robot web apps
creating full-movement application 78-82
measuring application performance in
browser 84
web hardware devices 84
web interface design 82-83
DC motors 14
moving camera with servos 122-130
controlling servos and camera together 127-
129
CRICKIT library 122-124
pan-and-tilt sweep 124-126
Neopixels, changing colors 11-12
servo camera robot, building 208-210
setting up 201-203
CRICKIT library 132
mocking 216

INDEX

crickit module 123-124, 127, 149
csv library 178

curl command 59

cv2 library 136-137, 139, 143, 146, 149, 158, 160
cv2 module 116, 127, 165, 172, 181
cv2 package 134

CV2_DIR variable 134, 137
cv2.line function 158
cv2.rectangle function 151
cv2.resize function 143

cvtColor function 135

D

data argument 62

data variable 102, 104, 158
data.events counter variable 102
data.levels 105

data.start variable 102

datetime module 58, 127
datetime object 72

DC motors 5, 14

DEBUG variable 72

decode_qr function 173, 182, 185
decode_grcode function 167
decoded_data variable 158
decoder 173

decoder method 158

decoder object 167, 182

demo function 218-219
detect_face application 132
detect_face function 137, 140, 144-146, 149, 151
detect_qr application 156
detect_qr.py script 167
DETECT_SCALE variable 143
detectAndDecode method 158
detectMultiScale function 144
detectMultiScale method 135, 137
dict data structure 125

dict object 53

DictReader object 180
direction 182

direction variable 100

dirname function 72, 181
do_backward function 44
do_backward method 40, 42
do_EOF method 42
do_forward function 44
do_forward method 40, 42
do_left method 45

do_right method 45
do_spin_left method 45
do_spin_right method 45

don’t repeat yourself (DRY) principle 33
draw_box function 158, 167

INDEX 223

drawMarker function 137
driving robot

reducing number of pixels to process 141-143
showing detected faces in live video 146-147

backward movement 26-28
moving left 29-31
refactoring by using functools 33-35

refactoring code, finding common logic 31-33

spinning in either direction 29-31
writing move forward function 19-21
DRY (don’t repeat yourself) principle 33
dtype 116
duration argument 25, 32
duration of movements, controlling 25-26

E

echo command 46

emoji library 178

emojize function 181

enable_pretty_logging 72-73, 75

encode method 63

env command 22

envforward.py script 24

environment variables, for configuration 21-24

Esc key 119, 127, 146

ESC_KEY variable 149, 165, 167

Event namedtuple 98

Event object 98

event variable 98

event_struct variable 96

event_struct.size number 96

events

measuring rate of 101-107
calculating event rate 102-104
calculating level rate 104-107
reading joystick events 89-93

detecting events in Pygame 89-91
detecting joystick events 92-93

export line 22

F

face detection 133-138
exploring 133-136
marking detected faces 136-138
face library 132, 145
face_classifier variable 134, 137
face-following camera 131-153
creating face-following robot 147-152
moving motors to follow faces 149-152
zoning face detection 147-149
detecting faces in live video 139-147
measuring face detection performance
139-141
optimizing face detection performance
143-145

face detection 133-138
exploring 133-136
marking detected faces 136-138

hardware stack 132

software stack 132
face.py library 144
faces variable 135
factor argument 27
factor value 108
factor variable 125
favicon.ico file 75
FileWatcher class 163-165, 169—-170
float value 42
follow application 132
FONT constant 119
FONT variable 158, 167
forward command 42
forward function 20, 23, 25-27, 32, 34
forward.html template 76-77
frame argument 120, 158
frame data type 115
frame image 158
frame variable 137, 158
FRAME_HEIGHT variable 161
FRAME_RATE variable 89
FRAME_WIDTH variable 161
full.html template 78, 80
functools module 33-35

G

get method 23, 59, 76, 78, 98, 170

GET requests 187

get_center function 137

get_detect_timing function 140

get_items function 182, 186

get_kwargs function 43-44

get_noop_timing function 66

get_zone function 150

getmtime function 163

getresponse method 64

goto function 173, 182

goto_qr application 156

goto_qr.py script 174

GPIO (general-purpose input/output)
connector 10

GREEN variable 148-149

grep command 22

H

hl tag 74
handle_event function 92, 98, 100, 102, 105, 108

224

handle_key function 127-128
hardware purchasing guide 195
motors and chassis kits and joystick
controllers 196-197
power and cabling 197

hardware stack 18-19, 38, 50, 71, 87-88, 113, 132,

155,178
has_changed method 163, 165
head portion 77
head section 74
host_name value 191
HTML Living Standard 78
html tag 73
http.client module 51, 107
HTTPConnection object 64-66

