
T E C H N O L O G Y I N A C T I O N ™

Arduino in
Science

Collecting, Displaying, and
Manipulating Sensor Data
—
Richard J. Smythe

Arduino in Science
Collecting, Displaying,

and Manipulating Sensor Data

Richard J. Smythe

Arduino in Science: Collecting, Displaying, and Manipulating Sensor Data

ISBN-13 (pbk): 978-1-4842-6777-6		 ISBN-13 (electronic): 978-1-4842-6778-3
https://doi.org/10.1007/978-1-4842-6778-3

Copyright © 2021 by Richard J. Smythe

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6777-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Richard J. Smythe
Wainfleet, ON, Canada

https://doi.org/10.1007/978-1-4842-6778-3

iii

Table of Contents

Chapter 1: �Button Control of LED Illumination���������������������������������������1

Experimental��3

Hardware��4

Circuit Schematic: DAQFactory and LabJack Combination������������������������������5

Software���6

Observations, Testing, and Development��15

Discussion��17

Raspberry Pi, Python, Screen Push Button LED Control���������������������������������������18

Experimental��19

Observations���21

Discussion��23

Code Listings���23

Summary���25

Chapter 2: Power Control, Monitoring, and Creation of
Dedicated Graphical User Interfaces���27

Experimental��29

Hardware���32

Software���33

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

The Author’s Preface to Arduino in Science���������������������������������������xix

iv

Page Components Required���34

Observations, Testing, and Development���36

Discussion��38

Power Monitoring and Control with Raspberry Pi��50

Experimental��52

Observations��54

Discussion��55

Code Listings���56

Summary���74

Chapter 3: �Introduction to Scripting��75

Experimental��76

Hardware��77

Software���77

Scripting���79

Observations��80

Discussion��80

DAQFactory Sequences: Arduino LED Array���81

Experimental��82

Discussion��83

Raspberry Pi���83

Code Listings���85

Summary���92

Chapter 4: �Data Entry from the Screen��93

Hardware���94

Software���96

Page Components Required���96

Table of Contents

v

Scripting���103

Observations���103

Discussion��104

Screen Entry of Data with the Arduino Microcontroller�������������������������������������105

Experimental��106

Observations���109

Discussion��109

Raspberry Pi: Screen Entry of Data��110

Code Listings���112

Summary���129

Chapter 5: �Digital Signal Concepts and Digital Signal Outputs���������131

Experimental��132

Hardware��132

Software���134

Observations���136

Discussion��136

DAQFactory Digital Output Exercise with a Microcontroller
LED Demonstration Array���137

Experimental��137

Observations���138

Discussion��138

Raspberry Pi���139

Code Listings���141

Summary���151

Table of Contents

vi

Chapter 6: �Analog or Digital Conversions for Input and Output��������153

Digital-to-Analog Conversions���157

Experimental: LabJack-DAQFactory Decimal-to-Binary Conversions����������������158

Hardware��158

Software���158

Analog-to-Digital Conversions��159

Observations���162

DAQFactory–LabJack HMI Analog-to-Digital Numerical Base Conversions �������162

Analog-to-Digital Electronic Signal Conversions��163

ADC0804: 8-Bit Binary LED Display��163

Discussion��165

Analog-to-Digital Conversions with Microcontrollers��168

Experimental��169

Observations���174

Discussion��175

Diagnostics for Nonresponsive Displays��175

System Development and Programming��176

Analog and Digital Conversions for Input and Output with Raspberry Pi�����������177

Binary-Decimal Conversions��177

ADC with Raspberry Pi���178

Experimental��179

Observations���180

Discussion��182

Code Listings���185

Code Listings for Raspberry Pi���199

Summary���207

Table of Contents

vii

Chapter 7: �Variable Intensity and Power Control�������������������������������209

Experimental��211

Variable Voltage Control���211

Observations���216

Discussion��216

Experimental��217

Pulse Width Modulation of Voltage���217

Observations���218

Discussion��221

Raspberry Pi Variable Intensity Control��222

Introduction��222

Experimental��224

PWM Signals with the RPi.GPIO Library��224

Observations���228

Code Listings���232

Summary���238

Chapter 8: �Counting Events and Timing���239

Software Time and Timing���240

Basic Time Variables���242

Scheduled Event Timer���243

The Stopwatch Timer��244

Hardware Timing, Event Counting, and Frequency Determination���������������244

Experimental��248

Hardware��248

Circuit Schematic���248

Table of Contents

viii

Software���248

Scripting���250

Circuit���251

Software���251

Observations��252

Discussion��252

Time Determination��252

Manual and Automated Event Counting���253

Hardware Time and Timing��254

Experimental��257

Schematic���258

Observations��258

Discussion��258

Microcontroller Clocks, Timekeeping, and Event Counting��������������������������������261

Experimental��262

Observations��263

Discussion��265

Counting Events and Timing with Python and Raspberry Pi������������������������������265

Scheduling Events��268

Detecting and Counting Events��270

Experimental��273

Observations��276

Discussion��281

Code Listings���283

Raspberry Pi Program Code���293

Summary���303

Table of Contents

ix

Chapter 9: �Graphical Data Recording��305

Experimental: Linear Graphical Data Recording���307

Part 1: Hardware and Component Selection – Square Wave Output������������307

Electronic Components Required���309

Circuit Schematic���309

Software���310

Page Components Required���310

Part 1: Observations���313

Experimental��315

Part 2: Hardware and Component Selection – Triangular and
“Sawtooth” Outputs���315

Part 2: Observations���316

Part 3: Hardware and Component Selection – Dual-Slope
Triangular Waveform��318

Part 3: Observations���320

X-Y Data Recording��321

Observations: x-y Plotting��325

Discussion��326

X vs. Time Recordings��329

X-Y Recordings���335

Microcontroller Data Plotting���335

Experimental��337

Observations���338

Discussion��338

Graphical Data Recording with Python and the Raspberry Pi����������������������������340

Introduction��340

Experimental��341

Observations���343

Discussion��346

Table of Contents

x

Code Listing���348

Summary���351

Chapter 10: �Current Control���353

Constant Current Sources��354

Experimental��355

Hardware��355

Circuit Schematic���356

Software���359

Observations��359

Discussion��360

Control of Larger DC Currents��362

Introduction��362

Brushless Direct Current (BLDC) Motors (Motors Without
Commutators or Sparking Brushes)���362

Experimental��363

Hardware��363

Circuit Schematic���365

Software���367

Observations��368

Discussion��369

Stepper Motors���370

Experimental��372

Hardware��372

Circuit Schematic���373

Software���376

Observations��376

Discussion��378

Table of Contents

https://doi.org/10.1007/978-1-4842-6778-3_10#Sec900

xi

Control of AC Current Sources���379

Introduction��379

Experimental��382

Hardware��382

Circuit Schematic���384

Software���386

Observations��386

Discussion��387

Current Control with Raspberry Pi and Python��390

Introduction��390

Control of Larger DC Currents��390

Experimental��392

Non-inductive Loads���392

Observations��395

Discussion��395

Power Control to Inductive Loads��397

Introduction��397

Experimental��398

Observations��403

Discussion��404

Control of AC Currents��405

Introduction��405

Experimental��405

Observations��407

Discussion��408

Code Listings���409

Raspberry Pi–Python Codes���409

Summary���413

Table of Contents

xii

Chapter 11: �Microcontrollers and Serial Communications����������������415

Experimental: Microprocessor to Host PC Communications – “Uploading”�������419

Hardware��422

Circuit Schematic���422

Software���423

Page Components Required���428

Observations��428

Discussion��430

Experimental: Host PC to Microprocessor
Communications – “Downloading”��432

Introduction��432

Hardware��433

Software���433

Observations��435

Discussion��435

Raspberry Pi and Arduino��436

Experimental��437

Observations��438

Discussion��440

Code Listings���441

Summary���447

�Appendix A: List of Abbreviations���449

�Appendix B: List of Suppliers��459

�Index��461

Table of Contents

xiii

About the Author

Richard J. Smythe attended Brock University

in its initial years of operation in southern

Ontario and graduated with a four-year

honors degree in chemistry with minors in

mathematics and physics. He then attended

the University of Waterloo for a master’s

degree in analytical chemistry and computing

science and a doctorate in analytical

chemistry. After a post-doctoral fellowship at

the State University of New York at Buffalo in

electro-analytical chemistry, Richard went into

business in 1974 as Peninsula Chemical Analysis Ltd. Introduced in 1966

to time-shared computing with paper tapes, punched cards, and BASIC

prior to Fortran IV at Waterloo, as well as the PDP 11 mini-computers and

finally the PC, Richard has maintained a currency in physical computing

using several computer languages and scripting codes. Professionally,

Richard has functioned as a commercial laboratory owner and is currently

a consulting analytical chemist, a civil forensic scientist as PCA Ltd., a

full partner in Walters Forensic Engineering in Toronto, Ontario, and

senior scientist for Contrast Engineering Limited in Halifax, Nova Scotia.

A large portion of Richard’s professional career consists of devising

methods by which a problem that ultimately involves making one or more

fundamental measurements can be solved by using the equipment at hand

or using a readily available “off-the-shelf/out-of-the-box” facility to provide

the data required.

xv

About the Technical Reviewer

Roland Meisel holds a B. Sc. in physics from

the University of Windsor, a B. Ed. from

Queen’s University specializing in physics

and mathematics, and an M. Sc. in physics

from the University of Waterloo. He worked

at Chalk River Nuclear Laboratories before

entering the world of education. He spent

twenty-eight years teaching physics,

mathematics, and computer science in the

Ontario secondary school system. After retiring from teaching as the head

of mathematics at Ridgeway Crystal Beach High School, he entered the

world of publishing, contributing to mathematics and physics texts from

pre-algebra to calculus in various roles, including technology consultant,

author, interactive web files (which he conceived, created, published and

edited), and photography. He remains active in several organizations,

including the Ontario Association of Physics Teachers, the Ontario

Association of Mathematics Educators, the Canadian Owners and Pilots

Association, and the Wainfleet Historical Society.

He has always had a strong interest in technology, mail-ordering

his first personal computer, an Apple II with a 1 MHz CPU and 16 kB of

memory, from California in 1979. At leisure, he can be found piloting small

airplanes, riding his bicycle or motorcycle, woodworking, reading, or

playing the piano, among other instruments.

xvii

Acknowledgments

Acknowledgments begin with my late parents, Richard H. Smythe and

Margaret M. Smythe (née Earle), who emigrated from the remains of

London, England, after the war with their small family of three and

eventually raised four siblings in Canada. Our parents instilled in us the

need to be educated as much as possible in order for each of us to be self-

sufficient and independent. That independence has led to the comfortable

retirement of the middle two and to the youngest continuing in her chosen

occupation for close to a decade past retirement and the oldest to still be

actively engaged in the business of chemical analysis consulting and the

practice of civil forensic science.

Along the way, numerous individuals have served as an inspiration

while teaching and mentoring me, imparting knowledge, the art of rational

thinking, tenacity, and in most cases valuable wisdom:

From Merritton High School in St. Catharines, Ontario:

Mrs. E. Glyn-Jones, mathematics; Mr. J. A. Smith, principal; and Mr.

E. Umbrico, physics

From Brock University in St. Catharines, Ontario:

Prof. E. A. Cherniak, Prof. R. H. Hiatt, Prof. F. Koffyberg, and Prof. J. M.

Miller

From the University of Waterloo in Waterloo, Ontario:

Prof. G. Atkinson

From the State University of New York at Buffalo:

Prof. S. Bruckenstein

It may also be said that the seeds for the growth and development of

this work began when as a parent I made sure that both my daughters,

Wendy and Christie, could read at a very early age and devised graphic

teaching aids for them to learn and understand binary digital arithmetic.

xviii

Acknowledgments would not be complete without recognizing

the person who has allowed me the time required to write, in spite of

life’s everyday chaos in the country, my spouse, Linda. She has suffered

through many years of papers, notes, books, breadboards, wires, electronic

components, and desktop experiments scattered everywhere in our home

and, when she wasn’t looking, on the kitchen table! Thank you, my love.

Although my career consists of solving essentially chemistry-based

problems and writing reports explaining how the problem came into

existence and how to correct its effects or avoid its re-occurrence, I have

never written a book. This work would not be possible without the help

and guidance of editors at Apress, Ms. Natalie Pao, Ms. Jessica Vakili, and

Mark Powers.

Acknowledgments

xix

The Author’s Preface to
Arduino in Science
Arduino in Science is written to provide an introduction to the basic

techniques that can be used by individuals to engage in experimental

science. It is hoped that the manuscript can assist students and those new

to or with limited backgrounds in electro-mechanical techniques or the

physical sciences, to devise and conduct the experiments they need to

further their research or education. It is also hoped that the manuscript

will be useful where there are limited financial resources available for the

development of experimental designs and experimental or educational

programs.

Migrating or foraging animals and insects use daylight, near- infrared

light, polarized light, celestial indicators, chemical traces in water, the

Earth’s magnetic field, and other aids to navigate over the Earth’s surface

in search of food or to return home to their breeding grounds. Astronomy,

biology, chemistry, geology/geography, mathematics, physics, and other

subjects through to zoology are human concepts and classifications

entirely unknown to the travelers of the animal world. There are parallels

between the animal kingdom’s usage of multiple scientific phenomena

of which they have no knowledge and current scientific investigations.

A significant amount of new scientific knowledge is being revealed by

investigators educated in one classifiable discipline using the unfamiliar

experimental techniques from another. Although written by an analytical

chemist, this manuscript is a compilation of introductory basic techniques

applicable to any scientific discipline that requires the experimental

measurements of basic physio-chemical parameters.

xx

The author is an experimental analytical chemist who has worked

with vacuum tubes, transistors, integrated circuits, main frame, mini-

computers, microcomputers, and microcontrollers, while computing

technology transitioned from BASIC, Fortran, and variations of C to

iterations of the open source systems such as Python, Processing (the basis

of the Arduino microcontroller integrated development environment (IDE)

language), and Linux operating systems used in the Raspberry Pi. New and

revised versions of languages, IDEs, and operating systems are available

free of charge from the Internet and are constantly in a state of flux.

This work could be considered as being virtually obsolete as it is

being written, but as with the science and technology that it describes,

it is a starting point in an ever-changing subject. For the researcher and

practicing scientist, the fundamentals of science are relatively constant

and reasonably well understood, so a great deal of caution must be used

when deciding that a concept or technique is “obsolete.” The SCADA

concept and its development significantly predate the PC. Some of the

transistor and CMOS ICs and the 7400 series of integrated circuitry that

are in heavy use today date from the 1970s. Many chemical analysis and

physical measurement techniques, taught and in use today, date virtually

from the Middle Ages.

SCADA is the acronym for supervisory control and data acquisition.

SCADA software allows a computer to supervise an electro-mechanical

process and do so by acquiring data from sensors that are monitoring

the process being controlled. Many of the measurement techniques to be

discussed can be considered as single element components that are now

part of the developing technology being called the Internet of things (IOT)

with the Node-RED connectivity open source software.

HMI is the acronym for human-machine interface. The HMI can be

an electronic device or construct that provides an interface between a

computer, an experimental setup, and a human operator. (A graphical user

interface, GUI, may serve as an HMI.)

The Author’s Preface to Arduino in Science

xxi

USB is the acronym for Universal Serial Bus that is, in reality, a written

standard of specifications to which electro-mechanical hardware systems

are expected to conform. The USB is a subsystem that lets a personal

computer communicate with devices that are plugged into the Universal

Serial Bus.

When a personal computer runs supervisory control and data

acquisition software with a human-machine interface connected via the

Universal Serial Bus system, then investigative science experiments or

other processes, experimental apparatus, or equipment setups, either “in

the field” miles away or “on the bench” next to the computer/workstation

or laptop, can be monitored and controlled in “real time.”

Laptops, stand-alone desktops, and cabled or wireless networked

workstations together with Internet connections now allow unprecedented

flexibility in laboratory or “in-field” monitoring of investigative science

experiments.

The options available to the experimentalist for implementing SCADA

systems can essentially be divided into three categories based upon the

amount of development work required to achieve a fully functional system.

Complete, finished, working software systems that are able to

measure and control virtually any electro-optical-mechanical system are

available from manufacturers such as National Instruments and Foxboro.

Commercially available fully functional, basic, software-only systems can

be expected to cost in the range of several thousands of dollars.

The author chose to develop this manuscript on three much-lower-

cost options for SCADA implementation in experimental setups.

A moderate-cost implementation strategy, involving the following list

of resources, has been used to develop the exercises in this manuscript.

These resources should also be adequate for further experimental

development of new applications:

The Author’s Preface to Arduino in Science

xxii

	 1)	 A PC with SCADA software. Numerous systems

are available, and the DAQFactory Express and the

base-level DAQFactory version of the system from

AzeoTech have both been used in this manuscript

(cost for DAQFactory base-level software approx.

$250 CDN, 2008). There are freeware versions of

SCADA systems available for those who are able to

adapt the software and may require the extended

flexibility.

	 2)	 A USB HMI. Again there are many devices available

from many manufacturers, and the device chosen

for this manuscript is the model U12 from LabJack

Corporation. (U12 costs approx. $120. U3 was

added later, which costs approx. $110 USD.) The

LabJack devices are provided with software in

the form of a working version of the DAQFactory

program called “Express.” The LabJack-supplied

software is excellent with respect to its graphical

display capabilities and for many applications in

investigative sciences is more than adequate. The

DAQFactory Express is however limited to ten lines

of script code, five script sequences, and two display

pages. For some of the topics discussed and project

exercises described in this manuscript, the more

extensive capabilities of a commercial version of

the DAQFactory software may be required. If the

software is to be purchased, the reader should start

with the most basic program available and add

upgrades as required.

The Author’s Preface to Arduino in Science

xxiii

	 3)	 The third option for experimentalists is the newest

and lowest-cost approach to the implementation of

a SCADA system that consists of the Raspberry Pi, its

Linux operating system, the Python programming

language with its matplot library, and the tkinter

graphical user interface. The Linux operating

system and Python and its modules are all open

source projects and hence free for download

from the Internet. The Raspberry Pi project has

made available the Raspberry Pi board that can

be purchased from many large electronics supply

houses such as DigiKey or Newark element14, to

name only two, for $35. The Raspberry Pi board

requires an HDMI-compatible TV or computer

monitor, mouse, and keyboard to form a fully

functional computing system. In addition to the

virtually no-cost software, the Raspberry Pi board

contains its own general-purpose input/output bus

in addition to its USB input/output connection and

hence contains its own HMI requiring no additional

circuitry or expense to be interfaced to external

electronics or experimental setups. The Raspberry

Pi board is manufactured with an Ethernet

connection and is thus network capable.

In 2008 an open source project called Arduino made available a series

of USB-connected microcontroller boards that allowed designers, artists,

hobbyists, and non-electronics specialists to interface electro-optical-

mechanical devices to a computer. The basic Arduino Uno Rev3 board

can be purchased from any of the major electronics supply houses for

$25. The software to program the microcontroller board is another open

source project and is freeware that can be downloaded from the Internet.

The Author’s Preface to Arduino in Science

xxiv

The Arduino board can be used with Windows or Linux-based operating

systems and is fully supported with an online forum, many tutorials, and

an extensive range of example programs and applications.

Experimental investigations using SCADA-type implementations can

thus take the form of a complete commercially available package, useable

as received with no required development time, as a lesser-cost system

requiring a moderate amount of programming using the DAQFactory

program and commercial HMI devices such as the LabJack series of

interfaces or as an assemblage of very-low-cost hardware and open source

software freely available for download from the Internet.

In addition to the software and hardware required to implement the

monitoring and controlling system, additional ancillary equipment may be

required in the form of the following list:

	 1)	 A solderless breadboard system, appropriate power

sources such as battery or electronic regulated

supplies, and access to various IC and passive

electronic components are required.

	 2)	 For troubleshooting, a multimeter is required; and

for more advanced work, an oscilloscope, either

stand-alone or an oscilloscope program for a PC,

may be required.

It is suggested that the reader, new to this technology, work through the

manuscript in order of presentation so as to gain practice and confidence

with software, wiring, and increasing project complexity. The basics

of scripting software, hardware interfacing, electronics fundamentals,

and IC usage will all progressively become more complex; and the basic

knowledge and procedures established in the earlier exercises will not be

repeated in the more advanced projects. All science is empirical in nature,

and this manuscript is no different than real-life scientific work. The

investigator must progress from the simple to the more complicated facets

The Author’s Preface to Arduino in Science

xxv

of the project at hand, verifying and validating each intermediate step in a

multiple-stage measurement process.

The rate at which the individual can progress through the various

topics presented will be dependent upon their knowledge of the basic

physical sciences that form the core of the exercises. If difficulty is

encountered, textbooks, online tutorials, and academic course outlines

with exercises can be located to further aid in understanding the required

base knowledge.

As the title states, this manuscript deals essentially with monitoring

and measuring physical-chemical parameters with integrated circuitry and

physical computational systems. In this work, inexpensive “off-the-shelf

components” are used to monitor and control experimental setups that

are able to measure data in the form of basic physio-chemical parameters

of interest to investigators in many of the classified sciences, with in some

cases astounding sensitivity, flexibility, accuracy, and precision.

Disclaimer

	 1)	 110-volt electricity can be lethal and will start fires.

	 2)	 Soldering irons are hot enough to cause serious

burns.

	 3)	 This document is for educational purposes only

and presents concepts that are demonstrated

through experimental formats. These experimental

setups have not been tested for robustness and

are not designed or intended for any form of

implementation in field service. These concepts

are the basis for education only and are intended

as being starting points for further R&D into

instrumental methods of monitoring experimental

scientific apparatus for the purposes of gathering

data or making physical measurements.

The Author’s Preface to Arduino in Science

xxvi

	 4)	 The concept for this work came to the author in

the mid-1960s, and in the interim years, various

portions of this work were developed with the

technology available at the time, while other

concepts were found to be unworkable. Although

formal assembly of this document was begun

in 2008 and 2009 using the integrated circuitry,

physical computing, and Internet information

resources available at that time, the document

continues to develop as it is being written using new

integrated circuits, physical computing software,

and online information sources. The continued

availability of either software or electro-mechanical

hardware can never be assured, and hence the

practitioners of this or any science must learn the art

of “a work-around.”

�Exercise Road Map
As noted in the Preface, this work is not intended to be a first or

ab initio introduction to data collection. Although motivated or

enthusiastic investigators can plunge right in and try to pick up needed

knowledge and skills on the fly, the guide is aimed at those who have at

least some experience in working with electronic hardware and computer

software. A basic familiarity with simple electronics as well as some

elementary programming in a structured language such as Python or C++

will shorten the time required to complete the various exercises.

The Author’s Preface to Arduino in Science

xxvii

The manufacturer’s literature for most of the data collection hardware

referred to in this guide provides guidance and elementary activities to

help familiarize the new user with its implementation. Online sources can

also provide numerous practical applications of the hardware at hand.

Once the experimenter is comfortable with the hardware and software

exercises described in this work, the experimental measurement of many

basic scientific parameters can be made in accordance with the methods

detailed in the next book in this series, Arduino Measurements in Science.

This work is devoted to developing the techniques that can be used

for making experimental physio-chemical measurements with equipment

assembled from readily available components, materials, and most small

desktop or portable computing systems. This manuscript is an attempt to

provide written methodologies by which fundamental measurements can

be made by investigators of varying levels of familiarity with electronics,

electro-optical, and simple mechanical systems. A series of experimental

measurement procedures are developed as a prelude for being able

to make the basic measurements of parameters such as temperature,

distance, light intensity, sound frequency, relative humidity, and other

fundamental measurements in basic science.

Each of the chapters develops a method or technique that can

ultimately be used to assemble a testing or measurement method or

procedure consisting of the various methodologies developed.

�Exercise Format
�Experimental

Hardware

Software

Observations

Discussion

Code Listings

The Author’s Preface to Arduino in Science

xxviii

�Project Management
When working through each of the exercises in the various chapters, the

following procedures are suggested:

	 1)	 In preparation for the assembly of an experimental

exercise or project described in a chapter, review the

manuscript information and collect the published

work relevant to the exercise such as manufacturer’s

data sheets for the components in use. This will

serve to add to the depth of knowledge available to

the investigator and may avoid component damage.

Rough notes and drawings should be collected

together into a notebook (either on paper or in an

electronic format).

	 2)	 Begin assembling the hardware/electronics and

corresponding software from the simplest unit

operations of the project, debugging the individual

modules and then verifying operational status until

the entire project functions as designed.

	 3)	 Caution is required in reading schematic diagrams

and attempting to duplicate their assembly as

certain discrete components and integrated

circuitry are constantly decreasing in physical

size or are replaced with newer technology. The

decrease in size means that identification markings

on components are getting smaller also.

Resistance and capacitor markings may appear in several formats

as combinations of numbers and letters with the magnitude symbol

sometimes replacing the decimal point. Surface mount technologies (SMTs)

have a three-digit code in which the first two digits are the value and the

third is the power of 10 of the value multiplier.

The Author’s Preface to Arduino in Science

xxix

Resistors’ unit of measure is ohms, symbol Ω.

M is 106 or 1,000,000 ohms, and typical identifications may be 1.5 M or

1M5.

K is 103 or 1,000 ohms, and typical identifications may be 1.2 K or 1K2.

R is 100 or 1 or unit ohms, and typical identifications may be 100 R or

just 100 as there is no decimal point to replace.

m is 10-3 or 1/1000 ohms, and 0.052 Ω is written as 52 mΩ.

Capacitance units in older works were mainly limited to micro- and

picofarad designations, and the range of nano- was covered either by

thousands of pico- or thousands of microfarads. Most current capacitor

notation usage seems to adhere to the three main fractional designations

listed in the following but has recently been expanded to include the Farad

to avoid using thousands and millions of the micro- term when describing

ultra- and super-capacitor devices.

Capacitors’ unit of measurement is Farads, symbol F.

u is microfarad and is 10-6 Farads.

n is nanofarad and is 10-9 Farads.

p is picofarad and is 10-12 Farads.

The exercises in this book use very simple electrical circuits that will

be assembled on a “breadboard” and connected to the LabJack HMI,

DAQFactory Express system, Arduino microcontroller–DAQFactory

combination, or directly to the Raspberry Pi or RPi-Arduino systems

to provide an interface between the working electronic circuit and

a computer-generated GUI. Each of these combinations allows the

experimenter to exercise supervisory control, acquire data, or monitor a

data stream trend, through a software, user interface screen. There is no

better way to gain experience with electro-mechanical control systems

than to mechanically assemble circuits and test and establish their

functioning, before configuring software for data acquisition (DAQ) and

hardware control. As a general rule, the hardware is assembled, tested, and

validated before one moves on to interfacing and software development.

The Author’s Preface to Arduino in Science

xxx

The following discussion uses the first of the exercises as an example

of the general methodology that will be used for the rest of the exercises.

Each exercise in this work is generally set out in the traditional laboratory

format, and it is assumed that this general section has been read and is

understood by the researcher.

When working with electrical signals from a sensor or experimental

apparatus, ensure that the output voltage level does not exceed the input

voltage capability of the electronic components being used to process the

signal. Most discrete integrated circuitry is limited to 5 volts, some op-

amps will operate at up to 18 volts, and most surface mount technologies

operate at a nominal 3.3 volts.

As with all scientific endeavors, a logical progression should be made

from the simplest to the more complex. When developing the software for

the project at hand, the experimenter should begin with the code required

to connect the apparatus to the computing and display circuitry.

The simplest form of electrical signal transmission uses a series

connection for both analog and digital signals.

Analog voltage signals are often connected directly to the input pins

of integrated circuits that provide some form of signal processing, while

digital signals are connected to pins that sense whether the signal is high

or low. In general terms, a large portion of sensor outputs are voltage

based, but current sensing is also used in some sensor measurements.

Computational circuitry usually accesses external data through a

“serial port.” The serial port is often a specific addressable location in

the computer memory that accepts incoming digital data according

to a specific encoding called a protocol. The protocol specifies the

meaning of the high-to-low or low-to-high transitions that make up the

digital signal with respect to timing, data values, and signal processing

control parameters. There are numerous scientific and industrial serial

transmission protocols designed and optimized for specific applications,

but the following exercises will be predominantly confined to the basics of

serial data transmission.

The Author’s Preface to Arduino in Science

xxxi

The exercises can use the DAQFactory scripting language, Python, and

the variant of C used in Arduino programming. All three programming

languages have reserved keywords that cannot be used as variable

names. Follow the variable naming rule suggestions in the appropriate

documentation for the language in use. Create meaningful names by

following traditional C styles such as MySignificantName, MySgnfcntNme,

or My_Significant_Name. Do not use proper words such as “temperature”

or “Temperature” or any other word that may be a proper word used within

Python, DAQFactory scripting, C, or C++ programming code. Scripts

that contained proper words used as variable names or channels for

“clarity” by the author that failed to operate and produced baffling outputs

suddenly performed flawlessly when the proper words were re-keyed with

unique mixed upper- and lowercase characters. Follow the proper formal

methodology built into the software at hand. In the DAQFactory software,

creation of the channels first allows DAQFactory to populate the pop-up

intelligent listing of channels, variables, and constants to cut down on

error-prone typing. The primary step in all troubleshooting procedures

involving written coded systems that do not work is to check all spelling.

Names are case sensitive.

Keep detailed notes of what is being done, write down calculations,

sketch schematics and rough mechanical drawings. This is, after all,

science. The drawing conventions for mechanical systems and electronic

circuits can be found in several reference texts.1 The reader is encouraged

to follow these conventions.

1 1) �Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge
University Press, ISBN 978-0-521-8785-6

2) �The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
ISBN 0-521-37095-7

3) �Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill
ISBN 978-0-07-177133-7

The Author’s Preface to Arduino in Science

xxxii

As an exercise is assembled from software control of the HMI to wiring

of the circuitry on the breadboard, test each segment of the process.

Work neatly; lay out the wiring parallel to the lines and rows of pins on

the breadboard socket. Cross wires at right angles and only bend small

copper wires to right angles with your fingers so as to achieve a relatively

large radius of curvature. Recall that copper, although very ductile, “work

hardens,” so use new wire where possible or make sure that a wire is

re-bent to large-radius, gentle curvatures, no more than half a dozen

times at most. In the chemical engineering discipline, a manufacturing

process is set up from a number of “unit operations.” Each unit operation

is usually a complete basic step involving a physical change or chemical

transformation such as crystallization or precipitation that forms a

component of a larger multistep manufacturing process. A unit operations

concept can be applied to creating a basic supervisory control and data

acquisition (SCADA) process. In essence each SCADA process can be

considered to have, at a minimum, three components, a process to be

controlled, a sensing and adjusting mechanism, and a central control

authority.

To practice the unit operations concept in our first exercise, we should

set up or configure our DAQFactory software to activate a channel. The

channel will have been assigned a screw terminal output on the LabJack,

and the terminal output will have been wired to the appropriate input pin

on the integrated circuit driver. The output pins on the current driver IC

will have been individually wired to the current limiting resistor (CLR) on

the LED diodes being controlled by the system.

The first step in our testing procedure is to verify the appearance of

+5 and 0 volts at the channel output pin on the LabJack with a digital

voltmeter (DVM). The appearance of the +5 and 0-volt signal should be

verified at pin number 3 on the CD4050 hex buffer chip current driver and

at the higher-voltage end of the current limiting resistor on the LED. It is

inherently assumed that if all the component parts of a system work, then

the entire process will work. Remember that the assumption is just that!

The Author’s Preface to Arduino in Science

xxxiii

�Isolation
The USB is essentially a communications standard and as such has a

limited ability to supply power. An HMI that can be used for this work is

the LabJack that draws virtually all its power from the computer’s main

supply. The LabJack can source up to 450 mA. It is good practice for an

external power supply to be used to power our experimental devices. In

this manuscript, we are working on a bench or desktop and will do so

with a self-contained power supply as will be encountered in any field

or laboratory experimental setup. Some experimental setups in either

laboratory or field will draw more than a half amp, and some will control

line voltages and currents. Control of remote setups by the SCADA

software over networks or from laptops may not be able to supply any

current to the experimental equipment. To power the LED in the first

exercise, we will use the HMI to control a “buffer” circuit of a CD4050

CMOS IC chip that will in turn be used to switch the LED power on and

off. The control logic of a ONE or ZERO, created by the SCADA software

and appearing at the I/O terminals of the HMI device in the form of +5 or

0 volts, is thus used to control the required current from an external 6-volt

power supply.

An independent battery or highly regulated power supply is often

required for measuring low-level analog signals. Investigators using the

5-volt supply of the USB will often find that the sensitivity of low-level

analog signals is defined by the digital clock noise of the bus.

The systems being monitored and controlled in most real-world

applications are self-powered and in fact may be linked to the computer

and the SCADA software through a wireless link. When the USB is used

for power, it is good practice not to load the computer power supply and

hence draw only the minimum required current from the bus.

Some of the experimental setups to be explored will draw amps of

current and hence cannot be driven by the computer power supply, so

some of the exercises to follow must obviously be self-powered. In the later

The Author’s Preface to Arduino in Science

xxxiv

exercises, the power and flexibility of USB-connected microprocessors will

be explored; and although these can be powered by the USB, they should

be self-powered to stop the noise on the bus system being blended with

the data signal output of the microprocessor. (USBs 1 and 2 can supply 500

mA and USB 3 900 mA.)

�Software Scripting
Every script written should be fully documented. The name of the

sequence or code, the purpose of the sequence, and possibly the date the

code was written should all be placed at the head of the actual code in

accordance with the details for naming and commenting as given in the

various software language references. The heading should also outline

what the code does, describe the algorithm in text, and define the variables

used. Recall also that a variable must be declared in a scripted sequence,

plus the sequence must be running for the variable to exist and be useable.

DAQFactory has an auto-start option for a sequence, which will start the

sequence when the page with the script-related icon’s control screen is

loaded, and if required the auto-start option can be used to automatically

start a sequence that declares a set of variables for use in configuring a

control screen or sequence.

The RPi and Arduino auto-start their operating system and defined

software variable on the application of system power.

�Integrated Circuitry and Surface Mount
Technology (SMT)
Traditionally experimenters bought components for mounting on

breadboards during testing and project development. The successful

breadboard circuit could then be transformed into printed circuit boards

The Author’s Preface to Arduino in Science

xxxv

with single- or double-sided etched patterns. The double-sided boards

often used drilled holes to connect both sides of the board. However, as

integrated circuits became significantly smaller, drawing less current, they

became faster and significantly more sensitive and are now at the point at

which many of these miniature ICs can neither be handled manually nor

electrically connected into circuits, by the average researcher.

Smaller IC size has given rise to smaller component area and

surface mount technology (SMT) that in turn has made circuit boards

much smaller, easier to manufacture, and less expensive. The decrease

in physical size and the development of SMT have added a layer of

complexity for the experimentalist. Using the advantages gained by

physically decreasing the size of the integrated circuits requires adapters to

convert SMT components into compatible breadboarding formats.

Exercises in the following chapters predominantly use readily available

ICs that are compatible with the common prototyping breadboard

systems.

The Author’s Preface to Arduino in Science

1© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_1

CHAPTER 1

Button Control of LED
Illumination
The exercise in this chapter is virtually one of the simplest forms of

computer control in that an LED device is powered on and off by clicking a

button icon on the main system display screen or by running several lines

of computer code. The graphical user interface (GUI) is the display screen

that contains the icons of buttons, sliding controls, meters, digital numeric

displays, graphical strip chart recorder displays, and other symbols, both

active/passive and text based that can be used to monitor and control the

process at hand. Clicking the screen button toggles the LED on and off, and

the state of the system is determined visually, by whether or not the LED

is illuminated. As the initial exercise in interfacing the SCADA software

with the HMI and the breadboard electronics, the ability to control the

application of power to simple electronic circuits from a display screen or

keyboard is demonstrated.

In order to connect visually oriented digital software running on

a “Windows”-based computer operating system to a “plug-in” rapid

prototyping “breadboard” sitting on a bench top or embedded in an

experimental environment, a digital electrical connection is required.

A USB cable used to connect peripherals to host computers can be

employed as the electrical signal transmission line connecting the host

computer to the machine interface.

https://doi.org/10.1007/978-1-4842-6778-3_1#DOI

2

The machine interface connection can be any one of a number of

USB-compatible, programmable hardware devices, able to receive an

input of digital code, interpret or recognize the intent of the code, and

generate the required digital output signal.

In Figure 1-1, a selection of data acquisition or HMI devices able to

provide the required input interpretation and generate the proper output

signal are displayed.

Items 1 and 3 are from LabJack Corporation of Lakewood, CO,

USA. The corporation produces approximately a dozen multifunctional

data acquisition (DAQ) devices compatible with USB, Ethernet, and Wi-Fi

systems. LabJacks are rugged, robust devices intended for hard industrial

and laboratory applications with their heavy plastic protective cases and

large screw terminal wiring connections. The two devices depicted are

the lowest-cost U3-HV ($115 USD; see LabJack literature for a list of all

the additional functions and features available) and the original LabJack

multifunction DAQ device ($160 USD).

Item 2 is a Digilent Inc. chipKIT Uno32 (since retired) Arduino-compatible

microcontroller. The illustrated device has been replaced by the chipKIT uC32,

3.3-volt Arduino-compatible microcontroller ($42 CDN). Items 4 and 5 are

inexpensive mass-produced SMT Arduino-compatible microcontrollers from

SparkFun Inc. ($20–$30 USD).

Each of the devices illustrated is able to receive either a single digital

on/off signal or a coded instruction and generate the required output.

Chapter 1 Button Control of LED Illumination

3

Microcontrollers are currently manufactured by over a dozen

companies with a large variety of features and a wide range of costs.

�Experimental
The original control screen button illumination of an LED resident on

an external independently powered, prototyping board was created and

written in 2007 with the LabJack U12 as seen in Figure 1-1, item 3. Many

years later with the availability of the low-cost microcontroller boards,

items 2, 4, and 5 in Figure 1-1 can be used to do the same interface

functioning. Although this exercise describes the use of the U12, any

microcontroller board can be used as a replacement for the LabJacks in

Figure 1-1. Details on the configuration of the DAQFactory control screen

Figure 1-1.  Some HMI Devices

Chapter 1 Button Control of LED Illumination

4

button to activate an Arduino to illuminate an LED are given in Chapter 11.

In the “Experimental Downloading – Sending Data to the Microprocessor”

section, three buttons are configured to turn the power on and off to an

LED and to do so in a programmed sequence.

�Hardware
A typical selection of suitable electronic components for this exercise is

displayed in Figure 1-2 resting on a prototyping “breadboard.”

Item 1 is a plastic battery case able to hold eight AA-size cells to

provide a nominal 12 volts. (Eight fresh alkaline cells at 1.5 V each will

provide 12 V, while eight nickel metal hydride (NiMH) rechargeable cells at

1.2 V will provide an initial 9.6 V DC power supply. Li AA cells can provide

a nominal 3.6 volts each.)

Figure 1-2.  Prototyping Breadboard and Assorted Components

Chapter 1 Button Control of LED Illumination

5

The items beside caption 2 are LEDs. The left-hand red LED is a 3 mm

(1/8 in) miniature device, the next four colored diodes are 6 mm (1/4 in)

devices, while the right-hand clear device is a 10 mm (3/8 in) white light LED.

Item 3 is a CD4050 non-inverting hex buffer (see the following text). Item 4

is a typical 1/8-watt, current limiting resistor, while item 5 is a 2 in (50 mm)

by 6 1/4 in (163 mm) prototyping board. The board has two independent

power rails at the top and bottom of the top surface marked with a red (+)

and blue (–) line. Each rail power line can accommodate 50 power

connections and 50 ground connections. Between the upper and lower

power rails are two independent banks of 63 columns of five tie points.

�Circuit Schematic: DAQFactory and LabJack
Combination
The circuit schematic in Figure 1-3 is used in the first two exercises. The

full four-LED circuit is used in Chapter 2 in which the individual power

consumptions of the various colored LEDs are monitored. For the first

exercise, use only the wiring in the red LED circuit.

Figure 1-3.  Circuit for LED Power Control

Chapter 1 Button Control of LED Illumination

6

Individual switches in the CD4050 chip are monodirectional in

that a voltage change applied to the input affects the output but voltage

fluctuations at the output do not affect the input pins.

�Software
Page Component Required: A Single Button

As discussed in the “Exercise Road Map,” detailed notes should always be

kept while working with any scientific discipline. For this exercise, the name

of the channel to be used to control the HMI, or in this case the LabJack,

should be chosen and the software configured to deliver the channel output

signal to the first input/output terminal (I/O 0) available on the LabJack

terminal board. (See the LabJack U12 or U3-HV user guide.) The details in

the DAQFactory and LabJack user guides should be followed, and for this

exercise, the author used a channel name of RedLed. The channels to be

used in any DAQFactory project should be configured and activated by the

Apply button before placing screen components. By defining the channels

before creating the screen components, the channel names will appear in the

pop-up menu as seen in Figure 1-11. (For use of microcontrollers in place of

LabJacks, see Chapter 11, “Experimental Downloading.”)

As with all programming, documentation is required. To not document

software is poor practice, at best. Before placing and configuring the

button, a descriptive text message should be placed on the screen to

document what the button does. The text component is created from the

right mouse button pop-up menu (RMB-PUM) by selecting the Static

option and then the Text option. A window enabling a screen message to

be created is displayed.

Figures 1-4, 1-5, and 1-6 depict the selection of a static text screen

component, the display of the component properties subwindow, and the

active text entry panel.

Chapter 1 Button Control of LED Illumination

7

With the message outline frame in place and in the selected mode,

a right-click will bring up the menu containing the Properties option.

Selecting the Properties entry in the menu will bring up the properties

window that will allow the entry of the lettering to be displayed in the text

component.

Figure 1-4.  Simple Button Control

Figure 1-5.  Simple Button Control Properties

Chapter 1 Button Control of LED Illumination

8

Having entered the desired lettering into the text box and chosen the

alignment, color, font, and size, the main tab can be closed with the OK

button to place the text message. The text box as seen in Figure 1-7 may

have to be expanded/resized to display the entire message.

Figure 1-6.  Text Box Configuration

Figure 1-7.  Sizing of the Button Icon

Chapter 1 Button Control of LED Illumination

9

In keeping with the philosophy of constant documentation, it is

probably a good time to name the page with the Page Properties box

as seen in Figure 1-8. The box is displayed by right-clicking the current

page_n designator in the page list and selecting the middle option: Page

Properties.

The button component is selected from the RMB-PUM, and with

the Ctrl key pressed, the component can be positioned beneath the

appropriate text.

Following positioning of the button component on the screen, it can

be configured for actual usage by completing the appropriate tabs found in

the component properties dialog box. The properties dialog box is invoked

by right-clicking the selected icon as depicted in Figure 1-9. To connect the

screen displayed button to an action in the experimental environment, the

“Do Action” option is selected as seen in Figure 1-9.

Figure 1-8.  DAQFactory Page Naming Box

Chapter 1 Button Control of LED Illumination

10

As can be seen in Figure 1-10, the button component properties

window contains two tabs, Main and Action.

The Main tab allows the button to be labeled with the desired font and

size of characters and appropriate coloring of lettering, which is centered,

in the displayed icon by default. As can be seen in Figures 1-6 and 1-8, a

Help screen is displayed below the properties window for a convenient

reference while configuring the screen component. The textual content of

the Help box can be viewed through the scrolling controls on the side of

the Help box.

The button component box is depicted in Figure 1-10.

Figure 1-9.  Button Properties Dialog Box

Chapter 1 Button Control of LED Illumination

11

As the name suggests, the component Action tab configures the action

invoked when the button icon is clicked with the mouse cursor. As seen in

Figure 1-11, the Action tab brings up a drop-down list of actions or options

from which the desired selection can be made. The details of the various

entries on the drop-down action list are found in the component Help file

attached to the bottom of the window.

Figure 1-10.  The Main Tab of the Do Action Button Selection

Chapter 1 Button Control of LED Illumination

12

For the manual control of the LED on the breadboard, the Toggle

Between option from the drop-down list is selected. Selection of the Toggle

Between option then requires the completion of several more dialog boxes

that specify exactly what is to be done as depicted in Figure 1-12.

Figure 1-11.  The Action Pop-Up List from the Do Action Selection

Chapter 1 Button Control of LED Illumination

13

Figure 1-12.  Toggle Between Action Auto-fill List

When the Toggle Between option has been selected, it is usually a

channel that is to be switched between two alternate voltages such as

0 and 5 volts. As noted at the beginning of this software configuration

section, the completion and entry of the I/O channel configuration data

is now reflected in the RedLed entry in the intelligent pop-up selection

list of Figure 1-12. Double-clicking the RedLed channel entry will enter

the channel name in the box. Ensure that the name entered into the box is

correct and that no extra characters have inadvertently been appended to

or deleted from the desired name.

Chapter 1 Button Control of LED Illumination

14

The Action tab also has several other grayed-out options that are

activated with various selections from the action list. In this case, there are

boxes for the entry of the values to “toggle between” as seen in Figure 1-13

that will appear as axes on the channel’s graphical display.

The purpose of this exercise is to directly couple the button to the LED

power controller without any need for scripting.

Figure 1-13.  DAQFactory Button Action Screen Completed

Chapter 1 Button Control of LED Illumination

15

�Observations, Testing, and Development
Connect the positive lead of a digital voltmeter to the I/O 0 terminal and

the black lead to the GND terminal of the LabJack. Set the meter scale so

as to be able to measure 5 volts. Turn the meter on and ensure that the

reading is zero. Then click the LED on/off button, and the reading should

rise to 5 volts.

If a 5-volt reading does not appear, then begin by verifying the channel

name spelling in all components and tables. RedLed is case sensitive and

must appear exactly as spelled in all instances of occurrence in the screen

components and channel table. Ensure that the “Toggle Between” values

are 0 and 5 volts.

When the 5-volt signal is obtained at the LabJack terminals, then

the wiring from the terminals to the CD4050 IC chip can be prepared.

Insert the CD4050 hex non-inverting buffer chip into the breadboard at a

convenient location along the central dividing slot. It is customary to place

the chip so as the number 1 pin is in the bottom left-hand corner position

when the chip is viewed from the top.

Connect the number 1 pin to the + supply line on the breadboard, the

number 8 pin to negative or – supply on the breadboard, and the wire from

I/O 0 to pin number 3. Connect the GND terminal on the LabJack to the –

supply on the breadboard. With the external power supply connected to

the breadboard’s + and – lines, connect the voltmeter with the positive lead

going to pin 2 of the IC and the negative meter lead going to the negative

supply line of the breadboard. Click the LED on/off button, and the meter

voltage should rise to a nominal +5 volts.

If a 5-volt signal does not appear on the meter, verify the power supply

first and then retrace every wired connection as is indicated in the RedLed

schematic in Figure 1-3.

Chapter 1 Button Control of LED Illumination

16

When a nominal 5-volt signal is obtained at pin 2 of the CD4050 buffer

and can be cycled on/off with the screen icon, then the power limiting

calculation for the red LED to be activated by the control screen’s button

can be made. Use Ohm’s law to calculate the size of the resistor required

to limit the current through the red LED chosen for this project to the

mid-range of that suggested by the manufacturer. From the data sheet,

the bright LED source used by the author’s construct was specified for a

30 mA maximum current with a nominal 1.8 voltage drop. An application

of Ohm’s law indicated a resistance value of 213 Ω would limit the diode

current to half of the allowable maximum value specified. Any standard

resistor of 220 Ω or higher could protect the LED, and a nominal 470 Ω

resistor was available and used in the experimental setup.

It is good practice to calculate the theoretical size of the resistor

required to limit the LED current to the maximum amount specified in the

diode data sheet, from the nominal voltage of the power supply. Using the

data sheet maximum current and supply voltage nominal value generates

a resistor value for the LED in use that is adequate to protect the diode.

If the next standard value resistor above the “adequate” calculated value

is used, the diode will be well lit and have an extra margin of current

overload protection that will further extend the service life of the device

and aid in minimizing the load drawn from the power supply.

After determining the correct size of the current limiting resistor and

then assembling the resistor, diode, and CD4050 buffer to power supply

connections, the illumination of the red LED should now be controlled by

the button icon on the control screen. (Ensure that the diode is wired with

the cathode or short lead going to ground.)

The simple DAQFactory graphical user interface is depicted in

Figure 1-14.

Chapter 1 Button Control of LED Illumination

17

Figure 1-15.  Individual CMOS Buffer Circuit

�Discussion
In this exercise, the button has been created with the SCADA software. The

logic signal from the state of the button is then transmitted to the LabJack

terminal board that in turn controls an IC capable of handling the power

required to activate the LED. The LED itself is powered by an external

power supply so as the current required to produce the light is not drawn

from the PC supply. If the circuitry of the CD4050 hex buffer is examined, it

will be evident that a voltage signal is controlling a double CMOS inverter

configuration (Figure 1-15).

Figure 1-14.  DAQFactory Button for LED Illumination Control

Chapter 1 Button Control of LED Illumination

18

As can be seen in the preceding schematic and is discussed in detail

in several references1 on integrated circuit electronics, there are internal

complementary metal oxide semiconductor insulated gate devices that

virtually stop any DC current flow into the CD4050. The voltage change

from the HMI is the control signal that puts virtually no current load on the

USB system.

�Raspberry Pi, Python, Screen Push Button
LED Control
LED illumination from a screen display can be implemented by several

methods with the Raspberry Pi (RPi) single-board computer (SBC). Power

control can be implemented from the command line of the Pi’s Linux

operating system, from a mouse click on a button image created on the

system screen display with the Python programming language library

called easyGUI, with Python’s graphical user interface library called

tkinter, or with an Arduino microcontroller board interface between the

RPi and the LED.

All of the LabJack DAQ devices are compatible with the Linux OS and

the Python language.

In this first exercise, the command line methods for illuminating

the diode using either the interactive or scripting mode of the Python

interpreter will be demonstrated. In addition to the command line control,

a simple, dual-button, LED control GUI will be created with the easyGUI

library.

1 �1) Guide to CMOS basics, circuits, & experiments, Berlin, Howard W. Sams & Co.,
  Inc., ISBN 0-672-21654-X
2) CMOS Cookbook 2nd Edn., Lancaster and Berlin, SAMS, ISBN 0 672-22459-3

Chapter 1 Button Control of LED Illumination

19

Figure 1-16.  GPIO Pin Identification

Implementation of LED control with the Arduino microcontroller

interface is introduced in Chapter 4 when its 10-bit analog-to-digital

converter (ADC) is required for digitization of analog signals.

Assembly and configuration of the basic Raspberry Pi computer is

discussed in texts such as Practical Raspberry Pi from Apress books and

in up-to-date detail in the online documentation from the Raspberry Pi

Foundation.

Experimentation with the RPi GPIO can be done with minimal

complexity by connecting the pins of the SBC as defined in Figure 1-16

directly to the breadboard as depicted in Figure 1-17. Ribbon cables are

commercially available to connect the bank of dual pins on the RPi SBC

to prototyping boards, and if used, the investigator should ensure that the

white or red strip on the ribbon cable is connected to the top left-hand pin

of the double row of pins on the main board, when viewed from above.

�Experimental
In Figure 1-17, the long lead on the light emitting diode (LED) is the anode

and is connected to the positive supply. LEDs are solid-state devices that

only pass current in one direction. The flow of current through the device

controls the intensity of illumination, but excessive current can destroy the

diode, so a current limiting resistor is used in the circuit.

Chapter 1 Button Control of LED Illumination

20

To ensure communication between Python and the RPi hardware

pin array, a library called gpiozero is included in the Raspbian operating

software distribution. To create active screen components, a very

simplified GUI creation library called easyGUI can be downloaded as

detailed in following and used in these introductory exercises.

At the RPi terminal, enter “sudo apt-get install python3-easygui”. The 3

is required in order to get the correct library for Python 3 versions.

In Figure 1-17, the connections for an early 26-pin model of the RPi

SBC are depicted.

As can be seen in Figure 1-17, the anode is connected to a +5-volt pin in

the GPIO array through the column of connected pins on the prototyping

board. The cathode of the diode is series connected to the current limiting

resistor that is grounded. The resistance value is determined from the

maximum current specification for the LED device in use.

Figure 1-17.  Direct Wiring of GPIO Pins to Prototyping Boards

Chapter 1 Button Control of LED Illumination

21

The Linux operating system of the RPi has a Python programming

language interpreter with which the investigator can activate or energize

to +5 volts some of the pins on the GPIO bus. The Python commands can

be processed either in an interactive mode, processing one line at a time

in response to the code entered at the terminal, or as an automatically

executed series of Python commands written as a script.

In the interactive mode, we may consider this as the “manual” mode

since we are processing one line of code at a time as it is entered from the

keyboard. The interactive mode is very useful for setting up and testing the

circuitry with the keyboard, and in interactive mode we can turn the LED

on and off in the Python shell as needed. When the experimenter uses just

the shell and keyboard to turn the LED on and off, there will not be any

record of the previous actions of the system.

When the RPi is used with a Python script, explicit print statements can

be written into the code to record each action taken, which thus provides a

history of the system status.

�Observations
The easyGUI library written in Python presents the experimenter with

the code required to create a selection of screens containing typical

elementary GUI applications. Figure 1-18 is a “Light the LED” action box

that has been modified from the Cancel/Continue dialog box example

presented in the easyGUI library. Clicking Continue lights the LED and

Cancel turns it off. The library code has been modified by the author to

record the previous actions or history of the icon usage. The text record is

displayed in the Python shell in which the dialog box is running.

Chapter 1 Button Control of LED Illumination

22

The resizing buttons on the Light the LED box work, but the stop

program button does not. The two-button dialog box is literally running in

a window in the Python shell, and it is the shell stop program button that is

effective as seen in Figure 1-19.

In the code listings at the end of this chapter, there are the manual and

GUI-based listings that can be used to activate the LED wired to the GPIO

pins.

Figure 1-18.  A Simple GUI for LED Control

Figure 1-19.  The “Kill” Dialog Box of the Python Shell

Chapter 1 Button Control of LED Illumination

23

�Discussion
DAQFactory is commercial SCADA finished software. Purchase of this

“turnkey” system that “is ready to run straight out of the box” allows

the investigator to connect to the system to be controlled and assemble

the required GUI from the configurable icons provided on a complex

instruction set computing (CISC) device. The Raspberry Pi is a very-low-cost

reduced instruction set computing (RISC) device that uses free, open

source software that is able to engage in physical computing.

As noted in previous introductions, the RPi represents a very-low-cost

entry method to control experimental processes or measurement

experiments being made as part of an educational program or an

actual scientific research investigation. The RPi can be programmed to

implement the management of simple or very complex experimental

setups but requires increasing development time commitments from the

investigator as the complexity of the experiment being managed increases.

�Code Listings
After assembling an LED with the appropriate current limiting resistor (CLR),

connect the series wired devices to the GPIO pin 2 and ground, and then

enter the code from Listing 1-1 into the Python shell or the interactive

terminal.

Listing 1-1.  Manual LED Control

from gpiozero import LED

grnLed = LED(2)

grnLed.on()

grnLed.off()

Chapter 1 Button Control of LED Illumination

24

This simple series of code lines will open the gpiozero library and

make the LED object available for assignment to GPIO pin 2. The grnLed.

on() line sets the GPIO pin 2 to a high or true value and lights the LED. The

next line grnLed.off() sets the GPIO pin 2 to low or false and turns the LED

off (Listing 1-2).

Listing 1-2.  A Button GUI LED Control

Exercise with easyGUI to turn a LED on and off

an adaptation of the continue or cancel dual

button message box.

#

from easygui import *

import time

from gpiozero import LED

#

redLed = LED(2)

#

Use a while loop for continuous activation

while 1:

 msg = "Light the LED"

 title = "The Scientyst's Ayde"

 #

 if ccbox(msg, title): # show a Turn On/Off dialog box

 print("LED is turned ON!")

 redLed.on()

 # LED power turned on

 else: #user chose cancel

 print("The Led has been turned off!")

 redLed.off()

 # LED power turned off

Chapter 1 Button Control of LED Illumination

25

�Summary

–– A basic button icon on a monitor controls an electronic

device remote from the host computer.

–– Computer-experiment interfaces can be implemented

by configuration in more expensive systems or

programmed from basic principles in less expensive

component-based systems.

–– In Chapter 2, a more interactive two-way control

system will be developed with multiple buttons and an

experimental data display.

Chapter 1 Button Control of LED Illumination

27© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_2

CHAPTER 2

Power Control,
Monitoring, and
Creation of Dedicated
Graphical User
Interfaces
The “SC” in the SCADA acronym stands for supervisory control, while the

“DA” is for data acquisition. The purpose of the development of complete

software packages such as DAQFactory has been to monitor a real-world

electro-mechanical process and supervise or control its operation. This

chapter and its exercises expand upon the single button control by

creating multiple LED buttons and then monitoring the power consumed

by activation of these individual LEDs. The reading of process operating

values in response to control system inputs of one or more unit operation

activations is thus demonstrated.

The various sizes, methods of construction, intended use, and colors of

LEDs result in different voltage drops across their semiconductor junctions

as discussed in detail in the “Experimental” section. Each current limiting

resistor (CLR) of a fixed nominal value has its own unique resistance that

https://doi.org/10.1007/978-1-4842-6778-3_2#DOI

28

lies within the standard value tolerance for that type of device (i.e., +/– 10, 5,

or 1%). When the load resistance variation is combined with the diode

voltage drop and the ON resistance of the CD4050 buffer and all are

taken into account, it becomes evident that each current flow through the

different colored LED circuits will be different.

This exercise will measure the individual currents drawn by

illumination of the different colored LEDs and provide information on the

overall system performance by monitoring the power consumption of the

individual operations and the system as a whole.

There are several methods that can be used to measure direct

current flow with ammeters, electrometers, and induction or Hall effect

devices as presented in many electronics reference texts1 and in Arduino

1 �1) Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge
  University Press, ISBN 978-0-521-87858-6 hardback
�2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
   ISBN 13 978-0-521-37095-0 hardback
�3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,
  ISBN 978-0-07-177133-7

Table 2-1.  Typical 5 mm LED Parameters

Diode Color Typical Voltage(V) Drop Wavelength (nm) Current (mA)

Red 1.63–2.03 610–760 30

Green 1.9–4.0 500–570 25

Orange 2.03–2.10 590–610 30

Yellow 2.10–2.18 570–590 30

Blue 2.48–3.7 450–500 30

White 2.48–3.7 450–500 30

Violet 2.76–4.0 400–450 30

Ultraviolet 3.1–4.4 < 400 30

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

29

Measurements in Science. However, at this introductory stage of the

manuscript and for ease of implementation, resistance voltage drop

measurements and Ohm’s law calculations will be used to monitor the

current flow through the systems under test.

�Experimental
Light emitting diodes (LED) are diodes whose current, voltage, resistance,

and luminosity properties can be better understood when examined with

respect to both Ohm’s and Kirchhoff’s voltage laws.

Physically LEDs are manufactured in a variety of forms as depicted in

Figure 2-1.

Figure 2-1.  Various Forms of LED

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

30

Depicted in Figure 2-1 are a 10 mm green, a 5 mm blue, and a 3 mm

red LED through hole devices. (LEDs are available in flat, bar-shaped,

and surface mount configurations such as those visible in any photos

of the Arduino or Raspberry Pi circuit boards. For ease of experimental

setups with the prototyping boards illustrated in Chapter 1, Figure 1-1,

LEDs with two leads are preferred.) The star-shaped disk at the bottom

of Figure 2-1 is a 3-watt illumination diode. The top three indicator-type

devices can be powered from a computer or a USB device, but the bottom

diode designed for lighting or illumination service typically draws enough

current to warrant being bolted to a heat sink and hence when in service

usually requires a special high-current supply that far exceeds the current

capability of a computational device.

LEDs are often classified as indicators or illuminators according to the

type of light they produce. Indicators typically create a diffused light from a

colored body that is visible from all angles, while illuminators, usually with

clear bodies, generate a concentrated beam of light that is most intense

longitudinally or directly ahead of the device. LED brightness is measured

in millicandelas (mcd) or radiant intensity. A common candle emits about

1 candela.

Tables 2-2 and 2-3 are typical listings of the electrical and optical

parameters often found on LED data sheets.

Table 2-2.  Typical LED Electrical Parameters

ITEMS Symbol Absolute Maximum Rating Unit

Forward Current IF

IFP

ISU

IR

PD

TOPR

TSTG

TSOL

20

30

16-18

10

105

40 ~ 85

40 ~ 100

mA

mA

mA

uA

mW

‘C

‘C

Max. 260‘C for 3 Sec. Max. (3mm from the base of the expoxy bulb).

Peak Forward Current

Suggested operating current

Reverse Voltage (VR=5V)

Power Dissipation

Operation Temperature

Storage Temperature

Lead Soldering Temperature

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

31

When consulting a data sheet for information, always verify that the

data being retrieved is for the correct package size at hand. A compromise

is always required in selecting the currents to be used in an LED circuit

since the higher the current, the brighter the light and the shorter the

service life of the device. Listings on the data sheet give typical operating

currents, short time maximum currents, and longer service life operating

currents.

Optical properties specified for the diode are also given on the data

sheet that include the frequency or wavelength of the emitted light, the

diode voltage drop, and light output brightness at a given diode current.

To avoid damage to the diodes being used in an experimental

application, a current limiting resistor (CLR) is connected in series with

the LED. The voltage of the source must be high enough to turn the LED

on, and the difference between the source voltage and the diode voltage

can be dropped across a current limiting resistor to regulate the current

flow in the indicator or illumination circuit. (Either Kirchhoff’s voltage law

that notes that the total voltage drop around an electrical circuit is zero

or Ohm’s law can be used to determine the resistance value required to

regulate the current flow in an LED circuit.)

Theoretical calculations using Ohm’s law and the data for a typical

5 mm LED indicate that a 200 Ω resistor should sufficiently limit the

current from the nominal voltage of our power supply. The author’s 6 V

AA battery supply and 30 mA bright source diodes suggest that a

6 V/30 mA = 200 Ω resistor should be adequate to protect the diode and

Table 2-3.  Typical LED Optical Parameters

ITEMS

Forward Voltage VF IF=20mA 1.8

620

150

2.2

625

200

V

nm

mcd

– – –

– – –

– – –

IF=20mA

IF=20mA

∆ λ

Iv*Luminous intensity

Wavelength (nm) or TC(k)

Symbol Test condition Min. Typ. Max. Unit

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

32

the CD4050 buffer (see Figure 2-2). The nearest larger standard value

resistor is 220 Ω, and using 5% tolerance components, we select four

pieces for use in this exercise. With a digital volt-ohm meter, we measure

the individual values of the four resistors and record the data. For the sake

of convenience and simplicity, the resistors are named by LED color. In

the author’s development work, Red is 221 Ω, Green 219 Ω, Yellow 216 Ω,

and Orange 216 Ω. Make sure the individual resistors are identified and

their actual numerical resistance values recorded, as these values will be

required to calculate the individual load currents.

�Hardware
Four bright LEDs of various colors and four measured resistance 220 Ω

standard resistors of sufficient wattage rating for the expected currents are

used in the development of the exercise. (Values noted are based upon

the author’s experimental setup using a nominal 6 V supply and 30 mA

diodes.)

For this exercise, four of the six gates available on a CD4050 IC buffer

chip are used to isolate the LEDs from the USB and draw power from an

auxiliary supply.

A flat, rectangular battery pack, capable of holding four AA cells

connected in series, provides a nominal 6-volt power supply for

the experimental assembly mounted on a prototyping board. (See

“Discussion” for more details on the use of batteries as an auxiliary power

supply).

Figure 2-2 displays the circuit schematic for this exercise. In order

to measure the current flow through the individual LED-resistor series

combinations, the analog output and input signal terminals of the LabJack

U12 are used.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

33

�Software
A total of eight channels are required. Four are configured as output to

control the power switching of the LEDs, and four channels monitor the

voltage developed across the individual, measured value, load resistors.

The output channels can be labeled as in the previous exercise

as RedLed, GreenLed, and so on. The input channels are labeled as

RedLedCurrent, GreenLedCurrent, and so on. The DAQFactory channel

table for this project exercise is depicted in Figure 2-3.

Figure 2-2.  Circuitry for the Four-LED Display

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

34

�Page Components Required
Four buttons, five variable value components (VVCs), and two text

displays, as depicted in Figure 2-4, are placed on the screen to form the

basic structure of the desired control screen user interface.

(The DAQFactory manual provides the details on creating the screen

components, positioning them on the screen, and creating the text labels

and messages that identify the different components and the values being

entered or displayed. As per the manual, a collection of independent

screen components can be grouped together to form a single unit for ease

of manipulation on the screen. The individual grouped components can

be displayed against a distinctive background color to provide the end

user or the operating process controller with a visually comprehensible

control screen. Blocking together related components and isolating them

with individually colored backgrounds to attract the eye and thus increase

ease of use while minimizing the chance of operator errors is good design.

The coloring of group backgrounds should be left to the final configuration

of a control screen before deployment for actual use in an application as

the creation of the background color panel limits access to the individual

components in the group and thus creates unnecessary complexity during

system development.)

Figure 2-3.  The DAQFactory Channel Table

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

35

Each of the four buttons is labeled according to the color of the LED

being activated, and the corresponding variable value components are

set to display mA of current. The fifth variable value display can be set to

indicate the total current, again in milliamperes, mA.

Figure 2-5 illustrates the power monitoring panel and Figure 2-6 the

typical expression for a colored button power draw entry.

Figure 2-4.  Preliminary Assembly of Desired GUI Components

Figure 2-5.  Preliminary Coloring of the GUI

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

36

The variable value expressions use the following calculation:

(RedLedCurrent [0]/221)*1000

where RedLedCurrent [0] is the most recent voltage read across the red diode

current limiting resistor, 221 is the actual DVM measured resistance value

in ohms of the red diode current limiting resistor, and the *1000 multiplier

converts the current from fractional amps to whole numbers of mA.

