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The Author’s Preface to 
Arduino in Science
Arduino in Science is written to provide an introduction to the basic 

techniques that can be used by individuals to engage in experimental 

science. It is hoped that the manuscript can assist students and those new 

to or with limited backgrounds in electro-mechanical techniques or the 

physical sciences, to devise and conduct the experiments they need to 

further their research or education. It is also hoped that the manuscript 

will be useful where there are limited financial resources available for the 

development of experimental designs and experimental or educational 

programs.

Migrating or foraging animals and insects use daylight, near- infrared 

light, polarized light, celestial indicators, chemical traces in water, the 

Earth’s magnetic field, and other aids to navigate over the Earth’s surface 

in search of food or to return home to their breeding grounds. Astronomy, 

biology, chemistry, geology/geography, mathematics, physics, and other 

subjects through to zoology are human concepts and classifications 

entirely unknown to the travelers of the animal world. There are parallels 

between the animal kingdom’s usage of multiple scientific phenomena 

of which they have no knowledge and current scientific investigations. 

A significant amount of new scientific knowledge is being revealed by 

investigators educated in one classifiable discipline using the unfamiliar 

experimental techniques from another. Although written by an analytical 

chemist, this manuscript is a compilation of introductory basic techniques 

applicable to any scientific discipline that requires the experimental 

measurements of basic physio-chemical parameters.
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The author is an experimental analytical chemist who has worked 

with vacuum tubes, transistors, integrated circuits, main frame, mini-

computers, microcomputers, and microcontrollers, while computing 

technology transitioned from BASIC, Fortran, and variations of C to 

iterations of the open source systems such as Python, Processing (the basis 

of the Arduino microcontroller integrated development environment (IDE) 

language), and Linux operating systems used in the Raspberry Pi. New and 

revised versions of languages, IDEs, and operating systems are available 

free of charge from the Internet and are constantly in a state of flux.

This work could be considered as being virtually obsolete as it is 

being written, but as with the science and technology that it describes, 

it is a starting point in an ever-changing subject. For the researcher and 

practicing scientist, the fundamentals of science are relatively constant 

and reasonably well understood, so a great deal of caution must be used 

when deciding that a concept or technique is “obsolete.” The SCADA 

concept and its development significantly predate the PC. Some of the 

transistor and CMOS ICs and the 7400 series of integrated circuitry that 

are in heavy use today date from the 1970s. Many chemical analysis and 

physical measurement techniques, taught and in use today, date virtually 

from the Middle Ages.

SCADA is the acronym for supervisory control and data acquisition. 

SCADA software allows a computer to supervise an electro-mechanical 

process and do so by acquiring data from sensors that are monitoring 

the process being controlled. Many of the measurement techniques to be 

discussed can be considered as single element components that are now 

part of the developing technology being called the Internet of things (IOT) 

with the Node-RED connectivity open source software.

HMI is the acronym for human-machine interface. The HMI can be 

an electronic device or construct that provides an interface between a 

computer, an experimental setup, and a human operator. (A graphical user 

interface, GUI, may serve as an HMI.)

The Author’s Preface to Arduino in Science
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USB is the acronym for Universal Serial Bus that is, in reality, a written 

standard of specifications to which electro-mechanical hardware systems 

are expected to conform. The USB is a subsystem that lets a personal 

computer communicate with devices that are plugged into the Universal 

Serial Bus.

When a personal computer runs supervisory control and data 

acquisition software with a human-machine interface connected via the 

Universal Serial Bus system, then investigative science experiments or 

other processes, experimental apparatus, or equipment setups, either “in 

the field” miles away or “on the bench” next to the computer/workstation 

or laptop, can be monitored and controlled in “real time.”

Laptops, stand-alone desktops, and cabled or wireless networked 

workstations together with Internet connections now allow unprecedented 

flexibility in laboratory or “in-field” monitoring of investigative science 

experiments.

The options available to the experimentalist for implementing SCADA 

systems can essentially be divided into three categories based upon the 

amount of development work required to achieve a fully functional system.

Complete, finished, working software systems that are able to 

measure and control virtually any electro-optical-mechanical system are 

available from manufacturers such as National Instruments and Foxboro. 

Commercially available fully functional, basic, software-only systems can 

be expected to cost in the range of several thousands of dollars.

The author chose to develop this manuscript on three much-lower-

cost options for SCADA implementation in experimental setups.

A moderate-cost implementation strategy, involving the following list 

of resources, has been used to develop the exercises in this manuscript. 

These resources should also be adequate for further experimental 

development of new applications:
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	 1)	 A PC with SCADA software. Numerous systems 

are available, and the DAQFactory Express and the 

base-level DAQFactory version of the system from 

AzeoTech have both been used in this manuscript 

(cost for DAQFactory base-level software approx. 

$250 CDN, 2008). There are freeware versions of 

SCADA systems available for those who are able to 

adapt the software and may require the extended 

flexibility.

	 2)	 A USB HMI. Again there are many devices available 

from many manufacturers, and the device chosen 

for this manuscript is the model U12 from LabJack 

Corporation. (U12 costs approx. $120. U3 was 

added later, which costs approx. $110 USD.) The 

LabJack devices are provided with software in 

the form of a working version of the DAQFactory 

program called “Express.” The LabJack-supplied 

software is excellent with respect to its graphical 

display capabilities and for many applications in 

investigative sciences is more than adequate. The 

DAQFactory Express is however limited to ten lines 

of script code, five script sequences, and two display 

pages. For some of the topics discussed and project 

exercises described in this manuscript, the more 

extensive capabilities of a commercial version of 

the DAQFactory software may be required. If the 

software is to be purchased, the reader should start 

with the most basic program available and add 

upgrades as required.
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	 3)	 The third option for experimentalists is the newest 

and lowest-cost approach to the implementation of 

a SCADA system that consists of the Raspberry Pi, its 

Linux operating system, the Python programming 

language with its matplot library, and the tkinter 

graphical user interface. The Linux operating 

system and Python and its modules are all open 

source projects and hence free for download 

from the Internet. The Raspberry Pi project has 

made available the Raspberry Pi board that can 

be purchased from many large electronics supply 

houses such as DigiKey or Newark element14, to 

name only two, for $35. The Raspberry Pi board 

requires an HDMI-compatible TV or computer 

monitor, mouse, and keyboard to form a fully 

functional computing system. In addition to the 

virtually no-cost software, the Raspberry Pi board 

contains its own general-purpose input/output bus 

in addition to its USB input/output connection and 

hence contains its own HMI requiring no additional 

circuitry or expense to be interfaced to external 

electronics or experimental setups. The Raspberry 

Pi board is manufactured with an Ethernet 

connection and is thus network capable.

In 2008 an open source project called Arduino made available a series 

of USB-connected microcontroller boards that allowed designers, artists, 

hobbyists, and non-electronics specialists to interface electro-optical-

mechanical devices to a computer. The basic Arduino Uno Rev3 board 

can be purchased from any of the major electronics supply houses for 

$25. The software to program the microcontroller board is another open 

source project and is freeware that can be downloaded from the Internet. 
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The Arduino board can be used with Windows or Linux-based operating 

systems and is fully supported with an online forum, many tutorials, and 

an extensive range of example programs and applications.

Experimental investigations using SCADA-type implementations can 

thus take the form of a complete commercially available package, useable 

as received with no required development time, as a lesser-cost system 

requiring a moderate amount of programming using the DAQFactory 

program and commercial HMI devices such as the LabJack series of 

interfaces or as an assemblage of very-low-cost hardware and open source 

software freely available for download from the Internet.

In addition to the software and hardware required to implement the 

monitoring and controlling system, additional ancillary equipment may be 

required in the form of the following list:

	 1)	 A solderless breadboard system, appropriate power 

sources such as battery or electronic regulated 

supplies, and access to various IC and passive 

electronic components are required.

	 2)	 For troubleshooting, a multimeter is required; and 

for more advanced work, an oscilloscope, either 

stand-alone or an oscilloscope program for a PC, 

may be required.

It is suggested that the reader, new to this technology, work through the 

manuscript in order of presentation so as to gain practice and confidence 

with software, wiring, and increasing project complexity. The basics 

of scripting software, hardware interfacing, electronics fundamentals, 

and IC usage will all progressively become more complex; and the basic 

knowledge and procedures established in the earlier exercises will not be 

repeated in the more advanced projects. All science is empirical in nature, 

and this manuscript is no different than real-life scientific work. The 

investigator must progress from the simple to the more complicated facets 
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of the project at hand, verifying and validating each intermediate step in a 

multiple-stage measurement process.

The rate at which the individual can progress through the various 

topics presented will be dependent upon their knowledge of the basic 

physical sciences that form the core of the exercises. If difficulty is 

encountered, textbooks, online tutorials, and academic course outlines 

with exercises can be located to further aid in understanding the required 

base knowledge.

As the title states, this manuscript deals essentially with monitoring 

and measuring physical-chemical parameters with integrated circuitry and 

physical computational systems. In this work, inexpensive “off-the-shelf 

components” are used to monitor and control experimental setups that 

are able to measure data in the form of basic physio-chemical parameters 

of interest to investigators in many of the classified sciences, with in some 

cases astounding sensitivity, flexibility, accuracy, and precision.

Disclaimer

	 1)	 110-volt electricity can be lethal and will start fires.

	 2)	 Soldering irons are hot enough to cause serious 

burns.

	 3)	 This document is for educational purposes only 

and presents concepts that are demonstrated 

through experimental formats. These experimental 

setups have not been tested for robustness and 

are not designed or intended for any form of 

implementation in field service. These concepts 

are the basis for education only and are intended 

as being starting points for further R&D into 

instrumental methods of monitoring experimental 

scientific apparatus for the purposes of gathering 

data or making physical measurements.
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	 4)	 The concept for this work came to the author in 

the mid-1960s, and in the interim years, various 

portions of this work were developed with the 

technology available at the time, while other 

concepts were found to be unworkable. Although 

formal assembly of this document was begun 

in 2008 and 2009 using the integrated circuitry, 

physical computing, and Internet information 

resources available at that time, the document 

continues to develop as it is being written using new 

integrated circuits, physical computing software, 

and online information sources. The continued 

availability of either software or electro-mechanical 

hardware can never be assured, and hence the 

practitioners of this or any science must learn the art 

of “a work-around.”

�Exercise Road Map
As noted in the Preface, this work is not intended to be a first or  

ab initio introduction to data collection. Although motivated or 

enthusiastic investigators can plunge right in and try to pick up needed 

knowledge and skills on the fly, the guide is aimed at those who have at 

least some experience in working with electronic hardware and computer 

software. A basic familiarity with simple electronics as well as some 

elementary programming in a structured language such as Python or C++ 

will shorten the time required to complete the various exercises.
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The manufacturer’s literature for most of the data collection hardware 

referred to in this guide provides guidance and elementary activities to 

help familiarize the new user with its implementation. Online sources can 

also provide numerous practical applications of the hardware at hand.

Once the experimenter is comfortable with the hardware and software 

exercises described in this work, the experimental measurement of many 

basic scientific parameters can be made in accordance with the methods 

detailed in the next book in this series, Arduino Measurements in Science.

This work is devoted to developing the techniques that can be used 

for making experimental physio-chemical measurements with equipment 

assembled from readily available components, materials, and most small 

desktop or portable computing systems. This manuscript is an attempt to 

provide written methodologies by which fundamental measurements can 

be made by investigators of varying levels of familiarity with electronics, 

electro-optical, and simple mechanical systems. A series of experimental 

measurement procedures are developed as a prelude for being able 

to make the basic measurements of parameters such as temperature, 

distance, light intensity, sound frequency, relative humidity, and other 

fundamental measurements in basic science.

Each of the chapters develops a method or technique that can 

ultimately be used to assemble a testing or measurement method or 

procedure consisting of the various methodologies developed.

�Exercise Format
�Experimental

Hardware

Software

Observations

Discussion

Code Listings
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�Project Management
When working through each of the exercises in the various chapters, the 

following procedures are suggested:

	 1)	 In preparation for the assembly of an experimental 

exercise or project described in a chapter, review the 

manuscript information and collect the published 

work relevant to the exercise such as manufacturer’s 

data sheets for the components in use. This will 

serve to add to the depth of knowledge available to 

the investigator and may avoid component damage. 

Rough notes and drawings should be collected 

together into a notebook (either on paper or in an 

electronic format).

	 2)	 Begin assembling the hardware/electronics and 

corresponding software from the simplest unit 

operations of the project, debugging the individual 

modules and then verifying operational status until 

the entire project functions as designed.

	 3)	 Caution is required in reading schematic diagrams 

and attempting to duplicate their assembly as 

certain discrete components and integrated 

circuitry are constantly decreasing in physical 

size or are replaced with newer technology. The 

decrease in size means that identification markings 

on components are getting smaller also.

Resistance and capacitor markings may appear in several formats 

as combinations of numbers and letters with the magnitude symbol 

sometimes replacing the decimal point. Surface mount technologies (SMTs)  

have a three-digit code in which the first two digits are the value and the 

third is the power of 10 of the value multiplier.
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Resistors’ unit of measure is ohms, symbol Ω.

M is 106 or 1,000,000 ohms, and typical identifications may be 1.5 M or 

1M5.

K is 103 or 1,000 ohms, and typical identifications may be 1.2 K or 1K2.

R is 100 or 1 or unit ohms, and typical identifications may be 100 R or 

just 100 as there is no decimal point to replace.

m is 10-3 or 1/1000 ohms, and 0.052 Ω is written as 52 mΩ.

Capacitance units in older works were mainly limited to micro- and 

picofarad designations, and the range of nano- was covered either by 

thousands of pico- or thousands of microfarads. Most current capacitor 

notation usage seems to adhere to the three main fractional designations 

listed in the following but has recently been expanded to include the Farad 

to avoid using thousands and millions of the micro- term when describing 

ultra- and super-capacitor devices.

Capacitors’ unit of measurement is Farads, symbol F.

u is microfarad and is 10-6 Farads.

n is nanofarad and is 10-9 Farads.

p is picofarad and is 10-12 Farads.

The exercises in this book use very simple electrical circuits that will 

be assembled on a “breadboard” and connected to the LabJack HMI, 

DAQFactory Express system, Arduino microcontroller–DAQFactory 

combination, or directly to the Raspberry Pi or RPi-Arduino systems 

to provide an interface between the working electronic circuit and 

a computer-generated GUI. Each of these combinations allows the 

experimenter to exercise supervisory control, acquire data, or monitor a 

data stream trend, through a software, user interface screen. There is no 

better way to gain experience with electro-mechanical control systems 

than to mechanically assemble circuits and test and establish their 

functioning, before configuring software for data acquisition (DAQ) and 

hardware control. As a general rule, the hardware is assembled, tested, and 

validated before one moves on to interfacing and software development.
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The following discussion uses the first of the exercises as an example 

of the general methodology that will be used for the rest of the exercises. 

Each exercise in this work is generally set out in the traditional laboratory 

format, and it is assumed that this general section has been read and is 

understood by the researcher.

When working with electrical signals from a sensor or experimental 

apparatus, ensure that the output voltage level does not exceed the input 

voltage capability of the electronic components being used to process the 

signal. Most discrete integrated circuitry is limited to 5 volts, some op-

amps will operate at up to 18 volts, and most surface mount technologies 

operate at a nominal 3.3 volts.

As with all scientific endeavors, a logical progression should be made 

from the simplest to the more complex. When developing the software for 

the project at hand, the experimenter should begin with the code required 

to connect the apparatus to the computing and display circuitry.

The simplest form of electrical signal transmission uses a series 

connection for both analog and digital signals.

Analog voltage signals are often connected directly to the input pins 

of integrated circuits that provide some form of signal processing, while 

digital signals are connected to pins that sense whether the signal is high 

or low. In general terms, a large portion of sensor outputs are voltage 

based, but current sensing is also used in some sensor measurements.

Computational circuitry usually accesses external data through a 

“serial port.” The serial port is often a specific addressable location in 

the computer memory that accepts incoming digital data according 

to a specific encoding called a protocol. The protocol specifies the 

meaning of the high-to-low or low-to-high transitions that make up the 

digital signal with respect to timing, data values, and signal processing 

control parameters. There are numerous scientific and industrial serial 

transmission protocols designed and optimized for specific applications, 

but the following exercises will be predominantly confined to the basics of 

serial data transmission.
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The exercises can use the DAQFactory scripting language, Python, and 

the variant of C used in Arduino programming. All three programming 

languages have reserved keywords that cannot be used as variable 

names. Follow the variable naming rule suggestions in the appropriate 

documentation for the language in use. Create meaningful names by 

following traditional C styles such as MySignificantName, MySgnfcntNme, 

or My_Significant_Name. Do not use proper words such as “temperature” 

or “Temperature” or any other word that may be a proper word used within 

Python, DAQFactory scripting, C, or C++ programming code. Scripts 

that contained proper words used as variable names or channels for 

“clarity” by the author that failed to operate and produced baffling outputs 

suddenly performed flawlessly when the proper words were re-keyed with 

unique mixed upper- and lowercase characters. Follow the proper formal 

methodology built into the software at hand. In the DAQFactory software, 

creation of the channels first allows DAQFactory to populate the pop-up 

intelligent listing of channels, variables, and constants to cut down on 

error-prone typing. The primary step in all troubleshooting procedures 

involving written coded systems that do not work is to check all spelling. 

Names are case sensitive.

Keep detailed notes of what is being done, write down calculations, 

sketch schematics and rough mechanical drawings. This is, after all, 

science. The drawing conventions for mechanical systems and electronic 

circuits can be found in several reference texts.1 The reader is encouraged 

to follow these conventions.

1 1) �Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge 
University Press, ISBN 978-0-521-8785-6

2) �The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press, 
ISBN 0-521-37095-7

3) �Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill 
ISBN 978-0-07-177133-7
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As an exercise is assembled from software control of the HMI to wiring 

of the circuitry on the breadboard, test each segment of the process. 

Work neatly; lay out the wiring parallel to the lines and rows of pins on 

the breadboard socket. Cross wires at right angles and only bend small 

copper wires to right angles with your fingers so as to achieve a relatively 

large radius of curvature. Recall that copper, although very ductile, “work 

hardens,” so use new wire where possible or make sure that a wire is 

re-bent to large-radius, gentle curvatures, no more than half a dozen 

times at most. In the chemical engineering discipline, a manufacturing 

process is set up from a number of “unit operations.” Each unit operation 

is usually a complete basic step involving a physical change or chemical 

transformation such as crystallization or precipitation that forms a 

component of a larger multistep manufacturing process. A unit operations 

concept can be applied to creating a basic supervisory control and data 

acquisition (SCADA) process. In essence each SCADA process can be 

considered to have, at a minimum, three components, a process to be 

controlled, a sensing and adjusting mechanism, and a central control 

authority.

To practice the unit operations concept in our first exercise, we should 

set up or configure our DAQFactory software to activate a channel. The 

channel will have been assigned a screw terminal output on the LabJack, 

and the terminal output will have been wired to the appropriate input pin 

on the integrated circuit driver. The output pins on the current driver IC 

will have been individually wired to the current limiting resistor (CLR) on 

the LED diodes being controlled by the system.

The first step in our testing procedure is to verify the appearance of 

+5 and 0 volts at the channel output pin on the LabJack with a digital 

voltmeter (DVM). The appearance of the +5 and 0-volt signal should be 

verified at pin number 3 on the CD4050 hex buffer chip current driver and 

at the higher-voltage end of the current limiting resistor on the LED. It is 

inherently assumed that if all the component parts of a system work, then 

the entire process will work. Remember that the assumption is just that!
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�Isolation
The USB is essentially a communications standard and as such has a 

limited ability to supply power. An HMI that can be used for this work is 

the LabJack that draws virtually all its power from the computer’s main 

supply. The LabJack can source up to 450 mA. It is good practice for an 

external power supply to be used to power our experimental devices. In 

this manuscript, we are working on a bench or desktop and will do so 

with a self-contained power supply as will be encountered in any field 

or laboratory experimental setup. Some experimental setups in either 

laboratory or field will draw more than a half amp, and some will control 

line voltages and currents. Control of remote setups by the SCADA 

software over networks or from laptops may not be able to supply any 

current to the experimental equipment. To power the LED in the first 

exercise, we will use the HMI to control a “buffer” circuit of a CD4050 

CMOS IC chip that will in turn be used to switch the LED power on and 

off. The control logic of a ONE or ZERO, created by the SCADA software 

and appearing at the I/O terminals of the HMI device in the form of +5 or 

0 volts, is thus used to control the required current from an external 6-volt 

power supply.

An independent battery or highly regulated power supply is often 

required for measuring low-level analog signals. Investigators using the 

5-volt supply of the USB will often find that the sensitivity of low-level 

analog signals is defined by the digital clock noise of the bus.

The systems being monitored and controlled in most real-world 

applications are self-powered and in fact may be linked to the computer 

and the SCADA software through a wireless link. When the USB is used 

for power, it is good practice not to load the computer power supply and 

hence draw only the minimum required current from the bus.

Some of the experimental setups to be explored will draw amps of 

current and hence cannot be driven by the computer power supply, so 

some of the exercises to follow must obviously be self-powered. In the later 
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exercises, the power and flexibility of USB-connected microprocessors will 

be explored; and although these can be powered by the USB, they should 

be self-powered to stop the noise on the bus system being blended with 

the data signal output of the microprocessor. (USBs 1 and 2 can supply 500 

mA and USB 3 900 mA.)

�Software Scripting
Every script written should be fully documented. The name of the 

sequence or code, the purpose of the sequence, and possibly the date the 

code was written should all be placed at the head of the actual code in 

accordance with the details for naming and commenting as given in the 

various software language references. The heading should also outline 

what the code does, describe the algorithm in text, and define the variables 

used. Recall also that a variable must be declared in a scripted sequence, 

plus the sequence must be running for the variable to exist and be useable. 

DAQFactory has an auto-start option for a sequence, which will start the 

sequence when the page with the script-related icon’s control screen is 

loaded, and if required the auto-start option can be used to automatically 

start a sequence that declares a set of variables for use in configuring a 

control screen or sequence.

The RPi and Arduino auto-start their operating system and defined 

software variable on the application of system power.

�Integrated Circuitry and Surface Mount 
Technology (SMT)
Traditionally experimenters bought components for mounting on 

breadboards during testing and project development. The successful 

breadboard circuit could then be transformed into printed circuit boards 
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with single- or double-sided etched patterns. The double-sided boards 

often used drilled holes to connect both sides of the board. However, as 

integrated circuits became significantly smaller, drawing less current, they 

became faster and significantly more sensitive and are now at the point at 

which many of these miniature ICs can neither be handled manually nor 

electrically connected into circuits, by the average researcher.

Smaller IC size has given rise to smaller component area and 

surface mount technology (SMT) that in turn has made circuit boards 

much smaller, easier to manufacture, and less expensive. The decrease 

in physical size and the development of SMT have added a layer of 

complexity for the experimentalist. Using the advantages gained by 

physically decreasing the size of the integrated circuits requires adapters to 

convert SMT components into compatible breadboarding formats.

Exercises in the following chapters predominantly use readily available 

ICs that are compatible with the common prototyping breadboard 

systems. 
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CHAPTER 1

Button Control of LED 
Illumination
The exercise in this chapter is virtually one of the simplest forms of 

computer control in that an LED device is powered on and off by clicking a 

button icon on the main system display screen or by running several lines 

of computer code. The graphical user interface (GUI) is the display screen 

that contains the icons of buttons, sliding controls, meters, digital numeric 

displays, graphical strip chart recorder displays, and other symbols, both 

active/passive and text based that can be used to monitor and control the 

process at hand. Clicking the screen button toggles the LED on and off, and 

the state of the system is determined visually, by whether or not the LED 

is illuminated. As the initial exercise in interfacing the SCADA software 

with the HMI and the breadboard electronics, the ability to control the 

application of power to simple electronic circuits from a display screen or 

keyboard is demonstrated.

In order to connect visually oriented digital software running on 

a “Windows”-based computer operating system to a “plug-in” rapid 

prototyping “breadboard” sitting on a bench top or embedded in an 

experimental environment, a digital electrical connection is required.  

A USB cable used to connect peripherals to host computers can be 

employed as the electrical signal transmission line connecting the host 

computer to the machine interface.
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The machine interface connection can be any one of a number of  

USB-compatible, programmable hardware devices, able to receive an 

input of digital code, interpret or recognize the intent of the code, and 

generate the required digital output signal.

In Figure 1-1, a selection of data acquisition or HMI devices able to 

provide the required input interpretation and generate the proper output 

signal are displayed.

Items 1 and 3 are from LabJack Corporation of Lakewood, CO, 

USA. The corporation produces approximately a dozen multifunctional 

data acquisition (DAQ) devices compatible with USB, Ethernet, and Wi-Fi 

systems. LabJacks are rugged, robust devices intended for hard industrial 

and laboratory applications with their heavy plastic protective cases and 

large screw terminal wiring connections. The two devices depicted are 

the lowest-cost U3-HV ($115 USD; see LabJack literature for a list of all 

the additional functions and features available) and the original LabJack 

multifunction DAQ device ($160 USD).

Item 2 is a Digilent Inc. chipKIT Uno32 (since retired) Arduino-compatible 

microcontroller. The illustrated device has been replaced by the chipKIT uC32, 

3.3-volt Arduino-compatible microcontroller ($42 CDN). Items 4 and 5 are 

inexpensive mass-produced SMT Arduino-compatible microcontrollers from 

SparkFun Inc. ($20–$30 USD).

Each of the devices illustrated is able to receive either a single digital 

on/off signal or a coded instruction and generate the required output.
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Microcontrollers are currently manufactured by over a dozen 

companies with a large variety of features and a wide range of costs.

�Experimental
The original control screen button illumination of an LED resident on 

an external independently powered, prototyping board was created and 

written in 2007 with the LabJack U12 as seen in Figure 1-1, item 3. Many 

years later with the availability of the low-cost microcontroller boards, 

items 2, 4, and 5 in Figure 1-1 can be used to do the same interface 

functioning. Although this exercise describes the use of the U12, any 

microcontroller board can be used as a replacement for the LabJacks in 

Figure 1-1. Details on the configuration of the DAQFactory control screen 

Figure 1-1.  Some HMI Devices
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button to activate an Arduino to illuminate an LED are given in Chapter 11. 

In the “Experimental Downloading – Sending Data to the Microprocessor” 

section, three buttons are configured to turn the power on and off to an 

LED and to do so in a programmed sequence.

�Hardware
A typical selection of suitable electronic components for this exercise is 

displayed in Figure 1-2 resting on a prototyping “breadboard.”

Item 1 is a plastic battery case able to hold eight AA-size cells to 

provide a nominal 12 volts. (Eight fresh alkaline cells at 1.5 V each will 

provide 12 V, while eight nickel metal hydride (NiMH) rechargeable cells at 

1.2 V will provide an initial 9.6 V DC power supply. Li AA cells can provide 

a nominal 3.6 volts each.)

Figure 1-2.  Prototyping Breadboard and Assorted Components
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The items beside caption 2 are LEDs. The left-hand red LED is a 3 mm 

(1/8 in) miniature device, the next four colored diodes are 6 mm (1/4 in) 

devices, while the right-hand clear device is a 10 mm (3/8 in) white light LED.

Item 3 is a CD4050 non-inverting hex buffer (see the following text). Item 4  

is a typical 1/8-watt, current limiting resistor, while item 5 is a 2 in (50 mm) 

by 6 1/4 in (163 mm) prototyping board. The board has two independent 

power rails at the top and bottom of the top surface marked with a red (+)  

and blue (–) line. Each rail power line can accommodate 50 power 

connections and 50 ground connections. Between the upper and lower 

power rails are two independent banks of 63 columns of five tie points.

�Circuit Schematic: DAQFactory and LabJack 
Combination
The circuit schematic in Figure 1-3 is used in the first two exercises. The 

full four-LED circuit is used in Chapter 2 in which the individual power 

consumptions of the various colored LEDs are monitored. For the first 

exercise, use only the wiring in the red LED circuit.

Figure 1-3.  Circuit for LED Power Control
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Individual switches in the CD4050 chip are monodirectional in 

that a voltage change applied to the input affects the output but voltage 

fluctuations at the output do not affect the input pins.

�Software
Page Component Required: A Single Button

As discussed in the “Exercise Road Map,” detailed notes should always be 

kept while working with any scientific discipline. For this exercise, the name 

of the channel to be used to control the HMI, or in this case the LabJack, 

should be chosen and the software configured to deliver the channel output 

signal to the first input/output terminal (I/O 0) available on the LabJack 

terminal board. (See the LabJack U12 or U3-HV user guide.) The details in 

the DAQFactory and LabJack user guides should be followed, and for this 

exercise, the author used a channel name of RedLed. The channels to be 

used in any DAQFactory project should be configured and activated by the 

Apply button before placing screen components. By defining the channels 

before creating the screen components, the channel names will appear in the 

pop-up menu as seen in Figure 1-11. (For use of microcontrollers in place of 

LabJacks, see Chapter 11, “Experimental Downloading.”)

As with all programming, documentation is required. To not document 

software is poor practice, at best. Before placing and configuring the 

button, a descriptive text message should be placed on the screen to 

document what the button does. The text component is created from the 

right mouse button pop-up menu (RMB-PUM) by selecting the Static 

option and then the Text option. A window enabling a screen message to 

be created is displayed.

Figures 1-4, 1-5, and 1-6 depict the selection of a static text screen 

component, the display of the component properties subwindow, and the 

active text entry panel.
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With the message outline frame in place and in the selected mode, 

a right-click will bring up the menu containing the Properties option. 

Selecting the Properties entry in the menu will bring up the properties 

window that will allow the entry of the lettering to be displayed in the text 

component.

Figure 1-4.  Simple Button Control

Figure 1-5.  Simple Button Control Properties
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Having entered the desired lettering into the text box and chosen the 

alignment, color, font, and size, the main tab can be closed with the OK 

button to place the text message. The text box as seen in Figure 1-7 may 

have to be expanded/resized to display the entire message.

Figure 1-6.  Text Box Configuration

Figure 1-7.  Sizing of the Button Icon
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In keeping with the philosophy of constant documentation, it is 

probably a good time to name the page with the Page Properties box 

as seen in Figure 1-8. The box is displayed by right-clicking the current 

page_n designator in the page list and selecting the middle option: Page 

Properties.

The button component is selected from the RMB-PUM, and with 

the Ctrl key pressed, the component can be positioned beneath the 

appropriate text.

Following positioning of the button component on the screen, it can 

be configured for actual usage by completing the appropriate tabs found in 

the component properties dialog box. The properties dialog box is invoked 

by right-clicking the selected icon as depicted in Figure 1-9. To connect the 

screen displayed button to an action in the experimental environment, the 

“Do Action” option is selected as seen in Figure 1-9.

Figure 1-8.  DAQFactory Page Naming Box
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As can be seen in Figure 1-10, the button component properties 

window contains two tabs, Main and Action.

The Main tab allows the button to be labeled with the desired font and 

size of characters and appropriate coloring of lettering, which is centered, 

in the displayed icon by default. As can be seen in Figures 1-6 and 1-8, a 

Help screen is displayed below the properties window for a convenient 

reference while configuring the screen component. The textual content of 

the Help box can be viewed through the scrolling controls on the side of 

the Help box.

The button component box is depicted in Figure 1-10.

Figure 1-9.  Button Properties Dialog Box
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As the name suggests, the component Action tab configures the action 

invoked when the button icon is clicked with the mouse cursor. As seen in 

Figure 1-11, the Action tab brings up a drop-down list of actions or options 

from which the desired selection can be made. The details of the various 

entries on the drop-down action list are found in the component Help file 

attached to the bottom of the window.

Figure 1-10.  The Main Tab of the Do Action Button Selection
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For the manual control of the LED on the breadboard, the Toggle 

Between option from the drop-down list is selected. Selection of the Toggle 

Between option then requires the completion of several more dialog boxes 

that specify exactly what is to be done as depicted in Figure 1-12.

Figure 1-11.  The Action Pop-Up List from the Do Action Selection
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Figure 1-12.  Toggle Between Action Auto-fill List

When the Toggle Between option has been selected, it is usually a 

channel that is to be switched between two alternate voltages such as 

0 and 5 volts. As noted at the beginning of this software configuration 

section, the completion and entry of the I/O channel configuration data 

is now reflected in the RedLed entry in the intelligent pop-up selection 

list of Figure 1-12. Double-clicking the RedLed channel entry will enter 

the channel name in the box. Ensure that the name entered into the box is 

correct and that no extra characters have inadvertently been appended to 

or deleted from the desired name.
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The Action tab also has several other grayed-out options that are 

activated with various selections from the action list. In this case, there are 

boxes for the entry of the values to “toggle between” as seen in Figure 1-13 

that will appear as axes on the channel’s graphical display.

The purpose of this exercise is to directly couple the button to the LED 

power controller without any need for scripting.

Figure 1-13.  DAQFactory Button Action Screen Completed
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�Observations, Testing, and Development
Connect the positive lead of a digital voltmeter to the I/O 0 terminal and 

the black lead to the GND terminal of the LabJack. Set the meter scale so 

as to be able to measure 5 volts. Turn the meter on and ensure that the 

reading is zero. Then click the LED on/off button, and the reading should 

rise to 5 volts.

If a 5-volt reading does not appear, then begin by verifying the channel 

name spelling in all components and tables. RedLed is case sensitive and 

must appear exactly as spelled in all instances of occurrence in the screen 

components and channel table. Ensure that the “Toggle Between” values 

are 0 and 5 volts.

When the 5-volt signal is obtained at the LabJack terminals, then 

the wiring from the terminals to the CD4050 IC chip can be prepared. 

Insert the CD4050 hex non-inverting buffer chip into the breadboard at a 

convenient location along the central dividing slot. It is customary to place 

the chip so as the number 1 pin is in the bottom left-hand corner position 

when the chip is viewed from the top.

Connect the number 1 pin to the + supply line on the breadboard, the 

number 8 pin to negative or – supply on the breadboard, and the wire from 

I/O 0 to pin number 3. Connect the GND terminal on the LabJack to the – 

supply on the breadboard. With the external power supply connected to 

the breadboard’s + and – lines, connect the voltmeter with the positive lead 

going to pin 2 of the IC and the negative meter lead going to the negative 

supply line of the breadboard. Click the LED on/off button, and the meter 

voltage should rise to a nominal +5 volts.

If a 5-volt signal does not appear on the meter, verify the power supply 

first and then retrace every wired connection as is indicated in the RedLed 

schematic in Figure 1-3.
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When a nominal 5-volt signal is obtained at pin 2 of the CD4050 buffer 

and can be cycled on/off with the screen icon, then the power limiting 

calculation for the red LED to be activated by the control screen’s button 

can be made. Use Ohm’s law to calculate the size of the resistor required 

to limit the current through the red LED chosen for this project to the 

mid-range of that suggested by the manufacturer. From the data sheet, 

the bright LED source used by the author’s construct was specified for a 

30 mA maximum current with a nominal 1.8 voltage drop. An application 

of Ohm’s law indicated a resistance value of 213 Ω would limit the diode 

current to half of the allowable maximum value specified. Any standard 

resistor of 220 Ω or higher could protect the LED, and a nominal 470 Ω 

resistor was available and used in the experimental setup.

It is good practice to calculate the theoretical size of the resistor 

required to limit the LED current to the maximum amount specified in the 

diode data sheet, from the nominal voltage of the power supply. Using the 

data sheet maximum current and supply voltage nominal value generates 

a resistor value for the LED in use that is adequate to protect the diode. 

If the next standard value resistor above the “adequate” calculated value 

is used, the diode will be well lit and have an extra margin of current 

overload protection that will further extend the service life of the device 

and aid in minimizing the load drawn from the power supply.

After determining the correct size of the current limiting resistor and 

then assembling the resistor, diode, and CD4050 buffer to power supply 

connections, the illumination of the red LED should now be controlled by 

the button icon on the control screen. (Ensure that the diode is wired with 

the cathode or short lead going to ground.)

The simple DAQFactory graphical user interface is depicted in 

Figure 1-14.
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Figure 1-15.  Individual CMOS Buffer Circuit

�Discussion
In this exercise, the button has been created with the SCADA software. The 

logic signal from the state of the button is then transmitted to the LabJack 

terminal board that in turn controls an IC capable of handling the power 

required to activate the LED. The LED itself is powered by an external 

power supply so as the current required to produce the light is not drawn 

from the PC supply. If the circuitry of the CD4050 hex buffer is examined, it 

will be evident that a voltage signal is controlling a double CMOS inverter 

configuration (Figure 1-15).

Figure 1-14.  DAQFactory Button for LED Illumination Control
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As can be seen in the preceding schematic and is discussed in detail 

in several references1 on integrated circuit electronics, there are internal 

complementary metal oxide semiconductor insulated gate devices that 

virtually stop any DC current flow into the CD4050. The voltage change 

from the HMI is the control signal that puts virtually no current load on the 

USB system.

�Raspberry Pi, Python, Screen Push Button 
LED Control
LED illumination from a screen display can be implemented by several 

methods with the Raspberry Pi (RPi) single-board computer (SBC). Power 

control can be implemented from the command line of the Pi’s Linux 

operating system, from a mouse click on a button image created on the 

system screen display with the Python programming language library 

called easyGUI, with Python’s graphical user interface library called 

tkinter, or with an Arduino microcontroller board interface between the 

RPi and the LED.

All of the LabJack DAQ devices are compatible with the Linux OS and 

the Python language.

In this first exercise, the command line methods for illuminating 

the diode using either the interactive or scripting mode of the Python 

interpreter will be demonstrated. In addition to the command line control, 

a simple, dual-button, LED control GUI will be created with the easyGUI 

library.

1 �1) Guide to CMOS basics, circuits, & experiments, Berlin, Howard W. Sams & Co.,  
  Inc., ISBN 0-672-21654-X 
2) CMOS Cookbook 2nd Edn., Lancaster and Berlin, SAMS, ISBN 0 672-22459-3
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Figure 1-16.  GPIO Pin Identification

Implementation of LED control with the Arduino microcontroller 

interface is introduced in Chapter 4 when its 10-bit analog-to-digital 

converter (ADC) is required for digitization of analog signals.

Assembly and configuration of the basic Raspberry Pi computer is 

discussed in texts such as Practical Raspberry Pi from Apress books and 

in up-to-date detail in the online documentation from the Raspberry Pi 

Foundation.

Experimentation with the RPi GPIO can be done with minimal 

complexity by connecting the pins of the SBC as defined in Figure 1-16 

directly to the breadboard as depicted in Figure 1-17. Ribbon cables are 

commercially available to connect the bank of dual pins on the RPi SBC 

to prototyping boards, and if used, the investigator should ensure that the 

white or red strip on the ribbon cable is connected to the top left-hand pin 

of the double row of pins on the main board, when viewed from above.

�Experimental
In Figure 1-17, the long lead on the light emitting diode (LED) is the anode 

and is connected to the positive supply. LEDs are solid-state devices that 

only pass current in one direction. The flow of current through the device 

controls the intensity of illumination, but excessive current can destroy the 

diode, so a current limiting resistor is used in the circuit.

Chapter 1  Button Control of LED Illumination
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To ensure communication between Python and the RPi hardware 

pin array, a library called gpiozero is included in the Raspbian operating 

software distribution. To create active screen components, a very 

simplified GUI creation library called easyGUI can be downloaded as 

detailed in following and used in these introductory exercises.

At the RPi terminal, enter “sudo apt-get install python3-easygui”. The 3 

is required in order to get the correct library for Python 3 versions.

In Figure 1-17, the connections for an early 26-pin model of the RPi 

SBC are depicted.

As can be seen in Figure 1-17, the anode is connected to a +5-volt pin in 

the GPIO array through the column of connected pins on the prototyping 

board. The cathode of the diode is series connected to the current limiting 

resistor that is grounded. The resistance value is determined from the 

maximum current specification for the LED device in use.

Figure 1-17.  Direct Wiring of GPIO Pins to Prototyping Boards
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The Linux operating system of the RPi has a Python programming 

language interpreter with which the investigator can activate or energize 

to +5 volts some of the pins on the GPIO bus. The Python commands can 

be processed either in an interactive mode, processing one line at a time 

in response to the code entered at the terminal, or as an automatically 

executed series of Python commands written as a script.

In the interactive mode, we may consider this as the “manual” mode 

since we are processing one line of code at a time as it is entered from the 

keyboard. The interactive mode is very useful for setting up and testing the 

circuitry with the keyboard, and in interactive mode we can turn the LED 

on and off in the Python shell as needed. When the experimenter uses just 

the shell and keyboard to turn the LED on and off, there will not be any 

record of the previous actions of the system.

When the RPi is used with a Python script, explicit print statements can 

be written into the code to record each action taken, which thus provides a 

history of the system status.

�Observations
The easyGUI library written in Python presents the experimenter with 

the code required to create a selection of screens containing typical 

elementary GUI applications. Figure 1-18 is a “Light the LED” action box 

that has been modified from the Cancel/Continue dialog box example 

presented in the easyGUI library. Clicking Continue lights the LED and 

Cancel turns it off. The library code has been modified by the author to 

record the previous actions or history of the icon usage. The text record is 

displayed in the Python shell in which the dialog box is running.
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The resizing buttons on the Light the LED box work, but the stop 

program button does not. The two-button dialog box is literally running in 

a window in the Python shell, and it is the shell stop program button that is 

effective as seen in Figure 1-19.

In the code listings at the end of this chapter, there are the manual and 

GUI-based listings that can be used to activate the LED wired to the GPIO 

pins.

Figure 1-18.  A Simple GUI for LED Control

Figure 1-19.  The “Kill” Dialog Box of the Python Shell
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�Discussion
DAQFactory is commercial SCADA finished software. Purchase of this 

“turnkey” system that “is ready to run straight out of the box” allows 

the investigator to connect to the system to be controlled and assemble 

the required GUI from the configurable icons provided on a complex 

instruction set computing (CISC) device. The Raspberry Pi is a very-low-cost  

reduced instruction set computing (RISC) device that uses free, open 

source software that is able to engage in physical computing.

As noted in previous introductions, the RPi represents a very-low-cost  

entry method to control experimental processes or measurement 

experiments being made as part of an educational program or an 

actual scientific research investigation. The RPi can be programmed to 

implement the management of simple or very complex experimental 

setups but requires increasing development time commitments from the 

investigator as the complexity of the experiment being managed increases.

�Code Listings
After assembling an LED with the appropriate current limiting resistor (CLR), 

connect the series wired devices to the GPIO pin 2 and ground, and then 

enter the code from Listing 1-1 into the Python shell or the interactive 

terminal.

Listing 1-1.  Manual LED Control

from gpiozero import LED

grnLed = LED(2)

grnLed.on()

grnLed.off()
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This simple series of code lines will open the gpiozero library and 

make the LED object available for assignment to GPIO pin 2. The grnLed.

on() line sets the GPIO pin 2 to a high or true value and lights the LED. The 

next line grnLed.off() sets the GPIO pin 2 to low or false and turns the LED 

off (Listing 1-2).

Listing 1-2.  A Button GUI LED Control

# Exercise with easyGUI to turn a LED on and off

# an adaptation of the continue or cancel dual

# button message box.

#

from easygui import *

import time

from gpiozero import LED

#

redLed = LED(2)

#

# Use a while loop for continuous activation

while 1:

    msg = "Light the LED"

    title = "The Scientyst's Ayde"

    #

    if ccbox(msg, title):  # show a Turn On/Off dialog box

        print("LED is turned ON!")

        redLed.on()

        # LED power turned on

    else:  #user chose cancel

        print("The Led has been turned off!")

        redLed.off()

        # LED power turned off
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�Summary

–– A basic button icon on a monitor controls an electronic 

device remote from the host computer.

–– Computer-experiment interfaces can be implemented 

by configuration in more expensive systems or  

programmed from basic principles in less expensive 

component-based systems.

–– In Chapter 2, a more interactive two-way control 

system will be developed with multiple buttons and an 

experimental data display.
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CHAPTER 2

Power Control, 
Monitoring, and 
Creation of Dedicated 
Graphical User 
Interfaces
The “SC” in the SCADA acronym stands for supervisory control, while the 

“DA” is for data acquisition. The purpose of the development of complete 

software packages such as DAQFactory has been to monitor a real-world 

electro-mechanical process and supervise or control its operation. This 

chapter and its exercises expand upon the single button control by 

creating multiple LED buttons and then monitoring the power consumed 

by activation of these individual LEDs. The reading of process operating 

values in response to control system inputs of one or more unit operation 

activations is thus demonstrated.

The various sizes, methods of construction, intended use, and colors of 

LEDs result in different voltage drops across their semiconductor junctions 

as discussed in detail in the “Experimental” section. Each current limiting 

resistor (CLR) of a fixed nominal value has its own unique resistance that 

https://doi.org/10.1007/978-1-4842-6778-3_2#DOI
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lies within the standard value tolerance for that type of device (i.e., +/– 10, 5,  

or 1%). When the load resistance variation is combined with the diode 

voltage drop and the ON resistance of the CD4050 buffer and all are 

taken into account, it becomes evident that each current flow through the 

different colored LED circuits will be different.

This exercise will measure the individual currents drawn by 

illumination of the different colored LEDs and provide information on the 

overall system performance by monitoring the power consumption of the 

individual operations and the system as a whole.

There are several methods that can be used to measure direct 

current flow with ammeters, electrometers, and induction or Hall effect 

devices as presented in many electronics reference texts1 and in Arduino 

1 �1) Building Scientific Apparatus 4th Edn., Moore, Davis, and Coplan, Cambridge  
  University Press, ISBN 978-0-521-87858-6 hardback 
�2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press, 
   ISBN 13 978-0-521-37095-0 hardback 
�3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,  
  ISBN 978-0-07-177133-7

Table 2-1.  Typical 5 mm LED Parameters

Diode Color Typical Voltage(V) Drop Wavelength (nm) Current (mA)

Red 1.63–2.03 610–760 30

Green 1.9–4.0 500–570 25

Orange 2.03–2.10 590–610 30

Yellow 2.10–2.18 570–590 30

Blue 2.48–3.7 450–500 30

White 2.48–3.7 450–500 30

Violet 2.76–4.0 400–450 30

Ultraviolet 3.1–4.4 < 400 30
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Measurements in Science. However, at this introductory stage of the 

manuscript and for ease of implementation, resistance voltage drop 

measurements and Ohm’s law calculations will be used to monitor the 

current flow through the systems under test.

�Experimental
Light emitting diodes (LED) are diodes whose current, voltage, resistance, 

and luminosity properties can be better understood when examined with 

respect to both Ohm’s and Kirchhoff’s voltage laws.

Physically LEDs are manufactured in a variety of forms as depicted in 

Figure 2-1.

Figure 2-1.  Various Forms of LED
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Depicted in Figure 2-1 are a 10 mm green, a 5 mm blue, and a 3 mm 

red LED through hole devices. (LEDs are available in flat, bar-shaped, 

and surface mount configurations such as those visible in any photos 

of the Arduino or Raspberry Pi circuit boards. For ease of experimental 

setups with the prototyping boards illustrated in Chapter 1, Figure 1-1, 

LEDs with two leads are preferred.) The star-shaped disk at the bottom 

of Figure 2-1 is a 3-watt illumination diode. The top three indicator-type 

devices can be powered from a computer or a USB device, but the bottom 

diode designed for lighting or illumination service typically draws enough 

current to warrant being bolted to a heat sink and hence when in service 

usually requires a special high-current supply that far exceeds the current 

capability of a computational device.

LEDs are often classified as indicators or illuminators according to the 

type of light they produce. Indicators typically create a diffused light from a 

colored body that is visible from all angles, while illuminators, usually with 

clear bodies, generate a concentrated beam of light that is most intense 

longitudinally or directly ahead of the device. LED brightness is measured 

in millicandelas (mcd) or radiant intensity. A common candle emits about 

1 candela.

Tables 2-2 and 2-3 are typical listings of the electrical and optical 

parameters often found on LED data sheets.

Table 2-2.  Typical LED Electrical Parameters

ITEMS Symbol Absolute Maximum Rating Unit

Forward Current IF

IFP

ISU

IR

PD

TOPR

TSTG

TSOL

20

30

16-18

10

105

40 ~ 85

40 ~ 100

mA

mA

mA

uA

mW

‘C

‘C

Max. 260‘C for 3 Sec. Max.   (3mm from the base of the expoxy bulb).

Peak Forward Current

Suggested operating current

Reverse Voltage (VR=5V)

Power Dissipation

Operation Temperature

Storage Temperature

Lead Soldering Temperature
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When consulting a data sheet for information, always verify that the 

data being retrieved is for the correct package size at hand. A compromise 

is always required in selecting the currents to be used in an LED circuit 

since the higher the current, the brighter the light and the shorter the 

service life of the device. Listings on the data sheet give typical operating 

currents, short time maximum currents, and longer service life operating 

currents.

Optical properties specified for the diode are also given on the data 

sheet that include the frequency or wavelength of the emitted light, the 

diode voltage drop, and light output brightness at a given diode current.

To avoid damage to the diodes being used in an experimental 

application, a current limiting resistor (CLR) is connected in series with 

the LED. The voltage of the source must be high enough to turn the LED 

on, and the difference between the source voltage and the diode voltage 

can be dropped across a current limiting resistor to regulate the current 

flow in the indicator or illumination circuit. (Either Kirchhoff’s voltage law 

that notes that the total voltage drop around an electrical circuit is zero 

or Ohm’s law can be used to determine the resistance value required to 

regulate the current flow in an LED circuit.)

Theoretical calculations using Ohm’s law and the data for a typical 

5 mm LED indicate that a 200 Ω resistor should sufficiently limit the 

current from the nominal voltage of our power supply. The author’s 6 V  

AA battery supply and 30 mA bright source diodes suggest that a  

6 V/30 mA = 200 Ω resistor should be adequate to protect the diode and 

Table 2-3.  Typical LED Optical Parameters

ITEMS

Forward Voltage VF IF=20mA 1.8

620

150

2.2

625

200

V

nm

mcd

– – –

– – –

– – –

IF=20mA

IF=20mA

∆ λ

Iv*Luminous intensity

Wavelength (nm) or TC(k)

Symbol Test condition Min. Typ. Max. Unit
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the CD4050 buffer (see Figure 2-2). The nearest larger standard value 

resistor is 220 Ω, and using 5% tolerance components, we select four 

pieces for use in this exercise. With a digital volt-ohm meter, we measure 

the individual values of the four resistors and record the data. For the sake 

of convenience and simplicity, the resistors are named by LED color. In 

the author’s development work, Red is 221 Ω, Green 219 Ω, Yellow 216 Ω, 

and Orange 216 Ω. Make sure the individual resistors are identified and 

their actual numerical resistance values recorded, as these values will be 

required to calculate the individual load currents.