INDEX

reading joystick events 89-93

detecting events in Pygame 89-91
detecting joystick events 92-93

See also robots, joystick-controlled

JPEG_HEADER 170
json module 60, 107
jstest command 94

K

key variable 119
keyboard-controlled camera 112-130

I2C communication protocol 13
i2cdetect command 202
icon field 180
image detection 133-138

exploring 133-136

marking detected faces 136-138
img tag 191
IMG_HEIGHT variable 148-149
IMG_PATH constant 182
IMG_PATH variable 160, 165, 167, 169, 173
IMG_WIDTH variable 148-149
importlib module 41
imread function 134, 165
imshow function 120, 1387, 151, 165
imwrite function 149
imwrite method 116
init_camera function 161
init_motors function 125, 128, 150-151
INTER_AREA interpolation 143
INTER_CUBIC interpolation 143
Interface Options menu 114
IOLoop 58, 72
isOpened method 115
ITEMS_FILE constant 182

J

capturing images using OpenCV 114-121

drawing shapes and displaying text with
OpenCV 116-118

exploring OpenCV library 114-116

taking snapshots with OpenCV 119-121

hardware stack 113
moving camera with servos 122-130
software stack 114

KeyError exception 23
kwargs dictionary 53

L

last_mtime attribute 163

left function 29

LEFT_X variable 148-149

level value 108

level variable 105

libatlas-base-dev package 115
libgtk2.0-dev package 115

line argument 42

line-oriented command interpreters 38
Linux operating system

exploring Linux input subsystem 94-96
mapping joystick events 97-99

reading joystick events 93-101
unpacking joystick events 96-97
working with axis events 100-101

live video

joystick controllers 196-197
joystick events 89
reading 89-93
joystick variable 92
joystick_levels application 88
joystick_remote application 88
joysticks
measuring rate of events 101-107
calculating event rate 102-104
calculating level rate 104-107

detecting faces in 139-147

measuring face detection performance
139-141

optimizing face detection performance
143-145

reducing number of pixels to process 141-143

showing detected faces in live video 146-147

live_face application 132

M

Machine Learning Overview (OpenCV) 136
main function 53, 57,90, 92, 96-98, 137, 151, 161,

164-165, 167, 170, 173

INDEX 225

MainHandler class 170 o

MainHandler object 59, 73, 187

make method 157 objdetect cascade classifier 133

matches variable 158 objdetect module 133

max variable 125 OpenCV library

MAX MOVES constant 182 capturing images using 114-121

MAX MOVES variable 173 drawing shapes and displaying text with
MAX_VAL variable 100 116-118

exploring 114-116

taking snapshots with 119-121
optional purchases 198
os module 22,72, 160, 163, 165, 169, 172, 181, 186
os.replace function 163

mean 66

mean function 139
measure_face script 132
Measure-Command 56

messages list 128

messages variable 119

meta tag 74, 188

min variable 125

mobile robots, building 205-208
mock_crickit library 217-218

P

pan module 127
PAN variable 125, 149
pan-and-tilt sweep 124-126

Monoprice SlimRun Ethernet cable 198 Pan-Tilt Kit 147
motor 181, . parse_args function 53
MOTOB dictionary 23 partial function 34
motor library 31, 35, 41 path variable 164
motor module 39, 53, 60, 75, 78-79, 101, 172 perf_counter function 66
MOTOR_AXIS dictionary 107-108 persistent connections 66
motor_func 182 Pibow Guide 205
motor.forward function 42 Pimoroni Pibow Coupe 4 195
motor.py script 19 Pimoroni Raspberry Pi 4 Essentials Kit 196
motors 196-197 plp command 41

controlling with touch sensors 15-16 pip install command 218

DC motors 14 pip list command 218

moving to follow faces 149-152 points argument 158
move forward function 19-21 POLL_DELAY 169
MOVE variable 125, 149 pop function 120
move_motor function 125, 127, 150 POSIX (Portable Operating System
move.txt file 46 Interface) 163
movement function 32-33 post method 60, 76-77, 79, 187
movement, backward 26-28 post requests 7§
MSG_FRAME_COUNT constant 119 power and cabling 197
MSG_FRAME_COUNT variable 120 pprint function 180

precmd method 45

prep_face function 137, 144
N push_item function 183, 185-186
pusher robot, building 211-213
pusher robot, creating tracks for 214-215
pusher_qr library 178, 184
pusher_qr.py 183
pusher_web application 178

name argument 60, 76
name variable 53, 76
namedtuple object 97, 107
ndarray objects 116-117