The expression in the total component display sums all four individual

current expression calculations.

�Observations, Testing, and Development
Activation of one or more of the LEDs should indicate the current flowing

through the individual diode and the total current being drawn. The values on

the display screen should update every second, as that is the default value for

the timing entry in the channel table. A more visually effective colored LED

control panel can be created by adding LED symbols to the left of the control

Figure 2-6.  Typical Calculation Expression for the Power
Monitoring GUI

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

37

buttons on the panel. The LED symbols can be set to the corresponding colors

of the LEDs being activated, and the entire assembly grouped together to form

a coherent unit as is illustrated in Figure 2-7. The panel component is used to

provide a background for the grouping (see the DAQFactory manual), and an

identifying number is displayed on the grouping panel to tie the panel to a set

of notes/instructions displayed at the bottom of the main display screen, of

which the following panel could be a component.

A different and perhaps more effective visual display of the power

consumption can be achieved by using the DAQFactory linear gauge

component as depicted in Figure 2-8.

Figure 2-7.  Power Monitoring Graphical User Interface

Figure 2-8.  Option of Gauge Addition

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

38

If the linear gauge component is set to display the total current being

consumed by summing the four individual colored LED currents, it can be

placed alongside the button control panel to display the total current draw

from the power supply in a more visually comprehensive format.

�Discussion
Fresh AA alkaline batteries are usually rated at 2890 mA · hr per unit.

If all four LEDs are illuminated, they draw approximately 30 mA each,

which suggests a useful service life, in the author’s setup, from the 6-volt

four-battery holder, of approximately 100 hours. An estimated 100-hour

service life is theoretical in nature, and it must be recognized that the light

emitting diode has an approximate 2-volt drop and the resistor a 2-volt

drop and the CD4050, the rest of the wiring connections, and the internal

resistance of the cells themselves are taking up the remainder of, in the

author’s case, a nominal 6-volt power supply. At some point in time, well

before the estimated 100-hour lifespan, the voltage output of the battery

pack will drop to the point that the diode will be too dim to see or will not

light at all. The literature indicates that the primary cell alkaline chemistry

battery discharges in a somewhat linear manner, losing both voltage and

current delivery capacity with increasing usage. A secondary cell chemistry

battery such as nickel metal hydride (NiMH) has a significantly lower open

circuit voltage (OCV) than the primary cell system (1.2 vs. 1.5 V) and a

slightly lower rating of 2500 mAh for the AA size. The secondary cell NiMH

chemistry battery however tends to have a much lower rate of voltage loss

and instead of failing gradually throughout its discharge history holds the

voltage delivered at a relative constant value and then discharges rapidly

and completely in a very short time, as its power runs out. Researchers

using battery power should understand the properties of the different

battery systems available. (Six volts in alkaline AA batteries is obtained from

four units, but nominally 6 volts in NiMH requires five rechargeable units.)

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

39

It is evident with battery packs that as the load on the power source

is increased, the voltage drops and the current supplied to an individual

current-consuming load will decrease. Regardless of whether alkaline or

NiMH batteries are used as each diode is turned on, the current being

delivered to each individual diode drops. The power monitoring panel will

show a decrease in the current being drawn by the red LED as the green,

orange, and yellow diodes are activated. To minimize the power decrease

as load increases in more critical field or laboratory operations, a regulated

power supply, battery packs connected in parallel or larger battery formats

such as C or D cells, may be necessary to maintain current and voltage

levels under experimental load.

The gradually decreasing currents monitored by the panel displays are

a real-time indicator of the power being delivered from the battery pack,

and the gradual decline can be used to roughly estimate the service life left

in the power supply.

In general terms, it can be said that new primary cells or freshly

charged secondary cell batteries will exhibit a minimal internal resistance

that gradually rises to a maximum value as the cells discharge. Charge

monitoring can be done by determining the open circuit voltage (OCV)

and the internal resistance of the battery cells themselves. The OCV is

measured at no load conditions, but the determination of the internal

resistance of the battery pack is a dynamic process requiring the

simultaneous recording of both the current drawn and the instantaneous

circuit voltage. By recording the simultaneous rates of change of both I

and V graphically, the resistance R of the cell can be determined. Plotting

of the OCV and internal resistance of the cells can be used to determine

the useful life remaining in the battery pack. (See powering experiments in

Arduino Advanced Techniques in Science.)

Power concerns can be reduced by using a significantly less expensive

microcontroller that can be used to develop an experimental interface

similar to the fully functional, industrial-grade LabJack DAQ. However, a

significant amount of time and effort is required to implement a portion of

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

40

the functionality for the task at hand into a microcontroller that is built into

the commercially available HMI devices. In order to implement the power

controlling GUI exercise with a microcontroller, the basic steps involving

the configuration of both the DAQFactory and microcontroller programs

will be presented. (See Chapter 11 for more details.)

As in the previous iteration of this experiment with a LabJack, four

nominal 220 Ω resistors were selected from the lab 5% tolerance supply

and their actual resistance measured with a DVM. For simplicity and

ease of assembly, the known value resistors were mounted directly onto a

prototyping board without the CD4050 buffers as depicted schematically

in Figure 2-9 and pictorially in Figure 2-12.

In order for DAQFactory to recognize and communicate with a

microcontroller through the serial communications port, the com port in

use by the microcontroller must be identified. By connecting a USB cable

between the host computer and the microcontroller and launching the

microcontroller integrated development environment (IDE) program,

the port identification can be found on the port: entry of the Tools

Figure 2-9.  DAQFactory GUI Development for Arduino Control of a
Bank of LEDs

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

41

menu. Once the port has been identified, confirm connection and board

functionality by loading and then running the “Blink” program from the

file/examples/01.Basics/Blink menu of the IDE. The onboard LED of

the microcontroller should flash at a rate of one “blink” per second, thus

confirming the communications link. (The onboard LED is the glowing

green dot beside the “RedBoard” logo box as seen in the lower-left corner

of the red board depicted in Figure 2-12.)

A common control screen in the DAQFactory program can service

either the LJ DAQ or the microcontroller experimental interface. However,

the channel configurations seen in Figure 2-3 use the LabJack U12 device

for which the driving software has been written. A new device will have to

be created in the DAQFactory environment in order to transmit data to a

low-level communications port on a microcontroller. A typical low-cost

microcontroller is the “RedBoard” Arduino-compatible device seen as

item 4 in Figure 1-1 of Chapter 1 and in a wired configuration in Figure 2-12.

A DAQFactory com device is created by selecting a port and a protocol.

(See Chapter 11, Figures 11-4, 11-5, and 11-6.)

An identifiable device must be created before it can appear in the

channel creation table of the DAQFactory program. Selection of the Quick

➤ Device Configuration entry on a DAQFactory page brings up the Device

Configuration window that contains a listing of the devices available and a

New Serial (RS232/485) / Ethernet (TCP/IP) device entry. (See Figure 11-4,

Chapter 11.) To create a new serial device, click the New Serial (RS232/485)

/ Ethernet (TCP/IP) device entry to highlight it and the Select button in the

upper-right corner of the window to bring up the Ethernet / Serial Device

configuration window. (See Figure 11-5, Chapter 11.) In the configuration

window, enter the new device name. (DAQFactory names must begin

with a letter and contain only letters, numbers, or the underscore.) The

device in use has been named “ardyRb” as a mnemonic for RedBoard and

Arduino. To create the new serial port, click the New Serial button to bring

up the Serial Port Configuration window. (See Figure 11-6, Chapter 11.)

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

42

The name of the port was partially defined by the inquiry of the

Arduino in use for its communications port number that was found to be

com port 4, and hence a name such as COM4 would suffice for the new

connection name. The serial port number entry into the DAQFactory

configuration table must be 4 to correspond with the connected

microprocessor’s serial port number. (See Chapter 11, Figure 11-6.) The

remainder of the Serial Port Configuration window default settings are best

accepted as entered, and as the window Save button is clicked, a check

box “COM4” should appear in the serial port list of the Ethernet / Serial

Device window. A protocol must be assigned to the device being created,

and since the flow of data is to be controlled from a DAQFactory sequence

or scripting, the NULL protocol is selected. The NULL or nothing protocol

allows for the use of low-level communications functions from a sequence.

Selection of the protocol and checking the “COM4” box allow the “ardyRb”

device to be saved for use where required when the OK button is clicked in

the upper right-hand corner of the Ethernet / Serial Device window.

To develop a power monitoring facility with a much simpler

microcontroller interfacing device while adhering to the fundamental

concept of starting from a simple system and progressing into a more

complex one, a single Arduino-powered LED will initially be controlled

from a control screen in DAQFactory. The single LED can then be

expanded to a bank of four LEDs. The simplest form of button control of an

LED is to create two buttons in a DAQFactory control screen as depicted in

the upper-left corner of Figure 2-10.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

43

DAQFactory is usually running on a PC-based computing platform,

while the ATmega328 chip is hosting the Arduino operating system. The

programs are able to talk to each other through the serial port software,

but only one program at a time can use the serial port. In essence the

visual activation of an “on screen icon” in the DAQFactory display initiates

a streaming of low-level commands to the serial port. On the other side

of the serial port is the ATmega328-controlled Arduino microcontroller

essentially running on the C language that can be programmed to process

the low-level commands appearing on the serial port.

In Figure 2-10, the top two buttons are the “Red led on” and “Red

led off” icons. The two buttons are configured on-screen as explained in

Chapter 1, and in the listing of possible actions to be initiated when the

“Red led on” button is clicked, as depicted in Figure 1-11 of Chapter 1, the

“Quick Sequence” selection is taken. The Quick Sequence selection brings

up the window depicted in Figure 2-11.

Figure 2-10.  DAQFactory GUI for Control of Arduino LEDs

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

44

A Quick Sequence entry is unique in that it is accessed and executed

only when the button to which it is bound is activated. The single line of

code in Figure 2-11 is a complete sequence that writes the character 1 to

the serial port.

The DAQFactory serial port is connected through hardware and

software to the USB that is also connected through hardware and software

to the Arduino’s C-based operating system. Both of the software systems

have facilities for processing low-level communications based on the serial

transmission and receiving of characters in the bit and byte formats.

In the simple example of Figures 2-10 and 2-11, an ASCII (American

Standard Code for Information Interchange) value of 49 in decimal

notation representing the numerical value of 1 is sent to the serial monitor

on activation of the “Red led on” button.

Figure 2-11.  The Quick Sequence window

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

45

Arduino programs are referred to as sketches, and the code for

receiving the “1” character on the serial port and switching a digital pin on

is in Listing 2-1 (all code listings provided in the “Code Listings” section at

the end of the chapter). Examination of Listing 2-1 will reveal that the code

will accept a 0, an ASCII code of 48, on the serial port and turn the LED off.

The two-button control scheme is simple and uncomplicated and uses a

single sketch to manage the two possible LED power levels.

In the second row of the control screen is a single button labeled

“Toggle RED led” that switches the LED on when the button is first clicked

and off when clicked for the second time. The Arduino sketch in Listing 2-2

contains the logic for the “toggling action” in the form of the flag variable

“oofR” that records the status of the LED as either on or off and thus

enables the code to switch or alter the present power state of the device.

The set of four colored buttons in the bottom-left corner of the control

screen extend the power control capability to four buttons with the

Arduino code of Listing 2-3.

Each colored button in the control screen is coupled to a Quick

Sequence action that writes an R, G, O, or Y character to the serial monitor.

On the Arduino side of the connection, the code compares the new

character that arrives on the serial port with a collection of four characters

in what is termed a “case” structure. When a match is found, the code

associated with the identified “case” is executed. In Listing 2-3, the action

involves toggling the colored LED corresponding to the DAQFactory

control screen button color on or off.

The control screen in Figure 2-10 contains seven screen icons called

variable value components that can be used to provide a visual numerical

display or readout of a process value.

The exercise has been set to demonstrate the remote activation of

a device and also measure a process variable in the form of the current

drawn by the active device. Listings 2-4, 2-5, and 2-6 list the Quick

Sequence codes that can be used to pass action initiation requests one way

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

46

and pass resultant effects back. Listing 2-6 is a shorter Quick Sequence

DAQFactory side method for declaring that a current flow has been

stopped.

An Arduino microcontroller is equipped with a six-channel, 10-bit

analog-to-digital converter (ADC) capable of converting 0–5-volt signals

into digital values between 0 and 1023 (210 or 1024). The 5 volts when

divided into 1024 units yields 4.8828 millivolts per digital counting unit.

As seen in Figure 2-9, each of the four diode voltage drops is measured

by the analog inputs of the ADC. On completion of the voltage drop

measurement, the calculated diode current is written to the serial port

using the Arduino’s “Serial.println(iRed);” format that appends the

carriage return–line feed (CR-LF) ASCII characters to the diode current

value characters sent to the serial port. The \013\010 serve as markers

delineating or identifying the end of the characters presenting the

numerical values of the measured diode current to the DAQFactory Quick

Sequence data parsing logic.

Listings 2-9 and 2-10 are DAQFactory Quick Scripts that are run when

one or more colored buttons in the panel of four in the lower-left corner of

Figure 2-10 are activated. Each button has a Quick Sequence scripting that

clears the serial input buffer and sends an uppercase letter representing

the color of the button and corresponding LED to be altered to the

DAQFactory entrance or memory location of the serial port. The Arduino

microprocessor C code examines the character sent from the DAQFactory

control screen and conducts the required actions posting the return data

parameters to the serial port. Listings 2-7 and 2-8 are the Arduino codes

supporting the DAQFactory action requests. The Quick Sequence initiates

a delay after sending the activation request and then begins to process the

characters that appear on the serial port.

Listing 2-9 processes only the current being drawn by the active LED,

while Listing 2-10 processes both the individual currents being drawn by

any active LEDs and the total current drawn by all active LEDs.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

47

These simple systems demonstrate one of the great advantages of

SCADA systems in that no error checking or error handling capability

is required for serial communications between the two computing

platforms. The characters sent and received are fixed in software and only

require the activation of the screen icon to achieve the desired activity

and measurement. There is minimal action required by the operator of

the control screen in that no data entry is required, only the clicking of

the correct icon on the control screen. In an electrically noisy industrial

or experimental environment, these simple programs may require error

checking and error handling capability.

The two-button on/off control panel is as simple as possible, and the

operator has two choices that turn the LED on and off. The illumination of

any diode mounted on the prototyping board as seen in Figure 2-12 alerts

the operator to the status of the system and to which button is active in

changing the state of the system.

Figure 2-12.  The Arduino-Controlled Four-LED Array

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

48

The measurement of the current has been automated, and with

additional work in an actual experimental application, the process could

be validated to determine the accuracy and reproducibility of the current

measurements.

Both the Arduino and DAQFactory programs have extensive

facilities to aid in the development of serial communications. Serial

communications systems are very simple and widely used in industrial

manufacturing and experimental research and development programs.

Both of the software systems in use in this exercise have serial port

windows that allow the visualization of the data resident on the serial

monitor interface and allow the researcher to receive or transmit serial

data from or to the host program.

The Arduino serial port is used for numerous applications in addition

to serial port communications between programs and can stream data

from numerous types of sensors connected to the microcontroller. Details

of the various measurements possible are found in Arduino Measurements

in Science.

In Figure 2-13, the DAQFactory serial port has been expanded to test

and monitor actions taking place at the serial port.

Figure 2-13.  The DAQFactory Serial Port Monitor

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

49

In order to see the DAQFactory serial port monitor in operation, the

host computer must be running a microcontroller program compatible

with the control screen in use. With the microcontroller program running

in the minimized or background configuration, the DAQFactory program

containing the control screen can be run in the foreground as labeled

1 in Figure 2-13. From the “Quick” menu, “Device Configuration” is

selected, and the Device Configuration window as depicted in Figure 11-4

of Chapter 11 appears. From the entries in the Device Configuration

window, the “ardyRb” is selected; and when the Select button in the top

right-hand corner of the window is clicked, the “Ethernet / Serial Device”

window, panel 2 in Figure 2-13, appears. With the correct name and

communications port entered, the “Monitor” button can be activated to

bring up the serial port monitor for COM4 labeled as panel 3 in Figure 2-13.

When activated, the serial port monitor for COM4 now controls

the data flow to and from the serial port. The two buttons still visible

on the underlying control screen in panel 1 are no longer responsive,

and only by sending the correct, uppercase first letter of the diode

color to the serial port can the corresponding diode on the Arduino

array be activated. As can be seen in the activity record in panel 3, the

transmission of an R, recorded as “Tx R,” is followed by the script Rx

10.69\013\01010.69\013\010. Rx is the “received a transmission” notation,

and 10.69 is a numerical sequence appended with the ASCII codes 013,

a carriage return, and 010, a line feed. Immediately after the line feed

notation is a numerical sequence again appended with the CR-LF pair of

printing instructions.

As discussed in the preceding text, the Arduino code has recognized

the R and activated the red diode sending back the individual diode

current and the total current being drawn with both numerical values

followed by the CR-LF combination. If an uppercase O is sent to the

port, the expected action occurs; and if the Enter key is used while the

uppercase O is still resident in the Send compartment, the Arduino code

will toggle the orange diode as seen in panel 3.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

50

As noted previously, the substitution of a very inexpensive

microcontroller board for the industrial research-grade interface is a

practical exercise in which the significantly increased development time

can be used to advantage as a hands-on learning experience.

�Power Monitoring and Control
with Raspberry Pi
For investigators, experimentalists, or educators who are not familiar

with the Raspberry Pi (RPi) educational computer and its use in physical

computing through its general-purpose input and output (GPIO) pin array,

several texts are available.2 Current information and software are available

online from the Raspberry Pi Foundation that should be reviewed before

attempting the following exercises.

Although the Raspberry Pi single-board computer (SBC) originated

as a very inexpensive teaching aid, it can be used, with some limitations,

as a physical computing platform for SCADA applications. The RPi

SBC does not have the capability for analog-to-digital conversions, but

several methods exist for working around this voltage measurement

limitation. Voltages from experimental sensors can be measured with

external ADC chips or a USB connection to an Arduino microcontroller

board and by using a Python library with the RPi to measure the time

constant of a known value resistor–capacitor series connection. The

documentation written for the gpiozero Python library points out that the

RPi operating system itself is not completely compatible with the “real-

time” requirements of physical computing. It is noted that attempts to use

2 �1) Raspberry Pi User Guide, Upton and Halfacree, John Wiley and Sons,
  ISBN 978-1-11846446-5
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9
3) �Learn Raspberry Pi with Linux, Membrey and Hows, Apress,

ISBN 978-1-4302-4821-7

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

51

GPIO pins for programmed pulse width modulation (PWM) on devices

such as LEDs may suffer from “jittering” as the Pi operating system may

be involved with internal processes that detract from or interfere with the

timed processing of the pulse widths.

A USB connection between the RPi and an Arduino microcontroller

is very similar to the ease of use and assembly demonstrated in the

preceding DAQFactory-LabJack exercise. Arduino boards are comparable

in cost to the RPi, and the Arduino integrated development environment (IDE)

is available as a Linux-compatible download from the Arduino and RPi

Foundations. By using the Arduino microcontroller board as an intelligent

interface between the RPi and an experimental apparatus or setup,

significant reproducible and predictable physical computing can be

achieved. However, the implementation of an Arduino microcontroller

as a smart I/O peripheral for the RPi involves a significant amount of

scripting to interface the two systems that is explored in the next chapter

and exercise on scripting.

Of the various options available for measuring voltages and hence

calculating current flows with the RPi, the least expensive option is the use

of a stand-alone analog-to-digital converter (ADC) such as the Microchip

MCP3008 integrated circuit (IC). The IC chip costs approximately $5 (CDN)

and is a 10-bit successive approximation register (SAR) device. A 10-bit

resolution as used in the LabJack, Arduino, and MCP3008 divides the input

voltage into 1024 units for quantification. The IC is connected to the RPi

GPIO pins as detailed in Figure 2-14 and uses the Python serial peripheral

interface (SPI) protocol implemented with the py-spidev Python library.

See raspberrypi.org/documentation/hardware/raspberrypi/spi/README

for the RPi setup instructions for implementing the SPI protocol on the

GPIO pin array.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

http://raspberrypi.org/documentation/hardware/raspberrypi/spi/README

52

�Experimental
As noted, an inexpensive voltage measurement capability for the RPi can

be implemented with the Microchip Technology MCP3008. The chip is

a 16-pin, plastic dual in-line package (PDIP), integrated circuit, 10-bit

analog-to-digital converter. The IC has eight input channels that can be

used to digitize the voltage at up to eight different points in a circuit with

respect to a common ground or measure up to four differential voltage

drops between eight points in the circuit. (See Chapters 4, 5, and 6 for

digital concepts and 10- or 12-bit ADC details, 10 bit = 210 or 1024 and 12

bit = 212 or 4096.)

Figure 2-14 is a graphical depiction of the connections to be made from

the RPi GPIO array to the MCP3008 and a schematic drawing of the four

channels that can be used to measure the current flow through the colored

diodes.

To simplify the graphic of Figure 2-14, the connecting wires between

the GPIO pins and those on the MCP3008 have not been drawn. The 3.3 V

supply of the RPi on the upper-left pin of the GPIO array is connected to

pins 16 and 14 on the IC. The remainder of the connections are specified

and connected in the same manner.

Figure 2-14.  RPi Circuitry for Power Monitoring of LEDs

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

53

The Python code for strobing (activating) the ADC chip to conduct

a conversion and then reading and displaying the 10-bit voltage value is

listed in Listing 2-11.

As with all complex experimental systems, the investigator begins

with the simple components testing each and validating its individual

performance as a stand-alone entity. A complex system is assembled by

adding a single component at a time and if possible testing the assembly as

each increment is made until a completed operational apparatus is built.

The early models of the RPi are reported to have been designed to

provide an output current of 3 mA at the 3.3 V logic level, and hence the

entire power draw available was 17 pins × 3 mA = 51 mA in total. Tiny

3 mm indicator LEDs are limited to a maximum current draw of 20 mA

and should be operated in the 16–18 mA range. 5 and 10 mm LEDs draw

currents in the 20–40 mA range and for longer service lives should be

operated at 15–20% below their maximum short-term current handling

capability.

LED emissions are directly proportional to the current flowing through

the diodes. The current recommendations in a data sheet are given

for a device operating at or near its maximum brightness, which is not

always required for experimental work. LED currents of 5–10 mA often

produce ample brightness for experimental work and can be used to avoid

overloading the RPi power connections on the GPIO pins.

To accommodate the limited current available from the RPi GPIO pins,

the circuit of Figure 2-14 can be assembled with readily available 5 mm

LEDs, suitable CLRs, and individual manual power control switches, all

set in the open position during assembly. An array of open switches is

the configuration to be used in the initial testing of the power monitoring

exercise.

Each of the four LEDs in the array should be tested independently,

followed by all of them together, to confirm their illumination when

power is applied from the supply. (See Chapter 1 for the command line

terminal method for manual LED activation.) Once each and all of the

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

54

LED diodes have been successfully illuminated, then with the power off,

the junction of the diode and its CLR is connected to the appropriate input

channel of the ADC. With the ADC correctly wired to the LED array, the

connections between the MCP3008 and the RPi GPIO pins can be made,

and the Python program can be run. The initial output from the system

should indicate no output current for each channel and none for the sum.

The simplicity of the system requires a manual operating mode to see the

data resulting from the power loading and distribution of the LED lighting

system. As each LED is manually switched on and illuminated, the power

monitoring program should be run to calculate and display the individual

currents drawn and their sum.

By keeping the currents through the LEDs in the 12–16 mA range,

the RPi should fully illuminate three of the LEDs easily and be able to

illuminate the fourth diode for short periods of time while the power

monitoring program collects and displays higher power consumption data.

For experiments using more power than is available from the GPIO pins,

an auxiliary supply and several CMOS 4050 buffer chips could be used.

�Observations
One of the objectives of this exercise is to impart to the investigators using

the RPi GPIO pins to provide power to their experimental setup a method

to work safely around the limitations of the system.

A typical output in the Python shell from the power monitoring

program is depicted in Figure 2-15.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

55

Examination of the schematic drawing portion of Figure 2-14 will

reveal that the voltage drop across the measured resistance of the current

limiting resistor (CLR) is caused by the current flow through the diode-

resistor combination. The MCP3008 channels are being used to directly

measure the voltage drop across a grounded resistor to indirectly measure

the current that is constant throughout the circuit.

�Discussion
As an educational computer, the Raspberry Pi is not only able to function

in an information processing mode but also as a physical computing

platform. However, when used in a physical computing mode, the

limitations of the compact, inexpensive system must be recognized.

Figure 2-15.  RPi Display of Power Monitoring Program Output

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

56

In very simplified terms, the RPi operating system is process driven and

may not immediately respond to an event on a GPIO pin if a higher-

priority process is running in the processor core. Graphics processing is

a very large consumer of computing resources, and hence the RPi should

use the most utilitarian or minimal screen displays as possible when used

in a physical computing mode.

The Raspberry Pi Foundation has written and makes available

several Python libraries that allow the computer to interface with various

hardware devices to extend communication with external devices and

sensors such as the MCP series of analog-to-digital converters.

�Code Listings

Listing 2-1.  Arduino Code for a Two-Button On and Off Control

Screen

// Arduino code for a single led illumination on the red board

// Arduino the pgm waits for an incoming character on com port 4,

// if a 1 the led is turned on if a 0 it is turned off.

const int RedPin = 3; // �red board dig. pin with red led and clr

int incomingByte; // �a variable to hold incoming byte

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedPin, OUTPUT); // set the pin function

}

void loop() {

 if(Serial.available()> 0) { // �check port for last data byte

 incomingByte = Serial.read(); //

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

57

 if (incomingByte == '1') { // �if is H (ASCII 72), turn

the led on

 digitalWrite(RedPin, HIGH);

 }

 if (incomingByte == '0') {

 digitalWrite(RedPin, LOW); //�if L (ASCII, 76), turn the

led off

 }

 }

}

Listing 2-2.  Arduino Sketch for Toggling the Red LED on the

Arduino RedBoard from the DAQFactory Single-Button Control

Screen

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed dp is determined and

// toggled as required.

//

const int RedLedPin = 3; // �red led is on dig pin 3

int oofR = 0; // �power state of red diode

char incomingByte = ' '; // declare incoming byte

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedLedPin, INPUT); // �must initially read the dig. pin

}

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

58

//

void loop() {

 if (Serial.available()) { // �check for incoming data

 char incomingByte = Serial.read(); // read the port

 //Serial.print(incomingByte); // diagnostic

 if (incomingByte == 'R' && oofR == 0) { // �check flag for

led status

 pinMode(RedLedPin, OUTPUT); // set pin for output

 digitalWrite(RedLedPin, HIGH); // if off turn on

 oofR = 1; // set status flag

 }

 else {

 if (incomingByte == 'R' && oofR == 1){ // �check flag for

led status

 pinMode(RedLedPin, OUTPUT); // set pin mode

 digitalWrite(RedLedPin, LOW); // turn led off

 oofR = 0; // set status flag

 }

 }

 }

}

Listing 2-3.  Arduino Sketch to Toggle Multiple Colored LEDs from a

DAQFactory Control Screen

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com 4.

// On the arduino side the status of the appropriate led

// �dp is determined and toggled as required through a switch

construct.

//

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

59

const int RedLedPin = 3; // red led is on dig pin 3

const int GreenLedPin = 4; // green led on dp 4

const int OrangeLedPin = 5; // orange led on dp 5

const int YellowLedPin = 6; // yellow led on d pin 6

//

int oofR = 0; // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0; // on off flags initialized

//

char incomingByte = ' '; // define incoming character

//

void setup() {

 Serial.begin(9600); // start the serial port

 }

//

void loop()

{

 if (Serial.available()) // check for incoming data

 {

 char incomingByte = Serial.read(); // �set char value for

switch branching

 Serial.print(incomingByte); // �diagnostic for use in

debugging code

 switch(incomingByte) // �branch to desired location/option

 {

 case 'R': // Red Led Activation

 if (oofR == 0) { // check status flag

 pinMode(RedLedPin, OUTPUT); // set pin I/O

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

60

 digitalWrite(RedLedPin, HIGH); // turn led on

 oofR = 1; // re-set flag

 }

 else { // flag is set to 1 so led is on

 pinMode(RedLedPin, OUTPUT); // set pin mode to output

 digitalWrite(RedLedPin, LOW); // turn led off

 oofR = 0; // re-set flag to off

 }

break;

//

case 'G': // Green Led Activation

 if (oofG == 0) { // check status flag

 pinMode(GreenLedPin, OUTPUT); // set pin I/O

 digitalWrite(GreenLedPin, HIGH); // turn led on

 oofG = 1; // reset status flag

 }

 else {

 pinMode(GreenLedPin, OUTPUT);

 digitalWrite(GreenLedPin, LOW);

 oofG = 0;

 }

break;

//

case 'O': // Orange Led Activation

 if (oofO == 0) {

 pinMode(OrangeLedPin, OUTPUT); // set pin I/O

 digitalWrite(OrangeLedPin, HIGH);

 oofO = 1;

 }

 else {

 pinMode(OrangeLedPin, OUTPUT);

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

61

 digitalWrite(OrangeLedPin, LOW);

 oofO = 0;

 }

break;

case 'Y': // Yellow Led Activation

 if (oofY == 0) {

 pinMode(YellowLedPin, OUTPUT); // set pin I/O

 digitalWrite(YellowLedPin, HIGH);

 oofY = 1;

 }

 else {

 pinMode(YellowLedPin, OUTPUT);

 digitalWrite(YellowLedPin, LOW);

 oofY = 0;

 }

break;

 }

 }

 }

Listing 2-4.  Arduino Sketch to Turn Red LED On or Off and

Measure the Diode Current Draw for Display on the DAQFactory

Control Screen

// Arduino code for a single led illumination on the red board

// Arduino the pgm waits for an incoming character on com port 4

// if a 1 the led is turned on

// if a 0 it is turned off.

// A0 is wired to Rd led junction and the Arduino calculates

// the led current and prints the value to the serial port.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

62

//

const int RedPin = 3; // �red board dig. pin with red led and clr

int incomingByte; // a variable to hold incoming byte

float iRed = 0; // the led current through the CLR

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedPin, OUTPUT); // set the pin function

}

void loop() {

 if(Serial.available()> 0) { // �check port for last data byte

 incomingByte = Serial.read(); // read serial port value

 if (incomingByte == '1') { // if is 1, turn the led on

 digitalWrite(RedPin, HIGH); // set I/O of pin

 // calculate led current and print to the serial port

 iRed = ((analogRead(A0) * 4.8828)/216);

 Serial.println(iRed); // �note the line feed indication to

append 013\010

// �to the transmitted character to aid in the DAQFactory

parsing of the incoming code.

 }

 //

 if (incomingByte == '0') {

 digitalWrite(RedPin, LOW); // if 0, turn the led off

 // calculate led current and print to the serial port

 iRed = ((analogRead(A0) * 4.8828)/216); // �ensures the LED is off

 Serial.println(iRed); // �\013\010 for DAQFactory parsing code

 }

 }

}

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

63

Listing 2-5.  Quick Sequence Code for On Button

device.ardyRb.Purge() // �clear residual data from input buffer

device.ardyRb.Write('1') // write to serial port

delay(0.1) // delay to allow processing

global ldCurrnt // �declare variable to be visible

throughout

 // DAQFactory program

private string datain // declare datain variable

datain = device.ardyRb.readUntil(13) // �parse data up to

line feed and

carriage return

ldCurrnt = strToDouble(datain) // �convert character to

numeric value

Listing 2-6.  Quick Sequence Alternate Code for Off Button

device.ardyRb.Purge() // �clear old data from the serial

port buffer

device.ardyRb.Write('0') // �write a zero to the serial port

to switch led off

delay(0.1) // allow code to be processed

global ldCurrnt // �declare individual diode

current to be global

ldCurrnt = 0 // set individual diode current to 0

Listing 2-7.  Arduino Code for Single Button Icon Toggling LED On/

Off with Power Measurement

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed dp is determined and

// toggled as required.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

64

//

const int RedLedPin = 3; // red led is on dig pin 3

int oofR = 0; // power state of red diode

char incomingByte = ' '; // declare incoming byte

float iRed = 0; // red led current

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedLedPin, INPUT); // �must initially read the

dig. pin

}

//

void loop() {

 if (Serial.available()) { // check for incoming data

 char incomingByte = Serial.read();

 //Serial.print(incomingByte); // �diagnostic for code

de-bugging

 if (incomingByte == 'R' && oofR == 0) { �// �check action

required and

status

 pinMode(RedLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(RedLedPin, HIGH); // �turn diode current on

 iRed = ((analogRead(A0) * 4.8828)/216); // �calculate

diode current

 Serial.println(iRed); // �send value to serial port

with LF-CR

 oofR = 1; // set status flag to "diode on"

 }

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

65

 else {

 �if (incomingByte == 'R' && oofR == 1){

// �alternate action toggle to off

 pinMode(RedLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(RedLedPin, LOW); // turn power off

 iRed = 0; // set red diode current to 0

 Serial.println(iRed);

 oofR = 0;

 }

 }

 }

}

Listing 2-8.  Arduino Sketch for a DAQFactory Four-Button Control

Screen and Power Consumption Indicators

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com

// 4. On the arduino side the status of the appropriate led dp is

// determined and toggled as required through a switch construct.

//

// power drawn calculations, each led has a CLR and the voltage

// on the junction of the resistor and led is measured and used to

// calculate diode

// current by A0 to A3 respectively. Current calcln only done

// when diode activated.

//

const int RedLedPin = 3; // red led is on dig pin 3

const int GreenLedPin = 4; // green led on dp 4

const int OrangeLedPin = 5; // orange led on dp 5

const int YellowLedPin = 6; // yellow led on d pin 6

//

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

66

int oofR = 0; // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0; // on off flags initialized

//

char incomingByte = ' '; // define incoming character

//

float iRed = 0; // �red led current in

decimal float format

float iGreen = 0;

float iOrange = 0;

float iYellow = 0;

float itotal = 0;

//

void setup() {

 Serial.begin(9600); // start the serial port

 }

//

void loop()

{

 if (Serial.available()) // check for incoming data

 {

 char incomingByte = Serial.read(); // �set char value for

switch branching

// Serial.print(incomingByte); // diagnostic

 switch(incomingByte) // �branch to desired

location/option

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

67

 {

 case 'R': // Red Led Activation

 if (oofR == 0) {

 pinMode(RedLedPin, OUTPUT); // set pin I/O

 digitalWrite(RedLedPin, HIGH); // turn led on

 oofR = 1; // set flag

 iRed = ((analogRead(A0)* 4.8828)/216); // �calc i when

led on

 //Serial.print(analogRead(A0)); // diagnostics

 //Serial.print("iRed = "); // diagnostics

 Serial.println(iRed); // add CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total power consumption

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // add CR-LF

 }

 else { // flag is set to 1 so led is on

 pinMode(RedLedPin, OUTPUT); // set pin mode to output

 digitalWrite(RedLedPin, LOW); // turn led off

 oofR = 0; // re-set flag to off

 iRed = 0; // �turn iRed contribution to

itotal off

 Serial.println(iRed); // send data to DAQFtry

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // send to serial port with CR-LF

 }

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

68

break;

//

case 'G': // Green Led Activation

 if (oofG == 0) { // check status flag

 pinMode(GreenLedPin, OUTPUT); // set pin I/O

 digitalWrite(GreenLedPin, HIGH); // turn led on

 oofG = 1; // reset status flag

 iGreen = ((analogRead(A1)*4.8828)/215); // calc diodecurrent

 //Serial.print("iGreen = "); // diagnostics

 Serial.println(iGreen); // send data with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// �calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // send with CR-LF

 }

 else {

 pinMode(GreenLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(GreenLedPin, LOW); // turn green led off

 oofG = 0; // set green status flag

 iGreen = 0; // �turn green contribution

to total off

 Serial.println(iGreen); // �send green current value

with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send total current with CR-LF

 }

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

69

break;

//

case 'O': // Orange Led Activation

 if (oofO == 0) { // check status flag

 pinMode(OrangeLedPin, OUTPUT); // set pin I/O

 digitalWrite(OrangeLedPin, HIGH); // set pin I/O

 oofO = 1; // set orange flag to led on

 iOrange = ((analogRead(A2)*4.8828)/215); // �calculate orange

led current draw

 //Serial.print("iOrange = "); // diagnostic

 Serial.println(iOrange); // �send to serial port with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// �calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send total to

serial port

with CR-LF

 }

 else { // orange led is on

 pinMode(OrangeLedPin, OUTPUT); // set pin I/O

 digitalWrite(OrangeLedPin, LOW); // turn orange led off

 oofO = 0; // �reset orange status

flag to off

 iOrange = 0; // �turn orange contribution

to total off

 Serial.println(iOrange); // �send out orange current

with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // �send out total current draw with CR-LF

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

70

 }

break;

case 'Y': // Yellow Led Activation

 if (oofY == 0) { // led is off

 pinMode(YellowLedPin, OUTPUT); // set pin I/O

 digitalWrite(YellowLedPin, HIGH); // turn yellow led on

 oofY = 1; // re-set lag to led on

 �iYellow = ((analogRead(A3)*4.8828)/217);

// calculate yellow led current

 //Serial.print("iYellow = "); // diagnostic

 Serial.println(iYellow); // �yellow led value to

serial port with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send to serial port with CR-LF

 }

 else { // yellow led on

 pinMode(YellowLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(YellowLedPin, LOW); // turn yellow led off

 oofY = 0; // re-set flag to yellow led off

 iYellow = 0; // set yellow led current to 0

 Serial.println(iYellow); // �send value to serial port with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

// calculate total current and send with CR-LF

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // send total current with CR-LF

 }

break;

 }

 }

}

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

71

Listing 2-9.  Toggle Red LED DAQFactory Quick Sequence

device.ardyRb.Purge() // clear serial buffer

device.ardyRb.Write('R') // initiate repeat activation

delay(0.1) // allow code to execute

global ldCurrnt // �declare global variable in

DAQFactory code

private string datain // �define local variable in DAQFactory code

datain = device.ardyRb.readUntil(13) // �parse out character

codes for numeric

value

ldCurrnt = strToDouble(datain) // �convert character

codes to numeric value

Listing 2-10.  Toggle Red LED DAQFactory Quick Sequence with

Diode Power Draw

device.ardyRb.Purge() // clear the serial buffer

device.ardyRb.Write('R') // �send R to serial port for

repeat activation

delay(0.1) // allow for code execution

global iRed // �declare diode current as

global variable

global iTotal // �declare total current as

global variable

private string datain1 // �declare private variable for

1st data value

private string datain2 // �declare private variable for

2nd data value

datain1 = device.ardyRb.ReadUntil(13) // parse out 1st value

datain2 = device.ardyRb.ReadUntil(13) // parse out 2nd value

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

72

iRed = strToDouble(datain1) // �convert characters to

numerical values

iTotal = strToDouble(datain2) // �and assign to declared

variables

Listing 2-11.  Python Code for the Raspberry Pi Monitoring the

Power Draw of a Four-LED Array

print("RPi 4 Led Array Power Monitoring Program")

print() # a blank line for output screen spacing

print("ADC reading of LED voltage value is normalized from 0 to

1 by gpiozero library.")

print("The true value of the monitored voltage is the product

of the normalized ADC value and the reference voltage.")

print()

a single normalized value is printed each time the module is run

from gpiozero import MCP3008

�create an object representing the device and assign the input

channels

ADC_vlu = MCP3008(0) # the number in brackets is the channel

on the device

ADC_vlu1 = MCP3008(1)

ADC_vlu2 = MCP3008(2)

ADC_vlu3 = MCP3008(3)

#

print("ADC Channel 1")

print('Normalized ADC value = %.3f'%ADC_vlu.value,' Volts')

the blue LED in the author' circuit

#

convert object, value into a numerical parameter

ledVltg = float(ADC_vlu.value) * 3.3

print('LED CLR voltage value = %.3f'%ledVltg, ' Volts')

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

73

calculate the LED current from Ohms law

blue = (float((ADC_vlu.value) *3.3) / 329) * 1000

print('Blue LED current = %.3f'%blue,' mA')

#

print()

#

print("ADC Channel 2")

print('Normalized ADC value = %.3f'%ADC_vlu1.value)

the yellow LED in the author's circuit

#

convert object, value into a numerical parameter

led1Vltg = float(ADC_vlu1.value) * 3.3

print('LED1 CLR voltage value = %.3f'%led1Vltg)

calculate the LED1 current from Ohms law

yellow = (float((ADC_vlu1.value) *3.3) / 220) * 1000

print('Yellow LED current = %.3f'%yellow,' mA')

#

print()

#

print("ADC Channel 3")

print('Normalized ADC value = %.3f'%ADC_vlu2.value)

the red LED in the author's circuit

#

convert object, value into a numerical parameter

led2Vltg = float(ADC_vlu2.value) * 3.3

print('LED2 CLR voltage value = %.3f'%led2Vltg)

calculate the LED2 current from Ohms law

red = (float((ADC_vlu2.value) *3.3) / 220) * 1000

print('Red LED current = %.3f'%red,' mA')

#

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

74

print()

#

print("ADC Channel 4")

print('Normalized ADC value = %.3f'%ADC_vlu3.value)

the green LED in the author's circuit

#

convert object, value into a numerical parameter

led3Vltg = float(ADC_vlu3.value) * 3.3

print('LED3 CLR voltage value = %.3f'%led3Vltg)

calculate the LED3 current from Ohms law

green = (float((ADC_vlu3.value) *3.3) / 219) * 1000

print('Green LED current = %.3f'%green,' mA')

#

print()

#

ttl_Currnt_drw = blue + yellow + red + green

print('Total current draw = %.3f'%ttl_Currnt_drw, ' mA')

�Summary
–– An interactive control panel GUI able to activate

multiple components in an external experiment and

display data from that experiment is developed.

–– Microcontrollers can be used with robust industrial

pre-configured SCADA systems or with readily

available inexpensive components and the appropriate

programming.

–– In Chapter 3, more detailed scripting and programming

techniques will be introduced.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER
INTERFACES

75© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_3

CHAPTER 3

Introduction to
Scripting
SCADA is an industrial concept in which information about an active

process is collected and then used to both monitor and control that

operation. Scripting, in both the industrial-scale applications and these

scientific measurement experiments, permits the automation of process

control or data acquisition. In this chapter, code assembled into small

programs called sequences in the DAQFactory (DF) software will be used

to control and monitor the LED circuitry assembled on the breadboard in

the previous exercises.

The DF user manual indicates that the scripting language syntax used

to create sequences is similar to most standard languages such as the

variations of C, Python, Visual Basic, Pascal, and others such as Fortran.

The previous notation made with respect to the naming of channels is also

applicable to the scripting language used in DF. The language is case sensitive,

and thus it is very important to avoid typing errors and spelling mismatches in

naming channels, variables, scripts, and pages. It is suggested that the C style

of naming or a variation be used as noted in these MySpecialName,

My_Special_Name, My_Spcl_Nm, and MySpclNm examples. Choose names

that are expressive and meaningful to minimize errors.

It is strongly suggested that documentation in the form of liberal use of

comments and indentation of code segments be used, to make the script

code legible and easy to follow. The DAQFactory code editor used to create

https://doi.org/10.1007/978-1-4842-6778-3_3#DOI

76

sequences indents when the Tab key is pressed, and a dotted vertical line

delineates the code blocks. Other investigators must be able to follow code

scripts and reproduce any scientific work.

The mathematical operations available for use in scripted sequences

are described in the DAQFactory software manual in the section

“Expressions.” An expression is a formula that calculates a result from

some initial values. Expressions have been used in the variable value

screen components in the previous exercise to calculate individual colored

LED currents and the total current being drawn.

As in most languages, variables or arrays must be declared with

declaration statements, have appropriate names, and have instances

created, before use in sequence scripting.

For the majority of researchers, the skills required for creating and

running programming or scripting codes are best developed by practice.

Virtually all of the popular programming languages in wide use today

can be learned through an abundance of online tutorials. The tutorials

and language documentation can be reviewed and practiced at a rate

that is comfortable for the investigator. The DAQFactory manual has an

introductory tutorial and a detailed documentation that should then be

kept at hand for reference as the investigator develops a facility for the

scripting of DAQFactory sequence code.

�Experimental
Once an electro-mechanical system is configured and the hardware

validated on a breadboard, do not hesitate to experiment with the scripting

code on a fresh new DAQFactory page. Science is experimental in nature,

and this manuscript is hopefully an aid to grasping the fundamentals

of physical computing and applying them to conduct experimental

measurements as quickly as possible.

Chapter 3 Introduction to Scripting

77

�Hardware
Use the multicolored LED circuitry from the previous exercise as the

process operations whose control will be transferred from direct manual

screen control to a coded script or sequence.

For the circuit schematic, see Chapter 2, Figure 2-2.

�Software
Page Components Required

For the required basic screen configuration, a text message should be

placed over a button control. The text content should indicate that the

button controls the starting and stopping of a script that produces a short

“light show” on the bank of four multicolored LEDs.

In previous exercises using channels, the channels had to have been

created and entered into the channel table in order to appear in the pop-

up, typing aid listing. The same is true for script sequences that must

be named and entered into the sequence summary table. Once named

and entered into the summary table, the appropriate sequences can

be selected from the listing during button configuration as depicted in

Figures 3-1 and 3-2.

Chapter 3 Introduction to Scripting

78

Figure 3-1.  Button Action Tab Entries

Figure 3-2.  Named Sequence Entry Listing

Chapter 3 Introduction to Scripting

79

�Scripting
DAQFactory has a script entry and editing program that assembles the

code as depicted in Figure 3-3.

The scripting for the light show uses a collection of coded statements

that toggle the channel output voltage values for the individual colored

LEDs to 5 volts and then reset them to 0 volts. By embedding delay

Figure 3-3.  Scripting for the LED Light Show

Chapter 3 Introduction to Scripting

80

statements in between the light activation lines and encasing blocks

of code inside iterative “for loops,” a “light show” can be created. The

documentation in the code of Figure 3-3 is hopefully self-explanatory.

The author’s diodes were ordered from the left as red, green, orange, and

yellow. Thus, the even diodes of 2 and 4 were green and yellow, while the

odd diodes were red and orange.

The Start Display button can be grouped with a descriptive text

component to form a panel as shown in Figure 3-4.

�Observations
When the Start Display button is activated with a mouse click, a light show

occurs on the bank of four LED lights.

When the light show sequence was run on an older desktop computer

with a CPU running at 1.48 GHz with 736 MB RAM and a high-resolution

graphics card, the power monitoring panel created in the previous exercise

was just able to keep up with the light display timing of the half-second

delays, while the graphical display was not.

�Discussion
This exercise demonstrates the ability of the SCADA software to control

the activation of electronic circuits through software programming and the

HMI device.

Figure 3-4.  Scripting Activation Button

Chapter 3 Introduction to Scripting

81

Details in the user manual describe the use of the descriptive text

screen component with several others that have the tabbed properties

window allowing the setting of certain properties and the selection of

an action. The descriptive text component has the ability to display a

Running/Stopped message, indicating the status of the selected sequence

attached to the screen component.

A scripted sequence of code runs virtually at the clock speed of the

computer and hence is much faster than either the screen’s ability to

display rapid changes, the HMI’s speed, or the rate at which human vision

is able to follow.

The inability of the graphical power monitor display to keep up with

the scripted sequence switching of the LED currents is indicative of the

system limitations. The DAQFactory program is a video display–intensive

software, and if insufficient time is available for painting the screen, the

display lags or does not even update. In marginal cases, as was possible

with the older desktop computer, lowering the screen resolution allowed a

sluggish screen to perform adequately.

High-speed data transfers are an area of specialty often required in

spectroscopy, reaction kinetics, and physics. The current exercises are

focused on the development of methods that use time scales measured in

seconds and longer. Higher-speed “data streaming” for faster capture rates

is dealt with both in the appropriate hardware or software user manuals

and in later sections of this manuscript.

�DAQFactory Sequences: Arduino LED Array
In Chapter 2, an inexpensive microcontroller board was used in place

of a robust industrial-grade interface to respond to a control screen set

up in a SCADA system. The low-cost benefit of using the Arduino can be

Chapter 3 Introduction to Scripting

82

realized in this scripting exercise if the experimenter can devote the time

required to rewrite the serial communications code developed to monitor

the power draw of the Arduino-mounted LED array to accommodate a

scripted light show.

�Experimental
The Arduino microcontroller is wired with four different colored diodes

as depicted in Chapter 2, Figure 2-9. The Arduino holds the C program

of Listing 3-1 that provides the LED illumination required, while the

regular or Quick Sequence DAQFactory code in Listing 3-2 of the following

programs writes the appropriate characters to the serial port (all code

listings provided in the “Code Listings” section at the end of the chapter).

A DAQFactory control panel is set up as depicted in Figure 3-5.

Although the Quick Sequence code and the regular sequence code

are identical, the Quick Sequence code is visible only through the

Quick Sequence selection. Regular sequences can be used anywhere in

DAQFactory and are visible on all sequence selection listings.

Figure 3-5.  A Dual-Button Scripting Activation Screen

Chapter 3 Introduction to Scripting

83

�Discussion
The DAQFactory code listing depicted in Figure 3-3 makes use of channels

to vary the LabJack output connections between 5 volts and ground. The

upper- or lowercase sequence codes sent to the serial port are collected by

the Arduino logic and power the digital pin connected to the appropriate

LED on or off directly without the use of complex channels.

�Raspberry Pi
The RPi uses Python and the gpio and gpiozero Python libraries to

communicate with and control directly the individual pins of the GPIO

array. The RPi can only set a pin to a high or low voltage for the output

mode or read the pin status as high or low in the input mode.

With careful design and care in programming, a “light show” can

be assembled to run directly off the GPIO pins without the need for any

intermediate hardware. As detailed in Chapter 1, Figure 1-16, there are

two versions of the GPIO array: on earlier models, there were 26 pins,

while on the newer models, there are 40. The first 26-pin array is common

to all models, while newer versions of the RPi have an additional 14 pins

as identified in Figure 1-16. In summary the 40-pin array consists of 26

GPIO pins, 2 3.3-volt and 2 5-volt power pins, 8 ground pins, and 2 serial

input-output pins, assigned and located as detailed in Table 3-1.

Chapter 3 Introduction to Scripting

84

A simple four-LED “light show” program in Python code is in

Listing 3-3.

In Chapter 2, the RPi was able to power the four LEDs for short periods

of time, while the Python program read the ADC voltages and computed

the total power draw from the GPIO array. In this exercise, scripting creates

timed sequences of illumination to produce a simple “light show.” If more

light sources are added to the prototyping board to increase the visual

appeal of the display created, the pin outputs should be buffered to avoid

the possibility of overloading the current supply capability of the RPi.

A high input impedance buffer chip such as the CD4050 hex

non-inverting integrated circuit as used in Chapter 1 can be employed

to buffer the GPIO pins to handle many small current loadings, while

a chip such as the ULN2803 Darlington transistor array can handle up

to 500 mA for each of the eight buffered GPIO pins. (The CMOS 4050

high-impedance buffer chips are $0.50 CDN, while the ULN2803 chips

are $2.50 CDN.)

Table 3-1 displays the GPIO pin names and their positions in the 0.1 in

(2.45 mm) spacing array on the SBC. (When viewed from the top of the RPi

board with the array to the right, the number 1 pins are at the top, while

the number 20 pins of the right- and left-hand columns are at the bottom

adjacent to the USB connectors.)

Chapter 3 Introduction to Scripting

85

With a sufficiently powerful auxiliary supply and CMOS or Darlington

pair buffering of the RPi pins, scripting should be able to control up to 26

LEDs.

�Code Listings
Listings 3-1 through 3-3 provide the complete programs for the chapter.

Listing 3-1.  Arduino LED Illumination Code

// Arduino code for multiple led illumination on the red board

// Arduino the prgrm waits for an incoming character on com

// port 4 and then processes the data to identify which led is

// to be turned on or off. R, G, O and Y turn the diode ON and

// r, g, o, and y turn the diode OFF.

//

int RedPin = 3; // �red board dig. pin with red

led and clr

Table 3-1.  Assignment and Positioning of the RPi GPIO Pin Array

Chapter 3 Introduction to Scripting

86

const int GreenPin = 4; // �red board dig. pin with

green led and clr

const int OrangePin = 5; // �red board dig. pin with red

led and clr

const int YellowPin = 6; // �red board dig. pin with

yellow led and clr

char incomingByte = ' '; // variable to hold incoming byte

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedPin, OUTPUT); // set the pin function

 pinMode(GreenPin, OUTPUT);

 pinMode(OrangePin, OUTPUT);

 pinMode(YellowPin, OUTPUT);

}

void loop() {

 //

 while (Serial.available() == 0) // wait for a character

 {

 // do nothing until data arrives

 }

 if (Serial.available() > 0) // a char has arrived

 {

 �char incomingByte = Serial.read();

 // �set character comparison variable to new char

 //Serial.print(incomingByte); //diagnostic

 if (incomingByte == 'R') { // �R sets the red led

power to high

 // Serial.print("logic OK"); // logic diagnostic

 digitalWrite(RedPin, HIGH); // turn red led on

 }

Chapter 3 Introduction to Scripting

87

 if (incomingByte == 'r') { // turn red led off

 //Serial.print(incomingByte); // diagnostic

 digitalWrite(RedPin, LOW); // �r sets the red led

power to low

 }

 if (incomingByte == 'G') { // �G sets the green led

power to high

 digitalWrite(GreenPin, HIGH);

 }

 if (incomingByte == 'g') {

 digitalWrite(GreenPin, LOW); // �g sets the green led

power to low

 }

 if (incomingByte == 'O') { // �O sets the orange led

power to high

 digitalWrite(OrangePin, HIGH);

 }

 if (incomingByte == 'o') {

 digitalWrite(OrangePin, LOW); // �o sets the orange led

power to low

 }

 if (incomingByte == 'Y') { // �Y sets the yellow led

power to high

 digitalWrite(YellowPin, HIGH);

 }

 if (incomingByte == 'y') {

 digitalWrite(YellowPin, LOW); // �y sets the yellow led

power to low

 }

 }

}

Chapter 3 Introduction to Scripting

88

Listing 3-2.  DAQFactory Regular Sequence Code for Light Show

// Scripted Control of 4 Leds on an Arduino MC for a Simple

// Light Show DAQFactory script uses serial port transmission

// to control MC. Buttons on a DAQFactory control screen

// activate a quick sequence or regular sequence scripting, to

// transmit the led activation codes to the serial port where

// the Arduino resident C code parses the commands and

// activates the appropriate diode.

// Main loop iterates four times. May 21, 2019

//

for (Private.Counter = 0, Counter < 4, Counter ++)

 // even diodes lit

 device.ardyRb.Write('G') // light the green led

 device.ardyRb.Write('Y') // light the yellow led

 delay(0.5) // leave the lights on for 1/2 sec.

 device.ardyRb.Write('g') // green led off

 device.ardyRb.Write('y') // yellow led off

 delay(0.5) // keep lights off for 1/2 sec

 // odd numbered diodes lit

 device.ardyRb.Write('R') // red on

 device.ardyRb.Write('O') // orange on

 delay(0.5) // time delay

 device.ardyRb.Write('r') // red off

 device.ardyRb.Write('o') // orange off

 delay(0.5) // time delay

endfor

// run lights to right

for (Private.Counter = 0, Counter < 4, Counter ++)

 device.ardyRb.Write('R') // red on

Chapter 3 Introduction to Scripting

89

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('r') // red off

 device.ardyRb.Write('G') // green on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('g') // green off

 device.ardyRb.Write('O') // orange on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('o') // orange off

 device.ardyRb.Write('Y') // yellow on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('y') // yellow off

endfor

//

delay (0.5)

// run lights to left

for (Private.Counter = 0, Counter < 4,Counter ++)

 device.ardyRb.Write('Y') // yellow on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('y') // yellow off

 device.ardyRb.Write('O') // orange on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('o') // orange off

 device.ardyRb.Write('G') // green on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('g') // green off

 device.ardyRb.Write('R') // red on

 delay(0.1) // on for 1/10 sec

 device.ardyRb.Write('r') // red off

 endfor

Chapter 3 Introduction to Scripting

90

Listing 3-3.  Raspberry Pi Scripted “Light Show”

Led "Light Show" Ex. 3 Scripting on Raspberry Pi

Pins are numbered sequentially from the top down in the right

and left columns for ease of assignment and counting when

wiring jumpers

from gpiozero import LED

from time import sleep

Define and assign the leds

redLed = LED(2) # left column pin 2

grnLed = LED(3) # left column pin 3

orngLed = LED(4) # left column pin 4

yelLed = LED(5) # left column pin 15

repeat code for flashing 4 times

for i in range(4):

 redLed.on()

 grnLed.on()

 orngLed.on()

 yelLed.on()

 sleep(1)

 redLed.off()

 grnLed.off()

 orngLed.off()

 yelLed.off()

 sleep(1)

reoeat code for streaming to left 4 times

for i in range(4):

 redLed.on()

 sleep(0.1)

 redLed.off()

Chapter 3 Introduction to Scripting

91

 grnLed.on()

 sleep(0.1)

 grnLed.off()

 orngLed.on()

 sleep(0.1)

 orngLed.off()

 yelLed.on()

 sleep(0.1)

 yelLed.off()

repeat code for streaming to the right 4 times

for i in range(4):

 yelLed.on()

 sleep(0.1)

 yelLed.off()

 orngLed.on()

 sleep(0.1)

 orngLed.off()

 grnLed.on()

 sleep(0.1)

 grnLed.off()

 redLed.on()

 sleep(0.1)

 redLed.off()

repeat code for alternate pair flashing 4 times

for i in range(4):

 redLed.on()

 orngLed.on()

 sleep(1)

 redLed.off()

 orngLed.off()

 grnLed.on()

Chapter 3 Introduction to Scripting

92

 yelLed.on()

 sleep(1)

 grnLed.off()

 yelLed.off()

�Summary
–– Commercial SCADA software has a scripting facility to

augment the built-in control functions and enable

communication with remote processes or experimental

setups.

–– SCADA systems assembled from inexpensive readily

available components require more detailed program

development in the programming languages of the

computing platforms in use.

–– Scripting or programming techniques will be further

developed in Chapter 4 when the host screen is used to

enter and display data.

Chapter 3 Introduction to Scripting

93© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_4

CHAPTER 4

Data Entry
from the Screen
A control system must include the capability of entering data from the

screen, to be able to modify or vary the operation of a sequence or process.

In this chapter, numerical values entered from the keyboard are used to

modify scripted sequences of programming code that oscillate LEDs on

and off for a predetermined number of cycles. In addition, two options

are created for the modes of power control in which the illumination

for the diode cycles from full on to off and the diode output intensity is

incrementally stepped from off to full brightness to create a “fade” or

“fading” effect. LED brightness is determined by the current through

the device. The maximum current through the LED is set by the current

limiting resistor (CLR) placed in series with the diode, power source, and

ground. The current through the LED can be regulated by varying the

voltage of the supply. However, diode intensity control by voltage variation

can only be effective above the voltage level required for conduction in the

device, typically 1.8–3 volts.

In this chapter, a DAQFactory sequence code that increments the

power applied to the diode in a fixed number of voltage increments

is created with a screen confirmation of the entered data value. This

exercise also demonstrates the ability of the software to appear to run

two sequences simultaneously in what is often termed a “threaded”

application.

https://doi.org/10.1007/978-1-4842-6778-3_4#DOI

94

The various control and monitoring options are then grouped together

in a simple graphical user interface (GUI) data entry, process control

panel.

Diode intensity is more efficiently controlled with a technique known

as pulse width modulation (PWM). In a PWM control operation, full power

is applied to the load being driven as a series of square wave voltage pulses

whose time width is altered in a controlled manner or modulated with

respect to increasing or decreasing time period. Both the frequency of the

square wave power source and the pulse width of the power application

can be numerically controlled or modulated from screen input values.

(Greater details on the application and implementation of PWM are part of

Chapter 7.)

An alternative screen data entry exercise using a much less expensive

microcontroller has been developed. The microcontroller exercise is being

presented as with the previous exercises with a minimum of explanation

of the more complex code required to implement the exercise. Details

of microcontroller usage are introduced later in the manuscript at

which point some of the advantages and deficiencies of these relatively

inexpensive devices can be fully appreciated.

�Hardware
The red LED electronic circuit wired for the previous exercises as indicated

in Chapter 1, Figure 1-3, is to be used for a portion of this exercise; and

a green LED is wired to the first analog output channel (AO 0) on the

LabJack terminal board. The AO 0 signal is wired into the base of a 2N3904

transistor, in accordance with the schematic in Figure 4-1.

Chapter 4 Data Entry from the Screen

95

The collector and emitter of the transistor are connected so as the base

voltage controls the size of current from the +5 V supply to the red LED

with its current limiting resistor. Recall that transistors are current control

devices. The size of the base current entering the transistor is determined

by the voltage applied to the series resistor in the base circuit. The applied

voltage is set by the script-controlled AO 0 output of the LabJack HMI.

If the circuit depicted in Figure 4-1 is modified, the experimenter should

ensure that the current limiting resistor does not allow currents larger than

that specified as a maximum for the diode in use to flow in the circuit.

Figure 4-1.  Prototype Circuit for DAQFactory Control Screen with
Data Entry Facility

Chapter 4 Data Entry from the Screen

96

�Software
�Page Components Required
The DAQFactory data entry panel as seen in Figure 4-5 consists of a total

of eight lines composed of four text components, two edit boxes for data

entry, two buttons configured to start sequences, and two descriptive text

components.

In order to assemble the control panel, the previous techniques used

to create, position, and configure screen components can be used, and

where necessary, the DAQFactory user manual can be referenced to place

and configure the new screen icons used in this exercise.

The following list identifies the page components that make up the

finished control panel as depicted in Figure 4-5:

	 1)	 A text message is used to identify the panel/

grouping and its function (top line, yellow

background, black lettering; text and background

colors selected from boxes in the component

configuration window; see Chapter 1, Figure 1-6).

	 2)	 An edit box is configured (see Figures 4-2 and 4-3)

and labeled to identify and receive the data to be

entered into the panel. The “Flash led repeats”

is the number of times to flash the red LED in

Figure 4-1 in an on and off manner. The variable

in DAQFactory holding the flash number index

is defined as flsh_Rpts and is declared as a global

variable in an auto-start sequence (Listing 4-1;

all code listings provided in the “Code Listings”

section at the end of the chapter). In order for the

correct variable names to automatically appear in

the drop-down list as seen in Figure 4-2 with the

Chapter 4 Data Entry from the Screen

97

“cycles” entry being highlighted, the variable names

must be declared as global with a short sequence

that is automatically run when the page is loaded

(see Figure 3-1 in Chapter 3). Line 2 in the panel is

configured entirely from the Caption box and the

checking of the “Set on Set Button press” check

box as seen in Figure 4-3. The “Set button caption”

is entered into the appropriate box to appear on

the button in the second line of the panel. When

configuring and editing the edit box components,

make sure the cursor tip is within the edit box active

area and that the Ctrl key is pressed prior to clicking

the left mouse button that will then highlight the

edit box itself with the thick hatched border seen

in Figure 4-4. With the edit box highlighted, the

right mouse button can be clicked to bring up the

properties dialog boxes of Figures 4-2 and 4-3. The

values entered into the edit box are then placed into

the channels or variables as required.

	 3)	 A second edit box is created to receive a variable

numeric value that will cycle the intensity or

brightness of the green LED in Figure 4-1 from off to

full brightness and back to off. The variable holding

the number of fade cycles is declared as fd_Rpts in

the same auto-start sequence as the flash index.

	 4)	 In the fourth line of the panel, a static text beneath the

data entry boxes identifies the variable entered. For

enhanced contrast, the black text is written against

a green background. (See options in Chapter 1,

Figure 1-6).

Chapter 4 Data Entry from the Screen

98

	 5)	 A descriptive text component forms the fifth line of

the panel and is used to confirm, visually, the value

entered in the edit box that has been set as the value

of the scripting variable “flsh_Rpts” used by the

scripting code. Figure 4-6 illustrates the properties

window of the descriptive text component. A

descriptive text component needs a caption, an

expression, and a comparison table. Entries into the

comparison table are made with a numerical value

in the left column and a text string to the right. The

Add and Delete buttons are used to get the desired

table assembled. Once assembled and configured,

if 0 is entered into the edit box on clicking the Enter

button, the descriptive text component looks up

the value of the variable flsh_Rpts and prints the

corresponding entry in the text column that is “no

value entered.” Entering a 4 in the edit box will cause

the message “four times” to be printed after the

caption “Flash repeats:” In essence, the comparison

table has a numerical value range for the variable at

hand and a corresponding text message to display

when the variable falls within a defined range.

	 6)	 The sixth line consists of a descriptive text to the

left and a push button to the right. An appropriately

labeled button is used to initiate the “n” repeats

of the script-controlled, on/off flashing of the red

diode. In Figure 4-5, the DAQFactory control screen

is configured to run the regular sequence code listed

in Listing 4-2. The power to the LED is controlled by

the RedLed channel whose output can be found on

the LabJack I/O 0 pin.

Chapter 4 Data Entry from the Screen

99

	 7)	 In the seventh line of the control panel is a second

descriptive text component configured to report

the number of times to repeat the fade in/fade out

oscillation of the green LED.

	 8)	 A descriptive text and a second button make up the

eighth and last row of the control panel. The button

controls a pair of sequences, the first of which is the

red LED flashing sequence, while the second, in

Listing 4-3, is the fade in/fade out code for the green

LED. In Figure 4-7, the Action tab for the button

component is displayed. Pulling down the edit box

list of actions will reveal a long list of single choices.