�Hardware
Four bright LEDs of various colors and four measured resistance 220 Ω 

standard resistors of sufficient wattage rating for the expected currents are 

used in the development of the exercise. (Values noted are based upon 

the author’s experimental setup using a nominal 6 V supply and 30 mA 

diodes.)

For this exercise, four of the six gates available on a CD4050 IC buffer 

chip are used to isolate the LEDs from the USB and draw power from an 

auxiliary supply.

A flat, rectangular battery pack, capable of holding four AA cells 

connected in series, provides a nominal 6-volt power supply for 

the experimental assembly mounted on a prototyping board. (See 

“Discussion” for more details on the use of batteries as an auxiliary power 

supply).

Figure 2-2 displays the circuit schematic for this exercise. In order 

to measure the current flow through the individual LED-resistor series 

combinations, the analog output and input signal terminals of the LabJack 

U12 are used.
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�Software
A total of eight channels are required. Four are configured as output to 

control the power switching of the LEDs, and four channels monitor the 

voltage developed across the individual, measured value, load resistors.

The output channels can be labeled as in the previous exercise 

as RedLed, GreenLed, and so on. The input channels are labeled as 

RedLedCurrent, GreenLedCurrent, and so on. The DAQFactory channel 

table for this project exercise is depicted in Figure 2-3.

Figure 2-2.  Circuitry for the Four-LED Display
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�Page Components Required
Four buttons, five variable value components (VVCs), and two text 

displays, as depicted in Figure 2-4, are placed on the screen to form the 

basic structure of the desired control screen user interface.

(The DAQFactory manual provides the details on creating the screen 

components, positioning them on the screen, and creating the text labels 

and messages that identify the different components and the values being 

entered or displayed. As per the manual, a collection of independent 

screen components can be grouped together to form a single unit for ease 

of manipulation on the screen. The individual grouped components can 

be displayed against a distinctive background color to provide the end 

user or the operating process controller with a visually comprehensible 

control screen. Blocking together related components and isolating them 

with individually colored backgrounds to attract the eye and thus increase 

ease of use while minimizing the chance of operator errors is good design. 

The coloring of group backgrounds should be left to the final configuration 

of a control screen before deployment for actual use in an application as 

the creation of the background color panel limits access to the individual 

components in the group and thus creates unnecessary complexity during 

system development.)

Figure 2-3.  The DAQFactory Channel Table
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Each of the four buttons is labeled according to the color of the LED 

being activated, and the corresponding variable value components are 

set to display mA of current. The fifth variable value display can be set to 

indicate the total current, again in milliamperes, mA.

Figure 2-5 illustrates the power monitoring panel and Figure 2-6 the 

typical expression for a colored button power draw entry.

Figure 2-4.  Preliminary Assembly of Desired GUI Components

Figure 2-5.  Preliminary Coloring of the GUI
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The variable value expressions use the following calculation:

(RedLedCurrent [0]/221)*1000

where RedLedCurrent [0] is the most recent voltage read across the red diode 

current limiting resistor, 221 is the actual DVM measured resistance value 

in ohms of the red diode current limiting resistor, and the *1000 multiplier 

converts the current from fractional amps to whole numbers of mA.

The expression in the total component display sums all four individual 

current expression calculations.

�Observations, Testing, and Development
Activation of one or more of the LEDs should indicate the current flowing 

through the individual diode and the total current being drawn. The values on 

the display screen should update every second, as that is the default value for 

the timing entry in the channel table. A more visually effective colored LED 

control panel can be created by adding LED symbols to the left of the control 

Figure 2-6.  Typical Calculation Expression for the Power 
Monitoring GUI
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buttons on the panel. The LED symbols can be set to the corresponding colors 

of the LEDs being activated, and the entire assembly grouped together to form 

a coherent unit as is illustrated in Figure 2-7. The panel component is used to 

provide a background for the grouping (see the DAQFactory manual), and an 

identifying number is displayed on the grouping panel to tie the panel to a set 

of notes/instructions displayed at the bottom of the main display screen, of 

which the following panel could be a component.

A different and perhaps more effective visual display of the power 

consumption can be achieved by using the DAQFactory linear gauge 

component as depicted in Figure 2-8.

Figure 2-7.  Power Monitoring Graphical User Interface

Figure 2-8.  Option of Gauge Addition
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If the linear gauge component is set to display the total current being 

consumed by summing the four individual colored LED currents, it can be 

placed alongside the button control panel to display the total current draw 

from the power supply in a more visually comprehensive format.

�Discussion
Fresh AA alkaline batteries are usually rated at 2890 mA · hr per unit. 

If all four LEDs are illuminated, they draw approximately 30 mA each, 

which suggests a useful service life, in the author’s setup, from the 6-volt 

four-battery holder, of approximately 100 hours. An estimated 100-hour 

service life is theoretical in nature, and it must be recognized that the light 

emitting diode has an approximate 2-volt drop and the resistor a 2-volt 

drop and the CD4050, the rest of the wiring connections, and the internal 

resistance of the cells themselves are taking up the remainder of, in the 

author’s case, a nominal 6-volt power supply. At some point in time, well 

before the estimated 100-hour lifespan, the voltage output of the battery 

pack will drop to the point that the diode will be too dim to see or will not 

light at all. The literature indicates that the primary cell alkaline chemistry 

battery discharges in a somewhat linear manner, losing both voltage and 

current delivery capacity with increasing usage. A secondary cell chemistry 

battery such as nickel metal hydride (NiMH) has a significantly lower open 

circuit voltage (OCV) than the primary cell system (1.2 vs. 1.5 V) and a 

slightly lower rating of 2500 mAh for the AA size. The secondary cell NiMH 

chemistry battery however tends to have a much lower rate of voltage loss 

and instead of failing gradually throughout its discharge history holds the 

voltage delivered at a relative constant value and then discharges rapidly 

and completely in a very short time, as its power runs out. Researchers 

using battery power should understand the properties of the different 

battery systems available. (Six volts in alkaline AA batteries is obtained from 

four units, but nominally 6 volts in NiMH requires five rechargeable units.)
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It is evident with battery packs that as the load on the power source 

is increased, the voltage drops and the current supplied to an individual 

current-consuming load will decrease. Regardless of whether alkaline or 

NiMH batteries are used as each diode is turned on, the current being 

delivered to each individual diode drops. The power monitoring panel will 

show a decrease in the current being drawn by the red LED as the green, 

orange, and yellow diodes are activated. To minimize the power decrease 

as load increases in more critical field or laboratory operations, a regulated 

power supply, battery packs connected in parallel or larger battery formats 

such as C or D cells, may be necessary to maintain current and voltage 

levels under experimental load.

The gradually decreasing currents monitored by the panel displays are 

a real-time indicator of the power being delivered from the battery pack, 

and the gradual decline can be used to roughly estimate the service life left 

in the power supply.

In general terms, it can be said that new primary cells or freshly 

charged secondary cell batteries will exhibit a minimal internal resistance 

that gradually rises to a maximum value as the cells discharge. Charge 

monitoring can be done by determining the open circuit voltage (OCV) 

and the internal resistance of the battery cells themselves. The OCV is 

measured at no load conditions, but the determination of the internal 

resistance of the battery pack is a dynamic process requiring the 

simultaneous recording of both the current drawn and the instantaneous 

circuit voltage. By recording the simultaneous rates of change of both I 

and V graphically, the resistance R of the cell can be determined. Plotting 

of the OCV and internal resistance of the cells can be used to determine 

the useful life remaining in the battery pack. (See powering experiments in 

Arduino Advanced Techniques in Science.)

Power concerns can be reduced by using a significantly less expensive 

microcontroller that can be used to develop an experimental interface 

similar to the fully functional, industrial-grade LabJack DAQ. However, a 

significant amount of time and effort is required to implement a portion of 
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the functionality for the task at hand into a microcontroller that is built into 

the commercially available HMI devices. In order to implement the power 

controlling GUI exercise with a microcontroller, the basic steps involving 

the configuration of both the DAQFactory and microcontroller programs 

will be presented. (See Chapter 11 for more details.)

As in the previous iteration of this experiment with a LabJack, four 

nominal 220 Ω resistors were selected from the lab 5% tolerance supply 

and their actual resistance measured with a DVM. For simplicity and 

ease of assembly, the known value resistors were mounted directly onto a 

prototyping board without the CD4050 buffers as depicted schematically 

in Figure 2-9 and pictorially in Figure 2-12.

In order for DAQFactory to recognize and communicate with a 

microcontroller through the serial communications port, the com port in 

use by the microcontroller must be identified. By connecting a USB cable 

between the host computer and the microcontroller and launching the 

microcontroller integrated development environment (IDE) program, 

the port identification can be found on the port: entry of the Tools 

Figure 2-9.  DAQFactory GUI Development for Arduino Control of a 
Bank of LEDs
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menu. Once the port has been identified, confirm connection and board 

functionality by loading and then running the “Blink” program from the 

file/examples/01.Basics/Blink menu of the IDE. The onboard LED of 

the microcontroller should flash at a rate of one “blink” per second, thus 

confirming the communications link. (The onboard LED is the glowing 

green dot beside the “RedBoard” logo box as seen in the lower-left corner 

of the red board depicted in Figure 2-12.)

A common control screen in the DAQFactory program can service 

either the LJ DAQ or the microcontroller experimental interface. However, 

the channel configurations seen in Figure 2-3 use the LabJack U12 device 

for which the driving software has been written. A new device will have to 

be created in the DAQFactory environment in order to transmit data to a 

low-level communications port on a microcontroller. A typical low-cost 

microcontroller is the “RedBoard” Arduino-compatible device seen as 

item 4 in Figure 1-1 of Chapter 1 and in a wired configuration in Figure 2-12. 

A DAQFactory com device is created by selecting a port and a protocol. 

(See Chapter 11, Figures 11-4, 11-5, and 11-6.)

An identifiable device must be created before it can appear in the 

channel creation table of the DAQFactory program. Selection of the Quick 

➤ Device Configuration entry on a DAQFactory page brings up the Device 

Configuration window that contains a listing of the devices available and a 

New Serial (RS232/485) / Ethernet (TCP/IP) device entry. (See Figure 11-4, 

Chapter 11.) To create a new serial device, click the New Serial (RS232/485) 

/ Ethernet (TCP/IP) device entry to highlight it and the Select button in the 

upper-right corner of the window to bring up the Ethernet / Serial Device 

configuration window. (See Figure 11-5, Chapter 11.) In the configuration 

window, enter the new device name. (DAQFactory names must begin 

with a letter and contain only letters, numbers, or the underscore.) The 

device in use has been named “ardyRb” as a mnemonic for RedBoard and 

Arduino. To create the new serial port, click the New Serial button to bring 

up the Serial Port Configuration window. (See Figure 11-6, Chapter 11.)
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The name of the port was partially defined by the inquiry of the 

Arduino in use for its communications port number that was found to be 

com port 4, and hence a name such as COM4 would suffice for the new 

connection name. The serial port number entry into the DAQFactory 

configuration table must be 4 to correspond with the connected 

microprocessor’s serial port number. (See Chapter 11, Figure 11-6.) The 

remainder of the Serial Port Configuration window default settings are best 

accepted as entered, and as the window Save button is clicked, a check 

box “COM4” should appear in the serial port list of the Ethernet / Serial 

Device window. A protocol must be assigned to the device being created, 

and since the flow of data is to be controlled from a DAQFactory sequence 

or scripting, the NULL protocol is selected. The NULL or nothing protocol 

allows for the use of low-level communications functions from a sequence. 

Selection of the protocol and checking the “COM4” box allow the “ardyRb” 

device to be saved for use where required when the OK button is clicked in 

the upper right-hand corner of the Ethernet / Serial Device window.

To develop a power monitoring facility with a much simpler 

microcontroller interfacing device while adhering to the fundamental 

concept of starting from a simple system and progressing into a more 

complex one, a single Arduino-powered LED will initially be controlled 

from a control screen in DAQFactory. The single LED can then be 

expanded to a bank of four LEDs. The simplest form of button control of an 

LED is to create two buttons in a DAQFactory control screen as depicted in 

the upper-left corner of Figure 2-10.
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DAQFactory is usually running on a PC-based computing platform, 

while the ATmega328 chip is hosting the Arduino operating system. The 

programs are able to talk to each other through the serial port software, 

but only one program at a time can use the serial port. In essence the 

visual activation of an “on screen icon” in the DAQFactory display initiates 

a streaming of low-level commands to the serial port. On the other side 

of the serial port is the ATmega328-controlled Arduino microcontroller 

essentially running on the C language that can be programmed to process 

the low-level commands appearing on the serial port.

In Figure 2-10, the top two buttons are the “Red led on” and “Red 

led off” icons. The two buttons are configured on-screen as explained in 

Chapter 1, and in the listing of possible actions to be initiated when the 

“Red led on” button is clicked, as depicted in Figure 1-11 of Chapter 1, the 

“Quick Sequence” selection is taken. The Quick Sequence selection brings 

up the window depicted in Figure 2-11.

Figure 2-10.  DAQFactory GUI for Control of Arduino LEDs

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER  
INTERFACES



44

A Quick Sequence entry is unique in that it is accessed and executed 

only when the button to which it is bound is activated. The single line of 

code in Figure 2-11 is a complete sequence that writes the character 1 to 

the serial port.

The DAQFactory serial port is connected through hardware and 

software to the USB that is also connected through hardware and software 

to the Arduino’s C-based operating system. Both of the software systems 

have facilities for processing low-level communications based on the serial 

transmission and receiving of characters in the bit and byte formats.

In the simple example of Figures 2-10 and 2-11, an ASCII (American 

Standard Code for Information Interchange) value of 49 in decimal 

notation representing the numerical value of 1 is sent to the serial monitor 

on activation of the “Red led on” button.

Figure 2-11.  The Quick Sequence window
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Arduino programs are referred to as sketches, and the code for 

receiving the “1” character on the serial port and switching a digital pin on 

is in Listing 2-1 (all code listings provided in the “Code Listings” section at 

the end of the chapter). Examination of Listing 2-1 will reveal that the code 

will accept a 0, an ASCII code of 48, on the serial port and turn the LED off. 

The two-button control scheme is simple and uncomplicated and uses a 

single sketch to manage the two possible LED power levels.

In the second row of the control screen is a single button labeled 

“Toggle RED led” that switches the LED on when the button is first clicked 

and off when clicked for the second time. The Arduino sketch in Listing 2-2 

contains the logic for the “toggling action” in the form of the flag variable 

“oofR” that records the status of the LED as either on or off and thus 

enables the code to switch or alter the present power state of the device.

The set of four colored buttons in the bottom-left corner of the control 

screen extend the power control capability to four buttons with the 

Arduino code of Listing 2-3.

Each colored button in the control screen is coupled to a Quick 

Sequence action that writes an R, G, O, or Y character to the serial monitor. 

On the Arduino side of the connection, the code compares the new 

character that arrives on the serial port with a collection of four characters 

in what is termed a “case” structure. When a match is found, the code 

associated with the identified “case” is executed. In Listing 2-3, the action 

involves toggling the colored LED corresponding to the DAQFactory 

control screen button color on or off.

The control screen in Figure 2-10 contains seven screen icons called 

variable value components that can be used to provide a visual numerical 

display or readout of a process value.

The exercise has been set to demonstrate the remote activation of 

a device and also measure a process variable in the form of the current 

drawn by the active device. Listings 2-4, 2-5, and 2-6 list the Quick 

Sequence codes that can be used to pass action initiation requests one way 

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER  
INTERFACES



46

and pass resultant effects back. Listing 2-6 is a shorter Quick Sequence 

DAQFactory side method for declaring that a current flow has been 

stopped.

An Arduino microcontroller is equipped with a six-channel, 10-bit 

analog-to-digital converter (ADC) capable of converting 0–5-volt signals 

into digital values between 0 and 1023 (210 or 1024). The 5 volts when 

divided into 1024 units yields 4.8828 millivolts per digital counting unit. 

As seen in Figure 2-9, each of the four diode voltage drops is measured 

by the analog inputs of the ADC. On completion of the voltage drop 

measurement, the calculated diode current is written to the serial port 

using the Arduino’s “Serial.println(iRed);” format that appends the 

carriage return–line feed (CR-LF) ASCII characters to the diode current 

value characters sent to the serial port. The \013\010 serve as markers 

delineating or identifying the end of the characters presenting the 

numerical values of the measured diode current to the DAQFactory Quick 

Sequence data parsing logic.

Listings 2-9 and 2-10 are DAQFactory Quick Scripts that are run when 

one or more colored buttons in the panel of four in the lower-left corner of 

Figure 2-10 are activated. Each button has a Quick Sequence scripting that 

clears the serial input buffer and sends an uppercase letter representing 

the color of the button and corresponding LED to be altered to the 

DAQFactory entrance or memory location of the serial port. The Arduino 

microprocessor C code examines the character sent from the DAQFactory 

control screen and conducts the required actions posting the return data 

parameters to the serial port. Listings 2-7 and 2-8 are the Arduino codes 

supporting the DAQFactory action requests. The Quick Sequence initiates 

a delay after sending the activation request and then begins to process the 

characters that appear on the serial port.

Listing 2-9 processes only the current being drawn by the active LED, 

while Listing 2-10 processes both the individual currents being drawn by 

any active LEDs and the total current drawn by all active LEDs.
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These simple systems demonstrate one of the great advantages of 

SCADA systems in that no error checking or error handling capability 

is required for serial communications between the two computing 

platforms. The characters sent and received are fixed in software and only 

require the activation of the screen icon to achieve the desired activity 

and measurement. There is minimal action required by the operator of 

the control screen in that no data entry is required, only the clicking of 

the correct icon on the control screen. In an electrically noisy industrial 

or experimental environment, these simple programs may require error 

checking and error handling capability.

The two-button on/off control panel is as simple as possible, and the 

operator has two choices that turn the LED on and off. The illumination of 

any diode mounted on the prototyping board as seen in Figure 2-12 alerts 

the operator to the status of the system and to which button is active in 

changing the state of the system.

Figure 2-12.  The Arduino-Controlled Four-LED Array
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The measurement of the current has been automated, and with 

additional work in an actual experimental application, the process could 

be validated to determine the accuracy and reproducibility of the current 

measurements.

Both the Arduino and DAQFactory programs have extensive 

facilities to aid in the development of serial communications. Serial 

communications systems are very simple and widely used in industrial 

manufacturing and experimental research and development programs. 

Both of the software systems in use in this exercise have serial port 

windows that allow the visualization of the data resident on the serial 

monitor interface and allow the researcher to receive or transmit serial 

data from or to the host program.

The Arduino serial port is used for numerous applications in addition 

to serial port communications between programs and can stream data 

from numerous types of sensors connected to the microcontroller. Details 

of the various measurements possible are found in Arduino Measurements 

in Science.

In Figure 2-13, the DAQFactory serial port has been expanded to test 

and monitor actions taking place at the serial port.

Figure 2-13.  The DAQFactory Serial Port Monitor
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In order to see the DAQFactory serial port monitor in operation, the 

host computer must be running a microcontroller program compatible 

with the control screen in use. With the microcontroller program running 

in the minimized or background configuration, the DAQFactory program 

containing the control screen can be run in the foreground as labeled  

1 in Figure 2-13. From the “Quick” menu, “Device Configuration” is 

selected, and the Device Configuration window as depicted in Figure 11-4  

of Chapter 11 appears. From the entries in the Device Configuration 

window, the “ardyRb” is selected; and when the Select button in the top 

right-hand corner of the window is clicked, the “Ethernet / Serial Device” 

window, panel 2 in Figure 2-13, appears. With the correct name and 

communications port entered, the “Monitor” button can be activated to 

bring up the serial port monitor for COM4 labeled as panel 3 in Figure 2-13.

When activated, the serial port monitor for COM4 now controls 

the data flow to and from the serial port. The two buttons still visible 

on the underlying control screen in panel 1 are no longer responsive, 

and only by sending the correct, uppercase first letter of the diode 

color to the serial port can the corresponding diode on the Arduino 

array be activated. As can be seen in the activity record in panel 3, the 

transmission of an R, recorded as “Tx R,” is followed by the script Rx 

10.69\013\01010.69\013\010. Rx is the “received a transmission” notation, 

and 10.69 is a numerical sequence appended with the ASCII codes 013, 

a carriage return, and 010, a line feed. Immediately after the line feed 

notation is a numerical sequence again appended with the CR-LF pair of 

printing instructions.

As discussed in the preceding text, the Arduino code has recognized 

the R and activated the red diode sending back the individual diode 

current and the total current being drawn with both numerical values 

followed by the CR-LF combination. If an uppercase O is sent to the 

port, the expected action occurs; and if the Enter key is used while the 

uppercase O is still resident in the Send compartment, the Arduino code 

will toggle the orange diode as seen in panel 3.
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As noted previously, the substitution of a very inexpensive 

microcontroller board for the industrial research-grade interface is a 

practical exercise in which the significantly increased development time 

can be used to advantage as a hands-on learning experience.

�Power Monitoring and Control 
with Raspberry Pi
For investigators, experimentalists, or educators who are not familiar 

with the Raspberry Pi (RPi) educational computer and its use in physical 

computing through its general-purpose input and output (GPIO) pin array, 

several texts are available.2 Current information and software are available 

online from the Raspberry Pi Foundation that should be reviewed before 

attempting the following exercises.

Although the Raspberry Pi single-board computer (SBC) originated 

as a very inexpensive teaching aid, it can be used, with some limitations, 

as a physical computing platform for SCADA applications. The RPi 

SBC does not have the capability for analog-to-digital conversions, but 

several methods exist for working around this voltage measurement 

limitation. Voltages from experimental sensors can be measured with 

external ADC chips or a USB connection to an Arduino microcontroller 

board and by using a Python library with the RPi to measure the time 

constant of a known value resistor–capacitor series connection. The 

documentation written for the gpiozero Python library points out that the 

RPi operating system itself is not completely compatible with the “real-

time” requirements of physical computing. It is noted that attempts to use 

2 �1) Raspberry Pi User Guide, Upton and Halfacree, John Wiley and Sons,  
  ISBN 978-1-11846446-5 
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9 
3) �Learn Raspberry Pi with Linux, Membrey and Hows, Apress,  

ISBN 978-1-4302-4821-7
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GPIO pins for programmed pulse width modulation (PWM) on devices 

such as LEDs may suffer from “jittering” as the Pi operating system may 

be involved with internal processes that detract from or interfere with the 

timed processing of the pulse widths.

A USB connection between the RPi and an Arduino microcontroller 

is very similar to the ease of use and assembly demonstrated in the 

preceding DAQFactory-LabJack exercise. Arduino boards are comparable 

in cost to the RPi, and the Arduino integrated development environment (IDE)  

is available as a Linux-compatible download from the Arduino and RPi 

Foundations. By using the Arduino microcontroller board as an intelligent 

interface between the RPi and an experimental apparatus or setup, 

significant reproducible and predictable physical computing can be 

achieved. However, the implementation of an Arduino microcontroller 

as a smart I/O peripheral for the RPi involves a significant amount of 

scripting to interface the two systems that is explored in the next chapter 

and exercise on scripting.

Of the various options available for measuring voltages and hence 

calculating current flows with the RPi, the least expensive option is the use 

of a stand-alone analog-to-digital converter (ADC) such as the Microchip 

MCP3008 integrated circuit (IC). The IC chip costs approximately $5 (CDN)  

and is a 10-bit successive approximation register (SAR) device. A 10-bit 

resolution as used in the LabJack, Arduino, and MCP3008 divides the input 

voltage into 1024 units for quantification. The IC is connected to the RPi 

GPIO pins as detailed in Figure 2-14 and uses the Python serial peripheral 

interface (SPI) protocol implemented with the py-spidev Python library. 

See raspberrypi.org/documentation/hardware/raspberrypi/spi/README 

for the RPi setup instructions for implementing the SPI protocol on the 

GPIO pin array.

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER  
INTERFACES

http://raspberrypi.org/documentation/hardware/raspberrypi/spi/README


52

�Experimental
As noted, an inexpensive voltage measurement capability for the RPi can 

be implemented with the Microchip Technology MCP3008. The chip is 

a 16-pin, plastic dual in-line package (PDIP), integrated circuit, 10-bit 

analog-to-digital converter. The IC has eight input channels that can be 

used to digitize the voltage at up to eight different points in a circuit with 

respect to a common ground or measure up to four differential voltage 

drops between eight points in the circuit. (See Chapters 4, 5, and 6 for 

digital concepts and 10- or 12-bit ADC details, 10 bit = 210 or 1024 and 12 

bit = 212 or 4096.)

Figure 2-14 is a graphical depiction of the connections to be made from 

the RPi GPIO array to the MCP3008 and a schematic drawing of the four 

channels that can be used to measure the current flow through the colored 

diodes.

To simplify the graphic of Figure 2-14, the connecting wires between 

the GPIO pins and those on the MCP3008 have not been drawn. The 3.3 V 

supply of the RPi on the upper-left pin of the GPIO array is connected to 

pins 16 and 14 on the IC. The remainder of the connections are specified 

and connected in the same manner.

Figure 2-14.  RPi Circuitry for Power Monitoring of LEDs
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The Python code for strobing (activating) the ADC chip to conduct 

a conversion and then reading and displaying the 10-bit voltage value is 

listed in Listing 2-11.

As with all complex experimental systems, the investigator begins 

with the simple components testing each and validating its individual 

performance as a stand-alone entity. A complex system is assembled by 

adding a single component at a time and if possible testing the assembly as 

each increment is made until a completed operational apparatus is built.

The early models of the RPi are reported to have been designed to 

provide an output current of 3 mA at the 3.3 V logic level, and hence the 

entire power draw available was 17 pins × 3 mA = 51 mA in total. Tiny 

3 mm indicator LEDs are limited to a maximum current draw of 20 mA 

and should be operated in the 16–18 mA range. 5 and 10 mm LEDs draw 

currents in the 20–40 mA range and for longer service lives should be 

operated at 15–20% below their maximum short-term current handling 

capability.

LED emissions are directly proportional to the current flowing through 

the diodes. The current recommendations in a data sheet are given 

for a device operating at or near its maximum brightness, which is not 

always required for experimental work. LED currents of 5–10 mA often 

produce ample brightness for experimental work and can be used to avoid 

overloading the RPi power connections on the GPIO pins.

To accommodate the limited current available from the RPi GPIO pins, 

the circuit of Figure 2-14 can be assembled with readily available 5 mm 

LEDs, suitable CLRs, and individual manual power control switches, all 

set in the open position during assembly. An array of open switches is 

the configuration to be used in the initial testing of the power monitoring 

exercise.

Each of the four LEDs in the array should be tested independently, 

followed by all of them together, to confirm their illumination when 

power is applied from the supply. (See Chapter 1 for the command line 

terminal method for manual LED activation.) Once each and all of the 
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LED diodes have been successfully illuminated, then with the power off, 

the junction of the diode and its CLR is connected to the appropriate input 

channel of the ADC. With the ADC correctly wired to the LED array, the 

connections between the MCP3008 and the RPi GPIO pins can be made, 

and the Python program can be run. The initial output from the system 

should indicate no output current for each channel and none for the sum. 

The simplicity of the system requires a manual operating mode to see the 

data resulting from the power loading and distribution of the LED lighting 

system. As each LED is manually switched on and illuminated, the power 

monitoring program should be run to calculate and display the individual 

currents drawn and their sum.

By keeping the currents through the LEDs in the 12–16 mA range, 

the RPi should fully illuminate three of the LEDs easily and be able to 

illuminate the fourth diode for short periods of time while the power 

monitoring program collects and displays higher power consumption data. 

For experiments using more power than is available from the GPIO pins, 

an auxiliary supply and several CMOS 4050 buffer chips could be used.

�Observations
One of the objectives of this exercise is to impart to the investigators using 

the RPi GPIO pins to provide power to their experimental setup a method 

to work safely around the limitations of the system.

A typical output in the Python shell from the power monitoring 

program is depicted in Figure 2-15.
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Examination of the schematic drawing portion of Figure 2-14 will 

reveal that the voltage drop across the measured resistance of the current 

limiting resistor (CLR) is caused by the current flow through the diode-

resistor combination. The MCP3008 channels are being used to directly 

measure the voltage drop across a grounded resistor to indirectly measure 

the current that is constant throughout the circuit.

�Discussion
As an educational computer, the Raspberry Pi is not only able to function 

in an information processing mode but also as a physical computing 

platform. However, when used in a physical computing mode, the 

limitations of the compact, inexpensive system must be recognized.  

Figure 2-15.  RPi Display of Power Monitoring Program Output
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In very simplified terms, the RPi operating system is process driven and 

may not immediately respond to an event on a GPIO pin if a higher-

priority process is running in the processor core. Graphics processing is 

a very large consumer of computing resources, and hence the RPi should 

use the most utilitarian or minimal screen displays as possible when used 

in a physical computing mode.

The Raspberry Pi Foundation has written and makes available 

several Python libraries that allow the computer to interface with various 

hardware devices to extend communication with external devices and 

sensors such as the MCP series of analog-to-digital converters.

�Code Listings

Listing 2-1.  Arduino Code for a Two-Button On and Off Control 

Screen

// Arduino code for a single led illumination on the red board 

// Arduino the pgm waits for an incoming character on com port 4,  

// if a 1 the led is turned on if a 0 it is turned off.

const int RedPin = 3;    // �red board dig. pin with red led and clr

int incomingByte;      // �a variable to hold incoming byte

//

void setup() {

  Serial.begin(9600);            // start the serial port

  pinMode(RedPin, OUTPUT);       // set the pin function

}

void loop() {

  if(Serial.available()> 0) {      // �check port for last data byte

  incomingByte = Serial.read();  //
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  if (incomingByte == '1') {     // �if is H (ASCII 72), turn 

the led on

    digitalWrite(RedPin, HIGH);

  }

  if (incomingByte == '0') {

    digitalWrite(RedPin, LOW);   //�if L (ASCII, 76), turn the 

led off

  }

  }

}

Listing 2-2.  Arduino Sketch for Toggling the Red LED on the 

Arduino RedBoard from the DAQFactory Single-Button Control 

Screen

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed dp is determined and

// toggled as required.

//

const int RedLedPin = 3;      // �red led is on dig pin 3

int oofR = 0;                 // �power state of red diode

char incomingByte = ' ';      // declare incoming byte

//

void setup() {

  Serial.begin(9600);         // start the serial port

  pinMode(RedLedPin, INPUT);    // �must initially read the dig. pin

}
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//

void loop() {

  if (Serial.available()) {          // �check for incoming data

    char incomingByte = Serial.read();       // read the port

    //Serial.print(incomingByte);            // diagnostic

    if (incomingByte == 'R' && oofR == 0) {  // �check flag for 

led status

      pinMode(RedLedPin, OUTPUT);         // set pin for output

      digitalWrite(RedLedPin, HIGH);      // if off turn on

      oofR = 1;                           // set status flag

    }

    else {

      if (incomingByte == 'R' && oofR == 1){ // �check flag for 

led status

      pinMode(RedLedPin, OUTPUT);            // set pin mode

      digitalWrite(RedLedPin, LOW);          // turn led off

      oofR = 0;                              // set status flag

      }

    }

  }

}

Listing 2-3.  Arduino Sketch to Toggle Multiple Colored LEDs from a 

DAQFactory Control Screen

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com 4.  

// On the arduino side the status of the appropriate led  

// �dp is determined and toggled as required through a switch 

construct.

//
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const int RedLedPin = 3;           // red led is on dig pin 3

const int GreenLedPin = 4;         // green led on dp 4

const int OrangeLedPin = 5;        // orange led on dp 5

const int YellowLedPin = 6;        // yellow led on d pin 6

//

int oofR = 0;                      // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0;                      // on off flags initialized

//

char incomingByte = ' ';           // define incoming character

//

void setup() {

 Serial.begin(9600);               // start the serial port

 }

//

void loop()

{

  if (Serial.available())          // check for incoming data

  {

  char incomingByte = Serial.read();  // �set char value for 

switch branching

  Serial.print(incomingByte);   // �diagnostic for use in 

debugging code

  switch(incomingByte)       // �branch to desired location/option

  {

  case 'R':                     // Red Led Activation

  if (oofR == 0 ) {             // check status flag

  pinMode(RedLedPin, OUTPUT);   // set pin I/O
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  digitalWrite(RedLedPin, HIGH);            // turn led on

  oofR = 1;                                 // re-set flag

  }

  else {                       // flag is set to 1 so led is on

    pinMode(RedLedPin, OUTPUT);       // set pin mode to output

    digitalWrite(RedLedPin, LOW);     // turn led off

    oofR = 0;                         // re-set flag to off

  }

break;

//

case 'G':                             // Green Led Activation

  if (oofG == 0 ) {                   // check status flag

  pinMode(GreenLedPin, OUTPUT);       // set pin I/O

  digitalWrite(GreenLedPin, HIGH);    // turn led on

  oofG = 1;                           // reset status flag

  }

  else {

    pinMode(GreenLedPin, OUTPUT);

    digitalWrite(GreenLedPin, LOW);

    oofG = 0;

  }

break;

//

case 'O':                              // Orange Led Activation

  if (oofO == 0 ) {

  pinMode(OrangeLedPin, OUTPUT);       // set pin I/O

  digitalWrite(OrangeLedPin, HIGH);

  oofO = 1;

  }

  else {

    pinMode(OrangeLedPin, OUTPUT);
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    digitalWrite(OrangeLedPin, LOW);

    oofO = 0;

  }

break;

case 'Y':                              // Yellow Led Activation

  if (oofY == 0 ) {

  pinMode(YellowLedPin, OUTPUT);       // set pin I/O

  digitalWrite(YellowLedPin, HIGH);

  oofY = 1;

  }

  else {

    pinMode(YellowLedPin, OUTPUT);

    digitalWrite(YellowLedPin, LOW);

    oofY = 0;

  }

break;

 }

  }

  }

Listing 2-4.  Arduino Sketch to Turn Red LED On or Off and 

Measure the Diode Current Draw for Display on the DAQFactory 

Control Screen

// Arduino code for a single led illumination on the red board 

// Arduino the pgm waits for an incoming character on com port 4  

// if a 1 the led is turned on 

// if a 0 it is turned off.

// A0 is wired to Rd led junction and the Arduino calculates  

// the led current and prints the value to the serial port.
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//

const int RedPin = 3;  // �red board dig. pin with red led and clr

int incomingByte;     // a variable to hold incoming byte

float iRed = 0;       // the led current through the CLR

//

void setup() {

  Serial.begin(9600);                  // start the serial port

  pinMode(RedPin, OUTPUT);             // set the pin function

}

void loop() {

  if(Serial.available()> 0) {     // �check port for last data byte

  incomingByte = Serial.read();   // read serial port value

  if (incomingByte == '1') {      // if is 1, turn the led on

    digitalWrite(RedPin, HIGH);   // set I/O of pin

  // calculate led current and print to the serial port

  iRed = ((analogRead(A0) * 4.8828 )/216);

  Serial.println(iRed);    // �note the line feed indication to 

append 013\010

// �to the transmitted character to aid in the DAQFactory 

parsing of the incoming code.

  }

  //

  if (incomingByte == '0') {

    digitalWrite(RedPin, LOW);        // if 0, turn the led off

  // calculate led current and print to the serial port

  iRed = ((analogRead(A0) * 4.8828 )/216);  // �ensures the LED is off

  Serial.println(iRed);   // �\013\010 for DAQFactory parsing code

  }

  }

}
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Listing 2-5.  Quick Sequence Code for On Button

device.ardyRb.Purge()     // �clear residual data from input buffer

device.ardyRb.Write('1')     // write to serial port

delay(0.1)                   // delay to allow processing

global ldCurrnt              // �declare variable to be visible 

throughout

                             // DAQFactory program

private string datain        // declare datain variable

datain = device.ardyRb.readUntil(13)    // �parse data up to 

line feed and 

carriage return

ldCurrnt = strToDouble(datain)       // �convert character to 

numeric value

Listing 2-6.  Quick Sequence Alternate Code for Off Button

device.ardyRb.Purge()        // �clear old data from the serial 

port buffer

device.ardyRb.Write('0')     // �write a zero to the serial port 

to switch led off

delay(0.1)                   // allow code to be processed

global ldCurrnt              // �declare individual diode 

current to be global

ldCurrnt = 0                 // set individual diode current to 0

Listing 2-7.  Arduino Code for Single Button Icon Toggling LED On/

Off with Power Measurement

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed dp is determined and

// toggled as required.
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//

const int RedLedPin = 3;            // red led is on dig pin 3

int oofR = 0;                       // power state of red diode

char incomingByte = ' ';            // declare incoming byte

float iRed = 0;                     // red led current

//

void setup() {

  Serial.begin(9600);              // start the serial port

  pinMode(RedLedPin, INPUT);       // �must initially read the 

dig. pin

}

//

void loop() {

  if (Serial.available()) {          // check for incoming data

    char incomingByte = Serial.read();

    //Serial.print(incomingByte);    // �diagnostic for code  

de-bugging

    if (incomingByte == 'R' && oofR == 0) {  �// �check action 

required and 

status

      pinMode(RedLedPin, OUTPUT);      // set pin I/O mode

      digitalWrite(RedLedPin, HIGH);   // �turn diode current on

      iRed = ((analogRead(A0) * 4.8828)/216 );  // �calculate 

diode current

      Serial.println(iRed);    // �send value to serial port 

with LF-CR

      oofR = 1;                // set status flag to "diode on"

    }
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    else {

      �if (incomingByte == 'R' && oofR == 1){    

// �alternate action toggle to off

      pinMode(RedLedPin, OUTPUT);          // set pin I/O mode

      digitalWrite(RedLedPin, LOW);        // turn power off

      iRed = 0;                   // set red diode current to 0

      Serial.println(iRed);

      oofR = 0;

      }

    }

  }

}

Listing 2-8.  Arduino Sketch for a DAQFactory Four-Button Control 

Screen and Power Consumption Indicators

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com  

// 4. On the arduino side the status of the appropriate led dp is  

// determined and toggled as required through a switch construct.

//

// power drawn calculations, each led has a CLR and the voltage 

// on the junction of the resistor and led is measured and used to  

// calculate diode

// current by A0 to A3 respectively. Current calcln only done 

// when diode activated.

//

const int RedLedPin = 3;            // red led is on dig pin 3

const int GreenLedPin = 4;          // green led on dp 4

const int OrangeLedPin = 5;         // orange led on dp 5

const int YellowLedPin = 6;         // yellow led on d pin 6

//
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int oofR = 0;                       // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0;                      // on off flags initialized

//

char incomingByte = ' ';           // define incoming character

//

float iRed = 0;                    // �red led current in 

decimal float format

float iGreen = 0;

float iOrange = 0;

float iYellow = 0;

float itotal = 0;

//

void setup() {

 Serial.begin(9600);                  // start the serial port

 }

//

void loop()

{

  if (Serial.available())            // check for incoming data

  {

  char incomingByte = Serial.read();   // �set char value for 

switch branching

// Serial.print(incomingByte);         // diagnostic

  switch(incomingByte)                 // �branch to desired 

location/option
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  {

  case 'R':                            // Red Led Activation

  if (oofR == 0 ) {

  pinMode(RedLedPin, OUTPUT);          // set pin I/O

  digitalWrite(RedLedPin, HIGH);       // turn led on

  oofR = 1;                            // set flag

  iRed = ((analogRead(A0)* 4.8828)/216);      // �calc i when 

led on

  //Serial.print(analogRead(A0));             // diagnostics

  //Serial.print("iRed = ");                  // diagnostics

  Serial.println(iRed);                       // add CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow;      

// calculate total power consumption

  //Serial.print("itotal = ");                 // diagnostics

  Serial.println(itotal);                      // add CR-LF

  }

  else {                        // flag is set to 1 so led is on

    pinMode(RedLedPin, OUTPUT); // set pin mode to output

    digitalWrite(RedLedPin, LOW);        // turn led off

    oofR = 0;                            // re-set flag to off

    iRed = 0;                   // �turn iRed contribution to 

itotal off

    Serial.println(iRed);       // send data to DAQFtry

    �itotal = iRed + iGreen + iOrange + iYellow;    

// calculate total current draw

    //Serial.print("itotal = ");                // diagnostics

    Serial.println(itotal);   // send to serial port with CR-LF

    }
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break;

//

case 'G':                              // Green Led Activation

  if (oofG == 0 ) {                    // check status flag

  pinMode(GreenLedPin, OUTPUT);        // set pin I/O

  digitalWrite(GreenLedPin, HIGH);     // turn led on

  oofG = 1;                            // reset status flag

  iGreen = ((analogRead(A1)*4.8828)/215);  // calc diodecurrent

  //Serial.print("iGreen = ");             // diagnostics

  Serial.println(iGreen);              // send data with CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow;   

// �calculate total current draw

  //Serial.print("itotal = ");             // diagnostics

  Serial.println(itotal);                  // send with CR-LF

  }

  else {

    pinMode(GreenLedPin, OUTPUT);      // set pin I/O mode

    digitalWrite(GreenLedPin, LOW);    // turn green led off

    oofG = 0;                          // set green status flag

    iGreen = 0;                        // �turn green contribution 

to total off

    Serial.println(iGreen);         // �send green current value 

with CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow;    

// calculate total current draw

    //Serial.print("itotal = ");                 // diagnostic

    Serial.println(itotal);   // �send total current with CR-LF

  }
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break;

//

case 'O':                            // Orange Led Activation

  if (oofO == 0 ) {                  // check status flag

  pinMode(OrangeLedPin, OUTPUT);     // set pin I/O

  digitalWrite(OrangeLedPin, HIGH);  // set pin I/O

  oofO = 1;                        // set orange flag to led on

  iOrange = ((analogRead(A2)*4.8828)/215);  // �calculate orange 

led current draw

  //Serial.print("iOrange = ");             // diagnostic

  Serial.println(iOrange);    // �send to serial port with CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow;   

// �calculate total current draw

  //Serial.print("itotal = ");               // diagnostic

  Serial.println(itotal);                    // �send total to 

serial port 

with CR-LF

  }

  else {                                 // orange led is on

    pinMode(OrangeLedPin, OUTPUT);       // set pin I/O

    digitalWrite(OrangeLedPin, LOW);     // turn orange led off

    oofO = 0;                            // �reset orange status 

flag to off

    iOrange = 0;                    // �turn orange contribution 

to total off

    Serial.println(iOrange);        // �send out orange current 

with CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow;    

// calculate total current draw

    //Serial.print("itotal = ");      // diagnostics

    Serial.println(itotal);  // �send out total current draw with CR-LF
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  }

break;

case 'Y':                             // Yellow Led Activation

  if (oofY == 0 ) {                   // led is off

  pinMode(YellowLedPin, OUTPUT);      // set pin I/O

  digitalWrite(YellowLedPin, HIGH);   // turn yellow led on

  oofY = 1;                           // re-set lag to led on

  �iYellow = ((analogRead(A3)*4.8828)/217);         

// calculate yellow led current

  //Serial.print("iYellow = ");       // diagnostic

  Serial.println(iYellow);            // �yellow led value to 

serial port with CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow;      

// calculate total current draw

  //Serial.print("itotal = ");                    // diagnostic

  Serial.println(itotal);     // �send to serial port with CR-LF

  }

  else {                            // yellow led on

    pinMode(YellowLedPin, OUTPUT);  // set pin I/O mode

    digitalWrite(YellowLedPin, LOW);   // turn yellow led off

    oofY = 0;                  // re-set flag to yellow led off

    iYellow = 0;               // set yellow led current to 0

    Serial.println(iYellow);  // �send value to serial port with CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow;    

// calculate total current and send with CR-LF

    //Serial.print("itotal = ");                  // diagnostic

    Serial.println(itotal);    // send total current with CR-LF

  }

break;

  }

 }

}

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER  
INTERFACES



71

Listing 2-9.  Toggle Red LED DAQFactory Quick Sequence

device.ardyRb.Purge()      // clear serial buffer

device.ardyRb.Write('R')   // initiate repeat activation

delay(0.1)                 // allow code to execute

global ldCurrnt            // �declare global variable in 

DAQFactory code

private string datain    // �define local variable in DAQFactory code

datain = device.ardyRb.readUntil(13)  // �parse out character 

codes for numeric 

value

ldCurrnt = strToDouble(datain)        // �convert character 

codes to numeric value

Listing 2-10.  Toggle Red LED DAQFactory Quick Sequence with 

Diode Power Draw

device.ardyRb.Purge()           // clear the serial buffer

device.ardyRb.Write('R')        // �send R to serial port for 

repeat activation

delay(0.1)                      // allow for code execution

global iRed                     // �declare diode current as 

global variable

global iTotal                   // �declare total current as 

global variable

private string datain1          // �declare private variable for 

1st data value

private string datain2          // �declare private variable for 

2nd data value

datain1 = device.ardyRb.ReadUntil(13)     // parse out 1st value

datain2 = device.ardyRb.ReadUntil(13)     // parse out 2nd value

Chapter 2 POWER CO�NTROL, MONITORING, AND CREATION OF DEDICATED GRAPHICAL USER  
INTERFACES



72

iRed = strToDouble(datain1)          // �convert characters to 

numerical values

iTotal = strToDouble(datain2)        // �and assign to declared 

variables

Listing 2-11.  Python Code for the Raspberry Pi Monitoring the 

Power Draw of a Four-LED Array

print("RPi 4 Led Array Power Monitoring Program")

print() # a blank line for output screen spacing

print("ADC reading of LED voltage value is normalized from 0 to 

1 by gpiozero library.")

print("The true value of the monitored voltage is the product 

of the normalized ADC value and the reference voltage.")

print()

# a single normalized value is printed each time the module is run

from gpiozero import MCP3008

# �create an object representing the device and assign the input 

channels

ADC_vlu = MCP3008(0)   # the number in brackets is the channel 

on the device

ADC_vlu1 = MCP3008(1)

ADC_vlu2 = MCP3008(2)

ADC_vlu3 = MCP3008(3)

#

print("ADC Channel 1")

print('Normalized ADC value = %.3f'%ADC_vlu.value,' Volts')  

# the blue LED in the author' circuit

#

# convert object, value into a numerical parameter

ledVltg = float(ADC_vlu.value) * 3.3

print('LED CLR voltage value = %.3f'%ledVltg, ' Volts')
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# calculate the LED current from Ohms law

blue = (float((ADC_vlu.value) *3.3) / 329) * 1000

print('Blue LED current = %.3f'%blue,' mA')

#

print()

#

print("ADC Channel 2")

print('Normalized ADC value = %.3f'%ADC_vlu1.value)  

# the yellow LED in the author's circuit

#

# convert object, value into a numerical parameter

led1Vltg = float(ADC_vlu1.value) * 3.3

print('LED1 CLR voltage value = %.3f'%led1Vltg)

# calculate the LED1 current from Ohms law

yellow = (float((ADC_vlu1.value) *3.3) / 220) * 1000

print('Yellow LED current = %.3f'%yellow,' mA')

#

print()

#

print("ADC Channel 3")

print('Normalized ADC value = %.3f'%ADC_vlu2.value)  

# the red LED in the author's circuit

#

# convert object, value into a numerical parameter

led2Vltg = float(ADC_vlu2.value) * 3.3

print('LED2 CLR voltage value = %.3f'%led2Vltg)

# calculate the LED2 current from Ohms law

red = (float((ADC_vlu2.value) *3.3) / 220) * 1000

print('Red LED current = %.3f'%red,' mA')

#
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print()

#

print("ADC Channel 4")

print('Normalized ADC value = %.3f'%ADC_vlu3.value)  

# the green LED in the author's circuit

#

# convert object, value into a numerical parameter

led3Vltg = float(ADC_vlu3.value) * 3.3

print('LED3 CLR voltage value = %.3f'%led3Vltg)

# calculate the LED3 current from Ohms law

green = (float((ADC_vlu3.value) *3.3) / 219) * 1000

print('Green LED current = %.3f'%green,' mA')

#

print()

#

ttl_Currnt_drw = blue + yellow + red + green

print('Total current draw = %.3f'%ttl_Currnt_drw, ' mA')

�Summary
–– An interactive control panel GUI able to activate 

multiple components in an external experiment and 

display data from that experiment is developed.

–– Microcontrollers can be used with robust industrial 

pre-configured SCADA systems or with readily  

available inexpensive components and the appropriate 

programming.

–– In Chapter 3, more detailed scripting and programming 

techniques will be introduced.
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CHAPTER 3

Introduction to 
Scripting
SCADA is an industrial concept in which information about an active 

process is collected and then used to both monitor and control that 

operation. Scripting, in both the industrial-scale applications and these 

scientific measurement experiments, permits the automation of process 

control or data acquisition. In this chapter, code assembled into small 

programs called sequences in the DAQFactory (DF) software will be used 

to control and monitor the LED circuitry assembled on the breadboard in 

the previous exercises.

The DF user manual indicates that the scripting language syntax used 

to create sequences is similar to most standard languages such as the 

variations of C, Python, Visual Basic, Pascal, and others such as Fortran.

The previous notation made with respect to the naming of channels is also 

applicable to the scripting language used in DF. The language is case sensitive, 

and thus it is very important to avoid typing errors and spelling mismatches in 

naming channels, variables, scripts, and pages. It is suggested that the C style 

of naming or a variation be used as noted in these MySpecialName,  

My_Special_Name, My_Spcl_Nm, and MySpclNm examples. Choose names 

that are expressive and meaningful to minimize errors.

It is strongly suggested that documentation in the form of liberal use of 

comments and indentation of code segments be used, to make the script 

code legible and easy to follow. The DAQFactory code editor used to create 

https://doi.org/10.1007/978-1-4842-6778-3_3#DOI
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sequences indents when the Tab key is pressed, and a dotted vertical line 

delineates the code blocks. Other investigators must be able to follow code 

scripts and reproduce any scientific work.

