Arduino in
Science

Collecting, Displaying, and
Manipulating Sensor Data

Richard J. Smythe

Apress’

Arduino in Science

Collecting, Displaying,
and Manipulating Sensor Data

Richard J. Smythe

Apress’

Arduino in Science: Collecting, Displaying, and Manipulating Sensor Data

Richard J. Smythe
Wainfleet, ON, Canada

ISBN-13 (pbk): 978-1-4842-6777-6 ISBN-13 (electronic): 978-1-4842-6778-3
https://doi.org/10.1007/978-1-4842-6778-3

Copyright © 2021 by Richard J. Smythe

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6777-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6778-3

Table of Contents

About the AULNOF ... —————— Xiii
About the Technical REVIEWETcccouiimmmmmmmmmmmesmssssssssssssmseessssssssnsnns Xv
Acknowledgments......ccccuseemminssssnnnmmssssnnnmssssssssmsssssnsssssssssnsesssssnnssnss Xvii
The Author’s Preface to Arduino in SCienceuceeeeersseesssssssnnnnns Xix
Chapter 1: Button Control of LED lllumination.........ccccesmnssmssssnsnnssssssnns 1
EXPErimental.........ccocvveiiirin et 3
HArQWATE........ceececccrccir e s 4
Circuit Schematic: DAQFactory and LabJack Combinationc.cccecvrviennnn. 5
SOTEWAIE ... e 6
Observations, Testing, and Development.........c.ccoevvvrvnierenenserserenessessesenns 15
DISCUSSION ...ttt e 17
Raspberry Pi, Python, Screen Push Button LED Control..........ccccccvvvverevensenierens 18
EXPerimental ... s 19
ODSEIVALIONS....cccieerrecrirerir et s 21
DISCUSSIONccercriecrccire e s r e e s 23

{10 LTI T O 23
SUMIMANY.....eeee e enre e r e n e s re e e e e 25

Chapter 2: Power Control, Monitoring, and Creation of

Dedicated Graphical User Interfacescccuumssmmsnnnnsssssssssssssnssssssssssnns 27
EXPErimental.........ccocoo i s 29
HArAWATE ... e s e en 32
SOTEWANE......cctiircire e s 33

TABLE OF CONTENTS

Page Components REQUITEM.........ccvverrererrerreriersnsnserersessssessessessesessessessessssessessens 34
Observations, Testing, and Developmentccocoecernvnnennesern s e 36
DT ET o0 (0] o S 38
Power Monitoring and Control with Raspberry Pi........cccovvvrrnnnnnenenenerensenenns 50
EXPErimental...... ..o e 52
ODSEIVALIONScucerriesiccce e s 54
0TS0 T 55
{0 Lo T I T 56
SUMMAIY.. .ottt e e s s b e e e e b e e e aennn 74
Chapter 3: Introduction to Scripting.........ccccnnninseessmmnnnnnmsssssnnm. 75
EXPerimental...... ..o e 76
HarQWANEcoveceeercerce s 77
SOMWAIEevecrereer e nrnns 77

3T] 0] (11 o SR 79
ODSEIVALIONSceceerecerrce s 80
DISCUSSION......ccviueierirrssssise e 80
DAQFactory Sequences: Arduing LED Arrayccoouvevnenesnnernsessssesessssessssesenns 81
EXPErimental.........ccocooviiirinie et e 82
DT o0 [0 o S 83
3T TS] 0] =] O 83
COUE LISHINGS ...eevreeerreerinesesesessesesessessssssessssesessese s sessssessessssssssessessssssesssssssns 85
SUMMANY....eitieeirestere e e n e e e R p e 92

Chapter 4: Data Entry from the Screen..........cccunnmmmmnnnnnnnmnnsssssennnn93

HArAWATE ..o p e s en 94
L1041 - T 96
Page Components REQUITEdccoveerrrererenenenernsesese s seses e sessesessnaes 96

iv

TABLE OF CONTENTS

£ T 1) T R 103
ODSEIVALIONS......cociccrerirsee s 103
DISCUSSION ...t e 104

Screen Entry of Data with the Arduino Microcontroller...........c.ccooveevrierereniennnn 105
EXPerimentalccocvvenerirrirsir s 106
ODSEIVALIONS......coccccreresreee s 109
DISCUSSION ... s 109

Raspberry Pi: Screen Entry of Data..........cccocvvvrvninncncn e 110

COUE LISHINGS ...uevreeerreerreerrssesesese e sessesessese e ses e s e s sessssessssessssesessesenns 112

SUMMANY....ceivierieeserese e r s ne e e 129

Chapter 5: Digital Signal Concepts and Digital Signal Outputs 131

EXPErimental.......ccccveviriirirere et 132
HardWare. ... 132
SOWANE ... s 134
ODSEIVALIONS.......occccrerirsre s 136
DIR[0 o 136

DAQFactory Digital Output Exercise with a Microcontroller

LED Demonstration Arrayccucveerennsensessessssssessesssssssessessssssssssessesssssssessenns 137
EXPerimentalcovvvenerrin e 137
ODSEIVALIONS.......ccccerererreeee e s 138
DISCUSSIONcviuiereeerree e e 138

RASPDEITY Pi....eeeeerrr e 139

(L0 L IS oS 141

SUMMANY....ceireerirererese e se e sr s s se e nen e nns 151

TABLE OF CONTENTS

Chapter 6: Analog or Digital Conversions for Input and Output 153
Digital-to-Analog CONVEISIONScccceererrrerinsesenesere e sessesese e ses e sessesessenes 157
Experimental: LabJack-DAQFactory Decimal-to-Binary Conversions............... 158

HArAWANEcoveceeeeeec e 158
L0101 L 158
Analog-to-Digital CONVErSioNS.........cccvvneninieriesnsinsese s s sessessessens 159
ODSEIVALIONS.......ccceeecereeeree e 162
DAQFactory-LabJack HMI Analog-to-Digital Numerical Base Conversions162
Analog-to-Digital Electronic Signal Conversions..........ccccoovevveriesenensensennens 163
ADC0804: 8-Bit Binary LED DiSPIAYcueerererererreeseseressssassmsesessssessssserens 163
DISCUSSIONcoviueerreereecreree e e e 165
Analog-to-Digital Conversions with Microcontrollersccveererrnccrericens 168
EXperimental ... 169
ODSEIVALIONS.......ccceereeereeeree e 174
DISCUSSION ... e e 175
Diagnostics for Nonresponsive Displaysccccovivinnniennnnsensesiesnsensenens 175
System Development and Programming..........cccoevvniniennnnsnsennesssensensens 176
Analog and Digital Conversions for Input and Output with Raspberry Pi.......... 177
Binary-Decimal CONVEISIONSccoveererrererensesessenessssesessesessesessesesessessssenens 177
ADC With RaSPDEITY Pi......cccovierircereserissesese e sessesesssnens 178
EXperimental ... 179
ODSEIVALIONS.......ccceereererrese s s nrens 180
DISCUSSIONcviecrrreerresesessesesse s e s s s sr s e sen e snnsnaens 182
COAE LISHINGS ..uervveerrrrererreerrssessssesssese s sesssssss s sssssssssesessssesssssssssssessssessnsessnns 185
Code Listings for RaSpPherty Pi.........ccovevvresnesennsesnnessssssessssesesesssssessnses 199
SUMMAIY.c.eeiteirerere st s e e s e s sae e e e s ae s aesae e s e e aesae e e e nannnees 207

TABLE OF CONTENTS

Chapter 7: Variable Intensity and Power Control...........ccccuseennenssnnns 209
EXperimental.........ccooviiniincr s 211
Variable Voltage CONtrolcouccerevrnicnnesnnse s sens 211
ODSEIVALIONS........ccccreresrsee e s 216
DISCUSSION ... e 216
EXperimental ... s 217
Pulse Width Modulation of VORgecceevvrvrinninsninss s 217
ODSEIVALIONS.......ccceeeeeereeereee e 218
DISCUSSIONcoveucereeereecs e e e 221
Raspberry Pi Variable Intensity Control............ccovoorenrncnnncserescrnsesesesenenes 222
INEFOAUCTION ... s 222
EXperimental....... ..o s 224
PWM Signals with the RPi.GPIO LibDrary..........ccocuverrrenrnsesesssnesenesensesensenens 224
ODSEIVALIONS.......cceeereeerreereee e 228
COAE LISHINGS ..uevvreerrrrirrrreerrssesssesessse s sessssess s srssesssssss s e sssssssssssesssssssnsessnns 232
SUMMAIY . ueitetrere et s s e s s r e e s e sae e e e s aesaesa e e e e saesae e e e nannaees 238
Chapter 8: Counting Events and Timing......ccccuusseessrsssssnssssssssssssssssnns 239
Software Time and TIMINGcccoceeererrnirnerre e 240
Basic Time Variables..........cccooornrnnnrersssse s 242
Scheduled EVENt TIMETcccocirrnnneesesesss s sesessns 243
The STopWatCh TIMET ..o e nnens 244
Hardware Timing, Event Counting, and Frequency Determination 244
EXperimental ... s 248
HArAWANEcoveceeeeeec e 248
Circuit SCEMALICcoveeereeeerere e 248

vii

TABLE OF CONTENTS

SOMIWAE ...t 248
RS 13T 250
(o1 T 251
SOMIWAE ... 251
ODSEIVALIONSc.ccererrriecese s 252
DT 61T [0 o 252
Time Determinationcoccoreeerenernrcrere e 252
Manual and Automated Event Countingcccocvvinininnnnsniniessnsensennens 253
Hardware Time and TiMingccoovevrrenmrnnernsesesesesese s sesssseseenes 254
EXperimental ... 257
ST T T L 258
ODSEIVALIONScecereeerree s 258
DISCUSSION.......ciriirrrreserrese e st r e pa s 258
Microcontroller Clocks, Timekeeping, and Event Countingccoccveevvcenvennenn 261
EXPErimental.........ccocoo i s 262
ODSEIVALIONSc.ceererrcecese s 263
DT e [0 o ST 265
Counting Events and Timing with Python and Raspberry Picccovveeennne. 265
Scheduling EVENTS ..o 268
Detecting and Counting EVENLSccovenernrernnenenenersseseseses e sessesensenens 270
EXperimental ... s 273
ODSEIVALIONScvceeecerree s s 276
DT HT L]0 281
COOE LISTINGS .veveereerrererserersersesessesessessssessessesssssssessesssssssessessesssssssessesssssnsessees 283
Raspberry Pi Program COUEevvverververerenserseressssessessessessssessessessssessessens 293
311111117 OSSR 303

viii

TABLE OF CONTENTS

Chapter 9: Graphical Data Recordingcccssessssnsssassssassssnsssassssanssns 305
Experimental: Linear Graphical Data Recording............ccceeevvererescrnicneresennnne. 307
Part 1: Hardware and Component Selection — Square Wave Output........... 307
Electronic Components ReqUIredcoccrvvevnenennnennsennesese s sesesseens 309
Circuit SCREMALICcccovvveecrer s 309
SOWANE ... 310
Page Components REQUITEMccceververiererenserseressssessessessesessessessessssessensens 310
Part 1: ODSEIVALIONSoeeeercreriree e 313
EXperimental ... s 315
Part 2: Hardware and Component Selection — Triangular and
“Sawtooth” QUIPULS......ccceeicircr e 315
Part 2: ODSErvationsccoveeeerrrrrrcrerese e 316
Part 3: Hardware and Component Selection — Dual-Slope
Triangular Waveform ... ssesnens 318
Part 3: ODSEIVALIONSccovveeerererereesesere s 320
X-Y Data ReCording........cccoevrrvrerennnnsenesssnsseses s sessese e sss e sssssssessesnes 321
Observations: X-y PIOtHNGc.ccceeererrnserreserese e 325
DT e (0] o OSSPSR 326
X VS. TiMe RECOIAINGSvccervrererreerrenerisesesesese e sesse e se s e s ssssesenns 329
X=Y RECOIAINGScuervrueerreerinesessesessse s e e se s sn s senns 335
Microcontroller Data PlOttiNgcccvevrrrieniennseniene s ns 335
EXPErimentalcccviverneninisernse e 337
ODSEIVALIONS.......cceeereeeerreserrne s 338
DISCUSSIONcvieeirrierrese s r e nn s 338
Graphical Data Recording with Python and the Raspberry Pi.......c.ccovviviennns 340
INErOAUCTION ... 340
EXPerimentalcovvvvrienr e 341
ODSEIVALIONS......ccccccrerisrsr s 343
DIR[0 o N 346

ix

TABLE OF CONTENTS

00T Lo I] R 348
31111117 o O 351
Chapter 10: Current Control..........c.ccccvssemmmssnsmsssnsesssssssssssssssnsssssnnsss 353
Constant CUIrent SOUICESoocoererererrcrereere e 354
EXperimental...... ..o s 355
HarQWANEcoveeercerecs s s s 355
Circuit SCNEMALICcoveeereeererese e 356
SOTEWAIE ... e 359
ODSEIVALIONScececeeerree s s 359
DT T L]0 N 360
Control of Larger DC CUITENTSccccveveererrereressesseressesessessessessssessessesasssssessessens 362
INErOAUCHION ... 362
Brushless Direct Current (BLDC) Motors (Motors Without
Commutators or Sparking BruShes)ccvevverierenensesseressssessesessesessessesses 362
EXPErimental.........ccoceveiiiriere et 363
HardWAre. ..o 363
Circuit SCHEMALICcovvvcrrcrrr s 365
SOWANE ... s 367
ODSEIVALIONScvvccrirer s 368
DT [0 o S 369
StePPEr MOTOrS ... s 370
EXperimental ... s 372
HArAWANE ..o 372
Circuit SCEMALICcoeeereecreree s 373
L0111 L R 376
ODSEIVALIONScecereeerree e 376
DISCUSSION......c.ciriuirtrrierissesrse s sr e nrnne e np s 378

https://doi.org/10.1007/978-1-4842-6778-3_10#Sec900

TABLE OF CONTENTS

Control 0f AC CUITeNt SOUICEScoeverrimesmreresrssssese e sesesssssssaes 379
INEFOAUCHION ...t 379
EXperimental.........ccoviniincnr s 382
HarQWANE ... 382
Circuit SCREMALICcovvveccrrr s 384
SOMIWAE ... 386
ODSEIVALIONS ...t 386
DT 11 [0 o ST 387
Current Control with Raspberry Pi and Pythonccoucvniennesnnsenenesennene, 390
INEFOAUCTION ...t e 390
Control of Larger DC CUITENTS........ccocvvemrenesersesesrnsesesesesssessssesesssssssssessnnes 390
EXPEriMENntal.........covoerecernisiree e 392
NON-INAUCTIVE LOAAS......cccverrrreerrnereseserre s ss s snssenens 392
ODSEIVALIONSccerririiceee s 395
DT o1 [0 o TN 395
Power Control 10 INdUCEIVE LOAAScccoererererennrsereressssse e 397
INEFOAUCTION ... s 397
EXPErimentalccovvveierrcrse et 398
ODSEIVALIONS ... 403
DT 611 [0 o S 404
Control 0f AC CUITENTS.......uceeerreerrseresesessese s sesse e ses e sessssessanes 405
INEFOAUCTION ...t 405
EXPErimental.........cooooereeennerirese s 405
ODSEIVALIONS ... s 407
DT o1 [0 o N 408
C0dE LISTINGS ...vvveerrierirerinesirsse st s e st se s st ssnis 409
Raspberry Pi—Python Codesccovvrrnrininniennssense s sesessenens 409
SUMMAIY..c..citiiiire e bbb b e s ae b e e e e nne s 413

TABLE OF CONTENTS

Chapter 11: Microcontrollers and Serial Communications............... 415
Experimental: Microprocessor to Host PC Communications — “Uploading”......419
HarAWANE ... 422
Circuit SCREMALIC ..o s 422
SORWANE ... 423
Page Components REQUITEMcccvvevverrererennerseressssessessessessssessessessssesensens 428
ODSEIVALIONScovecereee e 428
DISCUSSION......civieeerreerreeresese s e s se e n e nns e nrenis 430
Experimental: Host PC to Microprocessor
Communications — “Downloading”........cccceevvrmsninennsensenenssessessesesessessessens 432
INEFOAUCHION ...ttt s 432
HArAWATE........coeereeeerer s s s 433
SOMWAIEc.vcvecerrrerrre e e 433
ODSEIVALIONS ... s 435
DT o1 [0 o N 435
Raspberry Pi and Arduing ... 436
EXperimental ... s 437
ODSEIVALIONS ... 438
DISCUSSION.......ciriirrrreserree s e sr e nrnne e ra s 440
CO0E LISTINGS ..evvererrerirerieressesensese s ssssessessessssessessesssssssessessesassessessesessessesseses 441
SUMMAIY.c.veitetrerere e sere e s s sress e e sessesaese s e s aesaess e e saesaesaeseesesaesaessenensessens 447
Appendix A: List of Abbreviationsccccuseessmssssssssssssssssesssssssnens 449

Appendix B: List of Supplierscccccmmmmmmmsssssnnnmmmmmmsssssssssssssssnnnss 499

O 1,) |

xii

About the Author

Richard J. Smythe attended Brock University
in its initial years of operation in southern
Ontario and graduated with a four-year
honors degree in chemistry with minors in
mathematics and physics. He then attended
the University of Waterloo for a master’s
degree in analytical chemistry and computing
science and a doctorate in analytical
chemistry. After a post-doctoral fellowship at
the State University of New York at Buffalo in
electro-analytical chemistry, Richard went into

business in 1974 as Peninsula Chemical Analysis Ltd. Introduced in 1966
to time-shared computing with paper tapes, punched cards, and BASIC
prior to Fortran IV at Waterloo, as well as the PDP 11 mini-computers and
finally the PC, Richard has maintained a currency in physical computing
using several computer languages and scripting codes. Professionally,
Richard has functioned as a commercial laboratory owner and is currently
a consulting analytical chemist, a civil forensic scientist as PCA Ltd., a

full partner in Walters Forensic Engineering in Toronto, Ontario, and
senior scientist for Contrast Engineering Limited in Halifax, Nova Scotia.

A large portion of Richard’s professional career consists of devising
methods by which a problem that ultimately involves making one or more
fundamental measurements can be solved by using the equipment at hand
or using a readily available “off-the-shelf/out-of-the-box” facility to provide
the data required.

xiii

About the Technical Reviewer

Roland Meisel holds a B. Sc. in physics from
the University of Windsor, a B. Ed. from
Queen’s University specializing in physics
and mathematics, and an M. Sc. in physics
from the University of Waterloo. He worked
at Chalk River Nuclear Laboratories before
entering the world of education. He spent
twenty-eight years teaching physics,

mathematics, and computer science in the
Ontario secondary school system. After retiring from teaching as the head
of mathematics at Ridgeway Crystal Beach High School, he entered the
world of publishing, contributing to mathematics and physics texts from
pre-algebra to calculus in various roles, including technology consultant,
author, interactive web files (which he conceived, created, published and
edited), and photography. He remains active in several organizations,
including the Ontario Association of Physics Teachers, the Ontario
Association of Mathematics Educators, the Canadian Owners and Pilots
Association, and the Wainfleet Historical Society.

He has always had a strong interest in technology, mail-ordering

his first personal computer, an Apple Il with a 1 MHz CPU and 16 kB of
memory, from California in 1979. At leisure, he can be found piloting small
airplanes, riding his bicycle or motorcycle, woodworking, reading, or
playing the piano, among other instruments.

Acknowledgments

Acknowledgments begin with my late parents, Richard H. Smythe and
Margaret M. Smythe (née Earle), who emigrated from the remains of
London, England, after the war with their small family of three and
eventually raised four siblings in Canada. Our parents instilled in us the
need to be educated as much as possible in order for each of us to be self-
sufficient and independent. That independence has led to the comfortable
retirement of the middle two and to the youngest continuing in her chosen
occupation for close to a decade past retirement and the oldest to still be
actively engaged in the business of chemical analysis consulting and the
practice of civil forensic science.

Along the way, numerous individuals have served as an inspiration
while teaching and mentoring me, imparting knowledge, the art of rational
thinking, tenacity, and in most cases valuable wisdom:

From Merritton High School in St. Catharines, Ontario:

Mrs. E. Glyn-Jones, mathematics; Mr. J. A. Smith, principal; and Mr.

E. Umbrico, physics

From Brock University in St. Catharines, Ontario:

Prof. E. A. Cherniak, Prof. R. H. Hiatt, Prof. E. Koffyberg, and Prof. J. M.
Miller

From the University of Waterloo in Waterloo, Ontario:

Prof. G. Atkinson

From the State University of New York at Buffalo:

Prof. S. Bruckenstein

It may also be said that the seeds for the growth and development of
this work began when as a parent I made sure that both my daughters,
Wendy and Christie, could read at a very early age and devised graphic
teaching aids for them to learn and understand binary digital arithmetic.

xvii

ACKNOWLEDGMENTS

Acknowledgments would not be complete without recognizing
the person who has allowed me the time required to write, in spite of
life’s everyday chaos in the country, my spouse, Linda. She has suffered
through many years of papers, notes, books, breadboards, wires, electronic
components, and desktop experiments scattered everywhere in our home
and, when she wasn’t looking, on the kitchen table! Thank you, my love.

Although my career consists of solving essentially chemistry-based
problems and writing reports explaining how the problem came into
existence and how to correct its effects or avoid its re-occurrence, I have
never written a book. This work would not be possible without the help
and guidance of editors at Apress, Ms. Natalie Pao, Ms. Jessica Vakili, and
Mark Powers.

xviii

The Author’s Preface to
Arduino in Science

Arduino in Science is written to provide an introduction to the basic
techniques that can be used by individuals to engage in experimental
science. It is hoped that the manuscript can assist students and those new
to or with limited backgrounds in electro-mechanical techniques or the
physical sciences, to devise and conduct the experiments they need to
further their research or education. It is also hoped that the manuscript
will be useful where there are limited financial resources available for the
development of experimental designs and experimental or educational
programs.

Migrating or foraging animals and insects use daylight, near- infrared
light, polarized light, celestial indicators, chemical traces in water, the
Earth’s magnetic field, and other aids to navigate over the Earth’s surface
in search of food or to return home to their breeding grounds. Astronomy,
biology, chemistry, geology/geography, mathematics, physics, and other
subjects through to zoology are human concepts and classifications
entirely unknown to the travelers of the animal world. There are parallels
between the animal kingdom’s usage of multiple scientific phenomena
of which they have no knowledge and current scientific investigations.

A significant amount of new scientific knowledge is being revealed by
investigators educated in one classifiable discipline using the unfamiliar
experimental techniques from another. Although written by an analytical
chemist, this manuscript is a compilation of introductory basic techniques
applicable to any scientific discipline that requires the experimental
measurements of basic physio-chemical parameters.

Xix

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

The author is an experimental analytical chemist who has worked
with vacuum tubes, transistors, integrated circuits, main frame, mini-
computers, microcomputers, and microcontrollers, while computing
technology transitioned from BASIC, Fortran, and variations of C to
iterations of the open source systems such as Python, Processing (the basis
of the Arduino microcontroller integrated development environment (IDE)
language), and Linux operating systems used in the Raspberry Pi. New and
revised versions of languages, IDEs, and operating systems are available
free of charge from the Internet and are constantly in a state of flux.

This work could be considered as being virtually obsolete as it is
being written, but as with the science and technology that it describes,
itis a starting point in an ever-changing subject. For the researcher and
practicing scientist, the fundamentals of science are relatively constant
and reasonably well understood, so a great deal of caution must be used
when deciding that a concept or technique is “obsolete.” The SCADA
concept and its development significantly predate the PC. Some of the
transistor and CMOS ICs and the 7400 series of integrated circuitry that
are in heavy use today date from the 1970s. Many chemical analysis and
physical measurement techniques, taught and in use today, date virtually
from the Middle Ages.

SCADA is the acronym for supervisory control and data acquisition.
SCADA software allows a computer to supervise an electro-mechanical
process and do so by acquiring data from sensors that are monitoring
the process being controlled. Many of the measurement techniques to be
discussed can be considered as single element components that are now
part of the developing technology being called the Internet of things (IOT)
with the Node-RED connectivity open source software.

HMI is the acronym for human-machine interface. The HMI can be
an electronic device or construct that provides an interface between a
computer, an experimental setup, and a human operator. (A graphical user
interface, GUI, may serve as an HMI.)

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

USB is the acronym for Universal Serial Bus that is, in reality, a written
standard of specifications to which electro-mechanical hardware systems
are expected to conform. The USB is a subsystem that lets a personal
computer communicate with devices that are plugged into the Universal
Serial Bus.

When a personal computer runs supervisory control and data
acquisition software with a human-machine interface connected via the
Universal Serial Bus system, then investigative science experiments or
other processes, experimental apparatus, or equipment setups, either “in
the field” miles away or “on the bench” next to the computer/workstation
or laptop, can be monitored and controlled in “real time.”

Laptops, stand-alone desktops, and cabled or wireless networked
workstations together with Internet connections now allow unprecedented
flexibility in laboratory or “in-field” monitoring of investigative science
experiments.

The options available to the experimentalist for implementing SCADA
systems can essentially be divided into three categories based upon the
amount of development work required to achieve a fully functional system.

Complete, finished, working software systems that are able to
measure and control virtually any electro-optical-mechanical system are
available from manufacturers such as National Instruments and Foxboro.
Commercially available fully functional, basic, software-only systems can
be expected to cost in the range of several thousands of dollars.

The author chose to develop this manuscript on three much-lower-
cost options for SCADA implementation in experimental setups.

A moderate-cost implementation strategy, involving the following list
of resources, has been used to develop the exercises in this manuscript.
These resources should also be adequate for further experimental
development of new applications:

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

xxii

1)

2)

A PC with SCADA software. Numerous systems

are available, and the DAQFactory Express and the
base-level DAQFactory version of the system from
AzeoTech have both been used in this manuscript
(cost for DAQFactory base-level software approx.
$250 CDN, 2008). There are freeware versions of
SCADA systems available for those who are able to
adapt the software and may require the extended
flexibility.

A USB HMI. Again there are many devices available
from many manufacturers, and the device chosen
for this manuscript is the model U12 from LabJack
Corporation. (U12 costs approx. $120. U3 was
added later, which costs approx. $110 USD.) The
LabJack devices are provided with software in

the form of a working version of the DAQFactory
program called “Express.” The LabJack-supplied
software is excellent with respect to its graphical
display capabilities and for many applications in
investigative sciences is more than adequate. The
DAQFactory Express is however limited to ten lines
of script code, five script sequences, and two display
pages. For some of the topics discussed and project
exercises described in this manuscript, the more
extensive capabilities of a commercial version of
the DAQFactory software may be required. If the
software is to be purchased, the reader should start
with the most basic program available and add
upgrades as required.

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

3) The third option for experimentalists is the newest
and lowest-cost approach to the implementation of
a SCADA system that consists of the Raspberry Pij, its
Linux operating system, the Python programming
language with its matplot library, and the tkinter
graphical user interface. The Linux operating
system and Python and its modules are all open
source projects and hence free for download
from the Internet. The Raspberry Pi project has
made available the Raspberry Pi board that can
be purchased from many large electronics supply
houses such as DigiKey or Newark element14, to
name only two, for $35. The Raspberry Pi board
requires an HDMI-compatible TV or computer
monitor, mouse, and keyboard to form a fully
functional computing system. In addition to the
virtually no-cost software, the Raspberry Pi board
contains its own general-purpose input/output bus
in addition to its USB input/output connection and
hence contains its own HMI requiring no additional
circuitry or expense to be interfaced to external
electronics or experimental setups. The Raspberry
Pi board is manufactured with an Ethernet
connection and is thus network capable.

In 2008 an open source project called Arduino made available a series
of USB-connected microcontroller boards that allowed designers, artists,
hobbyists, and non-electronics specialists to interface electro-optical-
mechanical devices to a computer. The basic Arduino Uno Rev3 board
can be purchased from any of the major electronics supply houses for
$25. The software to program the microcontroller board is another open
source project and is freeware that can be downloaded from the Internet.

xxiii

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

The Arduino board can be used with Windows or Linux-based operating
systems and is fully supported with an online forum, many tutorials, and
an extensive range of example programs and applications.

Experimental investigations using SCADA-type implementations can
thus take the form of a complete commercially available package, useable
as received with no required development time, as a lesser-cost system
requiring a moderate amount of programming using the DAQFactory
program and commercial HMI devices such as the LabJack series of
interfaces or as an assemblage of very-low-cost hardware and open source
software freely available for download from the Internet.

In addition to the software and hardware required to implement the
monitoring and controlling system, additional ancillary equipment may be
required in the form of the following list:

1) Asolderless breadboard system, appropriate power
sources such as battery or electronic regulated
supplies, and access to various IC and passive

electronic components are required.

2) For troubleshooting, a multimeter is required; and
for more advanced work, an oscilloscope, either
stand-alone or an oscilloscope program for a PC,
may be required.

It is suggested that the reader, new to this technology, work through the
manuscript in order of presentation so as to gain practice and confidence
with software, wiring, and increasing project complexity. The basics
of scripting software, hardware interfacing, electronics fundamentals,
and IC usage will all progressively become more complex; and the basic
knowledge and procedures established in the earlier exercises will not be
repeated in the more advanced projects. All science is empirical in nature,
and this manuscript is no different than real-life scientific work. The
investigator must progress from the simple to the more complicated facets

XXiv

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

of the project at hand, verifying and validating each intermediate step in a
multiple-stage measurement process.

The rate at which the individual can progress through the various
topics presented will be dependent upon their knowledge of the basic
physical sciences that form the core of the exercises. If difficulty is
encountered, textbooks, online tutorials, and academic course outlines
with exercises can be located to further aid in understanding the required
base knowledge.

As the title states, this manuscript deals essentially with monitoring
and measuring physical-chemical parameters with integrated circuitry and
physical computational systems. In this work, inexpensive “off-the-shelf
components” are used to monitor and control experimental setups that
are able to measure data in the form of basic physio-chemical parameters
of interest to investigators in many of the classified sciences, with in some
cases astounding sensitivity, flexibility, accuracy, and precision.

Disclaimer

1) 110-volt electricity can be lethal and will start fires.

2) Soldering irons are hot enough to cause serious
burns.

3) This document is for educational purposes only
and presents concepts that are demonstrated
through experimental formats. These experimental
setups have not been tested for robustness and
are not designed or intended for any form of
implementation in field service. These concepts
are the basis for education only and are intended
as being starting points for further R&D into
instrumental methods of monitoring experimental
scientific apparatus for the purposes of gathering
data or making physical measurements.

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

4) The concept for this work came to the author in
the mid-1960s, and in the interim years, various
portions of this work were developed with the
technology available at the time, while other
concepts were found to be unworkable. Although
formal assembly of this document was begun
in 2008 and 2009 using the integrated circuitry,
physical computing, and Internet information
resources available at that time, the document
continues to develop as it is being written using new
integrated circuits, physical computing software,
and online information sources. The continued
availability of either software or electro-mechanical
hardware can never be assured, and hence the
practitioners of this or any science must learn the art
of “a work-around.”

Exercise Road Map

As noted in the Preface, this work is not intended to be a first or

ab initio introduction to data collection. Although motivated or
enthusiastic investigators can plunge right in and try to pick up needed
knowledge and skills on the fly, the guide is aimed at those who have at
least some experience in working with electronic hardware and computer
software. A basic familiarity with simple electronics as well as some
elementary programming in a structured language such as Python or C++
will shorten the time required to complete the various exercises.

XxXVi

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

The manufacturer’s literature for most of the data collection hardware
referred to in this guide provides guidance and elementary activities to
help familiarize the new user with its implementation. Online sources can
also provide numerous practical applications of the hardware at hand.

Once the experimenter is comfortable with the hardware and software
exercises described in this work, the experimental measurement of many
basic scientific parameters can be made in accordance with the methods
detailed in the next book in this series, Arduino Measurements in Science.

This work is devoted to developing the techniques that can be used
for making experimental physio-chemical measurements with equipment
assembled from readily available components, materials, and most small
desktop or portable computing systems. This manuscript is an attempt to
provide written methodologies by which fundamental measurements can
be made by investigators of varying levels of familiarity with electronics,
electro-optical, and simple mechanical systems. A series of experimental
measurement procedures are developed as a prelude for being able
to make the basic measurements of parameters such as temperature,
distance, light intensity, sound frequency, relative humidity, and other
fundamental measurements in basic science.

Each of the chapters develops a method or technique that can
ultimately be used to assemble a testing or measurement method or
procedure consisting of the various methodologies developed.

Exercise Format

Experimental
Hardware
Software
Observations
Discussion
Code Listings

XxXVii

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

Project Management

When working through each of the exercises in the various chapters, the
following procedures are suggested:

1) Inpreparation for the assembly of an experimental
exercise or project described in a chapter, review the
manuscript information and collect the published
work relevant to the exercise such as manufacturer’s
data sheets for the components in use. This will
serve to add to the depth of knowledge available to
the investigator and may avoid component damage.
Rough notes and drawings should be collected
together into a notebook (either on paper or in an
electronic format).

2) Begin assembling the hardware/electronics and
corresponding software from the simplest unit
operations of the project, debugging the individual
modules and then verifying operational status until
the entire project functions as designed.

3) Caution is required in reading schematic diagrams
and attempting to duplicate their assembly as
certain discrete components and integrated
circuitry are constantly decreasing in physical
size or are replaced with newer technology. The
decrease in size means that identification markings

on components are getting smaller also.

Resistance and capacitor markings may appear in several formats
as combinations of numbers and letters with the magnitude symbol
sometimes replacing the decimal point. Surface mount technologies (SMTs)
have a three-digit code in which the first two digits are the value and the
third is the power of 10 of the value multiplier.

xxviii

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

Resistors’ unit of measure is ohms, symbol Q.

M is 10° or 1,000,000 ohms, and typical identifications may be 1.5 M or
1M5.

Kis 10° or 1,000 ohms, and typical identifications may be 1.2 K or 1K2.

Ris 10° or 1 or unit ohms, and typical identifications may be 100 R or
just 100 as there is no decimal point to replace.

m is 102 or 1/1000 ohms, and 0.052 Q is written as 52 mQ.

Capacitance units in older works were mainly limited to micro- and
picofarad designations, and the range of nano- was covered either by
thousands of pico- or thousands of microfarads. Most current capacitor
notation usage seems to adhere to the three main fractional designations
listed in the following but has recently been expanded to include the Farad
to avoid using thousands and millions of the micro- term when describing
ultra- and super-capacitor devices.

Capacitors’ unit of measurement is Farads, symbol E

u is microfarad and is 10 Farads.

n is nanofarad and is 10 Farads.

p is picofarad and is 10°'* Farads.

The exercises in this book use very simple electrical circuits that will
be assembled on a “breadboard” and connected to the LabJack HMI,
DAQFactory Express system, Arduino microcontroller-DAQFactory
combination, or directly to the Raspberry Pi or RPi-Arduino systems
to provide an interface between the working electronic circuit and
a computer-generated GUI. Each of these combinations allows the
experimenter to exercise supervisory control, acquire data, or monitor a
data stream trend, through a software, user interface screen. There is no
better way to gain experience with electro-mechanical control systems
than to mechanically assemble circuits and test and establish their
functioning, before configuring software for data acquisition (DAQ) and
hardware control. As a general rule, the hardware is assembled, tested, and
validated before one moves on to interfacing and software development.

XXix

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

The following discussion uses the first of the exercises as an example
of the general methodology that will be used for the rest of the exercises.
Each exercise in this work is generally set out in the traditional laboratory
format, and it is assumed that this general section has been read and is
understood by the researcher.

When working with electrical signals from a sensor or experimental
apparatus, ensure that the output voltage level does not exceed the input
voltage capability of the electronic components being used to process the
signal. Most discrete integrated circuitry is limited to 5 volts, some op-
amps will operate at up to 18 volts, and most surface mount technologies
operate at a nominal 3.3 volts.

As with all scientific endeavors, a logical progression should be made
from the simplest to the more complex. When developing the software for
the project at hand, the experimenter should begin with the code required
to connect the apparatus to the computing and display circuitry.

The simplest form of electrical signal transmission uses a series
connection for both analog and digital signals.

Analog voltage signals are often connected directly to the input pins
of integrated circuits that provide some form of signal processing, while
digital signals are connected to pins that sense whether the signal is high
or low. In general terms, a large portion of sensor outputs are voltage
based, but current sensing is also used in some sensor measurements.

Computational circuitry usually accesses external data through a
“serial port.” The serial port is often a specific addressable location in
the computer memory that accepts incoming digital data according
to a specific encoding called a protocol. The protocol specifies the
meaning of the high-to-low or low-to-high transitions that make up the
digital signal with respect to timing, data values, and signal processing
control parameters. There are numerous scientific and industrial serial
transmission protocols designed and optimized for specific applications,
but the following exercises will be predominantly confined to the basics of
serial data transmission.

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

The exercises can use the DAQFactory scripting language, Python, and
the variant of C used in Arduino programming. All three programming
languages have reserved keywords that cannot be used as variable
names. Follow the variable naming rule suggestions in the appropriate
documentation for the language in use. Create meaningful names by
following traditional C styles such as MySignificantName, MySgnfcntNme,
or My_Significant_Name. Do not use proper words such as “temperature”
or “Temperature” or any other word that may be a proper word used within
Python, DAQFactory scripting, C, or C++ programming code. Scripts
that contained proper words used as variable names or channels for
“clarity” by the author that failed to operate and produced baffling outputs
suddenly performed flawlessly when the proper words were re-keyed with
unique mixed upper- and lowercase characters. Follow the proper formal
methodology built into the software at hand. In the DAQFactory software,
creation of the channels first allows DAQFactory to populate the pop-up
intelligent listing of channels, variables, and constants to cut down on
error-prone typing. The primary step in all troubleshooting procedures
involving written coded systems that do not work is to check all spelling.
Names are case sensitive.

Keep detailed notes of what is being done, write down calculations,
sketch schematics and rough mechanical drawings. This is, after all,
science. The drawing conventions for mechanical systems and electronic
circuits can be found in several reference texts.! The reader is encouraged
to follow these conventions.

1) Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge
University Press, ISBN 978-0-521-8785-6
2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
ISBN 0-521-37095-7
3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill
ISBN 978-0-07-177133-7

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

As an exercise is assembled from software control of the HMI to wiring
of the circuitry on the breadboard, test each segment of the process.
Work neatly; lay out the wiring parallel to the lines and rows of pins on
the breadboard socket. Cross wires at right angles and only bend small
copper wires to right angles with your fingers so as to achieve a relatively
large radius of curvature. Recall that copper, although very ductile, “work
hardens,” so use new wire where possible or make sure that a wire is
re-bent to large-radius, gentle curvatures, no more than half a dozen
times at most. In the chemical engineering discipline, a manufacturing
process is set up from a number of “unit operations.” Each unit operation
is usually a complete basic step involving a physical change or chemical
transformation such as crystallization or precipitation that forms a
component of a larger multistep manufacturing process. A unit operations
concept can be applied to creating a basic supervisory control and data
acquisition (SCADA) process. In essence each SCADA process can be
considered to have, at a minimum, three components, a process to be
controlled, a sensing and adjusting mechanism, and a central control
authority.

To practice the unit operations concept in our first exercise, we should
set up or configure our DAQFactory software to activate a channel. The
channel will have been assigned a screw terminal output on the LabJack,
and the terminal output will have been wired to the appropriate input pin
on the integrated circuit driver. The output pins on the current driver IC
will have been individually wired to the current limiting resistor (CLR) on
the LED diodes being controlled by the system.

The first step in our testing procedure is to verify the appearance of
+5 and 0 volts at the channel output pin on the LabJack with a digital
voltmeter (DVM). The appearance of the +5 and 0-volt signal should be
verified at pin number 3 on the CD4050 hex buffer chip current driver and
at the higher-voltage end of the current limiting resistor on the LED. It is
inherently assumed that if all the component parts of a system work, then
the entire process will work. Remember that the assumption is just that!

XxXXii

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

Isolation

The USB is essentially a communications standard and as such has a
limited ability to supply power. An HMI that can be used for this work is
the LabJack that draws virtually all its power from the computer’s main
supply. The LabJack can source up to 450 mA. It is good practice for an
external power supply to be used to power our experimental devices. In
this manuscript, we are working on a bench or desktop and will do so
with a self-contained power supply as will be encountered in any field

or laboratory experimental setup. Some experimental setups in either
laboratory or field will draw more than a half amp, and some will control
line voltages and currents. Control of remote setups by the SCADA
software over networks or from laptops may not be able to supply any
current to the experimental equipment. To power the LED in the first
exercise, we will use the HMI to control a “buffer” circuit of a CD4050
CMOS IC chip that will in turn be used to switch the LED power on and
off. The control logic of a ONE or ZERO, created by the SCADA software
and appearing at the I/O terminals of the HMI device in the form of +5 or
0 volts, is thus used to control the required current from an external 6-volt
power supply.

An independent battery or highly regulated power supply is often
required for measuring low-level analog signals. Investigators using the
5-volt supply of the USB will often find that the sensitivity of low-level
analog signals is defined by the digital clock noise of the bus.

The systems being monitored and controlled in most real-world
applications are self-powered and in fact may be linked to the computer
and the SCADA software through a wireless link. When the USB is used
for power, it is good practice not to load the computer power supply and
hence draw only the minimum required current from the bus.

Some of the experimental setups to be explored will draw amps of
current and hence cannot be driven by the computer power supply, so
some of the exercises to follow must obviously be self-powered. In the later

xxxiii

THE AUTHOR'’S PREFACE TO ARDUINO IN SCIENCE

exercises, the power and flexibility of USB-connected microprocessors will
be explored; and although these can be powered by the USB, they should
be self-powered to stop the noise on the bus system being blended with
the data signal output of the microprocessor. (USBs 1 and 2 can supply 500
mA and USB 3 900 mA.)

Software Scripting

Every script written should be fully documented. The name of the
sequence or code, the purpose of the sequence, and possibly the date the
code was written should all be placed at the head of the actual code in
accordance with the details for naming and commenting as given in the
various software language references. The heading should also outline
what the code does, describe the algorithm in text, and define the variables
used. Recall also that a variable must be declared in a scripted sequence,
plus the sequence must be running for the variable to exist and be useable.
DAQPFactory has an auto-start option for a sequence, which will start the
sequence when the page with the script-related icon’s control screen is
loaded, and if required the auto-start option can be used to automatically
start a sequence that declares a set of variables for use in configuring a
control screen or sequence.

The RPi and Arduino auto-start their operating system and defined
software variable on the application of system power.

Integrated Circuitry and Surface Mount
Technology (SMT)

Traditionally experimenters bought components for mounting on
breadboards during testing and project development. The successful
breadboard circuit could then be transformed into printed circuit boards

XXXiV

THE AUTHOR’S PREFACE TO ARDUINO IN SCIENCE

with single- or double-sided etched patterns. The double-sided boards
often used drilled holes to connect both sides of the board. However, as
integrated circuits became significantly smaller, drawing less current, they
became faster and significantly more sensitive and are now at the point at
which many of these miniature ICs can neither be handled manually nor
electrically connected into circuits, by the average researcher.
Smaller IC size has given rise to smaller component area and
surface mount technology (SMT) that in turn has made circuit boards
much smaller, easier to manufacture, and less expensive. The decrease
in physical size and the development of SMT have added a layer of
complexity for the experimentalist. Using the advantages gained by
physically decreasing the size of the integrated circuits requires adapters to
convert SMT components into compatible breadboarding formats.
Exercises in the following chapters predominantly use readily available
ICs that are compatible with the common prototyping breadboard
systems.

CHAPTER 1

Button Control of LED
lllumination

The exercise in this chapter is virtually one of the simplest forms of
computer control in that an LED device is powered on and off by clicking a
button icon on the main system display screen or by running several lines
of computer code. The graphical user interface (GUI) is the display screen
that contains the icons of buttons, sliding controls, meters, digital numeric
displays, graphical strip chart recorder displays, and other symbols, both
active/passive and text based that can be used to monitor and control the
process at hand. Clicking the screen button toggles the LED on and off, and
the state of the system is determined visually, by whether or not the LED
is illuminated. As the initial exercise in interfacing the SCADA software
with the HMI and the breadboard electronics, the ability to control the
application of power to simple electronic circuits from a display screen or
keyboard is demonstrated.

In order to connect visually oriented digital software running on
a “Windows”-based computer operating system to a “plug-in” rapid
prototyping “breadboard” sitting on a bench top or embedded in an
experimental environment, a digital electrical connection is required.
A USB cable used to connect peripherals to host computers can be
employed as the electrical signal transmission line connecting the host
computer to the machine interface.

© Richard J. Smythe 2021 1
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_1

https://doi.org/10.1007/978-1-4842-6778-3_1#DOI

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

The machine interface connection can be any one of a number of
USB-compatible, programmable hardware devices, able to receive an
input of digital code, interpret or recognize the intent of the code, and
generate the required digital output signal.

In Figure 1-1, a selection of data acquisition or HMI devices able to
provide the required input interpretation and generate the proper output
signal are displayed.

Items 1 and 3 are from LabJack Corporation of Lakewood, CO,

USA. The corporation produces approximately a dozen multifunctional
data acquisition (DAQ) devices compatible with USB, Ethernet, and Wi-Fi
systems. LabJacks are rugged, robust devices intended for hard industrial
and laboratory applications with their heavy plastic protective cases and
large screw terminal wiring connections. The two devices depicted are
the lowest-cost U3-HV ($115 USD; see LabJack literature for a list of all
the additional functions and features available) and the original LabJack
multifunction DAQ device ($160 USD).

Item 2 is a Digilent Inc. chipKIT Uno32 (since retired) Arduino-compatible
microcontroller. The illustrated device has been replaced by the chipKIT uC32,
3.3-volt Arduino-compatible microcontroller ($42 CDN). Items 4 and 5 are
inexpensive mass-produced SMT Arduino-compatible microcontrollers from
SparkFun Inc. ($20-$30 USD).

Each of the devices illustrated is able to receive either a single digital
on/off signal or a coded instruction and generate the required output.

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

LabJack U3-HV
www labjack com

www.labjack.com

A LabJack™

ui2

S
4
L d
&
L
L
L
[]
L
LJ
-
&

Figure 1-1. Some HMI Devices

Microcontrollers are currently manufactured by over a dozen
companies with a large variety of features and a wide range of costs.

Experimental

The original control screen button illumination of an LED resident on
an external independently powered, prototyping board was created and
written in 2007 with the LabJack U12 as seen in Figure 1-1, item 3. Many
years later with the availability of the low-cost microcontroller boards,
items 2, 4, and 5 in Figure 1-1 can be used to do the same interface
functioning. Although this exercise describes the use of the U12, any
microcontroller board can be used as a replacement for the LabJacks in
Figure 1-1. Details on the configuration of the DAQFactory control screen

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

button to activate an Arduino to illuminate an LED are given in Chapter 11.
In the “Experimental Downloading - Sending Data to the Microprocessor”
section, three buttons are configured to turn the power on and off to an
LED and to do so in a programmed sequence.

Hardware

A typical selection of suitable electronic components for this exercise is
displayed in Figure 1-2 resting on a prototyping “breadboard.”

Figure 1-2. Prototyping Breadboard and Assorted Components

Item 1 is a plastic battery case able to hold eight AA-size cells to
provide a nominal 12 volts. (Eight fresh alkaline cells at 1.5 V each will
provide 12V, while eight nickel metal hydride (NiMH) rechargeable cells at
1.2 Vwill provide an initial 9.6 V DC power supply. Li AA cells can provide
anominal 3.6 volts each.)

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

The items beside caption 2 are LEDs. The left-hand red LED is a 3 mm
(1/8 in) miniature device, the next four colored diodes are 6 mm (1/4 in)
devices, while the right-hand clear device is a 10 mm (3/8 in) white light LED.

Item 3 is a CD4050 non-inverting hex buffer (see the following text). Item 4
is a typical 1/8-watt, current limiting resistor, while item 5 is a 2 in (50 mm)
by 6 1/4 in (163 mm) prototyping board. The board has two independent
power rails at the top and bottom of the top surface marked with a red (+)
and blue (-) line. Each rail power line can accommodate 50 power
connections and 50 ground connections. Between the upper and lower
power rails are two independent banks of 63 columns of five tie points.

Circuit Schematic: DAQFactory and LabJack
Combination

The circuit schematic in Figure 1-3 is used in the first two exercises. The
full four-LED circuit is used in Chapter 2 in which the individual power
consumptions of the various colored LEDs are monitored. For the first
exercise, use only the wiring in the red LED circuit.

SCAla
Main Console

< Yalue af R deternired

USB Cable Cornection. i . by the 4858 pouer
Display Screen|'. . . supply and diode
with acktive Y] 1 maximum current)
icor compoments ‘fﬂ[1 Eg ?T:‘_‘l*‘m:d'_’}-
o0 e b = v
o 22 B e - FRed
<Al a. 10 3le [eoi ¢
<G ND | > ¥
AL 4. A0 elet| ?-, : :
Al 5 L EXe—— 2 Graen
_S.CHD == O s g 1
Al e ONT e |l Y
Al ? G [se. Sxe
=/ CHD CND [™
2245 Y +3 Wis I
aa43 W +3 Yl 'l" Orange
=icaL STB|= ¥
Labjack Ul2

e
kS
A
é’ Yellow

Button Contralled LED
Single 4858 Driver
=

T [r»— J

Figure 1-3. Circuit for LED Power Control

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Individual switches in the CD4050 chip are monodirectional in
that a voltage change applied to the input affects the output but voltage
fluctuations at the output do not affect the input pins.

Software
Page Component Required: A Single Button

As discussed in the “Exercise Road Map,” detailed notes should always be
kept while working with any scientific discipline. For this exercise, the name
of the channel to be used to control the HMI, or in this case the LabJack,
should be chosen and the software configured to deliver the channel output
signal to the first input/output terminal (I/O 0) available on the LabJack
terminal board. (See the LabJack U12 or U3-HV user guide.) The details in
the DAQFactory and LabJack user guides should be followed, and for this
exercise, the author used a channel name of RedLed. The channels to be
used in any DAQFactory project should be configured and activated by the
Apply button before placing screen components. By defining the channels
before creating the screen components, the channel names will appear in the
pop-up menu as seen in Figure 1-11. (For use of microcontrollers in place of
LabJacks, see Chapter 11, “Experimental Downloading”)

As with all programming, documentation is required. To not document
software is poor practice, at best. Before placing and configuring the
button, a descriptive text message should be placed on the screen to
document what the button does. The text component is created from the
right mouse button pop-up menu (RMB-PUM) by selecting the Static
option and then the Text option. A window enabling a screen message to
be created is displayed.

Figures 1-4, 1-5, and 1-6 depict the selection of a static text screen
component, the display of the component properties subwindow, and the
active text entry panel.

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

=
| & Panel

Static »
Displays »
Gauges 3
»
»
»

Compasses

Percent

Graphs

Buttons & Switches »

Edit Controls »
»
»

Selection

Sliders & Knobs

Figure 1-4. Simple Button Control

st

L — 1
LA snie . Propertiei I

¥ Do aation

& cu e

B Cony an-c

| Dyplicate Component Cul=D
Fing & Rephace...

O Change Copponent's Page.. Chrte St -p
Lock Componentls) Mcvement

Compenent Hame...
Camate Uses Componmnt...

&5 Objects
space frenly
Make Same Sige.
Qraer

Symbol

of | Delete Componert Shife = Dielete

Figure 1-5. Simple Button Control Properties

With the message outline frame in place and in the selected mode,
aright-click will bring up the menu containing the Properties option.
Selecting the Properties entry in the menu will bring up the properties
window that will allow the entry of the lettering to be displayed in the text
component.

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

G
ext
S IR

Text Component

Main | Action |
Tewt

Manual Control of Red LED
with a Screen Displayed
Button

Text Color:

Background Color: Fort Size: 16 points

Algre © Left @ Cented © Right SpeedKey [
[ox] oo |

2l Help i3}
ext Component Properties -

The text component displays a text label. The label can be a single line or
multiple lines. The text is clipped to the size of the component, so you may
need to resize the component to display multiple lines. Words will be
wrapped to the size of the component as well. If the background color is set
at pure white, the background is left transparent. This component can be
setup to perform an action when dicked.

Figure 1-6. Text Box Configuration

Having entered the desired lettering into the text box and chosen the
alignment, color, font, and size, the main tab can be closed with the OK
button to place the text message. The text box as seen in Figure 1-7 may
have to be expanded/resized to display the entire message.

=
; Manual Control of Red LED 2
é with a Screen Displayed ﬁ
% Button 4"
(4 ™~ A

Expansion of Component Borders
to fit Text Message

Figure 1-7. Sizing of the Button Icon

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

In keeping with the philosophy of constant documentation, it is
probably a good time to name the page with the Page Properties box
as seen in Figure 1-8. The box is displayed by right-clicking the current
page_n designator in the page list and selecting the middle option: Page
Properties.

IManual Control of Red LED
with a Screen Displayed

Button

Page Properties rg|
Page Name: iMamal Button Control
s —
Rt I New Page Name
Refresh Rate: IO.S SEcs
Initial Page? v

21 Help i
Page Properties ~

Page Name: You can rename your page simply by typing
lyour new page name in here. Page names have the same
criteria as channels and sequences: they must start with a
letter and only contain letters, numbers, and the
underscore.

peed Key: Speed keys for pages work like they do for

nmnnnents Fnter in anv kav in this fisld and whan van

Figure 1-8. DAQFactory Page Naming Box

The button component is selected from the RMB-PUM, and with
the Ctrl key pressed, the component can be positioned beneath the
appropriate text.

Following positioning of the button component on the screen, it can
be configured for actual usage by completing the appropriate tabs found in
the component properties dialog box. The properties dialog box is invoked
by right-clicking the selected icon as depicted in Figure 1-9. To connect the
screen displayed button to an action in the experimental environment, the
“Do Action” option is selected as seen in Figure 1-9.

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

IManual Control of Red LED = [PAGES:
with a Screen Displayed [Manual Button Control
Button [Page_t
”///////_/////’/W/f//f//f//// D Page_z
Z [Page_3
§ Buton 4 . ;
‘WW.W/W?JFJ E Properties,.]
‘,f' Do Action
| % cut Ctrl=X
| B3 Copy ctri-C
!ﬁ_ Duplicate Component Ctri=D

| Find & Replace...
| Change Component's Page... Ctrl=Shift-p

Lock Component(s] Movement

Component Name...

Create User Compaonent...

Align Objects
Space Evenly
Make Same Size
QOrder

Symbol

* v v v ¥

;f Delete Component Shift=Delete

Figure 1-9. Button Properties Dialog Box

As can be seen in Figure 1-10, the button component properties
window contains two tabs, Main and Action.

The Main tab allows the button to be labeled with the desired font and
size of characters and appropriate coloring of lettering, which is centered,
in the displayed icon by default. As can be seen in Figures 1-6 and 1-8, a
Help screen is displayed below the properties window for a convenient
reference while configuring the screen component. The textual content of
the Help box can be viewed through the scrolling controls on the side of
the Help box.

The button component box is depicted in Figure 1-10.

10

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Manual Control of Red LED
with a Screen Displayed
Button
;’/////////F//H/////////f’//_
R Button
Button Component E|

Main IAchonI

Test: |LED on/oif

reecoo [

BockgrodCoor [

Font | Avial ~|

Font Size: | 16 points

Speed Key: |

oK | concel |
2 Help

Button Component Properties ~
Main Tab:

ext: The caption that is displayed on the button.

‘ext Color: The color of the caption displayed on the button,

mrlbbmenisnd Falas The calne af bhe bodban e

Figure 1-10. The Main Tab of the Do Action Button Selection

As the name suggests, the component Action tab configures the action
invoked when the button icon is clicked with the mouse cursor. As seen in
Figure 1-11, the Action tab brings up a drop-down list of actions or options
from which the desired selection can be made. The details of the various
entries on the drop-down action list are found in the component Help file
attached to the bottom of the window.

11

CHAPTER 1

BUTTON CONTROL OF LED ILLUMINATION

Manual Control of Red LED
with a Screen Displayed
Button
”/////’///////f"'//f//f//f’///

% LED on/off

=

Button Component

Main Action |

Actior: [Nothing ~] D

I | =
Action Channet |SetTo
Increment

oggle Set To Advanced
[LS Start / Stop Sequence
Start / Stop PID Loop
freenvet St SiopLogarg Se
Mew Page(s): UICE, Sequence
e SEovec: %misimy
between pages) Display Alarms
Change Page
Popup Page Modal
Popup Page Modeless
Close Popup
Print Page
Print Preview Page

P Stings o

2] Help lc3]

Button Component Properties ~
Main Tab:

‘ext: The caption that is displayed on the button.

ext Color: The color of the caption displayed on the button.

B~ rlemmmisen A Falae: The calae of the bdbam

Figure 1-11. The Action Pop-Up List from the Do Action Selection

For the manual control of the LED on the breadboard, the Toggle
Between option from the drop-down list is selected. Selection of the Toggle
Between option then requires the completion of several more dialog boxes

that specify exactly what is to be done as depicted in Figure 1-12.

12

CHAPTER 1

BUTTON CONTROL OF LED ILLUMINATION

Button Component
Main Action |
Action: T Between [_E] =411
T = e
Action Channet ikel
S FTP
Toggle Between: [| @ Greenled
Inteoeak [|® GrnLedCurrent
™ Hasp
N{%ﬁ Paoz[:fw * " Local
T&ss < LY Lo in
between pages] | | @, NUgl.!.;L g
® Orangeled
@ OmglLedCurrent
S Page
S PID
® RawCounts
@ RdLedCurrent Cancel
b4 RedlLed
® Registry 3
= Sequence @
Button Compon|
PN stralert
>
Main Tab: g ;ty':l'::l
. D TAPI
ext: The caption tivarTs OISPISYED OIT INE DUTOT.
ext Color: The color of the caption displayed an the butten.
L R T A Falanms The cnlae of dhe bodbee

Figure 1-12. Toggle Between Action Auto-fill List

When the Toggle Between option has been selected, it is usually a

channel that is to be switched between two alternate voltages such as

0 and 5 volts. As noted at the beginning of this software configuration

section, the completion and entry of the I/O channel configuration data

is now reflected in the RedLed entry in the intelligent pop-up selection

list of Figure 1-12. Double-clicking the RedLed channel entry will enter

the channel name in the box. Ensure that the name entered into the box is

correct and that no extra characters have inadvertently been appended to

or deleted from the desired name.

13

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

The Action tab also has several other grayed-out options that are
activated with various selections from the action list. In this case, there are
boxes for the entry of the values to “toggle between” as seen in Figure 1-13

that will appear as axes on the channel’s graphical display.

Manual Control of Red LED
with a Screen Displayed
Button

,’.f/f//////////'/////////////
“
® LED on/off E

Button Component

Main Action |

: :

Action: Toggle Bet - =1

ion: [Toggle Between x|) 191
Adtion Charnet [RedLed

Toggle Between: | 0 and | g

Interval | i

New Page(s):

(Press <Enter>

between pages]

| oK | Concel |

2] Help I

Button Component Properties
Main Tab:

Text: The caption that is displayed on the button.

ext Color: The color of the caption displayed on the button.

O arlinaniind Falac Tha cnlas af bha histan

Figure 1-13. DAQFactory Button Action Screen Completed

The purpose of this exercise is to directly couple the button to the LED

power controller without any need for scripting.

14

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Observations, Testing, and Development

Connect the positive lead of a digital voltmeter to the I/O 0 terminal and
the black lead to the GND terminal of the LabJack. Set the meter scale so
as to be able to measure 5 volts. Turn the meter on and ensure that the
reading is zero. Then click the LED on/off button, and the reading should
rise to 5 volts.

If a 5-volt reading does not appear, then begin by verifying the channel
name spelling in all components and tables. RedLed is case sensitive and
must appear exactly as spelled in all instances of occurrence in the screen
components and channel table. Ensure that the “Toggle Between” values
are 0 and 5 volts.

When the 5-volt signal is obtained at the LabJack terminals, then
the wiring from the terminals to the CD4050 IC chip can be prepared.
Insert the CD4050 hex non-inverting buffer chip into the breadboard at a
convenient location along the central dividing slot. It is customary to place
the chip so as the number 1 pin is in the bottom left-hand corner position
when the chip is viewed from the top.

Connect the number 1 pin to the + supply line on the breadboard, the
number 8 pin to negative or - supply on the breadboard, and the wire from
I/0 0 to pin number 3. Connect the GND terminal on the LabJack to the -
supply on the breadboard. With the external power supply connected to
the breadboard’s + and - lines, connect the voltmeter with the positive lead
going to pin 2 of the IC and the negative meter lead going to the negative
supply line of the breadboard. Click the LED on/off button, and the meter
voltage should rise to a nominal +5 volts.

If a 5-volt signal does not appear on the meter, verify the power supply
first and then retrace every wired connection as is indicated in the RedLed
schematic in Figure 1-3.

15

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

When a nominal 5-volt signal is obtained at pin 2 of the CD4050 buffer
and can be cycled on/off with the screen icon, then the power limiting
calculation for the red LED to be activated by the control screen’s button
can be made. Use Ohm’s law to calculate the size of the resistor required
to limit the current through the red LED chosen for this project to the
mid-range of that suggested by the manufacturer. From the data sheet,
the bright LED source used by the author’s construct was specified for a
30 mA maximum current with a nominal 1.8 voltage drop. An application
of Ohm’s law indicated a resistance value of 213 Q would limit the diode
current to half of the allowable maximum value specified. Any standard
resistor of 220 Q or higher could protect the LED, and a nominal 470 Q
resistor was available and used in the experimental setup.

It is good practice to calculate the theoretical size of the resistor
required to limit the LED current to the maximum amount specified in the
diode data sheet, from the nominal voltage of the power supply. Using the
data sheet maximum current and supply voltage nominal value generates
aresistor value for the LED in use that is adequate to protect the diode.

If the next standard value resistor above the “adequate” calculated value
is used, the diode will be well lit and have an extra margin of current
overload protection that will further extend the service life of the device
and aid in minimizing the load drawn from the power supply.

After determining the correct size of the current limiting resistor and
then assembling the resistor, diode, and CD4050 buffer to power supply
connections, the illumination of the red LED should now be controlled by
the button icon on the control screen. (Ensure that the diode is wired with
the cathode or short lead going to ground.)

The simple DAQFactory graphical user interface is depicted in
Figure 1-14.

16

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Manual Control of Red LED
with a Screen Displayed
Button

LED onloff |

Figure 1-14. DAQFactory Button for LED Illumination Control

Discussion

In this exercise, the button has been created with the SCADA software. The
logic signal from the state of the button is then transmitted to the LabJack
terminal board that in turn controls an IC capable of handling the power
required to activate the LED. The LED itself is powered by an external
power supply so as the current required to produce the light is not drawn
from the PC supply. If the circuitry of the CD4050 hex buffer is examined, it
will be evident that a voltage signal is controlling a double CMOS inverter
configuration (Figure 1-15).

R1 P channel enhancement mode MOSFET

. ¢+5U D
(1 K]—%,
01 [f—o Q1
|_

output

el

ihput

i TNE

Q2 N channel enhancement mode MOSFET

Figure 1-15. Individual CMOS Buffer Circuit

17

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

As can be seen in the preceding schematic and is discussed in detail
in several references’ on integrated circuit electronics, there are internal
complementary metal oxide semiconductor insulated gate devices that
virtually stop any DC current flow into the CD4050. The voltage change
from the HMI is the control signal that puts virtually no current load on the
USB system.

Raspberry Pi, Python, Screen Push Button
LED Control

LED illumination from a screen display can be implemented by several
methods with the Raspberry Pi (RPi) single-board computer (SBC). Power
control can be implemented from the command line of the Pi’s Linux
operating system, from a mouse click on a button image created on the
system screen display with the Python programming language library
called easyGUI, with Python’s graphical user interface library called
tkinter, or with an Arduino microcontroller board interface between the
RPi and the LED.

All of the LabJack DAQ devices are compatible with the Linux OS and
the Python language.

In this first exercise, the command line methods for illuminating
the diode using either the interactive or scripting mode of the Python
interpreter will be demonstrated. In addition to the command line control,
a simple, dual-button, LED control GUI will be created with the easyGUI
library.

'1) Guide to CMOS basics, circuits, & experiments, Berlin, Howard W. Sams & Co.,
Inc., ISBN 0-672-21654-X
2) CMOS Cookbook 2nd Edn., Lancaster and Berlin, SAMS, ISBN 0 672-22459-3

18

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Implementation of LED control with the Arduino microcontroller
interface is introduced in Chapter 4 when its 10-bit analog-to-digital
converter (ADC) is required for digitization of analog signals.

Assembly and configuration of the basic Raspberry Pi computer is
discussed in texts such as Practical Raspberry Pi from Apress books and
in up-to-date detail in the online documentation from the Raspberry Pi
Foundation.

Experimentation with the RPi GPIO can be done with minimal
complexity by connecting the pins of the SBC as defined in Figure 1-16
directly to the breadboard as depicted in Figure 1-17. Ribbon cables are
commercially available to connect the bank of dual pins on the RPi SBC
to prototyping boards, and if used, the investigator should ensure that the
white or red strip on the ribbon cable is connected to the top left-hand pin
of the double row of pins on the main board, when viewed from above.

Figure 1-16. GPIO Pin Identification

Experimental

In Figure 1-17, the long lead on the light emitting diode (LED) is the anode
and is connected to the positive supply. LEDs are solid-state devices that
only pass current in one direction. The flow of current through the device
controls the intensity of illumination, but excessive current can destroy the
diode, so a current limiting resistor is used in the circuit.

19

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

To ensure communication between Python and the RPi hardware
pin array, a library called gpiozero is included in the Raspbian operating
software distribution. To create active screen components, a very
simplified GUI creation library called easyGUI can be downloaded as
detailed in following and used in these introductory exercises.

At the RPi terminal, enter “sudo apt-get install python3-easygui” The 3
is required in order to get the correct library for Python 3 versions.

In Figure 1-17, the connections for an early 26-pin model of the RPi
SBC are depicted.

Figure 1-17. Direct Wiring of GPIO Pins to Prototyping Boards

As can be seen in Figure 1-17, the anode is connected to a +5-volt pin in
the GPIO array through the column of connected pins on the prototyping
board. The cathode of the diode is series connected to the current limiting
resistor that is grounded. The resistance value is determined from the
maximum current specification for the LED device in use.

20

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

The Linux operating system of the RPi has a Python programming
language interpreter with which the investigator can activate or energize
to +5 volts some of the pins on the GPIO bus. The Python commands can
be processed either in an interactive mode, processing one line at a time
in response to the code entered at the terminal, or as an automatically
executed series of Python commands written as a script.

In the interactive mode, we may consider this as the “manual” mode
since we are processing one line of code at a time as it is entered from the
keyboard. The interactive mode is very useful for setting up and testing the
circuitry with the keyboard, and in interactive mode we can turn the LED
on and off in the Python shell as needed. When the experimenter uses just
the shell and keyboard to turn the LED on and off, there will not be any
record of the previous actions of the system.

When the RPi is used with a Python script, explicit print statements can
be written into the code to record each action taken, which thus provides a
history of the system status.

Observations

The easyGUI library written in Python presents the experimenter with
the code required to create a selection of screens containing typical
elementary GUI applications. Figure 1-18 is a “Light the LED” action box
that has been modified from the Cancel/Continue dialog box example
presented in the easyGUI library. Clicking Continue lights the LED and
Cancel turns it off. The library code has been modified by the author to
record the previous actions or history of the icon usage. The text record is
displayed in the Python shell in which the dialog box is running.

21

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

L) ME]>_ B @ | @ EasyGUI6_LedO...|

Ele Edt Shell Debug Qptions Windows Help

A *Python 3.4.2 Sh...| & EasyGUI_6_LedO...

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.
>>> RESTART

=

LED is turned ON! The Scientyst's Ayde - Oox
The Led has been turned off!

LED is turned ON! : Hght thel £o

The Led has been turned off!

LED is turned ON! Conkinue Cancel

The Led has been turned off!

Figure 1-18. A Simple GUI for LED Control

The resizing buttons on the Light the LED box work, but the stop

program button does not. The two-button dialog box is literally running in
a window in the Python shell, and it is the shell stop program button that is

effective as seen in Figure 1-19.

*Python 3.4.2 5f

Eile Edn Shell Debug Options Windows Help

) % |~ Python342S. | A *Python3425h.. | @ EasyGUL6 Ledo.. | The Scientysts A. | |

o x

(Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright", "credits" or "license()" for more information.

T

3> EE=m=smssmssssssssssssssss=ssm=s= REST&RT === === = == =
-3

LED Un burued) A AT

The Led has been turned off! . The program is still running!

LED is turned ON! © Boymim

The Led has been turned off! [o] gence |

Figure 1-19. The “Kill” Dialog Box of the Python Shell

In the code listings at the end of this chapter, there are the manual and
GUI-based listings that can be used to activate the LED wired to the GPIO

pins.

22

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Discussion

DAQFactory is commercial SCADA finished software. Purchase of this
“turnkey” system that “is ready to run straight out of the box” allows

the investigator to connect to the system to be controlled and assemble

the required GUI from the configurable icons provided on a complex
instruction set computing (CISC) device. The Raspberry Pi is a very-low-cost
reduced instruction set computing (RISC) device that uses free, open
source software that is able to engage in physical computing.

As noted in previous introductions, the RPi represents a very-low-cost
entry method to control experimental processes or measurement
experiments being made as part of an educational program or an
actual scientific research investigation. The RPi can be programmed to
implement the management of simple or very complex experimental
setups but requires increasing development time commitments from the
investigator as the complexity of the experiment being managed increases.

Code Listings

After assembling an LED with the appropriate current limiting resistor (CLR),
connect the series wired devices to the GPIO pin 2 and ground, and then
enter the code from Listing 1-1 into the Python shell or the interactive

terminal.

Listing 1-1. Manual LED Control

from gpiozero import LED
grnLed = LED(2)
grnLed.on()

grnLed.off()

23

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

This simple series of code lines will open the gpiozero library and
make the LED object available for assignment to GPIO pin 2. The grnLed.
on() line sets the GPIO pin 2 to a high or true value and lights the LED. The
next line grnLed.off() sets the GPIO pin 2 to low or false and turns the LED
off (Listing 1-2).

Listing 1-2. A Button GUI LED Control

Exercise with easyGUI to turn a LED on and off
an adaptation of the continue or cancel dual

button message box.

#

from easygui import *

import time

from gpiozero import LED

#

redLed = LED(2)

#

Use a while loop for continuous activation
while 1:

msg = "Light the LED"

title = "The Scientyst's Ayde"

#

if ccbox(msg, title): # show a Turn On/Off dialog box
print("LED is turned ON!")
redLed.on()
LED power turned on

else: #user chose cancel
print("The Led has been turned off!")
redLed.off()
LED power turned off

24

CHAPTER 1 BUTTON CONTROL OF LED ILLUMINATION

Summary

— A basic button icon on a monitor controls an electronic
device remote from the host computer.

— Computer-experiment interfaces can be implemented
by configuration in more expensive systems or
programmed from basic principles in less expensive

component-based systems.

— In Chapter 2, a more interactive two-way control
system will be developed with multiple buttons and an
experimental data display.

25

CHAPTER 2

Power Control,
Monitoring, and
Creation of Dedicated
Graphical User
Interfaces

The “SC” in the SCADA acronym stands for supervisory control, while the
“DA” is for data acquisition. The purpose of the development of complete
software packages such as DAQFactory has been to monitor a real-world
electro-mechanical process and supervise or control its operation. This
chapter and its exercises expand upon the single button control by
creating multiple LED buttons and then monitoring the power consumed
by activation of these individual LEDs. The reading of process operating
values in response to control system inputs of one or more unit operation
activations is thus demonstrated.

The various sizes, methods of construction, intended use, and colors of
LEDs result in different voltage drops across their semiconductor junctions
as discussed in detail in the “Experimental” section. Each current limiting
resistor (CLR) of a fixed nominal value has its own unique resistance that

© Richard J. Smythe 2021 27
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_2

https://doi.org/10.1007/978-1-4842-6778-3_2#DOI

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
lies within the standard value tolerance for that type of device (i.e., +/- 10, 5,

or 1%). When the load resistance variation is combined with the diode
voltage drop and the ON resistance of the CD4050 buffer and all are
taken into account, it becomes evident that each current flow through the
different colored LED circuits will be different.

Table 2-1. Typical 5 mm LED Parameters

Diode Color Typical Voltage(V) Drop Wavelength (nm) Current (mA)

Red 1.63-2.03 610-760 30
Green 1.9-4.0 500-570 25
Orange 2.03-2.10 590-610 30
Yellow 2.10-2.18 570-590 30
Blue 2.48-3.7 450-500 30
White 2.48-3.7 450-500 30
Violet 2.76-4.0 400-450 30
Ultraviolet 3.1-44 <400 30

This exercise will measure the individual currents drawn by
illumination of the different colored LEDs and provide information on the
overall system performance by monitoring the power consumption of the
individual operations and the system as a whole.

There are several methods that can be used to measure direct
current flow with ammeters, electrometers, and induction or Hall effect
devices as presented in many electronics reference texts' and in Arduino

'1) Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge
University Press, ISBN 978-0-521-87858-6 hardback
2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
ISBN 13 978-0-521-37095-0 hardback
3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

28

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
Measurements in Science. However, at this introductory stage of the

manuscript and for ease of implementation, resistance voltage drop
measurements and Ohm'’s law calculations will be used to monitor the
current flow through the systems under test.

Experimental

Light emitting diodes (LED) are diodes whose current, voltage, resistance,
and luminosity properties can be better understood when examined with
respect to both Ohm’s and Kirchhoff’s voltage laws.

Physically LEDs are manufactured in a variety of forms as depicted in
Figure 2-1.

Figure 2-1. Various Forms of LED

29

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
Depicted in Figure 2-1 are a 10 mm green, a 5 mm blue, and a 3 mm

red LED through hole devices. (LEDs are available in flat, bar-shaped,
and surface mount configurations such as those visible in any photos

of the Arduino or Raspberry Pi circuit boards. For ease of experimental
setups with the prototyping boards illustrated in Chapter 1, Figure 1-1,
LEDs with two leads are preferred.) The star-shaped disk at the bottom

of Figure 2-1 is a 3-watt illumination diode. The top three indicator-type
devices can be powered from a computer or a USB device, but the bottom
diode designed for lighting or illumination service typically draws enough
current to warrant being bolted to a heat sink and hence when in service
usually requires a special high-current supply that far exceeds the current
capability of a computational device.

LEDs are often classified as indicators or illuminators according to the
type of light they produce. Indicators typically create a diffused light from a
colored body that is visible from all angles, while illuminators, usually with
clear bodies, generate a concentrated beam of light that is most intense
longitudinally or directly ahead of the device. LED brightness is measured
in millicandelas (mcd) or radiant intensity. A common candle emits about
1 candela.

Tables 2-2 and 2-3 are typical listings of the electrical and optical
parameters often found on LED data sheets.

Table 2-2. Typical LED Electrical Parameters

ITEMS Symbol Absolute Maximum Rating Unit
Forward Current IF 20 mA
Peak Forward Current Irp 30 mA
Suggested operating current Isy 16-18 mA
Reverse Voltage (VrR=5V) Ir 10 uA
Power Dissipation Po 105 mW
Operation Temperature Torr 40 ~ 85 ‘C
Storage Temperature Tsta 40 ~ 100 ‘C
Lead Soldering Temperature TsoL Max. 260°C for 3 Sec. Max. (3mm from the base of the expoxy bulb).