If more than one action is desired on the button

click, then the Add/Delete up/down arrows can be

used to add actions to be invoked when the button

is clicked. In this demonstration exercise, the flash

and fade sequences are run simultaneously.

Figure 4-2.  Edit Box Main Tab to Set a Channel or a variable
value

Chapter 4 Data Entry from the Screen

100

Figure 4-3.  Edit Box Main Tab Completed

Figure 4-4.  Edit Box Ready for Sizing

Figure 4-5.  Control Panel to Vary LED Illumination Repetitions

Chapter 4 Data Entry from the Screen

101

Figure 4-6.  Configuration Panel for the Descriptive Text
Component

Chapter 4 Data Entry from the Screen

102

For visual clarity, panel components can be used to create a

background for the various groups of active screen components making

up a specific operation control screen. A bold numeral positioned at the

base of the panel can be used to associate an entry in a table of notes and

instructions on the main control screen.

Figure 4-7.  Button Component Multiple Action Selection Panel

Chapter 4 Data Entry from the Screen

103

�Scripting
Listing 4-1 is an important procedure to employ when screen components

are used to alter the contents of variables. The sequences for flashing

and fading the red and green LEDs are detailed in Listings 4-2 and 4-3,

while the 27-step process for varying the green LED voltage between the

minimum turn-on voltage and power supply maximum is to be found in

Listing 4-4. Listing 4-3 varies the green diode illumination by calling the

AnalogUp() and AnalogDwn() functions to step the diode through the

incremental voltage levels as required in the fade in/fade out effect. The

sequence is for a low to high transition, and a second routine is written for

high to low transition to enable the system to both increase and decrease

the LED brightness in 1.3 seconds.

�Observations
The on-off cycle of the red diode is definitive in that the light is at full

brightness or it is off. The stepping of the voltage or current applied to the

base of the 2N3904 in a series of increments produces a “noisy” increase

and decrease in the illumination of the semiconductor. (See “Discussion.”)

The descriptive text component application is a very simple illustration

of the usage of the icon but does provide an overview of how the

comparison table is assembled and operates.

Data entry into the variable loop indexing is a simple illustration of

the technique, and the dual initiation of the two different scripts from

a single button illustrates the ability of the DAQFactory programming

to demonstrate “threading” in which two programs appear to execute

simultaneously. (Threading is an advanced programming topic that if

required for an experimental control can be studied in detail from the

literature of Python programming.)

Chapter 4 Data Entry from the Screen

104

�Discussion
As can be seen in the code for the script to switch the power on and off

to the red LED, the variable “flsh_Rpts” is declared as a global entity.

When the script has been typed and the “Apply & Compile” button clicked

successfully, the global variable “flsh_Rpts” appears in the pop-up typing

aid listing of channels, variables, and sequence scripts.

A transistor is an amplifier of current.1 Any signals that are created

by the DAQFactory software and are ultimately expressed as a voltage

level impressed upon the AO 0 terminal of the LabJack will contain noise.

The noise, riding on top of the impressed DC signal levels created by the

DAQFactory script, is augmented by the 10 kΩ resistor protecting the

transistor base from excessive current. The noise on the signal that is

impressed upon the base of the 2N3904 is amplified by the transistor’s

gain or amplification factor hfe, typically a value between 35 and 100, to

generate the easily visible flicker and irregular transitions of the fade in or

out.

Although a PNP transistor has been used in the exercise, an NPN could

be used with the changes illustrated in Figure 4-8 (2N3904 and 2N2222 are

suitable NPN devices).

The scripting code for the on/off diode switching is contained in a loop

whose index is declared as a global-type variable, the value of which is set

from the screen edit box. The same code can be used with two functions

1 Electronics Cookbook, Monk, O’Reilly Media Inc., ISBN 978-1-49195340-2

Figure 4-8.  NPN and PNP Power Control

Chapter 4 Data Entry from the Screen

105

labeled AnalogUp() and AnalogDwn() that are called in place of the

assignment statements setting the analog output channel AO 0 to either 5

volts or 0 in the simple on/off cycling. The functions stepping the intensity

of illumination up and down by voltage adjustment are very simplistic

approaches to altering the power delivered to the green diode. There are

probably numerous more elegant code sequences that can be written to

control the illumination intensity. (Note: Analog up and analog down will

change function if PNP and NPN transistors are interchanged.)

U12 LabJacks can be configured for PWM outputs to provide smooth

power control applications as opposed to the coarse demonstration

method used in this exercise. Newer data acquisition and interfacing

devices are usually equipped with built-in PWM facilities as presented in

Chapter 7.

�Screen Entry of Data with the Arduino
Microcontroller
A screen entry of data can also take the form of a series of numerical

control values generated from a control panel in DAQFactory.

Numerical values from a grouping of DAQFactory icons forming a

control screen on the host computer can be passed to a microcontroller

through the serial port to convert the entered data into process

variations or experimental control actions. Data must pass through

the serial port portal between the two different computing systems at

the low-level bit and byte or on/off communication level. Although

the on/off recognition capability is organized in both systems as ASCII

(American Standard Code for Information Interchange) characters,

the information must be turned into numerical integer or numerical

floating-point values for mathematical operations or alphabetic

characters for identification purposes.

Chapter 4 Data Entry from the Screen

106

As has been presented in previous exercises, an Arduino

microcontroller can be controlled from a serial port. In addition to the

much lower cost of the microcontroller board, the microcontroller has

many updated features such as programmable hardware timers that can

be used to vary the time width of 5 V electrical pulses to implement pulse

width modulation. (See Chapter 7 for details.)

An Arduino normally has 14 digital I/O pins, of which 6 can provide

PWM power control.

Connecting the SCADA software to the Arduino microcontroller

through the serial port limits the electronics to processing one signal at

a time. Regardless of how many data streams are multiplexed or mixed

before being transmitted to the serial port and then parsed back out into

their individual streams on the microcontroller side, only one bit at a time

passes through the serial connection.

Greater details on the serial connection and its use are presented in

Chapter 11.

�Experimental
To implement the use of the Arduino microcontroller instead of the

LabJack U12 to demonstrate the control screen entry of numerical values

for controlling and receiving data for display from the microprocessor, the

digital pin and ADC inputs depicted in Chapter 2, Figure 2-9, can be used.

In all DAQFactory-Arduino programming, only one program or the

other can be in control of the serial port. The author’s normal practice

is to develop the Arduino code required for the task at hand and then

test the code by launching the Arduino’s serial monitor and sending

into the microcontroller code the character string that will be sent by

the DAQFactory control screen. Once the correct Arduino response has

been confirmed, the serial port on the Arduino is closed, and the Arduino

IDE window is minimized to run in the background. Once the Arduino

code to receive the correct DAQFactory character string to invoke the

Chapter 4 Data Entry from the Screen

107

action required is running in the background, the DAQFactory program

containing the page with the control screen to be placed into service can

be launched to begin the control session. In this exercise, the DAQFactory

screens seen in the figures shown are resident in the SCADA software that

has access to and control of the serial port through which characters can

be sent to initiate the desired action from the devices connected to the

Arduino I/O connections.

An initial DAQFactory screen as depicted in Figure 4-9 was created to

begin the progressive development of serial communications.

The Red led on and Red led off buttons are coupled to the Quick

Sequence code of Listing 4-5 that transmits a 1 or 0 to the serial port

where the Arduino code of Listing 4-6 activates/inactivates the red LED

as required. The Arduino code also reads the voltage drop across the

measured, known value current limiting resistor and sends the current

data back to the serial port where the DAQFactory Quick Sequence code

parses out the current data for display on the control screen.

Figure 4-9.  DAQFactory Control Screen for Directing Actions on an
Arduino Microcontroller Board

Chapter 4 Data Entry from the Screen

108

The second button in the upper-left corner of the DAQFactory control

screen is coupled to a second Quick Sequence that activates a more

complex and more efficient toggling of the red LED on the Arduino board.

The programs of Listings 4-7 and 4-8 are the Quick Sequence code and

Arduino code that manage the toggling effect.

Figure 4-10 depicts the DAQFactory control screen display obtained

when the green and orange LEDs on the Arduino board have been

activated by the corresponding buttons on the DAQFactory control screen.

The transmission history of the serial port action on the COM4 monitor

is recorded in the bottom left of the figure frame. Listings 4-9 and 4-10

control the colored buttons of the control panel.

Listings 4-9 and 4-10 contain the DAQFactory quick sequence code

activated by clicking on a coloured button and the responding Arduino

code for the control screen coloured buttons and variable value readouts

visible in Figure 4-10.

Figure 4-10.  DAQFactory Control Screen for Directing Multiple
Actions on an Arduino Microcontroller Board

Chapter 4 Data Entry from the Screen

109

In Figure 4-5, the DAQFactory screen data entry panel has been

developed using the LabJack devices and an auto-start sequence to declare

the variables required to hold the loop indexing values to be entered.

The auto-start sequence in DAQFactory is also activated when the

page holding the data entry panel is loaded for use with the Arduino

microcontroller. All of the features discussed with respect to DAQFactory

previously are active with the microcontroller except for the threading

demonstration button. (See “Discussion.”)

The “Tst script with variable index” button is coupled to the Quick

Sequence program as shown in Listing 4-11. The Quick Sequence relies on

a “for loop,” executed “flsh_Rpts” times to send an on/off or “1”/“0” serial

port transmission to the Arduino running the code listed in Listing 4-6 to

power the red diode on or off. Alternately, Listings 4-12, 4-13, and 4-14 can

be used to operate the Arduino’s PWM functionality to both fade and flash

the orange diode on the microcontroller board. (See “Discussion.”)

�Observations
When the screen data entry uses the edit box screen components with

the LabJack, it is possible to enter two different values into the flash and

fade edit boxes, and when the bottom button “Simultaneous Scripts” is

activated, the flash and fade actions on the two diodes both run together.

(See “Discussion.”)

The remainder of both the LabJack and Arduino screens and functions

work as expected.

�Discussion
In addition to the DAQFactory scripting language, Python is a

programming language that is able to accommodate “threading.” The

details and applications of threading are much more advanced topics than

can be examined in this introductory work, and for more information, the

literature of Python can be consulted.

Chapter 4 Data Entry from the Screen

110

Examination of the Arduino code in Listing 4-8 will reveal that the

logic for determining the status of the red LED has been written, for

simplicity, entirely into the microcontroller system. In the event that

the microcontroller were in a remote location and the operator of the

DAQFactory control screen needed to know the status of the red LED or

the device attached to the digital pin, a flag could be passed back to the

control screen through the serial port along with the current drawn data.

The experimenter must take care when using the digital and PWM

pins on the Arduino as only 6 of the 14 digital I/O pins support PWM

(i.e., Arduino pins 3, 5, 6, 9, 10, and 11 are PWM capable.)

When working with the DAQFactory serial port, the experimenter must

manually add a line feed ASCII marker to the end of each transmission if it

is to be used by Arduino code to mark the end of character transmission.

The Arduino serial monitor has a selection box in the lower right-hand

corner of the field of view to select the desired line endings for the terminal

session at hand.

The PWM activation code using the 0–255 integral power level can be

used with both the fade and flash modes of LED activation by calculating the

timing and power requirements in the DAQFactory sequence scripting and

only transmitting the power activation commands as and when required.

�Raspberry Pi: Screen Entry of Data
Data entry in the Python language used by the RPi is accomplished with

the input statement. An input statement in Python takes a string value

argument that may then need to be converted into the appropriate

numerical value as an integer or float. A typical screen entry code is as

follows (# marks a comment line):

Chapter 4 Data Entry from the Screen

111

input_str = input("Enter the desired input characters",)

variable = int(input_str) # �can only be used for non-floating

point conversion of numbers

variable = float(input_str) # �can only be used for floating

point numeric strings

Control of LEDs with the Python language can use a basic library

called RPi.GPIO or a more advanced capability library known as gpiozero.

The documentation for both libraries is available online.

Because the GPIO array is a digital input/output system, voltage

control is not easily implemented without resorting to PWM and capacitor

smoothing. (PWM is introduced in Chapter 7.)

A simple exercise demonstrating the screen entry of data with Python

and the RPi can be created by blinking an LED with a flash length set from

a screen-entered value for a set number of repeats, also set by screen entry.

The Python program in Listing 4-15 produces the output of Figure 4-11 and

flashes the nominal LED as recorded.

Occasionally, when switching on the power for the RPi when

peripherals are attached to the GPIO array, some of the array pins may be

in a high or powered state. Two utility programs able to re-zero or turn off

Figure 4-11.  Output from Python Screen Entry of Data Program

Chapter 4 Data Entry from the Screen

112

the active pins are presented in Listing 4-16. One utility makes use of the

channel list function, and the second uses a Python loop to process the

individual pins of the GPIO array.

�Code Listings
Listing 4-1.  DAQFactory Auto-start Sequence Code to Declare

Variables

// Auto declare variables is a sequence that runs when the Main

// Screen page is run. Two variables are declared globally,

// flsh_Rpts and fd_Rpts representing the number of times to

// flash the red led and fade the green.

//

global flsh_Rpts

//

global fd_Rpts

Listing 4-2.  DAQFactory Code to Flash the Red LED a Variable

Number of Times as Entered from the Control Screen

// Sequence Name --: TstSqncForLoopVariableReps

//Screen Entry of Alph-Numeric Values

//Oct9/09 and Nov. 13/09

//A screen Edit Box accepts entered values as a variable called

//flsh_Rps. The variable is declared as a global type with an

//auto-run sequence and is used as the loop counter value to

//vary the number of times the loop iterates.

//

global flsh_Rpts

//

Chapter 4 Data Entry from the Screen

113

for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

 //

 RedLed = 5

 delay(0.5)

 RedLed = 0

 delay(0.5)

 //

endfor

Listing 4-3.  DAQFactory Code to Fade In and Out the Green LED

Brightness

//Variable Intensity Flash varies the voltage of the

//AO 0 channel to raise and lower the intensity of the

//green LED

//Nov. 16/09

//

global fd_Rpts

AnalogOut = 0

for (Private.Counter = 0, Counter < fd_Rpts, Counter ++)

AnalogUp ()

AnalogDwn ()

endfor

AnalogOut = 0

Listing 4-4.  DAQFactory Regular Sequence for LED Illumination

Intensity Variation

//Analog Voltage is raised from 2.4 volts to 5.0

// in steps of 0.2v with a delay of 0.05 sec

// between increments. Rvn. Jan4/10

AnalogOut = 2.2

Chapter 4 Data Entry from the Screen

114

delay (0.05)

AnalogOut = 2.4

delay (0.05)

AnalogOut = 2.6

delay (0.05)

AnalogOut = 2.8

delay (0.05)

AnalogOut = 3.0

delay (0.05)

AnalogOut = 3.2

delay (0.05)

AnalogOut = 3.4

delay (0.05)

AnalogOut = 3.6

delay (0.05)

AnalogOut = 3.8

delay (0.05)

AnalogOut = 4.0

delay (0.05)

AnalogOut = 4.2

delay (0.05)

AnalogOut = 4.4

delay (0.05)

AnalogOut = 4.6

delay (0.05)

AnalogOut = 4.8

delay (0.05)

AnalogOut = 5.0

return()

Chapter 4 Data Entry from the Screen

115

Listing 4-5.  DAQFactory Quick Sequence to Turn the Red LED On

from the Button and Read the LED Current

device.ardyRb.Purge()

device.ardyRb.Write('1')

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)

ldCurrnt = strToDouble(datain)

Listing 4-6.  Arduino Code for DAQFactory Code of Listing 4-5

// Arduino code for a single led illumination on the red board

// Arduino the pgm waits for an incoming character on com

// port 4 if a 1 the led is turned on if a 0 it is turned off.

// A0 is wired to Rd led junction and the Arduino calculates

// the led current and prints the value to the serial port.

//

const int RedPin = 3; // �red board dig. pin with red led

and clr

int incomingByte; // a variable to hold incoming byte

float iRed = 0; // the led current through the CLR

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedPin, OUTPUT); // set the pin function

}

void loop() {

 if(Serial.available()> 0) { // �check port for last

data byte

Chapter 4 Data Entry from the Screen

116

 incomingByte = Serial.read(); //

 if (incomingByte == '1') { // if is 1, turn the led on

 digitalWrite(RedPin, HIGH);

 // calculate led current and print to the serial port

 iRed = ((analogRead(A0) * 4.8828)/216);

 Serial.println(iRed);

 }

 //

 if (incomingByte == '0') {

 digitalWrite(RedPin, LOW); // if 0, turn the led off

 // calculate led current and print to the serial port

 iRed = ((analogRead(A0) * 4.8828)/216); // �ensures the LED

is off

 Serial.println(iRed);

 }

 }

}

Listing 4-7.  DAQFactory Quick Sequence Code to Toggle Red LED

and Read the Power Consumption

device.ardyRb.Purge()

device.ardyRb.Write('R')

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)

ldCurrnt = strToDouble(datain)

Chapter 4 Data Entry from the Screen

117

Listing 4-8.  Arduino Code for Receiving the DAQFactory Control

Screen Button Request to Toggle Red LED Illumination

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed digpin is determined

// and toggled as required. Led current calculated and written to

// Ser prt where DAQFtry parses out floating point current value.

//

const int RedLedPin = 3; // red led is on dig pin 3

int oofR = 0; // power state of red diode

char incomingByte = ' '; // declare incoming byte

float iRed = 0; // red led current

//

void setup() {

 Serial.begin(9600); // start the serial port

 pinMode(RedLedPin, INPUT); // �must initially read the dig. pin

}

//

void loop() {

 if (Serial.available()) { // check for incoming data

 char incomingByte = Serial.read();

 //Serial.print(incomingByte); // diagnostic

 if (incomingByte == 'R' && oofR == 0) {

 pinMode(RedLedPin, OUTPUT);

 digitalWrite(RedLedPin, HIGH);

 iRed = ((analogRead(A0) * 4.8828)/216);

 Serial.println(iRed);

 oofR = 1;

 }

Chapter 4 Data Entry from the Screen

118

 else {

 if (incomingByte == 'R' && oofR == 1){

 pinMode(RedLedPin, OUTPUT);

 digitalWrite(RedLedPin, LOW);

 iRed = 0;

 Serial.println(iRed);

 oofR = 0;

 }

 }

 }

}

Listing 4-9.  DAQFactory Quick Sequence Code for Multiple-Button

Control of Arduino LEDs

device.ardyRb.Purge()

device.ardyRb.Write('R')

delay(0.1)

global iRed

global iTotal

private string datain1

private string datain2

datain1 = device.ardyRb.ReadUntil(13)

datain2 = device.ardyRb.ReadUntil(13)

iRed = strToDouble(datain1)

iTotal = strToDouble(datain2)

Chapter 4 Data Entry from the Screen

119

Listing 4-10.  Arduino Code Supporting DAQFactory Multiple-

Button Colored Diode Selection with Power Consumption

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com

// 4. On the arduino side the status of the appropriate led

// digpin is determined and toggled as required through a

// switch construct.

//

// power drawn calculations, each led has a CLR and the voltage

// on the junction of the resistor and led is measured and used

// to calculate diode current by A0 to A3 respectively. Current

// calcln only done when diode activated.

//

const int RedLedPin = 3; // red led is on dig pin 3

const int GreenLedPin = 4; // green led on dp 4

const int OrangeLedPin = 5; // orange led on dp 5

const int YellowLedPin = 6; // yellow led on d pin 6

//

int oofR = 0; // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0; // on off flags initialized

//

char incomingByte = ' '; // define incoming character

//

float iRed = 0; // �red led current in

decimal float format

float iGreen = 0;

float iOrange = 0;

Chapter 4 Data Entry from the Screen

120

float iYellow = 0;

float itotal = 0;

//

void setup() {

 Serial.begin(9600); // start the serial port

 }

//

void loop()

{

 if (Serial.available()) // check for incoming data

 {

 char incomingByte = Serial.read(); // �set char value for

switch branching

// Serial.print(incomingByte); // diagnostic

 switch(incomingByte) // �branch to desired

location/option

 {

 case 'R': // Red Led Activation

 if (oofR == 0) {

 pinMode(RedLedPin, OUTPUT); // set pin I/O

 digitalWrite(RedLedPin, HIGH); // turn led on

 oofR = 1; // set flag

 iRed = ((analogRead(A0)* 4.8828)/216); // calc i when led on

 //Serial.print(analogRead(A0)); // diagnostics

 //Serial.print("iRed = "); // diagnostics

 Serial.println(iRed); // add CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // calculate total power consumption

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // add CR-LF

 }

Chapter 4 Data Entry from the Screen

121

 else { // flag is set to 1 so led is on

 pinMode(RedLedPin, OUTPUT); // set pin mode to output

 digitalWrite(RedLedPin, LOW); // turn led off

 oofR = 0; // re-set flag to off

 iRed = 0; // �turn iRed current

contribution to itotal off

 Serial.println(iRed); // send data to DAQFtry

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // �send to serial port with CR-LF

 }

break;

//

case 'G': // Green Led Activation

 if (oofG == 0) { // check status flag

 pinMode(GreenLedPin, OUTPUT); // set pin I/O

 digitalWrite(GreenLedPin, HIGH); // turn led on

 oofG = 1; // reset status flag

 iGreen = ((analogRead(A1)*4.8828)/215); // �calc diodecurrent

 //Serial.print("iGreen = "); � // diagnostics

 Serial.println(iGreen); // �send data with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // send with CR-LF

 }

 else {

 pinMode(GreenLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(GreenLedPin, LOW); // turn green led off

 oofG = 0; // set green status flag

Chapter 4 Data Entry from the Screen

122

 iGreen = 0; // �turn green contribution to total current off

 Serial.println(iGreen); // �send green current value

with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send total current with CR-LF

 }

break;

//

case 'O': // Orange Led Activation

 if (oofO == 0) { // check status flag

 pinMode(OrangeLedPin, OUTPUT); // set pin I/O

 digitalWrite(OrangeLedPin, HIGH); // set pin I/O

 oofO = 1; // set orange flag to led on

 �iOrange = ((analogRead(A2)*4.8828)/215);

 // �calculate orange led current draw

 //Serial.print("iOrange = "); // diagnostic

 Serial.println(iOrange); // send to serial port with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send total current to

serial port with CR-LF

 }

 else { // orange led is on

 pinMode(OrangeLedPin, OUTPUT); // set pin I/O

 digitalWrite(OrangeLedPin, LOW); // turn orange led off

 oofO = 0; // reset orange status flag to off

 iOrange = 0; // �turn orange contribution to

total off

Chapter 4 Data Entry from the Screen

123

 Serial.println(iOrange); // �send out orange current with

CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostics

 Serial.println(itotal); // �send out total current draw

with CR-LF

 }

break;

case 'Y': // Yellow Led Activation

 if (oofY == 0) { // led is off

 pinMode(YellowLedPin, OUTPUT); // set pin I/O

 digitalWrite(YellowLedPin, HIGH); // turn yellow led on

 oofY = 1; // re-set lag to led on

 �iYellow = ((analogRead(A3)*4.8828)/217);

 // calculate yellow led current

 //Serial.print("iYellow = "); // diagnostic

 Serial.println(iYellow); // �yellow led current value

to serial port wth CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current draw

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // send to serial port with CR-LF

 }

 else { // yellow led on

 pinMode(YellowLedPin, OUTPUT); // set pin I/O mode

 digitalWrite(YellowLedPin, LOW); // turn yellow led off

 oofY = 0; // �re-set flag to

yellow led off

 iYellow = 0; // set yellow led current to 0

Chapter 4 Data Entry from the Screen

124

 Serial.println(iYellow); // �send value to serial port

with CR-LF

 �itotal = iRed + iGreen + iOrange + iYellow;

 // �calculate total current and send wth CR-LF

 //Serial.print("itotal = "); // diagnostic

 Serial.println(itotal); // �send total current with CR-LF

 }

break;

 }

 }

}

Listing 4-11.  DAQFactory Quick Sequence for Flashing the

Arduino-Mounted LED for the Number of Cycles Requested

Through the Screen Data Entry Edit Box

for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

 device.ardyRb.Write('1')

 delay(0.5)

 device.ardyRb.Write('0')

 delay(0.5)

 endfor.

Listing 4-12.  DAQFactory Regular Sequence Code for Fading the

Green LED on the Arduino Board

// Green Led on Arduino pin 5 to be cycled from full power to

// off from a DAQFctry script using the serial port and the

// edit box entry of the requested number of repeats, fd_Rpts.

// Start illumination decrease cycle

Chapter 4 Data Entry from the Screen

125

device.ardyRb.Write("255" + Chr(10))

delay(0.25)

device.ardyRb.Write("192" + Chr(10))

delay(0.25)

device.ardyRb.Write("128" + Chr(10))

delay(0.25)

device.ardyRb.Write("96" + Chr(10))

delay(0.25)

device.ardyRb.Write("64" + Chr(10))

delay(0.25)

device.ardyRb.Write("48" + Chr(10))

delay(0.25)

device.ardyRb.Write("32" + Chr(10))

delay(0.25)

device.ardyRb.Write("24" + Chr(10))

delay(0.25)

device.ardyRb.Write("16" + Chr(10))

delay(0.25)

device.ardyRb.Write("12" + Chr(10))

delay(0.25)

device.ardyRb.Write("8" + Chr(10))

delay(0.25)

device.ardyRb.Write("6" + Chr(10))

delay(0.25)

device.ardyRb.Write("4" + Chr(10))

delay(0.25)

device.ardyRb.Write("3" + Chr(10))

delay(0.25)

device.ardyRb.Write("2" + Chr(10))

delay(0.25)

device.ardyRb.Write("0" + Chr(10))

Chapter 4 Data Entry from the Screen

126

Listing 4-13.  DAQFactory Regular Sequence to Use the “flsh_Rpts”

Screen-Entered Loop Index Counter

// Orng led flashed on/off with 255 and 0 PWM Arduino power

level applications

global flsh_Rpts

//

for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

//

device.ardyRb.Write("255" + Chr(10)) // turn led full on

delay (0.5) // delay 1/2 sec

device.ardyRb.Write("0" + Chr(10)) // turn led off

delay(0.5) // delay 1/2 sec

endfor

Listing 4-14.  Arduino Code to Accept Digits from 0 to 255 to Be

Used as PWM Power Application Requests

 /* DAQFtry ardyRb PWM Led Control through serial port

Quick Sequence control of Orange led fade with arduino PWM

Arduino PWM requires a 0 - 255 integer to set the PWM DC.

This pgm uses the string to int function to convert a digit

based number into an integer to set the PMW value.

*/

String inString = " ";

byte pinOut = 5; // dig pin for orange led

int pwr_Vlu = 0;

//

void setup() {

 Serial.begin(9600); // start serial port

 pinMode(pinOut, OUTPUT); // set output pin

}

Chapter 4 Data Entry from the Screen

127

//

void loop() {

 while (Serial.available() > 0) {

 int inChar = Serial.read();

 if (isDigit(inChar)) {

 // cnvrt incoming byte to char and add to strng

 inString += (char)inChar;

 }

 // if nuline convert accumulated to integer

 if (inChar == '\n') {

 pwr_Vlu = (inString.toInt());

 Serial.print(pwr_Vlu);

 //int twotimes = pwr_Vlu * 2;

 //Serial.print(twotimes);

 pinMode(pinOut, OUTPUT);

 analogWrite(pinOut, pwr_Vlu);

 // clear the string for new input

 inString = " ";

 }

 }

}

Listing 4-15.  Python Data Input from the Host Computer Screen

Input of data from the control screen

#

import RPi.GPIO as GPIO

import time

set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Chapter 4 Data Entry from the Screen

128

Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)

#

Enter the number of the GPIO array pin connected to the LED

to be activated

input_str = input("Input the GPIO pin number for the LED

control exercise " ,)

arry_pn_no = int(input_str)

#

Input the number of times to repeat the flashing of the LED

input_str = input("Input the number of times to flash the LED ",)

rpts = int(input_str)

#

Input the number of times to flash the LED in a second

input_str = input("Input the on time in seconds for the LED flash ",)

flsh_rt = int(input_str)

print("Array pin number = ",arry_pn_no, "Repeats = ", rpts,

"Flash rate = ", flsh_rt)

#

print("Lighting the LED on GPIO pin ", arry_pn_no, "to flash ",

rpts, "times for", flsh_rt, " seconds per flash")

#

for i in range(1, rpts + 1):

 GPIO.output(arry_pn_no, GPIO.HIGH)

 time.sleep(flsh_rt)

 GPIO.output(arry_pn_no, GPIO.LOW)

 time.sleep(flsh_rt)

Chapter 4 Data Entry from the Screen

129

Clear the GPIO array

Print("GPIO array cleared")

GPIO.cleanup()

Listing 4-16.  Python Code to Reset the GPIO Array

Clear, Turn Off or Reset the RPi GPIO array

#

import RPi.GPIO as GPIO

set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)

�Summary
–– Scripting is required in the commercial SCADA system

to enter the process variables required to initialize and

control the process at hand from the configured host

screen GUI control panel.

–– Screen-entered process or experimental variables can

also be entered into SCADA systems assembled with

less expensive components and computing platforms.

Chapter 4 Data Entry from the Screen

131© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_5

CHAPTER 5

Digital Signal
Concepts and Digital
Signal Outputs
Most of the sensors used in making biological, chemical, or physical

measurements create a continuously variable analog electrical output, while

computers and large-scale integrated circuits use high or low electrical

energy levels to represent binary digital signals that they can process.

Supervisory control and data acquisition programs must often function as

bidirectional analog-to-digital electronic signal converters. This chapter

will begin to develop the use of binary numbering and digital electronics,

utilizing the standard 0- and +5-volt signal levels as the representations of

binary ones and zeros. In many surface mount technology (SMT) devices,

the logic levels are 0 and 3.3 V, and the SMT integrated circuits are often

damaged by inadvertent application of 5 V signals.

The LabJack U12, human-machine interface (HMI) user manual

indicates that 20 digital signal lines, capable of being set to either receive

or output a 5 V electrical signal, are provided on the U12 device. Four

lines are available through the I/O 0–I/O 3 connections on the main screw

terminal strips on the LabJack, while the remaining 16 are available at the

DB-25 connector on the top end of the case. The user guide also advises

the experimenter that the four I/O lines on the main terminal connectors

https://doi.org/10.1007/978-1-4842-6778-3_5#DOI

132

are protected by internal, current limiting resistors, while those on the

DB-25 connector are equipped with jumper pins to bypass the 1.5 kΩ

protection resistors when required.

The DB-25 lines can be physically accessed by several methods. A

cable and circuit board with connection terminals for the individual

lines is available from the LabJack manufacturer. A DB-25 connector with

solder terminals can be purchased from most electronics suppliers. An

inexpensive interface can be created from an old DB-25 printer cable with

the incompatible end connector removed and the individual wire ends

tinned to be inserted into a digital prototyping breadboard. (See Chapter 1,

Figure 1-1, items 1 and 3, and HMI U12 in Figure 5-1.)

To reinforce a note of caution concerning the hardware used, recall

that the LabJack manufacturer–supplied board for the DB-25 connection

contains a pre-installed load limiting resistor, while DB-25 connectors

purchased separately from local suppliers or fabricated with cables

cannibalized from old printers do not. The philosophy of using an

independently powered, buffered connection such as the CMOS CD4050

hex non-inverting buffer chip between the field experiment and the HMI

eliminates concerns regarding transient damage to the HMI hardware.

�Experimental
This exercise will use the same screen-controlled LED illumination

procedure, as has been used in previous exercises, but expanded here to 8

bits, to demonstrate basic digital signal concepts.

�Hardware
The CB25 terminal board (item 2, $39 USD) from LabJack Corporation

includes the DB-25 cable (item 3) to connect the additional terminal

digital I/O lines of the U12 interface to the LED array on the prototyping

board (item 1).

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

133

Item 4 in Figure 5-1 is the USB connection to the host computer

displaying the DAQFactory control panel depicted in Figure 5-3. The DB-25

cable connecting the LabJack DB-25 connector at the top of the device

provides access to 16 digital I/O lines from which the first 8 can be used for

this exercise.

If additional hardware protection is required because of a transient-

prone power supply, the eight digital signal lines can use two CD4050 hex

buffer/isolation chips and eight LEDs and current limiting resistors as

depicted in Figure 5-2.

Figure 5-1.  LabJack U12, CB25 Terminal Board, and 8-Bit LED
Array

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

134

The components at hand should be assembled in accordance with

the following circuit schematic. The author assembled an initial prototype

from an old DB-25 printer cable and plugged the isolated and identified

D0–D7 digital I/O lines from the U12 directly into a prototyping board to

activate the CLR LED array bits.

�Software
Create an eight-button panel with each button labeled as illustrated in

Figure 5-3. This exercise demonstrates the configuration of the individual

digital line connections between a field experiment using an 8-bit byte and

the main SCADA screen.

Figure 5-2.  Schematic for 8-Bit Byte LED Display

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

135

Each button created is labeled, connected to its channel, and then set to

toggle between 0 and 5 volts as previously done in Chapter 1, Figures 1-9

through 1-11. Pressing the Ctrl key and clicking the left mouse button

simultaneously allows the experimenter to draw a box around a collection

of individual screen components that can be formed into a group with a

selection in the Edit drop-down menu. The mouse, Ctrl key, and Edit menu

can be used to group and ungroup components as required in assembling a

larger more complex GUI screen.

The investigator should also not attempt to alter components on a

background panel. Components should be arranged and configured as

required, grouped, and then backed by a background panel if desired by

using the Ctrl key and the Order entry in the Layout menu.

The DAQFactory sequence program that calculates the decimal sum of

the illuminated bits is shown in Listing 5-1.

The buttons representing the 8 bits are linked to the “Toggle Between”

selection in the button component Action tab as seen in Figure 1-10,

for each of the DigOut_n channels.

Figure 5-3.  8-Bit Byte LED Display Control Panel

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

136

�Observations
When the diodes, DAQFactory, and the screen are configured properly,

clicking any one of the buttons will either light up or turn off the

corresponding diode in the 8-bit bank of diodes that represents a byte of

digital data.

Figure 5-3 depicts the panel display after the Evaluate button was

clicked while the D1 (21 = 2) and D2 (22 = 4) LEDs were illuminated. To

clear the Decimal sum display, turn all the diodes off and click the Evaluate

button.

�Discussion
The overall philosophy of not powering experimental setups from the HMI

device or the computer power supply is particularly relevant in using the

un-protected digital I/O lines of the LabJack interface. As discussed in

the Chapter 1 exercise, the CD4050 buffers provide a virtual zero-current

or “voltage-only” sensing circuit, in which current flow into or out of the

digital line is virtually zero because of the very high resistance of the CMOS

gate of the buffering IC chip.

This exercise demonstrates the fundamental basis of digital numerical

representation in being able to visually represent any base ten value

between 0 and 255 in binary format. The byte LEDs from the right represent

20 or 1, 21 or 2, 22 or 4, 23 or 8, and so on up to 27 or 128. The decimal value

of 3 is thus represented by manually illuminating the LEDs in the 1 and

2 or rightmost pair of diodes as 00000011 representing 20 and 21. Zero is

represented by no LEDs being lit, and 255 is represented when all the LEDs

are illuminated.

In keeping with proper experimental development procedures for the

assembly of a larger more complex field experiment for data collection,

confirm that all 8 bits are being controlled by the buttons before proceeding

to the next exercise that makes use of the 8-bit and larger LED banks.

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

137

The 8-bit byte can be used to represent the numerical values up to 255,

and each additional LED added to the array will approximately double

the numerical range able to be displayed by the bank of lights, when the

appropriate software adjustments are made. A 10-bit system can represent

1024 values, while a 12-bit system can show 4096 numerical values.

The importance of understanding the binary and decimal numerical

domains becomes evident in dealing with analog-to-digital conversions. A

large number of electro-mechanical sensors are analog signal generators

that are incompatible with digital numerical processing systems, and their

analog output needs to be digitized before the beneficiation available from

digital signal processing (DSP) can be realized.

�DAQFactory Digital Output Exercise with a
Microcontroller LED Demonstration Array
�Experimental
The DAQFactory SCADA software panel depicted in Figure 5-3 can, with

some modification, be coupled to an Arduino microcontroller to provide

an inexpensive display. An 8-bit, single-byte, binary, LED illumination

display of numerical values can be implemented with the circuit of

Figure 5-4 and the Arduino code of Listing 5-3.

Figure 5-4.  The Connections for an 8-Bit Byte, LED Illumination
Bitwise Numerical Display on a Microcontroller

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

138

In Figure 5-4 the nominal Arduino digital pins (ADPs 3–10) would

be jumper wire connected to a prototyping board with a 220 Ω current

limiting resistor for a typical 10 mm LED, to represent the individual bits of

the byte display.

�Observations
A typical clicking of the D0, D2, D4, and D6 buttons that represents 1 + 4 +

16 + 64 or 85 is depicted in Figure 5-5.

�Discussion
An implementation of the digital visualization exercise in which a

microcontroller is used to illuminate the appropriate diodes only needs

to create a code to activate the correct diode through the serial port.

Figure 5-5.  The DAQFactory 8-Bit Byte Keypad for a Microcontroller
LED Illumination Bitwise Display

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

139

On the DAQFactory side, a Quick Sequence code similar to that in Listing

5-2 can be used and adapted for each individual D0–D7 button action. The

code sets the weighted inclusion flag variable of DigOut_n for the digital

summing program (Listing 5-1) and sends the required diode number as a

numerical value equal to the digital pin number to which the diode and its

CLR are connected on the Arduino.

The DAQFactory control panels of Figures 5-3 and 5-5 differ in that

the extra button labeled “Clear Byte” sends a numerical value of “12”

to the microcontroller that in turn triggers code to return all the digital

pins to a low state, thus turning all the diodes on the Arduino off. The

button activates a DAQFactory Quick Sequence that resets all the number

buttons on the control panel in addition to transmitting the “12” to the

microcontroller as detailed in Listing 5-5.

�Raspberry Pi
An 8-bit binary display representation can be configured in Python with

the first eight pins of the RPi’s GPIO array. Listing 5-4 provides the code to

illuminate an LED binary display and effect a conversion of the illuminated

LEDs into an equivalent decimal numerical value. Figure 5-6 illustrates the

output from the Python program that has used the tkinter library to create

the GUI depicted.

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

140

Figure 5-6 displays the output resulting from clicking the Evaluate

LEDs button with the LEDs representing 1, 4, 16, 64, and 128 illuminated in

the 8-bit binary LED display.

When assembling the 8-bit LED display on a breadboard, use 330 or

470 Ω current limiting resistors to restrict the current draw from the RPi

power supply or use an auxiliary supply and buffer the array outputs.

Control of the panel display is managed by using the “Run Module

F5” selection from the Run menu in the “new file” creation. The Python

program opens in the interactive interpreter mode, and by selecting the

new file option, a new file is created from which the 8-bit LED display

program can be located, loaded, and run via the “Run Module F5”

selection in the Run menu.

The GUI of Figure 5-6 will appear, and any LEDs illuminated by stray

values imposed on the GPIO pins as the RPi starts up are reset to 0 by the

internal loop in Listing 5-4. The GUI buttons can then be used to light up

Figure 5-6.  Program Output and 8-Bit Byte LED Display Control
Panel

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

141

the desired bit LEDs in the array. Clicking the “Evaluate LEDs” button

will switch to the interactive Python display mode and print “Evaluating”

and “Decimal sum =” with the decimal value of the sum of the values

represented by the chosen illuminated binary bits.

To reset the program, use the cancel button (X) in the upper right-hand

corner of the interactive display and select Yes/OK in the pop-up dialog

box to return to the program code listing to rerun the demonstration.

�Code Listings

Listing 5-1.  DAQFactory Sequence Code to Sum Active Binary Digit

Values

DAQFactory Sequence Code for dcml_sum

// dcml_sum sums the binary values of the diodes illuminated

global dcml_sum = 0

//

// Examine each of the 8 bits represented by the buttons on the

// digital input panel

// D0 button action toggles the DigOut channel between value 0 or 1

if (DigOut == 1)

 dcml_sum = dcml_sum + 1 // �if the channel is active 20 = 1

is added to dcml_sum

 endif

if (DigOut_1 == 1) // �Activation of D1 toggles the channel

between 0 and 1

 dcml_sum = dcml_sum + 2 // �if the channel is active 21 = 2

is added to dcml_sum

 endif

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

142

if (DigOut_2 == 1) // �Activation of D2 toggles the channel

between 0 and 1

 dcml_sum = dcml_sum + 4 // �if the channel is active 22 = 4

is added to dcml_sum

 endif

if (DigOut_3 == 1)

 dcml_sum = dcml_sum + 8 // �if the channel is active 23 = 8

is added to dcml_sum

 endif

if (DigOut_4 == 1)

 dcml_sum = dcml_sum + 16 // �if the channel is active 24 = 16

is added to dcml_sum

 endif

if (DigOut_5 == 1)

 dcml_sum = dcml_sum + 32 // �if the channel is active 25 = 32

is added to dcml_sum

 endif

if (DigOut_6 == 1)

 dcml_sum = dcml_sum + 64 // �if the channel is active 26 = 64

is added to dcml_sum

 endif

if (DigOut_7 == 1)

 dcml_sum = dcml_sum + 128 // �if the channel is active

27 = 128 is added to dcml_sum

 endif

Listing 5-2.  DAQFactory Quick Sequence Code for a

Microcontroller LED Byte Display

// activation code for D0

global DigOut

device.ardyRb.Write('3' + Chr(10)) // light 1's digit

DigOut = 1 // add 1 to sum

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

143

Listing 5-3.  Arduino Code for 8-Bit Binary Byte Display

// DAQFactory - Arduino LED Illuminated Digital Bits in Byte

// Register DAQFtry screen bttns D0 to D7 light LEDs in digital

// array. Total value of illuminated bits calculated and

// register cleared with buttons. DAQFtr uses scripting to

// evaluate digital bits and serial port transmissions to

// illuminate LEDs after selection by case statement.

//

// digital pins in use 3,4,5,6,7,8,9, and 10

int pv_one = 3;

int pv_two = 4;

int pv_four = 5;

int pv_eight = 6;

int pv_steen = 7;

int pv_threetwo = 8;

int pv_sixfour = 9;

int pv_onetwoeight = 10;

int diod_num;

String inString = "";

//

void setup() {

 Serial.begin(9600);

//

}

//

void loop() {

 while (Serial.available() > 0){ // read serial input

 int inChar = Serial.read();

 if(isDigit(inChar)){

 // cnvrt incoming byte to char and add to string

 inString += (char)inChar;

 }

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

144

 // if nuline convert accmlated to integer

 if (inChar == '\n') {

 diod_num = (inString.toInt());

 Serial.println(diod_num);

 inString = "";

 }

 }

 switch(diod_num)

 {

 case 3:

 pinMode(pv_one, OUTPUT); // units value 2 exp 0

 digitalWrite(pv_one, HIGH);

 Serial.println("Ones");

 break;

 //

 case 4:

 pinMode(pv_two, OUTPUT); // 2 exp 1 = 2

 digitalWrite(pv_two, HIGH);

 break;

 //

 case 5:

 pinMode(pv_four, OUTPUT); // 2 exp 2 = 4

 digitalWrite(pv_four, HIGH);

 break;

 //

 case 6:

 pinMode(pv_eight, OUTPUT); // 2 exp 3 = 8

 digitalWrite(pv_eight, HIGH);

 break;

 //

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

145

 case 7:

 pinMode(pv_steen, OUTPUT); // 2 exp 4 = 16

 digitalWrite(pv_steen, HIGH);

 break;

 //

 case 8:

 pinMode(pv_threetwo, OUTPUT); // 2 exp 5 = 32

 digitalWrite(pv_threetwo, HIGH);

 break;

 //

 case 9:

 pinMode(pv_sixfour, OUTPUT); // 2 exp 6 = 64

 digitalWrite(pv_sixfour, HIGH);

 break;

 //

 case 10:

 pinMode(pv_onetwoeight, OUTPUT); // 2 exp 7 = 128

 digitalWrite(pv_onetwoeight, HIGH);

 break;

 //

 case 12: // special case to clear array

 pinMode(pv_one, OUTPUT);

 digitalWrite(pv_one, LOW);

 //

 pinMode(pv_two, OUTPUT);

 digitalWrite(pv_two, LOW);

 //

 pinMode(pv_four, OUTPUT);

 digitalWrite(pv_four, LOW);

 //

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

146

 pinMode(pv_eight, OUTPUT);

 digitalWrite(pv_eight, LOW);

 //

 pinMode(pv_steen, OUTPUT);

 digitalWrite(pv_steen, LOW);

 //

 pinMode(pv_threetwo, OUTPUT);

 digitalWrite(pv_threetwo, LOW);

 //

 pinMode(pv_sixfour, OUTPUT);

 digitalWrite(pv_sixfour, LOW);

 //

 pinMode(pv_onetwoeight, OUTPUT);

 digitalWrite(pv_onetwoeight, LOW);

 break;

 }

 }

Listing 5-4.  Raspberry Pi Python Code for an 8-Bit Binary LED

Display

Event handlers join a widget to a type of event and a desired

resulting action. Command is the method used to detect mouse

"<Button-1>" events (clicks on the left mouse button) When a

button is left clicked with the mouse, the self.buttonClick()

method is invoked to initiate a LED illumination by setting

the pin to high.

#

import tkinter # �lower case t for current python

installation

import RPi.GPIO as GPIO

from time import *

#

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

147

the array of LEDs representing the 8 bit binary number must

be cleared or re-set to low

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

for i in range(2, 18):

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.LOW)

#

define the myWindow class in which to create the GUI window

class myWindow:

 def __init__(self):

 self.mw = tkinter.Tk()

 self.mw.title("The Scientyst's Ayde")

 self.mw.option_add("*font",("Arial", 15, "normal"))

 self.mw.geometry("+250+200")

GUI function title

 �self.lab_1 = tkinter.Label(self.mw, text = "Eight Bit

Binary - Decimal Interconversions")

 �self.lab_1.pack() # place button widget/image mid window

#

add eight buttons to the ui

 �self.btn_0 = tkinter.Button(self.mw, text = "DO",

command = self.btn_0_OnClick)

 self.btn_0.pack()

 �self.btn_1 = tkinter.Button(self.mw, text = "D1",

command = self.btn_1_OnClick)

 self.btn_1.pack()

 �self.btn_2 = tkinter.Button(self.mw, text = "D2",

command = self.btn_2_OnClick)

 self.btn_2.pack()

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

148

 �self.btn_3 = tkinter.Button(self.mw, text = "D3",

command = self.btn_3_OnClick)

 self.btn_3.pack()

 �self.btn_4 = tkinter.Button(self.mw, text = "D4",

command = self.btn_4_OnClick)

 self.btn_4.pack()

 �self.btn_5 = tkinter.Button(self.mw, text = "D5",

command = self.btn_5_OnClick)

 self.btn_5.pack()

 �self.btn_6 = tkinter.Button(self.mw, text = "D6",

command = self.btn_6_OnClick)

 self.btn_6.pack()

 �self.btn_7 = tkinter.Button(self.mw, text = "D7",

command = self.btn_7_OnClick)

 self.btn_7.pack()

Create the evaluation button

 �self.btn_8 = tkinter.Button(self.mw, text = "Evaluate

LEDs", command = self.btn_8_OnClick)

 self.btn_8.pack()

#

 self.mw.mainloop()

#

 �def btn_0_OnClick(self): # specify action desired on

button click

 GPIO.output(2, GPIO.HIGH)

#

 def btn_1_OnClick(self):

 GPIO.output(3, GPIO.HIGH)

#

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

149

 def btn_2_OnClick(self):

 GPIO.output(4, GPIO.HIGH)

#

 def btn_3_OnClick(self):

 GPIO.output(5, GPIO.HIGH)

#

 def btn_4_OnClick(self):

 GPIO.output(6, GPIO.HIGH)

#

 def btn_5_OnClick(self):

 GPIO.output(7, GPIO.HIGH)

#

 def btn_6_OnClick(self):

 GPIO.output(8, GPIO.HIGH)

#

 def btn_7_OnClick(self):

 GPIO.output(9, GPIO.HIGH)

#

 def btn_8_OnClick(self):

 print("Evaluating") # advise of action occurring

 dcml_sum = 0 # define and initialize summing variable

 �if (GPIO.input(2)) == True:

test array bit status and add appropriate value to sum

 dcml_sum = dcml_sum + 1

 if (GPIO.input(3)) == True:

 dcml_sum = dcml_sum + 2

 if (GPIO.input(4)) == True:

 dcml_sum = dcml_sum + 4

 if (GPIO.input(5)) == True:

 dcml_sum = dcml_sum + 8

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

150

 if (GPIO.input(6)) == True:

 dcml_sum = dcml_sum + 16

 if (GPIO.input(7)) == True:

 dcml_sum = dcml_sum + 32

 if (GPIO.input(8)) == True:

 dcml_sum = dcml_sum + 64

 if (GPIO.input(9)) == True:

 dcml_sum = dcml_sum + 128

#

 print("Decimal sum = ", dcml_sum) # display result.

#

#

if __name__ == "__main__":

 app = myWindow()

Listing 5-5.  DAQFactory Regular Sequence to Clear Byte Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

//

DigOut = 0

DigOut_1 = 0

DigOut_2 = 0

DigOut_3 = 0

DigOut_4 = 0

DigOut_5 = 0

DigOut_6 = 0

DigOut_7 = 0

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

151

�Summary
–– The concepts of digital numerical values consisting of

bits and bytes are visually illustrated.

–– Digital visual demonstrations are created with

commercial and low-cost SCADA systems.

–– Digital numerical concepts have been presented in

preparation for Chapter 6 discussing analog and digital

conversions.

Chapter 5 Digital Signal Concepts and Digital Signal Outputs

153© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_6

CHAPTER 6

Analog or Digital
Conversions for Input
and Output
In the previous chapter, the ability to activate the individual elements of an

8-bit or binary byte LED display and see the decimal numerical equivalent

of the number represented by the illuminated diodes was developed. The

display in DAQFactory software was visualized with LabJack hardware.

In this exercise, a series of DAQFactory sequences, activated by screen

buttons and a data entry edit box, display the binary equivalent of the

decimal value entered into the edit box.

In this exercise, a decimal value under 255 is entered into the edit

box on the main control screen in a grouped panel of components that

control the conversion and display options as labeled on the individual

buttons. As can be seen in Figure 6-2, the panel contains up and down

functions to adjust binary values and an LED display clear function. The

actual numerical conversion is done with a scripted sequence invoking a

standard numerical analysis base conversion algorithm. The sequence is

in Listing 6-1 of the chapter code listings.

In this and the previous exercise, numerical values have been

converted between two different base numbering systems consisting of

2n and 10n. The numbering systems are of different bases and produce

different sequences of digits for the representations of the same number of

https://doi.org/10.1007/978-1-4842-6778-3_6#DOI

154

units or items that are at hand. Changing the type and number of required

digits that represent the same number of whole units in either of the two

bases is an exercise in mathematics that always yields whole numbers.

Conversions between analog and digital electrical signal values often

do not yield exact equivalent results. In theory, an analog signal varies

smoothly and continuously as it changes from one value to another.

An electronic, digital representation of analog values must divide the

range of analog signal variation into a finite number of intervals equal to

the number of binary base bits available in the digital display. An 8-bit

binary, digital display can represent the decimal numbers between 0 and

255. If we wish to represent an electrical signal that may vary from 0 to 5

volts with the previously developed 8-bit digital light display, then each

of the 256 binary digits available must represent 5.0/256 = 0.0195 V or

approximately 19.5 mV.

If the number of LEDs in the binary array is increased from eight to ten,

then the 10-bit LED display can represent 210 or 1024 decimal numerical

values. A 10-bit array is able to divide a 5.0 V signal into 5.0/1024 =

0.004882812 volts or approximately 4.88 mV.

A similar expansion of the array to 12 bits allows for the representation

of a 5.0 V signal of approximately 1.22 mV per bit.

Often the number of bits available is called the converter or conversion

resolution.

Experiments that require conversions between analog and digital

formats must be designed and assembled carefully to compensate for the

errors introduced by these inexact transformations.

An excellent reference work that covers the history of the development

of analog-digital conversions is available as a hardcopy book or as a

downloadable series of pdf chapters from Analog Devices (Walt Kester,

Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3). Two

excellent tutorials are available from Analog Devices as MT-015 and MT-016

that explain the fundamentals of digital-to-analog conversion (DAC) and more

advanced topics with a host of references for further study. (See “Discussion.”)

Chapter 6 Analog or Digital Conversions for Input and Output

155

In a digital representation, the rightmost bit is referred to as the least

significant bit (LSB), while the leftmost bit is the most significant bit (MSB).

(The exponential power to which the base is raised increases as the digit’s

position to the left increases.)

Numerous analog-to-digital converter (ADC) integrated circuit

devices are available for the transformation of electronic signals. There

are several conversion mechanisms in use today such as level or flash

converters, successive approximation registers, sigma-delta converters,

and other processes whose advantages and limitations are discussed in

detail in the electronics literature.1 (See also Analog Devices referred to

previously.) Resistance voltage divider circuits that are used to reduce

an electrical signal voltage level can also be used to divide a voltage level

into n divisions in accordance with the circuits A–D in Figure 6-1. The

increasingly complex circuits from A to D are also known as Kelvin dividers

and date from the mid-1800s.

1 �1) Building Scientific Apparatus 4th Edn., Moore, Davis and Coplan, Cambridge
  University Press, ISBN 978-0-521-87858-6 hardback
2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,
  ISBN -13 978 -0-521-37095-0 hardback
3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,
  ISBN 978-0-07-177133-7

Figure 6-1.  ADC and DAC Resistance Networks

Chapter 6 Analog or Digital Conversions for Input and Output

156

In circuit A of Figure 6-1, if the resistors are of equal value, the divider

circuit halves the input voltage, as Vout = Vin * (R/R + R).

In circuit B of Figure 6-1, the output voltage is one-third of the input as

Vout = Vin * (R/R + R + R). A series of four and five equal-valued resistors as

seen in circuits C and D reduces the voltage division to a fourth and fifth of

the input voltage, respectively.

In general, it can be seen that n series resistors between the input voltage

and ground will provide a series of junctions. With input voltage n, the

voltage drop for each resistor is 1/n that of the input voltage. A string of series

resistors and voltage reduction junctions is the electro-mechanical basis

behind the “flash” type of analog-to-digital converter, integrated circuits.

Conversion of a digital signal into an analog, in essence, reverses the

ADC process. As with a binary, 8-bit ADC having the ability to divide the

input into 256 discrete voltage levels, the reverse process of a binary, 8-bit,

digital-to-analog conversion (DAC) also provides 28 or 256 discrete output

voltage levels. The DAC does not produce a true analog signal but creates a

stepped voltage approximation of the analog waveform.

An efficient conversion architecture known as an R-2R “ladder”

network has been developed that uses only the two resistance values of

the eponymous R and 2R. As can be seen from circuit E in Figure 6-1, bit 0

is at the lowest voltage with respect to ground, while bit 7 is at the highest

voltage. The significance or “weight” of the bit values increases from least

to most significant as the position in the resistance stack increases.

Signal conversions between the analog and digital formats can be

realized with relatively inexpensive IC devices such as the single-channel,

8-bit ADC0804 or the eight-channel, 10-bit MCP3008. The ADC0804 can be

used with a 5-volt battery pack, to drive an eight-LED display directly and

provide a simple, inexpensive ADC demonstration. (An ADC0804

chip costs $6 CDN.)

In addition to the 8-bit LED array, the ease with which an analog signal

can be monitored with the LabJack HMI series of devices and DAQFactory

software is demonstrated with +/–10-volt input limitations for 10-bit

Chapter 6 Analog or Digital Conversions for Input and Output

157

analog-to-digital converters in the U12 series and 3.6-volt input voltage

limits with 12-bit converters in the U3 devices. (See Chapter 1, Figure 1-1,

item 1. Most surface mount technology (SMT) integrated circuitry operates

at 3.5 volts.)

Measurements of larger voltage ranges than those specified by the

manufacturer of the ADC device at hand can be realized by using a

simple resistance voltage divider to reduce the experimental range to one

acceptable to the converter. (See Figure 6-1.) The investigator then has the

option of using a correction factor in the mathematical formula entered

into the expression box of the variable value configuration window seen in

Figure 2-6 of Chapter 2 and Figures 6-10 and 6-11, to display the present

value of the experimental voltage. A second variable value display could

be added to the GUI being configured to monitor both the experimental

and reduced voltages being applied to the ADC input if desired by the

researcher as in Figures 6-11 and 6-12.

�Digital-to-Analog Conversions
As has been pointed out in the “Exercise Road Map” and previously, the

digital-to-analog conversion (DAC) does not and cannot reproduce a

truly analog electronic signal. The generated “analog” signal is broken

into a fixed number of discrete digital values on DAC, and the analog

signal generated from the discrete number of digital values is a stepped

waveform similar in shape to the original smooth and continuous analog

signal.

There are two basic methods for converting digital signals into analog

outputs. One method uses binary, weighted, resistance values, in which

the individual digital, bit signals are applied to resistors whose resistance

ratio is proportional to the binary power series. Constructing this type

of DAC frequently requires nonstandard resistance values. The other

method for DAC is much easier to implement and is depicted in circuit

Chapter 6 Analog or Digital Conversions for Input and Output

158

E of Figure 6-1. The R-2R ladder generates an output signal consisting of

the sum of the digital inputs in the body of the ladder. There are several

advantages to the second method in the need for only two resistance

values. The ladder is scalable to the required number of digits, and the

output impedance is always constant and equal to the lesser resistance

value used in the ladder circuit.

�Experimental: LabJack-DAQFactory
Decimal-to-Binary Conversions
�Hardware
The button-controlled, buffered, 8-bit byte LED display, assembled and

tested in the previous chapter’s exercise, will serve as the individual bit

display or output register for the converted decimal value.

�Software

	 1)	 A panel grouping consisting of the components

depicted is assembled on the main screen.

Figure 6-2.  DAQFactory Panel for a Decimal-to-Binary Number
Converter

Chapter 6 Analog or Digital Conversions for Input and Output

159

The panel has been configured from two text

components appearing as the top two lines of

the panel. An edit box component receives the

numerical value to be processed and enters the

value into the required variable. The fourth line

button component activates the conversion

sequence, and the bottom row of buttons performs

the actions appearing on their captions.

	 2)	 Required scripting

The grouped “Decimal to Binary Converter” panel

of Figure 6-2 requires four scripts to activate the

converter bit display, increase the binary display by

one, decrease the value by one, convert the entered

decimal number and then display the binary value,

and clear the display.

The individual sequence codes are provided in Listings 6-1 through 6-4

at the end of the chapter.

�Analog-to-Digital Conversions
To demonstrate the ease with which an analog-to-digital conversion can

be implemented with DAQFactory software and the LabJack HMI, an ADC

panel as depicted in Figure 6-3 is configured. The panel consists of three

components, a text entry as a heading, a variable value readout displaying

the channel[0] or present value of the channel of interest, and the gray

panel background.

Chapter 6 Analog or Digital Conversions for Input and Output

160

The circuitry for the analog-to-digital conversion is as depicted in

Figure 6-4 in which the ends of the potentiometer are wired between +5 V

and ground terminals on the U12 and the wiper is connected to the AI 0,

analog input zero, screw terminal.

As noted previously, an ADC can be used to follow a voltage

fluctuation beyond the safe operating limits for the ADC electronics,

by using a resistance-based voltage divider to lower the signal strength

applied to the converter. A reduced voltage Vout can be calculated from the

following divider equation:

Vout = Vin * (R1/(R1 + R2))

Figure 6-4.  An Adjustable Analog Signal Source

Figure 6-3.  An ADC Panel

Chapter 6 Analog or Digital Conversions for Input and Output

161

where R1 and R2 are the individual resistance values of a series pair

of resistors connected between Vin and ground and Vout is the voltage

observed between the junction of R1 with R2 and ground. (See circuit A in

Figure 6-1.)

A less expensive but more complex to implement ADC LED array

illumination binary display can be assembled with the well-established

ADC0804 chip from Texas Instruments. (A 57-page pdf documentation is

available from www.ti.com/lit/ds/symlink/adc0804-n.pdf.)

The pdf data sheet notes the following:

–– No interfacing logic required, operates as a complete

stand-alone device with a 135 ns access time, differential

voltage inputs, MOS and TTL voltage level compatible,

able to use a 2.5-volt reference, an on-chip clock,

0–5-volt input range with a 5-volt supply, no zero adjust

required, standard 20-pin DIP package, and a 100 us

conversion time

Figure 6-5.  An 8-Bit LED ADC Display

Chapter 6 Analog or Digital Conversions for Input and Output

http://www.ti.com/lit/ds/symlink/adc0804-n.pdf

162

Figure 6-5 depicts the circuitry that has been used by the author to

develop an ADC hardware demonstration using the Texas Instruments

ADC0804 8-bit successive approximation analog-to-digital converter. For

implementation on a prototyping board, the author used 3 mm red LEDs

and 1 KΩ current limiting resistors as a display, a four–AA cell nickel metal

hydride battery pack for power, and a connection to the wiper lead of a 5 kΩ

potentiometer connected between the nominal 5-volt supply and ground

similar to the circuit depicted in Figure 6-4. The wiper voltage provided the

varying analog voltage signal for conversion into a digital format to drive the

binary LEDs as the shaft on the potentiometer was rotated.

The digital grounds depicted in Figure 6-5 were all brought to a

common connection that was then grounded to the negative side

of the power supply. An on/off switch was included in the author’s

implementation of the circuit on the prototyping board but was not

needed to initiate the circuit action as when power was applied to the

system, the conversions began immediately. The voltage to be converted

was applied to pin 6 of the IC.

�Observations

�DAQFactory–LabJack HMI Analog-to-Digital
Numerical Base Conversions
Entry of a decimal value into the edit box and a click on the Enter into

script button should light the diodes that correspond to the digital

value of the base ten number entered. Entry of the numerical value of

say 25 should illuminate the units of the 20 (1’s), 23 (8’s, i.e., 2 × 2 × 2),

and 24 (16’s, i.e., 2 × 2 × 2 × 2) diodes to display the binary equivalent of

25 (i.e., 1 + 8 + 16).

Clicking either the increase or decrease button should increase or

decrease the binary value displayed by one and the clear button should

clear the display.

Chapter 6 Analog or Digital Conversions for Input and Output

163

�Analog-to-Digital Electronic Signal Conversions
Connecting a nominal 5 V signal across the ends of a 10 kΩ potentiometer

should, in theory, if there are no mechanical limitations or discontinuities,

give rise to a smoothly varying, analog wiper voltage, ranging between 0

and 5 volts.

A 10-bit ADC as installed in the U12 is theoretically able to divide a 5 V

analog signal into 1024 units of 0.0048828 volts or 4.883 mV. A variable

value display was configured to read the voltage on the wiper of a 10 KΩ

potentiometer wired as depicted in Figure 6-4. As the potentiometer shaft

was rotated, the values from 0.010 V to 4.219 V were displayed on the

DAQFactory GUI screen when the variable value display was set to display

data on the AO 0, analog output zero, channel to three decimal places. The

lower voltage value display fluctuated from 0.005 to 0.020, while the upper

value display fluctuated from 4.209 to 4.365.

�ADC0804: 8-Bit Binary LED Display
Figure 6-6 is a photo of a battery-powered working example of the circuit

in Figure 6-5, assembled on a breadboard for visual demonstration of

ADC. Careful examination of the diodes in the upper right-hand portion

of the field of view will indicate that the 4-, 8-, and 64-bit indicators are lit,

indicating a total value of 76. The voltage source is the wiper lead of the

5 KΩ potentiometer visible at the bottom center of the field of view.

When power was applied to the circuit of Figure 6-5, the individual

LEDs representing the binary equivalent of the digitized wiper voltage

potential lit up immediately. Rotating the shaft of the potentiometer from

one extreme position to the other displayed a diode illumination sequence

in which the binary numbers either increased from 0 to 255 or the reverse.

By slowly rotating the shaft, an individual count could be followed in the

binary display. As noted previously, when fully charged, the battery pack

produces a nominal 5 V that is applied to the two ends of the potentiometer.

Chapter 6 Analog or Digital Conversions for Input and Output

164

A correlation between the applied voltage and the binary display was

established by measuring and then comparing the actual voltage applied

to the input pin #6 with the binary value displayed by the illuminated

diodes of the 8-bit display array.

Examination of both the tabulated data of Figure 6-7 and the ADC0804

data sheet reveals that there is not a 1:1 correspondence between the

applied voltage and the digital value produced since an applied voltage

of 5.25 generates an output of only 253. The ADC discrepancy can be

corrected as explained in the IC data sheet by using the reference voltage

input pin, pin #9. (See “Discussion.”)

Figure 6-6.  Photo of the 8-Bit LED ADC Display

Chapter 6 Analog or Digital Conversions for Input and Output

165

�Discussion
An excellent aid for understanding the concepts of ADC and DAC is found

in Figure 1.1 of Chapter 1 of the Analog Devices publication Analog-Digital

Conversions, at www.analog.com/media/en/training-seminars/design-

handbooks/Data-Conversion-Handbook/Chapter1.pdf. The figure is

captioned “Early 18th Century Binary Weighted Water Metering System”

and contains a series of side and top views of a water metering system

implemented in Istanbul, Turkey, in the nineteenth century. The diagrams

document the implementation of a DAC in terms of a gravity-powered,

hydraulic water distribution and “weighted average” metering system.

Interconversions between analog electronic signal values and digital

numerical representations are seldom exact equivalents. Traditional ADCs

such as the ADC0804 use a parallel output of eight signal lines, each of

which is a representative of a power of 2. The parallel output lends itself

Figure 6-7.  ADC0804 Linearity

Chapter 6 Analog or Digital Conversions for Input and Output

http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter1.pdf
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter1.pdf

166

to the assembly of the battery-powered visual LED display of Figure 6-6.