The mathematical operations available for use in scripted sequences 

are described in the DAQFactory software manual in the section 

“Expressions.” An expression is a formula that calculates a result from 

some initial values. Expressions have been used in the variable value 

screen components in the previous exercise to calculate individual colored 

LED currents and the total current being drawn.

As in most languages, variables or arrays must be declared with 

declaration statements, have appropriate names, and have instances 

created, before use in sequence scripting.

For the majority of researchers, the skills required for creating and 

running programming or scripting codes are best developed by practice. 

Virtually all of the popular programming languages in wide use today 

can be learned through an abundance of online tutorials. The tutorials 

and language documentation can be reviewed and practiced at a rate 

that is comfortable for the investigator. The DAQFactory manual has an 

introductory tutorial and a detailed documentation that should then be 

kept at hand for reference as the investigator develops a facility for the 

scripting of DAQFactory sequence code.

�Experimental
Once an electro-mechanical system is configured and the hardware 

validated on a breadboard, do not hesitate to experiment with the scripting 

code on a fresh new DAQFactory page. Science is experimental in nature, 

and this manuscript is hopefully an aid to grasping the fundamentals 

of physical computing and applying them to conduct experimental 

measurements as quickly as possible.
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�Hardware
Use the multicolored LED circuitry from the previous exercise as the 

process operations whose control will be transferred from direct manual 

screen control to a coded script or sequence.

For the circuit schematic, see Chapter 2, Figure 2-2.

�Software
Page Components Required

For the required basic screen configuration, a text message should be 

placed over a button control. The text content should indicate that the 

button controls the starting and stopping of a script that produces a short 

“light show” on the bank of four multicolored LEDs.

In previous exercises using channels, the channels had to have been 

created and entered into the channel table in order to appear in the pop-

up, typing aid listing. The same is true for script sequences that must 

be named and entered into the sequence summary table. Once named 

and entered into the summary table, the appropriate sequences can 

be selected from the listing during button configuration as depicted in 

Figures 3-1 and 3-2.
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Figure 3-1.  Button Action Tab Entries

Figure 3-2.  Named Sequence Entry Listing
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�Scripting
DAQFactory has a script entry and editing program that assembles the 

code as depicted in Figure 3-3.

The scripting for the light show uses a collection of coded statements 

that toggle the channel output voltage values for the individual colored 

LEDs to 5 volts and then reset them to 0 volts. By embedding delay 

Figure 3-3.  Scripting for the LED Light Show
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statements in between the light activation lines and encasing blocks 

of code inside iterative “for loops,” a “light show” can be created. The 

documentation in the code of Figure 3-3 is hopefully self-explanatory. 

The author’s diodes were ordered from the left as red, green, orange, and 

yellow. Thus, the even diodes of 2 and 4 were green and yellow, while the 

odd diodes were red and orange.

The Start Display button can be grouped with a descriptive text 

component to form a panel as shown in Figure 3-4.

�Observations
When the Start Display button is activated with a mouse click, a light show 

occurs on the bank of four LED lights.

When the light show sequence was run on an older desktop computer 

with a CPU running at 1.48 GHz with 736 MB RAM and a high-resolution 

graphics card, the power monitoring panel created in the previous exercise 

was just able to keep up with the light display timing of the half-second 

delays, while the graphical display was not.

�Discussion
This exercise demonstrates the ability of the SCADA software to control 

the activation of electronic circuits through software programming and the 

HMI device.

Figure 3-4.  Scripting Activation Button
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Details in the user manual describe the use of the descriptive text 

screen component with several others that have the tabbed properties 

window allowing the setting of certain properties and the selection of 

an action. The descriptive text component has the ability to display a 

Running/Stopped message, indicating the status of the selected sequence 

attached to the screen component.

A scripted sequence of code runs virtually at the clock speed of the 

computer and hence is much faster than either the screen’s ability to 

display rapid changes, the HMI’s speed, or the rate at which human vision 

is able to follow.

The inability of the graphical power monitor display to keep up with 

the scripted sequence switching of the LED currents is indicative of the 

system limitations. The DAQFactory program is a video display–intensive 

software, and if insufficient time is available for painting the screen, the 

display lags or does not even update. In marginal cases, as was possible 

with the older desktop computer, lowering the screen resolution allowed a 

sluggish screen to perform adequately.

High-speed data transfers are an area of specialty often required in 

spectroscopy, reaction kinetics, and physics. The current exercises are 

focused on the development of methods that use time scales measured in 

seconds and longer. Higher-speed “data streaming” for faster capture rates 

is dealt with both in the appropriate hardware or software user manuals 

and in later sections of this manuscript.

�DAQFactory Sequences: Arduino LED Array
In Chapter 2, an inexpensive microcontroller board was used in place 

of a robust industrial-grade interface to respond to a control screen set 

up in a SCADA system. The low-cost benefit of using the Arduino can be 
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realized in this scripting exercise if the experimenter can devote the time 

required to rewrite the serial communications code developed to monitor 

the power draw of the Arduino-mounted LED array to accommodate a 

scripted light show.

�Experimental
The Arduino microcontroller is wired with four different colored diodes 

as depicted in Chapter 2, Figure 2-9. The Arduino holds the C program 

of Listing 3-1 that provides the LED illumination required, while the 

regular or Quick Sequence DAQFactory code in Listing 3-2 of the following 

programs writes the appropriate characters to the serial port (all code 

listings provided in the “Code Listings” section at the end of the chapter).

A DAQFactory control panel is set up as depicted in Figure 3-5.

Although the Quick Sequence code and the regular sequence code 

are identical, the Quick Sequence code is visible only through the 

Quick Sequence selection. Regular sequences can be used anywhere in 

DAQFactory and are visible on all sequence selection listings.

Figure 3-5.  A Dual-Button Scripting Activation Screen
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�Discussion
The DAQFactory code listing depicted in Figure 3-3 makes use of channels 

to vary the LabJack output connections between 5 volts and ground. The 

upper- or lowercase sequence codes sent to the serial port are collected by 

the Arduino logic and power the digital pin connected to the appropriate 

LED on or off directly without the use of complex channels.

�Raspberry Pi
The RPi uses Python and the gpio and gpiozero Python libraries to 

communicate with and control directly the individual pins of the GPIO 

array. The RPi can only set a pin to a high or low voltage for the output 

mode or read the pin status as high or low in the input mode.

With careful design and care in programming, a “light show” can 

be assembled to run directly off the GPIO pins without the need for any 

intermediate hardware. As detailed in Chapter 1, Figure 1-16, there are 

two versions of the GPIO array: on earlier models, there were 26 pins, 

while on the newer models, there are 40. The first 26-pin array is common 

to all models, while newer versions of the RPi have an additional 14 pins 

as identified in Figure 1-16. In summary the 40-pin array consists of 26 

GPIO pins, 2 3.3-volt and 2 5-volt power pins, 8 ground pins, and 2 serial 

input-output pins, assigned and located as detailed in Table 3-1.
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A simple four-LED “light show” program in Python code is in 

Listing 3-3.

In Chapter 2, the RPi was able to power the four LEDs for short periods 

of time, while the Python program read the ADC voltages and computed 

the total power draw from the GPIO array. In this exercise, scripting creates 

timed sequences of illumination to produce a simple “light show.” If more 

light sources are added to the prototyping board to increase the visual 

appeal of the display created, the pin outputs should be buffered to avoid 

the possibility of overloading the current supply capability of the RPi.

A high input impedance buffer chip such as the CD4050 hex  

non-inverting integrated circuit as used in Chapter 1 can be employed 

to buffer the GPIO pins to handle many small current loadings, while 

a chip such as the ULN2803 Darlington transistor array can handle up 

to 500 mA for each of the eight buffered GPIO pins. (The CMOS 4050 

high-impedance buffer chips are $0.50 CDN, while the ULN2803 chips 

are $2.50 CDN.)

Table 3-1 displays the GPIO pin names and their positions in the 0.1 in 

(2.45 mm) spacing array on the SBC. (When viewed from the top of the RPi 

board with the array to the right, the number 1 pins are at the top, while 

the number 20 pins of the right- and left-hand columns are at the bottom 

adjacent to the USB connectors.)
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With a sufficiently powerful auxiliary supply and CMOS or Darlington 

pair buffering of the RPi pins, scripting should be able to control up to 26 

LEDs.

�Code Listings
Listings 3-1 through 3-3 provide the complete programs for the chapter.

Listing 3-1.  Arduino LED Illumination Code

// Arduino code for multiple led illumination on the red board

// Arduino the prgrm waits for an incoming character on com

// port 4 and then processes the data to identify which led is

// to be turned on or off. R, G, O and Y turn the diode ON and

// r, g, o, and y turn the diode OFF.

//

int RedPin = 3;                 // �red board dig. pin with red 

led and clr

Table 3-1.  Assignment and Positioning of the RPi GPIO Pin Array
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const int GreenPin = 4;         // �red board dig. pin with 

green led and clr

const int OrangePin = 5;        // �red board dig. pin with red 

led and clr

const int YellowPin = 6;        // �red board dig. pin with 

yellow led and clr

char incomingByte = ' ';        // variable to hold incoming byte

//

void setup() {

  Serial.begin(9600);                  // start the serial port

  pinMode(RedPin, OUTPUT);             // set the pin function

  pinMode(GreenPin, OUTPUT);

  pinMode(OrangePin, OUTPUT);

  pinMode(YellowPin, OUTPUT);

}

void loop() {

  //

  while (Serial.available() == 0)       // wait for a character

  {

                               // do nothing until data arrives

  }

  if (Serial.available() > 0)             // a char has arrived

  {

    �char incomingByte = Serial.read(); 

   // �set character comparison variable to new char

  //Serial.print(incomingByte);              //diagnostic

  if (incomingByte == 'R' ) {        // �R sets the red led 

power to high

    // Serial.print("logic OK");     // logic diagnostic

    digitalWrite(RedPin, HIGH);      // turn red led on

    }
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  if (incomingByte == 'r' ) {        // turn red led off

    //Serial.print(incomingByte);    // diagnostic

    digitalWrite(RedPin, LOW);       // �r sets the red led 

power to low

  }

  if (incomingByte == 'G') {         // �G sets the green led 

power to high

    digitalWrite(GreenPin, HIGH);

  }

  if (incomingByte == 'g') {

    digitalWrite(GreenPin, LOW);   // �g sets the green led 

power to low

  }

  if (incomingByte == 'O') {        // �O sets the orange led 

power to high

    digitalWrite(OrangePin, HIGH);

  }

  if (incomingByte == 'o') {

    digitalWrite(OrangePin, LOW);    // �o sets the orange led 

power to low

  }

  if (incomingByte == 'Y') {          // �Y sets the yellow led 

power to high

    digitalWrite(YellowPin, HIGH);

  }

  if (incomingByte == 'y') {

    digitalWrite(YellowPin, LOW);     // �y sets the yellow led 

power to low

  }

 }

}
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Listing 3-2.  DAQFactory Regular Sequence Code for Light Show

// Scripted Control of 4 Leds on an Arduino MC for a Simple

// Light Show DAQFactory script uses serial port transmission

// to control MC. Buttons on a DAQFactory control screen

// activate a quick sequence or regular sequence scripting, to

// transmit the led activation codes to the serial port where

// the Arduino resident C code parses the commands and

// activates the appropriate diode.

// Main loop iterates four times. May 21, 2019

//

for (Private.Counter = 0, Counter < 4, Counter ++)

   // even diodes lit

   device.ardyRb.Write('G')             // light the green led

   device.ardyRb.Write('Y')             // light the yellow led

   delay(0.5)               // leave the lights on for 1/2 sec.

   device.ardyRb.Write('g')      // green led off

   device.ardyRb.Write('y')      // yellow led off

   delay(0.5)                    // keep lights off for 1/2 sec

   // odd numbered diodes lit

   device.ardyRb.Write('R')                 // red on

   device.ardyRb.Write('O')                 // orange on

   delay(0.5)                               // time delay

   device.ardyRb.Write('r')                 // red off

   device.ardyRb.Write('o')                 // orange off

   delay(0.5)                               // time delay

endfor

// run lights to right

for (Private.Counter = 0, Counter < 4, Counter ++)

   device.ardyRb.Write('R')                 // red on
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   delay(0.1)                               // on for 1/10 sec

   device.ardyRb.Write('r')                 // red off

   device.ardyRb.Write('G')                 // green on

   delay(0.1)                               // on for 1/10 sec

   device.ardyRb.Write('g')                 // green off

   device.ardyRb.Write('O')                 // orange on

   delay(0.1)                               // on for 1/10 sec

   device.ardyRb.Write('o')                 // orange off

   device.ardyRb.Write('Y')                 // yellow on

   delay(0.1)                               // on for 1/10 sec

   device.ardyRb.Write('y')                 // yellow off

endfor

//

delay (0.5)

// run lights to left

for (Private.Counter = 0, Counter < 4,Counter ++)

   device.ardyRb.Write('Y')                  // yellow on

   delay(0.1)                                // on for 1/10 sec

   device.ardyRb.Write('y')                  // yellow off

   device.ardyRb.Write('O')                  // orange on

   delay(0.1)                                // on for 1/10 sec

   device.ardyRb.Write('o')                  // orange off

   device.ardyRb.Write('G')                  // green on

   delay(0.1)                                // on for 1/10 sec

   device.ardyRb.Write('g')                  // green off

   device.ardyRb.Write('R')                  // red on

   delay(0.1)                                // on for 1/10 sec

   device.ardyRb.Write('r')                  // red off

   endfor
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Listing 3-3.  Raspberry Pi Scripted “Light Show”

# Led "Light Show" Ex. 3 Scripting on Raspberry Pi

# Pins are numbered sequentially from the top down in the right

# and left columns for ease of assignment and counting when

# wiring jumpers

from gpiozero import LED

from time import sleep

# Define and assign the leds

redLed = LED(2) # left column pin 2

grnLed = LED(3) # left column pin 3

orngLed = LED(4) # left column pin 4

yelLed = LED(5) # left column pin 15

# repeat code for flashing 4 times

for i in range(4):

    redLed.on()

    grnLed.on()

    orngLed.on()

    yelLed.on()

    sleep(1)

    redLed.off()

    grnLed.off()

    orngLed.off()

    yelLed.off()

    sleep(1)

# reoeat code for streaming to left 4 times

for i in range(4):

    redLed.on()

    sleep(0.1)

    redLed.off()
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    grnLed.on()

    sleep(0.1)

    grnLed.off()

    orngLed.on()

    sleep(0.1)

    orngLed.off()

    yelLed.on()

    sleep(0.1)

    yelLed.off()

# repeat code for streaming to the right 4 times

for i in range(4):

    yelLed.on()

    sleep(0.1)

    yelLed.off()

    orngLed.on()

    sleep(0.1)

    orngLed.off()

    grnLed.on()

    sleep(0.1)

    grnLed.off()

    redLed.on()

    sleep(0.1)

    redLed.off()

# repeat code for alternate pair flashing 4 times

for i in range(4):

    redLed.on()

    orngLed.on()

    sleep(1)

    redLed.off()

    orngLed.off()

    grnLed.on()
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    yelLed.on()

    sleep(1)

    grnLed.off()

    yelLed.off()

�Summary
–– Commercial SCADA software has a scripting facility to 

augment the built-in control functions and enable 

communication with remote processes or experimental 

setups.

–– SCADA systems assembled from inexpensive readily 

available components require more detailed program 

development in the programming languages of the 

computing platforms in use.

–– Scripting or programming techniques will be further 

developed in Chapter 4 when the host screen is used to 

enter and display data.
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CHAPTER 4

Data Entry 
from the Screen
A control system must include the capability of entering data from the 

screen, to be able to modify or vary the operation of a sequence or process. 

In this chapter, numerical values entered from the keyboard are used to 

modify scripted sequences of programming code that oscillate LEDs on 

and off for a predetermined number of cycles. In addition, two options 

are created for the modes of power control in which the illumination 

for the diode cycles from full on to off and the diode output intensity is 

incrementally stepped from off to full brightness to create a “fade” or 

“fading” effect. LED brightness is determined by the current through 

the device. The maximum current through the LED is set by the current 

limiting resistor (CLR) placed in series with the diode, power source, and 

ground. The current through the LED can be regulated by varying the 

voltage of the supply. However, diode intensity control by voltage variation 

can only be effective above the voltage level required for conduction in the 

device, typically 1.8–3 volts.

In this chapter, a DAQFactory sequence code that increments the 

power applied to the diode in a fixed number of voltage increments 

is created with a screen confirmation of the entered data value. This 

exercise also demonstrates the ability of the software to appear to run 

two sequences simultaneously in what is often termed a “threaded” 

application.
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The various control and monitoring options are then grouped together 

in a simple graphical user interface (GUI) data entry, process control 

panel.

Diode intensity is more efficiently controlled with a technique known 

as pulse width modulation (PWM). In a PWM control operation, full power 

is applied to the load being driven as a series of square wave voltage pulses 

whose time width is altered in a controlled manner or modulated with 

respect to increasing or decreasing time period. Both the frequency of the 

square wave power source and the pulse width of the power application 

can be numerically controlled or modulated from screen input values. 

(Greater details on the application and implementation of PWM are part of 

Chapter 7.)

An alternative screen data entry exercise using a much less expensive 

microcontroller has been developed. The microcontroller exercise is being 

presented as with the previous exercises with a minimum of explanation 

of the more complex code required to implement the exercise. Details 

of microcontroller usage are introduced later in the manuscript at 

which point some of the advantages and deficiencies of these relatively 

inexpensive devices can be fully appreciated.

�Hardware
The red LED electronic circuit wired for the previous exercises as indicated 

in Chapter 1, Figure 1-3, is to be used for a portion of this exercise; and 

a green LED is wired to the first analog output channel (AO 0) on the 

LabJack terminal board. The AO 0 signal is wired into the base of a 2N3904 

transistor, in accordance with the schematic in Figure 4-1.
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The collector and emitter of the transistor are connected so as the base 

voltage controls the size of current from the +5 V supply to the red LED 

with its current limiting resistor. Recall that transistors are current control 

devices. The size of the base current entering the transistor is determined 

by the voltage applied to the series resistor in the base circuit. The applied 

voltage is set by the script-controlled AO 0 output of the LabJack HMI.

If the circuit depicted in Figure 4-1 is modified, the experimenter should 

ensure that the current limiting resistor does not allow currents larger than 

that specified as a maximum for the diode in use to flow in the circuit.

Figure 4-1.  Prototype Circuit for DAQFactory Control Screen with 
Data Entry Facility
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�Software
�Page Components Required
The DAQFactory data entry panel as seen in Figure 4-5 consists of a total 

of eight lines composed of four text components, two edit boxes for data 

entry, two buttons configured to start sequences, and two descriptive text 

components.

In order to assemble the control panel, the previous techniques used 

to create, position, and configure screen components can be used, and 

where necessary, the DAQFactory user manual can be referenced to place 

and configure the new screen icons used in this exercise.

The following list identifies the page components that make up the 

finished control panel as depicted in Figure 4-5:

	 1)	 A text message is used to identify the panel/

grouping and its function (top line, yellow 

background, black lettering; text and background 

colors selected from boxes in the component 

configuration window; see Chapter 1, Figure 1-6).

	 2)	 An edit box is configured (see Figures 4-2 and 4-3) 

and labeled to identify and receive the data to be 

entered into the panel. The “Flash led repeats” 

is the number of times to flash the red LED in 

Figure 4-1 in an on and off manner. The variable 

in DAQFactory holding the flash number index 

is defined as flsh_Rpts and is declared as a global 

variable in an auto-start sequence (Listing 4-1; 

all code listings provided in the “Code Listings” 

section at the end of the chapter). In order for the 

correct variable names to automatically appear in 

the drop-down list as seen in Figure 4-2 with the 
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“cycles” entry being highlighted, the variable names 

must be declared as global with a short sequence 

that is automatically run when the page is loaded 

(see Figure 3-1 in Chapter 3). Line 2 in the panel is 

configured entirely from the Caption box and the 

checking of the “Set on Set Button press” check 

box as seen in Figure 4-3. The “Set button caption” 

is entered into the appropriate box to appear on 

the button in the second line of the panel. When 

configuring and editing the edit box components, 

make sure the cursor tip is within the edit box active 

area and that the Ctrl key is pressed prior to clicking 

the left mouse button that will then highlight the 

edit box itself with the thick hatched border seen 

in Figure 4-4. With the edit box highlighted, the 

right mouse button can be clicked to bring up the 

properties dialog boxes of Figures 4-2 and 4-3. The 

values entered into the edit box are then placed into 

the channels or variables as required.

	 3)	 A second edit box is created to receive a variable 

numeric value that will cycle the intensity or 

brightness of the green LED in Figure 4-1 from off to 

full brightness and back to off. The variable holding 

the number of fade cycles is declared as fd_Rpts in 

the same auto-start sequence as the flash index.

	 4)	 In the fourth line of the panel, a static text beneath the 

data entry boxes identifies the variable entered. For 

enhanced contrast, the black text is written against 

a green background. (See options in Chapter 1, 

Figure 1-6).
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	 5)	 A descriptive text component forms the fifth line of 

the panel and is used to confirm, visually, the value 

entered in the edit box that has been set as the value 

of the scripting variable “flsh_Rpts” used by the 

scripting code. Figure 4-6 illustrates the properties 

window of the descriptive text component. A 

descriptive text component needs a caption, an 

expression, and a comparison table. Entries into the 

comparison table are made with a numerical value 

in the left column and a text string to the right. The 

Add and Delete buttons are used to get the desired 

table assembled. Once assembled and configured, 

if 0 is entered into the edit box on clicking the Enter 

button, the descriptive text component looks up 

the value of the variable flsh_Rpts and prints the 

corresponding entry in the text column that is “no 

value entered.” Entering a 4 in the edit box will cause 

the message “four times” to be printed after the 

caption “Flash repeats:” In essence, the comparison 

table has a numerical value range for the variable at 

hand and a corresponding text message to display 

when the variable falls within a defined range.

	 6)	 The sixth line consists of a descriptive text to the 

left and a push button to the right. An appropriately 

labeled button is used to initiate the “n” repeats 

of the script-controlled, on/off flashing of the red 

diode. In Figure 4-5, the DAQFactory control screen 

is configured to run the regular sequence code listed 

in Listing 4-2. The power to the LED is controlled by 

the RedLed channel whose output can be found on 

the LabJack I/O 0 pin.
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	 7)	 In the seventh line of the control panel is a second 

descriptive text component configured to report 

the number of times to repeat the fade in/fade out 

oscillation of the green LED.

	 8)	 A descriptive text and a second button make up the 

eighth and last row of the control panel. The button 

controls a pair of sequences, the first of which is the 

red LED flashing sequence, while the second, in 

Listing 4-3, is the fade in/fade out code for the green 

LED. In Figure 4-7, the Action tab for the button 

component is displayed. Pulling down the edit box 

list of actions will reveal a long list of single choices. 

If more than one action is desired on the button 

click, then the Add/Delete up/down arrows can be 

used to add actions to be invoked when the button 

is clicked. In this demonstration exercise, the flash 

and fade sequences are run simultaneously.

Figure 4-2.  Edit Box Main Tab to Set a Channel or a variable 
value
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Figure 4-3.  Edit Box Main Tab Completed

Figure 4-4.  Edit Box Ready for Sizing

Figure 4-5.  Control Panel to Vary LED Illumination Repetitions
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Figure 4-6.  Configuration Panel for the Descriptive Text 
Component
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For visual clarity, panel components can be used to create a 

background for the various groups of active screen components making 

up a specific operation control screen. A bold numeral positioned at the 

base of the panel can be used to associate an entry in a table of notes and 

instructions on the main control screen.

Figure 4-7.  Button Component Multiple Action Selection Panel
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�Scripting
Listing 4-1 is an important procedure to employ when screen components 

are used to alter the contents of variables. The sequences for flashing 

and fading the red and green LEDs are detailed in Listings 4-2 and 4-3, 

while the 27-step process for varying the green LED voltage between the 

minimum turn-on voltage and power supply maximum is to be found in 

Listing 4-4. Listing 4-3 varies the green diode illumination by calling the 

AnalogUp() and AnalogDwn() functions to step the diode through the 

incremental voltage levels as required in the fade in/fade out effect. The 

sequence is for a low to high transition, and a second routine is written for 

high to low transition to enable the system to both increase and decrease 

the LED brightness in 1.3 seconds.

�Observations
The on-off cycle of the red diode is definitive in that the light is at full 

brightness or it is off. The stepping of the voltage or current applied to the 

base of the 2N3904 in a series of increments produces a “noisy” increase 

and decrease in the illumination of the semiconductor. (See “Discussion.”)

The descriptive text component application is a very simple illustration 

of the usage of the icon but does provide an overview of how the 

comparison table is assembled and operates.

Data entry into the variable loop indexing is a simple illustration of 

the technique, and the dual initiation of the two different scripts from 

a single button illustrates the ability of the DAQFactory programming 

to demonstrate “threading” in which two programs appear to execute 

simultaneously. (Threading is an advanced programming topic that if 

required for an experimental control can be studied in detail from the 

literature of Python programming.)
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�Discussion
As can be seen in the code for the script to switch the power on and off 

to the red LED, the variable “flsh_Rpts” is declared as a global entity. 

When the script has been typed and the “Apply & Compile” button clicked 

successfully, the global variable “flsh_Rpts” appears in the pop-up typing 

aid listing of channels, variables, and sequence scripts.

A transistor is an amplifier of current.1 Any signals that are created 

by the DAQFactory software and are ultimately expressed as a voltage 

level impressed upon the AO 0 terminal of the LabJack will contain noise. 

The noise, riding on top of the impressed DC signal levels created by the 

DAQFactory script, is augmented by the 10 kΩ resistor protecting the 

transistor base from excessive current. The noise on the signal that is 

impressed upon the base of the 2N3904 is amplified by the transistor’s 

gain or amplification factor hfe, typically a value between 35 and 100, to 

generate the easily visible flicker and irregular transitions of the fade in or 

out.

Although a PNP transistor has been used in the exercise, an NPN could 

be used with the changes illustrated in Figure 4-8 (2N3904 and 2N2222 are 

suitable NPN devices).

The scripting code for the on/off diode switching is contained in a loop 

whose index is declared as a global-type variable, the value of which is set 

from the screen edit box. The same code can be used with two functions 

1 Electronics Cookbook, Monk, O’Reilly Media Inc., ISBN 978-1-49195340-2

Figure 4-8.  NPN and PNP Power Control
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labeled AnalogUp() and AnalogDwn() that are called in place of the 

assignment statements setting the analog output channel AO 0 to either 5 

volts or 0 in the simple on/off cycling. The functions stepping the intensity 

of illumination up and down by voltage adjustment are very simplistic 

approaches to altering the power delivered to the green diode. There are 

probably numerous more elegant code sequences that can be written to 

control the illumination intensity. (Note: Analog up and analog down will 

change function if PNP and NPN transistors are interchanged.)

U12 LabJacks can be configured for PWM outputs to provide smooth 

power control applications as opposed to the coarse demonstration 

method used in this exercise. Newer data acquisition and interfacing 

devices are usually equipped with built-in PWM facilities as presented in 

Chapter 7.

�Screen Entry of Data with the Arduino 
Microcontroller
A screen entry of data can also take the form of a series of numerical 

control values generated from a control panel in DAQFactory. 

Numerical values from a grouping of DAQFactory icons forming a 

control screen on the host computer can be passed to a microcontroller 

through the serial port to convert the entered data into process 

variations or experimental control actions. Data must pass through 

the serial port portal between the two different computing systems at 

the low-level bit and byte or on/off communication level. Although 

the on/off recognition capability is organized in both systems as ASCII 

(American Standard Code for Information Interchange) characters, 

the information must be turned into numerical integer or numerical 

floating-point values for mathematical operations or alphabetic 

characters for identification purposes.
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As has been presented in previous exercises, an Arduino 

microcontroller can be controlled from a serial port. In addition to the 

much lower cost of the microcontroller board, the microcontroller has 

many updated features such as programmable hardware timers that can 

be used to vary the time width of 5 V electrical pulses to implement pulse 

width modulation. (See Chapter 7 for details.)

An Arduino normally has 14 digital I/O pins, of which 6 can provide 

PWM power control.

Connecting the SCADA software to the Arduino microcontroller 

through the serial port limits the electronics to processing one signal at 

a time. Regardless of how many data streams are multiplexed or mixed 

before being transmitted to the serial port and then parsed back out into 

their individual streams on the microcontroller side, only one bit at a time 

passes through the serial connection.

Greater details on the serial connection and its use are presented in 

Chapter 11.

�Experimental
To implement the use of the Arduino microcontroller instead of the 

LabJack U12 to demonstrate the control screen entry of numerical values 

for controlling and receiving data for display from the microprocessor, the 

digital pin and ADC inputs depicted in Chapter 2, Figure 2-9, can be used.

In all DAQFactory-Arduino programming, only one program or the 

other can be in control of the serial port. The author’s normal practice 

is to develop the Arduino code required for the task at hand and then 

test the code by launching the Arduino’s serial monitor and sending 

into the microcontroller code the character string that will be sent by 

the DAQFactory control screen. Once the correct Arduino response has 

been confirmed, the serial port on the Arduino is closed, and the Arduino 

IDE window is minimized to run in the background. Once the Arduino 

code to receive the correct DAQFactory character string to invoke the 
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action required is running in the background, the DAQFactory program 

containing the page with the control screen to be placed into service can 

be launched to begin the control session. In this exercise, the DAQFactory 

screens seen in the figures shown are resident in the SCADA software that 

has access to and control of the serial port through which characters can 

be sent to initiate the desired action from the devices connected to the 

Arduino I/O connections.

An initial DAQFactory screen as depicted in Figure 4-9 was created to 

begin the progressive development of serial communications.

The Red led on and Red led off buttons are coupled to the Quick 

Sequence code of Listing 4-5 that transmits a 1 or 0 to the serial port 

where the Arduino code of Listing 4-6 activates/inactivates the red LED 

as required. The Arduino code also reads the voltage drop across the 

measured, known value current limiting resistor and sends the current 

data back to the serial port where the DAQFactory Quick Sequence code 

parses out the current data for display on the control screen.

Figure 4-9.  DAQFactory Control Screen for Directing Actions on an 
Arduino Microcontroller Board
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The second button in the upper-left corner of the DAQFactory control 

screen is coupled to a second Quick Sequence that activates a more 

complex and more efficient toggling of the red LED on the Arduino board. 

The programs of Listings 4-7 and 4-8 are the Quick Sequence code and 

Arduino code that manage the toggling effect.

Figure 4-10 depicts the DAQFactory control screen display obtained 

when the green and orange LEDs on the Arduino board have been 

activated by the corresponding buttons on the DAQFactory control screen. 

The transmission history of the serial port action on the COM4 monitor 

is recorded in the bottom left of the figure frame. Listings 4-9 and 4-10 

control the colored buttons of the control panel.

Listings 4-9 and 4-10 contain the DAQFactory quick sequence code 

activated by clicking on a coloured button and the responding Arduino 

code for the control screen coloured buttons and variable value readouts 

visible in Figure 4-10.

Figure 4-10.  DAQFactory Control Screen for Directing Multiple 
Actions on an Arduino Microcontroller Board
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In Figure 4-5, the DAQFactory screen data entry panel has been 

developed using the LabJack devices and an auto-start sequence to declare 

the variables required to hold the loop indexing values to be entered.  

The auto-start sequence in DAQFactory is also activated when the 

page holding the data entry panel is loaded for use with the Arduino 

microcontroller. All of the features discussed with respect to DAQFactory 

previously are active with the microcontroller except for the threading 

demonstration button. (See “Discussion.”)

The “Tst script with variable index” button is coupled to the Quick 

Sequence program as shown in Listing 4-11. The Quick Sequence relies on 

a “for loop,” executed “flsh_Rpts” times to send an on/off or “1”/“0” serial 

port transmission to the Arduino running the code listed in Listing 4-6 to 

power the red diode on or off. Alternately, Listings 4-12, 4-13, and 4-14 can 

be used to operate the Arduino’s PWM functionality to both fade and flash 

the orange diode on the microcontroller board. (See “Discussion.”)

�Observations
When the screen data entry uses the edit box screen components with 

the LabJack, it is possible to enter two different values into the flash and 

fade edit boxes, and when the bottom button “Simultaneous Scripts” is 

activated, the flash and fade actions on the two diodes both run together. 

(See “Discussion.”)

The remainder of both the LabJack and Arduino screens and functions 

work as expected.

�Discussion
In addition to the DAQFactory scripting language, Python is a 

programming language that is able to accommodate “threading.” The 

details and applications of threading are much more advanced topics than 

can be examined in this introductory work, and for more information, the 

literature of Python can be consulted.
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Examination of the Arduino code in Listing 4-8 will reveal that the 

logic for determining the status of the red LED has been written, for 

simplicity, entirely into the microcontroller system. In the event that 

the microcontroller were in a remote location and the operator of the 

DAQFactory control screen needed to know the status of the red LED or 

the device attached to the digital pin, a flag could be passed back to the 

control screen through the serial port along with the current drawn data.

The experimenter must take care when using the digital and PWM 

pins on the Arduino as only 6 of the 14 digital I/O pins support PWM 

(i.e., Arduino pins 3, 5, 6, 9, 10, and 11 are PWM capable.)

When working with the DAQFactory serial port, the experimenter must 

manually add a line feed ASCII marker to the end of each transmission if it 

is to be used by Arduino code to mark the end of character transmission. 

The Arduino serial monitor has a selection box in the lower right-hand 

corner of the field of view to select the desired line endings for the terminal 

session at hand.

The PWM activation code using the 0–255 integral power level can be 

used with both the fade and flash modes of LED activation by calculating the 

timing and power requirements in the DAQFactory sequence scripting and 

only transmitting the power activation commands as and when required.

�Raspberry Pi: Screen Entry of Data
Data entry in the Python language used by the RPi is accomplished with 

the input statement. An input statement in Python takes a string value 

argument that may then need to be converted into the appropriate 

numerical value as an integer or float. A typical screen entry code is as 

follows (# marks a comment line):
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input_str = input("Enter the desired input characters", )

variable = int(input_str)   # �can only be used for non-floating 

point conversion of numbers

variable = float(input_str) # �can only be used for floating 

point numeric strings

Control of LEDs with the Python language can use a basic library 

called RPi.GPIO or a more advanced capability library known as gpiozero. 

The documentation for both libraries is available online.

Because the GPIO array is a digital input/output system, voltage 

control is not easily implemented without resorting to PWM and capacitor 

smoothing. (PWM is introduced in Chapter 7.)

A simple exercise demonstrating the screen entry of data with Python 

and the RPi can be created by blinking an LED with a flash length set from 

a screen-entered value for a set number of repeats, also set by screen entry. 

The Python program in Listing 4-15 produces the output of Figure 4-11 and 

flashes the nominal LED as recorded.

Occasionally, when switching on the power for the RPi when 

peripherals are attached to the GPIO array, some of the array pins may be 

in a high or powered state. Two utility programs able to re-zero or turn off 

Figure 4-11.  Output from Python Screen Entry of Data Program
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the active pins are presented in Listing 4-16. One utility makes use of the 

channel list function, and the second uses a Python loop to process the 

individual pins of the GPIO array.

�Code Listings
Listing 4-1.  DAQFactory Auto-start Sequence Code to Declare 

Variables

// Auto declare variables is a sequence that runs when the Main

// Screen page is run. Two variables are declared globally, 

// flsh_Rpts and fd_Rpts representing the number of times to

// flash the red led and fade the green.

//

global flsh_Rpts

//

global fd_Rpts

Listing 4-2.  DAQFactory Code to Flash the Red LED a Variable 

Number of Times as Entered from the Control Screen

// Sequence Name --: TstSqncForLoopVariableReps

//Screen Entry of Alph-Numeric Values

//Oct9/09 and Nov. 13/09

//A screen Edit Box accepts entered values as a variable called 

//flsh_Rps. The variable is declared as a global type with an 

//auto-run sequence and is used as the loop counter value to 

//vary the number of times the loop iterates.

//

global flsh_Rpts

//
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for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

   //

    RedLed = 5

    delay(0.5)

    RedLed = 0

    delay(0.5)

   //

endfor

Listing 4-3.  DAQFactory Code to Fade In and Out the Green LED 

Brightness

//Variable Intensity Flash varies the voltage of the

//AO 0 channel to raise and lower the intensity of the

//green LED

//Nov. 16/09

//

global fd_Rpts

AnalogOut = 0

for (Private.Counter = 0, Counter < fd_Rpts, Counter ++)

AnalogUp ()

AnalogDwn ()

endfor

AnalogOut = 0

Listing 4-4.  DAQFactory Regular Sequence for LED Illumination 

Intensity Variation

//Analog Voltage is raised from 2.4 volts to 5.0

// in steps of 0.2v with a delay of 0.05 sec

// between increments. Rvn. Jan4/10

AnalogOut = 2.2
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delay (0.05)

AnalogOut = 2.4

delay (0.05)

AnalogOut = 2.6

delay (0.05)

AnalogOut = 2.8

delay (0.05)

AnalogOut = 3.0

delay (0.05)

AnalogOut = 3.2

delay (0.05)

AnalogOut = 3.4

delay (0.05)

AnalogOut = 3.6

delay (0.05)

AnalogOut = 3.8

delay (0.05)

AnalogOut = 4.0

delay (0.05)

AnalogOut = 4.2

delay (0.05)

AnalogOut = 4.4

delay (0.05)

AnalogOut = 4.6

delay (0.05)

AnalogOut = 4.8

delay (0.05)

AnalogOut = 5.0

return()
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Listing 4-5.  DAQFactory Quick Sequence to Turn the Red LED On 

from the Button and Read the LED Current

device.ardyRb.Purge()

device.ardyRb.Write('1')

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)

ldCurrnt = strToDouble(datain)

Listing 4-6.  Arduino Code for DAQFactory Code of Listing 4-5

// Arduino code for a single led illumination on the red board

// Arduino the pgm waits for an incoming character on com

// port 4 if a 1 the led is turned on if a 0 it is turned off.

// A0 is wired to Rd led junction and the Arduino calculates

// the led current and prints the value to the serial port.

//

const int RedPin = 3;      // �red board dig. pin with red led 

and clr

int incomingByte;          // a variable to hold incoming byte

float iRed = 0;            // the led current through the CLR

//

void setup() {

  Serial.begin(9600);             // start the serial port

  pinMode(RedPin, OUTPUT);        // set the pin function

}

void loop() {

  if(Serial.available()> 0) {     // �check port for last  

data byte
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  incomingByte = Serial.read();   //

  if (incomingByte == '1') {      // if is 1, turn the led on

    digitalWrite(RedPin, HIGH);

  // calculate led current and print to the serial port

  iRed = ((analogRead(A0) * 4.8828 )/216);

  Serial.println(iRed);

  }

  //

  if (incomingByte == '0') {

    digitalWrite(RedPin, LOW);       // if 0, turn the led off

  // calculate led current and print to the serial port

  iRed = ((analogRead(A0) * 4.8828 )/216);  // �ensures the LED 

is off

  Serial.println(iRed);

  }

  }

}

Listing 4-7.  DAQFactory Quick Sequence Code to Toggle Red LED 

and Read the Power Consumption

device.ardyRb.Purge()

device.ardyRb.Write('R')

delay(0.1)

global ldCurrnt

private string datain

datain = device.ardyRb.readUntil(13)

ldCurrnt = strToDouble(datain)
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Listing 4-8.  Arduino Code for Receiving the DAQFactory Control 

Screen Button Request to Toggle Red LED Illumination

// Toggle an led on/off from one DAQFctry button icon on COM4

// The DAQF QS sends an R to the serial port on com 4. On the

// arduino side the status of the RedLed digpin is determined

// and toggled as required. Led current calculated and written to

// Ser prt where DAQFtry parses out floating point current value.

//

const int RedLedPin = 3;      // red led is on dig pin 3

int oofR = 0;                 // power state of red diode

char incomingByte = ' ';      // declare incoming byte

float iRed = 0;               // red led current

//

void setup() {

  Serial.begin(9600);         // start the serial port

  pinMode(RedLedPin, INPUT);  // �must initially read the dig. pin

}

//

void loop() {

  if (Serial.available()) {         // check for incoming data

    char incomingByte = Serial.read();

    //Serial.print(incomingByte);              // diagnostic

    if (incomingByte == 'R' && oofR == 0) {

      pinMode(RedLedPin, OUTPUT);

      digitalWrite(RedLedPin, HIGH);

      iRed = ((analogRead(A0) * 4.8828)/216 );

      Serial.println(iRed);

      oofR = 1;

    }
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    else {

      if (incomingByte == 'R' && oofR == 1){

      pinMode(RedLedPin, OUTPUT);

      digitalWrite(RedLedPin, LOW);

      iRed = 0;

      Serial.println(iRed);

      oofR = 0;

      }

    }

  }

}

Listing 4-9.  DAQFactory Quick Sequence Code for Multiple-Button 

Control of Arduino LEDs

device.ardyRb.Purge()

device.ardyRb.Write('R')

delay(0.1)

global iRed

global iTotal

private string datain1

private string datain2

datain1 = device.ardyRb.ReadUntil(13)

datain2 = device.ardyRb.ReadUntil(13)

iRed = strToDouble(datain1)

iTotal = strToDouble(datain2)
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Listing 4-10.  Arduino Code Supporting DAQFactory Multiple-

Button Colored Diode Selection with Power Consumption

// Toggle leds on/off from DAQFctry button icons on COM4

// The DAQF QS sends an R, G, O or Y to the serial port on com

// 4. On the arduino side the status of the appropriate led

// digpin is determined and toggled as required through a

// switch construct.

//

// power drawn calculations, each led has a CLR and the voltage

// on the junction of the resistor and led is measured and used

// to calculate diode current by A0 to A3 respectively. Current

// calcln only done when diode activated.

//

const int RedLedPin = 3;           // red led is on dig pin 3

const int GreenLedPin = 4;         // green led on dp 4

const int OrangeLedPin = 5;        // orange led on dp 5

const int YellowLedPin = 6;        // yellow led on d pin 6

//

int oofR = 0;                      // on off flags initialized

int oofG = 0;

int oofO = 0;

int oofY = 0;                      // on off flags initialized

//

char incomingByte = ' ';           // define incoming character

//

float iRed = 0;                    // �red led current in 

decimal float format

float iGreen = 0;

float iOrange = 0;
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float iYellow = 0;

float itotal = 0;

//

void setup() {

 Serial.begin(9600);                // start the serial port

 }

//

void loop()

{

  if (Serial.available())            // check for incoming data

  {

  char incomingByte = Serial.read();   // �set char value for 

switch branching

// Serial.print(incomingByte);          // diagnostic

  switch(incomingByte)                  // �branch to desired 

location/option

  {

  case 'R':                             // Red Led Activation

  if (oofR == 0 ) {

  pinMode(RedLedPin, OUTPUT);           // set pin I/O

  digitalWrite(RedLedPin, HIGH);        // turn led on

  oofR = 1;                             // set flag

  iRed = ((analogRead(A0)* 4.8828)/216);  // calc i when led on

  //Serial.print(analogRead(A0));         // diagnostics

  //Serial.print("iRed = ");              // diagnostics

  Serial.println(iRed);                           // add CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow; 

     // calculate total power consumption

  //Serial.print("itotal = ");                   // diagnostics

  Serial.println(itotal);                        // add CR-LF

  }
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  else {                       // flag is set to 1 so led is on

    pinMode(RedLedPin, OUTPUT);       // set pin mode to output

    digitalWrite(RedLedPin, LOW);     // turn led off

    oofR = 0;                         // re-set flag to off

    iRed = 0;                     // �turn iRed current 

contribution to itotal off

    Serial.println(iRed);             // send data to DAQFtry

    �itotal = iRed + iGreen + iOrange + iYellow; 

   // �calculate total current draw

    //Serial.print("itotal = ");      // diagnostics

    Serial.println(itotal);   // �send to serial port with CR-LF

    }

break;

//

case 'G':                             // Green Led Activation

  if (oofG == 0 ) {                   // check status flag

  pinMode(GreenLedPin, OUTPUT);       // set pin I/O

  digitalWrite(GreenLedPin, HIGH);    // turn led on

  oofG = 1;                           // reset status flag

  iGreen = ((analogRead(A1)*4.8828)/215); // �calc diodecurrent

  //Serial.print("iGreen = ");           � // diagnostics

  Serial.println(iGreen);               // �send data with CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow; 

  // �calculate total current draw

  //Serial.print("itotal = ");                  // diagnostics

  Serial.println(itotal);                    // send with CR-LF

  }

  else {

    pinMode(GreenLedPin, OUTPUT);      // set pin I/O mode

    digitalWrite(GreenLedPin, LOW);    // turn green led off

    oofG = 0;                          // set green status flag
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    iGreen = 0;   // �turn green contribution to total current off

    Serial.println(iGreen);   // �send green current value  

with CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow; 

   // �calculate total current draw

    //Serial.print("itotal = ");          // diagnostic

    Serial.println(itotal);    // �send total current with CR-LF

  }

break;

//

case 'O':                             // Orange Led Activation

  if (oofO == 0 ) {                   // check status flag

  pinMode(OrangeLedPin, OUTPUT);      // set pin I/O

  digitalWrite(OrangeLedPin, HIGH);   // set pin I/O

  oofO = 1;                        // set orange flag to led on

  �iOrange = ((analogRead(A2)*4.8828)/215); 

        // �calculate orange led current draw

  //Serial.print("iOrange = ");                   // diagnostic

  Serial.println(iOrange);   // send to serial port with CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow; 

     // �calculate total current draw

  //Serial.print("itotal = ");                    // diagnostic

  Serial.println(itotal);          // �send total current to 

serial port with CR-LF

  }

  else {                           // orange led is on

    pinMode(OrangeLedPin, OUTPUT);       // set pin I/O

    digitalWrite(OrangeLedPin, LOW);    // turn orange led off

    oofO = 0;                // reset orange status flag to off

    iOrange = 0;              // �turn orange contribution to 

total off
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    Serial.println(iOrange);  // �send out orange current with 

CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow; 

   // �calculate total current draw

    //Serial.print("itotal = ");       // diagnostics

    Serial.println(itotal);  // �send out total current draw 

with CR-LF

  }

break;

case 'Y':                             // Yellow Led Activation

  if (oofY == 0 ) {                     // led is off

  pinMode(YellowLedPin, OUTPUT);        // set pin I/O

  digitalWrite(YellowLedPin, HIGH);     // turn yellow led on

  oofY = 1;                             // re-set lag to led on

  �iYellow = ((analogRead(A3)*4.8828)/217); 

        // calculate yellow led current

  //Serial.print("iYellow = ");                   // diagnostic

  Serial.println(iYellow);        // �yellow led current value 

to serial port wth CR-LF

  �itotal = iRed + iGreen + iOrange + iYellow; 

   // �calculate total current draw

  //Serial.print("itotal = ");                    // diagnostic

  Serial.println(itotal);     // send to serial port with CR-LF

  }

  else {                                 // yellow led on

    pinMode(YellowLedPin, OUTPUT);       // set pin I/O mode

    digitalWrite(YellowLedPin, LOW);     // turn yellow led off

    oofY = 0;                            // �re-set flag to 

yellow led off

    iYellow = 0;                 // set yellow led current to 0
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    Serial.println(iYellow);     // �send value to serial port 

with CR-LF

    �itotal = iRed + iGreen + iOrange + iYellow; 

   // �calculate total current and send wth CR-LF

    //Serial.print("itotal = ");    // diagnostic

    Serial.println(itotal);    // �send total current with CR-LF

  }

break;

  }

 }

}

Listing 4-11.  DAQFactory Quick Sequence for Flashing the 

Arduino-Mounted LED for the Number of Cycles Requested 

Through the Screen Data Entry Edit Box

for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

   device.ardyRb.Write('1')

   delay(0.5)

   device.ardyRb.Write('0')

   delay(0.5)

   endfor.

Listing 4-12.  DAQFactory Regular Sequence Code for Fading the 

Green LED on the Arduino Board

// Green Led on Arduino pin 5 to be cycled from full power to

// off from a DAQFctry script using the serial port and the

// edit box entry of the requested number of repeats, fd_Rpts.

// Start illumination decrease cycle
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device.ardyRb.Write("255" + Chr(10))

delay(0.25)

device.ardyRb.Write("192" + Chr(10))

delay(0.25)

device.ardyRb.Write("128" + Chr(10))

delay(0.25)

device.ardyRb.Write("96" + Chr(10))

delay(0.25)

device.ardyRb.Write("64" + Chr(10))

delay(0.25)

device.ardyRb.Write("48" + Chr(10))

delay(0.25)

device.ardyRb.Write("32" + Chr(10))

delay(0.25)

device.ardyRb.Write("24" + Chr(10))

delay(0.25)

device.ardyRb.Write("16" + Chr(10))

delay(0.25)

device.ardyRb.Write("12" + Chr(10))

delay(0.25)

device.ardyRb.Write("8" + Chr(10))

delay(0.25)

device.ardyRb.Write("6" + Chr(10))

delay(0.25)

device.ardyRb.Write("4" + Chr(10))

delay(0.25)

device.ardyRb.Write("3" + Chr(10))

delay(0.25)

device.ardyRb.Write("2" + Chr(10))

delay(0.25)

device.ardyRb.Write("0" + Chr(10))
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Listing 4-13.  DAQFactory Regular Sequence to Use the “flsh_Rpts” 

Screen-Entered Loop Index Counter

// Orng led flashed on/off with 255 and 0 PWM Arduino power 

level applications

global flsh_Rpts

//

for (Private.Counter = 0, Counter < flsh_Rpts, Counter ++)

//

device.ardyRb.Write("255" + Chr(10))     // turn led full on

delay (0.5)                              // delay 1/2 sec

device.ardyRb.Write("0" + Chr(10))       // turn led off

delay(0.5)                               // delay 1/2 sec

endfor

Listing 4-14.  Arduino Code to Accept Digits from 0 to 255 to Be 

Used as PWM Power Application Requests 

  /* DAQFtry ardyRb PWM Led Control through serial port

Quick Sequence control of Orange led fade with arduino PWM

Arduino PWM requires a 0 - 255 integer to set the PWM DC.

This pgm uses the string to int function to convert a digit

based number into an integer to set the PMW value.