30

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
Table 2-3. Typical LED Optical Parameters
ITEMS Symbol Test condition Min. | Typ. | Max. Unit
Forward Voltage Ve IF=20mA 18 | ---| 22 v
Wavelength (nm) or TC(k) AN IF=20mA 620 | -———| 625 nm
*Luminous intensity Iv IF=20mA 150 | ——-| 200 mcd

When consulting a data sheet for information, always verify that the

data being retrieved is for the correct package size at hand. A compromise

is always required in selecting the currents to be used in an LED circuit
since the higher the current, the brighter the light and the shorter the

service life of the device. Listings on the data sheet give typical operating

currents, short time maximum currents, and longer service life operating

currents.

Optical properties specified for the diode are also given on the data
sheet that include the frequency or wavelength of the emitted light, the
diode voltage drop, and light output brightness at a given diode current.

To avoid damage to the diodes being used in an experimental
application, a current limiting resistor (CLR) is connected in series with
the LED. The voltage of the source must be high enough to turn the LED
on, and the difference between the source voltage and the diode voltage
can be dropped across a current limiting resistor to regulate the current

flow in the indicator or illumination circuit. (Either Kirchhoff’s voltage law

that notes that the total voltage drop around an electrical circuit is zero
or Ohm’s law can be used to determine the resistance value required to
regulate the current flow in an LED circuit.)

Theoretical calculations using Ohm’s law and the data for a typical
5 mm LED indicate that a 200 Q resistor should sufficiently limit the
current from the nominal voltage of our power supply. The author’s 6 V
AA battery supply and 30 mA bright source diodes suggest that a
6 V/30 mA =200 Q resistor should be adequate to protect the diode and

31

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
the CD4050 buffer (see Figure 2-2). The nearest larger standard value

resistor is 220 Q, and using 5% tolerance components, we select four
pieces for use in this exercise. With a digital volt-ohm meter, we measure
the individual values of the four resistors and record the data. For the sake
of convenience and simplicity, the resistors are named by LED color. In
the author’s development work, Red is 221 Q, Green 219 Q, Yellow 216 Q,
and Orange 216 Q. Make sure the individual resistors are identified and
their actual numerical resistance values recorded, as these values will be
required to calculate the individual load currents.

Hardware

Four bright LEDs of various colors and four measured resistance 220 Q
standard resistors of sufficient wattage rating for the expected currents are
used in the development of the exercise. (Values noted are based upon
the author’s experimental setup using a nominal 6 V supply and 30 mA
diodes.)

For this exercise, four of the six gates available on a CD4050 IC buffer
chip are used to isolate the LEDs from the USB and draw power from an
auxiliary supply.

A flat, rectangular battery pack, capable of holding four AA cells
connected in series, provides a nominal 6-volt power supply for
the experimental assembly mounted on a prototyping board. (See
“Discussion” for more details on the use of batteries as an auxiliary power
supply).

Figure 2-2 displays the circuit schematic for this exercise. In order
to measure the current flow through the individual LED-resistor series
combinations, the analog output and input signal terminals of the LabJack
U12 are used.

32

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

SCADA
Main Console

< Value of R determined
by the 4858 pouwer
supply and diode
maximum current)

USB Cable Connectiaon
Dizsplay Screen
with active

icon camponents

L S _to AL @ and Al 1

1 o o
an e F j_
2 [w coE)
1 s : T Red

BT

toﬁ[2 and AL 3

= e GND ’Green

=]
N s Wl =D
P
(=]
[~

TPOBDODDOD D
e

ke’ AL 4 and AL 5

|

Grange

Labjack Ul2 L
TR PR to AL & and AL 7

{
i-Yellou

Multicoloured LED Power Monitar
Single 4259 Driver

]
" Page
» | - pw e | e |

Figure 2-2. Circuitry for the Four-LED Display

Software

A total of eight channels are required. Four are configured as output to

control the power switching of the LEDs, and four channels monitor the

voltage developed across the individual, measured value, load resistors.
The output channels can be labeled as in the previous exercise

as RedLed, GreenlLed, and so on. The input channels are labeled as

RedLedCurrent, GreenLedCurrent, and so on. The DAQFactory channel

table for this project exercise is depicted in Figure 2-3.

33

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

DAOQFactary - Chemysts Ayde Manuscript SCADA Tutorial Screens *
Ele ot Yiew Quick Analpis Debup lagout Jools Yindow Hele

DEd Bowmg @2 2 e

Channed Tabls Viswr
(hs) [Cwkss] [Dowe) oot | _wput (et] (iegwd

Man | New Groug |

Chaneed Narme: Divice Type: TI0: 0 Type Ch B Tiang Ofiset Comvesson History | Pertist Ao 8 Avg | Guick Note / Sipecal / OPC
3 R ecCunent Lablack 12 0o D (5E 07, D 811) 8 100 A00Nwe 3600 (iYm)
GoeerLedCunent Lablack_UT2 O bo D (SE 07, D 8:11) 4 100 Q00Nwe 3500 (Nu|
DuaraladCunent Lablack_U12 Ok D (SE 07D 811] 10100 000None 3600 g
VebowLedCunert Lablack_U12 DAD BE BT D) M 100 Q00Nme 3600 [
Fecled Lablack_LN2 0 Tig Ot 101 03, 0 479 0 000 AN 3600 (im]
Goewrla Lag)ack_U12 0Dig Out 10 03,0 419 1 000 Q00N 300 o0
Crargeled Laslack_U12 ODig Out 10 03,0 479 2 000 Q00Nene =00 (Hm]
Velowled Lsblack_U12 0Dig Ot 10 B:3, 0 £19) 3 000 000None 3800 g

Figure 2-3. The DAQFactory Channel Table

Page Components Required

Four buttons, five variable value components (VVCs), and two text
displays, as depicted in Figure 2-4, are placed on the screen to form the
basic structure of the desired control screen user interface.

(The DAQFactory manual provides the details on creating the screen
components, positioning them on the screen, and creating the text labels
and messages that identify the different components and the values being
entered or displayed. As per the manual, a collection of independent
screen components can be grouped together to form a single unit for ease
of manipulation on the screen. The individual grouped components can
be displayed against a distinctive background color to provide the end
user or the operating process controller with a visually comprehensible
control screen. Blocking together related components and isolating them
with individually colored backgrounds to attract the eye and thus increase
ease of use while minimizing the chance of operator errors is good design.
The coloring of group backgrounds should be left to the final configuration
of a control screen before deployment for actual use in an application as
the creation of the background color panel limits access to the individual
components in the group and thus creates unnecessary complexity during
system development.)

34

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
Multiple LED Power
Monitoring

Button Value:8:000V
Button Valite: 8000V
Button Valre:8:000V_
Button Valire: 0800V

Text “Valire:0:000V

Figure 2-4. Preliminary Assembly of Desired GUI Components

Each of the four buttons is labeled according to the color of the LED
being activated, and the corresponding variable value components are
set to display mA of current. The fifth variable value display can be set to
indicate the total current, again in milliamperes, mA.

Figure 2-5 illustrates the power monitoring panel and Figure 2-6 the

typical expression for a colored button power draw entry.

Multiple LED Power

Monitaring
RedLed on/off Red Current Draw: 0.00 mA
Greenl ad oo off Green Current Draw: 0.02 mA

Orangeled on/off Orange Current Draw: 0.00 mA

Yellow Current Draw: 0.02 mA

Total Current Draw Sum: 0.04 mA

Figure 2-5. Preliminary Coloring of the GUI

35

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

Figure 2-6. Typical Calculation Expression for the Power
Monitoring GUI

The variable value expressions use the following calculation:

(RedLedCurrent [0]/221)*1000

where RedLedCurrent [0] is the most recent voltage read across the red diode
current limiting resistor, 221 is the actual DVM measured resistance value
in ohms of the red diode current limiting resistor, and the *1000 multiplier
converts the current from fractional amps to whole numbers of mA.

The expression in the total component display sums all four individual
current expression calculations.

Observations, Testing, and Development

Activation of one or more of the LEDs should indicate the current flowing
through the individual diode and the total current being drawn. The values on
the display screen should update every second, as that is the default value for
the timing entry in the channel table. A more visually effective colored LED
control panel can be created by adding LED symbols to the left of the control

36

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

buttons on the panel. The LED symbols can be set to the corresponding colors

of the LEDs being activated, and the entire assembly grouped together to form

a coherent unit as is illustrated in Figure 2-7. The panel component is used to

provide a background for the grouping (see the DAQFactory manual), and an

identifying number is displayed on the grouping panel to tie the panel to a set

of notes/instructions displayed at the bottom of the main display screen, of

which the following panel could be a component.

Figure 2-7. Power Monitoring Graphical User Interface

A different and perhaps more effective visual display of the power
consumption can be achieved by using the DAQFactory linear gauge

Manual Control of LEDs LED Current Draw

I eed 6o Curent: 0.02mA
g - Green LED Current: 0.02 mA
. Orange '-El’j Orange LED Current: 0.02 mA
 Yellow LED | Yellow LED Current: 0.02 mA

Total Current Being Drawn: -0.044 mA|
1

component as depicted in Figure 2-8.

=

— e w om oM o e

=

Man | Mo | Ticks | Swotions |

1 »
Fangs | Tl ©
Pomter.
e [T Poris Orendsten:
Tt @ Toplek
Mokt [% © Tire ™ Boom Right

oo oo
Tisowert?™ Backzond [

Spendkey. |

Brpressene [y paraacureant (8] /291))o1000 + ({Craledcureast [U)
|

2l Help

[Linear Gauge Component Properties
e s d

[T i
e
1
u

Figure 2-8. Option of Gauge Addition

37

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
If the linear gauge component is set to display the total current being

consumed by summing the four individual colored LED currents, it can be
placed alongside the button control panel to display the total current draw
from the power supply in a more visually comprehensive format.

Discussion

Fresh AA alkaline batteries are usually rated at 2890 mA - hr per unit.

If all four LEDs are illuminated, they draw approximately 30 mA each,
which suggests a useful service life, in the author’s setup, from the 6-volt
four-battery holder, of approximately 100 hours. An estimated 100-hour
service life is theoretical in nature, and it must be recognized that the light
emitting diode has an approximate 2-volt drop and the resistor a 2-volt
drop and the CD4050, the rest of the wiring connections, and the internal
resistance of the cells themselves are taking up the remainder of, in the
author’s case, a nominal 6-volt power supply. At some point in time, well
before the estimated 100-hour lifespan, the voltage output of the battery
pack will drop to the point that the diode will be too dim to see or will not
light at all. The literature indicates that the primary cell alkaline chemistry
battery discharges in a somewhat linear manner, losing both voltage and
current delivery capacity with increasing usage. A secondary cell chemistry
battery such as nickel metal hydride (NiMH) has a significantly lower open
circuit voltage (OCV) than the primary cell system (1.2 vs. 1.5 V) and a
slightly lower rating of 2500 mAh for the AA size. The secondary cell NiMH
chemistry battery however tends to have a much lower rate of voltage loss
and instead of failing gradually throughout its discharge history holds the
voltage delivered at a relative constant value and then discharges rapidly
and completely in a very short time, as its power runs out. Researchers
using battery power should understand the properties of the different
battery systems available. (Six volts in alkaline AA batteries is obtained from
four units, but nominally 6 volts in NiMH requires five rechargeable units.)

38

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
It is evident with battery packs that as the load on the power source

is increased, the voltage drops and the current supplied to an individual
current-consuming load will decrease. Regardless of whether alkaline or
NiMH batteries are used as each diode is turned on, the current being
delivered to each individual diode drops. The power monitoring panel will
show a decrease in the current being drawn by the red LED as the green,
orange, and yellow diodes are activated. To minimize the power decrease
as load increases in more critical field or laboratory operations, a regulated
power supply, battery packs connected in parallel or larger battery formats
such as C or D cells, may be necessary to maintain current and voltage
levels under experimental load.

The gradually decreasing currents monitored by the panel displays are
areal-time indicator of the power being delivered from the battery pack,
and the gradual decline can be used to roughly estimate the service life left
in the power supply.

In general terms, it can be said that new primary cells or freshly
charged secondary cell batteries will exhibit a minimal internal resistance
that gradually rises to a maximum value as the cells discharge. Charge
monitoring can be done by determining the open circuit voltage (OCV)
and the internal resistance of the battery cells themselves. The OCV is
measured at no load conditions, but the determination of the internal
resistance of the battery pack is a dynamic process requiring the
simultaneous recording of both the current drawn and the instantaneous
circuit voltage. By recording the simultaneous rates of change of both I
and V graphically, the resistance R of the cell can be determined. Plotting
of the OCV and internal resistance of the cells can be used to determine
the useful life remaining in the battery pack. (See powering experiments in
Arduino Advanced Techniques in Science.)

Power concerns can be reduced by using a significantly less expensive
microcontroller that can be used to develop an experimental interface
similar to the fully functional, industrial-grade LabJack DAQ. However, a
significant amount of time and effort is required to implement a portion of

39

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
the functionality for the task at hand into a microcontroller that is built into

the commercially available HMI devices. In order to implement the power
controlling GUI exercise with a microcontroller, the basic steps involving
the configuration of both the DAQFactory and microcontroller programs
will be presented. (See Chapter 11 for more details.)

As in the previous iteration of this experiment with a LabJack, four
nominal 220 Q resistors were selected from the lab 5% tolerance supply
and their actual resistance measured with a DVM. For simplicity and
ease of assembly, the known value resistors were mounted directly onto a
prototyping board without the CD4050 buffers as depicted schematically
in Figure 2-9 and pictorially in Figure 2-12.

R 216 red

UV
Digital - » - Aalg.
R 215 green

Pins [D4 > ’ : Arduina
an \}-D \V art analog

Arduino R 215 orange to
B : digital
R 0 \/ converter
Al . . :
inputs

R 217 yel low

¥V a13

Figure 2-9. DAQFactory GUI Development for Arduino Control of a
Bank of LEDs

In order for DAQFactory to recognize and communicate with a
microcontroller through the serial communications port, the com portin
use by the microcontroller must be identified. By connecting a USB cable
between the host computer and the microcontroller and launching the
microcontroller integrated development environment (IDE) program,
the port identification can be found on the port: entry of the Tools

40

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
menu. Once the port has been identified, confirm connection and board

functionality by loading and then running the “Blink” program from the
file/examples/01.Basics/Blink menu of the IDE. The onboard LED of

the microcontroller should flash at a rate of one “blink” per second, thus
confirming the communications link. (The onboard LED is the glowing
green dot beside the “RedBoard” logo box as seen in the lower-left corner
of the red board depicted in Figure 2-12.)

A common control screen in the DAQFactory program can service
either the L] DAQ or the microcontroller experimental interface. However,
the channel configurations seen in Figure 2-3 use the LabJack U12 device
for which the driving software has been written. A new device will have to
be created in the DAQFactory environment in order to transmit data to a
low-level communications port on a microcontroller. A typical low-cost
microcontroller is the “RedBoard” Arduino-compatible device seen as
item 4 in Figure 1-1 of Chapter 1 and in a wired configuration in Figure 2-12.
A DAQFactory com device is created by selecting a port and a protocol.
(See Chapter 11, Figures 11-4, 11-5, and 11-6.)

An identifiable device must be created before it can appear in the
channel creation table of the DAQFactory program. Selection of the Quick
» Device Configuration entry on a DAQFactory page brings up the Device
Configuration window that contains a listing of the devices available and a
New Serial (RS232/485) / Ethernet (TCP/IP) device entry. (See Figure 11-4,
Chapter 11.) To create a new serial device, click the New Serial (RS$232/485)
/ Ethernet (TCP/IP) device entry to highlight it and the Select button in the
upper-right corner of the window to bring up the Ethernet / Serial Device
configuration window. (See Figure 11-5, Chapter 11.) In the configuration
window, enter the new device name. (DAQFactory names must begin
with a letter and contain only letters, numbers, or the underscore.) The
device in use has been named “ardyRb” as a mnemonic for RedBoard and
Arduino. To create the new serial port, click the New Serial button to bring
up the Serial Port Configuration window. (See Figure 11-6, Chapter 11.)

41

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

The name of the port was partially defined by the inquiry of the
Arduino in use for its communications port number that was found to be
com port 4, and hence a name such as COM4 would suffice for the new
connection name. The serial port number entry into the DAQFactory
configuration table must be 4 to correspond with the connected
microprocessor’s serial port number. (See Chapter 11, Figure 11-6.) The
remainder of the Serial Port Configuration window default settings are best
accepted as entered, and as the window Save button is clicked, a check
box “COM4” should appear in the serial port list of the Ethernet / Serial
Device window. A protocol must be assigned to the device being created,
and since the flow of data is to be controlled from a DAQFactory sequence
or scripting, the NULL protocol is selected. The NULL or nothing protocol
allows for the use of low-level communications functions from a sequence.
Selection of the protocol and checking the “COM4” box allow the “ardyRb”
device to be saved for use where required when the OK button is clicked in
the upper right-hand corner of the Ethernet / Serial Device window.

To develop a power monitoring facility with a much simpler
microcontroller interfacing device while adhering to the fundamental
concept of starting from a simple system and progressing into a more
complex one, a single Arduino-powered LED will initially be controlled
from a control screen in DAQFactory. The single LED can then be
expanded to a bank of four LEDs. The simplest form of button control of an
LED is to create two buttons in a DAQFactory control screen as depicted in
the upper-left corner of Figure 2-10.

42

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

[Vt ctPactory - DAGHTY Asduno Communcations *]
Flo ESA View Oud Debup Lipet Tosh Heip
D=l Bl S 2 R b e %
= £ CONNECTIONS:
An Arduino - DAGQFactory Serial Communications Page = 47 Local
Two bumon red bed contred of diode on Arduino digital pin 3 4 4 CHANNILS:
4 A selos of axerchses In incroasing complexity are presented oo P CONVIRSIONS:
Rod lodon_ | Rediedon | EOmme= Y L cmncrmtrute sores of e henkc yincipals for misg & e
Tha On bumon ransmits a 1 1o the serial port whils the Of sends a 0 1hmmmnmdwmwmnwmtmhmma F LOGGING:
romote Arduia
5 e SEQUENCES:
A single busion can ba used to teggbe an ked on and off |m:‘,“‘|,“.:':.w,d A ke T
48 CHAMNELS:
Toggle Red led Lo Carront-==0.00 ¥ Each of the sesof bumons are st 1 acirems leds on the = [PAGES:
y the - [3 Page D.amyh
theough use of the microprocessors programenable logic. bl nwnmmhl communications port. D 9::_--'.:‘.-““ olorfacmat
DO Page.
D Paged
Mubiphe Butions Toggle Leds D Pages
& i D Pegs
— T N S T— aon
D Page?
| Orangoled Vellowled | G IED oo TV Vol D cument draw= V. Dres

oMl Tt draw TRV

[Flease right click and select & ped o monitar...

Rreota Fwernigae

Figure 2-10. DAQFactory GUI for Control of Arduino LEDs

DAQFactory is usually running on a PC-based computing platform,
while the ATmega328 chip is hosting the Arduino operating system. The
programs are able to talk to each other through the serial port software,
but only one program at a time can use the serial port. In essence the
visual activation of an “on screen icon” in the DAQFactory display initiates
a streaming of low-level commands to the serial port. On the other side
of the serial port is the ATmega328-controlled Arduino microcontroller
essentially running on the C language that can be programmed to process
the low-level commands appearing on the serial port.

In Figure 2-10, the top two buttons are the “Red led on” and “Red
led oft” icons. The two buttons are configured on-screen as explained in
Chapter 1, and in the listing of possible actions to be initiated when the
“Red led on” button is clicked, as depicted in Figure 1-11 of Chapter 1, the
“Quick Sequence” selection is taken. The Quick Sequence selection brings
up the window depicted in Figure 2-11.

43

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
nggéf:/;‘:l/d/{ E Button Companent x
Man Action |
Action B -tian
_Expand | ™ On Mouse Down ey

1 device. ardyRb. Write('1')
]

Please right click and select a port to monitor..

Main Tab:

Text: The caption that is displayed on the button.

Text Color: The color of the caption displayed on the button.

Figure 2-11. The Quick Sequence window

A Quick Sequence entry is unique in that it is accessed and executed
only when the button to which it is bound is activated. The single line of
code in Figure 2-11 is a complete sequence that writes the character 1 to
the serial port.

The DAQFactory serial port is connected through hardware and
software to the USB that is also connected through hardware and software
to the Arduino’s C-based operating system. Both of the software systems
have facilities for processing low-level communications based on the serial
transmission and receiving of characters in the bit and byte formats.

In the simple example of Figures 2-10 and 2-11, an ASCII (American
Standard Code for Information Interchange) value of 49 in decimal
notation representing the numerical value of 1 is sent to the serial monitor
on activation of the “Red led on” button.

44

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

Arduino programs are referred to as sketches, and the code for
receiving the “1” character on the serial port and switching a digital pin on
is in Listing 2-1 (all code listings provided in the “Code Listings” section at
the end of the chapter). Examination of Listing 2-1 will reveal that the code
will accept a 0, an ASCII code of 48, on the serial port and turn the LED off.
The two-button control scheme is simple and uncomplicated and uses a
single sketch to manage the two possible LED power levels.

In the second row of the control screen is a single button labeled
“Toggle RED led” that switches the LED on when the button is first clicked
and off when clicked for the second time. The Arduino sketch in Listing 2-2
contains the logic for the “toggling action” in the form of the flag variable
“oofR” that records the status of the LED as either on or off and thus
enables the code to switch or alter the present power state of the device.

The set of four colored buttons in the bottom-left corner of the control
screen extend the power control capability to four buttons with the
Arduino code of Listing 2-3.

Each colored button in the control screen is coupled to a Quick
Sequence action that writes an R, G, O, or Y character to the serial monitor.
On the Arduino side of the connection, the code compares the new
character that arrives on the serial port with a collection of four characters
in what is termed a “case” structure. When a match is found, the code
associated with the identified “case” is executed. In Listing 2-3, the action
involves toggling the colored LED corresponding to the DAQFactory
control screen button color on or off.

The control screen in Figure 2-10 contains seven screen icons called
variable value components that can be used to provide a visual numerical
display or readout of a process value.

The exercise has been set to demonstrate the remote activation of
a device and also measure a process variable in the form of the current
drawn by the active device. Listings 2-4, 2-5, and 2-6 list the Quick
Sequence codes that can be used to pass action initiation requests one way

45

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
and pass resultant effects back. Listing 2-6 is a shorter Quick Sequence

DAQFactory side method for declaring that a current flow has been
stopped.

An Arduino microcontroller is equipped with a six-channel, 10-bit
analog-to-digital converter (ADC) capable of converting 0-5-volt signals
into digital values between 0 and 1023 (2'° or 1024). The 5 volts when
divided into 1024 units yields 4.8828 millivolts per digital counting unit.
As seen in Figure 2-9, each of the four diode voltage drops is measured
by the analog inputs of the ADC. On completion of the voltage drop
measurement, the calculated diode current is written to the serial port
using the Arduino’s “Serial.println(iRed);” format that appends the
carriage return-line feed (CR-LF) ASCII characters to the diode current
value characters sent to the serial port. The \013\010 serve as markers
delineating or identifying the end of the characters presenting the
numerical values of the measured diode current to the DAQFactory Quick
Sequence data parsing logic.

Listings 2-9 and 2-10 are DAQFactory Quick Scripts that are run when
one or more colored buttons in the panel of four in the lower-left corner of
Figure 2-10 are activated. Each button has a Quick Sequence scripting that
clears the serial input buffer and sends an uppercase letter representing
the color of the button and corresponding LED to be altered to the
DAQFactory entrance or memory location of the serial port. The Arduino
microprocessor C code examines the character sent from the DAQFactory
control screen and conducts the required actions posting the return data
parameters to the serial port. Listings 2-7 and 2-8 are the Arduino codes
supporting the DAQFactory action requests. The Quick Sequence initiates
a delay after sending the activation request and then begins to process the
characters that appear on the serial port.

Listing 2-9 processes only the current being drawn by the active LED,
while Listing 2-10 processes both the individual currents being drawn by
any active LEDs and the total current drawn by all active LEDs.

46

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
These simple systems demonstrate one of the great advantages of

SCADA systems in that no error checking or error handling capability

is required for serial communications between the two computing
platforms. The characters sent and received are fixed in software and only
require the activation of the screen icon to achieve the desired activity
and measurement. There is minimal action required by the operator of
the control screen in that no data entry is required, only the clicking of
the correct icon on the control screen. In an electrically noisy industrial
or experimental environment, these simple programs may require error
checking and error handling capability.

The two-button on/off control panel is as simple as possible, and the
operator has two choices that turn the LED on and off. The illumination of
any diode mounted on the prototyping board as seen in Figure 2-12 alerts
the operator to the status of the system and to which button is active in
changing the state of the system.

Figure 2-12. The Arduino-Controlled Four-LED Array

47

CHAPTER 2 POWER CONTROL, MONITORING,AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
The measurement of the current has been automated, and with

additional work in an actual experimental application, the process could
be validated to determine the accuracy and reproducibility of the current
measurements.

Both the Arduino and DAQFactory programs have extensive
facilities to aid in the development of serial communications. Serial
communications systems are very simple and widely used in industrial
manufacturing and experimental research and development programs.
Both of the software systems in use in this exercise have serial port
windows that allow the visualization of the data resident on the serial
monitor interface and allow the researcher to receive or transmit serial
data from or to the host program.

The Arduino serial port is used for numerous applications in addition
to serial port communications between programs and can stream data
from numerous types of sensors connected to the microcontroller. Details
of the various measurements possible are found in Arduino Measurements
in Science.

In Figure 2-13, the DAQFactory serial port has been expanded to test
and monitor actions taking place at the serial port.

Vv
File ESl View Oudk Debug Layoud Teoh Hee
Ced B =% &2 2007, L rerm—r -
An Arduino - DAGFactS owuserg [0 i
Tweo bumon red bed conarol o dinsa. an Ardisinn disiral ain 1 ! |
Potmonkoe [Dapley ol chirs a2 ASCH cosies T Doy T of T
ﬂ"_l 4 f ™ Dol cocies i Hex [_pam |
The On busion ity 5 1| DEetsne [2a50 i
| 1en
o Post / Elhesret Pt _Dskes | Cocel | | 235
A single bution cam be um [Cowa e
Toogh _ Monte |
1
thecagh use of the microprs Pl Sena RS ST | |
M Elraard [TCF| Chent |
Mubtipie Butions.
_— B
SELCG = _ Configee
Ardiraliatamem
D ||
1 s
Haect
M
ModnrkSC8
MockusA5C Sy Bamthicid]
ModkanRTL L
| = S |
[Please right click and seloct o part ta monitor...
Cowe
TR T Woranace

Figure 2-13. The DAQFactory Serial Port Monitor

48

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
In order to see the DAQFactory serial port monitor in operation, the

host computer must be running a microcontroller program compatible
with the control screen in use. With the microcontroller program running
in the minimized or background configuration, the DAQFactory program
containing the control screen can be run in the foreground as labeled

1 in Figure 2-13. From the “Quick” menu, “Device Configuration” is
selected, and the Device Configuration window as depicted in Figure 11-4
of Chapter 11 appears. From the entries in the Device Configuration
window, the “ardyRb” is selected; and when the Select button in the top
right-hand corner of the window is clicked, the “Ethernet / Serial Device”
window, panel 2 in Figure 2-13, appears. With the correct name and
communications port entered, the “Monitor” button can be activated to
bring up the serial port monitor for COM4 labeled as panel 3 in Figure 2-13.

When activated, the serial port monitor for COM4 now controls
the data flow to and from the serial port. The two buttons still visible
on the underlying control screen in panel 1 are no longer responsive,
and only by sending the correct, uppercase first letter of the diode
color to the serial port can the corresponding diode on the Arduino
array be activated. As can be seen in the activity record in panel 3, the
transmission of an R, recorded as “Tx R,” is followed by the script Rx
10.69\013\01010.69\013\010. Rx is the “received a transmission” notation,
and 10.69 is a numerical sequence appended with the ASCII codes 013,
a carriage return, and 010, a line feed. Immediately after the line feed
notation is a numerical sequence again appended with the CR-LF pair of
printing instructions.

As discussed in the preceding text, the Arduino code has recognized
the R and activated the red diode sending back the individual diode
current and the total current being drawn with both numerical values
followed by the CR-LF combination. If an uppercase O is sent to the
port, the expected action occurs; and if the Enter key is used while the
uppercase O is still resident in the Send compartment, the Arduino code
will toggle the orange diode as seen in panel 3.

49

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
As noted previously, the substitution of a very inexpensive

microcontroller board for the industrial research-grade interface is a
practical exercise in which the significantly increased development time
can be used to advantage as a hands-on learning experience.

Power Monitoring and Control
with Raspberry Pi

For investigators, experimentalists, or educators who are not familiar
with the Raspberry Pi (RPi) educational computer and its use in physical
computing through its general-purpose input and output (GPIO) pin array,
several texts are available.? Current information and software are available
online from the Raspberry Pi Foundation that should be reviewed before
attempting the following exercises.

Although the Raspberry Pi single-board computer (SBC) originated
as a very inexpensive teaching aid, it can be used, with some limitations,
as a physical computing platform for SCADA applications. The RPi
SBC does not have the capability for analog-to-digital conversions, but
several methods exist for working around this voltage measurement
limitation. Voltages from experimental sensors can be measured with
external ADC chips or a USB connection to an Arduino microcontroller
board and by using a Python library with the RPi to measure the time
constant of a known value resistor-capacitor series connection. The
documentation written for the gpiozero Python library points out that the
RPi operating system itself is not completely compatible with the “real-
time” requirements of physical computing. It is noted that attempts to use

21) Raspberry Pi User Guide, Upton and Halfacree, John Wiley and Sons,
ISBN 978-1-11846446-5
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9
3) Learn Raspberry Pi with Linux, Membrey and Hows, Apress,
ISBN 978-1-4302-4821-7

50

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
GPIO pins for programmed pulse width modulation (PWM) on devices

such as LEDs may suffer from “jittering” as the Pi operating system may
be involved with internal processes that detract from or interfere with the
timed processing of the pulse widths.

A USB connection between the RPi and an Arduino microcontroller
is very similar to the ease of use and assembly demonstrated in the
preceding DAQFactory-LabJack exercise. Arduino boards are comparable
in cost to the RPi, and the Arduino integrated development environment (IDE)
is available as a Linux-compatible download from the Arduino and RPi
Foundations. By using the Arduino microcontroller board as an intelligent
interface between the RPi and an experimental apparatus or setup,
significant reproducible and predictable physical computing can be
achieved. However, the implementation of an Arduino microcontroller
as a smart I/O peripheral for the RPi involves a significant amount of
scripting to interface the two systems that is explored in the next chapter
and exercise on scripting.

Of the various options available for measuring voltages and hence
calculating current flows with the RPj, the least expensive option is the use
of a stand-alone analog-to-digital converter (ADC) such as the Microchip
MCP3008 integrated circuit (IC). The IC chip costs approximately $5 (CDN)
and is a 10-bit successive approximation register (SAR) device. A 10-bit
resolution as used in the LabJack, Arduino, and MCP3008 divides the input
voltage into 1024 units for quantification. The IC is connected to the RPi
GPIO pins as detailed in Figure 2-14 and uses the Python serial peripheral
interface (SPI) protocol implemented with the py-spidev Python library.
See raspberrypi.org/documentation/hardware/raspberrypi/spi/README
for the RPi setup instructions for implementing the SPI protocol on the
GPIO pin array.

51

http://raspberrypi.org/documentation/hardware/raspberrypi/spi/README

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

Experimental

As noted, an inexpensive voltage measurement capability for the RPi can
be implemented with the Microchip Technology MCP3008. The chip is

a 16-pin, plastic dual in-line package (PDIP), integrated circuit, 10-bit
analog-to-digital converter. The IC has eight input channels that can be
used to digitize the voltage at up to eight different points in a circuit with
respect to a common ground or measure up to four differential voltage
drops between eight points in the circuit. (See Chapters 4, 5, and 6 for
digital concepts and 10- or 12-bit ADC details, 10 bit = 2!° or 1024 and 12
bit = 2'2 or 4096.)

Figure 2-14 is a graphical depiction of the connections to be made from
the RPi GPIO array to the MCP3008 and a schematic drawing of the four
channels that can be used to measure the current flow through the colored
diodes.

(_‘-P[a 3.3 up.'.ns 16 .s. .:'5 I rn._vm
GPIO Crod pins, 14 & 9, |, wef. |15
“Cnd o+ 14
GPIO®LA pin 11 e A
GPIO Y pin 12 epod |0

CPIO BLL pin 13 vin . |11
GPIO #8 pin 10 - SRR ¥ s
Bnd - 9

Figure 2-14. RPi Circuitry for Power Monitoring of LEDs

To simplify the graphic of Figure 2-14, the connecting wires between
the GPIO pins and those on the MCP3008 have not been drawn. The 3.3V
supply of the RPi on the upper-left pin of the GPIO array is connected to
pins 16 and 14 on the IC. The remainder of the connections are specified
and connected in the same manner.

52

CHAPTER 2 POWER CONTROL, MONITORING,AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
The Python code for strobing (activating) the ADC chip to conduct

a conversion and then reading and displaying the 10-bit voltage value is
listed in Listing 2-11.

As with all complex experimental systems, the investigator begins
with the simple components testing each and validating its individual
performance as a stand-alone entity. A complex system is assembled by
adding a single component at a time and if possible testing the assembly as
each increment is made until a completed operational apparatus is built.

The early models of the RPi are reported to have been designed to
provide an output current of 3 mA at the 3.3 Vlogic level, and hence the
entire power draw available was 17 pins x 3 mA = 51 mA in total. Tiny
3 mm indicator LEDs are limited to a maximum current draw of 20 mA
and should be operated in the 16-18 mA range. 5 and 10 mm LEDs draw
currents in the 20-40 mA range and for longer service lives should be
operated at 15-20% below their maximum short-term current handling
capability.

LED emissions are directly proportional to the current flowing through
the diodes. The current recommendations in a data sheet are given
for a device operating at or near its maximum brightness, which is not
always required for experimental work. LED currents of 5-10 mA often
produce ample brightness for experimental work and can be used to avoid
overloading the RPi power connections on the GPIO pins.

To accommodate the limited current available from the RPi GPIO pins,
the circuit of Figure 2-14 can be assembled with readily available 5 mm
LEDs, suitable CLRs, and individual manual power control switches, all
set in the open position during assembly. An array of open switches is
the configuration to be used in the initial testing of the power monitoring
exercise.

Each of the four LEDs in the array should be tested independently,
followed by all of them together, to confirm their illumination when
power is applied from the supply. (See Chapter 1 for the command line
terminal method for manual LED activation.) Once each and all of the

53

CHAPTER 2 POWER CONTROL, MONITORING,AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES
LED diodes have been successfully illuminated, then with the power off,

the junction of the diode and its CLR is connected to the appropriate input
channel of the ADC. With the ADC correctly wired to the LED array, the
connections between the MCP3008 and the RPi GPIO pins can be made,
and the Python program can be run. The initial output from the system
should indicate no output current for each channel and none for the sum.
The simplicity of the system requires a manual operating mode to see the
data resulting from the power loading and distribution of the LED lighting
system. As each LED is manually switched on and illuminated, the power
monitoring program should be run to calculate and display the individual
currents drawn and their sum.

By keeping the currents through the LEDs in the 12-16 mA range,
the RPi should fully illuminate three of the LEDs easily and be able to
illuminate the fourth diode for short periods of time while the power
monitoring program collects and displays higher power consumption data.
For experiments using more power than is available from the GPIO pins,
an auxiliary supply and several CMOS 4050 buffer chips could be used.

Observations

One of the objectives of this exercise is to impart to the investigators using
the RPi GPIO pins to provide power to their experimental setup a method
to work safely around the limitations of the system.

A typical output in the Python shell from the power monitoring
program is depicted in Figure 2-15.

54

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

e T]>_ L 3 @ | A [ADC_Voitage_Cu_| [[pi@raspberypi ~]| A ADC_Voltage Cur_| @ Pythan 3.4.2 Shell | Bl [pi@raspberrypi ~|

Python 3.4 2 Sheil

Ede Edt Shel Debug Qotions Mindows Help

Pythen 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()” for more information.
5> RESTART

233

RPi 4 Led Array Power Monitoring Program

ADC reading of LED voltage value is normalized from 0 to 1 by gpiozero library.
The true value of the monitored voltage is the product of the normalized ADC value and the reference voltage.

ADC Channel 1

Normalized ADC value = 0.108 Volts
LED CLR voltage value = 0.355 Volts
Blue LED current = 1.079 mA

ADC Channel 2

Normalized ADC value = 0.372
LED1 CLR voltage value = 1.232
Yellow LED current = 5.601 mA

ADC Channel 3

Normalized ADC value = 0.389
LEDZ CLR voltage value = 1,287
Red LED current = 5.836 mA

ADC Channel 4

Normalized ADC value = 0.363
LED3 CLR voltage value = 1,200
Green LED curret = 5.479 mA

Total current draw = 17.995 mA

£y

Figure 2-15. RPi Display of Power Monitoring Program Output

Examination of the schematic drawing portion of Figure 2-14 will
reveal that the voltage drop across the measured resistance of the current
limiting resistor (CLR) is caused by the current flow through the diode-
resistor combination. The MCP3008 channels are being used to directly
measure the voltage drop across a grounded resistor to indirectly measure
the current that is constant throughout the circuit.

Discussion

As an educational computer, the Raspberry Pi is not only able to function
in an information processing mode but also as a physical computing
platform. However, when used in a physical computing mode, the
limitations of the compact, inexpensive system must be recognized.

55

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

In very simplified terms, the RPi operating system is process driven and
may not immediately respond to an event on a GPIO pin if a higher-
priority process is running in the processor core. Graphics processing is
avery large consumer of computing resources, and hence the RPi should
use the most utilitarian or minimal screen displays as possible when used
in a physical computing mode.

The Raspberry Pi Foundation has written and makes available
several Python libraries that allow the computer to interface with various
hardware devices to extend communication with external devices and
sensors such as the MCP series of analog-to-digital converters.

Code Listings

Listing 2-1. Arduino Code for a Two-Button On and Off Control
Screen

// Arduino code for a single led illumination on the red board

// Arduino the pgm waits for an incoming character on com port 4,

// if a 1 the led is turned on if a 0 it is turned off.

const int RedPin = 3; // red board dig. pin with red led and clr

int incomingByte; // a variable to hold incoming byte

//

void setup() {
Serial.begin(9600); // start the serial port
pinMode(RedPin, OUTPUT); // set the pin function

}

void loop() {
if(Serial.available()> 0) { // check port for last data byte

incomingByte = Serial.read(); //

56

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

if (incomingByte == '1') {

// if is H (ASCII 72), turn

the led on

digitalWrite(RedPin, HIGH);

}

if (incomingByte == '0") {
digitalWrite(RedPin, LOW);

}
}
}

//if L (ASCII, 76), turn the

led off

Listing 2-2. Arduino Sketch for Toggling the Red LED on the

Arduino RedBoard from the DAQFactory Single-Button Control

Screen

// Toggle an led on/off from one DAQFctry button icon on COM4
// The DAQF QS sends an R to the serial port on com 4. On the
// arduino side the status of the RedlLed dp is determined and

// toggled as required.

//

const int RedlLedPin = 3;

int oofR = 0;

char incomingByte = ' ';

//

void setup() {
Serial.begin(9600);
pinMode(RedLedPin, INPUT);

}

// red led is on dig pin 3
// power state of red diode
// declare incoming byte

// start the serial port

// must initially read the dig.

pin

57

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
//
void loop() {
if (Serial.available()) { // check for incoming data
char incomingByte = Serial.read(); // read the port
//Serial.print(incomingByte); // diagnostic
if (incomingByte == 'R' &% oofR == 0) { // check flag for
led status
pinMode(RedLedPin, OUTPUT); // set pin for output
digitalWrite(RedLedPin, HICGH); // if off turn on
oofR = 1; // set status flag
}
else {
if (incomingByte == 'R' && oofR == 1){ // check flag for
led status
pinMode(RedLedPin, OUTPUT); // set pin mode
digitalWrite(RedLedPin, LOW); // turn led off
oofR = 0; // set status flag
}
}
}
}

Listing 2-3. Arduino Sketch to Toggle Multiple Colored LEDs from a
DAQFactory Control Screen

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com 4.

// On the arduino side the status of the appropriate led

// dp is determined and toggled as required through a switch
construct.

//

58

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

const int RedLedPin = 3; //
const int GreenlLedPin = 4; //
const int OrangeledPin = 5; //
const int YellowlLedPin = 6; //
!/

int oofR = 0; //
int oofG = 0;

int oof0 = 0;

int oofY = 0; //
//

char incomingByte = ' '; //
//

void setup() {

Serial.begin(9600); //
}

//

void loop()

{
if (Serial.available()) //
{

char incomingByte = Serial.read();

Serial.print(incomingByte);

red led is on dig pin 3
green led on dp 4
orange led on dp 5
yellow led on d pin 6

on off flags initialized

on off flags initialized

define incoming character

start the serial port

check for incoming data

// set char value for
switch branching

// diagnostic for use in

debugging code

switch(incomingByte)
{
case 'R':

if (oofR ==0) {
pinMode(RedLedPin, OUTPUT);

// branch to desired location/option

// Red Led Activation
// check status flag
// set pin I/0

59

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
digitalWrite(RedLedPin, HIGH); // turn led on
oofR = 1; // re-set flag
}
else { // flag is set to 1 so led is on
pinMode(RedLedPin, OUTPUT); // set pin mode to output
digitalWrite(RedLedPin, LOW); // turn led off
oofR = 0; // re-set flag to off
}
break;
//
case 'G': // Green Led Activation
if (0ofG == 0) { // check status flag
pinMode(GreenLedPin, OUTPUT); // set pin I/0
digitalWrite(GreenLedPin, HIGH); // turn led on
oofG = 1; // reset status flag
}
else {
pinMode(GreenLedPin, OUTPUT);
digitalWrite(GreenLedPin, LOW);
0ofG = 0;
}
break;
//
case '0': // Orange Led Activation
if (0oof0 ==0) {
pinMode(OrangeLedPin, OUTPUT); // set pin I/0
digitalWrite(OrangeLedPin, HIGH);
oof0 = 1;
}
else {

pinMode(OrangelLedPin, OUTPUT);

60

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

digitalWrite(OrangeLedPin, LOW);
oof0 = 0;
}
break;
case 'Y': // Yellow Led Activation
if (oofY ==0) {
pinMode(YellowLedPin, OUTPUT); // set pin I/0
digitalWrite(YellowLedPin, HIGH);
oofY = 1;
}
else {
pinMode(YellowLedPin, OUTPUT);
digitalWrite(YellowLedPin, LOW);
oofY = 0;
}
break;
}
}
}

Listing 2-4. Arduino Sketch to Turn Red LED On or Off and
Measure the Diode Current Draw for Display on the DAQFactory
Control Screen

// Arduino code for a single led illumination on the red board
// Arduino the pgm waits for an incoming character on com port 4
// if a 1 the led is turned on

// if a 0 it is turned off.

// A0 is wired to Rd led junction and the Arduino calculates

// the led current and prints the value to the serial port.

61

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
//
const int RedPin = 3; // red board dig. pin with red led and clr
int incomingByte; // a variable to hold incoming byte
float iRed = 0; // the led current through the CLR
//
void setup() {
Serial.begin(9600); // start the serial port
pinMode(RedPin, OUTPUT); // set the pin function
}

void loop() {

if(Serial.available()> 0) { // check port for last data byte

incomingByte = Serial.read(); // read serial port value

if (incomingByte == '1") { // if is 1, turn the led on
digitalWrite(RedPin, HICH); // set I/0 of pin

// calculate led current and print to the serial port

iRed = ((analogRead(A0) * 4.8828)/216);

Serial.println(iRed); // note the line feed indication to

append 013\010
// to the transmitted character to aid in the DAQFactory

parsing of the incoming code.

}

/!

if (incomingByte == '0") {
digitalWrite(RedPin, LOW); // if 0, turn the led off

// calculate led current and print to the serial port

iRed = ((analogRead(A0) * 4.8828)/216); // ensures the LED is off

Serial.println(iRed); // \013\010 for DAQFactory parsing code

}

}

62

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

Listing 2-5. Quick Sequence Code for On Button

device.ardyRb.Purge() // clear residual data from input buffer

device.ardyRb.Write('1") // write to serial port

delay(0.1) // delay to allow processing

global ldCurrnt // declare variable to be visible
throughout

// DAQFactory program
private string datain // declare datain variable
datain = device.ardyRb.readUntil(13) // parse data up to
line feed and
carriage return
ldCurrnt = strToDouble(datain) // convert character to
numeric value

Listing 2-6. Quick Sequence Alternate Code for Off Button

device.ardyRb.Purge() // clear old data from the serial
port buffer

device.ardyRb.Write('0") // write a zero to the serial port
to switch led off

delay(0.1) // allow code to be processed

global ldCurrnt // declare individual diode
current to be global

ldCurrnt = 0 // set individual diode current to 0

Listing 2-7. Arduino Code for Single Button Icon Toggling LED On/
Off with Power Measurement

// Toggle an led on/off from one DAQFctry button icon on COM4
// The DAQF QS sends an R to the serial port on com 4. On the
// arduino side the status of the RedlLed dp is determined and
// toggled as required.

63

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

//
const int RedlLedPin = 3; // red led is on dig pin 3
int oofR = 0; // power state of red diode
char incomingByte = ' '; // declare incoming byte
float iRed = 0; // red led current
//
void setup() {

Serial.begin(9600); // start the serial port

pinMode(RedLedPin, INPUT); // must initially read the

dig. pin

}
//

void loop() {

64

if (Serial.available()) { // check for incoming data
char incomingByte = Serial.read();
//Serial.print(incomingByte); // diagnostic for code

de-bugging

if (incomingByte == 'R' &% oofR == 0) { // check action

required and
status
pinMode(RedLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(RedLedPin, HIGH); // turn diode current on
iRed = ((analogRead(A0) * 4.8828)/216); // calculate
diode current

Serial.println(iRed); // send value to serial port
with LF-CR
oofR = 1; // set status flag to "diode on"

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

else {
if (incomingByte == 'R' &&% o0ofR == 1){
// alternate action toggle to off

pinMode(RedLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(RedLedPin, LOW); // turn power off
iRed = 0; // set red diode current to 0
Serial.println(iRed);
0ofR = 0;
}
}
}
}

Listing 2-8. Arduino Sketch for a DAQFactory Four-Button Control
Screen and Power Consumption Indicators

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com
// 4. On the arduino side the status of the appropriate led dp is
// determined and toggled as required through a switch construct.
//

// power drawn calculations, each led has a CLR and the voltage
// on the junction of the resistor and led is measured and used to
// calculate diode

// current by A0 to A3 respectively. Current calcln only done
// when diode activated.

//

const int RedlLedPin = 3; // red led is on dig pin 3
const int GreenlLedPin = 4; // green led on dp 4

const int OrangeledPin = 5; // orange led on dp 5
const int YellowlLedPin = 6; // yellow led on d pin 6
//

65

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

int oofR = 0; // on off flags initialized
int oofG = 0;

int oof0 = 0;

int oofY = 0; // on off flags initialized
//

char incomingByte = ' '; // define incoming character
//

float iRed = 0; // red led current in

decimal float format
float iGreen = 0;
float iOrange = 0;
float iYellow = 0;
float itotal = 0;
//
void setup() {
Serial.begin(9600); // start the serial port
}
//
void loop()

{
if (Serial.available()) // check for incoming data

{

char incomingByte = Serial.read(); // set char value for
switch branching

// Serial.print(incomingByte); // diagnostic
switch(incomingByte) // branch to desired
location/option

66

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
{
case 'R': // Red Led Activation
if (oofR ==0) {
pinMode(RedLedPin, OUTPUT); // set pin I/0
digitalWrite(RedLedPin, HIGH); // turn led on
oofR = 1; // set flag
iRed = ((analogRead(A0)* 4.8828)/216); // calc i when
led on
//Serial.print(analogRead(A0)); // diagnostics
//Serial.print("iRed = "); // diagnostics
Serial.println(iRed); // add CR-LF
itotal = iRed + iGreen + iOrange + iYellow;
// calculate total power consumption
//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // add CR-LF
}
else { // flag is set to 1 so led is on
pinMode(RedLedPin, OUTPUT); // set pin mode to output
digitalWrite(RedLedPin, LOW); // turn led off
oofR = 0; // re-set flag to off
iRed = 0; // turn iRed contribution to
itotal off
Serial.println(iRed); // send data to DAQFtry

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // send to serial port with CR-LF

}

67

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES

break;

//

case 'G': // Green Led Activation
if (0ofG == 0) { // check status flag
pinMode(GreenLedPin, OUTPUT); // set pin I/0
digitalWrite(GreenLedPin, HIGH); // turn led on
0ofG = 1; // reset status flag
iGreen = ((analogRead(A1)*4.8828)/215); // calc diodecurrent
//Serial.print("iGreen = "); // diagnostics
Serial.println(iGreen); // send data with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;
// calculate total current draw

//Serial.print("itotal = "); // diagnostics

Serial.println(itotal); // send with CR-LF

}

else {
pinMode(GreenLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(GreenLedPin, LOW); // turn green led off
oofG = 0; // set green status flag
iGreen = 0; // turn green contribution

to total off
Serial.println(iGreen); // send green current value
with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total current with CR-LF

68

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
break;
//
case '0': // Orange Led Activation
if (0of0 == 0) { // check status flag

pinMode(OrangeLedPin, OUTPUT); // set pin I/0

digitalWrite(OrangeLedPin, HIGH); // set pin I/0

oof0 = 1; // set orange flag to led on

iOrange = ((analogRead(A2)*4.8828)/215); // calculate orange
led current draw

//Serial.print("iOrange = "); // diagnostic

Serial.println(iOrange); // send to serial port with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total to
serial port
with CR-LF
}
else { // orange led is on
pinMode(OrangeLedPin, OUTPUT); // set pin I/0
digitalWrite(OrangeLedPin, LOW); // turn orange led off
0of0 = 0; // reset orange status
flag to off
iOrange = 0; // turn orange contribution
to total off
Serial.println(iOrange); // send out orange current
with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // send out total current draw with CR-LF

69

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

br
ca

br

}
}

70

INTERFACES
}
eak;
se 'Y': // Yellow Led Activation
if (oofY == 0) { // led is off
pinMode(YellowLedPin, OUTPUT); // set pin I/0
digitalWrite(YellowLedPin, HIGH); // turn yellow led on
oofY = 1; // re-set lag to led on

iYellow = ((analogRead(A3)*4.8828)/217);

// calculate yellow led current

//Serial.print("iYellow = "); // diagnostic

Serial.println(iYellow); // yellow led value to

serial port with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostic

Serial.println(itotal); // send to serial port with CR-LF

}

else { // yellow led on
pinMode(YellowLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(YellowLedPin, LOW); // turn yellow led off
oofY = 0; // re-set flag to yellow led off
iYellow = 0; // set yellow led current to 0
Serial.println(iYellow); // send value to serial port with CR-LF
itotal = iRed + iGreen + iOrange + iYellow;
// calculate total current and send with CR-LF
//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total current with CR-LF

}

eak;

}

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

Listing 2-9. Toggle Red LED DAQFactory Quick Sequence

device.ardyRb.Purge() // clear serial buffer
device.ardyRb.Write('R') // initiate repeat activation
delay(0.1) // allow code to execute
global ldCurrnt // declare global variable in

DAQFactory code
private string datain // define local variable in DAQFactory code
datain = device.ardyRb.readUntil(13) // parse out character
codes for numeric
value
ldCurrnt = strToDouble(datain) // convert character
codes to numeric value

Listing 2-10. Toggle Red LED DAQFactory Quick Sequence with
Diode Power Draw

device.ardyRb.Purge() // clear the serial buffer

device.ardyRb.Write('R") // send R to serial port for
repeat activation

delay(0.1) // allow for code execution

global iRed // declare diode current as
global variable

global iTotal // declare total current as
global variable

private string dataini // declare private variable for
1t data value

private string datain2 // declare private variable for

2" data value
device.ardyRb.ReadUntil(13) // parse out 1%t value
device.ardyRb.ReadUntil(13) // parse out 2" value

dataini
datain2

71

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
iRed = strToDouble(dataini1) // convert characters to
numerical values
iTotal = strToDouble(datain2) // and assign to declared
variables

Listing 2-11. Python Code for the Raspberry Pi Monitoring the
Power Draw of a Four-LED Array

print("RPi 4 Led Array Power Monitoring Program")

print() # a blank line for output screen spacing

print("ADC reading of LED voltage value is normalized from 0 to
1 by gpiozero library.")

print("The true value of the monitored voltage is the product
of the normalized ADC value and the reference voltage.")
print()

a single normalized value is printed each time the module is run

from gpiozero import MCP3008

create an object representing the device and assign the input
channels

ADC vlu = MCP3008(0) # the number in brackets is the channel

on the device

ADC vlul = MCP3008(1)
ADC_vlu2 = MCP3008(2)
ADC_vlu3 = MCP3008(3)
#

print("ADC Channel 1")

print('Normalized ADC value = %.3f'%ADC_vlu.value,' Volts")
the blue LED in the author' circuit

#

convert object, value into a numerical parameter

ledvltg = float(ADC vlu.value) * 3.3

print('LED CLR voltage value = %.3f'%ledVltg, ' Volts')

72

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER

INTERFACES
calculate the LED current from Ohms law

blue = (float((ADC vlu.value) *3.3) / 329) * 1000
print('Blue LED current = %.3f'%blue,' mA")

#

print()

#

print("ADC Channel 2")

print('Normalized ADC value = %.3f'%ADC vlul.value)
the yellow LED in the author's circuit

#

convert object, value into a numerical parameter
led1vltg = float(ADC vlul.value) * 3.3

print('LED1 CLR voltage value = %.3f'%led1Vltg)

calculate the LED1 current from Ohms law

yellow = (float((ADC vlul.value) *3.3) / 220) * 1000
print('Yellow LED current = %.3f'%yellow,' mA")

#

print()

#

print("ADC Channel 3")

print('Normalized ADC value = %.3f'%ADC vlu2.value)
the red LED in the author's circuit

#

convert object, value into a numerical parameter
led2vltg = float(ADC vlu2.value) * 3.3

print('LED2 CLR voltage value = %.3f'%led2V1tg)

calculate the LED2 current from Ohms law

red = (float((ADC vlu2.value) *3.3) / 220) * 1000
print('Red LED current = %.3f'%red,"' mA")

#

73

CHAPTER 2 POWER CONTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

print()

#

print("ADC Channel 4")

print('Normalized ADC value = %.3f'%ADC_vlu3.value)
the green LED in the author's circuit

#

convert object, value into a numerical parameter
led3Vltg = float(ADC vlu3.value) * 3.3

print('LED3 CLR voltage value = %.3f'%led3Vltg)

calculate the LED3 current from Ohms law

green = (float((ADC vlu3.value) *3.3) / 219) * 1000
print('Green LED current = %.3f'%green,’' mA")

#

print()

#

ttl _Currnt_drw = blue + yellow + red + green
print('Total current draw = %.3f'%ttl Currnt drw, ' mA')

Summary

— Aninteractive control panel GUI able to activate
multiple components in an external experiment and
display data from that experiment is developed.

— Microcontrollers can be used with robust industrial
pre-configured SCADA systems or with readily
available inexpensive components and the appropriate
programming.

— In Chapter 3, more detailed scripting and programming
techniques will be introduced.

74

CHAPTER 3

Introduction to
Scripting

SCADA is an industrial concept in which information about an active
process is collected and then used to both monitor and control that
operation. Scripting, in both the industrial-scale applications and these
scientific measurement experiments, permits the automation of process
control or data acquisition. In this chapter, code assembled into small
programs called sequences in the DAQFactory (DF) software will be used
to control and monitor the LED circuitry assembled on the breadboard in
the previous exercises.

The DF user manual indicates that the scripting language syntax used
to create sequences is similar to most standard languages such as the
variations of C, Python, Visual Basic, Pascal, and others such as Fortran.

The previous notation made with respect to the naming of channels is also
applicable to the scripting language used in DE The language is case sensitive,
and thus it is very important to avoid typing errors and spelling mismatches in
naming channels, variables, scripts, and pages. It is suggested that the C style
of naming or a variation be used as noted in these MySpecialName,
My_Special Name, My_Spcl_Nm, and MySpcINm examples. Choose names
that are expressive and meaningful to minimize errors.

It is strongly suggested that documentation in the form of liberal use of
comments and indentation of code segments be used, to make the script
code legible and easy to follow. The DAQFactory code editor used to create

© Richard J. Smythe 2021 75
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_3

https://doi.org/10.1007/978-1-4842-6778-3_3#DOI

CHAPTER 3 INTRODUCTION TO SCRIPTING

sequences indents when the Tab key is pressed, and a dotted vertical line
delineates the code blocks. Other investigators must be able to follow code
scripts and reproduce any scientific work.

The mathematical operations available for use in scripted sequences
are described in the DAQFactory software manual in the section
“Expressions.” An expression is a formula that calculates a result from
some initial values. Expressions have been used in the variable value
screen components in the previous exercise to calculate individual colored
LED currents and the total current being drawn.

As in most languages, variables or arrays must be declared with
declaration statements, have appropriate names, and have instances
created, before use in sequence scripting.

For the majority of researchers, the skills required for creating and
running programming or scripting codes are best developed by practice.
Virtually all of the popular programming languages in wide use today
can be learned through an abundance of online tutorials. The tutorials
and language documentation can be reviewed and practiced at a rate
that is comfortable for the investigator. The DAQFactory manual has an
introductory tutorial and a detailed documentation that should then be
kept at hand for reference as the investigator develops a facility for the
scripting of DAQFactory sequence code.

Experimental

Once an electro-mechanical system is configured and the hardware
validated on a breadboard, do not hesitate to experiment with the scripting
code on a fresh new DAQFactory page. Science is experimental in nature,
and this manuscript is hopefully an aid to grasping the fundamentals

of physical computing and applying them to conduct experimental
measurements as quickly as possible.

76

CHAPTER 3 INTRODUCTION TO SCRIPTING

Hardware

Use the multicolored LED circuitry from the previous exercise as the
process operations whose control will be transferred from direct manual
screen control to a coded script or sequence.

For the circuit schematic, see Chapter 2, Figure 2-2.

Software
Page Components Required

For the required basic screen configuration, a text message should be
placed over a button control. The text content should indicate that the
button controls the starting and stopping of a script that produces a short
“light show” on the bank of four multicolored LEDs.

In previous exercises using channels, the channels had to have been
created and entered into the channel table in order to appear in the pop-
up, typing aid listing. The same is true for script sequences that must
be named and entered into the sequence summary table. Once named
and entered into the summary table, the appropriate sequences can
be selected from the listing during button configuration as depicted in
Figures 3-1 and 3-2.

77

CHAPTER 3 INTRODUCTION TO SCRIPTING

Button Companent

Man Acton |
Actiors St/ Siop Sequence - % ran
Tomde Satieen
Sl
Sequerce: b I
Topge betwean: (el To Advanced
Start / Shop FID Lecp
it Star / Slop Loggen Set
st o A)
[Preres <Enber Bleas Hi
OrgePog
Fopup Page Modal
Popup Page Modekes:
Py
Piv Preger Page
Rﬂsllig! m C]
z e |
Button Component Properties -
[Main Tab:
[Tesxt: The captian that is displayed on the butten.
[Taoct Color: The color of the caption displayed on the button.
e e d Pl Wl e s b ~

Figure 3-1. Button Action Tab Entries

Text

Button Compamnil

Main fehon |

Achon Start / Stop Sequence -

Button Compd
T

Main Tab: -

[Text: The caption that is displayed on the button.
Text Color: The color of the caption dispiayed on the button.

o rbemunsrnd Falne The ashos of tha kesn

Figure 3-2. Named Sequence Entry Listing

78

CHAPTER 3 INTRODUCTION TO SCRIPTING

Scripting

DAQPFactory has a script entry and editing program that assembles the

code as depicted in Figure 3-3.

Thead o [5-Acomion =] Auostae -

Sequence: FourLEDLightShow (Apphy & Compie] [Apply | [Digad |

1 #/Seript Control of 4 LEDs To Cremate A Light Show
2 ##0ct9-09-Novl2-09

3 //loops iterate four times

4 b4

5 Bfor (Private.Counter = 0, Counter <4, Counter ++)
] s7even diodes lit

7 | Greenled = § <slight the green led

8 | Yellowled = 5 -7 light the yellowled

9 delay (0.5) //leave the leds on for 1/2 second
10 | Greenled = 0 ~/ light off

11 | Yellowled = 0 ~~ light off

12 | delay (0.5) ~/ kesp the lights off for 1/2 a half second
13 s/odd numbered diodes lit

14 | Redled = 5

15 | Orangeled = §

16 | delay (0.5) //and repesat the process

17 ! RedLed = 0

18 Orangeled = 0

19 | delay (0.5)

20 = endfor

21 #srun lights to right

22 HBfor (Private.Counter = 0, Counter <4. Counter ++)
23 | Redled = S

24 delay (0.1)

25 Redled = 0

26 { Greenled = 5

27 delay (0.1)

28 Gresnled = 0

29 Orangeled = §

30 delay (0.1)

31 | Orangeled = 0

2 | Yellowled = §

33 | delay (D.1)

24 | Yellowled = 0

a5 -endfor

36 delay (0.5)

37 ssrun lights to left

38 HBfor (Private Counter = 0, Counter <4. Countexr ++)
389 Yallowled = §

40 delay (0.1)

41 Yellowled = 0

42 Orangeled = §

43 | delay (0.1)

44 Orangeled = 0

45 Greenled = &

46 | delay (0.1)

47 | Greenled = 0

48 Redled = 5

49 delay (D.1)

50 i -

£1 -endfor

g2

Figure 3-3. Scripting for the LED Light Show

The scripting for the light show uses a collection of coded statements
that toggle the channel output voltage values for the individual colored
LEDs to 5 volts and then reset them to 0 volts. By embedding delay

79

CHAPTER 3 INTRODUCTION TO SCRIPTING

statements in between the light activation lines and encasing blocks
of code inside iterative “for loops,” a “light show” can be created. The
documentation in the code of Figure 3-3 is hopefully self-explanatory.
The author’s diodes were ordered from the left as red, green, orange, and
yellow. Thus, the even diodes of 2 and 4 were green and yellow, while the
odd diodes were red and orange.

The Start Display button can be grouped with a descriptive text
component to form a panel as shown in Figure 3-4.

The hutton below Starts a script

that uses looping to produces a
light show in the hank of 4 LED's

Start Display]

Figure 3-4. Scripting Activation Button

Observations

When the Start Display button is activated with a mouse click, a light show
occurs on the bank of four LED lights.

When the light show sequence was run on an older desktop computer
with a CPU running at 1.48 GHz with 736 MB RAM and a high-resolution
graphics card, the power monitoring panel created in the previous exercise
was just able to keep up with the light display timing of the half-second
delays, while the graphical display was not.

Discussion

This exercise demonstrates the ability of the SCADA software to control
the activation of electronic circuits through software programming and the
HMI device.

80

CHAPTER 3 INTRODUCTION TO SCRIPTING

Details in the user manual describe the use of the descriptive text
screen component with several others that have the tabbed properties
window allowing the setting of certain properties and the selection of
an action. The descriptive text component has the ability to display a
Running/Stopped message, indicating the status of the selected sequence
attached to the screen component.

A scripted sequence of code runs virtually at the clock speed of the
computer and hence is much faster than either the screen’s ability to
display rapid changes, the HMI's speed, or the rate at which human vision
is able to follow.

The inability of the graphical power monitor display to keep up with
the scripted sequence switching of the LED currents is indicative of the
system limitations. The DAQFactory program is a video display-intensive
software, and if insufficient time is available for painting the screen, the
display lags or does not even update. In marginal cases, as was possible
with the older desktop computer, lowering the screen resolution allowed a
sluggish screen to perform adequately.

High-speed data transfers are an area of specialty often required in
spectroscopy, reaction kinetics, and physics. The current exercises are
focused on the development of methods that use time scales measured in
seconds and longer. Higher-speed “data streaming” for faster capture rates
is dealt with both in the appropriate hardware or software user manuals
and in later sections of this manuscript.

DAQFactory Sequences: Arduino LED Array

In Chapter 2, an inexpensive microcontroller board was used in place
of a robust industrial-grade interface to respond to a control screen set
up in a SCADA system. The low-cost benefit of using the Arduino can be

81

CHAPTER 3 INTRODUCTION TO SCRIPTING

realized in this scripting exercise if the experimenter can devote the time
required to rewrite the serial communications code developed to monitor
the power draw of the Arduino-mounted LED array to accommodate a
scripted light show.

Experimental

The Arduino microcontroller is wired with four different colored diodes

as depicted in Chapter 2, Figure 2-9. The Arduino holds the C program

of Listing 3-1 that provides the LED illumination required, while the

regular or Quick Sequence DAQFactory code in Listing 3-2 of the following

programs writes the appropriate characters to the serial port (all code

listings provided in the “Code Listings” section at the end of the chapter).
A DAQFactory control panel is set up as depicted in Figure 3-5.

Four Led Light Show on Arduino
Start Show Start Show

Quick Sequence Regular Sequence

Figure 3-5. A Dual-Button Scripting Activation Screen

Although the Quick Sequence code and the regular sequence code
are identical, the Quick Sequence code is visible only through the
Quick Sequence selection. Regular sequences can be used anywhere in
DAQFactory and are visible on all sequence selection listings.

82

CHAPTER 3 INTRODUCTION TO SCRIPTING

Discussion

The DAQFactory code listing depicted in Figure 3-3 makes use of channels
to vary the LabJack output connections between 5 volts and ground. The
upper- or lowercase sequence codes sent to the serial port are collected by
the Arduino logic and power the digital pin connected to the appropriate
LED on or off directly without the use of complex channels.

Raspberry Pi

The RPi uses Python and the gpio and gpiozero Python libraries to
communicate with and control directly the individual pins of the GPIO
array. The RPi can only set a pin to a high or low voltage for the output
mode or read the pin status as high or low in the input mode.

With careful design and care in programming, a “light show” can
be assembled to run directly off the GPIO pins without the need for any
intermediate hardware. As detailed in Chapter 1, Figure 1-16, there are
two versions of the GPIO array: on earlier models, there were 26 pins,
while on the newer models, there are 40. The first 26-pin array is common
to all models, while newer versions of the RPi have an additional 14 pins
as identified in Figure 1-16. In summary the 40-pin array consists of 26
GPIO pins, 2 3.3-volt and 2 5-volt power pins, 8 ground pins, and 2 serial
input-output pins, assigned and located as detailed in Table 3-1.

83

CHAPTER 3 INTRODUCTION TO SCRIPTING

A simple four-LED “light show” program in Python code is in
Listing 3-3.

In Chapter 2, the RPi was able to power the four LEDs for short periods
of time, while the Python program read the ADC voltages and computed
the total power draw from the GPIO array. In this exercise, scripting creates
timed sequences of illumination to produce a simple “light show.” If more
light sources are added to the prototyping board to increase the visual
appeal of the display created, the pin outputs should be buffered to avoid
the possibility of overloading the current supply capability of the RPi.

A high input impedance buffer chip such as the CD4050 hex
non-inverting integrated circuit as used in Chapter 1 can be employed
to buffer the GPIO pins to handle many small current loadings, while
a chip such as the ULN2803 Darlington transistor array can handle up
to 500 mA for each of the eight buffered GPIO pins. (The CMOS 4050
high-impedance buffer chips are $0.50 CDN, while the ULN2803 chips
are $2.50 CDN.)

Table 3-1 displays the GPIO pin names and their positions in the 0.1 in
(2.45 mm) spacing array on the SBC. (When viewed from the top of the RPi
board with the array to the right, the number 1 pins are at the top, while
the number 20 pins of the right- and left-hand columns are at the bottom
adjacent to the USB connectors.)

84

CHAPTER 3 INTRODUCTION TO SCRIPTING

Table 3-1. Assignment and Positioning of the RPi GPIO Pin Array

GPIO Pin Location of GPIO Pin in RPi Array GPIO Pin Location of GPIO Pin in RPi Array]
2 left hand column #2 15 right hand column #5 |

3 left hand column #3 16 right hand column #18 [

4 left hand column #4 17 left hand column #6 |

5 left hand column #15 18 right hand column #6 |

6 left hand column #16 19 left hand column #18]

7 right hand column #13 20 right hand column #19 [

8 right hand column #12 21 right hand column #20 [

9 left hand column #11 22 left hand column #8 |

10 left hand column #10 23 right hand column #8 |

11 left hand column #12 24 right hand column #9 |

12 right hand column #16 25 right hand column #11 |

13 left hand column #17 26 left hand column #19 |

14 right hand column #4 27 left hand column #27 |
3.3 volts left hand column #1 5 volts right hand column #1 [
3.3 volts left hand column #9 5 volts right hand column #2 [
Grounds | right hand column #3, #7, #10, #15, #17 | Grounds left hand column #5, #13, #20 |
1/0 pin left hand column #14 1/0 pin right hand column #14 |

With a sufficiently powerful auxiliary supply and CMOS or Darlington
pair buffering of the RPi pins, scripting should be able to control up to 26
LEDs.

Code Listings

Listings 3-1 through 3-3 provide the complete programs for the chapter.

Listing 3-1. Arduino LED Illumination Code

// Arduino code for multiple led illumination on the red board

// Arduino the prgrm waits for an incoming character on com

// port 4 and then processes the data to identify which led is

// to be turned on or off. R, G, 0 and Y turn the diode ON and

// t, g, o, and y turn the diode OFF.

//

int RedPin = 3; // red board dig. pin with red
led and clr

85

CHAPTER 3 INTRODUCTION TO SCRIPTING

const int GreenPin = 4; // red board dig. pin with
green led and clr

const int OrangePin = 5; // red board dig. pin with red
led and clr

const int YellowPin = 6; // red board dig. pin with

yellow led and clr

char incomingByte = ' '; // variable to hold incoming byte
//
void setup() {
Serial.begin(9600); // start the serial port
pinMode(RedPin, OUTPUT); // set the pin function

pinMode(GreenPin, OUTPUT);
pinMode(OrangePin, OUTPUT);
pinMode(YellowPin, OUTPUT);

}
void loop() {
//
while (Serial.available() == 0) // wait for a character
{
// do nothing until data arrives
}
if (Serial.available() > 0) // a char has arrived
{
char incomingByte = Serial.read();
// set character comparison variable to new char
//Serial.print(incomingByte); //diagnostic
if (incomingByte == 'R') { // R sets the red led

power to high
// Serial.print("logic OK"); // logic diagnostic
digitalWrite(RedPin, HIGH); // turn red led on
}

86

CHAPTER 3 INTRODUCTION TO SCRIPTING

if (incomingByte == 'r') { // turn red led off
//Serial.print(incomingByte); // diagnostic
digitalWrite(RedPin, LOW); // t sets the red led
power to low
}
if (incomingByte == 'G") { // G sets the green led

power to high
digitalWrite(GreenPin, HIGH);
}
if (incomingByte == 'g") {
digitalWrite(GreenPin, LOW); // g sets the green led
power to low
}
if (incomingByte == '0") { // 0 sets the orange led
power to high
digitalWrite(OrangePin, HIGH);
}
if (incomingByte == '0") {
digitalWrite(OrangePin, LOW); // o sets the orange led
power to low
}
if (incomingByte == 'Y') { /1Y sets the yellow led
power to high
digitalWrite(YellowPin, HIGH);
}
if (incomingByte == 'y') {
digitalWrite(YellowPin, LOW); //y sets the yellow led
power to low

87

CHAPTER 3 INTRODUCTION TO SCRIPTING

Listing 3-2. DAQFactory Regular Sequence Code for Light Show

//
//
//
//
//
//
//
//
//

Scripted Control of 4 Leds on an Arduino MC for a Simple
Light Show DAQFactory script uses serial port transmission
to control MC. Buttons on a DAQFactory control screen
activate a quick sequence or regular sequence scripting, to
transmit the led activation codes to the serial port where
the Arduino resident C code parses the commands and
activates the appropriate diode.

Main loop iterates four times. May 21, 2019

for (Private.Counter = 0, Counter < 4, Counter ++)

// even diodes 1lit

device.ardyRb.Write('G") // light the green led
device.ardyRb.Write('Y") // light the yellow led
delay(0.5) // leave the lights on for 1/2 sec.
device.ardyRb.Write('g") // green led off
device.ardyRb.Write('y") // yellow led off
delay(0.5) // keep lights off for 1/2 sec
// odd numbered diodes lit
device.ardyRb.Write('R") // red on
device.ardyRb.Write('0") // orange on
delay(0.5) // time delay
device.ardyRb.Write('r") // red off
device.ardyRb.Write('o") // orange off
delay(0.5) // time delay
endfor

//

run lights to right

for (Private.Counter = 0, Counter < 4, Counter ++)

88

device.ardyRb.Write('R") // red on

delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.

endfor

//

delay (0.5)

// run lights to

for (Private.Counter =

device.ardyRb.
delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.
device.ardyRb.
delay(0.1)
device.ardyRb.
endfor

Write('r")
Write('G")

Write('g")
Write('0")

Write('o")
Write('Y")

Write('y")

left
Write('Y")

Write('y")
Write('0")

Write('o")
Write('G")

Write('g")
Write('R")

Write('r")

CHAPTER 3

//
//
//
/7
!/
//
//
!/
//
/7
//

//
//
//
//
//
//
//
//
//
//
//
//

INTRODUCTION TO SCRIPTING

on for 1/10 sec
red off

green on

on for 1/10 sec
green off
orange on

on for 1/10 sec
orange off
yellow on

on for 1/10 sec
yellow off

0, Counter < 4,Counter ++)

yellow on

on for 1/10 sec
yellow off
orange on

1/10 sec
orange off
green on

on for

on for 1/10 sec
green off

red on

on for 1/10 sec
red off

89

CHAPTER 3 INTRODUCTION TO SCRIPTING
Listing 3-3. Raspberry Pi Scripted “Light Show”

Led "Light Show" Ex. 3 Scripting on Raspberry Pi
Pins are numbered sequentially from the top down in the right
and left columns for ease of assignment and counting when
wiring jumpers
from gpiozero import LED
from time import sleep
Define and assign the leds
redled = LED(2) # left column pin 2
grnlLed = LED(3) # left column pin 3
orngled = LED(4) # left column pin 4
yelled = LED(5) # left column pin 15
repeat code for flashing 4 times
for i in range(4):
redLed.on()
grnLed.on()
orngled.on()
yelled.on()
sleep(1)
redlLed.off()
grnLed.off()
orngled.off()
yellLed.off()
sleep(1)
reoeat code for streaming to left 4 times
for i in range(4):
redLed.on()
sleep(0.1)
redlLed.off()

90

CHAPTER 3 INTRODUCTION TO SCRIPTING

grnLed.on()
sleep(0.1)
grnLed.off()
orngled.on()
sleep(0.1)
orngled.off()
yelled.on()
sleep(0.1)
yelled.off()
repeat code for streaming to the right 4 times
for i in range(4):
yellLed.on()
sleep(0.1)
yelled.off()
orngled.on()
sleep(0.1)
orngled.off()
grnLed.on()
sleep(0.1)
grnLed.off()
redLed.on()
sleep(0.1)
redlLed.off()
repeat code for alternate pair flashing 4 times
for i in range(4):
redLed.on()
orngled.on()
sleep(1)
redlLed.off()
orngled.off()
grnLed.on()

91

CHAPTER 3 INTRODUCTION TO SCRIPTING

yelled.on()
sleep(1)
grnLed.off()
yelled.off()

Summary

— Commercial SCADA software has a scripting facility to
augment the built-in control functions and enable
communication with remote processes or experimental
setups.