Neopixels 5 pushing snacks 181-185
changing colors 11-12 putText function 117, 120, 158
new_angle variable 125 pygame.init function 90
noop function 34, 56, 78 pygame.QUIT type of event 90
noop movement function 66 Python
numpy module 116 activating virtual environment 203-204

Nylon screw and stand-off set 198 calling web services from 61-68

226

Python (continued)
creating basic web service client 63-64
measuring client performance 66-68
using read—evaluate—print loop 62
python3 interpreter 12

Q

QR code finder 154-155
decoding QR codes 156-160
detecting QR codes in image 156-160
exploring QR codes 156-157
hardware stack 155
marking detected QR codes 157-160
software stack 156
video streaming to multiple applications
160-172
detecting QR codes in video stream 167-169
saving video stream to ramdisk 160-163
streaming to graphical application 165-167
streaming to web browser 169-172
watching filesystem for changes 163-165
QR codes 177
QRCode object 157
qrcode Python package 156
QRCodeDetector object 158

R

ramdisk, saving video stream to 160-163
range variable 125
Raspberry Pi 5, 9-10
activating Python virtual environment 203-204
components 195-196
configuring 199
setting up Adafruit CRICKIT HAT 201-203
setting up 199-201
Raspberry Pi 4 195
Raspberry Pi 4 Desktop Kit 196
Raspberry Pi Camera Module 210
Raspberry Pi Camera Module 2 195
Raspberry Pi storage performance 196
raspi-config 114
raspi-config tool 199
read method 115
read—evaluate—print loop (REPL) 133, 180
overview 38
readline library 39
readline module 48
rectangle function 137
redirect method 76
release method 116
remote control 49
remote_robot function 57

INDEX

REPL (read-evaluate—print loop) 11, 22, 37, 123,
133, 157, 180, 203
overview 38
RequestHandler module 72
RequestHandler object 58
resize function 143
RGB 15
right function 28-29
RIGHT _X variable 148-149
robo username 200
ROBO_ prefix 22
ROBO_DC_ADJUST_R environment variable 19
ROBO_DEBUG environment variable 72, 218
robo_stream.jpg file 165, 171
ROBO_URL constant 63
robopi 74
robopi hostname 55, 200-201
robot assembly
building pusher robot 211-213
creating tracks for pusher robot 214-215
guide for 205
robot chassis kit 207
defined 18
robot kinematics 130
robot shell 39
adding speed argument 43-45
creating 39-41
handling command arguments 42-43
hardware stack 38
REPL (read-evaluate—print loop), overview 38
running scripts 45-48
robot swarms 64
robot web apps
backward robot movements with web apps
75-78
creating basic web application 72-78
creating full-movement web apps 78-84
detecting failed requests 75
forward and backward robot movements over
web 72-78
hardware stack 71
measuring application performance in
browser 84
software stack 71
web hardware devices 84
web interface design 82-83
robotic hardware 9-10
Adafruit CRICKIT HAT 10
robotic motion 24
robotic QR code finder 172-175
robotic, finding QR code 172-175
robots
advantages of 2
approach to making 3
benefits of 3

learning from failures 3
limitations 4
production ready 4
prototyping 3
teaching 4
building mobile robots 205-208
building servo camera robot 208-210
components of 4
configuring software for 11
controlling over SSH 52-58
creating clientside script 57-58
creating server-side script 53-54
running script remotely 55-56
controlling remotely 49-69
creating web services for 58-61
hardware stack 50
software stack 51
controlling speed and duration of
movements 25-26
driving
backward movement 26-28
kinematics 130
moving left 29-31
refactoring by using functools 33-35
spinning in either direction 29-31
turning right 28-29
using environment variables for
configuration 21-24
writing move forward function 19-21
face-following 147-152
moving motors to follow faces 149-152
zoning face detection 147-149
hardware stack 18
joystick-controlled 86
hardware stack 87-88
measuring rate of events 101-107
moving robots with joysticks 107-110
reading joystick events 89-93
reading Linux joystick events 93-101
software stack 88
unpacking joystick events 96-97
working with axis events 99-101
overview of 1
testing, tips for 52
robows server 107, 110
robows.py file 51