*/

String inString =  " ";

byte pinOut = 5;              // dig pin for orange led

int pwr_Vlu = 0;

//

void setup() {

  Serial.begin(9600);         // start serial port

  pinMode(pinOut, OUTPUT);    // set output pin

}
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//

void loop() {

  while (Serial.available() > 0) {

  int inChar = Serial.read();

  if (isDigit(inChar)) {

  // cnvrt incoming byte to char and add to strng

  inString += (char)inChar;

  }

  // if nuline convert accumulated to integer

  if (inChar == '\n') {

    pwr_Vlu = (inString.toInt());

    Serial.print(pwr_Vlu);

    //int twotimes = pwr_Vlu * 2;

    //Serial.print(twotimes);

    pinMode(pinOut, OUTPUT);

    analogWrite(pinOut, pwr_Vlu);

    // clear the string for new input

    inString = " ";

  }

 }

}

Listing 4-15.  Python Data Input from the Host Computer Screen

# Input of data from the control screen

#

import RPi.GPIO as GPIO

import time

# set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Chapter 4  Data Entry from the Screen



128

# Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)

#

# Enter the number of the GPIO array pin connected to the LED 

to be activated

input_str = input("Input the GPIO pin number for the LED 

control exercise " , )

arry_pn_no = int(input_str)

#

# Input the number of times to repeat the flashing of the LED

input_str = input("Input the number of times to flash the LED ", )

rpts = int(input_str)

#

# Input the number of times to flash the LED in a second

input_str = input("Input the on time in seconds for the LED flash ", )

flsh_rt = int(input_str)

print("Array pin number = ",arry_pn_no, "Repeats = ", rpts, 

"Flash rate = ", flsh_rt)

#

print("Lighting the LED on GPIO pin ", arry_pn_no, "to flash ", 

rpts, "times for", flsh_rt, " seconds per flash")

#

for i in range(1, rpts + 1):

    GPIO.output(arry_pn_no, GPIO.HIGH)

    time.sleep(flsh_rt)

    GPIO.output(arry_pn_no, GPIO.LOW)

    time.sleep(flsh_rt)
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# Clear the GPIO array

Print("GPIO array cleared")

GPIO.cleanup()

Listing 4-16.  Python Code to Reset the GPIO Array

# Clear, Turn Off or Reset the RPi GPIO array

#

import RPi.GPIO as GPIO

# set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

# Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)

�Summary
–– Scripting is required in the commercial SCADA system 

to enter the process variables required to initialize and 

control the process at hand from the configured host 

screen GUI control panel.

–– Screen-entered process or experimental variables can 

also be entered into SCADA systems assembled with 

less expensive components and computing platforms.
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CHAPTER 5

Digital Signal 
Concepts and Digital 
Signal Outputs
Most of the sensors used in making biological, chemical, or physical 

measurements create a continuously variable analog electrical output, while 

computers and large-scale integrated circuits use high or low electrical 

energy levels to represent binary digital signals that they can process. 

Supervisory control and data acquisition programs must often function as 

bidirectional analog-to-digital electronic signal converters. This chapter 

will begin to develop the use of binary numbering and digital electronics, 

utilizing the standard 0- and +5-volt signal levels as the representations of 

binary ones and zeros. In many surface mount technology (SMT) devices, 

the logic levels are 0 and 3.3 V, and the SMT integrated circuits are often 

damaged by inadvertent application of 5 V signals.

The LabJack U12, human-machine interface (HMI) user manual 

indicates that 20 digital signal lines, capable of being set to either receive 

or output a 5 V electrical signal, are provided on the U12 device. Four 

lines are available through the I/O 0–I/O 3 connections on the main screw 

terminal strips on the LabJack, while the remaining 16 are available at the 

DB-25 connector on the top end of the case. The user guide also advises 

the experimenter that the four I/O lines on the main terminal connectors 
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are protected by internal, current limiting resistors, while those on the 

DB-25 connector are equipped with jumper pins to bypass the 1.5 kΩ 

protection resistors when required.

The DB-25 lines can be physically accessed by several methods. A 

cable and circuit board with connection terminals for the individual 

lines is available from the LabJack manufacturer. A DB-25 connector with 

solder terminals can be purchased from most electronics suppliers. An 

inexpensive interface can be created from an old DB-25 printer cable with 

the incompatible end connector removed and the individual wire ends 

tinned to be inserted into a digital prototyping breadboard. (See Chapter 1, 

Figure 1-1, items 1 and 3, and HMI U12 in Figure 5-1.)

To reinforce a note of caution concerning the hardware used, recall 

that the LabJack manufacturer–supplied board for the DB-25 connection 

contains a pre-installed load limiting resistor, while DB-25 connectors 

purchased separately from local suppliers or fabricated with cables 

cannibalized from old printers do not. The philosophy of using an 

independently powered, buffered connection such as the CMOS CD4050 

hex non-inverting buffer chip between the field experiment and the HMI 

eliminates concerns regarding transient damage to the HMI hardware.

�Experimental
This exercise will use the same screen-controlled LED illumination 

procedure, as has been used in previous exercises, but expanded here to 8 

bits, to demonstrate basic digital signal concepts.

�Hardware
The CB25 terminal board (item 2, $39 USD) from LabJack Corporation 

includes the DB-25 cable (item 3) to connect the additional terminal 

digital I/O lines of the U12 interface to the LED array on the prototyping 

board (item 1).
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Item 4 in Figure 5-1 is the USB connection to the host computer 

displaying the DAQFactory control panel depicted in Figure 5-3. The DB-25  

cable connecting the LabJack DB-25 connector at the top of the device 

provides access to 16 digital I/O lines from which the first 8 can be used for 

this exercise.

If additional hardware protection is required because of a transient-

prone power supply, the eight digital signal lines can use two CD4050 hex 

buffer/isolation chips and eight LEDs and current limiting resistors as 

depicted in Figure 5-2.

Figure 5-1.  LabJack U12, CB25 Terminal Board, and 8-Bit LED 
Array
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The components at hand should be assembled in accordance with 

the following circuit schematic. The author assembled an initial prototype 

from an old DB-25 printer cable and plugged the isolated and identified 

D0–D7 digital I/O lines from the U12 directly into a prototyping board to 

activate the CLR LED array bits.

�Software
Create an eight-button panel with each button labeled as illustrated in 

Figure 5-3. This exercise demonstrates the configuration of the individual 

digital line connections between a field experiment using an 8-bit byte and 

the main SCADA screen.

Figure 5-2.  Schematic for 8-Bit Byte LED Display
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Each button created is labeled, connected to its channel, and then set to 

toggle between 0 and 5 volts as previously done in Chapter 1, Figures 1-9  

through 1-11. Pressing the Ctrl key and clicking the left mouse button 

simultaneously allows the experimenter to draw a box around a collection 

of individual screen components that can be formed into a group with a 

selection in the Edit drop-down menu. The mouse, Ctrl key, and Edit menu 

can be used to group and ungroup components as required in assembling a 

larger more complex GUI screen.

The investigator should also not attempt to alter components on a 

background panel. Components should be arranged and configured as 

required, grouped, and then backed by a background panel if desired by 

using the Ctrl key and the Order entry in the Layout menu.

The DAQFactory sequence program that calculates the decimal sum of 

the illuminated bits is shown in Listing 5-1.

The buttons representing the 8 bits are linked to the “Toggle Between” 

selection in the button component Action tab as seen in Figure 1-10,  

for each of the DigOut_n channels.

Figure 5-3.  8-Bit Byte LED Display Control Panel
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�Observations
When the diodes, DAQFactory, and the screen are configured properly, 

clicking any one of the buttons will either light up or turn off the 

corresponding diode in the 8-bit bank of diodes that represents a byte of 

digital data.

Figure 5-3 depicts the panel display after the Evaluate button was 

clicked while the D1 (21 = 2) and D2 (22 = 4) LEDs were illuminated. To 

clear the Decimal sum display, turn all the diodes off and click the Evaluate 

button.

�Discussion
The overall philosophy of not powering experimental setups from the HMI 

device or the computer power supply is particularly relevant in using the 

un-protected digital I/O lines of the LabJack interface. As discussed in 

the Chapter 1 exercise, the CD4050 buffers provide a virtual zero-current 

or “voltage-only” sensing circuit, in which current flow into or out of the 

digital line is virtually zero because of the very high resistance of the CMOS 

gate of the buffering IC chip.

This exercise demonstrates the fundamental basis of digital numerical 

representation in being able to visually represent any base ten value 

between 0 and 255 in binary format. The byte LEDs from the right represent 

20 or 1, 21 or 2, 22 or 4, 23 or 8, and so on up to 27 or 128. The decimal value 

of 3 is thus represented by manually illuminating the LEDs in the 1 and 

2 or rightmost pair of diodes as 00000011 representing 20 and 21. Zero is 

represented by no LEDs being lit, and 255 is represented when all the LEDs 

are illuminated.

In keeping with proper experimental development procedures for the 

assembly of a larger more complex field experiment for data collection, 

confirm that all 8 bits are being controlled by the buttons before proceeding 

to the next exercise that makes use of the 8-bit and larger LED banks.
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The 8-bit byte can be used to represent the numerical values up to 255, 

and each additional LED added to the array will approximately double 

the numerical range able to be displayed by the bank of lights, when the 

appropriate software adjustments are made. A 10-bit system can represent 

1024 values, while a 12-bit system can show 4096 numerical values.

The importance of understanding the binary and decimal numerical 

domains becomes evident in dealing with analog-to-digital conversions. A 

large number of electro-mechanical sensors are analog signal generators 

that are incompatible with digital numerical processing systems, and their 

analog output needs to be digitized before the beneficiation available from 

digital signal processing (DSP) can be realized.

�DAQFactory Digital Output Exercise with a 
Microcontroller LED Demonstration Array
�Experimental
The DAQFactory SCADA software panel depicted in Figure 5-3 can, with 

some modification, be coupled to an Arduino microcontroller to provide 

an inexpensive display. An 8-bit, single-byte, binary, LED illumination 

display of numerical values can be implemented with the circuit of 

Figure 5-4 and the Arduino code of Listing 5-3.

Figure 5-4.  The Connections for an 8-Bit Byte, LED Illumination 
Bitwise Numerical Display on a Microcontroller
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In Figure 5-4 the nominal Arduino digital pins (ADPs 3–10) would 

be jumper wire connected to a prototyping board with a 220 Ω current 

limiting resistor for a typical 10 mm LED, to represent the individual bits of 

the byte display.

�Observations
A typical clicking of the D0, D2, D4, and D6 buttons that represents 1 + 4 + 

16 + 64 or 85 is depicted in Figure 5-5.

�Discussion
An implementation of the digital visualization exercise in which a 

microcontroller is used to illuminate the appropriate diodes only needs  

to create a code to activate the correct diode through the serial port.  

Figure 5-5.  The DAQFactory 8-Bit Byte Keypad for a Microcontroller 
LED Illumination Bitwise Display
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On the DAQFactory side, a Quick Sequence code similar to that in Listing 

5-2 can be used and adapted for each individual D0–D7 button action. The 

code sets the weighted inclusion flag variable of DigOut_n for the digital 

summing program (Listing 5-1) and sends the required diode number as a 

numerical value equal to the digital pin number to which the diode and its 

CLR are connected on the Arduino.

The DAQFactory control panels of Figures 5-3 and 5-5 differ in that 

the extra button labeled “Clear Byte” sends a numerical value of “12” 

to the microcontroller that in turn triggers code to return all the digital 

pins to a low state, thus turning all the diodes on the Arduino off. The 

button activates a DAQFactory Quick Sequence that resets all the number 

buttons on the control panel in addition to transmitting the “12” to the 

microcontroller as detailed in Listing 5-5.

�Raspberry Pi
An 8-bit binary display representation can be configured in Python with 

the first eight pins of the RPi’s GPIO array. Listing 5-4 provides the code to 

illuminate an LED binary display and effect a conversion of the illuminated 

LEDs into an equivalent decimal numerical value. Figure 5-6 illustrates the 

output from the Python program that has used the tkinter library to create 

the GUI depicted.
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Figure 5-6 displays the output resulting from clicking the Evaluate 

LEDs button with the LEDs representing 1, 4, 16, 64, and 128 illuminated in 

the 8-bit binary LED display.

When assembling the 8-bit LED display on a breadboard, use 330 or 

470 Ω current limiting resistors to restrict the current draw from the RPi 

power supply or use an auxiliary supply and buffer the array outputs.

Control of the panel display is managed by using the “Run Module 

F5” selection from the Run menu in the “new file” creation. The Python 

program opens in the interactive interpreter mode, and by selecting the 

new file option, a new file is created from which the 8-bit LED display 

program can be located, loaded, and run via the “Run Module F5” 

selection in the Run menu.

The GUI of Figure 5-6 will appear, and any LEDs illuminated by stray 

values imposed on the GPIO pins as the RPi starts up are reset to 0 by the 

internal loop in Listing 5-4. The GUI buttons can then be used to light up 

Figure 5-6.  Program Output and 8-Bit Byte LED Display Control 
Panel
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the desired bit LEDs in the array. Clicking the “Evaluate LEDs” button 

will switch to the interactive Python display mode and print “Evaluating” 

and “Decimal sum =” with the decimal value of the sum of the values 

represented by the chosen illuminated binary bits.

To reset the program, use the cancel button (X) in the upper right-hand 

corner of the interactive display and select Yes/OK in the pop-up dialog 

box to return to the program code listing to rerun the demonstration.

�Code Listings

Listing 5-1.  DAQFactory Sequence Code to Sum Active Binary Digit 

Values

DAQFactory Sequence Code for dcml_sum

// dcml_sum sums the binary values of the diodes illuminated

global dcml_sum = 0

//

// Examine each of the 8 bits represented by the buttons on the

// digital input panel

// D0 button action toggles the DigOut channel between value 0 or 1

if (DigOut == 1)

   dcml_sum = dcml_sum + 1 // �if the channel is active 20 = 1 

is added to dcml_sum

   endif

if (DigOut_1 == 1) // �Activation of D1  toggles the channel 

between 0 and 1

   dcml_sum = dcml_sum + 2 // �if the channel is active 21 = 2 

is added to dcml_sum

   endif
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if (DigOut_2 == 1) // �Activation of D2 toggles the channel 

between 0 and 1

   dcml_sum = dcml_sum + 4 // �if the channel is active 22 = 4 

is added to dcml_sum

   endif

if (DigOut_3 == 1)

   dcml_sum = dcml_sum + 8 // �if the channel is active 23 = 8 

is added to dcml_sum

   endif

if (DigOut_4 == 1)

   dcml_sum = dcml_sum + 16 // �if the channel is active 24 = 16 

is added to dcml_sum

   endif

if (DigOut_5 == 1)

   dcml_sum = dcml_sum + 32 // �if the channel is active 25 = 32 

is added to dcml_sum

   endif

if (DigOut_6 == 1)

   dcml_sum = dcml_sum + 64 // �if the channel is active 26 = 64 

is added to dcml_sum

   endif

if (DigOut_7 == 1)

   dcml_sum = dcml_sum + 128 // �if the channel is active  

27 = 128 is added to dcml_sum

   endif

Listing 5-2.  DAQFactory Quick Sequence Code for a 

Microcontroller LED Byte Display

// activation code for D0

global DigOut

device.ardyRb.Write('3' + Chr(10))   // light 1's digit

DigOut = 1                           // add 1 to sum
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Listing 5-3.  Arduino Code for 8-Bit Binary Byte Display

// DAQFactory - Arduino LED Illuminated Digital Bits in Byte

// Register DAQFtry screen bttns D0 to D7 light LEDs in digital 

// array. Total value of illuminated bits calculated and

// register cleared with buttons. DAQFtr uses scripting to

// evaluate digital bits and serial port transmissions to

// illuminate LEDs after selection by case statement.

//

// digital pins in use 3,4,5,6,7,8,9, and 10

int pv_one = 3;

int pv_two = 4;

int pv_four = 5;

int pv_eight = 6;

int pv_steen = 7;

int pv_threetwo = 8;

int pv_sixfour = 9;

int pv_onetwoeight = 10;

int diod_num;

String inString = "";

//

void setup() {

  Serial.begin(9600);

//

}

//

void loop() {

  while (Serial.available() > 0 ){    // read serial input

 int inChar = Serial.read();

    if(isDigit(inChar)){

      // cnvrt incoming byte to char and add to string

      inString += (char)inChar;

    }
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    // if nuline convert accmlated to integer

    if (inChar == '\n') {

 diod_num = (inString.toInt());

      Serial.println(diod_num);

      inString = "";

     }

  }

     switch(diod_num)

    {

  case 3:

  pinMode(pv_one, OUTPUT);             // units value 2 exp 0

  digitalWrite(pv_one, HIGH);

  Serial.println("Ones");

  break;

  //

  case 4:

  pinMode(pv_two, OUTPUT);             // 2 exp 1 = 2

  digitalWrite(pv_two, HIGH);

  break;

  //

  case 5:

  pinMode(pv_four, OUTPUT);            // 2 exp 2 = 4

  digitalWrite(pv_four, HIGH);

  break;

  //

  case 6:

  pinMode(pv_eight, OUTPUT);           // 2 exp 3 = 8

  digitalWrite(pv_eight, HIGH);

  break;

  //
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  case 7:

  pinMode(pv_steen, OUTPUT);           // 2 exp 4 = 16

  digitalWrite(pv_steen, HIGH);

  break;

  //

  case 8:

  pinMode(pv_threetwo, OUTPUT);        // 2 exp 5 = 32

  digitalWrite(pv_threetwo, HIGH);

  break;

  //

  case 9:

  pinMode(pv_sixfour, OUTPUT);         // 2 exp 6 = 64

  digitalWrite(pv_sixfour, HIGH);

  break;

  //

  case 10:

  pinMode(pv_onetwoeight, OUTPUT);     // 2 exp 7 = 128

  digitalWrite(pv_onetwoeight, HIGH);

  break;

  //

  case 12:        // special case to clear array

  pinMode(pv_one, OUTPUT);

  digitalWrite(pv_one, LOW);

  //

  pinMode(pv_two, OUTPUT);

  digitalWrite(pv_two, LOW);

  //

    pinMode(pv_four, OUTPUT);

  digitalWrite(pv_four, LOW);

  //
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  pinMode(pv_eight, OUTPUT);

  digitalWrite(pv_eight, LOW);

  //

  pinMode(pv_steen, OUTPUT);

  digitalWrite(pv_steen, LOW);

  //

  pinMode(pv_threetwo, OUTPUT);

  digitalWrite(pv_threetwo, LOW);

  //

  pinMode(pv_sixfour, OUTPUT);

  digitalWrite(pv_sixfour, LOW);

  //

  pinMode(pv_onetwoeight, OUTPUT);

  digitalWrite(pv_onetwoeight, LOW);

  break;

    }

 }

Listing 5-4.  Raspberry Pi Python Code for an 8-Bit Binary LED 

Display

# Event handlers join a widget to a type of event and a desired

# resulting action. Command is the method used to detect mouse 

# "<Button-1>" events (clicks on the left mouse button) When a

# button is left clicked with the mouse, the self.buttonClick() 

# method is invoked to initiate a LED illumination by setting

# the pin to high.

#

import tkinter          # �lower case t for current python 

installation

import RPi.GPIO as GPIO

from time import *

#
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# the array of LEDs representing the 8 bit binary number must

# be cleared or re-set to low

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

for i in range(2, 18):

    GPIO.setup(i, GPIO.OUT)

    GPIO.output(i, GPIO.LOW)

#

# define the myWindow class in which to create the GUI window

class myWindow:

    def __init__(self):

        self.mw = tkinter.Tk()

        self.mw.title("The Scientyst's Ayde")

        self.mw.option_add("*font",("Arial", 15, "normal"))

        self.mw.geometry("+250+200")

# GUI function title

        �self.lab_1 = tkinter.Label(self.mw, text = "Eight Bit 

Binary - Decimal Interconversions")

        �self.lab_1.pack()  # place button widget/image mid window

#

# add eight buttons to the ui

        �self.btn_0 = tkinter.Button(self.mw, text = "DO", 

command = self.btn_0_OnClick)

        self.btn_0.pack()

        �self.btn_1 = tkinter.Button(self.mw, text = "D1", 

command = self.btn_1_OnClick)

        self.btn_1.pack()

        �self.btn_2 = tkinter.Button(self.mw, text = "D2", 

command = self.btn_2_OnClick)

        self.btn_2.pack()
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        �self.btn_3 = tkinter.Button(self.mw, text = "D3", 

command = self.btn_3_OnClick)

        self.btn_3.pack()

        �self.btn_4 = tkinter.Button(self.mw, text = "D4", 

command = self.btn_4_OnClick)

        self.btn_4.pack()

        �self.btn_5 = tkinter.Button(self.mw, text = "D5", 

command = self.btn_5_OnClick)

        self.btn_5.pack()

        �self.btn_6 = tkinter.Button(self.mw, text = "D6", 

command = self.btn_6_OnClick)

        self.btn_6.pack()

        �self.btn_7 = tkinter.Button(self.mw, text = "D7", 

command = self.btn_7_OnClick)

        self.btn_7.pack()

# Create the evaluation button

        �self.btn_8 = tkinter.Button(self.mw, text = "Evaluate 

LEDs", command = self.btn_8_OnClick)

        self.btn_8.pack()

#

        self.mw.mainloop()

#

    �def btn_0_OnClick(self): # specify action desired on  

button click

        GPIO.output(2, GPIO.HIGH)

#

    def btn_1_OnClick(self):

        GPIO.output(3, GPIO.HIGH)

#
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    def btn_2_OnClick(self):

        GPIO.output(4, GPIO.HIGH)

#

    def btn_3_OnClick(self):

        GPIO.output(5, GPIO.HIGH)

#

    def btn_4_OnClick(self):

        GPIO.output(6, GPIO.HIGH)

#

    def btn_5_OnClick(self):

        GPIO.output(7, GPIO.HIGH)

#

    def btn_6_OnClick(self):

        GPIO.output(8, GPIO.HIGH)

#

    def btn_7_OnClick(self):

        GPIO.output(9, GPIO.HIGH)

#

    def btn_8_OnClick(self):

        print("Evaluating") # advise of action occurring 

        dcml_sum = 0 # define and initialize summing variable

        �if (GPIO.input(2)) == True:  

# test array bit status and add appropriate value to sum

            dcml_sum = dcml_sum + 1

        if (GPIO.input(3)) == True:

            dcml_sum = dcml_sum + 2

        if (GPIO.input(4)) == True:

            dcml_sum = dcml_sum + 4

        if (GPIO.input(5)) == True:

            dcml_sum = dcml_sum + 8
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        if (GPIO.input(6)) == True:

            dcml_sum = dcml_sum + 16

        if (GPIO.input(7)) == True:

            dcml_sum = dcml_sum + 32

        if (GPIO.input(8)) == True:

            dcml_sum = dcml_sum + 64

        if (GPIO.input(9)) == True:

            dcml_sum = dcml_sum + 128

#

        print("Decimal sum = ", dcml_sum) # display result.

#

#

if __name__ == "__main__":

    app = myWindow()

Listing 5-5.  DAQFactory Regular Sequence to Clear Byte Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

//

DigOut = 0

DigOut_1 = 0

DigOut_2 = 0

DigOut_3 = 0

DigOut_4 = 0

DigOut_5 = 0

DigOut_6 = 0

DigOut_7 = 0
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�Summary
–– The concepts of digital numerical values consisting of 

bits and bytes are visually illustrated.

–– Digital visual demonstrations are created with 

commercial and low-cost SCADA systems.

–– Digital numerical concepts have been presented in 

preparation for Chapter 6 discussing analog and digital 

conversions.
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CHAPTER 6

Analog or Digital 
Conversions for Input 
and Output
In the previous chapter, the ability to activate the individual elements of an 

8-bit or binary byte LED display and see the decimal numerical equivalent 

of the number represented by the illuminated diodes was developed. The 

display in DAQFactory software was visualized with LabJack hardware. 

In this exercise, a series of DAQFactory sequences, activated by screen 

buttons and a data entry edit box, display the binary equivalent of the 

decimal value entered into the edit box.

In this exercise, a decimal value under 255 is entered into the edit 

box on the main control screen in a grouped panel of components that 

control the conversion and display options as labeled on the individual 

buttons. As can be seen in Figure 6-2, the panel contains up and down 

functions to adjust binary values and an LED display clear function. The 

actual numerical conversion is done with a scripted sequence invoking a 

standard numerical analysis base conversion algorithm. The sequence is 

in Listing 6-1 of the chapter code listings.

In this and the previous exercise, numerical values have been 

converted between two different base numbering systems consisting of 

2n and 10n. The numbering systems are of different bases and produce 

different sequences of digits for the representations of the same number of 
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units or items that are at hand. Changing the type and number of required 

digits that represent the same number of whole units in either of the two 

bases is an exercise in mathematics that always yields whole numbers.

Conversions between analog and digital electrical signal values often 

do not yield exact equivalent results. In theory, an analog signal varies 

smoothly and continuously as it changes from one value to another. 

An electronic, digital representation of analog values must divide the 

range of analog signal variation into a finite number of intervals equal to 

the number of binary base bits available in the digital display. An 8-bit 

binary, digital display can represent the decimal numbers between 0 and 

255. If we wish to represent an electrical signal that may vary from 0 to 5 

volts with the previously developed 8-bit digital light display, then each 

of the 256 binary digits available must represent 5.0/256 = 0.0195 V or 

approximately 19.5 mV.

If the number of LEDs in the binary array is increased from eight to ten, 

then the 10-bit LED display can represent 210 or 1024 decimal numerical 

values. A 10-bit array is able to divide a 5.0 V signal into 5.0/1024 = 

0.004882812 volts or approximately 4.88 mV.

A similar expansion of the array to 12 bits allows for the representation 

of a 5.0 V signal of approximately 1.22 mV per bit.

Often the number of bits available is called the converter or conversion 

resolution.

Experiments that require conversions between analog and digital 

formats must be designed and assembled carefully to compensate for the 

errors introduced by these inexact transformations.

An excellent reference work that covers the history of the development 

of analog-digital conversions is available as a hardcopy book or as a 

downloadable series of pdf chapters from Analog Devices (Walt Kester, 

Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3). Two 

excellent tutorials are available from Analog Devices as MT-015 and MT-016 

that explain the fundamentals of digital-to-analog conversion (DAC) and more 

advanced topics with a host of references for further study. (See “Discussion.”)
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In a digital representation, the rightmost bit is referred to as the least 

significant bit (LSB), while the leftmost bit is the most significant bit (MSB). 

(The exponential power to which the base is raised increases as the digit’s 

position to the left increases.)

Numerous analog-to-digital converter (ADC) integrated circuit 

devices are available for the transformation of electronic signals. There 

are several conversion mechanisms in use today such as level or flash 

converters, successive approximation registers, sigma-delta converters, 

and other processes whose advantages and limitations are discussed in 

detail in the electronics literature.1 (See also Analog Devices referred to 

previously.) Resistance voltage divider circuits that are used to reduce 

an electrical signal voltage level can also be used to divide a voltage level 

into n divisions in accordance with the circuits A–D in Figure 6-1. The 

increasingly complex circuits from A to D are also known as Kelvin dividers 

and date from the mid-1800s.

1 �1) Building Scientific Apparatus 4th Edn., Moore, Davis and Coplan, Cambridge  
  University Press, ISBN 978-0-521-87858-6 hardback 
2) The Art of Electronics 2nd Edn., Horowitz and Hill, Cambridge University Press,  
  ISBN -13 978 -0-521-37095-0 hardback 
3) Practical Electronics for Inventors 3rd Edn., Scherz and Monk, McGraw Hill,  
  ISBN 978-0-07-177133-7

Figure 6-1.  ADC and DAC Resistance Networks
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In circuit A of Figure 6-1, if the resistors are of equal value, the divider 

circuit halves the input voltage, as Vout = Vin * (R/R + R).

In circuit B of Figure 6-1, the output voltage is one-third of the input as 

Vout = Vin * (R/R + R + R). A series of four and five equal-valued resistors as 

seen in circuits C and D reduces the voltage division to a fourth and fifth of 

the input voltage, respectively.

In general, it can be seen that n series resistors between the input voltage 

and ground will provide a series of junctions. With input voltage n, the 

voltage drop for each resistor is 1/n that of the input voltage. A string of series 

resistors and voltage reduction junctions is the electro-mechanical basis 

behind the “flash” type of analog-to-digital converter, integrated circuits.

Conversion of a digital signal into an analog, in essence, reverses the 

ADC process. As with a binary, 8-bit ADC having the ability to divide the 

input into 256 discrete voltage levels, the reverse process of a binary, 8-bit, 

digital-to-analog conversion (DAC) also provides 28 or 256 discrete output 

voltage levels. The DAC does not produce a true analog signal but creates a 

stepped voltage approximation of the analog waveform.

An efficient conversion architecture known as an R-2R “ladder” 

network has been developed that uses only the two resistance values of 

the eponymous R and 2R. As can be seen from circuit E in Figure 6-1, bit 0 

is at the lowest voltage with respect to ground, while bit 7 is at the highest 

voltage. The significance or “weight” of the bit values increases from least 

to most significant as the position in the resistance stack increases.

Signal conversions between the analog and digital formats can be 

realized with relatively inexpensive IC devices such as the single-channel, 

8-bit ADC0804 or the eight-channel, 10-bit MCP3008. The ADC0804 can be 

used with a 5-volt battery pack, to drive an eight-LED display directly and 

provide a simple, inexpensive ADC demonstration. (An ADC0804  

chip costs $6 CDN.)

In addition to the 8-bit LED array, the ease with which an analog signal 

can be monitored with the LabJack HMI series of devices and DAQFactory 

software is demonstrated with +/–10-volt input limitations for 10-bit 

Chapter 6  Analog or Digital Conversions for Input and Output



157

analog-to-digital converters in the U12 series and 3.6-volt input voltage 

limits with 12-bit converters in the U3 devices. (See Chapter 1, Figure 1-1, 

item 1. Most surface mount technology (SMT) integrated circuitry operates 

at 3.5 volts.)

Measurements of larger voltage ranges than those specified by the 

manufacturer of the ADC device at hand can be realized by using a 

simple resistance voltage divider to reduce the experimental range to one 

acceptable to the converter. (See Figure 6-1.) The investigator then has the 

option of using a correction factor in the mathematical formula entered 

into the expression box of the variable value configuration window seen in 

Figure 2-6 of Chapter 2 and Figures 6-10 and 6-11, to display the present 

value of the experimental voltage. A second variable value display could 

be added to the GUI being configured to monitor both the experimental 

and reduced voltages being applied to the ADC input if desired by the 

researcher as in Figures 6-11 and 6-12.

�Digital-to-Analog Conversions
As has been pointed out in the “Exercise Road Map” and previously, the 

digital-to-analog conversion (DAC) does not and cannot reproduce a 

truly analog electronic signal. The generated “analog” signal is broken 

into a fixed number of discrete digital values on DAC, and the analog 

signal generated from the discrete number of digital values is a stepped 

waveform similar in shape to the original smooth and continuous analog 

signal.

There are two basic methods for converting digital signals into analog 

outputs. One method uses binary, weighted, resistance values, in which 

the individual digital, bit signals are applied to resistors whose resistance 

ratio is proportional to the binary power series. Constructing this type 

of DAC frequently requires nonstandard resistance values. The other 

method for DAC is much easier to implement and is depicted in circuit 
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E of Figure 6-1. The R-2R ladder generates an output signal consisting of 

the sum of the digital inputs in the body of the ladder. There are several 

advantages to the second method in the need for only two resistance 

values. The ladder is scalable to the required number of digits, and the 

output impedance is always constant and equal to the lesser resistance 

value used in the ladder circuit.

�Experimental: LabJack-DAQFactory 
Decimal-to-Binary Conversions
�Hardware
The button-controlled, buffered, 8-bit byte LED display, assembled and 

tested in the previous chapter’s exercise, will serve as the individual bit 

display or output register for the converted decimal value.

�Software

	 1)	 A panel grouping consisting of the components 

depicted is assembled on the main screen.

Figure 6-2.  DAQFactory Panel for a Decimal-to-Binary Number 
Converter
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The panel has been configured from two text 

components appearing as the top two lines of 

the panel. An edit box component receives the 

numerical value to be processed and enters the 

value into the required variable. The fourth line 

button component activates the conversion 

sequence, and the bottom row of buttons performs 

the actions appearing on their captions.

	 2)	 Required scripting

The grouped “Decimal to Binary Converter” panel 

of Figure 6-2 requires four scripts to activate the 

converter bit display, increase the binary display by 

one, decrease the value by one, convert the entered 

decimal number and then display the binary value, 

and clear the display.

The individual sequence codes are provided in Listings 6-1 through 6-4 

at the end of the chapter.

�Analog-to-Digital Conversions
To demonstrate the ease with which an analog-to-digital conversion can 

be implemented with DAQFactory software and the LabJack HMI, an ADC 

panel as depicted in Figure 6-3 is configured. The panel consists of three 

components, a text entry as a heading, a variable value readout displaying 

the channel[0] or present value of the channel of interest, and the gray 

panel background.
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The circuitry for the analog-to-digital conversion is as depicted in 

Figure 6-4 in which the ends of the potentiometer are wired between +5 V 

and ground terminals on the U12 and the wiper is connected to the AI 0, 

analog input zero, screw terminal.

As noted previously, an ADC can be used to follow a voltage 

fluctuation beyond the safe operating limits for the ADC electronics, 

by using a resistance-based voltage divider to lower the signal strength 

applied to the converter. A reduced voltage Vout can be calculated from the 

following divider equation:

Vout = Vin * (R1/(R1 + R2))

Figure 6-4.  An Adjustable Analog Signal Source

Figure 6-3.  An ADC Panel
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where R1 and R2 are the individual resistance values of a series pair 

of resistors connected between Vin and ground and Vout is the voltage 

observed between the junction of R1 with R2 and ground. (See circuit A in 

Figure 6-1.)

A less expensive but more complex to implement ADC LED array 

illumination binary display can be assembled with the well-established 

ADC0804 chip from Texas Instruments. (A 57-page pdf documentation is 

available from www.ti.com/lit/ds/symlink/adc0804-n.pdf.)

The pdf data sheet notes the following:

–– No interfacing logic required, operates as a complete 

stand-alone device with a 135 ns access time, differential 

voltage inputs, MOS and TTL voltage level compatible, 

able to use a 2.5-volt reference, an on-chip clock,  

0–5-volt input range with a 5-volt supply, no zero adjust 

required, standard 20-pin DIP package, and a 100 us 

conversion time

Figure 6-5.  An 8-Bit LED ADC Display
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Figure 6-5 depicts the circuitry that has been used by the author to 

develop an ADC hardware demonstration using the Texas Instruments 

ADC0804 8-bit successive approximation analog-to-digital converter. For 

implementation on a prototyping board, the author used 3 mm red LEDs 

and 1 KΩ current limiting resistors as a display, a four–AA cell nickel metal 

hydride battery pack for power, and a connection to the wiper lead of a 5 kΩ 

potentiometer connected between the nominal 5-volt supply and ground 

similar to the circuit depicted in Figure 6-4. The wiper voltage provided the 

varying analog voltage signal for conversion into a digital format to drive the 

binary LEDs as the shaft on the potentiometer was rotated.

The digital grounds depicted in Figure 6-5 were all brought to a 

common connection that was then grounded to the negative side 

of the power supply. An on/off switch was included in the author’s 

implementation of the circuit on the prototyping board but was not 

needed to initiate the circuit action as when power was applied to the 

system, the conversions began immediately. The voltage to be converted 

was applied to pin 6 of the IC.

�Observations

�DAQFactory–LabJack HMI Analog-to-Digital 
Numerical Base Conversions 
Entry of a decimal value into the edit box and a click on the Enter into 

script button should light the diodes that correspond to the digital 

value of the base ten number entered. Entry of the numerical value of 

say 25 should illuminate the units of the 20 (1’s), 23 (8’s, i.e., 2 × 2 × 2), 

and 24 (16’s, i.e., 2 × 2 × 2 × 2) diodes to display the binary equivalent of 

25 (i.e., 1 + 8 + 16).

Clicking either the increase or decrease button should increase or 

decrease the binary value displayed by one and the clear button should 

clear the display.
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�Analog-to-Digital Electronic Signal Conversions
Connecting a nominal 5 V signal across the ends of a 10 kΩ potentiometer 

should, in theory, if there are no mechanical limitations or discontinuities, 

give rise to a smoothly varying, analog wiper voltage, ranging between 0 

and 5 volts.

A 10-bit ADC as installed in the U12 is theoretically able to divide a 5 V  

analog signal into 1024 units of 0.0048828 volts or 4.883 mV. A variable 

value display was configured to read the voltage on the wiper of a 10 KΩ 

potentiometer wired as depicted in Figure 6-4. As the potentiometer shaft 

was rotated, the values from 0.010 V to 4.219 V were displayed on the 

DAQFactory GUI screen when the variable value display was set to display 

data on the AO 0, analog output zero, channel to three decimal places. The 

lower voltage value display fluctuated from 0.005 to 0.020, while the upper 

value display fluctuated from 4.209 to 4.365.

�ADC0804: 8-Bit Binary LED Display
Figure 6-6 is a photo of a battery-powered working example of the circuit 

in Figure 6-5, assembled on a breadboard for visual demonstration of 

ADC. Careful examination of the diodes in the upper right-hand portion 

of the field of view will indicate that the 4-, 8-, and 64-bit indicators are lit, 

indicating a total value of 76. The voltage source is the wiper lead of the  

5 KΩ potentiometer visible at the bottom center of the field of view.

When power was applied to the circuit of Figure 6-5, the individual 

LEDs representing the binary equivalent of the digitized wiper voltage 

potential lit up immediately. Rotating the shaft of the potentiometer from 

one extreme position to the other displayed a diode illumination sequence 

in which the binary numbers either increased from 0 to 255 or the reverse. 

By slowly rotating the shaft, an individual count could be followed in the 

binary display. As noted previously, when fully charged, the battery pack 

produces a nominal 5 V that is applied to the two ends of the potentiometer.
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A correlation between the applied voltage and the binary display was 

established by measuring and then comparing the actual voltage applied 

to the input pin #6 with the binary value displayed by the illuminated 

diodes of the 8-bit display array.

Examination of both the tabulated data of Figure 6-7 and the ADC0804 

data sheet reveals that there is not a 1:1 correspondence between the 

applied voltage and the digital value produced since an applied voltage 

of 5.25 generates an output of only 253. The ADC discrepancy can be 

corrected as explained in the IC data sheet by using the reference voltage 

input pin, pin #9. (See “Discussion.”)

Figure 6-6.  Photo of the 8-Bit LED ADC Display
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�Discussion
An excellent aid for understanding the concepts of ADC and DAC is found 

in Figure 1.1 of Chapter 1 of the Analog Devices publication Analog-Digital 

Conversions, at www.analog.com/media/en/training-seminars/design-

handbooks/Data-Conversion-Handbook/Chapter1.pdf. The figure is 

captioned “Early 18th Century Binary Weighted Water Metering System” 

and contains a series of side and top views of a water metering system 

implemented in Istanbul, Turkey, in the nineteenth century. The diagrams 

document the implementation of a DAC in terms of a gravity-powered, 

hydraulic water distribution and “weighted average” metering system.

Interconversions between analog electronic signal values and digital 

numerical representations are seldom exact equivalents. Traditional ADCs 

such as the ADC0804 use a parallel output of eight signal lines, each of 

which is a representative of a power of 2. The parallel output lends itself 

Figure 6-7.  ADC0804 Linearity
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to the assembly of the battery-powered visual LED display of Figure 6-6. 

Newer technology, however, as used in the LabJack devices, does not use 

a “parallel” output configuration for ADC but relies on the much simpler 

to implement serial data outputs. Serial data output protocols can be fast 

enough to monitor many types of sensors, but high-speed instruments 

often require the use of parallel converters to keep up with data generation 

rates.

Care must always be exercised in applying voltage dividers in that 

the ratio of the resistance values chosen must reduce the signal voltage 

to the desired level but the individual resistance values should be as low 

as possible to allow sufficient current to pass to drive the “downstream” 

device or ADC.

An ADC that produces a digital number consisting of an output of 

parallel signals to drive the logic of the “downstream” devices such as 

microprocessors, seven-segment LED numeric displays, or, in the case of 

this primary exercise, an 8-bit binary LED display is usually limited in the 

current output that it can safely deliver. In some high–current demand 

displays, it may be necessary to buffer the ADC outputs.

There is a substantial difference in the time and effort required to 

implement the ADC and DAC demonstrations between the LabJack HMI 

with DAQFactory software and the assembly of the ADC0804 8-bit LED 

display or the interfacing of the display to the RPi.

The ADC0804 is a single-channel device that requires the input 

of one varying voltage source scaled to a 0–5-volt range. The IC has 

a reference voltage pin #9 that can be used to adjust the step size of 

the 255 digit levels available. The default setting is 19.5 mV per digital 

increment so as the entire input span of 5 V will generate a 0–255 

binary numerical output. (Further information on using the step size 

adjustment is contained in the Texas Instruments data sheet for the 

ADC0804.) A clock is needed to run the conversion logic, and for 

simplicity, the internal clock is used that requires a series-connected 

resistor and capacitor (RC) network. The desired RC combination is 
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connected between Clock IN and Clock R pins (pins #4 and #19). The 

RC time constant ultimately determines how often the IC samples the 

voltage on pin #6 to generate a conversion at the output pins.

In addition to the clock and input wiring, the ADC0804 demonstration 

exercise requires a 5 V power supply and eight LEDS and their current 

limiting resistors to operate.

As noted in previous exercises, the researcher should, where possible, 

test each component as the system is assembled. Each LED and current 

limiting resistor can be tested by applying 5 V to the end of the resistor that 

will be connected to the ADC0804.

In the creation of the code for the buttons, the ability to make use of 

previously written scripts as functions is demonstrated. As noted in the 

previous exercise, larger-valued numerical conversions would require the 

addition of the appropriate number of digital output lines, channels, and 

diodes and modification of the scripting code.

An 8-bit byte provides a resolution of one part in 28 or one part in 

256. The Decimal to Binary Converter panel of Figure 6-2 contains the 

increase and decrease buttons that represent single-digit resolution. If an 

experimental setup may produce a varying DC signal that can range from 

0 to 10 volts, then the 8-bit conversion is able to resolve 10/256 = 0.0390625 

or 39.1 mV. An increase of two more bits in the LED display bank and the 

corresponding changes of software would allow a 10 V signal range to be 

spread over 1024 binary digits providing an approximate division of one 

part in 1024 or millivolt sensitivity or resolution. Increasing the digital 

capability to 12 bits will provide a sensitivity or resolution of one part in 

4096 or 0.0244% (244 ppm, parts per million).

A GUI digital display does not convey any additional information 

about the value of the voltage being monitored other than its present 

value. Unless there is a distinct trend of the digital value steadily increasing 

or decreasing, there is no additional information that can be derived from 

a numerical digital display of a monitored variable value. However, in 

many cases where a production process or experimental measurement is 
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being monitored and the constancy of process variables or measurement 

results is the main goal of the SCADA system, a different form of data 

presentation such as a timed recording may be of greater value.

�Analog-to-Digital Conversions 
with Microcontrollers
As has been presented in the previous five exercises, much more compact, 

less expensive, SMT devices able to interface between the DAQFactory 

SCADA software and experimental sensors or process management 

hardware have become available in the form of microcontrollers. (See 

Chapter 9.)

Arduino microcontrollers are readily available, easy-to-use compact 

devices that have a built-in 10-bit, successive approximation, SMT 

analog-to-digital converter with six input channels. The ADC chip is 

capable of converting an input voltage to a digital number in 25 cycles of 

its 16 MHz clock (approx. 400 microseconds per conversion).

A microcontroller such as the Arduino is a serially oriented device, 

and in order to pass information back and forth between the DAQFactory 

control screen and the microcontroller LED array, both the control screen 

and controller must read from and write to the serial port as in previous 

exercises.

Serial communications are based upon the ASCII bit patterns of 1 and 

0 that allow the transmission of both numerical and alphabetic control 

characters such as line feeds and carriage returns. Although the ADC 

hardware can generate single- or multiple-digit integer bit counts, there 

must be a certain amount of character recognition and interpretation 

logic software on each side of the serial port in order to create a working 

communications system.
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�Experimental
Implementation of the decimal-to-binary display with a serial connection 

between the DAQFactory control panel and the Arduino-controlled binary 

array can begin with the creation of the DAQFactory panel depicted in 

Figure 6-8.

A text component, an edit box, and four buttons have been used in 

Figure 6-8.

A Figure 6-9 illustrates the edit box configuration window that provides 

space for creating the box caption and selecting various options and 

actions.

Figure 6-8.  A DAQFactory Control Panel for Serial Control of an 
Arduino Binary LED Display
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The supporting DAQFactory scripting and Arduino sketch codes for 

implementing the serial panel connection to the microcontroller are 

provided in Listings 6-5 through 6-9 at the end of the chapter.

In order to use the ADC on a microcontroller board as a serially 

connected sensor reading device, a pair of variable value display 

components grouped as a panel on a DAQFactory screen can be 

configured as in Figure 6-10. Using the channel features of the SCADA 

software, the integer counts from the ADC and a calculated voltage value 

corresponding to the counted value can simultaneously be displayed. 

(Only a cursory introduction to the more involved setup required to 

provide a data flow between the two systems is being presented here. 

Greater detail is provided in Chapter 11.)

Two variable value displays are placed on a DAQFactory page as seen 

in Figure 6-10.

Figure 6-9.  The Edit Box Configuration Window
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Figure 6-10.  A Variable Value Component Display for Integer ADC 
Counts and a Calculated ADC Voltage

Figure 6-11.  The Variable Value Configuration Page for the Serially 
Transmitted Integer ADC Count
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Figures 6-11 and 6-12 display the configuration windows for the integer 

ADC count display that displays the raw counts and the ADC voltage value 

display that uses an expression to calculate the immediate voltage value 

from the ADC.

Figure 6-13 documents the sequence of tables, windows, and 

entries followed to establish serial microcontroller–SCADA software 

communications.

Figure 6-12.  The Variable Value Configuration Page for a Calculated 
ADC Voltage
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Figure 6-13 presents a captioned outline summary of the major 

procedural actions required to read the serial “data stream” from the 

microcontroller ADC to the DAQFactory display components. (See 

Chapter 11 for details.) Item 1 marks the page listing for the DAQFactory 

program in use on which the panel of Figure 6-10 is assembled from the 

desired components. Item 2 indicates the channel listing in which the 

ArduinoStream channel was created by the author to receive the ADC 

data streamed out from the microcontroller to the serial port (see also 

Figure 2-3). Items 3 and 4 are the Serial Port Configuration window and 

the serial device naming and configuration window that are examined in 

detail in Chapter 11 (see Figures 11-5, 11-6, and 11-7).

To install and use the code in Listing 6-10, click Quick ➤ Device 

Configuration and select the appropriate device that in the author’s 

demonstration case is Comm4. In the Ethernet/Serial Device window, 

find the required device and check the adjacent box (Comm4 in figures) 

and then click the protocol configure button to bring up the I/O Types and 

Figure 6-13.  A Configuration Sequence for Implementation of 
DAQFactory Serial Communication
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Functions window. Select the “On Receive” function and then copy and 

paste the code of Listing 6-10 into the space. (See Figure 11-7 in Chapter 11.)

To provide a variable signal simulation for this exercise demonstration, 

the ends of a potentiometer can be connected between the +5 V supply 

and ground of the microcontroller and the wiper lead connected to the A0 

input of the Arduino ADC. (See the similar circuit diagram of Figure 6-4 for 

use with the LabJack HMI.)

In keeping with the philosophy of building a complex system from 

multiple tested and functioning components, we can begin by loading 

and launching the microcontroller sketch code from Listing 6-11. Once 

the sketch is running, the Arduino serial monitor can be opened from 

the Tools menu, and the stream of ADC counts should be visible on the 

left of the serial monitor field of view. With the data stream generation 

confirmed, the serial monitor is closed, and the microcontroller IDE is 

minimized.

The DAQFactory program containing the variable value panel is 

launched, and if all has been configured properly, the screen components 

of Figure 6-10 should be active responding to both system noise and any 

repositioning of the potentiometer wiper control shaft.

�Observations
A stream of numbers on the left-hand side of the field of view of the serial 

monitor window of the microcontroller IDE with values between 0 and 

1024 should be seen after launching the microcontroller sketch for ADC 

reading and serial printing to the port in use.

With the microcontroller running in the background, a complete 

rotation of the potentiometer shaft on the microcontroller prototyping 

board changes the integer display from 0 to 1024 and 0 to 5.000 volts on the 

voltage as has been defined by the setting in the configuration windows of 

Figures 6-11 and 6-12.
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�Discussion

�Diagnostics for Nonresponsive Displays
In the event that the variable value panel is not responding to the incoming 

data stream, expand the channel table and confirm that data is being 

captured by the channel as depicted in Figure 6-14.

If the channel is not receiving the ADC data, then the serial port 

monitor for the DAQFactory program can be accessed to confirm that the 

data is arriving at the display program’s serial port. The serial port monitor 

is accessed through the Quick ➤ Device Configuration menu and device 

selection listing panel to get to the Ethernet/Serial Device window as seen 

in item 4 of Figure 6-13. Clicking the Monitor button immediately below 

the Configure button will bring up the DAQFactory serial monitor as 

depicted in Figure 6-15.

Figure 6-14.  An Active Channel Timestamped Data Listing
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In the event that the data is arriving at the DAQFactory serial port but 

is not being transferred to the proper channel, the port serial protocol 

can be examined by ensuring that the proper protocol has been selected 

in the Protocol list and that the correct parsing code (Listing 6-10) has 

been entered into the “On Receive” I/O Types and Functions entry of the 

Protocol Configuration window.2

�System Development and Programming
Although the microcontroller approach to establishing a SCADA-

experiment serial connection is significantly less expensive than using 

the commercially available DAQ systems, the experimental development 

time and effort required is significant, and the system lacks the robustness 

found in the commercial products.