— SCADA systems assembled from inexpensive readily
available components require more detailed program
development in the programming languages of the
computing platforms in use.

— Scripting or programming techniques will be further
developed in Chapter 4 when the host screen is used to
enter and display data.

92

CHAPTER 4

Data Entry
from the Screen

A control system must include the capability of entering data from the
screen, to be able to modify or vary the operation of a sequence or process.
In this chapter, numerical values entered from the keyboard are used to
modify scripted sequences of programming code that oscillate LEDs on
and off for a predetermined number of cycles. In addition, two options
are created for the modes of power control in which the illumination
for the diode cycles from full on to off and the diode output intensity is
incrementally stepped from off to full brightness to create a “fade” or
“fading” effect. LED brightness is determined by the current through
the device. The maximum current through the LED is set by the current
limiting resistor (CLR) placed in series with the diode, power source, and
ground. The current through the LED can be regulated by varying the
voltage of the supply. However, diode intensity control by voltage variation
can only be effective above the voltage level required for conduction in the
device, typically 1.8-3 volts.

In this chapter, a DAQFactory sequence code that increments the
power applied to the diode in a fixed number of voltage increments
is created with a screen confirmation of the entered data value. This
exercise also demonstrates the ability of the software to appear to run
two sequences simultaneously in what is often termed a “threaded”
application.

© Richard J. Smythe 2021 93
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_4

https://doi.org/10.1007/978-1-4842-6778-3_4#DOI

CHAPTER 4 DATA ENTRY FROM THE SCREEN

The various control and monitoring options are then grouped together
in a simple graphical user interface (GUI) data entry, process control
panel.

Diode intensity is more efficiently controlled with a technique known
as pulse width modulation (PWM). In a PWM control operation, full power
is applied to the load being driven as a series of square wave voltage pulses
whose time width is altered in a controlled manner or modulated with
respect to increasing or decreasing time period. Both the frequency of the
square wave power source and the pulse width of the power application
can be numerically controlled or modulated from screen input values.
(Greater details on the application and implementation of PWM are part of
Chapter 7.)

An alternative screen data entry exercise using a much less expensive
microcontroller has been developed. The microcontroller exercise is being
presented as with the previous exercises with a minimum of explanation
of the more complex code required to implement the exercise. Details
of microcontroller usage are introduced later in the manuscript at
which point some of the advantages and deficiencies of these relatively
inexpensive devices can be fully appreciated.

Hardware

The red LED electronic circuit wired for the previous exercises as indicated
in Chapter 1, Figure 1-3, is to be used for a portion of this exercise; and

a green LED is wired to the first analog output channel (AO 0) on the
LabJack terminal board. The AO 0 signal is wired into the base of a 2N3904
transistor, in accordance with the schematic in Figure 4-1.

94

CHAPTER 4 DATA ENTRY FROM THE SCREEN

SCaba
Main Console

Display Screen

with active e
ican components '—wsﬂ'%—‘_y Ao
= 5 i I
= — N_.H s ren i
<Al 1 10 1 b -
_2|GND ND [;.
Al 2 fjuua_.'_ 3 =
SAl 3 10 3 [, = 1
~¢/GND GND o] i
ZAl 4 AOD @l 8, " ep e
Al 5 AD L e ™ b
|GND 3
wAl & L
uAl 7 o 233
GND |
a5 Y v
43 v

Variable LED Power
Labjack Cortrol af 2M39@4
[N

[e |

Figure 4-1. Prototype Circuit for DAQFactory Control Screen with
Data Entry Facility

The collector and emitter of the transistor are connected so as the base
voltage controls the size of current from the +5 V supply to the red LED
with its current limiting resistor. Recall that transistors are current control
devices. The size of the base current entering the transistor is determined
by the voltage applied to the series resistor in the base circuit. The applied
voltage is set by the script-controlled AO 0 output of the LabJack HMI.

If the circuit depicted in Figure 4-1 is modified, the experimenter should
ensure that the current limiting resistor does not allow currents larger than
that specified as a maximum for the diode in use to flow in the circuit.

95

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Software
Page Components Required

The DAQFactory data entry panel as seen in Figure 4-5 consists of a total
of eight lines composed of four text components, two edit boxes for data
entry, two buttons configured to start sequences, and two descriptive text
components.

In order to assemble the control panel, the previous techniques used
to create, position, and configure screen components can be used, and
where necessary, the DAQFactory user manual can be referenced to place
and configure the new screen icons used in this exercise.

The following list identifies the page components that make up the
finished control panel as depicted in Figure 4-5:

1) A text message is used to identify the panel/
grouping and its function (top line, yellow
background, black lettering; text and background
colors selected from boxes in the component
configuration window; see Chapter 1, Figure 1-6).

2) Aneditbox is configured (see Figures 4-2 and 4-3)
and labeled to identify and receive the data to be
entered into the panel. The “Flash led repeats”
is the number of times to flash the red LED in
Figure 4-1 in an on and off manner. The variable
in DAQFactory holding the flash number index
is defined as flsh_Rpts and is declared as a global
variable in an auto-start sequence (Listing 4-1;
all code listings provided in the “Code Listings”
section at the end of the chapter). In order for the
correct variable names to automatically appear in

the drop-down list as seen in Figure 4-2 with the

96

3)

4)

CHAPTER 4 DATA ENTRY FROM THE SCREEN

“cycles” entry being highlighted, the variable names
must be declared as global with a short sequence
that is automatically run when the page is loaded
(see Figure 3-1 in Chapter 3). Line 2 in the panel is
configured entirely from the Caption box and the
checking of the “Set on Set Button press” check

box as seen in Figure 4-3. The “Set button caption”
is entered into the appropriate box to appear on

the button in the second line of the panel. When
configuring and editing the edit box components,
make sure the cursor tip is within the edit box active
area and that the Ctrl key is pressed prior to clicking
the left mouse button that will then highlight the
edit box itself with the thick hatched border seen

in Figure 4-4. With the edit box highlighted, the
right mouse button can be clicked to bring up the
properties dialog boxes of Figures 4-2 and 4-3. The
values entered into the edit box are then placed into
the channels or variables as required.

A second edit box is created to receive a variable
numeric value that will cycle the intensity or
brightness of the green LED in Figure 4-1 from off to
full brightness and back to off. The variable holding
the number of fade cycles is declared as fd_Rpts in
the same auto-start sequence as the flash index.

In the fourth line of the panel, a static text beneath the
data entry boxes identifies the variable entered. For
enhanced contrast, the black text is written against

a green background. (See options in Chapter 1,

Figure 1-6).

97

CHAPTER 4 DATA ENTRY FROM THE SCREEN

98

5)

6)

A descriptive text component forms the fifth line of
the panel and is used to confirm, visually, the value
entered in the edit box that has been set as the value
of the scripting variable “flsh_Rpts” used by the
scripting code. Figure 4-6 illustrates the properties
window of the descriptive text component. A
descriptive text component needs a caption, an
expression, and a comparison table. Entries into the
comparison table are made with a numerical value
in the left column and a text string to the right. The
Add and Delete buttons are used to get the desired
table assembled. Once assembled and configured,
if 0 is entered into the edit box on clicking the Enter
button, the descriptive text component looks up

the value of the variable flsh_Rpts and prints the
corresponding entry in the text column that is “no
value entered.” Entering a 4 in the edit box will cause
the message “four times” to be printed after the
caption “Flash repeats:” In essence, the comparison
table has a numerical value range for the variable at
hand and a corresponding text message to display
when the variable falls within a defined range.

The sixth line consists of a descriptive text to the

left and a push button to the right. An appropriately
labeled button is used to initiate the “n” repeats

of the script-controlled, on/off flashing of the red
diode. In Figure 4-5, the DAQFactory control screen
is configured to run the regular sequence code listed
in Listing 4-2. The power to the LED is controlled by
the RedLed channel whose output can be found on

the LabJack I/0 0 pin.

CHAPTER 4 DATA ENTRY FROM THE SCREEN

7) Inthe seventh line of the control panel is a second
descriptive text component configured to report
the number of times to repeat the fade in/fade out
oscillation of the green LED.

8) A descriptive text and a second button make up the
eighth and last row of the control panel. The button
controls a pair of sequences, the first of which is the
red LED flashing sequence, while the second, in
Listing 4-3, is the fade in/fade out code for the green
LED. In Figure 4-7, the Action tab for the button
component is displayed. Pulling down the edit box
list of actions will reveal a long list of single choices.
If more than one action is desired on the button
click, then the Add/Delete up/down arrows can be
used to add actions to be invoked when the button
is clicked. In this demonstration exercise, the flash
and fade sequences are run simultaneously.

Man | Actve Colr | Inacsive Coiee | 5w |

Coptiorc [Mursbes of cycles
St Charvml |y leo] Subwt only i changed W
Seonea | ™ Channel A

S on el B :_“'“ L

SetenSubit e, Device
Geaderly 1% DigOut =3
wher:

shems mukiple s of dstn, but meves te th
+ then usbratter the d

Figure 4-2. Edit Box Main Tab to Set a Channel or a variable
value

99

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Figure 4-3. Edit Box Main Tab Completed

Text -—

Number of cyclesz

Figure 4-4. Edit Box Ready for Sizing

Edit Box entry of values for script variables

Flash led repeats :[0 -
Fade cycle repeats:| 0 -
Value of variable in script

Flash repeats: no value entered

Run flash LED script T indext |

Fade repeats : no value entered

Button runs both scripts Simultaneous Serbhl

Figure 4-5. Control Panel to Vary LED Illumination Repetitions
100

CHAPTER 4 DATA ENTRY FROM THE SCREEN

f T ®
Uescnptive lext Lomponent

| Man | Color | Size | Action |

I Caption: |Fla¢1repeun
Expression: flsh Rpts
Teat:
Thieshokd: +| Tent: af Fort: |l e |
> 0000000 no value entered Fort Size: | 14 points
1.000000 once
Speedlfq'l
2000000 twice
3000000 thice Quik: —————————————————
. 4.000000 four times _ILI | Digtalln Sequence Trig
B OO o s bememn
4 | | [Dowig | PiDLoop Tag
- | Add Delete |

ok | cCance |

The descriptive text component is very similar to the variable value
component, except that after the expression is evaluated, the result is
compared to a table of text labels to determine which gets displayed. No
numbers are displayed, only labels. This is most useful for digital signals that
only have two values, for example On / Off , Open / Closed, etc. The text
component can also be used to display simple text labels, which is what is
displayed when a text Component is first created, but the static - text
component is probably better for this use.

To have the text component change with the result of the expression requires
an expression and the entry of the various labels in the text table. The
expression typically should evaluate to a one dimensional value, but will be
converted to a one dimensional value if necessary.

The text table works like all the other tables in DAQFactory. Click on the Add
button to add new rows, the Delete button to remove rows, and double click
on a cell to edit its contents. The table contains two columns, the threshold
and text lahal. The threshnld of rach row indicates the hinhest pualiated

W

Figure 4-6. Configuration Panel for the Descriptive Text

Component

101

CHAPTER 4 DATA ENTRY FROM THE SCREEN

| Man Acton |
Acton’ [start / Stop Sequence - R
Delete | —!
Sequence: [Local VariableintenstyFlash ~ ~|
Togghe between: lﬂdl
Interval: 1
New Pageis):
(Press <Enter>
between pages)

Main Tab:

Text: The caption that is displayed on the button.

Text Color: The color of the caption displayed on the button.
Background Color: The color of the button.

Font / Font Size: The font information used to draw the caption.
Speed Key: A key that when pressed will select the this component. I

Action Tab:

Figure 4-7. Button Component Multiple Action Selection Panel

For visual clarity, panel components can be used to create a
background for the various groups of active screen components making
up a specific operation control screen. A bold numeral positioned at the
base of the panel can be used to associate an entry in a table of notes and
instructions on the main control screen.

102

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Scripting

Listing 4-1 is an important procedure to employ when screen components
are used to alter the contents of variables. The sequences for flashing

and fading the red and green LEDs are detailed in Listings 4-2 and 4-3,
while the 27-step process for varying the green LED voltage between the
minimum turn-on voltage and power supply maximum is to be found in
Listing 4-4. Listing 4-3 varies the green diode illumination by calling the
AnalogUp() and AnalogDwn() functions to step the diode through the
incremental voltage levels as required in the fade in/fade out effect. The
sequence is for a low to high transition, and a second routine is written for
high to low transition to enable the system to both increase and decrease
the LED brightness in 1.3 seconds.

Observations

The on-off cycle of the red diode is definitive in that the light is at full
brightness or it is off. The stepping of the voltage or current applied to the
base of the 2N3904 in a series of increments produces a “noisy” increase
and decrease in the illumination of the semiconductor. (See “Discussion.”)
The descriptive text component application is a very simple illustration
of the usage of the icon but does provide an overview of how the
comparison table is assembled and operates.
Data entry into the variable loop indexing is a simple illustration of
the technique, and the dual initiation of the two different scripts from
a single button illustrates the ability of the DAQFactory programming
to demonstrate “threading” in which two programs appear to execute
simultaneously. (Threading is an advanced programming topic that if
required for an experimental control can be studied in detail from the
literature of Python programming.)

103

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Discussion

As can be seen in the code for the script to switch the power on and off
to the red LED, the variable “flsh_Rpts” is declared as a global entity.
When the script has been typed and the “Apply & Compile” button clicked
successfully, the global variable “flsh_Rpts” appears in the pop-up typing
aid listing of channels, variables, and sequence scripts.

A transistor is an amplifier of current.! Any signals that are created
by the DAQFactory software and are ultimately expressed as a voltage
level impressed upon the AO 0 terminal of the LabJack will contain noise.
The noise, riding on top of the impressed DC signal levels created by the
DAQPFactory script, is augmented by the 10 kQ resistor protecting the
transistor base from excessive current. The noise on the signal that is
impressed upon the base of the 2N3904 is amplified by the transistor’s
gain or amplification factor hg,, typically a value between 35 and 100, to
generate the easily visible flicker and irregular transitions of the fade in or
out.

Although a PNP transistor has been used in the exercise, an NPN could
be used with the changes illustrated in Figure 4-8 (2N3904 and 2N2222 are
suitable NPN devices).

Figure 4-8. NPN and PNP Power Control

The scripting code for the on/off diode switching is contained in a loop
whose index is declared as a global-type variable, the value of which is set
from the screen edit box. The same code can be used with two functions

! Electronics Cookbook, Monk, O'Reilly Media Inc., ISBN 978-1-49195340-2

104

CHAPTER 4 DATA ENTRY FROM THE SCREEN

labeled AnalogUp() and AnalogDwn() that are called in place of the
assignment statements setting the analog output channel AO 0 to either 5
volts or 0 in the simple on/off cycling. The functions stepping the intensity
of illumination up and down by voltage adjustment are very simplistic
approaches to altering the power delivered to the green diode. There are
probably numerous more elegant code sequences that can be written to
control the illumination intensity. (Note: Analog up and analog down will
change function if PNP and NPN transistors are interchanged.)

U12 LabJacks can be configured for PWM outputs to provide smooth
power control applications as opposed to the coarse demonstration
method used in this exercise. Newer data acquisition and interfacing
devices are usually equipped with built-in PWM facilities as presented in
Chapter 7.

Screen Entry of Data with the Arduino
Microcontroller

A screen entry of data can also take the form of a series of numerical
control values generated from a control panel in DAQFactory.
Numerical values from a grouping of DAQFactory icons forming a
control screen on the host computer can be passed to a microcontroller
through the serial port to convert the entered data into process
variations or experimental control actions. Data must pass through
the serial port portal between the two different computing systems at
the low-level bit and byte or on/off communication level. Although
the on/off recognition capability is organized in both systems as ASCII
(American Standard Code for Information Interchange) characters,
the information must be turned into numerical integer or numerical
floating-point values for mathematical operations or alphabetic
characters for identification purposes.

105

CHAPTER 4 DATA ENTRY FROM THE SCREEN

As has been presented in previous exercises, an Arduino
microcontroller can be controlled from a serial port. In addition to the
much lower cost of the microcontroller board, the microcontroller has
many updated features such as programmable hardware timers that can
be used to vary the time width of 5 V electrical pulses to implement pulse
width modulation. (See Chapter 7 for details.)

An Arduino normally has 14 digital I/O pins, of which 6 can provide
PWM power control.

Connecting the SCADA software to the Arduino microcontroller
through the serial port limits the electronics to processing one signal at
atime. Regardless of how many data streams are multiplexed or mixed
before being transmitted to the serial port and then parsed back out into
their individual streams on the microcontroller side, only one bit at a time
passes through the serial connection.

Greater details on the serial connection and its use are presented in
Chapter 11.

Experimental

To implement the use of the Arduino microcontroller instead of the

LabJack U12 to demonstrate the control screen entry of numerical values

for controlling and receiving data for display from the microprocessor, the

digital pin and ADC inputs depicted in Chapter 2, Figure 2-9, can be used.
In all DAQFactory-Arduino programming, only one program or the

other can be in control of the serial port. The author’s normal practice

is to develop the Arduino code required for the task at hand and then

test the code by launching the Arduino’s serial monitor and sending

into the microcontroller code the character string that will be sent by

the DAQFactory control screen. Once the correct Arduino response has

been confirmed, the serial port on the Arduino is closed, and the Arduino

IDE window is minimized to run in the background. Once the Arduino

code to receive the correct DAQFactory character string to invoke the

106

CHAPTER 4 DATA ENTRY FROM THE SCREEN

action required is running in the background, the DAQFactory program
containing the page with the control screen to be placed into service can
be launched to begin the control session. In this exercise, the DAQFactory
screens seen in the figures shown are resident in the SCADA software that
has access to and control of the serial port through which characters can
be sent to initiate the desired action from the devices connected to the
Arduino I/0 connections.

An initial DAQFactory screen as depicted in Figure 4-9 was created to
begin the progressive development of serial communications.

The Red led on and Red led off buttons are coupled to the Quick
Sequence code of Listing 4-5 that transmits a 1 or 0 to the serial port
where the Arduino code of Listing 4-6 activates/inactivates the red LED
as required. The Arduino code also reads the voltage drop across the
measured, known value current limiting resistor and sends the current
data back to the serial port where the DAQFactory Quick Sequence code
parses out the current data for display on the control screen.

A DI Factony - DAy Arduines Commurications 1 %
Fie EoM View Oud Debug Layowt ek Help

DEE w8 a0 & 7 R @B,

An Arduine - DAQfactory Serlal Communications Page B o
Twwo button red led coatrol of diode on Ardulne digital pin 2 1 CONNECTIONS:
R b A seies of exarcises in increasing complexity are presented on £ Locd
- Lo | LV Led Cument =< 1072V 1 s page 1o demonstrsie some of the basic principols for using #1 4 CHANMELS:
The On buon ramamits 2 1 ko the serial port while the ON sends a 0 the conirol crsens of AGFactory 1o manigulate nces on a ‘:&mm
romoto Ardui EXPORT:
leis papenie microcontroller hmdnn»m o for the & 10GGING:
A vingle bution can be eted to toggle an led on and off Industrinl.resoarch grode Lablocks.) - SEGUENCES:
Toggle Red led Led Curraet = : 10.712 Each of the sats of burons ars abls 1o actvasts leds on the B ":(s
Errovagh s of tha icreprocasson piograrmabis logic, bl e ™ B0 s
® 3 Page 0L
[Page_MaticreentmtnDuta
= D Paged
Mutiiple Butions Toggle Leds Ssard
. ot | e Lot drawes TV, Gieea EDreumentdn =TV D Pages
£ o = D #ages
=, i D fage?
| Orangeled Yollow Lad Oninge T EDcwentdaar = TER0 YV Vellow T ED-ciment draw = 100 V_ Paget

Toial st draw -V

Figure 4-9. DAQFactory Control Screen for Directing Actions on an
Arduino Microcontroller Board

107

CHAPTER 4 DATA ENTRY FROM THE SCREEN

The second button in the upper-left corner of the DAQFactory control
screen is coupled to a second Quick Sequence that activates a more
complex and more efficient toggling of the red LED on the Arduino board.
The programs of Listings 4-7 and 4-8 are the Quick Sequence code and
Arduino code that manage the toggling effect.

Figure 4-10 depicts the DAQFactory control screen display obtained
when the green and orange LEDs on the Arduino board have been
activated by the corresponding buttons on the DAQFactory control screen.
The transmission history of the serial port action on the COM4 monitor
is recorded in the bottom left of the figure frame. Listings 4-9 and 4-10
control the colored buttons of the control panel.

Ay DATFactiny « DAGFy frcksins Comrrumcation. o x
Fle EdR View Quik Debug Lmout Tosh el
D& E B wnd & 2 2 RbT,
An Arduino - [y Serial ¢ Page ¥
Two button red led control of diode on Asduino digital pin 3 B4 CONMECTIONS:
1 ; = = 47 local
Red lod N T A seies of n increasing oy on
SE M L eV ik g o horvoristTabe worwes of e b principals for using 5 4 CHANNELS:
The On busion trassmits & 110 the serlal port while the Off sends a 0 mmlmdmam\{»mmbmmmnma "‘;:ml:um
In the ' EXPORT
e bess axpansio micsoconaroller is used as a substitie for the LOGGMG:
A single bunon can be used 1o toggle an led on and off indusnrial resaarch grade LabJlacks. =.{',(ou|nu:.
Touhe Rad bed | Ll etV Each of the wets of butions are ablo 1o activaste leds on the =l ;ms
K z microcontioller and record the current being consumed by the 3
through use of the micioprocessors programnable logic. ctivated lads 8 through the seclal commenications port. =0 r;::se e
40 Page L an
& [Page 2EstSersennteData
Mubtiple Buttons Toggle Leds O Fages
D Page s
_ - R LED eurramt draw = : 0.00 V Grown LED curront draw = 11,06 V D Praes
0 P s
0O PageT
_ Yaltow Lad Orange LED cusrent draw = : 10.70V Yallow LED current draw = 0.00 V 01 Pome 8
3 D Paged
- P ghShowic nptedButtons.
Total Cusront draw = : 21.76 V g e
[r=: G
fRx: 11 .04) 1
[f=: O
. 10.7 1

Figure 4-10. DAQFactory Control Screen for Directing Multiple
Actions on an Arduino Microcontroller Board

Listings 4-9 and 4-10 contain the DAQFactory quick sequence code
activated by clicking on a coloured button and the responding Arduino
code for the control screen coloured buttons and variable value readouts

visible in Figure 4-10.

108

CHAPTER 4 DATA ENTRY FROM THE SCREEN

In Figure 4-5, the DAQFactory screen data entry panel has been
developed using the LabJack devices and an auto-start sequence to declare
the variables required to hold the loop indexing values to be entered.

The auto-start sequence in DAQFactory is also activated when the

page holding the data entry panel is loaded for use with the Arduino
microcontroller. All of the features discussed with respect to DAQFactory
previously are active with the microcontroller except for the threading
demonstration button. (See “Discussion.”)

The “Tst script with variable index” button is coupled to the Quick
Sequence program as shown in Listing 4-11. The Quick Sequence relies on
a “for loop,” executed “flsh_Rpts” times to send an on/off or “1”/“0” serial
port transmission to the Arduino running the code listed in Listing 4-6 to
power the red diode on or off. Alternately, Listings 4-12, 4-13, and 4-14 can
be used to operate the Arduino’s PWM functionality to both fade and flash
the orange diode on the microcontroller board. (See “Discussion.”)

Observations

When the screen data entry uses the edit box screen components with
the LabJack, it is possible to enter two different values into the flash and
fade edit boxes, and when the bottom button “Simultaneous Scripts” is
activated, the flash and fade actions on the two diodes both run together.
(See “Discussion.”)

The remainder of both the LabJack and Arduino screens and functions
work as expected.

Discussion

In addition to the DAQFactory scripting language, Python is a
programming language that is able to accommodate “threading.” The
details and applications of threading are much more advanced topics than
can be examined in this introductory work, and for more information, the

literature of Python can be consulted.

109

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Examination of the Arduino code in Listing 4-8 will reveal that the
logic for determining the status of the red LED has been written, for
simplicity, entirely into the microcontroller system. In the event that
the microcontroller were in a remote location and the operator of the
DAQFactory control screen needed to know the status of the red LED or
the device attached to the digital pin, a flag could be passed back to the
control screen through the serial port along with the current drawn data.

The experimenter must take care when using the digital and PWM
pins on the Arduino as only 6 of the 14 digital I/O pins support PWM
(i.e., Arduino pins 3, 5, 6, 9, 10, and 11 are PWM capable.)

When working with the DAQFactory serial port, the experimenter must
manually add a line feed ASCII marker to the end of each transmission if it
is to be used by Arduino code to mark the end of character transmission.
The Arduino serial monitor has a selection box in the lower right-hand
corner of the field of view to select the desired line endings for the terminal
session at hand.

The PWM activation code using the 0-255 integral power level can be
used with both the fade and flash modes of LED activation by calculating the
timing and power requirements in the DAQFactory sequence scripting and

only transmitting the power activation commands as and when required.

Raspberry Pi: Screen Entry of Data

Data entry in the Python language used by the RPi is accomplished with
the input statement. An input statement in Python takes a string value
argument that may then need to be converted into the appropriate
numerical value as an integer or float. A typical screen entry code is as
follows (# marks a comment line):

110

CHAPTER 4 DATA ENTRY FROM THE SCREEN

input_str = input("Enter the desired input characters”,)

variable = int(input_str) # can only be used for non-floating
point conversion of numbers
variable = float(input_str) # can only be used for floating

point numeric strings

Control of LEDs with the Python language can use a basic library
called RPi.GPIO or a more advanced capability library known as gpiozero.
The documentation for both libraries is available online.

Because the GPIO array is a digital input/output system, voltage
control is not easily implemented without resorting to PWM and capacitor
smoothing. (PWM is introduced in Chapter 7.)

A simple exercise demonstrating the screen entry of data with Python
and the RPi can be created by blinking an LED with a flash length set from
a screen-entered value for a set number of repeats, also set by screen entry.
The Python program in Listing 4-15 produces the output of Figure 4-11 and
flashes the nominal LED as recorded.

® OFHE» @ A Zero_Or_Clear G.. | ¢ ScreeninputOfSi. | A Python 3.4.2 Shell | Bl [pi@raspberrypi: ~]|

Python 3.4.2 Shell
Ele Edt Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART =======================s========
25>
Input the GPIO pin number for the LED control exercise 2
Input the number of times to flash the LED 5
Input the on time in seconds for the LED flash 2
Array pin number = 2 Repeats = 5 Flash rate = 2
Lighting the LED on GPIO pin 2 to flash 5 times for 2 seconds per flash
GPIO array cleared
>2>

Figure 4-11. Output from Python Screen Entry of Data Program

Occasionally, when switching on the power for the RPi when
peripherals are attached to the GPIO array, some of the array pins may be
in a high or powered state. Two utility programs able to re-zero or turn off

111

CHAPTER 4 DATA ENTRY FROM THE SCREEN

the active pins are presented in Listing 4-16. One utility makes use of the
channel list function, and the second uses a Python loop to process the
individual pins of the GPIO array.

Code Listings

Listing 4-1. DAQFactory Auto-start Sequence Code to Declare
Variables

// Auto declare variables is a sequence that runs when the Main
// Screen page is run. Two variables are declared globally,

// flsh Rpts and fd_Rpts representing the number of times to

// flash the red led and fade the green.

//

global flsh Rpts

//

global fd Rpts

Listing 4-2. DAQFactory Code to Flash the Red LED a Variable
Number of Times as Entered from the Control Screen

// Sequence Name --: TstSqncForlLoopVariableReps

//Screen Entry of Alph-Numeric Values

//0ct9/09 and Nov. 13/09

//A screen Edit Box accepts entered values as a variable called
//flsh Rps. The variable is declared as a global type with an
//auto-run sequence and is used as the loop counter value to
//vary the number of times the loop iterates.

//

global flsh Rpts

//

112

CHAPTER 4 DATA ENTRY FROM THE SCREEN

for (Private.Counter = 0, Counter < flsh Rpts, Counter ++)
//

RedlLed = 5
delay(0.5)
RedlLed = 0
delay(0.5)
//

endfor

Listing 4-3. DAQFactory Code to Fade In and Out the Green LED
Brightness

//Variable Intensity Flash varies the voltage of the
//A0 0 channel to raise and lower the intensity of the
//green LED

//Nov. 16/09

//

global fd Rpts

AnalogOut = 0

for (Private.Counter = 0, Counter < fd Rpts, Counter ++)
AnalogUp ()

AnalogDwn ()

endfor

AnalogOut = 0

Listing 4-4. DAQFactory Regular Sequence for LED Illumination
Intensity Variation

//Analog Voltage is raised from 2.4 volts to 5.0
// in steps of 0.2v with a delay of 0.05 sec

// between increments. Rvn. Jan4/10

AnalogOut = 2.2

113

CHAPTER 4 DATA ENTRY FROM THE SCREEN

delay (0.05)
AnalogOut = 2.4
delay (0.05)
AnalogOut = 2.6
delay (0.05)
AnalogOut = 2.8
delay (0.05)
AnalogOut = 3.0
delay (0.05)
AnalogOut = 3.
delay (0.05)
AnalogOut = 3.4
delay (0.05)
AnalogOut = 3.6
delay (0.05)
AnalogOut = 3.8
delay (0.05)
AnalogOut = 4.0
delay (0.05)
AnalogOut = 4.2
delay (0.05)
AnalogOut = 4.4
delay (0.05)
AnalogOut = 4.6
delay (0.05)
AnalogOut = 4.8
delay (0.05)
AnalogOut = 5.0
return()

N

114

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Listing 4-5. DAQFactory Quick Sequence to Turn the Red LED On
from the Button and Read the LED Current

device.ardyRb.Purge()
device.ardyRb.Write('1")

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)
ldCurrnt = strToDouble(datain)

Listing 4-6. Arduino Code for DAQFactory Code of Listing 4-5

// Arduino code for a single led illumination on the red board
// Arduino the pgm waits for an incoming character on com

// port 4 if a 1 the led is turned on if a 0 it is turned off.
// A0 is wired to Rd led junction and the Arduino calculates
// the led current and prints the value to the serial port.

//

const int RedPin = 3; // red board dig. pin with red led
and clr
int incomingByte; // a variable to hold incoming byte
float iRed = 0; // the led current through the CLR
//
void setup() {
Serial.begin(9600); // start the serial port
pinMode(RedPin, OUTPUT); // set the pin function
}

void loop() {
if(Serial.available()> 0) { // check port for last
data byte

115

CHAPTER 4 DATA ENTRY FROM THE SCREEN

incomingByte = Serial.read(); //

if (incomingByte == '1") { // if is 1, turn the led on
digitalWrite(RedPin, HIGH);

// calculate led current and print to the serial port

iRed = ((analogRead(A0) * 4.8828)/216);

Serial.println(iRed);

}
//
if (incomingByte == '0") {
digitalWrite(RedPin, LOW); // if 0, turn the led off

// calculate led current and print to the serial port
iRed = ((analogRead(A0) * 4.8828)/216); // ensures the LED
is off
Serial.println(iRed);
}
}
}

Listing 4-7. DAQFactory Quick Sequence Code to Toggle Red LED
and Read the Power Consumption

device.ardyRb.Purge()
device.ardyRb.Write('R")

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)
ldCurrnt = strToDouble(datain)

116

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Listing 4-8. Arduino Code for Receiving the DAQFactory Control
Screen Button Request to Toggle Red LED Illumination

// Toggle an led on/off from one DAQFctry button icon on COM4
// The DAQF QS sends an R to the serial port on com 4. On the
// arduino side the status of the RedlLed digpin is determined
// and toggled as required. Led current calculated and written to
// Ser prt where DAQFtry parses out floating point current value.
//

const int RedlLedPin = 3; // red led is on dig pin 3
int oofR = 0; // power state of red diode
char incomingByte = ' '; // declare incoming byte
float iRed = 0; // red led current
//
void setup() {
Serial.begin(9600); // start the serial port
pinMode(RedLedPin, INPUT); // must initially read the dig. pin
}
//
void loop() {
if (Serial.available()) { // check for incoming data
char incomingByte = Serial.read();
//Serial.print(incomingByte); // diagnostic

if (incomingByte == 'R' && oofR == 0) {
pinMode(RedLedPin, OUTPUT);
digitalWrite(RedLedPin, HICH);
iRed = ((analogRead(A0) * 4.8828)/216);
Serial.println(iRed);
0ofR = 1;

117

CHAPTER 4 DATA ENTRY FROM THE SCREEN

else {
if (incomingByte == 'R' &&% oofR == 1){
pinMode(RedLedPin, OUTPUT);
digitalWrite(RedLedPin, LOW);

iRed = 0;
Serial.println(iRed);
oofR = 0;
}
}
}
}

Listing 4-9. DAQFactory Quick Sequence Code for Multiple-Button
Control of Arduino LEDs

device.ardyRb.Purge()
device.ardyRb.Write('R")

delay(0.1)

global iRed

global iTotal

private string dataini

private string datain2

dataini = device.ardyRb.ReadUntil(13)
datain2 = device.ardyRb.ReadUntil(13)
iRed = strToDouble(datain1)

iTotal = strToDouble(datain2)

118

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Listing 4-10. Arduino Code Supporting DAQFactory Multiple-
Button Colored Diode Selection with Power Consumption

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, 0 or Y to the serial port on com
// 4. On the arduino side the status of the appropriate led

// digpin is determined and toggled as required through a

// switch construct.

//

// power drawn calculations, each led has a CLR and the voltage
// on the junction of the resistor and led is measured and used
// to calculate diode current by A0 to A3 respectively. Current
// calcln only done when diode activated.

//

const int RedlLedPin = 3; // red led is on dig pin 3
const int GreenlLedPin = 4; // green led on dp 4

const int OrangeledPin = 5; // orange led on dp 5

const int YellowlLedPin = 6; // yellow led on d pin 6

//

int oofR = 0; // on off flags initialized
int oofG = 0;

int oof0 = 0;

int oofY = 0; // on off flags initialized
//

char incomingByte = ' '; // define incoming character
//

float iRed = 0; // red led current in

decimal float format
float iGreen = 0;
float iOrange = 0;

119

CHAPTER 4 DATA ENTRY FROM THE SCREEN

float iYellow = 0;

float itotal = 0;

//

void setup() {
Serial.begin(9600); // start the serial port
}

//

void loop()

{

if (Serial.available()) // check for incoming data

{

char incomingByte = Serial.read(); // set char value for
switch branching

// Serial.print(incomingByte); // diagnostic

switch(incomingByte) // branch to desired
location/option

{
case 'R': // Red Led Activation
if (0ofR == 0) {
pinMode(RedLedPin, OUTPUT); // set pin I/0
digitalWrite(RedLedPin, HIGH); // turn led on
oofR = 1; // set flag
iRed = ((analogRead(A0)* 4.8828)/216); // calc i when led on
//Serial.print(analogRead(A0)); // diagnostics
//Serial.print("iRed = "); // diagnostics
Serial.println(iRed); // add CR-LF

itotal = iRed + iGreen + iOrange + iYellow;
// calculate total power consumption

//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // add CR-LF
}

120

CHAPTER 4 DATA ENTRY FROM THE SCREEN

else { // flag is set to 1 so led is on
pinMode(RedLedPin, OUTPUT); // set pin mode to output
digitalWrite(RedLedPin, LOW); // turn led off
oofR = 0; // re-set flag to off
iRed = 0; // turn iRed current
contribution to itotal off
Serial.println(iRed); // send data to DAQFtry

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw
//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // send to serial port with CR-LF

}

break;

//

case 'G': // Green Led Activation
if (0ofG == 0) { // check status flag
pinMode(GreenLedPin, OUTPUT); // set pin I/0
digitalWrite(GreenLedPin, HIGH); // turn led on
oofG = 1; // reset status flag
iGreen = ((analogRead(A1)*4.8828)/215); // calc diodecurrent
//Serial.print("iGreen = "); // diagnostics
Serial.println(iGreen); // send data with CR-LF

itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // send with CR-LF
}
else {
pinMode(GreenLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(GreenLedPin, LOW); // turn green led off
0ofG = 0; // set green status flag

121

CHAPTER 4 DATA ENTRY FROM THE SCREEN

br
//
ca

12

iGreen = 0; // turn green contribution to total current off
Serial.println(iGreen); // send green current value
with CR-LF
itotal = iRed + iGreen + iOrange + iYellow;
// calculate total current draw
//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total current with CR-LF
}

eak;

se '0': // Orange Led Activation
if (oof0 == 0) { // check status flag
pinMode(OrangeLedPin, OUTPUT); // set pin I/0
digitalWrite(OrangeLedPin, HIGH); // set pin I/0

0of0 = 1; // set orange flag to led on

iOrange = ((analogRead(A2)*4.8828)/215);

// calculate orange led current draw
//Serial.print("iOrange = "); // diagnostic
Serial.println(iOrange); // send to serial port with CR-LF
itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total current to
serial port with CR-LF

}

else { // orange led is on
pinMode(OrangeLedPin, OUTPUT); // set pin I/0
digitalWrite(OrangeLedPin, LOW); // turn orange led off
oof0 = 0; // reset orange status flag to off
iOrange = 0; // turn orange contribution to

total off

2

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Serial.println(iOrange); // send out orange current with
CR-LF
itotal = iRed + iGreen + iOrange + iYellow;
// calculate total current draw

//Serial.print("itotal = "); // diagnostics
Serial.println(itotal); // send out total current draw
with CR-LF
}
break;
case 'Y': // Yellow Led Activation
if (oofY == 0) { // led is off
pinMode(YellowLedPin, OUTPUT); // set pin I/0
digitalWrite(YellowLedPin, HIGH); // turn yellow led on
oofY = 1; // re-set lag to led on

iYellow = ((analogRead(A3)*4.8828)/217);

// calculate yellow led current
//Serial.print("iYellow = "); // diagnostic
Serial.println(iYellow); // yellow led current value

to serial port wth CR-LF
itotal = iRed + iGreen + iOrange + iYellow;
// calculate total current draw
//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send to serial port with CR-LF
}

else { // yellow led on
pinMode(YellowLedPin, OUTPUT); // set pin I/0 mode
digitalWrite(YellowLedPin, LOW); // turn yellow led off
oofY = 0; // re-set flag to
yellow led off
iYellow = 0; // set yellow led current to 0

123

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Serial.println(iYellow); // send value to serial port
with CR-LF
itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current and send wth CR-LF
//Serial.print("itotal = "); // diagnostic
Serial.println(itotal); // send total current with CR-LF

}
break;
}

}
}

Listing 4-11. DAQFactory Quick Sequence for Flashing the
Arduino-Mounted LED for the Number of Cycles Requested
Through the Screen Data Entry Edit Box

for (Private.Counter = 0, Counter < flsh Rpts, Counter ++)
device.ardyRb.Write('1")
delay(0.5)
device.ardyRb.Write('0")
delay(0.5)
endfor.

Listing 4-12. DAQFactory Regular Sequence Code for Fading the
Green LED on the Arduino Board

// Green Led on Arduino pin 5 to be cycled from full power to
// off from a DAQFctry script using the serial port and the
// edit box entry of the requested number of repeats, fd Rpts.
// Start illumination decrease cycle

124

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

delay(0.25)

device.ardyRb.

Write("255" + Chr(10))
Write("192" + Chr(10))

Write("128" + Chr(10))

Write("96"
Write("64"
Write("48"
Write("32"
Write("24"
Write("16"
Write("12"
Write("8"
Write("6"
Write("4"
Write("3"
Write("2"

Write("o"

CHAPTER 4 DATA ENTRY FROM THE SCREEN

+ Chr(10))

Chr(10))

+

Chr(10))

+

-+

Chr(10))

Chr(10))

+

Chr(10))

+

+ Chr(10))

+ Chr(10))

-+

Chr(10))

Chr(10))

+

Chr(10))

-+

-+

Chr(10))

Chr(10))

+

125

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Listing 4-13. DAQFactory Regular Sequence to Use the “flsh_Rpts”
Screen-Entered Loop Index Counter

// O0rng led flashed on/off with 255 and 0 PWM Arduino power
level applications

global flsh Rpts

//

for (Private.Counter = 0, Counter < flsh Rpts, Counter ++)
//

device.ardyRb.Write("255" + Chr(10)) // turn led full on

delay (0.5) // delay 1/2 sec
device.ardyRb.Write("0" + Chr(10)) // turn led off
delay(0.5) // delay 1/2 sec
endfor

Listing 4-14. Arduino Code to Accept Digits from 0 to 255 to Be
Used as PWM Power Application Requests

/* DAQFtry ardyRb PWM Led Control through serial port
Quick Sequence control of Orange led fade with arduino PWM
Arduino PWM requires a 0 - 255 integer to set the PWM DC.
This pgm uses the string to int function to convert a digit

based number into an integer to set the PMW value.
*/

String inString = " ",

byte pinOut = 5; // dig pin for orange led

int pwr Vlu = 0;

//

void setup() {
Serial.begin(9600); // start serial port
pinMode(pinOut, OUTPUT); // set output pin

}

126

CHAPTER 4 DATA ENTRY FROM THE SCREEN

//
void loop() {
while (Serial.available() > 0) {
int inChar = Serial.read();
if (isDigit(inChar)) {
// cnvrt incoming byte to char and add to strng
inString += (char)inChar;
}
// if nuline convert accumulated to integer
if (inChar == "\n') {
pwr_V1u = (inString.toInt());
Serial.print(pwr Vl1u);
//int twotimes = pwr Vlu * 2;
//Serial.print(twotimes);
pinMode(pinOut, OUTPUT);
analoghrite(pinOut, pwr V1u);
// clear the string for new input
inString = " ";
}
}
}

Listing 4-15. Python Data Input from the Host Computer Screen

Input of data from the control screen
#

import RPi.GPIO as GPIO

import time

set the pin identity mode
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

127

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Reset the array pins to off/false/0

chan list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)

#

Enter the number of the GPIO array pin connected to the LED
to be activated

input_str = input("Input the GPIO pin number for the LED
control exercise " ,)

arry pn no = int(input_str)

#

Input the number of times to repeat the flashing of the LED
input_str = input("Input the number of times to flash the LED ",)
rpts = int(input_str)

#

Input the number of times to flash the LED in a second

input str = input("Input the on time in seconds for the LED flash ",)
flsh rt = int(input_str)

print("Array pin number = ",arry pn no, "Repeats =
"Flash rate = ", flsh rt)

#

print("Lighting the LED on GPIO pin ", arry pn no, "to flash ",

, Ipts,

rpts, "times for", flsh rt,

#

for i in range(1, rpts + 1):
GPIO.output(arry pn no, GPIO.HIGH)
time.sleep(flsh rt)
GPIO.output(arry pn no, GPIO.LOW)
time.sleep(flsh rt)

seconds per flash")

128

CHAPTER 4 DATA ENTRY FROM THE SCREEN

Clear the GPIO array
Print("GPIO array cleared")
GPIO.cleanup()

Listing 4-16. Python Code to Reset the GPIO Array

Clear, Turn Off or Reset the RPi GPIO array
#

import RPi.GPIO as GPIO

set the pin identity mode
GPIO0.setmode(GPIO.BCM)
GPIO.setwarnings(False)

Reset the array pins to off/false/0

chan list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)
GPIO.output(chan list, GPIO.LOW)

Summary

— Scripting is required in the commercial SCADA system
to enter the process variables required to initialize and
control the process at hand from the configured host
screen GUI control panel.

— Screen-entered process or experimental variables can
also be entered into SCADA systems assembled with
less expensive components and computing platforms.

129

CHAPTER 5

Digital Signal
Concepts and Digital
Signal Outputs

Most of the sensors used in making biological, chemical, or physical
measurements create a continuously variable analog electrical output, while
computers and large-scale integrated circuits use high or low electrical
energy levels to represent binary digital signals that they can process.
Supervisory control and data acquisition programs must often function as
bidirectional analog-to-digital electronic signal converters. This chapter
will begin to develop the use of binary numbering and digital electronics,
utilizing the standard 0- and +5-volt signal levels as the representations of
binary ones and zeros. In many surface mount technology (SMT) devices,
the logic levels are 0 and 3.3V, and the SMT integrated circuits are often
damaged by inadvertent application of 5 V signals.

The LabJack U12, human-machine interface (HMI) user manual
indicates that 20 digital signal lines, capable of being set to either receive
or output a 5V electrical signal, are provided on the U12 device. Four
lines are available through the I/O 0-1/0 3 connections on the main screw
terminal strips on the LabJack, while the remaining 16 are available at the
DB-25 connector on the top end of the case. The user guide also advises
the experimenter that the four I/0 lines on the main terminal connectors

© Richard J. Smythe 2021 131
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_5

https://doi.org/10.1007/978-1-4842-6778-3_5#DOI

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

are protected by internal, current limiting resistors, while those on the
DB-25 connector are equipped with jumper pins to bypass the 1.5 kQ2
protection resistors when required.

The DB-25 lines can be physically accessed by several methods. A
cable and circuit board with connection terminals for the individual
lines is available from the LabJack manufacturer. A DB-25 connector with
solder terminals can be purchased from most electronics suppliers. An
inexpensive interface can be created from an old DB-25 printer cable with
the incompatible end connector removed and the individual wire ends
tinned to be inserted into a digital prototyping breadboard. (See Chapter 1,
Figure 1-1, items 1 and 3, and HMI U12 in Figure 5-1.)

To reinforce a note of caution concerning the hardware used, recall
that the LabJack manufacturer-supplied board for the DB-25 connection
contains a pre-installed load limiting resistor, while DB-25 connectors
purchased separately from local suppliers or fabricated with cables
cannibalized from old printers do not. The philosophy of using an
independently powered, buffered connection such as the CMOS CD4050
hex non-inverting buffer chip between the field experiment and the HMI
eliminates concerns regarding transient damage to the HMI hardware.

Experimental

This exercise will use the same screen-controlled LED illumination
procedure, as has been used in previous exercises, but expanded here to 8
bits, to demonstrate basic digital signal concepts.

Hardware

The CB25 terminal board (item 2, $39 USD) from LabJack Corporation
includes the DB-25 cable (item 3) to connect the additional terminal
digital I/O lines of the U12 interface to the LED array on the prototyping
board (item 1).

132

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

Item 4 in Figure 5-1 is the USB connection to the host computer
displaying the DAQFactory control panel depicted in Figure 5-3. The DB-25
cable connecting the LabJack DB-25 connector at the top of the device
provides access to 16 digital I/0 lines from which the first 8 can be used for
this exercise.

—
—
—

& LabJack™

www.labjack.com

@ STATUS U2

55

BRG]

Figure 5-1. Labjack U12, CB25 Terminal Board, and 8-Bit LED
Array

If additional hardware protection is required because of a transient-
prone power supply, the eight digital signal lines can use two CD4050 hex
buffer/isolation chips and eight LEDs and current limiting resistors as
depicted in Figure 5-2.

133

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

The components at hand should be assembled in accordance with
the following circuit schematic. The author assembled an initial prototype
from an old DB-25 printer cable and plugged the isolated and identified
DO0-D7 digital I/0 lines from the U12 directly into a prototyping board to
activate the CLR LED array bits.

Scaba _]{
Main Canscle e
Display Screen | i
with active »
icon components "‘5{\
SCATA Ti sels _mr%]!;ﬂ
arH 16, CFrT il B
2 }8 ?. ”‘_-dt o
::2?132 %i LaTr) “?;{/M-j[
_3lAl 3 10 3 |ee
~|GND GND [e5 T
e w3t ?f
A A0 1o
TS|GND i3 wE GND [ea O EJ/‘;“;D—‘V\
:_sﬂ% g CNT |es.
A GND |[ee = u__l S
e|GND GND [er o A fo
;:g 3 :g 3.:. T e R T

4 “F,Ai g .Z- = _“ 4 i "” ; ,_[\-‘)
: § a t Basic Digital Signals

An Eight Bit Byte
RIS e Pa- 1

Figure 5-2. Schematic for 8-Bit Byte LED Display

Software

Create an eight-button panel with each button labeled as illustrated in
Figure 5-3. This exercise demonstrates the configuration of the individual
digital line connections between a field experiment using an 8-bit byte and
the main SCADA screen.

134

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

The 8 buttons below toggle
the DO to D7 lines on the CB25

between 0 and 5v
.0
s
=] (w]
03| o7 |

Evaluate Decimal
Value of LEDs

Decimal sum of Binary Digits: 6

Figure 5-3. 8-Bit Byte LED Display Control Panel

Each button created is labeled, connected to its channel, and then set to
toggle between 0 and 5 volts as previously done in Chapter 1, Figures 1-9
through 1-11. Pressing the Ctrl key and clicking the left mouse button
simultaneously allows the experimenter to draw a box around a collection
of individual screen components that can be formed into a group with a
selection in the Edit drop-down menu. The mouse, Ctrl key, and Edit menu
can be used to group and ungroup components as required in assembling a
larger more complex GUI screen.

The investigator should also not attempt to alter components on a
background panel. Components should be arranged and configured as
required, grouped, and then backed by a background panel if desired by
using the Ctrl key and the Order entry in the Layout menu.

The DAQFactory sequence program that calculates the decimal sum of
the illuminated bits is shown in Listing 5-1.

The buttons representing the 8 bits are linked to the “Toggle Between”
selection in the button component Action tab as seen in Figure 1-10,
for each of the DigOut_n channels.

135

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

Observations

When the diodes, DAQFactory, and the screen are configured properly,
clicking any one of the buttons will either light up or turn off the
corresponding diode in the 8-bit bank of diodes that represents a byte of
digital data.

Figure 5-3 depicts the panel display after the Evaluate button was
clicked while the D1 (2! = 2) and D2 (22 = 4) LEDs were illuminated. To
clear the Decimal sum display, turn all the diodes off and click the Evaluate
button.

Discussion

The overall philosophy of not powering experimental setups from the HMI
device or the computer power supply is particularly relevant in using the
un-protected digital I/0 lines of the LabJack interface. As discussed in

the Chapter 1 exercise, the CD4050 buffers provide a virtual zero-current
or “voltage-only” sensing circuit, in which current flow into or out of the
digital line is virtually zero because of the very high resistance of the CMOS
gate of the buffering IC chip.

This exercise demonstrates the fundamental basis of digital numerical
representation in being able to visually represent any base ten value
between 0 and 255 in binary format. The byte LEDs from the right represent
2%0or 1, 2'or 2, 2% or 4, 2% or 8, and so on up to 27 or 128. The decimal value
of 3 is thus represented by manually illuminating the LEDs in the 1 and
2 or rightmost pair of diodes as 00000011 representing 2° and 2'. Zero is
represented by no LEDs being lit, and 255 is represented when all the LEDs
are illuminated.

In keeping with proper experimental development procedures for the
assembly of a larger more complex field experiment for data collection,
confirm that all 8 bits are being controlled by the buttons before proceeding
to the next exercise that makes use of the 8-bit and larger LED banks.

136

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

The 8-bit byte can be used to represent the numerical values up to 255,
and each additional LED added to the array will approximately double
the numerical range able to be displayed by the bank of lights, when the
appropriate software adjustments are made. A 10-bit system can represent
1024 values, while a 12-bit system can show 4096 numerical values.

The importance of understanding the binary and decimal numerical
domains becomes evident in dealing with analog-to-digital conversions. A
large number of electro-mechanical sensors are analog signal generators
that are incompatible with digital numerical processing systems, and their
analog output needs to be digitized before the beneficiation available from
digital signal processing (DSP) can be realized.

DAQFactory Digital Output Exercise with a
Microcontroller LED Demonstration Array

Experimental

The DAQFactory SCADA software panel depicted in Figure 5-3 can, with
some modification, be coupled to an Arduino microcontroller to provide
an inexpensive display. An 8-bit, single-byte, binary, LED illumination
display of numerical values can be implemented with the circuit of
Figure 5-4 and the Arduino code of Listing 5-3.

ADP 10 aDP 9 ADP 8 ADP 7 ADP 6 ADP S ADP 4 ADP 3
R R R R R R R R

] D 0 il 0 D D D
2 2 2 2 > Z s 2

D7 Dé DS D4 D3 D2 D1 na

Figure 5-4. The Connections for an 8-Bit Byte, LED Illumination
Bitwise Numerical Display on a Microcontroller

137

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

In Figure 5-4 the nominal Arduino digital pins (ADPs 3-10) would
be jumper wire connected to a prototyping board with a 220 Q current
limiting resistor for a typical 10 mm LED, to represent the individual bits of
the byte display.

Observations

A typical clicking of the D0, D2, D4, and D6 buttons that represents 1 + 4 +
16 + 64 or 85 is depicted in Figure 5-5.

The 8 buttons below toggle
the DO to D7 lines on the

ArdyRed
board between 0 and 5v

oo | Los

|

=
&

Decimal sum of Binary Digits: 85

Clear Byte |

Figure 5-5. The DAQFactory 8-Bit Byte Keypad for a Microcontroller
LED Illumination Bitwise Display

Discussion

An implementation of the digital visualization exercise in which a
microcontroller is used to illuminate the appropriate diodes only needs
to create a code to activate the correct diode through the serial port.

138

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

On the DAQFactory side, a Quick Sequence code similar to that in Listing
5-2 can be used and adapted for each individual DO-D7 button action. The
code sets the weighted inclusion flag variable of DigOut_n for the digital
summing program (Listing 5-1) and sends the required diode number as a
numerical value equal to the digital pin number to which the diode and its
CLR are connected on the Arduino.

The DAQFactory control panels of Figures 5-3 and 5-5 differ in that
the extra button labeled “Clear Byte” sends a numerical value of “12”
to the microcontroller that in turn triggers code to return all the digital
pins to a low state, thus turning all the diodes on the Arduino off. The
button activates a DAQFactory Quick Sequence that resets all the number
buttons on the control panel in addition to transmitting the “12” to the
microcontroller as detailed in Listing 5-5.

Raspberry Pi

An 8-bit binary display representation can be configured in Python with
the first eight pins of the RPi’s GPIO array. Listing 5-4 provides the code to
illuminate an LED binary display and effect a conversion of the illuminated
LEDs into an equivalent decimal numerical value. Figure 5-6 illustrates the
output from the Python program that has used the tkinter library to create
the GUI depicted.

139

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

) 6D >_ RPiCode forSA | @ PythonCodeEx5_.| @ *Python3.4.2Sh. |~ The Scientysts A..
e i4 —_— tys

ot st 8 ot N il s S SR

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.

55 === = == == RESTART == ============

et The Scientyst's Ayde o Bk

Evaluating Eight Bit Binary - Decimal Interconversions
Decimal sum = 213 g 2 Sl

D1

D2

D3

D4

D5

D6

D7
Evaluate LEDs

Figure 5-6. Program Output and 8-Bit Byte LED Display Control
Panel

Figure 5-6 displays the output resulting from clicking the Evaluate
LEDs button with the LEDs representing 1, 4, 16, 64, and 128 illuminated in
the 8-bit binary LED display.

When assembling the 8-bit LED display on a breadboard, use 330 or
470 Q current limiting resistors to restrict the current draw from the RPi
power supply or use an auxiliary supply and buffer the array outputs.

Control of the panel display is managed by using the “Run Module
F5” selection from the Run menu in the “new file” creation. The Python
program opens in the interactive interpreter mode, and by selecting the
new file option, a new file is created from which the 8-bit LED display
program can be located, loaded, and run via the “Run Module F5”
selection in the Run menu.

The GUI of Figure 5-6 will appear, and any LEDs illuminated by stray
values imposed on the GPIO pins as the RPi starts up are reset to 0 by the
internal loop in Listing 5-4. The GUI buttons can then be used to light up

140

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

the desired bit LEDs in the array. Clicking the “Evaluate LEDs” button
will switch to the interactive Python display mode and print “Evaluating”
and “Decimal sum =" with the decimal value of the sum of the values
represented by the chosen illuminated binary bits.

To reset the program, use the cancel button (X) in the upper right-hand
corner of the interactive display and select Yes/OK in the pop-up dialog
box to return to the program code listing to rerun the demonstration.

Code Listings

Listing 5-1. DAQFactory Sequence Code to Sum Active Binary Digit
Values

DAQFactory Sequence Code for dcml sum
// dcml_sum sums the binary values of the diodes illuminated
global dcml sum = 0
//
// Examine each of the 8 bits represented by the buttons on the
// digital input panel
// DO button action toggles the DigOut channel between value 0 or 1
if (DigOut == 1)
deml_sum = deml_sum + 1 // if the channel is active 2° = 1
is added to dcml_sum
endif
if (DigOut_1 == 1) // Activation of D1 toggles the channel
between 0 and 1
deml _sum = deml sum + 2 // if the channel is active 2* = 2
is added to dcml sum
endif

141

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

if (DigOut_2 == 1) // Activation of D2 toggles the channel
between 0 and 1

deml_sum = deml_sum + 4 // if the channel is active 22 = 4
is added to dcml_sum
endif
if (DigOut_3 == 1)
deml_sum = dcml_sum + 8 // if the channel is active 23 = 8
is added to dcml sum
endif
if (DigOut_4 == 1)
deml_sum = deml_sum + 16 // if the channel is active 24 = 16
is added to dcml sum
endif
if (DigOut 5 == 1)
deml_sum = deml_sum + 32 // if the channel is active 2° = 32
is added to dcml_sum
endif
if (DigOut_6 == 1)
deml_sum = dcml_sum + 64 // if the channel is active 2° = 64

is added to dcml sum
endif
if (DigOut_7 == 1)
deml _sum = deml_sum + 128 // if the channel is active

27 = 128 is added to dcml_sum

+

endif

Listing 5-2. DAQFactory Quick Sequence Code for a
Microcontroller LED Byte Display

// activation code for DO

global DigOut

device.ardyRb.Write('3" + Chr(10)) // light 1's digit
DigOut = 1 // add 1 to sum

142

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

Listing 5-3. Arduino Code for 8-Bit Binary Byte Display

//
//
//
//
//
//
//
//
int
int
int
int
int
int
int
int
int
Str
//
voi
S
//
}
//
voi
W

DAQFactory - Arduino LED Illuminated Digital Bits in Byte
Register DAQFtry screen bttns DO to D7 light LEDs in digital
array. Total value of illuminated bits calculated and
register cleared with buttons. DAQFtr uses scripting to
evaluate digital bits and serial port transmissions to
illuminate LEDs after selection by case statement.

digital pins in use 3,4,5,6,7,8,9, and 10
pv_one = 3;
pv_two = 4;
pv_four = 5;
pv_eight = 6;
pv_steen = 7;
pv_threetwo = 8;

pv_sixfour = 9;
pv_onetwoeight = 10;
diod_num;

ing inString = "";

d setup() {
erial.begin(9600);

d loop() {
hile (Serial.available() » 0){ // read serial input

int inChar = Serial.read();

if(isDigit(inChar)){
// cnvrt incoming byte to char and add to string
inString += (char)inChar;

}
143

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

// if nuline convert accmlated to integer
if (inChar == "\n") {
diod num = (inString.toInt());
Serial.println(diod_num);
inString = "";

}

switch(diod num)

{
case 3:
pinMode(pv_one, OUTPUT); // units value 2 exp 0
digitalWrite(pv_one, HIGH);
Serial.println("Ones");
break;
//
case 4:
pinMode(pv_two, OUTPUT); /1 2 exp 1
digitalWrite(pv_two, HIGH);
break;
//
case 5:
pinMode(pv_four, OUTPUT); /1 2 exp 2
digitalWrite(pv_four, HIGH);
break;
//
case 6:
pinMode(pv_eight, OUTPUT); /1 2 exp 3
digitalWrite(pv_eight, HIGH);
break;
//

1]
N

I
S

1
(o]

144

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

case 7:

pinMode(pv_steen, OUTPUT); /1 2 exp 4
digitalWrite(pv_steen, HIGH);

break;

//

case 8:

pinMode(pv_threetwo, OUTPUT); // 2 exp 5
digitalWrite(pv_threetwo, HIGH);

break;

//

case 9:

pinMode(pv_sixfour, OUTPUT); // 2 exp 6
digitalWrite(pv_sixfour, HIGH);

16

32

64

break;
//
case 10:
pinMode(pv_onetwoeight, OUTPUT); /1 2 exp 7
digitalWrite(pv_onetwoeight, HIGH);
break;
//
case 12: // special case to clear array
pinMode(pv_one, OUTPUT);
digitalWrite(pv_one, LOW);
//
pinMode(pv_two, OUTPUT);
digitalWrite(pv_two, LOW);
//
pinMode(pv_four, OUTPUT);
digitalWrite(pv_four, LOW);
//

128

145

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

Listing 5-4. Raspberry Pi Python Code for an 8-Bit Binary LED

pinMode(pv_eight, OUTPUT);
digitalWrite(pv_eight, LOW);

/1

pinMode(pv_steen, OUTPUT);
digitalWrite(pv_steen, LOW);

/1

pinMode(pv_threetwo, OUTPUT);
digitalWrite(pv_threetwo, LOW);
/1

pinMode(pv_sixfour, OUTPUT);
digitalWrite(pv_sixfour, LOW);
//

pinMode(pv_onetwoeight, OUTPUT);
digitalWrite(pv_onetwoeight, LOW);
break;

}

Display

HOoH = OHF OH HF R

import tkinter

Event handlers join a widget to a type of event and a desired
resulting action. Command is the method used to detect mouse
"<Button-1>" events (clicks on the left mouse button) When a
button is left clicked with the mouse, the self.buttonClick()
method is invoked to initiate a LED illumination by setting

the pin to high.

installation

import RPi.GPIO as GPIO
from time import *

#

146

lower case t for current python

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

the array of LEDs representing the 8 bit binary number must
be cleared or re-set to low
GPIO.setmode(GPI0.BCM)
GPIO.setwarnings(False)
for i in range(2, 18):
GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.LOW)
#
define the myWindow class in which to create the GUI window
class myWindow:
def init (self):

self.mw = tkinter.Tk()
self.mw.title("The Scientyst's Ayde")
self.mw.option_add("*font",("Arial", 15, "normal"))
self.mw.geometry("+250+200")
GUI function title
self.lab 1 = tkinter.Label(self.mw, text = "Eight Bit
Binary - Decimal Interconversions")
self.lab 1.pack() # place button widget/image mid window
#
add eight buttons to the ui
self.btn 0 = tkinter.Button(self.mw, text
command = self.btn 0 OnClick)
self.btn_0.pack()
self.btn 1 = tkinter.Button(self.mw, text
command = self.btn 1 OnClick)
self.btn_1.pack()
self.btn 2 = tkinter.Button(self.mw, text
command = self.btn 2 OnClick)
self.btn_2.pack()

llDoll’

llDlll’

"D2" 5

147

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

self.btn 3 = tkinter.Button(self.mw, text
command = self.btn 3 OnClick)
self.btn_3.pack()
self.btn 4 = tkinter.Button(self.mw, text
command = self.btn 4 OnClick)
self.btn_4.pack()
self.btn 5 = tkinter.Button(self.mw, text
command = self.btn 5 OnClick)
self.btn_5.pack()
self.btn_6 = tkinter.Button(self.mw, text
command = self.btn 6 OnClick)
self.btn_6.pack()
self.btn 7 = tkinter.Button(self.mw, text
command = self.btn_7 OnClick)
self.btn_7.pack()

Create the evaluation button
self.btn 8 = tkinter.Button(self.mw, text
LEDs", command = self.btn 8 OnClick)
self.btn_8.pack()

IID3II s

IID4II,

IID5II,

IID6II ,

IID7II ,

"Evaluate

#
self.mw.mainloop()
#
def btn_0 OnClick(self): # specify action desired on
button click
GPIO.output(2, GPIO.HIGH)
#
def btn_1 OnClick(self):
GPIO.output(3, GPIO.HIGH)
#

148

def

def

def

def

def

def

def

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

btn 2 OnClick(self):
GPIO.output(4, GPIO.HIGH)

btn_3_OnClick(self):
GPIO.output(5, GPIO.HIGH)

btn_4 OnClick(self):
GPIO.output(6, GPIO.HIGH)

btn 5 OnClick(self):
GPIO.output(7, GPIO.HIGH)

btn 6 OnClick(self):
GPIO.output(8, GPIO.HIGH)

btn_7 OnClick(self):
GPIO.output(9, GPIO.HIGH)

btn 8 OnClick(self):
print("Evaluating") # advise of action occurring
dcml_sum = 0 # define and initialize summing variable
if (GPIO.input(2)) == True:
test array bit status and add appropriate value to sum
deml_sum = deml_sum + 1
if (GPIO.input(3)) == True:
deml_sum = deml_sum + 2
if (GPIO.input(4)) == True:
deml_sum = deml_sum + 4
if (GPIO.input(5)) == True:
deml_sum = deml_sum + 8

149

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

if (GPIO.input(6)) == True:
deml _sum = dcml_sum + 16
if (GPIO.input(7)) == True:
deml_sum = deml_sum + 32
if (GPIO.input(8)) == True:
deml_sum = decml_sum + 64
if (GPIO.input(9)) == True:
deml _sum = dcml_sum + 128

#
print("Decimal sum = ", dcml sum) # display result.
#
#
if _name_ == " main_":

app =_ayWindow()

Listing 5-5. DAQFactory Regular Sequence to Clear Byte Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display
//
DigOut
DigOut_1 =
DigOut 2 =
DigOut 3 =
DigOut 4 =
DigOut_5 =
DigOut 6 =
DigOut_7 =

1
o

o O O O O o o

150

CHAPTER 5 DIGITAL SIGNAL CONCEPTS AND DIGITAL SIGNAL OUTPUTS

Summary

— The concepts of digital numerical values consisting of
bits and bytes are visually illustrated.

— Digital visual demonstrations are created with
commercial and low-cost SCADA systems.

— Digital numerical concepts have been presented in
preparation for Chapter 6 discussing analog and digital
conversions.

151

CHAPTER 6

Analog or Digital
Conversions for Input
and Output

In the previous chapter, the ability to activate the individual elements of an
8-bit or binary byte LED display and see the decimal numerical equivalent
of the number represented by the illuminated diodes was developed. The
display in DAQFactory software was visualized with LabJack hardware.
In this exercise, a series of DAQFactory sequences, activated by screen
buttons and a data entry edit box, display the binary equivalent of the
decimal value entered into the edit box.

In this exercise, a decimal value under 255 is entered into the edit
box on the main control screen in a grouped panel of components that
control the conversion and display options as labeled on the individual
buttons. As can be seen in Figure 6-2, the panel contains up and down
functions to adjust binary values and an LED display clear function. The
actual numerical conversion is done with a scripted sequence invoking a
standard numerical analysis base conversion algorithm. The sequence is
in Listing 6-1 of the chapter code listings.

In this and the previous exercise, numerical values have been
converted between two different base numbering systems consisting of
2" and 10". The numbering systems are of different bases and produce
different sequences of digits for the representations of the same number of

© Richard J. Smythe 2021 153
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_6

https://doi.org/10.1007/978-1-4842-6778-3_6#DOI

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

units or items that are at hand. Changing the type and number of required
digits that represent the same number of whole units in either of the two
bases is an exercise in mathematics that always yields whole numbers.

Conversions between analog and digital electrical signal values often
do notyield exact equivalent results. In theory, an analog signal varies
smoothly and continuously as it changes from one value to another.

An electronic, digital representation of analog values must divide the
range of analog signal variation into a finite number of intervals equal to
the number of binary base bits available in the digital display. An 8-bit
binary, digital display can represent the decimal numbers between 0 and
255. If we wish to represent an electrical signal that may vary from 0 to 5
volts with the previously developed 8-bit digital light display, then each
of the 256 binary digits available must represent 5.0/256 = 0.0195 V or
approximately 19.5 mV.

If the number of LEDs in the binary array is increased from eight to ten,
then the 10-bit LED display can represent 2'° or 1024 decimal numerical
values. A 10-bit array is able to divide a 5.0 V signal into 5.0/1024 =
0.004882812 volts or approximately 4.88 mV.

A similar expansion of the array to 12 bits allows for the representation
of a 5.0 V signal of approximately 1.22 mV per bit.

Often the number of bits available is called the converter or conversion
resolution.

Experiments that require conversions between analog and digital
formats must be designed and assembled carefully to compensate for the
errors introduced by these inexact transformations.

An excellent reference work that covers the history of the development
of analog-digital conversions is available as a hardcopy book or as a
downloadable series of pdf chapters from Analog Devices (Walt Kester,
Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3). Two
excellent tutorials are available from Analog Devices as MT-015 and MT-016
that explain the fundamentals of digital-to-analog conversion (DAC) and more
advanced topics with a host of references for further study. (See “Discussion.”)

154

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

In a digital representation, the rightmost bit is referred to as the least
significant bit (LSB), while the leftmost bit is the most significant bit (MSB).
(The exponential power to which the base is raised increases as the digit’s
position to the left increases.)

Numerous analog-to-digital converter (ADC) integrated circuit
devices are available for the transformation of electronic signals. There
are several conversion mechanisms in use today such as level or flash
converters, successive approximation registers, sigma-delta converters,
and other processes whose advantages and limitations are discussed in
detail in the electronics literature.! (See also Analog Devices referred to
previously.) Resistance voltage divider circuits that are used to reduce
an electrical signal voltage level can also be used to divide a voltage level
into n divisions in accordance with the circuits A-D in Figure 6-1. The
increasingly complex circuits from A to D are also known as Kelvin dividers
and date from the mid-1800s.

_ﬁ,%:%—’ _

I:>—N\% .

£

Figure 6-1. ADC and DAC Resistance Networks

'1) Building Scientific Apparatus 4th Edn., Moore, Davis and Coplan, Cambridge
University Press, ISBN 978-0-521-87858-6 hardback
2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
ISBN -13 978 -0-521-37095-0 hardback
3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

155

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

In circuit A of Figure 6-1, if the resistors are of equal value, the divider
circuit halves the input voltage, as V. = Vi, * (R/R + R).

In circuit B of Figure 6-1, the output voltage is one-third of the input as
Vou = Vin ¥ (R/R + R + R). A series of four and five equal-valued resistors as
seen in circuits C and D reduces the voltage division to a fourth and fifth of
the input voltage, respectively.

In general, it can be seen that n series resistors between the input voltage
and ground will provide a series of junctions. With input voltage n, the
voltage drop for each resistor is 1/n that of the input voltage. A string of series
resistors and voltage reduction junctions is the electro-mechanical basis
behind the “flash” type of analog-to-digital converter, integrated circuits.

Conversion of a digital signal into an analog, in essence, reverses the
ADC process. As with a binary, 8-bit ADC having the ability to divide the
input into 256 discrete voltage levels, the reverse process of a binary, 8-bit,
digital-to-analog conversion (DAC) also provides 2 or 256 discrete output
voltage levels. The DAC does not produce a true analog signal but creates a
stepped voltage approximation of the analog waveform.

An efficient conversion architecture known as an R-2R “ladder”
network has been developed that uses only the two resistance values of
the eponymous R and 2R. As can be seen from circuit E in Figure 6-1, bit 0
is at the lowest voltage with respect to ground, while bit 7 is at the highest
voltage. The significance or “weight” of the bit values increases from least
to most significant as the position in the resistance stack increases.

Signal conversions between the analog and digital formats can be
realized with relatively inexpensive IC devices such as the single-channel,
8-bit ADC0804 or the eight-channel, 10-bit MCP3008. The ADC0804 can be
used with a 5-volt battery pack, to drive an eight-LED display directly and
provide a simple, inexpensive ADC demonstration. (An ADC0804
chip costs $6 CDN.)

In addition to the 8-bit LED array, the ease with which an analog signal
can be monitored with the LabJack HMI series of devices and DAQFactory
software is demonstrated with +/-10-volt input limitations for 10-bit

156

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

analog-to-digital converters in the U12 series and 3.6-volt input voltage
limits with 12-bit converters in the U3 devices. (See Chapter 1, Figure 1-1,
item 1. Most surface mount technology (SMT) integrated circuitry operates
at 3.5 volts.)

Measurements of larger voltage ranges than those specified by the
manufacturer of the ADC device at hand can be realized by using a
simple resistance voltage divider to reduce the experimental range to one
acceptable to the converter. (See Figure 6-1.) The investigator then has the
option of using a correction factor in the mathematical formula entered
into the expression box of the variable value configuration window seen in
Figure 2-6 of Chapter 2 and Figures 6-10 and 6-11, to display the present
value of the experimental voltage. A second variable value display could
be added to the GUI being configured to monitor both the experimental
and reduced voltages being applied to the ADC input if desired by the
researcher as in Figures 6-11 and 6-12.

Digital-to-Analog Conversions

As has been pointed out in the “Exercise Road Map” and previously, the
digital-to-analog conversion (DAC) does not and cannot reproduce a
truly analog electronic signal. The generated “analog” signal is broken
into a fixed number of discrete digital values on DAC, and the analog
signal generated from the discrete number of digital values is a stepped
waveform similar in shape to the original smooth and continuous analog
signal.

There are two basic methods for converting digital signals into analog
outputs. One method uses binary, weighted, resistance values, in which
the individual digital, bit signals are applied to resistors whose resistance
ratio is proportional to the binary power series. Constructing this type
of DAC frequently requires nonstandard resistance values. The other
method for DAC is much easier to implement and is depicted in circuit

157

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

E of Figure 6-1. The R-2R ladder generates an output signal consisting of
the sum of the digital inputs in the body of the ladder. There are several
advantages to the second method in the need for only two resistance
values. The ladder is scalable to the required number of digits, and the
output impedance is always constant and equal to the lesser resistance
value used in the ladder circuit.

Experimental: LabJack-DAQFactory
Decimal-to-Binary Conversions

Hardware

The button-controlled, buffered, 8-bit byte LED display, assembled and
tested in the previous chapter’s exercise, will serve as the individual bit
display or output register for the converted decimal value.

Software

1) A panel grouping consisting of the components
depicted is assembled on the main screen.

Decimal to Binary Converter
(N < 256)

Run conversion |

inc. value | Dec.value | Ciear display

Figure 6-2. DAQFactory Panel for a Decimal-to-Binary Number
Converter

158

2)

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

The panel has been configured from two text
components appearing as the top two lines of

the panel. An edit box component receives the
numerical value to be processed and enters the
value into the required variable. The fourth line
button component activates the conversion
sequence, and the bottom row of buttons performs
the actions appearing on their captions.

Required scripting

The grouped “Decimal to Binary Converter” panel
of Figure 6-2 requires four scripts to activate the
converter bit display, increase the binary display by
one, decrease the value by one, convert the entered
decimal number and then display the binary value,
and clear the display.

The individual sequence codes are provided in Listings 6-1 through 6-4

at the end of the chapter.

Analog-to-Digital Conversions

To demonstrate the ease with which an analog-to-digital conversion can
be implemented with DAQFactory software and the LabJack HMI, an ADC
panel as depicted in Figure 6-3 is configured. The panel consists of three
components, a text entry as a heading, a variable value readout displaying
the channel[0] or present value of the channel of interest, and the gray
panel background.

159

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Analog to Digital Converter
Pot. wiper voltage value: 3.86 V

Figure 6-3. An ADC Panel

The circuitry for the analog-to-digital conversion is as depicted in
Figure 6-4 in which the ends of the potentiometer are wired between +5V
and ground terminals on the U12 and the wiper is connected to the AI 0,
analog input zero, screw terminal.