S

save_frames function 161

save_photo function 120, 127

SCARA robot 130

scripts, running robot shell scripts 45-48
self.flush 170

servo camera robot, building 208-210

INDEX

227

servo motor 125
SERVO_ANGLES constant 182
servos 4
controlling servos and camera together
127-129
CRICKIT library 122-124
moving camera with 122-130
pan-and-tilt sweep 124-126
set_message function 120, 127
set_throttle function 20, 23, 26-27, 33
Seven-pack magnetic USB cables 198
sftp command 201
shape attribute 116, 134-135
shebang 12
show_image function 120, 128
SimpleNamespace object 102
single-board computer (SBC) 4
sleep function 19
Smart Warehouse article 175
snack-pushing robot
creating snack-pushing application 186-193
adding live video stream to application
191-193
selecting snacks with application 186-189
styling web application 189-190
finding and pushing snacks 179-185
hardware stack 178
software stack 178
snacks
finding and pushing 179-185
reading list of 179-181
snapshot module 127
snapshot.py application 157, 166
software stack 6, 19, 39, 51, 71, 88, 114, 132, 156,
178
software, configuring for robots 11
speed argument 32, 43-45
speed, controlling 25-26
spin_left function 30
spin_right function 30
SSH (Secure Shell) protocol
controlling robots over 52-58
creating clientside script 57-58
creating server-side script 53-54
running script remotely 55-56
SSH_CLI_CMD constant 57
ssh_client.py file 51
SSH_HOST constant 57
SSH_USER constant 57
sshfs command 201
stamp template variable 74
stamp variable 73
start variable 125
static_url function 188
statistics module 132

228

stdev 66

stop_counter function 102-103, 105
stream_qr.py script 167-168
stream_save script 156
stream_save.py 174, 184
stream_save.py script 165-166, 168, 171
stream_view.py 174

stream_view.py script 166-167
stream_web.py 174

stream_web.py script 170-171
string module 116

struct format 96

struct module 96

Struct object 96, 107

struct Python module 88

structs data 96

style tag 74

subprocess module 57

subprocess Python module 51
swing_arm function 182

sys module 41, 88, 102, 156, 163, 172

T

TEMPLATE_PATH 72
text argument 120
TEXT_POS constant 119
thickness argument 158
throttle variable 15
THROTTLE_SPEED dictionary 25-26
TILT variable 125
time command 56
time library 20
time module 11, 19, 66, 88, 102, 124, 132, 139,
163, 181

TMP_PATH 160
tornado main event loop 169
Tornado web framework 58, 154
tornado.web.Application object 170
touch application 11
touch sensors

checking state of 13

controlling motors with 15-16
touch.py file 15
tuple object 97
turning right 28-29
type variable 96
TYPE_AXIS event 98
TYPE_BUTTON event 98
types module 102

INDEX

U

unpack method 96
update_counter function 102, 105
urllib module 51

urlopen command 62

\'

ValueError exception 123

vars function 53

Velcro adhesive squares 198

Verdana font 74

version attribute 157

video streaming to multiple applications 160-172
detecting QR codes in video stream 167-169
saving video stream to ramdisk 160-163
streaming to graphical application 165-167
streaming to web browser 169-172
watching filesystem for changes 163-165

VideoCapture object 115

viewport metadata 74

w

w, h variables 136
waitKey function 137, 158
watcher library 156, 165
watcher variable 165
watcher.py script 165
web applications 70
web services 58-61
calling from Python 61-68
creating basic web service client 63-64
creating web service client with persistent
connections 64-65
measuring client performance 66-68
using read—evaluate—print loop 62
creating 58-60
creating to perform robot movements 60-61
WHATWG (Web Hypertext Application Techno-
logy Working Group) 78
which command 203
while loop 96
WINDOW_SIZE variable 89
write method 59

X

X, y coordinates 136
XDG_RUNTIME_DIR environment variable 160

This book will teach you how
to use a wide variety of hardware
components to make your robotics
projects come to life.