2 https://www.azeotech.com/dl/serialguide.pdf

Figure 6-15.  The DAQFactory Serial Monitor Display of Data 
Passing Through the Port in Use
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�Analog and Digital Conversions for Input 
and Output with Raspberry Pi
With the available power limitations previously noted, LED visualizations 

of electronic digital numbering can be created with the RPi and its general-

purpose input/output pin array. Numeric conversions between the binary 

and decimal systems together with ADC can be demonstrated with the 

two Python libraries available from the Raspberry Pi Foundation. The 

RPi.GPIO library permits low-level access to the 40-pin array, while the 

gpiozero library code provides access to numerous hardware devices. 

The documentation for each library is available from the RPi Foundation 

website, and the differences between the two library releases will be 

further developed in the next few exercises.

�Binary-Decimal Conversions
As a supplement to the RPi programming and hardware usage introduced 

in the previous exercises, a 12-bit decimal-to-binary conversion LED visual 

display has been assembled for the initial portions of this exercise. The 

code for the converter is in Listing 6-12 at the end of the chapter, and the 

output from a conversion is depicted in Figure 6-16.
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The bank of 12 LEDs is assembled and tested to provide a visual output 

for several Python and ADC programs. A decimal-to-binary numerical 

converter, a 10-bit ADC, and a 12-bit ADC can all share the same hardware 

to provide a graphic visual display of the various outputs from these similar 

types of programs.

�ADC with Raspberry Pi
As noted in previous exercises, the RPi requires external components to 

digitize analog signals, and the MCP3008 and MCP3201 ICs have been 

selected by the RPI Foundation as suitable devices for 10- and 12-bit 

digital conversions. The ICs communicate with the RPi through the serial 

peripheral interface (SPI) serial protocol. The ADC data is streamed out 

in a continuous series of bits to the RPi that receives and interprets the 

10-digit converted value. The MCP3008 output can be formatted as a 

floating-point, normalized value from 0 to 1.0 that is proportional to the 

difference between the sampled voltage and the voltage applied to the 

reference pin or as an integer value from 1 to 1024. When the ADC chip is 

Figure 6-16.  A RPi 12-Bit Binary Display of a Decimal Value

Chapter 6  Analog or Digital Conversions for Input and Output



179

referenced to the RPi’s 3.3-volt voltage supply, the normalized output must 

be multiplied by the nominal applied or, for accuracy, the VOM-measured 

reference voltage to get the actual voltage sampled. A conversion of the 

integer output of the MCP3008 to the sampled voltage value involves 

dividing the output value by 1024 and multiplying by the reference value 

voltage.

The floating-point normalized value representing the analog 

conversion is not easily amenable to illuminating a 10-bit binary LED 

visual display. A digital integer output is much easier to interface to a 

binary LED display.

�Experimental
In order to use code of Listings 6-12 and 6-13 for decimal to 10- or 12-bit 

binary LED visual display and the MCP chips as listed in this exercise, the 

RPi must be configured to use the serial peripheral interface (SPI) protocol 

as depicted in Figures 6-21 and 6-22.

A continuously variable voltage from the wiper of a 10 kΩ 

potentiometer biased between the 3.3 V and ground of the RPi GPIO array 

was used to create a test voltage for an MCP3008 ADC integrated circuit. 

The RPi reads the serial output from the IC, interprets the streamed data, 

and generates the scaled 10-bit integer output that is subsequently used to 

activate the ten-element LED display.

Figure 6-17 is a semi-schematic of the circuitry used to implement 

the display. A wiper voltage is applied to the IC that converts the signal 

from the analog to the digital format and streams the data out in a serial 

peripheral interface (SPI) form to the RPi GPIO pins. The RPi receives the 

streamed data, interprets the converted data, and parses the integer output 

to drive the appropriate diode representation of the converted wiper 

voltage signal.
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Figure 6-17 has been drawn with the Raspberry Pi GPIO pin 

connections that control and receive data from the IC on the left and the 

RPi GPIO diode array connections on the right.

Figure 6-18 illustrates the screen output from the RPi during a 

simulated experimental setup in which the diagnostic print statements 

have been inserted into the code to validate the operation of the system. 

The potentiometer wiper has been rotated to generate a digital output as 

near to the sequence 123 as possible.

�Observations
Figure 6-18 illustrates the continuous output from the Python code that 

parses the digitized, converted, wiper voltage value to drive the individual 

elements of the 10-bit LED binary representation of the output value. A 

closer examination of the output and the actual code being processed 

will confirm that only when the remainder variable “rem” has a positive 

or high value does the program print a diagnostic output. Rotation of the 

Figure 6-17.  RPi-MCP3008 Circuit for 10-Bit Binary LED Display of 
Potentiometer Wiper Voltage
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potentiometer shaft from one extreme to the other will vary the display from 

1 or 0 to 1023. As can be seen in the variation in the data of Figure 6-18, the 

system has a certain amount of noise included in the wiper output value.

Figure 6-19 depicts the RPi GPIO array interfaced to a 12-bit LED 

display on a prototyping breadboard. The illuminated diodes correspond 

to the binary bit pattern of 2 + 4 + 8 + 16 + 32 or decimal 62.

Figure 6-18.  RPi Screen Output During ADC
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�Discussion
Figure 6-19 depicts a bank of 12 3 mm LEDs that can be used in a 10- or 

12-bit conversion demonstration. An MCP3201 is a 12-bit conversion IC 

that can alternately be set up as a binary visualization display. Small 3 mm 

diodes and 1 kΩ current limiting resistors are being used to minimize the 

current drawn from the computer with the large number of LEDs in the 

visual displays.

The figures and photos of the RPi circuits, programming, and wiring 

are reflective of the complexity required to use the very inexpensive 

system. As can be seen in the photo of Figure 6-19, the investigator needs 

to take care in routing jumper wire connections of the RPi GPIO lines and 

those required to control the conversion functions of the MCP3008 or 

MCP3201. The RPi GPIO line connections required to activate the 10- or 

12-bit binary LED display of the pin array output can be tested during 

assembly with Listing 6-14. As each pin name appears on the interactive 

screen, the corresponding LED connected to the nominal pin should 

Figure 6-19.  A 12-Bit Binary LED Display of Decimal Value 62
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illuminate for 3 seconds. Figure 6-20 depicts the test program output 

display for pin and LED testing.

Listing 6-15 can be used to reset the GPIO array voltage values to zero.

Parallel ADC integrated circuitry as demonstrated with the preceding 

ADC0804 has been replaced, to a certain extent, by numerous serial 

communications protocols. Serial communication over a long distance 

using two or a small number of wires is far more practical than having to 

use 8, 10, 12, or more parallel wires to transmit high-frequency, digital, 

data bits. Shielding to prevent “cross talk,” physical size, and expense 

are just some of the problems to be encountered in high-speed data 

transmission over closely spaced, parallel lines.

A model 3 Raspberry Pi can be configured to use one of several serial 

communications systems. Figures 6-21 and 6-22 display access to the 

Preferences ➤ configuration window that allows the implementation of 

the desired protocol.

Figure 6-20.  The LED Array Testing Output
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Selection of the serial peripheral interface (SPI) protocol allows the RPi 

to communicate with devices that “stream out” data in a continuous flow 

of high and low bit pulses. An ADC is just such a data streaming device. 

SPI protocols work on a master-slave concept in which either three or four 

electrical connections form an electronic bus between the master and a 

single slave or several slave devices. A clock synchronizes the transfer of data. 

The four lines in an SPI configuration are master out slave in (MOSI), master 

in slave out (MISO), the clock line (SCLK), and the chip slave select (CSS).

Figure 6-21.  RPi Preferences Selection Menu

Figure 6-22.  Interfaces Selection Window
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SPI can become difficult to implement if there are a number of slaves, 

and a second popular protocol is the inter-integrated circuit (I2C or I2C) 

protocol. I2C is a two-wire implementation, has slower fixed speeds, uses 

addressable locations, consumes more power than SPI, and has less noise. 

I2C is the only protocol that confirms the transmission of the data.

In Figure 6-22, there is a third communications interface called Serial that 

implements the universal asynchronous receiver and transmission (UART) 

protocol. An asynchronous communication operates between two devices 

only, without an external clock, but uses agreed-upon data transmission 

and receive rates at both ends. Each end of the two-wire bus has an IC that 

translates between parallel and serial data flows. In the UART transmission, 

a defined format specifies the beginning and end of the data with start and 

stop markers. The Serial protocol is used extensively in microprocessor 

communications.

For further details on the three protocols, see Practical Electronics for 

Inventors.3

�Code Listings
Listing 6-1.  DAQFactory–LabJack U12 Decimal-to-Binary Sequence 

Codes

//Decimal to Binary Conversion

//Oct 14-16, Nov 14/2009

//Program Algorithm

//8 LEDs are connected to the  digital output channels D0 (#4) 

// to D7 (#11) on the DB25 output of the LabJack. Each line is 

// buffered/driven with a 4050 buffer.

3 �Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill, 
ISBN 978-0-07-177133-7
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//An EDIT box accepts the Number_To_Convert and the modulo of

// the value with respect to base 2 is determined for each bit

// of a byte. The bit values are then displayed on the LEDs

//A for loop executes 8 times to evaluate each bit of the

//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte

// register.

//

// Declarations

//

global Number_To_Convert

//Preserve original decimal value entered from the control screen

global Orgnl_N_To_Cnvrt = Number_To_Convert

//

Private Converted_Number[0] = 0

Private Converted_Number[1] = 0

Private Converted_Number[2] = 0

Private Converted_Number[3] = 0

Private Converted_Number[4] = 0

Private Converted_Number[5] = 0

Private Converted_Number[6] = 0

Private Converted_Number[7] = 0

//

//

for ( Private.Counter = 0, Counter < 8, Counter++)

      Converted_Number[Counter] = Number_To_Convert %2

      Number_To_Convert = Number_To_Convert/2

      Number_To_Convert = Floor(Number_To_Convert)

   endfor
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//

   if (Converted_Number[0] == 1)

//

      DigOut = 1

   endif

//

   if (Converted_Number[1] == 1)

//

      DigOut_1 = 1

   endif

//

   if (Converted_Number[2] == 1)

//

      DigOut_2 = 1

   endif

//

   if (Converted_Number[3] == 1)

//

      DigOut_3 = 1

   endif

//

   if (Converted_Number[4] == 1)

//

      DigOut_4 = 1

   endif

//

   if (Converted_Number[5] == 1)

//

      DigOut_5 = 1

   endif
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//

   if (Converted_Number[6] == 1)

//

      DigOut_6 = 1

   endif

//

   if (Converted_Number[7] == 1)

//

      DigOut_7 = 1

   Endif

Listing 6-2.  DAQFactory Script Code to Increase the Converted 

Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary. The value of the original

//variable was iteratively reduced to zero by the conversion code

//but was preserved in the global variable Orgnl_N_To_Cnvrt.

//�The preserved number is augmented in value and passed back 

through the original sequence.

//

global Orgnl_N_To_Cnvrt

//

//any residual values on the byte register are cleared

ClearByteDisplay()

//

// the original value is augmented
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Number_to_Convert = Orgnl_N_To_Cnvrt + 1

//

//the augmented value is converted and displayed

ConvertDecToBinary()

Listing 6-3.  DAQFactory Script Code to Decrease the Converted 

Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary and runs the decreased value back

//through the original sequence.

//In the original conversion sequence the Edit Box value, 

//variable, Number_To_Convert is iteratively divided by two till

//it vanishes so the entered number is saved in Orgnl_N_To_Cnvrt

//

global Orgnl_N_To_Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be 

converted

Number_to_Convert = Orgnl_N_To_Cnvrt - 1

//convert and display the bit pattern

ConvertDecToBinary()

Listing 6-4.  DAQFactory Script Code to Clear Display

//ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

//
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DigOut = 0

DigOut_1 = 0

DigOut_2 = 0

DigOut_3 = 0

DigOut_4 = 0

DigOut_5 = 0

DigOut_6 = 0

DigOut_7 = 0

Listing 6-5.  DAQFactory Code for Decimal-to-Binary Conversion 

via Serial Connection

//Decimal to Binary Conversion

//Oct 14-16, Nov 14/2009, serial port display Jun7/19

//Program Algorithm

//8 LEDs are connected to the  digital output channels D0 (#4) 

//to D7 (#11) on the DB25 output of the LabJack. Each line is 

//buffered/driven with a 4050 buffer.

//An EDIT box accepts the Number_To_Convert and the modulo of

// the value with respect to base 2 is determined for each bit

// of a byte. The bit values are then displayed on the LEDs. In

// this version a quick sequence writes the number of the

// digital pin on the Arduino connected to the diode to be

// illuminated on the serial port.

//A for loop executes 8 times to evaluate each bit of the 

//binary digit

// On the control screen the researcher has the option to

// increase/decrease the conversion value and clear the byte

// register.

//

// Declarations

//
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global Number_To_Convert

//Preserve original decimal value entered from the control screen

global Orgnl_N_To_Cnvrt = Number_To_Convert

//

global Converted_Number[0] = 0

global Converted_Number[1] = 0

global Converted_Number[2] = 0

global Converted_Number[3] = 0

global Converted_Number[4] = 0

global Converted_Number[5] = 0

global Converted_Number[6] = 0

global Converted_Number[7] = 0

//

//

//

//

for ( Private.Counter = 0, Counter < 8, Counter++)

      Converted_Number[Counter] = Number_To_Convert %2

      Number_To_Convert = Number_To_Convert/2

      Number_To_Convert = Floor(Number_To_Convert)

   endfor

//

   if (Converted_Number[0] == 1)

//

//      DigOut = 1

device.ardyRb.Write('3' + Chr(10))

   endif

//

   if (Converted_Number[1] == 1)

//
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//      DigOut_1 = 1

device.ardyRb.Write('4' + Chr(10))

   endif

//

   if (Converted_Number[2] == 1)

//

//      DigOut_2 = 1

device.ardyRb.Write('5' + Chr(10))

   endif

//

   if (Converted_Number[3] == 1)

//

//      DigOut_3 = 1

device.ardyRb.Write('6' + Chr(10))

   endif

//

   if (Converted_Number[4] == 1)

//

//      DigOut_4 = 1

device.ardyRb.Write('7' + Chr(10))

   endif

//

   if (Converted_Number[5] == 1)

//

//      DigOut_5 = 1

device.ardyRb.Write('8' + Chr(10))

   endif

//

   if (Converted_Number[6] == 1)

//
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//      DigOut_6 = 1

device.ardyRb.Write('9' + Chr(10))

   endif

//

   if (Converted_Number[7] == 1)

//

//      DigOut_7 = 1

device.ardyRb.Write('a' + Chr(10))

   endif

Listing 6-6.  DAQFactory Sequence Code for Increasing the 

Converted Value

//IncBinDisplay

//Nov.14/09

//This sequence increases the screen entered global variable

//Number_To_Convert that was converted and displayed in sequence

//ConvertDecToBinary. The value of the original variable was 

//iteratively reduced to zero by the conversion code but was

//preserved in the global variable Orgnl_N_To_Cnvrt.

//The preserved number is augmented in value and passed back

//through the original sequence.

//

global Orgnl_N_To_Cnvrt

//

//any residual values on the byte register are cleared

ClearByteDisplay()

//

// the original value is augmented

Number_to_Convert = Orgnl_N_To_Cnvrt + 1

//

//the augmented value is converted and displayed

DecimalToBinaryCnvrsnRvn1()
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Listing 6-7.  DAQFactory Sequence Code for Decreasing the 

Converted Value

//DecBinDisplay

//Nov.14/09

//This sequence decreases the screen entered global variable

//Number_To_Convert that was converted and displayed in

//sequence ConvertDecToBinary and runs the decreased value back 

//through the original sequence.

//In the original conversion sequence the Edit Box value, 

//variable, Number_To_Convert is iteratively divided by two till 

//it vanishes so the entered number is saved in Orgnl_N_To_Cnvrt

//

global Orgnl_N_To_Cnvrt

//clear the register of any residual data

ClearByteDisplay()

//re-initialize the working variable to the desired value to be 

converted

Number_to_Convert = Orgnl_N_To_Cnvrt - 1

//convert and display the bit pattern

DecimalToBinaryCnvrsnRvn1()

Listing 6-8.  DAQFactory Sequence Code for Clearing the Display

/ClearByteDisplay

//Nov.14/09

//This sequence just re-zeros the 8 bit byte display

device.ardyRb.Write('z' + Chr(10))
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Listing 6-9.  Arduino Sketch Code for Diode Array Illumination

// DAQFactory - Arduino LED Illuminated Digital Bits in Byte

// Register DAQFtry screen bttns D0 to D7 light LEDs in digtal

// array. Total value of illuminated bits calculated and

// register cleared with buttons. DAQFtr uses scripting to

// evaluate digital bits and serial port transmisons to

// illuminate LEDs after selectn by case statement.

//

// digital pins in use 3,4,5,6,7,8,9, and 10

int pv_one = 3;

int pv_two = 4;

int pv_four = 5;

int pv_eight = 6;

int pv_steen = 7;

int pv_threetwo = 8;

int pv_sixfour = 9;

int pv_onetwoeight = 10;

int diod_num;

String inString = "";

//

void setup() {

  Serial.begin(9600);

//

}

//

void loop() {

  while (Serial.available() > 0 ){       // read serial input

 int inChar = Serial.read();
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    if (inChar == '3') {

    pinMode(pv_one, OUTPUT);             // units value 2 exp 0

    digitalWrite(pv_one, HIGH);

  }

    if (inChar == '4') {

      pinMode(pv_two, OUTPUT);             // 2 exp 1 = 2

      digitalWrite(pv_two, HIGH);

  }

    if (inChar == '5') {

      pinMode(pv_four, OUTPUT);            // 2 exp 2 = 4

      digitalWrite(pv_four, HIGH);

  }

    if (inChar == '6') {

      pinMode(pv_eight, OUTPUT);           // 2 exp 3 = 8

      digitalWrite(pv_eight, HIGH);

  }

    if (inChar == '7') {

      pinMode(pv_steen, OUTPUT);           // 2 exp 4 = 16

      digitalWrite(pv_steen, HIGH);

  }

    if (inChar == '8') {

      pinMode(pv_threetwo, OUTPUT);        // 2 exp 5 = 32

      digitalWrite(pv_threetwo, HIGH);

  }

    if (inChar == '9') {

      pinMode(pv_sixfour, OUTPUT);         // 2 exp 6 = 64

      digitalWrite(pv_sixfour, HIGH);

  }

    if (inChar == 'a') {

      pinMode(pv_onetwoeight, OUTPUT);     // 2 exp 7 = 128

      digitalWrite(pv_onetwoeight, HIGH);

  }
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    if (inChar == 'z') {

      // special case to clear array

  pinMode(pv_one, OUTPUT);

  digitalWrite(pv_one, LOW);

  //

  pinMode(pv_two, OUTPUT);

  digitalWrite(pv_two, LOW);

  //

    pinMode(pv_four, OUTPUT);

  digitalWrite(pv_four, LOW);

  //

  pinMode(pv_eight, OUTPUT);

  digitalWrite(pv_eight, LOW);

  //

  pinMode(pv_steen, OUTPUT);

  digitalWrite(pv_steen, LOW);

  //

  pinMode(pv_threetwo, OUTPUT);

  digitalWrite(pv_threetwo, LOW);

  //

  pinMode(pv_sixfour, OUTPUT);

  digitalWrite(pv_sixfour, LOW);

  //

  pinMode(pv_onetwoeight, OUTPUT);

  digitalWrite(pv_onetwoeight, LOW);

   }

 }

}
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Listing 6-10.  DAQFactory “On Receive” Code for the 

ArduinoStream Channel

if (strIn == Chr(13))

   private string datain = ReadUntil(13)

   �Channel.AddValue(strDevice, 0, "Input", 0, 

StrToDouble(DataIn))

   Endif

Listing 6-11.  Arduino Sketch Code to Read A0 ADC Channel and 

Write Data to Serial Port on 50 ms Intervals

 /*

  AnalogReadSerial

  �Reads an analog input on pin A0, prints the result to the 

serial monitor.

  �Attach the center pin of a potentiometer to pin A0, and the 

outside pins to +5V and ground.

 */

// the setup routine runs once when you press reset:

void setup() {

  // initialize serial communication at 9600 bits per second:

  Serial.begin(9600);

}

// the loop routine runs over and over again forever:

void loop() {

  // read the input on analog pin 0:

  int sensorValue = analogRead(A0);

  // print out the value you read:

  Serial.println(sensorValue);

  delay(50);        // delay in between reads for stability

}
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�Code Listings for Raspberry Pi

Listing 6-12.  RPi Python Code for Decimal to 12-Bit Binary LED 

Visual Display

# Decimal to 12 Bit Binary LED Visual Display

#

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

# Ensure all LEDS are OFF and set to output mode

for i in range(2, 15):

    GPIO.setup(i, GPIO.OUT)

    GPIO.output(i, GPIO.LOW)

#

# input dec number to process

#

input_str = input("Decimal to convert to a 12 bit binary 

display ",)

dec = int(input_str)

print()

# print out screen display headings

print("Quotient and remainder listing for conversion and 

display illumination.")

print()

# first binary digit of 2**0 or 1s

Q1 = dec // 2

rem1 = dec % 2

if rem1 == 1:

    GPIO.output(2, GPIO.HIGH)

print("For LED 1 Q = ", Q1, "and rem = ", rem1)

#
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# second binary digit of 2**1 or 2s

Q2 = Q1 // 2

rem2 = Q1 % 2

if rem2 == 1:

    GPIO.output(3, GPIO.HIGH)

print("For LED 2 Q = ", Q2, "and rem = ", rem2)

#

# third binary digit of 2**2 or 4s

Q3 = Q2 // 2

rem3 = Q2 % 2

if rem3 == 1:

    GPIO.output(4, GPIO.HIGH)

print("For LED 3 Q = ",Q3, "and rem = ", rem3)

#

# fourth binary digit of 2**3 or 8s

Q4 = Q3 // 2

rem4 = Q3 % 2

if rem4 == 1:

    GPIO.output(5, GPIO.HIGH)

print("For LED 4 Q = ",Q4, "and rem = ", rem4)

#

# fifth binary digit of 2**4 or 16s#

Q5 = Q4 // 2

rem5 = Q4 % 2

if rem5 == 1:

    GPIO.output(6, GPIO.HIGH)

print("For LED 5 Q = ",Q5, "and rem = ", rem5)

#

# sixth binary digit of 2**5 or 32s

Q6 = Q5 // 2

rem6 = Q5 % 2
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if rem6 == 1:

    GPIO.output(7, GPIO.HIGH)

print("For LED 6 Q = ",Q6, "and rem = ", rem6)

#

# seventh binary digit of 2**6 or 64s

Q7 = Q6 // 2

rem7 = Q6 % 2

if rem7 == 1:

    GPIO.output(8, GPIO.HIGH)

print("For LED 7 Q = ",Q7, "and rem = ", rem7)

#

# eighth binary digit of 2**7 or 128s

Q8 = Q7 // 2

rem8 = Q7 % 2

if rem8 == 1:

    GPIO.output(9, GPIO.HIGH)

print("For LED 8 Q = ",Q8, "and rem = ", rem8)

#

# ninth binary digit of 2**8 or 256s

Q9 = Q8 // 2

rem9 = Q8 % 2

if rem9 == 1:

    GPIO.output(10, GPIO.HIGH)

print("For LED 9 Q = ",Q9, "and rem = ", rem9)

#

# tenth binary digit of 2**9 or 512s

Q10 = Q9 // 2

rem10 = Q9 % 2

if rem10 == 1:

    GPIO.output(11, GPIO.HIGH)

print("For LED 10 Q = ",Q10, "and rem = ", rem10)

#
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# eleventh binary digit of 2**10 or 1024s

Q11 = Q10 // 2

rem11 = Q10 % 2

if rem11 == 1:

    GPIO.output(12, GPIO.HIGH)

print("For LED 11 Q = ",Q11, "and rem = ", rem11)

#

# twelfth binary digit of 2**11 or 2048s

Q12 = Q11 // 2

rem12 = Q11 % 2

if rem12 == 1:

    GPIO.output(13, GPIO.HIGH)

print("For LED 12 Q = ",Q12, "and rem = ", rem12)

Listing 6-13.  SPI-Based Program to Read an MCP3008 10-Bit ADC

# An SPI based program to read an MCP3008 10 Bit ADC

# the referenced voltage range is divided into an integer from

# 0 to 1023 sampled voltage is ADC/1023 * 3.3 volts. A blend of

# GPIO and SPI code is used to run a 10 bit LED display of the

# ADC value.

#

# import the RPi.GPIO low level pin control library

import RPi.GPIO as GPIO

import spidev

import time

# setup the pin identification scheme

GPIO.setmode(GPIO.BCM)

# turn off the array use warnings

GPIO.setwarnings(False)

# ensure all the LED driver outputs are set to output and are zero
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for i in range(2, 7):

    GPIO.setup(i, GPIO.OUT)

    GPIO.output(i, GPIO.LOW)

for i in range(13, 18):

    GPIO.setup(i, GPIO.OUT)

    GPIO.output(i, GPIO.LOW)

# create required variables

# the delay time

delay = 0.5   # the value of time variable delay is defined

# the channel to use

pot_chnnl = 0

# create a spidev object of the device connected to the 

# channel in use

spi = spidev.SpiDev()

spi.open(0, 0)

# create the readadc function that checks for the correct 

channel assignment

# if the channel assignment is correct the adc value is read

# the function returns -1 a channel error or the adc value

def readadc(pot_chnnl):

    # check channel

    if pot_chnnl  > 7 or pot_chnnl < 0:

        return -1

    r = spi.xfer2([1,  8 + pot_chnnl << 4, 0])

    data = ((r[1] & 3) << 8) + r[2]

    return data

#

# the while loop, print out and time delay

while True:

    wpr_vlu = int(readadc(pot_chnnl))

    print("--------------------------------")

    print("Pot wiper value = ", wpr_vlu)
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    # The LED Display Code

    # �Although initially set to low each binary bit

    # determination must be reset to low as the code cycles in

    # the while loop.

    #

    # first or least significant bit of 2**0 or 1s

    Q1 = wpr_vlu // 2

    rem1 = wpr_vlu % 2

    GPIO.output(2, GPIO.LOW)

    if rem1 == 1:

        print("Q1 = ", Q1, "rem1 = ", rem1)

        GPIO.output(2, GPIO.HIGH)

    # second significant bit of 2**1 or 2s

    Q2 = Q1 // 2

    rem1 = Q1 % 2

    GPIO.output(3, GPIO.LOW)

    if rem1 == 1:

        print("Q2 = ", Q2, "rem1 = ", rem1)

        GPIO.output(2, GPIO.HIGH)

    # third significant bit of 2**2 or 4s

    Q3 = Q2 // 2

    rem1 = Q2 % 2

    GPIO.output(3, GPIO.LOW)

    if rem1 == 1:

        print("Q3 = ", Q3, "rem1 = ", rem1)

        GPIO.output(3, GPIO.HIGH)

    # fourth significant bit of 2**3 or 8s

    Q4 = Q3 // 2

    rem1 = Q3 % 2

    GPIO.output(4, GPIO.LOW)
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    if rem1 == 1:

        print("Q4 = ", Q4, "rem1 = ", rem1)

        GPIO.output(4, GPIO.HIGH)

    # fifth significant bit of 2**4 or 16s

    Q5 = Q4 // 2

    rem1 = Q4 % 2

    GPIO.output(5, GPIO.LOW)

    if rem1 == 1:

        print("Q5 = ", Q5, "rem1 = ", rem1)

        GPIO.output(5, GPIO.HIGH)

    # sixth significant bit of 2**5 or 32s

    Q6 = Q5 // 2

    rem1 = Q5 % 2

    GPIO.output(6, GPIO.LOW)

    if rem1 == 1:

        print("Q6 = ", Q6, "rem1 = ", rem1)

        GPIO.output(6, GPIO.HIGH)

    # seventh significant bit of 2**6 or 64s

    Q7 = Q6 // 2

    rem1 = Q6 % 2

    GPIO.output(13, GPIO.LOW)

    if rem1 == 1:

        print("Q7 = ", Q7, "rem1 = ", rem1)

        GPIO.output(13, GPIO.HIGH)

    # eighth significant bit of 2**7 or 128s

    Q8 = Q7 // 2

    rem1 = Q7 % 2

    GPIO.output(14, GPIO.LOW)

    if rem1 == 1:

        print("Q8 = ", Q8, "rem1 = ", rem1)

        GPIO.output(14, GPIO.HIGH)
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   # ninth significant bit of 2**8 or 256s

    Q9 = Q8 // 2

    rem1 = Q8 % 2

    GPIO.output(15, GPIO.LOW)

    if rem1 == 1:

        print("Q9 = ", Q9, "rem1 = ", rem1)

        GPIO.output(15, GPIO.HIGH)

    # tenth or most significant bit of 2**9 or 512s

    Q10 = Q9 // 2

    rem1 = Q9 % 2

    GPIO.output(16, GPIO.LOW)

    if rem1 == 1:

        print("Q10 = ", Q10, "rem1 = ", rem1)

        GPIO.output(16, GPIO.HIGH)

    # timing delay

    time.sleep(delay)

Listing 6-14.  RPi Code for Testing LEDs on GPIO Pin Array

# Test the LED Array on the GPIO pins

#

import RPi.GPIO as GPIO

import time

# set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

# Reset the array pins to on for 3 sec then turn off

for i in range(2, 21):

    GPIO.setup(i, GPIO.OUT)

    GPIO.output(i, GPIO.HIGH)

    print("Testing pin ",i)

    time.sleep(3)

    GPIO.output(i, GPIO.LOW)
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Listing 6-15.  Utility Program to Reset the GPIO Pin Values to Zero

# Utility program to reset the GPIO pin values to 0

import RPi.GPIO as GPIO

# set the pin identity mode

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

# Reset the array pins to off/false/0

chan_list = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20)

GPIO.setup(chan_list, GPIO.OUT)

GPIO.output(chan_list, GPIO.LOW)delay)

�Summary

–– ADC and DAC limitations along with the differences 

between integer and floating point (decimal-containing 

numbers) have been presented.

–– Serial and parallel signal conversions and the various 

serial transmission protocols were introduced in both the 

commercial and less expensive component-assembled 

systems.

–– An important application of digital-to-analog conversions 

is presented in Chapter 7 dealing with variable intensity 

and power controls.
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CHAPTER 7

Variable Intensity 
and Power Control
The ability to arbitrarily alter or adjust the settings of either an 

experimental setup or a process control from the display screen is an 

integral part of SCADA systems. The DAQFactory software provides 

variable control icons such as rotating knobs or moveable sliders. The 

knob or slider page components can be coupled to an analog output 

channel whose value will be proportional to the rotating position of the 

control knob or the linear position of the slider index marker.

With proper design, the page component controls can be used to 

regulate substantial voltages and currents that in turn can activate  

electro-mechanical devices.

Manipulation of an image on a GUI control screen must at some  

point be translated into an electrical signal to provide the desired  

electro-mechanical actions in the experiment or process at hand.  

As previously introduced, digital systems function in a binary realm in 

which the required system action is generated in the form of a signal that 

is either on or off. However, there are many systems that require the ability 

to continually adjust the amount of action required and are thus in the 

analog realm. Motor speeds controlling fans, pumps or mixers, heating 

elements, intensity of illumination, and rotational positioning are some 

of the operations that may require adjustment by the experimenter or 

process operator.

https://doi.org/10.1007/978-1-4842-6778-3_7#DOI
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This exercise demonstrates two methods for exerting variable control 

over process or experimental setups through voltage control and a 

technique known as pulse width modulation (PWM).

An increase in the DC voltage of the power being fed to a device 

such as a motor, heater, or light source generally increases the speed, 

heat developed (a temperature increase), or luminance in proportion 

to the additional current passing through the load. It has been stated 

that PWM is a method for delivering partial power to a load by digital 

means. In essence, a PWM control application places the full voltage 

of the power supply across the load in the form of an adjustable-width, 

higher-frequency (often of several hundred Hz), rectangular pulse stream. 

Control of the power applied and used by the load is then determined by 

modifying the width of the full on and off times of the pulse waveform. The 

ratio between the on time and the width of the rectangular pulse is known 

as the duty cycle (see Figure 10-5 in Chapter 10). Variation of the duty cycle 

of the rectangular, full on or off waveform applied to the load is the essence 

of PWM power control.

PWM is a technique that can be implemented with software or, 

as presented in the later exercises on current control, with integrated 

circuitry. For many applications that require precise control, with smooth 

power transition, hardware-based PWM is much preferred.

For this exercise, PWM is introduced at its simplest level with an 

entirely software implementation. Restriction of the PWM process to a 

code-based program limits the techniques that can be used to visually 

demonstrate the process as is detailed in the following portions of this 

exercise.

The frequency at which the rectangular waveform is created for PWM 

must be substantially higher than the response time of the load. Rules of 

thumb suggest the frequency be twice the reciprocal of the device RC time 

Chapter 7  Variable Intensity and Power Control



211

constant or ten times higher than the control system frequency. In very 

simplified terms, it can be said that the PWM frequency should be high 

enough so as not to resonate with the RC time constant of the load. (See 

resistance-capacitance time constant in the reference.1)

PWM is an extensively used technique in power control, digital-to-

analog conversion, amplifier design, and communications but requires 

complex circuitry and can create radio frequency interference, voltage 

spikes, and EMI noise. (See triac control in the reference1 and Chapter 10.)

�Experimental
�Variable Voltage Control
�Hardware

A 2N3904 NPN transistor, a 10 kΩ resistor to limit the transistor base 

current, and an LED with the appropriate current limiting resistor are 

assembled on a breadboard in the configuration shown in Figure 7-1.

1 �Practical Electronics for Inventors 3rd Edn., Schertz and Monk, McGraw Hill, 
ISBN 978-0-07-177133-7
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�Software

The rotating knob control is selected from the right button pop-up menu 

as shown in Figure 7-2.

Figure 7-1.  LabJack Analog Output 0 Control of NPN Transistor
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After positioning and sizing the control icon on a page of the display 

screen, the properties option is selected to gain access to the knob 

configuration screens.

The visual appearance of the default-valued un-configured screen icon 

depicted in the following can be altered with the appropriate entries in the 

boxes displayed in the Main tab. As with all screen icons, the corresponding 

Help file can be displayed below the screen object being manipulated. 

Some of the visual effect options presented in the Main tab of the properties 

window are only evident on larger display images of the icon.

The knob control indicator image defaults to the displayed dot, but 

with the radio buttons seen to the right in the indicator sub-panel, this 

can be changed to select a triangle or a conventional line index to mark 

the degree of control rotation. The default blue indicator image can be 

changed by selecting the desired color from the palette available by left-

clicking the Color box seen in Figure 7-3.

Figure 7-2.  DAQFactory Screen Component Control Selection Menu
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Figure 7-4 depicts the window opened by selecting the “Ticks” tab 

seen in Figure 7-3. Within the Ticks window, the investigator can select the 

nominal aspects of the circular scale and establish the resolution of the 

display and its appearance in the final window.

Figure 7-3.  DAQFactory Screen Component Configuration 
Window
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The final configuration of the author’s screen component is displayed 

in Figure 7-5.

Figure 7-4.  Knob Tick Configuration Window

Figure 7-5.  Base Current and LED Intensity Rotating Control Knob 
with Instruction Panel
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Scripting is not required. The slider or the knob automatically provides 

a variable output based upon the position of the knob or slider. The 

channel specified in the Set Channel box of the Main tab of the properties 

window is set to and outputs the required proportional signal.

�Observations
As detailed in the DAQFactory manual, the knob or slider can be set to 

numerous configurations for controlled activation of the selected channel. 

Because the control in this exercise has been set up to control the power to 

an LED, there is a certain amount of “dead band” created by the minimum 

voltage required to activate the LED at hand.

�Discussion
Finer degrees of control for the voltage applied to the transistor base and 

ultimately to the power delivered by the semiconductor can be realized 

by configuring the starting position at 225o of rotation and assigning the 

starting voltage to the breakdown voltage of the LED being used. The 

forward voltage drop in an LED can vary from 1.2 volts for the infrareds  

up to 4 or 5 volts for the blues and white devices. The author’s setup used 

a green LED, so depending upon the intended usage of the screen icon, 

the dial could be configured to start at 3 volts or at zero. The 0–5-volt range 

could be used and calibrated if the turn on voltage itself is to be estimated, 

or the dial could be set to indicate from 3.0–5.0 volts to reproduce diode 

intensity/power applied settings.
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�Experimental
�Pulse Width Modulation of Voltage
�Introduction

Typically, the implementation of a software program to demonstrate 

the fundamentals of PWM uses an LED with a high-frequency variable 

duty cycle waveform as presented in Chapter 10. In this exercise, the 

fundamental concept and method of PWM is demonstrated with an 

electronic-electrical system that has a very simple software signal 

generator and a relatively slowly responding load consisting of an 

incandescent light bulb.

In keeping with the simple introduction to creating sequences with 

the DAQFactory software, an elementary program sequence that coarsely 

varies current through a 12-volt, battery-powered DC automotive lamp is 

presented in Listing 7-1 at the end of the chapter.

The code has been reduced to the bare minimum number of 

statements required to generate the typical rectangular waveform. 

The duty cycle values must be entered or changed manually by the 

experimenter as numerical values in the two delay statements in the 

DAQFactory sequence. The default settings in the code listings are 0.005 

and 0.095 that combine to give a total rectangular pulse width of 0.1 

seconds.

Figure 7-6 depicts the circuit used to provide a slow-response load for 

the PWM demonstration.
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�Observations
Figures 7-7, 7-8, 7-9, and 7-10 depict the varying intensities of brightness 

of the incandescent bulb and the corresponding low and high duty cycle 

PWM waveforms.

Figure 7-6.  Incandescent Bulb Load for PWM Demonstration
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Figure 7-7.  Incandescent Bulb Load for PWM at low DC power

Figure 7-8.  Low PWM DC Waveform for Incandescent Bulb 
Load
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Figure 7-9.  Incandescent Bulb Load for PWM at High DC Power

Figure 7-10.  High PWM DC Waveform for Incandescent Bulb 
Load
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If the pulse code is used with an LED, the flash rate can be seen to be 

different for the 5 ms and 95 ms time periods, but the eye has difficulty 

in seeing a difference in the illumination between the two, noticeably 

flashing, power settings. An incandescent lamp, however, displays a 

much greater visible response to the different power levels as is evident in 

Figures 7-7 and 7-9.

�Discussion
In the introduction to PWM in this exercise, a point has been made 

about the need for the frequency of the rectangular wave carrying the 

power to be substantially higher than the time constant of the system to 

which the power pulses are applied. In very simplified terms, it can be 

said that the PWM frequency must be higher than the response time of 

the load. The incandescent lamp and battery response times are slow 

enough to visually illustrate the power control ability of a very simple, 

rudimentary DAQFactory sequence in creating a graphically visual PWM 

demonstration. The PWM signals for this demonstration are generated 

by the DAQFactory sequence of just six lines of code. The oscilloscope 

recordings of Figures 7-8 and 7-10 correspond to a little less than 2 Hz. 

Although the frequency is not that high, it is sufficient with the time 

required for the filament to heat up and reach thermal and illumination 

stability that a two-cycle PWM illumination control technique produces 

the desired results. Using a software program such as the first entry in the 

code listings to vary the times at which the signal is on and off is often 

referred to as “bit banging” PWM.

PWM techniques are a very important part of many digital electronics 

and electro-mechanical systems and in many cases are implemented 

from hardware devices as will be encountered in several of the exercises to 

follow using the Arduino microcontroller.
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Virtually all microcontroller boards as have been used in previous 

exercises as inexpensive substitutions for DAQ systems are equipped with 

digital pin outputs capable of outputting hardware-implemented PWM 

signals (see Chapter 10).

�Raspberry Pi Variable Intensity Control
�Introduction
Physical computing with the RPi is only possible through the general-

purpose input and output pin array seen as the double row of 13 or 20 male  

pins along the upper portion of the RPi circuit board in Figure 1-16 in 

Chapter 1. The digital nature of the programmable pins on the array allows 

the implementation of software PWM operations from either experimenter-

written code or from libraries containing various forms of PWM operations.

Intensity variation screen control icons or components are available 

from the tkinter graphical image library available from online sources as 

discussed in the documentation provided online by the Raspberry Pi and 

Python Foundations.2

To accommodate the ever-increasing interest in and development 

of physical computing and the “Internet of things,” the RPi Foundation 

has approved three open source Python libraries to facilitate the use of 

the GPIO array in connecting to the outside world. The initial library 

release was of a more fundamental or lower-level code with the import 

designation of RPi.GPIO, while the later more sophisticated codes can 

be accessed by importing the gpiozero and pigpio libraries. RPi.GPIO 

contains the code required to work with mechanical devices using either 

the polling method or interrupts to detect mechanical motions such 

as button or switch contact closings, “debouncing” these events, and 

2 docs/python.org/3/library/tk.html
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using the contact actions to initiate electrical activity on the GPIO pin 

array. It is reported in the RPi documentation that the gpiozero library 

is built upon the RPi.GPIO library and contains many elements of very 

easy-to-use objects derived from the use of very well-explained, object-

oriented programming code. A detailed listing of library use and the 

objects available can be found online.3 Researchers and educators will 

find the list of objects created in the gpiozero library is extensive, and 

the documentation detailing their implementation and wiring is so very 

detailed that a printout of the archive may aid greatly in further work.

The third and most recently released physical computing library, 

imported as pigpio, is very different from the previous two facilities as 

it is written in C for implementation on several operating systems. For 

use on the RPi’s Linux operating system, an interfacing program must be 

running in order for the Python interpreter to access the pigpio library. 

The program also called a daemon is started from the Linux terminal with 

a sudo pigpiod command.

The pigpio facility has extensive documentation that encompasses 

detailed code syntax, the numerous testing and visualization utilities 

available, and a large assortment of simple and very sophisticated codes 

for interfacing to all manner of sensors and hardware. The library also 

provides code for several of the more popular communications protocols.

C code is well known for its very fast execution, and the pigpio library 

uses both software and hardware to provide single-digit microsecond time 

resolution for its PWM and rectangular waveform generation and voltage 

transition detection operations.

PWM applications are available through all the libraries, and several 

RPi code listings from the three libraries are presented at the end of this 

chapter to demonstrate the facets of software PWM power control using 

the three different facilities.

3 http://gpiozero.readthedocs.org/ and https://sourceforge.net/p/
raspberry-gpio-python/wiki/Examples
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�Experimental
Software PWM signal generation and applications using the RPi physical 

computing libraries are presented in a series of six programs. Observations 

of the desired PWM effects can be achieved by using the Run Module in 

the IDLE screen menu to access and process the stored program code. 

Program execution can be halted by using the Ctrl+C key combination.

In addition to the demonstration programs, a very short utility 

program is also provided to aid in the development and testing of the 

pigpio physical computing code.

�PWM Signals with the RPi.GPIO Library
Listing 7-2 can be used to demonstrate the basics of PWM waveform 

generation with the circuit of Figure 7-11.

It has been noted in previous exercises that the RPi.GPIO array is 

limited in the current that it is able to safely supply to any peripherals 

connected to the pins. Figure 7-11 depicts the generic connections that are 

required to display the effects created by the programs under study and 

development. It is left to the experimenter to safely configure the electronic 

Figure 7-11.  LED–GPIO Pin Connection Schematic
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components so the power draw from the GPIO pin or pins in use and the 

array ground are safely within the operating limits of both the computer 

and the LED.

The program code PWM_tst1 raises and then lowers the #6 pin of 

the GPIO array between 3.3 and 0 volts. The width of the on-off pulse 

or its duty cycle (DC) is defined and entered into the program code by 

the investigator as the variable prcnt_on. The actual PWM waveform is 

generated by two loops, a continuous outer loop controlled by a “while” 

statement that sets the #6 pin to a high value and an inner “if loop” that 

counts out the number of units in the prcnt_on variable before resetting 

the pin to 0 volts.

Setting the prcnt_on variable to 5, 50, and 95 can be used to 

demonstrate the variation in intensity of the LED illumination.

A demonstration of the effects of the frequency of the PWM signal 

on the observed illumination intensity of the LED at hand is given in 

Listing 7-3 written with the RPi.GPIO library. When developing the RPi.

GPIO PWM frequency effect demonstration program, a suitable visual 

effect was obtained when five different array pin–LED channels were 

used to demonstrate the effects of PWM frequency on the observed LED 

illuminations. The demonstration program set the duty cycle to a constant 

value of 95%, and only the frequency of the PWM power signal was changed.

Prior to loading and running the PWM frequency effect code, five LEDs 

and current limiting resistors must be wired to the GPIO array as depicted 

in Figure 7-11. GPIO pins 3, 4, 5, 6, and 7 that are found at physical 

positions (see Chapter 1, Figure 1-16) 5, 7, 29, 31, and 26 of the 40-pin array 

can be used.

�PWM Signals with the gpiozero Library

Listing 7-4 from the gpiozero documentation is a very simple single-

LED PWM illumination variation program demonstrating the advanced 

interfacing available with the gpiozero library. The pulsed LED PWM 
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program that varies the power applied to an LED to alter the intensity 

or brightness of its output consists of five lines of code, of which two are 

import statements. A circuit to demonstrate software PWM is configured as 

depicted in Figure 7-11. The author used a 5 mm LED and a 220 Ω current 

limiting resistor and connected the circuit to GPIO pin 21 (physical pin 

#40) and ground (physical pin #34). To see the control possible with the 

technique, the program code is loaded into the Python IDLE editor screen 

and the Run menu used to launch or process the code.

The gpiozero library contains numerous objects for interfacing the RPi 

output array and the MCP3008, eight-channel, 10-bit ADC, as depicted in 

the circuit diagram of Chapter 6, Figure 6-17, which can be used in a PWM 

demonstration using a RGB LED.

Listings 7-5 and 7-6 use three potentiometers biased between the 

positive RPi power output and ground to provide three signals to the 

first three channels of the MCP ADC that in turn function as three PWM 

signals to vary the intensity of the individual red, green, and blue outputs 

of the LED. The programs differ by the code used to implement the PWM 

function. In theory, any desired color of light can be produced by the 

three-potentiometer color control circuit configuration as depicted in 

Figure 7-12.

Figure 7-12.  PWM Three-Potentiometer RGB LED Color Control 
Circuit
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Although the first three channels of the MCP3008 are used with 220 Ω  

resistors to limit the currents through the diode, the typical output 

intensity of a green LED can be five times that of the red and blue devices. 

To “balance” or equalize the sensitivity of the green channel, a higher 

value resistance may be desired by the experimenter.

�PWM Signals with the pigpio Library

To load, activate, and access the pigpio library on operating system images 

or operating system code installations that do not have the library already 

included in the code, a number of commands have to be entered at the 

terminal. (Raspbian Jessie 2016-05-10 or newer comes with the pigpio C 

library pre-installed.)

The author’s RPi has been in use for several years, and the newer 

library had to be loaded at the terminal as detailed in the following:

	 1)	 Enter at the terminal prompt – wget abyz.co.uk/rpi/

pigpio/pigpio.zip

	 2)	 unzip pigpio.zip

	 3)	 cd PIGPIO

	 4)	 make

	 5)	 make install

The first two lines download the zipped file and unzip the Python  

code to create the file PIGPIO in the home / pi directory fairly quickly.  

The “make” and “make install” can take a minute or so to process 

depending upon the speed of the Pi on which the library is being installed. 

Three programs are created in the /home / pi / PIGPIO file: “pigpio.py”  

is a documentation program explaining the Python pigpio module, 

which is slightly over a hundred printed pages that define and explain 

all the module functions and variables and provide short typical coded 

applications. In addition to the documentation are “setup.py,” an RPi 
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access module for the pigpio daemon, and “x_pigpio.py,” a 15–20-page 

coding of an extensive full test program of all the library functions available 

from the pigpio library.

Listing 7-7 is a simple program demonstrating pigpio basic operations 

that access the pigpio library through the running interface (pigpiod) to 

turn an LED on and off and then vary the brightness with a four-step PWM 

illumination intensity increase and decrease. Listing 7-8 is a pigpio test 

utility that prints out the status of the GPIO pins in the array.

�Observations
�PWM_tst1

The LED illumination intensity variation is readily seen between the low, 

medium, and high experiments when the three simulated duty cycle 

values are entered into the program and the code is run. During the 

three illumination periods, the code appears to be cycling fast enough to 

produce a flicker rate that is not immediately perceptible.

Figure 7-13 is the output from the RPi.GPIO PWM frequency effect 

demonstration program.

Figure 7-13.  PWM Frequency Variation Effect with RPi.GPIO 
Library Code
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An LED is capable of switching on and off in the mega-Hz range; 

and as expected, the 2, 5, and 8 Hz PWM signals flash on and off and 

flicker noticeably, while the 11 and 14 Hz signals are reasonably stable 

with minimal perceivable flicker or “jitter.” (See “Discussion” for jitter 

description and origin.)

�PWM Control of RGB LED Output

The various diode colors can be seen to predominate the device output 

as the shafts on the variable resistors are individually turned from their 

off to full on positions. Although the circuit of Figure 7-12 has three equal 

resistance values that allow the green to dominate the LED output, a 

distinct sporadic and irregular variation of the intensity of the diode output 

is visually discernible.

The pigpio library program produces a bright steady illumination 

when the LED is powered on and during the four-step increase and 

decrease of the diode illumination intensity. (See “Discussion.”)

Included in the code listings is the utility program that tests the status 

of the first 32 pins of the RPi GPIO array and prints out their status in a 

tabular form as depicted in Figure 7-14.

Chapter 7  Variable Intensity and Power Control



230

The test program not only prints out the status of each of the 32 pins of 

the array but also confirms the operation of the Linux daemon interfacing 

of the Python interpreter with the C code library.

The preceding tabulation was run after the “reset array to zero” utility 

of Chapter 6 was used to clear the RPi array (Listing 6-15 in Chapter 6). 

Pins 1, 2, and 29 are the power supply pins of the array.

�Discussion

A portion of the RPi.GPIO library is devoted to the implementation of 

interfacing lower-level devices such as mechanical switches to the RPi’s 

GPIO pin array. The library has functions for determining if the current 

state of any pin is high or low (+ system logic voltage level of 5 or 3.3 V or at 

system ground potential of 0 V.) detecting changes in the pin state and for 

determining when or how the transitions are to be monitored or detected.