HMI terminal
+5v

Ui Al o R
19 K Ohm

HMI terminal

Figure 6-4. An Adjustable Analog Signal Source

As noted previously, an ADC can be used to follow a voltage
fluctuation beyond the safe operating limits for the ADC electronics,
by using a resistance-based voltage divider to lower the signal strength
applied to the converter. A reduced voltage V,,, can be calculated from the
following divider equation:

Vuut = Vin * (Rl/(Rl + R2))

160

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

where R, and R, are the individual resistance values of a series pair

of resistors connected between V;, and ground and V,,, is the voltage
observed between the junction of R, with R, and ground. (See circuit A in
Figure 6-1.)

A less expensive but more complex to implement ADC LED array
illumination binary display can be assembled with the well-established
ADCO0804 chip from Texas Instruments. (A 57-page pdf documentation is
available from www.ti.com/1it/ds/symlink/adc0804-n.pdf.)

The pdf data sheet notes the following:

— No interfacing logic required, operates as a complete
stand-alone device with a 135 ns access time, differential
voltage inputs, MOS and TTL voltage level compatible,
able to use a 2.5-volt reference, an on-chip clock,
0-5-volt input range with a 5-volt supply, no zero adjust
required, standard 20-pin DIP package, and a 100 us

conversion time
RrRE
s VWA
— C1 @.1 uF
I chip select || ADC @804 L [vcc AtSv L - €2 8.1 uf
Read |, 1g [R ms €3 158 pF
- T C4 18 oF Tantalum
. 10 e cLse> D R1 1K Ghm
B Rl @D RZ 1€K Ohm
4 17 -——\/\/\,——H—n— Potent iometer 5K Ohm
s 6 |2 Ri il LED 3 nm Red
R N a
15 |oe 1 :
14 R4 R1 @E -
13]ves R1 El:‘
P 1
12 "b-—-\RN\J-——|') >
1 per (Hsey R El - o
Qﬂ
v

Figure 6-5. An 8-Bit LED ADC Display

161

http://www.ti.com/lit/ds/symlink/adc0804-n.pdf

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Figure 6-5 depicts the circuitry that has been used by the author to
develop an ADC hardware demonstration using the Texas Instruments
ADCO0804 8-bit successive approximation analog-to-digital converter. For
implementation on a prototyping board, the author used 3 mm red LEDs
and 1 KQ current limiting resistors as a display, a four-AA cell nickel metal
hydride battery pack for power, and a connection to the wiper lead of a 5 kQ
potentiometer connected between the nominal 5-volt supply and ground
similar to the circuit depicted in Figure 6-4. The wiper voltage provided the
varying analog voltage signal for conversion into a digital format to drive the
binary LEDs as the shaft on the potentiometer was rotated.

The digital grounds depicted in Figure 6-5 were all brought to a
common connection that was then grounded to the negative side
of the power supply. An on/off switch was included in the author’s
implementation of the circuit on the prototyping board but was not
needed to initiate the circuit action as when power was applied to the
system, the conversions began immediately. The voltage to be converted
was applied to pin 6 of the IC.

Observations

DAQFactory-LabJack HMI Analog-to-Digital
Numerical Base Conversions

Entry of a decimal value into the edit box and a click on the Enter into
script button should light the diodes that correspond to the digital
value of the base ten number entered. Entry of the numerical value of
say 25 should illuminate the units of the 2° (1’s), 2% (8’s, i.e., 2 x 2 x 2),
and 2 (16’s, i.e., 2 x 2 x 2 x 2) diodes to display the binary equivalent of
25 (i.e., 1 + 8 + 16).

Clicking either the increase or decrease button should increase or
decrease the binary value displayed by one and the clear button should
clear the display.

162

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Analog-to-Digital Electronic Signal Conversions

Connecting a nominal 5 V signal across the ends of a 10 kQ potentiometer
should, in theory, if there are no mechanical limitations or discontinuities,
give rise to a smoothly varying, analog wiper voltage, ranging between 0
and 5 volts.

A 10-bit ADC as installed in the U12 is theoretically able to divide a5V
analog signal into 1024 units of 0.0048828 volts or 4.883 mV. A variable
value display was configured to read the voltage on the wiper of a 10 KQ
potentiometer wired as depicted in Figure 6-4. As the potentiometer shaft
was rotated, the values from 0.010 V to 4.219 V were displayed on the
DAQFactory GUI screen when the variable value display was set to display
data on the AO 0, analog output zero, channel to three decimal places. The
lower voltage value display fluctuated from 0.005 to 0.020, while the upper
value display fluctuated from 4.209 to 4.365.

ADCO0804: 8-Bit Binary LED Display

Figure 6-6 is a photo of a battery-powered working example of the circuit
in Figure 6-5, assembled on a breadboard for visual demonstration of
ADC. Careful examination of the diodes in the upper right-hand portion
of the field of view will indicate that the 4-, 8-, and 64-bit indicators are lit,
indicating a total value of 76. The voltage source is the wiper lead of the
5 KQ potentiometer visible at the bottom center of the field of view.
When power was applied to the circuit of Figure 6-5, the individual
LEDs representing the binary equivalent of the digitized wiper voltage
potential lit up immediately. Rotating the shaft of the potentiometer from
one extreme position to the other displayed a diode illumination sequence
in which the binary numbers either increased from 0 to 255 or the reverse.
By slowly rotating the shaft, an individual count could be followed in the
binary display. As noted previously, when fully charged, the battery pack
produces a nominal 5V that is applied to the two ends of the potentiometer.

163

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Figure 6-6. Photo of the 8-Bit LED ADC Display

A correlation between the applied voltage and the binary display was
established by measuring and then comparing the actual voltage applied
to the input pin #6 with the binary value displayed by the illuminated
diodes of the 8-bit display array.

Examination of both the tabulated data of Figure 6-7 and the ADC0804
data sheet reveals that there is not a 1:1 correspondence between the
applied voltage and the digital value produced since an applied voltage
of 5.25 generates an output of only 253. The ADC discrepancy can be
corrected as explained in the IC data sheet by using the reference voltage
input pin, pin #9. (See “Discussion.”)

164

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Applied |Converter,
Voltage [Output ADC Output vs Voltage Input
0.25 12 o
0.5 24
0.75 40 _ 250
1 48 ?} 200
1.25 60 a
15 72 g %0
175 | 84 g -
2 96 o
2.25 108 2
25 120 0
2.75 132 0 1 2 3 4 5 6
3 144 Voltage Applied to ADC
3.25 156
3.5 168
3.75 180
4 192
4.25 204
4.5 216
4,75 229
5 241
5.25 253

Figure 6-7. ADC0804 Linearity

Discussion

An excellent aid for understanding the concepts of ADC and DAC is found
in Figure 1.1 of Chapter 1 of the Analog Devices publication Analog-Digital
Conversions, at www.analog.com/media/en/training-seminars/design-
handbooks/Data-Conversion-Handbook/Chapteri.pdf. The figure is
captioned “Early 18th Century Binary Weighted Water Metering System”
and contains a series of side and top views of a water metering system
implemented in Istanbul, Turkey, in the nineteenth century. The diagrams
document the implementation of a DAC in terms of a gravity-powered,
hydraulic water distribution and “weighted average” metering system.
Interconversions between analog electronic signal values and digital
numerical representations are seldom exact equivalents. Traditional ADCs
such as the ADC0804 use a parallel output of eight signal lines, each of
which is a representative of a power of 2. The parallel output lends itself

165

http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter1.pdf
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter1.pdf

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

to the assembly of the battery-powered visual LED display of Figure 6-6.
Newer technology, however, as used in the LabJack devices, does not use

a “parallel” output configuration for ADC but relies on the much simpler
to implement serial data outputs. Serial data output protocols can be fast
enough to monitor many types of sensors, but high-speed instruments
often require the use of parallel converters to keep up with data generation
rates.

Care must always be exercised in applying voltage dividers in that
the ratio of the resistance values chosen must reduce the signal voltage
to the desired level but the individual resistance values should be as low
as possible to allow sufficient current to pass to drive the “downstream”
device or ADC.

An ADC that produces a digital number consisting of an output of
parallel signals to drive the logic of the “downstream” devices such as
microprocessors, seven-segment LED numeric displays, or, in the case of
this primary exercise, an 8-bit binary LED display is usually limited in the
current output that it can safely deliver. In some high-current demand
displays, it may be necessary to buffer the ADC outputs.

There is a substantial difference in the time and effort required to
implement the ADC and DAC demonstrations between the LabJack HMI
with DAQFactory software and the assembly of the ADC0804 8-bit LED
display or the interfacing of the display to the RPi.

The ADCO0804 is a single-channel device that requires the input
of one varying voltage source scaled to a 0-5-volt range. The IC has
areference voltage pin #9 that can be used to adjust the step size of
the 255 digit levels available. The default setting is 19.5 mV per digital
increment so as the entire input span of 5 V will generate a 0-255
binary numerical output. (Further information on using the step size
adjustment is contained in the Texas Instruments data sheet for the
ADCO0804.) A clock is needed to run the conversion logic, and for
simplicity, the internal clock is used that requires a series-connected
resistor and capacitor (RC) network. The desired RC combination is

166

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

connected between Clock IN and Clock R pins (pins #4 and #19). The
RC time constant ultimately determines how often the IC samples the
voltage on pin #6 to generate a conversion at the output pins.

In addition to the clock and input wiring, the ADC0804 demonstration
exercise requires a 5 V power supply and eight LEDS and their current
limiting resistors to operate.

As noted in previous exercises, the researcher should, where possible,
test each component as the system is assembled. Each LED and current
limiting resistor can be tested by applying 5 V to the end of the resistor that
will be connected to the ADC0804.

In the creation of the code for the buttons, the ability to make use of
previously written scripts as functions is demonstrated. As noted in the
previous exercise, larger-valued numerical conversions would require the
addition of the appropriate number of digital output lines, channels, and
diodes and modification of the scripting code.

An 8-bit byte provides a resolution of one part in 28 or one part in
256. The Decimal to Binary Converter panel of Figure 6-2 contains the
increase and decrease buttons that represent single-digit resolution. If an
experimental setup may produce a varying DC signal that can range from
0 to 10 volts, then the 8-bit conversion is able to resolve 10/256 = 0.0390625
or 39.1 mV. An increase of two more bits in the LED display bank and the
corresponding changes of software would allow a 10 V signal range to be
spread over 1024 binary digits providing an approximate division of one
part in 1024 or millivolt sensitivity or resolution. Increasing the digital
capability to 12 bits will provide a sensitivity or resolution of one part in
4096 or 0.0244% (244 ppm, parts per million).

A GUI digital display does not convey any additional information
about the value of the voltage being monitored other than its present
value. Unless there is a distinct trend of the digital value steadily increasing
or decreasing, there is no additional information that can be derived from
a numerical digital display of a monitored variable value. However, in

many cases where a production process or experimental measurement is

167

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

being monitored and the constancy of process variables or measurement
results is the main goal of the SCADA system, a different form of data
presentation such as a timed recording may be of greater value.

Analog-to-Digital Conversions
with Microcontrollers

As has been presented in the previous five exercises, much more compact,
less expensive, SMT devices able to interface between the DAQFactory
SCADA software and experimental sensors or process management
hardware have become available in the form of microcontrollers. (See
Chapter 9.)

Arduino microcontrollers are readily available, easy-to-use compact
devices that have a built-in 10-bit, successive approximation, SMT
analog-to-digital converter with six input channels. The ADC chip is
capable of converting an input voltage to a digital number in 25 cycles of
its 16 MHz clock (approx. 400 microseconds per conversion).

A microcontroller such as the Arduino is a serially oriented device,
and in order to pass information back and forth between the DAQFactory
control screen and the microcontroller LED array, both the control screen
and controller must read from and write to the serial port as in previous
exercises.

Serial communications are based upon the ASCII bit patterns of 1 and
0 that allow the transmission of both numerical and alphabetic control
characters such as line feeds and carriage returns. Although the ADC
hardware can generate single- or multiple-digit integer bit counts, there
must be a certain amount of character recognition and interpretation
logic software on each side of the serial port in order to create a working
communications system.

168

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Experimental

Implementation of the decimal-to-binary display with a serial connection
between the DAQFactory control panel and the Arduino-controlled binary
array can begin with the creation of the DAQFactory panel depicted in
Figure 6-8.

Serial Decimal to Binary Converter

(N < 256
Decimal:| 15 Enter int

Run conversion |

Inc. value] Dec. value I Clear displlyl

Figure 6-8. A DAQFactory Control Panel for Serial Control of an
Arduino Binary LED Display

A text component, an edit box, and four buttons have been used in
Figure 6-8.

A Figure 6-9 illustrates the edit box configuration window that provides
space for creating the box caption and selecting various options and
actions.

169

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

;Eairaox Component X |
Man | Active Color | Inactive Color: | Size |
Caption |
SeiCl'\a'md'I:'-.:::'.‘:f: To Convert Submé only f changed ¥
Set on ext: m
Set on Sat Button press: W Set button caption: |Enter into scrpt
Set on Submi button press: g
Head-only [
when
Lolor [
Expression:
Lnts: [Fort: [aal =
Speed Key | Font Sige: 14 ponts
OK | Cancel

Figure 6-9. The Edit Box Configuration Window

The supporting DAQFactory scripting and Arduino sketch codes for
implementing the serial panel connection to the microcontroller are
provided in Listings 6-5 through 6-9 at the end of the chapter.

In order to use the ADC on a microcontroller board as a serially
connected sensor reading device, a pair of variable value display
components grouped as a panel on a DAQFactory screen can be
configured as in Figure 6-10. Using the channel features of the SCADA
software, the integer counts from the ADC and a calculated voltage value
corresponding to the counted value can simultaneously be displayed.
(Only a cursory introduction to the more involved setup required to
provide a data flow between the two systems is being presented here.
Greater detail is provided in Chapter 11.)

Two variable value displays are placed on a DAQFactory page as seen
in Figure 6-10.

170

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Ten Bit ADC Counts: 404 counts

Potentiometer Wiper Voltage : 1.975V

Figure 6-10. A Variable Value Component Display for Integer ADC
Counts and a Calculated ADC Voltage

Variable Value Component x
Msn |Coor | Sze | Action |

oo [EENEEE

Expression |,\::'.';:c5'.:ea:[ﬂ

“Ten Bit ADC Counts: 404 counts ;

Uts. s Potentiometer Wiper Voltage : 1.975 V
Precison: [0 decinapisces

N

FortSae. | 26 ports M&wm

Soeodber [—

The wariable value component will desplay your data in simple numenc form.
Like most compaonents it can display a single channel or the result of a
complex calculation. This component can also display an array of values as
well.

The display value component’s property bao has four sheets in it. The last ot

Figure 6-11. The Variable Value Configuration Page for the Serially
Transmitted Integer ADC Count

171

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Variabile Value Compenent x |

Man |Coor | Soe | Action|

Con: [EEEETGRTE

Epression | (AzduinoStream[0] ¢ 5.0) /1023

Unis |v
Precaon I 3 decenal places

Fort I vi
Fort Size. Iﬂ" 3 Qrck
ports
Bnalog Out
Spead Key. |
Fyemage

The variable value component will display your data in ssmple numenc form.
Like most components it can display a single channel or the result of &
complex calculation. This component can alsc display an array of values as
well.

~
The display value component's property box has four sheets in it. The last

Ten Bit ADC Counts: 404 counts

7 Potentiometer Wiper Voltage : 1.9%W\?(§

Figure 6-12. The Variable Value Configuration Page for a Calculated
ADC Voltage

172

Figures 6-11 and 6-12 display the configuration windows for the integer
ADC count display that displays the raw counts and the ADC voltage value
display that uses an expression to calculate the immediate voltage value

from the ADC.
Figure 6-13 documents the sequence of tables, windows, and

entries followed to establish serial microcontroller-SCADA software
communications.

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

P ves Qe G L

n 1O Trow hove 1o sarch

Figure 6-13. A Configuration Sequence for Implementation of
DAQFactory Serial Communication

Figure 6-13 presents a captioned outline summary of the major
procedural actions required to read the serial “data stream” from the
microcontroller ADC to the DAQFactory display components. (See
Chapter 11 for details.) Item 1 marks the page listing for the DAQFactory
program in use on which the panel of Figure 6-10 is assembled from the
desired components. Item 2 indicates the channel listing in which the
ArduinoStream channel was created by the author to receive the ADC
data streamed out from the microcontroller to the serial port (see also
Figure 2-3). Items 3 and 4 are the Serial Port Configuration window and
the serial device naming and configuration window that are examined in
detail in Chapter 11 (see Figures 11-5, 11-6, and 11-7).

To install and use the code in Listing 6-10, click Quick » Device
Configuration and select the appropriate device that in the author’s
demonstration case is Commd4. In the Ethernet/Serial Device window,
find the required device and check the adjacent box (Comm4 in figures)
and then click the protocol configure button to bring up the I/0 Types and

173

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Functions window. Select the “On Receive” function and then copy and
paste the code of Listing 6-10 into the space. (See Figure 11-7 in Chapter 11.)

To provide a variable signal simulation for this exercise demonstration,
the ends of a potentiometer can be connected between the +5 V supply
and ground of the microcontroller and the wiper lead connected to the A0
input of the Arduino ADC. (See the similar circuit diagram of Figure 6-4 for
use with the LabJack HMI.)

In keeping with the philosophy of building a complex system from
multiple tested and functioning components, we can begin by loading
and launching the microcontroller sketch code from Listing 6-11. Once
the sketch is running, the Arduino serial monitor can be opened from
the Tools menu, and the stream of ADC counts should be visible on the
left of the serial monitor field of view. With the data stream generation
confirmed, the serial monitor is closed, and the microcontroller IDE is
minimized.

The DAQFactory program containing the variable value panel is
launched, and if all has been configured properly, the screen components
of Figure 6-10 should be active responding to both system noise and any
repositioning of the potentiometer wiper control shaft.

Observations

A stream of numbers on the left-hand side of the field of view of the serial
monitor window of the microcontroller IDE with values between 0 and
1024 should be seen after launching the microcontroller sketch for ADC
reading and serial printing to the port in use.

With the microcontroller running in the background, a complete
rotation of the potentiometer shaft on the microcontroller prototyping
board changes the integer display from 0 to 1024 and 0 to 5.000 volts on the
voltage as has been defined by the setting in the configuration windows of
Figures 6-11 and 6-12.

174

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Discussion
Diagnostics for Nonresponsive Displays

In the event that the variable value panel is not responding to the incoming
data stream, expand the channel table and confirm that data is being
captured by the channel as depicted in Figure 6-14.

Figure 6-14. An Active Channel Timestamped Data Listing

If the channel is not receiving the ADC data, then the serial port
monitor for the DAQFactory program can be accessed to confirm that the
data is arriving at the display program’s serial port. The serial port monitor
is accessed through the Quick » Device Configuration menu and device
selection listing panel to get to the Ethernet/Serial Device window as seen
in item 4 of Figure 6-13. Clicking the Monitor button immediately below
the Configure button will bring up the DAQFactory serial monitor as
depicted in Figure 6-15.

175

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Monsor Commi

Ot Bawg. “semz |
s

Potmoriis [~ Duply o charn s ASCH cories I Dutply Tz o TR

T Dy conbes i e I~ B rw on G LF

P 8901 MD10G4BN TUO0EAED 3.1 0GR01 T

AR TONEAS P AT TOSAP LT
T G

O G

OB T DELR
0 DG T O
DT T 0

Figure 6-15. The DAQFactory Serial Monitor Display of Data
Passing Through the Port in Use

In the event that the data is arriving at the DAQFactory serial port but
is not being transferred to the proper channel, the port serial protocol
can be examined by ensuring that the proper protocol has been selected
in the Protocol list and that the correct parsing code (Listing 6-10) has
been entered into the “On Receive” I/0 Types and Functions entry of the
Protocol Configuration window.?

System Development and Programming

Although the microcontroller approach to establishing a SCADA-
experiment serial connection is significantly less expensive than using
the commercially available DAQ systems, the experimental development
time and effort required is significant, and the system lacks the robustness
found in the commercial products.

2https://www.azeotech.com/d1l/serialguide.pdf

176

https://www.azeotech.com/dl/serialguide.pdf

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Analog and Digital Conversions for Input
and Output with Raspberry Pi

With the available power limitations previously noted, LED visualizations
of electronic digital numbering can be created with the RPi and its general-
purpose input/output pin array. Numeric conversions between the binary
and decimal systems together with ADC can be demonstrated with the

two Python libraries available from the Raspberry Pi Foundation. The
RPi.GPIO library permits low-level access to the 40-pin array, while the
gpiozero library code provides access to numerous hardware devices.

The documentation for each library is available from the RPi Foundation
website, and the differences between the two library releases will be
further developed in the next few exercises.

Binary-Decimal Conversions

As a supplement to the RPi programming and hardware usage introduced
in the previous exercises, a 12-bit decimal-to-binary conversion LED visual
display has been assembled for the initial portions of this exercise. The
code for the converter is in Listing 6-12 at the end of the chapter, and the
output from a conversion is depicted in Figure 6-16.

177

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

® © B % O | 2 DecToi2BitBinar.. | & Python 3.4.2 Shell (B [pi@respvemypi -

Python 3.4 2 Shel
e Edt snell Debug Qptions Windows Halo |

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1]1 on linux

Type "copyright", "credits" or "license()" for more information.

3> sssssisssssssssssssssssssoosssos RESTART =s==s=sssssssssssssssosszss
>>>

Decimal to convert to a 12 bit binary display 1234

Quotient and remainder listing for conversion and display illumination.

For LED 1 Q = 617 and rem = 0 |
For LED 2 Q = 308 and rem = 1
For LED 3 Q = 154 and rem = 0
For LED 4 Q= 77 and rem = 0
For LED 5 Q = 38 and rem = 1
For LED 6 Q = 19 and rem = 0
For LED 7 Q = 9 and rem = 1
For LED 8 Q = 4 and rem = 1
For LED 9 Q= 2 and rem = 0
For LED 10 Q = 1 and rem = 0
For LED 11 Q@ = 0 and rem = 1
For LED 12 Q= 0 and rem = 0

>

Figure 6-16. A RPi 12-Bit Binary Display of a Decimal Value

The bank of 12 LEDs is assembled and tested to provide a visual output
for several Python and ADC programs. A decimal-to-binary numerical
converter, a 10-bit ADC, and a 12-bit ADC can all share the same hardware
to provide a graphic visual display of the various outputs from these similar
types of programs.

ADC with Raspberry Pi

As noted in previous exercises, the RPi requires external components to
digitize analog signals, and the MCP3008 and MCP3201 ICs have been
selected by the RPI Foundation as suitable devices for 10- and 12-bit
digital conversions. The ICs communicate with the RPi through the serial
peripheral interface (SPI) serial protocol. The ADC data is streamed out
in a continuous series of bits to the RPi that receives and interprets the
10-digit converted value. The MCP3008 output can be formatted as a
floating-point, normalized value from 0 to 1.0 that is proportional to the
difference between the sampled voltage and the voltage applied to the
reference pin or as an integer value from 1 to 1024. When the ADC chip is

178

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

referenced to the RPi’s 3.3-volt voltage supply, the normalized output must
be multiplied by the nominal applied or, for accuracy, the VOM-measured
reference voltage to get the actual voltage sampled. A conversion of the
integer output of the MCP3008 to the sampled voltage value involves
dividing the output value by 1024 and multiplying by the reference value
voltage.

The floating-point normalized value representing the analog
conversion is not easily amenable to illuminating a 10-bit binary LED
visual display. A digital integer output is much easier to interface to a
binary LED display.

Experimental

In order to use code of Listings 6-12 and 6-13 for decimal to 10- or 12-bit
binary LED visual display and the MCP chips as listed in this exercise, the
RPi must be configured to use the serial peripheral interface (SPI) protocol
as depicted in Figures 6-21 and 6-22.

A continuously variable voltage from the wiper of a 10 kQ
potentiometer biased between the 3.3 V and ground of the RPi GPIO array
was used to create a test voltage for an MCP3008 ADC integrated circuit.
The RPi reads the serial output from the IC, interprets the streamed data,
and generates the scaled 10-bit integer output that is subsequently used to
activate the ten-element LED display.

Figure 6-17 is a semi-schematic of the circuitry used to implement
the display. A wiper voltage is applied to the IC that converts the signal
from the analog to the digital format and streams the data out in a serial
peripheral interface (SPI) form to the RPi GPIO pins. The RPi receives the
streamed data, interprets the converted data, and parses the integer output
to drive the appropriate diode representation of the converted wiper
voltage signal.

179

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Figure 6-17 has been drawn with the Raspberry Pi GPIO pin
connections that control and receive data from the IC on the left and the
RPi GPIO diode array connections on the right.

RPi ecannections ta MCP3QAS8 = s . ek RPi cannections ta LED Array
CPIQ 3.3 uping 16 & 15 o e T Ge é"’s . craw2 AP e
; . 20 cione :]
GPIO Grnd pins 14 & 9 wer . |1 el - GPIO. # 3 -2 ®re
wond . |14 2| e B oS
GPLOKL@ pin 1t i |5 J e GPIO ¥ 4 M w2
CPlO RS pin 12 MR o,y 5|, - . oPIa B 5 AR wee
CPIO #LL pin 13 vin .0 | A .
il il i i i CPIO ¥ & ~MK—y 3
2 wea . |9 a| o GPIO & 13 ~MK— B¢
. GPIO W 14 —EF— B

-
cPIa B 1S Jw—“:}—— e
CPIA # 16 “PAd ®ve
. I
GPLO ¥ 17 “mEK— ™
R =1 K Ohm
LED =" 2 "wm" ~

Figure 6-17. RPi-MCP3008 Circuit for 10-Bit Binary LED Display of
Potentiometer Wiper Voltage

Figure 6-18 illustrates the screen output from the RPi during a
simulated experimental setup in which the diagnostic print statements
have been inserted into the code to validate the operation of the system.
The potentiometer wiper has been rotated to generate a digital output as
near to the sequence 123 as possible.

Observations

Figure 6-18 illustrates the continuous output from the Python code that
parses the digitized, converted, wiper voltage value to drive the individual
elements of the 10-bit LED binary representation of the output value. A
closer examination of the output and the actual code being processed
will confirm that only when the remainder variable “rem” has a positive

or high value does the program print a diagnostic output. Rotation of the

180

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

potentiometer shaft from one extreme to the other will vary the display from
1 or 0 to 1023. As can be seen in the variation in the data of Figure 6-18, the
system has a certain amount of noise included in the wiper output value.

Figure 6-19 depicts the RPi GPIO array interfaced to a 12-bit LED
display on a prototyping breadboard. The illuminated diodes correspond
to the binary bit pattern of 2 + 4 + 8 + 16 + 32 or decimal 62.

= -_E 3 A Python 342 Shel| @ SpiGPIDSLMP_| & *Python 3.4.2 Sh | BBl @raspberypi ~

e [Shel Dsbug Options Windews beip

g T T TERT = 1
Q5= 3reml = 1

Q6= 1 reml = 1

Q7 = 0 reml = 1

Pot wiper value = 122

Q2 = 30 reml = 1 ||
4= Treml = 1

Q5= 3 reml = 1

Q6= 1 reml = 1

Q7 = Oreml = 1

Pot wiper value = 121
Q1 = 60 reml = 1
Q4 = T oreml = 1
Q5= 3reml = 1
Q6= 1 reml = 1
Q7 = O0real = 1
Pot wiper value = 122
02 = 30 reml1 = 1
Q4= 7 reml = 1
5= Ireml = 1
Q6 = 1 reml = 1
Q7= Oreml = 1
Pot wiper value = 122
Q2 = 30 reml = 1

Q4 = Treml = 1
Q5= 3 reml = 1
Q6= 1 reml = 1

1

Q7 = O reml =

Pot wiper value = 122
Q2+ 30|

L

Figure 6-18. RPi Screen Output During ADC

181

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Figure 6-19. A 12-Bit Binary LED Display of Decimal Value 62

Discussion

Figure 6-19 depicts a bank of 12 3 mm LEDs that can be used in a 10- or
12-bit conversion demonstration. An MCP3201 is a 12-bit conversion IC
that can alternately be set up as a binary visualization display. Small 3 mm
diodes and 1 kQ current limiting resistors are being used to minimize the
current drawn from the computer with the large number of LEDs in the
visual displays.

The figures and photos of the RPi circuits, programming, and wiring
are reflective of the complexity required to use the very inexpensive
system. As can be seen in the photo of Figure 6-19, the investigator needs
to take care in routing jumper wire connections of the RPi GPIO lines and
those required to control the conversion functions of the MCP3008 or
MCP3201. The RPi GPIO line connections required to activate the 10- or
12-bit binary LED display of the pin array output can be tested during
assembly with Listing 6-14. As each pin name appears on the interactive
screen, the corresponding LED connected to the nominal pin should

182

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

illuminate for 3 seconds. Figure 6-20 depicts the test program output
display for pin and LED testing.
Listing 6-15 can be used to reset the GPIO array voltage values to zero.

Dle Ed Shef Oebug Optioms fondows Help |

Python 3.4.2 [default, Oct 1% 2014, 13:31:11)

|GCC 4.9.1] on linux

Type "copyright®, "credita™ or "license()® for more information.
22> RESTART

==== RESTART

Testing pin 18
Testing pin 19
Testing pin 20

> |

Figure 6-20. The LED Array Testing Output

Parallel ADC integrated circuitry as demonstrated with the preceding
ADCO0804 has been replaced, to a certain extent, by numerous serial
communications protocols. Serial communication over a long distance
using two or a small number of wires is far more practical than having to
use 8, 10, 12, or more parallel wires to transmit high-frequency, digital,
data bits. Shielding to prevent “cross talk,” physical size, and expense
are just some of the problems to be encountered in high-speed data
transmission over closely spaced, parallel lines.

A model 3 Raspberry Pi can be configured to use one of several serial
communications systems. Figures 6-21 and 6-22 display access to the
Preferences » configuration window that allows the implementation of
the desired protocol.

183

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

System
Camera Enabled © Disabled
SSH Enabled = Disabled

Enabled * Disabled

* Enabled Disabled

Enabled * Disabled

Senal Enabled ! Disabled
1-Wire: Enabled * Disabled

Remote GPIO: Enabled * Disabled

Cancel OK

Figure 6-22. Interfaces Selection Window

Selection of the serial peripheral interface (SPI) protocol allows the RPi
to communicate with devices that “stream out” data in a continuous flow
of high and low bit pulses. An ADC is just such a data streaming device.
SPI protocols work on a master-slave concept in which either three or four
electrical connections form an electronic bus between the master and a
single slave or several slave devices. A clock synchronizes the transfer of data.
The four lines in an SPI configuration are master out slave in (MOSI), master
in slave out (MISO), the clock line (SCLK), and the chip slave select (CSS).

184

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

SPI can become difficult to implement if there are a number of slaves,
and a second popular protocol is the inter-integrated circuit (I*C or 12C)
protocol. I2C is a two-wire implementation, has slower fixed speeds, uses
addressable locations, consumes more power than SPI, and has less noise.
12C is the only protocol that confirms the transmission of the data.

In Figure 6-22, there is a third communications interface called Serial that
implements the universal asynchronous receiver and transmission (UART)
protocol. An asynchronous communication operates between two devices
only, without an external clock, but uses agreed-upon data transmission
and receive rates at both ends. Each end of the two-wire bus has an IC that
translates between parallel and serial data flows. In the UART transmission,
a defined format specifies the beginning and end of the data with start and
stop markers. The Serial protocol is used extensively in microprocessor
communications.

For further details on the three protocols, see Practical Electronics for
Inventors.®

Code Listings

Listing 6-1. DAQFactory-LabJack U12 Decimal-to-Binary Sequence
Codes

//Decimal to Binary Conversion

//0ct 14-16, Nov 14/2009

//Program Algorithm

//8 LEDs are connected to the digital output channels Do (#4)
// to D7 (#11) on the DB25 output of the LabJack. Each line is
// buffered/driven with a 4050 buffer.

3 Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

185

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

//An EDIT box accepts the Number To Convert and the modulo of
// the value with respect to base 2 is determined for each bit
// of a byte. The bit values are then displayed on the LEDs
//A for loop executes 8 times to evaluate each bit of the
//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte

// register.

//

// Declarations

//

global Number To Convert

//Preserve original decimal value entered from the control screen
global Orgnl N To Cnvrt = Number To_Convert

//

Private Converted Number

]
]

[0
[1
Private Converted Number[2]
Private Converted Number[3]
Private Converted Number[4]
[5
[6
[7

Private Converted Number

]
]
]

Private Converted Number
Private Converted Number
Private Converted Number
//
//
for (Private.Counter = 0, Counter < 8, Counter++)

U}
O O O O © © o o

Converted Number[Counter] = Number To Convert %2
Number To_Convert = Number To_Convert/2
Number To_Convert = Floor(Number To Convert)

endfor

186

//

//

//

//

//

//

//

//

//

//

//

//

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

if (Converted Number[o0] ==
DigOut = 1

endif

if (Converted Number[1] ==
DigOut 1 = 1

endif

if (Converted Number[2] ==
Diglut 2 = 1

endif

if (Converted Number[3] ==
Dighut_3 = 1

endif

if (Converted Number[4] ==
Diglut_4 = 1

endif

if (Converted Number[5] ==
Diglhut_5 = 1

endif

1)

187

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

//
if (Converted Number[6] == 1)
//
DigOut 6 = 1
endif
//
if (Converted Number[7] == 1)
//
Digut 7 = 1
Endif

Listing 6-2. DAQFactory Script Code to Increase the Converted
Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary. The value of the original

//variable was iteratively reduced to zero by the conversion code

//but was preserved in the global variable Orgnl N To Cnvrt.

//The preserved number is augmented in value and passed back
through the original sequence.

//

global Orgnl N To Cnvrt

//

//any residual values on the byte register are cleared
ClearByteDisplay()

//

// the original value is augmented

188

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Number to Convert = Orgnl N To Cnvrt + 1

//

//the augmented value is converted and displayed
ConvertDecToBinary()

Listing 6-3. DAQFactory Script Code to Decrease the Converted
Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable
//Number_To_Convert that was converted and displayed in
//sequence ConvertDecToBinary and runs the decreased value back
//through the original sequence.

//In the original conversion sequence the Edit Box value,
//variable, Number To_Convert is iteratively divided by two till
//it vanishes so the entered number is saved in Orgnl N_To Cnvrt
//

global Orgnl N To Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be
converted

Number to Convert = Orgnl N To Cnvrt - 1

//convert and display the bit pattern

ConvertDecToBinary()

Listing 6-4. DAQFactory Script Code to Clear Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display
//

189

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

DigOut = 0
DigOut_1 =
Diglut_2 =
DigOut_3 =
DigOut_4 =
DigOut_5 =
Diglut_6 =
DigOut_7 =

O O O O © O o

Listing 6-5. DAQFactory Code for Decimal-to-Binary Conversion
via Serial Connection

//Decimal to Binary Conversion

//0ct 14-16, Nov 14/2009, serial port display Jun7/19
//Program Algorithm

//8 LEDs are connected to the digital output channels Do (#4)
//to D7 (#11) on the DB25 output of the LabJack. Each line is
//buffered/driven with a 4050 buffer.

//An EDIT box accepts the Number To Convert and the modulo of
// the value with respect to base 2 is determined for each bit
// of a byte. The bit values are then displayed on the LEDs. In
// this version a quick sequence writes the number of the

// digital pin on the Arduino connected to the diode to be

// illuminated on the serial port.

//A for loop executes 8 times to evaluate each bit of the
//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte
// register.

//

// Declarations

//

190

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

global Number To Convert

//Preserve original decimal value entered from the control screen
global Orgnl N To Cnvrt = Number To Convert

//

global Converted Number[O
global Converted Number[1
global Converted Number[2

global Converted Number|[3
global Converted Number[4
global Converted Number[5

global Converted Number[6
global Converted Number[7
//
//
//
//
for (Private.Counter = 0, Counter < 8, Counter++)

r—1|—||—|r—||—||—|r—||—

|_.|_||_||_||_||_||_||_.
1

O O O ©O © O o o

Converted Number[Counter] = Number To Convert %2
Number_To_Convert = Number To_Convert/2
Number To_Convert = Floor(Number To Convert)

endfor
//
if (Converted Number[0] == 1)
//
/1 DigOut =
device.ardyRb.Write('3"' + Chr(10))
endif
//
if (Converted Number[1] == 1)
//

191

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

// DigOut_1 = 1
device.ardyRb.Write('4' + Chr(10))
endif
//
if (Converted Number[2] == 1)
//
// DigOut_2 = 1
device.ardyRb.Write('5" + Chr(10))
endif
//
if (Converted Number[3] == 1)
//
// DigOut 3 =
device.ardyRb.Write('6' + Chr(10))
endif
//
if (Converted Number[4] == 1)
//
// DigOut 4 =
device.ardyRb.Write('7' + Chr(10))
endif
//
if (Converted Number[5] == 1)
//
/1 DigOut 5 =
device.ardyRb.Write('8"' + Chr(10))
endif
//
if (Converted Number[6] == 1)
//

192

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

// DigOut 6 = 1
device.ardyRb.Write('9"' + Chr(10))
endif
//
if (Converted Number[7] == 1)
//
/1 Diglut 7 = 1
device.ardyRb.Write('a' + Chr(10))

endif

Listing 6-6. DAQFactory Sequence Code for Increasing the
Converted Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable
//Number_To_Convert that was converted and displayed in sequence
//ConvertDecToBinary. The value of the original variable was
//iteratively reduced to zero by the conversion code but was
//preserved in the global variable Orgnl N _To Cnvrt.

//The preserved number is augmented in value and passed back
//through the original sequence.

//

global Orgnl N To Cnvrt

//

//any residual values on the byte register are cleared
ClearByteDisplay()

//

// the original value is augmented
Number to Convert = Orgnl N To Cnvrt + 1

//

//the augmented value is converted and displayed
DecimalToBinaryCnvrsnRvni()

193

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Listing 6-7. DAQFactory Sequence Code for Decreasing the
Converted Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable
//Number_To_Convert that was converted and displayed in
//sequence ConvertDecToBinary and runs the decreased value back
//through the original sequence.

//In the original conversion sequence the Edit Box value,
//variable, Number_To_Convert is iteratively divided by two till
//it vanishes so the entered number is saved in Orgnl N To Cnvrt
//

global Orgnl N To Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be
converted

Number to Convert = Orgnl N To Cnvrt - 1

//convert and display the bit pattern
DecimalToBinaryCnvrsnRvni()

Listing 6-8. DAQFactory Sequence Code for Clearing the Display

/ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display
device.ardyRb.Write('z' + Chr(10))

194

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Listing 6-9. Arduino Sketch Code for Diode Array Illumination

// DAQFactory - Arduino LED Illuminated Digital Bits in Byte
// Register DAQFtry screen bttns DO to D7 light LEDs in digtal
// array. Total value of illuminated bits calculated and
// register cleared with buttons. DAQFtr uses scripting to
// evaluate digital bits and serial port transmisons to
// illuminate LEDs after selectn by case statement.
//
// digital pins in use 3,4,5,6,7,8,9, and 10
int pv_one = 3;
int pv_two = 4;
int pv_four = 5;
int pv_eight = 6;
int pv_steen = 7;
int pv_threetwo = 8;
int pv_sixfour = 9;
int pv_onetwoeight = 10;
int diod_num;
String inString = "";
//
void setup() {
Serial.begin(9600);
//
}
//
void loop() {
while (Serial.available() > 0){ // read serial input
int inChar = Serial.read();

195

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

if (inChar == '3") {
pinMode(pv_one, OUTPUT); // units value 2 exp 0
digitalWrite(pv_one, HIGH);
}
if (inChar == '4") {
pinMode(pv_two, OUTPUT); // 2 exp 1 =2
digitalWrite(pv_two, HIGH);
}
if (inChar == '5") {
pinMode(pv_four, OUTPUT); // 2 exp2 =4
digitalWrite(pv_four, HICH);
}
if (inChar == '6") {
pinMode(pv_eight, OUTPUT); // 2 exp 3 =28
digitalWrite(pv_eight, HICH);
}
if (inChar == '7") {
pinMode(pv_steen, OUTPUT); /1 2 exp 4 = 16
digitalWrite(pv_steen, HICH);
}
if (inChar == '8") {
pinMode(pv_threetwo, OUTPUT); // 2 exp 5 =32
digitalWrite(pv_threetwo, HIGH);
}
if (inChar == '9") {
pinMode(pv_sixfour, OUTPUT); /] 2 exp 6 = 64
digitalWrite(pv_sixfour, HIGH);
}
if (inChar == 'a'") {
pinMode(pv_onetwoeight, OUTPUT); // 2 exp 7 =128
digitalWrite(pv_onetwoeight, HIGH);

196

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

if (inChar == 'z") {

// special case to clear array

pinMode(pv_one, OUTPUT);
digitalWrite(pv_one, LOW);
//
pinMode(pv_two, OUTPUT);
digitalWrite(pv_two, LOW);
//

pinMode(pv_four, OUTPUT);
digitalWrite(pv_four, LOW);
//
pinMode(pv_eight, OUTPUT);
digitalWrite(pv_eight, LOW);
//
pinMode(pv_steen, OUTPUT);
digitalWrite(pv_steen, LOW);
//

pinMode(pv_threetwo, OUTPUT);
digitalWrite(pv_threetwo, LOW);

//
pinMode(pv_sixfour, OUTPUT);

digitalWrite(pv_sixfour, LOW);

//

pinMode(pv_onetwoeight, OUTPUT);
digitalWrite(pv_onetwoeight, LOW);

}

197

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Listing 6-10. DAQFactory “On Receive” Code for the
ArduinoStream Channel

if (strIn == Chr(13))
private string datain = ReadUntil(13)
Channel.AddValue(strDevice, 0, "Input”, O,
StrToDouble(DatalIn))
Endif

Listing 6-11. Arduino Sketch Code to Read A0 ADC Channel and
Write Data to Serial Port on 50 ms Intervals

/*

AnalogReadSerial

Reads an analog input on pin A0, prints the result to the
serial monitor.

Attach the center pin of a potentiometer to pin A0, and the
outside pins to +5V and ground.
*/

// the setup routine runs once when you press reset:

void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);

}

// the loop routine runs over and over again forever:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(A0);
// print out the value you read:
Serial.println(sensorValue);
delay(50); // delay in between reads for stability

198

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT
Code Listings for Raspberry Pi

Listing 6-12. RPi Python Code for Decimal to 12-Bit Binary LED
Visual Display

Decimal to 12 Bit Binary LED Visual Display
#
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
Ensure all LEDS are OFF and set to output mode
for i in range(2, 15):
GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.LOW)
#
input dec number to process
#
input_str = input("Decimal to convert to a 12 bit binary
display ",)
dec = int(input_str)
print()
print out screen display headings
print("Quotient and remainder listing for conversion and
display illumination.")
print()
first binary digit of 2**0 or 1s
Q1 = dec // 2
reml = dec % 2
if rem1 ==
GPIO.output(2, GPIO.HIGH)
print("For LED 1 Q = ", Q1, "and rem = ", remi)
#

199

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

second binary digit of 2**1 or 2s
Q2 =01//2
rem2 = 01 % 2
if rem2 ==
GPIO.output(3, GPIO.HIGH)
print("For LED 2 Q = ", Q2, "and rem = ", rem2)
#
third binary digit of 2**2 or 4s
03 =027//2
rem3 = 02 % 2
if rem3 == 1:
GPIO.output(4, GPIO.HIGH)
print("For LED 3 Q = ",Q3, "and rem = ", rem3)
#
fourth binary digit of 2**3 or 8s
04 =03 // 2
rem4 = Q3 % 2
if rem4 ==
GPIO.output(5, GPIO.HIGH)
print("For LED 4 Q = ",04, "and rem = ", rem4)
#
fifth binary digit of 2**4 or 16s#
Q5 =04 // 2
rem5 = Q4 % 2
if rems ==
GPIO.output(6, GPIO.HIGH)
print("For LED 5 Q = ",Q5, "and rem = ", rem5)
#
sixth binary digit of 2**5 or 32s
Q6 =05 // 2
rem6 = Q5 % 2

200

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

if rem6 ==
GPIO.output(7, GPIO.HIGH)
print("For LED 6 Q = ",Q06, "and rem = ", rem6)
#
seventh binary digit of 2**6 or 64s
Q7 =06 // 2
rem7 = Q6 % 2
if rem7 == 1:
GPIO.output(8, GPIO.HIGH)
print("For LED 7 Q = ",Q7, "and rem = ", rem7)
#
eighth binary digit of 2**7 or 128s
08 =Q7 // 2
rem8 = Q07 % 2
if rem8 ==
GPIO.output(9, GPIO.HIGH)
print("For LED 8 Q = ",08, "and rem = ", rem8)
#
ninth binary digit of 2**8 or 256s
Q9 =08 // 2
rem9 = Q8 % 2
if rem9 ==
GPIO.output(10, GPIO.HIGH)
print("For LED 9 Q = ",Q9, "and rem = ", rem9)

#
tenth binary digit of 2**9 or 512s
010 = Q9 // 2

rem10 = Q9 % 2
if rem10 == 1:
GPIO.output(11, GPIO.HIGH)
print("For LED 10 Q = ",Q10, "and rem = ", rem10)
#

201

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

eleventh binary digit of 2**10 or 1024s
011 = 010 // 2
rem11l = Q10 % 2
if remi1l ==
GPIO.output(12, GPIO.HIGH)
print("For LED 11 Q = ",Q11, "and rem = ", remil)
#
twelfth binary digit of 2**11 or 2048s
012 = Q11 // 2
remi2 = Q11 % 2
if rem12 == 1:
GPIO.output(13, GPIO.HIGH)
print("For LED 12 Q = ",Q12, "and rem = ", remi2)

Listing 6-13. SPI-Based Program to Read an MCP3008 10-Bit ADC

An SPI based program to read an MCP3008 10 Bit ADC

the referenced voltage range is divided into an integer from
0 to 1023 sampled voltage is ADC/1023 * 3.3 volts. A blend of
GPIO and SPI code is used to run a 10 bit LED display of the
ADC value.

#

import the RPi.GPIO low level pin control library

import RPi.GPIO as GPIO

import spidev

import time

setup the pin identification scheme

GPIO0.setmode(GPI0.BCM)

turn off the array use warnings

GPIO.setwarnings(False)

ensure all the LED driver outputs are set to output and are zero

202

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

for i in range(2, 7):
GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.LOW)
for i in range(13, 18):
GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.LOW)
create required variables
the delay time
delay = 0.5 # the value of time variable delay is defined
the channel to use
pot chnnl = 0
create a spidev object of the device connected to the
channel in use
spi = spidev.SpiDev()
spi.open(0, 0)
create the readadc function that checks for the correct
channel assignment
if the channel assignment is correct the adc value is read
the function returns -1 a channel error or the adc value
def readadc(pot_chnnl):
check channel
if pot_chnnl > 7 or pot _chnnl < 0:
return -1
r = spi.xfer2([1, 8 + pot chnnl << 4, 0])
data = ((r[1] & 3) << 8) + r[2]
return data
#
the while loop, print out and time delay
while True:
wpr_vlu = int(readadc(pot_chnnl))
print(" - ")
print("Pot wiper value = ", wpr_vlu)

203

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

The LED Display Code

Although initially set to low each binary bit

determination must be reset to low as the code cycles in

the while loop.

#

first or least significant bit of 2**0 or 1s

Q1 = wpr_vlu // 2

reml = wpr_vlu % 2

GPIO.output(2, GPIO.LOW)

if rem1 ==
print("Q1 = ", Q1, "reml = ", remil)
GPIO.output(2, GPIO.HIGH)

second significant bit of 2**1 or 2s

02 =017//2

reml = Q1 % 2

GPIO.output(3, GPIO.LOW)

if rem1 == 1:
print("Q2 = ", Q2, "reml = ", remil)
GPIO.output(2, GPIO.HIGH)

third significant bit of 2**2 or 4s

03 =02//2

reml = Q2 % 2

GPIO.output(3, GPIO.LOW)

if reml ==
print("03 = ", 03, "reml = ", remil)
GPIO.output(3, GPIO.HIGH)

fourth significant bit of 2**3 or 8s

04 =03 // 2

reml = Q3 % 2

GPIO.output(4, GPIO.LOW)

204

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

if rem1 ==
print("Q4 = ", 04, "reml = ", remil)
GPIO.output(4, GPIO.HIGH)
fifth significant bit of 2**4 or 16s
05 =04 // 2
reml = Q4 % 2
GPIO.output(5, GPIO.LOW)
if rem1 == 1:
print("Q5 = ", Q5, "reml = ", remil)
GPIO.output(5, GPIO.HIGH)
sixth significant bit of 2**5 or 32s
Q6 = Q5 // 2
reml = Q5 % 2
GPIO.output(6, GPIO.LOW)
if remi ==
print("06 = ", 06, "reml = ", remil)
GPIO.output(6, GPIO.HIGH)
seventh significant bit of 2**6 or 64s
Q7 =06 // 2
reml = Q6 % 2
GPIO.output(13, GPIO.LOW)
if remi ==
print("Q7 = ", Q7, "reml = ", reml)
GPIO.output(13, GPIO.HIGH)
eighth significant bit of 2**7 or 128s
08 =Q7 // 2
reml = Q7 % 2
GPIO.output(14, GPIO.LOW)
if rem1i == 1:
print("Q8 = ", 08, "reml = ", reml)
GPIO.output(14, GPIO.HIGH)

205

CHAPTER 6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

ninth significant bit of 2**8 or 256s
Q9 =08 // 2
reml = Q8 % 2
GPIO.output(15, GPIO.LOW)
if reml ==
print("Q9 = ", Q9, "reml = ", remil)
GPIO.output(15, GPIO.HICH)
tenth or most significant bit of 2**9 or 512s
Q10 = Q9 // 2
reml = Q9 % 2
GPIO.output(16, GPIO.LOW)
if rem1 ==
print("Q10 = ", Q10, "rem1 = ", reml)
GPIO.output(16, GPIO.HIGH)
timing delay
time.sleep(delay)

Listing 6-14. RPi Code for Testing LEDs on GPIO Pin Array

Test the LED Array on the GPIO pins
#
import RPi.GPIO as GPIO
import time
set the pin identity mode
GPIO.setmode(GPIO0.BCM)
GPIO.setwarnings(False)
Reset the array pins to on for 3 sec then turn off
for i in range(2, 21):
GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.HIGH)
print("Testing pin ",1i)
time.sleep(3)
GPIO.output(i, GPIO.LOW)

206

CHAPTER6 ANALOG OR DIGITAL CONVERSIONS FOR INPUT AND OUTPUT

Listing 6-15. Utility Program to Reset the GPIO Pin Values to Zero

Utility program to reset the GPIO pin values to 0

import RPi.GPIO as GPIO

set the pin identity mode

GPIO.setmode(GPI0.BCM)

GPIO.setwarnings(False)

Reset the array pins to off/false/0

chan list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)delay)

Summary

— ADC and DAC limitations along with the differences
between integer and floating point (decimal-containing
numbers) have been presented.

— Serial and parallel signal conversions and the various
serial transmission protocols were introduced in both the
commercial and less expensive component-assembled
systems.

— Animportant application of digital-to-analog conversions
is presented in Chapter 7 dealing with variable intensity
and power controls.

207

CHAPTER 7

Variable Intensity
and Power Control

The ability to arbitrarily alter or adjust the settings of either an
experimental setup or a process control from the display screen is an
integral part of SCADA systems. The DAQFactory software provides
variable control icons such as rotating knobs or moveable sliders. The
knob or slider page components can be coupled to an analog output
channel whose value will be proportional to the rotating position of the
control knob or the linear position of the slider index marker.

With proper design, the page component controls can be used to
regulate substantial voltages and currents that in turn can activate
electro-mechanical devices.

Manipulation of an image on a GUI control screen must at some
point be translated into an electrical signal to provide the desired
electro-mechanical actions in the experiment or process at hand.

As previously introduced, digital systems function in a binary realm in
which the required system action is generated in the form of a signal that
is either on or off. However, there are many systems that require the ability
to continually adjust the amount of action required and are thus in the
analog realm. Motor speeds controlling fans, pumps or mixers, heating
elements, intensity of illumination, and rotational positioning are some

of the operations that may require adjustment by the experimenter or
process operator.

© Richard J. Smythe 2021 209
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_7

https://doi.org/10.1007/978-1-4842-6778-3_7#DOI

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

This exercise demonstrates two methods for exerting variable control
over process or experimental setups through voltage control and a
technique known as pulse width modulation (PWM).

An increase in the DC voltage of the power being fed to a device
such as a motor, heater, or light source generally increases the speed,
heat developed (a temperature increase), or luminance in proportion
to the additional current passing through the load. It has been stated
that PWM is a method for delivering partial power to a load by digital
means. In essence, a PWM control application places the full voltage
of the power supply across the load in the form of an adjustable-width,
higher-frequency (often of several hundred Hz), rectangular pulse stream.
Control of the power applied and used by the load is then determined by
modifying the width of the full on and off times of the pulse waveform. The
ratio between the on time and the width of the rectangular pulse is known
as the duty cycle (see Figure 10-5 in Chapter 10). Variation of the duty cycle
of the rectangular, full on or off waveform applied to the load is the essence
of PWM power control.

PWM is a technique that can be implemented with software or,
as presented in the later exercises on current control, with integrated
circuitry. For many applications that require precise control, with smooth
power transition, hardware-based PWM is much preferred.

For this exercise, PWM is introduced at its simplest level with an
entirely software implementation. Restriction of the PWM process to a
code-based program limits the techniques that can be used to visually
demonstrate the process as is detailed in the following portions of this
exercise.

The frequency at which the rectangular waveform is created for PWM
must be substantially higher than the response time of the load. Rules of
thumb suggest the frequency be twice the reciprocal of the device RC time

210

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

constant or ten times higher than the control system frequency. In very

simplified terms, it can be said that the PWM frequency should be high

enough so as not to resonate with the RC time constant of the load. (See
resistance-capacitance time constant in the reference.")

PWM is an extensively used technique in power control, digital-to-
analog conversion, amplifier design, and communications but requires
complex circuitry and can create radio frequency interference, voltage
spikes, and EMI noise. (See triac control in the reference! and Chapter 10.)

Experimental

Variable Voltage Control
Hardware

A 2N3904 NPN transistor, a 10 kQ resistor to limit the transistor base
current, and an LED with the appropriate current limiting resistor are
assembled on a breadboard in the configuration shown in Figure 7-1.

! Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

211

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

2N3904

RO @

R diode current

Figure 7-1. Labjack Analog Output 0 Control of NPN Transistor

Software

The rotating knob control is selected from the right button pop-up menu
as shown in Figure 7-2.

212

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

B Paste
Static L
Displays »
Gauges 4
Compasses »
Percent »
Graphs »

Buttons & Switches »

Edit Controls 3
Selection]
| Shiders&gknobs M| 3 slider
|f" Knob]
@ Scroll Bar

Figure 7-2. DAQFactory Screen Component Control Selection Menu

After positioning and sizing the control icon on a page of the display
screen, the properties option is selected to gain access to the knob
configuration screens.

The visual appearance of the default-valued un-configured screen icon
depicted in the following can be altered with the appropriate entries in the
boxes displayed in the Main tab. As with all screen icons, the corresponding
Help file can be displayed below the screen object being manipulated.
Some of the visual effect options presented in the Main tab of the properties
window are only evident on larger display images of the icon.

The knob control indicator image defaults to the displayed dot, but
with the radio buttons seen to the right in the indicator sub-panel, this
can be changed to select a triangle or a conventional line index to mark
the degree of control rotation. The default blue indicator image can be
changed by selecting the desired color from the palette available by left-
clicking the Color box seen in Figure 7-3.

213

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

It‘,:.:nh tnmpnnnnt ! 3

Man | Tieks |
SetChawet | Pusibion Display:
Range: R Show?
Start Degrees: 5 deg Precision:
Arc Langthc 0 deg i
JogWheet r £ Toin s Indicator
Updste Inerval 0 sect i
Masgn:
Kinch Siyle: ¥ Rasced Edge
" Raired bl
T Surken
7 Surken Edge
Transpacent?
Spesd Keyt
| Help
Knob Component Properties

fProvide a variable output value based on the position of the knob.

Main:
Sc:bch-nnul: The specified channel or variable will be set to the value corresganding to the position of the
knob.

Range: The total range of the knob.

Start Degrees: The position n & cirche of the minimum and maximum points on the knob. 0 is to the nght,
B0k up.

Key-Arrow: The amount the position will change when the arrow keys are pressed.
Key-Page: The smount the pasition will change when the page up/pages down keys are pressed.

Mouse-Wheel: The amount the position will change with each turn of the mouse wheel. ~

Figure 7-3. DAQFactory Screen Component Configuration
Window

Figure 7-4 depicts the window opened by selecting the “Ticks” tab
seen in Figure 7-3. Within the Ticks window, the investigator can select the
nominal aspects of the circular scale and establish the resolution of the
display and its appearance in the final window.

214

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

=
sits
5 o]
wo |l
0 1o
Mwuﬂ! %
Man ek |
g [O Mo Tike
Shew? B
Cout g
Lot 7
cee [
Tichs Label Mt Ticke
Bowt W Show? W Mgreart: 7 Inude
[] Court . " Contes
Magn [Length 3 Lo
coe coe [
| e

&
&

Margin: The ictance Batwesn the Bicks and the suttide of the kncb
Ticks Labok:

Shows If checked, labels are drans mest 1o the majer tizks.
Precision: The number of depits disolayed after the decimas
Marging The distance between the tcks and the lsbels in pixels
Colars The colr of the lagis.

Major Ticks:

Figure 7-4. Knob Tick Configuration Window

The final configuration of the author’s screen component is displayed
in Figure 7-5.

= iX1] |
- =
e e
- S
0 5
0 to 5 volt Analog Out Put
on AO 0 Controls base
current on 2N3904 and
LED brightness

5

Figure 7-5. Base Current and LED Intensity Rotating Control Knob
with Instruction Panel

215

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Scripting is not required. The slider or the knob automatically provides
a variable output based upon the position of the knob or slider. The
channel specified in the Set Channel box of the Main tab of the properties
window is set to and outputs the required proportional signal.

Observations

As detailed in the DAQFactory manual, the knob or slider can be set to
numerous configurations for controlled activation of the selected channel.
Because the control in this exercise has been set up to control the power to
an LED, there is a certain amount of “dead band” created by the minimum
voltage required to activate the LED at hand.

Discussion

Finer degrees of control for the voltage applied to the transistor base and
ultimately to the power delivered by the semiconductor can be realized
by configuring the starting position at 225° of rotation and assigning the
starting voltage to the breakdown voltage of the LED being used. The
forward voltage drop in an LED can vary from 1.2 volts for the infrareds

up to 4 or 5 volts for the blues and white devices. The author’s setup used
a green LED, so depending upon the intended usage of the screen icon,
the dial could be configured to start at 3 volts or at zero. The 0-5-volt range
could be used and calibrated if the turn on voltage itself is to be estimated,
or the dial could be set to indicate from 3.0-5.0 volts to reproduce diode
intensity/power applied settings.

216

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Experimental

Pulse Width Modulation of Voltage
Introduction

Typically, the implementation of a software program to demonstrate
the fundamentals of PWM uses an LED with a high-frequency variable
duty cycle waveform as presented in Chapter 10. In this exercise, the
fundamental concept and method of PWM is demonstrated with an
electronic-electrical system that has a very simple software signal
generator and a relatively slowly responding load consisting of an
incandescent light bulb.

In keeping with the simple introduction to creating sequences with
the DAQFactory software, an elementary program sequence that coarsely
varies current through a 12-volt, battery-powered DC automotive lamp is
presented in Listing 7-1 at the end of the chapter.

The code has been reduced to the bare minimum number of
statements required to generate the typical rectangular waveform.

The duty cycle values must be entered or changed manually by the
experimenter as numerical values in the two delay statements in the
DAQFactory sequence. The default settings in the code listings are 0.005
and 0.095 that combine to give a total rectangular pulse width of 0.1
seconds.

Figure 7-6 depicts the circuit used to provide a slow-response load for
the PWM demonstration.

217

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

B

12 V

12 V OC auto

lamp

08 PUWM
input

Figure 7-6. Incandescent Bulb Load for PWM Demonstration

Observations

Figures 7-7, 7-8, 7-9, and 7-10 depict the varying intensities of brightness
of the incandescent bulb and the corresponding low and high duty cycle
PWM waveforms.

218

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Figure 7-8. Low PWM DC Waveform for Incandescent Bulb
Load

219

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Figure 7-10. High PWM DC Waveform for Incandescent Bulb
Load

220

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

If the pulse code is used with an LED, the flash rate can be seen to be
different for the 5 ms and 95 ms time periods, but the eye has difficulty
in seeing a difference in the illumination between the two, noticeably
flashing, power settings. An incandescent lamp, however, displays a
much greater visible response to the different power levels as is evident in
Figures 7-7 and 7-9.

Discussion

In the introduction to PWM in this exercise, a point has been made
about the need for the frequency of the rectangular wave carrying the
power to be substantially higher than the time constant of the system to
which the power pulses are applied. In very simplified terms, it can be
said that the PWM frequency must be higher than the response time of
the load. The incandescent lamp and battery response times are slow
enough to visually illustrate the power control ability of a very simple,
rudimentary DAQFactory sequence in creating a graphically visual PWM
demonstration. The PWM signals for this demonstration are generated
by the DAQFactory sequence of just six lines of code. The oscilloscope
recordings of Figures 7-8 and 7-10 correspond to a little less than 2 Hz.
Although the frequency is not that high, it is sufficient with the time
required for the filament to heat up and reach thermal and illumination
stability that a two-cycle PWM illumination control technique produces
the desired results. Using a software program such as the first entry in the
code listings to vary the times at which the signal is on and off is often
referred to as “bit banging” PWM.

PWM techniques are a very important part of many digital electronics
and electro-mechanical systems and in many cases are implemented
from hardware devices as will be encountered in several of the exercises to

follow using the Arduino microcontroller.

221

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Virtually all microcontroller boards as have been used in previous
exercises as inexpensive substitutions for DAQ systems are equipped with
digital pin outputs capable of outputting hardware-implemented PWM
signals (see Chapter 10).

Raspberry Pi Variable Intensity Control
Introduction

Physical computing with the RPi is only possible through the general-
purpose input and output pin array seen as the double row of 13 or 20 male
pins along the upper portion of the RPi circuit board in Figure 1-16 in
Chapter 1. The digital nature of the programmable pins on the array allows
the implementation of software PWM operations from either experimenter-
written code or from libraries containing various forms of PWM operations.
Intensity variation screen control icons or components are available
from the tkinter graphical image library available from online sources as
discussed in the documentation provided online by the Raspberry Pi and
Python Foundations.?
To accommodate the ever-increasing interest in and development
of physical computing and the “Internet of things,” the RPi Foundation
has approved three open source Python libraries to facilitate the use of
the GPIO array in connecting to the outside world. The initial library
release was of a more fundamental or lower-level code with the import
designation of RPi.GPIO, while the later more sophisticated codes can
be accessed by importing the gpiozero and pigpio libraries. RPi.GPIO
contains the code required to work with mechanical devices using either
the polling method or interrupts to detect mechanical motions such
as button or switch contact closings, “debouncing” these events, and

>docs/python.org/3/1ibrary/tk.html

222

http://python.org/3/library/tk.html

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

using the contact actions to initiate electrical activity on the GPIO pin
array. It is reported in the RPi documentation that the gpiozero library
is built upon the RPi.GPIO library and contains many elements of very
easy-to-use objects derived from the use of very well-explained, object-
oriented programming code. A detailed listing of library use and the
objects available can be found online.? Researchers and educators will
find the list of objects created in the gpiozero library is extensive, and
the documentation detailing their implementation and wiring is so very
detailed that a printout of the archive may aid greatly in further work.

The third and most recently released physical computing library,
imported as pigpio, is very different from the previous two facilities as
itis written in C for implementation on several operating systems. For
use on the RPi’s Linux operating system, an interfacing program must be
running in order for the Python interpreter to access the pigpio library.
The program also called a daemon is started from the Linux terminal with
a sudo pigpiod command.

The pigpio facility has extensive documentation that encompasses
detailed code syntax, the numerous testing and visualization utilities
available, and a large assortment of simple and very sophisticated codes
for interfacing to all manner of sensors and hardware. The library also
provides code for several of the more popular communications protocols.

C code is well known for its very fast execution, and the pigpio library
uses both software and hardware to provide single-digit microsecond time
resolution for its PWM and rectangular waveform generation and voltage
transition detection operations.

PWM applications are available through all the libraries, and several
RPi code listings from the three libraries are presented at the end of this
chapter to demonstrate the facets of software PWM power control using
the three different facilities.

*http://gpiozero.readthedocs.org/ and https://sourceforge.net/p/
raspberry-gpio-python/wiki/Examples

223

http://gpiozero.readthedocs.org/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Experimental

Software PWM signal generation and applications using the RPi physical
computing libraries are presented in a series of six programs. Observations
of the desired PWM effects can be achieved by using the Run Module in
the IDLE screen menu to access and process the stored program code.
Program execution can be halted by using the Ctrl+C key combination.

In addition to the demonstration programs, a very short utility
program is also provided to aid in the development and testing of the
pigpio physical computing code.

PWM Signals with the RPi.GPIO Library

Listing 7-2 can be used to demonstrate the basics of PWM waveform
generation with the circuit of Figure 7-11.

GPIO Pin
connection

R current
limiting
resistor

72 LED

GPIO pin
array
ground

Figure 7-11. LED-GPIO Pin Connection Schematic

It has been noted in previous exercises that the RPi.GPIO array is
limited in the current that it is able to safely supply to any peripherals
connected to the pins. Figure 7-11 depicts the generic connections that are
required to display the effects created by the programs under study and
development. It is left to the experimenter to safely configure the electronic

224

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

components so the power draw from the GPIO pin or pins in use and the
array ground are safely within the operating limits of both the computer
and the LED.

The program code PWM_tst1 raises and then lowers the #6 pin of
the GPIO array between 3.3 and 0 volts. The width of the on-off pulse
or its duty cycle (DC) is defined and entered into the program code by
the investigator as the variable prcnt_on. The actual PWM waveform is
generated by two loops, a continuous outer loop controlled by a “while”
statement that sets the #6 pin to a high value and an inner “if loop” that
counts out the number of units in the prcnt_on variable before resetting
the pin to 0 volts.

Setting the prcnt_on variable to 5, 50, and 95 can be used to
demonstrate the variation in intensity of the LED illumination.

A demonstration of the effects of the frequency of the PWM signal
on the observed illumination intensity of the LED at hand is given in
Listing 7-3 written with the RPi.GPIO library. When developing the RPi.
GPIO PWM frequency effect demonstration program, a suitable visual
effect was obtained when five different array pin-LED channels were
used to demonstrate the effects of PWM frequency on the observed LED
illuminations. The demonstration program set the duty cycle to a constant
value of 95%, and only the frequency of the PWM power signal was changed.

Prior to loading and running the PWM frequency effect code, five LEDs
and current limiting resistors must be wired to the GPIO array as depicted
in Figure 7-11. GPIO pins 3, 4, 5, 6, and 7 that are found at physical
positions (see Chapter 1, Figure 1-16) 5, 7, 29, 31, and 26 of the 40-pin array
can be used.

PWM Signals with the gpiozero Library

Listing 7-4 from the gpiozero documentation is a very simple single-
LED PWM illumination variation program demonstrating the advanced
interfacing available with the gpiozero library. The pulsed LED PWM

225

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

program that varies the power applied to an LED to alter the intensity

or brightness of its output consists of five lines of code, of which two are
import statements. A circuit to demonstrate software PWM is configured as
depicted in Figure 7-11. The author used a 5 mm LED and a 220 Q current
limiting resistor and connected the circuit to GPIO pin 21 (physical pin
#40) and ground (physical pin #34). To see the control possible with the
technique, the program code is loaded into the Python IDLE editor screen
and the Run menu used to launch or process the code.

The gpiozero library contains numerous objects for interfacing the RPi
output array and the MCP3008, eight-channel, 10-bit ADC, as depicted in
the circuit diagram of Chapter 6, Figure 6-17, which can be used in a PWM
demonstration using a RGB LED.

Listings 7-5 and 7-6 use three potentiometers biased between the
positive RPi power output and ground to provide three signals to the
first three channels of the MCP ADC that in turn function as three PWM
signals to vary the intensity of the individual red, green, and blue outputs
of the LED. The programs differ by the code used to implement the PWM
function. In theory, any desired color of light can be produced by the
three-potentiometer color control circuit configuration as depicted in
Figure 7-12.

RPiL connectians ta MCP3QA8 - UR’-:L GELG. ConnectLons Lo RGELER

a

(GPIA3.3Uping 168 1S Ly TR) be 3, 0 GPIO K 2 Da i
e o A
. CPIOGCrnd pins 14 8. @ e, s gl &1 gpro k3 canefd
BCnd . 14 2 he

GPLO K@ pin 11 i b

Pu
 CPIONS pin 12 | S g i :

... CPIO B 4 haefft
. T v

R. = 22a& Ohm. . .

. S | 10 ¥ Ok
H LT n & .
GPIO #LL pin 13 P = i e LED = Smm RGB
. CPIO B8 pin 10 ey O |- A TR | " : + X . i . 32
i DWnd . |9 B .ow 23w Charre] @ red

; i Charnel 1 green
i Channe]l 2 blue

Figure 7-12. PWM Three-Potentiometer RGB LED Color Control
Circuit

226

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Although the first three channels of the MCP3008 are used with 220 Q
resistors to limit the currents through the diode, the typical output
intensity of a green LED can be five times that of the red and blue devices.
To “balance” or equalize the sensitivity of the green channel, a higher
value resistance may be desired by the experimenter.

PWM Signals with the pigpio Library

To load, activate, and access the pigpio library on operating system images
or operating system code installations that do not have the library already
included in the code, a number of commands have to be entered at the
terminal. (Raspbian Jessie 2016-05-10 or newer comes with the pigpio C
library pre-installed.)

The author’s RPi has been in use for several years, and the newer
library had to be loaded at the terminal as detailed in the following:

1) Enter at the terminal prompt - wget abyz.co.uk/rpi/
pigpio/pigpio.zip

2) unzip pigpio.zip

3) cd PIGPIO

4) make

5) make install

The first two lines download the zipped file and unzip the Python
code to create the file PIGPIO in the home / pi directory fairly quickly.
The “make” and “make install” can take a minute or so to process
depending upon the speed of the Pi on which the library is being installed.
Three programs are created in the /home / pi / PIGPIO file: “pigpio.py”
is a documentation program explaining the Python pigpio module,
which is slightly over a hundred printed pages that define and explain
all the module functions and variables and provide short typical coded
applications. In addition to the documentation are “setup.py,” an RPi

227

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

access module for the pigpio daemon, and “x_pigpio.py,” a 15-20-page
coding of an extensive full test program of all the library functions available
from the pigpio library.

Listing 7-7 is a simple program demonstrating pigpio basic operations
that access the pigpio library through the running interface (pigpiod) to
turn an LED on and off and then vary the brightness with a four-step PWM
illumination intensity increase and decrease. Listing 7-8 is a pigpio test
utility that prints out the status of the GPIO pins in the array.

Observations
PWM _tst1

The LED illumination intensity variation is readily seen between the low,
medium, and high experiments when the three simulated duty cycle
values are entered into the program and the code is run. During the
three illumination periods, the code appears to be cycling fast enough to
produce a flicker rate that is not immediately perceptible.

Figure 7-13 is the output from the RPi.GPIO PWM frequency effect
demonstration program.

Menu| () = T % Y alPytno. | alzeo_ . [ElTemp .| apwn_. | @ iuntn.] & Pytho. | M pigre. | 28 @ | 24]0ss2

Efe Edt Shell Debug Options Windows Help

Python 2.7.9 (default, Sep 17 2016, 20:26:04)

[GCC 4.9.2] on linux2

Type "copyright", "credits"™ or "license()"” for more information.
x> RESTART

'zV carrier frequency set to 2 Hz
PWM carrier frequency set to 5 Hz
PWM carrier frequency set toc 8 Hz
PWM carrier fregquency set to 11 Hz
PWM carrier frequency set to 14 Hz

3> |

Figure 7-13. PWM Frequency Variation Effect with RPi.GPIO
Library Code

228

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

An LED is capable of switching on and off in the mega-Hz range;
and as expected, the 2, 5, and 8 Hz PWM signals flash on and off and
flicker noticeably, while the 11 and 14 Hz signals are reasonably stable
with minimal perceivable flicker or “jitter” (See “Discussion” for jitter
description and origin.)

PWM Control of RGB LED Output

The various diode colors can be seen to predominate the device output
as the shafts on the variable resistors are individually turned from their
off to full on positions. Although the circuit of Figure 7-12 has three equal
resistance values that allow the green to dominate the LED output, a
distinct sporadic and irregular variation of the intensity of the diode output
is visually discernible.

The pigpio library program produces a bright steady illumination
when the LED is powered on and during the four-step increase and
decrease of the diode illumination intensity. (See “Discussion.”)

Included in the code listings is the utility program that tests the status
of the first 32 pins of the RPi GPIO array and prints out their status in a
tabular form as depicted in Figure 7-14.

229

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Menu (p) = W I | & Python 3.4.2 Shell | M cigraspbenypi ~ @ | 141646

Ble Edt el Debug Opvens wndees Hep

RESTART

gplo 18 1z 0
gpio 1% is 0
gplo 20 is 0
gpio 21 is 0

T 40l 4]
===

Figure 7-14. Tested Status of the GPIO Pins

The test program not only prints out the status of each of the 32 pins of
the array but also confirms the operation of the Linux daemon interfacing
of the Python interpreter with the C code library.

The preceding tabulation was run after the “reset array to zero” utility
of Chapter 6 was used to clear the RPi array (Listing 6-15 in Chapter 6).
Pins 1, 2, and 29 are the power supply pins of the array.

Discussion

A portion of the RPi.GPIO library is devoted to the implementation of
interfacing lower-level devices such as mechanical switches to the RPi’s
GPIO pin array. The library has functions for determining if the current
state of any pin is high or low (+ system logic voltage level of 5 or 3.3 V or at
system ground potential of 0 V.) detecting changes in the pin state and for
determining when or how the transitions are to be monitored or detected.

230

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

The RPi uses a Linux-based multitasking operating system that may
temporarily take control away from lower-level priority input/output
operations. On a normal time scale as encountered in the operation of a
mouse or keyboard, the I/O operation may not be significantly affected by
the delay; but for higher-precision operations on shorter time scales such
as with graphics displays, it may become quite evident. In this exercise,
the visual effects of the irregular timing can be seen as the flickering in the
LED intensity or, as it is sometimes called, “jitter.”

When using the change frequency function of the RPi.GPIO library,
it is much easier to use a different pin array-LED channel for each new
frequency than it is to try and use the same channel and change its
frequency five times.

A distinct increase in capability and flexibility is evident in the
applications possible with the three GPIO physical computing libraries.
The pigpio is more complex to use but is far more powerful than the
simpler libraries. As noted previously, the C-based library is able to use
the Linux operating system and system hardware to achieve single-digit
microsecond time resolutions on many of the library operations. The
simple demonstration program used in this exercise is completely flicker-
or jitter-free.

In addition to the simple LED illumination function program, a very
short but useful utility program is included at the end of the code listings
that produces a printout of the state of each of the GPIO pins from 0 to 31.
The printout to the console lists all of the pins and their current high/low
values as 1 or 0. In addition to displaying the high/low voltage level of the
individual pins, the utility confirms the functioning of the Python pigpio
interfacing daemon program.