Human interface device

[Joystick IKeyboardI Mouse]
[NeopixelIm%%rIServo] ¢ ¢ ¢ t
[CRICKIT ICameraIEthemet Wi-Fi [Bluetooth USB

Raspberry Pi

DEVELOPMENT

Build Your Own Robot

Marwan Alsabbagh
Y ou can build your own robot! With this book, you'll use

readily-available hardware and author Marwan Alsabb-

agh’s clear step-by-step instructions to create a robot that
moves, manipulates objects, and responds to its environment.
Along the way, you'll learn some serious skills like computer
vision, networking, and the basics of robotics programming.

Build Your Own Robot is a project-based guide that takes you
from spinning your first DC motor to programming a mobile
robot that you can control from your phone or computer.
You'll write simple Python code to help your new friend spin,
move, and find its way. You'll even teach it to track faces and
fetch snacks. Plus, a helpful hardware purchasing guide makes
it easy to find exactly what you need to get started!

What's Inside

¢ Coordinate DC motors to move your robot
* Write a web app to control your robot

* Adding cameras and basic computer vision
* Read QR codes to find and identify objects

Examples use simple Python code. No special skills or
expensive tools required.

Marwan Alsabbagh is a seasoned software developer, who has
studied mathematics and computer science at McGill
University.

The technical editor on this book was Alexander Ryker.

For print book owners, all ebook formats are free:
https: //www.manning.com/freebook

¢¢There’s a lot to learn!
Follow the step-by-step
instructions and tons of code
examples; you'll be making
your next mechatronic friend
all in a single weekend.”?

—Limor “Ladyada” Fried
Founder & Engineer, Adafruit

¢¢This easy-to-follow
guide takes you from simple
experiments to using the
OpenCV library for image
recognition. You'll soon have
your own tiny robot that can
follow faces and read
QR codes!”?
—Bill Jamshedji
DroneBot Workshop

¢CEvery step of the way, you
create something worth being
excited about!??

—TJonathan Choate
Takeoff Technologies, Inc.

¢C¢This approach really makes
robotics accessible.”?

—James Matlock, Wake Technical
Community College

See first hage

ISBN-13: 978-1-63343-845-3

9

	Build Your Own Robot
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Software/Hardware requirements

	about the author
	about the cover illustration
	1 What is a robot?
	1.1 Why robots are amazing
	1.2 Our approach to making robots
	1.2.1 Learning from failures
	1.2.2 What will you gain?
	1.2.3 Prototyping
	1.2.4 Teaching
	1.2.5 Production ready
	1.2.6 Limitations

	1.3 What are robots made of?
	1.3.1 The robot building blocks
	1.3.2 Servos and DC motors on a Raspberry Pi
	1.3.3 Hardware stack
	1.3.4 Python and Linux
	1.3.5 Software stack

	Summary

	2 Getting started
	2.1 Introducing our robotic hardware
	2.1.1 Raspberry Pi
	2.1.2 Adafruit CRICKIT HAT

	2.2 Configuring the software for our robots
	2.3 Changing Neopixel colors
	2.4 Checking the touch sensor state
	2.5 Controlling DC motors
	2.6 Controlling motors with the touch sensor
	Summary

	3 Driving the robot
	3.1 What’s a robot chassis kit?
	3.2 Hardware stack
	3.3 Software stack
	3.4 Writing a move forward function
	3.5 Using environment variables for configuration
	3.6 Controlling the speed and duration of movements
	3.7 Moving backward
	3.8 Turning right
	3.9 Moving left and spinning in either direction
	3.10 Refactoring by finding common logic
	3.11 Refactoring by using functools
	Summary

	4 Creating a robot shell
	4.1 What’s a REPL or shell?
	4.2 Benefits of a REPL
	4.3 Hardware stack
	4.4 Software stack
	4.5 Creating the robot shell
	4.6 Handling command arguments
	4.7 Adding a speed argument
	4.8 Running robot shell scripts
	Summary

	5 Controlling robots remotely
	5.1 Hardware stack
	5.2 Software stack
	5.3 Robot testing tips
	5.4 Controlling robots over SSH
	5.4.1 Creating the server-side script
	5.4.2 Running the script remotely
	5.4.3 Creating the client-side script