Newer technology, however, as used in the LabJack devices, does not use

a “parallel” output configuration for ADC but relies on the much simpler

to implement serial data outputs. Serial data output protocols can be fast

enough to monitor many types of sensors, but high-speed instruments

often require the use of parallel converters to keep up with data generation

rates.

Care must always be exercised in applying voltage dividers in that

the ratio of the resistance values chosen must reduce the signal voltage

to the desired level but the individual resistance values should be as low

as possible to allow sufficient current to pass to drive the “downstream”

device or ADC.

An ADC that produces a digital number consisting of an output of

parallel signals to drive the logic of the “downstream” devices such as

microprocessors, seven-segment LED numeric displays, or, in the case of

this primary exercise, an 8-bit binary LED display is usually limited in the

current output that it can safely deliver. In some high–current demand

displays, it may be necessary to buffer the ADC outputs.

There is a substantial difference in the time and effort required to

implement the ADC and DAC demonstrations between the LabJack HMI

with DAQFactory software and the assembly of the ADC0804 8-bit LED

display or the interfacing of the display to the RPi.

The ADC0804 is a single-channel device that requires the input

of one varying voltage source scaled to a 0–5-volt range. The IC has

a reference voltage pin #9 that can be used to adjust the step size of

the 255 digit levels available. The default setting is 19.5 mV per digital

increment so as the entire input span of 5 V will generate a 0–255

binary numerical output. (Further information on using the step size

adjustment is contained in the Texas Instruments data sheet for the

ADC0804.) A clock is needed to run the conversion logic, and for

simplicity, the internal clock is used that requires a series-connected

resistor and capacitor (RC) network. The desired RC combination is

Chapter 6 Analog or Digital Conversions for Input and Output

167

connected between Clock IN and Clock R pins (pins #4 and #19). The

RC time constant ultimately determines how often the IC samples the

voltage on pin #6 to generate a conversion at the output pins.

In addition to the clock and input wiring, the ADC0804 demonstration

exercise requires a 5 V power supply and eight LEDS and their current

limiting resistors to operate.

As noted in previous exercises, the researcher should, where possible,

test each component as the system is assembled. Each LED and current

limiting resistor can be tested by applying 5 V to the end of the resistor that

will be connected to the ADC0804.

In the creation of the code for the buttons, the ability to make use of

previously written scripts as functions is demonstrated. As noted in the

previous exercise, larger-valued numerical conversions would require the

addition of the appropriate number of digital output lines, channels, and

diodes and modification of the scripting code.

An 8-bit byte provides a resolution of one part in 28 or one part in

256. The Decimal to Binary Converter panel of Figure 6-2 contains the

increase and decrease buttons that represent single-digit resolution. If an

experimental setup may produce a varying DC signal that can range from

0 to 10 volts, then the 8-bit conversion is able to resolve 10/256 = 0.0390625

or 39.1 mV. An increase of two more bits in the LED display bank and the

corresponding changes of software would allow a 10 V signal range to be

spread over 1024 binary digits providing an approximate division of one

part in 1024 or millivolt sensitivity or resolution. Increasing the digital

capability to 12 bits will provide a sensitivity or resolution of one part in

4096 or 0.0244% (244 ppm, parts per million).

A GUI digital display does not convey any additional information

about the value of the voltage being monitored other than its present

value. Unless there is a distinct trend of the digital value steadily increasing

or decreasing, there is no additional information that can be derived from

a numerical digital display of a monitored variable value. However, in

many cases where a production process or experimental measurement is

Chapter 6 Analog or Digital Conversions for Input and Output

168

being monitored and the constancy of process variables or measurement

results is the main goal of the SCADA system, a different form of data

presentation such as a timed recording may be of greater value.

�Analog-to-Digital Conversions
with Microcontrollers
As has been presented in the previous five exercises, much more compact,

less expensive, SMT devices able to interface between the DAQFactory

SCADA software and experimental sensors or process management

hardware have become available in the form of microcontrollers. (See

Chapter 9.)

Arduino microcontrollers are readily available, easy-to-use compact

devices that have a built-in 10-bit, successive approximation, SMT

analog-to-digital converter with six input channels. The ADC chip is

capable of converting an input voltage to a digital number in 25 cycles of

its 16 MHz clock (approx. 400 microseconds per conversion).

A microcontroller such as the Arduino is a serially oriented device,

and in order to pass information back and forth between the DAQFactory

control screen and the microcontroller LED array, both the control screen

and controller must read from and write to the serial port as in previous

exercises.

Serial communications are based upon the ASCII bit patterns of 1 and

0 that allow the transmission of both numerical and alphabetic control

characters such as line feeds and carriage returns. Although the ADC

hardware can generate single- or multiple-digit integer bit counts, there

must be a certain amount of character recognition and interpretation

logic software on each side of the serial port in order to create a working

communications system.

Chapter 6 Analog or Digital Conversions for Input and Output

169

�Experimental
Implementation of the decimal-to-binary display with a serial connection

between the DAQFactory control panel and the Arduino-controlled binary

array can begin with the creation of the DAQFactory panel depicted in

Figure 6-8.

A text component, an edit box, and four buttons have been used in

Figure 6-8.

A Figure 6-9 illustrates the edit box configuration window that provides

space for creating the box caption and selecting various options and

actions.

Figure 6-8.  A DAQFactory Control Panel for Serial Control of an
Arduino Binary LED Display

Chapter 6 Analog or Digital Conversions for Input and Output

170

The supporting DAQFactory scripting and Arduino sketch codes for

implementing the serial panel connection to the microcontroller are

provided in Listings 6-5 through 6-9 at the end of the chapter.

In order to use the ADC on a microcontroller board as a serially

connected sensor reading device, a pair of variable value display

components grouped as a panel on a DAQFactory screen can be

configured as in Figure 6-10. Using the channel features of the SCADA

software, the integer counts from the ADC and a calculated voltage value

corresponding to the counted value can simultaneously be displayed.

(Only a cursory introduction to the more involved setup required to

provide a data flow between the two systems is being presented here.

Greater detail is provided in Chapter 11.)

Two variable value displays are placed on a DAQFactory page as seen

in Figure 6-10.

Figure 6-9.  The Edit Box Configuration Window

Chapter 6 Analog or Digital Conversions for Input and Output

171

Figure 6-10.  A Variable Value Component Display for Integer ADC
Counts and a Calculated ADC Voltage

Figure 6-11.  The Variable Value Configuration Page for the Serially
Transmitted Integer ADC Count

Chapter 6 Analog or Digital Conversions for Input and Output

172

Figures 6-11 and 6-12 display the configuration windows for the integer

ADC count display that displays the raw counts and the ADC voltage value

display that uses an expression to calculate the immediate voltage value

from the ADC.

Figure 6-13 documents the sequence of tables, windows, and

entries followed to establish serial microcontroller–SCADA software

communications.

Figure 6-12.  The Variable Value Configuration Page for a Calculated
ADC Voltage

Chapter 6 Analog or Digital Conversions for Input and Output

173

Figure 6-13 presents a captioned outline summary of the major

procedural actions required to read the serial “data stream” from the

microcontroller ADC to the DAQFactory display components. (See

Chapter 11 for details.) Item 1 marks the page listing for the DAQFactory

program in use on which the panel of Figure 6-10 is assembled from the

desired components. Item 2 indicates the channel listing in which the

ArduinoStream channel was created by the author to receive the ADC

data streamed out from the microcontroller to the serial port (see also

Figure 2-3). Items 3 and 4 are the Serial Port Configuration window and

the serial device naming and configuration window that are examined in

detail in Chapter 11 (see Figures 11-5, 11-6, and 11-7).

To install and use the code in Listing 6-10, click Quick ➤ Device

Configuration and select the appropriate device that in the author’s

demonstration case is Comm4. In the Ethernet/Serial Device window,

find the required device and check the adjacent box (Comm4 in figures)

and then click the protocol configure button to bring up the I/O Types and

Figure 6-13.  A Configuration Sequence for Implementation of
DAQFactory Serial Communication

Chapter 6 Analog or Digital Conversions for Input and Output

174

Functions window. Select the “On Receive” function and then copy and

paste the code of Listing 6-10 into the space. (See Figure 11-7 in Chapter 11.)

To provide a variable signal simulation for this exercise demonstration,

the ends of a potentiometer can be connected between the +5 V supply

and ground of the microcontroller and the wiper lead connected to the A0

input of the Arduino ADC. (See the similar circuit diagram of Figure 6-4 for

use with the LabJack HMI.)

In keeping with the philosophy of building a complex system from

multiple tested and functioning components, we can begin by loading

and launching the microcontroller sketch code from Listing 6-11. Once

the sketch is running, the Arduino serial monitor can be opened from

the Tools menu, and the stream of ADC counts should be visible on the

left of the serial monitor field of view. With the data stream generation

confirmed, the serial monitor is closed, and the microcontroller IDE is

minimized.

The DAQFactory program containing the variable value panel is

launched, and if all has been configured properly, the screen components

of Figure 6-10 should be active responding to both system noise and any

repositioning of the potentiometer wiper control shaft.

�Observations
A stream of numbers on the left-hand side of the field of view of the serial

monitor window of the microcontroller IDE with values between 0 and

1024 should be seen after launching the microcontroller sketch for ADC

reading and serial printing to the port in use.

With the microcontroller running in the background, a complete

rotation of the potentiometer shaft on the microcontroller prototyping

board changes the integer display from 0 to 1024 and 0 to 5.000 volts on the

voltage as has been defined by the setting in the configuration windows of

Figures 6-11 and 6-12.

Chapter 6 Analog or Digital Conversions for Input and Output

175

�Discussion

�Diagnostics for Nonresponsive Displays
In the event that the variable value panel is not responding to the incoming

data stream, expand the channel table and confirm that data is being

captured by the channel as depicted in Figure 6-14.

If the channel is not receiving the ADC data, then the serial port

monitor for the DAQFactory program can be accessed to confirm that the

data is arriving at the display program’s serial port. The serial port monitor

is accessed through the Quick ➤ Device Configuration menu and device

selection listing panel to get to the Ethernet/Serial Device window as seen

in item 4 of Figure 6-13. Clicking the Monitor button immediately below

the Configure button will bring up the DAQFactory serial monitor as

depicted in Figure 6-15.

Figure 6-14.  An Active Channel Timestamped Data Listing

Chapter 6 Analog or Digital Conversions for Input and Output

176

In the event that the data is arriving at the DAQFactory serial port but

is not being transferred to the proper channel, the port serial protocol

can be examined by ensuring that the proper protocol has been selected

in the Protocol list and that the correct parsing code (Listing 6-10) has

been entered into the “On Receive” I/O Types and Functions entry of the

Protocol Configuration window.2

�System Development and Programming
Although the microcontroller approach to establishing a SCADA-

experiment serial connection is significantly less expensive than using

the commercially available DAQ systems, the experimental development

time and effort required is significant, and the system lacks the robustness

found in the commercial products.

2 https://www.azeotech.com/dl/serialguide.pdf

Figure 6-15.  The DAQFactory Serial Monitor Display of Data
Passing Through the Port in Use

Chapter 6 Analog or Digital Conversions for Input and Output

https://www.azeotech.com/dl/serialguide.pdf

177

�Analog and Digital Conversions for Input
and Output with Raspberry Pi
With the available power limitations previously noted, LED visualizations

of electronic digital numbering can be created with the RPi and its general-

purpose input/output pin array. Numeric conversions between the binary

and decimal systems together with ADC can be demonstrated with the

two Python libraries available from the Raspberry Pi Foundation. The

RPi.GPIO library permits low-level access to the 40-pin array, while the

gpiozero library code provides access to numerous hardware devices.

The documentation for each library is available from the RPi Foundation

website, and the differences between the two library releases will be

further developed in the next few exercises.

�Binary-Decimal Conversions
As a supplement to the RPi programming and hardware usage introduced

in the previous exercises, a 12-bit decimal-to-binary conversion LED visual

display has been assembled for the initial portions of this exercise. The

code for the converter is in Listing 6-12 at the end of the chapter, and the

output from a conversion is depicted in Figure 6-16.

Chapter 6 Analog or Digital Conversions for Input and Output

178

The bank of 12 LEDs is assembled and tested to provide a visual output

for several Python and ADC programs. A decimal-to-binary numerical

converter, a 10-bit ADC, and a 12-bit ADC can all share the same hardware

to provide a graphic visual display of the various outputs from these similar

types of programs.

�ADC with Raspberry Pi
As noted in previous exercises, the RPi requires external components to

digitize analog signals, and the MCP3008 and MCP3201 ICs have been

selected by the RPI Foundation as suitable devices for 10- and 12-bit

digital conversions. The ICs communicate with the RPi through the serial

peripheral interface (SPI) serial protocol. The ADC data is streamed out

in a continuous series of bits to the RPi that receives and interprets the

10-digit converted value. The MCP3008 output can be formatted as a

floating-point, normalized value from 0 to 1.0 that is proportional to the

difference between the sampled voltage and the voltage applied to the

reference pin or as an integer value from 1 to 1024. When the ADC chip is

Figure 6-16.  A RPi 12-Bit Binary Display of a Decimal Value

Chapter 6 Analog or Digital Conversions for Input and Output

179

referenced to the RPi’s 3.3-volt voltage supply, the normalized output must

be multiplied by the nominal applied or, for accuracy, the VOM-measured

reference voltage to get the actual voltage sampled. A conversion of the

integer output of the MCP3008 to the sampled voltage value involves

dividing the output value by 1024 and multiplying by the reference value

voltage.

The floating-point normalized value representing the analog

conversion is not easily amenable to illuminating a 10-bit binary LED

visual display. A digital integer output is much easier to interface to a

binary LED display.

�Experimental
In order to use code of Listings 6-12 and 6-13 for decimal to 10- or 12-bit

binary LED visual display and the MCP chips as listed in this exercise, the

RPi must be configured to use the serial peripheral interface (SPI) protocol

as depicted in Figures 6-21 and 6-22.

A continuously variable voltage from the wiper of a 10 kΩ

potentiometer biased between the 3.3 V and ground of the RPi GPIO array

was used to create a test voltage for an MCP3008 ADC integrated circuit.

The RPi reads the serial output from the IC, interprets the streamed data,

and generates the scaled 10-bit integer output that is subsequently used to

activate the ten-element LED display.

Figure 6-17 is a semi-schematic of the circuitry used to implement

the display. A wiper voltage is applied to the IC that converts the signal

from the analog to the digital format and streams the data out in a serial

peripheral interface (SPI) form to the RPi GPIO pins. The RPi receives the

streamed data, interprets the converted data, and parses the integer output

to drive the appropriate diode representation of the converted wiper

voltage signal.

Chapter 6 Analog or Digital Conversions for Input and Output

180

Figure 6-17 has been drawn with the Raspberry Pi GPIO pin

connections that control and receive data from the IC on the left and the

RPi GPIO diode array connections on the right.

Figure 6-18 illustrates the screen output from the RPi during a

simulated experimental setup in which the diagnostic print statements

have been inserted into the code to validate the operation of the system.

The potentiometer wiper has been rotated to generate a digital output as

near to the sequence 123 as possible.

�Observations
Figure 6-18 illustrates the continuous output from the Python code that

parses the digitized, converted, wiper voltage value to drive the individual

elements of the 10-bit LED binary representation of the output value. A

closer examination of the output and the actual code being processed

will confirm that only when the remainder variable “rem” has a positive

or high value does the program print a diagnostic output. Rotation of the

Figure 6-17.  RPi-MCP3008 Circuit for 10-Bit Binary LED Display of
Potentiometer Wiper Voltage

Chapter 6 Analog or Digital Conversions for Input and Output

181

potentiometer shaft from one extreme to the other will vary the display from

1 or 0 to 1023. As can be seen in the variation in the data of Figure 6-18, the

system has a certain amount of noise included in the wiper output value.

Figure 6-19 depicts the RPi GPIO array interfaced to a 12-bit LED

display on a prototyping breadboard. The illuminated diodes correspond

to the binary bit pattern of 2 + 4 + 8 + 16 + 32 or decimal 62.

Figure 6-18.  RPi Screen Output During ADC

Chapter 6 Analog or Digital Conversions for Input and Output

182

�Discussion
Figure 6-19 depicts a bank of 12 3 mm LEDs that can be used in a 10- or

12-bit conversion demonstration. An MCP3201 is a 12-bit conversion IC

that can alternately be set up as a binary visualization display. Small 3 mm

diodes and 1 kΩ current limiting resistors are being used to minimize the

current drawn from the computer with the large number of LEDs in the

visual displays.

The figures and photos of the RPi circuits, programming, and wiring

are reflective of the complexity required to use the very inexpensive

system. As can be seen in the photo of Figure 6-19, the investigator needs

to take care in routing jumper wire connections of the RPi GPIO lines and

those required to control the conversion functions of the MCP3008 or

MCP3201. The RPi GPIO line connections required to activate the 10- or

12-bit binary LED display of the pin array output can be tested during

assembly with Listing 6-14. As each pin name appears on the interactive

screen, the corresponding LED connected to the nominal pin should

Figure 6-19.  A 12-Bit Binary LED Display of Decimal Value 62

Chapter 6 Analog or Digital Conversions for Input and Output

183

illuminate for 3 seconds. Figure 6-20 depicts the test program output

display for pin and LED testing.

Listing 6-15 can be used to reset the GPIO array voltage values to zero.

Parallel ADC integrated circuitry as demonstrated with the preceding

ADC0804 has been replaced, to a certain extent, by numerous serial

communications protocols. Serial communication over a long distance

using two or a small number of wires is far more practical than having to

use 8, 10, 12, or more parallel wires to transmit high-frequency, digital,

data bits. Shielding to prevent “cross talk,” physical size, and expense

are just some of the problems to be encountered in high-speed data

transmission over closely spaced, parallel lines.

A model 3 Raspberry Pi can be configured to use one of several serial

communications systems. Figures 6-21 and 6-22 display access to the

Preferences ➤ configuration window that allows the implementation of

the desired protocol.

Figure 6-20.  The LED Array Testing Output

Chapter 6 Analog or Digital Conversions for Input and Output

184

Selection of the serial peripheral interface (SPI) protocol allows the RPi

to communicate with devices that “stream out” data in a continuous flow

of high and low bit pulses. An ADC is just such a data streaming device.

SPI protocols work on a master-slave concept in which either three or four

electrical connections form an electronic bus between the master and a

single slave or several slave devices. A clock synchronizes the transfer of data.

The four lines in an SPI configuration are master out slave in (MOSI), master

in slave out (MISO), the clock line (SCLK), and the chip slave select (CSS).

Figure 6-21.  RPi Preferences Selection Menu

Figure 6-22.  Interfaces Selection Window

Chapter 6 Analog or Digital Conversions for Input and Output

185

SPI can become difficult to implement if there are a number of slaves,

and a second popular protocol is the inter-integrated circuit (I2C or I2C)

protocol. I2C is a two-wire implementation, has slower fixed speeds, uses

addressable locations, consumes more power than SPI, and has less noise.

I2C is the only protocol that confirms the transmission of the data.

In Figure 6-22, there is a third communications interface called Serial that

implements the universal asynchronous receiver and transmission (UART)

protocol. An asynchronous communication operates between two devices

only, without an external clock, but uses agreed-upon data transmission

and receive rates at both ends. Each end of the two-wire bus has an IC that

translates between parallel and serial data flows. In the UART transmission,

a defined format specifies the beginning and end of the data with start and

stop markers. The Serial protocol is used extensively in microprocessor

communications.

For further details on the three protocols, see Practical Electronics for

Inventors.3

�Code Listings
Listing 6-1.  DAQFactory–LabJack U12 Decimal-to-Binary Sequence

Codes

//Decimal to Binary Conversion

//Oct 14-16, Nov 14/2009

//Program Algorithm

//8 LEDs are connected to the digital output channels D0 (#4)

// to D7 (#11) on the DB25 output of the LabJack. Each line is

// buffered/driven with a 4050 buffer.

3 �Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

Chapter 6 Analog or Digital Conversions for Input and Output

186

//An EDIT box accepts the Number_To_Convert and the modulo of

// the value with respect to base 2 is determined for each bit

// of a byte. The bit values are then displayed on the LEDs

//A for loop executes 8 times to evaluate each bit of the

//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte

// register.

//

// Declarations

//

global Number_To_Convert

//Preserve original decimal value entered from the control screen

global Orgnl_N_To_Cnvrt = Number_To_Convert

//

Private Converted_Number[0] = 0

Private Converted_Number[1] = 0

Private Converted_Number[2] = 0

Private Converted_Number[3] = 0

Private Converted_Number[4] = 0

Private Converted_Number[5] = 0

Private Converted_Number[6] = 0

Private Converted_Number[7] = 0

//

//

for (Private.Counter = 0, Counter < 8, Counter++)

 Converted_Number[Counter] = Number_To_Convert %2

 Number_To_Convert = Number_To_Convert/2

 Number_To_Convert = Floor(Number_To_Convert)

 endfor

Chapter 6 Analog or Digital Conversions for Input and Output

187

//

 if (Converted_Number[0] == 1)

//

 DigOut = 1

 endif

//

 if (Converted_Number[1] == 1)

//

 DigOut_1 = 1

 endif

//

 if (Converted_Number[2] == 1)

//

 DigOut_2 = 1

 endif

//

 if (Converted_Number[3] == 1)

//

 DigOut_3 = 1

 endif

//

 if (Converted_Number[4] == 1)

//

 DigOut_4 = 1

 endif

//

 if (Converted_Number[5] == 1)

//

 DigOut_5 = 1

 endif

Chapter 6 Analog or Digital Conversions for Input and Output

188

//

 if (Converted_Number[6] == 1)

//

 DigOut_6 = 1

 endif

//

 if (Converted_Number[7] == 1)

//

 DigOut_7 = 1

 Endif

Listing 6-2.  DAQFactory Script Code to Increase the Converted

Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary. The value of the original

//variable was iteratively reduced to zero by the conversion code

//but was preserved in the global variable Orgnl_N_To_Cnvrt.

//�The preserved number is augmented in value and passed back

through the original sequence.

//

global Orgnl_N_To_Cnvrt

//

//any residual values on the byte register are cleared

ClearByteDisplay()

//

// the original value is augmented

Chapter 6 Analog or Digital Conversions for Input and Output

189

Number_to_Convert = Orgnl_N_To_Cnvrt + 1

//

//the augmented value is converted and displayed

ConvertDecToBinary()

Listing 6-3.  DAQFactory Script Code to Decrease the Converted

Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary and runs the decreased value back

//through the original sequence.

//In the original conversion sequence the Edit Box value,

//variable, Number_To_Convert is iteratively divided by two till

//it vanishes so the entered number is saved in Orgnl_N_To_Cnvrt

//

global Orgnl_N_To_Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be

converted

Number_to_Convert = Orgnl_N_To_Cnvrt - 1

//convert and display the bit pattern

ConvertDecToBinary()

Listing 6-4.  DAQFactory Script Code to Clear Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

//

Chapter 6 Analog or Digital Conversions for Input and Output

190

DigOut = 0

DigOut_1 = 0

DigOut_2 = 0

DigOut_3 = 0

DigOut_4 = 0

DigOut_5 = 0

DigOut_6 = 0

DigOut_7 = 0

Listing 6-5.  DAQFactory Code for Decimal-to-Binary Conversion

via Serial Connection

//Decimal to Binary Conversion

//Oct 14-16, Nov 14/2009, serial port display Jun7/19

//Program Algorithm

//8 LEDs are connected to the digital output channels D0 (#4)

//to D7 (#11) on the DB25 output of the LabJack. Each line is

//buffered/driven with a 4050 buffer.

//An EDIT box accepts the Number_To_Convert and the modulo of

// the value with respect to base 2 is determined for each bit

// of a byte. The bit values are then displayed on the LEDs. In

// this version a quick sequence writes the number of the

// digital pin on the Arduino connected to the diode to be

// illuminated on the serial port.

//A for loop executes 8 times to evaluate each bit of the

//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte

// register.

//

// Declarations

//

Chapter 6 Analog or Digital Conversions for Input and Output

191

global Number_To_Convert

//Preserve original decimal value entered from the control screen

global Orgnl_N_To_Cnvrt = Number_To_Convert

//

global Converted_Number[0] = 0

global Converted_Number[1] = 0

global Converted_Number[2] = 0

global Converted_Number[3] = 0

global Converted_Number[4] = 0

global Converted_Number[5] = 0

global Converted_Number[6] = 0

global Converted_Number[7] = 0

//

//

//

//

for (Private.Counter = 0, Counter < 8, Counter++)

 Converted_Number[Counter] = Number_To_Convert %2

 Number_To_Convert = Number_To_Convert/2

 Number_To_Convert = Floor(Number_To_Convert)

 endfor

//

 if (Converted_Number[0] == 1)

//

// DigOut = 1

device.ardyRb.Write('3' + Chr(10))

 endif

//

 if (Converted_Number[1] == 1)

//

Chapter 6 Analog or Digital Conversions for Input and Output

192

// DigOut_1 = 1

device.ardyRb.Write('4' + Chr(10))

 endif

//

 if (Converted_Number[2] == 1)

//

// DigOut_2 = 1

device.ardyRb.Write('5' + Chr(10))

 endif

//

 if (Converted_Number[3] == 1)

//

// DigOut_3 = 1

device.ardyRb.Write('6' + Chr(10))

 endif

//

 if (Converted_Number[4] == 1)

//

// DigOut_4 = 1

device.ardyRb.Write('7' + Chr(10))

 endif

//

 if (Converted_Number[5] == 1)

//

// DigOut_5 = 1

device.ardyRb.Write('8' + Chr(10))

 endif

//

 if (Converted_Number[6] == 1)

//

Chapter 6 Analog or Digital Conversions for Input and Output

193

// DigOut_6 = 1

device.ardyRb.Write('9' + Chr(10))

 endif

//

 if (Converted_Number[7] == 1)

//

// DigOut_7 = 1

device.ardyRb.Write('a' + Chr(10))

 endif

Listing 6-6.  DAQFactory Sequence Code for Increasing the

Converted Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable

//Number_To_Convert that was converted and displayed in sequence

//ConvertDecToBinary. The value of the original variable was

//iteratively reduced to zero by the conversion code but was

//preserved in the global variable Orgnl_N_To_Cnvrt.

//The preserved number is augmented in value and passed back

//through the original sequence.

//

global Orgnl_N_To_Cnvrt

//

//any residual values on the byte register are cleared

ClearByteDisplay()

//

// the original value is augmented

Number_to_Convert = Orgnl_N_To_Cnvrt + 1

//

//the augmented value is converted and displayed

DecimalToBinaryCnvrsnRvn1()

Chapter 6 Analog or Digital Conversions for Input and Output

194

Listing 6-7.  DAQFactory Sequence Code for Decreasing the

Converted Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary and runs the decreased value back

//through the original sequence.

//In the original conversion sequence the Edit Box value,

//variable, Number_To_Convert is iteratively divided by two till

//it vanishes so the entered number is saved in Orgnl_N_To_Cnvrt

//

global Orgnl_N_To_Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be

converted

Number_to_Convert = Orgnl_N_To_Cnvrt - 1

//convert and display the bit pattern

DecimalToBinaryCnvrsnRvn1()

Listing 6-8.  DAQFactory Sequence Code for Clearing the Display

/ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

device.ardyRb.Write('z' + Chr(10))

Chapter 6 Analog or Digital Conversions for Input and Output

195

Listing 6-9.  Arduino Sketch Code for Diode Array Illumination

// DAQFactory - Arduino LED Illuminated Digital Bits in Byte

// Register DAQFtry screen bttns D0 to D7 light LEDs in digtal

// array. Total value of illuminated bits calculated and

// register cleared with buttons. DAQFtr uses scripting to

// evaluate digital bits and serial port transmisons to

// illuminate LEDs after selectn by case statement.

//

// digital pins in use 3,4,5,6,7,8,9, and 10

int pv_one = 3;

int pv_two = 4;

int pv_four = 5;

int pv_eight = 6;

int pv_steen = 7;

int pv_threetwo = 8;

int pv_sixfour = 9;

int pv_onetwoeight = 10;

int diod_num;

String inString = "";

//

void setup() {

 Serial.begin(9600);

//

}

//

void loop() {

 while (Serial.available() > 0){ // read serial input

 int inChar = Serial.read();

Chapter 6 Analog or Digital Conversions for Input and Output

196

 if (inChar == '3') {

 pinMode(pv_one, OUTPUT); // units value 2 exp 0

 digitalWrite(pv_one, HIGH);

 }

 if (inChar == '4') {

 pinMode(pv_two, OUTPUT); // 2 exp 1 = 2

 digitalWrite(pv_two, HIGH);

 }

 if (inChar == '5') {

 pinMode(pv_four, OUTPUT); // 2 exp 2 = 4

 digitalWrite(pv_four, HIGH);

 }

 if (inChar == '6') {

 pinMode(pv_eight, OUTPUT); // 2 exp 3 = 8

 digitalWrite(pv_eight, HIGH);

 }

 if (inChar == '7') {

 pinMode(pv_steen, OUTPUT); // 2 exp 4 = 16

 digitalWrite(pv_steen, HIGH);

 }

 if (inChar == '8') {

 pinMode(pv_threetwo, OUTPUT); // 2 exp 5 = 32

 digitalWrite(pv_threetwo, HIGH);

 }

 if (inChar == '9') {

 pinMode(pv_sixfour, OUTPUT); // 2 exp 6 = 64

 digitalWrite(pv_sixfour, HIGH);

 }

 if (inChar == 'a') {

 pinMode(pv_onetwoeight, OUTPUT); // 2 exp 7 = 128

 digitalWrite(pv_onetwoeight, HIGH);

 }

Chapter 6 Analog or Digital Conversions for Input and Output

197

 if (inChar == 'z') {

 // special case to clear array

 pinMode(pv_one, OUTPUT);

 digitalWrite(pv_one, LOW);

 //

 pinMode(pv_two, OUTPUT);

 digitalWrite(pv_two, LOW);

 //

 pinMode(pv_four, OUTPUT);

 digitalWrite(pv_four, LOW);

 //

 pinMode(pv_eight, OUTPUT);

 digitalWrite(pv_eight, LOW);

 //

 pinMode(pv_steen, OUTPUT);

 digitalWrite(pv_steen, LOW);

 //

 pinMode(pv_threetwo, OUTPUT);

 digitalWrite(pv_threetwo, LOW);

 //

 pinMode(pv_sixfour, OUTPUT);

 digitalWrite(pv_sixfour, LOW);

 //

 pinMode(pv_onetwoeight, OUTPUT);

 digitalWrite(pv_onetwoeight, LOW);

 }

 }

}

Chapter 6 Analog or Digital Conversions for Input and Output

198

Listing 6-10.  DAQFactory “On Receive” Code for the

ArduinoStream Channel

if (strIn == Chr(13))

 private string datain = ReadUntil(13)

 �Channel.AddValue(strDevice, 0, "Input", 0,

StrToDouble(DataIn))

 Endif

Listing 6-11.  Arduino Sketch Code to Read A0 ADC Channel and

Write Data to Serial Port on 50 ms Intervals

 /*

 AnalogReadSerial

 �Reads an analog input on pin A0, prints the result to the

serial monitor.

 �Attach the center pin of a potentiometer to pin A0, and the

outside pins to +5V and ground.

 */

// the setup routine runs once when you press reset:

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// the loop routine runs over and over again forever:

void loop() {

 // read the input on analog pin 0:

 int sensorValue = analogRead(A0);

 // print out the value you read:

 Serial.println(sensorValue);

 delay(50); // delay in between reads for stability

}

Chapter 6 Analog or Digital Conversions for Input and Output

199

�Code Listings for Raspberry Pi

Listing 6-12.  RPi Python Code for Decimal to 12-Bit Binary LED

Visual Display

Decimal to 12 Bit Binary LED Visual Display

#

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Ensure all LEDS are OFF and set to output mode

for i in range(2, 15):

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.LOW)

#

input dec number to process

#

input_str = input("Decimal to convert to a 12 bit binary

display ",)

dec = int(input_str)

print()

print out screen display headings

print("Quotient and remainder listing for conversion and

display illumination.")

print()

first binary digit of 2**0 or 1s

Q1 = dec // 2

rem1 = dec % 2

if rem1 == 1:

 GPIO.output(2, GPIO.HIGH)

print("For LED 1 Q = ", Q1, "and rem = ", rem1)

#

Chapter 6 Analog or Digital Conversions for Input and Output

200

second binary digit of 2**1 or 2s

Q2 = Q1 // 2

rem2 = Q1 % 2

if rem2 == 1:

 GPIO.output(3, GPIO.HIGH)

print("For LED 2 Q = ", Q2, "and rem = ", rem2)

#

third binary digit of 2**2 or 4s

Q3 = Q2 // 2

rem3 = Q2 % 2

if rem3 == 1:

 GPIO.output(4, GPIO.HIGH)

print("For LED 3 Q = ",Q3, "and rem = ", rem3)

#

fourth binary digit of 2**3 or 8s

Q4 = Q3 // 2

rem4 = Q3 % 2

if rem4 == 1:

 GPIO.output(5, GPIO.HIGH)

print("For LED 4 Q = ",Q4, "and rem = ", rem4)

#

fifth binary digit of 2**4 or 16s#

Q5 = Q4 // 2

rem5 = Q4 % 2

if rem5 == 1:

 GPIO.output(6, GPIO.HIGH)

print("For LED 5 Q = ",Q5, "and rem = ", rem5)

#

sixth binary digit of 2**5 or 32s

Q6 = Q5 // 2

rem6 = Q5 % 2

Chapter 6 Analog or Digital Conversions for Input and Output

201

if rem6 == 1:

 GPIO.output(7, GPIO.HIGH)

print("For LED 6 Q = ",Q6, "and rem = ", rem6)

#

seventh binary digit of 2**6 or 64s

Q7 = Q6 // 2

rem7 = Q6 % 2

if rem7 == 1:

 GPIO.output(8, GPIO.HIGH)

print("For LED 7 Q = ",Q7, "and rem = ", rem7)

#

eighth binary digit of 2**7 or 128s

Q8 = Q7 // 2

rem8 = Q7 % 2

if rem8 == 1:

 GPIO.output(9, GPIO.HIGH)

print("For LED 8 Q = ",Q8, "and rem = ", rem8)

#

ninth binary digit of 2**8 or 256s

Q9 = Q8 // 2

rem9 = Q8 % 2

if rem9 == 1:

 GPIO.output(10, GPIO.HIGH)

print("For LED 9 Q = ",Q9, "and rem = ", rem9)

#

tenth binary digit of 2**9 or 512s

Q10 = Q9 // 2

rem10 = Q9 % 2

if rem10 == 1:

 GPIO.output(11, GPIO.HIGH)

print("For LED 10 Q = ",Q10, "and rem = ", rem10)

#

Chapter 6 Analog or Digital Conversions for Input and Output

202

eleventh binary digit of 2**10 or 1024s

Q11 = Q10 // 2

rem11 = Q10 % 2

if rem11 == 1:

 GPIO.output(12, GPIO.HIGH)

print("For LED 11 Q = ",Q11, "and rem = ", rem11)

#

twelfth binary digit of 2**11 or 2048s

Q12 = Q11 // 2

rem12 = Q11 % 2

if rem12 == 1:

 GPIO.output(13, GPIO.HIGH)

print("For LED 12 Q = ",Q12, "and rem = ", rem12)

Listing 6-13.  SPI-Based Program to Read an MCP3008 10-Bit ADC

An SPI based program to read an MCP3008 10 Bit ADC

the referenced voltage range is divided into an integer from

0 to 1023 sampled voltage is ADC/1023 * 3.3 volts. A blend of

GPIO and SPI code is used to run a 10 bit LED display of the

ADC value.

#

import the RPi.GPIO low level pin control library

import RPi.GPIO as GPIO

import spidev

import time

setup the pin identification scheme

GPIO.setmode(GPIO.BCM)

turn off the array use warnings

GPIO.setwarnings(False)

ensure all the LED driver outputs are set to output and are zero

Chapter 6 Analog or Digital Conversions for Input and Output

203

for i in range(2, 7):

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.LOW)

for i in range(13, 18):

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.LOW)

create required variables

the delay time

delay = 0.5 # the value of time variable delay is defined

the channel to use

pot_chnnl = 0

create a spidev object of the device connected to the

channel in use

spi = spidev.SpiDev()

spi.open(0, 0)

create the readadc function that checks for the correct

channel assignment

if the channel assignment is correct the adc value is read

the function returns -1 a channel error or the adc value

def readadc(pot_chnnl):

 # check channel

 if pot_chnnl > 7 or pot_chnnl < 0:

 return -1

 r = spi.xfer2([1, 8 + pot_chnnl << 4, 0])

 data = ((r[1] & 3) << 8) + r[2]

 return data

#

the while loop, print out and time delay

while True:

 wpr_vlu = int(readadc(pot_chnnl))

 print("--------------------------------")

 print("Pot wiper value = ", wpr_vlu)

Chapter 6 Analog or Digital Conversions for Input and Output

204

 # The LED Display Code

 # �Although initially set to low each binary bit

 # determination must be reset to low as the code cycles in

 # the while loop.

 #

 # first or least significant bit of 2**0 or 1s

 Q1 = wpr_vlu // 2

 rem1 = wpr_vlu % 2

 GPIO.output(2, GPIO.LOW)

 if rem1 == 1:

 print("Q1 = ", Q1, "rem1 = ", rem1)

 GPIO.output(2, GPIO.HIGH)

 # second significant bit of 2**1 or 2s

 Q2 = Q1 // 2

 rem1 = Q1 % 2

 GPIO.output(3, GPIO.LOW)

 if rem1 == 1:

 print("Q2 = ", Q2, "rem1 = ", rem1)

 GPIO.output(2, GPIO.HIGH)

 # third significant bit of 2**2 or 4s

 Q3 = Q2 // 2

 rem1 = Q2 % 2

 GPIO.output(3, GPIO.LOW)

 if rem1 == 1:

 print("Q3 = ", Q3, "rem1 = ", rem1)

 GPIO.output(3, GPIO.HIGH)

 # fourth significant bit of 2**3 or 8s

 Q4 = Q3 // 2

 rem1 = Q3 % 2

 GPIO.output(4, GPIO.LOW)

Chapter 6 Analog or Digital Conversions for Input and Output

205

 if rem1 == 1:

 print("Q4 = ", Q4, "rem1 = ", rem1)

 GPIO.output(4, GPIO.HIGH)

 # fifth significant bit of 2**4 or 16s

 Q5 = Q4 // 2

 rem1 = Q4 % 2

 GPIO.output(5, GPIO.LOW)

 if rem1 == 1:

 print("Q5 = ", Q5, "rem1 = ", rem1)

 GPIO.output(5, GPIO.HIGH)

 # sixth significant bit of 2**5 or 32s

 Q6 = Q5 // 2

 rem1 = Q5 % 2

 GPIO.output(6, GPIO.LOW)

 if rem1 == 1:

 print("Q6 = ", Q6, "rem1 = ", rem1)

 GPIO.output(6, GPIO.HIGH)

 # seventh significant bit of 2**6 or 64s

 Q7 = Q6 // 2

 rem1 = Q6 % 2

 GPIO.output(13, GPIO.LOW)

 if rem1 == 1:

 print("Q7 = ", Q7, "rem1 = ", rem1)

 GPIO.output(13, GPIO.HIGH)

 # eighth significant bit of 2**7 or 128s

 Q8 = Q7 // 2

 rem1 = Q7 % 2

 GPIO.output(14, GPIO.LOW)

 if rem1 == 1:

 print("Q8 = ", Q8, "rem1 = ", rem1)

 GPIO.output(14, GPIO.HIGH)

Chapter 6 Analog or Digital Conversions for Input and Output

206

 # ninth significant bit of 2**8 or 256s

 Q9 = Q8 // 2

 rem1 = Q8 % 2

 GPIO.output(15, GPIO.LOW)

 if rem1 == 1:

 print("Q9 = ", Q9, "rem1 = ", rem1)

 GPIO.output(15, GPIO.HIGH)

 # tenth or most significant bit of 2**9 or 512s

 Q10 = Q9 // 2

 rem1 = Q9 % 2

 GPIO.output(16, GPIO.LOW)

 if rem1 == 1:

 print("Q10 = ", Q10, "rem1 = ", rem1)

 GPIO.output(16, GPIO.HIGH)

 # timing delay

 time.sleep(delay)

Listing 6-14.  RPi Code for Testing LEDs on GPIO Pin Array

Test the LED Array on the GPIO pins

#

import RPi.GPIO as GPIO

import time

set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Reset the array pins to on for 3 sec then turn off

for i in range(2, 21):

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.HIGH)

 print("Testing pin ",i)

 time.sleep(3)

 GPIO.output(i, GPIO.LOW)

Chapter 6 Analog or Digital Conversions for Input and Output

207

Listing 6-15.  Utility Program to Reset the GPIO Pin Values to Zero

Utility program to reset the GPIO pin values to 0

import RPi.GPIO as GPIO

set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)delay)

�Summary

–– ADC and DAC limitations along with the differences

between integer and floating point (decimal-containing

numbers) have been presented.

–– Serial and parallel signal conversions and the various

serial transmission protocols were introduced in both the

commercial and less expensive component-assembled

systems.

–– An important application of digital-to-analog conversions

is presented in Chapter 7 dealing with variable intensity

and power controls.

Chapter 6 Analog or Digital Conversions for Input and Output

209© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_7

CHAPTER 7

Variable Intensity
and Power Control
The ability to arbitrarily alter or adjust the settings of either an

experimental setup or a process control from the display screen is an

integral part of SCADA systems. The DAQFactory software provides

variable control icons such as rotating knobs or moveable sliders. The

knob or slider page components can be coupled to an analog output

channel whose value will be proportional to the rotating position of the

control knob or the linear position of the slider index marker.

With proper design, the page component controls can be used to

regulate substantial voltages and currents that in turn can activate

electro-mechanical devices.

Manipulation of an image on a GUI control screen must at some

point be translated into an electrical signal to provide the desired

electro-mechanical actions in the experiment or process at hand.

As previously introduced, digital systems function in a binary realm in

which the required system action is generated in the form of a signal that

is either on or off. However, there are many systems that require the ability

to continually adjust the amount of action required and are thus in the

analog realm. Motor speeds controlling fans, pumps or mixers, heating

elements, intensity of illumination, and rotational positioning are some

of the operations that may require adjustment by the experimenter or

process operator.

https://doi.org/10.1007/978-1-4842-6778-3_7#DOI

210

This exercise demonstrates two methods for exerting variable control

over process or experimental setups through voltage control and a

technique known as pulse width modulation (PWM).

An increase in the DC voltage of the power being fed to a device

such as a motor, heater, or light source generally increases the speed,

heat developed (a temperature increase), or luminance in proportion

to the additional current passing through the load. It has been stated

that PWM is a method for delivering partial power to a load by digital

means. In essence, a PWM control application places the full voltage

of the power supply across the load in the form of an adjustable-width,

higher-frequency (often of several hundred Hz), rectangular pulse stream.

Control of the power applied and used by the load is then determined by

modifying the width of the full on and off times of the pulse waveform. The

ratio between the on time and the width of the rectangular pulse is known

as the duty cycle (see Figure 10-5 in Chapter 10). Variation of the duty cycle

of the rectangular, full on or off waveform applied to the load is the essence

of PWM power control.

PWM is a technique that can be implemented with software or,

as presented in the later exercises on current control, with integrated

circuitry. For many applications that require precise control, with smooth

power transition, hardware-based PWM is much preferred.

For this exercise, PWM is introduced at its simplest level with an

entirely software implementation. Restriction of the PWM process to a

code-based program limits the techniques that can be used to visually

demonstrate the process as is detailed in the following portions of this

exercise.

The frequency at which the rectangular waveform is created for PWM

must be substantially higher than the response time of the load. Rules of

thumb suggest the frequency be twice the reciprocal of the device RC time

Chapter 7 Variable Intensity and Power Control

211

constant or ten times higher than the control system frequency. In very

simplified terms, it can be said that the PWM frequency should be high

enough so as not to resonate with the RC time constant of the load. (See

resistance-capacitance time constant in the reference.1)

PWM is an extensively used technique in power control, digital-to-

analog conversion, amplifier design, and communications but requires

complex circuitry and can create radio frequency interference, voltage

spikes, and EMI noise. (See triac control in the reference1 and Chapter 10.)

�Experimental
�Variable Voltage Control
�Hardware

A 2N3904 NPN transistor, a 10 kΩ resistor to limit the transistor base

current, and an LED with the appropriate current limiting resistor are

assembled on a breadboard in the configuration shown in Figure 7-1.

1 �Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill,
ISBN 978-0-07-177133-7

Chapter 7 Variable Intensity and Power Control

212

�Software

The rotating knob control is selected from the right button pop-up menu

as shown in Figure 7-2.

Figure 7-1.  LabJack Analog Output 0 Control of NPN Transistor

Chapter 7 Variable Intensity and Power Control

213

After positioning and sizing the control icon on a page of the display

screen, the properties option is selected to gain access to the knob

configuration screens.

The visual appearance of the default-valued un-configured screen icon

depicted in the following can be altered with the appropriate entries in the

boxes displayed in the Main tab. As with all screen icons, the corresponding

Help file can be displayed below the screen object being manipulated.

Some of the visual effect options presented in the Main tab of the properties

window are only evident on larger display images of the icon.

The knob control indicator image defaults to the displayed dot, but

with the radio buttons seen to the right in the indicator sub-panel, this

can be changed to select a triangle or a conventional line index to mark

the degree of control rotation. The default blue indicator image can be

changed by selecting the desired color from the palette available by left-

clicking the Color box seen in Figure 7-3.

Figure 7-2.  DAQFactory Screen Component Control Selection Menu

Chapter 7 Variable Intensity and Power Control

214

Figure 7-4 depicts the window opened by selecting the “Ticks” tab

seen in Figure 7-3. Within the Ticks window, the investigator can select the

nominal aspects of the circular scale and establish the resolution of the

display and its appearance in the final window.

Figure 7-3.  DAQFactory Screen Component Configuration
Window

Chapter 7 Variable Intensity and Power Control

215

The final configuration of the author’s screen component is displayed

in Figure 7-5.

Figure 7-4.  Knob Tick Configuration Window

Figure 7-5.  Base Current and LED Intensity Rotating Control Knob
with Instruction Panel

Chapter 7 Variable Intensity and Power Control

216

Scripting is not required. The slider or the knob automatically provides

a variable output based upon the position of the knob or slider. The

channel specified in the Set Channel box of the Main tab of the properties

window is set to and outputs the required proportional signal.

�Observations
As detailed in the DAQFactory manual, the knob or slider can be set to

numerous configurations for controlled activation of the selected channel.

Because the control in this exercise has been set up to control the power to

an LED, there is a certain amount of “dead band” created by the minimum

voltage required to activate the LED at hand.

�Discussion
Finer degrees of control for the voltage applied to the transistor base and

ultimately to the power delivered by the semiconductor can be realized

by configuring the starting position at 225o of rotation and assigning the

starting voltage to the breakdown voltage of the LED being used. The

forward voltage drop in an LED can vary from 1.2 volts for the infrareds

up to 4 or 5 volts for the blues and white devices. The author’s setup used

a green LED, so depending upon the intended usage of the screen icon,

the dial could be configured to start at 3 volts or at zero. The 0–5-volt range

could be used and calibrated if the turn on voltage itself is to be estimated,

or the dial could be set to indicate from 3.0–5.0 volts to reproduce diode

intensity/power applied settings.

Chapter 7 Variable Intensity and Power Control

217

�Experimental
�Pulse Width Modulation of Voltage
�Introduction

Typically, the implementation of a software program to demonstrate

the fundamentals of PWM uses an LED with a high-frequency variable

duty cycle waveform as presented in Chapter 10. In this exercise, the

fundamental concept and method of PWM is demonstrated with an

electronic-electrical system that has a very simple software signal

generator and a relatively slowly responding load consisting of an

incandescent light bulb.

In keeping with the simple introduction to creating sequences with

the DAQFactory software, an elementary program sequence that coarsely

varies current through a 12-volt, battery-powered DC automotive lamp is

presented in Listing 7-1 at the end of the chapter.

The code has been reduced to the bare minimum number of

statements required to generate the typical rectangular waveform.

The duty cycle values must be entered or changed manually by the

experimenter as numerical values in the two delay statements in the

DAQFactory sequence. The default settings in the code listings are 0.005

and 0.095 that combine to give a total rectangular pulse width of 0.1

seconds.

Figure 7-6 depicts the circuit used to provide a slow-response load for

the PWM demonstration.

Chapter 7 Variable Intensity and Power Control

218

�Observations
Figures 7-7, 7-8, 7-9, and 7-10 depict the varying intensities of brightness

of the incandescent bulb and the corresponding low and high duty cycle

PWM waveforms.

Figure 7-6.  Incandescent Bulb Load for PWM Demonstration

Chapter 7 Variable Intensity and Power Control

219

Figure 7-7.  Incandescent Bulb Load for PWM at low DC power

Figure 7-8.  Low PWM DC Waveform for Incandescent Bulb
Load

Chapter 7 Variable Intensity and Power Control

220

Figure 7-9.  Incandescent Bulb Load for PWM at High DC Power

Figure 7-10.  High PWM DC Waveform for Incandescent Bulb
Load

Chapter 7 Variable Intensity and Power Control

221

If the pulse code is used with an LED, the flash rate can be seen to be

different for the 5 ms and 95 ms time periods, but the eye has difficulty

in seeing a difference in the illumination between the two, noticeably

flashing, power settings. An incandescent lamp, however, displays a

much greater visible response to the different power levels as is evident in

Figures 7-7 and 7-9.

�Discussion
In the introduction to PWM in this exercise, a point has been made

about the need for the frequency of the rectangular wave carrying the

power to be substantially higher than the time constant of the system to

which the power pulses are applied. In very simplified terms, it can be

said that the PWM frequency must be higher than the response time of

the load. The incandescent lamp and battery response times are slow

enough to visually illustrate the power control ability of a very simple,

rudimentary DAQFactory sequence in creating a graphically visual PWM

demonstration. The PWM signals for this demonstration are generated

by the DAQFactory sequence of just six lines of code. The oscilloscope

recordings of Figures 7-8 and 7-10 correspond to a little less than 2 Hz.

Although the frequency is not that high, it is sufficient with the time

required for the filament to heat up and reach thermal and illumination

stability that a two-cycle PWM illumination control technique produces

the desired results. Using a software program such as the first entry in the

code listings to vary the times at which the signal is on and off is often

referred to as “bit banging” PWM.

PWM techniques are a very important part of many digital electronics

and electro-mechanical systems and in many cases are implemented

from hardware devices as will be encountered in several of the exercises to

follow using the Arduino microcontroller.

Chapter 7 Variable Intensity and Power Control

222

Virtually all microcontroller boards as have been used in previous

exercises as inexpensive substitutions for DAQ systems are equipped with

digital pin outputs capable of outputting hardware-implemented PWM

signals (see Chapter 10).

�Raspberry Pi Variable Intensity Control
�Introduction
Physical computing with the RPi is only possible through the general-

purpose input and output pin array seen as the double row of 13 or 20 male

pins along the upper portion of the RPi circuit board in Figure 1-16 in

Chapter 1. The digital nature of the programmable pins on the array allows

the implementation of software PWM operations from either experimenter-

written code or from libraries containing various forms of PWM operations.

Intensity variation screen control icons or components are available

from the tkinter graphical image library available from online sources as

discussed in the documentation provided online by the Raspberry Pi and

Python Foundations.2

To accommodate the ever-increasing interest in and development

of physical computing and the “Internet of things,” the RPi Foundation

has approved three open source Python libraries to facilitate the use of

the GPIO array in connecting to the outside world. The initial library

release was of a more fundamental or lower-level code with the import

designation of RPi.GPIO, while the later more sophisticated codes can

be accessed by importing the gpiozero and pigpio libraries. RPi.GPIO

contains the code required to work with mechanical devices using either

the polling method or interrupts to detect mechanical motions such

as button or switch contact closings, “debouncing” these events, and

2 docs/python.org/3/library/tk.html

Chapter 7 Variable Intensity and Power Control

http://python.org/3/library/tk.html

223

using the contact actions to initiate electrical activity on the GPIO pin

array. It is reported in the RPi documentation that the gpiozero library

is built upon the RPi.GPIO library and contains many elements of very

easy-to-use objects derived from the use of very well-explained, object-

oriented programming code. A detailed listing of library use and the

objects available can be found online.3 Researchers and educators will

find the list of objects created in the gpiozero library is extensive, and

the documentation detailing their implementation and wiring is so very

detailed that a printout of the archive may aid greatly in further work.

The third and most recently released physical computing library,

imported as pigpio, is very different from the previous two facilities as

it is written in C for implementation on several operating systems. For

use on the RPi’s Linux operating system, an interfacing program must be

running in order for the Python interpreter to access the pigpio library.

The program also called a daemon is started from the Linux terminal with

a sudo pigpiod command.

The pigpio facility has extensive documentation that encompasses

detailed code syntax, the numerous testing and visualization utilities

available, and a large assortment of simple and very sophisticated codes

for interfacing to all manner of sensors and hardware. The library also

provides code for several of the more popular communications protocols.

C code is well known for its very fast execution, and the pigpio library

uses both software and hardware to provide single-digit microsecond time

resolution for its PWM and rectangular waveform generation and voltage

transition detection operations.

PWM applications are available through all the libraries, and several

RPi code listings from the three libraries are presented at the end of this

chapter to demonstrate the facets of software PWM power control using

the three different facilities.

3 http://gpiozero.readthedocs.org/ and https://sourceforge.net/p/
raspberry-gpio-python/wiki/Examples

Chapter 7 Variable Intensity and Power Control

http://gpiozero.readthedocs.org/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples

224

�Experimental
Software PWM signal generation and applications using the RPi physical

computing libraries are presented in a series of six programs. Observations

of the desired PWM effects can be achieved by using the Run Module in

the IDLE screen menu to access and process the stored program code.

Program execution can be halted by using the Ctrl+C key combination.

In addition to the demonstration programs, a very short utility

program is also provided to aid in the development and testing of the

pigpio physical computing code.

�PWM Signals with the RPi.GPIO Library
Listing 7-2 can be used to demonstrate the basics of PWM waveform

generation with the circuit of Figure 7-11.

It has been noted in previous exercises that the RPi.GPIO array is

limited in the current that it is able to safely supply to any peripherals

connected to the pins. Figure 7-11 depicts the generic connections that are

required to display the effects created by the programs under study and

development. It is left to the experimenter to safely configure the electronic

Figure 7-11.  LED–GPIO Pin Connection Schematic

Chapter 7 Variable Intensity and Power Control

225

components so the power draw from the GPIO pin or pins in use and the

array ground are safely within the operating limits of both the computer

and the LED.

The program code PWM_tst1 raises and then lowers the #6 pin of

the GPIO array between 3.3 and 0 volts. The width of the on-off pulse

or its duty cycle (DC) is defined and entered into the program code by

the investigator as the variable prcnt_on. The actual PWM waveform is

generated by two loops, a continuous outer loop controlled by a “while”

statement that sets the #6 pin to a high value and an inner “if loop” that

counts out the number of units in the prcnt_on variable before resetting

the pin to 0 volts.

Setting the prcnt_on variable to 5, 50, and 95 can be used to

demonstrate the variation in intensity of the LED illumination.

A demonstration of the effects of the frequency of the PWM signal

on the observed illumination intensity of the LED at hand is given in

Listing 7-3 written with the RPi.GPIO library. When developing the RPi.

GPIO PWM frequency effect demonstration program, a suitable visual

effect was obtained when five different array pin–LED channels were

used to demonstrate the effects of PWM frequency on the observed LED

illuminations. The demonstration program set the duty cycle to a constant

value of 95%, and only the frequency of the PWM power signal was changed.

Prior to loading and running the PWM frequency effect code, five LEDs

and current limiting resistors must be wired to the GPIO array as depicted

in Figure 7-11. GPIO pins 3, 4, 5, 6, and 7 that are found at physical

positions (see Chapter 1, Figure 1-16) 5, 7, 29, 31, and 26 of the 40-pin array

can be used.

�PWM Signals with the gpiozero Library

Listing 7-4 from the gpiozero documentation is a very simple single-

LED PWM illumination variation program demonstrating the advanced

interfacing available with the gpiozero library. The pulsed LED PWM

Chapter 7 Variable Intensity and Power Control

226

program that varies the power applied to an LED to alter the intensity

or brightness of its output consists of five lines of code, of which two are

import statements. A circuit to demonstrate software PWM is configured as

depicted in Figure 7-11. The author used a 5 mm LED and a 220 Ω current

limiting resistor and connected the circuit to GPIO pin 21 (physical pin

#40) and ground (physical pin #34). To see the control possible with the

technique, the program code is loaded into the Python IDLE editor screen

and the Run menu used to launch or process the code.

The gpiozero library contains numerous objects for interfacing the RPi

output array and the MCP3008, eight-channel, 10-bit ADC, as depicted in

the circuit diagram of Chapter 6, Figure 6-17, which can be used in a PWM

demonstration using a RGB LED.

Listings 7-5 and 7-6 use three potentiometers biased between the

positive RPi power output and ground to provide three signals to the

first three channels of the MCP ADC that in turn function as three PWM

signals to vary the intensity of the individual red, green, and blue outputs

of the LED. The programs differ by the code used to implement the PWM

function. In theory, any desired color of light can be produced by the

three-potentiometer color control circuit configuration as depicted in

Figure 7-12.

Figure 7-12.  PWM Three-Potentiometer RGB LED Color Control
Circuit

Chapter 7 Variable Intensity and Power Control

227

Although the first three channels of the MCP3008 are used with 220 Ω

resistors to limit the currents through the diode, the typical output

intensity of a green LED can be five times that of the red and blue devices.

To “balance” or equalize the sensitivity of the green channel, a higher

value resistance may be desired by the experimenter.

�PWM Signals with the pigpio Library

To load, activate, and access the pigpio library on operating system images

or operating system code installations that do not have the library already

included in the code, a number of commands have to be entered at the

terminal. (Raspbian Jessie 2016-05-10 or newer comes with the pigpio C

library pre-installed.)

The author’s RPi has been in use for several years, and the newer

library had to be loaded at the terminal as detailed in the following:

	 1)	 Enter at the terminal prompt – wget abyz.co.uk/rpi/

pigpio/pigpio.zip

	 2)	 unzip pigpio.zip

	 3)	 cd PIGPIO

	 4)	 make

	 5)	 make install

The first two lines download the zipped file and unzip the Python

code to create the file PIGPIO in the home / pi directory fairly quickly.

The “make” and “make install” can take a minute or so to process

depending upon the speed of the Pi on which the library is being installed.

Three programs are created in the /home / pi / PIGPIO file: “pigpio.py”

is a documentation program explaining the Python pigpio module,

which is slightly over a hundred printed pages that define and explain

all the module functions and variables and provide short typical coded

applications. In addition to the documentation are “setup.py,” an RPi

Chapter 7 Variable Intensity and Power Control

228

access module for the pigpio daemon, and “x_pigpio.py,” a 15–20-page

coding of an extensive full test program of all the library functions available

from the pigpio library.

Listing 7-7 is a simple program demonstrating pigpio basic operations

that access the pigpio library through the running interface (pigpiod) to

turn an LED on and off and then vary the brightness with a four-step PWM

illumination intensity increase and decrease. Listing 7-8 is a pigpio test

utility that prints out the status of the GPIO pins in the array.

�Observations
�PWM_tst1

The LED illumination intensity variation is readily seen between the low,

medium, and high experiments when the three simulated duty cycle

values are entered into the program and the code is run. During the

three illumination periods, the code appears to be cycling fast enough to

produce a flicker rate that is not immediately perceptible.

Figure 7-13 is the output from the RPi.GPIO PWM frequency effect

demonstration program.

Figure 7-13.  PWM Frequency Variation Effect with RPi.GPIO
Library Code

Chapter 7 Variable Intensity and Power Control

229

An LED is capable of switching on and off in the mega-Hz range;

and as expected, the 2, 5, and 8 Hz PWM signals flash on and off and

flicker noticeably, while the 11 and 14 Hz signals are reasonably stable

with minimal perceivable flicker or “jitter.” (See “Discussion” for jitter

description and origin.)

�PWM Control of RGB LED Output

The various diode colors can be seen to predominate the device output

as the shafts on the variable resistors are individually turned from their

off to full on positions. Although the circuit of Figure 7-12 has three equal

resistance values that allow the green to dominate the LED output, a

distinct sporadic and irregular variation of the intensity of the diode output

is visually discernible.

The pigpio library program produces a bright steady illumination

when the LED is powered on and during the four-step increase and

decrease of the diode illumination intensity. (See “Discussion.”)

Included in the code listings is the utility program that tests the status

of the first 32 pins of the RPi GPIO array and prints out their status in a

tabular form as depicted in Figure 7-14.

Chapter 7 Variable Intensity and Power Control

230

The test program not only prints out the status of each of the 32 pins of

the array but also confirms the operation of the Linux daemon interfacing

of the Python interpreter with the C code library.

The preceding tabulation was run after the “reset array to zero” utility

of Chapter 6 was used to clear the RPi array (Listing 6-15 in Chapter 6).

Pins 1, 2, and 29 are the power supply pins of the array.

�Discussion

A portion of the RPi.GPIO library is devoted to the implementation of

interfacing lower-level devices such as mechanical switches to the RPi’s

GPIO pin array. The library has functions for determining if the current

state of any pin is high or low (+ system logic voltage level of 5 or 3.3 V or at

system ground potential of 0 V.) detecting changes in the pin state and for

determining when or how the transitions are to be monitored or detected.

Figure 7-14.  Tested Status of the GPIO Pins

Chapter 7 Variable Intensity and Power Control

231

The RPi uses a Linux-based multitasking operating system that may

temporarily take control away from lower-level priority input/output

operations. On a normal time scale as encountered in the operation of a

mouse or keyboard, the I/O operation may not be significantly affected by

the delay; but for higher-precision operations on shorter time scales such

as with graphics displays, it may become quite evident. In this exercise,

the visual effects of the irregular timing can be seen as the flickering in the

LED intensity or, as it is sometimes called, “jitter.”

When using the change frequency function of the RPi.GPIO library,

it is much easier to use a different pin array–LED channel for each new

frequency than it is to try and use the same channel and change its

frequency five times.

A distinct increase in capability and flexibility is evident in the

applications possible with the three GPIO physical computing libraries.

The pigpio is more complex to use but is far more powerful than the

simpler libraries. As noted previously, the C-based library is able to use

the Linux operating system and system hardware to achieve single-digit

microsecond time resolutions on many of the library operations. The

simple demonstration program used in this exercise is completely flicker-

or jitter-free.

In addition to the simple LED illumination function program, a very

short but useful utility program is included at the end of the code listings

that produces a printout of the state of each of the GPIO pins from 0 to 31.

The printout to the console lists all of the pins and their current high/low

values as 1 or 0. In addition to displaying the high/low voltage level of the

individual pins, the utility confirms the functioning of the Python pigpio

interfacing daemon program.

A majority of the pigpio library functions and capabilities will be

encountered, demonstrated, and discussed as required in later more

advanced exercises in RPi physical computing dealing with advanced

PWM applications; sensor initiation or monitoring; Serial, I2C, and SPI

communications; and motor or servo controls.

Chapter 7 Variable Intensity and Power Control

232

�Code Listings
Listing 7-1.  DAQFactory Sequence Program for PWM

while(1)

 sftwr_pwm = 5

 delay(0.095)

 sftwr_pwm = 0

 delay(0.005)

endwhile

Listing 7-2.  RPi Python PWM_tst1

Python Code for Raspberry Pi PWM_tst1

A software PWM demonstration on GPIO - 6

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(6, GPIO.OUT)

#

set the duty cycle

prcnt_on = 10

#

�the outer loop to provide the continuous application of the

modulated power signal

while True:

 # start the duty cycle loop and set the output pin to ON

 GPIO.output(6, 1)

 for i in range(1, 100):

 if i == prcnt_on:

 GPIO.output(6, 0)

Chapter 7 Variable Intensity and Power Control

233

Listing 7-3.  RPI.GPIO PWM Frequency Effect Demonstration

RPi PWM Frequency Demonstration with the RPi.GPIO Library

5 LEDs are used to illustrate the effects of the frequency of

the carrier wave on PWM techniques. Different carrier

frequencies are used at a constant duty cycle to illustrate

the effects of frequency om PWM

import RPi.GPIO as GPIO

import time

Array set up

GPIO.setmode(GPIO.BCM) # Use BCM pin reference

GPIO.setwarnings(False) # turn off the array use warnings

GPIO.setup(3, GPIO.OUT) # set pin #3 for output

#

pwm = GPIO.PWM(3, 2) # �a PWM instance on pin 3 to operate at

2 Hz is setup

print("PWM carrier frequency set to 2 Hz")

print(" ")# print a blank line in the output

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)# start the application of PWM power

time.sleep(5)# Keep the LED illuminated for 5 seconds

pwm.stop()# stop the power application

#

carrier frequency increased to 5 Hz

print("PWM carrier frequency set to 5 Hz")

print(" ")

GPIO.setup(4, GPIO.OUT) # set pin #4 for output

pwm = GPIO.PWM(4, 5) # �a PWM instance on pin 4 to operate at

5 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

Chapter 7 Variable Intensity and Power Control

234

#

carrier frequency increased to 8 Hz

print("PWM carrier frequency set to 8 Hz")

print(" ")

GPIO.setup(5, GPIO.OUT) # set pin #5 for output

pwm = GPIO.PWM(5, 8) # �a PWM instance on pin 5 to operate at

8 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm.stop()

#

carrier frequency increased to 11 Hz

print("PWM carrier frequency set to 11 Hz")

print(" ")

GPIO.setup(6, GPIO.OUT) # set pin #6 for output

pwm = GPIO.PWM(6, 11) # �a PWM instance on pin 6 to operate at

11 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm.stop()

#

carrier frequency increased to 14 Hz

print("PWM carrier frequency set to 14 Hz")

print(" ")

GPIO.setup(7, GPIO.OUT) # set pin #7 for output

pwm = GPIO.PWM(7, 14) # �a PWM instance on pin 7 to operate at

14 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

Chapter 7 Variable Intensity and Power Control

235

time.sleep(5)

pwm.stop()

Listing 7-4.  Single-LED PWM with the gpiozero Library

from gpiozero import PWMLED

from signal import pause

led = PWMLED(21)

led.pulse()

pause()

Listing 7-5.  Control of a RGB LED with gpiozero PWM Library and

Three Potentiometers

PWM Control of RGB Led Diode Pgm 1

from gpiozero import RGBLED, MCP3008

#

led = RGBLED(red=2, green=3, blue=4)

#

red_pot = MCP3008(channel=0)

green_pot = MCP3008(channel=1)

blue_pot = MCP3008(channel=2)

#

while True:

 led.red = red_pot.value

 led.green = green_pot.value

 led.blue = blue_pot.value

Chapter 7 Variable Intensity and Power Control

236

Listing 7-6.  PWM Control of RGB LED with Three ADC Channels

and Pause()

PWM Control of RGB Led Diode Pgm 2

PWM Control of RGB Led Diode

from gpiozero import RGBLED, MCP3008

from signal import pause

#

led = RGBLED(2, 3, 4)

#

red_pot = MCP3008(channel=0)

green_pot = MCP3008(channel=1)

blue_pot = MCP3008(channel=2)

#

led.source = zip(red_pot.values, green_pot.values, blue_pot.

values)

#

pause()

Listing 7-7.  pigpio Basic Operations Program

A simple demonstration of some basic pigpio capabilities.