A majority of the pigpio library functions and capabilities will be
encountered, demonstrated, and discussed as required in later more
advanced exercises in RPi physical computing dealing with advanced
PWM applications; sensor initiation or monitoring; Serial, 12C, and SPI
communications; and motor or servo controls.

231

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Code Listings

Listing 7-1. DAQFactory Sequence Program for PWM

while(1)
sttwr_pwm = 5
delay(0.095)
sftwr_pwm = 0
delay(0.005)

endwhile

Listing 7-2. RPi Python PWM_tstl

Python Code for Raspberry Pi PWM tst1
A software PWM demonstration on GPIO - 6
import RPi.GPIO as GPIO
GPIO0.setmode(GPI0.BCM)
GPIO.setwarnings(False)
GPIO.setup(6, GPIO.OUT)
#
set the duty cycle
prcnt on = 10
#
the outer loop to provide the continuous application of the
modulated power signal
while True:
start the duty cycle loop and set the output pin to ON
GPIO.output(6, 1)
for i in range(1, 100):
if i == prcnt_on:
GPIO.output(6, 0)

232

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Listing 7-3. RP1.GPIO PWM Frequency Effect Demonstration

RPi PWM Frequency Demonstration with the RPi.GPIO Library

5 LEDs are used to illustrate the effects of the frequency of

the carrier wave on PWM techniques. Different carrier

frequencies are used at a constant duty cycle to illustrate

the effects of frequency om PWM

import RPi.GPIO as GPIO

import time

Array set up

GPIO.setmode(GPIO.BCM) # Use BCM pin reference

GPIO.setwarnings(False) # turn off the array use warnings

GPIO.setup(3, GPIO.OUT) # set pin #3 for output

#

pwm = GPIO.PWM(3, 2) # a PWM instance on pin 3 to operate at
2 Hz is setup

print("PWM carrier frequency set to 2 Hz")

print(" ")# print a blank line in the output

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)# start the application of PWM power

time.sleep(5)# Keep the LED illuminated for 5 seconds

pwm.stop()# stop the power application

#

carrier frequency increased to 5 Hz

print("PWM carrier frequency set to 5 Hz")

print(" ")

GPIO.setup(4, GPIO.OUT) # set pin #4 for output

pwm = GPIO.PWM(4, 5) # a PWM instance on pin 4 to operate at
5 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

233

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

#

carrier frequency increased to 8 Hz

print("PWM carrier frequency set to 8 Hz")

print(" ")

GPIO.setup(5, GPIO.OUT) # set pin #5 for output

pwm = GPIO.PWM(5, 8) # a PWM instance on pin 5 to operate at
8 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm.stop()

#

carrier frequency increased to 11 Hz

print("PWM carrier frequency set to 11 Hz")

print(" ")

GPIO.setup(6, GPIO.OUT) # set pin #6 for output

pwm = GPIO.PWM(6, 11) # a PWM instance on pin 6 to operate at
11 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm. stop()

#

carrier frequency increased to 14 Hz

print("PWM carrier frequency set to 14 Hz")

print(" ")

GPIO.setup(7, GPIO.OUT) # set pin #7 for output

pwm = GPIO.PWM(7, 14) # a PWM instance on pin 7 to operate at
14 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

234

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

time.sleep(5)
pwm. stop()

Listing 7-4. Single-LED PWM with the gpiozero Library

from gpiozero import PWMLED
from signal import pause

led = PWMLED(21)

led.pulse()

pause()

Listing 7-5. Control of a RGB LED with gpiozero PWM Library and
Three Potentiometers

PWM Control of RGB Led Diode Pgm 1

from gpiozero import RGBLED, MCP3008

#

led = RGBLED(red=2, green=3, blue=4)

#

red pot = MCP3008(channel=0)

green pot = MCP3008(channel=1)

blue pot = MCP3008(channel=2)

#

while True:
led.red = red pot.value
led.green = green pot.value
led.blue = blue pot.value

235

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

Listing 7-6. PWM Control of RGB LED with Three ADC Channels
and Pause()

PWM Control of RGB Led Diode Pgm 2
PWM Control of RGB Led Diode

from gpiozero import RGBLED, MCP3008
from signal import pause

#

led = RGBLED(2, 3, 4)

#

red pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)

blue pot = MCP3008(channel=2)

#

led.source = zip(red pot.values, green pot.values, blue pot.
values)

#

pause()
Listing 7-7. pigpio Basic Operations Program

A simple demonstration of some basic pigpio capabilities.

The PIGPIO library must be d/1, installed and available on
the RPi in use.

The requirements for use of the library code must be met and
the interface

often called a daemon must be running to provide an interface
between the pigpio library written in C and the

Python interpreter. (see PIGPIO documentation)

#

import pigpio

import time

#

236

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL

pi = pigpio.pi()# create a instance of the pigpio class
#

Simple LED illumination

pi.set mode(4, pigpio.OUTPUT) #set gpio 4 for output
pi.write(4,1) # set gpio pin 4 high
time.sleep(0.5)# delay for 1/2 sec

pi.write(4,0) # turn LED off

#

time.sleep(2) # delay for 2 sec between displays
#

simple PWM controlled variable brightness scaled from 0 - off
to 255 - full on

pi.set PWM_dutycycle(4, 0) #PWM off
time.sleep(0.5)# delay for 1/2 sec

pi.set PWM_dutycycle(4, 64) # PWM power at 1/4 on
time.sleep(0.5)

pi.set PWM dutycycle(4,128) # PWM power at 1/2 on
time.sleep(0.5)

pi.set PWM_dutycycle(4,192) # PWM power 3/4 on
time.sleep(0.5)

pi.set PWM dutycycle(4, 255) # PWM power full on
time.sleep(0.5)

pi.set PWM_dutycycle(4,192) # PWM power 3/4 on
time.sleep(0.5)

pi.set PWM dutycycle(4,128) # PWM power 1/2 on
time.sleep(0.5)

pi.set PWM dutycycle(4, 64) # PWM power 1/4 on
time.sleep(0.5)

pi.set PWM dutycycle(4, 0) # PWM power off

#

pi.stop()

237

CHAPTER 7 VARIABLE INTENSITY AND POWER CONTROL
Listing 7-8. pigpio Test Utility

pigpio pin status and test utility

ensure that the pigpio daemon is running and run the following

code from the run menu in the Python 3 IDLE facility.

#

import pigpio

pi = pigpio.pi() # create an instance of the library

for g in range(0, 32): # recall range must be the required

number of iterations + 1

print("gpio {} is {}".format(g, pigio.read(g))) # print out
a tabulated status report

pigpio.stop()

Summary

— Variable intensity controls in the commercial software
are used to implement PWM methods in software to
demonstrate how the technique functions.

— Several methods are presented for implementation of
PWM techniques with the inexpensive RPi computing
platform.

— In Chapter 8, the detection of events that occur outside
of the host computer in the SCADA system and how the
time between multiple events is measured are
presented.

238

CHAPTER 8

Counting Events
and Timing

This exercise considers the methods available for dealing with time
measurements in physical computing. Software or hardware can be used
to directly measure time or time intervals. Time intervals can then be used
to make frequency measurements by counting the number of events that
occur in fixed units of time or determine speeds and accelerations when
distances traveled in time intervals are evaluated.

Determinations of time of day and the time between events are
important parameters for gathering scientific data and in process control.
Turning a light on or collecting data from 9:05 till 9:35 could be classified as
an “absolute” or “time of day” format, while measuring the time required
for a ball to fall a fixed distance through a viscous liquid may be termed a
differential time measurement.

The user manual for DAQFactory advises against attempting to work
in time frames of less than a half or quarter of a second with software
scripting. Fractions of a second are at about the limit of a high-level
software’s ability to process threads of code for data processing while
maintaining a system status display screen user interface. Measurement of
millisecond, microsecond, or lower time frames usually requires the use of
assembly language programming for software timing or a physical timing
device for hardware timing. There are several hardware timing devices
available such as the LabJack HMI, Arduino microcontroller boards, or

© Richard J. Smythe 2021 239
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_8

https://doi.org/10.1007/978-1-4842-6778-3_8#DOI

CHAPTER 8 COUNTING EVENTS AND TIMING

555 timer integrated circuits, all of which are able to work in time frames
measured in milli- and microseconds. This first portion of the chapter
examines the basics of digital time concepts and demonstrates software
limitations. The remaining portions of the chapter and exercises deal with
short time scales available through integrated circuitry hardware and the
introductory concepts of frequency.

Electronically, time is measured with oscillator clocks generating fixed-
voltage (5.0 or 3.3 volts) square wave signals that may have frequencies
in the mega- and giga-Hertz ranges. (MHz are 10° cycles per second, and
GHz are 10° cycles per second.) The PC on which this manuscript is being
written has a 1.48 GHz clock speed, while an Arduino microcontroller has
a 16 MHz clock speed, and the various models of the Raspberry Pi have
clock speeds from 800 MHz to 1.5 GHz.

Electronic oscillators, regulated to a high degree of precision and accuracy
by quartz crystals, can be configured to generate a pulse train of square waves
that can be counted individually to measure time. With very stable oscillator
frequencies of MHz and GHz and individual pulse counting capability, time
frames of micro- and nanoseconds can be measured very accurately.

Desktop, portable, and network-connected computing devices are able
to keep track of the time of day through either the network connection
or a battery backup system when the computing device is switched off.
Some devices such as the Raspberry Pi and the Arduino microcontrollers
require the addition of an accessory called a “real-time clock” (RTC) that
has a battery backup to keep an accurate track of the time of day when the
device is powered down.

Software Time and Timing

DAQFactory SCADA software is a self-contained program written to run
on Windows-based operating systems. Batteries are used to maintain the
operating system time counts when the computer is shut down between

240

CHAPTER 8 COUNTING EVENTS AND TIMING

operating sessions. Time in DAQFactory is measured in seconds since 1970
with microsecond resolution. When a DAQFactory session is started, the
program takes the date and time from the operating system, initializes an
internal counter, and maintains a time count in seconds from January 1,
1970. The DAQFactory clock runs independently of the operating system
timer and produces a decimal second time resolution. Time functions
available in DAQFactory are detailed in the “Expressions” section of the
user manual. The software time functions available are used in the first
part of this exercise to create two, one-second-resolution, screen-activated
timers that start and stop electronic operations on the external breadboard
and measure the elapsed or cumulative times between manually

observed events much like a handheld stopwatch. The basic software time
evaluation screen is depicted in Figure 8-1.

Stopwatch Timer
SysTime numerical value: 12944709162 seconds since Jan. 1/19 oLy it g
Current time —->: 01/08/1 07:15:16 EST Reset Display | storsiop |
Current hour of the day -—>: 7 th Total Total
Current minute of the hour —>: 15 th Hours Minules Minutes Seconds Seconds
Current secand of the minute ->: 15 th A 8) 8 L8

Floor{SysTime([|%60)%2: 0 Binary Value

Scheduled Event Timer Manual LED
Entor s and koy stat bution Wninoton Test | (AULEDO0NS | Suobe 555 Timer|
Stan Timer Bunen

Stop Time:| Satwday Jonuary 8,201 || 7:08:29 AM =] Sed

StartTime :| Saturday January 6,201 || 70629 A= [Sell

“Start L Enturod: 0:00 Mo Val Fid
Viriip iieations 0000:Ho ol B
Hours Minutes Seconds
Time To Activation 1 LS w
Elapsed Time " 8 8
Time Remaining o o u
Timer use event to be]

1) Set Start time first beginning with date drop down listing

2) Select Hour and adjust desired value with up/down bunions, then min and sec.
3) key set bution and confirm the seiting of the seconds since 1970 count

4) Repeat steps 1 -3 with Stop Time

5) Key Start imer bution 10 initiate the timer

Figure 8-1. GUI for Three Timing Operations

241

CHAPTER 8 COUNTING EVENTS AND TIMING

Basic Time Variables

Figure 8-2 depicts several of the basic current DAQFactory time values.

SysTime numerical value: 1294470916.2 seconds since Jan. 1/1970
Current time --->: 01/08/11 07:15:16 EST

Current hour of the day —>: 7 th
Current minute of the hour -->: 15 th

Current second of the minute --->: 16 th
Floor(SysTime()%60)%2: 0 Binary Value

Figure 8-2. GUI for Current Timing Operations and Values

The basic variables screen consists of six variable value components
(VVCs) and was captured at the date and time indicated in red.
Configuring the entries on the panel will aid in understanding the
mathematical manipulation of counter “clock ticks” and their relationships
to our hours, minutes, and seconds of our cyclic time concepts:

1) The first line variable value component (VVC)
expression is SysTime() that displays the number of
seconds that have elapsed since January 1, 1970.

2) Line 2 uses the statement “FormatDateTime(“%c’,
SysTime())” in the expression box of the VVC to
generate the time of day displayed. A large number
of formats are available for use as listed in the
user manual. The display was created in large red
characters for visual emphasis.

242

CHAPTER 8 COUNTING EVENTS AND TIMING

3) Lines 3-5 use modulo notation to convert the total
tick counts of SysTime() into various timekeeping
values, while line 6 produces a one-second
modulated switching between logic one and zero.

Scheduled Event Timer

The scripting of Listing 8-1 (provided at the end of the chapter with all
others) titled Scheduled Time Timer controls the GUI panel shown in

Figure 8-3.

Scheduled Event Timer

Enter times and key start button

Start Timer |

Stop Time:| Saturday Janua{y 8,201 ~|| 7:08:29 AM] @
Sto
Start Time :| Saturday .Ianualy 8,201 _i[7:08:29 AM— E@]

Hours Minutes Seconds

Time To Activation B B B
Elapsed Time B B B
Time Remaining B B B

Timer use instructions; (configure event to be processed.)
1) Set Start time first beginning with date drop down listing

3) key set hutton and confirm the setting of the seconds since 1970 count
4) Repeat steps 1 - 3 with Stop Time
5) Key Start timer button to initiate the timer

2) Select Hour and adjust desired value with up/down buttons, then min and sec.

Figure 8-3. A DAQFactory Scheduled Event Timer GUI

243

CHAPTER 8 COUNTING EVENTS AND TIMING

The Stopwatch Timer

The nominal group of controls depicted in Figure 8-4 implements
stopwatch-style timing and is controlled by the code of Listing 8-2.

Stopwatch Timer
To use timer, key ‘Reset Display” to initialize all variables and displays to 8

Reset Display | Start/Stop | Cumulative Time |

Total Total
Hours Minutes Minutes Seconds Seconds

: S " S B

Figure 8-4. A Stopwatch Timer GUI

The stopwatch timer is activated by three DAQFactory sequences
found in Listings 8-3 and 8-4. The Start/Stop button (Listing 8-2) initiates
or terminates the timing action and thus defines an interval. A mouse
click on the Cumulative Time button adds the current interval into the
accumulating time sum. Clicking the Reset Display re-zeros the GUI.

Hardware Timing, Event Counting,
and Frequency Determination

Any physical actions in our world such as opening a door, entering a
room, and turning on a light can be translated by sensors into electrical
transitions that can be monitored and recorded by electronic systems.
Activation of a typical light switch causes the electrical power applied

to a light source to jump from the on to the off extreme. The electrical
waveform that results from the act of turning the light on, leaving it on for

244

CHAPTER 8 COUNTING EVENTS AND TIMING

a time t, and switching it off can be considered as a “pulse of duration t”
Electrical pulses can be created by the conversions of mechanical, optical,
and electromagnetic events into sharp changes in electronic signal levels.

Pulse counting is accomplished by the use of bipolar transistor or
CMOS integrated circuitry in which interconnected transistor switches
are able to record, in binary format, the number of transitions between 0
and 5 (or 3.3) volts that occur in the electronic signal applied to the chip
input pin. Counting the number of electronic transitions in a given period
of time is a measure of the input signal frequency, while counting the total
number of pulses that have occurred since a starting point in the pastis a
measure of elapsed or total time passage.

The fundamental unit used to store binary information is known as the
“flip-flop” or “latch.” A flip-flop is a configuration of switches stable in one
of two states in which the inputs to the latch or flip-flop cause the output to
change between the two binary logic states of one and zero. A basic circuit
for a flip-flop, multivibrator, or latch is depicted in Figure 8-5.

+Yee

R1 R2

V1
e ve

Figure 8-5. A Base Junction Transistor Flip-Flop

Simple flip-flops were made initially from current-controlled devices
such as vacuum tubes, then later from bipolar transistors, and finally from
very-low-current-draw voltage-controlled devices such as field effect
transistors (FETs) and metal oxide semiconductor field effect transistors

245

CHAPTER 8 COUNTING EVENTS AND TIMING

(MOSFETs). These are often termed multivibrators and are known as a
bistable circuit. The circuit stays in either of its two stable states until a
control signal is applied to switch it to the other stable state.

To understand how the basic circuit operates, we can see in Figure 8-5
that if V1 is grounded, then there will be no base current through the base
of Q2. In bipolar transistors, the current through the collector and emitter
(emitter arrow indicates positive current flow) is controlled by the base
current. The transistor Q2 with no base current will have no collector-
emitter current. The current through R2 from Vcc all flows into the base
of Q1 that then causes a much larger current to flow through Q1. With the
symmetrical circuit, if V2 is grounded, then the base current in Q1 is shut
off, and the current through R1 flows into the base of Q2, causing a much
larger current to flow through Q2 as the circuit switches to the second
stable state.

The simple flip-flop is the basic building block of a very large
number of mainly very-low-current-draw complementary metal oxide
semiconductor voltage-controlled integrated circuits that provide
functions such as memory storage, logic, and mathematical functions. (See
Chapter 1, Figure 1-15.)

Details of latches, flip-flops, digital logic counting, oscillator clocks,
and the applications of various families of integrated circuit logic chip sets
can be found in several reference works.!

A terminal on the LabJack HMI labeled CNT provides access to
an integrated circuit that is capable of counting the number of times a
voltage level is changed from +5 to 0 and back to +5 volts. Such event
counting is conducted in binary by the integrated circuitry of the device

!1) Digital Electronics for Scientists and Engineers, Malmstadt and Enke, W. A.
Benjamin Inc. NY, NY, ISBN 0-80536899-X
2) CMOS Cookbook 2nd Edn. , Lancaster, Howard W. Sams & Co., ISBN 0
672-22459-3
3) The Art of Electronics 2nd Edn, Horowitz and Hill, Cambridge University Press,
ISBN-13 978-0-521-37095-0

246

CHAPTER 8 COUNTING EVENTS AND TIMING

with results being displayed on the system screen in base ten format. The
events to be counted must be converted into the voltage-level changes
noted previously. The LabJack counter has a 32-bit capacity that allows a
total count of 232 or 4,294,967,296 events. Because the event counter is an
integrated circuit, it can count at frequencies up to 1 MHz.

In the following exercise, a manual event counter that can be
incremented by any number of sensors such as a change in daylight
levels, objects passing a point, or clicking a system screen icon will be
created. Configurations of experimental setups or process control systems
involving time spans of durations measured in seconds and longer are
not a problem with the LabJack and DAQFactory software combination.
Documentation in the user manual indicates that many instructions have
an execution time of 20 ms that creates a lower limit with respect to the
shortest time responses that can be reasonably expected from the visually
based SCADA system. High-speed signal changes are best recorded with
techniques called streaming or burst-mode operations. High-speed signal
changes at speeds or frequencies well beyond what the eye can resolve are
acquired with very fast hardware speeds for post-collection processing.
High-speed operations are detailed in the user manuals and are dealt with
in subsequent chapters and exercises.

The LabJack counter is considered a hardware device and thus is not
limited by software execution times. An integrated circuit device known
as a 555 timer can be used in conjunction with the counter to work in time
spans shorter than those imposed by software execution overhead. The
555 timer is also a “hardware”-based integrated circuit and thus, like the
LabJack counter, able to work in time scales varying from microseconds
to hours. The details of both the bipolar transistor and CMOS 555 timer
ICs are found in numerous references including those referenced earlier.
The differences between the various forms of the timer lie in their power
handling capability with the bipolar forms being high-current types and
the CMOS forms being low voltage based.

247

CHAPTER 8 COUNTING EVENTS AND TIMING

Experimental
Hardware

1) Simple manual counting of events
2) Simple continuous event counting or frequency determination

A blue LED and a 470 Q current limiting resistor can be used to
demonstrate manual counting of screen-initiated events.

Circuit Schematic

The diode and current limiting resistor are configured as depicted in
Chapter 1, Figure 1-3, for the red diode with the junction of the serial pair
being wired to D9 on the CB25 terminal board.

Software

For demonstration of the two modes of counter usage, the panel with two
buttons, two variable value components, and a descriptive text component
of Figure 8-6 was created.

For counting manually activated events, a screen button icon is
created, appropriately labeled, and linked to an output channel. The
author’s button was labeled “Initiate Event” configured to activate the
script of Listing 8-5 “A_Counter_Event,” which applies a 5-0-5-volt
transition through a channel created as “DigOut_9_EvntCntr,” wired to
output pin 9, on the CB25 board terminal. Clicking the screen button thus
drives the D9 output from 5 to 0 and back to 5 volts that in turn switches
the blue LED off and then back on. The counter terminal CNT is wired
to monitor the voltage level at the junction of the blue LED and its 470 Q
current limiting resistor. Manually clicking the “Initiate Event” button thus
increments the counter through the Listing 8-5 DAQFactory sequence.

248

CHAPTER 8 COUNTING EVENTS AND TIMING

Section 10 of the DAQFactory LabJack manual® details the single
LabJack counter operation. Having only a single counter, all data is
passed through counter channel 0. By default the counter value is reset
to 0 each time the channel is read, so for the first part of this exercise,
the default must be turned off, to continuously increment its value until
manually resetting it to 0. For this exercise, we create a channel named
“EventsCounted” with Counter I/O type; and in the “Channel Table View,’
under the Quick Note / Special / OPC heading, a button along the right-
hand side of the cell with three dots (...) should be visible. Click the button
to bring up the Channel Parameters window with a drop-down list from
which Reset is selected. The only parameter is “Reset?’;, and selections of
Yes or No, OK, and Apply will immediately configure the counter channel
not to reset to zero when the channel value is read for display.

A second button labeled “Reset Counter” is configured to start the
short “ResetCounter” script of Listing 8-6, which sets the most recent value
of the “EventsCounted” channel EventsCounted[0] to zero. A variable
value component display of EventsCounted[0] has been placed below the
buttons to indicate the number of events counted. The panel created to
demonstrate simple counter usage is depicted in Figure 8-6.

>azeotech.com/d1l/labjackguide.pdf

249

CHAPTER 8 COUNTING EVENTS AND TIMING

Counter Usage; Channel polling
1esels counter after each read
Defaut setting is Reset afier
Read
Counter Value: 0 Counts’sec

6a

Manual Counting of Events
{Reset Defaultto OFF and
change bb wiring)

Initiate _
Event I Reset Counter |

Events Counted: 0 events

6b

Figure 8-6. A Labjack Ul12 Counter Usage Demonstration

Listing 8-5 in the exercise code listings is activated by clicking the
Initiate Event button.

Clicking the screen button “Initiate Event” causes the blue light to
light up and the event counter to increment. Clicking “Reset Counter”
(Listing 8-6) sets the “Events Counted” variable value display back to 0.

Scripting

Listing 8-5 and Listing 8-6 are DAQFactory sequences whose scripting
creates the square waveform signal used for frequency measurement with
atime - goto script and the code used to manually clear the counter and
turn off any LED that may be left in the on configuration.

As noted previously, the “Reset Counter” button activates the short
sequence of Listing 8-6 that consists of a single line of active code to set the
value of the counter channel to 0.

250

CHAPTER 8 COUNTING EVENTS AND TIMING

By switching the LabJack counter channel back to the default setting
of “Reset after reading a counted value” and configuring a new counter
channel with a one-second counting interval, the new counter channel is
configured to read a per-second frequency.

Circuit

A white LED and 470 Q current limiting resistor are configured as depicted
in Chapter 1, Figure 1-3, for the red diode with the junction of the serial
pair at hand being wired to D8 on the CB25 terminal board.

Software

A pulse train must be created to form a repetitive signal with a measurable
frequency. The script of Listing 8-7 is a PWM or variable pulse width
generator that can be used in conjunction with a screen button and
instruction text as seen in Figure 8-7, to start and stop the square wave
pulse train.

Script generated square
wave on D8 powers white
LED and frequency display

Start'Stop Pulse
Train

Figure 8-7. A DAQFactory Pulse Train Generator Panel

The Start/Stop button is configured to activate the DAQFactory
sequence PWM_Script that is Listing 8-7 in the code listings of this chapter.

251

CHAPTER 8 COUNTING EVENTS AND TIMING

Scripting and Action

Although usage of the “time - goto” statement is not considered good
programming practice, it does simplify creation of the square wave signal.
Once the two panels for the counting exercise have been created, change
the values in the “Delay (0.5)” statements to 0.25 and 0.1. While the square
wave is being generated and the frequency is being displayed, move the
mouse cursor rapidly back and forth and watch the LED and the frequency
value being displayed.

Observations

The inclusion of the blue and white LEDs in the two counter exercises
is used as a visual aid in following the operation of the system. (See
“Discussion.”)

Discussion
Time Determination

Digital electronic circuits are activated by crystal-controlled oscillator
“clocks.” Crystal oscillators generate a very stable, fixed-frequency, square
wave pulse train providing nanosecond time resolution (10 s). The square
wave consists of a sequential series of transitions from 0 to +5 volts or

from logic zero to logic one in binary format. Time can be divided into
relative time as determined by the spacing of the clock square wave fronts
and absolute time from a fixed event. Absolute time for the DAQFactory
program is determined by the number of seconds from January 1, 1970.
The time variables of Figure 8-2 and their syntax are discussed in detail in
the user manual.

252

CHAPTER 8 COUNTING EVENTS AND TIMING

Manual and Automated Event Counting

The button-initiated manual events are created in time frames that are
usually not in conflict with DAQFactory software timing. However, it can
be shown that attempts to create a waveform with a script generating a
signal that changes with sufficient rapidity can conflict with the operating
system software timing.

As part of this exercise, a script has been used to generate the voltage
waveform required to increment the LabJack counter. A blue LED has
been included in the exercise as a visual indicator of system validation.
However, the counter hardware records an event as a two-transition
operation in which a high signal drops to a low value, which then is
followed by a low signal being raised to a high voltage value. The two-
transition “event” is effected by a script that leaves the pin voltage level at
5V that in turn powers the blue LED in the circuit. To turn the LED off, we
include a line of code in the script activated by the Reset Counter button to
set pin 9 back to 0 V without it being recorded as half of an “event.”

By altering the delay values in the PWM_Script, the width of the time
the signal is held at either 0 or the nominal 5V can be varied. The LabJack
counter only registers the +5- to 0- to +5-volt transitions as a single event
for the purpose of counter increment, so the width of the residence time
at 0 volts is the parameter that is counted as a single event or a cycle in
frequency determinations.

Any graphical display must be composed of a two-dimensional array
of elements that can be individually illuminated to form an image. The
updating of a GUI consumes a large amount of computational resources
as the individual elements of the array are constantly being scanned to
implement any required changes. If a program such as the pulse generator
used to drive the pulse generator panel of Figure 8-7 is invoked with delay
times involving fractions of a second, software conflicts can arise.

253

CHAPTER 8 COUNTING EVENTS AND TIMING

When the pulse generation program was used to power the white
LED as the delay times became very short into the range of fractions of a
second, both the LED pulse rate and the cursor movement became erratic.
The observed hardware and software conflicts demonstrate the limitations
of using software scripting in time spans of less than a second.

Hardware Time and Timing

Our discussion of the hardware control of time is centered on the 555
integrated circuit timer chip that has been manufactured, improved,

and used for over 40 years. The chip functions by causing its output to
change from high to low voltage levels at controlled time intervals. The
timing intervals may be easily varied over numerous orders of magnitude
to create long delays (the monostable mode of operation) or generate
high-speed pulse trains (the astable mode of operation). Simple external
components consisting of resistors and capacitors can be used to generate
the desired time intervals. The 555 chip is available in bipolar transistor
and CMOS formats that differ in power consumption, power output, and
high-frequency operation.

The 555 chip is named for the series string of three 5 kQ resistors that
are connected to the supply voltage and ground to establish the 1/3 and
2/3 supply voltage reference levels used by the circuit logic. The circuit
contains two comparator op-amps that feed their output signals to a digital
set-reset flip-flop. The analog comparators use the 1/3 and 2/3 voltage
reference points to change their output state that causes the flip-flop
to change state based upon the comparator inputs. The digital flip-flop
output controls the output driver circuitry.

Figures 8-8 and 8-9 illustrate some of the operations and
configurations for the timer circuit.

254

CHAPTER 8 COUNTING EVENTS AND TIMING

supply +Vs| |rasat
discharge[~ 8 4 ov [T]e U 8] 4510 15v
threshold " 555 g output trigger E 555 3 discharge
timer timer
wgger|, output 3] 6] threshold
1 5 reset E El control
supply OVI Ioontral
Schematic Symbol 8 Pin DIP Pin Out
time period, T | Tm |,_E.| | | |
trigger time period T
555 monostable output, a single pulse 555 astable oulpul, a square wave

(Trn and Ts may be different)

roset

Trigger | 2]——N,p” | . L[T -Dim:ha:oe

{ 6 | Thresh
Driver o] T
Reset ,z‘] \—[-5_ 5:::;
| NES55 Timer
| 4

Figure 8-9. A 555 Timer IC Block Diagram

255

CHAPTER 8 COUNTING EVENTS AND TIMING

When power is applied to a 555 IC configured as depicted in the
astable mode schematic in the bottom-right of Figure 8-8, the capacitor
begins to charge as the current flows through R1 and R2. As the voltage
rises on pins 2 and 6 and then reaches 2/3 of the supply, as determined
by the internal voltage divider, the output goes low. As the output goes
low, the NPN transistor is turned on, and the discharge pin of the 555 is
effectively connected to ground that discharges C1 through R2. As the
voltage on the capacitor drops to 1/3 of the supply value, the transistor is
turned off, the capacitor begins charging through the series pair, and the
cycle repeats itself. The voltage on C thus cycles between 1/3 and 2/3 of the
supply with a period of T = 0.693(R1 + 2R2)C or a frequency of f = 1.4/(R1 +
2R2)C. The time period of the output signal can be divided into two parts
consisting of the time the voltage is high (see Figure 8-8, bottom right) and
the time the signal is low. The high time is often called the “mark time” and
the low the “space time” with the duty cycle being defined as the ratio of
the high or mark time to the sum or time period of the signal, expressed as
a percentage value.

The ability of the 555 timer to generate a pulse train whose electronic
characteristics are determined by external resistance and capacitance
values has a very important application in experimental science. The
following exercise visually demonstrates the concept of square wave or
clock signals and the variation of pulse widths with physical changes in
external sensors.

Numerous websites, references, and textbooks contain detailed
discussions of the characteristics of the timer chip together with tables of
circuit design parameter values.

In the following exercise, the concept of square wave output signals
and duty cycle and the basis of pulse width variation using the timer chip
are demonstrated. Using the design procedures available from the data

256

CHAPTER 8 COUNTING EVENTS AND TIMING

sheets made available online by the major IC suppliers, a circuit with an

output frequency of 6-7 Hertz can be assembled to power different colored

LEDs for a visual display of the circuit operation.

Experimental

1)

2)

3)

4)

5)

A 555 timer chip configured in the astable mode
(see Figure 8-8, bottom right).

A 100 kQ variable resistor is used as R2, and a 10 kQ
resistor is used as R1.

A 1 uF capacitor is used as the timing capacitor or
C1. An electrolytic capacitor can be used as the
higher current leakage rate of the component is not
critical to the performance of the circuit.

Two different colored LEDs with 470 Q current
limiting resistors are connected between the output
pin of the chip and the power supply rails in order to
produce alternately flashing indications of the high
and low output states.

The schematic diagram of Figure 8-10 has been
drawn with +5 V power, but the circuit can be
powered with any supply between 3 and 18 volts
(adjust CLR values for voltages > +5).

257

CHAPTER 8 COUNTING EVENTS AND TIMING

Schematic
iﬁv
Red S75
o
R 478 Oha
hlg Yel 57
25]
8 = R 472 Oha
iy s AP K
z LMSSSC
+5u ey 1 v
9 (=]
:1-19&%..912 | ;;'I_’Ega:

|
R2 = 1BBK Oha Raé Py *J.:gl J; B.B1 uF

Figure 8-10. Schematic for Controlled High and Low 555 Timer IC
Output Variation

Observations

Using the circuit shown in Figure 8-10, the red-yellow pair alternately
flashed ten times in 13 seconds when the 100 kQ potentiometer was near
its maximum limit, and the circuit flashed continuously when near the

zero value.

Discussion

In the “astable” configuration, the timer chip is able to vary the time at
which output is on or off. The measured ratio between the time on and

off or the “duty cycle” is shown to be dependent upon the resistance of

R2 that in this case is the mechanical position of the shaft on the variable
resistor. Rotary mechanical motion of the potentiometer shaft can thus be
transformed into a varying electronic square wave signal. Any transducer
capable of transforming a physical phenomenon into a varying resistance
can also be used to produce a square wave signal with a ratio of on/off time
that is proportional to the resistance created by the physical phenomenon

258

CHAPTER 8 COUNTING EVENTS AND TIMING

being monitored. Thermistors are heat sensitive resistors. Negative
temperature coefficient (NTC) thermistors exhibit a lower proportional
resistance to an increase in their ambient temperature. Inserting an
NTC thermistor into the timing circuitry of a 555 timer IC will cause the
frequency of the output square wave to vary in proportion to the thermal
environment of the thermistor bead thus forming a digital thermometer.
By using the output signal to turn on and off a power transistor, a heavier
current can be controlled. With a fixed frequency, the variable “duty cycle”
format signal functions as a “pulse width modulation” technique. The
PWM current control can be used to vary the speed of a motor or control
the current applied to a heater.

In the astable mode, the frequency of the square wave generated by the
555 depends upon the values of R1, R2, and C. The frequency is given by
the following formula:

f=1/In(2) *C * (R1 + R2) (In(2) = 0.6931)

Figure 8-11 shows the 555 astable cycle.

output Vs
555 pin 3 _mark time. Tm mark time, Tm
i | spacetime.Ts | i
oVl
& time period, T=Tm+ Ts
capacitor
4 %Vs
3Vs ov charging discharging charging

Figure 8-11. The 555 Astable Cycle

The frequency of the output can be controlled by the three values of
the RC network. The duty cycle or the ratio of the high time to low time is
illustrated in Figure 8-12 as a percentage value.

259

CHAPTER 8 COUNTING EVENTS AND TIMING

L0 1

90% duty cycle (Tm = 9Ts)

50% duty cycle (Tm = Ts)

|| —

10% duty cycle (9Tm = Ts)

Figure 8-12. Duty Cycle Variation of the 555 Timer Output
The high time of the output is given by
high time =In(2) * (R1 + R2) *C
and the low time is given by
low time =In(2) R2* C (In(2) =0.6931) (Ris in Q and C in uF)

The output signal is high as the capacitor is charged by current flowing
through R1 and R2. When it discharges, it does so only through R2, and
thus there is a limit to the variation that can be introduced into the duty
cycle by the value of R2. If the resistor pair is replaced by a potentiometer
whose wiper terminal is connected to pin 7 of the timer, then the total
resistance of R1 + R2 is constant, and the duty cycle can be varied by
changing the position of the wiper. To avoid unwanted problems should
R2 be set to 0, connect a small value resistor in series with the capacitor
and the variable resistor to avoid the possibility of unpredictable results
at low potentiometer resistance values. If fixed resistors are to be used to
establish the desired duty cycle at less than 50%, then a diode pointing
toward the capacitor will allow the capacitor to charge through the R1
resistor only, during the high time portion of the cycle.

260

CHAPTER 8 COUNTING EVENTS AND TIMING

Microcontroller Clocks, Timekeeping,
and Event Counting

Virtually all microcontrollers that are communicating with host computers
and peripheral devices such as sensors or process controls are equipped
with an onboard crystal-controlled oscillator that functions as a system
clock. Usually the hardware-based clock signal can be accessed with the
microcontroller software and used for timing and event counting.

Arduino microcontrollers use a crystal-controlled 16 MHz oscillator as
the system clock. When power is applied to the operating system, it begins
to count the number of milliseconds (1/1,000 or 107 s) as the value of the
function millis() and the number of microseconds (1/1,000,000 or 106 s)
as value of the function micros(). (Due to binary counting and hardware
constraints when invoking micros(), microsecond time resolution is
limited to the nearest4 psor 4x10°s.)

The two functions are stored as unsigned long integers, which have
maximum values of 4,294,967,295 before rolling over to 0. The maximum
value limitation provides for a time span of approximately 50 days for a
millis() count and a 70-minute time span for micros(). Millis counts are
accurate to the nearest single digit, but micros values are expressed to the
nearest four digits (22). The timing error in millis() is 0.18 s/hour, 4.32 s/
day, and 129.6 s/month.

DAQPFactory provides an alternate method for demonstrating the
concepts of timing and event counting with microcontrollers such as the
Arduino. There are many published programs that create countdown,
stopwatch, and other timing applications for microcontrollers using
mechanical switches and a corresponding large number of library and

other methods for dealing with mechanical “switch contact bouncing.®”

1) https://github.com/j-bellavance/EdgeDebouncelite/blob/master/README.md
2) https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-
to-deal-with-it/

261

https://github.com/j-bellavance/EdgeDebounceLite/blob/master/README.md
https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/
https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/

CHAPTER 8 COUNTING EVENTS AND TIMING

A DAQFactory screen button and the serial port eliminate the need
for both mechanical switches and having to deal with mechanical switch
contact bouncing.

Experimental

To demonstrate the basic timing functions available with the inexpensive,
serial port-connected microcontroller, two programs are required, the
first to display the timer control panel in the SCADA software on the
host computer screen and the second to implement the selected timing
functions on the microcontroller. See Listings 8-8 for the Arduino code
and 8-9 for the DAQFactory Quick Sequence.

Figure 8-13 illustrates a simple basic configuration for the simple
stopwatch timer set up in the DAQFactory SCADA software.

Start Timer Stop Timer Re-set Timer
s | sop | Re-set

‘Elapsed-Time:0:000 Sec.

Figure 8-13. A Simple DAQFactory Stopwatch Control Panel

Each of the three buttons has been configured to activate a Quick
Sequence code that writes a “b,” “s,” or “r” to the serial port to begin a timing
session, stop the timing session and transmit the millis() count back to the
SCADA software, or reset the timer to zero and begin another timing session.

The inactive (red X) variable value display seen in Figure 8-13 receives
the total millis() count from the Arduino when the timing session is halted

with the “s
monitor activity during a simple start and stop timing session run for

command. Figure 8-14 illustrates the DAQFactory serial

validation during the development of the combined timing system.

262

CHAPTER 8 COUNTING EVENTS AND TIMING

Manitor: ardyBluBrd - 3

Output St | IR

Pot morkor. [~ Display o chars a2 ASCH codes I Display Time of TRz
I Daplay codes in Hex ™ Hew e on CR or LF

Txb

T &

Fic STZ0 00

Figure 8-14. DAQFactory Serial Port Monitor Record of a Simple
Arduino Timing Session

Recall that the DAQFactory serial port code expects both a carriage
return (CR, ASCII code 13) and a line feed (LF, ASCII code 10) after the
data sent to the serial port. The data passing through the DAQFactory
serial port can be read into a channel or a global variable. In the primary
code development process, a channel named millisVlu was configured in
the DAQFactory software, and the variable value screen component was
then set to divide the millis() value received from the Arduino by 1000 to
get the number of whole seconds and a milliseconds fraction that the timer
had recorded. Later revisions of the code used a global variable “elapsed”
and Quick Sequence to implement the simple timing function (see
Figure 8-15 in “Observations” and Listings 8-8 and 8-9).

The DAQFactory serial port uses the “On Receive” code in Listing 6-10
in Chapter 6 to read the numerical value from the serial port into a channel
or for use as a value for a global variable.

Observations

In Figure 8-15 the Arduino serial port has been programmed to aid in
validating command interpretation by the microcontroller, and a typical
timing result display is depicted in Figure 8-16.

263

CHAPTER 8 COUNTING EVENTS AND TIMING

)
[
Started timing

Elapsed time = 5087

Re-starting the timer from zero.
Elapsed time = 2751

Re-starting the timer from zero.
Elapsed time = 14270

Figure 8-15. Arduino Serial Port Output for Stopwatch Program
Development

Start Timer Stop Timer Re-set Timer
Start Stop Re-set

Elapsed Time: 5.729 Sec.

Figure 8-16. A Typical Simple Millisecond Resolution Timing
Session

The simple stopwatch timer has been developed by first getting the
Arduino to function as a stand-alone timer by using the Arduino’s own serial
port to manually send the “b,” “s,” and “r” commands to generate the output
seen in Figure 8-15. With a functioning Arduino program, the code was
refined down to that presented in Listing 8-8 in which the only output is the
Arduino line of code “Serial.println(elapsed)” that sends the contents of the
elapsed time variable to the serial port with the requisite CR and LE.

Examination of Listings 8-8 and 8-9 will reveal that the reset functions
in the two programs are different. It is simpler to isolate the reset code into
two actions on either side of the serial port. The Arduino code resets the
state flags for the begin timing loop and the stop timing and print to the
serial port action, while the DAQFactory Quick Sequence code actually
sets the elapsed time variable and timed seconds display back to zero.

264

CHAPTER 8 COUNTING EVENTS AND TIMING

Once an initial timing measurement has been made, the reset button
should be used to reset the single action-only flags in the Arduino code.

Discussion

Figure 8-15 illustrates a simple technique for developing the Arduino

code that is to respond to the single-letter commands that will be written
to the serial port by the SCADA software in the final iteration of this
exercise. The Arduino code was completely developed by using the serial
monitor “send” feature of the IDE and writing into the developing code the
responses in Figure 8-15 to validate the operation of the code before finally
combining the SCADA and microcontroller operations. The reduction of
the functioning stopwatch code to that to be used in combination with the
DAQFactory panel can be done by rewriting or just commenting out the
unwanted lines.

More elaborate timer functions can also be configured by converting
the elapsed millisecond time values that can extend out to close to 50 days
into minutes, hours, and days subject to the time errors noted previously.

Where possible, a screen-activated button can be used to avoid
problems caused by mechanical switch contact bounce.

Counting Events and Timing with Python
and Raspberry Pi

Time measurement for the Python language interpreter is derived from the
host computer on which the program is running. The basic concept for the
Raspberry Piis oriented around Internet access. An Internet connection
can be used to transfer operating systems, application software, and
updates. An Internet connection provides accurate timekeeping through
Internet time servers. If the RPi is to be used in a time-dependent

265

CHAPTER 8 COUNTING EVENTS AND TIMING

experiment or measurement application where Internet access is not
possible, then the installation of a real-time clock (RTC) will be required to
supply an accurate timekeeping base.*

In Figure 8-17, the timekeeping basis is shown in a very simple console
request for the number of “ticks” that have occurred since the January 1,
1970, timekeeping starting point.

i Menui ‘D 4 % @ |i!=:'_Python 3.4.2 Shell |_-[pi@;aspberrypi: ~]i

Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.
>>> port time

>>> ticks = time. tJ.me:)

>>> print ("Number of ticks sin 12100 Jan. 1, 1970: ™; ticks)
Numbler of ticks since 12 00 Jan. 1, 1970: 1504188430.248216
>>>

Figure 8-17. A Console Request for the Tick Count

In the Unix/Linux operating systems, the number of ticks can
be converted into seconds, minutes, hours, and days to provide any
timekeeping operations required. Figure 8-18 is a console conversion of
ticks into a current time display.

*1) Raspberry Pi Cookbook 2nd Edn., Monk, O'Reilly Media Inc., ISBN
978-1-491-93910-9
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9

266

CHAPTER 8 COUNTING EVENTS AND TIMING

Menu E_D S X !_.i'P)fﬂlﬂn.’!A_._!M]-_[pi@mspberlypi: ~ g @ 1sprom

Efe Edt Shell Qebug Options Windows Help

Python 3.4.2 (default, Oct 1% 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.

22> import time

>>» localtime = time.localtime({time.time(})

»>>> print ("Local current time :", localtime)

Local current time : time.struct_time (tm_year=2017, tm_mon=8, tm_mday=31, tm_hour=10, tm_min=19,
tm_sec=l, tm_wday=3, tm_yday=243, tm_isdst=1)

22>

Figure 8-18. A Console Request for the Current Time from the Tick
Count

A more familiar format for the time can be obtained at the interactive
console with the asctime() function as depicted in Figure 8-19.

Menu ED - - *x0]_.i Python 3.4.2 Shell E-_[pl@raspberryp'r.-] gt’ 1% 10:31

Efe Eat Shell Debug Dptions Wndows Help
Python 3.4.2 (default, Oct 1% 2014, 13:31:11)
[GEC 4.9.1] on linux

Type "copyright®, "ecredits" or "license(]" for more information.
>>> import time

»>>> localtime = time.asctime(time.localtime (time.time()))
»>>» print ["Local current time :", localtime)

Local current time : Thu Aug 31 10:28:52 2017

2>

Figure 8-19. A Familiar Current Time Format

There are a number of simple push button timer GUI and timer
modules that have been published for coding timer applications in Python,
and a three-button GUI using the tkinter Python module is depicted in
Figure 8-20. The code is listed in Listing 8-10. The code has been modified
from the original published in 2002.°

SHTTP://CODE.ACTIVESTATE.COM/RECIPIES/124894/

267

CHAPTER 8 COUNTING EVENTS AND TIMING

00:00:00
Start | Stop | Reset I

Figure 8-20. A Three-Button Stopwatch Timer

Scheduling Events

In addition to the time display functions listed previously, Python has
several libraries such as sched and schedule that use the time module as
a base for scheduling events. In essence, the sched and schedule modules
provide the experimenter with a programmable starting point from which
delays can be specified before individual events or programming code
sequences are initiated.

Listing 8-11 entitled Scheduled_PgmCntrl_LED.py uses the
programmed application of logic high and low to the GPIO pins 20 and 21
(board pins 38 and 40) to turn on and off two LEDs attached to the pins
through current limiting resistors as “events.”

Examination of the code shows a typical creation of a scheduler object
instance with the line scheduler = sched.scheduler(time.time, time.sleep).
The two events to be run in the future are defined in the following two
lines:

scheduler.enter(2, 1, actvt_GrnLed, (“Green led
activated first’))

scheduler.enter(5, 1, actvt_RedLed, (“Red led is
activated second’))

The documentation for the sched module stipulates four arguments
for the enter() function consisting of the numerical value of the time
delay in seconds from the processing of the initiating function start(), a

268

CHAPTER 8 COUNTING EVENTS AND TIMING

numerical value specifying the priority of the event, the name of the event
function to be called, and data to be passed into the function being called,
if required. Listing 8-11 is an example of overlapping events in which the
time during which the LEDs are illuminated is longer than the desired start
times of the events. The shed module executes all the called functions and
none are lost, but the timing of the events is displaced further out in time
by the amount of the process overlap.

Figure 8-21 is a typical output from the scheduler program. The red
and green LEDs to be illuminated are wired as depicted in circuit A of
Figure 8-22.

® (0 B8 W (9| = Schecukd Pram._| = Python 3,42 Shell| Bl lp-Eraspbemyp |

Eie Edt Shel Debuy Qetom Wndews Hep
Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on Linux

Type "copyright™, “"credits" or "license()" for meore information.
>3 = RESTART
x>

Start time in ticks = 1506535428.7666967
Program local time start = Wed Sep 27 14:03:48 2017

Green led activated first

Green LED on

First scheduled event run at Wed Sep 27 14:03:50 2017
Green led on at 1506535430.8924794

Green LED off at 1506535433.9281137

Red led is activated second

Red LED on

Second scheduled event run at Wed Sep 27 14:03:54 2017
Red Led on at 1506535434,0544777

Red LED off at 1506535439.0921273

Program local finish time = Wed Sep 27 14:03:59% 2017
Finish time = 1506535439.197041
E

Figure 8-21. Scheduler Program Output from Overlapped
Events

Scheduling events can be a complex problem, and the Python
reference documentation should be examined for further details when
using these modules.®

61) docspython.org/3/1library/sched.html
2) https://pypi.python.org/pypi/schedule - schedule 0.4.3

269

https://pypi.python.org/pypi/schedule%20-%20schedule%200.4.3

CHAPTER 8 COUNTING EVENTS AND TIMING

Detecting and Counting Events

Detection and counting of external events on the RPi require both the
ability to determine the presence or absence of a voltage on the individual
pins of the GPIO array and the ability to detect a transition in the pin
voltage. Electrical voltage transitions on the GPIO pins can be monitored
by two techniques, known as “polling” and using “interrupts.” Looking

for a voltage change at any arbitrary point in time is called “polling”

the pin. The disadvantage of polling lies in the fact that the event to be
monitored could occur before or after the time frame in which the pin
status observation is made. Polling is often implemented with software
loop coding that can consume significant amounts of processor time while
blocking the CPU from doing other task processing.

The second method for determining electrical voltage transitions uses
interrupts or “edge detection” in which the change from high to low (a
falling edge) or low to high (a rising edge) is recorded.

In very simplified terms, it can be said that most modern operating
systems are time-sharing operations managing multiple programs that
appear to the user to be running simultaneously. Each program being run
by the operating system is termed a process in Unix (a task in Windows)
and is only run for a short period of time. Periodically the currently
running program uses up its allocated “time slice” as determined by the
generation of interrupt signals sent to the central processing unit from
either a hardware or software timer. The interrupts cause the CPU to
suspend or “interrupt” the normal tasks at hand to attend to, or service,
high-priority events. An interrupt causes the CPU to save its current
computation, switch to processing an interrupt service routine (ISR) (or
event handler), and resume normal operation after completion of the
ISR. Input-output operations can be coded into ISRs, and the CPU thus is
able to divide its processing resources between monitoring I/O operations
and normal computational functions. The processing of the first program
slice of CPU time, the generation of the interrupt signal, the processing

270

CHAPTER 8 COUNTING EVENTS AND TIMING

of the ISR, and the switch to the next program to be processed are all
happening in such short times that, to the user, several programs appear to
be running at the same time.

Threads are smaller portions of a program’s code that can be
interleaved to produce the desired effect of having the two code portions
appear to run simultaneously. (Only multicore processing hardware can
actually run multiple threads simultaneously.) Threading can be used to
avoid the shortcomings of polling in GPIO operations. An interrupt and
ISR can be used to examine the status of a GPIO pin and, if it is inactive,
continue on seamlessly with normal program processing. Polling involves
continuous checking for events, while interrupts do so periodically.
Polling consumes all the resources, while interrupts consume only some.
Polling uses a single thread focused on event detection, but Python and
the RPi.GPIO library allow the creation of two or more threads in which
event detection code can run independently. Detection of an event
in the secondary threads activates code that calls back to the primary
thread to initiate an interrupt service routine. There are numerous, very
simple, easy-to-implement, multiple push button, threaded callback
demonstration programs that have been published to support the
library documentation describing GPIO array input and output use.
Documentation for a simple threading library is available online.’

In previous exercises, the three libraries that can be used to work with
the RPi.GPIO pins have been introduced, and these different modules
will be used as required to generate simple timer programs or to monitor
pin status and record times between pin state changes throughout the
remainder of the manuscript.

The RPi.GPIO and gpiozero libraries are very easy to use and are
supported by extensive documentation of code that has been developed
for alarge number of common devices that can be interfaced to the RPi
through the GPIO pins.

"http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage

271

http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage

CHAPTER 8 COUNTING EVENTS AND TIMING

The first two libraries are however not capable of accurate, short-
period, timekeeping. In previous exercises, the “jitter” that can be seen in
simple LED power control applications is caused by the Unix-based Linux
operating system halting GPIO operations to deal with internal processes
that have a higher priority than the RPi input-output code.

A third library imported as pigpio has been developed for use on the
RPi that is capable of providing microsecond timekeeping accuracies.
Timekeeping accuracy in the pigpio module has been achieved by using
C code to write the library and using a Python-Linux/Unix interface
program running on the RPi to access the GPIO pins. Unix utility or
service programs running in the system background are often known as
“daemons.”

As noted, physical computing with the GPIO pins on the RPi can be
considered as the interfacing of the computer with the outside world. The
RPiis able to detect the status of each pin in the array by measuring its
voltage at virtually any point in time. System and software overheads limit
the response time of the RPi to changes in the voltage on any GPIO pin
when the Python interpreter uses either the RPi.GPIO or gpiozero library.
As noted, in order to improve the short time response of the RPi to its GPIO
pin array, a library written in the very fast-executing C language has been
interfaced to the Python interpreter with the Linux/Unix daemon or utility
program called “pigpiod.” Microsecond time scales are reliably accessible
in GPIO pin operations with the C library module.

The pigpio library can be used by investigators at all levels of
programming capability, and the extensive documentation should be
consulted as required.

Timing and low-frequency event counting can be realized with Python
programs written using the appropriate GPIO pin management library
for the task at hand. Simple, low-level, easy-to-code-and-implement
interfacing can be achieved with the RPi.GPIO library, while more complex
sensors are best interfaced using the gpiozero library. Moderate- to

272

CHAPTER 8 COUNTING EVENTS AND TIMING

advanced-level programming skills are required to use the pigpio library
with its fast accurate time management capabilities and the interfacing
utility daemon running in the background of the RPi operating system.

Experimental

Implementation of the software GUI-based stopwatch timers requires no
interaction with the GPIO array.

Scheduling events may be used in both ordinary Python code
application programming or a physical computing process utilizing the
GPIO array as is described in the following portions of this exercise.

Since all input and output actions from sensors, actuators, motors, and
switches must be in the form of transitions from 0 to 3.3 or 5 volts, the two
circuits depicted in Figure 8-22 can be used to either source or sink the
electrical activation signals in the form of circuit A or B, respectively.

+5v
connggt ian narmally i
; ; openpush
gpio pin 21 button W
iteh
22a ohm R surke = GPIO pin 21
5 18@ Ohm
Red P D
LED Green 7
LED
ﬁ B

Figure 8-22. Circuits for Sinking or Sourcing Electrical Signals for
GPIO Programming Demonstrations

The use of an LED in circuit B of Figure 8-22, although not required
for the activation of the RPi GPIO code, does provide the investigator with
an additional diagnostic capability in the event of a section of code not

273

CHAPTER 8 COUNTING EVENTS AND TIMING

responding to a button click. A button click should cause the LED to light and
the code waiting for the button click to be activated as expected. A failure of
the LED to illuminate when the button is clicked can thus identify the root
cause of the code not responding (see “Observations” and “Discussion”).

Listing 8-12 uses a push button mechanical switch configured as
depicted in circuit B of Figure 8-22 to provide “rising edge events” to trigger
the actions of the time measurement program.

The program uses two rising edge detection functions that block all
computing operations while the RPi waits for the edge to appear. If activation
of the push button switch is the only operation on which the program is to
focus, as is the case in the timer example, then a blocking function is both
simple to implement and adequate for the problem at hand. Figure 8-24 is a
typical output from the rising edge timer program, while Figure 8-25 caught
a switch contact “bounce” during programming code development.

As previously noted, high-speed digital timers and counters
monitoring mechanical switches such as push buttons, toggles, or
magnetically activated reeds must accommodate contact bounce that
occurs before a switch provides a continuous closed contact. The RPI.
GPIO libraries all have provisions for estimating the switch contact bounce
that may be encountered in the experiment at hand and will accept the
experimenter’s millisecond time scale in which to ignore the second event.

When higher-speed events are to be monitored, such as those
encountered in optical beam blocking configurations, a capacitor can
often be used to dampen spurious noise or electromagnetic interference.

Polling and interrupt event detections, although easy to implement
for educational purposes with push button devices, are of limited value
for detecting and counting higher-speed events. Motor rotational speeds,
high-speed object counting, and accurate timing over fixed distances,
as are to be encountered in subsequent physical computing exercises
and measurements, can all be implemented with break beam optical
techniques. In Chapter 10 an IR break beam detector is used to count
motor rotations to determine motor rotational speed.

274

CHAPTER 8 COUNTING EVENTS AND TIMING

Figure 8-23 depicts an invisible infrared (IR at 940 nm wavelength)
break beam circuit that can be configured on a prototyping breadboard
and connected to the RPi 40-pin GPIO array. (BCM GPIO values and BN or
board number values are both provided in the circuit description.)

GFIO 17 CPIO 4
YOBH S : © BN

1808 K pf

0P 165A p =D 0P 585A

4

930 Qhm 33.9 Ok

Figure 8-23. An IR Break Beam Circuit

A break beam system does not have metal contacts and does not
“bounce” but can experience an electrical spike or noise that can generate
spurious signal responses. Implementation of a bounce time for second
signal rejection or the use of a capacitor to absorb spurious signals is thus
a matter of either judgement or experimentation for the investigator when
assembling and writing code for the experiment at hand.

The following break beam programs are designed for continuous
operation and use a while loop to monitor the beam integrity. The loop
software has built-in code for a clean exit scheme that uses the Ctrl+C
keystroke combination to terminate the main program beam scanning
loop and execute a proper circuit shutdown procedure that, in general,
turns off the IR beam, removes code no longer in use, and resets port

configurations.

275

CHAPTER 8 COUNTING EVENTS AND TIMING

Listings 8-13, 8-14, and 8-15 of the three RPi programs monitoring the
IR beam have additional code in the main while loop that activates two
diodes, a red and a green, connected to pins 38 and 40 on the board array
(BCM GPIO 20 and 21) in accordance with Figure 8-22 A. An IR beam is
invisible, and the added code turns the red diode on when the beam is
broken and illuminates the green when the beam is intact. The two diodes
serve as a remote indicator of the invisible IR beam status.

Listings 8-13 and 8-14 are two ways in which an IR diode and a
photo-transistor detector can be used to demonstrate higher-speed event
monitoring and present a practical application of the technology.

Observations

Output from the rising edge timer program is heavily commented to
describe the events that occur during the elapsed time measurement as
seen in Figure 8-24.

8 @M % O | -~ nisingdgeinterr... |[EMpi@raspberrypi:]| . Python 3.4.2 Shell

Python 3.4.2 Shell
Elo Edt Shel Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright", "credits" or "license()" for more information.
55> =====fsszsssosoocsosoooosooooooo RESTART ==ss==ssssssoooc sss=zs=osososooos
22>
A rising edge was detected.
A timer was started at tick count 1506627423.4021778
A second or stop timing event has been detected.
A stop timing event has been detected at tick count 1506627427.4785948

The elapsed time = 4.08 seconds
=

Figure 8-24. A Typical Rising Edge Push Button Timer Output

Occasionally the button click does not produce the expected results
with the code awaiting the electrical transition. As seen in Figure 8-25,
when attempting to activate the timer programs that use two sequential

276

CHAPTER 8 COUNTING EVENTS AND TIMING

clicks of the button to measure an elapsed time, the code acknowledges
and acts upon the “start a timing session” initial event and then, virtually
immediately, properly ends the timing session, recording a fractional
second elapsed time. (See “Discussion.”)

rising edge was detected.

timer was started at tick count 1504709817.4018524

second or stop timing event has been detected.

st|op timing event has been detected at tick count 1504709817.450808
> 2>2>

V B 0 e

Figure 8-25. An Unexpectedly Short Elapsed Time
Determination

In Figure 8-25, a 0.049 or a 49 ms (millisecond) elapsed time has been
measured that is characteristic of mechanical switch “bounce”.

On occasion an initial click of a button does not activate the code
awaiting the transition. The phenomenon is random in nature and has on
occasion fortuitously been traced to the switch contacts either not closing
or not closing with sufficient surface area contact to provide the energy
needed to light the diode or activate the transition recognition code. (See
“Discussion.”)

Figure 8-26 is the output of a simple program that uses a simple while
loop polling method to monitor the status of the IR beam. As can be seen
from the output that was generated by the author rapidly hand-vibrating
a pen in the beam, when the beam is unbroken, the photo-transistor or
diode acts as a short circuit to ground, and the GPIO pin attached to the IR-
sensitive element is pulled down to virtually 0 V. Beam blockage removes
the short circuit to ground, and the GPIO pin rises to 3.3 V driving the
input pin high.

The while loop constantly cycles as fast as the system’s software-
hardware combination will allow and outputs the high/low value of the

pin.

277

CHAPTER 8 COUNTING EVENTS AND TIMING

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type “copyright”, "credits” or "license()" for more information.
>>> sSssssssssssssssssssesssssssss=ss RESTART =ssss=sssssssssssssssssssssssssss
22>

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam on, photodiode on, input low

Beam on, photodiode on, input low

Beam on, photodiode on, input low

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam off, photodiode off input hi

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Beam off, photodiode off input hi

Beam on, photodiode on, input low

Diode OFF

>>>

Figure 8-26. A Polling Program Output

The continuous loop that is only polling the input pin is properly
terminated by using the “Ctrl+C” keystroke sequence. The sequence is
recognized by encasing the while loop in a try-except keyboard interrupt
combination that allows the loop to terminate and passes control to the
remainder of the program. After loop termination, the program code turns
off diodes that may be on, resets the GPIO configuration that may have
been modified, and signals the program termination. Rapidly vibrating
motions of the pen in the beam do not change the rate at which data
is printed out in the interactive terminal. The polling can be seen to be
missing beam breaking events.

Figure 8-27 displays the output from the rising edge detection interrupt
code of Listing 8-13.

278

CHAPTER 8 COUNTING EVENTS AND TIMING

[de Edt Shell Debug Ootions Windows Help

[ITIpUC = U FNOCOULOUE UN

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input = 0 Photodiode ON

Input pin status changed to 1
Input pin status changed to 0
Input pin status changed to 1
Input = 1 Photodiode OFFInput pin status changed to

0

Input pin status changed to
Input pin status changed to
Input pin status changed to
Input pin status changed to
Input pin status changed to
Input pin status changed to Input = 00
Photodiode ONInput pin status changed to
1

Input pin status changed to 0

Input pin status changed to 1

Input pin status changed to 0

Input pin status changed to 1

Input pin status changed to 0

Input =Input pin status changed to 11
Photodiode OFFInput pin status changed to

—_—O =GO =

Led Pff, event detect interrupt removed and GPIO cleanup run
>>>

Figure 8-27. An Interrupt Event Detection Program Output

Rapid vibration of a pen shaft in the IR beam causes a corresponding
rapid increase in the data output rate. The garbled output, as seen in
the preceding data output, appears to be due to the interactive screen
output not being able to respond to the rapid interrupt detection of beam
blockage events.

An interrupt on event detection process has been created in the
program by using the add_event_detect function of the RPi.GPIO library.
The added function takes several arguments that specify the GPIO pin
number; the event condition on which to act, a rising/falling edge or
both; and the name of the function to branch to or “call back to” when the
interrupt signal is received.

279

CHAPTER 8 COUNTING EVENTS AND TIMING

Until the selected electronic transition is encountered on the GPIO pin
being monitored, the main loop of the program prints out the expected
“Input = 0 Photodiode ON” and program control does not branch to the
function created specifically for use when the transition is encountered.
With no activity on the GPIO pin, the interrupt runs virtually invisible in
the background. Electronic activity however triggers a branching to occur,
and program control is transferred to a “jump to, execute, and return
from” function that conducts the actions required by the investigator.

In Figure 8-27, the input pin status is printed out until a rising edge is
encountered that causes the program to branch to the specially created
function that examines the pin status, prints it out, and returns to the
original program looping routine. The add_event_detect function of the
RPI.GPIO library is executed so quickly that the slower code controlling
the output display is unable to keep up with rapid pen movements in the
IR beam, and the corrupted output seen in Figure 8-27 results. The high
speed of the interrupt technique is made possible by the use of threading.

Listing 8-15 uses an interrupt technique to drive an event counter.

The counter runs in a separate thread from the main program and is
accessed only when a specified electronic transition occurs on the pin
being monitored. The counter value is stored in a Python global variable
so as to be visible to the output portion of the main program loop, outside
of the thread in which the counter increment function works. The main
loop prints out the counter value on a regular timed basis as determined
by the program code execution, but the counter value is increased by the
interrupt-activated event detection that branches to the thread in which
the counter is incremented. As can be seen in Figure 8-28, by vibrating a
pen in the IR beam, the counter records the number of beam interruptions
and adds them to the total count during the normal, virtually constant rate,
data output intervals of the main program.

280

CHAPTER 8 COUNTING EVENTS AND TIMING

® © % O | aBkBmAINmIC..| @ Python 342 Shell | [l [pi@raspberrypi: ~]

Ele Edt Shel Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.
>3 == B e ==za RESTAR] ===ascaszczsssssasssssssosnsssss
23>

Count = 0

Count = 1

Count = 7

Count = 12

Count = 19

Count = 25

Count = 32

Count = 34

Count = 40

Count = 46

Count = 52

Count = 58

Count = 60

Final counter value = 60

Diodles off and GPIO ports reset

2>>

Figure 8-28. An Interrupt-Driven Event Counter Output

Discussion

A direct interfacing of sensors to the RPi through the GPIO pins and one of
the three interfacing libraries is one of the less expensive and simplest of
the options available for collecting data or monitoring sensors. Each of the
three libraries has unique features and a differing degree of complexity.
GPIO is best for simple digital systems, gpiozero is for integrated circuits,
sensors, or sensing devices and robotics motor control, while pigpio

is more complex, very fast, and chronologically accurate while able to
interface a wide variety of electro-mechanical systems.

All three I/0 libraries are able to accommodate mechanical switch
“bounce” that is probably best estimated empirically in the system at hand.
The magnitude of the time window in which second or third signals are to
be ignored is determined by the time width of the smallest signal that the
investigator wishes to measure.

281

CHAPTER 8 COUNTING EVENTS AND TIMING

The choice between a program that monitors for events with a polling
loop and an interrupt-driven routine is simply a matter of considering
the rate at which data is sent to the GPIO pin. Polling at once or twice per
second is perfectly adequate for monitoring a door opening sensor, while
an interrupt-driven monitor should be used for high-speed rotational
measurements.

Python time-based measurements are all based upon tick counts of
the system on which the program is running. The time base of the system
is derived from Internet time as supplied by Internet time servers. As
previously noted for time measurements that are to be made “off-line”
such as in field measurements, a real-time clock (RTC) must be installed
on the RPi.

Complete descriptions of the use of the scheduler modules can be
found at the URLs in footnote 6 and should be consulted when using these
Python functions. The use of the modules with minutes, hours, days, and
hours of the day for all the days of the week requires care in application
to function as desired and should be carefully set up for real-world
applications.

The rapid response rate of an optical break beam circuit can be used to
measure the frequency of a signal by using the appropriately scaled signal
of interest, to power the IR diode source. The counter software can then be
coded to measure, with an interrupt-driven counter, the number of events
that accumulate over a timed and defined number of iterations of the
program’s main output loop.

282

CHAPTER 8 COUNTING EVENTS AND TIMING

Code Listings

Listing 8-1. DAQFactory Sequence Scheduled Time Timer

//
//
//
//
//
//
//
//
//
//
//
//
//

Scheduled Time Timer

Oct. 2 to 15, 2010

A screen Start/Stop button is used to initiate the

Schdld Time Tmr sequence. The sequence accepts a start and
stop time at which to run a "scheduled event" from two,
labelled, date and time edit boxes.

The sequence verifies that both times are in the future and
that the start time is before the finish time. Beneath the edit
entry boxes a panel display shows the time left before event
activation together with the elapsed and remaining times of
the scheduled event.

global EvStartTime // the starting time of the scheduled event
global EvEndTime // the ending time of the event

global EvElapsedTime // time the event has been running

global EvRemainingTime // the time remaining in the timed event

global CurrentTime // the current time
global TimeToGo // the variable for the count down timer
global HrsToGo

global MinToGo

global SecToGo

global EvHrsToGo

global EvMinToGo

global EvSecToGo

global EvElpsdHrs

global EvElpsdMin

global EvElpsdSec

283

CHAPTER 8 COUNTING EVENTS AND TIMING

//

// verify validity of entered time values

//if (EvStartTime < EvEndTime)

//if (CurrentTime < EvStartTime)

//

// Count down to start of timed event

//

CurrentTime = SysTime()

while (EvStartTime - CurrentTime > 0)

CurrentTime = SysTime()

TimeToGo = EvStartTime - CurrentTime

//Calculate the count down times for display

HrsToGo = floor(TimeToGo/3600)

MinToGo = floor(TimeToGo - (floor(HrsToGo) * 3600))/60
SecToGo = TimeToGo - (floor(HrsToGo * 3600) + (floor(MinToGo) * 60))

delay(0.01)

// zero count down timer display
HrsToGo = 0

MinToGo = 0

SecToGo = 0

endwhile

//

// Start Scheduled Event Timer
//

While (EvEndTime - CurrentTime > 0)
CurrentTime = SysTime()

// Start actual event

RedlLed = 5

//

TimeToGo = EvEndTime - CurrentTime

284

CHAPTER 8 COUNTING EVENTS AND TIMING

//Calculate the count down times to the end of the scheduled
event for display
EvElapsedTime = CurrentTime - EvStartTime

EvElpsdSec = (EvElapsedTime)%60
EvElpsdMin = (EvElapsedTime/60)%60
EvElpsdSec = (EvElapsedTime/3600)

EvHrsToGo = floor(TimeToGo/3600)

EvMinToGo = floor(TimeToGo - (floor(EvHrsToGo) * 3600))/60
EvSecToGo = TimeToGo - (floor(EvHrsToGo * 3600) +
(floor(EvMinToGo) * 60))

delay (0.01)

endwhile
// Stop Timed Event
RedLed = 0

Listing 8-2. DAQFactory Stopwatch Timer

The Stopwatch Timer DAQFactory Sequence Code

// Stop Watch Timer Oct.6 - Nov. 17 2010 (Min is a reserved

// word!) The timer sequence is started and stopped by a screen
// button that simultaneously sets a timing flag for a while

// loop and starts the sequence StopWatchTimer. The SysTime()
// function is used in a wait(0.05) delayed while loop, that

// calculates the total number of clock ticks between the current
// value of SysTime() and the initial interval starting value.
// The total elapsed time in seconds is calculated then divided
// into hours, minutes and seconds for display. The main screen
// display provides the operator with two modes of timing

// operation that record either a single interval time or the
// cumulative total of multiple intervals. The cumulative total
// option must determine the number of seconds that have elapsed
// in the current interval and keep track of the sum of the

// accumulated interval times.

285

CHA

//
//
//

PTER8 COUNTING EVENTS AND TIMING

global InitialTime // the start of the current interval

global ElapsedTime // the elapsed time of the current interval
global Hrs = 0

global Minutes = 0

global SxtyMinTm

global Sec = 0

global SxtySecTm

global TimingFlg // the main while timer loop condition flag

//
//
Ini
//
whi

286

tialTime = SysTime() // Set the initial time value

le(TimingFlg) // start the main program loop

ElapsedTime = SysTime() - InitialTime

wait (0.05)

Hrs = Floor(ElapsedTime/3600) // just divide total time in
seconds by 3600 to get hours

Minutes = Floor(ElapsedTime/60) // total minutes is calculated

SxtyMinTm = (Floor(ElapsedTime/60))%60

Sec = (ElapsedTime - ((ElapsedTime - (ElapsedTime % 3600)) % 60))

SxtySecTm = (ElapsedTime - ((ElapsedTime - (ElapsedTime %

3600)) % 60)) % 60

Endwhile

CHAPTER 8 COUNTING EVENTS AND TIMING

Listing 8-3. DAQFactory Sequence Reset Stopwatch

// Reset Stopwatch Display Oct. 6, 2010

// The sequence resets the timer variables
//
InitialTime
CurrentTime

] 1]
o O O

ElapsedTime
Hrs = 0

Minutes = 0
Sec = 0

SxtySecTm = 0
TSixtySecTm
SxtyMinTm = 0
TSxtyMinTm = 0

1l
o

TtlHrs = 0
TtIMin = 0
TtlSec = 0

Listing 8-4. DAQFactory Sequence Cumulative Time of Intervals

// CumulativeTimeOfIntervals Nov. 27, 2010 is a summation of
// the previous collected intervals Each interval timed is

// measured in clock ticks that are converted into sec, min

// and hrs for display. When the current interval is to be

// summed into the accumulation the Cumulative Time button is
// used to add the current interval’s total seconds to the

// accumulating sum of total seconds. The previous hrs, min.
// and seconds used for the previous display are discarded and
// a new total time is calculated for an up-dated display.

//

287

CHAPTER 8 COUNTING EVENTS AND TIMING

global TtlHrs
global TtlMin
global TtlSec
global Hrs

global Minutes
global Sec

global TSixtySecTm
global TSxtyMinTm
global ElapsedTime
global IntrvlMin

//
TtlSec = TtlSec + Sec
TtlHrs = Floor(Tt1lSec/3600) // just divide total time in

seconds by 3600 to get hours

TtlMin = Floor(TtlSec/60) // total minutes is calculated
TSxtyMinTm = (Floor(Tt1lSec/60))%60
Sec = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60))
TSixtySecTm = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60)) % 60

Listing 8-5. DAQFactory Sequence Counting Events

// A _Counter_Event - Jan. 1/11 - The LabJack counter is activated
// by a 5 to 0 volt falling edge followed by a 0 to 5 volt

// rising edge. The following script applies the 5 - 0 - 5 volt
// profile to the DigOut_9 EventCntr channel that activates

// pin D9 onthe CB-25 board. This script is activated by

// clicking on the screen button labelled "Initiate Event".

//

// Set the pin voltage to 5 volts

DigOut 9 EventCntr = 5

// Create the falling edge by setting the pin voltage to 0
DigOut_9 EventCntr = 0

288

CHAPTER 8 COUNTING EVENTS AND TIMING

// Create the rising edge by setting the pin voltage back to 5
DigOut_9 EventCntr = 5

// For ease of configuration the voltage is left on for 1/2 a
second so as the lit LED can be

// used to validate a functioning system.

//Delay(0.5)

//DigOut_9 EventCntr = 0

Listing 8-6. DAQFactory Sequence Reset Counter

// ResetCounter - Fall/09 Revn Jan 1/11 The script manually

// resets the displayed number of events counted, by the LabJack
// counter after the defaut "Reset after polling" has been

// turned off. The counter is activated after it detects a

// falling edge waveform followed by a rising edge waveform.

// The "event" counted thus consists of a 5 to 0 - 0 to 5 volt
// transition which leaves the Pin 9 at 5 volts. For the manually
// activated counter exercise the blue LED thus remains ON as
// long as the manually activated counting session is in

// progress, re-setting the counter then turns the LED off.

//

EventsCounted[0] = 0

DigOut_9 EventCntr = 0

// By using the default setting of "Reset" after polling (reading)
// the number of 5-0-5 volt transitions in a given period of

// time, the frequency can be determined.

RawCounts[0] = 0

DigOut 8 PWM = 0

289

CHAPTER 8 COUNTING EVENTS AND TIMING

Listing 8-7. DAQFactory Sequence PWM Script

//
//
//
//
//
//
//
//
//
//
//
//

PWM Script (Pulse Width Manipulation) Script for pulse

width variation - Oct. 21/09 Rvn. Jan. 2/11, Aug. 3/17

A "time - goto" loop is used with delay statements to set

D8 to 1 then 0 thus raising and lowering the channel
DigOut_8 PWM output between 0 and 5 volts in a continuous
manner. The continuously varying voltage creates a square
wave train. The 0.002 and 0.098 can be considered as the
time on time off duty cycle. With the lower duty cycle the
pulsing of a powered light source is quite evident.