Figure 7-14.  Tested Status of the GPIO Pins
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The RPi uses a Linux-based multitasking operating system that may 

temporarily take control away from lower-level priority input/output 

operations. On a normal time scale as encountered in the operation of a 

mouse or keyboard, the I/O operation may not be significantly affected by 

the delay; but for higher-precision operations on shorter time scales such 

as with graphics displays, it may become quite evident. In this exercise, 

the visual effects of the irregular timing can be seen as the flickering in the 

LED intensity or, as it is sometimes called, “jitter.”

When using the change frequency function of the RPi.GPIO library, 

it is much easier to use a different pin array–LED channel for each new 

frequency than it is to try and use the same channel and change its 

frequency five times.

A distinct increase in capability and flexibility is evident in the 

applications possible with the three GPIO physical computing libraries. 

The pigpio is more complex to use but is far more powerful than the 

simpler libraries. As noted previously, the C-based library is able to use 

the Linux operating system and system hardware to achieve single-digit 

microsecond time resolutions on many of the library operations. The 

simple demonstration program used in this exercise is completely flicker- 

or jitter-free.

In addition to the simple LED illumination function program, a very 

short but useful utility program is included at the end of the code listings 

that produces a printout of the state of each of the GPIO pins from 0 to 31. 

The printout to the console lists all of the pins and their current high/low 

values as 1 or 0. In addition to displaying the high/low voltage level of the 

individual pins, the utility confirms the functioning of the Python pigpio 

interfacing daemon program.

A majority of the pigpio library functions and capabilities will be 

encountered, demonstrated, and discussed as required in later more 

advanced exercises in RPi physical computing dealing with advanced 

PWM applications; sensor initiation or monitoring; Serial, I2C, and SPI 

communications; and motor or servo controls.
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�Code Listings
Listing 7-1.  DAQFactory Sequence Program for PWM

while(1)

   sftwr_pwm = 5

   delay(0.095)

   sftwr_pwm = 0

   delay(0.005)

endwhile

Listing 7-2.  RPi Python PWM_tst1

Python Code for Raspberry Pi PWM_tst1

# A software PWM demonstration on GPIO - 6

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(6, GPIO.OUT)

#

# set the duty cycle

prcnt_on = 10

#

# �the outer loop to provide the continuous application of the 

modulated power signal

while True:

    # start the duty cycle loop and set the output pin to ON

    GPIO.output(6, 1)

    for i in range(1, 100):

        if i == prcnt_on:

            GPIO.output(6, 0)
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Listing 7-3.  RPI.GPIO PWM Frequency Effect Demonstration

# RPi PWM Frequency Demonstration with the RPi.GPIO Library

# 5 LEDs are used to illustrate the effects of the frequency of 

the carrier wave on PWM techniques. Different carrier

# frequencies are used at a constant duty cycle to illustrate

# the effects of frequency om PWM

import RPi.GPIO as GPIO

import time

# Array set up

GPIO.setmode(GPIO.BCM) # Use BCM pin reference

GPIO.setwarnings(False) # turn off the array use warnings

GPIO.setup(3, GPIO.OUT) # set pin #3 for output

#

pwm = GPIO.PWM(3, 2) # �a PWM instance on pin 3 to operate at 

2 Hz is setup

print("PWM carrier frequency set to 2 Hz")

print(" ")# print a blank line in the output

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)# start the application of PWM power

time.sleep(5)# Keep the LED illuminated for 5 seconds

pwm.stop()# stop the power application

#

# carrier frequency increased to 5 Hz

print("PWM carrier frequency set to 5 Hz")

print(" ")

GPIO.setup(4, GPIO.OUT) # set pin #4 for output

pwm = GPIO.PWM(4, 5) # �a PWM instance on pin 4 to operate at 

5 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)
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#

# carrier frequency increased to 8 Hz

print("PWM carrier frequency set to 8 Hz")

print(" ")

GPIO.setup(5, GPIO.OUT) # set pin #5 for output

pwm = GPIO.PWM(5, 8) # �a PWM instance on pin 5 to operate at 

8 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm.stop()

#

# carrier frequency increased to 11 Hz

print("PWM carrier frequency set to 11 Hz")

print(" ")

GPIO.setup(6, GPIO.OUT) # set pin #6 for output

pwm = GPIO.PWM(6, 11) # �a PWM instance on pin 6 to operate at 

11 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)

time.sleep(5)

pwm.stop()

#

# carrier frequency increased to 14 Hz

print("PWM carrier frequency set to 14 Hz")

print(" ")

GPIO.setup(7, GPIO.OUT) # set pin #7 for output

pwm = GPIO.PWM(7, 14) # �a PWM instance on pin 7 to operate at 

14 Hz is setup

dc = 95 # the duty cycle is set close to full on

pwm.start(dc)
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time.sleep(5)

pwm.stop()

Listing 7-4.  Single-LED PWM with the gpiozero Library

from gpiozero import PWMLED

from signal import pause

led = PWMLED(21)

led.pulse()

pause()

Listing 7-5.  Control of a RGB LED with gpiozero PWM Library and 

Three Potentiometers

# PWM Control of RGB Led Diode Pgm 1

from gpiozero import RGBLED, MCP3008

#

led = RGBLED(red=2, green=3, blue=4)

#

red_pot = MCP3008(channel=0)

green_pot = MCP3008(channel=1)

blue_pot = MCP3008(channel=2)

#

while True:

    led.red = red_pot.value

    led.green = green_pot.value

    led.blue = blue_pot.value
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Listing 7-6.  PWM Control of RGB LED with Three ADC Channels 

and Pause()

# PWM Control of RGB Led Diode Pgm 2

# PWM Control of RGB Led Diode

from gpiozero import RGBLED, MCP3008

from signal import pause

#

led = RGBLED(2, 3, 4)

#

red_pot = MCP3008(channel=0)

green_pot = MCP3008(channel=1)

blue_pot = MCP3008(channel=2)

#

led.source = zip(red_pot.values, green_pot.values, blue_pot.

values)

#

pause()

Listing 7-7.  pigpio Basic Operations Program

# A simple demonstration of some basic pigpio capabilities.

# �The PIGPIO library must be d/l, installed and available on 

the RPi in use.

# �The requirements for use of the library code must be met and 

the interface

# �often called a daemon must be running to provide an interface 

between the pigpio library written in C and the

# Python interpreter. (see PIGPIO documentation)

#

import pigpio

import time

#
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pi = pigpio.pi()# create a instance of the pigpio class

#

# Simple LED illumination

pi.set_mode(4, pigpio.OUTPUT) #set gpio 4 for output

pi.write(4,1) # set gpio pin 4 high

time.sleep(0.5)# delay for 1/2 sec

pi.write(4,0) # turn LED off

#

time.sleep(2) # delay for 2 sec between displays

#

# simple PWM controlled variable brightness scaled from 0 – off 

to 255 – full on

pi.set_PWM_dutycycle(4,  0)  #PWM off

time.sleep(0.5)# delay for 1/2 sec

pi.set_PWM_dutycycle(4, 64) # PWM power at 1/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,128) # PWM power at 1/2 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,192) # PWM power 3/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 255) # PWM power full on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,192) # PWM power 3/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4,128) # PWM power 1/2 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 64) #  PWM power 1/4 on

time.sleep(0.5)

pi.set_PWM_dutycycle(4, 0) # PWM power off

#

pi.stop()
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Listing 7-8.  pigpio Test Utility

# pigpio pin status and test utility

# ensure that the pigpio daemon is running and run the following 

code from the run menu in the Python 3 IDLE facility.

#

import pigpio

pi = pigpio.pi() # create an instance of the library

for g in range(0, 32):  # �recall range must be the required 

number of iterations + 1

    �print("gpio {} is {}".format(g, pigio.read(g))) # print out 

a tabulated status report

pigpio.stop()

�Summary
–– Variable intensity controls in the commercial software 

are used to implement PWM methods in software to 

demonstrate how the technique functions.

–– Several methods are presented for implementation of 

PWM techniques with the inexpensive RPi computing 

platform.

–– In Chapter 8, the detection of events that occur outside 

of the host computer in the SCADA system and how the 

time between multiple events is measured are 

presented.
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CHAPTER 8

Counting Events 
and Timing
This exercise considers the methods available for dealing with time 

measurements in physical computing. Software or hardware can be used 

to directly measure time or time intervals. Time intervals can then be used 

to make frequency measurements by counting the number of events that 

occur in fixed units of time or determine speeds and accelerations when 

distances traveled in time intervals are evaluated.

Determinations of time of day and the time between events are 

important parameters for gathering scientific data and in process control. 

Turning a light on or collecting data from 9:05 till 9:35 could be classified as 

an “absolute” or “time of day” format, while measuring the time required 

for a ball to fall a fixed distance through a viscous liquid may be termed a 

differential time measurement.

The user manual for DAQFactory advises against attempting to work 

in time frames of less than a half or quarter of a second with software 

scripting. Fractions of a second are at about the limit of a high-level 

software’s ability to process threads of code for data processing while 

maintaining a system status display screen user interface. Measurement of 

millisecond, microsecond, or lower time frames usually requires the use of 

assembly language programming for software timing or a physical timing 

device for hardware timing. There are several hardware timing devices 

available such as the LabJack HMI, Arduino microcontroller boards, or 
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555 timer integrated circuits, all of which are able to work in time frames 

measured in milli- and microseconds. This first portion of the chapter 

examines the basics of digital time concepts and demonstrates software 

limitations. The remaining portions of the chapter and exercises deal with 

short time scales available through integrated circuitry hardware and the 

introductory concepts of frequency.

Electronically, time is measured with oscillator clocks generating fixed-

voltage (5.0 or 3.3 volts) square wave signals that may have frequencies 

in the mega- and giga-Hertz ranges. (MHz are 106 cycles per second, and 

GHz are 109 cycles per second.) The PC on which this manuscript is being 

written has a 1.48 GHz clock speed, while an Arduino microcontroller has 

a 16 MHz clock speed, and the various models of the Raspberry Pi have 

clock speeds from 800 MHz to 1.5 GHz.

Electronic oscillators, regulated to a high degree of precision and accuracy 

by quartz crystals, can be configured to generate a pulse train of square waves 

that can be counted individually to measure time. With very stable oscillator 

frequencies of MHz and GHz and individual pulse counting capability, time 

frames of micro- and nanoseconds can be measured very accurately.

Desktop, portable, and network-connected computing devices are able 

to keep track of the time of day through either the network connection 

or a battery backup system when the computing device is switched off. 

Some devices such as the Raspberry Pi and the Arduino microcontrollers 

require the addition of an accessory called a “real-time clock” (RTC) that 

has a battery backup to keep an accurate track of the time of day when the 

device is powered down.

�Software Time and Timing
DAQFactory SCADA software is a self-contained program written to run 

on Windows-based operating systems. Batteries are used to maintain the 

operating system time counts when the computer is shut down between 
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operating sessions. Time in DAQFactory is measured in seconds since 1970 

with microsecond resolution. When a DAQFactory session is started, the 

program takes the date and time from the operating system, initializes an 

internal counter, and maintains a time count in seconds from January 1, 

1970. The DAQFactory clock runs independently of the operating system 

timer and produces a decimal second time resolution. Time functions 

available in DAQFactory are detailed in the “Expressions” section of the 

user manual. The software time functions available are used in the first 

part of this exercise to create two, one-second-resolution, screen-activated 

timers that start and stop electronic operations on the external breadboard 

and measure the elapsed or cumulative times between manually 

observed events much like a handheld stopwatch. The basic software time 

evaluation screen is depicted in Figure 8-1.

Figure 8-1.  GUI for Three Timing Operations
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�Basic Time Variables
Figure 8-2 depicts several of the basic current DAQFactory time values.

The basic variables screen consists of six variable value components 

(VVCs) and was captured at the date and time indicated in red. 

Configuring the entries on the panel will aid in understanding the 

mathematical manipulation of counter “clock ticks” and their relationships 

to our hours, minutes, and seconds of our cyclic time concepts:

	 1)	 The first line variable value component (VVC) 

expression is SysTime() that displays the number of 

seconds that have elapsed since January 1, 1970.

	 2)	 Line 2 uses the statement “FormatDateTime(“%c”, 

SysTime())” in the expression box of the VVC to 

generate the time of day displayed. A large number 

of formats are available for use as listed in the 

user manual. The display was created in large red 

characters for visual emphasis.

Figure 8-2.  GUI for Current Timing Operations and Values
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	 3)	 Lines 3–5 use modulo notation to convert the total 

tick counts of SysTime() into various timekeeping 

values, while line 6 produces a one-second 

modulated switching between logic one and zero.

�Scheduled Event Timer
The scripting of Listing 8-1 (provided at the end of the chapter with all 

others) titled Scheduled Time Timer controls the GUI panel shown in 

Figure 8-3.

Figure 8-3.  A DAQFactory Scheduled Event Timer GUI
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�The Stopwatch Timer
The nominal group of controls depicted in Figure 8-4 implements 

stopwatch-style timing and is controlled by the code of Listing 8-2.

The stopwatch timer is activated by three DAQFactory sequences 

found in Listings 8-3 and 8-4. The Start/Stop button (Listing 8-2) initiates 

or terminates the timing action and thus defines an interval. A mouse 

click on the Cumulative Time button adds the current interval into the 

accumulating time sum. Clicking the Reset Display re-zeros the GUI.

�Hardware Timing, Event Counting, 
and Frequency Determination
Any physical actions in our world such as opening a door, entering a 

room, and turning on a light can be translated by sensors into electrical 

transitions that can be monitored and recorded by electronic systems. 

Activation of a typical light switch causes the electrical power applied 

to a light source to jump from the on to the off extreme. The electrical 

waveform that results from the act of turning the light on, leaving it on for 

Figure 8-4.  A Stopwatch Timer GUI
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a time t, and switching it off can be considered as a “pulse of duration t.” 

Electrical pulses can be created by the conversions of mechanical, optical, 

and electromagnetic events into sharp changes in electronic signal levels.

Pulse counting is accomplished by the use of bipolar transistor or 

CMOS integrated circuitry in which interconnected transistor switches 

are able to record, in binary format, the number of transitions between 0 

and 5 (or 3.3) volts that occur in the electronic signal applied to the chip 

input pin. Counting the number of electronic transitions in a given period 

of time is a measure of the input signal frequency, while counting the total 

number of pulses that have occurred since a starting point in the past is a 

measure of elapsed or total time passage.

The fundamental unit used to store binary information is known as the 

“flip-flop” or “latch.” A flip-flop is a configuration of switches stable in one 

of two states in which the inputs to the latch or flip-flop cause the output to 

change between the two binary logic states of one and zero. A basic circuit 

for a flip-flop, multivibrator, or latch is depicted in Figure 8-5.

Simple flip-flops were made initially from current-controlled devices 

such as vacuum tubes, then later from bipolar transistors, and finally from 

very-low-current-draw voltage-controlled devices such as field effect 

transistors (FETs) and metal oxide semiconductor field effect transistors 

Figure 8-5.  A Base Junction Transistor Flip-Flop
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(MOSFETs). These are often termed multivibrators and are known as a 

bistable circuit. The circuit stays in either of its two stable states until a 

control signal is applied to switch it to the other stable state.

To understand how the basic circuit operates, we can see in Figure 8-5 

that if V1 is grounded, then there will be no base current through the base 

of Q2. In bipolar transistors, the current through the collector and emitter 

(emitter arrow indicates positive current flow) is controlled by the base 

current. The transistor Q2 with no base current will have no collector-

emitter current. The current through R2 from Vcc all flows into the base 

of Q1 that then causes a much larger current to flow through Q1. With the 

symmetrical circuit, if V2 is grounded, then the base current in Q1 is shut 

off, and the current through R1 flows into the base of Q2, causing a much 

larger current to flow through Q2 as the circuit switches to the second 

stable state.

The simple flip-flop is the basic building block of a very large 

number of mainly very-low-current-draw complementary metal oxide 

semiconductor voltage-controlled integrated circuits that provide 

functions such as memory storage, logic, and mathematical functions. (See 

Chapter 1, Figure 1-15.)

Details of latches, flip-flops, digital logic counting, oscillator clocks, 

and the applications of various families of integrated circuit logic chip sets 

can be found in several reference works.1

A terminal on the LabJack HMI labeled CNT provides access to 

an integrated circuit that is capable of counting the number of times a 

voltage level is changed from +5 to 0 and back to +5 volts. Such event 

counting is conducted in binary by the integrated circuitry of the device 

1 �1) Digital Electronics for Scientists and Engineers, Malmstadt and Enke, W. A. 
Benjamin Inc. NY, NY, ISBN 0-80536899-X
2) CMOS Cookbook 2nd Edn. , Lancaster, Howard W.  Sams & Co., ISBN 0 
672-22459-3
3) The Art of Electronics 2nd Edn, Horowitz and Hill, Cambridge University Press, 
ISBN-13 978-0-521-37095-0
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with results being displayed on the system screen in base ten format. The 

events to be counted must be converted into the voltage-level changes 

noted previously. The LabJack counter has a 32-bit capacity that allows a 

total count of 232 or 4,294,967,296 events. Because the event counter is an 

integrated circuit, it can count at frequencies up to 1 MHz.

In the following exercise, a manual event counter that can be 

incremented by any number of sensors such as a change in daylight 

levels, objects passing a point, or clicking a system screen icon will be 

created. Configurations of experimental setups or process control systems 

involving time spans of durations measured in seconds and longer are 

not a problem with the LabJack and DAQFactory software combination. 

Documentation in the user manual indicates that many instructions have 

an execution time of 20 ms that creates a lower limit with respect to the 

shortest time responses that can be reasonably expected from the visually 

based SCADA system. High-speed signal changes are best recorded with 

techniques called streaming or burst-mode operations. High-speed signal 

changes at speeds or frequencies well beyond what the eye can resolve are 

acquired with very fast hardware speeds for post-collection processing. 

High-speed operations are detailed in the user manuals and are dealt with 

in subsequent chapters and exercises.

The LabJack counter is considered a hardware device and thus is not 

limited by software execution times. An integrated circuit device known 

as a 555 timer can be used in conjunction with the counter to work in time 

spans shorter than those imposed by software execution overhead. The 

555 timer is also a “hardware”-based integrated circuit and thus, like the 

LabJack counter, able to work in time scales varying from microseconds 

to hours. The details of both the bipolar transistor and CMOS 555 timer 

ICs are found in numerous references including those referenced earlier. 

The differences between the various forms of the timer lie in their power 

handling capability with the bipolar forms being high-current types and 

the CMOS forms being low voltage based.
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�Experimental
�Hardware
1) Simple manual counting of events

2) Simple continuous event counting or frequency determination

A blue LED and a 470 Ω current limiting resistor can be used to 

demonstrate manual counting of screen-initiated events.

�Circuit Schematic
The diode and current limiting resistor are configured as depicted in 

Chapter 1, Figure 1-3, for the red diode with the junction of the serial pair 

being wired to D9 on the CB25 terminal board.

�Software
For demonstration of the two modes of counter usage, the panel with two 

buttons, two variable value components, and a descriptive text component 

of Figure 8-6 was created.

For counting manually activated events, a screen button icon is 

created, appropriately labeled, and linked to an output channel. The 

author’s button was labeled “Initiate Event” configured to activate the 

script of Listing 8-5 “A_Counter_Event,” which applies a 5–0–5-volt 

transition through a channel created as “DigOut_9_EvntCntr,” wired to 

output pin 9, on the CB25 board terminal. Clicking the screen button thus 

drives the D9 output from 5 to 0 and back to 5 volts that in turn switches 

the blue LED off and then back on. The counter terminal CNT is wired 

to monitor the voltage level at the junction of the blue LED and its 470 Ω 

current limiting resistor. Manually clicking the “Initiate Event” button thus 

increments the counter through the Listing 8-5 DAQFactory sequence.
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Section 10 of the DAQFactory LabJack manual2 details the single 

LabJack counter operation. Having only a single counter, all data is 

passed through counter channel 0. By default the counter value is reset 

to 0 each time the channel is read, so for the first part of this exercise, 

the default must be turned off, to continuously increment its value until 

manually resetting it to 0. For this exercise, we create a channel named 

“EventsCounted” with Counter I/O type; and in the “Channel Table View,” 

under the Quick Note / Special / OPC heading, a button along the right-

hand side of the cell with three dots (…) should be visible. Click the button 

to bring up the Channel Parameters window with a drop-down list from 

which Reset is selected. The only parameter is “Reset?”, and selections of 

Yes or No, OK, and Apply will immediately configure the counter channel 

not to reset to zero when the channel value is read for display.

A second button labeled “Reset Counter” is configured to start the 

short “ResetCounter” script of Listing 8-6, which sets the most recent value 

of the “EventsCounted” channel EventsCounted[0] to zero. A variable 

value component display of EventsCounted[0] has been placed below the 

buttons to indicate the number of events counted. The panel created to 

demonstrate simple counter usage is depicted in Figure 8-6.

2 azeotech.com/dl/labjackguide.pdf
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Listing 8-5 in the exercise code listings is activated by clicking the 

Initiate Event button.

Clicking the screen button “Initiate Event” causes the blue light to  

light up and the event counter to increment. Clicking “Reset Counter” 

(Listing 8-6) sets the “Events Counted” variable value display back to 0.

�Scripting
Listing 8-5 and Listing 8-6 are DAQFactory sequences whose scripting 

creates the square waveform signal used for frequency measurement with 

a time - goto script and the code used to manually clear the counter and 

turn off any LED that may be left in the on configuration.

As noted previously, the “Reset Counter” button activates the short 

sequence of Listing 8-6 that consists of a single line of active code to set the 

value of the counter channel to 0.

Figure 8-6.  A LabJack U12 Counter Usage Demonstration
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By switching the LabJack counter channel back to the default setting 

of “Reset after reading a counted value” and configuring a new counter 

channel with a one-second counting interval, the new counter channel is 

configured to read a per-second frequency.

�Circuit
A white LED and 470 Ω current limiting resistor are configured as depicted 

in Chapter 1, Figure 1-3, for the red diode with the junction of the serial 

pair at hand being wired to D8 on the CB25 terminal board.

�Software
A pulse train must be created to form a repetitive signal with a measurable 

frequency. The script of Listing 8-7 is a PWM or variable pulse width 

generator that can be used in conjunction with a screen button and 

instruction text as seen in Figure 8-7, to start and stop the square wave 

pulse train.

The Start/Stop button is configured to activate the DAQFactory 

sequence PWM_Script that is Listing 8-7 in the code listings of this chapter.

Figure 8-7.  A DAQFactory Pulse Train Generator Panel
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Scripting and Action

Although usage of the “time - goto” statement is not considered good 

programming practice, it does simplify creation of the square wave signal. 

Once the two panels for the counting exercise have been created, change 

the values in the “Delay (0.5)” statements to 0.25 and 0.1. While the square 

wave is being generated and the frequency is being displayed, move the 

mouse cursor rapidly back and forth and watch the LED and the frequency 

value being displayed.

�Observations
The inclusion of the blue and white LEDs in the two counter exercises 

is used as a visual aid in following the operation of the system. (See 

“Discussion.”)

�Discussion
�Time Determination
Digital electronic circuits are activated by crystal-controlled oscillator 

“clocks.” Crystal oscillators generate a very stable, fixed-frequency, square 

wave pulse train providing nanosecond time resolution (10-9 s). The square 

wave consists of a sequential series of transitions from 0 to +5 volts or 

from logic zero to logic one in binary format. Time can be divided into 

relative time as determined by the spacing of the clock square wave fronts 

and absolute time from a fixed event. Absolute time for the DAQFactory 

program is determined by the number of seconds from January 1, 1970. 

The time variables of Figure 8-2 and their syntax are discussed in detail in 

the user manual.
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�Manual and Automated Event Counting
The button-initiated manual events are created in time frames that are 

usually not in conflict with DAQFactory software timing. However, it can 

be shown that attempts to create a waveform with a script generating a 

signal that changes with sufficient rapidity can conflict with the operating 

system software timing.

As part of this exercise, a script has been used to generate the voltage 

waveform required to increment the LabJack counter. A blue LED has 

been included in the exercise as a visual indicator of system validation. 

However, the counter hardware records an event as a two-transition 

operation in which a high signal drops to a low value, which then is 

followed by a low signal being raised to a high voltage value. The two-

transition “event” is effected by a script that leaves the pin voltage level at 

5 V that in turn powers the blue LED in the circuit. To turn the LED off, we 

include a line of code in the script activated by the Reset Counter button to 

set pin 9 back to 0 V without it being recorded as half of an “event.”

By altering the delay values in the PWM_Script, the width of the time 

the signal is held at either 0 or the nominal 5 V can be varied. The LabJack 

counter only registers the +5- to 0- to +5-volt transitions as a single event 

for the purpose of counter increment, so the width of the residence time 

at 0 volts is the parameter that is counted as a single event or a cycle in 

frequency determinations.

Any graphical display must be composed of a two-dimensional array 

of elements that can be individually illuminated to form an image. The 

updating of a GUI consumes a large amount of computational resources 

as the individual elements of the array are constantly being scanned to 

implement any required changes. If a program such as the pulse generator 

used to drive the pulse generator panel of Figure 8-7 is invoked with delay 

times involving fractions of a second, software conflicts can arise.
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When the pulse generation program was used to power the white 

LED as the delay times became very short into the range of fractions of a 

second, both the LED pulse rate and the cursor movement became erratic. 

The observed hardware and software conflicts demonstrate the limitations 

of using software scripting in time spans of less than a second.

�Hardware Time and Timing
Our discussion of the hardware control of time is centered on the 555 

integrated circuit timer chip that has been manufactured, improved, 

and used for over 40 years. The chip functions by causing its output to 

change from high to low voltage levels at controlled time intervals. The 

timing intervals may be easily varied over numerous orders of magnitude 

to create long delays (the monostable mode of operation) or generate 

high-speed pulse trains (the astable mode of operation). Simple external 

components consisting of resistors and capacitors can be used to generate 

the desired time intervals. The 555 chip is available in bipolar transistor 

and CMOS formats that differ in power consumption, power output, and 

high-frequency operation.

The 555 chip is named for the series string of three 5 kΩ resistors that 

are connected to the supply voltage and ground to establish the 1/3 and 

2/3 supply voltage reference levels used by the circuit logic. The circuit 

contains two comparator op-amps that feed their output signals to a digital 

set-reset flip-flop. The analog comparators use the 1/3 and 2/3 voltage 

reference points to change their output state that causes the flip-flop 

to change state based upon the comparator inputs. The digital flip-flop 

output controls the output driver circuitry.

Figures 8-8 and 8-9 illustrate some of the operations and 

configurations for the timer circuit.
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Figure 8-8.  555 IC Timer Modes of Operation

Figure 8-9.  A 555 Timer IC Block Diagram
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When power is applied to a 555 IC configured as depicted in the 

astable mode schematic in the bottom-right of Figure 8-8, the capacitor 

begins to charge as the current flows through R1 and R2. As the voltage 

rises on pins 2 and 6 and then reaches 2/3 of the supply, as determined 

by the internal voltage divider, the output goes low. As the output goes 

low, the NPN transistor is turned on, and the discharge pin of the 555 is 

effectively connected to ground that discharges C1 through R2. As the 

voltage on the capacitor drops to 1/3 of the supply value, the transistor is 

turned off, the capacitor begins charging through the series pair, and the 

cycle repeats itself. The voltage on C thus cycles between 1/3 and 2/3 of the 

supply with a period of T = 0.693(R1 + 2R2)C or a frequency of f = 1.4/(R1 + 

2R2)C. The time period of the output signal can be divided into two parts 

consisting of the time the voltage is high (see Figure 8-8, bottom right) and 

the time the signal is low. The high time is often called the “mark time” and 

the low the “space time” with the duty cycle being defined as the ratio of 

the high or mark time to the sum or time period of the signal, expressed as 

a percentage value.

The ability of the 555 timer to generate a pulse train whose electronic 

characteristics are determined by external resistance and capacitance 

values has a very important application in experimental science. The 

following exercise visually demonstrates the concept of square wave or 

clock signals and the variation of pulse widths with physical changes in 

external sensors.

Numerous websites, references, and textbooks contain detailed 

discussions of the characteristics of the timer chip together with tables of 

circuit design parameter values.

In the following exercise, the concept of square wave output signals 

and duty cycle and the basis of pulse width variation using the timer chip 

are demonstrated. Using the design procedures available from the data 
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sheets made available online by the major IC suppliers, a circuit with an 

output frequency of 6–7 Hertz can be assembled to power different colored 

LEDs for a visual display of the circuit operation.

�Experimental

	 1)	 A 555 timer chip configured in the astable mode 

(see Figure 8-8, bottom right).

	 2)	 A 100 kΩ variable resistor is used as R2, and a 10 kΩ 

resistor is used as R1.

	 3)	 A 1 uF capacitor is used as the timing capacitor or 

C1. An electrolytic capacitor can be used as the 

higher current leakage rate of the component is not 

critical to the performance of the circuit.

	 4)	 Two different colored LEDs with 470 Ω current 

limiting resistors are connected between the output 

pin of the chip and the power supply rails in order to 

produce alternately flashing indications of the high 

and low output states.

	 5)	 The schematic diagram of Figure 8-10 has been 

drawn with +5 V power, but the circuit can be 

powered with any supply between 3 and 18 volts 

(adjust CLR values for voltages > +5).
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�Schematic

�Observations
Using the circuit shown in Figure 8-10, the red-yellow pair alternately 

flashed ten times in 13 seconds when the 100 kΩ potentiometer was near 

its maximum limit, and the circuit flashed continuously when near the 

zero value.

�Discussion
In the “astable” configuration, the timer chip is able to vary the time at 

which output is on or off. The measured ratio between the time on and 

off or the “duty cycle” is shown to be dependent upon the resistance of 

R2 that in this case is the mechanical position of the shaft on the variable 

resistor. Rotary mechanical motion of the potentiometer shaft can thus be 

transformed into a varying electronic square wave signal. Any transducer 

capable of transforming a physical phenomenon into a varying resistance 

can also be used to produce a square wave signal with a ratio of on/off time 

that is proportional to the resistance created by the physical phenomenon 

Figure 8-10.  Schematic for Controlled High and Low 555 Timer IC 
Output Variation
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being monitored. Thermistors are heat sensitive resistors. Negative 

temperature coefficient (NTC) thermistors exhibit a lower proportional 

resistance to an increase in their ambient temperature. Inserting an 

NTC thermistor into the timing circuitry of a 555 timer IC will cause the 

frequency of the output square wave to vary in proportion to the thermal 

environment of the thermistor bead thus forming a digital thermometer. 

By using the output signal to turn on and off a power transistor, a heavier 

current can be controlled. With a fixed frequency, the variable “duty cycle” 

format signal functions as a “pulse width modulation” technique. The 

PWM current control can be used to vary the speed of a motor or control 

the current applied to a heater.

In the astable mode, the frequency of the square wave generated by the 

555 depends upon the values of R1, R2, and C. The frequency is given by 

the following formula:

f = 1/ln(2) * C * (R1 + R2) (ln(2) = 0.6931)

Figure 8-11 shows the 555 astable cycle.

The frequency of the output can be controlled by the three values of 

the RC network. The duty cycle or the ratio of the high time to low time is 

illustrated in Figure 8-12 as a percentage value.

Figure 8-11.  The 555 Astable Cycle
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The high time of the output is given by

high time = ln(2) * (R1 + R2) * C

and the low time is given by

low time = ln(2) R2 * C         (ln(2) = 0.6931) (R is in Ω and C in uF)

The output signal is high as the capacitor is charged by current flowing 

through R1 and R2. When it discharges, it does so only through R2, and 

thus there is a limit to the variation that can be introduced into the duty 

cycle by the value of R2. If the resistor pair is replaced by a potentiometer 

whose wiper terminal is connected to pin 7 of the timer, then the total 

resistance of R1 + R2 is constant, and the duty cycle can be varied by 

changing the position of the wiper. To avoid unwanted problems should 

R2 be set to 0, connect a small value resistor in series with the capacitor 

and the variable resistor to avoid the possibility of unpredictable results 

at low potentiometer resistance values. If fixed resistors are to be used to 

establish the desired duty cycle at less than 50%, then a diode pointing 

toward the capacitor will allow the capacitor to charge through the R1 

resistor only, during the high time portion of the cycle.

Figure 8-12.  Duty Cycle Variation of the 555 Timer Output
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�Microcontroller Clocks, Timekeeping, 
and Event Counting
Virtually all microcontrollers that are communicating with host computers 

and peripheral devices such as sensors or process controls are equipped 

with an onboard crystal-controlled oscillator that functions as a system 

clock. Usually the hardware-based clock signal can be accessed with the 

microcontroller software and used for timing and event counting.

Arduino microcontrollers use a crystal-controlled 16 MHz oscillator as 

the system clock. When power is applied to the operating system, it begins 

to count the number of milliseconds (1/1,000 or 10-3 s) as the value of the 

function millis() and the number of microseconds (1/1,000,000 or 10-6 s) 

as value of the function micros(). (Due to binary counting and hardware 

constraints when invoking micros(), microsecond time resolution is 

limited to the nearest 4 μs or 4 x 10-6 s.)

The two functions are stored as unsigned long integers, which have 

maximum values of 4,294,967,295 before rolling over to 0. The maximum 

value limitation provides for a time span of approximately 50 days for a 

millis() count and a 70-minute time span for micros(). Millis counts are 

accurate to the nearest single digit, but micros values are expressed to the 

nearest four digits (22). The timing error in millis() is 0.18 s/hour, 4.32 s/

day, and 129.6 s/month.

DAQFactory provides an alternate method for demonstrating the 

concepts of timing and event counting with microcontrollers such as the 

Arduino. There are many published programs that create countdown, 

stopwatch, and other timing applications for microcontrollers using 

mechanical switches and a corresponding large number of library and 

other methods for dealing with mechanical “switch contact bouncing.3”

3 1) https://github.com/j-bellavance/EdgeDebounceLite/blob/master/README.md
2) https://www.allaboutcircuits.com/technical-articles/switch-bounce-how- 
to-deal-with-it/
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A DAQFactory screen button and the serial port eliminate the need 

for both mechanical switches and having to deal with mechanical switch 

contact bouncing.

�Experimental
To demonstrate the basic timing functions available with the inexpensive, 

serial port–connected microcontroller, two programs are required, the 

first to display the timer control panel in the SCADA software on the 

host computer screen and the second to implement the selected timing 

functions on the microcontroller. See Listings 8-8 for the Arduino code  

and 8-9 for the DAQFactory Quick Sequence.

Figure 8-13 illustrates a simple basic configuration for the simple 

stopwatch timer set up in the DAQFactory SCADA software.

Each of the three buttons has been configured to activate a Quick 

Sequence code that writes a “b,” “s,” or “r” to the serial port to begin a timing 

session, stop the timing session and transmit the millis() count back to the 

SCADA software, or reset the timer to zero and begin another timing session.

The inactive (red X) variable value display seen in Figure 8-13 receives 

the total millis() count from the Arduino when the timing session is halted 

with the “s” command. Figure 8-14 illustrates the DAQFactory serial 

monitor activity during a simple start and stop timing session run for 

validation during the development of the combined timing system.

Figure 8-13.  A Simple DAQFactory Stopwatch Control Panel
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Figure 8-14.  DAQFactory Serial Port Monitor Record of a Simple 
Arduino Timing Session

Recall that the DAQFactory serial port code expects both a carriage 

return (CR, ASCII code 13) and a line feed (LF, ASCII code 10) after the 

data sent to the serial port. The data passing through the DAQFactory 

serial port can be read into a channel or a global variable. In the primary 

code development process, a channel named millisVlu was configured in 

the DAQFactory software, and the variable value screen component was 

then set to divide the millis() value received from the Arduino by 1000 to 

get the number of whole seconds and a milliseconds fraction that the timer 

had recorded. Later revisions of the code used a global variable “elapsed” 

and Quick Sequence to implement the simple timing function (see 

Figure 8-15 in “Observations” and Listings 8-8 and 8-9).

The DAQFactory serial port uses the “On Receive” code in Listing 6-10 

in Chapter 6 to read the numerical value from the serial port into a channel 

or for use as a value for a global variable.

�Observations
In Figure 8-15 the Arduino serial port has been programmed to aid in 

validating command interpretation by the microcontroller, and a typical 

timing result display is depicted in Figure 8-16.
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The simple stopwatch timer has been developed by first getting the 

Arduino to function as a stand-alone timer by using the Arduino’s own serial 

port to manually send the “b,” “s,” and “r” commands to generate the output 

seen in Figure 8-15. With a functioning Arduino program, the code was 

refined down to that presented in Listing 8-8 in which the only output is the 

Arduino line of code “Serial.println(elapsed)” that sends the contents of the 

elapsed time variable to the serial port with the requisite CR and LF.

Examination of Listings 8-8 and 8-9 will reveal that the reset functions 

in the two programs are different. It is simpler to isolate the reset code into 

two actions on either side of the serial port. The Arduino code resets the 

state flags for the begin timing loop and the stop timing and print to the 

serial port action, while the DAQFactory Quick Sequence code actually 

sets the elapsed time variable and timed seconds display back to zero.

Figure 8-16.  A Typical Simple Millisecond Resolution Timing 
Session

Figure 8-15.  Arduino Serial Port Output for Stopwatch Program 
Development
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Once an initial timing measurement has been made, the reset button 

should be used to reset the single action–only flags in the Arduino code.

�Discussion
Figure 8-15 illustrates a simple technique for developing the Arduino 

code that is to respond to the single-letter commands that will be written 

to the serial port by the SCADA software in the final iteration of this 

exercise. The Arduino code was completely developed by using the serial 

monitor “send” feature of the IDE and writing into the developing code the 

responses in Figure 8-15 to validate the operation of the code before finally 

combining the SCADA and microcontroller operations. The reduction of 

the functioning stopwatch code to that to be used in combination with the 

DAQFactory panel can be done by rewriting or just commenting out the 

unwanted lines.

More elaborate timer functions can also be configured by converting 

the elapsed millisecond time values that can extend out to close to 50 days 

into minutes, hours, and days subject to the time errors noted previously.

Where possible, a screen-activated button can be used to avoid 

problems caused by mechanical switch contact bounce.

�Counting Events and Timing with Python 
and Raspberry Pi
Time measurement for the Python language interpreter is derived from the 

host computer on which the program is running. The basic concept for the 

Raspberry Pi is oriented around Internet access. An Internet connection 

can be used to transfer operating systems, application software, and 

updates. An Internet connection provides accurate timekeeping through 

Internet time servers. If the RPi is to be used in a time-dependent 
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experiment or measurement application where Internet access is not 

possible, then the installation of a real-time clock (RTC) will be required to 

supply an accurate timekeeping base.4

In Figure 8-17, the timekeeping basis is shown in a very simple console 

request for the number of “ticks” that have occurred since the January 1, 

1970, timekeeping starting point.

In the Unix/Linux operating systems, the number of ticks can 

be converted into seconds, minutes, hours, and days to provide any 

timekeeping operations required. Figure 8-18 is a console conversion of 

ticks into a current time display.

4 �1) Raspberry Pi Cookbook 2nd Edn., Monk, O’Reilly Media Inc., ISBN 
978-1-491-93910-9
2) Practical Raspberry Pi, Horan, Apress, ISBN 978-1-4302-4971-9

Figure 8-17.  A Console Request for the Tick Count
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A more familiar format for the time can be obtained at the interactive 

console with the asctime() function as depicted in Figure 8-19.

There are a number of simple push button timer GUI and timer 

modules that have been published for coding timer applications in Python, 

and a three-button GUI using the tkinter Python module is depicted in 

Figure 8-20. The code is listed in Listing 8-10. The code has been modified 

from the original published in 2002.5

5 HTTP://CODE.ACTIVESTATE.COM/RECIPIES/124894/

Figure 8-18.  A Console Request for the Current Time from the Tick 
Count

Figure 8-19.  A Familiar Current Time Format
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�Scheduling Events
In addition to the time display functions listed previously, Python has 

several libraries such as sched and schedule that use the time module as 

a base for scheduling events. In essence, the sched and schedule modules 

provide the experimenter with a programmable starting point from which 

delays can be specified before individual events or programming code 

sequences are initiated.

Listing 8-11 entitled Scheduled_PgmCntrl_LED.py uses the 

programmed application of logic high and low to the GPIO pins 20 and 21 

(board pins 38 and 40) to turn on and off two LEDs attached to the pins 

through current limiting resistors as “events.”

Examination of the code shows a typical creation of a scheduler object 

instance with the line scheduler = sched.scheduler(time.time, time.sleep). 

The two events to be run in the future are defined in the following two 

lines:

scheduler.enter(2, 1, actvt_GrnLed, (“Green led 

activated first”,))

scheduler.enter(5, 1, actvt_RedLed, (“Red led is 

activated second”,))

The documentation for the sched module stipulates four arguments 

for the enter() function consisting of the numerical value of the time 

delay in seconds from the processing of the initiating function start(), a 

Figure 8-20.  A Three-Button Stopwatch Timer
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numerical value specifying the priority of the event, the name of the event 

function to be called, and data to be passed into the function being called, 

if required. Listing 8-11 is an example of overlapping events in which the 

time during which the LEDs are illuminated is longer than the desired start 

times of the events. The shed module executes all the called functions and 

none are lost, but the timing of the events is displaced further out in time 

by the amount of the process overlap.

Figure 8-21 is a typical output from the scheduler program. The red 

and green LEDs to be illuminated are wired as depicted in circuit A of 

Figure 8-22.

Scheduling events can be a complex problem, and the Python 

reference documentation should be examined for further details when 

using these modules.6

6 1) docspython.org/3/library/sched.html
2) https://pypi.python.org/pypi/schedule - schedule 0.4.3

Figure 8-21.  Scheduler Program Output from Overlapped 
Events
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�Detecting and Counting Events
Detection and counting of external events on the RPi require both the 

ability to determine the presence or absence of a voltage on the individual 

pins of the GPIO array and the ability to detect a transition in the pin 

voltage. Electrical voltage transitions on the GPIO pins can be monitored 

by two techniques, known as “polling” and using “interrupts.” Looking 

for a voltage change at any arbitrary point in time is called “polling” 

the pin. The disadvantage of polling lies in the fact that the event to be 

monitored could occur before or after the time frame in which the pin 

status observation is made. Polling is often implemented with software 

loop coding that can consume significant amounts of processor time while 

blocking the CPU from doing other task processing.

The second method for determining electrical voltage transitions uses 

interrupts or “edge detection” in which the change from high to low (a 

falling edge) or low to high (a rising edge) is recorded.

In very simplified terms, it can be said that most modern operating 

systems are time-sharing operations managing multiple programs that 

appear to the user to be running simultaneously. Each program being run 

by the operating system is termed a process in Unix (a task in Windows) 

and is only run for a short period of time. Periodically the currently 

running program uses up its allocated “time slice” as determined by the 

generation of interrupt signals sent to the central processing unit from 

either a hardware or software timer. The interrupts cause the CPU to 

suspend or “interrupt” the normal tasks at hand to attend to, or service, 

high-priority events. An interrupt causes the CPU to save its current 

computation, switch to processing an interrupt service routine (ISR) (or 

event handler), and resume normal operation after completion of the 

ISR. Input-output operations can be coded into ISRs, and the CPU thus is 

able to divide its processing resources between monitoring I/O operations 

and normal computational functions. The processing of the first program 

slice of CPU time, the generation of the interrupt signal, the processing 
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of the ISR, and the switch to the next program to be processed are all 

happening in such short times that, to the user, several programs appear to 

be running at the same time.

Threads are smaller portions of a program’s code that can be 

interleaved to produce the desired effect of having the two code portions 

appear to run simultaneously. (Only multicore processing hardware can 

actually run multiple threads simultaneously.) Threading can be used to 

avoid the shortcomings of polling in GPIO operations. An interrupt and 

ISR can be used to examine the status of a GPIO pin and, if it is inactive, 

continue on seamlessly with normal program processing. Polling involves 

continuous checking for events, while interrupts do so periodically. 

Polling consumes all the resources, while interrupts consume only some. 

Polling uses a single thread focused on event detection, but Python and 

the RPi.GPIO library allow the creation of two or more threads in which 

event detection code can run independently. Detection of an event 

in the secondary threads activates code that calls back to the primary 

thread to initiate an interrupt service routine. There are numerous, very 

simple, easy-to-implement, multiple push button, threaded callback 

demonstration programs that have been published to support the 

library documentation describing GPIO array input and output use. 

Documentation for a simple threading library is available online.7

In previous exercises, the three libraries that can be used to work with 

the RPi.GPIO pins have been introduced, and these different modules 

will be used as required to generate simple timer programs or to monitor 

pin status and record times between pin state changes throughout the 

remainder of the manuscript.

The RPi.GPIO and gpiozero libraries are very easy to use and are 

supported by extensive documentation of code that has been developed 

for a large number of common devices that can be interfaced to the RPi 

through the GPIO pins.

7 http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
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The first two libraries are however not capable of accurate, short-

period, timekeeping. In previous exercises, the “jitter” that can be seen in 

simple LED power control applications is caused by the Unix-based Linux 

operating system halting GPIO operations to deal with internal processes 

that have a higher priority than the RPi input-output code.

A third library imported as pigpio has been developed for use on the 

RPi that is capable of providing microsecond timekeeping accuracies. 

Timekeeping accuracy in the pigpio module has been achieved by using 

C code to write the library and using a Python-Linux/Unix interface 

program running on the RPi to access the GPIO pins. Unix utility or 

service programs running in the system background are often known as 

“daemons.”

As noted, physical computing with the GPIO pins on the RPi can be 

considered as the interfacing of the computer with the outside world. The 

RPi is able to detect the status of each pin in the array by measuring its 

voltage at virtually any point in time. System and software overheads limit 

the response time of the RPi to changes in the voltage on any GPIO pin 

when the Python interpreter uses either the RPi.GPIO or gpiozero library. 

As noted, in order to improve the short time response of the RPi to its GPIO 

pin array, a library written in the very fast-executing C language has been 

interfaced to the Python interpreter with the Linux/Unix daemon or utility 

program called “pigpiod.” Microsecond time scales are reliably accessible 

in GPIO pin operations with the C library module.

The pigpio library can be used by investigators at all levels of 

programming capability, and the extensive documentation should be 

consulted as required.

Timing and low-frequency event counting can be realized with Python 

programs written using the appropriate GPIO pin management library 

for the task at hand. Simple, low-level, easy-to-code-and-implement 

interfacing can be achieved with the RPi.GPIO library, while more complex 

sensors are best interfaced using the gpiozero library. Moderate- to 
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advanced-level programming skills are required to use the pigpio library 

with its fast accurate time management capabilities and the interfacing 

utility daemon running in the background of the RPi operating system.

�Experimental
Implementation of the software GUI-based stopwatch timers requires no 

interaction with the GPIO array.

Scheduling events may be used in both ordinary Python code 

application programming or a physical computing process utilizing the 

GPIO array as is described in the following portions of this exercise.

Since all input and output actions from sensors, actuators, motors, and 

switches must be in the form of transitions from 0 to 3.3 or 5 volts, the two 

circuits depicted in Figure 8-22 can be used to either source or sink the 

electrical activation signals in the form of circuit A or B, respectively.

The use of an LED in circuit B of Figure 8-22, although not required 

for the activation of the RPi GPIO code, does provide the investigator with 

an additional diagnostic capability in the event of a section of code not 

Figure 8-22.  Circuits for Sinking or Sourcing Electrical Signals for 
GPIO Programming Demonstrations

Chapter 8  Counting Events and Timing



274

responding to a button click. A button click should cause the LED to light and 

the code waiting for the button click to be activated as expected. A failure of 

the LED to illuminate when the button is clicked can thus identify the root 

cause of the code not responding (see “Observations” and “Discussion”).

Listing 8-12 uses a push button mechanical switch configured as 

depicted in circuit B of Figure 8-22 to provide “rising edge events” to trigger 

the actions of the time measurement program.

The program uses two rising edge detection functions that block all 

computing operations while the RPi waits for the edge to appear. If activation 

of the push button switch is the only operation on which the program is to 

focus, as is the case in the timer example, then a blocking function is both 

simple to implement and adequate for the problem at hand. Figure 8-24 is a 

typical output from the rising edge timer program, while Figure 8-25 caught 

a switch contact “bounce” during programming code development.

As previously noted, high-speed digital timers and counters 

monitoring mechanical switches such as push buttons, toggles, or 

magnetically activated reeds must accommodate contact bounce that 

occurs before a switch provides a continuous closed contact. The RPI.

GPIO libraries all have provisions for estimating the switch contact bounce 

that may be encountered in the experiment at hand and will accept the 

experimenter’s millisecond time scale in which to ignore the second event.

When higher-speed events are to be monitored, such as those 

encountered in optical beam blocking configurations, a capacitor can 

often be used to dampen spurious noise or electromagnetic interference.

Polling and interrupt event detections, although easy to implement 

for educational purposes with push button devices, are of limited value 

for detecting and counting higher-speed events. Motor rotational speeds, 

high-speed object counting, and accurate timing over fixed distances, 

as are to be encountered in subsequent physical computing exercises 

and measurements, can all be implemented with break beam optical 

techniques. In Chapter 10 an IR break beam detector is used to count 

motor rotations to determine motor rotational speed.
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Figure 8-23 depicts an invisible infrared (IR at 940 nm wavelength) 

break beam circuit that can be configured on a prototyping breadboard 

and connected to the RPi 40-pin GPIO array. (BCM GPIO values and BN or 

board number values are both provided in the circuit description.)

A break beam system does not have metal contacts and does not 

“bounce” but can experience an electrical spike or noise that can generate 

spurious signal responses. Implementation of a bounce time for second 

signal rejection or the use of a capacitor to absorb spurious signals is thus 

a matter of either judgement or experimentation for the investigator when 

assembling and writing code for the experiment at hand.

The following break beam programs are designed for continuous 

operation and use a while loop to monitor the beam integrity. The loop 

software has built-in code for a clean exit scheme that uses the Ctrl+C 

keystroke combination to terminate the main program beam scanning 

loop and execute a proper circuit shutdown procedure that, in general, 

turns off the IR beam, removes code no longer in use, and resets port 

configurations.