�The PIGPIO library must be d/l, installed and available on

the RPi in use.

�The requirements for use of the library code must be met and

the interface

�often called a daemon must be running to provide an interface

between the pigpio library written in C and the

Python interpreter. (see PIGPIO documentation)

#

import pigpio

import time

#

Chapter 7 Variable Intensity and Power Control

237

pi = pigpio.pi()# create a instance of the pigpio class

#

Simple LED illumination

pi.set_mode(4, pigpio.OUTPUT) #set gpio 4 for output

pi.write(4,1) # set gpio pin 4 high

time.sleep(0.5)# delay for 1/2 sec

pi.write(4,0) # turn LED off

#

time.sleep(2) # delay for 2 sec between displays

#

simple PWM controlled variable brightness scaled from 0 – off

to 255 – full on

pi.set_PWM_dutycycle(4, 0) #PWM off

time.sleep(0.5)# delay for 1/2 sec

pi.set_PWM_dutycycle(4, 64) # PWM power at 1/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,128) # PWM power at 1/2 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,192) # PWM power 3/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 255) # PWM power full on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,192) # PWM power 3/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,128) # PWM power 1/2 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 64) # PWM power 1/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 0) # PWM power off

#

pi.stop()

Chapter 7 Variable Intensity and Power Control

238

Listing 7-8.  pigpio Test Utility

pigpio pin status and test utility

ensure that the pigpio daemon is running and run the following

code from the run menu in the Python 3 IDLE facility.

#

import pigpio

pi = pigpio.pi() # create an instance of the library

for g in range(0, 32): # �recall range must be the required

number of iterations + 1

 �print("gpio {} is {}".format(g, pigio.read(g))) # print out

a tabulated status report

pigpio.stop()

�Summary
–– Variable intensity controls in the commercial software

are used to implement PWM methods in software to

demonstrate how the technique functions.

–– Several methods are presented for implementation of

PWM techniques with the inexpensive RPi computing

platform.

–– In Chapter 8, the detection of events that occur outside

of the host computer in the SCADA system and how the

time between multiple events is measured are

presented.

Chapter 7 Variable Intensity and Power Control

239© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_8

CHAPTER 8

Counting Events
and Timing
This exercise considers the methods available for dealing with time

measurements in physical computing. Software or hardware can be used

to directly measure time or time intervals. Time intervals can then be used

to make frequency measurements by counting the number of events that

occur in fixed units of time or determine speeds and accelerations when

distances traveled in time intervals are evaluated.

Determinations of time of day and the time between events are

important parameters for gathering scientific data and in process control.

Turning a light on or collecting data from 9:05 till 9:35 could be classified as

an “absolute” or “time of day” format, while measuring the time required

for a ball to fall a fixed distance through a viscous liquid may be termed a

differential time measurement.

The user manual for DAQFactory advises against attempting to work

in time frames of less than a half or quarter of a second with software

scripting. Fractions of a second are at about the limit of a high-level

software’s ability to process threads of code for data processing while

maintaining a system status display screen user interface. Measurement of

millisecond, microsecond, or lower time frames usually requires the use of

assembly language programming for software timing or a physical timing

device for hardware timing. There are several hardware timing devices

available such as the LabJack HMI, Arduino microcontroller boards, or

https://doi.org/10.1007/978-1-4842-6778-3_8#DOI

240

555 timer integrated circuits, all of which are able to work in time frames

measured in milli- and microseconds. This first portion of the chapter

examines the basics of digital time concepts and demonstrates software

limitations. The remaining portions of the chapter and exercises deal with

short time scales available through integrated circuitry hardware and the

introductory concepts of frequency.

Electronically, time is measured with oscillator clocks generating fixed-

voltage (5.0 or 3.3 volts) square wave signals that may have frequencies

in the mega- and giga-Hertz ranges. (MHz are 106 cycles per second, and

GHz are 109 cycles per second.) The PC on which this manuscript is being

written has a 1.48 GHz clock speed, while an Arduino microcontroller has

a 16 MHz clock speed, and the various models of the Raspberry Pi have

clock speeds from 800 MHz to 1.5 GHz.

Electronic oscillators, regulated to a high degree of precision and accuracy

by quartz crystals, can be configured to generate a pulse train of square waves

that can be counted individually to measure time. With very stable oscillator

frequencies of MHz and GHz and individual pulse counting capability, time

frames of micro- and nanoseconds can be measured very accurately.

Desktop, portable, and network-connected computing devices are able

to keep track of the time of day through either the network connection

or a battery backup system when the computing device is switched off.

Some devices such as the Raspberry Pi and the Arduino microcontrollers

require the addition of an accessory called a “real-time clock” (RTC) that

has a battery backup to keep an accurate track of the time of day when the

device is powered down.

�Software Time and Timing
DAQFactory SCADA software is a self-contained program written to run

on Windows-based operating systems. Batteries are used to maintain the

operating system time counts when the computer is shut down between

Chapter 8 Counting Events and Timing

241

operating sessions. Time in DAQFactory is measured in seconds since 1970

with microsecond resolution. When a DAQFactory session is started, the

program takes the date and time from the operating system, initializes an

internal counter, and maintains a time count in seconds from January 1,

1970. The DAQFactory clock runs independently of the operating system

timer and produces a decimal second time resolution. Time functions

available in DAQFactory are detailed in the “Expressions” section of the

user manual. The software time functions available are used in the first

part of this exercise to create two, one-second-resolution, screen-activated

timers that start and stop electronic operations on the external breadboard

and measure the elapsed or cumulative times between manually

observed events much like a handheld stopwatch. The basic software time

evaluation screen is depicted in Figure 8-1.

Figure 8-1.  GUI for Three Timing Operations

Chapter 8 Counting Events and Timing

242

�Basic Time Variables
Figure 8-2 depicts several of the basic current DAQFactory time values.

The basic variables screen consists of six variable value components

(VVCs) and was captured at the date and time indicated in red.

Configuring the entries on the panel will aid in understanding the

mathematical manipulation of counter “clock ticks” and their relationships

to our hours, minutes, and seconds of our cyclic time concepts:

	 1)	 The first line variable value component (VVC)

expression is SysTime() that displays the number of

seconds that have elapsed since January 1, 1970.

	 2)	 Line 2 uses the statement “FormatDateTime(“%c”,

SysTime())” in the expression box of the VVC to

generate the time of day displayed. A large number

of formats are available for use as listed in the

user manual. The display was created in large red

characters for visual emphasis.

Figure 8-2.  GUI for Current Timing Operations and Values

Chapter 8 Counting Events and Timing

243

	 3)	 Lines 3–5 use modulo notation to convert the total

tick counts of SysTime() into various timekeeping

values, while line 6 produces a one-second

modulated switching between logic one and zero.

�Scheduled Event Timer
The scripting of Listing 8-1 (provided at the end of the chapter with all

others) titled Scheduled Time Timer controls the GUI panel shown in

Figure 8-3.

Figure 8-3.  A DAQFactory Scheduled Event Timer GUI

Chapter 8 Counting Events and Timing

244

�The Stopwatch Timer
The nominal group of controls depicted in Figure 8-4 implements

stopwatch-style timing and is controlled by the code of Listing 8-2.

The stopwatch timer is activated by three DAQFactory sequences

found in Listings 8-3 and 8-4. The Start/Stop button (Listing 8-2) initiates

or terminates the timing action and thus defines an interval. A mouse

click on the Cumulative Time button adds the current interval into the

accumulating time sum. Clicking the Reset Display re-zeros the GUI.

�Hardware Timing, Event Counting,
and Frequency Determination
Any physical actions in our world such as opening a door, entering a

room, and turning on a light can be translated by sensors into electrical

transitions that can be monitored and recorded by electronic systems.

Activation of a typical light switch causes the electrical power applied

to a light source to jump from the on to the off extreme. The electrical

waveform that results from the act of turning the light on, leaving it on for

Figure 8-4.  A Stopwatch Timer GUI

Chapter 8 Counting Events and Timing

245

a time t, and switching it off can be considered as a “pulse of duration t.”

Electrical pulses can be created by the conversions of mechanical, optical,

and electromagnetic events into sharp changes in electronic signal levels.

Pulse counting is accomplished by the use of bipolar transistor or

CMOS integrated circuitry in which interconnected transistor switches

are able to record, in binary format, the number of transitions between 0

and 5 (or 3.3) volts that occur in the electronic signal applied to the chip

input pin. Counting the number of electronic transitions in a given period

of time is a measure of the input signal frequency, while counting the total

number of pulses that have occurred since a starting point in the past is a

measure of elapsed or total time passage.

The fundamental unit used to store binary information is known as the

“flip-flop” or “latch.” A flip-flop is a configuration of switches stable in one

of two states in which the inputs to the latch or flip-flop cause the output to

change between the two binary logic states of one and zero. A basic circuit

for a flip-flop, multivibrator, or latch is depicted in Figure 8-5.

Simple flip-flops were made initially from current-controlled devices

such as vacuum tubes, then later from bipolar transistors, and finally from

very-low-current-draw voltage-controlled devices such as field effect

transistors (FETs) and metal oxide semiconductor field effect transistors

Figure 8-5.  A Base Junction Transistor Flip-Flop

Chapter 8 Counting Events and Timing

246

(MOSFETs). These are often termed multivibrators and are known as a

bistable circuit. The circuit stays in either of its two stable states until a

control signal is applied to switch it to the other stable state.

To understand how the basic circuit operates, we can see in Figure 8-5

that if V1 is grounded, then there will be no base current through the base

of Q2. In bipolar transistors, the current through the collector and emitter

(emitter arrow indicates positive current flow) is controlled by the base

current. The transistor Q2 with no base current will have no collector-

emitter current. The current through R2 from Vcc all flows into the base

of Q1 that then causes a much larger current to flow through Q1. With the

symmetrical circuit, if V2 is grounded, then the base current in Q1 is shut

off, and the current through R1 flows into the base of Q2, causing a much

larger current to flow through Q2 as the circuit switches to the second

stable state.

The simple flip-flop is the basic building block of a very large

number of mainly very-low-current-draw complementary metal oxide

semiconductor voltage-controlled integrated circuits that provide

functions such as memory storage, logic, and mathematical functions. (See

Chapter 1, Figure 1-15.)

Details of latches, flip-flops, digital logic counting, oscillator clocks,

and the applications of various families of integrated circuit logic chip sets

can be found in several reference works.1

A terminal on the LabJack HMI labeled CNT provides access to

an integrated circuit that is capable of counting the number of times a

voltage level is changed from +5 to 0 and back to +5 volts. Such event

counting is conducted in binary by the integrated circuitry of the device

1 �1) Digital Electronics for Scientists and Engineers, Malmstadt and Enke, W. A.
Benjamin Inc. NY, NY, ISBN 0-80536899-X
2) CMOS Cookbook 2nd Edn. , Lancaster, Howard W. Sams & Co., ISBN 0
672-22459-3
3) The Art of Electronics 2nd Edn, Horowitz and Hill, Cambridge University Press,
ISBN-13 978-0-521-37095-0

Chapter 8 Counting Events and Timing

247

with results being displayed on the system screen in base ten format. The

events to be counted must be converted into the voltage-level changes

noted previously. The LabJack counter has a 32-bit capacity that allows a

total count of 232 or 4,294,967,296 events. Because the event counter is an

integrated circuit, it can count at frequencies up to 1 MHz.

In the following exercise, a manual event counter that can be

incremented by any number of sensors such as a change in daylight

levels, objects passing a point, or clicking a system screen icon will be

created. Configurations of experimental setups or process control systems

involving time spans of durations measured in seconds and longer are

not a problem with the LabJack and DAQFactory software combination.

Documentation in the user manual indicates that many instructions have

an execution time of 20 ms that creates a lower limit with respect to the

shortest time responses that can be reasonably expected from the visually

based SCADA system. High-speed signal changes are best recorded with

techniques called streaming or burst-mode operations. High-speed signal

changes at speeds or frequencies well beyond what the eye can resolve are

acquired with very fast hardware speeds for post-collection processing.

High-speed operations are detailed in the user manuals and are dealt with

in subsequent chapters and exercises.

The LabJack counter is considered a hardware device and thus is not

limited by software execution times. An integrated circuit device known

as a 555 timer can be used in conjunction with the counter to work in time

spans shorter than those imposed by software execution overhead. The

555 timer is also a “hardware”-based integrated circuit and thus, like the

LabJack counter, able to work in time scales varying from microseconds

to hours. The details of both the bipolar transistor and CMOS 555 timer

ICs are found in numerous references including those referenced earlier.

The differences between the various forms of the timer lie in their power

handling capability with the bipolar forms being high-current types and

the CMOS forms being low voltage based.

Chapter 8 Counting Events and Timing

248

�Experimental
�Hardware
1) Simple manual counting of events

2) Simple continuous event counting or frequency determination

A blue LED and a 470 Ω current limiting resistor can be used to

demonstrate manual counting of screen-initiated events.

�Circuit Schematic
The diode and current limiting resistor are configured as depicted in

Chapter 1, Figure 1-3, for the red diode with the junction of the serial pair

being wired to D9 on the CB25 terminal board.

�Software
For demonstration of the two modes of counter usage, the panel with two

buttons, two variable value components, and a descriptive text component

of Figure 8-6 was created.

For counting manually activated events, a screen button icon is

created, appropriately labeled, and linked to an output channel. The

author’s button was labeled “Initiate Event” configured to activate the

script of Listing 8-5 “A_Counter_Event,” which applies a 5–0–5-volt

transition through a channel created as “DigOut_9_EvntCntr,” wired to

output pin 9, on the CB25 board terminal. Clicking the screen button thus

drives the D9 output from 5 to 0 and back to 5 volts that in turn switches

the blue LED off and then back on. The counter terminal CNT is wired

to monitor the voltage level at the junction of the blue LED and its 470 Ω

current limiting resistor. Manually clicking the “Initiate Event” button thus

increments the counter through the Listing 8-5 DAQFactory sequence.

Chapter 8 Counting Events and Timing

249

Section 10 of the DAQFactory LabJack manual2 details the single

LabJack counter operation. Having only a single counter, all data is

passed through counter channel 0. By default the counter value is reset

to 0 each time the channel is read, so for the first part of this exercise,

the default must be turned off, to continuously increment its value until

manually resetting it to 0. For this exercise, we create a channel named

“EventsCounted” with Counter I/O type; and in the “Channel Table View,”

under the Quick Note / Special / OPC heading, a button along the right-

hand side of the cell with three dots (…) should be visible. Click the button

to bring up the Channel Parameters window with a drop-down list from

which Reset is selected. The only parameter is “Reset?”, and selections of

Yes or No, OK, and Apply will immediately configure the counter channel

not to reset to zero when the channel value is read for display.

A second button labeled “Reset Counter” is configured to start the

short “ResetCounter” script of Listing 8-6, which sets the most recent value

of the “EventsCounted” channel EventsCounted[0] to zero. A variable

value component display of EventsCounted[0] has been placed below the

buttons to indicate the number of events counted. The panel created to

demonstrate simple counter usage is depicted in Figure 8-6.

2 azeotech.com/dl/labjackguide.pdf

Chapter 8 Counting Events and Timing

250

Listing 8-5 in the exercise code listings is activated by clicking the

Initiate Event button.

Clicking the screen button “Initiate Event” causes the blue light to

light up and the event counter to increment. Clicking “Reset Counter”

(Listing 8-6) sets the “Events Counted” variable value display back to 0.

�Scripting
Listing 8-5 and Listing 8-6 are DAQFactory sequences whose scripting

creates the square waveform signal used for frequency measurement with

a time - goto script and the code used to manually clear the counter and

turn off any LED that may be left in the on configuration.

As noted previously, the “Reset Counter” button activates the short

sequence of Listing 8-6 that consists of a single line of active code to set the

value of the counter channel to 0.

Figure 8-6.  A LabJack U12 Counter Usage Demonstration

Chapter 8 Counting Events and Timing

251

By switching the LabJack counter channel back to the default setting

of “Reset after reading a counted value” and configuring a new counter

channel with a one-second counting interval, the new counter channel is

configured to read a per-second frequency.

�Circuit
A white LED and 470 Ω current limiting resistor are configured as depicted

in Chapter 1, Figure 1-3, for the red diode with the junction of the serial

pair at hand being wired to D8 on the CB25 terminal board.

�Software
A pulse train must be created to form a repetitive signal with a measurable

frequency. The script of Listing 8-7 is a PWM or variable pulse width

generator that can be used in conjunction with a screen button and

instruction text as seen in Figure 8-7, to start and stop the square wave

pulse train.

The Start/Stop button is configured to activate the DAQFactory

sequence PWM_Script that is Listing 8-7 in the code listings of this chapter.

Figure 8-7.  A DAQFactory Pulse Train Generator Panel

Chapter 8 Counting Events and Timing

252

Scripting and Action

Although usage of the “time - goto” statement is not considered good

programming practice, it does simplify creation of the square wave signal.

Once the two panels for the counting exercise have been created, change

the values in the “Delay (0.5)” statements to 0.25 and 0.1. While the square

wave is being generated and the frequency is being displayed, move the

mouse cursor rapidly back and forth and watch the LED and the frequency

value being displayed.

�Observations
The inclusion of the blue and white LEDs in the two counter exercises

is used as a visual aid in following the operation of the system. (See

“Discussion.”)

�Discussion
�Time Determination
Digital electronic circuits are activated by crystal-controlled oscillator

“clocks.” Crystal oscillators generate a very stable, fixed-frequency, square

wave pulse train providing nanosecond time resolution (10-9 s). The square

wave consists of a sequential series of transitions from 0 to +5 volts or

from logic zero to logic one in binary format. Time can be divided into

relative time as determined by the spacing of the clock square wave fronts

and absolute time from a fixed event. Absolute time for the DAQFactory

program is determined by the number of seconds from January 1, 1970.

The time variables of Figure 8-2 and their syntax are discussed in detail in

the user manual.

Chapter 8 Counting Events and Timing

253

�Manual and Automated Event Counting
The button-initiated manual events are created in time frames that are

usually not in conflict with DAQFactory software timing. However, it can

be shown that attempts to create a waveform with a script generating a

signal that changes with sufficient rapidity can conflict with the operating

system software timing.

As part of this exercise, a script has been used to generate the voltage

waveform required to increment the LabJack counter. A blue LED has

been included in the exercise as a visual indicator of system validation.

However, the counter hardware records an event as a two-transition

operation in which a high signal drops to a low value, which then is

followed by a low signal being raised to a high voltage value. The two-

transition “event” is effected by a script that leaves the pin voltage level at

5 V that in turn powers the blue LED in the circuit. To turn the LED off, we

include a line of code in the script activated by the Reset Counter button to

set pin 9 back to 0 V without it being recorded as half of an “event.”

By altering the delay values in the PWM_Script, the width of the time

the signal is held at either 0 or the nominal 5 V can be varied. The LabJack

counter only registers the +5- to 0- to +5-volt transitions as a single event

for the purpose of counter increment, so the width of the residence time

at 0 volts is the parameter that is counted as a single event or a cycle in

frequency determinations.

Any graphical display must be composed of a two-dimensional array

of elements that can be individually illuminated to form an image. The

updating of a GUI consumes a large amount of computational resources

as the individual elements of the array are constantly being scanned to

implement any required changes. If a program such as the pulse generator

used to drive the pulse generator panel of Figure 8-7 is invoked with delay

times involving fractions of a second, software conflicts can arise.

Chapter 8 Counting Events and Timing

254

When the pulse generation program was used to power the white

LED as the delay times became very short into the range of fractions of a

second, both the LED pulse rate and the cursor movement became erratic.

The observed hardware and software conflicts demonstrate the limitations

of using software scripting in time spans of less than a second.

�Hardware Time and Timing
Our discussion of the hardware control of time is centered on the 555

integrated circuit timer chip that has been manufactured, improved,

and used for over 40 years. The chip functions by causing its output to

change from high to low voltage levels at controlled time intervals. The

timing intervals may be easily varied over numerous orders of magnitude

to create long delays (the monostable mode of operation) or generate

high-speed pulse trains (the astable mode of operation). Simple external

components consisting of resistors and capacitors can be used to generate

the desired time intervals. The 555 chip is available in bipolar transistor

and CMOS formats that differ in power consumption, power output, and

high-frequency operation.

The 555 chip is named for the series string of three 5 kΩ resistors that

are connected to the supply voltage and ground to establish the 1/3 and

2/3 supply voltage reference levels used by the circuit logic. The circuit

contains two comparator op-amps that feed their output signals to a digital

set-reset flip-flop. The analog comparators use the 1/3 and 2/3 voltage

reference points to change their output state that causes the flip-flop

to change state based upon the comparator inputs. The digital flip-flop

output controls the output driver circuitry.

Figures 8-8 and 8-9 illustrate some of the operations and

configurations for the timer circuit.

Chapter 8 Counting Events and Timing

255

Figure 8-8.  555 IC Timer Modes of Operation

Figure 8-9.  A 555 Timer IC Block Diagram

Chapter 8 Counting Events and Timing

256

When power is applied to a 555 IC configured as depicted in the

astable mode schematic in the bottom-right of Figure 8-8, the capacitor

begins to charge as the current flows through R1 and R2. As the voltage

rises on pins 2 and 6 and then reaches 2/3 of the supply, as determined

by the internal voltage divider, the output goes low. As the output goes

low, the NPN transistor is turned on, and the discharge pin of the 555 is

effectively connected to ground that discharges C1 through R2. As the

voltage on the capacitor drops to 1/3 of the supply value, the transistor is

turned off, the capacitor begins charging through the series pair, and the

cycle repeats itself. The voltage on C thus cycles between 1/3 and 2/3 of the

supply with a period of T = 0.693(R1 + 2R2)C or a frequency of f = 1.4/(R1 +

2R2)C. The time period of the output signal can be divided into two parts

consisting of the time the voltage is high (see Figure 8-8, bottom right) and

the time the signal is low. The high time is often called the “mark time” and

the low the “space time” with the duty cycle being defined as the ratio of

the high or mark time to the sum or time period of the signal, expressed as

a percentage value.

The ability of the 555 timer to generate a pulse train whose electronic

characteristics are determined by external resistance and capacitance

values has a very important application in experimental science. The

following exercise visually demonstrates the concept of square wave or

clock signals and the variation of pulse widths with physical changes in

external sensors.

Numerous websites, references, and textbooks contain detailed

discussions of the characteristics of the timer chip together with tables of

circuit design parameter values.

In the following exercise, the concept of square wave output signals

and duty cycle and the basis of pulse width variation using the timer chip

are demonstrated. Using the design procedures available from the data

Chapter 8 Counting Events and Timing

257

sheets made available online by the major IC suppliers, a circuit with an

output frequency of 6–7 Hertz can be assembled to power different colored

LEDs for a visual display of the circuit operation.

�Experimental

	 1)	 A 555 timer chip configured in the astable mode

(see Figure 8-8, bottom right).

	 2)	 A 100 kΩ variable resistor is used as R2, and a 10 kΩ

resistor is used as R1.

	 3)	 A 1 uF capacitor is used as the timing capacitor or

C1. An electrolytic capacitor can be used as the

higher current leakage rate of the component is not

critical to the performance of the circuit.

	 4)	 Two different colored LEDs with 470 Ω current

limiting resistors are connected between the output

pin of the chip and the power supply rails in order to

produce alternately flashing indications of the high

and low output states.

	 5)	 The schematic diagram of Figure 8-10 has been

drawn with +5 V power, but the circuit can be

powered with any supply between 3 and 18 volts

(adjust CLR values for voltages > +5).

Chapter 8 Counting Events and Timing

258

�Schematic

�Observations
Using the circuit shown in Figure 8-10, the red-yellow pair alternately

flashed ten times in 13 seconds when the 100 kΩ potentiometer was near

its maximum limit, and the circuit flashed continuously when near the

zero value.

�Discussion
In the “astable” configuration, the timer chip is able to vary the time at

which output is on or off. The measured ratio between the time on and

off or the “duty cycle” is shown to be dependent upon the resistance of

R2 that in this case is the mechanical position of the shaft on the variable

resistor. Rotary mechanical motion of the potentiometer shaft can thus be

transformed into a varying electronic square wave signal. Any transducer

capable of transforming a physical phenomenon into a varying resistance

can also be used to produce a square wave signal with a ratio of on/off time

that is proportional to the resistance created by the physical phenomenon

Figure 8-10.  Schematic for Controlled High and Low 555 Timer IC
Output Variation

Chapter 8 Counting Events and Timing

259

being monitored. Thermistors are heat sensitive resistors. Negative

temperature coefficient (NTC) thermistors exhibit a lower proportional

resistance to an increase in their ambient temperature. Inserting an

NTC thermistor into the timing circuitry of a 555 timer IC will cause the

frequency of the output square wave to vary in proportion to the thermal

environment of the thermistor bead thus forming a digital thermometer.

By using the output signal to turn on and off a power transistor, a heavier

current can be controlled. With a fixed frequency, the variable “duty cycle”

format signal functions as a “pulse width modulation” technique. The

PWM current control can be used to vary the speed of a motor or control

the current applied to a heater.

In the astable mode, the frequency of the square wave generated by the

555 depends upon the values of R1, R2, and C. The frequency is given by

the following formula:

f = 1/ln(2) * C * (R1 + R2) (ln(2) = 0.6931)

Figure 8-11 shows the 555 astable cycle.

The frequency of the output can be controlled by the three values of

the RC network. The duty cycle or the ratio of the high time to low time is

illustrated in Figure 8-12 as a percentage value.

Figure 8-11.  The 555 Astable Cycle

Chapter 8 Counting Events and Timing

260

The high time of the output is given by

high time = ln(2) * (R1 + R2) * C

and the low time is given by

low time = ln(2) R2 * C      (ln(2) = 0.6931) (R is in Ω and C in uF)

The output signal is high as the capacitor is charged by current flowing

through R1 and R2. When it discharges, it does so only through R2, and

thus there is a limit to the variation that can be introduced into the duty

cycle by the value of R2. If the resistor pair is replaced by a potentiometer

whose wiper terminal is connected to pin 7 of the timer, then the total

resistance of R1 + R2 is constant, and the duty cycle can be varied by

changing the position of the wiper. To avoid unwanted problems should

R2 be set to 0, connect a small value resistor in series with the capacitor

and the variable resistor to avoid the possibility of unpredictable results

at low potentiometer resistance values. If fixed resistors are to be used to

establish the desired duty cycle at less than 50%, then a diode pointing

toward the capacitor will allow the capacitor to charge through the R1

resistor only, during the high time portion of the cycle.

Figure 8-12.  Duty Cycle Variation of the 555 Timer Output

Chapter 8 Counting Events and Timing

261

�Microcontroller Clocks, Timekeeping,
and Event Counting
Virtually all microcontrollers that are communicating with host computers

and peripheral devices such as sensors or process controls are equipped

with an onboard crystal-controlled oscillator that functions as a system

clock. Usually the hardware-based clock signal can be accessed with the

microcontroller software and used for timing and event counting.

Arduino microcontrollers use a crystal-controlled 16 MHz oscillator as

the system clock. When power is applied to the operating system, it begins

to count the number of milliseconds (1/1,000 or 10-3 s) as the value of the

function millis() and the number of microseconds (1/1,000,000 or 10-6 s)

as value of the function micros(). (Due to binary counting and hardware

constraints when invoking micros(), microsecond time resolution is

limited to the nearest 4 μs or 4 x 10-6 s.)

The two functions are stored as unsigned long integers, which have

maximum values of 4,294,967,295 before rolling over to 0. The maximum

value limitation provides for a time span of approximately 50 days for a

millis() count and a 70-minute time span for micros(). Millis counts are

accurate to the nearest single digit, but micros values are expressed to the

nearest four digits (22). The timing error in millis() is 0.18 s/hour, 4.32 s/

day, and 129.6 s/month.

DAQFactory provides an alternate method for demonstrating the

concepts of timing and event counting with microcontrollers such as the

Arduino. There are many published programs that create countdown,

stopwatch, and other timing applications for microcontrollers using

mechanical switches and a corresponding large number of library and

other methods for dealing with mechanical “switch contact bouncing.3”

3 1) https://github.com/j-bellavance/EdgeDebounceLite/blob/master/README.md
2) https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-
to-deal-with-it/

Chapter 8 Counting Events and Timing

https://github.com/j-bellavance/EdgeDebounceLite/blob/master/README.md
https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/
https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/

262

A DAQFactory screen button and the serial port eliminate the need

for both mechanical switches and having to deal with mechanical switch

contact bouncing.

�Experimental
To demonstrate the basic timing functions available with the inexpensive,

serial port–connected microcontroller, two programs are required, the

first to display the timer control panel in the SCADA software on the

host computer screen and the second to implement the selected timing

functions on the microcontroller. See Listings 8-8 for the Arduino code

and 8-9 for the DAQFactory Quick Sequence.

Figure 8-13 illustrates a simple basic configuration for the simple

stopwatch timer set up in the DAQFactory SCADA software.

Each of the three buttons has been configured to activate a Quick

Sequence code that writes a “b,” “s,” or “r” to the serial port to begin a timing

session, stop the timing session and transmit the millis() count back to the

SCADA software, or reset the timer to zero and begin another timing session.

The inactive (red X) variable value display seen in Figure 8-13 receives

the total millis() count from the Arduino when the timing session is halted

with the “s” command. Figure 8-14 illustrates the DAQFactory serial

monitor activity during a simple start and stop timing session run for

validation during the development of the combined timing system.

Figure 8-13.  A Simple DAQFactory Stopwatch Control Panel

Chapter 8 Counting Events and Timing

263

Figure 8-14.  DAQFactory Serial Port Monitor Record of a Simple
Arduino Timing Session

Recall that the DAQFactory serial port code expects both a carriage

return (CR, ASCII code 13) and a line feed (LF, ASCII code 10) after the

data sent to the serial port. The data passing through the DAQFactory

serial port can be read into a channel or a global variable. In the primary

code development process, a channel named millisVlu was configured in

the DAQFactory software, and the variable value screen component was

then set to divide the millis() value received from the Arduino by 1000 to

get the number of whole seconds and a milliseconds fraction that the timer

had recorded. Later revisions of the code used a global variable “elapsed”

and Quick Sequence to implement the simple timing function (see

Figure 8-15 in “Observations” and Listings 8-8 and 8-9).

The DAQFactory serial port uses the “On Receive” code in Listing 6-10

in Chapter 6 to read the numerical value from the serial port into a channel

or for use as a value for a global variable.

�Observations
In Figure 8-15 the Arduino serial port has been programmed to aid in

validating command interpretation by the microcontroller, and a typical

timing result display is depicted in Figure 8-16.

Chapter 8 Counting Events and Timing

264

The simple stopwatch timer has been developed by first getting the

Arduino to function as a stand-alone timer by using the Arduino’s own serial

port to manually send the “b,” “s,” and “r” commands to generate the output

seen in Figure 8-15. With a functioning Arduino program, the code was

refined down to that presented in Listing 8-8 in which the only output is the

Arduino line of code “Serial.println(elapsed)” that sends the contents of the

elapsed time variable to the serial port with the requisite CR and LF.

Examination of Listings 8-8 and 8-9 will reveal that the reset functions

in the two programs are different. It is simpler to isolate the reset code into

two actions on either side of the serial port. The Arduino code resets the

state flags for the begin timing loop and the stop timing and print to the

serial port action, while the DAQFactory Quick Sequence code actually

sets the elapsed time variable and timed seconds display back to zero.

Figure 8-16.  A Typical Simple Millisecond Resolution Timing
Session

Figure 8-15.  Arduino Serial Port Output for Stopwatch Program
Development

Chapter 8 Counting Events and Timing

265

Once an initial timing measurement has been made, the reset button

should be used to reset the single action–only flags in the Arduino code.

�Discussion
Figure 8-15 illustrates a simple technique for developing the Arduino

code that is to respond to the single-letter commands that will be written

to the serial port by the SCADA software in the final iteration of this

exercise. The Arduino code was completely developed by using the serial

monitor “send” feature of the IDE and writing into the developing code the

responses in Figure 8-15 to validate the operation of the code before finally

combining the SCADA and microcontroller operations. The reduction of

the functioning stopwatch code to that to be used in combination with the

DAQFactory panel can be done by rewriting or just commenting out the

unwanted lines.

More elaborate timer functions can also be configured by converting

the elapsed millisecond time values that can extend out to close to 50 days

into minutes, hours, and days subject to the time errors noted previously.

Where possible, a screen-activated button can be used to avoid

problems caused by mechanical switch contact bounce.

�Counting Events and Timing with Python
and Raspberry Pi
Time measurement for the Python language interpreter is derived from the

host computer on which the program is running. The basic concept for the

Raspberry Pi is oriented around Internet access. An Internet connection

can be used to transfer operating systems, application software, and

updates. An Internet connection provides accurate timekeeping through

Internet time servers. If the RPi is to be used in a time-dependent

Chapter 8 Counting Events and Timing

266

experiment or measurement application where Internet access is not

possible, then the installation of a real-time clock (RTC) will be required to

supply an accurate timekeeping base.4

In Figure 8-17, the timekeeping basis is shown in a very simple console

request for the number of “ticks” that have occurred since the January 1,

1970, timekeeping starting point.

In the Unix/Linux operating systems, the number of ticks can

be converted into seconds, minutes, hours, and days to provide any

timekeeping operations required. Figure 8-18 is a console conversion of

ticks into a current time display.

4 �1) Raspberry Pi Cookbook 2nd Edn., Monk, O’Reilly Media Inc., ISBN
978-1-491-93910-9
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9

Figure 8-17.  A Console Request for the Tick Count

Chapter 8 Counting Events and Timing

267

A more familiar format for the time can be obtained at the interactive

console with the asctime() function as depicted in Figure 8-19.

There are a number of simple push button timer GUI and timer

modules that have been published for coding timer applications in Python,

and a three-button GUI using the tkinter Python module is depicted in

Figure 8-20. The code is listed in Listing 8-10. The code has been modified

from the original published in 2002.5

5 HTTP://CODE.ACTIVESTATE.COM/RECIPIES/124894/

Figure 8-18.  A Console Request for the Current Time from the Tick
Count

Figure 8-19.  A Familiar Current Time Format

Chapter 8 Counting Events and Timing

268

�Scheduling Events
In addition to the time display functions listed previously, Python has

several libraries such as sched and schedule that use the time module as

a base for scheduling events. In essence, the sched and schedule modules

provide the experimenter with a programmable starting point from which

delays can be specified before individual events or programming code

sequences are initiated.

Listing 8-11 entitled Scheduled_PgmCntrl_LED.py uses the

programmed application of logic high and low to the GPIO pins 20 and 21

(board pins 38 and 40) to turn on and off two LEDs attached to the pins

through current limiting resistors as “events.”

Examination of the code shows a typical creation of a scheduler object

instance with the line scheduler = sched.scheduler(time.time, time.sleep).

The two events to be run in the future are defined in the following two

lines:

scheduler.enter(2, 1, actvt_GrnLed, (“Green led

activated first”,))

scheduler.enter(5, 1, actvt_RedLed, (“Red led is

activated second”,))

The documentation for the sched module stipulates four arguments

for the enter() function consisting of the numerical value of the time

delay in seconds from the processing of the initiating function start(), a

Figure 8-20.  A Three-Button Stopwatch Timer

Chapter 8 Counting Events and Timing

269

numerical value specifying the priority of the event, the name of the event

function to be called, and data to be passed into the function being called,

if required. Listing 8-11 is an example of overlapping events in which the

time during which the LEDs are illuminated is longer than the desired start

times of the events. The shed module executes all the called functions and

none are lost, but the timing of the events is displaced further out in time

by the amount of the process overlap.

Figure 8-21 is a typical output from the scheduler program. The red

and green LEDs to be illuminated are wired as depicted in circuit A of

Figure 8-22.

Scheduling events can be a complex problem, and the Python

reference documentation should be examined for further details when

using these modules.6

6 1) docspython.org/3/library/sched.html
2) https://pypi.python.org/pypi/schedule - schedule 0.4.3

Figure 8-21.  Scheduler Program Output from Overlapped
Events

Chapter 8 Counting Events and Timing

https://pypi.python.org/pypi/schedule%20-%20schedule%200.4.3

270

�Detecting and Counting Events
Detection and counting of external events on the RPi require both the

ability to determine the presence or absence of a voltage on the individual

pins of the GPIO array and the ability to detect a transition in the pin

voltage. Electrical voltage transitions on the GPIO pins can be monitored

by two techniques, known as “polling” and using “interrupts.” Looking

for a voltage change at any arbitrary point in time is called “polling”

the pin. The disadvantage of polling lies in the fact that the event to be

monitored could occur before or after the time frame in which the pin

status observation is made. Polling is often implemented with software

loop coding that can consume significant amounts of processor time while

blocking the CPU from doing other task processing.

The second method for determining electrical voltage transitions uses

interrupts or “edge detection” in which the change from high to low (a

falling edge) or low to high (a rising edge) is recorded.

In very simplified terms, it can be said that most modern operating

systems are time-sharing operations managing multiple programs that

appear to the user to be running simultaneously. Each program being run

by the operating system is termed a process in Unix (a task in Windows)

and is only run for a short period of time. Periodically the currently

running program uses up its allocated “time slice” as determined by the

generation of interrupt signals sent to the central processing unit from

either a hardware or software timer. The interrupts cause the CPU to

suspend or “interrupt” the normal tasks at hand to attend to, or service,

high-priority events. An interrupt causes the CPU to save its current

computation, switch to processing an interrupt service routine (ISR) (or

event handler), and resume normal operation after completion of the

ISR. Input-output operations can be coded into ISRs, and the CPU thus is

able to divide its processing resources between monitoring I/O operations

and normal computational functions. The processing of the first program

slice of CPU time, the generation of the interrupt signal, the processing

Chapter 8 Counting Events and Timing

271

of the ISR, and the switch to the next program to be processed are all

happening in such short times that, to the user, several programs appear to

be running at the same time.

Threads are smaller portions of a program’s code that can be

interleaved to produce the desired effect of having the two code portions

appear to run simultaneously. (Only multicore processing hardware can

actually run multiple threads simultaneously.) Threading can be used to

avoid the shortcomings of polling in GPIO operations. An interrupt and

ISR can be used to examine the status of a GPIO pin and, if it is inactive,

continue on seamlessly with normal program processing. Polling involves

continuous checking for events, while interrupts do so periodically.

Polling consumes all the resources, while interrupts consume only some.

Polling uses a single thread focused on event detection, but Python and

the RPi.GPIO library allow the creation of two or more threads in which

event detection code can run independently. Detection of an event

in the secondary threads activates code that calls back to the primary

thread to initiate an interrupt service routine. There are numerous, very

simple, easy-to-implement, multiple push button, threaded callback

demonstration programs that have been published to support the

library documentation describing GPIO array input and output use.

Documentation for a simple threading library is available online.7

In previous exercises, the three libraries that can be used to work with

the RPi.GPIO pins have been introduced, and these different modules

will be used as required to generate simple timer programs or to monitor

pin status and record times between pin state changes throughout the

remainder of the manuscript.

The RPi.GPIO and gpiozero libraries are very easy to use and are

supported by extensive documentation of code that has been developed

for a large number of common devices that can be interfaced to the RPi

through the GPIO pins.

7 http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage

Chapter 8 Counting Events and Timing

http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage

272

The first two libraries are however not capable of accurate, short-

period, timekeeping. In previous exercises, the “jitter” that can be seen in

simple LED power control applications is caused by the Unix-based Linux

operating system halting GPIO operations to deal with internal processes

that have a higher priority than the RPi input-output code.

A third library imported as pigpio has been developed for use on the

RPi that is capable of providing microsecond timekeeping accuracies.

Timekeeping accuracy in the pigpio module has been achieved by using

C code to write the library and using a Python-Linux/Unix interface

program running on the RPi to access the GPIO pins. Unix utility or

service programs running in the system background are often known as

“daemons.”

As noted, physical computing with the GPIO pins on the RPi can be

considered as the interfacing of the computer with the outside world. The

RPi is able to detect the status of each pin in the array by measuring its

voltage at virtually any point in time. System and software overheads limit

the response time of the RPi to changes in the voltage on any GPIO pin

when the Python interpreter uses either the RPi.GPIO or gpiozero library.

As noted, in order to improve the short time response of the RPi to its GPIO

pin array, a library written in the very fast-executing C language has been

interfaced to the Python interpreter with the Linux/Unix daemon or utility

program called “pigpiod.” Microsecond time scales are reliably accessible

in GPIO pin operations with the C library module.

The pigpio library can be used by investigators at all levels of

programming capability, and the extensive documentation should be

consulted as required.

Timing and low-frequency event counting can be realized with Python

programs written using the appropriate GPIO pin management library

for the task at hand. Simple, low-level, easy-to-code-and-implement

interfacing can be achieved with the RPi.GPIO library, while more complex

sensors are best interfaced using the gpiozero library. Moderate- to

Chapter 8 Counting Events and Timing

273

advanced-level programming skills are required to use the pigpio library

with its fast accurate time management capabilities and the interfacing

utility daemon running in the background of the RPi operating system.

�Experimental
Implementation of the software GUI-based stopwatch timers requires no

interaction with the GPIO array.

Scheduling events may be used in both ordinary Python code

application programming or a physical computing process utilizing the

GPIO array as is described in the following portions of this exercise.

Since all input and output actions from sensors, actuators, motors, and

switches must be in the form of transitions from 0 to 3.3 or 5 volts, the two

circuits depicted in Figure 8-22 can be used to either source or sink the

electrical activation signals in the form of circuit A or B, respectively.

The use of an LED in circuit B of Figure 8-22, although not required

for the activation of the RPi GPIO code, does provide the investigator with

an additional diagnostic capability in the event of a section of code not

Figure 8-22.  Circuits for Sinking or Sourcing Electrical Signals for
GPIO Programming Demonstrations

Chapter 8 Counting Events and Timing

274

responding to a button click. A button click should cause the LED to light and

the code waiting for the button click to be activated as expected. A failure of

the LED to illuminate when the button is clicked can thus identify the root

cause of the code not responding (see “Observations” and “Discussion”).

Listing 8-12 uses a push button mechanical switch configured as

depicted in circuit B of Figure 8-22 to provide “rising edge events” to trigger

the actions of the time measurement program.

The program uses two rising edge detection functions that block all

computing operations while the RPi waits for the edge to appear. If activation

of the push button switch is the only operation on which the program is to

focus, as is the case in the timer example, then a blocking function is both

simple to implement and adequate for the problem at hand. Figure 8-24 is a

typical output from the rising edge timer program, while Figure 8-25 caught

a switch contact “bounce” during programming code development.

As previously noted, high-speed digital timers and counters

monitoring mechanical switches such as push buttons, toggles, or

magnetically activated reeds must accommodate contact bounce that

occurs before a switch provides a continuous closed contact. The RPI.

GPIO libraries all have provisions for estimating the switch contact bounce

that may be encountered in the experiment at hand and will accept the

experimenter’s millisecond time scale in which to ignore the second event.

When higher-speed events are to be monitored, such as those

encountered in optical beam blocking configurations, a capacitor can

often be used to dampen spurious noise or electromagnetic interference.

Polling and interrupt event detections, although easy to implement

for educational purposes with push button devices, are of limited value

for detecting and counting higher-speed events. Motor rotational speeds,

high-speed object counting, and accurate timing over fixed distances,

as are to be encountered in subsequent physical computing exercises

and measurements, can all be implemented with break beam optical

techniques. In Chapter 10 an IR break beam detector is used to count

motor rotations to determine motor rotational speed.

Chapter 8 Counting Events and Timing

275

Figure 8-23 depicts an invisible infrared (IR at 940 nm wavelength)

break beam circuit that can be configured on a prototyping breadboard

and connected to the RPi 40-pin GPIO array. (BCM GPIO values and BN or

board number values are both provided in the circuit description.)

A break beam system does not have metal contacts and does not

“bounce” but can experience an electrical spike or noise that can generate

spurious signal responses. Implementation of a bounce time for second

signal rejection or the use of a capacitor to absorb spurious signals is thus

a matter of either judgement or experimentation for the investigator when

assembling and writing code for the experiment at hand.

The following break beam programs are designed for continuous

operation and use a while loop to monitor the beam integrity. The loop

software has built-in code for a clean exit scheme that uses the Ctrl+C

keystroke combination to terminate the main program beam scanning

loop and execute a proper circuit shutdown procedure that, in general,

turns off the IR beam, removes code no longer in use, and resets port

configurations.

Figure 8-23.  An IR Break Beam Circuit

Chapter 8 Counting Events and Timing

276

Listings 8-13, 8-14, and 8-15 of the three RPi programs monitoring the

IR beam have additional code in the main while loop that activates two

diodes, a red and a green, connected to pins 38 and 40 on the board array

(BCM GPIO 20 and 21) in accordance with Figure 8-22 A. An IR beam is

invisible, and the added code turns the red diode on when the beam is

broken and illuminates the green when the beam is intact. The two diodes

serve as a remote indicator of the invisible IR beam status.

Listings 8-13 and 8-14 are two ways in which an IR diode and a

photo-transistor detector can be used to demonstrate higher-speed event

monitoring and present a practical application of the technology.

�Observations
Output from the rising edge timer program is heavily commented to

describe the events that occur during the elapsed time measurement as

seen in Figure 8-24.

Occasionally the button click does not produce the expected results

with the code awaiting the electrical transition. As seen in Figure 8-25,

when attempting to activate the timer programs that use two sequential

Figure 8-24.  A Typical Rising Edge Push Button Timer Output

Chapter 8 Counting Events and Timing

277

clicks of the button to measure an elapsed time, the code acknowledges

and acts upon the “start a timing session” initial event and then, virtually

immediately, properly ends the timing session, recording a fractional

second elapsed time. (See “Discussion.”)

In Figure 8-25, a 0.049 or a 49 ms (millisecond) elapsed time has been

measured that is characteristic of mechanical switch “bounce”.

On occasion an initial click of a button does not activate the code

awaiting the transition. The phenomenon is random in nature and has on

occasion fortuitously been traced to the switch contacts either not closing

or not closing with sufficient surface area contact to provide the energy

needed to light the diode or activate the transition recognition code. (See

“Discussion.”)

Figure 8-26 is the output of a simple program that uses a simple while

loop polling method to monitor the status of the IR beam. As can be seen

from the output that was generated by the author rapidly hand-vibrating

a pen in the beam, when the beam is unbroken, the photo-transistor or

diode acts as a short circuit to ground, and the GPIO pin attached to the IR-

sensitive element is pulled down to virtually 0 V. Beam blockage removes

the short circuit to ground, and the GPIO pin rises to 3.3 V driving the

input pin high.

The while loop constantly cycles as fast as the system’s software-

hardware combination will allow and outputs the high/low value of the

pin.

Figure 8-25.  An Unexpectedly Short Elapsed Time
Determination

Chapter 8 Counting Events and Timing

278

The continuous loop that is only polling the input pin is properly

terminated by using the “Ctrl+C” keystroke sequence. The sequence is

recognized by encasing the while loop in a try-except keyboard interrupt

combination that allows the loop to terminate and passes control to the

remainder of the program. After loop termination, the program code turns

off diodes that may be on, resets the GPIO configuration that may have

been modified, and signals the program termination. Rapidly vibrating

motions of the pen in the beam do not change the rate at which data

is printed out in the interactive terminal. The polling can be seen to be

missing beam breaking events.

Figure 8-27 displays the output from the rising edge detection interrupt

code of Listing 8-13.

Figure 8-26.  A Polling Program Output

Chapter 8 Counting Events and Timing

279

Rapid vibration of a pen shaft in the IR beam causes a corresponding

rapid increase in the data output rate. The garbled output, as seen in

the preceding data output, appears to be due to the interactive screen

output not being able to respond to the rapid interrupt detection of beam

blockage events.

An interrupt on event detection process has been created in the

program by using the add_event_detect function of the RPi.GPIO library.

The added function takes several arguments that specify the GPIO pin

number; the event condition on which to act, a rising/falling edge or

both; and the name of the function to branch to or “call back to” when the

interrupt signal is received.

Figure 8-27.  An Interrupt Event Detection Program Output

Chapter 8 Counting Events and Timing

280

Until the selected electronic transition is encountered on the GPIO pin

being monitored, the main loop of the program prints out the expected

“Input = 0 Photodiode ON” and program control does not branch to the

function created specifically for use when the transition is encountered.

With no activity on the GPIO pin, the interrupt runs virtually invisible in

the background. Electronic activity however triggers a branching to occur,

and program control is transferred to a “jump to, execute, and return

from” function that conducts the actions required by the investigator.

In Figure 8-27, the input pin status is printed out until a rising edge is

encountered that causes the program to branch to the specially created

function that examines the pin status, prints it out, and returns to the

original program looping routine. The add_event_detect function of the

RPI.GPIO library is executed so quickly that the slower code controlling

the output display is unable to keep up with rapid pen movements in the

IR beam, and the corrupted output seen in Figure 8-27 results. The high

speed of the interrupt technique is made possible by the use of threading.

Listing 8-15 uses an interrupt technique to drive an event counter.

The counter runs in a separate thread from the main program and is

accessed only when a specified electronic transition occurs on the pin

being monitored. The counter value is stored in a Python global variable

so as to be visible to the output portion of the main program loop, outside

of the thread in which the counter increment function works. The main

loop prints out the counter value on a regular timed basis as determined

by the program code execution, but the counter value is increased by the

interrupt-activated event detection that branches to the thread in which

the counter is incremented. As can be seen in Figure 8-28, by vibrating a

pen in the IR beam, the counter records the number of beam interruptions

and adds them to the total count during the normal, virtually constant rate,

data output intervals of the main program.

Chapter 8 Counting Events and Timing

281

�Discussion
A direct interfacing of sensors to the RPi through the GPIO pins and one of

the three interfacing libraries is one of the less expensive and simplest of

the options available for collecting data or monitoring sensors. Each of the

three libraries has unique features and a differing degree of complexity.

GPIO is best for simple digital systems, gpiozero is for integrated circuits,

sensors, or sensing devices and robotics motor control, while pigpio

is more complex, very fast, and chronologically accurate while able to

interface a wide variety of electro-mechanical systems.

All three I/O libraries are able to accommodate mechanical switch

“bounce” that is probably best estimated empirically in the system at hand.

The magnitude of the time window in which second or third signals are to

be ignored is determined by the time width of the smallest signal that the

investigator wishes to measure.

Figure 8-28.  An Interrupt-Driven Event Counter Output

Chapter 8 Counting Events and Timing

282

The choice between a program that monitors for events with a polling

loop and an interrupt-driven routine is simply a matter of considering

the rate at which data is sent to the GPIO pin. Polling at once or twice per

second is perfectly adequate for monitoring a door opening sensor, while

an interrupt-driven monitor should be used for high-speed rotational

measurements.

Python time-based measurements are all based upon tick counts of

the system on which the program is running. The time base of the system

is derived from Internet time as supplied by Internet time servers. As

previously noted for time measurements that are to be made “off-line”

such as in field measurements, a real-time clock (RTC) must be installed

on the RPi.

Complete descriptions of the use of the scheduler modules can be

found at the URLs in footnote 6 and should be consulted when using these

Python functions. The use of the modules with minutes, hours, days, and

hours of the day for all the days of the week requires care in application

to function as desired and should be carefully set up for real-world

applications.

The rapid response rate of an optical break beam circuit can be used to

measure the frequency of a signal by using the appropriately scaled signal

of interest, to power the IR diode source. The counter software can then be

coded to measure, with an interrupt-driven counter, the number of events

that accumulate over a timed and defined number of iterations of the

program’s main output loop.

Chapter 8 Counting Events and Timing

283

�Code Listings
Listing 8-1.  DAQFactory Sequence Scheduled Time Timer

// Scheduled Time Timer

// Oct. 2 to 15, 2010

// A screen Start/Stop button is used to initiate the

// Schdld_Time_Tmr sequence. The sequence accepts a start and

// stop time at which to run a "scheduled event" from two,

// labelled, date and time edit boxes.

// The sequence verifies that both times are in the future and

// that the start time is before the finish time. Beneath the edit

// entry boxes a panel display shows the time left before event

// activation together with the elapsed and remaining times of

// the scheduled event.

//

//

global EvStartTime // the starting time of the scheduled event

global EvEndTime // the ending time of the event

global EvElapsedTime // time the event has been running

global EvRemainingTime // the time remaining in the timed event

global CurrentTime // the current time

global TimeToGo // the variable for the count down timer

global HrsToGo

global MinToGo

global SecToGo

global EvHrsToGo

global EvMinToGo

global EvSecToGo

global EvElpsdHrs

global EvElpsdMin

global EvElpsdSec

Chapter 8 Counting Events and Timing

284

//

// verify validity of entered time values

//if (EvStartTime < EvEndTime)

//if (CurrentTime < EvStartTime)

//

// Count down to start of timed event

//

CurrentTime = SysTime()

while (EvStartTime - CurrentTime > 0)

CurrentTime = SysTime()

TimeToGo = EvStartTime - CurrentTime

//Calculate the count down times for display

HrsToGo = floor(TimeToGo/3600)

MinToGo = floor(TimeToGo - (floor(HrsToGo) * 3600))/60

SecToGo = TimeToGo - (floor(HrsToGo * 3600) + (floor(MinToGo) * 60))

delay(0.01)

// zero count down timer display

HrsToGo = 0

MinToGo = 0

SecToGo = 0

endwhile

//

// Start Scheduled Event Timer

//

While (EvEndTime - CurrentTime > 0)

CurrentTime = SysTime()

// Start actual event

RedLed = 5

//

TimeToGo = EvEndTime - CurrentTime

Chapter 8 Counting Events and Timing

285

//Calculate the count down times to the end of the scheduled

event for display

EvElapsedTime = CurrentTime - EvStartTime

EvElpsdSec = (EvElapsedTime)%60

EvElpsdMin = (EvElapsedTime/60)%60

EvElpsdSec = (EvElapsedTime/3600)

EvHrsToGo = floor(TimeToGo/3600)

EvMinToGo = floor(TimeToGo - (floor(EvHrsToGo) * 3600))/60

EvSecToGo = TimeToGo - (floor(EvHrsToGo * 3600) +

(floor(EvMinToGo) * 60))

delay (0.01)

endwhile

// Stop Timed Event

RedLed = 0

Listing 8-2.  DAQFactory Stopwatch Timer

The Stopwatch Timer DAQFactory Sequence Code

// Stop Watch Timer Oct.6 - Nov. 17 2010 (Min is a reserved

// word!) The timer sequence is started and stopped by a screen

// button that simultaneously sets a timing flag for a while

// loop and starts the sequence StopWatchTimer. The SysTime()

// function is used in a wait(0.05) delayed while loop, that

// calculates the total number of clock ticks between the current

// value of SysTime() and the initial interval starting value.

// The total elapsed time in seconds is calculated then divided

// into hours, minutes and seconds for display. The main screen

// display provides the operator with two modes of timing

// operation that record either a single interval time or the

// cumulative total of multiple intervals. The cumulative total

// option must determine the number of seconds that have elapsed

// in the current interval and keep track of the sum of the

// accumulated interval times.

Chapter 8 Counting Events and Timing

286

//

//

//

global InitialTime // the start of the current interval

global ElapsedTime // the elapsed time of the current interval

global Hrs = 0

global Minutes = 0

global SxtyMinTm

global Sec = 0

global SxtySecTm

global TimingFlg // the main while timer loop condition flag

//

//

InitialTime = SysTime() // Set the initial time value

//

while(TimingFlg) // start the main program loop

 ElapsedTime = SysTime() - InitialTime

 wait (0.05)

 �Hrs = Floor(ElapsedTime/3600) // �just divide total time in

seconds by 3600 to get hours

 Minutes = Floor(ElapsedTime/60) // total minutes is calculated

 SxtyMinTm = (Floor(ElapsedTime/60))%60

 �Sec = (ElapsedTime - ((ElapsedTime - (ElapsedTime % 3600)) % 60))

 �SxtySecTm = (ElapsedTime - ((ElapsedTime - (ElapsedTime %

3600)) % 60)) % 60

 Endwhile

Chapter 8 Counting Events and Timing

287

Listing 8-3.  DAQFactory Sequence Reset Stopwatch

// Reset Stopwatch Display Oct. 6, 2010

// The sequence resets the timer variables

//

InitialTime = 0

CurrentTime = 0

ElapsedTime = 0

Hrs = 0

Minutes = 0

Sec = 0

SxtySecTm = 0

TSixtySecTm = 0

SxtyMinTm = 0

TSxtyMinTm = 0

TtlHrs = 0

TtlMin = 0

TtlSec = 0

Listing 8-4.  DAQFactory Sequence Cumulative Time of Intervals

// CumulativeTimeOfIntervals Nov. 27, 2010 is a summation of

// the previous collected intervals Each interval timed is

// measured in clock ticks that are converted into sec, min

// and hrs for display. When the current interval is to be

// summed into the accumulation the Cumulative Time button is

// used to add the current interval’s total seconds to the

// accumulating sum of total seconds. The previous hrs, min.

// and seconds used for the previous display are discarded and

// a new total time is calculated for an up-dated display.

//

Chapter 8 Counting Events and Timing

288

global TtlHrs

global TtlMin

global TtlSec

global Hrs

global Minutes

global Sec

global TSixtySecTm

global TSxtyMinTm

global ElapsedTime

global IntrvlMin

//

TtlSec = TtlSec + Sec

TtlHrs = Floor(TtlSec/3600) // just divide total time in

seconds by 3600 to get hours

TtlMin = Floor(TtlSec/60) // total minutes is calculated

 TSxtyMinTm = (Floor(TtlSec/60))%60

 Sec = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60))

 TSixtySecTm = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60)) % 60

Listing 8-5.  DAQFactory Sequence Counting Events

// A_Counter_Event - Jan. 1/11 - The LabJack counter is activated

// by a 5 to 0 volt falling edge followed by a 0 to 5 volt

// rising edge. The following script applies the 5 - 0 - 5 volt

// profile to the DigOut_9_EventCntr channel that activates

// pin D9 onthe CB-25 board. This script is activated by

// clicking on the screen button labelled "Initiate Event".

//

// Set the pin voltage to 5 volts

DigOut_9_EventCntr = 5

// Create the falling edge by setting the pin voltage to 0

DigOut_9_EventCntr = 0

Chapter 8 Counting Events and Timing

289

// Create the rising edge by setting the pin voltage back to 5

DigOut_9_EventCntr = 5

// �For ease of configuration the voltage is left on for 1/2 a

second so as the lit LED can be

// used to validate a functioning system.

//Delay(0.5)

//DigOut_9_EventCntr = 0

Listing 8-6.  DAQFactory Sequence Reset Counter

// ResetCounter - Fall/09 Revn Jan 1/11 The script manually

// resets the displayed number of events counted, by the LabJack

// counter after the defaut "Reset after polling" has been

// turned off. The counter is activated after it detects a

// falling edge waveform followed by a rising edge waveform.

// The "event" counted thus consists of a 5 to 0 - 0 to 5 volt

// transition which leaves the Pin 9 at 5 volts. For the manually

// activated counter exercise the blue LED thus remains ON as

// long as the manually activated counting session is in

// progress, re-setting the counter then turns the LED off.

//

EventsCounted[0] = 0

DigOut_9_EventCntr = 0

// By using the default setting of "Reset" after polling (reading)

// the number of 5-0-5 volt transitions in a given period of

// time, the frequency can be determined.

RawCounts[0] = 0

DigOut_8_PWM = 0

Chapter 8 Counting Events and Timing

290

Listing 8-7.  DAQFactory Sequence PWM Script

// PWM_Script (Pulse Width Manipulation) Script for pulse

// width variation - Oct. 21/09 Rvn. Jan. 2/11, Aug. 3/17

// A "time - goto" loop is used with delay statements to set

// D8 to 1 then 0 thus raising and lowering the channel

// DigOut_8_PWM output between 0 and 5 volts in a continuous

// manner. The continuously varying voltage creates a square

// wave train. The 0.002 and 0.098 can be considered as the

// time on time off duty cycle. With the lower duty cycle the

// pulsing of a powered light source is quite evident.

// Various duty cycles must be entered manually into the simple

// program which is started and stopped with the sequence

// pop-up menu displayed by right clocking on the sequence name.

time 0

DigOut_8_PWM = 1

Delay (0.002)

DigOut_8_PWM = 0

Delay (0.098)

goto 0

Listing 8-8.  Arduino Stopwatch Timer Code

/* A stopwatch program using a DAQFactory panel and the serial

port to avoid the debouncing problems associated with

mechanical switches. The program uses the letters b, s, and r

to branch in an Arduion case statement using b for begin,

s for stop and r for re-set. Always ensure that data sent

from the Arduino to the DAQFactory software code is

Serial.println(data);

*/

Chapter 8 Counting Events and Timing

291

char incmngByte; // �a variableto hold

the incoming byte

from the serial port

unsigned long start, finished, elapsed; // timing variables

bool tsipFlg = LOW; // �timing session in

progress flag

bool wtspFlg = LOW; // �write to serial port

once only flag

bool rstFlg = LOW; // re-set b and s flags

//

void setup() {

 Serial.begin(9600); // �start the serial port

}

//

void loop() {

 if(Serial.available() > 0) { // �check port for

incoming character

 incmngByte = Serial.read(); // �set character into

variable

 }

switch(incmngByte) { // �the case statement

for decisions

 case'b': // �begin a timing

session

 if (tsipFlg == LOW) { // �check the status flag

 start = millis(); // set the start time

 //Serial.print(start); // diagnostic

 tsipFlg = HIGH; // �set the status

flag to timing in

progress

 }

Chapter 8 Counting Events and Timing

292

 rstFlg = LOW;

 break;

 case's': // stop the timer

 if (wtspFlg == LOW) { // check the status flag

 finished = millis(); // set the finish time

 //Serial.println(finished); // diagnostic

 elapsed = finished - start; // �calculate the

elapsed time

 Serial.println(elapsed); // �write the elapsed

time to the serial

port

 wtspFlg = HIGH; // �set the status flag

to write only once

 }

 rstFlg = LOW;

 break;

 case'r': // �re-set b and s

functions

 if (rstFlg == LOW) { // �check the status flag

 tsipFlg = LOW;

 wtspFlg = LOW;

 rstFlg = HIGH;

 }

 break;

 }

}

Chapter 8 Counting Events and Timing

293

Listing 8-9.  DAQFactory Quick Sequences for b, s, and r

// send begin signal b

device.ardyBluBrd.Write('b')

// send stop signal s

global Elapsed

device.ardyBluBrd.Write('s')

private string datain

datain = device.ardyBluBrd.ReadUntil(13)

Elapsed = strToDouble(datain)

// send re-set signal r

device.ardyBluBrd.Write('r')

Elapsed = 0

�Raspberry Pi Program Code

Listing 8-10.  A RPi Three-Button Stopwatch Timer GUI

from tkinter import *

import time

class StopWatch(Frame):

 """ Implements a stop watch frame widget. """

 def __init__(self, parent=None, **kw):

 Frame.__init__(self, parent, kw)

 self._start = 0.0

 self._elapsedtime = 0.0

 self._running = 0

 self.timestr = StringVar()

 self.makeWidgets()

Chapter 8 Counting Events and Timing

294

 def makeWidgets(self):

 """ Make the time label. """

 l = Label(self, textvariable=self.timestr)

 self._setTime(self._elapsedtime)

 l.pack(fill=X, expand=NO, pady=2, padx=2)

 def _update(self):

 """ Update the label with elapsed time. """

 self._elapsedtime = time.time() - self._start

 self._setTime(self._elapsedtime)

 self._timer = self.after(50, self._update)

 def _setTime(self, elap):

 """ Set the time string to Minutes:Seconds:Hundreths """

 minutes = int(elap/60)

 seconds = int(elap - minutes*60.0)

 hseconds = int((elap - minutes*60.0 - seconds)*100)

 �self.timestr.set('%02d:%02d:%02d' % (minutes, seconds,

hseconds))

 def Start(self):

 """ Start the stopwatch, ignore if running. """

 if not self._running:

 self._start = time.time() - self._elapsedtime

 self._update()

 self._running = 1

 def Stop(self):

 """ Stop the stopwatch, ignore if stopped. """

 if self._running:

 self.after_cancel(self._timer)

 self._elapsedtime = time.time() - self._start

 self._setTime(self._elapsedtime)

 self._running = 0

Chapter 8 Counting Events and Timing

295

 def Reset(self):

 """ Reset the stopwatch. """

 self._start = time.time()

 self._elapsedtime = 0.0

 self._setTime(self._elapsedtime)

def main():

 root = Tk()

 sw = StopWatch(root)

 sw.pack(side=TOP)

 Button(root, text='Start', command=sw.Start).pack(side=LEFT)

 Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)

 Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)

 root.mainloop()

if __name__ == '__main__':

 main()

Listing 8-11.  A Python Scheduled Event Program

�Scheduled Program Control of LEDs, green and red LEDs wth

CLRs are connected

�to GPIO pins 20 and 21 or pins 38 and 40 of the RPi array.