Various duty cycles must be entered manually into the simple
program which is started and stopped with the sequence
pop-up menu displayed by right clocking on the sequence name.

time 0
DigOut_8 PWM = 1
Delay (0.002)
DigOut 8 PWM = 0
Delay (0.098)
goto 0

Listing 8-8. Arduino Stopwatch Timer Code

/*

A stopwatch program using a DAQFactory panel and the serial

port to avoid the debouncing problems associated with

mechanical switches. The program uses the letters b, s, and r

to

branch in an Arduion case statement using b for begin,

s for stop and r for re-set. Always ensure that data sent
from the Arduino to the DAQFactory software code is
Serial.println(data);

*/

290

char incmngByte;

CHAPTER 8 COUNTING EVENTS AND TIMING

//

unsigned long start, finished, elapsed; //

bool tsipFlg = LOW;
bool wtspFlg = LOW;

bool rstFlg = LOW;

//

void setup() {
Serial.begin(9600);

}

//

void loop() {

if(Serial.available() » 0) {

incmngByte = Serial.read();

}
switch(incmngByte) {

case'b':

if (tsipFlg == LOW) {

start = millis();

//Serial.print(start);

tsipFlg = HICH;

//

//

//

/7

//

//

//

//

//
//
//
/7

a variableto hold
the incoming byte
from the serial port
timing variables
timing session in
progress flag

write to serial port
once only flag
re-set b and s flags

start the serial port

check port for
incoming character
set character into
variable

the case statement
for decisions

begin a timing
session

check the status flag
set the start time
diagnostic

set the status

flag to timing in
progress

291

CHAPTER 8 COUNTING EVENTS AND TIMING

rstFlg = LOW;

break;

case's': // stop the timer

if (wtspFlg == LOW) { // check the status flag
finished = millis(); // set the finish time
//Serial.println(finished); // diagnostic

elapsed = finished - start; // calculate the

elapsed time
Serial.println(elapsed); // write the elapsed
time to the serial

port

wtspFlg = HIGH; // set the status flag
to write only once

}

rstFlg = LOW;

break;

case'r': // re-set b and s
functions

if (rstFlg == LOW) { // check the status flag

tsipFlg = LOW;
wtspFlg = LOW;
rstFlg = HIGH;
}

break;

292

CHAPTER 8 COUNTING EVENTS AND TIMING

Listing 8-9. DAQFactory Quick Sequences for b, s, and r

// send begin signal b
device.ardyBluBrd.Write('b")

// send stop signal s

global Elapsed
device.ardyBluBrd.Write('s")

private string datain

datain = device.ardyBluBrd.ReadUntil(13)
Elapsed = strToDouble(datain)

// send re-set signal r
device.ardyBluBrd.Write('r")
Elapsed = 0

Raspberry Pi Program Code

Listing 8-10. A RPi Three-Button Stopwatch Timer GUI
from tkinter import *
import time

class StopWatch(Frame):
""" Implements a stop watch frame widget.
def _init (self, parent=None, **kw):

Frame. init (self, parent, kw)
self. start = 0.0

self. elapsedtime = 0.0

self. running = 0

self.timestr = StringVar()
self.makeWidgets()

293

CHAPTER 8 COUNTING EVENTS AND TIMING

294

def

def

def

def

def

makeWidgets(self):

""" Make the time label. """

1 = Label(self, textvariable=self.timestr)
self. setTime(self. elapsedtime)
1.pack(fill=X, expand=NO, pady=2, padx=2)

_update(self):

""" Update the label with elapsed time. """
self. elapsedtime = time.time() - self. start
self. setTime(self. elapsedtime)

self. timer = self.after(50, self. update)

_setTime(self, elap):

Set the time string to Minutes:Seconds:Hundreths
minutes = int(elap/60)

seconds = int(elap - minutes*60.0)

hseconds = int((elap - minutes*60.0 - seconds)*100)
self.timestr.set('%02d:%02d:%02d" % (minutes, seconds,
hseconds))

Start(self):

Start the stopwatch, ignore if running.
if not self. running:

self. start = time.time() - self. elapsedtime
self. update()

self. running = 1

Stop(self):

Stop the stopwatch, ignore if stopped.
if self. running:
self.after_cancel(self. timer)

self. elapsedtime = time.time() - self. start
self. setTime(self. elapsedtime)
self._running = 0

CHAPTER 8 COUNTING EVENTS AND TIMING

def Reset(self):
""" Reset the stopwatch.
self. start = time.time()
self. elapsedtime = 0.0
self. setTime(self. elapsedtime)

def main():
root = Tk()
sw = StopWatch(root)
sw.pack(side=TOP)

Button(root, text='Start', command=sw.Start).pack(side=LEFT)
Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)
Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)

root.mainloop()
if _name_ =="'_main_ ':
main()

Listing 8-11. A Python Scheduled Event Program

Scheduled Program Control of LEDs, green and red LEDs wth
CLRs are connected

to GPIO pins 20 and 21 or pins 38 and 40 of the RPi array.
Pgm calls two

sequential events with defined delays between events to light
the leds and

print out tick time and current times.

#

import RPi.GPIO as GPIO

import sched

import time

#

295

CHAPTER 8 COUNTING EVENTS AND TIMING

scheduler = sched.scheduler(time.time, time.sleep)
create an instance of scheduler
#
GPIO.setmode(GPIO0.BCM)
GPIO.setwarnings(False)
GPIO.setup(20, GPIO.OUT)
GPIO.setup(21, GPIO0.OUT)
#
Activate green led for a measured length of time, timestamp
event, pass in text
and document actions
def actvt _GrnLed(name):
print(name) # text or data passed in --> Green led
activated firt
print("Green LED on")
frstsched tm = time.asctime(time.localtime(time.time()))
local time code processed
print("First scheduled event run at ", frstsched tm)
print("Green led on at ", time.time()) # the tick count at
grn led on
GPIO.output(20,GPI0.HIGH)
time.sleep(3)
print("Green LED off at ", time.time()) # tick count at grn
led off
GPIO.output(20,GPIO.LOW)
print() # format spacing for output
#
Activate red led for a measured length of time, timestamp
event, pass in text # and document actions
def actvt RedLed(name):
print(name)
print("Red LED on")

296

CHAPTER 8 COUNTING EVENTS AND TIMING

scndsched tm = time.asctime(time.localtime(time.time()))
print("Second scheduled event run at ", scndsched tm)
print("Red Led on at ", time.time())
GPIO.output(21,GPIO0.HIGH)
time.sleep(5)
print("Red LED off at ", time.time())
GPIO.output(21,GPIO.LOW)
print() # format output spacing
fnsh_tm = time.asctime(time.localtime(time.time()))
print("Program local finish time = ", fnsh_tm)
print("Finish time = ", time.time())
#
print("Start time in ticks = ", time.time())
pgm strt tm = time.asctime(time.localtime(time.time()))
print("Program local time start = ", pgm strt tm)
print()
#
scheduler.enter(2, 1, actvt GrnLed, ("Green led activated
first",))
scheduler.enter(5, 1, actvt RedlLed, ("Red led is activated
second",))
#
scheduler.run() # start the program

Listing 8-12. A Raspberry Pi RPi.GPIO Push Button Timer

A push button activated rising edge transition starts a timer
and a second

stops the elapsed time measurement. GPIO 21 is pin 40 on the
pi board and

is connected to the junction of the series connected PBS and
LED CLR circuit

297

CHAPTER 8 COUNTING EVENTS AND TIMING

A bounce time of 100 ms is used to avoid false triggering.
#
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
set up the pin-channel, board is 40 bcm is 21
GPIO.setup(21, GPIO.IN)
#
GPIO.wait_for edge(21, GPIO.RISING, bouncetime=100)
a blocking action while waiting
#
wait for the event, print an alert and start a timer
#
if GPIO.input(21):
print("A rising edge was detected.")
start a timer to count ticks
ticks initl = time.time()
print("A timer was started at tick count ", ticks initl)
GPIO.setup(21, GPIO.IN, pull up_down=GPIO.PUD_DOWN)
reset the GPIO pin low
#
wait for the second event to occur and measure the elapsed time
GPIO.wait for edge(21, GPIO.RISING, bouncetime=100)
again a blocking action while waiting
#
if GPIO.input(21):
print("A second or stop timing event has been detected.")
ticks _fnl = time.time()
print("A stop timing event has been detected at tick count ",
ticks fnl)

298

CHAPTER 8 COUNTING EVENTS AND TIMING

#

calculate and display the elapsed time.

print("The elapsed time = ", round(ticks fnl - ticks initl, 2),
"seconds")

Listing 8-13. A Polling IR Break Beam Monitor Program

Code for PRi Detecting Input Events by Polling
Program to get input from pin 7 (board) Gnd is pin 6
import RPi.GPIO as GPIO
import time
#
GPIO.setmode(GPIO.BOARD) # get library
GPIO.setwarnings(False)
GPIO.setup(11, GPIO.OUT) # set pin 11 as output to power IR LED
GPIO.setup(38, GPIO.OUT) # green led beam intact indicator
GPIO.setup(40, GPIO.OUT) # red led beam broken indicator
GPIO.setup(7, GPIO.IN) # set pin 7 as IR Photodiode input
#
Main program loop
GPIO.output(11, True) # turn LED on
try:
while (1): # continuous loop
if GPIO.input(7):
print("Beam off, photodiode off input pulled hi ")
detects 3.3v power from pin 1
GPIO.output(38, 0) # grn led off as beam has been
broken
GPIO.output(40, 1) # red led on to indicate beam
is broken
time.sleep(0.5)

299

CHAPTER 8 COUNTING EVENTS AND TIMING

else:
print("Beam on, photodiode on, input pulled low ")
detects ov (diode-on acts like short)
GPIO.output(40, 0) # red led off as beam restored
GPIO.output(38, 1) # grn led on as beam intact

time.sleep(0.5); # wait time before next loop
except KeyboardInterrupt:
pass
#
#
GPIO.output(11, False) # turn OFF the IR LED
GPIO.cleanup() # reset ports

print("Diodes off and ports reset ") # indicate end of pgm

Listing 8-14. An IR Break Beam Monitor with Interrupt Activity

PRi Detecting Input Events with Interrupts
Program to get input from pin 7 (board) Gnd is pin 6
import RPi.GPIO as GPIO
import time
#
GPIO.setmode(GPIO.BOARD) # get library
GPIO.setup(11, GPIO.OUT) # set pin 11 as output to power IR LED
GPIO.setup(38, GPIO.OUT) # green led beam intact indicator
GPIO.setup(40, GPIO.OUT) # red led beam broken indicator
GPIO.setup(7, GPIO.IN) # set pin 7 as IR Photodiode input
#
Function that "add event detect" runs at input change
def inputChng(channel):

print("Input pin status changed to ", GPIO.input(7))
#
On input change, run input change function
GPIO.add event detect(7, GPIO.RISING, callback=inputChng)

300

CHAPTER 8 COUNTING EVENTS AND TIMING

#
GPIO.output(11, True) # turn IR LED on
time.sleep(1)
try:
while True:
if GPIO.input(7) > 0.5:
print("Input =", GPIO.input(7), "Photodiode
OFF") # detects 3.3v power from pin 1
GPIO.output(38, 0) # grn led off as beam has been

broken

GPIO.output(40, 1) # red led on to indicate beam
is broken

time.sleep(0.5) # wait time before next
iteration

else:
print("Input = ",GPIO0.input(7), "Photodiode ON")

detects ov (diode-on acts like short)
GPIO.output(40, 0) # red led off as beam restored
GPIO.output(38, 1) # grn led on as beam intact
time.sleep(0.5) # wait time before next

iteration
except KeyboardInterrupt:

pass
#
#
GPIO.output(11, False) # turn OFF the LED
GPIO.remove event detect(7) # Turn off event detect interrupt
GPI0.cleanup() # reset ports

print("Led Off, event detect interrupt removed and GPIO cleanup run")

301

CHAPTER 8 COUNTING EVENTS AND TIMING

Listing 8-15. An IR Break Beam Interrupt-Driven Counter

Break Beam Interrupt Driven Counter: counts & prints number
of interruptions in beam
Input from pin 7 (board) (GPIO 4) system ground at pin 6
IR photodiode pull-up with 1M ohm pullup btwn 7 & 1 (3.3v)
IR LED pin 11 supplies IR illumination gnd pin 6
#
import RPi.GPIO as GPIO # get GPIO library
import time
#
GPIO.setmode(GPIO.BOARD) # use RPi board pin numbers
GPIO.setup(11, GPIO.OUT) # set pin 11 (GPIO 17) as output
to power IR LED
GPIO.setup(7, GPIO.IN) # set pin 7 (GPIO 4) as input
#
counter = 0 # declare and initialize counter variable
#
Function "add _event detect" runs at input change
def counterPlus(channel):
global counter # declared global to share
with system & threads
if GPIO.input(channel) > 0.5: # pin 7 = 3.3v. photodiode off
counter += 1 # recognize blocked beam
else:
counter += 0 # Ov, no-op
#
On input change, run input change function
GPIO.add_event_detect(7, GPIO.RISING, callback=counterPlus)
#
GPIO.output(11, True) # turn on the IR LED
time.sleep(1) # give LED time to turn fully on

302

CHAPTER 8 COUNTING EVENTS AND TIMING

try:
while True:
print("Count =

, counter) # output current counter
value
time.sleep(1) # time delay before
looping
except KeyboardInterrupt:
pass
#
print("Final counter value =

, counter) # output final
counter value

GPIO.output(11, False) # turn IR source off
GPIO.cleanup() # reset ports
print("Diodes off and GPIO ports reset")

Summary

— Integrated circuits based upon “latches” with crystal-
regulated oscillators acting as timing clocks are able to
count and determine the time between events with
microsecond resolution.

— Time of day measurements are based upon “tick”
counts since January 1, 1970, and allow for day time
determination, timing coordination, and scheduling for
events in the future through the SCADA GUL.

— Stopwatch timing can be configured with both the
commercial and component-assembled SCADA
systems.

303

CHAPTER 8 COUNTING EVENTS AND TIMING

304

Several solutions are provided for monitoring for events
and compensating for the false or erroneous triggering
of event detectors during experimental sessions.

In Chapter 9, the advantages of graphical data record-
ing are presented that in some experiments can detect
false triggering of event detection.

CHAPTER 9

Graphical Data
Recording

An old Far Eastern proverb advises that “a picture is worth a thousand
words.” The truth of the proverb is fully realized in chemical analysis

and medical imaging where not only the numerical values but the shape
of the recorded data conveys information. Numerous techniques in
medical, physical, and many other experimental sciences depend upon
the graphical presentation of data. Clinical and chemical analysis has
traditionally used chemically sensitive transducers to generate a millivolt
signal in response to changing chemical process values. The small signal
was amplified electronically and used with a servomotor to mechanically
drive a pen across a paper chart to provide a visual record of the chemical
process being monitored. Although both x-y and x vs. time plotting
systems are extensively employed in the manufacturing process industries,
chemical analysis, and other sciences, the electro-mechanical plotting
instruments, much like the typewriter, have been replaced by the PC.

x-y plotting is used extensively in analytical spectroscopies and
electrochemical analysis, while x vs. time charting is used for following
titrations, in biochemical kinetics, and in both chromatographic and
spectroscopic analysis.

DAQFactory is being used for this application because of its powerful
graphical recording and display capabilities. A graphical display tutorial is
included with the DAQFactory user manual along with a detailed chapter on

© Richard J. Smythe 2021 305
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_9

https://doi.org/10.1007/978-1-4842-6778-3_9#DOI

CHAPTER9 GRAPHICAL DATA RECORDING

the DAQFactory graphical display capabilities. Both the tutorial and the user
manual should be reviewed before starting this exercise for those researchers
using either the free Express or full version of the SCADA software.

In this exercise, several very important concepts and circuit
configurations are demonstrated. The 555 timer configured as an astable
multivibrator will be used to create square, sawtooth, and nonsymmetrical
triangular signal waveforms as a prelude to visually examining the very
important concept of pulse width modulation (PWM). Exponential and
linear voltage waveforms from capacitor charging and discharging will be
demonstrated, and the creation of symmetrical voltage waveform outputs
from special ICs will be used for creating graphical data recordings.

In the first timer configuration examined, two resistors and a capacitor
will be used to form a “timing network” on the oscillator chip. The RC
component values will be chosen so the timer chip generates waveforms
compatible with our recording software. One of the resistance components
chosen will be of a variable nature to model a resistance-based chemical
or physical transducer. Variation of the transducer resistance with
some physical phenomenon, such as the intensity of the light falling on
the sensor surface or temperature, will then cause the frequency and
wavelength of the timer output signal to vary, and the output variation will
be displayed on the PC screen in a graphical format. Signal variation can
then be transformed into pulse width variation to form the basis of the
extensively used pulse width modulation (PWM) concept.

In the second timer configuration examined, the use of a constant
current source to charge the timing capacitor will be demonstrated,
and the creation of “sawtooth” and triangular output waveforms will be
graphically recorded. The triangular waveform or voltage ramp has an
important use in some sensor monitoring and in chemical analysis. A
third circuit is assembled to demonstrate a simplified method for creating
a dual-slope analog ramp that is used frequently in electrochemical,
corrosion, and biophysiology investigations.

A simple x-y recording system constitutes the last portion of the chapter.

306

CHAPTER9 GRAPHICAL DATA RECORDING

Experimental: Linear Graphical Data
Recording

Part 1: Hardware and Component Selection -
Square Wave Output

Previous work in Chapter 8 has shown the limitations imposed by
software overhead, and hence the rate of change of signal shape that

can be displayed as it occurs or in “real time” is limited by the computer
performance. The bipolar transistor 555 timer in astable mode can
produce an output signal that can be made to vary from 70 kHz to

about four cycles per minute. CMOS versions of the timer can generate
frequencies in the megacycle range. Most 555 timer manufacturers include
a standard nomograph of the relationship between the capacitance and
the R1-R2 values of the resistors in the IC’s timing network. Figure 9-1

is an extended graphic that accommodates the newer versions of the
CMOS-based ICs that are able to oscillate at the higher frequencies. The
approximate timing network values and resulting free running output
frequencies are depicted in Figure 9-1 for the astable configuration of the
timer.

307

CHAPTER9 GRAPHICAL DATA RECORDING

1000

555 Timer IC Extended Frequency Nomograph
with Frequency in Hz and

)i Capacitance in uF

10

0.1

D.01

00010'1 1 10 100 1K 10K 100K 1M 10M

Frequency in Hz

IC Oscillation Frequency Nomograph for C, R1 and R2

Figure 9-1. 555 Timer Output Frequency for R-C Timing Network
Values

In order to keep the output signal from the timer chip in the low
frequency range that should be suitable for the DAQFactory graphics, the
resistance values should be in the megohm range (million or 10° ohms)
and the capacitance value in the 0.1-10 uF (micro or 1/1,000,000 F)
range. The graphical data of Figure 9-1 is an approximation, and the
actual resistance values chosen for use are somewhat dependent upon the
capacitance value selected or available.

308

CHAPTER9 GRAPHICAL DATA RECORDING

An electrolytic capacitor with a value of 1-10 uF should be suitable for
this graphics display exercise, but for more accurate work, a higher-quality
low-leakage type of capacitor may be required as detailed in the following

discussion.

Electronic Components Required

1) 555 timer integrated circuit

2) Variable and fixed resistors to sum into the
low megohm range preferably with the fixed
and variable values being in the same order of
magnitude of resistance

3) Asuitable “timing” capacitor in the 1-10 uF range, a
0.01 uF bypass capacitor, and a 9 V battery supply

Circuit Schematic

Figure 9-2 depicts the circuit configuration for the astable 555 timer.

A1 a 4

Output

“5’/ 6 555

| TIMER
0.010F

Figure 9-2. 555 Timer Astable Configuration

309

CHAPTER9 GRAPHICAL DATA RECORDING

The preceding circuit shows a single variable resistance between pins
7 and 2. The circuit will work when the variable resistor is in its mid-
travel position but will produce erratic results when at the low end of its
resistance value. To avoid any problems with circuit malfunctions, place
a fixed value resistor in series with the variable unit to limit the lower end
value of the second timing network resistance. The author used a 10 kQ
value for a 1.2 MQ R1 + R2 network sum value.

Software

After having assembled the astable oscillator, connect the output to a
differential input channel on the LabJack and configure a channel for
receiving the square wave output. The graphical page component can then
be created. For long-duration graphical displays, make sure the channel
storage capability is large enough to support the length of the desired time
display. The number of values in memory is defined by the value in the
channel's “History” box. (The default entry is 3600 that can be filled quite
quickly when working in experimental time frames of tens of minutes or
fractions of hours.)

Page Components Required

A two-dimensional graphical screen component is created by selecting,
on a new page, the 2D Graph entry from the right-click pop-up page

component menu, as shown in Figure 9-3.

310

CHAPTER9 GRAPHICAL DATA RECORDING

@
Static »
Displays 3
Gauges ¢
Compasses]
Percent 3

[Grapns »| @ 20 Graph
Buttons & Switches » '|El 30 Graph
Edit Controls i " Spectrum Display
Sejection » ﬂ Image
Sliders & Knobs 3

Figure 9-3. DAQFactory Selection of a 2D Graphical Recorder Screen
Display

The default graphical screen component configuration for an x-y graph
is displayed in Figure 9-4.

D, s,
En ' . ; : : :] .
i e S R e e
' ! ; 3 i : : ; :
:] |) ! ! g | f
Eid . ' ; : ! : : !
L e T Fesmampe
oy V H H H H H H
: ! : i : ; ' :
050 fouleeones e foeees emennd e eee O e i
L I} " Ll [}] " [} Ll
' ! ! ! ' ' : .
: ; ! . ! ! g -
' . : ; ; : : : :
e e e
' ; : . : ; - : :
i - H . ! ! : { -
A T S TR
-g B L B e e S
1 : : : 1 X ; : .
.= Lo R R ¥ OB % O OANE
)] ! .] ! ; : :
Gapbite ek ettt b n sl e e A
- . . : : ; ‘ { .
: v H H H H H H
' ! | s i i :] !
L e e Tt &
'] H : ; : : : .
: ! - { : : ! -
' ! : } ' ' ; : [
L : i] ! ! ! !]
agpaftie b oseiles il o g el el n b
1 H ' H H) H H '
: i : : : : : :
F o : 1 . i] ; 4 s
400 f-em e Feeee- Femess peeees qemees qeemees TR P -
T T R P e B N R R TR
-\D0 07 050 02§ OO0 D25 D050 07 100
¥ iails
[2 £ |

Figure 9-4. The Default X-Y Graphical Screen Display

311

CHAPTER9 GRAPHICAL DATA RECORDING

The graphical component is positioned and fitted to the page by

pressing the Ctrl key and dragging the squares in the centers of the hatched

edge lines to the desired locations on the page. Once the component has

been sized, the properties menu for the screen component can be opened

by right-clicking the screen component and selecting the “Properties”

entry. The properties window for the graph is a multi-tabbed display with

multiple entry forms for adding traces to the graph, defining the axis values

used for the graphical display, adding identification titles, and selecting

colors for the display. The Traces tab of the six-tab properties window, for

defining the name entry, is illustrated in Figure 9-5.

20 Graph Component

Trocss | Aues | General| Colors + Fonks | Asis + Bound Annclalions | Line Anotaiions |
Ilracesc YE |p 1 l
Hewe Trace: X Expeessior: F‘HD R
Planck
Adx |I g PlsWdthVm555
Paint
Legend
(] # Rand
Tiace Color: 7 RandNormal
LneType: | # RandUniform pocels
g S Registry
Pont Type: [0 £ Remove
Name; [1# Replace
et # ReverseFind T
R # RGB
Diecion: | | Right
Speed: # RTrim povel
7 Rydberg _—
Cas e | ™ [s scaren e
5 Sundhd
Seqidd 3 Gl
SeqMul :I —I —I
21 S Sequence s [
raph Component Properties -
races:
Enter in an expression to be ussd for the trace undar Y Expression. This can be any e'xp'esslon you would like, from a simple
channel name to a complex calculation. The result should evaluate to an array of numbers otherwise there won't be anything
to graph. By default, a new graph is created as a value vs ime graph, This means that the X axis will be time and that it will
screll as new data appears. If the X Bxpression is listed as Time then the time value associated with the result of the ¥ ~

Figure 9-5. Recorder Trace Name Selection

312

CHAPTER9 GRAPHICAL DATA RECORDING

A Help screen at the bottom of the properties window explains all
of the data entry boxes and tabs that are found in the graphical screen
component.

For the square wave being generated by the 9-volt battery-powered 555
timer oscillator, the voltage range was offset to display values from -1 to 9
volts to more clearly depict the time the waveform is at 0 V.

Part 1: Observations

With a 392 kQ R1, 2 900 kQ2 R2, and a 10 k2 series resistance limiting
unit, charging a 22 uF, 25V electrolytic capacitor from a 9 V battery, a
graphical display of four high time cycles in 60 seconds was obtained with
a midrange setting on R2.

Between the two extremes as depicted in Figures 9-6 and 9-7, the
number of signal waveforms being generated on a unit time basis changes.

Pulse Width Variation in a 555 Astable Timer

Variable resistance R2 in timing network

-
sbejon

9:35
& Sat Oct 2011 Time (Sech

R2 at maximum value of variable resistance

Figure 9-6. Timer Output at Maximum Resistance

313

CHAPTER9 GRAPHICAL DATA RECORDING

Pulse Width Variation in a 555 Astable Timer

Variable resistance R2 in timing network

JI R .

abejjopn

851
& Sat Oct 2011 Time (Sec)

R2 variable resistance at minimum with a 10k ohm series value limit.

Figure 9-7. Timer Output at Minimum Resistance

If the circuit is operated without a series resistor to limit the minimum
value of R2, then waveforms such as those of Figure 9-8 may be created.

Pulse Width Variation in a 555 Astable Timer

Variable resistance R2 in timing netw

afieyon

9.;‘.-1

8 Sat Oet 2011 Time (Sec)

Circuit generated wave forms with no minimal R2 variable resistance

Figure 9-8. Waveform Without Minimal Resistance

314

CHAPTER9 GRAPHICAL DATA RECORDING

Pulse Width Variation in a 555 Astable Timer

Variable resistance R2 in timing network

afeyjon

.57
& Sat Oct 2011 Time (Sec)

Figure 9-9. Erratic Output Signal or “Aliasing”

Experimental

Part 2: Hardware and Component Selection -
Triangular and “Sawtooth” Outputs

In addition to the creation of a square wave signal with a varying duty
cycle, the astable 555 timer can be used to generate a “sawtooth” and
asymmetrical triangular wave. Basic electronics teaches that when a
capacitor is charged or discharged through a fixed value resistor, an
increasing or decreasing exponential voltage value is seen across the
terminals of the capacitor. When a capacitor is charged with a constant
current source, a linear voltage increase is seen across the capacitor
terminals. The linear voltage change forms a triangular waveform that can
be used to generate a voltage ramp having several applications in chemical
analysis and other experimental work.

By assembling the circuit depicted in Figure 9-10, two additional
waveforms can be generated.

315

CHAPTER9 GRAPHICAL DATA RECORDING

e L

1e8x

T 1 Mpisch -
8|
Juaper wire Used to comnect | Tresh .
TP to either TR2 or 3. o Blirig . 555 .
current source Timer

A 6 v ® &
470uF —— 8 pin DIP 1C
B s L (Astable mode?
lli‘!!_-

]

- entr)fi— ‘

Figure 9-10. A Constant Current Charging Source

Part 2: Observations

When the capacitor is charged through a series resistor, the familiar
exponential voltage change is observed and recorded as seen in Figure 9-11,
between test points 1 and 3.

555 Astable Timer "Sawtooth” Qutput
470uF - 47K Ohm RG charging

20

822
17 Mon Oct 2011 Time (Sec)

Figure 9-11. Typical 555 Timer “Sawtooth” Output Voltage
Waveform

316

CHAPTER9 GRAPHICAL DATA RECORDING

When the voltage between TP1 and TP2 is measured, a triangular
waveform is recorded as illustrated in Figure 9-12.

555 Astable Timer Triangular Wave Output Expanded Scale

4TOuF - 47K Ohm Constant eurrent mimer charging
- 5.0

el G

8:33

7 Men Cet 2011 Time (Sec)

Figure 9-12. A 555 Timer Triangular Wave Expanded Scale

The charging of the capacitor with a constant current generates the
linear voltage ramp across the capacitor plates as seen on the left-hand
side of the waveform. The steep right-hand portion of the signal is caused
by the rapid discharge of the capacitor when the discharge pin of the timer
is connected to ground through the emitter of an internal NPN switching
transistor in the 555 timer IC. Although the discharge trace appears to be
a straight line, it is in reality the initial portion of the inverse exponential
curve of the positive charging curvature seen in Figure 9-11. Figures 9-12
and 9-13 illustrate the effects of adding a fixed series resistance between
the capacitor and the discharge pin of the timer IC.

317

CHAPTER9 GRAPHICAL DATA RECORDING

555 Astable Timer Triangular Wave Output Expanded Scale

450uF - Constant current mirror charging and 29 4 K Ohm discharge resistance
T - :1

-

11:09 11:10 11:11 11:12
8 Sun Dec 2011 Time (Sec)

Figure 9-13. The Effect of Added Discharge Resistance on the Timer
Output Waveform

Simple logic would suggest that to obtain a linear triangular waveform,
charging and discharging a capacitor through constant current sources
and sinks would achieve the desired result, but a simpler solution can be
found by using “function generators” that can produce signals of various
shapes and frequencies.

Part 3: Hardware and Component Selection -
Dual-Slope Triangular Waveform

To obtain a symmetrical triangular waveform, it is easier to use a “function
generator.” Like the 741 and 555 ICs, a very successful function generator
is the Exar XR-2209 that has been available in an eight-pin dual in-line
package (DIP) since 1975. The integrated circuit is built around a circuit
known as a voltage-controlled oscillator (VCO). The XR-2209 VCO can
simultaneously generate both a square and triangular voltage waveform
signal from a single eight-pin DIP. The chip can be powered from a

single- or dual-voltage supply as required by the application at hand.

318

CHAPTER9 GRAPHICAL DATA RECORDING

(See “Discussion.”) The function generator chip requires some care when
single-ended or dual-voltage supplies are used for power as detailed in
the manufacturer’s data sheets. The recommended circuit schematic for
using the 2209 function generator with a dual-voltage power supply, in the

author’s case +/-9-volt batteries, is depicted in Figure 9-14.

Vee

C

wy |l

= 1 |2

Vee

ém

Square Wave
Ouitput

Vg C1 €2 gwolH—e
Triangle Wave
WO 2 Output
XR-2209 2
BIAS T |=
TR VeE 5 i =~ D1
4 6 I
na

Figure 9-14. Schematic for Function Generator Configuration

To create the positive and negative voltage ramps, the circuit is
powered by a pair of 9 V batteries configured as a bipolar +/-9 V supply
with a common ground as depicted in Figure 9-15.

E Pasitive Supply

B System ar
+ circuib

— graund
TB__ Negative Supply

Figure 9-15. A Dual-Battery Bipolar Power Supply

319

CHAPTER9 GRAPHICAL DATA RECORDING

If the circuit, when properly assembled on a breadboard, fails to
operate as expected, consult the manufacturer’s data sheets and the

“Discussion” section.

Part 3: Observations

The XR-2209 can produce symmetrical triangular waveforms as depicted
in Figure 9-16 and with an appropriate “pull-up” resistor the square
waveform of Figure 9-17. (See discussion on design limitations for “pull-

up” resistor selection.)

XR 22098 Waveform Output +/- @ Volt Battery Supply
Re%ommended set up; 2.2uF Tantalum Cap. with 10 Meg Ohm Timing Components

4 H v % A LV [T

3

2

Voltage

4 f

5 lag e b o % w i % 4
11:50 11:51 11:52 11:53 11:54 11:55 11:56 11:57
25 Sun Dec 2011

Figure 9-16. XR-2209 Function Generator Symmetrical Triangular
Wave Output

320

CHAPTER9 GRAPHICAL DATA RECORDING

XR 2209 Square Wave OQutput
2.2uF 1 Meg Ohm RC Timing and 2.7 K Ohm Pull Up Resistor
T el e et S 2= I S
5.0 -}
o 00 -
E H
o
=
=25
-5.0
25 - HHAHH B
11:47 11:48 11:49 11:50 11:51 11:52 11:53 11:54
25 Sun Dec 2011 Time

Figure 9-17. Square Wave Output with Pull-Up Resistor

X-Y Data Recording

As can be seen in Figure 9-4, the default format for the two-dimensional
plotting, graphical display screen component is x vs. y. The constant
current charging circuit of Figure 9-10 can be used to produce an x-y
plotting of the voltage across the capacitor and its square as would be
used in measuring the energy developed across the capacitor. E = CV?/2.
The constant current circuit can be used for this demonstration exercise
because an asymmetrical voltage ramp is created on the capacitor by
the constant current charging and the exponential discharging of the
component.

321

CHAPTER9 GRAPHICAL DATA RECORDING

To create the desired display, the voltage across the 470 uF electrolytic
capacitor of the constant current charging circuit can be recorded in the
channel created for the PWM data collection display. The breadboard
electronics causes the voltage on the capacitor to linearly cycle between 1/3
and 2/3 of the supply voltage and then exponentially discharge, when the
timer chip connects the charged capacitor to ground. A graphical display of
the cyclic charging and discharging voltages should thus be different. The
channel name is entered into the x axis box, and the square of the voltage
is computed in the y axis expression box. The voltages displayed on the two
axes must be adjusted for the power supply being used to drive the voltage
change, and in the author’s case, the values depicted in Figures 9-18, 9-19,
and 9-20 were used to record the data in Figure 9-21.

e XY Plot of Cycling Cap Voltage and Square

5.0 -

2D Graph Compunent

Traces | Aues | Gieneral | Colors + Forits | Ass + Bound Armotations | Line Annickations |
Traces: ¥ won | LzvashVensss (0,20)
W rGEE
e A2l X Exprestion: [{ P laWdchVenSSs [0,20])) *(P laWdehVenSss (0,20])
e Ao Votage +| - EnoeBas
Legend: YPosive | ;
Trace Coie. | I f Negative
L] Lne Type. | Medum Soiid - ¥ End Width: 5 ok
o .
o 40 - Pont Type: [Circle = % Positive:
= MName: ¥ Negative:
g ‘wind Barbs: % End Width: 5 pleels
Direction: X Bow? "
35 - Speed. Erd Thickness: 1 o
3 " Line Thickness [1 e
Cacmes) v [e
[Tok] cexe | |
3.0 - 2 Help |
3 raph Component Properties -

races:

Enter in an expression to be used for the trace under Y Expression. This can be any expression you would like, from & simple
25 -1 channel name to a complex calculation. The result should evaluate to an array of numbers otherwise there won't be anything

‘ to graph. By default, a new graph is created as 8 value vs time graph. This means that the X axis will be time and that it will
scroll as new data sppears. If the XE_luwan is listed a5 Time then the time value associated with the result of the ¥ v

Figure 9-18. x-y Graph Traces Tab

322

CHAPTER9 GRAPHICAL DATA RECORDING

XY Plot of Cycling Cap_ Vollage and_ Squar_e

55
Tsces M | Garonal | Cokos + Forts | Asi + Boundiberotations | Ling nnciations |
R I
T_:‘_a e P
[B T e
45 - :.::2 s Ll g - m
e Pmeguames [0] Cepy Scala Fiers Zeom
;mu‘-; Nohtase O er Coor [T T oo
e
Fight e 3 o Batascala Torw [0
;40. Rams T
g | Pight A € nta imt Corbet 4
5 T — M Tk S
2 Tofdka [o Ted Spang.
FullLangih Miras Ticka? [~
Thet [0
28 i)
Mova G Negaims IeraH t? 7
30 el =
a7 expresson 1 be used for the trace under Y Expression THis can be any xpression you wauld s, from 3 simale
25 Wnimmlaamuwmn Wrwdwdﬂtlﬂwmawra wmbers cihaice Bare wr' e srrbeg
1 e By delaut o m grach
r 2 e valar e v e @

Figure 9-19. x-y Graph Axes Tab

5 XY Plot of Cycling Cap Voltage and Square
5.0 -
45
PartSiow [=] Tl s Bk A =]
o PRI setrae foamairn =]
s A0 N i T [voemn :I"::T ::
g i) 3 ._— LogSewed mishor?
L N E] =l LongLea Tk T F
26 - Speediey
’ Bt g
B T T |
30 |2 e =
, Graph Component Properties ~
[Traces:
[rter i on exgresan 1o be ﬁﬂlvlﬁelwu '\?ﬂm T-uunh‘;"- i e f}nﬂl samale
2.6 <L | oeh B ek, 8 e 7ok 15 Saced B 8 ¥itoh v8 B GrOsh Tha PN bk 1 . e il b i 410 St £ B
Mlnh-m 1IIL\¢XE_rﬂ|ﬂhRd &3 Timn ther the time velus aasocisted with the result of the Y -

Figure 9-20. x-y Graph General Tab

323

CHAPTER9 GRAPHICAL DATA RECORDING

Take note of the data being displayed for this graphical image. It is
not PIsWdthVrn555 but PIsWdthVrn555[0,20] in both the x and y axes as
seen in Figure 9-18. Because this is a cyclic phenomenon, we need only
a limited portion of the channel’s data to be displayed, that is, a limited
“field of view” or “persistence of vision.”

s XY Plot of Cycling Cap Voltage and Square

P O SRR MURPRUR. . VRPN, ORI O

T O S T——

Voltage

Sk e ndle v nailon e dlecen ol ol i Jove vl

25 -

10.0 12.5 15.0 175 20.0 225 25.0 27.5
Voltage Square

Figure 9-21. A Plot of Capacitor Voltage and Voltage Square

324

CHAPTER9 GRAPHICAL DATA RECORDING

Observations: x-y Plotting

The trace shown in Figure 9-21 is a typical recording that may remain
stable and reproducible for several minutes before a distortion or altered
trace is recorded. Figures 9-22 and 9-23 have captured two instances of
errant tracings.

In Figure 9-22, the voltage square discharge trace recorded at the 5V and
25 Vintersection has split into two. Careful examination of Figure 9-23 will
reveal that the discharge trace has not only split in two at the high voltage
portion of the cycle but also at the 3 and 9 Vlow end of the cycle.

- XY Plot of Cycling Cap Voltage and Square

4.5 -

PO W, S N O — . . cp—w, -

25

10.0 12.5 15.0 17.5 20.0 225 25.0 27.5
Voltage Square

Figure 9-22. A Higher Voltage Trace Variation

325

CHAPTER9 GRAPHICAL DATA RECORDING

. XY Plot of Cycling Cap Voltage and Square

5.0 -

25 -u

10.0 12.5 15.0 17.5 20.0 225 25.0 27.5
Voltage Square

Figure 9-23. A High and Low Voltage Trace Variation

Discussion

Graphical displays of recorded data are of great value because of the ability
to see trends in the display. Experimental science is dependent upon
reproducibility, and graphical displays of data can be used to validate
observations.

Graphical display permits the investigator to see events or trends
hidden from the “real-time” observations. However, in examining the
trends in data recordings, the deviations caused by material imperfections,

326

CHAPTER9 GRAPHICAL DATA RECORDING

temperature variation from self-heating, light-induced variations, poor
choice of experimental conditions, and a host of other sources of error
must be taken into account before judgments regarding data validity
can be made. Quite frequently in analytical chemical procedures, and
this exercise in particular, the researcher must deal with graphical
representations of “analog” data that involve or require very long or short
time periods of recording. Long or short time frames may require special
components, special electronic circuits or configurations, and protection
of the operational circuitry from stray electrical signals and disturbances
to be reproducible. Very long and ultrashort time constants may be
approaching the limitations of the original design parameters for the
traditional IC building blocks, and hence greater care must be taken when
using these devices at or close to their operating extremes.

Common sources of variation in data derived from electronic sources

can include the following:

1) Variations due to the power delivered by battery or

“mains” energized supplies.

2) Component imperfections and variations such as
in resistor noise, which is least in wire-wound units,
moderate in metal films, and greatest in carbon
units, capacitor leakage currents, and memory
effects that are greatest in electrolytic, lower in
tantalum, and least in plastic film-type components.

3) Temperature effects caused by environmental
variation and internal heating caused by current
passage through resistive electronic components all
cause electronic signals to drift.

327

CHAPTER9 GRAPHICAL DATA RECORDING

328

4)

5)

Long wires can accumulate radio frequency
interference (RFI) by acting like antennas for mains
power line radiation. Wires should be as short as
possible and encased in a Faraday cage if required.
Breadboards with their long strips of metallic
contacts and the long leads of components pushed
into the board should be used for experimental
development only and then replaced with printed
circuit boards for actual experimental service.

Aliasing in digital sampling (or analog-to-digital
conversion) for channel storage. Data from the
experimental setups created in these exercises is
converted into a digital format by the LabJack or
microcontrollers and is read by the DAQFactory
software at a rate controlled by the channel timing
values entered into the channel timing value boxes.
Any electrical signals of a repetitive or periodic
nature that might be picked up or created by the
controlling computer electronics, the LabJack
electronics, the experimental setup itself, or

the mains wiring of the building in which the
experiments may be located present the possibility
of “aliasing” with the true signal being generated by
the setup being monitored. The signal thus being
monitored over extended times may contain “false
or artifact” waveforms superimposed over the true
or original signal when displayed in long-term
graphical formats.

CHAPTER9 GRAPHICAL DATA RECORDING

X vs. Time Recordings

The operating sequence for the 555 timer has been outlined in Chapter 8, and
from that summation together with the information in Figures 9-6 and 9-7,
we can see that the waveform generated in the astable mode changes
frequencies as the R2 resistance value in the timing network varies.

When wired in the astable configuration, the capacitor charge time is
determined by the total resistance of the RC timing network as indicated in
the following:

t; = 0.693(R1 + R2)C (output high time)
And the discharge time is
t, = 0.693(R2)C (output low time)

Thus, the total signal period is
T=t,+t,=0.693(R1 + 2R2)C
and the frequency of operation is

f=1/T =1.44/(R1 + 2R2)C

The capacitor charges through both resistors while discharging
through only one. When the R2 resistor in the network is a variable
resistance, then the time that the output is low is proportional to the value
of the varying resistance. The varying analog resistance in the 555 timing
network could thus be digitized by measuring the width of the recording
during which the output is low.

There are limitations as to the relative width of both the high and low
times that can be generated with the circuit shown in Figure 9-2. Special
circuitry is required to keep the oscillator frequency relatively constant,
while the widths of the high and low times (the duty cycle) of the oscillator

are varied.

329

CHAPTER9 GRAPHICAL DATA RECORDING

Expanding or contracting the time scale of the graphical display can
vary the resolution of the waveform displayed.

Graphical displays require a large amount of computer processing
resources and, as noted in the previous exercises dealing with time and
timing, have a limited ability to respond to a rapidly changing signal.
Rapidly changing signals are best digitized with hardware for storage in
memory and then, after collection, converted into a graphical format for
display.

For slower signal changes, DAQFactory’s ability to store graphical data
in its channels and then be able to display it as a strip chart recording can
be very useful in revealing hidden information. If the triangular waveform
of Figure 9-12 is recorded for 8 to 10 minutes and then the time scale of the
graphical display is reconfigured to display an 8-minute window of the data
(i.e., an 8-minute window would be 8 minutes x 60 = 480 for the time base),
then a host of variations become evident, as displayed in Figures 9-24
and 9-25.

In Figures 9-24 and 9-25, extending the time scale over which the
repetitive voltage cycles are displayed has brought out visually the
influences of several ubiquitous experimental sources of error.

Most individuals are familiar with the propagation of water waves
in a body of still water. Water waves from two sources caused by stones
thrown into a pond appear to our eyes to pass through one another
without interference. However, if an object is floating on the surface of
the water at the same point where the waves pass through one another,
aviolent pitching of the object is seen. The violent pitching is caused by
the superposition principle that sums the amplitudes of the two water
displacement waves passing through one another. The distortions visible
at 7:14:30 and 7:19:00 in Figure 9-24 could be caused by a second voltage
variation wave with an amplitude of %2 volt and a frequency of one cycle in
4 1/2 minutes blending with or interfering with the main signal.

330

CHAPTER9 GRAPHICAL DATA RECORDING

An additional source of pattern distortion caused by a more complex
electronics problem involving timed repetitive digital sampling of
cyclic analog waveforms is known as aliasing and is discussed in some
electronics textbooks.! (Aliases are a RPi-Python programming code utility
concept.)

555 Astable Timer Triangular Wave Output Expanded Scale

450uF - 47K Ohm Constant current mirror charging
: = F.0

- 65

£ 6.0

| ([-

abejjon

- 4.5

- 40

- 35

-§- 3.0

B 25

- 2.0

715 7:20 7:25
29 Sat Oct 2011 Time (Sec)

Figure 9-24. Long-Term Signal Distortions

The recorded triangular waveforms are reasonably reproducible with
respect to their frequency of occurrence as the author’s breadboarded
circuit can be seen to be producing 19 cycles in 5 minutes. The
reproducibility of the voltage levels however can be seen to be both

! The Art of Electronics, Horowitz and Hill, Cambridge University Press, ISBN
0-521-37095-7

331

CHAPTER9 GRAPHICAL DATA RECORDING

drifting and oscillating. The lower values for the voltage vary from 3.0
to 3.4, while the upper values vary from 5.7 to 5.0. Although the upper
and lower voltage values are varying, the display has a distinct pattern
that suggests the system is both drifting and oscillating due to the factors
discussed previously.

Finger heat applied to the left- and right-hand transistors in the
constant current source produces the expansion and compression in cycle
time illustrated in Figures 9-25 and 9-26.

555 Astable Timer Triangular Wave Output Expanded Scale
470uF - 47K Ohm Constant current mirror charging
y 7 7 7 T —i Bl
- - .45
T
i o
HA A HAHHHHE- 3.5 €
; I‘ | "
............. . 25
—_— I
7:03 7:04 7:05 7:06 7:.07 7:08 7:09
23 Sun OCct 2011 Time (Sec)

Figure 9-25. Finger Heat Applied to Left Transistor of Current
Mirror

332

CHAPTER9 GRAPHICAL DATA RECORDING

555 Astable Timer Triangular Wave Output Expanded Scale

470uF - 47K Ohm Constant current mirror charging

- 50
X a5

¥ 40

abejlon

= 28

20

7:08 7:09 7:10 711 712 713 7:14 715
23 Sun Oct 2011 Time (Sec)

Figure 9-26. Finger Heat Applied to Right Transistor of Current Mirror

The erratic amplitude seen in addition to the altered cycle time is also
a result of thermal effects.

The materials from which electronic components are fabricated also
contribute to the noise seen in electronic circuits. Wire-wound resistors
are the least noisy, metal films are intermediate, and carbon-based
components exhibit the greatest contribution to resistor circuit noise.

Electrolytic capacitors are inexpensive and available in higher values,
but virtually all high-value electrolytic units have sizable leakage currents.
Leakage currents can cause problems in systems that require cyclic or
repetitive reproducibility. Traditional low-leakage capacitors are generally
not available in high capacitance values, but when the limited higher-value
units are located, they are usually very expensive and large in physical size
as depicted in the photo of Figure 9-27.

333

CHAPTER9 GRAPHICAL DATA RECORDING

Figure 9-27. Various Types of Fixed Value Capacitors

Creation of a symmetrical triangular waveform can be done with
op-amps and capacitors, but a circuit known as a voltage-controlled
oscillator has been designed to simultaneously produce both square and
symmetrical triangular waveforms. The Exar XR-2209 IC is a module that
with an external capacitor and resistor can be powered by dual or single,
4- to +/-13-volt supplies to produce the required signal. Figures 9-16 and
9-17 are typical outputs from the IC. The triangular wave in the author’s
breadboard setup can be seen to systematically vary in the peak voltages
achieved. The breadboard setup also proved to be very sensitive to the
value of the “pull-up” resistor used to develop the square waveform. The
component sensitivity is probably due to operating the circuitry in an area
near to the extremes of the circuit design.

334

CHAPTER9 GRAPHICAL DATA RECORDING

X-Y Recordings

x-y recordings are often used when the signal to be recorded is cyclic in
nature. Because of the cyclic nature of the signal, it is desirable to clear
old traces from the x-y screen as new ones will be overlaid on the older
data traces. By specifying the number of data points to plot, using the [n]
channel value notation, any fraction or multiple of signal cycles can be
displayed.

The effects of non-reproducible signals that are seen in Figures 9-22
and 9-23 arise from the same causes that are evident in the variations of
the recorded x vs. time signals of Figures 9-24, 9-25, and 9-26.

Microcontroller Data Plotting

Programmable microcontrollers supported by open source, online
communities are constantly having their base capabilities expanded, and a
data plotting facility has been added to the Arduino IDE from version 1.6.6
onward.

In previous exercises, the Arduino microcontroller has been used as a
smart data acquisition device, a power source for sensors or displays, and
a clock; and in this chapter, it will be used to provide a visual graphical
display of data.

Since revision 1.6.6 and 7 of the Arduino’s IDE, there has been a serial
plotter selection available in the Tools menu as depicted in Figure 9-28 for
initially a single plot but as of version 7 for multiple-data point plotting.

335

CHAPTER9 GRAPHICAL DATA RECORDING

@ sketch_jul15a | Arduino 1.6.13
File Edit Sketch Tools Help
Auto Format Ctri+T
Archive Sketch
sketch_jull5a Fix Encoding & Reload

" Serial Monitor Ctri+Shift+M
1 void Serial Plotter Ctri+ShiftsL

//

WIiFi101 Firmware Updater to r

Board: "Arduino/Genuino Uno™ >
4} Port: “COMS5 (Arduino/Genuino Uno)” >
Get Board Info

6 void Programmer: “AVRISP mkll* »

Burn Bootloader
// puc your malrlmn coae [nere, o ru

Figure 9-28. Arduino IDE Tools Menu Serial Plotter Selection

Invoking the serial plotter output converts the serial port window
display into an x-y plotter. Individual data points directed to the serial
port for display with a print statement are plotted on the vertical y axis.
The x axis auto-scrolls from left to right in the form of a 500-point moving
window. The metric for the x axis is the processing of the line of code
with the line feed print instruction. Line 15 in Figure 9-29 contains the
println code that is counted as processed and whose total value forms the
numerical values displayed on the x axis.

336

CHAPTER9 GRAPHICAL DATA RECORDING

For multiple-point plotting, each data value to display with a separate

trace is separated from the next with either a print white space instruction

or a tab instruction: (print(“ “); or print(“/t);). Lines 10, 12, and 14 in
Figure 9-29 form the separation markers for the four-trace plot seen in

Figure 9-30.

Experimental

The code presented in Figure 9-29 plots two straight lines and two

sinusoidal traces with different frequencies that are graphically displayed

in Figure 9-30.

& SineCosRdBluWaveGenWthAxes | Arduino 1.6.13
File Edit Sketch Tools Help

SineCosRdBuVVaveGenWithaxes §

3 void setup() {
Serial.begin (9600) ;

7 void loop() f{
for (int 3 = 0; J < 360; J++) 4
Serial.print(2.5);
Serial.print(" ")
Serial.print(sin(j * (PI / 3)));
52, Serial.print(™ ™);

Serial.print(" ™);
15 Serial.println(-2.5);
16}
173

1 // Plotter demo, sawtooth, sin and cos
2byte b = 0; // sawtooth between 1 and 0
L4

13 Serial.print(cos(j * (PI / 60)));

Figure 9-29. Arduino IDE Typical Plotter Program

337

CHAPTER9 GRAPHICAL DATA RECORDING

Observations

Figure 9-30. Arduino Serial Plotter Output

Examination of the microprocessor plotter demonstration code and
the displayed frequencies of the sinusoids validates the expected 20:1
frequency ratio between the sine wave and cosine. The constant values
plot as the expected straight lines.

Discussion

Inclusion of the plotter in the Arduino’s IDE has made a very powerful
visualization technique available to the experimental investigator.

The plotter is both very easy to use and useful. Plots generated by an
experimental process being controlled by the microprocessor can be
recorded for archiving with the print screen function available on host
computers. Experimental plot archiving has been used in experimental
work involving the measurements of temperature, motion, and vibration
and in light and optics investigations.

338

CHAPTER9 GRAPHICAL DATA RECORDING

Although the plotter is a very useful function, it is at the time of
manuscript preparation limited in several aspects of operation. The
colors of the traces are fixed by the operating system of the IDE and can
be difficult to see at times. The scales are auto-adjusting and unlike the
DAQFactory plotter cannot be independently set to different values.
Occasionally on initial start-up, the plotter will produce spurious
images such as depicted on the left in Figure 9-31 or improperly auto-scale
the y axis.

Figure 9-31. Arduino Serial Plotter Start-Up Noise

As is seen in the preceding figure, the plotter settles into reproducibility
reasonably quickly but on occasion may plot erroneously until the
500-point window refreshes itself and the auto-scale functions also settle
into a reproducible plot mode.

339

CHAPTER9 GRAPHICAL DATA RECORDING

Graphical Data Recording with Python
and the Raspberry Pi

Introduction

As noted, graphical plotting of experimental data can take two forms. If the
data is generated at a high rate, it is best saved by streaming into memory
for storage and analyzed graphically at a later time. Experimental data
generated at a slower rate can often be displayed as it is created in a “live”
or “real-time” display. Python and the RPi use a graphical plotting library
called matplotlib for display of both live and stored data.

An example of a Python matplotlib code that plots out the values of
the voltage at the wiper arm of a 10 kQ potentiometer biased between the
3.3-volt RPi power source on the GPIO array and its ground is provided
in Listing 9-1 at the end of the chapter. The code has been modified from
the strip chart recorder program that can be found as “animation example
code: strip_chart_demo.py” in the matplotlib documentation. The
documentation contains a full development tutorial for the use of this type
of animated graphical display.

Although the RPi does not have an extensive selection of commercial
graphical display software applications available, the matplotlib can
provide a substantial basis from which the required application can be
developed. The relatively short program used to monitor the varying
potentiometer voltage in this exercise is equipped with several advanced
utilities for in-depth examination of the recorded graphical presentation.
A section of the matplotlib documentation entitled “Interactive
Navigation” describes the actions of the seven buttons seen in the bottom-
left corner of the plotting display as seen in Figures 9-32 and 9-34. The
left button restores the focus of the display when any of the display
manipulation or storage buttons has been used. Buttons allow sections of
the recorded trace to be saved as seen in Figure 9-33 and enlarged as seen
in Figures 9-34, 9-35, and 9-36. In addition to the button-activated utilities,

340

CHAPTER9 GRAPHICAL DATA RECORDING

the library example also displays the coordinates of the mouse cursor so
that exact points can be identified by placing the cursor pointer at a point
of interest in the tracing and reading the x and y coordinates of the point in
terms of the display time and the measured data value from the numerical
values displayed in the lower right-hand corner of the plotter frame.

The matplotlib program is also very easy to alter the scale of either
plotting axis, but because of the time scale inconsistencies seen in
previous exercises, the plotter time base displayed needs to be calibrated
as described in the following experimental section.

Experimental

To demonstrate the plotting facility available with the RPi, an example
can be created from the gpiozero library and an MCP3008 ADC IC reading
the voltage from the wiper of a biased potentiometer. The wiper voltage is
digitized by an MCP3008, 10-bit ADC configured as described in Chapter 6,
Figure 6-17. To facilitate programming with the ADC, the gpiozero library
has been used to provide the plotting data through accessing the “pot.
value” attribute of the object instantiated in the line “pot = MCP3008(0)"
The creation of the pot object with the gpiozero library enables the
programmer to access the wiper voltage value connected to the first
channel on the ADC chip. The value is automatically normalized to a
dimensionless floating-point value between 0 and 1 by setting the code
variable to be plotted equal to the pot.value attribute.

The configuration of the RPi with the gpiozero library to access the
MCP3008 ADC also allows the plotting program to be modified to accept
any sensor or transducer that is able to supply a voltage value of 3.3 V or
less. Figures 35 and 36 are two traces that have been made from the output
of a 555 IC timer that has been wired to the first or 0 channel of the digital
converter. The configuration of the 555 IC is illustrated in the right-hand
drawings and circuitry of Chapter 8, Figure 8-8. For this experiment, R1
and R2 were 4.7 k€, and C1 was a 100 pF electrolytic capacitor in the 555

341

CHAPTER9 GRAPHICAL DATA RECORDING

timer RC network. The output circuitry also included an LED and current
limiting resistor to aid in circuitry assembly, verification of electrical
operation, and validation of recorder display by observing a continuous
LED flashing at a rate of 59 flashes in 60 s. The final two expanded scale
figures, Figures 9-37 and 9-38, were made with the “save a trace” button of
the options row at the bottom left of the plotter display.

In order to aid in the development of the adaptation of the published
matplotlib strip chart recorder code that uses an internal random
number generator to create the y values for the plotter example output,
the author inserted a number of diagnostic print statements in the code
being modified. The print statements stream out the values of certain
variables at points in the executing code to the Python console to aid in
the development of different methods for adapting the code to follow data
from different sources. Commenting out the diagnostic print lines will
clear the console display. The streamed-out variable data is seen in the
console displays as the left-hand screens in Figures 9-32 to 9-34. When no
longer required, the print lines can be commented out.

Several factors must be taken into account when using graphical
data displays on the RPi. As has been noted in previous exercises and
previously, the time base of the system is not constant, and hence the
time scale at the bottom of the plotter display is of limited reliability and
must be semi-quantitatively calibrated for semi-quantitative use (see
“Discussion”).

Once a desired experimental time frame has been established, a
stopwatch must be used to measure the actual time the system takes to plot
out the data for the nominal desired window time width. Table 9-1 is an
example of the data collected by the author when developing a procedure
to be used to calibrate a nominal 2-minute-wide plotting window.

342

CHAPTER9 GRAPHICAL DATA RECORDING

Table 9-1. Adjusting Plotter Time Base

Dt Setting

Time Width (sec)

0.02
0.01
0.005
0.0055
0.00525
0.005

25
41

127
116
129
125

Observations

& DS 0 A oeared | & SCADDMOGMO | 4 Python 38280 N\ Figure 1 B ipigraspbemyne -| [lpigraspbemps: -]

Bl §R Pl ok Grlken Sdim dew

TFOLLT = U, 35497 .}
0.5329750854909623

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5319980459208598
0.5319980459208558

inPutln = 0,5319980459208598
0.5319980459208598

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0,52%06659272105519
0.5290669272105519

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5310210063507572
0.5310210063507572

infutln = 0.5310210063507572
0.5310210063507572

inPutln = 0.5300439667806547
0.5300439667806547

inPutln = 0,5310210063507572
0.5310210063507572

inPutln = 0,533952125061065

0.533952125061065

inPutln = 0.5319980459208598

u
0.5319980459208598

Figure 9-32. A Data Recording of Potentiometer Wiper Voltage

Figure 9-32 displays the voltage value trace from 80 to 120 minutes into the

experiment in which the author has manually turned the potentiometer shaft

at the times recorded on the un-calibrated relative time axis of the display.

The trace is relatively quick to respond, but rapid twisting of the shaft can

overrun the display’s ability to keep up with the changing data value.

343

CHAPTER9 GRAPHICAL DATA RECORDING

Figure 9-33 illustrates the actions invoked when the “save a figure” icon
at the extreme right of the row of options is clicked. The graphical figure is
saved as a png image in the documents file of the RPi.

OS] 2 iuen | a0 | aPndd [Fguel | Eligrsber BB Grampber [Save the fgure [Eiocgrospven| § 7 Daalins &

v i s St
FERENT)1““ 3
D ssmssaannsns
inPutln = 0.5834979164531168
0.5534929164631168
inPutln = 0.5525158768930141
0.5525158768930141
inPutln = 0.552%158768930141
0.5535158768930141
inPutln = 0.5525158768330141
0.5525158768930141
inPutln = 0.5515388373229115
0.3515308373229115
inPutln = 0.5534979164631168
0.5534929164631168
inPutln = 0,5534929164531168
0. ‘ass»ﬂn:scs 1168
inPutln = 0.5525156768330141
0.5525156768830141
inPutln = 0.5525158768930141
0.5525158768930141
inPutln = 0.5525158768330141
0.5525158768930141
inPutln = 0,5544699560332194
0. 5544659560332154
inPutln = 0.5534929164531168
0.5534920168631168
inPutln = 0.5534029164631168
0,5534020164631168
inPutln = 0.5525158768530141
0.5535158768330141
inPutln = 0,5534020164631168

D 953“2“6‘6)"68

Putln = 0,5515388373229115
ﬂ SSIS!SBJ]‘!”9 15
inPutln = 0.5525158768930141

Figure 9-33. The “Save a Figure” Option Window

In the screen capture of Figure 9-34, the cursor of the mouse had been
placed on the vertical response line just past 17 minutes, and the exact
coordinates of the point were then printed in the bottom right-hand corner
of the display.

Figure 9-34 illustrates the scale expansion option that expands the area
enclosed by a mouse-drawn box to a full-screen display. The expanded
image can then be saved as noted previously, or the “return to previous
view” icon can be used to restore or resume the normal plotting action.

344

CHAPTER9 GRAPHICAL DATA RECORDING

ME: LT e T

e G el Qobug Gpten Windew e
"LHFULENT = U 3W0FYiauzus ey |
0.540791402051783 |
inPutln = 0.5427454811919883
0.5427454811919883

inPutln = 0.5398143624816805
0.5398143624816805

inPutln = D,5398143624316805
0.5398143624816805

inPutln = 0.5398143624816805
0.5398142624816805

inPutln = 0,540791402051783
0.540791402051783

inPutln = 0.5398143624815805
0.539814362481 6805

inPutln = 0.53098143624816805
0.5398143624816805

inPutln = 0.5398143624815805
0.539314362451 6805

inPutln = 0.5398143624316805
0.539814362481 6805

inPutln = 0.53981436248156805
0.5398143624816805

inPutln = 0.5398143624816805
0.5398143624816805

inPutln = 0.5398143624816805
0.5398143624816805

inPutln = 0.5398143624316805
0.5398142624816805

inPutln = 0,.53981436248156805
0.5398143624816805

inPutln = 0.5437225207620908

inPutln = 0.5398143624816805
0.539814362481 6805

i "
i wiEe b e 63)

Figure 9-34. The “Scale Expansion” Option

In the following two figures, the output from a 555 timer configured as
detailed was recorded at expanded scales with the “save a figure” option.
Figures 9-35 and 9-36 illustrate the ability of the software to save the plotted
data in shorter time scales from external voltage-generating sources.

12}

10}

0.8}]

0.6

Potentiometer Voltage

0.2

0.0

765 770 715 780 785 790 795 80.0
Time

Figure 9-35. Expanded Time Scale 555 Timer Data Recording
345

CHAPTER9 GRAPHICAL DATA RECORDING

12}

1.0}

0.8

06}

Potentiometer Voltage

0.2

0.0 -
2.0 22 2.4 2.6 2.8 3.0

Time

Figure 9-36. One-Minute Time Scale Expansion of 555 Timer Data
Recording

Discussion

Graphical data recording with the strip chart recorder program from the
Python matplot library is a very adaptable and flexible system that can be
used to display data directly from sensors attached to the GPIO array or
from the Python serial port.

In Figure 37, the output from a 555 timer configured with R1 = 5.83 k€2,
R2 =4.7 kQ, and a 420 pF C1 timing capacitor created ten LED flashes in
33 sec. The timer was powered by the 3.3 V supply of the GPIO array and
calibrated for a 4-minute display window as detailed in the “Experimental”
section.

346

CHAPTER9 GRAPHICAL DATA RECORDING

SRR

Figure 9-37. A Calibrated Time Base 555 Timer Voltage Output
Recording

Figure 9-38 illustrates the scale expansion capability available with the
display option buttons of the data plotting program.

Figure 9-38. A Time-Calibrated Plotted Trace Expansion

347

CHAPTER9 GRAPHICAL DATA RECORDING

A significant number of sensors have been coded into the gpiozero
library that could be used to provide data for the matplotlib plotting
program.

One of the advantages of graphical data displays becomes obvious
when the variation in the time width of the rectangular pulses is presented
in the visual format of Figure 9-38.

Table 9-1 demonstrates a limitation of the time base used for the
RPi graphical data displays. A progressive incremental halving of the Dt
value increased the time measurement, but the return to the 0.005 value
produced a 2-second difference from the original measured value. The
differential validates the earlier caution noted in the manuscript with
respect to the RPi operating system priorities that can interfere with the
timekeeping of the input and output operations of the computer.

Code Listing

Listing 9-1. Python Code for Live or Real-Time Data Plotting with
Raspberry Pi

SCR Plotting of Normalized Potentiometer Voltage Value from
an MCP3008 gpiozero used to configure MCP3008 and attributes

for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

from gpiozero import MCP3008

348

CHAPTER9 GRAPHICAL DATA RECORDING

#

pot = MCP3008(0)

#

#

class Scope:

def init (self, ax, maxt=40, dt=0.02):

"""maxt time width of display
self.ax = ax
self.dt = dt
self.maxt = maxt
self.tdata = [0]
self.ydata = [0]
self.line = Line2D(self.tdata, self.ydata)
self.ax.add line(self.line)
self.ax.set ylim(0.0,1.0) # y axis scale
self.ax.set xlim(0, self.maxt)

def update(self, y):

lastt = self.tdata[-1]

if lastt > self.tdata[0] + self.maxt: # reset the arrays
self.tdata = [self.tdata[-1]]
self.ydata = [self.ydata[-1]]
self.ax.set xlim(self.tdata[0], self.tdata[0] +
self.maxt)
self.ax.figure.canvas.draw()

t = self.tdata[-1] + self.dt
self.tdata.append(t)

self.ydata.append(y)

self.line.set data(self.tdata, self.ydata)
return self.line,

349

CHAPTER9 GRAPHICAL DATA RECORDING

#

#

def rd data():
inPutln = pot.value
#print("inPutln = ", inPutln)
line = inPutln
#print(line)
yield (line)

fig = plt.figure()
fig.suptitle("Pot Wiper Voltage", fontsize = 12)
ax = fig.add subplot(111)
ax.set xlabel("Time")
ax.set_ylabel("Potentiometer Voltage")
scope = Scope(ax)

uses rd data() as a generator to produce data for the update
func, the MCP3008 value is read by the plotting code in

40 minute windows for the animated screen display.

Software overhead limits response speed of display.

ani = animation.FuncAnimation(fig, scope.update, rd data,
interval=50,

blit=False)

plt.show()

350

CHAPTER9 GRAPHICAL DATA RECORDING

Summary

— Experimental data recorded graphically as a plotting of
y vs. time or as x vs. y can show numerous electronically
generated waveforms and sensor readouts.

— Graphical data recordings can reveal signal drifting and
signal deviations and display electrical, mechanical,
and environmental influences on signal outputs not
normally visible in numeric displays.

— Commercial SCADA plotting is easily configured,
robust, and very flexible, while component-assembled
systems are more constrained in display capability and
must be calibrated manually.

— In Chapter 10, various methods of current control,
an important aspect of experimental equipment
configurations or design, are presented.

351

CHAPTER 10

Current Control

Current control and monitoring are significant portions of many
experimental setups and scientific measurements. As demonstrated
in the previous exercise, constant current control may be required to
achieve specific results. Sensor measurements, motion control in scanning
instruments, robotic manipulators, electroplating or amperometry, and
heating control operations are just a few examples where current control
is required. LEDs should be powered from constant current sources. It
has been found that a batch of LEDs from one supplier when powered
by a constant voltage supply consumed from 4 to 39 mA and with such
awide current difference could not be producing the same luminous or
chromaticity outputs. Current control can vary from managing sensors
of physical or chemical change, often requiring measuring milli- and
microamps of DC current while heating, electro-deposition and motor
control applications often involve controlling amperes of electrical current.
Current control can be implemented with discrete transistors as was
done in Chapter 9; general-purpose integrated circuits such as operational
amplifiers (op-amps), configured for current regulating; or application-
specific integrated circuit (ASIC) chips produced specifically for either DC
or AC current controlling applications.
This chapter is divided into three parts involving constant current
DC supplies, control of larger currents, and control of potentially lethal,
mains alternating current power. Simultaneous with the control of current,
some of the limitations imposed by motors and ways to work around these

limitations will be demonstrated. Inexpensive motors for experimental

© Richard J. Smythe 2021 353
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_10

https://doi.org/10.1007/978-1-4842-6778-3_10#DOI

CHAPTER 10 CURRENT CONTROL

setups and for these exercises can be salvaged from obsolete computer
equipment or obtained from electronics supply sources if required. Some
of the limitations of motion control derived from rotating electric motors
will be demonstrated, and the process of selecting the preferred motor for
an experimental setup will be developed.

The technique of pulse width modulation (PWM) for current or power
control is reviewed and demonstrated in both motor and incandescent
lighting applications.

AC electronics, because of its cyclic nature, can be considerably
more complicated than DC. In keeping with the simpler introductory
nature of these exercises, only the non-inductive or completely resistive
load applications will be considered. In strictly resistive applications,
the root-mean-square (rms), peak-to-peak, or average AC values can be
used as though they were DC values in most of the basic laws governing
electronics. Higher-frequency and phase-sensitive AC electronics as
encountered in advanced communications, induction heating, or
spectroscopy are not dealt with in depth for these basic introductory
exercises.

Constant Current Sources

A source of constant current as used previously is also found in numerous
types of electronic circuits and in many experimental measurement
instruments. As previously noted, constant current sources can be built
from a pair of transistors as a “current mirror” or with an operational
amplifier (op-amp) and some resistors. Although a discrete component
current mirror is discussed in detail in most of the electronics books
previously referenced, the operational amplifier is to be used in this
exercise because of the simplicity of the design, the wide control range
possible with the circuit, and its use of readily available and inexpensive
components.

354

CHAPTER 10 CURRENT CONTROL

Operational amplifiers such as the LM741 used in this exercise are
powered by dual-voltage supplies and must be balanced or properly
biased for use. Figure 10-1 depicts the general schematic for the LM741-
2N3906 PNP transistor, grounded load circuit that may be used to provide
a constant current for a known load, as published in various references.
The circuits depicted in Figures 10-1 and 10-2 can be assembled on a
typical prototyping breadboard for testing, validation of circuit operation,
and current control applications.

The circuit operating theory is explained in the following for the
configuration in which the load is connected to ground and the current
sense resistor is connected to the voltage supply. If the opposite situation
isrequired, then an NPN transistor can be used to regulate the current
(LF411 can be used as a direct replacement for the LM741).

Experimental
Hardware

A +/- dual-voltage power supply and a trim potentiometer are used to
power and balance the op-amp. A power transistor, three appropriate
biasing resistors, and a suitable adjustable resistor simulator of the
expected experimental load are required to construct and validate the
constant current supply. A typical implementation of the constant current
op-amp circuit is detailed in the following descriptions of a test circuit
assembled by the author. A 9-volt battery and four AA cells connected in
series can make a 15 V DC supply. Connecting two 15-volt battery packs
in series can be used to create the required bipolar supply of +/- 15 V with
a center terminal ground. The bipolar power supply allows the op-amp
output to be driven to positive or negative voltages. (See Figure 9-15 in
Chapter 9.)

355

CHAPTER 10 CURRENT CONTROL

Circuit Schematic

A+15u +15u
R3

Figure 10-2. Typical Circuit Implementation for Op-amp
Balancing

356

CHAPTER 10 CURRENT CONTROL

If a particular chemical analysis experiment such as a coulometric
titration has a titration vessel that represents a 20 Q load and a current of
20 mA is found to generate a reasonable time to reach the analysis end
point, then the conditions for determining the resistor values needed to
assemble the circuit depicted in Figures 10-1 and 10-2 are available.

From Ohm’s law, to maintain a 20 mA current through a 20 Q load
will require a voltage of 0.40 V. The transistor typically has a 0.3 V drop
across the PN junction, and hence the emitter should be held at 0.7 V. To
convert 15 volts to 0.7 will require a divider with a numerical value of
0.0466; thus, R2/(R1 + R2) = 0.046. Any dual-voltage power supply between
12 and 18 volts can be used with the LM741, so the actual values of the
resistors in the divider network and the current limiting R3 can be adjusted
accordingly to maintain the desired op-amp reference voltage or set point,
for the desired cell current flow. For a regulated current of 20 mA and from
the power relationship of I’R, we can estimate that 1/8-watt resistors in
the regulated current-carrying portions of the circuit are adequate for the
experiment at hand.

As a typical electrochemical cell load simulation, a 25 Q, 30 W,
adjustable tap, wire-wound resistor was used by the author. Adjusting
the position of the center tap on the load resistance simulates a changing
conductivity as may be encountered in an experimental electrochemical
cell or a resistive heating element.

To begin the exercise, the experimenter can assemble the circuit
according to the preceding schematics. After verification of the layout,
temporarily ground the inverting and non-inverting inputs of the op-amp,
adjust the trim potentiometer to its midpoint of travel, and apply power to
the op-amp. While monitoring the voltage of the amplifier output, adjust
the 10 kQ variable resistance to obtain an amplifier output as close to 0 V
as possible, either actually balancing the op-amp or positioning the trim
potentiometer wiper at a low non-zero voltage value point that will result
in system balance when the feedback loop is established during actual

circuit operation.

357

CHAPTER 10 CURRENT CONTROL

The voltage divider formed by R1 and R2 creates a reference voltage
Vies that is supplied to the non-inverting input of the op-amp. The op-amp
will now try to keep the two inputs at the same voltage of Vi by varying
the current through R3. The current flowing through the load, transistor,
and R3 is controlled by the current injected into the base of the 2N3906
transistor. The entire current flowing through the load and transistor
passes through R3 that must be of sufficient wattage to accommodate the
required current variation that the constant current configuration may
require. As the center tap of the load-modeling resistor is adjusted to
provide simulations of changes in the simulated cell resistance, current
measurements will confirm the circuit’s ability to provide a nominal 20 mA
current through the cell simulator as depicted in Figure 10-3.

Figure 10-3. Wire-Wound Load Simulator of a High-Current Test
Circuit

Item 1 in the preceding figure is the simulated variable resistance
load consisting of a 25 Q 30 W wire-wound resistor mounted vertically on a
threaded rod. Item 2 is a 5 W current sensing resistor, while item 3 is a LM741

358

CHAPTER 10 CURRENT CONTROL

op-amp plastic DIP. Item 4 is a 2N3906 power transistor, and the items
numbered 5 are the positive red, negative black, and green ground or
neutral power supply leads. Item 6 is the trim resistor for op-amp balance
or biasing.

Software

Page components and programmed software are not required for this
portion of the exercise.

Observations

The wire-wound resistor produces a very coarse ohmic resistance when
the position of the center tap is changed, but alteration of the load
resistance value is sufficient to demonstrate the development of the
required constant current source. The large-wattage simulated load is
variable from the nominal 25 Q measured between the main terminals and
from about 20 to 10 Q when repositioning the sliding tap on the exposed
wire core turns. The large power resistor connected to the positive supply
and supplying current to the transistor together with the variable load
determines the current that can flow in the regulated circuit. When power
is initially applied to the circuit, the observed current flow is high. As the
electronics comes to a rough thermal equilibrium, the regulated current
stabilizes at a final value close to the desired set point. Usually the circuit
requires 15-30 minutes to reach a constant thermal value. Table 10-1
tabulates the stabilized currents measured with the author’s breadboarded

experimental simulation.