Figure 8-23.  An IR Break Beam Circuit
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Listings 8-13, 8-14, and 8-15 of the three RPi programs monitoring the 

IR beam have additional code in the main while loop that activates two 

diodes, a red and a green, connected to pins 38 and 40 on the board array 

(BCM GPIO 20 and 21) in accordance with Figure 8-22 A. An IR beam is 

invisible, and the added code turns the red diode on when the beam is 

broken and illuminates the green when the beam is intact. The two diodes 

serve as a remote indicator of the invisible IR beam status.

Listings 8-13 and 8-14 are two ways in which an IR diode and a 

photo-transistor detector can be used to demonstrate higher-speed event 

monitoring and present a practical application of the technology.

�Observations
Output from the rising edge timer program is heavily commented to 

describe the events that occur during the elapsed time measurement as 

seen in Figure 8-24.

Occasionally the button click does not produce the expected results 

with the code awaiting the electrical transition. As seen in Figure 8-25, 

when attempting to activate the timer programs that use two sequential 

Figure 8-24.  A Typical Rising Edge Push Button Timer Output
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clicks of the button to measure an elapsed time, the code acknowledges 

and acts upon the “start a timing session” initial event and then, virtually 

immediately, properly ends the timing session, recording a fractional 

second elapsed time. (See “Discussion.”)

In Figure 8-25, a 0.049 or a 49 ms (millisecond) elapsed time has been 

measured that is characteristic of mechanical switch “bounce”.

On occasion an initial click of a button does not activate the code 

awaiting the transition. The phenomenon is random in nature and has on 

occasion fortuitously been traced to the switch contacts either not closing 

or not closing with sufficient surface area contact to provide the energy 

needed to light the diode or activate the transition recognition code. (See 

“Discussion.”)

Figure 8-26 is the output of a simple program that uses a simple while 

loop polling method to monitor the status of the IR beam. As can be seen 

from the output that was generated by the author rapidly hand-vibrating 

a pen in the beam, when the beam is unbroken, the photo-transistor or 

diode acts as a short circuit to ground, and the GPIO pin attached to the IR-

sensitive element is pulled down to virtually 0 V. Beam blockage removes 

the short circuit to ground, and the GPIO pin rises to 3.3 V driving the 

input pin high.

The while loop constantly cycles as fast as the system’s software-

hardware combination will allow and outputs the high/low value of the 

pin.

Figure 8-25.  An Unexpectedly Short Elapsed Time 
Determination
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The continuous loop that is only polling the input pin is properly 

terminated by using the “Ctrl+C” keystroke sequence. The sequence is 

recognized by encasing the while loop in a try-except keyboard interrupt 

combination that allows the loop to terminate and passes control to the 

remainder of the program. After loop termination, the program code turns 

off diodes that may be on, resets the GPIO configuration that may have 

been modified, and signals the program termination. Rapidly vibrating 

motions of the pen in the beam do not change the rate at which data 

is printed out in the interactive terminal. The polling can be seen to be 

missing beam breaking events.

Figure 8-27 displays the output from the rising edge detection interrupt 

code of Listing 8-13.

Figure 8-26.  A Polling Program Output
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Rapid vibration of a pen shaft in the IR beam causes a corresponding 

rapid increase in the data output rate. The garbled output, as seen in 

the preceding data output, appears to be due to the interactive screen 

output not being able to respond to the rapid interrupt detection of beam 

blockage events.

An interrupt on event detection process has been created in the 

program by using the add_event_detect function of the RPi.GPIO library. 

The added function takes several arguments that specify the GPIO pin 

number; the event condition on which to act, a rising/falling edge or 

both; and the name of the function to branch to or “call back to” when the 

interrupt signal is received.

Figure 8-27.  An Interrupt Event Detection Program Output
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Until the selected electronic transition is encountered on the GPIO pin 

being monitored, the main loop of the program prints out the expected 

“Input = 0 Photodiode ON” and program control does not branch to the 

function created specifically for use when the transition is encountered. 

With no activity on the GPIO pin, the interrupt runs virtually invisible in 

the background. Electronic activity however triggers a branching to occur, 

and program control is transferred to a “jump to, execute, and return 

from” function that conducts the actions required by the investigator. 

In Figure 8-27, the input pin status is printed out until a rising edge is 

encountered that causes the program to branch to the specially created 

function that examines the pin status, prints it out, and returns to the 

original program looping routine. The add_event_detect function of the 

RPI.GPIO library is executed so quickly that the slower code controlling 

the output display is unable to keep up with rapid pen movements in the 

IR beam, and the corrupted output seen in Figure 8-27 results. The high 

speed of the interrupt technique is made possible by the use of threading.

Listing 8-15 uses an interrupt technique to drive an event counter. 

The counter runs in a separate thread from the main program and is 

accessed only when a specified electronic transition occurs on the pin 

being monitored. The counter value is stored in a Python global variable 

so as to be visible to the output portion of the main program loop, outside 

of the thread in which the counter increment function works. The main 

loop prints out the counter value on a regular timed basis as determined 

by the program code execution, but the counter value is increased by the 

interrupt-activated event detection that branches to the thread in which 

the counter is incremented. As can be seen in Figure 8-28, by vibrating a 

pen in the IR beam, the counter records the number of beam interruptions 

and adds them to the total count during the normal, virtually constant rate, 

data output intervals of the main program.
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�Discussion
A direct interfacing of sensors to the RPi through the GPIO pins and one of 

the three interfacing libraries is one of the less expensive and simplest of 

the options available for collecting data or monitoring sensors. Each of the 

three libraries has unique features and a differing degree of complexity. 

GPIO is best for simple digital systems, gpiozero is for integrated circuits, 

sensors, or sensing devices and robotics motor control, while pigpio 

is more complex, very fast, and chronologically accurate while able to 

interface a wide variety of electro-mechanical systems.

All three I/O libraries are able to accommodate mechanical switch 

“bounce” that is probably best estimated empirically in the system at hand. 

The magnitude of the time window in which second or third signals are to 

be ignored is determined by the time width of the smallest signal that the 

investigator wishes to measure.

Figure 8-28.  An Interrupt-Driven Event Counter Output
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The choice between a program that monitors for events with a polling 

loop and an interrupt-driven routine is simply a matter of considering 

the rate at which data is sent to the GPIO pin. Polling at once or twice per 

second is perfectly adequate for monitoring a door opening sensor, while 

an interrupt-driven monitor should be used for high-speed rotational 

measurements.

Python time-based measurements are all based upon tick counts of 

the system on which the program is running. The time base of the system 

is derived from Internet time as supplied by Internet time servers. As 

previously noted for time measurements that are to be made “off-line” 

such as in field measurements, a real-time clock (RTC) must be installed 

on the RPi.

Complete descriptions of the use of the scheduler modules can be 

found at the URLs in footnote 6 and should be consulted when using these 

Python functions. The use of the modules with minutes, hours, days, and 

hours of the day for all the days of the week requires care in application 

to function as desired and should be carefully set up for real-world 

applications.

The rapid response rate of an optical break beam circuit can be used to 

measure the frequency of a signal by using the appropriately scaled signal 

of interest, to power the IR diode source. The counter software can then be 

coded to measure, with an interrupt-driven counter, the number of events 

that accumulate over a timed and defined number of iterations of the 

program’s main output loop.
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�Code Listings
Listing 8-1.  DAQFactory Sequence Scheduled Time Timer

// Scheduled Time Timer

// Oct. 2 to 15, 2010

// A screen Start/Stop button is used to initiate the  

// Schdld_Time_Tmr sequence. The sequence accepts a start and  

// stop time at which to run a "scheduled event" from two,

// labelled, date and time edit boxes.

// The sequence verifies that both times are in the future and  

// that the start time is before the finish time. Beneath the edit

// entry boxes a panel display shows the time left before event  

// activation together with the elapsed and remaining times of

// the scheduled event.

//

//

global EvStartTime  // the starting time of the scheduled event

global EvEndTime   // the ending time of the event

global EvElapsedTime // time the event has been running

global EvRemainingTime // the time remaining in the timed event

global CurrentTime // the current time

global TimeToGo   // the variable for the count down timer

global HrsToGo

global MinToGo

global SecToGo

global EvHrsToGo

global EvMinToGo

global EvSecToGo

global EvElpsdHrs

global EvElpsdMin

global EvElpsdSec
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//

// verify validity of entered time values

//if (EvStartTime < EvEndTime)

//if (CurrentTime < EvStartTime)

//

// Count down to start of timed event

//

CurrentTime = SysTime()

while (EvStartTime - CurrentTime > 0)

CurrentTime = SysTime()

TimeToGo = EvStartTime - CurrentTime

//Calculate the count down times for display

HrsToGo = floor(TimeToGo/3600)

MinToGo = floor(TimeToGo - (floor(HrsToGo) * 3600))/60

SecToGo = TimeToGo - (floor(HrsToGo * 3600) + (floor(MinToGo) * 60))

delay(0.01)

// zero count down timer display

HrsToGo = 0

MinToGo = 0

SecToGo = 0

endwhile

//

// Start Scheduled Event Timer

//

While (EvEndTime - CurrentTime > 0 )

CurrentTime = SysTime()

// Start actual event 

RedLed = 5

//

TimeToGo = EvEndTime - CurrentTime
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//Calculate the count down times to the end of the scheduled 

event for display

EvElapsedTime = CurrentTime - EvStartTime

EvElpsdSec = (EvElapsedTime)%60

EvElpsdMin = (EvElapsedTime/60)%60

EvElpsdSec = (EvElapsedTime/3600)

EvHrsToGo = floor(TimeToGo/3600)

EvMinToGo = floor(TimeToGo - (floor(EvHrsToGo) * 3600))/60

EvSecToGo = TimeToGo - (floor(EvHrsToGo * 3600) + 

(floor(EvMinToGo) * 60))

delay (0.01)

endwhile

// Stop Timed Event

RedLed = 0

Listing 8-2.  DAQFactory Stopwatch Timer

The Stopwatch Timer DAQFactory Sequence Code

// Stop Watch Timer Oct.6 - Nov. 17 2010  (Min is a reserved  

// word!) The timer sequence is started and stopped by a screen

// button that simultaneously sets a timing flag for a while

// loop and starts the sequence StopWatchTimer. The SysTime()

// function is used in a wait(0.05) delayed while loop, that  

// calculates the total number of clock ticks between the current

// value of SysTime() and the initial interval starting value.  

// The total elapsed time in seconds is calculated then divided

// into hours, minutes and seconds for display. The main screen  

// display provides the operator with two modes of timing

// operation that record either a single interval time or the  

// cumulative total of multiple intervals. The cumulative total

// option must determine the number of seconds that have elapsed  

// in the current interval and keep track of the sum of the

// accumulated interval times.
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//

//

//

global InitialTime // the start of the current interval

global ElapsedTime // the elapsed time of the current interval

global Hrs = 0

global Minutes = 0

global SxtyMinTm

global Sec = 0

global SxtySecTm

global TimingFlg // the main while timer loop condition flag

//

//

InitialTime = SysTime() // Set the initial time value

//

while(TimingFlg) // start the main program loop

   ElapsedTime = SysTime() - InitialTime

   wait (0.05)

   �Hrs = Floor(ElapsedTime/3600) // �just divide total time in 

seconds by 3600 to get hours

   Minutes = Floor(ElapsedTime/60) // total minutes is calculated

   SxtyMinTm = (Floor(ElapsedTime/60))%60

   �Sec = (ElapsedTime - ((ElapsedTime - (ElapsedTime % 3600)) % 60))

   �SxtySecTm = (ElapsedTime - ((ElapsedTime - (ElapsedTime % 

3600)) % 60)) % 60

   Endwhile
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Listing 8-3.  DAQFactory Sequence Reset Stopwatch

// Reset Stopwatch Display Oct. 6, 2010

// The sequence resets the timer variables

//

InitialTime = 0

CurrentTime = 0

ElapsedTime = 0

Hrs = 0

Minutes = 0

Sec = 0

SxtySecTm = 0

TSixtySecTm = 0

SxtyMinTm = 0

TSxtyMinTm = 0

TtlHrs = 0

TtlMin = 0

TtlSec = 0

Listing 8-4.  DAQFactory Sequence Cumulative Time of Intervals

// CumulativeTimeOfIntervals Nov. 27, 2010 is a summation of  

// the previous collected intervals Each interval timed is

// measured in clock ticks that are converted into sec, min  

// and hrs for display. When the current interval is to be

// summed into the accumulation the Cumulative Time button is  

// used to add the current interval’s total seconds to the

// accumulating sum of total seconds. The previous hrs, min.

// and seconds used for the previous display are discarded and  

// a new total time is calculated for an up-dated display.

//
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global TtlHrs

global TtlMin

global TtlSec

global Hrs

global Minutes

global Sec

global TSixtySecTm

global TSxtyMinTm

global ElapsedTime

global IntrvlMin

//

TtlSec = TtlSec + Sec

TtlHrs = Floor(TtlSec/3600) // just divide total time in 

seconds by 3600 to get hours

TtlMin = Floor(TtlSec/60) // total minutes is calculated

   TSxtyMinTm = (Floor(TtlSec/60))%60

   Sec = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60))

   TSixtySecTm = (TtlSec - ((TtlSec - (TtlSec % 3600)) % 60)) % 60

Listing 8-5.  DAQFactory Sequence Counting Events

// A_Counter_Event - Jan. 1/11 - The LabJack counter is activated  

// by a 5 to 0 volt falling edge followed by a 0 to 5 volt

// rising edge. The following script applies the 5 - 0 - 5 volt  

// profile to the DigOut_9_EventCntr channel that activates

// pin D9 onthe CB-25 board. This script is activated by

// clicking on the screen button labelled "Initiate Event".

//

// Set the pin voltage to 5 volts

DigOut_9_EventCntr = 5

// Create the falling edge by setting the pin voltage to 0

DigOut_9_EventCntr = 0
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// Create the rising edge by setting the pin voltage back to 5

DigOut_9_EventCntr = 5

// �For ease of configuration the voltage is left on for 1/2 a 

second so as the lit LED can be

// used to validate a functioning system.

//Delay(0.5)

//DigOut_9_EventCntr = 0

Listing 8-6.  DAQFactory Sequence Reset Counter

// ResetCounter - Fall/09 Revn Jan 1/11 The script manually

// resets the displayed number of events counted, by the LabJack  

// counter after the defaut "Reset after polling" has been

// turned off. The counter is activated after it detects a

// falling edge waveform followed by a rising edge waveform.  

// The "event" counted thus consists of a 5 to 0 - 0 to 5 volt

// transition which leaves the Pin 9 at 5 volts. For the manually  

// activated counter exercise the blue LED thus remains ON as

// long as the manually activated counting session is in

// progress, re-setting the counter then turns the LED off.

//

EventsCounted[0] = 0

DigOut_9_EventCntr = 0

// By using the default setting of "Reset" after polling (reading)  

// the number of 5-0-5 volt transitions in a given period of 

// time, the frequency can be determined.

RawCounts[0] = 0

DigOut_8_PWM = 0
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Listing 8-7.  DAQFactory Sequence PWM Script

// PWM_Script (Pulse Width Manipulation) Script for pulse

// width variation - Oct. 21/09 Rvn. Jan. 2/11, Aug. 3/17

// A "time - goto" loop is used with delay statements to set  

// D8 to 1 then 0 thus raising and lowering the channel

// DigOut_8_PWM output between 0 and 5 volts in a continuous  

// manner. The continuously varying voltage creates a square

// wave train. The 0.002 and 0.098 can be considered as the  

// time on time off duty cycle. With the lower duty cycle the

// pulsing of a powered light source is quite evident.  

// Various duty cycles must be entered manually into the simple

// program which is started and stopped with the sequence

// pop-up menu displayed by right clocking on the sequence name.

time 0

DigOut_8_PWM = 1

Delay (0.002)

DigOut_8_PWM = 0

Delay (0.098)

goto 0

Listing 8-8.  Arduino Stopwatch Timer Code

/* A stopwatch program using a DAQFactory panel and the serial  

port to avoid the debouncing problems associated with 

mechanical switches. The program uses the letters b, s, and r 

to branch in an Arduion case statement using b for begin, 

s for stop and r for re-set. Always ensure that data sent 

from the Arduino to the DAQFactory software code is 

Serial.println(data);

*/
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char incmngByte;                        // �a variableto hold 

the incoming byte 

from the serial port

unsigned long start, finished, elapsed; // timing variables

bool tsipFlg = LOW;                     // �timing session in 

progress flag

bool wtspFlg = LOW;                     // �write to serial port 

once only flag

bool rstFlg = LOW;                      // re-set b and s flags

//

void setup() {

  Serial.begin(9600);                   // �start the serial port

}

//

void loop() {

 if(Serial.available() > 0) {           // �check port for 

incoming character

  incmngByte = Serial.read();           // �set character into 

variable

  }

switch(incmngByte) {                    // �the case statement 

for decisions

  case'b':                              // �begin a timing 

session

  if (tsipFlg == LOW) {                 // �check the status flag

  start = millis();                     // set the start time

  //Serial.print(start);                // diagnostic

  tsipFlg = HIGH;                       // �set the status 

flag to timing in 

progress

  }
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  rstFlg = LOW;

  break;

  case's':                              // stop the timer

  if (wtspFlg == LOW) {                 // check the status flag

  finished = millis();                  // set the finish time

  //Serial.println(finished);           // diagnostic

  elapsed = finished - start;           // �calculate the 

elapsed time

  Serial.println(elapsed);              // �write the elapsed 

time to the serial 

port

  wtspFlg = HIGH;                       // �set the status flag 

to write only once

  }

  rstFlg = LOW;

  break;

  case'r':                              // �re-set b and s 

functions

  if (rstFlg == LOW) {                  // �check the status flag

  tsipFlg = LOW;

  wtspFlg = LOW;

  rstFlg = HIGH;

  }

  break;

 }

}
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Listing 8-9.  DAQFactory Quick Sequences for b, s, and r

// send begin signal b

device.ardyBluBrd.Write('b')

// send stop signal s

global Elapsed

device.ardyBluBrd.Write('s')

private string datain

datain = device.ardyBluBrd.ReadUntil(13)

Elapsed = strToDouble(datain)

// send re-set signal r

device.ardyBluBrd.Write('r')

Elapsed = 0

�Raspberry Pi Program Code

Listing 8-10.  A RPi Three-Button Stopwatch Timer GUI

from tkinter import *

import time

class StopWatch(Frame):

    """ Implements a stop watch frame widget. """

    def __init__(self, parent=None, **kw):

        Frame.__init__(self, parent, kw)

        self._start = 0.0

        self._elapsedtime = 0.0

        self._running = 0

        self.timestr = StringVar()

        self.makeWidgets()
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    def makeWidgets(self):

        """ Make the time label. """

        l = Label(self, textvariable=self.timestr)

        self._setTime(self._elapsedtime)

        l.pack(fill=X, expand=NO, pady=2, padx=2)

    def _update(self):

        """ Update the label with elapsed time. """

        self._elapsedtime = time.time() - self._start

        self._setTime(self._elapsedtime)

        self._timer = self.after(50, self._update)

    def _setTime(self, elap):

        """ Set the time string to Minutes:Seconds:Hundreths """

        minutes = int(elap/60)

        seconds = int(elap - minutes*60.0)

        hseconds = int((elap - minutes*60.0 - seconds)*100)

        �self.timestr.set('%02d:%02d:%02d' % (minutes, seconds, 

hseconds))

    def Start(self):

        """ Start the stopwatch, ignore if running. """

        if not self._running:

            self._start = time.time() - self._elapsedtime

            self._update()

            self._running = 1

    def Stop(self):

        """ Stop the stopwatch, ignore if stopped. """

        if self._running:

            self.after_cancel(self._timer)

            self._elapsedtime = time.time() - self._start

            self._setTime(self._elapsedtime)

            self._running = 0
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    def Reset(self):

        """ Reset the stopwatch. """

        self._start = time.time()

        self._elapsedtime = 0.0

        self._setTime(self._elapsedtime)

def main():

    root = Tk()

    sw = StopWatch(root)

    sw.pack(side=TOP)

    Button(root, text='Start', command=sw.Start).pack(side=LEFT)

    Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)

    Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)

    root.mainloop()

if __name__ == '__main__':

    main()

Listing 8-11.  A Python Scheduled Event Program

# �Scheduled Program Control of LEDs, green and red LEDs wth 

CLRs are connected

# �to GPIO pins 20 and 21 or pins 38 and 40 of the RPi array. 

Pgm calls two

# �sequential events with defined delays between events to light 

the leds and

# print out tick time and current times.

#

import RPi.GPIO as GPIO

import sched

import time

#
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scheduler = sched.scheduler(time.time, time.sleep)  

# create an instance of scheduler

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(20, GPIO.OUT)

GPIO.setup(21, GPIO.OUT)

#

# �Activate green led for a measured length of time, timestamp 

event, pass in text 

# and document actions

def actvt_GrnLed(name):

    �print(name) # text or data passed in --> Green led 

activated firt

    print("Green LED on")

    �frstsched_tm = time.asctime(time.localtime(time.time()))  

# local time code processed

    print("First scheduled event run at ", frstsched_tm)

    �print("Green led on at ", time.time()) # the tick count at 

grn led on

    GPIO.output(20,GPIO.HIGH)

    time.sleep(3)

    �print("Green LED off at ", time.time()) # tick count at grn 

led off

    GPIO.output(20,GPIO.LOW)

    print() # format spacing for output

#

# Activate red led for a measured length of time, timestamp 

event, pass in text # and document actions

def actvt_RedLed(name):

    print(name)

    print("Red LED on")
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    scndsched_tm = time.asctime(time.localtime(time.time()))

    print("Second scheduled event run at ", scndsched_tm)

    print("Red Led on at ", time.time())

    GPIO.output(21,GPIO.HIGH)

    time.sleep(5)

    print("Red LED off at ", time.time())

    GPIO.output(21,GPIO.LOW)

    print() # format output spacing

    fnsh_tm = time.asctime(time.localtime(time.time()))

    print("Program local finish time = ", fnsh_tm)

    print("Finish time = ", time.time())

#

print("Start time in ticks = ", time.time())

pgm_strt_tm = time.asctime(time.localtime(time.time()))

print("Program local time start = ", pgm_strt_tm)

print()

#

scheduler.enter(2, 1, actvt_GrnLed, ("Green led activated 

first",))

scheduler.enter(5, 1, actvt_RedLed, ("Red led is activated 

second",))

#

scheduler.run() # start the program

Listing 8-12.  A Raspberry Pi RPi.GPIO Push Button Timer

# �A push button activated rising edge transition starts a timer 

and a second

# �stops the elapsed time measurement. GPIO 21 is pin 40 on the 

pi board and

# �is connected to the junction of the series connected PBS and 

LED CLR circuit
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# A bounce time of 100 ms is used to avoid false triggering.

#

import time

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

# set up the pin-channel, board is 40 bcm is 21

GPIO.setup(21, GPIO.IN)

#

GPIO.wait_for_edge(21, GPIO.RISING, bouncetime=100)  

# a blocking action while waiting

#

# wait for the event, print an alert and start a timer

#

if GPIO.input(21):

    print("A rising edge was detected.")

    # start a timer to count ticks

    ticks_initl = time.time()

    print("A timer was started at tick count ", ticks_initl)

    GPIO.setup(21, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) 

# reset the GPIO pin low

#

# wait for the second event to occur and measure the elapsed time

GPIO.wait_for_edge(21, GPIO.RISING, bouncetime=100)  

# again a blocking action while waiting

#

if GPIO.input(21):

    print("A second or stop timing event has been detected.")

    ticks_fnl = time.time()

    �print("A stop timing event has been detected at tick count ",  

ticks_fnl)
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#

# calculate and display the elapsed time.

print("The elapsed time = ", round(ticks_fnl - ticks_initl, 2), 

"seconds")

Listing 8-13.  A Polling IR Break Beam Monitor Program

# Code for PRi Detecting Input Events by Polling

# Program to get input from pin 7 (board) Gnd is pin 6

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BOARD)  # get library

GPIO.setwarnings(False)

GPIO.setup(11, GPIO.OUT)  # �set pin 11 as output to power IR LED

GPIO.setup(38, GPIO.OUT)  # �green led beam intact indicator

GPIO.setup(40, GPIO.OUT)  # �red led beam broken indicator

GPIO.setup(7, GPIO.IN)    # �set pin 7 as IR Photodiode input

#

#  Main program loop

GPIO.output(11, True)     # turn LED on

try:

    while (1):            # continuous loop

        if GPIO.input(7):

            �print("Beam off, photodiode off input pulled hi ")   

# detects 3.3v power from pin 1

            GPIO.output(38, 0)   # �grn led off as beam has been 

broken

            GPIO.output(40, 1)   # �red led on to indicate beam 

is broken

            time.sleep(0.5)
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        else:

            �print("Beam on, photodiode on, input pulled low ")   

# detects 0v (diode-on acts like short)

            GPIO.output(40, 0)   # �red led off as beam restored

            GPIO.output(38, 1)   # �grn led on as beam intact

            time.sleep(0.5);     # �wait time before next loop

except KeyboardInterrupt:

    pass

#

#

GPIO.output(11, False)                   # turn OFF the IR LED

GPIO.cleanup()                           # reset ports

print("Diodes off and ports reset ")     # indicate end of pgm

Listing 8-14.  An IR Break Beam Monitor with Interrupt Activity

# PRi Detecting Input Events with Interrupts

# Program to get input from pin 7 (board) Gnd is pin 6

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BOARD)   # get library

GPIO.setup(11, GPIO.OUT)   # �set pin 11 as output to power IR LED

GPIO.setup(38, GPIO.OUT)   # green led beam intact indicator

GPIO.setup(40, GPIO.OUT)   # red led beam broken indicator

GPIO.setup(7, GPIO.IN)     # set pin 7 as IR Photodiode input

#

#   Function that "add event detect" runs at input change

def inputChng(channel):

    print("Input pin status changed to ", GPIO.input(7))

#

# On input change, run input change function

GPIO.add_event_detect(7, GPIO.RISING, callback=inputChng)
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#

GPIO.output(11, True)         # turn IR LED on

time.sleep(1)

try:

    while True:

        if GPIO.input(7) > 0.5:

            �print("Input =", GPIO.input(7), "Photodiode 

OFF")  # detects 3.3v power from pin 1

            GPIO.output(38, 0)  # �grn led off as beam has been 

broken

            GPIO.output(40, 1)  # �red led on to indicate beam 

is broken

            time.sleep(0.5)     # �wait time before next 

iteration

        else:

            �print("Input = ",GPIO.input(7), "Photodiode ON") 

  # detects 0v (diode-on acts like short)

            GPIO.output(40, 0)  # �red led off as beam restored

            GPIO.output(38, 1)  # grn led on as beam intact

            time.sleep(0.5)     # �wait time before next 

iteration

except KeyboardInterrupt:

    pass

#

#

GPIO.output(11, False)        # turn OFF the LED

GPIO.remove_event_detect(7)   # Turn off event detect interrupt

GPIO.cleanup()                # reset ports

print("Led Off, event detect interrupt removed and GPIO cleanup run")
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Listing 8-15.  An IR Break Beam Interrupt-Driven Counter

# Break Beam Interrupt Driven Counter: counts & prints number 

of interruptions in beam

# Input from pin 7 (board) (GPIO 4) system ground at pin 6

# IR photodiode pull-up with 1M ohm pullup btwn 7 & 1 (3.3v)

# IR LED pin 11 supplies IR illumination gnd pin 6

#

import RPi.GPIO as GPIO   # get GPIO library

import time

#

GPIO.setmode(GPIO.BOARD)     # �use RPi board pin numbers

GPIO.setup(11, GPIO.OUT)     # �set pin 11 (GPIO 17) as output 

to power IR LED

GPIO.setup(7, GPIO.IN)       # set pin 7 (GPIO 4) as input

#

counter = 0 # declare and initialize counter variable

#

# Function "add_event_detect" runs at input change

def counterPlus(channel):

    global counter                 # �declared global to share 

with system & threads

    if GPIO.input(channel) > 0.5:  # �pin 7 = 3.3v. photodiode off

        counter += 1               # �recognize blocked beam

    else:

        counter += 0               # 0v, no-op

#

# On input change, run input change function

GPIO.add_event_detect(7, GPIO.RISING, callback=counterPlus)

#

GPIO.output(11, True)         # turn on the IR LED

time.sleep(1)                 # �give LED time to turn fully on
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try:

    while True:

        print("Count = ", counter)   # �output current counter 

value

        time.sleep(1)                # �time delay before 

looping

except KeyboardInterrupt:

    pass

#

print("Final counter value = ", counter)  # output final 

counter value

GPIO.output(11, False)                    # turn IR source off

GPIO.cleanup()                            # reset ports

print("Diodes off and GPIO ports reset")

�Summary

–– Integrated circuits based upon “latches” with crystal-

regulated oscillators acting as timing clocks are able to 

count and determine the time between events with 

microsecond resolution.

–– Time of day measurements are based upon “tick” 

counts since January 1, 1970, and allow for day time 

determination, timing coordination, and scheduling for 

events in the future through the SCADA GUI.

–– Stopwatch timing can be configured with both the 

commercial and component-assembled SCADA 

systems.
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–– Several solutions are provided for monitoring for events 

and compensating for the false or erroneous triggering 

of event detectors during experimental sessions.

–– In Chapter 9, the advantages of graphical data record-

ing are presented that in some experiments can detect 

false triggering of event detection.
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CHAPTER 9

Graphical Data 
Recording
An old Far Eastern proverb advises that “a picture is worth a thousand 

words.” The truth of the proverb is fully realized in chemical analysis 

and medical imaging where not only the numerical values but the shape 

of the recorded data conveys information. Numerous techniques in 

medical, physical, and many other experimental sciences depend upon 

the graphical presentation of data. Clinical and chemical analysis has 

traditionally used chemically sensitive transducers to generate a millivolt 

signal in response to changing chemical process values. The small signal 

was amplified electronically and used with a servomotor to mechanically 

drive a pen across a paper chart to provide a visual record of the chemical 

process being monitored. Although both x-y and x vs. time plotting 

systems are extensively employed in the manufacturing process industries, 

chemical analysis, and other sciences, the electro-mechanical plotting 

instruments, much like the typewriter, have been replaced by the PC.

x-y plotting is used extensively in analytical spectroscopies and 

electrochemical analysis, while x vs. time charting is used for following 

titrations, in biochemical kinetics, and in both chromatographic and 

spectroscopic analysis.

DAQFactory is being used for this application because of its powerful 

graphical recording and display capabilities. A graphical display tutorial is 

included with the DAQFactory user manual along with a detailed chapter on 

https://doi.org/10.1007/978-1-4842-6778-3_9#DOI
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the DAQFactory graphical display capabilities. Both the tutorial and the user 

manual should be reviewed before starting this exercise for those researchers 

using either the free Express or full version of the SCADA software.

In this exercise, several very important concepts and circuit 

configurations are demonstrated. The 555 timer configured as an astable 

multivibrator will be used to create square, sawtooth, and nonsymmetrical 

triangular signal waveforms as a prelude to visually examining the very 

important concept of pulse width modulation (PWM). Exponential and 

linear voltage waveforms from capacitor charging and discharging will be 

demonstrated, and the creation of symmetrical voltage waveform outputs 

from special ICs will be used for creating graphical data recordings.

In the first timer configuration examined, two resistors and a capacitor 

will be used to form a “timing network” on the oscillator chip. The RC 

component values will be chosen so the timer chip generates waveforms 

compatible with our recording software. One of the resistance components 

chosen will be of a variable nature to model a resistance-based chemical 

or physical transducer. Variation of the transducer resistance with 

some physical phenomenon, such as the intensity of the light falling on 

the sensor surface or temperature, will then cause the frequency and 

wavelength of the timer output signal to vary, and the output variation will 

be displayed on the PC screen in a graphical format. Signal variation can 

then be transformed into pulse width variation to form the basis of the 

extensively used pulse width modulation (PWM) concept.

In the second timer configuration examined, the use of a constant 

current source to charge the timing capacitor will be demonstrated, 

and the creation of “sawtooth” and triangular output waveforms will be 

graphically recorded. The triangular waveform or voltage ramp has an 

important use in some sensor monitoring and in chemical analysis. A 

third circuit is assembled to demonstrate a simplified method for creating 

a dual-slope analog ramp that is used frequently in electrochemical, 

corrosion, and biophysiology investigations.

A simple x-y recording system constitutes the last portion of the chapter.
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�Experimental: Linear Graphical Data 
Recording
�Part 1: Hardware and Component Selection – 
Square Wave Output
Previous work in Chapter 8 has shown the limitations imposed by 

software overhead, and hence the rate of change of signal shape that 

can be displayed as it occurs or in “real time” is limited by the computer 

performance. The bipolar transistor 555 timer in astable mode can 

produce an output signal that can be made to vary from 70 kHz to 

about four cycles per minute. CMOS versions of the timer can generate 

frequencies in the megacycle range. Most 555 timer manufacturers include 

a standard nomograph of the relationship between the capacitance and 

the R1-R2 values of the resistors in the IC’s timing network. Figure 9-1 

is an extended graphic that accommodates the newer versions of the 

CMOS-based ICs that are able to oscillate at the higher frequencies. The 

approximate timing network values and resulting free running output 

frequencies are depicted in Figure 9-1 for the astable configuration of the 

timer.
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In order to keep the output signal from the timer chip in the low 

frequency range that should be suitable for the DAQFactory graphics, the 

resistance values should be in the megohm range (million or 106 ohms) 

and the capacitance value in the 0.1–10 uF (micro or 1/1,000,000 F)  

range. The graphical data of Figure 9-1 is an approximation, and the 

actual resistance values chosen for use are somewhat dependent upon the 

capacitance value selected or available.

Figure 9-1.  555 Timer Output Frequency for R-C Timing Network 
Values
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An electrolytic capacitor with a value of 1–10 uF should be suitable for 

this graphics display exercise, but for more accurate work, a higher-quality 

low-leakage type of capacitor may be required as detailed in the following 

discussion.

�Electronic Components Required
	 1)	 555 timer integrated circuit

	 2)	 Variable and fixed resistors to sum into the 

low megohm range preferably with the fixed 

and variable values being in the same order of 

magnitude of resistance

	 3)	 A suitable “timing” capacitor in the 1–10 uF range, a 

0.01 uF bypass capacitor, and a 9 V battery supply

�Circuit Schematic
Figure 9-2 depicts the circuit configuration for the astable 555 timer.

Figure 9-2.  555 Timer Astable Configuration
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The preceding circuit shows a single variable resistance between pins 

7 and 2. The circuit will work when the variable resistor is in its mid-

travel position but will produce erratic results when at the low end of its 

resistance value. To avoid any problems with circuit malfunctions, place 

a fixed value resistor in series with the variable unit to limit the lower end 

value of the second timing network resistance. The author used a 10 kΩ 

value for a 1.2 MΩ R1 + R2 network sum value.

�Software
After having assembled the astable oscillator, connect the output to a 

differential input channel on the LabJack and configure a channel for 

receiving the square wave output. The graphical page component can then 

be created. For long-duration graphical displays, make sure the channel 

storage capability is large enough to support the length of the desired time 

display. The number of values in memory is defined by the value in the 

channel's “History” box. (The default entry is 3600 that can be filled quite 

quickly when working in experimental time frames of tens of minutes or 

fractions of hours.)

�Page Components Required
A two-dimensional graphical screen component is created by selecting, 

on a new page, the 2D Graph entry from the right-click pop-up page 

component menu, as shown in Figure 9-3.
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The default graphical screen component configuration for an x-y graph 

is displayed in Figure 9-4.

Figure 9-3.  DAQFactory Selection of a 2D Graphical Recorder Screen 
Display

Figure 9-4.  The Default X-Y Graphical Screen Display
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The graphical component is positioned and fitted to the page by 

pressing the Ctrl key and dragging the squares in the centers of the hatched 

edge lines to the desired locations on the page. Once the component has 

been sized, the properties menu for the screen component can be opened 

by right-clicking the screen component and selecting the “Properties” 

entry. The properties window for the graph is a multi-tabbed display with 

multiple entry forms for adding traces to the graph, defining the axis values 

used for the graphical display, adding identification titles, and selecting 

colors for the display. The Traces tab of the six-tab properties window, for 

defining the name entry, is illustrated in Figure 9-5.

Figure 9-5.  Recorder Trace Name Selection
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A Help screen at the bottom of the properties window explains all 

of the data entry boxes and tabs that are found in the graphical screen 

component.

For the square wave being generated by the 9-volt battery-powered 555 

timer oscillator, the voltage range was offset to display values from –1 to 9 

volts to more clearly depict the time the waveform is at 0 V.

�Part 1: Observations
With a 392 kΩ R1, a 900 kΩ R2, and a 10 kΩ series resistance limiting 

unit, charging a 22 uF, 25 V electrolytic capacitor from a 9 V battery, a 

graphical display of four high time cycles in 60 seconds was obtained with 

a midrange setting on R2.

Between the two extremes as depicted in Figures 9-6 and 9-7, the 

number of signal waveforms being generated on a unit time basis changes.

Figure 9-6.  Timer Output at Maximum Resistance
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If the circuit is operated without a series resistor to limit the minimum 

value of R2, then waveforms such as those of Figure 9-8 may be created.

Figure 9-8.  Waveform Without Minimal Resistance

Figure 9-7.  Timer Output at Minimum Resistance
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�Experimental
�Part 2: Hardware and Component Selection –  
Triangular and “Sawtooth” Outputs
In addition to the creation of a square wave signal with a varying duty 

cycle, the astable 555 timer can be used to generate a “sawtooth” and 

asymmetrical triangular wave. Basic electronics teaches that when a 

capacitor is charged or discharged through a fixed value resistor, an 

increasing or decreasing exponential voltage value is seen across the 

terminals of the capacitor. When a capacitor is charged with a constant 

current source, a linear voltage increase is seen across the capacitor 

terminals. The linear voltage change forms a triangular waveform that can 

be used to generate a voltage ramp having several applications in chemical 

analysis and other experimental work.

By assembling the circuit depicted in Figure 9-10, two additional 

waveforms can be generated.

Figure 9-9.   Erratic Output Signal or “Aliasing”
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�Part 2: Observations
When the capacitor is charged through a series resistor, the familiar 

exponential voltage change is observed and recorded as seen in Figure 9-11, 

between test points 1 and 3.

Figure 9-10.  A Constant Current Charging Source

Figure 9-11.  Typical 555 Timer “Sawtooth” Output Voltage 
Waveform
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When the voltage between TP1 and TP2 is measured, a triangular 

waveform is recorded as illustrated in Figure 9-12.

The charging of the capacitor with a constant current generates the 

linear voltage ramp across the capacitor plates as seen on the left-hand 

side of the waveform. The steep right-hand portion of the signal is caused 

by the rapid discharge of the capacitor when the discharge pin of the timer 

is connected to ground through the emitter of an internal NPN switching 

transistor in the 555 timer IC. Although the discharge trace appears to be 

a straight line, it is in reality the initial portion of the inverse exponential 

curve of the positive charging curvature seen in Figure 9-11. Figures 9-12 

and 9-13 illustrate the effects of adding a fixed series resistance between 

the capacitor and the discharge pin of the timer IC.

Figure 9-12.  A 555 Timer Triangular Wave Expanded Scale

Chapter 9  Graphical Data Recording



318

Simple logic would suggest that to obtain a linear triangular waveform, 

charging and discharging a capacitor through constant current sources 

and sinks would achieve the desired result, but a simpler solution can be 

found by using “function generators” that can produce signals of various 

shapes and frequencies.

�Part 3: Hardware and Component Selection – 
Dual-Slope Triangular Waveform
To obtain a symmetrical triangular waveform, it is easier to use a “function 

generator.” Like the 741 and 555 ICs, a very successful function generator 

is the Exar XR-2209 that has been available in an eight-pin dual in-line 

package (DIP) since 1975. The integrated circuit is built around a circuit 

known as a voltage-controlled oscillator (VCO). The XR-2209 VCO can 

simultaneously generate both a square and triangular voltage waveform 

signal from a single eight-pin DIP. The chip can be powered from a 

single- or dual-voltage supply as required by the application at hand. 

Figure 9-13.  The Effect of Added Discharge Resistance on the Timer 
Output Waveform

Chapter 9  Graphical Data Recording



319

(See “Discussion.”) The function generator chip requires some care when 

single-ended or dual-voltage supplies are used for power as detailed in 

the manufacturer’s data sheets. The recommended circuit schematic for 

using the 2209 function generator with a dual-voltage power supply, in the 

author’s case +/–9-volt batteries, is depicted in Figure 9-14.

To create the positive and negative voltage ramps, the circuit is 

powered by a pair of 9 V batteries configured as a bipolar +/–9 V supply 

with a common ground as depicted in Figure 9-15.

Figure 9-14.  Schematic for Function Generator Configuration

Figure 9-15.  A Dual-Battery Bipolar Power Supply
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If the circuit, when properly assembled on a breadboard, fails to 

operate as expected, consult the manufacturer’s data sheets and the 

“Discussion” section.

�Part 3: Observations
The XR-2209 can produce symmetrical triangular waveforms as depicted 

in Figure 9-16 and with an appropriate “pull-up” resistor the square 

waveform of Figure 9-17. (See discussion on design limitations for “pull-

up” resistor selection.)

Figure 9-16.  XR-2209 Function Generator Symmetrical Triangular 
Wave Output
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�X-Y Data Recording
As can be seen in Figure 9-4, the default format for the two-dimensional 

plotting, graphical display screen component is x vs. y. The constant 

current charging circuit of Figure 9-10 can be used to produce an x-y 

plotting of the voltage across the capacitor and its square as would be 

used in measuring the energy developed across the capacitor. E = CV2/2. 

The constant current circuit can be used for this demonstration exercise 

because an asymmetrical voltage ramp is created on the capacitor by 

the constant current charging and the exponential discharging of the 

component.

Figure 9-17.  Square Wave Output with Pull-Up Resistor
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To create the desired display, the voltage across the 470 uF electrolytic 

capacitor of the constant current charging circuit can be recorded in the 

channel created for the PWM data collection display. The breadboard 

electronics causes the voltage on the capacitor to linearly cycle between 1/3 

and 2/3 of the supply voltage and then exponentially discharge, when the 

timer chip connects the charged capacitor to ground. A graphical display of 

the cyclic charging and discharging voltages should thus be different. The 

channel name is entered into the x axis box, and the square of the voltage 

is computed in the y axis expression box. The voltages displayed on the two 

axes must be adjusted for the power supply being used to drive the voltage 

change, and in the author’s case, the values depicted in Figures 9-18, 9-19, 

and 9-20 were used to record the data in Figure 9-21.

Figure 9-18.  x-y Graph Traces Tab
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Figure 9-19.  x-y Graph Axes Tab

Figure 9-20.  x-y Graph General Tab
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Take note of the data being displayed for this graphical image. It is 

not PlsWdthVrn555 but PlsWdthVrn555[0,20] in both the x and y axes as 

seen in Figure 9-18. Because this is a cyclic phenomenon, we need only 

a limited portion of the channel’s data to be displayed, that is, a limited 

“field of view” or “persistence of vision.”

Figure 9-21.  A Plot of Capacitor Voltage and Voltage Square
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�Observations: x-y Plotting
The trace shown in Figure 9-21 is a typical recording that may remain 

stable and reproducible for several minutes before a distortion or altered 

trace is recorded. Figures 9-22 and 9-23 have captured two instances of 

errant tracings.

In Figure 9-22, the voltage square discharge trace recorded at the 5 V and 

25 V intersection has split into two. Careful examination of Figure 9-23 will 

reveal that the discharge trace has not only split in two at the high voltage 

portion of the cycle but also at the 3 and 9 V low end of the cycle.

Figure 9-22.  A Higher Voltage Trace Variation
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�Discussion
Graphical displays of recorded data are of great value because of the ability 

to see trends in the display. Experimental science is dependent upon 

reproducibility, and graphical displays of data can be used to validate 

observations.

Graphical display permits the investigator to see events or trends 

hidden from the “real-time” observations. However, in examining the 

trends in data recordings, the deviations caused by material imperfections, 

Figure 9-23.  A High and Low Voltage Trace Variation
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temperature variation from self-heating, light-induced variations, poor 

choice of experimental conditions, and a host of other sources of error 

must be taken into account before judgments regarding data validity 

can be made. Quite frequently in analytical chemical procedures, and 

this exercise in particular, the researcher must deal with graphical 

representations of “analog” data that involve or require very long or short 

time periods of recording. Long or short time frames may require special 

components, special electronic circuits or configurations, and protection 

of the operational circuitry from stray electrical signals and disturbances 

to be reproducible. Very long and ultrashort time constants may be 

approaching the limitations of the original design parameters for the 

traditional IC building blocks, and hence greater care must be taken when 

using these devices at or close to their operating extremes.

Common sources of variation in data derived from electronic sources 

can include the following:

	 1)	 Variations due to the power delivered by battery or 

“mains” energized supplies.

	 2)	 Component imperfections and variations such as 

in resistor noise, which is least in wire-wound units, 

moderate in metal films, and greatest in carbon 

units, capacitor leakage currents, and memory 

effects that are greatest in electrolytic, lower in 

tantalum, and least in plastic film–type components.

	 3)	 Temperature effects caused by environmental 

variation and internal heating caused by current 

passage through resistive electronic components all 

cause electronic signals to drift.
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	 4)	 Long wires can accumulate radio frequency 

interference (RFI) by acting like antennas for mains 

power line radiation. Wires should be as short as 

possible and encased in a Faraday cage if required. 

Breadboards with their long strips of metallic 

contacts and the long leads of components pushed 

into the board should be used for experimental 

development only and then replaced with printed 

circuit boards for actual experimental service.

	 5)	 Aliasing in digital sampling (or analog-to-digital 

conversion) for channel storage. Data from the 

experimental setups created in these exercises is 

converted into a digital format by the LabJack or 

microcontrollers and is read by the DAQFactory 

software at a rate controlled by the channel timing 

values entered into the channel timing value boxes. 

Any electrical signals of a repetitive or periodic 

nature that might be picked up or created by the 

controlling computer electronics, the LabJack 

electronics, the experimental setup itself, or 

the mains wiring of the building in which the 

experiments may be located present the possibility 

of “aliasing” with the true signal being generated by 

the setup being monitored. The signal thus being 

monitored over extended times may contain “false 

or artifact” waveforms superimposed over the true 

or original signal when displayed in long-term 

graphical formats.
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�X vs. Time Recordings
The operating sequence for the 555 timer has been outlined in Chapter 8, and 

from that summation together with the information in Figures 9-6 and 9-7,  

we can see that the waveform generated in the astable mode changes 

frequencies as the R2 resistance value in the timing network varies.

When wired in the astable configuration, the capacitor charge time is 

determined by the total resistance of the RC timing network as indicated in 

the following:

t1 = 0.693(R1 + R2)C (output high time)

And the discharge time is

t2 = 0.693(R2)C (output low time)

Thus, the total signal period is

T = t1 + t2 = 0.693(R1 + 2R2)C

and the frequency of operation is

f = 1/T = 1.44/(R1 + 2R2)C

The capacitor charges through both resistors while discharging 

through only one. When the R2 resistor in the network is a variable 

resistance, then the time that the output is low is proportional to the value 

of the varying resistance. The varying analog resistance in the 555 timing 

network could thus be digitized by measuring the width of the recording 

during which the output is low.

There are limitations as to the relative width of both the high and low 

times that can be generated with the circuit shown in Figure 9-2. Special 

circuitry is required to keep the oscillator frequency relatively constant, 

while the widths of the high and low times (the duty cycle) of the oscillator 

are varied.
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Expanding or contracting the time scale of the graphical display can 

vary the resolution of the waveform displayed.

Graphical displays require a large amount of computer processing 

resources and, as noted in the previous exercises dealing with time and 

timing, have a limited ability to respond to a rapidly changing signal. 

Rapidly changing signals are best digitized with hardware for storage in 

memory and then, after collection, converted into a graphical format for 

display.

For slower signal changes, DAQFactory’s ability to store graphical data 

in its channels and then be able to display it as a strip chart recording can 

be very useful in revealing hidden information. If the triangular waveform 

of Figure 9-12 is recorded for 8 to 10 minutes and then the time scale of the 

graphical display is reconfigured to display an 8-minute window of the data 

(i.e., an 8-minute window would be 8 minutes × 60 = 480 for the time base), 

then a host of variations become evident, as displayed in Figures 9-24  

and 9-25.

In Figures 9-24 and 9-25, extending the time scale over which the 

repetitive voltage cycles are displayed has brought out visually the 

influences of several ubiquitous experimental sources of error.

Most individuals are familiar with the propagation of water waves 

in a body of still water. Water waves from two sources caused by stones 

thrown into a pond appear to our eyes to pass through one another 

without interference. However, if an object is floating on the surface of 

the water at the same point where the waves pass through one another, 

a violent pitching of the object is seen. The violent pitching is caused by 

the superposition principle that sums the amplitudes of the two water 

displacement waves passing through one another. The distortions visible 

at 7:14:30 and 7:19:00 in Figure 9-24 could be caused by a second voltage 

variation wave with an amplitude of ½ volt and a frequency of one cycle in 

4 1/2 minutes blending with or interfering with the main signal.
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Figure 9-24.  Long-Term Signal Distortions

An additional source of pattern distortion caused by a more complex 

electronics problem involving timed repetitive digital sampling of 

cyclic analog waveforms is known as aliasing and is discussed in some 

electronics textbooks.1 (Aliases are a RPi-Python programming code utility 

concept.)

The recorded triangular waveforms are reasonably reproducible with 

respect to their frequency of occurrence as the author’s breadboarded 

circuit can be seen to be producing 19 cycles in 5 minutes. The 

reproducibility of the voltage levels however can be seen to be both 

1 �The Art of Electronics, Horowitz and Hill, Cambridge University Press, ISBN 
0-521-37095-7

Chapter 9  Graphical Data Recording



332

drifting and oscillating. The lower values for the voltage vary from 3.0 

to 3.4, while the upper values vary from 5.7 to 5.0. Although the upper 

and lower voltage values are varying, the display has a distinct pattern 

that suggests the system is both drifting and oscillating due to the factors 

discussed previously.

Finger heat applied to the left- and right-hand transistors in the 

constant current source produces the expansion and compression in cycle 

time illustrated in Figures 9-25 and 9-26.