Pgm calls two

�sequential events with defined delays between events to light

the leds and

print out tick time and current times.

#

import RPi.GPIO as GPIO

import sched

import time

#

Chapter 8 Counting Events and Timing

296

scheduler = sched.scheduler(time.time, time.sleep)

create an instance of scheduler

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(20, GPIO.OUT)

GPIO.setup(21, GPIO.OUT)

#

�Activate green led for a measured length of time, timestamp

event, pass in text

and document actions

def actvt_GrnLed(name):

 �print(name) # text or data passed in --> Green led

activated firt

 print("Green LED on")

 �frstsched_tm = time.asctime(time.localtime(time.time()))

local time code processed

 print("First scheduled event run at ", frstsched_tm)

 �print("Green led on at ", time.time()) # the tick count at

grn led on

 GPIO.output(20,GPIO.HIGH)

 time.sleep(3)

 �print("Green LED off at ", time.time()) # tick count at grn

led off

 GPIO.output(20,GPIO.LOW)

 print() # format spacing for output

#

Activate red led for a measured length of time, timestamp

event, pass in text # and document actions

def actvt_RedLed(name):

 print(name)

 print("Red LED on")

Chapter 8 Counting Events and Timing

297

 scndsched_tm = time.asctime(time.localtime(time.time()))

 print("Second scheduled event run at ", scndsched_tm)

 print("Red Led on at ", time.time())

 GPIO.output(21,GPIO.HIGH)

 time.sleep(5)

 print("Red LED off at ", time.time())

 GPIO.output(21,GPIO.LOW)

 print() # format output spacing

 fnsh_tm = time.asctime(time.localtime(time.time()))

 print("Program local finish time = ", fnsh_tm)

 print("Finish time = ", time.time())

#

print("Start time in ticks = ", time.time())

pgm_strt_tm = time.asctime(time.localtime(time.time()))

print("Program local time start = ", pgm_strt_tm)

print()

#

scheduler.enter(2, 1, actvt_GrnLed, ("Green led activated

first",))

scheduler.enter(5, 1, actvt_RedLed, ("Red led is activated

second",))

#

scheduler.run() # start the program

Listing 8-12.  A Raspberry Pi RPi.GPIO Push Button Timer

�A push button activated rising edge transition starts a timer

and a second

�stops the elapsed time measurement. GPIO 21 is pin 40 on the

pi board and

�is connected to the junction of the series connected PBS and

LED CLR circuit

Chapter 8 Counting Events and Timing

298

A bounce time of 100 ms is used to avoid false triggering.

#

import time

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

set up the pin-channel, board is 40 bcm is 21

GPIO.setup(21, GPIO.IN)

#

GPIO.wait_for_edge(21, GPIO.RISING, bouncetime=100)

a blocking action while waiting

#

wait for the event, print an alert and start a timer

#

if GPIO.input(21):

 print("A rising edge was detected.")

 # start a timer to count ticks

 ticks_initl = time.time()

 print("A timer was started at tick count ", ticks_initl)

 GPIO.setup(21, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

reset the GPIO pin low

#

wait for the second event to occur and measure the elapsed time

GPIO.wait_for_edge(21, GPIO.RISING, bouncetime=100)

again a blocking action while waiting

#

if GPIO.input(21):

 print("A second or stop timing event has been detected.")

 ticks_fnl = time.time()

 �print("A stop timing event has been detected at tick count ",

ticks_fnl)

Chapter 8 Counting Events and Timing

299

#

calculate and display the elapsed time.

print("The elapsed time = ", round(ticks_fnl - ticks_initl, 2),

"seconds")

Listing 8-13.  A Polling IR Break Beam Monitor Program

Code for PRi Detecting Input Events by Polling

Program to get input from pin 7 (board) Gnd is pin 6

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BOARD) # get library

GPIO.setwarnings(False)

GPIO.setup(11, GPIO.OUT) # �set pin 11 as output to power IR LED

GPIO.setup(38, GPIO.OUT) # �green led beam intact indicator

GPIO.setup(40, GPIO.OUT) # �red led beam broken indicator

GPIO.setup(7, GPIO.IN) # �set pin 7 as IR Photodiode input

#

Main program loop

GPIO.output(11, True) # turn LED on

try:

 while (1): # continuous loop

 if GPIO.input(7):

 �print("Beam off, photodiode off input pulled hi ")

detects 3.3v power from pin 1

 GPIO.output(38, 0) # �grn led off as beam has been

broken

 GPIO.output(40, 1) # �red led on to indicate beam

is broken

 time.sleep(0.5)

Chapter 8 Counting Events and Timing

300

 else:

 �print("Beam on, photodiode on, input pulled low ")

detects 0v (diode-on acts like short)

 GPIO.output(40, 0) # �red led off as beam restored

 GPIO.output(38, 1) # �grn led on as beam intact

 time.sleep(0.5); # �wait time before next loop

except KeyboardInterrupt:

 pass

#

#

GPIO.output(11, False) # turn OFF the IR LED

GPIO.cleanup() # reset ports

print("Diodes off and ports reset ") # indicate end of pgm

Listing 8-14.  An IR Break Beam Monitor with Interrupt Activity

PRi Detecting Input Events with Interrupts

Program to get input from pin 7 (board) Gnd is pin 6

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BOARD) # get library

GPIO.setup(11, GPIO.OUT) # �set pin 11 as output to power IR LED

GPIO.setup(38, GPIO.OUT) # green led beam intact indicator

GPIO.setup(40, GPIO.OUT) # red led beam broken indicator

GPIO.setup(7, GPIO.IN) # set pin 7 as IR Photodiode input

#

Function that "add event detect" runs at input change

def inputChng(channel):

 print("Input pin status changed to ", GPIO.input(7))

#

On input change, run input change function

GPIO.add_event_detect(7, GPIO.RISING, callback=inputChng)

Chapter 8 Counting Events and Timing

301

#

GPIO.output(11, True) # turn IR LED on

time.sleep(1)

try:

 while True:

 if GPIO.input(7) > 0.5:

 �print("Input =", GPIO.input(7), "Photodiode

OFF") # detects 3.3v power from pin 1

 GPIO.output(38, 0) # �grn led off as beam has been

broken

 GPIO.output(40, 1) # �red led on to indicate beam

is broken

 time.sleep(0.5) # �wait time before next

iteration

 else:

 �print("Input = ",GPIO.input(7), "Photodiode ON")

 # detects 0v (diode-on acts like short)

 GPIO.output(40, 0) # �red led off as beam restored

 GPIO.output(38, 1) # grn led on as beam intact

 time.sleep(0.5) # �wait time before next

iteration

except KeyboardInterrupt:

 pass

#

#

GPIO.output(11, False) # turn OFF the LED

GPIO.remove_event_detect(7) # Turn off event detect interrupt

GPIO.cleanup() # reset ports

print("Led Off, event detect interrupt removed and GPIO cleanup run")

Chapter 8 Counting Events and Timing

302

Listing 8-15.  An IR Break Beam Interrupt-Driven Counter

Break Beam Interrupt Driven Counter: counts & prints number

of interruptions in beam

Input from pin 7 (board) (GPIO 4) system ground at pin 6

IR photodiode pull-up with 1M ohm pullup btwn 7 & 1 (3.3v)

IR LED pin 11 supplies IR illumination gnd pin 6

#

import RPi.GPIO as GPIO # get GPIO library

import time

#

GPIO.setmode(GPIO.BOARD) # �use RPi board pin numbers

GPIO.setup(11, GPIO.OUT) # �set pin 11 (GPIO 17) as output

to power IR LED

GPIO.setup(7, GPIO.IN) # set pin 7 (GPIO 4) as input

#

counter = 0 # declare and initialize counter variable

#

Function "add_event_detect" runs at input change

def counterPlus(channel):

 global counter # �declared global to share

with system & threads

 if GPIO.input(channel) > 0.5: # �pin 7 = 3.3v. photodiode off

 counter += 1 # �recognize blocked beam

 else:

 counter += 0 # 0v, no-op

#

On input change, run input change function

GPIO.add_event_detect(7, GPIO.RISING, callback=counterPlus)

#

GPIO.output(11, True) # turn on the IR LED

time.sleep(1) # �give LED time to turn fully on

Chapter 8 Counting Events and Timing

303

try:

 while True:

 print("Count = ", counter) # �output current counter

value

 time.sleep(1) # �time delay before

looping

except KeyboardInterrupt:

 pass

#

print("Final counter value = ", counter) # output final

counter value

GPIO.output(11, False) # turn IR source off

GPIO.cleanup() # reset ports

print("Diodes off and GPIO ports reset")

�Summary

–– Integrated circuits based upon “latches” with crystal-

regulated oscillators acting as timing clocks are able to

count and determine the time between events with

microsecond resolution.

–– Time of day measurements are based upon “tick”

counts since January 1, 1970, and allow for day time

determination, timing coordination, and scheduling for

events in the future through the SCADA GUI.

–– Stopwatch timing can be configured with both the

commercial and component-assembled SCADA

systems.

Chapter 8 Counting Events and Timing

304

–– Several solutions are provided for monitoring for events

and compensating for the false or erroneous triggering

of event detectors during experimental sessions.

–– In Chapter 9, the advantages of graphical data record-

ing are presented that in some experiments can detect

false triggering of event detection.

Chapter 8 Counting Events and Timing

305© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_9

CHAPTER 9

Graphical Data
Recording
An old Far Eastern proverb advises that “a picture is worth a thousand

words.” The truth of the proverb is fully realized in chemical analysis

and medical imaging where not only the numerical values but the shape

of the recorded data conveys information. Numerous techniques in

medical, physical, and many other experimental sciences depend upon

the graphical presentation of data. Clinical and chemical analysis has

traditionally used chemically sensitive transducers to generate a millivolt

signal in response to changing chemical process values. The small signal

was amplified electronically and used with a servomotor to mechanically

drive a pen across a paper chart to provide a visual record of the chemical

process being monitored. Although both x-y and x vs. time plotting

systems are extensively employed in the manufacturing process industries,

chemical analysis, and other sciences, the electro-mechanical plotting

instruments, much like the typewriter, have been replaced by the PC.

x-y plotting is used extensively in analytical spectroscopies and

electrochemical analysis, while x vs. time charting is used for following

titrations, in biochemical kinetics, and in both chromatographic and

spectroscopic analysis.

DAQFactory is being used for this application because of its powerful

graphical recording and display capabilities. A graphical display tutorial is

included with the DAQFactory user manual along with a detailed chapter on

https://doi.org/10.1007/978-1-4842-6778-3_9#DOI

306

the DAQFactory graphical display capabilities. Both the tutorial and the user

manual should be reviewed before starting this exercise for those researchers

using either the free Express or full version of the SCADA software.

In this exercise, several very important concepts and circuit

configurations are demonstrated. The 555 timer configured as an astable

multivibrator will be used to create square, sawtooth, and nonsymmetrical

triangular signal waveforms as a prelude to visually examining the very

important concept of pulse width modulation (PWM). Exponential and

linear voltage waveforms from capacitor charging and discharging will be

demonstrated, and the creation of symmetrical voltage waveform outputs

from special ICs will be used for creating graphical data recordings.

In the first timer configuration examined, two resistors and a capacitor

will be used to form a “timing network” on the oscillator chip. The RC

component values will be chosen so the timer chip generates waveforms

compatible with our recording software. One of the resistance components

chosen will be of a variable nature to model a resistance-based chemical

or physical transducer. Variation of the transducer resistance with

some physical phenomenon, such as the intensity of the light falling on

the sensor surface or temperature, will then cause the frequency and

wavelength of the timer output signal to vary, and the output variation will

be displayed on the PC screen in a graphical format. Signal variation can

then be transformed into pulse width variation to form the basis of the

extensively used pulse width modulation (PWM) concept.

In the second timer configuration examined, the use of a constant

current source to charge the timing capacitor will be demonstrated,

and the creation of “sawtooth” and triangular output waveforms will be

graphically recorded. The triangular waveform or voltage ramp has an

important use in some sensor monitoring and in chemical analysis. A

third circuit is assembled to demonstrate a simplified method for creating

a dual-slope analog ramp that is used frequently in electrochemical,

corrosion, and biophysiology investigations.

A simple x-y recording system constitutes the last portion of the chapter.

Chapter 9 Graphical Data Recording

307

�Experimental: Linear Graphical Data
Recording
�Part 1: Hardware and Component Selection –
Square Wave Output
Previous work in Chapter 8 has shown the limitations imposed by

software overhead, and hence the rate of change of signal shape that

can be displayed as it occurs or in “real time” is limited by the computer

performance. The bipolar transistor 555 timer in astable mode can

produce an output signal that can be made to vary from 70 kHz to

about four cycles per minute. CMOS versions of the timer can generate

frequencies in the megacycle range. Most 555 timer manufacturers include

a standard nomograph of the relationship between the capacitance and

the R1-R2 values of the resistors in the IC’s timing network. Figure 9-1

is an extended graphic that accommodates the newer versions of the

CMOS-based ICs that are able to oscillate at the higher frequencies. The

approximate timing network values and resulting free running output

frequencies are depicted in Figure 9-1 for the astable configuration of the

timer.

Chapter 9 Graphical Data Recording

308

In order to keep the output signal from the timer chip in the low

frequency range that should be suitable for the DAQFactory graphics, the

resistance values should be in the megohm range (million or 106 ohms)

and the capacitance value in the 0.1–10 uF (micro or 1/1,000,000 F)

range. The graphical data of Figure 9-1 is an approximation, and the

actual resistance values chosen for use are somewhat dependent upon the

capacitance value selected or available.

Figure 9-1.  555 Timer Output Frequency for R-C Timing Network
Values

Chapter 9 Graphical Data Recording

309

An electrolytic capacitor with a value of 1–10 uF should be suitable for

this graphics display exercise, but for more accurate work, a higher-quality

low-leakage type of capacitor may be required as detailed in the following

discussion.

�Electronic Components Required
	 1)	 555 timer integrated circuit

	 2)	 Variable and fixed resistors to sum into the

low megohm range preferably with the fixed

and variable values being in the same order of

magnitude of resistance

	 3)	 A suitable “timing” capacitor in the 1–10 uF range, a

0.01 uF bypass capacitor, and a 9 V battery supply

�Circuit Schematic
Figure 9-2 depicts the circuit configuration for the astable 555 timer.

Figure 9-2.  555 Timer Astable Configuration

Chapter 9 Graphical Data Recording

310

The preceding circuit shows a single variable resistance between pins

7 and 2. The circuit will work when the variable resistor is in its mid-

travel position but will produce erratic results when at the low end of its

resistance value. To avoid any problems with circuit malfunctions, place

a fixed value resistor in series with the variable unit to limit the lower end

value of the second timing network resistance. The author used a 10 kΩ

value for a 1.2 MΩ R1 + R2 network sum value.

�Software
After having assembled the astable oscillator, connect the output to a

differential input channel on the LabJack and configure a channel for

receiving the square wave output. The graphical page component can then

be created. For long-duration graphical displays, make sure the channel

storage capability is large enough to support the length of the desired time

display. The number of values in memory is defined by the value in the

channel's “History” box. (The default entry is 3600 that can be filled quite

quickly when working in experimental time frames of tens of minutes or

fractions of hours.)

�Page Components Required
A two-dimensional graphical screen component is created by selecting,

on a new page, the 2D Graph entry from the right-click pop-up page

component menu, as shown in Figure 9-3.

Chapter 9 Graphical Data Recording

311

The default graphical screen component configuration for an x-y graph

is displayed in Figure 9-4.

Figure 9-3.  DAQFactory Selection of a 2D Graphical Recorder Screen
Display

Figure 9-4.  The Default X-Y Graphical Screen Display

Chapter 9 Graphical Data Recording

312

The graphical component is positioned and fitted to the page by

pressing the Ctrl key and dragging the squares in the centers of the hatched

edge lines to the desired locations on the page. Once the component has

been sized, the properties menu for the screen component can be opened

by right-clicking the screen component and selecting the “Properties”

entry. The properties window for the graph is a multi-tabbed display with

multiple entry forms for adding traces to the graph, defining the axis values

used for the graphical display, adding identification titles, and selecting

colors for the display. The Traces tab of the six-tab properties window, for

defining the name entry, is illustrated in Figure 9-5.

Figure 9-5.  Recorder Trace Name Selection

Chapter 9 Graphical Data Recording

313

A Help screen at the bottom of the properties window explains all

of the data entry boxes and tabs that are found in the graphical screen

component.

For the square wave being generated by the 9-volt battery-powered 555

timer oscillator, the voltage range was offset to display values from –1 to 9

volts to more clearly depict the time the waveform is at 0 V.

�Part 1: Observations
With a 392 kΩ R1, a 900 kΩ R2, and a 10 kΩ series resistance limiting

unit, charging a 22 uF, 25 V electrolytic capacitor from a 9 V battery, a

graphical display of four high time cycles in 60 seconds was obtained with

a midrange setting on R2.

Between the two extremes as depicted in Figures 9-6 and 9-7, the

number of signal waveforms being generated on a unit time basis changes.

Figure 9-6.  Timer Output at Maximum Resistance

Chapter 9 Graphical Data Recording

314

If the circuit is operated without a series resistor to limit the minimum

value of R2, then waveforms such as those of Figure 9-8 may be created.

Figure 9-8.  Waveform Without Minimal Resistance

Figure 9-7.  Timer Output at Minimum Resistance

Chapter 9 Graphical Data Recording

315

�Experimental
�Part 2: Hardware and Component Selection –
Triangular and “Sawtooth” Outputs
In addition to the creation of a square wave signal with a varying duty

cycle, the astable 555 timer can be used to generate a “sawtooth” and

asymmetrical triangular wave. Basic electronics teaches that when a

capacitor is charged or discharged through a fixed value resistor, an

increasing or decreasing exponential voltage value is seen across the

terminals of the capacitor. When a capacitor is charged with a constant

current source, a linear voltage increase is seen across the capacitor

terminals. The linear voltage change forms a triangular waveform that can

be used to generate a voltage ramp having several applications in chemical

analysis and other experimental work.

By assembling the circuit depicted in Figure 9-10, two additional

waveforms can be generated.

Figure 9-9.  Erratic Output Signal or “Aliasing”

Chapter 9 Graphical Data Recording

316

�Part 2: Observations
When the capacitor is charged through a series resistor, the familiar

exponential voltage change is observed and recorded as seen in Figure 9-11,

between test points 1 and 3.

Figure 9-10.  A Constant Current Charging Source

Figure 9-11.  Typical 555 Timer “Sawtooth” Output Voltage
Waveform

Chapter 9 Graphical Data Recording

317

When the voltage between TP1 and TP2 is measured, a triangular

waveform is recorded as illustrated in Figure 9-12.

The charging of the capacitor with a constant current generates the

linear voltage ramp across the capacitor plates as seen on the left-hand

side of the waveform. The steep right-hand portion of the signal is caused

by the rapid discharge of the capacitor when the discharge pin of the timer

is connected to ground through the emitter of an internal NPN switching

transistor in the 555 timer IC. Although the discharge trace appears to be

a straight line, it is in reality the initial portion of the inverse exponential

curve of the positive charging curvature seen in Figure 9-11. Figures 9-12

and 9-13 illustrate the effects of adding a fixed series resistance between

the capacitor and the discharge pin of the timer IC.

Figure 9-12.  A 555 Timer Triangular Wave Expanded Scale

Chapter 9 Graphical Data Recording

318

Simple logic would suggest that to obtain a linear triangular waveform,

charging and discharging a capacitor through constant current sources

and sinks would achieve the desired result, but a simpler solution can be

found by using “function generators” that can produce signals of various

shapes and frequencies.

�Part 3: Hardware and Component Selection –
Dual-Slope Triangular Waveform
To obtain a symmetrical triangular waveform, it is easier to use a “function

generator.” Like the 741 and 555 ICs, a very successful function generator

is the Exar XR-2209 that has been available in an eight-pin dual in-line

package (DIP) since 1975. The integrated circuit is built around a circuit

known as a voltage-controlled oscillator (VCO). The XR-2209 VCO can

simultaneously generate both a square and triangular voltage waveform

signal from a single eight-pin DIP. The chip can be powered from a

single- or dual-voltage supply as required by the application at hand.

Figure 9-13.  The Effect of Added Discharge Resistance on the Timer
Output Waveform

Chapter 9 Graphical Data Recording

319

(See “Discussion.”) The function generator chip requires some care when

single-ended or dual-voltage supplies are used for power as detailed in

the manufacturer’s data sheets. The recommended circuit schematic for

using the 2209 function generator with a dual-voltage power supply, in the

author’s case +/–9-volt batteries, is depicted in Figure 9-14.

To create the positive and negative voltage ramps, the circuit is

powered by a pair of 9 V batteries configured as a bipolar +/–9 V supply

with a common ground as depicted in Figure 9-15.

Figure 9-14.  Schematic for Function Generator Configuration

Figure 9-15.  A Dual-Battery Bipolar Power Supply

Chapter 9 Graphical Data Recording

320

If the circuit, when properly assembled on a breadboard, fails to

operate as expected, consult the manufacturer’s data sheets and the

“Discussion” section.

�Part 3: Observations
The XR-2209 can produce symmetrical triangular waveforms as depicted

in Figure 9-16 and with an appropriate “pull-up” resistor the square

waveform of Figure 9-17. (See discussion on design limitations for “pull-

up” resistor selection.)

Figure 9-16.  XR-2209 Function Generator Symmetrical Triangular
Wave Output

Chapter 9 Graphical Data Recording

321

�X-Y Data Recording
As can be seen in Figure 9-4, the default format for the two-dimensional

plotting, graphical display screen component is x vs. y. The constant

current charging circuit of Figure 9-10 can be used to produce an x-y

plotting of the voltage across the capacitor and its square as would be

used in measuring the energy developed across the capacitor. E = CV2/2.

The constant current circuit can be used for this demonstration exercise

because an asymmetrical voltage ramp is created on the capacitor by

the constant current charging and the exponential discharging of the

component.

Figure 9-17.  Square Wave Output with Pull-Up Resistor

Chapter 9 Graphical Data Recording

322

To create the desired display, the voltage across the 470 uF electrolytic

capacitor of the constant current charging circuit can be recorded in the

channel created for the PWM data collection display. The breadboard

electronics causes the voltage on the capacitor to linearly cycle between 1/3

and 2/3 of the supply voltage and then exponentially discharge, when the

timer chip connects the charged capacitor to ground. A graphical display of

the cyclic charging and discharging voltages should thus be different. The

channel name is entered into the x axis box, and the square of the voltage

is computed in the y axis expression box. The voltages displayed on the two

axes must be adjusted for the power supply being used to drive the voltage

change, and in the author’s case, the values depicted in Figures 9-18, 9-19,

and 9-20 were used to record the data in Figure 9-21.

Figure 9-18.  x-y Graph Traces Tab

Chapter 9 Graphical Data Recording

323

Figure 9-19.  x-y Graph Axes Tab

Figure 9-20.  x-y Graph General Tab

Chapter 9 Graphical Data Recording

324

Take note of the data being displayed for this graphical image. It is

not PlsWdthVrn555 but PlsWdthVrn555[0,20] in both the x and y axes as

seen in Figure 9-18. Because this is a cyclic phenomenon, we need only

a limited portion of the channel’s data to be displayed, that is, a limited

“field of view” or “persistence of vision.”

Figure 9-21.  A Plot of Capacitor Voltage and Voltage Square

Chapter 9 Graphical Data Recording

325

�Observations: x-y Plotting
The trace shown in Figure 9-21 is a typical recording that may remain

stable and reproducible for several minutes before a distortion or altered

trace is recorded. Figures 9-22 and 9-23 have captured two instances of

errant tracings.

In Figure 9-22, the voltage square discharge trace recorded at the 5 V and

25 V intersection has split into two. Careful examination of Figure 9-23 will

reveal that the discharge trace has not only split in two at the high voltage

portion of the cycle but also at the 3 and 9 V low end of the cycle.

Figure 9-22.  A Higher Voltage Trace Variation

Chapter 9 Graphical Data Recording

326

�Discussion
Graphical displays of recorded data are of great value because of the ability

to see trends in the display. Experimental science is dependent upon

reproducibility, and graphical displays of data can be used to validate

observations.

Graphical display permits the investigator to see events or trends

hidden from the “real-time” observations. However, in examining the

trends in data recordings, the deviations caused by material imperfections,

Figure 9-23.  A High and Low Voltage Trace Variation

Chapter 9 Graphical Data Recording

327

temperature variation from self-heating, light-induced variations, poor

choice of experimental conditions, and a host of other sources of error

must be taken into account before judgments regarding data validity

can be made. Quite frequently in analytical chemical procedures, and

this exercise in particular, the researcher must deal with graphical

representations of “analog” data that involve or require very long or short

time periods of recording. Long or short time frames may require special

components, special electronic circuits or configurations, and protection

of the operational circuitry from stray electrical signals and disturbances

to be reproducible. Very long and ultrashort time constants may be

approaching the limitations of the original design parameters for the

traditional IC building blocks, and hence greater care must be taken when

using these devices at or close to their operating extremes.

Common sources of variation in data derived from electronic sources

can include the following:

	 1)	 Variations due to the power delivered by battery or

“mains” energized supplies.

	 2)	 Component imperfections and variations such as

in resistor noise, which is least in wire-wound units,

moderate in metal films, and greatest in carbon

units, capacitor leakage currents, and memory

effects that are greatest in electrolytic, lower in

tantalum, and least in plastic film–type components.

	 3)	 Temperature effects caused by environmental

variation and internal heating caused by current

passage through resistive electronic components all

cause electronic signals to drift.

Chapter 9 Graphical Data Recording

328

	 4)	 Long wires can accumulate radio frequency

interference (RFI) by acting like antennas for mains

power line radiation. Wires should be as short as

possible and encased in a Faraday cage if required.

Breadboards with their long strips of metallic

contacts and the long leads of components pushed

into the board should be used for experimental

development only and then replaced with printed

circuit boards for actual experimental service.

	 5)	 Aliasing in digital sampling (or analog-to-digital

conversion) for channel storage. Data from the

experimental setups created in these exercises is

converted into a digital format by the LabJack or

microcontrollers and is read by the DAQFactory

software at a rate controlled by the channel timing

values entered into the channel timing value boxes.

Any electrical signals of a repetitive or periodic

nature that might be picked up or created by the

controlling computer electronics, the LabJack

electronics, the experimental setup itself, or

the mains wiring of the building in which the

experiments may be located present the possibility

of “aliasing” with the true signal being generated by

the setup being monitored. The signal thus being

monitored over extended times may contain “false

or artifact” waveforms superimposed over the true

or original signal when displayed in long-term

graphical formats.

Chapter 9 Graphical Data Recording

329

�X vs. Time Recordings
The operating sequence for the 555 timer has been outlined in Chapter 8, and

from that summation together with the information in Figures 9-6 and 9-7,

we can see that the waveform generated in the astable mode changes

frequencies as the R2 resistance value in the timing network varies.

When wired in the astable configuration, the capacitor charge time is

determined by the total resistance of the RC timing network as indicated in

the following:

t1 = 0.693(R1 + R2)C (output high time)

And the discharge time is

t2 = 0.693(R2)C (output low time)

Thus, the total signal period is

T = t1 + t2 = 0.693(R1 + 2R2)C

and the frequency of operation is

f = 1/T = 1.44/(R1 + 2R2)C

The capacitor charges through both resistors while discharging

through only one. When the R2 resistor in the network is a variable

resistance, then the time that the output is low is proportional to the value

of the varying resistance. The varying analog resistance in the 555 timing

network could thus be digitized by measuring the width of the recording

during which the output is low.

There are limitations as to the relative width of both the high and low

times that can be generated with the circuit shown in Figure 9-2. Special

circuitry is required to keep the oscillator frequency relatively constant,

while the widths of the high and low times (the duty cycle) of the oscillator

are varied.

Chapter 9 Graphical Data Recording

330

Expanding or contracting the time scale of the graphical display can

vary the resolution of the waveform displayed.

Graphical displays require a large amount of computer processing

resources and, as noted in the previous exercises dealing with time and

timing, have a limited ability to respond to a rapidly changing signal.

Rapidly changing signals are best digitized with hardware for storage in

memory and then, after collection, converted into a graphical format for

display.

For slower signal changes, DAQFactory’s ability to store graphical data

in its channels and then be able to display it as a strip chart recording can

be very useful in revealing hidden information. If the triangular waveform

of Figure 9-12 is recorded for 8 to 10 minutes and then the time scale of the

graphical display is reconfigured to display an 8-minute window of the data

(i.e., an 8-minute window would be 8 minutes × 60 = 480 for the time base),

then a host of variations become evident, as displayed in Figures 9-24

and 9-25.

In Figures 9-24 and 9-25, extending the time scale over which the

repetitive voltage cycles are displayed has brought out visually the

influences of several ubiquitous experimental sources of error.

Most individuals are familiar with the propagation of water waves

in a body of still water. Water waves from two sources caused by stones

thrown into a pond appear to our eyes to pass through one another

without interference. However, if an object is floating on the surface of

the water at the same point where the waves pass through one another,

a violent pitching of the object is seen. The violent pitching is caused by

the superposition principle that sums the amplitudes of the two water

displacement waves passing through one another. The distortions visible

at 7:14:30 and 7:19:00 in Figure 9-24 could be caused by a second voltage

variation wave with an amplitude of ½ volt and a frequency of one cycle in

4 1/2 minutes blending with or interfering with the main signal.

Chapter 9 Graphical Data Recording

331

Figure 9-24.  Long-Term Signal Distortions

An additional source of pattern distortion caused by a more complex

electronics problem involving timed repetitive digital sampling of

cyclic analog waveforms is known as aliasing and is discussed in some

electronics textbooks.1 (Aliases are a RPi-Python programming code utility

concept.)

The recorded triangular waveforms are reasonably reproducible with

respect to their frequency of occurrence as the author’s breadboarded

circuit can be seen to be producing 19 cycles in 5 minutes. The

reproducibility of the voltage levels however can be seen to be both

1 �The Art of Electronics, Horowitz and Hill, Cambridge University Press, ISBN
0-521-37095-7

Chapter 9 Graphical Data Recording

332

drifting and oscillating. The lower values for the voltage vary from 3.0

to 3.4, while the upper values vary from 5.7 to 5.0. Although the upper

and lower voltage values are varying, the display has a distinct pattern

that suggests the system is both drifting and oscillating due to the factors

discussed previously.

Finger heat applied to the left- and right-hand transistors in the

constant current source produces the expansion and compression in cycle

time illustrated in Figures 9-25 and 9-26.

Figure 9-25.  Finger Heat Applied to Left Transistor of Current
Mirror

Chapter 9 Graphical Data Recording

333

Figure 9-26.  Finger Heat Applied to Right Transistor of Current Mirror

The erratic amplitude seen in addition to the altered cycle time is also

a result of thermal effects.

The materials from which electronic components are fabricated also

contribute to the noise seen in electronic circuits. Wire-wound resistors

are the least noisy, metal films are intermediate, and carbon-based

components exhibit the greatest contribution to resistor circuit noise.

Electrolytic capacitors are inexpensive and available in higher values,

but virtually all high-value electrolytic units have sizable leakage currents.

Leakage currents can cause problems in systems that require cyclic or

repetitive reproducibility. Traditional low-leakage capacitors are generally

not available in high capacitance values, but when the limited higher-value

units are located, they are usually very expensive and large in physical size

as depicted in the photo of Figure 9-27.

Chapter 9 Graphical Data Recording

334

Creation of a symmetrical triangular waveform can be done with

op-amps and capacitors, but a circuit known as a voltage-controlled

oscillator has been designed to simultaneously produce both square and

symmetrical triangular waveforms. The Exar XR-2209 IC is a module that

with an external capacitor and resistor can be powered by dual or single,

4- to +/–13-volt supplies to produce the required signal. Figures 9-16 and

9-17 are typical outputs from the IC. The triangular wave in the author’s

breadboard setup can be seen to systematically vary in the peak voltages

achieved. The breadboard setup also proved to be very sensitive to the

value of the “pull-up” resistor used to develop the square waveform. The

component sensitivity is probably due to operating the circuitry in an area

near to the extremes of the circuit design.

Figure 9-27.  Various Types of Fixed Value Capacitors

Chapter 9 Graphical Data Recording

335

�X-Y Recordings
x-y recordings are often used when the signal to be recorded is cyclic in

nature. Because of the cyclic nature of the signal, it is desirable to clear

old traces from the x-y screen as new ones will be overlaid on the older

data traces. By specifying the number of data points to plot, using the [n]

channel value notation, any fraction or multiple of signal cycles can be

displayed.

The effects of non-reproducible signals that are seen in Figures 9-22

and 9-23 arise from the same causes that are evident in the variations of

the recorded x vs. time signals of Figures 9-24, 9-25, and 9-26.

�Microcontroller Data Plotting
Programmable microcontrollers supported by open source, online

communities are constantly having their base capabilities expanded, and a

data plotting facility has been added to the Arduino IDE from version 1.6.6

onward.

In previous exercises, the Arduino microcontroller has been used as a

smart data acquisition device, a power source for sensors or displays, and

a clock; and in this chapter, it will be used to provide a visual graphical

display of data.

Since revision 1.6.6 and 7 of the Arduino’s IDE, there has been a serial

plotter selection available in the Tools menu as depicted in Figure 9-28 for

initially a single plot but as of version 7 for multiple–data point plotting.

Chapter 9 Graphical Data Recording

336

Invoking the serial plotter output converts the serial port window

display into an x-y plotter. Individual data points directed to the serial

port for display with a print statement are plotted on the vertical y axis.

The x axis auto-scrolls from left to right in the form of a 500-point moving

window. The metric for the x axis is the processing of the line of code

with the line feed print instruction. Line 15 in Figure 9-29 contains the

println code that is counted as processed and whose total value forms the

numerical values displayed on the x axis.

Figure 9-28.  Arduino IDE Tools Menu Serial Plotter Selection

Chapter 9 Graphical Data Recording

337

For multiple-point plotting, each data value to display with a separate

trace is separated from the next with either a print white space instruction

or a tab instruction: (print(“ “); or print(“/t);). Lines 10, 12, and 14 in

Figure 9-29 form the separation markers for the four-trace plot seen in

Figure 9-30.

�Experimental
The code presented in Figure 9-29 plots two straight lines and two

sinusoidal traces with different frequencies that are graphically displayed

in Figure 9-30.

Figure 9-29.  Arduino IDE Typical Plotter Program

Chapter 9 Graphical Data Recording

338

�Observations

Examination of the microprocessor plotter demonstration code and

the displayed frequencies of the sinusoids validates the expected 20:1

frequency ratio between the sine wave and cosine. The constant values

plot as the expected straight lines.

�Discussion
Inclusion of the plotter in the Arduino’s IDE has made a very powerful

visualization technique available to the experimental investigator.

The plotter is both very easy to use and useful. Plots generated by an

experimental process being controlled by the microprocessor can be

recorded for archiving with the print screen function available on host

computers. Experimental plot archiving has been used in experimental

work involving the measurements of temperature, motion, and vibration

and in light and optics investigations.

Figure 9-30.  Arduino Serial Plotter Output

Chapter 9 Graphical Data Recording

339

Although the plotter is a very useful function, it is at the time of

manuscript preparation limited in several aspects of operation. The

colors of the traces are fixed by the operating system of the IDE and can

be difficult to see at times. The scales are auto-adjusting and unlike the

DAQFactory plotter cannot be independently set to different values.

Occasionally on initial start-up, the plotter will produce spurious

images such as depicted on the left in Figure 9-31 or improperly auto-scale

the y axis.

As is seen in the preceding figure, the plotter settles into reproducibility

reasonably quickly but on occasion may plot erroneously until the

500-point window refreshes itself and the auto-scale functions also settle

into a reproducible plot mode.

Figure 9-31.  Arduino Serial Plotter Start-Up Noise

Chapter 9 Graphical Data Recording

340

�Graphical Data Recording with Python
and the Raspberry Pi
�Introduction
As noted, graphical plotting of experimental data can take two forms. If the

data is generated at a high rate, it is best saved by streaming into memory

for storage and analyzed graphically at a later time. Experimental data

generated at a slower rate can often be displayed as it is created in a “live”

or “real-time” display. Python and the RPi use a graphical plotting library

called matplotlib for display of both live and stored data.

An example of a Python matplotlib code that plots out the values of

the voltage at the wiper arm of a 10 kΩ potentiometer biased between the

3.3-volt RPi power source on the GPIO array and its ground is provided

in Listing 9-1 at the end of the chapter. The code has been modified from

the strip chart recorder program that can be found as “animation example

code: strip_chart_demo.py” in the matplotlib documentation. The

documentation contains a full development tutorial for the use of this type

of animated graphical display.

Although the RPi does not have an extensive selection of commercial

graphical display software applications available, the matplotlib can

provide a substantial basis from which the required application can be

developed. The relatively short program used to monitor the varying

potentiometer voltage in this exercise is equipped with several advanced

utilities for in-depth examination of the recorded graphical presentation.

A section of the matplotlib documentation entitled “Interactive

Navigation” describes the actions of the seven buttons seen in the bottom-

left corner of the plotting display as seen in Figures 9-32 and 9-34. The

left button restores the focus of the display when any of the display

manipulation or storage buttons has been used. Buttons allow sections of

the recorded trace to be saved as seen in Figure 9-33 and enlarged as seen

in Figures 9-34, 9-35, and 9-36. In addition to the button-activated utilities,

Chapter 9 Graphical Data Recording

341

the library example also displays the coordinates of the mouse cursor so

that exact points can be identified by placing the cursor pointer at a point

of interest in the tracing and reading the x and y coordinates of the point in

terms of the display time and the measured data value from the numerical

values displayed in the lower right-hand corner of the plotter frame.

The matplotlib program is also very easy to alter the scale of either

plotting axis, but because of the time scale inconsistencies seen in

previous exercises, the plotter time base displayed needs to be calibrated

as described in the following experimental section.

�Experimental
To demonstrate the plotting facility available with the RPi, an example

can be created from the gpiozero library and an MCP3008 ADC IC reading

the voltage from the wiper of a biased potentiometer. The wiper voltage is

digitized by an MCP3008, 10-bit ADC configured as described in Chapter 6,

Figure 6-17. To facilitate programming with the ADC, the gpiozero library

has been used to provide the plotting data through accessing the “pot.

value” attribute of the object instantiated in the line “pot = MCP3008(0)”.

The creation of the pot object with the gpiozero library enables the

programmer to access the wiper voltage value connected to the first

channel on the ADC chip. The value is automatically normalized to a

dimensionless floating-point value between 0 and 1 by setting the code

variable to be plotted equal to the pot.value attribute.

The configuration of the RPi with the gpiozero library to access the

MCP3008 ADC also allows the plotting program to be modified to accept

any sensor or transducer that is able to supply a voltage value of 3.3 V or

less. Figures 35 and 36 are two traces that have been made from the output

of a 555 IC timer that has been wired to the first or 0 channel of the digital

converter. The configuration of the 555 IC is illustrated in the right-hand

drawings and circuitry of Chapter 8, Figure 8-8. For this experiment, R1

and R2 were 4.7 kΩ, and C1 was a 100 μF electrolytic capacitor in the 555

Chapter 9 Graphical Data Recording

342

timer RC network. The output circuitry also included an LED and current

limiting resistor to aid in circuitry assembly, verification of electrical

operation, and validation of recorder display by observing a continuous

LED flashing at a rate of 59 flashes in 60 s. The final two expanded scale

figures, Figures 9-37 and 9-38, were made with the “save a trace” button of

the options row at the bottom left of the plotter display.

In order to aid in the development of the adaptation of the published

matplotlib strip chart recorder code that uses an internal random

number generator to create the y values for the plotter example output,

the author inserted a number of diagnostic print statements in the code

being modified. The print statements stream out the values of certain

variables at points in the executing code to the Python console to aid in

the development of different methods for adapting the code to follow data

from different sources. Commenting out the diagnostic print lines will

clear the console display. The streamed-out variable data is seen in the

console displays as the left-hand screens in Figures 9-32 to 9-34. When no

longer required, the print lines can be commented out.

Several factors must be taken into account when using graphical

data displays on the RPi. As has been noted in previous exercises and

previously, the time base of the system is not constant, and hence the

time scale at the bottom of the plotter display is of limited reliability and

must be semi-quantitatively calibrated for semi-quantitative use (see

“Discussion”).

Once a desired experimental time frame has been established, a

stopwatch must be used to measure the actual time the system takes to plot

out the data for the nominal desired window time width. Table 9-1 is an

example of the data collected by the author when developing a procedure

to be used to calibrate a nominal 2-minute-wide plotting window.

Chapter 9 Graphical Data Recording

343

�Observations

Figure 9-32 displays the voltage value trace from 80 to 120 minutes into the

experiment in which the author has manually turned the potentiometer shaft

at the times recorded on the un-calibrated relative time axis of the display.

The trace is relatively quick to respond, but rapid twisting of the shaft can

overrun the display’s ability to keep up with the changing data value.

Table 9-1.  Adjusting Plotter Time Base

Dt Setting Time Width (sec)

0.02 25

0.01 41

0.005 127

0.0055 116

0.00525 129

0.005 125

Figure 9-32.  A Data Recording of Potentiometer Wiper Voltage

Chapter 9 Graphical Data Recording

344

Figure 9-33 illustrates the actions invoked when the “save a figure” icon

at the extreme right of the row of options is clicked. The graphical figure is

saved as a png image in the documents file of the RPi.

In the screen capture of Figure 9-34, the cursor of the mouse had been

placed on the vertical response line just past 17 minutes, and the exact

coordinates of the point were then printed in the bottom right-hand corner

of the display.

Figure 9-34 illustrates the scale expansion option that expands the area

enclosed by a mouse-drawn box to a full-screen display. The expanded

image can then be saved as noted previously, or the “return to previous

view” icon can be used to restore or resume the normal plotting action.

Figure 9-33.  The “Save a Figure” Option Window

Chapter 9 Graphical Data Recording

345

In the following two figures, the output from a 555 timer configured as

detailed was recorded at expanded scales with the “save a figure” option.

Figures 9-35 and 9-36 illustrate the ability of the software to save the plotted

data in shorter time scales from external voltage-generating sources.

Figure 9-34.  The “Scale Expansion” Option

Figure 9-35.  Expanded Time Scale 555 Timer Data Recording

Chapter 9 Graphical Data Recording

346

�Discussion
Graphical data recording with the strip chart recorder program from the

Python matplot library is a very adaptable and flexible system that can be

used to display data directly from sensors attached to the GPIO array or

from the Python serial port.

In Figure 37, the output from a 555 timer configured with R1 = 5.83 kΩ,

R2 = 4.7 kΩ, and a 420 μF C1 timing capacitor created ten LED flashes in

33 sec. The timer was powered by the 3.3 V supply of the GPIO array and

calibrated for a 4-minute display window as detailed in the “Experimental”

section.

Figure 9-36.  One-Minute Time Scale Expansion of 555 Timer Data
Recording

Chapter 9 Graphical Data Recording

347

Figure 9-38 illustrates the scale expansion capability available with the

display option buttons of the data plotting program.

Figure 9-37.  A Calibrated Time Base 555 Timer Voltage Output
Recording

Figure 9-38.  A Time-Calibrated Plotted Trace Expansion

Chapter 9 Graphical Data Recording

348

A significant number of sensors have been coded into the gpiozero

library that could be used to provide data for the matplotlib plotting

program.

One of the advantages of graphical data displays becomes obvious

when the variation in the time width of the rectangular pulses is presented

in the visual format of Figure 9-38.

Table 9-1 demonstrates a limitation of the time base used for the

RPi graphical data displays. A progressive incremental halving of the Dt

value increased the time measurement, but the return to the 0.005 value

produced a 2-second difference from the original measured value. The

differential validates the earlier caution noted in the manuscript with

respect to the RPi operating system priorities that can interfere with the

timekeeping of the input and output operations of the computer.

�Code Listing
Listing 9-1.  Python Code for Live or Real-Time Data Plotting with

Raspberry Pi

�SCR Plotting of Normalized Potentiometer Voltage Value from

an MCP3008 gpiozero used to configure MCP3008 and attributes

for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

from gpiozero import MCP3008

Chapter 9 Graphical Data Recording

349

#

pot = MCP3008(0)

#

#

class Scope:

 def __init__(self, ax, maxt=40, dt=0.02):

 """maxt time width of display"""

 self.ax = ax

 self.dt = dt

 self.maxt = maxt

 self.tdata = [0]

 self.ydata = [0]

 self.line = Line2D(self.tdata, self.ydata)

 self.ax.add_line(self.line)

 self.ax.set_ylim(0.0,1.0) # y axis scale

 self.ax.set_xlim(0, self.maxt)

 def update(self, y):

 lastt = self.tdata[-1]

 if lastt > self.tdata[0] + self.maxt: # reset the arrays

 self.tdata = [self.tdata[-1]]

 self.ydata = [self.ydata[-1]]

 �self.ax.set_xlim(self.tdata[0], self.tdata[0] +

self.maxt)

 self.ax.figure.canvas.draw()

 t = self.tdata[-1] + self.dt

 self.tdata.append(t)

 self.ydata.append(y)

 self.line.set_data(self.tdata, self.ydata)

 return self.line,

Chapter 9 Graphical Data Recording

350

#

#

def rd_data():

 inPutln = pot.value

 #print("inPutln = ", inPutln)

 line = inPutln

 #print(line)

 yield (line)

 fig = plt.figure()

fig.suptitle("Pot Wiper Voltage", fontsize = 12)

ax = fig.add_subplot(111)

ax.set_xlabel("Time")

ax.set_ylabel("Potentiometer Voltage")

scope = Scope(ax)

uses rd_data() as a generator to produce data for the update

func, the MCP3008 value is read by the plotting code in

40 minute windows for the animated screen display.

Software overhead limits response speed of display.

ani = animation.FuncAnimation(fig, scope.update, rd_data,

interval=50,

blit=False)

plt.show()

Chapter 9 Graphical Data Recording

351

�Summary
–– Experimental data recorded graphically as a plotting of

y vs. time or as x vs. y can show numerous electronically

generated waveforms and sensor readouts.

–– Graphical data recordings can reveal signal drifting and

signal deviations and display electrical, mechanical,

and environmental influences on signal outputs not

normally visible in numeric displays.

–– Commercial SCADA plotting is easily configured,

robust, and very flexible, while component-assembled

systems are more constrained in display capability and

must be calibrated manually.

–– In Chapter 10, various methods of current control,

an important aspect of experimental equipment

configurations or design, are presented.

Chapter 9 Graphical Data Recording

353© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_10

CHAPTER 10

Current Control
Current control and monitoring are significant portions of many

experimental setups and scientific measurements. As demonstrated

in the previous exercise, constant current control may be required to

achieve specific results. Sensor measurements, motion control in scanning

instruments, robotic manipulators, electroplating or amperometry, and

heating control operations are just a few examples where current control

is required. LEDs should be powered from constant current sources. It

has been found that a batch of LEDs from one supplier when powered

by a constant voltage supply consumed from 4 to 39 mA and with such

a wide current difference could not be producing the same luminous or

chromaticity outputs. Current control can vary from managing sensors

of physical or chemical change, often requiring measuring milli- and

microamps of DC current while heating, electro-deposition and motor

control applications often involve controlling amperes of electrical current.

Current control can be implemented with discrete transistors as was

done in Chapter 9; general-purpose integrated circuits such as operational

amplifiers (op-amps), configured for current regulating; or application-

specific integrated circuit (ASIC) chips produced specifically for either DC

or AC current controlling applications.

This chapter is divided into three parts involving constant current

DC supplies, control of larger currents, and control of potentially lethal,

mains alternating current power. Simultaneous with the control of current,

some of the limitations imposed by motors and ways to work around these

limitations will be demonstrated. Inexpensive motors for experimental

https://doi.org/10.1007/978-1-4842-6778-3_10#DOI

354

setups and for these exercises can be salvaged from obsolete computer

equipment or obtained from electronics supply sources if required. Some

of the limitations of motion control derived from rotating electric motors

will be demonstrated, and the process of selecting the preferred motor for

an experimental setup will be developed.

The technique of pulse width modulation (PWM) for current or power

control is reviewed and demonstrated in both motor and incandescent

lighting applications.

AC electronics, because of its cyclic nature, can be considerably

more complicated than DC. In keeping with the simpler introductory

nature of these exercises, only the non-inductive or completely resistive

load applications will be considered. In strictly resistive applications,

the root-mean-square (rms), peak-to-peak, or average AC values can be

used as though they were DC values in most of the basic laws governing

electronics. Higher-frequency and phase-sensitive AC electronics as

encountered in advanced communications, induction heating, or

spectroscopy are not dealt with in depth for these basic introductory

exercises.

�Constant Current Sources
A source of constant current as used previously is also found in numerous

types of electronic circuits and in many experimental measurement

instruments. As previously noted, constant current sources can be built

from a pair of transistors as a “current mirror” or with an operational

amplifier (op-amp) and some resistors. Although a discrete component

current mirror is discussed in detail in most of the electronics books

previously referenced, the operational amplifier is to be used in this

exercise because of the simplicity of the design, the wide control range

possible with the circuit, and its use of readily available and inexpensive

components.

Chapter 10 Current Control

355

Operational amplifiers such as the LM741 used in this exercise are

powered by dual-voltage supplies and must be balanced or properly

biased for use. Figure 10-1 depicts the general schematic for the LM741–

2N3906 PNP transistor, grounded load circuit that may be used to provide

a constant current for a known load, as published in various references.

The circuits depicted in Figures 10-1 and 10-2 can be assembled on a

typical prototyping breadboard for testing, validation of circuit operation,

and current control applications.

The circuit operating theory is explained in the following for the

configuration in which the load is connected to ground and the current

sense resistor is connected to the voltage supply. If the opposite situation

is required, then an NPN transistor can be used to regulate the current

(LF411 can be used as a direct replacement for the LM741).

�Experimental
�Hardware
A +/– dual-voltage power supply and a trim potentiometer are used to

power and balance the op-amp. A power transistor, three appropriate

biasing resistors, and a suitable adjustable resistor simulator of the

expected experimental load are required to construct and validate the

constant current supply. A typical implementation of the constant current

op-amp circuit is detailed in the following descriptions of a test circuit

assembled by the author. A 9-volt battery and four AA cells connected in

series can make a 15 V DC supply. Connecting two 15-volt battery packs

in series can be used to create the required bipolar supply of +/– 15 V with

a center terminal ground. The bipolar power supply allows the op-amp

output to be driven to positive or negative voltages. (See Figure 9-15 in

Chapter 9.)

Chapter 10 Current Control

356

�Circuit Schematic

Figure 10-2.  Typical Circuit Implementation for Op-amp
Balancing

Figure 10-1.  A Typical Op-amp Current Control Circuit

Chapter 10 Current Control

357

If a particular chemical analysis experiment such as a coulometric

titration has a titration vessel that represents a 20 Ω load and a current of

20 mA is found to generate a reasonable time to reach the analysis end

point, then the conditions for determining the resistor values needed to

assemble the circuit depicted in Figures 10-1 and 10-2 are available.

From Ohm’s law, to maintain a 20 mA current through a 20 Ω load

will require a voltage of 0.40 V. The transistor typically has a 0.3 V drop

across the PN junction, and hence the emitter should be held at 0.7 V. To

convert 15 volts to 0.7 will require a divider with a numerical value of

0.0466; thus, R2/(R1 + R2) = 0.046. Any dual-voltage power supply between

12 and 18 volts can be used with the LM741, so the actual values of the

resistors in the divider network and the current limiting R3 can be adjusted

accordingly to maintain the desired op-amp reference voltage or set point,

for the desired cell current flow. For a regulated current of 20 mA and from

the power relationship of I2R, we can estimate that 1/8-watt resistors in

the regulated current-carrying portions of the circuit are adequate for the

experiment at hand.

As a typical electrochemical cell load simulation, a 25 Ω, 30 W,

adjustable tap, wire-wound resistor was used by the author. Adjusting

the position of the center tap on the load resistance simulates a changing

conductivity as may be encountered in an experimental electrochemical

cell or a resistive heating element.

To begin the exercise, the experimenter can assemble the circuit

according to the preceding schematics. After verification of the layout,

temporarily ground the inverting and non-inverting inputs of the op-amp,

adjust the trim potentiometer to its midpoint of travel, and apply power to

the op-amp. While monitoring the voltage of the amplifier output, adjust

the 10 kΩ variable resistance to obtain an amplifier output as close to 0 V

as possible, either actually balancing the op-amp or positioning the trim

potentiometer wiper at a low non-zero voltage value point that will result

in system balance when the feedback loop is established during actual

circuit operation.

Chapter 10 Current Control

358

The voltage divider formed by R1 and R2 creates a reference voltage

VRef that is supplied to the non-inverting input of the op-amp. The op-amp

will now try to keep the two inputs at the same voltage of VRef by varying

the current through R3. The current flowing through the load, transistor,

and R3 is controlled by the current injected into the base of the 2N3906

transistor. The entire current flowing through the load and transistor

passes through R3 that must be of sufficient wattage to accommodate the

required current variation that the constant current configuration may

require. As the center tap of the load-modeling resistor is adjusted to

provide simulations of changes in the simulated cell resistance, current

measurements will confirm the circuit’s ability to provide a nominal 20 mA

current through the cell simulator as depicted in Figure 10-3.

Item 1 in the preceding figure is the simulated variable resistance

load consisting of a 25 Ω 30 W wire-wound resistor mounted vertically on a

threaded rod. Item 2 is a 5 W current sensing resistor, while item 3 is a LM741

Figure 10-3.  Wire-Wound Load Simulator of a High-Current Test
Circuit

Chapter 10 Current Control

359

op-amp plastic DIP. Item 4 is a 2N3906 power transistor, and the items

numbered 5 are the positive red, negative black, and green ground or

neutral power supply leads. Item 6 is the trim resistor for op-amp balance

or biasing.

�Software
Page components and programmed software are not required for this

portion of the exercise.

�Observations
The wire-wound resistor produces a very coarse ohmic resistance when

the position of the center tap is changed, but alteration of the load

resistance value is sufficient to demonstrate the development of the

required constant current source. The large-wattage simulated load is

variable from the nominal 25 Ω measured between the main terminals and

from about 20 to 10 Ω when repositioning the sliding tap on the exposed

wire core turns. The large power resistor connected to the positive supply

and supplying current to the transistor together with the variable load

determines the current that can flow in the regulated circuit. When power

is initially applied to the circuit, the observed current flow is high. As the

electronics comes to a rough thermal equilibrium, the regulated current

stabilizes at a final value close to the desired set point. Usually the circuit

requires 15–30 minutes to reach a constant thermal value. Table 10-1

tabulates the stabilized currents measured with the author’s breadboarded

experimental simulation.

Chapter 10 Current Control

360

The load resistance in the preceding table is measured in ohms, and

the current is measured in milliamps.

�Discussion
The circuit operation can be explained in the feedback configuration

by recalling that the op-amp drives its output in order to equalize the

voltages at the inverting and non-inverting inputs so VSense = Vin. The

current through the sense resistor is ISense = Vin / RSense, and since the current

through the sense resistor flows through the transistor, the current through

the load ILoad is Vin/RSense plus the very small base emitter current of the

transistor.

For an intended current of 20 mA through a 20 Ω load, the table

displays a 0.5 mA variation in an approximately 21 mA current seen

through a load varying from 6.7 to 20.3 ohms. If an exact 20 mA current is

Table 10-1.  Load Resistance

and Regulated Load Current

Load Resistance (Ω) Current (mA)

6.7 21.4

10.8 21.4

14.3 21.1

15.1 21.4

17.6 20.9

19.3 20.9

20.2 20.9

20.3 21.0

Chapter 10 Current Control

361

required, the voltage divider could be experimentally trimmed to adjust

the reference voltage to a value that regulates the transistor current to the

desired level.

As discussed and demonstrated in Chapter 9 on the graphical display

of data and as noted previously, thermal effects will cause the measured

signal to drift until thermal equilibrium is established. If critical current

control is required, then some form of thermal control or stabilization may

need to be introduced into the experimental setup. Heat sinks, cooling air

flows, insulations, or large metal thermal masses can be used to maintain

or partially stabilize temperatures by either radiating or absorbing

excessive heat.

Current regulation can also be achieved with dedicated integrated

circuits such as the LM340/78xx series of integrated circuits from National

Semiconductor. The integrated circuits however operate at specified,

fixed voltages and are usually limited to 1-ampere total current. The

actual current to be regulated is determined by appropriately valued

sensing resistors. Specific configurations and limitations are detailed in

the application sections of the manufacturer's data sheets for individual

devices.

The operational amplifier power transistor circuit, assembled from

discrete components, has the advantage of flexibility in being able to

control currents at arbitrary voltages and load requirements. The op-amp

power transistor configuration is also able to be used with the PNP

“grounded load” configuration or with a “floating load” in which the sense

resistor is grounded and an NPN transistor is connected to the power

supply and floating load.

Op-amp characteristics and theory are found in most of the previously

referenced textbooks and many introductory and in-depth online tutorials.

Chapter 10 Current Control

362

�Control of Larger DC Currents
�Introduction

�Brushless Direct Current (BLDC) Motors (Motors
Without Commutators or Sparking Brushes)
Larger DC current manipulation is encountered in experimental setups

involving heating, pumping, mechanical movement, or motion control.

For each type of motion to be controlled, there are usually several means of

transforming electrical power into the desired physical motion or action.

Solenoids move linearly in a back-and-forth motion as in robotics systems,

while motors twist or rotate; and for the simpler applications of this work

in which motors are required to drive and for liquid mixing or pumping,

gas cooling, or perhaps rotational optical scanning operations, we shall

focus on rotational motion control in motors. Further limitations consist

of working with very small fractional horsepower motors designed for

field or laboratory use with readily available, robust, 12 V lead acid battery

systems or 12 V DC power supplies providing the required higher currents.

(The physics and electro-mechanical aspects of motors and more powerful

motor control are discussed in much more detail in the literature of

robotics and mechanical, chemical, or electrical engineering.) In chemical

analysis and a large portion of life sciences’ laboratory work, flammable

solvents are in constant use, and hence brushed DC motors should not be

used in experimental operations unless certified as being explosion proof.

The heavier current required to drive a motor can be controlled by

transistors that in turn can be controlled from much smaller base currents

derived from integrated circuits. A variable 555 timer signal can be used

to control a higher-current power transistor that in turn regulates the

power applied to a motor to control the motor speed. In this portion of

the exercises, a 555 timer will be used to generate a square wave pulse

train whose duty cycle will be varied, in a controlled manner, to alter the

Chapter 10 Current Control

363

time during which power is supplied by a power transistor to a fan motor

capable of drawing up to 200 mA of current. The rotational speed of the fan

motor will thus be controlled by a potentiometer in the 555 timer network.

The fan disk rate of rotation will be measured optically with the LabJack

counter, and a DAQFactory program will calculate the fan disk rotation

speed for display on screen.

�Experimental
�Hardware
For the motor control circuitry, a breadboard will be required to mount a

555 timer and the passive components required to configure the IC into

the astable mode. As can be seen in Figure 10-4, the author combined the

mounting bracket for a 100 kΩ potentiometer, the heat sink for the TIP-122

power transistor, and the mount for the fan assembly with a brushless

DC fan motor into a custom-drilled 1 in (2.5 cm) by 8 in (15 cm) piece of

aluminum angle denoted as item 1. The heat sink–mount angle was bolted

to an approximately 1/16 in (1 mm)-thick plate of 8 in by 6 in (20.4 cm by

15.2 cm) aluminum sheet denoted as item 1a, on which the breadboard

was fastened with double-sided adhesive mounting tape (carpet tape).

The simplest fan motors (brushless direct current, BLDC) have two leads

for the DC power. Three- and four-lead fan motors are common with

the added connections usually for the internal Hall sensors (magnetic

field detectors) used for monitoring shaft positions. A photodiode and

a phototransistor were fitted and fixed to two small ½ in (1.2 cm) by

1 in (2.5 cm) custom-drilled aluminum plates with room temperature

vulcanization (RTV) silicone. Items numbered 4 are the sensor mounting

tabs. Adhesive fillets on the back sides of the tabs held the sensor diodes

firmly in place while not interfering with the optically active surfaces.

As can be seen in Figure 10-4, the tabs were mounted on a corner of the

Chapter 10 Current Control

364

fan motor frame with a bolt and a wing nut. The tabs were mounted with

the narrow infrared optical beam generated by the photodiode pointing

through the plane of rotation of the fan disk blades. The rotation of the

seven-blade fan disk (item 2) thus chops the IR beam created between the

photodiode and phototransistor seven times per motor revolution.

The two plates holding the optical beam source and detector are held

in place on the author’s setup with a bolt passing through the plates and

motor frame, secured in place with a wing nut. Item 3 is an arm of the wing

nut fastener that allows for easier alignment of the optical beam.

Power for the author’s setup was supplied by a heavier +/–12 V, 2 A

supply that was connected to a terminal strip mounted at the rear of the

breadboard on the aluminum sheet metal base.

Figure 10-4.  Experimental Cooling Fan Current Load Testing Setup

Chapter 10 Current Control

365

Many of the fan motors salvaged from obsolete or damaged computer

equipment are used to power seven-blade disks. If the fans being used for

these exercises do not have seven blades, enter the correct blade count into

the DAQFactory variable value expression box as illustrated in Figure 10-7.

Circuit Schematic
In Figure 10-6, the 555 timer is configured in the astable mode to produce

a continuous square wave format. A timer IC cycle starts with capacitor C

discharged, pin 2 low, and output pin 3 high. With pin 3 high, C charges

through the left side of R1 and left diode until pin 6 (threshold) reaches

2/3 V+ at which point pin 3 (output) and pin 7 (discharge) go low. With

pin 3 low, the capacitor discharges through the right side of R1 and the

right diode until C falls below 1/3 V+ at which point the output pin 3 and

discharge pin 7 go high, and the cycle repeats. Thus, C charges through the

left side of R1 while discharging through the right. By keeping the sum of

the charge and discharge resistances at a constant value, the output signal

wavelength is also constant, and only the duty cycle changes. The output

frequency is fixed according to the formula

Frequency = 1.44/(RVarbl * CTiming)

Figure 10-5 graphically displays the concept of the duty cycle and its

relationship to the frequency or wavelength as marked by the red arrows.

For power control applications such as driving a motor, the ability to

rapidly turn the power on and off in terms of very fast pulsing widths

provides a means of controlling the motor speed at the higher end of the

power application range. However, if the load being supplied with power,

via pulse width variation, is working at the lower end of the adjustment

range, a longer frequency will provide a higher degree of resolution for the

controlling of power applied. Heating circuits and low rotating speeds in

stepper motors may require longer wavelengths or lower frequencies to

provide an adequate span of control adjustment.

Chapter 10 Current Control

366

Figure 10-6.  A 555 Timer IC-Based Motor Controller with Photo
Interrupter Circuit

Figure 10-5.  Duty Cycle Concepts

Chapter 10 Current Control

367

�Software
Figure 10-7 depicts the properties Main tab for the variable value screen

component used to display the fan rotation speed. The calculation that

converts from the seven beam interruptions per fan disk revolution to the

rotation speed of the fan motor is entered into the screen component’s

expression box. The various entries into the Variable Value Component tab

of the child window, generate the RPM display box seen above the pop-up

properties window.

There is no requirement for any scripting as the counter is read, reset,

and entered once a second into the RawInputCounts channel. The value

returned as RawInputCounts[0] is corrected for the number of fan blades

on the disk and normalized to minutes.

Figure 10-7.  DAQFactory Variable Value Component Configuration
for Measurement of Fan Motor RPM

Chapter 10 Current Control

368

�Observations
With the potentiometer set to midrange, the two-wire fan motor spins at

about 2950 rpm, and the speed can be varied from 3300 to approximately

100–150 rpm before the motor stalls.

During the initial development of the optical tachometer, the pulse

train generated by the photodiode-phototransistor pair was unable to

trigger the LabJack counter, and an increased signal strength was required.

The power used to drive the photodiode-phototransistor pair was drawn

separately from the +12-volt supply using the two voltage dividers shown

in the schematic of Figure 10-6. The photodiode voltage divider produces

a nominal 5 V, and the phototransistor voltage divider produces a nominal

6 V (5.91 V). Figure 10-8 shows an oscilloscope display of the optical beam

chopper output.

A salvaged three-wire cooling fan motor from a large CPU chip was

substituted for the two-wire system, and the high-end fan speed range was

measured at 5,200 rpm. The fan speed with careful adjustment could be

lowered into the 200 rpm range and occasionally into the 150 rpm range

before the motor stalled.