359

CHAPTER 10 CURRENT CONTROL

Table 10-1. Load Resistance
and Regulated Load Current

Load Resistance (2) Current (mA)

6.7 21.4
10.8 214
14.3 21.1
15.1 21.4
17.6 20.9
19.3 20.9
20.2 20.9
20.3 21.0

The load resistance in the preceding table is measured in ohms, and
the current is measured in milliamps.

Discussion

The circuit operation can be explained in the feedback configuration
by recalling that the op-amp drives its output in order to equalize the
voltages at the inverting and non-inverting inputs so Vsepse = Vi The
current through the sense resistor is Isenge = Vin / Rsenser and since the current
through the sense resistor flows through the transistor, the current through
the load I} 4,4 i Vin/Rsense plus the very small base emitter current of the
transistor.

For an intended current of 20 mA through a 20 Q load, the table
displays a 0.5 mA variation in an approximately 21 mA current seen
through a load varying from 6.7 to 20.3 ohms. If an exact 20 mA current is

360

CHAPTER 10 CURRENT CONTROL

required, the voltage divider could be experimentally trimmed to adjust
the reference voltage to a value that regulates the transistor current to the
desired level.

As discussed and demonstrated in Chapter 9 on the graphical display
of data and as noted previously, thermal effects will cause the measured
signal to drift until thermal equilibrium is established. If critical current
control is required, then some form of thermal control or stabilization may
need to be introduced into the experimental setup. Heat sinks, cooling air
flows, insulations, or large metal thermal masses can be used to maintain
or partially stabilize temperatures by either radiating or absorbing
excessive heat.

Current regulation can also be achieved with dedicated integrated
circuits such as the LM340/78xx series of integrated circuits from National
Semiconductor. The integrated circuits however operate at specified,
fixed voltages and are usually limited to 1-ampere total current. The
actual current to be regulated is determined by appropriately valued
sensing resistors. Specific configurations and limitations are detailed in
the application sections of the manufacturer's data sheets for individual
devices.

The operational amplifier power transistor circuit, assembled from
discrete components, has the advantage of flexibility in being able to
control currents at arbitrary voltages and load requirements. The op-amp
power transistor configuration is also able to be used with the PNP
“grounded load” configuration or with a “floating load” in which the sense
resistor is grounded and an NPN transistor is connected to the power
supply and floating load.

Op-amp characteristics and theory are found in most of the previously
referenced textbooks and many introductory and in-depth online tutorials.

361

CHAPTER 10 CURRENT CONTROL

Control of Larger DC Currents
Introduction

Brushless Direct Current (BLDC) Motors (Motors
Without Commutators or Sparking Brushes)

Larger DC current manipulation is encountered in experimental setups
involving heating, pumping, mechanical movement, or motion control.
For each type of motion to be controlled, there are usually several means of
transforming electrical power into the desired physical motion or action.
Solenoids move linearly in a back-and-forth motion as in robotics systems,
while motors twist or rotate; and for the simpler applications of this work
in which motors are required to drive and for liquid mixing or pumping,
gas cooling, or perhaps rotational optical scanning operations, we shall
focus on rotational motion control in motors. Further limitations consist
of working with very small fractional horsepower motors designed for
field or laboratory use with readily available, robust, 12 V lead acid battery
systems or 12 V DC power supplies providing the required higher currents.
(The physics and electro-mechanical aspects of motors and more powerful
motor control are discussed in much more detail in the literature of
robotics and mechanical, chemical, or electrical engineering.) In chemical
analysis and a large portion of life sciences’ laboratory work, flammable
solvents are in constant use, and hence brushed DC motors should not be
used in experimental operations unless certified as being explosion proof.
The heavier current required to drive a motor can be controlled by
transistors that in turn can be controlled from much smaller base currents
derived from integrated circuits. A variable 555 timer signal can be used
to control a higher-current power transistor that in turn regulates the
power applied to a motor to control the motor speed. In this portion of
the exercises, a 555 timer will be used to generate a square wave pulse
train whose duty cycle will be varied, in a controlled manner, to alter the

362

CHAPTER 10 CURRENT CONTROL

time during which power is supplied by a power transistor to a fan motor
capable of drawing up to 200 mA of current. The rotational speed of the fan
motor will thus be controlled by a potentiometer in the 555 timer network.
The fan disk rate of rotation will be measured optically with the LabJack
counter, and a DAQFactory program will calculate the fan disk rotation
speed for display on screen.

Experimental
Hardware

For the motor control circuitry, a breadboard will be required to mount a
555 timer and the passive components required to configure the IC into
the astable mode. As can be seen in Figure 10-4, the author combined the
mounting bracket for a 100 kQ potentiometer, the heat sink for the TIP-122
power transistor, and the mount for the fan assembly with a brushless

DC fan motor into a custom-drilled 1 in (2.5 cm) by 8 in (15 cm) piece of
aluminum angle denoted as item 1. The heat sink-mount angle was bolted
to an approximately 1/16 in (1 mm)-thick plate of 8 in by 6 in (20.4 cm by
15.2 cm) aluminum sheet denoted as item 1a, on which the breadboard
was fastened with double-sided adhesive mounting tape (carpet tape).
The simplest fan motors (brushless direct current, BLDC) have two leads
for the DC power. Three- and four-lead fan motors are common with

the added connections usually for the internal Hall sensors (magnetic
field detectors) used for monitoring shaft positions. A photodiode and

a phototransistor were fitted and fixed to two small %2 in (1.2 cm) by

1in (2.5 cm) custom-drilled aluminum plates with room temperature
vulcanization (RTV) silicone. Items numbered 4 are the sensor mounting
tabs. Adhesive fillets on the back sides of the tabs held the sensor diodes
firmly in place while not interfering with the optically active surfaces.

As can be seen in Figure 10-4, the tabs were mounted on a corner of the

363

CHAPTER 10 CURRENT CONTROL

fan motor frame with a bolt and a wing nut. The tabs were mounted with
the narrow infrared optical beam generated by the photodiode pointing
through the plane of rotation of the fan disk blades. The rotation of the
seven-blade fan disk (item 2) thus chops the IR beam created between the
photodiode and phototransistor seven times per motor revolution.

Figure 10-4. Experimental Cooling Fan Current Load Testing Setup

The two plates holding the optical beam source and detector are held
in place on the author’s setup with a bolt passing through the plates and
motor frame, secured in place with a wing nut. Item 3 is an arm of the wing
nut fastener that allows for easier alignment of the optical beam.

Power for the author’s setup was supplied by a heavier +/-12'V, 2 A
supply that was connected to a terminal strip mounted at the rear of the
breadboard on the aluminum sheet metal base.

364

CHAPTER 10 CURRENT CONTROL

Many of the fan motors salvaged from obsolete or damaged computer
equipment are used to power seven-blade disks. If the fans being used for
these exercises do not have seven blades, enter the correct blade count into
the DAQFactory variable value expression box as illustrated in Figure 10-7.

Circuit Schematic

In Figure 10-6, the 555 timer is configured in the astable mode to produce
a continuous square wave format. A timer IC cycle starts with capacitor C
discharged, pin 2 low, and output pin 3 high. With pin 3 high, C charges
through the left side of R1 and left diode until pin 6 (threshold) reaches
2/3 V+ at which point pin 3 (output) and pin 7 (discharge) go low. With
pin 3 low, the capacitor discharges through the right side of R1 and the
right diode until C falls below 1/3 V+ at which point the output pin 3 and
discharge pin 7 go high, and the cycle repeats. Thus, C charges through the
left side of R1 while discharging through the right. By keeping the sum of
the charge and discharge resistances at a constant value, the output signal
wavelength is also constant, and only the duty cycle changes. The output
frequency is fixed according to the formula

Frequency = 1.44/(Rvarbi * Criming)

Figure 10-5 graphically displays the concept of the duty cycle and its
relationship to the frequency or wavelength as marked by the red arrows.
For power control applications such as driving a motor, the ability to
rapidly turn the power on and off in terms of very fast pulsing widths
provides a means of controlling the motor speed at the higher end of the
power application range. However, if the load being supplied with power,
via pulse width variation, is working at the lower end of the adjustment
range, a longer frequency will provide a higher degree of resolution for the
controlling of power applied. Heating circuits and low rotating speeds in
stepper motors may require longer wavelengths or lower frequencies to
provide an adequate span of control adjustment.

365

CHAPTER 10 CURRENT CONTROL

l —| Duty cycle of approximately 5%

Duty cycle of approximately 50%

|4—

1 Duty cycle of approximately 95%
Five cygles at 5%'duty cyclt;

| R

Five cycles at 95% duty cycle

@1 \li e
! bk
n ; ’ A : . Vec WST
;q 1 |
1R, 188k pok s It |
1 o
; g . 9 Diseh
Timer
] Crtr |
8 pin WP 1€
c | tPstsble wade) I
=0, i
I 11
" Photo Dinde] " Photo Trarsistor
0165 OPSESR
e g:au
- F ®
e c"é [T 3.3 e cagyd
Camows’ | 2hom . Srxom. 3E.7¢ pea . ;
:" é te Laojack cownter
b prototransistor
Matar PWM Circuit
555 timer motor speed contraller
il = e - 2
RIS 1 100203 | [Sl

Figure 10-6. A 555 Timer IC-Based Motor Controller with Photo
Interrupter Circuit

366

CHAPTER 10 CURRENT CONTROL

Software

Figure 10-7 depicts the properties Main tab for the variable value screen
component used to display the fan rotation speed. The calculation that
converts from the seven beam interruptions per fan disk revolution to the
rotation speed of the fan motor is entered into the screen component’s
expression box. The various entries into the Variable Value Component tab
of the child window, generate the RPM display box seen above the pop-up
properties window.

Mam | Cote | Son | Acten|

S E—

Exweton [(RanTnpuccamncafo]/Tyemn

Figure 10-7. DAQFactory Variable Value Component Configuration
for Measurement of Fan Motor RPM

There is no requirement for any scripting as the counter is read, reset,
and entered once a second into the RawInputCounts channel. The value
returned as RawInputCounts[0] is corrected for the number of fan blades
on the disk and normalized to minutes.

367

CHAPTER 10 CURRENT CONTROL

Observations

With the potentiometer set to midrange, the two-wire fan motor spins at
about 2950 rpm, and the speed can be varied from 3300 to approximately
100-150 rpm before the motor stalls.

During the initial development of the optical tachometer, the pulse
train generated by the photodiode-phototransistor pair was unable to
trigger the LabJack counter, and an increased signal strength was required.
The power used to drive the photodiode-phototransistor pair was drawn
separately from the +12-volt supply using the two voltage dividers shown
in the schematic of Figure 10-6. The photodiode voltage divider produces
anominal 5V, and the phototransistor voltage divider produces a nominal
6 V (5.91 V). Figure 10-8 shows an oscilloscope display of the optical beam
chopper output.

Figure 10-8. Oscilloscope Display of Optical Beam Chopper Output

A salvaged three-wire cooling fan motor from a large CPU chip was
substituted for the two-wire system, and the high-end fan speed range was
measured at 5,200 rpm. The fan speed with careful adjustment could be
lowered into the 200 rpm range and occasionally into the 150 rpm range
before the motor stalled.

368

CHAPTER 10 CURRENT CONTROL

The third wire on the chip cooling fan is usually the output from Hall
effect sensors built into the motor. The Hall effect sensors detect changing
magnetic fields, and the output from the third wire produces a series of
small spikes created by the rotating magnetic fields that can be used to
measure the motor’s RPM.

Discussion

In this exercise, the pulse width modulation control of higher currents
required to power a motor is being demonstrated. A limited pulse width
modulation scheme based upon the astable configured 555 timer chip

has been examined in Chapter 8, and the relatively constant frequency,
variable duty cycle mode of power delivery is now being used with suitable
diode modification to extend the range of the duty cycle while keeping the
frequency or wavelength of the output square wave constant.

In Chapter 8, Figure 8-10, and in Figure 10-6, it can be seen that the
capacitor charges through R1 and a portion of R2 but discharges only
through R2, so the charging portion of the cycle can only be decreased to
the value of R1, while the value of R2 can in effect be decreased to zero for
the discharge portion of the cycle. Hence, the variation possible in the duty
cycle is controlled by the value of R1.

In simplified terms, we can see that the PWM technique we are using to
apply power to the BLDC motor changes the duty cycle from 100% down,
literally, to 0%. An overall resulting voltage change from 12 V at 100% to
6V at 50% duty cycle to in effect 0 V at 0% duty cycle is the reason for the
erratic behavior at lower speed rotation. In the lower portions of the duty
cycle, the 12 V power is not applied for a long enough period of time for
the averaged power delivered, to be able to drive the motor, and it “stalls.”
In other words, the observed loss of control and stalling at low settings of
the controlling potentiometer are the result of insufficient power being
delivered to the motor. To achieve better control of low-speed motor
operations, a different type of motor and power control will be required.

369

CHAPTER 10 CURRENT CONTROL

This 555 PWM, optical tachometer circuit, DAQFactory SCADA
software display system was developed with a salvaged two-wire computer
tower cooling fan. A second cooling fan from a more recent large CPU
chip with a three-wire control circuit board connector was substituted into
the breadboard setup for comparison. The third wire, usually yellow (see
Figure 10-4), monitors the output from Hall effect detectors built into the
rotor/stator portions of the motor. Hall effect sensors respond to changing
magnetic fields and can be used to indicate the position of the magnets
with respect to the coils to be energized in an electronic motor control
system.

The chip cooling fan motor recovered from the author’s obsolete
equipment was a 2 1/4 in square (5.7 cm) seven-blade, 12V, 180 mA unit
that when powered through the red/black power leads has an upper speed
of rotation in the 5,200 rpm range and stalls at rotation rates between 200
and 150 rpm.

As will be seen in later portions of this work, the recovery and reuse of
fan motors can solve, inexpensively, practical problems that arise in some

laboratory procedures.

Stepper Motors

BLDC motors requiring electronic control of the motor power come in
two forms: the continuous duty type used to drive fans and a form known
as stepper motors. Whereas the BLDC fan motor develops its maximum
power at higher speeds with full applied voltage and stalls as the rotation
rate decreases because of decreasing voltage/power levels, the stepper
motor develops its maximum power when not rotating and loses power
as its rotation rate increases. Stepper motors derive their name and utility
from their ability to move or rotate in discrete “steps.” By controlling the
“stepping” action of the motor, exact rotational positioning and precise
low-speed rotational rates, with significant torque, can be achieved.

370

CHAPTER 10 CURRENT CONTROL

Stepper motors are built in several forms and have different
capabilities based upon the type of construction used to assemble the
motor. There are numerous good tutorials available both online (Jones
on Stepper Motors) and in the literature of both robotics and engineering
for those experimental equipment development projects requiring more
details.!

For the purposes of this current control exercise, we will limit our
discussion and experimentation to the class of motors called bipolar,
permanent magnet (PM) systems. These motors provide continuous low-
speed rotation that has definite practical applications in robotics, simple
physics, and chemical and biological laboratory procedures. Continuous
rotation can be relatively easily implemented and controlled with ICs
such as the 555 timer. Single stepping and oscillating in a back-and-forth
stepping action require additional knowledge of both the motor windings,
slightly advanced programming capabilities, and specialty hardware. The
methods for implementing controlled rotation down to the point of single
stepping are referred to in several of the exercises to follow, but oscillating
and fractional circular rotation actions are not considered in this simple
introductory section.

In order to keep the assembly of a motor power control unit in a
simple, inexpensive, and familiar format, the electronic power control
circuitry in this exercise is again based upon the adjustable, astable 555
timer circuit pulse generation but with some relatively simple additional
digital logic circuitry. The 555 timer IC can be replaced by any computer or
microcontroller capable of generating a low-voltage, adjustable duty cycle,
square wave pulse train as used in PWM control.

Permanent magnet (PM) stepper motors are characterized by having
arotor shaft that does not spin freely as does the higher-speed BLDC fan
motor. PM stepper motor shafts, when turned by hand, with the motor

! Introduction to Mechatronics and Measurement Systems, Alciatore and Histand,
McGraw Hill, 466 pp, 2003, ISBN 0-07-240241-5

371

CHAPTER 10 CURRENT CONTROL

unconnected to a power source, “cog” or “step” between positions of
equilibrium or rest. The number of steps required to make a full rotation
indicates the “resolution” or degree of “fineness” with which the stepper
motor rotation or oscillation can be controlled.

The stepper motor has been designed so individual coil windings
can be separately energized, thus creating internal electromagnetic fields
that, by rotation of the rotor, can establish an equilibrium position with
the internal, permanent magnet magnetic fields. By energizing coils in
a programmed sequence, the motor shaft can be made to rotate in any
manner as determined by the programming. Programs in which the
electromagnetic coils are energized in a sequential manner in order to
smoothly rotate the motor shaft in either direction are the main focus of
this simplified exercise.

Stepper motors turn at a much slower rate than conventionally wound,
brushless motors and produce significantly more torque at lower speeds.
Stepper motors do not move large volumes of air over their structure and
hence concentrate much more heat around their outer metal cases.

Experimental
Hardware

A solid mounting is required for the stepper motor, speed control, forward/
reverse switch, and motor power connections. The power connections

for the motor must have a means of interchanging the connections of

the individual motor coil leads to the output power transistors of the
electronic control circuitry. The integrated circuitry can be assembled

on a breadboard for ease of construction, prototype development, and
experimental demonstration. An experimental motor and hardware
mounting frame assembled with hand tools from readily available materials
is depicted in Figure 10-10 and described in detail in the following text.

372

CHAPTER 10 CURRENT CONTROL

Circuit Schematic

As noted, for the purposes of most experimental laboratory or field work,
the control circuitry for a four-coil stepper motor need only drive the
motor in smooth, controllable, clockwise or counterclockwise, low-speed
rotation. The electronic supply should thus be able to produce a sequential
series of four, adjustable width, current pulses with sufficient amperage to
continuously step the motor through a full rotation of the rotor.

Some care must be exercised in assigning the power connections of the
stepper motor to the output transistors of the electronic power controller.
If the center tap in a five-wire motor or the taps in a six-wire motor are
connected to the positive supply, then the ends of the “first” set of tapped
coils should be connected to power output transistors 1 and 2 and the
second set of coil ends to 3 and 4. If the motor does not rotate smoothly
and respond as expected to the speed control potentiometer, then
sequentially exchange the third and fourth coil connections and retest the
motor. If the exchange does not correct the problem, exchange the first
and second coil connections, retest, and if required reverse the second and
third coil connections.

Figure 10-9. A 555 Timer IC-Based Stepper Motor Controller

373

CHAPTER 10 CURRENT CONTROL

In Figure 10-9, an astable 555 timer, controlled by a potentiometer, is
used to generate an adjustable duty cycle pulse train. The pulse train is
used to toggle (or power) a pair of D (data)-type flip-flops that have been
configured as frequency dividers to produce the required series of four
transistor base driving signals to create the required high-current power
pulses. The data flip-flops are contained in a single CMOS 4013, 14-pin
DIP that together with the 555 timer chip can be powered by the heavier-
current 12 V power supply.

A stepper motor can be controlled by many different coil-energizing
sequences that can create high-torque single or fractional step rotations,
back-and-forth stepping motions, or smooth continuous rotations. The
low-speed, high-torque, smooth continuous rotations are the motions
with the most application in biological/chemical laboratory work, that
is, stirring and pumping liquids. To achieve the correct sequencing of
the motor coils by the four output transistors, the common center taps
of the coils are connected to the positive supply. The energizing of a coil
thus consists of grounding the end of a winding to enable current flows
from the center tap to ground. The motor can thus be made to rotate by
sequentially grounding the ends of the windings. The wiring color code on
the motor being used for this exercise may be different than that displayed
in Figure 10-9. Typical motors will have four connections to the ends of
the windings and either a common connection to the center taps or two
connections to the center taps, thus creating five- and six-wire, motor-to-
power connections.

The current flow through the individual coils is limited by the
resistance of the coils themselves. Reversing the direction of the DC
current flow through the motor coils reverses the direction of rotation.

Motor rotation is created by sequentially energizing the internal
windings of the motor to create a magnetic field. The transitory
electromagnetic field interacts with the permanent magnetic fields causing
the motor to rotate. Switching off the current to the energized coil then
creates the back EMF induced into the coil by the collapsing magnetic

374

CHAPTER 10 CURRENT CONTROL

field permeating the motor’s internal windings. The switching transistors
must be protected from the motor coils” higher-voltage back EME, or their
PN junctions will be destroyed. LEDs have been placed into the collectors
of the switching devices of Figure 10-9 to both protect the output power
devices and provide a visual confirmation of individual coil current
passage.

Figure 10-10. A Stepper Motor Test Assembly

Item 1 is a Copal Electra motor mounted on an aluminum %2 in (1.2 cm)
right angle extrusion frame with an added black rubber shaft coupling
to move and partially dampen the resonant frequency. A Howard motor
can be seen to the right with mounting adapters. Item 2 is a terminal for
motor winding wires and breadboard interfacing. Item 3 is the 555 timer
chip, and the number 4 marks the position of the 4013 data flip-flop chip.
Item 5 is the row of power transistors, and item 6 is the “speed” control
potentiometer. Item 7 is the rotation direction switch, and item 8 is the
high-current power input wires.

375

CHAPTER 10 CURRENT CONTROL

Software
Page Components Required

The pulse train used to toggle the 4013 D flip-flops and sequence the driver
transistors can also be used to create a tachometer display for the rotation
rate of the motor (see “Discussion”). The author’s laboratory had 12 V
permanent magnet, 75 Q, four-phase (coil) stepper motors manufactured
by Howard Industries, part number 1-19-4200, that were 3.6 degrees per
step and SP-57B motors from Copal Electra, part number 85086780, with
36 Q coil resistance and 7.5-degree step rotations. The Howard motors thus
took an even 100 steps to complete a full rotation, while the Copal Electra
motors only required 48. As with the fan motors, the rotation speed can be
displayed on the screen with a DAQFactory variable value component. The
rate can be calculated by counting the pulses applied to the flip-flop logic,
in 1 second, then dividing by the number of steps required for a complete
rotation, and normalizing to revolutions per minute. Scripting is not
required as the calculation can be entered into the expression box for the
variable value screen component displayed as the top line in Figure 10-7.

Observations

Moderate stepping speeds result in smooth rotation, while at low speeds
the individual steps become visible. The use of LEDs as protection from
the back EMF of the motor coils also serves as a pilot light for motor
activity.

Both of the stepper motor types with rotors unloaded pass through
certain rotational speeds that cause the motor and mounting structure to
“resonate.” The 3.6-degree Howard motor begins to vibrate at 113 rpm,
generating a severe vibration at 100 rpm and a very loud, annoying audible

376

CHAPTER 10 CURRENT CONTROL

buzz at 92 rpm, but runs smoothly and quietly at 85 rpm. When the % in
(0.6 cm) metal shaft coupling from a three-piece rubber “tee” motor drive
connection was added to the Howard motor shaft, the motor displayed

a greatly reduced in intensity, but still distinct, high-pitched vibration at
92 rpm and also displayed a lower intensity and deeper pitched vibration
at 60 rpm and an even lower pitch and lower intensity resonance at

30 rpm. In any of the rotational speeds between the resonance “peaks,” the
motor ran smoothly.

The Copal Electra motor has an unloaded rotational speed range of
60-300 rpm and has a resonance “chatter” at 89-90 rpm. If the motor shaft
is loaded with the drive connector coupling, the resonance speed moves
up slightly into the 92-95 rpm range, and the motor completely stalls at
250 rpm.

Without the coupling on the rotor, it was impossible to squeeze the
shaft hard enough to stall the motor, but with the additional leverage
provided by the coupling base, the rotor could be stopped; and as the
stalled rotor pulsed, the RPM indicator still recorded a 37 rpm equivalent
pulse rate. The loss of torque with increasing RPM is evident with the
Howard motor, but the Copal Electra with the added mass of the coupling
stalls if speed settings for over 250 rpm are selected.

In addition to slow-speed mixing and blending in laboratory
experimental work, stepper motors are also uniquely suitable for
controlling the delivery rate from peristaltic pumps. By altering the value of
the RC timing constant in the 555 astable configuration, the author’s Copal
Electra could be slowed to 5-6 rpm with a 1.0 uF capacitor and the 27 kQ
resistor of Figure 10-9; and by changing both the resistance and capacitor
to 296 kQ and 1 uF, the motor continuously single-stepped through its 48
increments at 1 rpm.

377

CHAPTER 10 CURRENT CONTROL

Discussion

The flexibility and desirable low speed properties available with stepper
motors are achieved at the expense of significantly increased complexity in
control circuitry. The required sequential generation of current pulses for
smooth continuous motor rotation can be created with the D-type flip-
flops as used in this exercise or with chips designed as shift registers such
as the 7415194 and CMOS 4035. Details for using the shift registers are
available both online? and in the printed literature for the nominal ICs.

The design of stepper motors is such that maximum torque is created
when the rotor is stationary. With the system created for this exercise, the
rate of rotation can be slowed to 1 rpm at which rate each individual step
of the motor takes 1/48 of a minute or 1.25 s. At the slow rate of 1 rpm, the
Copal Electra motor used in the exercise is close to delivering its maximum
available torque. Discrete, arbitrary time stepping or holding positions are
useful in robotic control systems and require much more sophisticated
programming capability in the power control system than is provided by
the potentiometer-controlled 555 pulse generator used in this portion of
the exercise.

Resonance is a problem with stepper motors, and continued operation
of the motor while in a resonating mode will greatly reduce the service
life of the motor by increasing the rate of mechanical deterioration of the
rotating components. The motor should be operated off of the resonant
speed, or if the resonant speed is important, then special mechanical
mounting techniques, gearing, or changes in rotating mass may need to be
built into the experimental apparatus to deal with system resonance.

The speed of rotation of the motor shaft can be measured
electronically by using the DAQFactory, default data collection rate, of 1
second for the LabJack counter channel, applying the number of steps
required for one revolution of the rotor shaft, and adjusting the values of

*http://www.electronics-tutorials.ws

378

http://www.electronics-tutorials.ws

CHAPTER 10 CURRENT CONTROL

the data to be displayed to the desired time units. The formula required
to convert the pulse rate into a numerical display in a screen “variable
value” component can be entered into the formula box of the screen
component as seen in Figure 10-7. The use of the pulse rate to determine
the motor shaft rotation speed uses an implicit assumption that the
motor is not “slipping” as it rotates, which may happen at the higher

end of the motor’s rotation rate speed range or if the “load” being driven
increases significantly. If slippage is a problem or the actual rotation of
the experimental setup is to be monitored, then the photo interrupter
tachometer method should be used on the moving load.

Stepper motors have their greatest utility at low-speed rotation or as
rotatable positioning agents, and if lower speeds of rotation are required,
the time constant of the 555 astable can be increased to widen the space
between pulses applied to the flip-flops. The slower the speed of rotation,
however, the more pronounced the “stepping” action of the motor’s
rotation.

Control of AC Current Sources
Introduction

Alternating current (AC) sources are often referred to as “mains.” In

North America, the mains or “household current” is supplied at a

nominal 120 volts peak-to-peak or 115 V root-mean-square (rms) at

60 Hz, while in Europe and other areas of the world, it is 220 V (rms) at

50 Hz. A substantial number of the early alternating current supplies

were generated by hydro-electric facilities where water turbines spun
electric generators that created forward and reverse current pulses at these
relatively low frequencies.

379

CHAPTER 10 CURRENT CONTROL

Low-voltage DC currents are virtually harmless, but “mains” voltages
and currents easily start fires that burn buildings to the ground, cause
severe painful burns, and produce potentially lethal electrical shocks.

In keeping with the lethal nature of high-voltage, high-current
electrical energy, solid-state systems have been developed for both
controlling the dangerous high power levels and isolating them from the
low-voltage control circuitry.

The advantage of AC current, when properly isolated from the
controlling circuitry, lies in the ability to power motors, illumination
fixtures, and heating elements directly without any need for conversion
into DC prior to usage. Mains or AC electrical power cycles from zero to
a maximum forward value and then decreases back to zero rising to its
maximum reverse value before decreasing back to the zero value, thus
completing the cycle. AC power is usually controlled with thyristors or
four-layer P-N-P-N semiconducting components fabricated into either
of two types of device: the silicon-controlled rectifier (SCR) whose
conduction can be regulated for half of the AC cycle or the triac that can
control conduction for the full AC cycle. SCRs and triacs have limited
frequency response and hence are used mainly at 50-60 Hz but are
serviceable up to 400 Hz AC power frequencies. The SCR is a multilayered
diode with a “gate” that allows the diode to be switched from a blocking to
a conducting mode at any point in its normally conducting portion of the
AC waveform. By placing two SCRs in parallel but conducting in opposite
directions to form the silicon bilateral switch or triac, it becomes possible
to control the forward and reverse cycles of the AC power waveform from
the signals applied to a common gate.

As noted, both SCRs and triacs are diode-type devices, fabricated
with gates that allow the circuit designer to control one or both directions
of the passage of AC power cycles through the device itself and hence
through the load. ICs have been developed that use photo-diodes optically
coupled to a silicon bilateral switch to provide a means of optical isolation
for separating gate control circuitry from the high-energy AC power

380

CHAPTER 10 CURRENT CONTROL

flowing through the silicon switching devices. Optical isolator chips are
available in two formats consisting of devices that transmit a control
signal to randomly begin conducting and devices that are able to detect
the zero-crossing point of the main power signal. If the AC power cycle is
randomly “chopped,” radio frequency interference (RFI) or more general
electromagnetic interference (EMI) can be generated, and filters must be
used for suppression of the unwanted radiation. Zero-crossing detector
circuitry that turns the AC controlling device on and off only at the zero-
crossing point minimizes the generation of significant RFI.

Random-phase or zero-crossing, optical isolation integrated circuitry
operates from low-voltage DC sources, so if standard digital logic circuitry
is to be used with triac control of mains AC power, then a source of the
required DC power must be available. Batteries or the simple dedicated 5V
supply illustrated in Figure 10-11 may be used.

S1
F1 Bridge Rectifier
1A
2A .
]
\ 7205 Voltage | Out
T ' Regulator = 0
TI : Comu b
d omn ohm g
= 12.6v
12.a oo %4

3300 100 s Out
IUF uF
: <.

Figure 10-11. A Typical AC to 5-Volt DC Output Power Supply

|[E

The use of solid-state devices to control AC power provides the
researcher with two methods for using the energy. In the first and simplest
method, the full AC voltage can be applied to the load, and the time at
which the full current is allowed to flow is varied. The second form of

381

CHAPTER 10 CURRENT CONTROL

control involves varying the voltage applied to the load. The AC voltage
cycles between 0 and 120, and the solid-state switching devices can be
used to apply any portion in the cycle (between 0 and 120 volts) to the
load, 60 times a second. The AC waveform is a sinusoidal phenomenon in
which the voltage magnitude follows a sine curve. By selecting a portion
of the waveform to apply a voltage to the load, the power control is called
“phase angle control.” Voltage variation is somewhat complex and should
be used only when required. By applying the full AC voltage to the load
and varying the time of full power application, the power delivered to the
load can be controlled, and the radio frequency noise generated is greatly
reduced and minimized when zero-crossing switching is used.

Pulse width modulation concepts introduced in Chapter 7 and applied
previously in a motor control exercise are usually applied in DC power
systems but can also be used to exert a rudimentary coarse control of AC
power.

The optical isolators used in this portion of the exercise are random

and zero-crossing units.

Experimental
Hardware

A 60 to 15 watt incandescent light bulb is a good visual demonstration load
for this AC power control exercise. The socket for the bulb and a mounting
bracket for holding a potentiometer control, while serving as a heat sink
for the triac mount, along with a terminal block and the breadboard

for mounting the controlling circuitry, should all be affixed to a sturdy
wood or metal base as depicted in Figure 10-12. Recalling the dangers
associated with AC mains voltages and currents, all of the wiring carrying
mains power must be securely fastened, properly insulated, and covered
according to local electrical building codes. Insulation on wires carrying

382

CHAPTER 10 CURRENT CONTROL

mains power should be carefully cut to ensure no bare wire surface is
exposed after the screw terminal connection on the terminal block is
tightened. All exposed wire surfaces or soldered connections carrying
mains power must be insulated with liquid plastic insulator, silicone
sealant, or heat shrink tubing. Never power up any circuit with exposed
conductors carrying mains current.

The numerical designations in the author’s experimental setup
(Figure 10-12) are explained in the following text.

Item 1 is a 60 W light bulb in an electrical code compliant receptacle
properly mounted on a % in (1.8 cm) high-density fiberboard. Item 2
is a 250 VAC terminal board with approved cord and plug (N.B. cover
removed for clarity). Item 3 is a 400 VAC, 6 A, BTA06 STMicroelectronics,
TO-220 tabbed triac on its heat sink, with heat-shrink wrapped conductors
eliminating exposed conductor surfaces. Item 4 is the duty cycle control
potentiometer, and item 5 is the optical isolation triac control ICs used
in the demonstration exercises. The number 6 marks the position of the
bipolar 555 timer, and item 7 is the 9 V battery power supply.

The 60 W bulb initially used as a visually active experimental load was
subsequently replaced with a much cooler-surfaced 15 W bulb often used
as an interior light in home appliances.

383

CHAPTER 10 CURRENT CONTROL

Figure 10-12. An AC Current Control Test Apparatus with an

Incandescent Light Bulb

Circuit Schematic

Figure 10-13 is a typical block diagram representing an experimental setup

for control of AC mains power with a triac and optical isolator.

limiktir :
Low woltage r'leslislt.ogr limiting MT1

Current Current —— "\~ AC Mains

variable or Optical resistor .
programmable AN\~ triac
Isolator
OC pulse E LSO 1 8 N
s o ————= . MT .

Load

__AC Mains

Figure 10-13. Triac and Optical Isolator AC Current Control

384

CHAPTER 10 CURRENT CONTROL

For this exercise, a manually controllable, DC pulse source can be
assembled from a 555 timer configured for astable operation with its duty
cycle controlled manually, through a potentiometer diode network, as
used previously for a 90% range of duty cycle variation.

The circuit diagram in Figure 10-13 has been drawn in a configuration
using the Fairchild semiconductor MOC 3022 that may be powered from
either a 5V supply or a 9 V battery when a suitable current limiting resistor
is used in the MOC 3022 internal LED illumination circuit. Controlled AC
power is applied to the load circuitry by energizing the low-voltage pulse
generation circuit and then plugging in the AC power cord to the mains
supply.

The circuit of Figure 10-13 has been drawn with a MOC 3022 random-
phase optical isolator triac driver in place. The MOC 3061 zero-crossing
device can be used in the same manner as depicted in Figure 10-14.

In order to conduct an important visual display of the resultant effects
of the application of a pulse width variation technique to an AC current
control, the circuit depicted in Figures 10-12, 10-13, and 10-14 should be
built on a prototyping breadboard with the components in Figure 10-14.

After assembling and examining the effects on the light bulb filament
of altering the duty cycle of the 555 timer with the 0.1 pF capacitor in the
timing network, the capacitor should be changed to a 1.0 pF unit and the
duty cycle varied over the available range again.

Although the circuit being assembled is for demonstration only, it
is good practice to use low-leakage plastic film or ceramic capacitors in
timing operations.

385

CHAPTER 10 CURRENT CONTROL

Wec + 3 o 9 volt supply

| sk | T O —
I K owhe Tee - BT uatl, incandescent
-~ 3 yolt. B3 Obm e ligth bulb
; . 2 L3
e S | P - M., ¢ P—— B T
L 5 valts 16 T
ki K orm ; L FHS Fl o olt, 166 Ohe ls ' 1% ohe)
“ K i 7 riac
T Trig e] L -
3 1019 I N ; i]
1K o o - 2 T2
1T 8 pin DIP IC = .81 uF
Jsg_l - CPsLable modeh 117 Vae
T Grd
] 10
v v
3| Hoc 286 Mate:
3_ 3022 is 8 & pin DIP randon phase opticel isolator triasc driver cukput chip
— X and J%x 3T @ Tero croszang debector opticel coumlamg devaces
=

AC Triac Power Control
MOC 3822 mon-zero craossing

Weu 1.0

RIS | 14012501 { Pg 1

Figure 10-14. A 5-Volt 555 Timer IC Control of Line Power

Software

No screen display page components or scripting is required for this
exercise.

Observations

A handheld multimeter able to measure frequency in Hz was used to
measure the output frequency of the 555 timer circuit square wave that
was found to be approximately 75-124 Hz for the 0.1 pF capacitor and
8-12 Hz for the 1.0 pF unit.

The initial setup assembled on a breadboard with a 0.1 pF in the timing
circuit and using the MOC 3022 was able to vary the brightness of the lamp
from about half power to full on. At the half-on power setting that was near
the end of potentiometer rotation, the lamp flashed and flickered, and the
timer output was found to erratically move between 75 and 82 Hz.

386

CHAPTER 10 CURRENT CONTROL

Replacement of the timing capacitor with a much larger 1.0 pF unit
greatly lowered the 555 timer pulse rate frequency range from 12.6 Hz to
7.6 Hz. At the full rotation of the potentiometer to the 12.6 Hz position, the
lamp is fully lit and does not flicker. Rotation of the potentiometer to the
point at which the frequency meter reads 7.8 Hz causes a visually smooth
decrease in the lamp luminosity and a concomitant increase in erratic
lamp flickering until at the low end of the frequency range the lamp is
essentially off but flickers with an erratic, very-low-level luminosity.

Although the PWM on/off power application of the AC line voltage
through the optical isolator was able to roughly regulate the energy
delivered to the lamp, the system does not function as a smooth lamp
dimmer, but could work for non-lighting applications.

Discussion

A majority of the world’s electric power grids carry energy created from
rotating generators driven by water, steam, or more recently wind turbines.
AC electrical energy can be passed through transformers for conversion

to high-voltage forms for transmission over great distances and converted
back into high-current relatively lower voltages forms for consumer use.
Most of the world’s power grids are operating at AC frequencies of 50 or

60 Hz.

For dissipative use as in incandescent or fluorescent lighting, heating,
or turning electric motors, the AC power can often be used as received
from the power distribution grid with minimal alteration.

Triac control of the power being applied to the incandescent bulb load
in the demonstration circuit is controlled by the pulse rate delivered by
the battery-powered 555 timer. The timing network used in the 555 timer
astable mode of operation as shown in Figure 10-14 is able to allow the
duty cycle to vary from approximately 5 to 95%. Thus, the power delivered
to the load is variable over a considerable range but never turned fully off
nor fully on.

387

CHAPTER 10 CURRENT CONTROL

For the simple purposes of non-inductive or strictly resistive usage
of AC currents, the various forms of describing AC as rms (root-mean-
square), peak-to-peak, or average can be used in the basic electrical
calculation formulas but must be used consistently and cannot be mixed.
If rms is used in Ohm'’s law, then all the values for voltage and current must
be in unit values of rms.

If the lamp were replaced with a heating element inside a closed,
insulated container, the heat produced could be crudely regulated by the
on/off ratio controlled by the potentiometer that would in turn coarsely
regulate the temperature. Recalling the graphic data of Figure 10-5, it can
be seen that the span of the duty cycle is the span of control available by
using pulse width variation.

Only very simplified AC circuit analysis and electromagnetic
interference (EMI) are being examined in this exercise. AC electronics is
frequency dependent and becomes very complicated as the frequency
increases. In any experimental work involving higher frequencies such as
is found in communications, induction heating, and nuclear magnetic or
electron spin resonance spectroscopy, the literature must be consulted for
much more specific and detailed information.

If circuits are to be protected from either generating or picking up EMI,
they must be totally isolated from radiation by being completely encased
in grounded metal boxes. If the circuits draw power from the grid, then the
grounded metal boxes and their wiring must, for safety, conform to the
local electrical building codes.

In most of the power control applications examined thus far, DC current
has been involved, and hence there is no frequency component to be
considered. However, an attempt to use PWM techniques with an alternating
current power delivery at a fixed frequency of either 50 or 60 Hz immediately
places limitations and restrictions on the nature of the PWM methodology.

In the circuit diagram depicted in Figure 10-14, a circuit has been built
with a center-tapped potentiometer that can allow a resistance variation
of approximately 50 kQ2. Examination of the expanded nomograph

388

CHAPTER 10 CURRENT CONTROL

in Figure 9-1 suggests that for the 50 kQ-0.1 pF combination, the
experimenter should expect the timer to oscillate in the hundreds of Hz
range.

Recall that the potentiometer diode arrangement is used to allow the
variation of the duty cycle with only minor changes in the frequency of
oscillation. If power is being delivered to the load through a triac device
that is allowing current to flow in a manner oscillating at 50 or 60 Hz, then
a tenth of a second the load will see five or six power cycles. If the 555 timer
is turning the IR diode in the opto-isolator on and off hundreds of times per
second, the triac will appear to be on for a substantial amount of the time.

If the frequency of the timer pulse train is lowered to 10 Hz, then
the duty cycle variation can be made to span five or six power cycles of
the power oscillating through the triac. Figure 10-15 depicts a tenth of
a second time span in which the five power cycles are marked with the
points that would switch the IR diode off at the nominal duty cycle settings.

7 .

10 ¢
h 259 50 % 75 % 90 %

P /

T i

Figure 10-15. A Tenth of a Second Graphical Representation of
a 50 Hz AC Power Supply and a 10 Hz 555 Timer IC Variation of
Output Duty Cycle

389

CHAPTER 10 CURRENT CONTROL

As noted previously, at the higher frequency, the light bulb is brightly
illuminated most of the time and can only be dimmed slightly and flickers
erratically. At a frequency approximately ten times lower, the bulb can be
dimmed over its entire range of illumination but flickers as the luminosity
decreases to zero.

A further extension of the PWM method with AC systems is used in
power control applications in which the frequency of the on/off switching
is measured in seconds and minutes. Long time duration PWM power
controls are often used in heating control applications where a large
thermal mass exhibits a large time lag between the application of power
to the heater element and an increase in temperature is seen in the mass
being heated. AC-powered heating systems with large time delays can be
calibrated and a PWM control system established.

A PWM system can be employed to precisely control the power delivered
to aload through using semiconductors to pass only small portions of
the power cycle to the load in a technique known as phase angle control.
However, phase angle control involves establishing and coordinating the
zero-crossing point in both of the power cycle and the PWM control signal
that is beyond the simple introductory nature of this exercise.

Current Control with Raspberry Pi
and Python

Introduction
Control of Larger DC Currents

As has been pointed out in previous exercises, the RPi has a limited ability
to supply any sizable currents from the GPIO pins. Higher currents from
external sources can however be controlled from some of the pins on the
RPi array.

390

CHAPTER 10 CURRENT CONTROL

An excellent summary of current control hardware and circuitry is
collected online.?

High-current DC, in the 30-60 A range, can be controlled with
metal oxide semiconductor field effect transistors (MOSFETSs) such as a
FQP30NO6L from ON Semiconductor or Fairchild. FET semiconductors
often require a strong signal to enter into the conduction mode, and hence
the experimenter using the GPIO array as a controlling source must make
sure that the FET transistor selected is compatible with the 3.3 V available
from the array pins. The L in the FQP30NO6L indicates a device with a gate
compatible with low-voltage control signals.

Moderate current handling capability can be realized with Darlington
pair transistors schematically depicted in Figure 10-16.

C

Q1

E

Figure 10-16. NPN Darlington Pair Transistors

Bipolar junction transistors (BJTs) are current control devices. The
main current through the device flows between the collector and emitter.
Current flow between collector and emitter is controlled by the much
smaller base current. Amplification of the base current makes the BJT a

sensitive device able to amplify very small, weaker signals from sensors

*https://elinux.org/RPi_GPIO Interface Circuits.

391

https://elinux.org/RPi_GPIO_Interface_Circuits

CHAPTER 10 CURRENT CONTROL

such as solar cells and thermocouples. The device fabricated from
Darlington pair transistors is able to amplify the current in proportion to
the product of the two amplification factors for the transistors in the pair.
The dual-transistor assembly is also significantly more sensitive to base
current than the single transistors used to create the device.

Two common Darlington pair transistors are the TIP 120 and 122 that
are available as tabbed, three-terminal devices, in the TO-220 package.
The devices are able to work at up to 60 and 100V, respectively, and, with
proper heat sinks, can operate with 5 A currents.

Experimental
Non-inductive Loads

To demonstrate a current control technique with the GPIO array of the
RPj, a Python-tkinter GUI screen slider control will be used to manage

the power from a 12 V supply illuminating an automotive incandescent
lamp. The incandescent lamp is purely a resistive load and hence requires
no diodes to bypass the destructive voltage spikes generated by inductive
loads such as motor coil windings.

A TIP 122 Darlington pair transistor and a resistor were mounted on a
prototyping board and connected to the 12 V battery power supply and the
automotive lamp. The current control demonstration circuit is depicted in
Figure 10-17.

392

CHAPTER 10 CURRENT CONTROL

+ 12 V. supply

light bulb
12 V. Auto
tail light

TIP122

Figure 10-17. Circuit for Incandescent Light Current Control

The automotive lamp was found to draw 1.25 A from a 6 V source at
a bright red heat that corresponds to a filament resistance of 4.80 Q. The
expected current draw at full power with a 12 V supply should thus be
approximately 2.5 A well within the manufacturer’s recommended 5 A
capacity for the TO-220 package.

The Python-tkinter GUI slider control as created by Listing 10-1 is
depicted in Figure 10-18.

393

CHAPTER 10 CURRENT CONTROL

¥ QB ~rvossasa A GPI0_tintr_slider_cot | Arduino nScience. | Ik 2 wx|1535

" -0x
B B el Seb GRmos pndee bee % P,

Python 4.b.d (derault, Jul 9 2028, 19i08:16]
[BCC 6.3.8 20178616] inu:
Type "copyright", “cr

x
ts® or "license()® for more information.

>
wsss=s RESTART: /home/pl/Documents/GPIO_tkinter_slider cnirl Rvn2.py ses=ss==

b Scale or Slider PWM Value

Figure 10-18. A Python-tkinter GUI Sliding Power Controller for
an Incandescent Lamp Load with Console Value Display of PWM
Percentage

Figure 10-19 is a detailed view of the tkinter scale or slider power
control icon. Arrow captions and percentage numerical quantity identifiers
have been applied to the image by the author while the text and immediate
slider value number are created by the appropriate entries made in Listing 10-1.
Extended detail has been added to Figure 10-19 to aid in describing the
embedded features of the tkinter icon in the “Discussion.”

394

CHAPTER 10 CURRENT CONTROL

ArduinoinScience = O X
PWM Controller 100 o/o

0%\ 46 e
| f

Figure 10-19. A tkinter Scale or Slider Screen Icon Controller for the
RPi.GPIO PWM Library Function

Observations

The sliding scale widget depicted in Figure 10-19 performs as expected
with the lamp filament completely off with the slider to the extreme left
of the trough and at a yellow-red incandescence with the slider at the
extreme right. The variations in filament intensity were similar to those
observed in Chapter 7, Figures 7-7 and 7-9.

The scale or slider control must be moved slowly in order to follow the
changing positional values. The icon has a much finer degree of control as
detailed in the “Discussion” section.

Discussion

All circuitry wiring carrying hundreds of milliamps and amperes of
currents should be properly connected with soldered joints or tight
mechanical connections and insulated to prevent short circuits. High
current discharges from short circuits even at low voltage can produce very
high heat arcs that melt metals, ignite combustibles, and cause painful
burns.

395

CHAPTER 10 CURRENT CONTROL

Tkinter is a Python library that enables the implementation of a
number of icons for assembling an active, custom SCADA GUI for the RPi.
A substantial amount of functionality is built into the icons available from
the tkinter collection.*

In many tutorials on using tkinter and other GUI creation libraries, the
icons such as buttons, sliders, scroll bars, and other screen icon devices
are often referred to as “widgets” and given the symbol w in programming
code.

In Listing 10-1, a tkinter instance of a window is created and set to the
designator of master. The interior of the master window is scanned for
mouse-activated events by the mainloop() function. Widgets are created
on-screen or instantiated in code within the actively scanned area of the
master window to accomplish the task at hand. If the widget in the window
must communicate with the Python program in which the tkinter window
is running, a “callback” function must be invoked to communicate with
code outside the active area of the master window.

In simplified terms, it can be said that each widget is displayed inside
a small window on the monitor display screen. The space inside the small
window is scanned by the tkinter program looking for mouse click “events"
that may occur within the frame. Mouse clicks or mouse button clicks can
be used to drag the edges of screen objects to resize them, activate their
display controls, and minimize, maximize, or exit from the program.

An ability to communicate with the Python code in which the tkinter
window and widget are running allows the experimenter to gain access
to the RPi serial port and as is detailed in Chapter 11 connect the screen
widget to electro-mechanical systems for SCADA operations.

Figure 10-18 depicts the RPi screen obtained when Listing 10-1 is
launched with the diagnostic print statement in the callback function
active. The print statement causes the numerical position of the slider
index that appears over the index line on the slider button to be printed

*effbot.org/tkinterbook/

396

https://effbot.org/tkinterbook/

CHAPTER 10 CURRENT CONTROL

to the Python console. The line containing the print statement in the
scale or slider program’s callback function can be commented out after
code operation has been validated or when not needed for error tracing
diagnostics.

Figure 10-19 has arrow captions that denote the two extreme values
to which the indicator slide can be dragged with the mouse cursor and a
clicked left mouse button. If the experimenter needs to finely set the PWM
value from the screen icon, the index button can be dragged to the desired
approximate position and then adjusted to the final desired position with
the cursor tip. If the slider index button is to be increased in value by single
digits, the cursor tip is placed on the top edge of the slider trough between
the slider button and the 100% end of the slider scale and single-clicked
for each desired single-digit increase in the index button position. If from
the rough positioning the index value is to be decreased, the cursor tip is
placed between the index slider button and the 0% end of the scale and
single-clicked to the desired final position.

Power Control to Inductive Loads
Introduction

A RPi controlling a TIP 122 as depicted in Figure 10-17 can be used to
control the power delivered to a brushless DC motor as depicted in
Figure 10-4, but the coils in the motor are an inductive load and produce
a back electromotive force (EMF) in the form of a voltage spike, when the
magnetic field enveloping the coils collapses. To prevent the back EMF
from destroying the PN junctions in the power transistor, a suitably sized
diode should be placed in parallel with the load.

RPi PWM signals from the scale-slider GUI described previously
could be used to replace the 555 timer-potentiometer power control to a
transistor used to regulate the current delivered to a brushless DC

397

CHAPTER 10 CURRENT CONTROL

motor and hence manage the speed of the motor as seen in Figure 10-4.
A Python break beam RPM monitor could also be set up using the circuitry
described in Chapter 8 to monitor the motor speed and thus duplicate the
DAQFactory exercise in terms of the RPi-Python combination.

However, rather than perform a translation from one system to
another, a very useful higher-current delivery demonstration that does
not use PWM can be developed with the RPi and Python to power stepper
motors.

Experimental

Stepper motors can be inexpensively controlled from the RPi with a

single ULN2803 or ULN2804, eight-Darlington pair array IC ($3 CDN).

A ULN280n consists of an eight-Darlington pair array of power transistors,
in an 18-pin, dual in-line package. (DIP) The IC array has been fabricated
with the bypass diodes already in place for use in driving inductive loads.

Each of the Darlington array transistor pairs is an “open collector”
configuration in which the transistor is acting as an on/off switch. In the
open collector configuration, the device to be powered is connected to the
positive side of the power supply and the open collector of the transistor.
The emitters of all the pairs share a common connection to the negative or
“ground” terminal of the RPi GPIO array and the #9 pin on the ULN280n
IC as seen in Figure 10-20. Toggling the GPIO pins between high and low
switches the current flow through the motor coils and indicator LEDs on
and off.

As has been repeatedly suggested in numerous previous exercises, the
circuitry in which the ULN2803 is to be used should be built up, tested, and
validated from basic first principles to a completed working final electronic
power controller configuration. The RPi program should be developed to
run a series of four LEDs connected to the ULN280n prior to being used in
an attempt to connect to and power an actual stepper motor.

398

CHAPTER 10 CURRENT CONTROL

A standard application of the ULN280n IC array has been modified
with the addition of four LEDs to the basic circuit used for the control of a
stepper motor. A four-LED array aids visually in assembling and validating
the stepwise implementation of this complex system.

é;}@ é;’?@ é;‘i@ 330
- Raspberry nvji;v SIva 4
Pi ULN2803
GPIO 18 1 18 <
| ePio 23 B, .l . ;}
 GPIO 24 3. 16 Jls
GPIO 25 R - S :)

SRR et

m

: 10
erra | . T1° Cag].
array
ground
Power
-Supplg'l'

Figure 10-20. Schematic for Stepper Motor Control with a
ULN2803

Figure 10-20 is a semi-schematic diagram of a connection in which
the RPi GPIO array is interfaced through a power controlling IC to an
illustrative stationary four-coil, multiple permanent magnet rotor, stepper
motor.

As can be seen in the preceding figure, the toggling of GPIO 18 with a
Python code taking the #1 pin on ULN2803 high and then low will cause
a current pulse through the A-E stationary coil creating a magnetic field
and illuminating the first diode. A transient pulse of current through the

399

CHAPTER 10 CURRENT CONTROL

coil will create a localized magnetic field that will cause rotor rotation to

a position in which the nearest permanent magnetic pole of the opposite
sign aligns with that of the transient in the stationary motor coil. If the
Python code controlling the GPIO array now delays for a short period of
time to allow for rotor rotation and field alignment before repeating the
logic high/low toggling action on GPIO 23 to pulse a current through coil
E-B and illuminate the second diode, a second “step” of rotor rotation will
occur. Repetition of the toggling action interspersed with short time delays
for GPIO array pins 24 and 25 will illuminate the third and fourth diodes as
the stepper motor shaft completes one rotation.

In simplified terms, it can be said that to control the stepper motor
from the RPi GPIO array with the circuit of Figure 10-20, the experimenter
must assemble a Python program to sequentially illuminate the LED array
as described in Chapter 3 and in Listings 10-2 and 10-3 provided at the end
of this chapter.

Figure 10-21 depicts one of the author’s experimental configurations
on a prototyping board.

400

CHAPTER 10 CURRENT CONTROL

Figure 10-21. Experimental Setup for Stepper Motor Driver Python
Program

In Figure 10-21 item 1 is a Model 3 Raspberry Pi with the appropriate
GPIO input pins connected to the first four channels of the ULN2803 black
DIP mounted in the center of the prototyping board (item 2). The power
control IC output pins are in turn connected to the four input pins of the
stepper motor wiring harness seen in the upper right-hand corner of the
prototyping board, while four additional wires power the green LED array
seen in the upper left-hand corner of the board. An arrow points to the
illuminated LED in the array. Listing 10-2 is presented as a diagnostic
utility that illuminates a designated LED, but in reality, with the circuit of
Figure 10-20, it “single-steps” the stepper motor. Listing 10-3 written as a
continuous “single stepping” extension of Listing 10-2 in reality provides
fundamental control over stepper motor actions from the RPi GPIO array.

401

CHAPTER 10 CURRENT CONTROL

Item 3 is a USB hub with a thumb drive, and item 4 is a low-power
28BYJ-48 geared stepper motor. The slowly moving motor shaft has a
transparent tape “flag” with black pen marker lines to aid in displaying
shaft rotary motion. Also seen in the figure is a GPIO pin position and
identification aid that helps in pin location during the complex hookup
wiring as seen in Figure 10-21.

Figure 10-22 displays a very inexpensive ($19 CDN) board-mounted
stepper motor and IC driver. A 28BYJ-48 motor (item 1) on the board is
widely used by hobbyists and can be used for this exercise. The small
stepper motor module is widely available from most hobby or electronics
stores and online suppliers. Item 2 is the motor wiring harness, and item 3
is the array of input pins to connect to the GPIO array on RPi.

Figure 10-22. A Commercially Available SMT Stepper Motor Driver
Module

402

CHAPTER 10 CURRENT CONTROL

Although presented in a very simplistic manner, stepper motor control
is not a trivial matter; and in keeping with the introductory nature of this
work, the investigator is referred to the written and online literature for the
explanations and computer code for dealing with the advanced topics of
stepper motor controls as listed in the “Discussion” section of this topic.

A four-unit, D cell battery pack, charged with four alkaline cells, was
initially used by the author to provide a 6 V output and a 12,000 mAh rating
to power a larger stepper motor during wiring validation and rotation
testing. Subsequently a geared stepper motor (approx. 1:64, actually
63.6839:1) commonly used in robotics and available from numerous
mail-order sources as a model 28BY]J-48 ($5 USD) was used to develop
the motor driver programs in the code listings for this exercise. The small
stepper can be powered with 5-12 V and is reportedly capable of 15 rpm
with a DC coil resistance of 50 Q that at 5 volts should draw 1/10 A well
within the RPi 5 V output current capability of slightly below an ampere.
The motor weighs 30 gm and is encased in a metal housing with two screw
mount lugs for easy positioning on experimental setups.

Observations

In keeping with the previously noted philosophy that a working complex
system is assembled from simpler, tested, and operationally validated sub-
components, the following procedure was invoked.

After an initial configuration of the ULN2803, the motor, and the
GPIO array physical pin connections in accordance with that depicted in
Figure 11-20, the LED illumination program of Listing 10-2 was run with a
2-second delay once for each of the GPIO values of 18, 23, 24, and 25 (array
physical pins 12, 16, 18, and 22; recall the array is counted across not along
the row). As each GPIO connection was enumerated, the corresponding
LED illumination was visually confirmed to validate the RPi GPIO
connection to the appropriate motor coil leads.

403

CHAPTER 10 CURRENT CONTROL

After the system validation with the individual LEDs, the second
program of Listing 10-3 using a while loop to step through the four coil
connections was launched with the same 2 s delay as used previously to
validate the correct sequential activation of the motor coils and confirm
the rotation of the stepper motor.

A 2 s time delay produces a very small step in the highly geared motor,
but decreasing the time delay to 1/8 of a second induced a slow but
distinct stepping action.

Discussion

Listings 10-2 and 10-3 are rudimentary codes that are designed to
demonstrate to the investigator how a stepper motor works and is
controlled. To expand motor applications, the experimenter can reverse
the motor’s continuous rotation by sequentially activating the coils in the
reverse manner than is presented in the rotation programs. To drive

the stepper motor into a positional service in which the rotor steps a
fixed number of increments in a clockwise or counterclockwise rotation,
the correct coil-energizing code can be enclosed in a Python do loop
construct.

There are a significant number of different actions that can be
programmed into a stepper motor that are beyond the simple codes
presented here to implement forward and reverse continuous rotation
and speed variation that are detailed in the large engineering and robotics
literature on stepper motors that should be examined for more complex
stepper motor applications.

For applications or experimenting with larger stepper motors such as
those salvaged from obsolete equipment, a separate power supply and
heavier current draws may be required to achieve motor rotation. The
GPIO array can be used to activate either Darlington pair transistors or
heavier MOSFET devices, but both of these types of transistor must be

404

CHAPTER 10 CURRENT CONTROL

protected with bypass diodes to avoid semiconductor destruction by the
back EMF from the motor coils. Heavier current draws by larger systems
may also require heat sinks for the semiconductors in use.

Control of AC Currents
Introduction

Python and the RPi can be used to demonstrate the limited PWM control
of AC electrical energy with the same, very inexpensive ICs used with the
DAQFactory programs as listed previously. Multiple ampere triac devices
capable of over 400 VAC operation and optical isolation devices can be
obtained from mail-order houses for less than $2. An incandescent light
bulb powered from the 110 V AC line can be used as an electrical load for
the RPi demonstration as illustrated in Figure 10-12 with these inexpensive
components.

For safety and compliance with the law, all wiring involving line
electrical energy must be completely covered or insulated when assembled
in accordance with local electrical wiring and building codes.

Experimental

Figure 10-23 depicts the circuit to be used to control the AC power
delivered to the incandescent light bulb load. The BTA06 triac should be
mounted on a heat sink sufficient for the passage of current that will be
used in the load selected for the exercise. Small incandescent lamps for
the interiors of domestic cooking ovens can be obtained in small wattages
down to 15 watts.

405

CHAPTER 10 CURRENT CONTROL

Load
Current Current —— N\~ AC Mains
limiting VA 15 Watt Light Bulb
RPi GPIC Pin 21 resistor MOC 3051 limiting MT1

program control Opti resistor
ptical g BTA0G-400C
ofPWMviue e AA— R 220 Ohm Lriac yovacea
220 Ohm e
AC Mains

Figure 10-23. 110 VAC Line Control for Raspberry Pi

The circuit of Figure 10-23 has replaced the 555 timer and
potentiometer of Figure 10-13 used in the DAQFactory line power control
exercise with the pulse width modulation control function available from
the RPi. The GPIO pin has sufficient power to not only drive the triac gate
but also simultaneously drive an optional LED “pilot” light and its current
limiting resistor connected to the GPIO 21 pin and ground immediately
before the 220 Q resistor protecting the input to the MOC 3061.

As noted, the RPi.GPIO library contains the functions necessary
to apply a PWM signal from the GPIO array with sufficient power to
illuminate a 5 mm LED. An internal LED in the MOC 3061 is used to turn
on the triac and thus pass power to the lamp filament to light the bulb.

Listing 10-1 is the PWM program for this power control. The listed
program generates the scale or slider widget depicted in Figures 10-18 and
10-19, and the duty cycle is determined by the scale or slider horizontal
position.

A RPi.GPIO library implementation of a PWM power control operation
involves the selection and setting of a number of variable parameters. The
operator must select the frequency of the PWM pulse train and the initial
duty cycle of the control signal and manually insert the selections in the
two lines of code listed in the following. Once the selections are entered

406

CHAPTER 10 CURRENT CONTROL

into the code, the program can be run, and the slider button will apply the
custom configured PWM power control signal to the triac controlling the
power illuminating the lamp:

pwm = GPIO.PWM(18, 500) # PWM signal on pin 18
set to 500Hz

pwm.start(0) # initial starting value for the duty
cycle

To demonstrate the difference between PWM power control with
DC and AC power supplies, the slider or scale program is run starting
with a typical default PWM frequency of 500 Hz. When the slider icon is
displayed, the lamp should be cycled through its 0-100% power cycle, and
the effects realized with the power control technique noted.

To accumulate more data to evaluate the effect of the different PWM
frequencies on the AC power delivered to the lamp, the frequencies
of the PWM signal can be manually halved from the line frequency
approximation of 64 Hz down to 8 Hz, and notes on the effects seen on the
light bulb illumination can be collected.

Observations

Table 10-2 tabulates the semi-quantitative effects seen in the illumination
of the small AC-powered light bulb at the various nominal PWM
frequencies.

407

CHAPTER 10 CURRENT CONTROL

Table 10-2. 110 VAC Light Bulb Luminous Output at

Nominal PWM Frequency

Light Meter Deflection - 15 watt AC Bulb

PWM Hz Nominal Power Applied
Frequency 1% 50% 100%
64 6 mm 14 mm 14 mm
32 3 mm 11 mm 14 mm
16 0 10 mm 14 mm
8 0 7 mm 14 mm

Luminosity was semi-quantitatively measured with a photographic
light meter by measuring the dial indicator displacement from its zero
position at a fixed distance from the illuminated light bulb.

Discussion

A PWM frequency variation study is possible with the RPi and the RPi.GPIO
library because the PWM frequency is software and not hardware controlled.

As can be seen from Table 10-2, the optimum correlation between
PWM frequency and power delivery to the light bulb appears to occur
between 16 and 32 Hz.

Attempts to apply PWM control methods to a 60- or 50-cycle AC power
source are only coarsely effective when the PWM signal wavelength is
equal to or larger than the wavelength of the power delivered to the load.

As indicated by the data tabulated in Table 10-2 and depicted in
Figure 10-15, when the PWM signal is applied to an AC power source with
a wavelength shorter than that of the control signal, the PWM function can

408

CHAPTER 10 CURRENT CONTROL

exert a coarse control over the power delivered to the load. A low-intensity
lamp flicker at low PWM values can be caused by the control signal turning
the power signal on at its maximum point in the power cycle. As the length
of the PWM signal increases, the power signal is able to cycle through one
or more complete cycles; and as observed in the experiments, the flicker or
flashing dies out as the PWM signal approaches 100% duty cycle.

The investigator will see both light flickering of variable intensity and
flickering from completely off to full on evident in virtually all the PWM
frequency variation experiments conducted. The lack of coordination
between the phase angles of the two signals creates completely random
flickering and cyclic pulsing of the lamp intensity in the very responsive
low-mass lamp filament.

As noted previously, in order for the PWM signal to be used to
modulate or control the application to the load of only a portion of the AC
waveform called phase angle control, complex additional circuitry must
be in place to detect and coordinate the zero-crossing point of both the
power supply wave and the PWM signal. A variation of PWM control of an
AC power source can be used for heating and other long-term applications
where multiple full power cycles are applied to the load in timed pulses.

Code Listings
Raspberry Pi-Python Codes

Listing 10-1. A Horizontal Sliding Current Control Icon

A Horizontal Sliding Current Control Icon for the Raspberry
Pi GPIO Array

In RPI.GPIO pin 18 in BCM numbering or pin 12 in BOARD
numbering has

a PWM function of 0-100%. A slider is a standard Tkinter icon
with a

409

CHAPTER 10 CURRENT CONTROL

call back function to send slider position data 0 to 100%
back to the python
program running the RPI.GPIO library to adjust / alter the
PWM values.
#
from tkinter import *
import RPi.GPIO as GPIO
import time
#
library set up
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(18,GPI0.0UT)
pwm = GPIO.PWM(18, 500) # PWM signal on pin 18 set to 500Hz
pwm.start(0) # initial starting value for the duty cycle
#
tkinter scale or slider control icon set up
#
set up call back function to process the slider value. Print
statement
in callback is a development/error diagnostic utility
#
def Val(val): # callback function definition (outside Tk()
window instance)
val = w.get() # the get function reads the slider value
print(val) # diagnostic utility comment out when not
in use
pwm.ChangeDutyCycle(val) # RPI library function to alter
the PWM power applied to the load

410

CHAPTER 10 CURRENT CONTROL

master = Tk() # window instance
master.title("Arduino in Science") # a title for the main
window that holds the
widget
w = Scale(master, from =0, t0=100, orient=HORIZONTAL,
label="PWM Controller", command=Val) # creates widget, scale,
text and names callback

function
w.pack() # display scale or slider icon instance
#
mainloop() # main loop over window construct.

GPIO.cleanup() # reset GPIO pins to low.

Listing 10-2. RPi GPIO Pin Identification Utility
Locate Physical Pins and GPIO Designations with LEDs
import RPi.GPIO as GPIO

import time
#
GPIO0.setmode(GPIO.BCM)

GPIO.setwarnings(False)
#
GPIO.setup(25, GPIO.OUT)

GPIO.output(25, GPIO.HIGH) # caution open collector - ULM2803
time.sleep(2)

GPIO.output(25, GPIO.LOW)

411

CHAPTER 10 CURRENT CONTROL

Listing 10-3. Continuous Stepper Motor Rotation
Illuminate LEDS repeatedly in sequence
import RPi.GPIO as GPIO

import time
#
GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#

A while loop repeats the cycle till terminated from the
keyboard

#

while True:

illuminate the first LED on GPIO 18
GPIO.setup(18, GPIO.OUT)
GPIO.output(18, GPIO.HIGH)
time.sleep(0.125)

GPIO.output(18, GPIO.LOW)
#

illuminate the second LED on GPIO 23
GPIO0.setup(23, GPIO.OUT)
GPIO.output(23, GPIO.HIGH)
time.sleep(0.125)

GPI0.output(23, GPIO.LOW)
illuminate the third LED on GPIO 24

412

CHAPTER 10 CURRENT CONTROL

GPIO.setup(24, GPIO.OUT)

GPIO0.output(24, GPIO.HIGH)

time.sleep(0.125)

GPIO.output(24, GPIO.LOW)
illuminate the fourth LED on GPIO 25
GPIO.setup(25, GPIO.OUT)

GPIO.output(25, GPIO.HIGH)

time.sleep(0.125)

GPIO.output(25, GPIO.LOW)

Summary

Constant current sources are required for numerous

electronic and experimental science operations.

Exacting DC current control can be achieved in the
analog format with discrete electronic components or
integrated circuits and in the digital format with pulse
width modulation techniques.

Sinusoidal AC current control uses solid-state devices
functioning as controlled diodes passing selected
portions of the sine wave power profile to the load as
determined by device gate activation.

Precise current control is required to regulate typical
loads such as continuous motor rotation speeds or
activate discrete inductive, stepper motor actions.

413

CHAPTER 10 CURRENT CONTROL

414

Exercises demonstrating the problems inherent in
using basic DC pulse width modulation techniques as
AC power controls are presented as a prelude for
understanding advanced microcontroller techniques
using a PWM variant to control mains power.

In Chapter 11, the microcontroller is introduced, and
its ability to function as a “smart” I/0O device and sensor
interface is presented.

CHAPTER 11

Microcontrollers
and Serial
Communications

During the 40 years in which the 555 timer, 741 op-amp, and Exar XR-2209
have been in production, complete central processing units (CPUs) for
digital computing have been developed in the form of microprocessors.
Microprocessors have in some circumstances been used to create far more
flexible control systems, with fewer parts than were available with the
legacy, discrete, multiple-chip-based assemblies.

A microprocessor is a computer central processing unit in an IC chip
format, while a microcontroller could be considered to be a “micro-
miniature computer” designed for embedded applications. An embedded
system is usually one dedicated to a specific task, may be written in the
assembly or the C language for optimum speed and efficiency, and may
have limited I/O capabilities. A microcontroller contains a microprocessor,
memories, and programmable input/output peripherals, all combined to
form a single unit either in a printed circuit board format or as an IC chip.

Microprocessors have been in use for many years, and Parallax Inc’s
“BASIC Stamp” and the PIC series of microprocessors from the Microchip
company are two of the systems that have been available to the advanced

© Richard J. Smythe 2021 415
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_11

https://doi.org/10.1007/978-1-4842-6778-3_11#DOI

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

hobbyists and specialists for many years. Both the Stamp and PIC series
of microcontrollers require some detailed knowledge of computer science
and electronics to be used in nontrivial applications.

Readily available constantly improving, inexpensive microprocessor
chips, advances in software, and Internet growth have led to the
establishment of sizable “online” communities of physical computing
enthusiasts. Physical computing interest has grown to the size where
commercial enterprises are able to supply the rapidly growing Internet-
based online communities with circuit boards and integrated circuitry. In
forums, individual community members exchange ideas and information,
thus developing “open source” systems for which members contribute
both written code software and hardware configuration developments to
improve and expand the applications for the systems at hand.

Interest in physical computing in which a PC is used to control electro-
mechanical systems has grown to the point at which online, open source
physical computing platforms have come into being permitting both the
non-engineering or new computer experimentalist to begin to create and
use microcontroller devices to control electro-mechanical systems.

An open source platform called the Arduino project from Italy has
been specifically developed in which the Atmel series of microprocessor
chips has been used to build a series of very small and inexpensive
microcontroller circuit boards. Originally conceived to provide non-
specialists with the ability to endow design, artistic, and hobbyist projects
with interactive capabilities, the system has also become a popular rapid
prototyping technique for the trained or experienced electro-mechanical
developers and serious experimental researchers.

A microcontroller is able to accept coded instructions, process those
instructions, and manipulate its on-chip input and output peripherals, to
perform the task required by the coding. Usually the coded instructions are
written and then assembled on a host PC running a program known as an

416

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

“integrated development environment” (IDE). Error-free code developed
in the IDE is then transferred (or uploaded) into the microcontroller via a
USB connection for actual execution.

The Arduino project has produced several circuit boards that
use the ATmega series of 8-bit microprocessor chips, together with
clock oscillators and additional circuitry to form a USB-accessible,
programmable microcomputer. The boards are programmed from a PC-
hosted IDE based upon the Processing programming language. Both the
Arduino and Processing language projects are open source creations with
freely downloadable software, tutorials, projects, and online help from
user forums. The systems are fully supported by numerous textbooks,
manuals, and commercially available hardware sources and, through the
online forums, are constantly advancing and evolving.

As of the time of this writing, the most recent Arduino board release
is the Uno revision 3. Figure 11-1 depicts an original Uno board that uses
an Atmel AT328 (8-bit) microprocessor, flash, SRAM (static random-
access memory), and EEPROM (electrically erasable programmable
read-only memory) with a 16 MHz clock and serial port I/0. The clock
speed provides time resolution into the microsecond range, and the serial
port I/0 can be accessed by the COM (serial communications) ports of
the PC hosting DAQFactory. Variations of the Uno board are available
with Microchip PIC 32-bit microprocessors that use significantly greater
clock speeds, have greatly extended I/O capabilities, and are completely
compatible with the code previously developed for the Arduino 8-bit
systems. (In Figure 11-1, note the socket mounting of the main chip. Newer
devices are all surface mount technology (SMT).)

Microprocessors provide flexibility and are able to provide
programmed timing functions in both input and output modes that greatly
improve the control and reading of sensors or motion control devices.

417

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

An open source platform concept is extremely useful for experimental
science. A microprocessor chip supported by various I/0 interfacing
circuitry, a crystal-controlled clock, and other supporting hardware, all
mounted on a very small, inexpensive, readily available circuit board, can
function as a “smart” peripheral. Smart peripherals can greatly augment
both the sensitivity and range of data collection through high-speed time
averaging that often reveals trends, which might otherwise remain hidden
from the experimenter.

MADE

ARDUINO

(

r" w&-'mt-tﬂtdﬂ E (R

d .
X e 1

Figure 11-1. The Arduino Uno Microcontroller

An open source concept also brings many minds from different
disciplines to focus on a single problem, and the advantage that this brings
to the increase in the development of knowledge is virtually unmeasurable.
In the following exercises, the basic ability of the microprocessor to read
sensors and control motion devices will be demonstrated as a basis for
more complex and focused applications in actual experimental scientific
measurements. After establishing the communications link between the

418

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Arduino monitoring a simple light-dependent resistor (LDR) and the host
computer, the ability of the microprocessor to expand the functionality of
experimental inquiry through such concepts as digital signal processing
and increased timing capability will be demonstrated.

In preparation for subsequent experimental measurements
and assembly of laboratory apparatus, the basics of two-way serial
communications with simple electro-optical light detection and PC
graphical display of streamed sensor data will be developed in this chapter.

Experimental: Microprocessor to Host PC
Communications — “Uploading”

Before proceeding with this exercise, the reader should be familiar with
the fundamentals of microprocessors and their applications. As noted,
the Arduino project is an excellent place for those without a background
in physical computing or electronics to begin to learn and apply the
basic skills required to use microprocessors. There are sufficient books,
tutorials, and project descriptions available at the open source website
that, if read or reviewed, will enable the experimental researcher to
become comfortable in designing and creating microprocessor-controlled
experimental setups.
The current exercise is predominantly concerned with interfacing
a microprocessor with a PC running or hosting the DAQFactory
SCADA software. Once the interface is established, the flexibility of
microprocessors will be evident as analog-to-digital converted data is
streamed out to the PC on the serial connection between sensor and PC
for supplementary data processing and very flexible graphical data display.
To begin assembling the utilities required to use the microprocessor,
download and expand the compressed files from the Arduino website for
the operating system in use (Windows and RPi for the author). Install the
drivers for the Uno board on the PC hosting the DAQFactory software.

419

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Once the PC is able to see the Uno board, launch the IDE for the Arduino
and run the “Blink” test software, termed a “sketch,” to ensure the basic
hardware-software connection between PC and Uno board is functional.