	5.5 Creating web services for robots
	5.5.1 Creating our first web service
	5.5.2 Creating web services to perform robot movements

	5.6 Calling web services from Python
	5.6.1 Using the read–evaluate–print loop to call web services
	5.6.2 Creating a basic web service client
	5.6.3 Creating a web service client with persistent connections
	5.6.4 Measuring client performance

	Summary

	6 Creating robot web apps
	6.1 Hardware stack
	6.2 Software stack
	6.3 Moving robots forward and backward over the web
	6.3.1 Creating a basic web application
	6.3.2 Detecting failed requests
	6.3.3 Moving robots forward with web apps

	6.4 Creating a full-movement web app
	6.4.1 Creating the full-movement application
	6.4.2 Web interface design
	6.4.3 Measuring application performance in the browser
	6.4.4 Web hardware devices

	Summary

	7 Joystick-controlled robots
	7.1 Hardware stack
	7.2 Software stack
	7.3 Joystick events
	7.4 Reading joystick events using Pygame
	7.4.1 Detecting events in Pygame
	7.4.2 Detecting joystick events

	7.5 Reading Linux joystick events
	7.5.1 Exploring the Linux input subsystem
	7.5.2 Unpacking joystick events
	7.5.3 Mapping joystick events
	7.5.4 Working with axis events

	7.6 Measuring the rate of joystick events
	7.6.1 Calculating the event rate
	7.6.2 Calculating the level rate

	7.7 Moving robots with joysticks
	7.7.1 Creating the joystick client

	Summary

	8 Keyboard-controlled camera
	8.1 Hardware stack
	8.2 Software stack
	8.3 Capturing images using OpenCV
	8.3.1 Exploring the OpenCV library
	8.3.2 Drawing shapes and displaying text with OpenCV
	8.3.3 Taking snapshots with OpenCV

	8.4 Moving a camera with servos
	8.4.1 Exploring the servo motors with the CRICKIT library
	8.4.2 Performing a pan-and-tilt sweep
	8.4.3 Controlling servos and the camera together

	Summary

	9 Face-following camera
	9.1 Hardware stack
	9.2 Software stack
	9.3 Detecting faces in an image
	9.3.1 Exploring face detection
	9.3.2 Marking detected faces

	9.4 Detecting faces in live video
	9.4.1 Measuring face detection performance
	9.4.2 Reducing the number of pixels to process
	9.4.3 Optimizing face detection performance
	9.4.4 Showing detected faces in live video

	9.5 Creating a face-following robot
	9.5.1 Zoning the face detection
	9.5.2 Moving motors to follow faces

	Summary

	10 Robotic QR code finder
	10.1 Hardware stack
	10.2 Software stack
	10.3 Detecting QR codes in an image
	10.3.1 Exploring QR codes
	10.3.2 Marking detected QR codes

	10.4 Streaming live video to multiple applications
	10.4.1 Saving the video stream to a ramdisk
	10.4.2 Watching the filesystem for changes
	10.4.3 Streaming to a graphical application
	10.4.4 Detecting QR codes in a video stream
	10.4.5 Streaming to a web browser

	10.5 Moving the robot to a target QR code
	10.5.1 Find the QR code

	Summary

	11 Building a snack-pushing robot
	11.1 Hardware stack
	11.2 Software stack
	11.3 Finding and pushing snacks
	11.3.1 Reading the list of snacks
	11.3.2 Pushing snacks

	11.4 Creating the snack-pushing application
	11.4.1 Selecting snacks with the application
	11.4.2 Styling the web application
	11.4.3 Adding the live video stream to the application

	Summary

	appendix A Hardware purchasing guide
	A.1 Raspberry Pi components
	A.2 Motors, chassis kits, and joystick controllers
	A.3 Power and cabling
	A.4 Optional purchases

	appendix B Configuring the Raspberry Pi
	B.1 Setting up the Raspberry Pi
	B.2 Setting up the Adafruit CRICKIT HAT
	B.3 Activating the Python virtual environment

	appendix C Robot assembly guide
	C.1 Building a mobile robot
	C.2 Building a servo camera robot
	C.3 Building a pusher robot
	C.4 Creating a track for the pusher robot

	appendix D Mocking the CRICKIT library
	D.1 Installing the mock CRICKIT library

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Build Your Own Robot - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