Figure 10-8.  Oscilloscope Display of Optical Beam Chopper Output

Chapter 10 Current Control

369

The third wire on the chip cooling fan is usually the output from Hall

effect sensors built into the motor. The Hall effect sensors detect changing

magnetic fields, and the output from the third wire produces a series of

small spikes created by the rotating magnetic fields that can be used to

measure the motor’s RPM.

�Discussion
In this exercise, the pulse width modulation control of higher currents

required to power a motor is being demonstrated. A limited pulse width

modulation scheme based upon the astable configured 555 timer chip

has been examined in Chapter 8, and the relatively constant frequency,

variable duty cycle mode of power delivery is now being used with suitable

diode modification to extend the range of the duty cycle while keeping the

frequency or wavelength of the output square wave constant.

In Chapter 8, Figure 8-10, and in Figure 10-6, it can be seen that the

capacitor charges through R1 and a portion of R2 but discharges only

through R2, so the charging portion of the cycle can only be decreased to

the value of R1, while the value of R2 can in effect be decreased to zero for

the discharge portion of the cycle. Hence, the variation possible in the duty

cycle is controlled by the value of R1.

In simplified terms, we can see that the PWM technique we are using to

apply power to the BLDC motor changes the duty cycle from 100% down,

literally, to 0%. An overall resulting voltage change from 12 V at 100% to

6 V at 50% duty cycle to in effect 0 V at 0% duty cycle is the reason for the

erratic behavior at lower speed rotation. In the lower portions of the duty

cycle, the 12 V power is not applied for a long enough period of time for

the averaged power delivered, to be able to drive the motor, and it “stalls.”

In other words, the observed loss of control and stalling at low settings of

the controlling potentiometer are the result of insufficient power being

delivered to the motor. To achieve better control of low-speed motor

operations, a different type of motor and power control will be required.

Chapter 10 Current Control

370

This 555 PWM, optical tachometer circuit, DAQFactory SCADA

software display system was developed with a salvaged two-wire computer

tower cooling fan. A second cooling fan from a more recent large CPU

chip with a three-wire control circuit board connector was substituted into

the breadboard setup for comparison. The third wire, usually yellow (see

Figure 10-4), monitors the output from Hall effect detectors built into the

rotor/stator portions of the motor. Hall effect sensors respond to changing

magnetic fields and can be used to indicate the position of the magnets

with respect to the coils to be energized in an electronic motor control

system.

The chip cooling fan motor recovered from the author’s obsolete

equipment was a 2 1/4 in square (5.7 cm) seven-blade, 12 V, 180 mA unit

that when powered through the red/black power leads has an upper speed

of rotation in the 5,200 rpm range and stalls at rotation rates between 200

and 150 rpm.

As will be seen in later portions of this work, the recovery and reuse of

fan motors can solve, inexpensively, practical problems that arise in some

laboratory procedures.

�Stepper Motors
BLDC motors requiring electronic control of the motor power come in

two forms: the continuous duty type used to drive fans and a form known

as stepper motors. Whereas the BLDC fan motor develops its maximum

power at higher speeds with full applied voltage and stalls as the rotation

rate decreases because of decreasing voltage/power levels, the stepper

motor develops its maximum power when not rotating and loses power

as its rotation rate increases. Stepper motors derive their name and utility

from their ability to move or rotate in discrete “steps.” By controlling the

“stepping” action of the motor, exact rotational positioning and precise

low-speed rotational rates, with significant torque, can be achieved.

Chapter 10 Current Control

371

Stepper motors are built in several forms and have different

capabilities based upon the type of construction used to assemble the

motor. There are numerous good tutorials available both online (Jones

on Stepper Motors) and in the literature of both robotics and engineering

for those experimental equipment development projects requiring more

details.1

For the purposes of this current control exercise, we will limit our

discussion and experimentation to the class of motors called bipolar,

permanent magnet (PM) systems. These motors provide continuous low-

speed rotation that has definite practical applications in robotics, simple

physics, and chemical and biological laboratory procedures. Continuous

rotation can be relatively easily implemented and controlled with ICs

such as the 555 timer. Single stepping and oscillating in a back-and-forth

stepping action require additional knowledge of both the motor windings,

slightly advanced programming capabilities, and specialty hardware. The

methods for implementing controlled rotation down to the point of single

stepping are referred to in several of the exercises to follow, but oscillating

and fractional circular rotation actions are not considered in this simple

introductory section.

In order to keep the assembly of a motor power control unit in a

simple, inexpensive, and familiar format, the electronic power control

circuitry in this exercise is again based upon the adjustable, astable 555

timer circuit pulse generation but with some relatively simple additional

digital logic circuitry. The 555 timer IC can be replaced by any computer or

microcontroller capable of generating a low-voltage, adjustable duty cycle,

square wave pulse train as used in PWM control.

Permanent magnet (PM) stepper motors are characterized by having

a rotor shaft that does not spin freely as does the higher-speed BLDC fan

motor. PM stepper motor shafts, when turned by hand, with the motor

1 Introduction to Mechatronics and Measurement Systems, Alciatore and Histand,
McGraw Hill, 466 pp, 2003, ISBN 0-07-240241-5

Chapter 10 Current Control

372

unconnected to a power source, “cog” or “step” between positions of

equilibrium or rest. The number of steps required to make a full rotation

indicates the “resolution” or degree of “fineness” with which the stepper

motor rotation or oscillation can be controlled.

The stepper motor has been designed so individual coil windings

can be separately energized, thus creating internal electromagnetic fields

that, by rotation of the rotor, can establish an equilibrium position with

the internal, permanent magnet magnetic fields. By energizing coils in

a programmed sequence, the motor shaft can be made to rotate in any

manner as determined by the programming. Programs in which the

electromagnetic coils are energized in a sequential manner in order to

smoothly rotate the motor shaft in either direction are the main focus of

this simplified exercise.

Stepper motors turn at a much slower rate than conventionally wound,

brushless motors and produce significantly more torque at lower speeds.

Stepper motors do not move large volumes of air over their structure and

hence concentrate much more heat around their outer metal cases.

�Experimental
�Hardware
A solid mounting is required for the stepper motor, speed control, forward/

reverse switch, and motor power connections. The power connections

for the motor must have a means of interchanging the connections of

the individual motor coil leads to the output power transistors of the

electronic control circuitry. The integrated circuitry can be assembled

on a breadboard for ease of construction, prototype development, and

experimental demonstration. An experimental motor and hardware

mounting frame assembled with hand tools from readily available materials

is depicted in Figure 10-10 and described in detail in the following text.

Chapter 10 Current Control

373

�Circuit Schematic
As noted, for the purposes of most experimental laboratory or field work,

the control circuitry for a four-coil stepper motor need only drive the

motor in smooth, controllable, clockwise or counterclockwise, low-speed

rotation. The electronic supply should thus be able to produce a sequential

series of four, adjustable width, current pulses with sufficient amperage to

continuously step the motor through a full rotation of the rotor.

Some care must be exercised in assigning the power connections of the

stepper motor to the output transistors of the electronic power controller.

If the center tap in a five-wire motor or the taps in a six-wire motor are

connected to the positive supply, then the ends of the “first” set of tapped

coils should be connected to power output transistors 1 and 2 and the

second set of coil ends to 3 and 4. If the motor does not rotate smoothly

and respond as expected to the speed control potentiometer, then

sequentially exchange the third and fourth coil connections and retest the

motor. If the exchange does not correct the problem, exchange the first

and second coil connections, retest, and if required reverse the second and

third coil connections.

Figure 10-9.  A 555 Timer IC-Based Stepper Motor Controller

Chapter 10 Current Control

374

In Figure 10-9, an astable 555 timer, controlled by a potentiometer, is

used to generate an adjustable duty cycle pulse train. The pulse train is

used to toggle (or power) a pair of D (data)-type flip-flops that have been

configured as frequency dividers to produce the required series of four

transistor base driving signals to create the required high-current power

pulses. The data flip-flops are contained in a single CMOS 4013, 14-pin

DIP that together with the 555 timer chip can be powered by the heavier-

current 12 V power supply.

A stepper motor can be controlled by many different coil-energizing

sequences that can create high-torque single or fractional step rotations,

back-and-forth stepping motions, or smooth continuous rotations. The

low-speed, high-torque, smooth continuous rotations are the motions

with the most application in biological/chemical laboratory work, that

is, stirring and pumping liquids. To achieve the correct sequencing of

the motor coils by the four output transistors, the common center taps

of the coils are connected to the positive supply. The energizing of a coil

thus consists of grounding the end of a winding to enable current flows

from the center tap to ground. The motor can thus be made to rotate by

sequentially grounding the ends of the windings. The wiring color code on

the motor being used for this exercise may be different than that displayed

in Figure 10-9. Typical motors will have four connections to the ends of

the windings and either a common connection to the center taps or two

connections to the center taps, thus creating five- and six-wire, motor-to-

power connections.

The current flow through the individual coils is limited by the

resistance of the coils themselves. Reversing the direction of the DC

current flow through the motor coils reverses the direction of rotation.

Motor rotation is created by sequentially energizing the internal

windings of the motor to create a magnetic field. The transitory

electromagnetic field interacts with the permanent magnetic fields causing

the motor to rotate. Switching off the current to the energized coil then

creates the back EMF induced into the coil by the collapsing magnetic

Chapter 10 Current Control

375

field permeating the motor’s internal windings. The switching transistors

must be protected from the motor coils’ higher-voltage back EMF, or their

PN junctions will be destroyed. LEDs have been placed into the collectors

of the switching devices of Figure 10-9 to both protect the output power

devices and provide a visual confirmation of individual coil current

passage.

Item 1 is a Copal Electra motor mounted on an aluminum ½ in (1.2 cm)

right angle extrusion frame with an added black rubber shaft coupling

to move and partially dampen the resonant frequency. A Howard motor

can be seen to the right with mounting adapters. Item 2 is a terminal for

motor winding wires and breadboard interfacing. Item 3 is the 555 timer

chip, and the number 4 marks the position of the 4013 data flip-flop chip.

Item 5 is the row of power transistors, and item 6 is the “speed” control

potentiometer. Item 7 is the rotation direction switch, and item 8 is the

high-current power input wires.

Figure 10-10.  A Stepper Motor Test Assembly

Chapter 10 Current Control

376

�Software
�Page Components Required

The pulse train used to toggle the 4013 D flip-flops and sequence the driver

transistors can also be used to create a tachometer display for the rotation

rate of the motor (see “Discussion”). The author’s laboratory had 12 V

permanent magnet, 75 Ω, four-phase (coil) stepper motors manufactured

by Howard Industries, part number 1-19-4200, that were 3.6 degrees per

step and SP-57B motors from Copal Electra, part number 85086780, with

36 Ω coil resistance and 7.5-degree step rotations. The Howard motors thus

took an even 100 steps to complete a full rotation, while the Copal Electra

motors only required 48. As with the fan motors, the rotation speed can be

displayed on the screen with a DAQFactory variable value component. The

rate can be calculated by counting the pulses applied to the flip-flop logic,

in 1 second, then dividing by the number of steps required for a complete

rotation, and normalizing to revolutions per minute. Scripting is not

required as the calculation can be entered into the expression box for the

variable value screen component displayed as the top line in Figure 10-7.

�Observations
Moderate stepping speeds result in smooth rotation, while at low speeds

the individual steps become visible. The use of LEDs as protection from

the back EMF of the motor coils also serves as a pilot light for motor

activity.

Both of the stepper motor types with rotors unloaded pass through

certain rotational speeds that cause the motor and mounting structure to

“resonate.” The 3.6-degree Howard motor begins to vibrate at 113 rpm,

generating a severe vibration at 100 rpm and a very loud, annoying audible

Chapter 10 Current Control

377

buzz at 92 rpm, but runs smoothly and quietly at 85 rpm. When the ¼ in

(0.6 cm) metal shaft coupling from a three-piece rubber “tee” motor drive

connection was added to the Howard motor shaft, the motor displayed

a greatly reduced in intensity, but still distinct, high-pitched vibration at

92 rpm and also displayed a lower intensity and deeper pitched vibration

at 60 rpm and an even lower pitch and lower intensity resonance at

30 rpm. In any of the rotational speeds between the resonance “peaks,” the

motor ran smoothly.

The Copal Electra motor has an unloaded rotational speed range of

60–300 rpm and has a resonance “chatter” at 89–90 rpm. If the motor shaft

is loaded with the drive connector coupling, the resonance speed moves

up slightly into the 92–95 rpm range, and the motor completely stalls at

250 rpm.

Without the coupling on the rotor, it was impossible to squeeze the

shaft hard enough to stall the motor, but with the additional leverage

provided by the coupling base, the rotor could be stopped; and as the

stalled rotor pulsed, the RPM indicator still recorded a 37 rpm equivalent

pulse rate. The loss of torque with increasing RPM is evident with the

Howard motor, but the Copal Electra with the added mass of the coupling

stalls if speed settings for over 250 rpm are selected.

In addition to slow-speed mixing and blending in laboratory

experimental work, stepper motors are also uniquely suitable for

controlling the delivery rate from peristaltic pumps. By altering the value of

the RC timing constant in the 555 astable configuration, the author’s Copal

Electra could be slowed to 5–6 rpm with a 1.0 uF capacitor and the 27 kΩ

resistor of Figure 10-9; and by changing both the resistance and capacitor

to 296 kΩ and 1 uF, the motor continuously single-stepped through its 48

increments at 1 rpm.

Chapter 10 Current Control

378

�Discussion
The flexibility and desirable low speed properties available with stepper

motors are achieved at the expense of significantly increased complexity in

control circuitry. The required sequential generation of current pulses for

smooth continuous motor rotation can be created with the D-type flip-

flops as used in this exercise or with chips designed as shift registers such

as the 74LS194 and CMOS 4035. Details for using the shift registers are

available both online2 and in the printed literature for the nominal ICs.

The design of stepper motors is such that maximum torque is created

when the rotor is stationary. With the system created for this exercise, the

rate of rotation can be slowed to 1 rpm at which rate each individual step

of the motor takes 1/48 of a minute or 1.25 s. At the slow rate of 1 rpm, the

Copal Electra motor used in the exercise is close to delivering its maximum

available torque. Discrete, arbitrary time stepping or holding positions are

useful in robotic control systems and require much more sophisticated

programming capability in the power control system than is provided by

the potentiometer-controlled 555 pulse generator used in this portion of

the exercise.

Resonance is a problem with stepper motors, and continued operation

of the motor while in a resonating mode will greatly reduce the service

life of the motor by increasing the rate of mechanical deterioration of the

rotating components. The motor should be operated off of the resonant

speed, or if the resonant speed is important, then special mechanical

mounting techniques, gearing, or changes in rotating mass may need to be

built into the experimental apparatus to deal with system resonance.

The speed of rotation of the motor shaft can be measured

electronically by using the DAQFactory, default data collection rate, of 1

second for the LabJack counter channel, applying the number of steps

required for one revolution of the rotor shaft, and adjusting the values of

2 http://www.electronics-tutorials.ws

Chapter 10 Current Control

http://www.electronics-tutorials.ws

379

the data to be displayed to the desired time units. The formula required

to convert the pulse rate into a numerical display in a screen “variable

value” component can be entered into the formula box of the screen

component as seen in Figure 10-7. The use of the pulse rate to determine

the motor shaft rotation speed uses an implicit assumption that the

motor is not “slipping” as it rotates, which may happen at the higher

end of the motor’s rotation rate speed range or if the “load” being driven

increases significantly. If slippage is a problem or the actual rotation of

the experimental setup is to be monitored, then the photo interrupter

tachometer method should be used on the moving load.

Stepper motors have their greatest utility at low-speed rotation or as

rotatable positioning agents, and if lower speeds of rotation are required,

the time constant of the 555 astable can be increased to widen the space

between pulses applied to the flip-flops. The slower the speed of rotation,

however, the more pronounced the “stepping” action of the motor’s

rotation.

�Control of AC Current Sources
�Introduction
Alternating current (AC) sources are often referred to as “mains.” In

North America, the mains or “household current” is supplied at a

nominal 120 volts peak-to-peak or 115 V root-mean-square (rms) at

60 Hz, while in Europe and other areas of the world, it is 220 V (rms) at

50 Hz. A substantial number of the early alternating current supplies

were generated by hydro-electric facilities where water turbines spun

electric generators that created forward and reverse current pulses at these

relatively low frequencies.

Chapter 10 Current Control

380

Low-voltage DC currents are virtually harmless, but “mains” voltages

and currents easily start fires that burn buildings to the ground, cause

severe painful burns, and produce potentially lethal electrical shocks.

In keeping with the lethal nature of high-voltage, high-current

electrical energy, solid-state systems have been developed for both

controlling the dangerous high power levels and isolating them from the

low-voltage control circuitry.

The advantage of AC current, when properly isolated from the

controlling circuitry, lies in the ability to power motors, illumination

fixtures, and heating elements directly without any need for conversion

into DC prior to usage. Mains or AC electrical power cycles from zero to

a maximum forward value and then decreases back to zero rising to its

maximum reverse value before decreasing back to the zero value, thus

completing the cycle. AC power is usually controlled with thyristors or

four-layer P-N-P-N semiconducting components fabricated into either

of two types of device: the silicon-controlled rectifier (SCR) whose

conduction can be regulated for half of the AC cycle or the triac that can

control conduction for the full AC cycle. SCRs and triacs have limited

frequency response and hence are used mainly at 50–60 Hz but are

serviceable up to 400 Hz AC power frequencies. The SCR is a multilayered

diode with a “gate” that allows the diode to be switched from a blocking to

a conducting mode at any point in its normally conducting portion of the

AC waveform. By placing two SCRs in parallel but conducting in opposite

directions to form the silicon bilateral switch or triac, it becomes possible

to control the forward and reverse cycles of the AC power waveform from

the signals applied to a common gate.

As noted, both SCRs and triacs are diode-type devices, fabricated

with gates that allow the circuit designer to control one or both directions

of the passage of AC power cycles through the device itself and hence

through the load. ICs have been developed that use photo-diodes optically

coupled to a silicon bilateral switch to provide a means of optical isolation

for separating gate control circuitry from the high-energy AC power

Chapter 10 Current Control

381

flowing through the silicon switching devices. Optical isolator chips are

available in two formats consisting of devices that transmit a control

signal to randomly begin conducting and devices that are able to detect

the zero-crossing point of the main power signal. If the AC power cycle is

randomly “chopped,” radio frequency interference (RFI) or more general

electromagnetic interference (EMI) can be generated, and filters must be

used for suppression of the unwanted radiation. Zero-crossing detector

circuitry that turns the AC controlling device on and off only at the zero-

crossing point minimizes the generation of significant RFI.

Random-phase or zero-crossing, optical isolation integrated circuitry

operates from low-voltage DC sources, so if standard digital logic circuitry

is to be used with triac control of mains AC power, then a source of the

required DC power must be available. Batteries or the simple dedicated 5 V

supply illustrated in Figure 10-11 may be used.

The use of solid-state devices to control AC power provides the

researcher with two methods for using the energy. In the first and simplest

method, the full AC voltage can be applied to the load, and the time at

which the full current is allowed to flow is varied. The second form of

Figure 10-11.  A Typical AC to 5-Volt DC Output Power Supply

Chapter 10 Current Control

382

control involves varying the voltage applied to the load. The AC voltage

cycles between 0 and 120, and the solid-state switching devices can be

used to apply any portion in the cycle (between 0 and 120 volts) to the

load, 60 times a second. The AC waveform is a sinusoidal phenomenon in

which the voltage magnitude follows a sine curve. By selecting a portion

of the waveform to apply a voltage to the load, the power control is called

“phase angle control.” Voltage variation is somewhat complex and should

be used only when required. By applying the full AC voltage to the load

and varying the time of full power application, the power delivered to the

load can be controlled, and the radio frequency noise generated is greatly

reduced and minimized when zero-crossing switching is used.

Pulse width modulation concepts introduced in Chapter 7 and applied

previously in a motor control exercise are usually applied in DC power

systems but can also be used to exert a rudimentary coarse control of AC

power.

The optical isolators used in this portion of the exercise are random

and zero-crossing units.

�Experimental
�Hardware
A 60 to 15 watt incandescent light bulb is a good visual demonstration load

for this AC power control exercise. The socket for the bulb and a mounting

bracket for holding a potentiometer control, while serving as a heat sink

for the triac mount, along with a terminal block and the breadboard

for mounting the controlling circuitry, should all be affixed to a sturdy

wood or metal base as depicted in Figure 10-12. Recalling the dangers

associated with AC mains voltages and currents, all of the wiring carrying

mains power must be securely fastened, properly insulated, and covered

according to local electrical building codes. Insulation on wires carrying

Chapter 10 Current Control

383

mains power should be carefully cut to ensure no bare wire surface is

exposed after the screw terminal connection on the terminal block is

tightened. All exposed wire surfaces or soldered connections carrying

mains power must be insulated with liquid plastic insulator, silicone

sealant, or heat shrink tubing. Never power up any circuit with exposed

conductors carrying mains current.

The numerical designations in the author’s experimental setup

(Figure 10-12) are explained in the following text.

Item 1 is a 60 W light bulb in an electrical code compliant receptacle

properly mounted on a ¾ in (1.8 cm) high-density fiberboard. Item 2

is a 250 VAC terminal board with approved cord and plug (N.B. cover

removed for clarity). Item 3 is a 400 VAC, 6 A, BTA06 STMicroelectronics,

TO-220 tabbed triac on its heat sink, with heat-shrink wrapped conductors

eliminating exposed conductor surfaces. Item 4 is the duty cycle control

potentiometer, and item 5 is the optical isolation triac control ICs used

in the demonstration exercises. The number 6 marks the position of the

bipolar 555 timer, and item 7 is the 9 V battery power supply.

The 60 W bulb initially used as a visually active experimental load was

subsequently replaced with a much cooler-surfaced 15 W bulb often used

as an interior light in home appliances.

Chapter 10 Current Control

384

�Circuit Schematic
Figure 10-13 is a typical block diagram representing an experimental setup

for control of AC mains power with a triac and optical isolator.

Figure 10-13.  Triac and Optical Isolator AC Current Control

Figure 10-12.  An AC Current Control Test Apparatus with an
Incandescent Light Bulb

Chapter 10 Current Control

385

For this exercise, a manually controllable, DC pulse source can be

assembled from a 555 timer configured for astable operation with its duty

cycle controlled manually, through a potentiometer diode network, as

used previously for a 90% range of duty cycle variation.

The circuit diagram in Figure 10-13 has been drawn in a configuration

using the Fairchild semiconductor MOC 3022 that may be powered from

either a 5 V supply or a 9 V battery when a suitable current limiting resistor

is used in the MOC 3022 internal LED illumination circuit. Controlled AC

power is applied to the load circuitry by energizing the low-voltage pulse

generation circuit and then plugging in the AC power cord to the mains

supply.

The circuit of Figure 10-13 has been drawn with a MOC 3022 random-

phase optical isolator triac driver in place. The MOC 3061 zero-crossing

device can be used in the same manner as depicted in Figure 10-14.

In order to conduct an important visual display of the resultant effects

of the application of a pulse width variation technique to an AC current

control, the circuit depicted in Figures 10-12, 10-13, and 10-14 should be

built on a prototyping breadboard with the components in Figure 10-14.

After assembling and examining the effects on the light bulb filament

of altering the duty cycle of the 555 timer with the 0.1 μF capacitor in the

timing network, the capacitor should be changed to a 1.0 μF unit and the

duty cycle varied over the available range again.

Although the circuit being assembled is for demonstration only, it

is good practice to use low-leakage plastic film or ceramic capacitors in

timing operations.

Chapter 10 Current Control

386

�Software
No screen display page components or scripting is required for this

exercise.

�Observations
A handheld multimeter able to measure frequency in Hz was used to

measure the output frequency of the 555 timer circuit square wave that

was found to be approximately 75–124 Hz for the 0.1 μF capacitor and

8–12 Hz for the 1.0 μF unit.

The initial setup assembled on a breadboard with a 0.1 μF in the timing

circuit and using the MOC 3022 was able to vary the brightness of the lamp

from about half power to full on. At the half-on power setting that was near

the end of potentiometer rotation, the lamp flashed and flickered, and the

timer output was found to erratically move between 75 and 82 Hz.

Figure 10-14.  A 5-Volt 555 Timer IC Control of Line Power

Chapter 10 Current Control

387

Replacement of the timing capacitor with a much larger 1.0 μF unit

greatly lowered the 555 timer pulse rate frequency range from 12.6 Hz to

7.6 Hz. At the full rotation of the potentiometer to the 12.6 Hz position, the

lamp is fully lit and does not flicker. Rotation of the potentiometer to the

point at which the frequency meter reads 7.8 Hz causes a visually smooth

decrease in the lamp luminosity and a concomitant increase in erratic

lamp flickering until at the low end of the frequency range the lamp is

essentially off but flickers with an erratic, very-low-level luminosity.

Although the PWM on/off power application of the AC line voltage

through the optical isolator was able to roughly regulate the energy

delivered to the lamp, the system does not function as a smooth lamp

dimmer, but could work for non-lighting applications.

�Discussion
A majority of the world’s electric power grids carry energy created from

rotating generators driven by water, steam, or more recently wind turbines.

AC electrical energy can be passed through transformers for conversion

to high-voltage forms for transmission over great distances and converted

back into high-current relatively lower voltages forms for consumer use.

Most of the world’s power grids are operating at AC frequencies of 50 or

60 Hz.

For dissipative use as in incandescent or fluorescent lighting, heating,

or turning electric motors, the AC power can often be used as received

from the power distribution grid with minimal alteration.

Triac control of the power being applied to the incandescent bulb load

in the demonstration circuit is controlled by the pulse rate delivered by

the battery-powered 555 timer. The timing network used in the 555 timer

astable mode of operation as shown in Figure 10-14 is able to allow the

duty cycle to vary from approximately 5 to 95%. Thus, the power delivered

to the load is variable over a considerable range but never turned fully off

nor fully on.

Chapter 10 Current Control

388

For the simple purposes of non-inductive or strictly resistive usage

of AC currents, the various forms of describing AC as rms (root-mean-

square), peak-to-peak, or average can be used in the basic electrical

calculation formulas but must be used consistently and cannot be mixed.

If rms is used in Ohm’s law, then all the values for voltage and current must

be in unit values of rms.

If the lamp were replaced with a heating element inside a closed,

insulated container, the heat produced could be crudely regulated by the

on/off ratio controlled by the potentiometer that would in turn coarsely

regulate the temperature. Recalling the graphic data of Figure 10-5, it can

be seen that the span of the duty cycle is the span of control available by

using pulse width variation.

Only very simplified AC circuit analysis and electromagnetic

interference (EMI) are being examined in this exercise. AC electronics is

frequency dependent and becomes very complicated as the frequency

increases. In any experimental work involving higher frequencies such as

is found in communications, induction heating, and nuclear magnetic or

electron spin resonance spectroscopy, the literature must be consulted for

much more specific and detailed information.

If circuits are to be protected from either generating or picking up EMI,

they must be totally isolated from radiation by being completely encased

in grounded metal boxes. If the circuits draw power from the grid, then the

grounded metal boxes and their wiring must, for safety, conform to the

local electrical building codes.

In most of the power control applications examined thus far, DC current

has been involved, and hence there is no frequency component to be

considered. However, an attempt to use PWM techniques with an alternating

current power delivery at a fixed frequency of either 50 or 60 Hz immediately

places limitations and restrictions on the nature of the PWM methodology.

In the circuit diagram depicted in Figure 10-14, a circuit has been built

with a center-tapped potentiometer that can allow a resistance variation

of approximately 50 kΩ. Examination of the expanded nomograph

Chapter 10 Current Control

389

in Figure 9-1 suggests that for the 50 kΩ–0.1 μF combination, the

experimenter should expect the timer to oscillate in the hundreds of Hz

range.

Recall that the potentiometer diode arrangement is used to allow the

variation of the duty cycle with only minor changes in the frequency of

oscillation. If power is being delivered to the load through a triac device

that is allowing current to flow in a manner oscillating at 50 or 60 Hz, then

a tenth of a second the load will see five or six power cycles. If the 555 timer

is turning the IR diode in the opto-isolator on and off hundreds of times per

second, the triac will appear to be on for a substantial amount of the time.

If the frequency of the timer pulse train is lowered to 10 Hz, then

the duty cycle variation can be made to span five or six power cycles of

the power oscillating through the triac. Figure 10-15 depicts a tenth of

a second time span in which the five power cycles are marked with the

points that would switch the IR diode off at the nominal duty cycle settings.

Figure 10-15.  A Tenth of a Second Graphical Representation of
a 50 Hz AC Power Supply and a 10 Hz 555 Timer IC Variation of
Output Duty Cycle

Chapter 10 Current Control

390

As noted previously, at the higher frequency, the light bulb is brightly

illuminated most of the time and can only be dimmed slightly and flickers

erratically. At a frequency approximately ten times lower, the bulb can be

dimmed over its entire range of illumination but flickers as the luminosity

decreases to zero.

A further extension of the PWM method with AC systems is used in

power control applications in which the frequency of the on/off switching

is measured in seconds and minutes. Long time duration PWM power

controls are often used in heating control applications where a large

thermal mass exhibits a large time lag between the application of power

to the heater element and an increase in temperature is seen in the mass

being heated. AC-powered heating systems with large time delays can be

calibrated and a PWM control system established.

A PWM system can be employed to precisely control the power delivered

to a load through using semiconductors to pass only small portions of

the power cycle to the load in a technique known as phase angle control.

However, phase angle control involves establishing and coordinating the

zero-crossing point in both of the power cycle and the PWM control signal

that is beyond the simple introductory nature of this exercise.

�Current Control with Raspberry Pi
and Python
�Introduction

�Control of Larger DC Currents
As has been pointed out in previous exercises, the RPi has a limited ability

to supply any sizable currents from the GPIO pins. Higher currents from

external sources can however be controlled from some of the pins on the

RPi array.

Chapter 10 Current Control

391

An excellent summary of current control hardware and circuitry is

collected online.3

High-current DC, in the 30–60 A range, can be controlled with

metal oxide semiconductor field effect transistors (MOSFETs) such as a

FQP30N06L from ON Semiconductor or Fairchild. FET semiconductors

often require a strong signal to enter into the conduction mode, and hence

the experimenter using the GPIO array as a controlling source must make

sure that the FET transistor selected is compatible with the 3.3 V available

from the array pins. The L in the FQP30N06L indicates a device with a gate

compatible with low-voltage control signals.

Moderate current handling capability can be realized with Darlington

pair transistors schematically depicted in Figure 10-16.

Bipolar junction transistors (BJTs) are current control devices. The

main current through the device flows between the collector and emitter.

Current flow between collector and emitter is controlled by the much

smaller base current. Amplification of the base current makes the BJT a

sensitive device able to amplify very small, weaker signals from sensors

3 https://elinux.org/RPi_GPIO_Interface_Circuits.

Figure 10-16.  NPN Darlington Pair Transistors

Chapter 10 Current Control

https://elinux.org/RPi_GPIO_Interface_Circuits

392

such as solar cells and thermocouples. The device fabricated from

Darlington pair transistors is able to amplify the current in proportion to

the product of the two amplification factors for the transistors in the pair.

The dual-transistor assembly is also significantly more sensitive to base

current than the single transistors used to create the device.

Two common Darlington pair transistors are the TIP 120 and 122 that

are available as tabbed, three-terminal devices, in the TO-220 package.

The devices are able to work at up to 60 and 100 V, respectively, and, with

proper heat sinks, can operate with 5 A currents.

�Experimental
�Non-inductive Loads
To demonstrate a current control technique with the GPIO array of the

RPi, a Python-tkinter GUI screen slider control will be used to manage

the power from a 12 V supply illuminating an automotive incandescent

lamp. The incandescent lamp is purely a resistive load and hence requires

no diodes to bypass the destructive voltage spikes generated by inductive

loads such as motor coil windings.

A TIP 122 Darlington pair transistor and a resistor were mounted on a

prototyping board and connected to the 12 V battery power supply and the

automotive lamp. The current control demonstration circuit is depicted in

Figure 10-17.

Chapter 10 Current Control

393

The automotive lamp was found to draw 1.25 A from a 6 V source at

a bright red heat that corresponds to a filament resistance of 4.80 Ω. The

expected current draw at full power with a 12 V supply should thus be

approximately 2.5 A well within the manufacturer’s recommended 5 A

capacity for the TO-220 package.

The Python-tkinter GUI slider control as created by Listing 10-1 is

depicted in Figure 10-18.

Figure 10-17.  Circuit for Incandescent Light Current Control

Chapter 10 Current Control

394

Figure 10-19 is a detailed view of the tkinter scale or slider power

control icon. Arrow captions and percentage numerical quantity identifiers

have been applied to the image by the author while the text and immediate

slider value number are created by the appropriate entries made in Listing 10-1.

Extended detail has been added to Figure 10-19 to aid in describing the

embedded features of the tkinter icon in the “Discussion.”

Figure 10-18.  A Python-tkinter GUI Sliding Power Controller for
an Incandescent Lamp Load with Console Value Display of PWM
Percentage

Chapter 10 Current Control

395

�Observations
The sliding scale widget depicted in Figure 10-19 performs as expected

with the lamp filament completely off with the slider to the extreme left

of the trough and at a yellow-red incandescence with the slider at the

extreme right. The variations in filament intensity were similar to those

observed in Chapter 7, Figures 7-7 and 7-9.

The scale or slider control must be moved slowly in order to follow the

changing positional values. The icon has a much finer degree of control as

detailed in the “Discussion” section.

�Discussion
All circuitry wiring carrying hundreds of milliamps and amperes of

currents should be properly connected with soldered joints or tight

mechanical connections and insulated to prevent short circuits. High

current discharges from short circuits even at low voltage can produce very

high heat arcs that melt metals, ignite combustibles, and cause painful

burns.

Figure 10-19.  A tkinter Scale or Slider Screen Icon Controller for the
RPi.GPIO PWM Library Function

Chapter 10 Current Control

396

Tkinter is a Python library that enables the implementation of a

number of icons for assembling an active, custom SCADA GUI for the RPi.

A substantial amount of functionality is built into the icons available from

the tkinter collection.4

In many tutorials on using tkinter and other GUI creation libraries, the

icons such as buttons, sliders, scroll bars, and other screen icon devices

are often referred to as “widgets” and given the symbol w in programming

code.

In Listing 10-1, a tkinter instance of a window is created and set to the

designator of master. The interior of the master window is scanned for

mouse-activated events by the mainloop() function. Widgets are created

on-screen or instantiated in code within the actively scanned area of the

master window to accomplish the task at hand. If the widget in the window

must communicate with the Python program in which the tkinter window

is running, a “callback” function must be invoked to communicate with

code outside the active area of the master window.

In simplified terms, it can be said that each widget is displayed inside

a small window on the monitor display screen. The space inside the small

window is scanned by the tkinter program looking for mouse click “events''

that may occur within the frame. Mouse clicks or mouse button clicks can

be used to drag the edges of screen objects to resize them, activate their

display controls, and minimize, maximize, or exit from the program.

An ability to communicate with the Python code in which the tkinter

window and widget are running allows the experimenter to gain access

to the RPi serial port and as is detailed in Chapter 11 connect the screen

widget to electro-mechanical systems for SCADA operations.

Figure 10-18 depicts the RPi screen obtained when Listing 10-1 is

launched with the diagnostic print statement in the callback function

active. The print statement causes the numerical position of the slider

index that appears over the index line on the slider button to be printed

4 effbot.org/tkinterbook/

Chapter 10 Current Control

https://effbot.org/tkinterbook/

397

to the Python console. The line containing the print statement in the

scale or slider program’s callback function can be commented out after

code operation has been validated or when not needed for error tracing

diagnostics.

Figure 10-19 has arrow captions that denote the two extreme values

to which the indicator slide can be dragged with the mouse cursor and a

clicked left mouse button. If the experimenter needs to finely set the PWM

value from the screen icon, the index button can be dragged to the desired

approximate position and then adjusted to the final desired position with

the cursor tip. If the slider index button is to be increased in value by single

digits, the cursor tip is placed on the top edge of the slider trough between

the slider button and the 100% end of the slider scale and single-clicked

for each desired single-digit increase in the index button position. If from

the rough positioning the index value is to be decreased, the cursor tip is

placed between the index slider button and the 0% end of the scale and

single-clicked to the desired final position.

�Power Control to Inductive Loads
�Introduction
A RPi controlling a TIP 122 as depicted in Figure 10-17 can be used to

control the power delivered to a brushless DC motor as depicted in

Figure 10-4, but the coils in the motor are an inductive load and produce

a back electromotive force (EMF) in the form of a voltage spike, when the

magnetic field enveloping the coils collapses. To prevent the back EMF

from destroying the PN junctions in the power transistor, a suitably sized

diode should be placed in parallel with the load.

RPi PWM signals from the scale-slider GUI described previously

could be used to replace the 555 timer–potentiometer power control to a

transistor used to regulate the current delivered to a brushless DC

Chapter 10 Current Control

398

motor and hence manage the speed of the motor as seen in Figure 10-4.

A Python break beam RPM monitor could also be set up using the circuitry

described in Chapter 8 to monitor the motor speed and thus duplicate the

DAQFactory exercise in terms of the RPi-Python combination.

However, rather than perform a translation from one system to

another, a very useful higher-current delivery demonstration that does

not use PWM can be developed with the RPi and Python to power stepper

motors.

�Experimental
Stepper motors can be inexpensively controlled from the RPi with a

single ULN2803 or ULN2804, eight–Darlington pair array IC ($3 CDN).

A ULN280n consists of an eight–Darlington pair array of power transistors,

in an 18-pin, dual in-line package. (DIP) The IC array has been fabricated

with the bypass diodes already in place for use in driving inductive loads.

Each of the Darlington array transistor pairs is an “open collector”

configuration in which the transistor is acting as an on/off switch. In the

open collector configuration, the device to be powered is connected to the

positive side of the power supply and the open collector of the transistor.

The emitters of all the pairs share a common connection to the negative or

“ground” terminal of the RPi GPIO array and the #9 pin on the ULN280n

IC as seen in Figure 10-20. Toggling the GPIO pins between high and low

switches the current flow through the motor coils and indicator LEDs on

and off.

As has been repeatedly suggested in numerous previous exercises, the

circuitry in which the ULN2803 is to be used should be built up, tested, and

validated from basic first principles to a completed working final electronic

power controller configuration. The RPi program should be developed to

run a series of four LEDs connected to the ULN280n prior to being used in

an attempt to connect to and power an actual stepper motor.

Chapter 10 Current Control

399

A standard application of the ULN280n IC array has been modified

with the addition of four LEDs to the basic circuit used for the control of a

stepper motor. A four-LED array aids visually in assembling and validating

the stepwise implementation of this complex system.

Figure 10-20 is a semi-schematic diagram of a connection in which

the RPi GPIO array is interfaced through a power controlling IC to an

illustrative stationary four-coil, multiple permanent magnet rotor, stepper

motor.

As can be seen in the preceding figure, the toggling of GPIO 18 with a

Python code taking the #1 pin on ULN2803 high and then low will cause

a current pulse through the A-E stationary coil creating a magnetic field

and illuminating the first diode. A transient pulse of current through the

Figure 10-20.  Schematic for Stepper Motor Control with a
ULN2803

Chapter 10 Current Control

400

coil will create a localized magnetic field that will cause rotor rotation to

a position in which the nearest permanent magnetic pole of the opposite

sign aligns with that of the transient in the stationary motor coil. If the

Python code controlling the GPIO array now delays for a short period of

time to allow for rotor rotation and field alignment before repeating the

logic high/low toggling action on GPIO 23 to pulse a current through coil

E-B and illuminate the second diode, a second “step” of rotor rotation will

occur. Repetition of the toggling action interspersed with short time delays

for GPIO array pins 24 and 25 will illuminate the third and fourth diodes as

the stepper motor shaft completes one rotation.

In simplified terms, it can be said that to control the stepper motor

from the RPi GPIO array with the circuit of Figure 10-20, the experimenter

must assemble a Python program to sequentially illuminate the LED array

as described in Chapter 3 and in Listings 10-2 and 10-3 provided at the end

of this chapter.

Figure 10-21 depicts one of the author’s experimental configurations

on a prototyping board.

Chapter 10 Current Control

401

In Figure 10-21 item 1 is a Model 3 Raspberry Pi with the appropriate

GPIO input pins connected to the first four channels of the ULN2803 black

DIP mounted in the center of the prototyping board (item 2). The power

control IC output pins are in turn connected to the four input pins of the

stepper motor wiring harness seen in the upper right-hand corner of the

prototyping board, while four additional wires power the green LED array

seen in the upper left-hand corner of the board. An arrow points to the

illuminated LED in the array. Listing 10-2 is presented as a diagnostic

utility that illuminates a designated LED, but in reality, with the circuit of

Figure 10-20, it “single-steps” the stepper motor. Listing 10-3 written as a

continuous “single stepping” extension of Listing 10-2 in reality provides

fundamental control over stepper motor actions from the RPi GPIO array.

Figure 10-21.  Experimental Setup for Stepper Motor Driver Python
Program

Chapter 10 Current Control

402

Item 3 is a USB hub with a thumb drive, and item 4 is a low-power

28BYJ-48 geared stepper motor. The slowly moving motor shaft has a

transparent tape “flag” with black pen marker lines to aid in displaying

shaft rotary motion. Also seen in the figure is a GPIO pin position and

identification aid that helps in pin location during the complex hookup

wiring as seen in Figure 10-21.

Figure 10-22 displays a very inexpensive ($19 CDN) board-mounted

stepper motor and IC driver. A 28BYJ-48 motor (item 1) on the board is

widely used by hobbyists and can be used for this exercise. The small

stepper motor module is widely available from most hobby or electronics

stores and online suppliers. Item 2 is the motor wiring harness, and item 3

is the array of input pins to connect to the GPIO array on RPi.

Figure 10-22.  A Commercially Available SMT Stepper Motor Driver
Module

Chapter 10 Current Control

403

Although presented in a very simplistic manner, stepper motor control

is not a trivial matter; and in keeping with the introductory nature of this

work, the investigator is referred to the written and online literature for the

explanations and computer code for dealing with the advanced topics of

stepper motor controls as listed in the “Discussion” section of this topic.

A four-unit, D cell battery pack, charged with four alkaline cells, was

initially used by the author to provide a 6 V output and a 12,000 mAh rating

to power a larger stepper motor during wiring validation and rotation

testing. Subsequently a geared stepper motor (approx. 1:64, actually

63.6839:1) commonly used in robotics and available from numerous

mail-order sources as a model 28BYJ-48 ($5 USD) was used to develop

the motor driver programs in the code listings for this exercise. The small

stepper can be powered with 5–12 V and is reportedly capable of 15 rpm

with a DC coil resistance of 50 Ω that at 5 volts should draw 1/10 A well

within the RPi 5 V output current capability of slightly below an ampere.

The motor weighs 30 gm and is encased in a metal housing with two screw

mount lugs for easy positioning on experimental setups.

�Observations
In keeping with the previously noted philosophy that a working complex

system is assembled from simpler, tested, and operationally validated sub-

components, the following procedure was invoked.

After an initial configuration of the ULN2803, the motor, and the

GPIO array physical pin connections in accordance with that depicted in

Figure 11-20, the LED illumination program of Listing 10-2 was run with a

2-second delay once for each of the GPIO values of 18, 23, 24, and 25 (array

physical pins 12, 16, 18, and 22; recall the array is counted across not along

the row). As each GPIO connection was enumerated, the corresponding

LED illumination was visually confirmed to validate the RPi GPIO

connection to the appropriate motor coil leads.

Chapter 10 Current Control

404

After the system validation with the individual LEDs, the second

program of Listing 10-3 using a while loop to step through the four coil

connections was launched with the same 2 s delay as used previously to

validate the correct sequential activation of the motor coils and confirm

the rotation of the stepper motor.

A 2 s time delay produces a very small step in the highly geared motor,

but decreasing the time delay to 1/8 of a second induced a slow but

distinct stepping action.

�Discussion
Listings 10-2 and 10-3 are rudimentary codes that are designed to

demonstrate to the investigator how a stepper motor works and is

controlled. To expand motor applications, the experimenter can reverse

the motor’s continuous rotation by sequentially activating the coils in the

reverse manner than is presented in the rotation programs. To drive

the stepper motor into a positional service in which the rotor steps a

fixed number of increments in a clockwise or counterclockwise rotation,

the correct coil-energizing code can be enclosed in a Python do loop

construct.

There are a significant number of different actions that can be

programmed into a stepper motor that are beyond the simple codes

presented here to implement forward and reverse continuous rotation

and speed variation that are detailed in the large engineering and robotics

literature on stepper motors that should be examined for more complex

stepper motor applications.

For applications or experimenting with larger stepper motors such as

those salvaged from obsolete equipment, a separate power supply and

heavier current draws may be required to achieve motor rotation. The

GPIO array can be used to activate either Darlington pair transistors or

heavier MOSFET devices, but both of these types of transistor must be

Chapter 10 Current Control

405

protected with bypass diodes to avoid semiconductor destruction by the

back EMF from the motor coils. Heavier current draws by larger systems

may also require heat sinks for the semiconductors in use.

�Control of AC Currents
�Introduction
Python and the RPi can be used to demonstrate the limited PWM control

of AC electrical energy with the same, very inexpensive ICs used with the

DAQFactory programs as listed previously. Multiple ampere triac devices

capable of over 400 VAC operation and optical isolation devices can be

obtained from mail-order houses for less than $2. An incandescent light

bulb powered from the 110 V AC line can be used as an electrical load for

the RPi demonstration as illustrated in Figure 10-12 with these inexpensive

components.

For safety and compliance with the law, all wiring involving line

electrical energy must be completely covered or insulated when assembled

in accordance with local electrical wiring and building codes.

�Experimental
Figure 10-23 depicts the circuit to be used to control the AC power

delivered to the incandescent light bulb load. The BTA06 triac should be

mounted on a heat sink sufficient for the passage of current that will be

used in the load selected for the exercise. Small incandescent lamps for

the interiors of domestic cooking ovens can be obtained in small wattages

down to 15 watts.

Chapter 10 Current Control

406

The circuit of Figure 10-23 has replaced the 555 timer and

potentiometer of Figure 10-13 used in the DAQFactory line power control

exercise with the pulse width modulation control function available from

the RPi. The GPIO pin has sufficient power to not only drive the triac gate

but also simultaneously drive an optional LED “pilot” light and its current

limiting resistor connected to the GPIO 21 pin and ground immediately

before the 220 Ω resistor protecting the input to the MOC 3061.

As noted, the RPi.GPIO library contains the functions necessary

to apply a PWM signal from the GPIO array with sufficient power to

illuminate a 5 mm LED. An internal LED in the MOC 3061 is used to turn

on the triac and thus pass power to the lamp filament to light the bulb.

Listing 10-1 is the PWM program for this power control. The listed

program generates the scale or slider widget depicted in Figures 10-18 and

10-19, and the duty cycle is determined by the scale or slider horizontal

position.

A RPi.GPIO library implementation of a PWM power control operation

involves the selection and setting of a number of variable parameters. The

operator must select the frequency of the PWM pulse train and the initial

duty cycle of the control signal and manually insert the selections in the

two lines of code listed in the following. Once the selections are entered

Figure 10-23.  110 VAC Line Control for Raspberry Pi

Chapter 10 Current Control

407

into the code, the program can be run, and the slider button will apply the

custom configured PWM power control signal to the triac controlling the

power illuminating the lamp:

pwm = GPIO.PWM(18, 500) # PWM signal on pin 18

set to 500Hz

pwm.start(0) # initial starting value for the duty

cycle

To demonstrate the difference between PWM power control with

DC and AC power supplies, the slider or scale program is run starting

with a typical default PWM frequency of 500 Hz. When the slider icon is

displayed, the lamp should be cycled through its 0–100% power cycle, and

the effects realized with the power control technique noted.

To accumulate more data to evaluate the effect of the different PWM

frequencies on the AC power delivered to the lamp, the frequencies

of the PWM signal can be manually halved from the line frequency

approximation of 64 Hz down to 8 Hz, and notes on the effects seen on the

light bulb illumination can be collected.

�Observations
Table 10-2 tabulates the semi-quantitative effects seen in the illumination

of the small AC-powered light bulb at the various nominal PWM

frequencies.

Chapter 10 Current Control

408

Luminosity was semi-quantitatively measured with a photographic

light meter by measuring the dial indicator displacement from its zero

position at a fixed distance from the illuminated light bulb.

�Discussion
A PWM frequency variation study is possible with the RPi and the RPi.GPIO

library because the PWM frequency is software and not hardware controlled.

As can be seen from Table 10-2, the optimum correlation between

PWM frequency and power delivery to the light bulb appears to occur

between 16 and 32 Hz.

Attempts to apply PWM control methods to a 60- or 50-cycle AC power

source are only coarsely effective when the PWM signal wavelength is

equal to or larger than the wavelength of the power delivered to the load.

As indicated by the data tabulated in Table 10-2 and depicted in

Figure 10-15, when the PWM signal is applied to an AC power source with

a wavelength shorter than that of the control signal, the PWM function can

Table 10-2.  110 VAC Light Bulb Luminous Output at

Nominal PWM Frequency

Chapter 10 Current Control

409

exert a coarse control over the power delivered to the load. A low-intensity

lamp flicker at low PWM values can be caused by the control signal turning

the power signal on at its maximum point in the power cycle. As the length

of the PWM signal increases, the power signal is able to cycle through one

or more complete cycles; and as observed in the experiments, the flicker or

flashing dies out as the PWM signal approaches 100% duty cycle.

The investigator will see both light flickering of variable intensity and

flickering from completely off to full on evident in virtually all the PWM

frequency variation experiments conducted. The lack of coordination

between the phase angles of the two signals creates completely random

flickering and cyclic pulsing of the lamp intensity in the very responsive

low-mass lamp filament.

As noted previously, in order for the PWM signal to be used to

modulate or control the application to the load of only a portion of the AC

waveform called phase angle control, complex additional circuitry must

be in place to detect and coordinate the zero-crossing point of both the

power supply wave and the PWM signal. A variation of PWM control of an

AC power source can be used for heating and other long-term applications

where multiple full power cycles are applied to the load in timed pulses.

�Code Listings
�Raspberry Pi–Python Codes

Listing 10-1.  A Horizontal Sliding Current Control Icon

�A Horizontal Sliding Current Control Icon for the Raspberry

Pi GPIO Array

�In RPI.GPIO pin 18 in BCM numbering or pin 12 in BOARD

numbering has

�a PWM function of 0-100%. A slider is a standard Tkinter icon

with a

Chapter 10 Current Control

410

�call back function to send slider position data 0 to 100%

back to the python

�program running the RPI.GPIO library to adjust / alter the

PWM values.

#

from tkinter import *

import RPi.GPIO as GPIO

import time

#

library set up

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(18,GPIO.OUT)

pwm = GPIO.PWM(18, 500) # PWM signal on pin 18 set to 500Hz

pwm.start(0) # initial starting value for the duty cycle

#

tkinter scale or slider control icon set up

#

�set up call back function to process the slider value. Print

statement

in callback is a development/error diagnostic utility

#

def Val(val): # �callback function definition (outside Tk()

window instance)

 val = w.get() # the get function reads the slider value

 print(val) # �diagnostic utility comment out when not

in use

 �pwm.ChangeDutyCycle(val) # RPI library function to alter

the PWM power applied to the load

#

Chapter 10 Current Control

411

master = Tk() # window instance

master.title("Arduino in Science") # �a title for the main

window that holds the

widget

w = Scale(master, from_=0, to=100, orient=HORIZONTAL,

label="PWM Controller", command=Val) # �creates widget, scale,

text and names callback

function

w.pack() # display scale or slider icon instance

#

mainloop() # main loop over window construct.

GPIO.cleanup() # reset GPIO pins to low.

Listing 10-2.  RPi GPIO Pin Identification Utility

Locate Physical Pins and GPIO Designations with LEDs

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#

GPIO.setup(25, GPIO.OUT)

GPIO.output(25, GPIO.HIGH) # caution open collector - ULM2803

time.sleep(2)

GPIO.output(25, GPIO.LOW)

Chapter 10 Current Control

412

Listing 10-3.  Continuous Stepper Motor Rotation

Illuminate LEDS repeatedly in sequence

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#

�A while loop repeats the cycle till terminated from the

keyboard

#

while True:

 # illuminate the first LED on GPIO 18

 GPIO.setup(18, GPIO.OUT)

 GPIO.output(18, GPIO.HIGH)

 time.sleep(0.125)

 GPIO.output(18, GPIO.LOW)

 #

 # illuminate the second LED on GPIO 23

 GPIO.setup(23, GPIO.OUT)

 GPIO.output(23, GPIO.HIGH)

 time.sleep(0.125)

 GPIO.output(23, GPIO.LOW)

 # illuminate the third LED on GPIO 24

Chapter 10 Current Control

413

 GPIO.setup(24, GPIO.OUT)

 GPIO.output(24, GPIO.HIGH)

 time.sleep(0.125)

 GPIO.output(24, GPIO.LOW)

 # illuminate the fourth LED on GPIO 25

 GPIO.setup(25, GPIO.OUT)

 GPIO.output(25, GPIO.HIGH)

 time.sleep(0.125)

 GPIO.output(25, GPIO.LOW)

�Summary
–– Constant current sources are required for numerous

electronic and experimental science operations.

–– Exacting DC current control can be achieved in the

analog format with discrete electronic components or

integrated circuits and in the digital format with pulse

width modulation techniques.

–– Sinusoidal AC current control uses solid-state devices

functioning as controlled diodes passing selected

portions of the sine wave power profile to the load as

determined by device gate activation.

–– Precise current control is required to regulate typical

loads such as continuous motor rotation speeds or

activate discrete inductive, stepper motor actions.

Chapter 10 Current Control

414

–– Exercises demonstrating the problems inherent in

using basic DC pulse width modulation techniques as

AC power controls are presented as a prelude for

understanding advanced microcontroller techniques

using a PWM variant to control mains power.

–– In Chapter 11, the microcontroller is introduced, and

its ability to function as a “smart” I/O device and sensor

interface is presented.

Chapter 10 Current Control

415© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3_11

CHAPTER 11

Microcontrollers
and Serial
Communications
During the 40 years in which the 555 timer, 741 op-amp, and Exar XR-2209

have been in production, complete central processing units (CPUs) for

digital computing have been developed in the form of microprocessors.

Microprocessors have in some circumstances been used to create far more

flexible control systems, with fewer parts than were available with the

legacy, discrete, multiple-chip-based assemblies.

A microprocessor is a computer central processing unit in an IC chip

format, while a microcontroller could be considered to be a “micro-

miniature computer” designed for embedded applications. An embedded

system is usually one dedicated to a specific task, may be written in the

assembly or the C language for optimum speed and efficiency, and may

have limited I/O capabilities. A microcontroller contains a microprocessor,

memories, and programmable input/output peripherals, all combined to

form a single unit either in a printed circuit board format or as an IC chip.

Microprocessors have been in use for many years, and Parallax Inc.’s

“BASIC Stamp” and the PIC series of microprocessors from the Microchip

company are two of the systems that have been available to the advanced

https://doi.org/10.1007/978-1-4842-6778-3_11#DOI

416

hobbyists and specialists for many years. Both the Stamp and PIC series

of microcontrollers require some detailed knowledge of computer science

and electronics to be used in nontrivial applications.

Readily available constantly improving, inexpensive microprocessor

chips, advances in software, and Internet growth have led to the

establishment of sizable “online” communities of physical computing

enthusiasts. Physical computing interest has grown to the size where

commercial enterprises are able to supply the rapidly growing Internet-

based online communities with circuit boards and integrated circuitry. In

forums, individual community members exchange ideas and information,

thus developing “open source” systems for which members contribute

both written code software and hardware configuration developments to

improve and expand the applications for the systems at hand.

Interest in physical computing in which a PC is used to control electro-

mechanical systems has grown to the point at which online, open source

physical computing platforms have come into being permitting both the

non-engineering or new computer experimentalist to begin to create and

use microcontroller devices to control electro-mechanical systems.

An open source platform called the Arduino project from Italy has

been specifically developed in which the Atmel series of microprocessor

chips has been used to build a series of very small and inexpensive

microcontroller circuit boards. Originally conceived to provide non-

specialists with the ability to endow design, artistic, and hobbyist projects

with interactive capabilities, the system has also become a popular rapid

prototyping technique for the trained or experienced electro-mechanical

developers and serious experimental researchers.

A microcontroller is able to accept coded instructions, process those

instructions, and manipulate its on-chip input and output peripherals, to

perform the task required by the coding. Usually the coded instructions are

written and then assembled on a host PC running a program known as an

Chapter 11 Microcontrollers and Serial Communications

417

“integrated development environment” (IDE). Error-free code developed

in the IDE is then transferred (or uploaded) into the microcontroller via a

USB connection for actual execution.

The Arduino project has produced several circuit boards that

use the ATmega series of 8-bit microprocessor chips, together with

clock oscillators and additional circuitry to form a USB-accessible,

programmable microcomputer. The boards are programmed from a PC-

hosted IDE based upon the Processing programming language. Both the

Arduino and Processing language projects are open source creations with

freely downloadable software, tutorials, projects, and online help from

user forums. The systems are fully supported by numerous textbooks,

manuals, and commercially available hardware sources and, through the

online forums, are constantly advancing and evolving.

As of the time of this writing, the most recent Arduino board release

is the Uno revision 3. Figure 11-1 depicts an original Uno board that uses

an Atmel AT328 (8-bit) microprocessor, flash, SRAM (static random-

access memory), and EEPROM (electrically erasable programmable

read-only memory) with a 16 MHz clock and serial port I/O. The clock

speed provides time resolution into the microsecond range, and the serial

port I/O can be accessed by the COM (serial communications) ports of

the PC hosting DAQFactory. Variations of the Uno board are available

with Microchip PIC 32-bit microprocessors that use significantly greater

clock speeds, have greatly extended I/O capabilities, and are completely

compatible with the code previously developed for the Arduino 8-bit

systems. (In Figure 11-1, note the socket mounting of the main chip. Newer

devices are all surface mount technology (SMT).)

Microprocessors provide flexibility and are able to provide

programmed timing functions in both input and output modes that greatly

improve the control and reading of sensors or motion control devices.

Chapter 11 Microcontrollers and Serial Communications

418

An open source platform concept is extremely useful for experimental

science. A microprocessor chip supported by various I/O interfacing

circuitry, a crystal-controlled clock, and other supporting hardware, all

mounted on a very small, inexpensive, readily available circuit board, can

function as a “smart” peripheral. Smart peripherals can greatly augment

both the sensitivity and range of data collection through high-speed time

averaging that often reveals trends, which might otherwise remain hidden

from the experimenter.

An open source concept also brings many minds from different

disciplines to focus on a single problem, and the advantage that this brings

to the increase in the development of knowledge is virtually unmeasurable.

In the following exercises, the basic ability of the microprocessor to read

sensors and control motion devices will be demonstrated as a basis for

more complex and focused applications in actual experimental scientific

measurements. After establishing the communications link between the

Figure 11-1.  The Arduino Uno Microcontroller

Chapter 11 Microcontrollers and Serial Communications

419

Arduino monitoring a simple light-dependent resistor (LDR) and the host

computer, the ability of the microprocessor to expand the functionality of

experimental inquiry through such concepts as digital signal processing

and increased timing capability will be demonstrated.

In preparation for subsequent experimental measurements

and assembly of laboratory apparatus, the basics of two-way serial

communications with simple electro-optical light detection and PC

graphical display of streamed sensor data will be developed in this chapter.

�Experimental: Microprocessor to Host PC
Communications – “Uploading”
Before proceeding with this exercise, the reader should be familiar with

the fundamentals of microprocessors and their applications. As noted,

the Arduino project is an excellent place for those without a background

in physical computing or electronics to begin to learn and apply the

basic skills required to use microprocessors. There are sufficient books,

tutorials, and project descriptions available at the open source website

that, if read or reviewed, will enable the experimental researcher to

become comfortable in designing and creating microprocessor-controlled

experimental setups.

The current exercise is predominantly concerned with interfacing

a microprocessor with a PC running or hosting the DAQFactory

SCADA software. Once the interface is established, the flexibility of

microprocessors will be evident as analog-to-digital converted data is

streamed out to the PC on the serial connection between sensor and PC

for supplementary data processing and very flexible graphical data display.

To begin assembling the utilities required to use the microprocessor,

download and expand the compressed files from the Arduino website for

the operating system in use (Windows and RPi for the author). Install the

drivers for the Uno board on the PC hosting the DAQFactory software.

Chapter 11 Microcontrollers and Serial Communications

420

Once the PC is able to see the Uno board, launch the IDE for the Arduino

and run the “Blink” test software, termed a “sketch,” to ensure the basic

hardware-software connection between PC and Uno board is functional.

To transfer data from the Uno board to the PC and ultimately into

the DAQFactory software for graphical display, a serial communications

protocol must be established between the software of the two computing

devices. The communications protocol must operate both ways permitting

data to be “uploaded” to the PC-hosted DAQFactory software from

the Uno board and to “download” to the UNO instructions and control

commands from the PC DAQFactory software. The bidirectional data

transfer is conducted by the USB connected between the PC and Uno

board. The two software “ends” of the USB are the communications (COM)

ports on either of the two systems. Care must be exercised to ensure that

the microcontroller is communicating with the correct COM port being

used by the software on the PC. The PC usually has several COM ports,

while the microcontroller may have only one.

COM port communication consists of passing ones and zeros back and

forth between the PC and the peripheral. Since the electrical pulses that

make up the binary information are transmitted and received in a linear

fashion, one after another, the data transmission is called serial. The more

sophisticated and powerful PC is termed the host/master, and the smaller

dedicated microcontroller is termed the client/slave. Binary information

is uploaded from client/slave to host/master and downloaded from host/

master to client/slave. All binary information transfer between the two

devices is conducted under a standard set of rules called a “serial protocol.”

There are many standard serial protocols in use, and it is possible to create

a simple special serial protocol if required. The DAQFactory software

manual contains an entire chapter on serial communications, and a

separate “Serial/Ethernet Communications Guide” is available from the

AzeoTech website. By following these guides with the suggested code, the

experimentalist will be able to create and configure a simple protocol to

Chapter 11 Microcontrollers and Serial Communications

421

receive streamed data in the “On Receive” event of their user protocol as

seen in Figure 11-7. Once the ability to receive streamed data has been

established and is made available as a named DAQFactory channel, the

powerful statistical and graphics capabilities of DAQFactory can be used to

display the incoming data. There are several methods that DAQFactory can

use to implement serial communications that will be developed in later

portions of this manuscript.

As the Uno-type boards are functioning as a “smart” sensor or

peripheral and may be moved around between different fixed location

workstations, mobile wireless laptops, notebooks, or other computing

devices, different COM ports may be required to support the serial

communications. COM port selection can be managed from the Tools

menu on the Arduino IDE, while the location of the COM port being

used on the PC can be located with the operating system utilities such as

“Device Manager” in Windows-based systems.

As noted in Chapter 8 on counting and timing, there is a limit to the

response time of the DAQFactory software. If the Arduino board software

produces a stream of data that is too fast for DAQFactory to process, the

cursor response of the main screen becomes sluggish and erratic. To slow

a data stream that is too fast, a delay statement can be entered into the

main loop of the Arduino sketch to moderate the transmission rate of the

outgoing data.

The Arduino IDE monitor does not display the data streaming from

the Uno board to the PC when the DAQFactory program is receiving the

stream. The stream arriving at the PC can be displayed graphically or

“broadcast” for entry into a spreadsheet such as Excel.

In the primary portion of this exercise, a light-dependent resistor will

be used to provide an analog, varying input for the Arduino Uno board

that will be passed through an analog-to-digital converter (ADC) and then

serially transmitted to the host for a virtually real-time-based, graphical

display by the DAQFactory software.

Chapter 11 Microcontrollers and Serial Communications

422

�Hardware
A USB microcontroller board, such as an Arduino Uno, will be used to

monitor the output from a 5 V biased voltage divider, formed by a light-

dependent resistor and a 10 kΩ resistor. The Arduino is providing the

10-bit A/D converted value in the very small 2.75 in (7 cm) × 2 in (5 cm) ×

0.5 in (1.2 cm) circuit board rather than the much larger robust 4 in (10.3

cm) × 6 in (15.2 cm) × 1 in (2.45 cm) LabJack.

�Circuit Schematic

The 5 V supply and ground are derived from the Arduino board. Analog-

to-digital conversion is accomplished by connecting the junction of

the sensor and resistor to the first analog input pin A0 (A zero) on the

microcontroller. The analog signal is converted into a digital value between

1023 and 0 (1024 or 210 data points). The light-dependent resistor is a thin

flat strip of cadmium sulfide semiconductor mounted on a flat plane,

encased with a protective transparent coating. Cadmium sulfide photo

resistors are available from many local, mail-order, or online electronics

supply sources and are usually priced in the $1–2 range.

Figure 11-2.  An LDR Biasing Circuit

Chapter 11 Microcontrollers and Serial Communications

423

�Software
The software for this “upload” portion of the exercise is divided into two

parts. The first programs the Arduino board, and the second provides

the “strip chart recorder” graphical output display from the DAQFactory

program.

Listing 11-1 (all listings are at the end of the chapter) provides a

copy of the Arduino sketch that monitors the voltage at the LDR–10 kΩ

resistor junction. (A sketch is the Arduino documentation name for the

set of program instructions assembled and validated in the integrated

development environment (IDE) program running on the PC or RPi that

the microcontroller will follow.)

In essence the Arduino code reads the junction voltage value with the

A0 input of the system’s 10-bit A/D converter and then prints the value to

the Arduino COM 3 port with a line feed instruction after each value, every

500 ms.

In order for the DAQFactory program to be able to read the data placed

on the COM 3 port by the Arduino, a port identified as “com_3” must be

created and configured in the SCADA graphing software.