To transfer data from the Uno board to the PC and ultimately into
the DAQFactory software for graphical display, a serial communications
protocol must be established between the software of the two computing
devices. The communications protocol must operate both ways permitting
data to be “uploaded” to the PC-hosted DAQFactory software from
the Uno board and to “download” to the UNO instructions and control
commands from the PC DAQFactory software. The bidirectional data
transfer is conducted by the USB connected between the PC and Uno
board. The two software “ends” of the USB are the communications (COM)
ports on either of the two systems. Care must be exercised to ensure that
the microcontroller is communicating with the correct COM port being
used by the software on the PC. The PC usually has several COM ports,
while the microcontroller may have only one.

COM port communication consists of passing ones and zeros back and
forth between the PC and the peripheral. Since the electrical pulses that
make up the binary information are transmitted and received in a linear
fashion, one after another, the data transmission is called serial. The more
sophisticated and powerful PC is termed the host/master, and the smaller
dedicated microcontroller is termed the client/slave. Binary information
is uploaded from client/slave to host/master and downloaded from host/
master to client/slave. All binary information transfer between the two
devices is conducted under a standard set of rules called a “serial protocol.”
There are many standard serial protocols in use, and it is possible to create
a simple special serial protocol if required. The DAQFactory software
manual contains an entire chapter on serial communications, and a
separate “Serial/Ethernet Communications Guide” is available from the
AzeoTech website. By following these guides with the suggested code, the
experimentalist will be able to create and configure a simple protocol to

420

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

receive streamed data in the “On Receive” event of their user protocol as
seen in Figure 11-7. Once the ability to receive streamed data has been
established and is made available as a named DAQFactory channel, the
powerful statistical and graphics capabilities of DAQFactory can be used to
display the incoming data. There are several methods that DAQFactory can
use to implement serial communications that will be developed in later
portions of this manuscript.

As the Uno-type boards are functioning as a “smart” sensor or
peripheral and may be moved around between different fixed location
workstations, mobile wireless laptops, notebooks, or other computing
devices, different COM ports may be required to support the serial
communications. COM port selection can be managed from the Tools
menu on the Arduino IDE, while the location of the COM port being
used on the PC can be located with the operating system utilities such as
“Device Manager” in Windows-based systems.

As noted in Chapter 8 on counting and timing, there is a limit to the
response time of the DAQFactory software. If the Arduino board software
produces a stream of data that is too fast for DAQFactory to process, the
cursor response of the main screen becomes sluggish and erratic. To slow
a data stream that is too fast, a delay statement can be entered into the
main loop of the Arduino sketch to moderate the transmission rate of the
outgoing data.

The Arduino IDE monitor does not display the data streaming from
the Uno board to the PC when the DAQFactory program is receiving the
stream. The stream arriving at the PC can be displayed graphically or
“broadcast” for entry into a spreadsheet such as Excel.

In the primary portion of this exercise, a light-dependent resistor will
be used to provide an analog, varying input for the Arduino Uno board
that will be passed through an analog-to-digital converter (ADC) and then
serially transmitted to the host for a virtually real-time-based, graphical
display by the DAQFactory software.

421

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Hardware

A USB microcontroller board, such as an Arduino Uno, will be used to
monitor the output from a 5 V biased voltage divider, formed by a light-
dependent resistor and a 10 kQ resistor. The Arduino is providing the
10-bit A/D converted value in the very small 2.75 in (7 cm) x 2 in (5 cm) x
0.5 in (1.2 cm) circuit board rather than the much larger robust 4 in (10.3
cm) x 6in (15.2 cm) x 1 in (2.45 cm) LabJack.

Circuit Schematic
+5v
L
D
R
Arduino AG
10k ohm

Figure 11-2. An LDR Biasing Circuit

The 5 V supply and ground are derived from the Arduino board. Analog-
to-digital conversion is accomplished by connecting the junction of

the sensor and resistor to the first analog input pin A0 (A zero) on the
microcontroller. The analog signal is converted into a digital value between
1023 and 0 (1024 or 2™ data points). The light-dependent resistor is a thin
flat strip of cadmium sulfide semiconductor mounted on a flat plane,
encased with a protective transparent coating. Cadmium sulfide photo
resistors are available from many local, mail-order, or online electronics

supply sources and are usually priced in the $1-2 range.

422

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Software

The software for this “upload” portion of the exercise is divided into two
parts. The first programs the Arduino board, and the second provides
the “strip chart recorder” graphical output display from the DAQFactory
program.

Listing 11-1 (all listings are at the end of the chapter) provides a
copy of the Arduino sketch that monitors the voltage at the LDR-10 k€2
resistor junction. (A sketch is the Arduino documentation name for the
set of program instructions assembled and validated in the integrated
development environment (IDE) program running on the PC or RPi that
the microcontroller will follow.)

In essence the Arduino code reads the junction voltage value with the
A0 input of the system’s 10-bit A/D converter and then prints the value to
the Arduino COM 3 port with a line feed instruction after each value, every
500 ms.

In order for the DAQFactory program to be able to read the data placed
on the COM 3 port by the Arduino, a port identified as “com_3” must be
created and configured in the SCADA graphing software.

The author’s DAQFactory program channel table was configured with
the channel name “ArduinoStream” that was set to receive data from the
device called com_3. The com_3 port had been named, configured, and
then set up according to the following sequence of selections depicted in
Figures 11-3 to 11-8.

Initially the Quick menu of Figure 11-3 is used to start the

configuration process.

423

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

My DAGFactory - ArduinoStreamingDataCommd *

File Edt View [Quick | Debug Layout Tooks Help
[& B 4 [9 Device Configuration... aTen
Delete Comm Device...
Haote... Ctri=N
‘aph|
1000 {8 Goto Cnannei Tabie CmT
m Goto Workspace Ctri=W
900 {[Goto Page View [V IO
Goto Command Line (-]]
800 Gote Comm Manitor CtieF2 [=een

-

700 ; —

Figure 11-3. Quick Device Configuration

Selecting the Device Configuration option brings up the Device
Configuration window of Figure 11-4.

| orvice Conhguration: x L
Plassn salect o Diwvicn b confignee:] [
com_3
Coret. Carcel
ICP7000
o

LablackUD
News Sanal (RS Z32/455) £ Eamat [TCPAF) device
gg User Device.

The device configurater is used to set various settings of your

dewvices using dulog windows. Some devices, such as the serial

M | device, recure the device configurator to oroperly set up the
dewice. Others simply use the configurator as & more user

[2 | frendiy way to set default parsmeters. To cpen the device v

configurator, either click Guick - -, dlick on
ot i g S e i i

Figure 11-4. Device Configuration Window
From the window of Figure 11-4, the New Serial selection is made to

bring up the Ethernet / Serial Device port configuration window as seen in
Figure 11-5.

424

CHAPTER 11

MICROCONTROLLERS AND SERIAL COMMUNICATIONS

i 1 e

Figure 11-5. Serial Device Naming and Configuration Selection

Ethernet / Serial Device b3 L
Device Name: | | o |
Senial Port / Etherneat Port: Detete | Cancel

Com 3 Configure '_"
| Com8 x
] Commd __ Monitor_|
New Seiial (R5232/422/485) |
New Ethemet (TCP) Chent |
Protocol
[JABSLLS A __Coniigue_|
| ArdunoD staStream
) ArduinoD ataS treamOid
I Melseca
I MitsubishiF
ModbusASCIl
ModbusASCI Slave
I ModosRTU Lol
“IModbusRTU Slave it

In the window of Figure 11-5, the new com device must be named with

a DAQFactory-acceptable name (names must begin with letters and can

contain only letters, numbers, and the underscore). After having entered

an acceptable name, the Configure button must be clicked to bring up the

Serial Port Configuration window as seen in Figure 11-6.

t Serial Port Configuration X r
ConnectionNeme: [com3
Seislpon#(COMy [1 Cancel | -
Port parameters: Flow Controt

Baud m Type: Mone -
BeSize: [8 | RTS Controk [Enable ~]
Paiy: [None +| DTR Contiot [Ensble -]
StopBits [1 | DSR Flow Controt ™
Timeout [1000 fmsec) DSRSenstiviy I~
CTS Flow Controt [~
£ I MisibishiFX -

Figure 11-6. Serial Port Configuration Window

425

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

For the purposes of this introductory exercise, the default options
should be accepted and the Save button used to return to the Ethernet /
Serial Device window of Figure 11-5.

To complete the connection between the Arduino serial port and the
DAQFactory port, a serial communications method or protocol must be
specified with the New Protocol button of the Ethernet / Serial Device
window.

Figure 11-7 displays the Protocol Configuration window.

T A LT &
| Protacel Configuration X

ProtocolMame: [ArdunoD staSheom i Nams: [CADAGF octony\udh oS e smedD 93 330 [o

Add /0 Type | Add Function
l

Figure 11-7. The Protocol Configuration Window and “On Receive”
Event Data Parsing Script

On opening this window, the Protocol Name and File Name are blank,
and the I/0 Types and Functions selection defaults to the top of the list.
A name should be specified for the protocol, and a file name with the
location must also be specified for the protocol that is stored separately
from the rest of the normal documents. The separate storage of the
protocol allows sharing of the protocol but also means the protocol has to
be moved if the host computer is updated or changed.

426

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

To complete the connection in which the Arduino is independently
streaming out data, a script must be prepared to be executed each time
a complete entity of data arrives on the com_3 port. The script is entered
into the “On Receive” selection of the I/O Types and Functions list. The
complete code is in Listing 11-2.

Once the com port protocol has been created and saved, the Channel
Table View can be used to fill in the entries required to establish the
channel to receive the streamed Arduino data as depicted in Figure 11-8.

M DAGRactory - ArduircStrearringDataCornmd_oe 3
File Edt Viw Quick Debug Layout Tools Help

ODEd B sny @ 2 R ALT .

Chiancel Table View '

Add | [Dughcate [iviete Empot | _lmpont | Aoy Diagand
Man

TCrareeiName: T Device Type: T | DR |UD Type Chn % Tewng Offset | Conversion: THistony, Persst. | Avg? @ Avg: Ouck Note / Special / 0FT: | DAGCeen?, DL Hat | DC It
asdurcBchonl {Commd 0 1 000 000MHone 72000 o 8 O 1

» fudinciuesn oo 3 [0 000 0.00Hone 000 (X~ 0 0
chobundly [Test 0 AkD 0 000 DO00Hone %000 [(m| 0 E]
cheramg iYesl 0 AwD 0 000 0.00Hone 3000 o ol 1 A

Figure 11-8. Creation of the Channel for Streamed Data

With the filling in of the entries in the Channel Table View and the
clicking of the “Apply” button seen in Figure 11-8, the channel should
begin filling with timestamped data.

The data can be viewed in tabulated form by expanding the Channels
heading in the workspace panel and double-clicking the desired channel
to bring up the Channel details window with five tabs. Selecting the Table
tab will display the timestamp and data arriving at the port with the
most recent values at the top (see Chapter 6, Figure 6-14). The Graph tab
displays a graph of the data. The Event tab displays any code that may be
applied to data manipulation of the channel values. The Main and Details
tabs contain numerous named channel configurations and options.

427

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Page Components Required

Channel data can be displayed with a two-dimensional or 2D graph screen
component expanded to use as much of the screen as possible. A suitable
display is seen in Figure 11-9 with the time axis set to a 5-minute interval
(300 seconds) and the Arduino ADC converter values received, scaled from
0 to 1000 units on the charted output.

Observations

In a darkened condition, the cadmium sulfide, light-dependent resistor
(LDR) exhibits a resistance of 75 kQ. Under the illumination of a close,
very strong white LED, the LDR resistance drops to 250 Q. In the circuit
configuration depicted in Figure 11-2, the observed voltage should vary
from approximately 0.6 to 5 V as the lighting changes from darkness to
intense brightness. The Arduino ADC is a 10-bit device that will scale
the voltage to 1024 units or 4.9 mV/division at 5 V input. A 5-volt input
is realized when the LDR resistance drops virtually to zero or under
very strong lighting conditions. The configuration in which the LDR and
fixed resistor are assembled causes the graphical trace to rise upward in
proportion to the intensity or brightness of the light falling on the detector.
The graphical display thus mirrors what the eye sees as higher illumination
is toward the top of the graph and deepening darkness causes the trace to
decrease. The simple plotting of the streamed Arduino data is not linear
with illumination. (See “Discussion.”)

Variations in the light falling on the Arduino-mounted LDR caused the
response changes depicted in Figure 11-9.

428

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

A Factony - ArcsnoSereamingDiataComend_or_3
Pl St Vew G Debug L feoh Help
DEH LB snd & 7 R BO2,

LDR Resistance - Relative lllumination
Graphical Display of ArduinoStream Data Channel
1000 - r T

£
5
£
s
= 200
s 4
E 100 S .
o -t :
10:08 10:09 _ 10:10 10:11

19 Tue Sep 2017 Time
ammany | At

For b, pre Kt

Figure 11-9. Graphical Recording of lllumination Variation on
Arduino-Mounted LDR

In Figure 11-9 a strong LED when shone on the LDR saturated the
monitoring system in section 1. In section 2 the overhead lights were
turned off, and in section 3 the room lights were turned off, leaving
only the diffused window light to illuminate the detector. Section 4 was
recorded with a cover placed over the LDR in the darkened room, and
section 5 measured the light leakage into the cover when the room lights
were turned back on. Section 6 shows the reproducibility of the monitor
when normal room lighting was restored.

Although the response of the LDR is quick and sensitive, rapid,
flickering obstruction of the light falling on the LDR causes the display to
lag behind the lighting changes.

429

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Discussion

The speed at which the clock on the microprocessor runs provides

access to the higher speeds required to monitor some rapidly occurring
physiochemical events in the experimental sciences. However, the serial
port is easily able to receive data at a rate far above that at which the
computer screen can be updated. If the rate of data being streamed into the
PC port is too high, the cursor response will slow, and it has actually frozen
the cursor on the author’s system. If the data rate is too high, the Arduino
may have to be slowed with a delay statement in the microprocessor’s
main loop. Alternatively the data can be streamed into the DAQFactory
program and the logging functions used to store data in files at up to 20
points per second (20 Hz) for later retrieval and examination. The LabJack
devices (model U3) are able to sample at full resolution at data rates up to
2500 samples/s. Data streamed or collected at these rates must be saved in
memory for processing after the closure of the data stream.

A light-dependent resistor is a thin film of semiconductor deposited
beneath a protective transparent covering. Ambient light falling on
the detector causes electrons to be knocked from the semiconducting
material, and the resistance of the device drops as current flows through
the strip and the circuit connected to its two leads. The dark resistance
for the author’s setup is usually measured in the range of 75 kQ or higher,
while under strong illumination, the resistance may fall to only several
hundreds of ohms. LDRs can be obtained with dark resistances into the
megohm range and usually exhibit a green spectral response similar to
that of the human eye.

Cadmium sulfide is one of the more common and inexpensive light-
dependent resistors. When the circuit shown in Figure 11-2 is used to
create a varying voltage and the signal is connected to the analog input pin
A0 of the Arduino board, a 10-bit analog-to-digital converter provides a
numerical value with a 1 in 1024 part resolution of the input analog signal
to the USB-COM port serial output.

430

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Configuring a light-sensitive resistor in a voltage divider circuit
provides a very simple method for conversion of light intensity into a
measurable voltage. However, the conversion is not linear.

In the circuit of Figure 11-2, the LDR has been connected to the 5V
supply and a 10 kQ “pull-down” resistor connected between the LDR
and ground. The analog voltage observed at the LDR-pull-down resistor
junction is given by the voltage divider equation

Vanalog = Vis * (Rpull down/ (RLDR + Rpull down))

A typical cadmium sulfide LDR may vary from a dark resistance of
75 kQ to a 1 kQ resistance in bright light. An Excel spreadsheet can be
used, as illustrated in Figure 11-10, to calculate and display a plotting of
the analog voltage output for variations in the resistance of the LDR as
depicted in the circuit drawn in Figure 11-2.

>

B [

1 Voltage Divider Simulator
2 ¥rullbn =100 | Voltage Divider Simulator
5 RLOC | Vout a0
13 [0./

50| 0rs
8 HE000 | 0758 o |
3 54000 | 0781
0 52000 0806
7l 5000 | 085 3300 |
2 48000 0882
o AE000 [i=:5] \
H aamon_| nse 200 A ¥
" 000 | %2
® 0000|1000 i
i) T0 | 108 Biswo |
» 000 1087 &
B 00| TEE i
-] 22000 180 FEL N
an _i_ﬁ _iﬁ_i _‘5_ 0 | :
2 28000 13
2 000 139 180 b
) o0 ar |
) 22000 | 1%3 9
= 000 | 16e7 - =
2 W0 | 17 —
-]] 1923 T
) W0 2083 00
n 200 2273
3 w0 | 250 |
2 W00 | 277 0
<) =100 EY] L] 10000 20000 0000 20000 80000 #0000 20000
] (a0 | 350 | [rpr——- -
» 2000 4EBT
=

Figure 11-10. Analog Output of a 10 k€2-LDR Voltage Divider
Circuit

431

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

The curvature seen in Figure 11-10 is typical of that seen when the
sensor is between the voltage source and the grounded pull-down resistor.
The curve will be the same exponential shape but inverted for a circuit
in which the sensor is connected between ground and a pull-up
resistor to the positive voltage supply. Each curve generated for an
individual LDR and fixed value resistor will be slightly different because
of the manufacturing variations in both the photocell and resistance.

The preceding curve is best represented by a logarithmic curve of the form
y =-1.053In(x) + 12.173 with a variance of R* = 0.9939.

As can be seen in Figure 11-10, there are two areas in which the
curvature of the analog output decreases and starts to trend toward
linearity. In the upper left-hand quadrant of the plot, there are high analog
output changes being caused by small changes in the LDR resistance.

In the lower right-hand quadrant of the plot, large changes in the LDR
resistance are making small changes in the low value of the voltage output.
The experimenter may wish to change the value of the pull-up or pull-
down resistor and replot the curve shown previously to find the optimum
conditions for using a resistive sensor in a voltage divider configuration.
For accurate quantitative use of the voltage divider configuration for
sensor measurements, the investigator should calibrate the system at hand
with as many data points as possible over the sensor range of interest.

Experimental: Host PC to Microprocessor
Communications — “Downloading”

Introduction

In the first portion of this exercise, data has been harvested by the
microprocessor and sent to the host computer for real-time graphical
display, archival storage, and possible production of a hardcopy format.

432

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

In this section the host computer and microprocessor will be
configured for the Arduino to receive commands from the host via the
serial port. The host will be configured with a DAQFactory control screen
containing buttons that will activate a LED and start a very simple script to
cycle a LED on and off several times.

Hardware

For simplicity an LED and an appropriate current limiting resistor are
inserted into a prototyping board and connected in series between pin 13
and ground on the Arduino board.

Software

The author’s DAQFactory program for the graphical display of streamed
Arduino data was used to provide a fresh blank page on which several
buttons were installed as illustrated in Figure 11-11.

Button to Activate
Arduino LED Buttons for manual control of Arduino LED
Flash Sequence

Start/Stop | ON ‘ OFF

Figure 11-11. Buttons for Control of Arduino LED

Each of the buttons labeled ON and OFF was configured as described
in previous exercises. For simplicity, in situations where a simple action is
required from the downloaded instruction, the Quick Sequence selection
was made from the action list as shown in Figure 11-12.

By clicking the highlighted Quick Sequence entry, the text screen of
Figure 11-13 is opened, and the required instructions can be entered.

433

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Button Component x |

Man Action |

Main Tab:

Text: The caption that is displayed on the button.

Text Color: The color of the caption displayed on the button. it
Figure 11-12. The Quick Sequence Selection
Button Component X |

umhnm|

o E— 2
_Expand | I~ On Mouse Down

1 device com_3 Write("H")

Main Tab:

Text: The caption that is displayed on the button.
Text Color: The color of the caphion displayed on the button.

Figure 11-13. The Quick Sequence Text Entry Panel

434

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Quick Sequences do not appear in the listings of formally programmed
sequences accessed by expanding the Sequences menu option in the
workspace. The linking of the single line of Quick Sequence text to transmit
an “H” or “L” is all that is required to activate the ON/OFF button when the
Arduino code of Listing 11-4 receives the command to alter the LED status.

A sequence programmed to effect a series of on/off actions for
transmission can be prepared in the normal manner for the DAQFactory
software. The leftmost button in Figure 11-11 flashes the Arduino LED on
and off five times at 3-second intervals in accordance with Listing 11-3.

Observations

When the buttons on the DAQFactory control screen are clicked, the LED
on the Arduino board is activated or inactivated in accordance with the
button labels.

Discussion

When working through the “downloading” commands exercise, each piece
of the communications link can be independently tested as the system is
built up. The LED and its current limiting resistor can be tested by loading
and running the required sketch and sending an uppercase H or L from the
Arduino serial port. The LED will light and extinguish as instructed.

The serial port display must be closed on the Arduino for the port to
be available for use by the DAQFactory program. Once the connection is
made from the screen button code to the Arduino, any attempts to use the
port by the Arduino in troubleshooting will invoke a “port in use” error
response from the Arduino. The Arduino must be shut down and rebooted
to regain access to the port.

435

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

The DAQFactory side of the two-way link and the correct operation
of the Arduino sketch can be also be confirmed by accessing the com_3
monitor (com3 in earlier programs) in DAQFactory and manually
transmitting an uppercase H with the entry box and Send button on the
monitor window. The manual transmission should activate the Arduino-
mounted LED, and a manual transmission of the uppercase L should then
turn the LED off.

The two port monitors accept and transmit H/L, but the scripting
commands must use the quotation marks to designate “H” and “L” as the
uppercase ASCII characters.

Raspberry Pi and Arduino

In the previous exercises, the Raspberry Pi has used different libraries for
its GPIO pin array to communicate with the outside world. Each of the
three libraries has different abilities and limitations that can virtually be
eliminated by using the Arduino microcontroller as a smart peripheral.

Recall that Arduino programs are written in the integrated
development environment (IDE) that is a program downloaded from the
Arduino website. RPi and Arduino communicate on the USB that should
not be connected when the IDE program is downloaded and installed with
the terminal entry

$ sudo apt-get install arduino

On completion of the software installation, the USB cable can be
connected, and from the Tools menu in the IDE, select Board and set the
type to Arduino Uno. The serial port option / dev / ttyACMO should be
selected to complete the configuration process.

The safest and simplest way to communicate between the RPi and the
Arduino is via the USB connection. (See “Discussion.”)

436

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Figure 11-14 illustrates the microcontroller start menu on the RPi after
the installation of the Arduino IDE.

[@ veru () = W i (9 Coskeich.ouisa A M pigraspbenypi -] & [o812

W

Figure 11-14. The Arduino Menu on the RPi

Examination of the menu entries in Figure 11-14 reveals that a
very large body of open source code has been written for the Arduino
microcontroller allowing it to interface to both hardware and software.
A USB connection between the RPi and the Arduino makes much of this
analog and digital interfacing code accessible to the computational power
of the RPi.

Experimental

With configuration complete, the Blink program can be selected through
Examples » Basic, compiled and uploaded to the Arduino, which should
then flash the LED once per second.

437

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Once the LED on the Arduino flashes as programmed, the simple
process to interface the two devices is complete and validated.

One of the more important experimental aspects of the Arduino-

RPi connection lies in using the computing power of the RPi as a plotter
to graphically display the data collected by sensors interfaced to the
Arduino. A simple example of the graphical display capabilities available
can be demonstrated by plotting the signal from a LDR as various lighting
conditions change in the environment in which the sensor is positioned.

Five volts from the Arduino is used to bias the LDR with a 5.49 kQ2 1%
metal film, pull-down resistor similar to the circuit depicted in Figure 11-2.
The Arduino active code is essentially the same as that listed in Listing 11-1
with minor changes in only the program comments to accommodate the
different pull-down resistor value.

The signal from the LDR can be digitized by connection to the A0 input
of the Arduino’s 10-bit ADC, which is then sent to the serial port of the
microcontroller for viewing or reading by a Python plotting program. The
serial plotter code is listed in Listing 11-5.

Observations

After configuring the LDR sensor and the Arduino and starting the plotting
program on the RPi, the trace of Figure 11-15 was recorded. On initial start-
up, the plotter program creates a small window on the right-hand side of the
display with the interactive screen on the left. The streaming printed column
of numbers and characters seen on the left of the interactive screen are the
transmitted characters and the numbers to be plotted. (See “Discussion.”)

As noted in Chapter 9, the matplotlib plotting programs are displayed
with a panel of buttons beneath the lower left-hand corner of the active
display for invoking several functions such as scale expansion, stepping
forward and back in frames, or saving the plot as applicable for the type of
data being displayed.

438

CHAPTER 11

MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Recall that the timing markings on the graphical plotting display must

be calibrated for quantitative use.

M EX:) é:s-—;le.m'-‘xn A SCALDEMOLDR. | w *Python 3.4.2 31

e EX Tl Qo fetes wndee ep
CHFUCEIT = O $i
914

inPutln = b'913\n"
913

inPutln = b'913\n"
913

inPutln = b'913\n"
913

inPutln = b'914\n’
914

inPutln = b'913'n"
913

inPutln = b'913\n’
913

inPutln = b'913\n*
913

inPutln = b'913\n’
913

inPutln = b'913\n’
913

inPutln = b'913\n’
913

inPutln = b'913\n"
913

inPutln = b'913\n’
913

inPutln = b'913\n"
913

inPutln = b'913\n"
913

inPutln = b'913\n’
913

inPutln = b'913\n"
913

A\ Figure 1 M ivigraspbempi ~| $ T o | ashas
8 - Fhe Strerhy s Ayte
e 1
Iy

- §~

g e ..-J

g i

E)
300

2 3 o 3 [} i
Timg
£ 00+ -

Dnaran e

Figure 11-15. Plotting Data from Arduino

-)

[Single LDA_SCR_| @ SCADEMOLDA. | @A *Python 342 5h

A\ Figure 1 M ipigrasptempni ~| EIR wsl1353

B L0 BC it
i

poo+ =W

a1 eaoai1sy

Figure 11-16. Recorder Tracing of Room Lighting Intensity
Variations Monitored by a Light-Dependent Resistor

439

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

In Figure 11-16 the full-screen option button has been used to expand
the recorded plot from the small window visible in Figure 11-15. At the
extreme left of the plot, the tracing was recording the room light leaking
under the cover placed over the LDR. The trace dropped to virtually zero
as the room window was covered and the room lighting was turned off.
The first large displacement at about a minute and a half was due to the
uncovering of the window. The second step-up was due to the turning
on of the overhead incandescent light at about two-and-a-half minutes,
followed by the left- and right-hand desk lamps at three and four minutes.
The maximum trace value was created by shining a bright LED light on the
sensor from a distance of about an inch (2.5 cm). Exact relative times since
session start and expanded sections of the trace can be accessed with the
aid of the tool buttons beneath the lower-left corner of the display. (See
Chapter 9.)

Discussion

The flashing of the LED with the Blink program has often been cited as

the physical computing equivalent of the console printout of the “Hello
World!” program run by all students when learning a new computer
language. In essence the RPi is sending commands to the Arduino for
execution. The free, open source software that has been developed and
published for the Arduino and RPi is substantial and requires constant
reviewing for the experimentalist or investigator to remain up-to-date with
this rapidly evolving technology.

Plotting of the data generated by the sensor connected to and possibly
controlled by the Arduino is accomplished with a slightly modified version
of the matplotlib strip chart recorder program. A slight modification of
the original code is necessary for the plotter to be able to read the serial
port. Serial port transmissions involve patterns of 1’s and 0’s that have to
be translated into transmissible packets of data, received and parsed back

440

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

into numerical values for plotting. Arduino is programmed and operates
in the C language, while the RPi uses Python. As an aid to configuring

the parsing code and validating the data transmission prior to plotting,
the characters received by the Python end of the serial connection are
printed out “as received” on the console display and then printed again

in the format suitable for recognition as the data for plotting. The print
statements can easily be commented out when the software is performing
as intended.

In normal usage the matplotlib strip chart recorder program has
variables and labels identified in the comments for x, y, and time axis
scaling. Axis labeling may also need to be modified to plot and identify the
data at hand.

The RPi and Arduino are both capable of using 3.3- or 5-volt power
supplies, and for some applications using direct serial communications,

a voltage level adjusting circuit may be required to avoid damage to
electronic components. Level adjusting circuits are detailed in several
published and online sources.!

Code Listings

Listing 11-1. Arduino Code

// Single LDR readings with serial transmission for DAQFactory
SCR display.

// The voltage at the junction of an LDR biased by +5 v and
with a 10K ohm

// resistance to ground is monitored by the A0 input.

'1) elinux.org/RPI_GPIO Interface Circuits
2) Raspberry Pi Cookbook 2nd Edn., Monk, O’Reilly Media Inc., ISBN
978-1-491-93910-9
3) Electronics Cookbook, Monk, O'Reilly Media Inc., ISBN 978-1-491-95340-2

441

http://elinux.org/RPI_GPIO_Interface_Circuits

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

//

//

void setup()

{
// initialize serial port
Serial.begin(9600);

}

//

void loop()

{
// read AO
int valil = analogRead(0);
// read A1
// print to serial port
Serial.println(vali);
//Serial.print(" ");
// delay
delay(500);

}

Listing 11-2. DAQFactory “On Receive” Serial Port Parsing Script

if (strIn == Chr(13))
private string datain = ReadUntil(13)
Channel.AddValue(strDevice, 0, "Input", O,
StrToDouble(Dataln))
Endif

Listing 11-3. DAQFactory Sequence Code for Writing to com_3 Port

for (Private.Counter = 0, Counter < 5, Counter ++)
device.com 3.Write("H")
delay(3)

442

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

device.com 3.Write("L")

delay(3)
endfor

Listing 11-4. Arduino Code to Be Run on DAQFactory Screen
Button Command

//Simple DAQFactory - Arduino Serial Communications Program,
Mar. 3, 2012

//An LED with an appropriate CLR is connected between pin 13
and ground on the Arduino

//The pgm below waits for an incoming character. If the
character is an upper case H, the LED is

//turned on. If the character is an upper case L the LED is
turned off. The state of the LED is

//thus determined by the nature of the character in the serial
import buffer.

//

//

const int ledPin = 13; // the pin with the LED and CLR

int incomingByte; // a variable to hold the

incoming data

//

//

void setup(){
Serial.begin(9600); // initialize communication
pinMode(ledPin, OUTPUT); // set the pin function

}

//

void loop() {
// check for incoming serial data
if (Serial.available() > 0) {

443

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

// read the last byte in the serial buffer
incomingByte = Serial.read();
// if the byte is H (ASCII 72), turn on the LED
if (incomingByte == 'H") {
digitalWrite(ledPin, HIGH);
}
// if character is an L (ASCII 76) turn the LED off
if (incomingByte == 'L") {
digitalWrite(ledPin, LOW);
}
}
}

Listing 11-5. RPi-Python Code for Reading and Plotting Serial Port
Data

A Strip Chart Recorder for Raspberry Pi with Serial Input

SCR Plotting of changing LDR data from room environment.
LDR data from 5 volt

5.49 K 1% MFR pull-down cct on A0 and output on Arduino
serial port for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

import serial

#

#

444

#

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

class Scope:

def

def

__init_ (self, ax, maxt=10, dt=0.02):

maxt time width of display
self.ax = ax

self.dt = dt

self.maxt = maxt
self.tdata = [0]
self.ydata = [0]

self.line = Line2D(self.tdata, self.ydata)
self.ax.add line(self.line)

self.ax.set ylim(0.0, 1024.0) # y axis scale
self.ax.set xlim(0, self.maxt)

update(self, y):

lastt = self.tdata[-1]

if lastt > self.tdata[o0] + self.maxt: # reset the arrays
self.tdata = [self.tdata[-1]]
self.ydata = [self.ydata[-1]]
self.ax.set xlim(self.tdata[0], self.tdata[0] +
self.maxt)
self.ax.figure.canvas.draw()

t = self.tdata[-1] + self.dt
self.tdata.append(t)

self.ydata.append(y)

self.line.set data(self.tdata, self.ydata)
return self.line,

445

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

ser = serial.Serial("/dev/ttyACMO", 9600)
#
def rd data():
while True:
inPutln = ser.readline()
print("inPutln = ", inPutln)
line = int(str(inPutln)[slice(2,-3)]) # convert arduino
serial output
stream
to a Python string, parse out the numerical symbols
and convert to a value
print(line)
yield (line)

fig = plt.figure()

fig.suptitle("The Scientyst's Ayde", fontsize = 12)
ax = fig.add subplot(111)

ax.set xlabel("Time")

ax.set_ylabel("Arduino LDR ADC Units")

scope = Scope(ax)

uses rd data() as a generator to produce data for the update
func, the Arduino LDC

value is read by the plotting code in 10 minute windows for
the animated

screen display. Software overhead limits response speed of
display.

ani = animation.FuncAnimation(fig, scope.update, rd data,

interval=50,

blit=False)

plt.show()

446

CHAPTER 11 MICROCONTROLLERS AND SERIAL COMMUNICATIONS

Summary

— Microcontrollers can be considered as smart interfaces
in the SCADA architecture that use serial port commu-
nications to up- and download instructional com-
mands and data between the host computer and

remote processes.

— Microcontrollers can greatly augment the digital signal
processing and I/0 capabilities of the host computer.

— A microcontroller and a single-board computer can
form the basis of one of the least expensive SCADA
implementations available.

Extensive use of the microcontroller and the techniques and software
described in the previous ten chapters of this book are applied to the tasks
of implementing experimental determinations in the next work of this
series, Arduino Measurements in Science.

447

APPENDIX A

List of Abbreviations

A/D analog to digital

ADC analog-to-digital converter

AGM absorbed glass mat (a form of lead acid battery)

AMR anisotropic magnetoresistance

API application programming interface

ASCII American Standard Code for Information Interchange
ASIC application-specific integrated circuit

A0 analog output

AWG American wire gauge

BCD binary-coded decimal

BJT base junction transistor (either an NPN or a PNP)

BLDC brushless direct current (a type of DC-powered motor)
BMS battery management system

BoB breakout board (adapter to use SMT IC with a prototyping board)
C4aD capacitively coupled contactless conductivity detection

Cand C+ a compact efficient programming language and a variation for
Windows applications

(continued)

© Richard J. Smythe 2021 449
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

https://doi.org/10.1007/978-1-4842-6778-3#DOI

APPENDIXA LIST OF ABBREVIATIONS

CCC
cGLP
CLR
CMOS
CNTRL
COM
cps
CPU

CPVC
CR
CSA
CSM
CSS
Csv
cv

DHCP
DI/0
DIP
D/L
DMM
DPM
DSP

constant current charging

current good laboratory practice (a QA/QC protocol)
current limiting resistor

complementary metal oxide semiconductor

Ctrl key

serial communication port

cycles per second

central or computer processing unit (a term used to describe the
main processor chip)

chlorinated polyvinyl chloride

carriage return (in printer control code)

Canadian Standards Association

current shunt monitor (an ASIC for current measurement)

chip slave select (in four-line SPI data transmission protocol)
comma-separated values (a common file data storage format)

computer vision

Dynamic Host Configuration Protocol
digital input/output

dual in-line package

download

digital multimeter

digital panel meter

digital signal processing

450

(continued)

APPENDIXA LIST OF ABBREVIATIONS

DuT
DVM

EEPROM
EMF

EMI

EPS

ERH

ESD

FFT
FOV
FID

FSD

GND
GPIO
GPR
GPS
GPU
GUI

HAT
HDMI
HMI

device under test

digital voltmeter

electrically erasable programmable read-only memory
electromotive force

electromagnetic interference

electric potential sensors

equilibrium relative humidity

electrostatic discharge

fast Fourier transform or flicker fusion threshold
field of view
flame ionization detector

full-screen display or full-scale displacement

ground

general-purpose input/output
ground penetrating radar
global positioning system
graphics processing unit

graphical user interface

hardware added on top (RPi add-on boards)
high-definition multimedia interface

human-machine interface

(continued)

451

APPENDIXA LIST OF ABBREVIATIONS

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS Secure HyperText Transfer Protocol

I’C or 12C inter-integrated circuit (data transmission protocol)

ICAP inductively coupled argon plasma (also ICP, a spectroscopic source)
ICFT input capture feature of the timer (ATmega328)

IDE integrated development environment

I[EPE integrated electronics piezo-electric (vibration sensors)

IMS ion mobility spectroscopy (plasma chromatography)

IMU inertial measurement unit

INS inertial navigation systems

INU inertial navigation unit

I/0 or 10 input/output

IP Internet protocol

IR infrared

ISR interrupt service routine (programming code)

ISRC internal stray resistance and capacitance (on a circuit board or IC chip)
ITO indium tin oxide

LAN local area network (of computers)

LCD liquid crystal display

LDR light-dependent resistor

LED light emitting diode

(continued)

452

APPENDIXA LIST OF ABBREVIATIONS

LF
LFP
LiMH
LSB

MA
MAC
mAh
mcd
MEMS
MHz
MISO
MOSFET
MOS
MOSI
MPCLC
MPPT
MSB

N.C.

NiMH
NIST
NMR

N.O.

line feed (in printer control code)
lithium iron phosphate (a lithium ion battery chemistry)
lithium metal hydride (a type of rechargeable battery and chemistry)

least significant bit

moving average (a form of DSP)

media access control

milliampere hours (sometimes as mAhr)

millicandela (a measure of light intensity)
micro-electro-mechanical systems

mega-Hertz (a frequency of millions of cycles per second)
master in slave out (four-line SPI data transmission protocol)
metal oxide semiconductor field effect transistor

metal oxide semiconductor

master out slave in (four-line SPI data transmission protocol)
multiple plate capacitor load cell

maximum power point transfer

most significant bit

normally closed (relay or switch normal configuration, often NC)
nickel metal hydride (a rechargeable battery chemistry)
National Institute of Standards and Technology

nuclear magnetic resonance (a form of spectroscopy and the basis
for medical imaging)

normally open (relay or switch normal configuration, often NO)

(continued)

453

APPENDIXA LIST OF ABBREVIATIONS

NPN a base junction transistor consisting of a P type of semiconductor
between two N types

NTC negative temperature coefficient (a term used with thermistors)

ocv open circuit voltage

OH-MPCLC over had multiple plate capacitor load cell

0S operating system

PC personal computer (IBM/Microsoft Windows 0S)

PCB printed circuit board

PDIP plastic dual in-line package

PE polyethylene (a plastic)

PGA programmable gain amplifier

PID photo ionization detector or proportional, integral, derivative (a
control algorithm)

PIN an intrinsic PN junction used in high-sensitivity photo diodes, a thick
light-sensitive layer

PIR passive infrared (an infrared sensor)

PLC programmable logic controller

PM permanent magnet

PNP a base junction transistor consisting of an N type of semiconductor
between two P types

PV photo-voltaic

PVC polyvinyl chloride (a plastic)

PVDF polyvinylidene di-fluoride (an inert plastic polymer)

PWD pulse width difference

(continued)

454

APPENDIXA LIST OF ABBREVIATIONS

PWM
PZT

RMB-PUM
RC

RE
REM
RF
RFI
RGB
RH

rms

RPi

RPM
RTC
RTD
RTV

SAR
SBC
SC
SCADA
SCC

pulse width modulation

lead zirconate titanate

right mouse button pop-up menu

resistor-capacitor (electronic circuit time constant elements or radio
controlled)

rare earth

rare earth magnet

radio frequency

radio frequency interference

red, green, and blue (the three basic colors used in LED displays)
relative humidity

root mean square (a measurement form used with AC or sinusoidal
power signals)

Raspberry Pi

revolutions per minute (a measure of rotation speed)
real-time clock

resistance temperature device

room temperature vulcanization (a term used to describe a silicone
sealant/adhesive)

successive approximation register (a type of ADC)
Single-board computer

specific conductivity

supervisory control and data acquisition

short circuit current

(continued)

455

APPENDIXA LIST OF ABBREVIATIONS

SCL(K)
SCR
SD
SDA
SHE
St
S0IC-8
SIp
SMBUS

SMT
SoC
SPAD
SPC
SPI
SRAM
SS
SSR

TCR
TEC
TEG
TIA
TIG
ToF

the clock line designation in four-line SPI data transmission protocol
silicon controlled rectifier or strip chart recorder

secure data (a plug-in digital data storage media/card)

IC serial protocol for slave data

standard hydrogen electrode

starting lighting ignition (a form of lead acid battery)

small outline integrated circuit eight-pin SMT-defined package format
single in-line package (an IC with only a single row of power 1/0 pins)

System Management Bus (a simple one-wire serial communications
protocol)

surface mount technology

state of charge or system on a chip
single-photon avalanche diode
statistical process control

serial peripheral interface

static random-access memory
slave select

solid-state relay

temperature coefficient of resistance
thermoelectric conversion or converter
thermoelectric generator
trans-impedance amplifier

tungsten inert gas (a form of welding)

time of flight (a form of distance measurement or mass spectrometry)

456

(continued)

APPENDIXA LIST OF ABBREVIATIONS

tpi
TTL

UART

UAV
ui /Ul
URL
USB
utc

VCO
Vdd
VLS
VOM
VRSLA
Vss
WC

threads per inch

transistor-transistor logic

universal asynchronous receiver-transmitter (serial data transmission
protocol or IC)

un-manned aerial vehicle

user interface

universal resource locator (an Internet address)
Universal Serial Bus

universal time coordinates

voltage-controlled oscillator

voltage drain (usually the positive supply)

visual light systems (a communications technique)
volt-ohm meter

valve-regulated sealed lead acid (a form of battery)
voltage source supply (usually ground potential)

variable value component (a GUI screen numerical display of
DAQFactory software)

457

APPENDIX B

List of Suppliers

Chapter IC or Part

1 LabJack U3-HV
LabJack U12-HV
chipKIT

Arduino
RedBoard

Arduino
(BlueBoard)

CD4050
2 MCP3008
4 2N3904/2N3906

6 ADCO0804

MCP3201

7 TIP 122
8 LM555

https://Labjack.com/support/datasheets/u3
https://Labjack.com/support/datasheets/u12

https://reference.digilentinc.com/
reference/microprocessor/uc32/start

www. sparkfun.com/products/13975

www.arduino.cc/

www.ti.com/1it/ds/symlink/cd4049ub.pdf
www.microchip.com/wwwproducts/en/MCP3008

www.onsemi.com/pub/Collateral/2N3906-D.
PDF and www.onsemi.com/pub/
Collateral/2N3903-D.PDF

www.ti.com/1it/ds/symlink/adc0804-n.pdf

wwl.microchip.com/downloads/en/
devicedoc/21290d.pdf

www.onsemi.com/pub/Collateral/TIP120-D.PDF
www.ti.com/1it/ds/symlink/1m555.pdf

© Richard J. Smythe 2021

(continued)

459

R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

https://doi.org/10.1007/978-1-4842-6778-3#DOI
https://labjack.com/support/datasheets/u3
https://labjack.com/support/datasheets/u12
https://reference.digilentinc.com/reference/microprocessor/uc32/start
https://reference.digilentinc.com/reference/microprocessor/uc32/start
http://www.sparkfun.com/products/13975
http://www.arduino.cc/
http://www.ti.com/lit/ds/symlink/cd4049ub.pdf
http://www.microchip.com/wwwproducts/en/MCP3008
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.ti.com/lit/ds/symlink/adc0804-n.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21290d.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21290d.pdf
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.ti.com/lit/ds/symlink/lm555.pdf

APPENDIXB LIST OF SUPPLIERS

Chapter IC or Part

9 CMOS 555
Bipolar 555

Exar XR-2209
10 LM741

LF411

CD4013

MOC 3022

BTAO6

MOC 3061

FQP30NO6L

ULN2803
1 LDR

www.ti.com/1it/ds/symlink/1mc555.pdf

www.st.com/resource/en/datasheet/
cd00000479.pdf

www.maxlinear.com/ds/xr2209v202.pdf
www.ti.com/1it/ds/symlink/1m741.pdf
www.ti.com/1it/ds/symlink/1f411.pdf
www.ti.com/1it/ds/symlink/cd4013b.pdf

www.mouser.ca/datasheet/2/239/M0C302-
1175440.pdf
www.st.com/resource/en/datasheet/
bta06.pdf

www.mouser.ca/datasheet/2/308/
fairchild%20semiconductor_
moc3061m-1191638.pdf

www.onsemi.com/products/discretes-
drivers/mosfets/fqp30n061

www.ti.com/1it/ds/symlink/uln2803a.pdf

www.farnell.com/datasheets/77395.pdf or
www.resistorguide.com/photoresistor/

460

http://www.ti.com/lit/ds/symlink/lmc555.pdf
http://www.st.com/resource/en/datasheet/cd00000479.pdf
http://www.st.com/resource/en/datasheet/cd00000479.pdf
http://www.maxlinear.com/ds/xr2209v202.pdf
http://www.ti.com/lit/ds/symlink/lm741.pdf
http://www.ti.com/lit/ds/symlink/lf411.pdf
http://www.ti.com/lit/ds/symlink/cd4013b.pdf
http://www.mouser.ca/datasheet/2/239/MOC302-1175440.pdf
http://www.mouser.ca/datasheet/2/239/MOC302-1175440.pdf
http://www.st.com/resource/en/datasheet/bta06.pdf
http://www.st.com/resource/en/datasheet/bta06.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.onsemi.com/products/discretes-drivers/mosfets/fqp30n06l
http://www.onsemi.com/products/discretes-drivers/mosfets/fqp30n06l
http://www.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.farnell.com/datasheets/77395.pdf or www.resistorguide.com/photoresistor/
http://www.farnell.com/datasheets/77395.pdf or www.resistorguide.com/photoresistor/

Index

A random-phase/zero-
crossing, 381

SCR, 380

software, 386

solid-state devices, 381

AC current

advantage, 380

circuit analysis, 388

circuit schematic, 384, 385

experimentation, 405-407

50 Hz and 10 Hz 555 timer IC
variation, 389

5-volt 555 timer IC control of
line power, 386

5-volt DC output power
supply, 381

hardware, 382, 383

110 VAC bulb output, 408

110 VAC line control, 406

hydro-electric facilities, 379

introduction, 405

mains/household current, 379

observations, 386, 387, 407

optical isolator chips, 381

potentiometer diode
arrangement, 389

power control
applications, 388, 390

power grids, 387

PWM frequency, 408

random flickering and cyclic
pulsing, 409

test apparatus, 384
timer pulse train, 389
timing network, 387
triac and optical isolator, 384
ADCO0804, 163-167
Aliasing, 331
Analog-to-digital conversion
(ADC), 19, 46, 155, 421
ADC0804, 163-167
adjustable analog signal
source, 160
binary array, 154
circuitry, 160
coding
decimal-to-binary
conversion via serial
connection, 190-192
decimal-to-binary sequence
codes, 185, 186, 188
diode array illumination,
195-197
GPIO pin array, 206
GPIO pin values to zero, 207

© Richard J. Smythe 2021 461
R.J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

https://doi.org/10.1007/978-1-4842-6778-3#DOI

INDEX

Analog-to-digital conversion

(ADC) (cont.)
MCP3008 10-bit ADC,
202-206
read A0 ADC channel, 198
on receive code,
ArduinoStream channel, 198
script code, clear display, 189
script code, decrease
converted value, 189
script code, increase
converted value, 188
sequence code, clearing
display, 194
sequence code, decreasing
converted value, 194
sequence code, increasing
converted value, 193
12-bit binary LED visual
display, 199, 201, 202
write data to serial port, 50
ms intervals, 198
DAC, 157
data sheet, 161
decimal-to-binary (see
Decimal-to-binary
conversions)
divider equation, 160
downstream device, 166
8-bit LED display, 161, 164
electrical signal values, 154
electro-mechanical basis, 156
electronic signal, 163
hardware demonstration, 162

462

history, 154
IC devices, 156
implementation, 159
mechanisms, 155
microcontrollers
active channel time stamped
data listing, 175
configuration sequence, 173
data passing through port, 176
edit box configuration
window, 170
experimentation, 169, 170,
172-174
input channels, 168
nonresponsive
displays, 175, 176
observations, 174
serial communications, 168
serial control, 169
system development and
programming, 176
variable value component
display, 171
variable value configuration
page, 171, 172
monitored variable value, 167
observations, 162
panel, 160
Raspberry Pi
binary-decimal conversions,
177,178
binary visualization
display, 182
experimentation, 179, 180

GPIO lines, 182
interfaces selection
window, 184
LED array testing output, 183
MCP3008 circuit, 180
observations, 180, 181
screen output, 181
selection menu, 184
SPI configuration, 184
12-bit binary LED display,
decimal value 62, 178, 182
resistance networks, 155
serial data output protocols, 166
water metering system, 165
Application-specific integrated
circuit (ASIC), 353
Arduino project, 416, 417
“ArduinoStream’, 423
Arduino Uno microcontroller, 418
Assembly language
programming, 239
Asynchronous communication, 185

B

Base numbering systems, 153

Binary-decimal conversions,
177,178

Bipolar junction transistors
(BJTs), 391

Bistable circuit, 246

Bit banging, 221

Break beam optical
techniques, 274

INDEX

Brushless direct current (BLDC)

duty cycle, 369

experimental cooling fan current
load testing setup, 364

fan motor RPM
measurement, 367

555 PWM, optical tachometer
circuit, 370

555 timer signal, 362

Hall effect detectors, 370

hardware, 363-365

observations, 368, 369

oscilloscope display, optical
beam chopper output, 368

rotational optical scanning
operations, 362

software, 367

C

Cadmium sulfide, 430
Central processing
units (CPUs), 415
Chip slave select (CSS), 184
Circuit operating theory, 355
Client/slave, 420
Clock line (SCLK), 184
Complex instruction set computing
(CISC), 23
Constant current sources
circuit schematic, 357, 359
current mirror, 354
feedback configuration, 360
hardware, 355

463

INDEX

Constant current sources (cont.)

load resistance, 360

observations, 359

op-amp, 356

op-amp balancing, 356

op-amp power transistor
configuration, 361

operational amplifiers, 355

software, 359

thermal equilibrium, 361

Converter/conversion

resolution, 154

Counting events/timing

coding

b, s and r quick
sequences, 293

counting events, 288

cumulative time of intervals,
287, 288

IR break beam interrupt-
driven counter, 302, 303

IR break beam with interrupt
activity, 300, 301

polling IR break beam
monitor program, 299

PWM script, 290

Python scheduled event
program, 295, 296

reset counter, 289

reset stopwatch, 287

RPi.GPIO push button timer,
297, 298

RPi three-button stopwatch
timer GUI, 293, 294

464

scheduled time timer, 283, 284
stopwatch timer, 285, 286
stopwatch timer code,
290-292
hardware (see Hardware time/
timing)
microcontroller clocks,
timekeeping and event
counting
experimentation, 262, 263
functions, 261
millisecond resolution
timing session, 264
observations, 263-265
screen-activated button, 265
sensors/process controls, 261
serial port monitor
record, 263
stopwatch control panel, 262
stopwatch program
development, 264
switch contact bouncing, 261
timer functions, 265
Python and Raspberry Pi
detecting and counting
events, 270-272
experimentation, 273-276
familiar current time
format, 267
GPIO programming
demonstrations, 273
internet connection, 265
interrupt event detection
program output, 279

I/0 libraries, 281
observations, 276-280
optical break beam
circuit, 282
polling program output, 278
rising edge push button
timer output, 276
scheduler modules, 282
scheduler program
output, 269
scheduling events, 268, 269
short elapsed time
determination, 277
three-button stopwatch
timer, 268
tick count, 266, 267
time-based
measurements, 282
software (see Software time/

INDEX

power to inductive loads (see
Inductive loads)
Raspberry Pi and Python
DC currents, 390, 392
extreme values, 397
incandescent light current
control, 393
non-inductive loads,
392-394
observations, 395
print statement, 396
Python-tkinter GUI slider
control, 394
slider screen icon
controller, 395
tkinter, 395, 396
widgets, 396
sensor management, 353

Current limiting resistor (CLR),

timing) 23,27, 31, 55, 93
Current control
AC (see AC current)
AC electronics, 354 D
coding Daemons, 223, 272
continuous stepper motor Data acquisition (DAQ), 2
rotation, 412, 413 Data entry

horizontal sliding icon,
409, 411
constant (see Constant current
sources)
DC (see DC currents)
implementation, 353
limitations, 354
monitoring, 353

AnalogUp() and AnalogDwn()
functions, 105
Arduino microcontroller
computing systems, 105
DAQFactory control screen,
107,108
experimentation, 106-109
numerical values, 105

465

INDEX

Data entry (cont.)
observations, 109
PWM activation code, 110
SCADA software, 106
serial monitor, 110
button component multiple

action selection panel, 102

coding
DAQFactory code, 115, 116
declare variables, 112
fade in and out, green LED

brightness, 113, 124, 125
flashing, Arduino-mounted

LED, 124
flash red LED, 112
“flsh_Rpts” screen-entered

loop index counter, 126
GPIO array, 129
host computer screen, 127
LED illumination intensity

variation, 113, 114
multiple-button colored

diode selection,

119-121, 123
multiple-button control, 118
PWM power application

requests, 126, 127
read power consumption, 116
red LED on and read LED

current, 115
toggle red LED illumination,

116,117

configuration panel, descriptive
text component, 101

466

control panel, LED illumination
repetitions, 100
control system, 93
diode intensity, 93, 94
edit box main tab completed, 100
edit box main tab, set channel, 99
edit box ready for sizing, 100
hardware, 94, 95
NPN and PNP power control, 104
observations, 103
output, Python screen entry, 111
page components
requirements, 96-99, 102
prototype circuit, 95
Raspberry Pi, 110-112
scripting, 103
DB-25 connector, 131, 132
DC currents
BJT, 391
BLDC (see Brushless direct
current (BLDC))
FET semiconductors, 391
NPN Darlington pair
transistors, 391
stepper motors (see Stepper
motors)
Decimal-to-binary conversions
ADC (see Analog-to-digital
conversion (ADC))
DAQFactory panel, 158
hardware, 158
software, 158, 159
Differential time measurement, 239
Digital signal processing (DSP), 137

Digital signals
binary and decimal numerical
domains, 137
binary numbering and digital
electronics, 131
CD4050 buffers, 136
coding
clear byte display, 150
8-bit binary byte display,
143-146
8-bit binary LED display,
146-149
microcontroller LED byte
display, 142
sum active binary digit
values, 141, 142
DB-25 connector, 131, 132
8-bit byte LED
display, 134
8-bit byte LED display control
panel, 135
hardware, 132, 134
high/low electrical energy
levels, 131
LabJack U12, CB25 terminal
board and 8-bit LED
array, 133
microcontroller LED
demonstration array

8-bit byte, bitwise numerical

display, 137
8-bit byte keypad, bitwise
display, 138
experimentation, 137, 138

INDEX

observations, 138
summing program, 139
numerical representation, 136
observations, 136
program output and 8-bit byte
LED display control
panel, 140
Raspberry Pi, 139, 141
software, 134, 135
Digital systems function, 209
Digital-to-analog conversion
(DAC), 157
Digital visualization, 138
Downloading
hardware, 433
observations, 435
port in use error response, 435
serial port display, 435
software
Arduino LED control, 433
Quick Sequence
selection, 434
Quick Sequence text entry
panel, 434
Dual in-line package (DIP),
318, 398
Dual-sloped triangular waveform
dual-battery bipolar power
supply, 319
function generator, 318, 319
observations, 320
positive and negative voltage
ramps, 319
pull-up resistor, 321

467

INDEX

Dual-sloped triangular waveform
(cont.)

XR-2209 function generator, 320

XR-2209 VCO, 318
Duty cycle, 210, 217, 256, 259, 365,
366, 369

E

easyGUI, 18, 20
Edge detection, 270
Electrical pulses, 245
Electrolytic capacitors, 333
Electromagnetic interference
(EMI), 381, 388
Electro-mechanical
systems, 416
Electromotive
force (EMF), 397
Electronic oscillators, 240
Event counting, 244-247
Event detection, 271

F

Fade/fading effect, 93

Fairchild semiconductor MOC
3022, 385

Field effect transistors (FETs), 245

555 timer IC-based motor
controller, 366

Flip-flop/latch, 245

Frequency determination, 244-247

Function generators, 318

468

G

General-purpose input and output
(GPIO), 50
gpiozero, 20
Graphical data recording
circuit configurations, 306
circuit schematic, 309, 310
clinical and chemical
analysis, 305
DAQFactory graphical display
capabilities, 306
default X-Y graphical screen
display, 311
dual-slope analog ramp, 306
dual-slope triangular waveform,
318, 320
electronics components, 309
erratic output
signal/aliasing, 315
555 timer astable
configuration, 309
hardware and component
selection, square wave
output, 307, 309
microcontrollers (see
Microcontroller data
plotting)
observations, 313, 314
page components, 310, 312, 313
Python and Raspberry Pi
adjusting plotter
time base, 343
advantages, 348

calibrated time base 555
timer voltage, 347
expanded time scale 555
timer, 345
experimentation, 341, 342
introduction, 340, 341
live/real-time data plotting,
348-350
observations, 343, 344
one-minute time scale
expansion, 555 timer, 346
potentiometer wiper
voltage, 343
“save a figure” option
window, 344
scale expansion option, 345
strip chart recorder
program, 346
time-calibrated plotted trace
expansion, 347
R-C timing network
values, 308
recorder trace name
selection, 312
sawtooth and triangular output
waveforms, 306
software, 310
timer output at maximum
resistance, 313
timer output at minimum
resistance, 314
timing network, 306
triangular and sawtooth
outputs, 315-318

INDEX

2D graphical recorder screen
display, 311

waveform without minimal
resistance, 314

x-y plotting, 305, 321 (see also
X-Y data recording)

Graphical user interface

(GUI), 1,94

H

Hardware time/timing
astable
configuration, 258, 259
chip functions, 254
duty cycle variation, 260
experimentation, 257
555 astable cycle, 259
555 IC timer block
diagram, 255
555 IC timer modes of
operation, 255
internal voltage divider, 256
mark/space time, 256
observations, 258
operations and configurations,
timer circuit, 254
resistance values, 260
schematic, 258
square wave/clock signals, 256
Hardware timing, 244-247
HMI devices, 2, 3
Human-machine
interface (HMI), 131

469

INDEX

Inductive loads
experimentation,

398-400, 402, 403
introduction, 397, 398
observations, 403
stepper motor, 404

Integrated development

environment (IDE), 40, 51,

417, 423, 436
Interactive
navigation, 340
Inter-integrated circuit (I*C/12C),
185
Internet of things, 222
Internet time servers, 282
Interrupt-driven event counter
output, 281
Interrupts, 270, 280
Interrupt service
routine (ISR), 270, 271
IR break beam
circuit, 275

J

Jitter, 231, 272

K

Kelvin

dividers, 155
Kirchhoft’s voltage law, 31
Knob/slider page, 209

470

L

LDR biasing circuit, 422
Least significant bit (LSB), 155
LED illumination
CMOS buffer IC, 17
coding
button GUI control, 24
manual LED control, 23
DAQFactory and LabJack
combination, 5, 6
DAQFactory button, 17
data acquisition/HMI devices, 2
digital electrical connection, 1
hardware, 4, 5
interface functioning, 3
machine interface
connection, 2
observations, testing and
development, 15, 16
prototyping breadboard and
assorted components, 4
Raspberry Pi, Python and
screen push button
assembly and
configuration, 19
command line methods, 18
direct wiring, GPIO pins to
prototyping boards, 20
experimentation, 19-21
GPIO pin identification, 19
Kill dialog box, 22
observations, 21, 22
power control, 18

simple GUI, 22
turnkey system, 23
SCADA software, 17
software
action auto-fill list, 13
action pop-up, Do Action
Selection, 12
button properties dialog
box, 10
DAQFactory button action
screen completed, 14
DAQFactory page naming
box, 9
exercise road map, 6
1/0 channel configuration
data, 13
main tab, Do Action Button
Selection, 11
right mouse button pop-up
menu (RMB-PUM), 6
simple button control, 7
simple button control
properties, 7
sizing, button icon, 8
text box configuration, 8
LED power control, 5
Light-dependent resistor (LDR),
419, 428-430
Light emitting diodes (LED)
alkaline/NiMH batteries, 39
Arduino-controlled four-LED
array, 47
battery power, 38
case structure, 45

INDEX

channel creation table, 41
circuitry, 33
coding
four-button control screen
and power consumption
indicators, 65-67, 69, 70
power draw of four-LED
array, 72-74
quick sequence code, off
button, 63
quick sequence code, on
button, 63
red LED, single-button
control screen, 57, 58
toggle multiple colored
LEDs, 58-61
toggle red LED DAQFactory
quick sequence, 71
toggle red LED DAQFactory
quick sequence with diode
power draw, 71
toggling LED on/off, power
measurement, 63, 65
turn red LED on/off, diode
current draw, 61, 62
two-button on and off
control screen, 56
DAQFactory channel table, 34
DAQFactory GUI
development, 40, 43
DAQFactory serial port
monitor, 48
DVM, 40
electrical parameters, 30

471

INDEX

experimentation, 29, 30, 32,
52-54

5 mm parameters, 28

forms, 29

gauge addition, 37

hardware, 32

microcontroller experimental
interface, 41

microprocessor’s serial port
number, 42

minimal internal
resistance, 39

observations, 36, 54, 55

operating values, 27

optical parameters, 31

page components
requirements, 34-36

physical computing mode, 55

power monitoring, 36, 37, 42,
52,55

preliminary coloring, 35

Quick Sequence window, 44

Raspberry Pi, 50, 51

SCADA systems, 47

on screenicon, 43

secondary cell chemistry
battery, 38

sketches, 45

software, 33

testing and development, 36

toggling action, 45

transmission notation, 49

voltage drop measurement, 46

Luminosity, 408

472

Master in slave out
(MISO), 184
Master out slave in
(MOSI), 184
Matplotlib program, 340, 341
Matplotlib strip chart recorder
program, 440
Metal oxide semiconductor field
effect transistors
(MOSFETs), 245, 391
Microcontroller, 415
coding
Arduino code, 441, 442
com_3 port, 442
reading and plotting serial
port, 444-446
on receive serial port parsing
script, 442
run DAQFactory screen
button command, 443
Raspberry Pi and Arduino
direct serial
communications, 441
experimentation, 437, 438
menus, 437
observations, 438, 440
plotting data, 439, 440
recorder tracing, 439
serial port
transmissions, 440
terminal entry, 436 (see also
Microprocessors)

Microcontroller data plotting
auto-adjusting, 339
data acquisition device, 335
experimentation, 337
observations, 338
serial plotter output, 338
serial plotter selection, 336
start-up noise, 339
typical plotter program, 337
visualization
technique, 338
Microprocessors
coded instructions, 416
digital computing, 415
electro-mechanical
systems, 416
embedded system, 415
error-free code, 417
host PC communications
downloading (see
Downloading)
uploading (see Uploading)
micro-miniature
computer, 415
physical computing, 416
programmed timing
functions, 417
rapid prototyping
technique, 416
Uno board, 417
MOC 3061 zero-crossing
device, 385
Most significant bit (MSB), 155
Motor rotation, 374

INDEX

N

2N3904 NPN transistor, 211
Non-inductive

loads, 392-394
Nonresponsive

displays, 175, 176

O

Ohm’s law, 16, 357, 388

Open circuit voltage (OCV), 39
Operational amplifiers, 355
Oscillator clocks, 240

P,Q

Parallel ADC integrated
circuitry, 183
Pattern distortion, 331
Permanent magnet (PM), 371
Phase angle control, 382, 390, 409
Photo interrupter tachometer
method, 379
Physical computing, 222, 239
Pigpiod, 272
Pigpio operations
program, 236, 237
Pigpio test utility, 238
Plastic dual in-line package
(PDIP), 52
Polling, 270, 271, 282
Pulse counting, 245
Pulse train generator
panel, 251

473

INDEX

Pulse width modulation (PWM),

51,94, 106

definition, 210

demonstration, 218, 221

duty cycle, 259

555 timer configuration, 306

frequency, 210, 233, 234, 408

fundamentals, 217

gpiozero library, 225-227, 235

high DC power, 220

high DC waveform, 220

integrated circuitry, 210

low DC power, 219

low DC waveform, 219

motor and incandescent
lighting applications, 354

observations, 218, 221

pigpio library, 227, 228

power pulses, 221

RPi.GPIO library, 224, 225

sequence program, 232

software implementation, 210

three ADC channels and
Pause(), 236

three potentiometers, 235

usage, 211

R

Radio frequency interference
(RFI), 381
Real-time clock (RTC),
240, 266, 282
“RedBoard” logo box, 41

474

Reduced instruction set computing
(RISC), 23

Room temperature vulcanization
(RTV), 363

R-2R “ladder” network, 156

S

Scheduled event timer, 243
Scheduling events, 268, 269, 273
Scripting
activation button, 80
Arduino LED array, 81
button action tab entries, 78
coding
Arduino LED illumination
code, 85-87
DAQFactory regular
sequence code, light show,
88, 89
Raspberry Pi, light show,
90-92
descriptive text component, 81
dual-button activation
screen, 82
experimentation, 82
expressions, 76
hardware, 77
high-speed data transfers, 81
LabJack output connections, 83
languages, 75
LED light show, 79
named sequence entry listing, 78
observations, 80

process control/data
acquisition, 75
Raspberry Pi, 83-85
software, 77
Sensor measurements, 353
Serial communications, 48, 168,
183, 417, 420, 421, 426
Serial/Ethernet Communications
Guide, 420
Serial peripheral interface (SPI),
51,178,179, 184
Serial protocol, 420
Silicon-controlled rectifier (SCR), 380
Simultaneous scripts, 109
Single-board computer (SBC), 18, 50
Smart peripherals, 418
Software scripting, 239
Software time/timing
batteries, 240
circuit, 251
circuit schematic, 248
determination, 252
evaluation screen, 241
GUI operations, 241
hardware, 248
hardware timing, event
counting and frequency
determination, 244-247
manual and automated event
counting, 253, 254
observations, 252
operations and values, 242
scheduled event timer, 243
scripting, 250, 251

INDEX

software, 248-252
stopwatch timer, 244
U12 counter usage
demonstration, 250
variables, 242
Standard numerical analysis base
conversion algorithm, 153
Stepper motors
actions, 404
alkaline cells, 403
bipolar, PM, 371
capabilities, 371
circuit schematic, 373-375
coil windings, 372
definition, 370
design, 378
digital logic circuitry, 371
D-type flip-flops, 378
experimental setup, 401
555 timer IC-based controller, 373
hardware, 372
observations, 376, 377
obsolete equipment, 404
power control unit, 371
resolution/degree of
fineness, 372
resonance, 378
screen variable value
component, 379
SMT, 402
software, page components, 376
test assembly, 375
ULN2803/ULN2804, 398, 399
Stopwatch timer, 244

475

INDEX

Streaming/burst-mode
operations, 247

Successive approximation register
(SAR), 51

Supervisory control (SC), 27

Surface mount technology (SMT),
131, 157, 417

System development/
programming, 176

T

Threading, 93, 103, 109, 271
Time intervals, 239
Timekeeping accuracy, 272
Timing network, 306
Tkinter, 18, 396
Triangular and sawtooth outputs
asymmetrical wave, 315
constant current charging
source, 316
discharge resistance, 318
555 timer expanded scale, 317
555 timer output voltage
waveform, 316
linear voltage, 315
observations, 316-318

U

ULN280n IC, 398, 399

Universal asynchronous receiver
and transmission
(UART), 185

476

Uploading

bidirectional data transfer, 420
“Blink” test software, 420
circuit schematic, 422
COM port, 420, 421
DAQFactory channel, 421
dark resistance, 430
data streaming, 421
hardware, 422
LDR voltage divider circuit, 431
observations, 428, 429
page components
requirements, 428
physiochemical events, 430
pull-down resistor, 431, 432
sensor measurements, 432
serial connection, 419
software
com_3 port, 423
device configuration
window, 424
protocol configuration
window, 426
quick device
configuration, 424
on receive event data
parsing script, 426
serial device naming
and configuration
selection, 425
serial port configuration
window, 425
streamed data creation, 427
strip chart recorder, 423

INDEX

V LabJack analog output 0 control,
NPN transistor, 212
observations, 216
software
base current and LED
intensity rotating control
knob, 215
configuration window, 214
control selection menu, 213
knob tick configuration
window, 215
Voltage-controlled
oscillator, 318, 334

Variable intensity control
C code, 223
debouncing, 222
experimentation, 224
GPIO physical computing
libraries, 231
LED illumination function
program, 231
lower-level devices, 230
observations
PWM control, RGB LED
output, 229, 230
PWM frequency variation
effect, 228 W
PWM_tstl, 228, 229
tested status, GPIO pins, 230
operating systems, 223
pigpio facility, 223
PWM operations, 222
PWM signals
GPIO pin connection X, Y
schematic, 11 LED, 224

Water metering system, 165
Widgets, 396

Wire-wound load simulator, 358
Wire-wound resistors, 333

X-Y data recording

gpiozero library, 225-227
pigpio library, 227, 228
RPi.GPIO library, 224, 225
PWM._tstl, 232
time scale, 231

Variable value components

(VVCs), 34, 242

Variable voltage control

diode intensity/power, 216
hardware, 211

asymmetrical voltage ramp, 321

axes tab, 323

capacitor voltage and voltage
square, 324

cyclic charging and discharging
voltages, 322

finger heat applied to left
transistor, 332

finger heat applied to right
transistor, 333

477

INDEX

X-Y data recording (cont.) operational circuitry, 327
fixed value capacitors, 334 sources, 327, 328
general tab, 323 vs. time recordings, 329-331,
graphical display, 326 333,334
high and low voltage trace traces tab, 322

variation, 326
higher voltage trace variation, 325
long-term signal distortions, 331
non-reproducible signals, 335 Zero-crossing detector
observations, 325 circuitry, 381

478

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	The Author’s Preface to Arduino in Science
	Chapter 1: Button Control of LED Illumination
	Experimental
	Hardware
	Circuit Schematic: DAQFactory and LabJack Combination
	Software
	Observations, Testing, and Development
	Discussion

	Raspberry Pi, Python, Screen Push Button LED Control
	Experimental
	Observations
	Discussion

	Code Listings
	Summary

	Chapter 2: Power Control, Monitoring, and Creation of Dedicated Graphical User Interfaces
	Experimental
	Hardware
	Software
	Page Components Required
	Observations, Testing, and Development
	Discussion
	Power Monitoring and Control with Raspberry Pi
	Experimental
	Observations
	Discussion
	Code Listings
	Summary

	Chapter 3: Introduction to Scripting
	Experimental
	Hardware
	Software
	Page Components Required

	Scripting

	Observations
	Discussion
	DAQFactory Sequences: Arduino LED Array
	Experimental
	Discussion
	Raspberry Pi
	Code Listings
	Summary

	Chapter 4: Data Entry from the Screen
	Hardware
	Software
	Page Components Required

	Scripting
	Observations
	Discussion

	Screen Entry of Data with the Arduino Microcontroller
	Experimental
	Observations
	Discussion

	Raspberry Pi: Screen Entry of Data
	Code Listings
	Summary

	Chapter 5: Digital Signal Concepts and Digital Signal Outputs
	Experimental
	Hardware
	Software
	Observations
	Discussion

	DAQFactory Digital Output Exercise with a Microcontroller LED Demonstration Array
	Experimental
	Observations
	Discussion

	Raspberry Pi
	Code Listings
	Summary

	Chapter 6: Analog or Digital Conversions for Input and Output
	Digital-to-Analog Conversions
	Experimental: LabJack-DAQFactory Decimal-to-Binary Conversions
	Hardware
	Software
	Analog-to-Digital Conversions
	Observations
	DAQFactory–LabJack HMI Analog-to-Digital Numerical Base Conversions
	Analog-to-Digital Electronic Signal Conversions
	ADC0804: 8-Bit Binary LED Display
	Discussion

	Analog-to-Digital Conversions with Microcontrollers
	Experimental
	Observations
	Discussion
	Diagnostics for Nonresponsive Displays
	System Development and Programming

	Analog and Digital Conversions for Input and Output with Raspberry Pi
	Binary-Decimal Conversions

	ADC with Raspberry Pi
	Experimental
	Observations
	Discussion

	Code Listings
	Code Listings for Raspberry Pi

	Summary

	Chapter 7: Variable Intensity and Power Control
	Experimental
	Variable Voltage Control
	Hardware
	Software

	Observations
	Discussion

	Experimental
	Pulse Width Modulation of Voltage
	Introduction

	Observations
	Discussion

	Raspberry Pi Variable Intensity Control
	Introduction

	Experimental
	PWM Signals with the RPi.GPIO Library
	PWM Signals with the gpiozero Library
	PWM Signals with the pigpio Library

	Observations
	PWM_tst1
	PWM Control of RGB LED Output
	Discussion

	Code Listings
	Summary

	Chapter 8: Counting Events and Timing
	Software Time and Timing
	Basic Time Variables
	Scheduled Event Timer
	The Stopwatch Timer
	Hardware Timing, Event Counting, and Frequency Determination

	Experimental
	Hardware
	Circuit Schematic
	Software
	Scripting
	Circuit
	Software
	Scripting and Action

	Observations
	Discussion
	Time Determination
	Manual and Automated Event Counting

	Hardware Time and Timing
	Experimental
	Schematic

	Observations
	Discussion
	Microcontroller Clocks, Timekeeping, and Event Counting
	Experimental
	Observations
	Discussion
	Counting Events and Timing with Python and Raspberry Pi
	Scheduling Events
	Detecting and Counting Events

	Experimental
	Observations
	Discussion
	Code Listings
	Raspberry Pi Program Code

	Summary

	Chapter 9: Graphical Data Recording
	Experimental: Linear Graphical Data Recording
	Part 1: Hardware and Component Selection – Square Wave Output
	Electronic Components Required
	Circuit Schematic
	Software
	Page Components Required
	Part 1: Observations

	Experimental
	Part 2: Hardware and Component Selection – Triangular and “Sawtooth” Outputs
	Part 2: Observations
	Part 3: Hardware and Component Selection – Dual-Slope Triangular Waveform
	Part 3: Observations

	X-Y Data Recording
	Observations: x-y Plotting
	Discussion
	X vs. Time Recordings
	X-Y Recordings

	Microcontroller Data Plotting
	Experimental
	Observations
	Discussion

	Graphical Data Recording with Python and the Raspberry Pi
	Introduction
	Experimental
	Observations
	Discussion

	Code Listing
	Summary

	Chapter 10: Current Control
	Constant Current Sources
	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Control of Larger DC Currents
	Introduction
	Brushless Direct Current (BLDC) Motors (Motors Without Commutators or Sparking Brushes)

	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Stepper Motors

	Experimental
	Hardware
	Circuit Schematic
	Software
	Page Components Required

	Observations
	Discussion
	Control of AC Current Sources
	Introduction

	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Current Control with Raspberry Pi and Python
	Introduction
	Control of Larger DC Currents

	Experimental
	Non-inductive Loads

	Observations
	Discussion
	Power Control to Inductive Loads
	Introduction
	Experimental

	Observations
	Discussion
	Control of AC Currents
	Introduction

	Experimental
	Observations
	Discussion
	Code Listings
	Raspberry Pi–Python Codes

	Summary

	Chapter 11: Microcontrollers and Serial Communications
	Experimental: Microprocessor to Host PC Communications – “Uploading”
	Hardware
	Circuit Schematic
	Software
	Page Components Required

	Observations
	Discussion
	Experimental: Host PC to Microprocessor Communications – “Downloading”
	Introduction
	Hardware
	Software

	Observations
	Discussion
	Raspberry Pi and Arduino
	Experimental
	Observations
	Discussion
	Code Listings
	Summary

	Appendix A:
List of Abbreviations
	Appendix B:
List of Suppliers
	Index