The author’s DAQFactory program channel table was configured with

the channel name “ArduinoStream” that was set to receive data from the

device called com_3. The com_3 port had been named, configured, and

then set up according to the following sequence of selections depicted in

Figures 11-3 to 11-8.

Initially the Quick menu of Figure 11-3 is used to start the

configuration process.

Chapter 11 Microcontrollers and Serial Communications

424

Selecting the Device Configuration option brings up the Device

Configuration window of Figure 11-4.

From the window of Figure 11-4, the New Serial selection is made to

bring up the Ethernet / Serial Device port configuration window as seen in

Figure 11-5.

Figure 11-3.  Quick Device Configuration

Figure 11-4.  Device Configuration Window

Chapter 11 Microcontrollers and Serial Communications

425

In the window of Figure 11-5, the new com device must be named with

a DAQFactory-acceptable name (names must begin with letters and can

contain only letters, numbers, and the underscore). After having entered

an acceptable name, the Configure button must be clicked to bring up the

Serial Port Configuration window as seen in Figure 11-6.

Figure 11-5.  Serial Device Naming and Configuration Selection

Figure 11-6.  Serial Port Configuration Window

Chapter 11 Microcontrollers and Serial Communications

426

For the purposes of this introductory exercise, the default options

should be accepted and the Save button used to return to the Ethernet /

Serial Device window of Figure 11-5.

To complete the connection between the Arduino serial port and the

DAQFactory port, a serial communications method or protocol must be

specified with the New Protocol button of the Ethernet / Serial Device

window.

Figure 11-7 displays the Protocol Configuration window.

On opening this window, the Protocol Name and File Name are blank,

and the I/O Types and Functions selection defaults to the top of the list.

A name should be specified for the protocol, and a file name with the

location must also be specified for the protocol that is stored separately

from the rest of the normal documents. The separate storage of the

protocol allows sharing of the protocol but also means the protocol has to

be moved if the host computer is updated or changed.

Figure 11-7.  The Protocol Configuration Window and “On Receive”
Event Data Parsing Script

Chapter 11 Microcontrollers and Serial Communications

427

To complete the connection in which the Arduino is independently

streaming out data, a script must be prepared to be executed each time

a complete entity of data arrives on the com_3 port. The script is entered

into the “On Receive” selection of the I/O Types and Functions list. The

complete code is in Listing 11-2.

Once the com port protocol has been created and saved, the Channel

Table View can be used to fill in the entries required to establish the

channel to receive the streamed Arduino data as depicted in Figure 11-8.

With the filling in of the entries in the Channel Table View and the

clicking of the “Apply” button seen in Figure 11-8, the channel should

begin filling with timestamped data.

The data can be viewed in tabulated form by expanding the Channels

heading in the workspace panel and double-clicking the desired channel

to bring up the Channel details window with five tabs. Selecting the Table

tab will display the timestamp and data arriving at the port with the

most recent values at the top (see Chapter 6, Figure 6-14). The Graph tab

displays a graph of the data. The Event tab displays any code that may be

applied to data manipulation of the channel values. The Main and Details

tabs contain numerous named channel configurations and options.

Figure 11-8.  Creation of the Channel for Streamed Data

Chapter 11 Microcontrollers and Serial Communications

428

�Page Components Required
Channel data can be displayed with a two-dimensional or 2D graph screen

component expanded to use as much of the screen as possible. A suitable

display is seen in Figure 11-9 with the time axis set to a 5-minute interval

(300 seconds) and the Arduino ADC converter values received, scaled from

0 to 1000 units on the charted output.

�Observations
In a darkened condition, the cadmium sulfide, light-dependent resistor

(LDR) exhibits a resistance of 75 kΩ. Under the illumination of a close,

very strong white LED, the LDR resistance drops to 250 Ω. In the circuit

configuration depicted in Figure 11-2, the observed voltage should vary

from approximately 0.6 to 5 V as the lighting changes from darkness to

intense brightness. The Arduino ADC is a 10-bit device that will scale

the voltage to 1024 units or 4.9 mV/division at 5 V input. A 5-volt input

is realized when the LDR resistance drops virtually to zero or under

very strong lighting conditions. The configuration in which the LDR and

fixed resistor are assembled causes the graphical trace to rise upward in

proportion to the intensity or brightness of the light falling on the detector.

The graphical display thus mirrors what the eye sees as higher illumination

is toward the top of the graph and deepening darkness causes the trace to

decrease. The simple plotting of the streamed Arduino data is not linear

with illumination. (See “Discussion.”)

Variations in the light falling on the Arduino-mounted LDR caused the

response changes depicted in Figure 11-9.

Chapter 11 Microcontrollers and Serial Communications

429

In Figure 11-9 a strong LED when shone on the LDR saturated the

monitoring system in section 1. In section 2 the overhead lights were

turned off, and in section 3 the room lights were turned off, leaving

only the diffused window light to illuminate the detector. Section 4 was

recorded with a cover placed over the LDR in the darkened room, and

section 5 measured the light leakage into the cover when the room lights

were turned back on. Section 6 shows the reproducibility of the monitor

when normal room lighting was restored.

Although the response of the LDR is quick and sensitive, rapid,

flickering obstruction of the light falling on the LDR causes the display to

lag behind the lighting changes.

Figure 11-9.  Graphical Recording of Illumination Variation on
Arduino-Mounted LDR

Chapter 11 Microcontrollers and Serial Communications

430

�Discussion
The speed at which the clock on the microprocessor runs provides

access to the higher speeds required to monitor some rapidly occurring

physiochemical events in the experimental sciences. However, the serial

port is easily able to receive data at a rate far above that at which the

computer screen can be updated. If the rate of data being streamed into the

PC port is too high, the cursor response will slow, and it has actually frozen

the cursor on the author’s system. If the data rate is too high, the Arduino

may have to be slowed with a delay statement in the microprocessor’s

main loop. Alternatively the data can be streamed into the DAQFactory

program and the logging functions used to store data in files at up to 20

points per second (20 Hz) for later retrieval and examination. The LabJack

devices (model U3) are able to sample at full resolution at data rates up to

2500 samples/s. Data streamed or collected at these rates must be saved in

memory for processing after the closure of the data stream.

A light-dependent resistor is a thin film of semiconductor deposited

beneath a protective transparent covering. Ambient light falling on

the detector causes electrons to be knocked from the semiconducting

material, and the resistance of the device drops as current flows through

the strip and the circuit connected to its two leads. The dark resistance

for the author’s setup is usually measured in the range of 75 kΩ or higher,

while under strong illumination, the resistance may fall to only several

hundreds of ohms. LDRs can be obtained with dark resistances into the

megohm range and usually exhibit a green spectral response similar to

that of the human eye.

Cadmium sulfide is one of the more common and inexpensive light-

dependent resistors. When the circuit shown in Figure 11-2 is used to

create a varying voltage and the signal is connected to the analog input pin

A0 of the Arduino board, a 10-bit analog-to-digital converter provides a

numerical value with a 1 in 1024 part resolution of the input analog signal

to the USB–COM port serial output.

Chapter 11 Microcontrollers and Serial Communications

431

Configuring a light-sensitive resistor in a voltage divider circuit

provides a very simple method for conversion of light intensity into a

measurable voltage. However, the conversion is not linear.

In the circuit of Figure 11-2, the LDR has been connected to the 5 V

supply and a 10 kΩ “pull-down” resistor connected between the LDR

and ground. The analog voltage observed at the LDR–pull-down resistor

junction is given by the voltage divider equation

Vanalog = V+5 * (Rpull down/(RLDR + Rpull down))

A typical cadmium sulfide LDR may vary from a dark resistance of

75 kΩ to a 1 kΩ resistance in bright light. An Excel spreadsheet can be

used, as illustrated in Figure 11-10, to calculate and display a plotting of

the analog voltage output for variations in the resistance of the LDR as

depicted in the circuit drawn in Figure 11-2.

Figure 11-10.  Analog Output of a 10 kΩ–LDR Voltage Divider
Circuit

Chapter 11 Microcontrollers and Serial Communications

432

The curvature seen in Figure 11-10 is typical of that seen when the

sensor is between the voltage source and the grounded pull-down resistor.

The curve will be the same exponential shape but inverted for a circuit

in which the sensor is connected between ground and a pull-up

resistor to the positive voltage supply. Each curve generated for an

individual LDR and fixed value resistor will be slightly different because

of the manufacturing variations in both the photocell and resistance.

The preceding curve is best represented by a logarithmic curve of the form

y = -1.053ln(x) + 12.173 with a variance of R2 = 0.9939.

As can be seen in Figure 11-10, there are two areas in which the

curvature of the analog output decreases and starts to trend toward

linearity. In the upper left-hand quadrant of the plot, there are high analog

output changes being caused by small changes in the LDR resistance.

In the lower right-hand quadrant of the plot, large changes in the LDR

resistance are making small changes in the low value of the voltage output.

The experimenter may wish to change the value of the pull-up or pull-

down resistor and replot the curve shown previously to find the optimum

conditions for using a resistive sensor in a voltage divider configuration.

For accurate quantitative use of the voltage divider configuration for

sensor measurements, the investigator should calibrate the system at hand

with as many data points as possible over the sensor range of interest.

�Experimental: Host PC to Microprocessor
Communications – “Downloading”
�Introduction
In the first portion of this exercise, data has been harvested by the

microprocessor and sent to the host computer for real-time graphical

display, archival storage, and possible production of a hardcopy format.

Chapter 11 Microcontrollers and Serial Communications

433

In this section the host computer and microprocessor will be

configured for the Arduino to receive commands from the host via the

serial port. The host will be configured with a DAQFactory control screen

containing buttons that will activate a LED and start a very simple script to

cycle a LED on and off several times.

�Hardware
For simplicity an LED and an appropriate current limiting resistor are

inserted into a prototyping board and connected in series between pin 13

and ground on the Arduino board.

�Software
The author’s DAQFactory program for the graphical display of streamed

Arduino data was used to provide a fresh blank page on which several

buttons were installed as illustrated in Figure 11-11.

Each of the buttons labeled ON and OFF was configured as described

in previous exercises. For simplicity, in situations where a simple action is

required from the downloaded instruction, the Quick Sequence selection

was made from the action list as shown in Figure 11-12.

By clicking the highlighted Quick Sequence entry, the text screen of

Figure 11-13 is opened, and the required instructions can be entered.

Figure 11-11.  Buttons for Control of Arduino LED

Chapter 11 Microcontrollers and Serial Communications

434

Figure 11-12.  The Quick Sequence Selection

Figure 11-13.  The Quick Sequence Text Entry Panel

Chapter 11 Microcontrollers and Serial Communications

435

Quick Sequences do not appear in the listings of formally programmed

sequences accessed by expanding the Sequences menu option in the

workspace. The linking of the single line of Quick Sequence text to transmit

an “H” or “L” is all that is required to activate the ON/OFF button when the

Arduino code of Listing 11-4 receives the command to alter the LED status.

A sequence programmed to effect a series of on/off actions for

transmission can be prepared in the normal manner for the DAQFactory

software. The leftmost button in Figure 11-11 flashes the Arduino LED on

and off five times at 3-second intervals in accordance with Listing 11-3.

�Observations
When the buttons on the DAQFactory control screen are clicked, the LED

on the Arduino board is activated or inactivated in accordance with the

button labels.

�Discussion
When working through the “downloading” commands exercise, each piece

of the communications link can be independently tested as the system is

built up. The LED and its current limiting resistor can be tested by loading

and running the required sketch and sending an uppercase H or L from the

Arduino serial port. The LED will light and extinguish as instructed.

The serial port display must be closed on the Arduino for the port to

be available for use by the DAQFactory program. Once the connection is

made from the screen button code to the Arduino, any attempts to use the

port by the Arduino in troubleshooting will invoke a “port in use” error

response from the Arduino. The Arduino must be shut down and rebooted

to regain access to the port.

Chapter 11 Microcontrollers and Serial Communications

436

The DAQFactory side of the two-way link and the correct operation

of the Arduino sketch can be also be confirmed by accessing the com_3

monitor (com3 in earlier programs) in DAQFactory and manually

transmitting an uppercase H with the entry box and Send button on the

monitor window. The manual transmission should activate the Arduino-

mounted LED, and a manual transmission of the uppercase L should then

turn the LED off.

The two port monitors accept and transmit H/L, but the scripting

commands must use the quotation marks to designate “H” and “L” as the

uppercase ASCII characters.

�Raspberry Pi and Arduino
In the previous exercises, the Raspberry Pi has used different libraries for

its GPIO pin array to communicate with the outside world. Each of the

three libraries has different abilities and limitations that can virtually be

eliminated by using the Arduino microcontroller as a smart peripheral.

Recall that Arduino programs are written in the integrated

development environment (IDE) that is a program downloaded from the

Arduino website. RPi and Arduino communicate on the USB that should

not be connected when the IDE program is downloaded and installed with

the terminal entry

$ sudo apt-get install arduino

On completion of the software installation, the USB cable can be

connected, and from the Tools menu in the IDE, select Board and set the

type to Arduino Uno. The serial port option / dev / ttyACM0 should be

selected to complete the configuration process.

The safest and simplest way to communicate between the RPi and the

Arduino is via the USB connection. (See “Discussion.”)

Chapter 11 Microcontrollers and Serial Communications

437

Figure 11-14 illustrates the microcontroller start menu on the RPi after

the installation of the Arduino IDE.

Examination of the menu entries in Figure 11-14 reveals that a

very large body of open source code has been written for the Arduino

microcontroller allowing it to interface to both hardware and software.

A USB connection between the RPi and the Arduino makes much of this

analog and digital interfacing code accessible to the computational power

of the RPi.

�Experimental
With configuration complete, the Blink program can be selected through

Examples ➤ Basic, compiled and uploaded to the Arduino, which should

then flash the LED once per second.

Figure 11-14.  The Arduino Menu on the RPi

Chapter 11 Microcontrollers and Serial Communications

438

Once the LED on the Arduino flashes as programmed, the simple

process to interface the two devices is complete and validated.

One of the more important experimental aspects of the Arduino-

RPi connection lies in using the computing power of the RPi as a plotter

to graphically display the data collected by sensors interfaced to the

Arduino. A simple example of the graphical display capabilities available

can be demonstrated by plotting the signal from a LDR as various lighting

conditions change in the environment in which the sensor is positioned.

Five volts from the Arduino is used to bias the LDR with a 5.49 kΩ 1%

metal film, pull-down resistor similar to the circuit depicted in Figure 11-2.

The Arduino active code is essentially the same as that listed in Listing 11-1

with minor changes in only the program comments to accommodate the

different pull-down resistor value.

The signal from the LDR can be digitized by connection to the A0 input

of the Arduino’s 10-bit ADC, which is then sent to the serial port of the

microcontroller for viewing or reading by a Python plotting program. The

serial plotter code is listed in Listing 11-5.

�Observations
After configuring the LDR sensor and the Arduino and starting the plotting

program on the RPi, the trace of Figure 11-15 was recorded. On initial start-

up, the plotter program creates a small window on the right-hand side of the

display with the interactive screen on the left. The streaming printed column

of numbers and characters seen on the left of the interactive screen are the

transmitted characters and the numbers to be plotted. (See “Discussion.”)

As noted in Chapter 9, the matplotlib plotting programs are displayed

with a panel of buttons beneath the lower left-hand corner of the active

display for invoking several functions such as scale expansion, stepping

forward and back in frames, or saving the plot as applicable for the type of

data being displayed.

Chapter 11 Microcontrollers and Serial Communications

439

Recall that the timing markings on the graphical plotting display must

be calibrated for quantitative use.

Figure 11-16.  Recorder Tracing of Room Lighting Intensity
Variations Monitored by a Light-Dependent Resistor

Figure 11-15.  Plotting Data from Arduino

Chapter 11 Microcontrollers and Serial Communications

440

In Figure 11-16 the full-screen option button has been used to expand

the recorded plot from the small window visible in Figure 11-15. At the

extreme left of the plot, the tracing was recording the room light leaking

under the cover placed over the LDR. The trace dropped to virtually zero

as the room window was covered and the room lighting was turned off.

The first large displacement at about a minute and a half was due to the

uncovering of the window. The second step-up was due to the turning

on of the overhead incandescent light at about two-and-a-half minutes,

followed by the left- and right-hand desk lamps at three and four minutes.

The maximum trace value was created by shining a bright LED light on the

sensor from a distance of about an inch (2.5 cm). Exact relative times since

session start and expanded sections of the trace can be accessed with the

aid of the tool buttons beneath the lower-left corner of the display. (See

Chapter 9.)

�Discussion
The flashing of the LED with the Blink program has often been cited as

the physical computing equivalent of the console printout of the “Hello

World!” program run by all students when learning a new computer

language. In essence the RPi is sending commands to the Arduino for

execution. The free, open source software that has been developed and

published for the Arduino and RPi is substantial and requires constant

reviewing for the experimentalist or investigator to remain up-to-date with

this rapidly evolving technology.

Plotting of the data generated by the sensor connected to and possibly

controlled by the Arduino is accomplished with a slightly modified version

of the matplotlib strip chart recorder program. A slight modification of

the original code is necessary for the plotter to be able to read the serial

port. Serial port transmissions involve patterns of 1’s and 0’s that have to

be translated into transmissible packets of data, received and parsed back

Chapter 11 Microcontrollers and Serial Communications

441

into numerical values for plotting. Arduino is programmed and operates

in the C language, while the RPi uses Python. As an aid to configuring

the parsing code and validating the data transmission prior to plotting,

the characters received by the Python end of the serial connection are

printed out “as received” on the console display and then printed again

in the format suitable for recognition as the data for plotting. The print

statements can easily be commented out when the software is performing

as intended.

In normal usage the matplotlib strip chart recorder program has

variables and labels identified in the comments for x, y, and time axis

scaling. Axis labeling may also need to be modified to plot and identify the

data at hand.

The RPi and Arduino are both capable of using 3.3- or 5-volt power

supplies, and for some applications using direct serial communications,

a voltage level adjusting circuit may be required to avoid damage to

electronic components. Level adjusting circuits are detailed in several

published and online sources.1

�Code Listings
Listing 11-1.  Arduino Code

// �Single LDR readings with serial transmission for DAQFactory

SCR display.

// �The voltage at the junction of an LDR biased by +5 v and

with a 10K ohm

// resistance to ground is monitored by the A0 input.

1 1) elinux.org/RPI_GPIO_Interface_Circuits
2) �Raspberry Pi Cookbook 2nd Edn., Monk, O’Reilly Media Inc., ISBN

978-1-491-93910-9
3) Electronics Cookbook, Monk, O’Reilly Media Inc., ISBN 978-1-491-95340-2

Chapter 11 Microcontrollers and Serial Communications

http://elinux.org/RPI_GPIO_Interface_Circuits

442

//

//

void setup()

{

 // initialize serial port

 Serial.begin(9600);

}

//

void loop()

{

 // read A0

 int val1 = analogRead(0);

 // read A1

 // print to serial port

 Serial.println(val1);

 //Serial.print(" ");

 // delay

 delay(500);

 }

Listing 11-2.  DAQFactory “On Receive” Serial Port Parsing Script

if (strIn == Chr(13))

 private string datain = ReadUntil(13)

 Channel.AddValue(strDevice, 0, "Input", 0,

StrToDouble(DataIn))

Endif

Listing 11-3.  DAQFactory Sequence Code for Writing to com_3 Port

 for (Private.Counter = 0, Counter < 5, Counter ++)

 device.com_3.Write("H")

 delay(3)

Chapter 11 Microcontrollers and Serial Communications

443

 device.com_3.Write("L")

 delay(3)

endfor

Listing 11-4.  Arduino Code to Be Run on DAQFactory Screen

Button Command

//�Simple DAQFactory - Arduino Serial Communications Program,

Mar. 3, 2012

//�An LED with an appropriate CLR is connected between pin 13

and ground on the Arduino

//�The pgm below waits for an incoming character. If the

character is an upper case H, the LED is

//�turned on. If the character is an upper case L the LED is

turned off. The state of the LED is

//�thus determined by the nature of the character in the serial

import buffer.

//

//

const int ledPin = 13; // the pin with the LED and CLR

int incomingByte; // a variable to hold the

incoming data

//

//

void setup(){

 Serial.begin(9600); // initialize communication

 pinMode(ledPin, OUTPUT); // set the pin function

}

//

void loop() {

 // check for incoming serial data

 if (Serial.available() > 0) {

Chapter 11 Microcontrollers and Serial Communications

444

 // �read the last byte in the serial buffer

 incomingByte = Serial.read();

 // if the byte is H (ASCII 72), turn on the LED

 if (incomingByte == 'H') {

 digitalWrite(ledPin, HIGH);

 }

 // if character is an L (ASCII 76) turn the LED off

 if (incomingByte == 'L') {

 digitalWrite(ledPin, LOW);

 }

 }

 }

Listing 11-5.  RPi-Python Code for Reading and Plotting Serial Port

Data

A Strip Chart Recorder for Raspberry Pi with Serial Input

�SCR Plotting of changing LDR data from room environment.

�LDR data from 5 volt

�5.49 K 1% MFR pull-down cct on A0 and output on Arduino

serial port for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

import serial

#

#

Chapter 11 Microcontrollers and Serial Communications

445

#

class Scope:

 def __init__(self, ax, maxt=10, dt=0.02):

 """maxt time width of display"""

 self.ax = ax

 self.dt = dt

 self.maxt = maxt

 self.tdata = [0]

 self.ydata = [0]

 self.line = Line2D(self.tdata, self.ydata)

 self.ax.add_line(self.line)

 self.ax.set_ylim(0.0, 1024.0) # y axis scale

 self.ax.set_xlim(0, self.maxt)

 def update(self, y):

 lastt = self.tdata[-1]

 if lastt > self.tdata[0] + self.maxt: # reset the arrays

 self.tdata = [self.tdata[-1]]

 self.ydata = [self.ydata[-1]]

 �self.ax.set_xlim(self.tdata[0], self.tdata[0] +

self.maxt)

 self.ax.figure.canvas.draw()

 t = self.tdata[-1] + self.dt

 self.tdata.append(t)

 self.ydata.append(y)

 self.line.set_data(self.tdata, self.ydata)

 return self.line,

#

Chapter 11 Microcontrollers and Serial Communications

446

ser = serial.Serial("/dev/ttyACM0", 9600)

#

def rd_data():

 while True:

 inPutln = ser.readline()

 print("inPutln = ", inPutln)

 line = int(str(inPutln)[slice(2,-3)]) # �convert arduino

serial output

stream

 # �to a Python string, parse out the numerical symbols

and convert to a value

 print(line)

 yield (line)

fig = plt.figure()

fig.suptitle("The Scientyst's Ayde", fontsize = 12)

ax = fig.add_subplot(111)

ax.set_xlabel("Time")

ax.set_ylabel("Arduino LDR ADC Units")

scope = Scope(ax)

�uses rd_data() as a generator to produce data for the update

func, the Arduino LDC

�value is read by the plotting code in 10 minute windows for

the animated

�screen display. Software overhead limits response speed of

display.

ani = animation.FuncAnimation(fig, scope.update, rd_data,

interval=50,

blit=False)

plt.show()

Chapter 11 Microcontrollers and Serial Communications

447

�Summary
–– Microcontrollers can be considered as smart interfaces

in the SCADA architecture that use serial port commu-

nications to up- and download instructional com-

mands and data between the host computer and

remote processes.

–– Microcontrollers can greatly augment the digital signal

processing and I/O capabilities of the host computer.

–– A microcontroller and a single-board computer can

form the basis of one of the least expensive SCADA

implementations available.

Extensive use of the microcontroller and the techniques and software

described in the previous ten chapters of this book are applied to the tasks

of implementing experimental determinations in the next work of this

series, Arduino Measurements in Science.

Chapter 11 Microcontrollers and Serial Communications

449© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

�APPENDIX A

List of Abbreviations
A/D analog to digital

ADC analog-to-digital converter

AGM absorbed glass mat (a form of lead acid battery)

AMR anisotropic magnetoresistance

API application programming interface

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

AO analog output

AWG American wire gauge

BCD binary-coded decimal

BJT base junction transistor (either an NPN or a PNP)

BLDC brushless direct current (a type of DC-powered motor)

BMS battery management system

BoB breakout board (adapter to use SMT IC with a prototyping board)

C4D capacitively coupled contactless conductivity detection

C and C++ a compact efficient programming language and a variation for

Windows applications

(continued)

https://doi.org/10.1007/978-1-4842-6778-3#DOI

450

CCC constant current charging

cGLP current good laboratory practice (a QA/QC protocol)

CLR current limiting resistor

CMOS complementary metal oxide semiconductor

CNTRL Ctrl key

COM serial communication port

cps cycles per second

CPU central or computer processing unit (a term used to describe the

main processor chip)

CPVC chlorinated polyvinyl chloride

CR carriage return (in printer control code)

CSA Canadian Standards Association

CSM current shunt monitor (an ASIC for current measurement)

CSS chip slave select (in four-line SPI data transmission protocol)

CSV comma-separated values (a common file data storage format)

CV computer vision

DHCP Dynamic Host Configuration Protocol

DI/O digital input/output

DIP dual in-line package

D/L download

DMM digital multimeter

DPM digital panel meter

DSP digital signal processing

(continued)

Appendix A List of Abbreviations

451

DUT device under test

DVM digital voltmeter

EEPROM electrically erasable programmable read-only memory

EMF electromotive force

EMI electromagnetic interference

EPS electric potential sensors

ERH equilibrium relative humidity

ESD electrostatic discharge

FFT fast Fourier transform or flicker fusion threshold

FOV field of view

FID flame ionization detector

FSD full-screen display or full-scale displacement

GND ground

GPIO general-purpose input/output

GPR ground penetrating radar

GPS global positioning system

GPU graphics processing unit

GUI graphical user interface

HAT hardware added on top (RPi add-on boards)

HDMI high-definition multimedia interface

HMI human-machine interface

(continued)

Appendix A List of Abbreviations

452

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS Secure HyperText Transfer Protocol

I2C or I2C inter-integrated circuit (data transmission protocol)

ICAP inductively coupled argon plasma (also ICP, a spectroscopic source)

ICFT input capture feature of the timer (ATmega328)

IDE integrated development environment

IEPE integrated electronics piezo-electric (vibration sensors)

IMS ion mobility spectroscopy (plasma chromatography)

IMU inertial measurement unit

INS inertial navigation systems

INU inertial navigation unit

I/O or IO input/output

IP Internet protocol

IR infrared

ISR interrupt service routine (programming code)

ISRC internal stray resistance and capacitance (on a circuit board or IC chip)

ITO indium tin oxide

LAN local area network (of computers)

LCD liquid crystal display

LDR light-dependent resistor

LED light emitting diode

(continued)

Appendix A List of Abbreviations

453

LF line feed (in printer control code)

LFP lithium iron phosphate (a lithium ion battery chemistry)

LiMH lithium metal hydride (a type of rechargeable battery and chemistry)

LSB least significant bit

MA moving average (a form of DSP)

MAC media access control

mAh milliampere hours (sometimes as mAhr)

mcd millicandela (a measure of light intensity)

MEMS micro-electro-mechanical systems

MHz mega-Hertz (a frequency of millions of cycles per second)

MISO master in slave out (four-line SPI data transmission protocol)

MOSFET metal oxide semiconductor field effect transistor

MOS metal oxide semiconductor

MOSI master out slave in (four-line SPI data transmission protocol)

MPCLC multiple plate capacitor load cell

MPPT maximum power point transfer

MSB most significant bit

N.C. normally closed (relay or switch normal configuration, often NC)

NiMH nickel metal hydride (a rechargeable battery chemistry)

NIST National Institute of Standards and Technology

NMR nuclear magnetic resonance (a form of spectroscopy and the basis

for medical imaging)

N.O. normally open (relay or switch normal configuration, often NO)

(continued)

Appendix A List of Abbreviations

454

NPN a base junction transistor consisting of a P type of semiconductor

between two N types

NTC negative temperature coefficient (a term used with thermistors)

OCV open circuit voltage

OH-MPCLC over had multiple plate capacitor load cell

OS operating system

PC personal computer (IBM/Microsoft Windows OS)

PCB printed circuit board

PDIP plastic dual in-line package

PE polyethylene (a plastic)

PGA programmable gain amplifier

PID photo ionization detector or proportional, integral, derivative (a

control algorithm)

PIN an intrinsic PN junction used in high-sensitivity photo diodes, a thick

light-sensitive layer

PIR passive infrared (an infrared sensor)

PLC programmable logic controller

PM permanent magnet

PNP a base junction transistor consisting of an N type of semiconductor

between two P types

PV photo-voltaic

PVC polyvinyl chloride (a plastic)

PVDF polyvinylidene di-fluoride (an inert plastic polymer)

PWD pulse width difference

(continued)

Appendix A List of Abbreviations

455

PWM pulse width modulation

PZT lead zirconate titanate

RMB-PUM right mouse button pop-up menu

RC resistor-capacitor (electronic circuit time constant elements or radio

controlled)

RE rare earth

REM rare earth magnet

RF radio frequency

RFI radio frequency interference

RGB red, green, and blue (the three basic colors used in LED displays)

RH relative humidity

rms root mean square (a measurement form used with AC or sinusoidal

power signals)

RPi Raspberry Pi

RPM revolutions per minute (a measure of rotation speed)

RTC real-time clock

RTD resistance temperature device

RTV room temperature vulcanization (a term used to describe a silicone

sealant/adhesive)

SAR successive approximation register (a type of ADC)

SBC Single-board computer

SC specific conductivity

SCADA supervisory control and data acquisition

SCC short circuit current

(continued)

Appendix A List of Abbreviations

456

SCL(K) the clock line designation in four-line SPI data transmission protocol

SCR silicon controlled rectifier or strip chart recorder

SD secure data (a plug-in digital data storage media/card)

SDA I2C serial protocol for slave data

SHE standard hydrogen electrode

SLI starting lighting ignition (a form of lead acid battery)

SOIC-8 small outline integrated circuit eight-pin SMT-defined package format

SIP single in-line package (an IC with only a single row of power I/O pins)

SMBUS System Management Bus (a simple one-wire serial communications

protocol)

SMT surface mount technology

SoC state of charge or system on a chip

SPAD single-photon avalanche diode

SPC statistical process control

SPI serial peripheral interface

SRAM static random-access memory

SS slave select

SSR solid-state relay

TCR temperature coefficient of resistance

TEC thermoelectric conversion or converter

TEG thermoelectric generator

TIA trans-impedance amplifier

TIG tungsten inert gas (a form of welding)

ToF time of flight (a form of distance measurement or mass spectrometry)

(continued)

Appendix A List of Abbreviations

457

tpi threads per inch

TTL transistor-transistor logic

UART universal asynchronous receiver-transmitter (serial data transmission

protocol or IC)

UAV un-manned aerial vehicle

ui /UI user interface

URL universal resource locator (an Internet address)

USB Universal Serial Bus

UTC universal time coordinates

VCO voltage-controlled oscillator

Vdd voltage drain (usually the positive supply)

VLS visual light systems (a communications technique)

VOM volt-ohm meter

VRSLA valve-regulated sealed lead acid (a form of battery)

Vss voltage source supply (usually ground potential)

VVC variable value component (a GUI screen numerical display of

DAQFactory software)

Appendix A List of Abbreviations

459© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

�APPENDIX B

List of Suppliers
Chapter IC or Part

1 LabJack U3-HV https://Labjack.com/support/datasheets/u3

LabJack U12-HV https://Labjack.com/support/datasheets/u12

chipKIT https://reference.digilentinc.com/

reference/microprocessor/uc32/start

Arduino

RedBoard

www.sparkfun.com/products/13975

Arduino

(BlueBoard)

www.arduino.cc/

CD4050 www.ti.com/lit/ds/symlink/cd4049ub.pdf

2 MCP3008 www.microchip.com/wwwproducts/en/MCP3008

4 2N3904/2N3906 www.onsemi.com/pub/Collateral/2N3906-D.

PDF and www.onsemi.com/pub/

Collateral/2N3903-D.PDF

6 ADC0804 www.ti.com/lit/ds/symlink/adc0804-n.pdf

MCP3201 ww1.microchip.com/downloads/en/

devicedoc/21290d.pdf

7 TIP 122 www.onsemi.com/pub/Collateral/TIP120-D.PDF

8 LM555 www.ti.com/lit/ds/symlink/lm555.pdf

(continued)

https://doi.org/10.1007/978-1-4842-6778-3#DOI
https://labjack.com/support/datasheets/u3
https://labjack.com/support/datasheets/u12
https://reference.digilentinc.com/reference/microprocessor/uc32/start
https://reference.digilentinc.com/reference/microprocessor/uc32/start
http://www.sparkfun.com/products/13975
http://www.arduino.cc/
http://www.ti.com/lit/ds/symlink/cd4049ub.pdf
http://www.microchip.com/wwwproducts/en/MCP3008
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.onsemi.com/pub/Collateral/2N3906-D.PDF and www.onsemi.com/pub/Collateral/2N3903-D.PDF
http://www.ti.com/lit/ds/symlink/adc0804-n.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21290d.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21290d.pdf
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.ti.com/lit/ds/symlink/lm555.pdf

460

Chapter IC or Part

9 CMOS 555 www.ti.com/lit/ds/symlink/lmc555.pdf

Bipolar 555 www.st.com/resource/en/datasheet/

cd00000479.pdf

Exar XR-2209 www.maxlinear.com/ds/xr2209v202.pdf

10 LM741 www.ti.com/lit/ds/symlink/lm741.pdf

LF411 www.ti.com/lit/ds/symlink/lf411.pdf

CD4013 www.ti.com/lit/ds/symlink/cd4013b.pdf

MOC 3022 www.mouser.ca/datasheet/2/239/MOC302-

1175440.pdf

BTA06 www.st.com/resource/en/datasheet/

bta06.pdf

MOC 3061 www.mouser.ca/datasheet/2/308/

fairchild%20semiconductor_

moc3061m-1191638.pdf

FQP30N06L www.onsemi.com/products/discretes-

drivers/mosfets/fqp30n06l

ULN2803 www.ti.com/lit/ds/symlink/uln2803a.pdf

11 LDR www.farnell.com/datasheets/77395.pdf or

www.resistorguide.com/photoresistor/

Appendix B List of Suppliers

http://www.ti.com/lit/ds/symlink/lmc555.pdf
http://www.st.com/resource/en/datasheet/cd00000479.pdf
http://www.st.com/resource/en/datasheet/cd00000479.pdf
http://www.maxlinear.com/ds/xr2209v202.pdf
http://www.ti.com/lit/ds/symlink/lm741.pdf
http://www.ti.com/lit/ds/symlink/lf411.pdf
http://www.ti.com/lit/ds/symlink/cd4013b.pdf
http://www.mouser.ca/datasheet/2/239/MOC302-1175440.pdf
http://www.mouser.ca/datasheet/2/239/MOC302-1175440.pdf
http://www.st.com/resource/en/datasheet/bta06.pdf
http://www.st.com/resource/en/datasheet/bta06.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.mouser.ca/datasheet/2/308/fairchild semiconductor_moc3061m-1191638.pdf
http://www.onsemi.com/products/discretes-drivers/mosfets/fqp30n06l
http://www.onsemi.com/products/discretes-drivers/mosfets/fqp30n06l
http://www.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.farnell.com/datasheets/77395.pdf or www.resistorguide.com/photoresistor/
http://www.farnell.com/datasheets/77395.pdf or www.resistorguide.com/photoresistor/

461© Richard J. Smythe 2021
R. J. Smythe, Arduino in Science, https://doi.org/10.1007/978-1-4842-6778-3

Index

A
AC current

advantage, 380
circuit analysis, 388
circuit schematic, 384, 385
experimentation, 405–407
50 Hz and 10 Hz 555 timer IC

variation, 389
5-volt 555 timer IC control of

line power, 386
5-volt DC output power

supply, 381
hardware, 382, 383
110 VAC bulb output, 408
110 VAC line control, 406
hydro-electric facilities, 379
introduction, 405
mains/household current, 379
observations, 386, 387, 407
optical isolator chips, 381
potentiometer diode

arrangement, 389
power control

applications, 388, 390
power grids, 387
PWM frequency, 408
random flickering and cyclic

pulsing, 409

random-phase/zero-
crossing, 381

SCR, 380
software, 386
solid-state devices, 381
test apparatus, 384
timer pulse train, 389
timing network, 387
triac and optical isolator, 384

ADC0804, 163–167
Aliasing, 331
Analog-to-digital conversion

(ADC), 19, 46, 155, 421
ADC0804, 163–167
adjustable analog signal

source, 160
binary array, 154
circuitry, 160
coding

decimal-to-binary
conversion via serial
connection, 190–192

decimal-to-binary sequence
codes, 185, 186, 188

diode array illumination,
195–197

GPIO pin array, 206
GPIO pin values to zero, 207

https://doi.org/10.1007/978-1-4842-6778-3#DOI

462

MCP3008 10-bit ADC,
202–206

read A0 ADC channel, 198
on receive code,

ArduinoStream channel, 198
script code, clear display, 189
script code, decrease

converted value, 189
script code, increase

converted value, 188
sequence code, clearing

display, 194
sequence code, decreasing

converted value, 194
sequence code, increasing

converted value, 193
12-bit binary LED visual

display, 199, 201, 202
write data to serial port, 50

ms intervals, 198
DAC, 157
data sheet, 161
decimal-to-binary (see

Decimal-to-binary
conversions)

divider equation, 160
downstream device, 166
8-bit LED display, 161, 164
electrical signal values, 154
electro-mechanical basis, 156
electronic signal, 163
hardware demonstration, 162

history, 154
IC devices, 156
implementation, 159
mechanisms, 155
microcontrollers

active channel time stamped
data listing, 175

configuration sequence, 173
data passing through port, 176
edit box configuration

window, 170
experimentation, 169, 170,

172–174
input channels, 168
nonresponsive

displays, 175, 176
observations, 174
serial communications, 168
serial control, 169
system development and

programming, 176
variable value component

display, 171
variable value configuration

page, 171, 172
monitored variable value, 167
observations, 162
panel, 160
Raspberry Pi

binary-decimal conversions,
177, 178

binary visualization
display, 182

experimentation, 179, 180

Analog-to-digital conversion
(ADC) (cont.)

INDEX

463

GPIO lines, 182
interfaces selection

window, 184
LED array testing output, 183
MCP3008 circuit, 180
observations, 180, 181
screen output, 181
selection menu, 184
SPI configuration, 184
12-bit binary LED display,

decimal value 62, 178, 182
resistance networks, 155
serial data output protocols, 166
water metering system, 165

Application-specific integrated
circuit (ASIC), 353

Arduino project, 416, 417
“ArduinoStream”, 423
Arduino Uno microcontroller, 418
Assembly language

programming, 239
Asynchronous communication, 185

B
Base numbering systems, 153
Binary-decimal conversions,

177, 178
Bipolar junction transistors

(BJTs), 391
Bistable circuit, 246
Bit banging, 221
Break beam optical

techniques, 274

Brushless direct current (BLDC)
duty cycle, 369
experimental cooling fan current

load testing setup, 364
fan motor RPM

measurement, 367
555 PWM, optical tachometer

circuit, 370
555 timer signal, 362
Hall effect detectors, 370
hardware, 363–365
observations, 368, 369
oscilloscope display, optical

beam chopper output, 368
rotational optical scanning

operations, 362
software, 367

C
Cadmium sulfide, 430
Central processing

units (CPUs), 415
Chip slave select (CSS), 184
Circuit operating theory, 355
Client/slave, 420
Clock line (SCLK), 184
Complex instruction set computing

(CISC), 23
Constant current sources

circuit schematic, 357, 359
current mirror, 354
feedback configuration, 360
hardware, 355

INDEX

464

load resistance, 360
observations, 359
op-amp, 356
op-amp balancing, 356
op-amp power transistor

configuration, 361
operational amplifiers, 355
software, 359
thermal equilibrium, 361

Converter/conversion
resolution, 154

Counting events/timing
coding

b, s and r quick
sequences, 293

counting events, 288
cumulative time of intervals,

287, 288
IR break beam interrupt-

driven counter, 302, 303
IR break beam with interrupt

activity, 300, 301
polling IR break beam

monitor program, 299
PWM script, 290
Python scheduled event

program, 295, 296
reset counter, 289
reset stopwatch, 287
RPi.GPIO push button timer,

297, 298
RPi three-button stopwatch

timer GUI, 293, 294

scheduled time timer, 283, 284
stopwatch timer, 285, 286
stopwatch timer code,

290–292
hardware (see Hardware time/

timing)
microcontroller clocks,

timekeeping and event
counting

experimentation, 262, 263
functions, 261
millisecond resolution

timing session, 264
observations, 263–265
screen-activated button, 265
sensors/process controls, 261
serial port monitor

record, 263
stopwatch control panel, 262
stopwatch program

development, 264
switch contact bouncing, 261
timer functions, 265

Python and Raspberry Pi
detecting and counting

events, 270–272
experimentation, 273–276
familiar current time

format, 267
GPIO programming

demonstrations, 273
internet connection, 265
interrupt event detection

program output, 279

Constant current sources (cont.)

INDEX

465

I/O libraries, 281
observations, 276–280
optical break beam

circuit, 282
polling program output, 278
rising edge push button

timer output, 276
scheduler modules, 282
scheduler program

output, 269
scheduling events, 268, 269
short elapsed time

determination, 277
three-button stopwatch

timer, 268
tick count, 266, 267
time-based

measurements, 282
software (see Software time/

timing)
Current control

AC (see AC current)
AC electronics, 354
coding

continuous stepper motor
rotation, 412, 413

horizontal sliding icon,
409, 411

constant (see Constant current
sources)

DC (see DC currents)
implementation, 353
limitations, 354
monitoring, 353

power to inductive loads (see
Inductive loads)

Raspberry Pi and Python
DC currents, 390, 392
extreme values, 397
incandescent light current

control, 393
non-inductive loads,

392–394
observations, 395
print statement, 396
Python-tkinter GUI slider

control, 394
slider screen icon

controller, 395
tkinter, 395, 396
widgets, 396

sensor management, 353
Current limiting resistor (CLR),

23, 27, 31, 55, 93

D
Daemons, 223, 272
Data acquisition (DAQ), 2
Data entry

AnalogUp() and AnalogDwn()
functions, 105

Arduino microcontroller
computing systems, 105
DAQFactory control screen,

107, 108
experimentation, 106–109
numerical values, 105

INDEX

466

observations, 109
PWM activation code, 110
SCADA software, 106
serial monitor, 110

button component multiple
action selection panel, 102

coding
DAQFactory code, 115, 116
declare variables, 112
fade in and out, green LED

brightness, 113, 124, 125
flashing, Arduino-mounted

LED, 124
flash red LED, 112
“flsh_Rpts” screen-entered

loop index counter, 126
GPIO array, 129
host computer screen, 127
LED illumination intensity

variation, 113, 114
multiple-button colored

diode selection,
119–121, 123

multiple-button control, 118
PWM power application

requests, 126, 127
read power consumption, 116
red LED on and read LED

current, 115
toggle red LED illumination,

116, 117
configuration panel, descriptive

text component, 101

control panel, LED illumination
repetitions, 100

control system, 93
diode intensity, 93, 94
edit box main tab completed, 100
edit box main tab, set channel, 99
edit box ready for sizing, 100
hardware, 94, 95
NPN and PNP power control, 104
observations, 103
output, Python screen entry, 111
page components

requirements, 96–99, 102
prototype circuit, 95
Raspberry Pi, 110–112
scripting, 103

DB-25 connector, 131, 132
DC currents

BJT, 391
BLDC (see Brushless direct

current (BLDC))
FET semiconductors, 391
NPN Darlington pair

transistors, 391
stepper motors (see Stepper

motors)
Decimal-to-binary conversions

ADC (see Analog-to-digital
conversion (ADC))

DAQFactory panel, 158
hardware, 158
software, 158, 159

Differential time measurement, 239
Digital signal processing (DSP), 137

Data entry (cont.)

INDEX

467

Digital signals
binary and decimal numerical

domains, 137
binary numbering and digital

electronics, 131
CD4050 buffers, 136
coding

clear byte display, 150
8-bit binary byte display,

143–146
8-bit binary LED display,

146–149
microcontroller LED byte

display, 142
sum active binary digit

values, 141, 142
DB-25 connector, 131, 132
8-bit byte LED

display, 134
8-bit byte LED display control

panel, 135
hardware, 132, 134
high/low electrical energy

levels, 131
LabJack U12, CB25 terminal

board and 8-bit LED
array, 133

microcontroller LED
demonstration array

8-bit byte, bitwise numerical
display, 137

8-bit byte keypad, bitwise
display, 138

experimentation, 137, 138

observations, 138
summing program, 139

numerical representation, 136
observations, 136
program output and 8-bit byte

LED display control
panel, 140

Raspberry Pi, 139, 141
software, 134, 135

Digital systems function, 209
Digital-to-analog conversion

(DAC), 157
Digital visualization, 138
Downloading

hardware, 433
observations, 435
port in use error response, 435
serial port display, 435
software

Arduino LED control, 433
Quick Sequence

selection, 434
Quick Sequence text entry

panel, 434
Dual in-line package (DIP),

318, 398
Dual-sloped triangular waveform

dual-battery bipolar power
supply, 319

function generator, 318, 319
observations, 320
positive and negative voltage

ramps, 319
pull-up resistor, 321

INDEX

468

XR-2209 function generator, 320
XR-2209 VCO, 318

Duty cycle, 210, 217, 256, 259, 365,
366, 369

E
easyGUI, 18, 20
Edge detection, 270
Electrical pulses, 245
Electrolytic capacitors, 333
Electromagnetic interference

(EMI), 381, 388
Electro-mechanical

systems, 416
Electromotive

force (EMF), 397
Electronic oscillators, 240
Event counting, 244–247
Event detection, 271

F
Fade/fading effect, 93
Fairchild semiconductor MOC

3022, 385
Field effect transistors (FETs), 245
555 timer IC-based motor

controller, 366
Flip-flop/latch, 245
Frequency determination, 244–247
Function generators, 318

G
General-purpose input and output

(GPIO), 50
gpiozero, 20
Graphical data recording

circuit configurations, 306
circuit schematic, 309, 310
clinical and chemical

analysis, 305
DAQFactory graphical display

capabilities, 306
default X-Y graphical screen

display, 311
dual-slope analog ramp, 306
dual-slope triangular waveform,

318, 320
electronics components, 309
erratic output

signal/aliasing, 315
555 timer astable

configuration, 309
hardware and component

selection, square wave
output, 307, 309

microcontrollers (see
Microcontroller data
plotting)

observations, 313, 314
page components, 310, 312, 313
Python and Raspberry Pi

adjusting plotter
time base, 343

advantages, 348

Dual-sloped triangular waveform
(cont.)

INDEX

469

calibrated time base 555
timer voltage, 347

expanded time scale 555
timer, 345

experimentation, 341, 342
introduction, 340, 341
live/real-time data plotting,

348–350
observations, 343, 344
one-minute time scale

expansion, 555 timer, 346
potentiometer wiper

voltage, 343
“save a figure” option

window, 344
scale expansion option, 345
strip chart recorder

program, 346
time-calibrated plotted trace

expansion, 347
R-C timing network

values, 308
recorder trace name

selection, 312
sawtooth and triangular output

waveforms, 306
software, 310
timer output at maximum

resistance, 313
timer output at minimum

resistance, 314
timing network, 306
triangular and sawtooth

outputs, 315–318

2D graphical recorder screen
display, 311

waveform without minimal
resistance, 314

x-y plotting, 305, 321 (see also
X-Y data recording)

Graphical user interface
(GUI), 1, 94

H
Hardware time/timing

astable
configuration, 258, 259

chip functions, 254
duty cycle variation, 260
experimentation, 257
555 astable cycle, 259
555 IC timer block

diagram, 255
555 IC timer modes of

operation, 255
internal voltage divider, 256
mark/space time, 256
observations, 258
operations and configurations,

timer circuit, 254
resistance values, 260
schematic, 258
square wave/clock signals, 256

Hardware timing, 244–247
HMI devices, 2, 3
Human-machine

interface (HMI), 131

INDEX

470

I
Inductive loads

experimentation,
398–400, 402, 403

introduction, 397, 398
observations, 403
stepper motor, 404

Integrated development
environment (IDE), 40, 51,
417, 423, 436

Interactive
navigation, 340

Inter-integrated circuit (I2C/I2C),
185

Internet of things, 222
Internet time servers, 282
Interrupt-driven event counter

output, 281
Interrupts, 270, 280
Interrupt service

routine (ISR), 270, 271
IR break beam

circuit, 275

J
Jitter, 231, 272

K
Kelvin

dividers, 155
Kirchhoff’s voltage law, 31
Knob/slider page, 209

L
LDR biasing circuit, 422
Least significant bit (LSB), 155
LED illumination

CMOS buffer IC, 17
coding

button GUI control, 24
manual LED control, 23

DAQFactory and LabJack
combination, 5, 6

DAQFactory button, 17
data acquisition/HMI devices, 2
digital electrical connection, 1
hardware, 4, 5
interface functioning, 3
machine interface

connection, 2
observations, testing and

development, 15, 16
prototyping breadboard and

assorted components, 4
Raspberry Pi, Python and

screen push button
assembly and

configuration, 19
command line methods, 18
direct wiring, GPIO pins to

prototyping boards, 20
experimentation, 19–21
GPIO pin identification, 19
Kill dialog box, 22
observations, 21, 22
power control, 18

INDEX

471

simple GUI, 22
turnkey system, 23

SCADA software, 17
software

action auto-fill list, 13
action pop-up, Do Action

Selection, 12
button properties dialog

box, 10
DAQFactory button action

screen completed, 14
DAQFactory page naming

box, 9
exercise road map, 6
I/O channel configuration

data, 13
main tab, Do Action Button

Selection, 11
right mouse button pop-up

menu (RMB-PUM), 6
simple button control, 7
simple button control

properties, 7
sizing, button icon, 8
text box configuration, 8

LED power control, 5
Light-dependent resistor (LDR),

419, 428–430
Light emitting diodes (LED)

alkaline/NiMH batteries, 39
Arduino-controlled four-LED

array, 47
battery power, 38
case structure, 45

channel creation table, 41
circuitry, 33
coding

four-button control screen
and power consumption
indicators, 65–67, 69, 70

power draw of four-LED
array, 72–74

quick sequence code, off
button, 63

quick sequence code, on
button, 63

red LED, single-button
control screen, 57, 58

toggle multiple colored
LEDs, 58–61

toggle red LED DAQFactory
quick sequence, 71

toggle red LED DAQFactory
quick sequence with diode
power draw, 71

toggling LED on/off, power
measurement, 63, 65

turn red LED on/off, diode
current draw, 61, 62

two-button on and off
control screen, 56

DAQFactory channel table, 34
DAQFactory GUI

development, 40, 43
DAQFactory serial port

monitor, 48
DVM, 40
electrical parameters, 30

INDEX

472

experimentation, 29, 30, 32,
52–54

5 mm parameters, 28
forms, 29
gauge addition, 37
hardware, 32
microcontroller experimental

interface, 41
microprocessor’s serial port

number, 42
minimal internal

resistance, 39
observations, 36, 54, 55
operating values, 27
optical parameters, 31
page components

requirements, 34–36
physical computing mode, 55
power monitoring, 36, 37, 42,

52, 55
preliminary coloring, 35
Quick Sequence window, 44
Raspberry Pi, 50, 51
SCADA systems, 47
on screen icon, 43
secondary cell chemistry

battery, 38
sketches, 45
software, 33
testing and development, 36
toggling action, 45
transmission notation, 49
voltage drop measurement, 46

Luminosity, 408

M
Master in slave out

(MISO), 184
Master out slave in

(MOSI), 184
Matplotlib program, 340, 341
Matplotlib strip chart recorder

program, 440
Metal oxide semiconductor field

effect transistors
(MOSFETs), 245, 391

Microcontroller, 415
coding

Arduino code, 441, 442
com_3 port, 442
reading and plotting serial

port, 444–446
on receive serial port parsing

script, 442
run DAQFactory screen

button command, 443
Raspberry Pi and Arduino

direct serial
communications, 441

experimentation, 437, 438
menus, 437
observations, 438, 440
plotting data, 439, 440
recorder tracing, 439
serial port

transmissions, 440
terminal entry, 436 (see also

Microprocessors)

INDEX

473

Microcontroller data plotting
auto-adjusting, 339
data acquisition device, 335
experimentation, 337
observations, 338
serial plotter output, 338
serial plotter selection, 336
start-up noise, 339
typical plotter program, 337
visualization

technique, 338
Microprocessors

coded instructions, 416
digital computing, 415
electro-mechanical

systems, 416
embedded system, 415
error-free code, 417
host PC communications

downloading (see
Downloading)

uploading (see Uploading)
micro-miniature

computer, 415
physical computing, 416
programmed timing

functions, 417
rapid prototyping

technique, 416
Uno board, 417

MOC 3061 zero-crossing
device, 385

Most significant bit (MSB), 155
Motor rotation, 374

N
2N3904 NPN transistor, 211
Non-inductive

loads, 392–394
Nonresponsive

displays, 175, 176

O
Ohm’s law, 16, 357, 388
Open circuit voltage (OCV), 39
Operational amplifiers, 355
Oscillator clocks, 240

P, Q
Parallel ADC integrated

circuitry, 183
Pattern distortion, 331
Permanent magnet (PM), 371
Phase angle control, 382, 390, 409
Photo interrupter tachometer

method, 379
Physical computing, 222, 239
Pigpiod, 272
Pigpio operations

program, 236, 237
Pigpio test utility, 238
Plastic dual in-line package

(PDIP), 52
Polling, 270, 271, 282
Pulse counting, 245
Pulse train generator

panel, 251

INDEX

474

Pulse width modulation (PWM),
51, 94, 106

definition, 210
demonstration, 218, 221
duty cycle, 259
555 timer configuration, 306
frequency, 210, 233, 234, 408
fundamentals, 217
gpiozero library, 225–227, 235
high DC power, 220
high DC waveform, 220
integrated circuitry, 210
low DC power, 219
low DC waveform, 219
motor and incandescent

lighting applications, 354
observations, 218, 221
pigpio library, 227, 228
power pulses, 221
RPi.GPIO library, 224, 225
sequence program, 232
software implementation, 210
three ADC channels and

Pause(), 236
three potentiometers, 235
usage, 211

R
Radio frequency interference

(RFI), 381
Real-time clock (RTC),

240, 266, 282
“RedBoard” logo box, 41

Reduced instruction set computing
(RISC), 23

Room temperature vulcanization
(RTV), 363

R-2R “ladder” network, 156

S
Scheduled event timer, 243
Scheduling events, 268, 269, 273
Scripting

activation button, 80
Arduino LED array, 81
button action tab entries, 78
coding

Arduino LED illumination
code, 85–87

DAQFactory regular
sequence code, light show,
88, 89

Raspberry Pi, light show,
90–92

descriptive text component, 81
dual-button activation

screen, 82
experimentation, 82
expressions, 76
hardware, 77
high-speed data transfers, 81
LabJack output connections, 83
languages, 75
LED light show, 79
named sequence entry listing, 78
observations, 80

INDEX

475

process control/data
acquisition, 75

Raspberry Pi, 83–85
software, 77

Sensor measurements, 353
Serial communications, 48, 168,

183, 417, 420, 421, 426
Serial/Ethernet Communications

Guide, 420
Serial peripheral interface (SPI),

51, 178, 179, 184
Serial protocol, 420
Silicon-controlled rectifier (SCR), 380
Simultaneous scripts, 109
Single-board computer (SBC), 18, 50
Smart peripherals, 418
Software scripting, 239
Software time/timing

batteries, 240
circuit, 251
circuit schematic, 248
determination, 252
evaluation screen, 241
GUI operations, 241
hardware, 248
hardware timing, event

counting and frequency
determination, 244–247

manual and automated event
counting, 253, 254

observations, 252
operations and values, 242
scheduled event timer, 243
scripting, 250, 251

software, 248–252
stopwatch timer, 244
U12 counter usage

demonstration, 250
variables, 242

Standard numerical analysis base
conversion algorithm, 153

Stepper motors
actions, 404
alkaline cells, 403
bipolar, PM, 371
capabilities, 371
circuit schematic, 373–375
coil windings, 372
definition, 370
design, 378
digital logic circuitry, 371
D-type flip-flops, 378
experimental setup, 401
555 timer IC-based controller, 373
hardware, 372
observations, 376, 377
obsolete equipment, 404
power control unit, 371
resolution/degree of

fineness, 372
resonance, 378
screen variable value

component, 379
SMT, 402
software, page components, 376
test assembly, 375
ULN2803/ULN2804, 398, 399

Stopwatch timer, 244

INDEX

476

Streaming/burst-mode
operations, 247

Successive approximation register
(SAR), 51

Supervisory control (SC), 27
Surface mount technology (SMT),

131, 157, 417
System development/

programming, 176

T
Threading, 93, 103, 109, 271
Time intervals, 239
Timekeeping accuracy, 272
Timing network, 306
Tkinter, 18, 396
Triangular and sawtooth outputs

asymmetrical wave, 315
constant current charging

source, 316
discharge resistance, 318
555 timer expanded scale, 317
555 timer output voltage

waveform, 316
linear voltage, 315
observations, 316–318

U
ULN280n IC, 398, 399
Universal asynchronous receiver

and transmission
(UART), 185

Uploading
bidirectional data transfer, 420
“Blink” test software, 420
circuit schematic, 422
COM port, 420, 421
DAQFactory channel, 421
dark resistance, 430
data streaming, 421
hardware, 422
LDR voltage divider circuit, 431
observations, 428, 429
page components

requirements, 428
physiochemical events, 430
pull-down resistor, 431, 432
sensor measurements, 432
serial connection, 419
software

com_3 port, 423
device configuration

window, 424
protocol configuration

window, 426
quick device

configuration, 424
on receive event data

parsing script, 426
serial device naming

and configuration
selection, 425

serial port configuration
window, 425

streamed data creation, 427
strip chart recorder, 423

INDEX

477

V
Variable intensity control

C code, 223
debouncing, 222
experimentation, 224
GPIO physical computing

libraries, 231
LED illumination function

program, 231
lower-level devices, 230
observations

PWM control, RGB LED
output, 229, 230

PWM frequency variation
effect, 228

PWM_tst1, 228, 229
tested status, GPIO pins, 230

operating systems, 223
pigpio facility, 223
PWM operations, 222
PWM signals

GPIO pin connection
schematic, 11 LED, 224

gpiozero library, 225–227
pigpio library, 227, 228
RPi.GPIO library, 224, 225

PWM_tst1, 232
time scale, 231

Variable value components
(VVCs), 34, 242

Variable voltage control
diode intensity/power, 216
hardware, 211

LabJack analog output 0 control,
NPN transistor, 212

observations, 216
software

base current and LED
intensity rotating control
knob, 215

configuration window, 214
control selection menu, 213
knob tick configuration

window, 215
Voltage-controlled

oscillator, 318, 334

W
Water metering system, 165
Widgets, 396
Wire-wound load simulator, 358
Wire-wound resistors, 333

X, Y
X-Y data recording

asymmetrical voltage ramp, 321
axes tab, 323
capacitor voltage and voltage

square, 324
cyclic charging and discharging

voltages, 322
finger heat applied to left

transistor, 332
finger heat applied to right

transistor, 333

INDEX

478

fixed value capacitors, 334
general tab, 323
graphical display, 326
high and low voltage trace

variation, 326
higher voltage trace variation, 325
long-term signal distortions, 331
non-reproducible signals, 335
observations, 325

operational circuitry, 327
sources, 327, 328
vs. time recordings, 329–331,

333, 334
traces tab, 322

Z
Zero-crossing detector

circuitry, 381

X-Y data recording (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	The Author’s Preface to Arduino in Science
	Chapter 1: Button Control of LED Illumination
	Experimental
	Hardware
	Circuit Schematic: DAQFactory and LabJack Combination
	Software
	Observations, Testing, and Development
	Discussion

	Raspberry Pi, Python, Screen Push Button LED Control
	Experimental
	Observations
	Discussion

	Code Listings
	Summary

	Chapter 2: Power Control, Monitoring, and Creation of Dedicated Graphical User Interfaces
	Experimental
	Hardware
	Software
	Page Components Required
	Observations, Testing, and Development
	Discussion
	Power Monitoring and Control with Raspberry Pi
	Experimental
	Observations
	Discussion
	Code Listings
	Summary

	Chapter 3: Introduction to Scripting
	Experimental
	Hardware
	Software
	Page Components Required

	Scripting

	Observations
	Discussion
	DAQFactory Sequences: Arduino LED Array
	Experimental
	Discussion
	Raspberry Pi
	Code Listings
	Summary

	Chapter 4: Data Entry from the Screen
	Hardware
	Software
	Page Components Required

	Scripting
	Observations
	Discussion

	Screen Entry of Data with the Arduino Microcontroller
	Experimental
	Observations
	Discussion

	Raspberry Pi: Screen Entry of Data
	Code Listings
	Summary

	Chapter 5: Digital Signal Concepts and Digital Signal Outputs
	Experimental
	Hardware
	Software
	Observations
	Discussion

	DAQFactory Digital Output Exercise with a Microcontroller LED Demonstration Array
	Experimental
	Observations
	Discussion

	Raspberry Pi
	Code Listings
	Summary

	Chapter 6: Analog or Digital Conversions for Input and Output
	Digital-to-Analog Conversions
	Experimental: LabJack-DAQFactory Decimal-to-Binary Conversions
	Hardware
	Software
	Analog-to-Digital Conversions
	Observations
	DAQFactory–LabJack HMI Analog-to-Digital Numerical Base Conversions
	Analog-to-Digital Electronic Signal Conversions
	ADC0804: 8-Bit Binary LED Display
	Discussion

	Analog-to-Digital Conversions with Microcontrollers
	Experimental
	Observations
	Discussion
	Diagnostics for Nonresponsive Displays
	System Development and Programming

	Analog and Digital Conversions for Input and Output with Raspberry Pi
	Binary-Decimal Conversions

	ADC with Raspberry Pi
	Experimental
	Observations
	Discussion

	Code Listings
	Code Listings for Raspberry Pi

	Summary

	Chapter 7: Variable Intensity and Power Control
	Experimental
	Variable Voltage Control
	Hardware
	Software

	Observations
	Discussion

	Experimental
	Pulse Width Modulation of Voltage
	Introduction

	Observations
	Discussion

	Raspberry Pi Variable Intensity Control
	Introduction

	Experimental
	PWM Signals with the RPi.GPIO Library
	PWM Signals with the gpiozero Library
	PWM Signals with the pigpio Library

	Observations
	PWM_tst1
	PWM Control of RGB LED Output
	Discussion

	Code Listings
	Summary

	Chapter 8: Counting Events and Timing
	Software Time and Timing
	Basic Time Variables
	Scheduled Event Timer
	The Stopwatch Timer
	Hardware Timing, Event Counting, and Frequency Determination

	Experimental
	Hardware
	Circuit Schematic
	Software
	Scripting
	Circuit
	Software
	Scripting and Action

	Observations
	Discussion
	Time Determination
	Manual and Automated Event Counting

	Hardware Time and Timing
	Experimental
	Schematic

	Observations
	Discussion
	Microcontroller Clocks, Timekeeping, and Event Counting
	Experimental
	Observations
	Discussion
	Counting Events and Timing with Python and Raspberry Pi
	Scheduling Events
	Detecting and Counting Events

	Experimental
	Observations
	Discussion
	Code Listings
	Raspberry Pi Program Code

	Summary

	Chapter 9: Graphical Data Recording
	Experimental: Linear Graphical Data Recording
	Part 1: Hardware and Component Selection – Square Wave Output
	Electronic Components Required
	Circuit Schematic
	Software
	Page Components Required
	Part 1: Observations

	Experimental
	Part 2: Hardware and Component Selection – Triangular and “Sawtooth” Outputs
	Part 2: Observations
	Part 3: Hardware and Component Selection – Dual-Slope Triangular Waveform
	Part 3: Observations

	X-Y Data Recording
	Observations: x-y Plotting
	Discussion
	X vs. Time Recordings
	X-Y Recordings

	Microcontroller Data Plotting
	Experimental
	Observations
	Discussion

	Graphical Data Recording with Python and the Raspberry Pi
	Introduction
	Experimental
	Observations
	Discussion

	Code Listing
	Summary

	Chapter 10: Current Control
	Constant Current Sources
	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Control of Larger DC Currents
	Introduction
	Brushless Direct Current (BLDC) Motors (Motors Without Commutators or Sparking Brushes)

	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Stepper Motors

	Experimental
	Hardware
	Circuit Schematic
	Software
	Page Components Required

	Observations
	Discussion
	Control of AC Current Sources
	Introduction

	Experimental
	Hardware
	Circuit Schematic
	Software

	Observations
	Discussion
	Current Control with Raspberry Pi and Python
	Introduction
	Control of Larger DC Currents

	Experimental
	Non-inductive Loads

	Observations
	Discussion
	Power Control to Inductive Loads
	Introduction
	Experimental

	Observations
	Discussion
	Control of AC Currents
	Introduction

	Experimental
	Observations
	Discussion
	Code Listings
	Raspberry Pi–Python Codes

	Summary

	Chapter 11: Microcontrollers and Serial Communications
	Experimental: Microprocessor to Host PC Communications – “Uploading”
	Hardware
	Circuit Schematic
	Software
	Page Components Required

	Observations
	Discussion
	Experimental: Host PC to Microprocessor Communications – “Downloading”
	Introduction
	Hardware
	Software

	Observations
	Discussion
	Raspberry Pi and Arduino
	Experimental
	Observations
	Discussion
	Code Listings
	Summary

	Appendix A:
List of Abbreviations
	Appendix B:
List of Suppliers
	Index