Figure 9-25.  Finger Heat Applied to Left Transistor of Current 
Mirror
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Figure 9-26.  Finger Heat Applied to Right Transistor of Current Mirror

The erratic amplitude seen in addition to the altered cycle time is also 

a result of thermal effects.

The materials from which electronic components are fabricated also 

contribute to the noise seen in electronic circuits. Wire-wound resistors 

are the least noisy, metal films are intermediate, and carbon-based 

components exhibit the greatest contribution to resistor circuit noise.

Electrolytic capacitors are inexpensive and available in higher values, 

but virtually all high-value electrolytic units have sizable leakage currents. 

Leakage currents can cause problems in systems that require cyclic or 

repetitive reproducibility. Traditional low-leakage capacitors are generally 

not available in high capacitance values, but when the limited higher-value 

units are located, they are usually very expensive and large in physical size 

as depicted in the photo of Figure 9-27.
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Creation of a symmetrical triangular waveform can be done with 

op-amps and capacitors, but a circuit known as a voltage-controlled 

oscillator has been designed to simultaneously produce both square and 

symmetrical triangular waveforms. The Exar XR-2209 IC is a module that 

with an external capacitor and resistor can be powered by dual or single, 

4- to +/–13-volt supplies to produce the required signal. Figures 9-16 and 

9-17 are typical outputs from the IC. The triangular wave in the author’s 

breadboard setup can be seen to systematically vary in the peak voltages 

achieved. The breadboard setup also proved to be very sensitive to the 

value of the “pull-up” resistor used to develop the square waveform. The 

component sensitivity is probably due to operating the circuitry in an area 

near to the extremes of the circuit design.

Figure 9-27.  Various Types of Fixed Value Capacitors
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�X-Y Recordings
x-y recordings are often used when the signal to be recorded is cyclic in 

nature. Because of the cyclic nature of the signal, it is desirable to clear 

old traces from the x-y screen as new ones will be overlaid on the older 

data traces. By specifying the number of data points to plot, using the [n] 

channel value notation, any fraction or multiple of signal cycles can be 

displayed.

The effects of non-reproducible signals that are seen in Figures 9-22 

and 9-23 arise from the same causes that are evident in the variations of 

the recorded x vs. time signals of Figures 9-24, 9-25, and 9-26.

�Microcontroller Data Plotting
Programmable microcontrollers supported by open source, online 

communities are constantly having their base capabilities expanded, and a 

data plotting facility has been added to the Arduino IDE from version 1.6.6 

onward.

In previous exercises, the Arduino microcontroller has been used as a 

smart data acquisition device, a power source for sensors or displays, and 

a clock; and in this chapter, it will be used to provide a visual graphical 

display of data.

Since revision 1.6.6 and 7 of the Arduino’s IDE, there has been a serial 

plotter selection available in the Tools menu as depicted in Figure 9-28 for 

initially a single plot but as of version 7 for multiple–data point plotting.

Chapter 9  Graphical Data Recording



336

Invoking the serial plotter output converts the serial port window 

display into an x-y plotter. Individual data points directed to the serial 

port for display with a print statement are plotted on the vertical y axis. 

The x axis auto-scrolls from left to right in the form of a 500-point moving 

window. The metric for the x axis is the processing of the line of code 

with the line feed print instruction. Line 15 in Figure 9-29 contains the 

println code that is counted as processed and whose total value forms the 

numerical values displayed on the x axis.

Figure 9-28.  Arduino IDE Tools Menu Serial Plotter Selection
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For multiple-point plotting, each data value to display with a separate 

trace is separated from the next with either a print white space instruction 

or a tab instruction: ( print(“ “); or print(“/t);). Lines 10, 12, and 14 in 

Figure 9-29 form the separation markers for the four-trace plot seen in 

Figure 9-30.

�Experimental
The code presented in Figure 9-29 plots two straight lines and two 

sinusoidal traces with different frequencies that are graphically displayed 

in Figure 9-30.

Figure 9-29.  Arduino IDE Typical Plotter Program
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�Observations

Examination of the microprocessor plotter demonstration code and 

the displayed frequencies of the sinusoids validates the expected 20:1 

frequency ratio between the sine wave and cosine. The constant values 

plot as the expected straight lines.

�Discussion
Inclusion of the plotter in the Arduino’s IDE has made a very powerful 

visualization technique available to the experimental investigator. 

The plotter is both very easy to use and useful. Plots generated by an 

experimental process being controlled by the microprocessor can be 

recorded for archiving with the print screen function available on host 

computers. Experimental plot archiving has been used in experimental 

work involving the measurements of temperature, motion, and vibration 

and in light and optics investigations.

Figure 9-30.  Arduino Serial Plotter Output
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Although the plotter is a very useful function, it is at the time of 

manuscript preparation limited in several aspects of operation. The 

colors of the traces are fixed by the operating system of the IDE and can 

be difficult to see at times. The scales are auto-adjusting and unlike the 

DAQFactory plotter cannot be independently set to different values.

Occasionally on initial start-up, the plotter will produce spurious 

images such as depicted on the left in Figure 9-31 or improperly auto-scale 

the y axis.

As is seen in the preceding figure, the plotter settles into reproducibility 

reasonably quickly but on occasion may plot erroneously until the 

500-point window refreshes itself and the auto-scale functions also settle 

into a reproducible plot mode.

Figure 9-31.  Arduino Serial Plotter Start-Up Noise
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�Graphical Data Recording with Python 
and the Raspberry Pi
�Introduction
As noted, graphical plotting of experimental data can take two forms. If the 

data is generated at a high rate, it is best saved by streaming into memory 

for storage and analyzed graphically at a later time. Experimental data 

generated at a slower rate can often be displayed as it is created in a “live” 

or “real-time” display. Python and the RPi use a graphical plotting library 

called matplotlib for display of both live and stored data.

An example of a Python matplotlib code that plots out the values of 

the voltage at the wiper arm of a 10 kΩ potentiometer biased between the 

3.3-volt RPi power source on the GPIO array and its ground is provided 

in Listing 9-1 at the end of the chapter. The code has been modified from 

the strip chart recorder program that can be found as “animation example 

code: strip_chart_demo.py” in the matplotlib documentation. The 

documentation contains a full development tutorial for the use of this type 

of animated graphical display.

Although the RPi does not have an extensive selection of commercial 

graphical display software applications available, the matplotlib can 

provide a substantial basis from which the required application can be 

developed. The relatively short program used to monitor the varying 

potentiometer voltage in this exercise is equipped with several advanced 

utilities for in-depth examination of the recorded graphical presentation. 

A section of the matplotlib documentation entitled “Interactive 

Navigation” describes the actions of the seven buttons seen in the bottom-

left corner of the plotting display as seen in Figures 9-32 and 9-34. The 

left button restores the focus of the display when any of the display 

manipulation or storage buttons has been used. Buttons allow sections of 

the recorded trace to be saved as seen in Figure 9-33 and enlarged as seen 

in Figures 9-34, 9-35, and 9-36. In addition to the button-activated utilities, 
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the library example also displays the coordinates of the mouse cursor so 

that exact points can be identified by placing the cursor pointer at a point 

of interest in the tracing and reading the x and y coordinates of the point in 

terms of the display time and the measured data value from the numerical 

values displayed in the lower right-hand corner of the plotter frame.

The matplotlib program is also very easy to alter the scale of either 

plotting axis, but because of the time scale inconsistencies seen in 

previous exercises, the plotter time base displayed needs to be calibrated 

as described in the following experimental section.

�Experimental
To demonstrate the plotting facility available with the RPi, an example 

can be created from the gpiozero library and an MCP3008 ADC IC reading 

the voltage from the wiper of a biased potentiometer. The wiper voltage is 

digitized by an MCP3008, 10-bit ADC configured as described in Chapter 6, 

Figure 6-17. To facilitate programming with the ADC, the gpiozero library 

has been used to provide the plotting data through accessing the “pot.

value” attribute of the object instantiated in the line “pot = MCP3008(0)”. 

The creation of the pot object with the gpiozero library enables the 

programmer to access the wiper voltage value connected to the first 

channel on the ADC chip. The value is automatically normalized to a 

dimensionless floating-point value between 0 and 1 by setting the code 

variable to be plotted equal to the pot.value attribute.

The configuration of the RPi with the gpiozero library to access the 

MCP3008 ADC also allows the plotting program to be modified to accept 

any sensor or transducer that is able to supply a voltage value of 3.3 V or 

less. Figures 35 and 36 are two traces that have been made from the output 

of a 555 IC timer that has been wired to the first or 0 channel of the digital 

converter. The configuration of the 555 IC is illustrated in the right-hand 

drawings and circuitry of Chapter 8, Figure 8-8. For this experiment, R1 

and R2 were 4.7 kΩ, and C1 was a 100 μF electrolytic capacitor in the 555 
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timer RC network. The output circuitry also included an LED and current 

limiting resistor to aid in circuitry assembly, verification of electrical 

operation, and validation of recorder display by observing a continuous 

LED flashing at a rate of 59 flashes in 60 s. The final two expanded scale 

figures, Figures 9-37 and 9-38, were made with the “save a trace” button of 

the options row at the bottom left of the plotter display.

In order to aid in the development of the adaptation of the published 

matplotlib strip chart recorder code that uses an internal random 

number generator to create the y values for the plotter example output, 

the author inserted a number of diagnostic print statements in the code 

being modified. The print statements stream out the values of certain 

variables at points in the executing code to the Python console to aid in 

the development of different methods for adapting the code to follow data 

from different sources. Commenting out the diagnostic print lines will 

clear the console display. The streamed-out variable data is seen in the 

console displays as the left-hand screens in Figures 9-32 to 9-34. When no 

longer required, the print lines can be commented out.

Several factors must be taken into account when using graphical 

data displays on the RPi. As has been noted in previous exercises and 

previously, the time base of the system is not constant, and hence the 

time scale at the bottom of the plotter display is of limited reliability and 

must be semi-quantitatively calibrated for semi-quantitative use (see 

“Discussion”).

Once a desired experimental time frame has been established, a 

stopwatch must be used to measure the actual time the system takes to plot 

out the data for the nominal desired window time width. Table 9-1 is an 

example of the data collected by the author when developing a procedure 

to be used to calibrate a nominal 2-minute-wide plotting window.
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�Observations

Figure 9-32 displays the voltage value trace from 80 to 120 minutes into the 

experiment in which the author has manually turned the potentiometer shaft 

at the times recorded on the un-calibrated relative time axis of the display. 

The trace is relatively quick to respond, but rapid twisting of the shaft can 

overrun the display’s ability to keep up with the changing data value.

Table 9-1.  Adjusting Plotter Time Base

Dt Setting Time Width (sec)

0.02 25

0.01 41

0.005 127

0.0055 116

0.00525 129

0.005 125

Figure 9-32.  A Data Recording of Potentiometer Wiper Voltage
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Figure 9-33 illustrates the actions invoked when the “save a figure” icon 

at the extreme right of the row of options is clicked. The graphical figure is 

saved as a png image in the documents file of the RPi.

In the screen capture of Figure 9-34, the cursor of the mouse had been 

placed on the vertical response line just past 17 minutes, and the exact 

coordinates of the point were then printed in the bottom right-hand corner 

of the display.

Figure 9-34 illustrates the scale expansion option that expands the area 

enclosed by a mouse-drawn box to a full-screen display. The expanded 

image can then be saved as noted previously, or the “return to previous 

view” icon can be used to restore or resume the normal plotting action.

Figure 9-33.  The “Save a Figure” Option Window
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In the following two figures, the output from a 555 timer configured as 

detailed was recorded at expanded scales with the “save a figure” option. 

Figures 9-35 and 9-36 illustrate the ability of the software to save the plotted 

data in shorter time scales from external voltage-generating sources.

Figure 9-34.  The “Scale Expansion” Option

Figure 9-35.  Expanded Time Scale 555 Timer Data Recording
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�Discussion
Graphical data recording with the strip chart recorder program from the 

Python matplot library is a very adaptable and flexible system that can be 

used to display data directly from sensors attached to the GPIO array or 

from the Python serial port.

In Figure 37, the output from a 555 timer configured with R1 = 5.83 kΩ, 

R2 = 4.7 kΩ, and a 420 μF C1 timing capacitor created ten LED flashes in 

33 sec. The timer was powered by the 3.3 V supply of the GPIO array and 

calibrated for a 4-minute display window as detailed in the “Experimental” 

section.

Figure 9-36.  One-Minute Time Scale Expansion of 555 Timer Data 
Recording

Chapter 9  Graphical Data Recording



347

Figure 9-38 illustrates the scale expansion capability available with the 

display option buttons of the data plotting program.

Figure 9-37.  A Calibrated Time Base 555 Timer Voltage Output 
Recording

Figure 9-38.  A Time-Calibrated Plotted Trace Expansion
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A significant number of sensors have been coded into the gpiozero 

library that could be used to provide data for the matplotlib plotting 

program.

One of the advantages of graphical data displays becomes obvious 

when the variation in the time width of the rectangular pulses is presented 

in the visual format of Figure 9-38.

Table 9-1 demonstrates a limitation of the time base used for the 

RPi graphical data displays. A progressive incremental halving of the Dt 

value increased the time measurement, but the return to the 0.005 value 

produced a 2-second difference from the original measured value. The 

differential validates the earlier caution noted in the manuscript with 

respect to the RPi operating system priorities that can interfere with the 

timekeeping of the input and output operations of the computer.

�Code Listing
Listing 9-1.  Python Code for Live or Real-Time Data Plotting with 

Raspberry Pi

# �SCR Plotting of Normalized Potentiometer Voltage Value from 

an MCP3008 gpiozero used to configure MCP3008 and attributes

# for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

from gpiozero import MCP3008
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#

pot = MCP3008(0)

#

#

class Scope:

    def __init__(self, ax, maxt=40, dt=0.02):

        """maxt time width of display"""

        self.ax = ax

        self.dt = dt

        self.maxt = maxt

        self.tdata = [0]

        self.ydata = [0]

        self.line = Line2D(self.tdata, self.ydata)

        self.ax.add_line(self.line)

        self.ax.set_ylim(0.0,1.0)  # y axis scale

        self.ax.set_xlim(0, self.maxt)

    def update(self, y):

        lastt = self.tdata[-1]

        if lastt > self.tdata[0] + self.maxt: # reset the arrays

            self.tdata = [self.tdata[-1]]

            self.ydata = [self.ydata[-1]]

            �self.ax.set_xlim(self.tdata[0], self.tdata[0] + 

self.maxt)

            self.ax.figure.canvas.draw()

        t = self.tdata[-1] + self.dt

        self.tdata.append(t)

        self.ydata.append(y)

        self.line.set_data(self.tdata, self.ydata)

        return self.line,
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#

#

def rd_data():

   inPutln = pot.value

   #print("inPutln = ", inPutln)

   line = inPutln

   #print(line)

   yield (line)

    fig = plt.figure()

fig.suptitle("Pot Wiper Voltage", fontsize = 12)

ax = fig.add_subplot(111)

ax.set_xlabel("Time")

ax.set_ylabel("Potentiometer Voltage")

scope = Scope(ax)

# uses rd_data() as a generator to produce data for the update 

func, the MCP3008 value is read by the plotting code in

# 40 minute windows for the animated screen display. 

# Software overhead limits response speed of display.

ani = animation.FuncAnimation(fig, scope.update, rd_data, 

interval=50,

blit=False)

plt.show()
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�Summary
–– Experimental data recorded graphically as a plotting of 

y vs. time or as x vs. y can show numerous electronically 

generated waveforms and sensor readouts.

–– Graphical data recordings can reveal signal drifting and 

signal deviations and display electrical, mechanical, 

and environmental influences on signal outputs not 

normally visible in numeric displays.

–– Commercial SCADA plotting is easily configured, 

robust, and very flexible, while component-assembled 

systems are more constrained in display capability and 

must be calibrated manually.

–– In Chapter 10, various methods of current control,  

an important aspect of experimental equipment 

configurations or design, are presented.
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CHAPTER 10

Current Control
Current control and monitoring are significant portions of many 

experimental setups and scientific measurements. As demonstrated 

in the previous exercise, constant current control may be required to 

achieve specific results. Sensor measurements, motion control in scanning 

instruments, robotic manipulators, electroplating or amperometry, and 

heating control operations are just a few examples where current control 

is required. LEDs should be powered from constant current sources. It 

has been found that a batch of LEDs from one supplier when powered 

by a constant voltage supply consumed from 4 to 39 mA and with such 

a wide current difference could not be producing the same luminous or 

chromaticity outputs. Current control can vary from managing sensors 

of physical or chemical change, often requiring measuring milli- and 

microamps of DC current while heating, electro-deposition and motor 

control applications often involve controlling amperes of electrical current.

Current control can be implemented with discrete transistors as was 

done in Chapter 9; general-purpose integrated circuits such as operational 

amplifiers (op-amps), configured for current regulating; or application-

specific integrated circuit (ASIC) chips produced specifically for either DC 

or AC current controlling applications.

This chapter is divided into three parts involving constant current 

DC supplies, control of larger currents, and control of potentially lethal, 

mains alternating current power. Simultaneous with the control of current, 

some of the limitations imposed by motors and ways to work around these 

limitations will be demonstrated. Inexpensive motors for experimental 
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setups and for these exercises can be salvaged from obsolete computer 

equipment or obtained from electronics supply sources if required. Some 

of the limitations of motion control derived from rotating electric motors 

will be demonstrated, and the process of selecting the preferred motor for 

an experimental setup will be developed.

The technique of pulse width modulation (PWM) for current or power 

control is reviewed and demonstrated in both motor and incandescent 

lighting applications.

AC electronics, because of its cyclic nature, can be considerably 

more complicated than DC. In keeping with the simpler introductory 

nature of these exercises, only the non-inductive or completely resistive 

load applications will be considered. In strictly resistive applications, 

the root-mean-square (rms), peak-to-peak, or average AC values can be 

used as though they were DC values in most of the basic laws governing 

electronics. Higher-frequency and phase-sensitive AC electronics as 

encountered in advanced communications, induction heating, or 

spectroscopy are not dealt with in depth for these basic introductory 

exercises.

�Constant Current Sources
A source of constant current as used previously is also found in numerous 

types of electronic circuits and in many experimental measurement 

instruments. As previously noted, constant current sources can be built 

from a pair of transistors as a “current mirror” or with an operational 

amplifier (op-amp) and some resistors. Although a discrete component 

current mirror is discussed in detail in most of the electronics books 

previously referenced, the operational amplifier is to be used in this 

exercise because of the simplicity of the design, the wide control range 

possible with the circuit, and its use of readily available and inexpensive 

components.
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Operational amplifiers such as the LM741 used in this exercise are 

powered by dual-voltage supplies and must be balanced or properly 

biased for use. Figure 10-1 depicts the general schematic for the LM741–

2N3906 PNP transistor, grounded load circuit that may be used to provide 

a constant current for a known load, as published in various references. 

The circuits depicted in Figures 10-1 and 10-2 can be assembled on a 

typical prototyping breadboard for testing, validation of circuit operation, 

and current control applications.

The circuit operating theory is explained in the following for the 

configuration in which the load is connected to ground and the current 

sense resistor is connected to the voltage supply. If the opposite situation 

is required, then an NPN transistor can be used to regulate the current 

(LF411 can be used as a direct replacement for the LM741).

�Experimental
�Hardware
A +/– dual-voltage power supply and a trim potentiometer are used to 

power and balance the op-amp. A power transistor, three appropriate 

biasing resistors, and a suitable adjustable resistor simulator of the 

expected experimental load are required to construct and validate the 

constant current supply. A typical implementation of the constant current 

op-amp circuit is detailed in the following descriptions of a test circuit 

assembled by the author. A 9-volt battery and four AA cells connected in 

series can make a 15 V DC supply. Connecting two 15-volt battery packs 

in series can be used to create the required bipolar supply of +/– 15 V with 

a center terminal ground. The bipolar power supply allows the op-amp 

output to be driven to positive or negative voltages. (See Figure 9-15 in 

Chapter 9.)
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�Circuit Schematic

Figure 10-2.  Typical Circuit Implementation for Op-amp 
Balancing

Figure 10-1.  A Typical Op-amp Current Control Circuit

Chapter 10  Current Control



357

If a particular chemical analysis experiment such as a coulometric 

titration has a titration vessel that represents a 20 Ω load and a current of 

20 mA is found to generate a reasonable time to reach the analysis end 

point, then the conditions for determining the resistor values needed to 

assemble the circuit depicted in Figures 10-1 and 10-2 are available.

From Ohm’s law, to maintain a 20 mA current through a 20 Ω load 

will require a voltage of 0.40 V. The transistor typically has a 0.3 V drop 

across the PN junction, and hence the emitter should be held at 0.7 V. To 

convert 15 volts to 0.7 will require a divider with a numerical value of 

0.0466; thus, R2/(R1 + R2) = 0.046. Any dual-voltage power supply between 

12 and 18 volts can be used with the LM741, so the actual values of the 

resistors in the divider network and the current limiting R3 can be adjusted 

accordingly to maintain the desired op-amp reference voltage or set point, 

for the desired cell current flow. For a regulated current of 20 mA and from 

the power relationship of I2R, we can estimate that 1/8-watt resistors in 

the regulated current-carrying portions of the circuit are adequate for the 

experiment at hand.

As a typical electrochemical cell load simulation, a 25 Ω, 30 W, 

adjustable tap, wire-wound resistor was used by the author. Adjusting 

the position of the center tap on the load resistance simulates a changing 

conductivity as may be encountered in an experimental electrochemical 

cell or a resistive heating element.

To begin the exercise, the experimenter can assemble the circuit 

according to the preceding schematics. After verification of the layout, 

temporarily ground the inverting and non-inverting inputs of the op-amp, 

adjust the trim potentiometer to its midpoint of travel, and apply power to 

the op-amp. While monitoring the voltage of the amplifier output, adjust 

the 10 kΩ variable resistance to obtain an amplifier output as close to 0 V 

as possible, either actually balancing the op-amp or positioning the trim 

potentiometer wiper at a low non-zero voltage value point that will result 

in system balance when the feedback loop is established during actual 

circuit operation.
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The voltage divider formed by R1 and R2 creates a reference voltage 

VRef that is supplied to the non-inverting input of the op-amp. The op-amp 

will now try to keep the two inputs at the same voltage of VRef by varying 

the current through R3. The current flowing through the load, transistor, 

and R3 is controlled by the current injected into the base of the 2N3906 

transistor. The entire current flowing through the load and transistor 

passes through R3 that must be of sufficient wattage to accommodate the 

required current variation that the constant current configuration may 

require. As the center tap of the load-modeling resistor is adjusted to 

provide simulations of changes in the simulated cell resistance, current 

measurements will confirm the circuit’s ability to provide a nominal 20 mA 

current through the cell simulator as depicted in Figure 10-3.

Item 1 in the preceding figure is the simulated variable resistance 

load consisting of a 25 Ω 30 W wire-wound resistor mounted vertically on a 

threaded rod. Item 2 is a 5 W current sensing resistor, while item 3 is a LM741 

Figure 10-3.  Wire-Wound Load Simulator of a High-Current Test 
Circuit
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op-amp plastic DIP. Item 4 is a 2N3906 power transistor, and the items 

numbered 5 are the positive red, negative black, and green ground or 

neutral power supply leads. Item 6 is the trim resistor for op-amp balance 

or biasing.

�Software
Page components and programmed software are not required for this 

portion of the exercise.

�Observations
The wire-wound resistor produces a very coarse ohmic resistance when 

the position of the center tap is changed, but alteration of the load 

resistance value is sufficient to demonstrate the development of the 

required constant current source. The large-wattage simulated load is 

variable from the nominal 25 Ω measured between the main terminals and 

from about 20 to 10 Ω when repositioning the sliding tap on the exposed 

wire core turns. The large power resistor connected to the positive supply 

and supplying current to the transistor together with the variable load 

determines the current that can flow in the regulated circuit. When power 

is initially applied to the circuit, the observed current flow is high. As the 

electronics comes to a rough thermal equilibrium, the regulated current 

stabilizes at a final value close to the desired set point. Usually the circuit 

requires 15–30 minutes to reach a constant thermal value. Table 10-1 

tabulates the stabilized currents measured with the author’s breadboarded 

experimental simulation.
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The load resistance in the preceding table is measured in ohms, and 

the current is measured in milliamps.

�Discussion
The circuit operation can be explained in the feedback configuration 

by recalling that the op-amp drives its output in order to equalize the 

voltages at the inverting and non-inverting inputs so VSense = Vin. The 

current through the sense resistor is ISense = Vin / RSense, and since the current 

through the sense resistor flows through the transistor, the current through 

the load ILoad is Vin/RSense plus the very small base emitter current of the 

transistor.

For an intended current of 20 mA through a 20 Ω load, the table 

displays a 0.5 mA variation in an approximately 21 mA current seen 

through a load varying from 6.7 to 20.3 ohms. If an exact 20 mA current is 

Table 10-1.  Load Resistance 

and Regulated Load Current

Load Resistance (Ω) Current (mA)

6.7 21.4

10.8 21.4

14.3 21.1

15.1 21.4

17.6 20.9

19.3 20.9

20.2 20.9

20.3 21.0
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required, the voltage divider could be experimentally trimmed to adjust 

the reference voltage to a value that regulates the transistor current to the 

desired level.

As discussed and demonstrated in Chapter 9 on the graphical display 

of data and as noted previously, thermal effects will cause the measured 

signal to drift until thermal equilibrium is established. If critical current 

control is required, then some form of thermal control or stabilization may 

need to be introduced into the experimental setup. Heat sinks, cooling air 

flows, insulations, or large metal thermal masses can be used to maintain 

or partially stabilize temperatures by either radiating or absorbing 

excessive heat.

Current regulation can also be achieved with dedicated integrated 

circuits such as the LM340/78xx series of integrated circuits from National 

Semiconductor. The integrated circuits however operate at specified, 

fixed voltages and are usually limited to 1-ampere total current. The 

actual current to be regulated is determined by appropriately valued 

sensing resistors. Specific configurations and limitations are detailed in 

the application sections of the manufacturer's data sheets for individual 

devices.

The operational amplifier power transistor circuit, assembled from 

discrete components, has the advantage of flexibility in being able to 

control currents at arbitrary voltages and load requirements. The op-amp  

power transistor configuration is also able to be used with the PNP 

“grounded load” configuration or with a “floating load” in which the sense 

resistor is grounded and an NPN transistor is connected to the power 

supply and floating load.

Op-amp characteristics and theory are found in most of the previously 

referenced textbooks and many introductory and in-depth online tutorials.
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�Control of Larger DC Currents
�Introduction

�Brushless Direct Current (BLDC) Motors (Motors 
Without Commutators or Sparking Brushes)
Larger DC current manipulation is encountered in experimental setups 

involving heating, pumping, mechanical movement, or motion control. 

For each type of motion to be controlled, there are usually several means of 

transforming electrical power into the desired physical motion or action. 

Solenoids move linearly in a back-and-forth motion as in robotics systems, 

while motors twist or rotate; and for the simpler applications of this work 

in which motors are required to drive and for liquid mixing or pumping, 

gas cooling, or perhaps rotational optical scanning operations, we shall 

focus on rotational motion control in motors. Further limitations consist 

of working with very small fractional horsepower motors designed for 

field or laboratory use with readily available, robust, 12 V lead acid battery 

systems or 12 V DC power supplies providing the required higher currents. 

(The physics and electro-mechanical aspects of motors and more powerful 

motor control are discussed in much more detail in the literature of 

robotics and mechanical, chemical, or electrical engineering.) In chemical 

analysis and a large portion of life sciences’ laboratory work, flammable 

solvents are in constant use, and hence brushed DC motors should not be 

used in experimental operations unless certified as being explosion proof.

The heavier current required to drive a motor can be controlled by 

transistors that in turn can be controlled from much smaller base currents 

derived from integrated circuits. A variable 555 timer signal can be used 

to control a higher-current power transistor that in turn regulates the 

power applied to a motor to control the motor speed. In this portion of 

the exercises, a 555 timer will be used to generate a square wave pulse 

train whose duty cycle will be varied, in a controlled manner, to alter the 
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time during which power is supplied by a power transistor to a fan motor 

capable of drawing up to 200 mA of current. The rotational speed of the fan 

motor will thus be controlled by a potentiometer in the 555 timer network. 

The fan disk rate of rotation will be measured optically with the LabJack 

counter, and a DAQFactory program will calculate the fan disk rotation 

speed for display on screen.

�Experimental
�Hardware
For the motor control circuitry, a breadboard will be required to mount a 

555 timer and the passive components required to configure the IC into 

the astable mode. As can be seen in Figure 10-4, the author combined the 

mounting bracket for a 100 kΩ potentiometer, the heat sink for the TIP-122  

power transistor, and the mount for the fan assembly with a brushless 

DC fan motor into a custom-drilled 1 in (2.5 cm) by 8 in (15 cm) piece of 

aluminum angle denoted as item 1. The heat sink–mount angle was bolted 

to an approximately 1/16 in (1 mm)-thick plate of 8 in by 6 in (20.4 cm by 

15.2 cm) aluminum sheet denoted as item 1a, on which the breadboard 

was fastened with double-sided adhesive mounting tape (carpet tape). 

The simplest fan motors (brushless direct current, BLDC) have two leads 

for the DC power. Three- and four-lead fan motors are common with 

the added connections usually for the internal Hall sensors (magnetic 

field detectors) used for monitoring shaft positions. A photodiode and 

a phototransistor were fitted and fixed to two small ½ in (1.2 cm) by 

1 in (2.5 cm) custom-drilled aluminum plates with room temperature 

vulcanization (RTV) silicone. Items numbered 4 are the sensor mounting 

tabs. Adhesive fillets on the back sides of the tabs held the sensor diodes 

firmly in place while not interfering with the optically active surfaces. 

As can be seen in Figure 10-4, the tabs were mounted on a corner of the 
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fan motor frame with a bolt and a wing nut. The tabs were mounted with 

the narrow infrared optical beam generated by the photodiode pointing 

through the plane of rotation of the fan disk blades. The rotation of the 

seven-blade fan disk (item 2) thus chops the IR beam created between the 

photodiode and phototransistor seven times per motor revolution.

The two plates holding the optical beam source and detector are held 

in place on the author’s setup with a bolt passing through the plates and 

motor frame, secured in place with a wing nut. Item 3 is an arm of the wing 

nut fastener that allows for easier alignment of the optical beam.

Power for the author’s setup was supplied by a heavier +/–12 V, 2 A 

supply that was connected to a terminal strip mounted at the rear of the 

breadboard on the aluminum sheet metal base.

Figure 10-4.  Experimental Cooling Fan Current Load Testing Setup
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Many of the fan motors salvaged from obsolete or damaged computer 

equipment are used to power seven-blade disks. If the fans being used for 

these exercises do not have seven blades, enter the correct blade count into 

the DAQFactory variable value expression box as illustrated in Figure 10-7.

Circuit Schematic
In Figure 10-6, the 555 timer is configured in the astable mode to produce 

a continuous square wave format. A timer IC cycle starts with capacitor C 

discharged, pin 2 low, and output pin 3 high. With pin 3 high, C charges 

through the left side of R1 and left diode until pin 6 (threshold) reaches 

2/3 V+ at which point pin 3 (output) and pin 7 (discharge) go low. With 

pin 3 low, the capacitor discharges through the right side of R1 and the 

right diode until C falls below 1/3 V+ at which point the output pin 3 and 

discharge pin 7 go high, and the cycle repeats. Thus, C charges through the 

left side of R1 while discharging through the right. By keeping the sum of 

the charge and discharge resistances at a constant value, the output signal 

wavelength is also constant, and only the duty cycle changes. The output 

frequency is fixed according to the formula

Frequency = 1.44/(RVarbl * CTiming)

Figure 10-5 graphically displays the concept of the duty cycle and its 

relationship to the frequency or wavelength as marked by the red arrows. 

For power control applications such as driving a motor, the ability to 

rapidly turn the power on and off in terms of very fast pulsing widths 

provides a means of controlling the motor speed at the higher end of the 

power application range. However, if the load being supplied with power, 

via pulse width variation, is working at the lower end of the adjustment 

range, a longer frequency will provide a higher degree of resolution for the 

controlling of power applied. Heating circuits and low rotating speeds in 

stepper motors may require longer wavelengths or lower frequencies to 

provide an adequate span of control adjustment.
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Figure 10-6.  A 555 Timer IC-Based Motor Controller with Photo 
Interrupter Circuit

Figure 10-5.  Duty Cycle Concepts
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�Software
Figure 10-7 depicts the properties Main tab for the variable value screen 

component used to display the fan rotation speed. The calculation that 

converts from the seven beam interruptions per fan disk revolution to the 

rotation speed of the fan motor is entered into the screen component’s 

expression box. The various entries into the Variable Value Component tab 

of the child window, generate the RPM display box seen above the pop-up 

properties window.

There is no requirement for any scripting as the counter is read, reset, 

and entered once a second into the RawInputCounts channel. The value 

returned as RawInputCounts[0] is corrected for the number of fan blades 

on the disk and normalized to minutes.

Figure 10-7.  DAQFactory Variable Value Component Configuration 
for Measurement of Fan Motor RPM
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�Observations
With the potentiometer set to midrange, the two-wire fan motor spins at 

about 2950 rpm, and the speed can be varied from 3300 to approximately 

100–150 rpm before the motor stalls.

During the initial development of the optical tachometer, the pulse 

train generated by the photodiode-phototransistor pair was unable to 

trigger the LabJack counter, and an increased signal strength was required. 

The power used to drive the photodiode-phototransistor pair was drawn 

separately from the +12-volt supply using the two voltage dividers shown 

in the schematic of Figure 10-6. The photodiode voltage divider produces 

a nominal 5 V, and the phototransistor voltage divider produces a nominal 

6 V (5.91 V). Figure 10-8 shows an oscilloscope display of the optical beam 

chopper output.

A salvaged three-wire cooling fan motor from a large CPU chip was 

substituted for the two-wire system, and the high-end fan speed range was 

measured at 5,200 rpm. The fan speed with careful adjustment could be 

lowered into the 200 rpm range and occasionally into the 150 rpm range 

before the motor stalled.

Figure 10-8.  Oscilloscope Display of Optical Beam Chopper Output
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The third wire on the chip cooling fan is usually the output from Hall 

effect sensors built into the motor. The Hall effect sensors detect changing 

magnetic fields, and the output from the third wire produces a series of 

small spikes created by the rotating magnetic fields that can be used to 

measure the motor’s RPM.

�Discussion
In this exercise, the pulse width modulation control of higher currents 

required to power a motor is being demonstrated. A limited pulse width 

modulation scheme based upon the astable configured 555 timer chip 

has been examined in Chapter 8, and the relatively constant frequency, 

variable duty cycle mode of power delivery is now being used with suitable 

diode modification to extend the range of the duty cycle while keeping the 

frequency or wavelength of the output square wave constant.

In Chapter 8, Figure 8-10, and in Figure 10-6, it can be seen that the 

capacitor charges through R1 and a portion of R2 but discharges only 

through R2, so the charging portion of the cycle can only be decreased to 

the value of R1, while the value of R2 can in effect be decreased to zero for 

the discharge portion of the cycle. Hence, the variation possible in the duty 

cycle is controlled by the value of R1.

In simplified terms, we can see that the PWM technique we are using to 

apply power to the BLDC motor changes the duty cycle from 100% down, 

literally, to 0%. An overall resulting voltage change from 12 V at 100% to 

6 V at 50% duty cycle to in effect 0 V at 0% duty cycle is the reason for the 

erratic behavior at lower speed rotation. In the lower portions of the duty 

cycle, the 12 V power is not applied for a long enough period of time for 

the averaged power delivered, to be able to drive the motor, and it “stalls.” 

In other words, the observed loss of control and stalling at low settings of 

the controlling potentiometer are the result of insufficient power being 

delivered to the motor. To achieve better control of low-speed motor 

operations, a different type of motor and power control will be required.
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This 555 PWM, optical tachometer circuit, DAQFactory SCADA 

software display system was developed with a salvaged two-wire computer 

tower cooling fan. A second cooling fan from a more recent large CPU 

chip with a three-wire control circuit board connector was substituted into 

the breadboard setup for comparison. The third wire, usually yellow (see 

Figure 10-4), monitors the output from Hall effect detectors built into the 

rotor/stator portions of the motor. Hall effect sensors respond to changing 

magnetic fields and can be used to indicate the position of the magnets 

with respect to the coils to be energized in an electronic motor control 

system.

The chip cooling fan motor recovered from the author’s obsolete 

equipment was a 2 1/4 in square (5.7 cm) seven-blade, 12 V, 180 mA unit 

that when powered through the red/black power leads has an upper speed 

of rotation in the 5,200 rpm range and stalls at rotation rates between 200 

and 150 rpm.

As will be seen in later portions of this work, the recovery and reuse of 

fan motors can solve, inexpensively, practical problems that arise in some 

laboratory procedures.

�Stepper Motors
BLDC motors requiring electronic control of the motor power come in 

two forms: the continuous duty type used to drive fans and a form known 

as stepper motors. Whereas the BLDC fan motor develops its maximum 

power at higher speeds with full applied voltage and stalls as the rotation 

rate decreases because of decreasing voltage/power levels, the stepper 

motor develops its maximum power when not rotating and loses power 

as its rotation rate increases. Stepper motors derive their name and utility 

from their ability to move or rotate in discrete “steps.” By controlling the 

“stepping” action of the motor, exact rotational positioning and precise 

low-speed rotational rates, with significant torque, can be achieved.
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Stepper motors are built in several forms and have different 

capabilities based upon the type of construction used to assemble the 

motor. There are numerous good tutorials available both online (Jones 

on Stepper Motors) and in the literature of both robotics and engineering 

for those experimental equipment development projects requiring more 

details.1

For the purposes of this current control exercise, we will limit our 

discussion and experimentation to the class of motors called bipolar, 

permanent magnet (PM) systems. These motors provide continuous low-

speed rotation that has definite practical applications in robotics, simple 

physics, and chemical and biological laboratory procedures. Continuous 

rotation can be relatively easily implemented and controlled with ICs 

such as the 555 timer. Single stepping and oscillating in a back-and-forth 

stepping action require additional knowledge of both the motor windings, 

slightly advanced programming capabilities, and specialty hardware. The 

methods for implementing controlled rotation down to the point of single 

stepping are referred to in several of the exercises to follow, but oscillating 

and fractional circular rotation actions are not considered in this simple 

introductory section.

In order to keep the assembly of a motor power control unit in a 

simple, inexpensive, and familiar format, the electronic power control 

circuitry in this exercise is again based upon the adjustable, astable 555 

timer circuit pulse generation but with some relatively simple additional 

digital logic circuitry. The 555 timer IC can be replaced by any computer or 

microcontroller capable of generating a low-voltage, adjustable duty cycle, 

square wave pulse train as used in PWM control.

Permanent magnet (PM) stepper motors are characterized by having 

a rotor shaft that does not spin freely as does the higher-speed BLDC fan 

motor. PM stepper motor shafts, when turned by hand, with the motor 

1 Introduction to Mechatronics and Measurement Systems, Alciatore and Histand, 
McGraw Hill, 466 pp, 2003, ISBN 0-07-240241-5
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unconnected to a power source, “cog” or “step” between positions of 

equilibrium or rest. The number of steps required to make a full rotation 

indicates the “resolution” or degree of “fineness” with which the stepper 

motor rotation or oscillation can be controlled.

The stepper motor has been designed so individual coil windings 

can be separately energized, thus creating internal electromagnetic fields 

that, by rotation of the rotor, can establish an equilibrium position with 

the internal, permanent magnet magnetic fields. By energizing coils in 

a programmed sequence, the motor shaft can be made to rotate in any 

manner as determined by the programming. Programs in which the 

electromagnetic coils are energized in a sequential manner in order to 

smoothly rotate the motor shaft in either direction are the main focus of 

this simplified exercise.

Stepper motors turn at a much slower rate than conventionally wound, 

brushless motors and produce significantly more torque at lower speeds. 

Stepper motors do not move large volumes of air over their structure and 

hence concentrate much more heat around their outer metal cases.

�Experimental
�Hardware
A solid mounting is required for the stepper motor, speed control, forward/

reverse switch, and motor power connections. The power connections 

for the motor must have a means of interchanging the connections of 

the individual motor coil leads to the output power transistors of the 

electronic control circuitry. The integrated circuitry can be assembled 

on a breadboard for ease of construction, prototype development, and 

experimental demonstration. An experimental motor and hardware 

mounting frame assembled with hand tools from readily available materials 

is depicted in Figure 10-10 and described in detail in the following text.
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�Circuit Schematic
As noted, for the purposes of most experimental laboratory or field work, 

the control circuitry for a four-coil stepper motor need only drive the 

motor in smooth, controllable, clockwise or counterclockwise, low-speed 

rotation. The electronic supply should thus be able to produce a sequential 

series of four, adjustable width, current pulses with sufficient amperage to 

continuously step the motor through a full rotation of the rotor.

Some care must be exercised in assigning the power connections of the 

stepper motor to the output transistors of the electronic power controller. 

If the center tap in a five-wire motor or the taps in a six-wire motor are 

connected to the positive supply, then the ends of the “first” set of tapped 

coils should be connected to power output transistors 1 and 2 and the 

second set of coil ends to 3 and 4. If the motor does not rotate smoothly 

and respond as expected to the speed control potentiometer, then 

sequentially exchange the third and fourth coil connections and retest the 

motor. If the exchange does not correct the problem, exchange the first 

and second coil connections, retest, and if required reverse the second and 

third coil connections.

Figure 10-9.  A 555 Timer IC-Based Stepper Motor Controller
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In Figure 10-9, an astable 555 timer, controlled by a potentiometer, is 

used to generate an adjustable duty cycle pulse train. The pulse train is 

used to toggle (or power) a pair of D (data)-type flip-flops that have been 

configured as frequency dividers to produce the required series of four 

transistor base driving signals to create the required high-current power 

pulses. The data flip-flops are contained in a single CMOS 4013, 14-pin 

DIP that together with the 555 timer chip can be powered by the heavier-

current 12 V power supply.

A stepper motor can be controlled by many different coil-energizing 

sequences that can create high-torque single or fractional step rotations, 

back-and-forth stepping motions, or smooth continuous rotations. The 

low-speed, high-torque, smooth continuous rotations are the motions 

with the most application in biological/chemical laboratory work, that 

is, stirring and pumping liquids. To achieve the correct sequencing of 

the motor coils by the four output transistors, the common center taps 

of the coils are connected to the positive supply. The energizing of a coil 

thus consists of grounding the end of a winding to enable current flows 

from the center tap to ground. The motor can thus be made to rotate by 

sequentially grounding the ends of the windings. The wiring color code on 

the motor being used for this exercise may be different than that displayed 

in Figure 10-9. Typical motors will have four connections to the ends of 

the windings and either a common connection to the center taps or two 

connections to the center taps, thus creating five- and six-wire, motor-to-

power connections.

The current flow through the individual coils is limited by the 

resistance of the coils themselves. Reversing the direction of the DC 

current flow through the motor coils reverses the direction of rotation.

Motor rotation is created by sequentially energizing the internal 

windings of the motor to create a magnetic field. The transitory 

electromagnetic field interacts with the permanent magnetic fields causing 

the motor to rotate. Switching off the current to the energized coil then 

creates the back EMF induced into the coil by the collapsing magnetic 
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field permeating the motor’s internal windings. The switching transistors 

must be protected from the motor coils’ higher-voltage back EMF, or their 

PN junctions will be destroyed. LEDs have been placed into the collectors 

of the switching devices of Figure 10-9 to both protect the output power 

devices and provide a visual confirmation of individual coil current 

passage.

Item 1 is a Copal Electra motor mounted on an aluminum ½ in (1.2 cm)  

right angle extrusion frame with an added black rubber shaft coupling 

to move and partially dampen the resonant frequency. A Howard motor 

can be seen to the right with mounting adapters. Item 2 is a terminal for 

motor winding wires and breadboard interfacing. Item 3 is the 555 timer 

chip, and the number 4 marks the position of the 4013 data flip-flop chip. 

Item 5 is the row of power transistors, and item 6 is the “speed” control 

potentiometer. Item 7 is the rotation direction switch, and item 8 is the 

high-current power input wires.

Figure 10-10.  A Stepper Motor Test Assembly
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�Software
�Page Components Required

The pulse train used to toggle the 4013 D flip-flops and sequence the driver 

transistors can also be used to create a tachometer display for the rotation 

rate of the motor (see “Discussion”). The author’s laboratory had 12 V 

permanent magnet, 75 Ω, four-phase (coil) stepper motors manufactured 

by Howard Industries, part number 1-19-4200, that were 3.6 degrees per 

step and SP-57B motors from Copal Electra, part number 85086780, with 

36 Ω coil resistance and 7.5-degree step rotations. The Howard motors thus 

took an even 100 steps to complete a full rotation, while the Copal Electra 

motors only required 48. As with the fan motors, the rotation speed can be 

displayed on the screen with a DAQFactory variable value component. The 

rate can be calculated by counting the pulses applied to the flip-flop logic, 

in 1 second, then dividing by the number of steps required for a complete 

rotation, and normalizing to revolutions per minute. Scripting is not 

required as the calculation can be entered into the expression box for the 

variable value screen component displayed as the top line in Figure 10-7.

�Observations
Moderate stepping speeds result in smooth rotation, while at low speeds 

the individual steps become visible. The use of LEDs as protection from 

the back EMF of the motor coils also serves as a pilot light for motor 

activity.

Both of the stepper motor types with rotors unloaded pass through 

certain rotational speeds that cause the motor and mounting structure to 

“resonate.” The 3.6-degree Howard motor begins to vibrate at 113 rpm, 

generating a severe vibration at 100 rpm and a very loud, annoying audible 
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buzz at 92 rpm, but runs smoothly and quietly at 85 rpm. When the ¼ in 

(0.6 cm) metal shaft coupling from a three-piece rubber “tee” motor drive 

connection was added to the Howard motor shaft, the motor displayed 

a greatly reduced in intensity, but still distinct, high-pitched vibration at 

92 rpm and also displayed a lower intensity and deeper pitched vibration 

at 60 rpm and an even lower pitch and lower intensity resonance at 

30 rpm. In any of the rotational speeds between the resonance “peaks,” the 

motor ran smoothly.

The Copal Electra motor has an unloaded rotational speed range of 

60–300 rpm and has a resonance “chatter” at 89–90 rpm. If the motor shaft 

is loaded with the drive connector coupling, the resonance speed moves 

up slightly into the 92–95 rpm range, and the motor completely stalls at 

250 rpm.

Without the coupling on the rotor, it was impossible to squeeze the 

shaft hard enough to stall the motor, but with the additional leverage 

provided by the coupling base, the rotor could be stopped; and as the 

stalled rotor pulsed, the RPM indicator still recorded a 37 rpm equivalent 

pulse rate. The loss of torque with increasing RPM is evident with the 

Howard motor, but the Copal Electra with the added mass of the coupling 

stalls if speed settings for over 250 rpm are selected.

In addition to slow-speed mixing and blending in laboratory 

experimental work, stepper motors are also uniquely suitable for 

controlling the delivery rate from peristaltic pumps. By altering the value of 

the RC timing constant in the 555 astable configuration, the author’s Copal 

Electra could be slowed to 5–6 rpm with a 1.0 uF capacitor and the 27 kΩ 

resistor of Figure 10-9; and by changing both the resistance and capacitor 

to 296 kΩ and 1 uF, the motor continuously single-stepped through its 48 

increments at 1 rpm.
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�Discussion
The flexibility and desirable low speed properties available with stepper 

motors are achieved at the expense of significantly increased complexity in 

control circuitry. The required sequential generation of current pulses for 

smooth continuous motor rotation can be created with the D-type flip-

flops as used in this exercise or with chips designed as shift registers such 

as the 74LS194 and CMOS 4035. Details for using the shift registers are 

available both online2 and in the printed literature for the nominal ICs.

The design of stepper motors is such that maximum torque is created 

when the rotor is stationary. With the system created for this exercise, the 

rate of rotation can be slowed to 1 rpm at which rate each individual step 

of the motor takes 1/48 of a minute or 1.25 s. At the slow rate of 1 rpm, the 

Copal Electra motor used in the exercise is close to delivering its maximum 

available torque. Discrete, arbitrary time stepping or holding positions are 

useful in robotic control systems and require much more sophisticated 

programming capability in the power control system than is provided by 

the potentiometer-controlled 555 pulse generator used in this portion of 

the exercise.

Resonance is a problem with stepper motors, and continued operation 

of the motor while in a resonating mode will greatly reduce the service 

life of the motor by increasing the rate of mechanical deterioration of the 

rotating components. The motor should be operated off of the resonant 

speed, or if the resonant speed is important, then special mechanical 

mounting techniques, gearing, or changes in rotating mass may need to be 

built into the experimental apparatus to deal with system resonance.

The speed of rotation of the motor shaft can be measured 

electronically by using the DAQFactory, default data collection rate, of 1 

second for the LabJack counter channel, applying the number of steps 

required for one revolution of the rotor shaft, and adjusting the values of 

2 http://www.electronics-tutorials.ws
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the data to be displayed to the desired time units. The formula required 

to convert the pulse rate into a numerical display in a screen “variable 

value” component can be entered into the formula box of the screen 

component as seen in Figure 10-7. The use of the pulse rate to determine 

the motor shaft rotation speed uses an implicit assumption that the 

motor is not “slipping” as it rotates, which may happen at the higher 

end of the motor’s rotation rate speed range or if the “load” being driven 

increases significantly. If slippage is a problem or the actual rotation of 

the experimental setup is to be monitored, then the photo interrupter 

tachometer method should be used on the moving load.

Stepper motors have their greatest utility at low-speed rotation or as 

rotatable positioning agents, and if lower speeds of rotation are required, 

the time constant of the 555 astable can be increased to widen the space 

between pulses applied to the flip-flops. The slower the speed of rotation, 

however, the more pronounced the “stepping” action of the motor’s 

rotation.

�Control of AC Current Sources
�Introduction
Alternating current (AC) sources are often referred to as “mains.” In 

North America, the mains or “household current” is supplied at a 

nominal 120 volts peak-to-peak or 115 V root-mean-square (rms) at 

60 Hz, while in Europe and other areas of the world, it is 220 V (rms) at 

50 Hz. A substantial number of the early alternating current supplies 

were generated by hydro-electric facilities where water turbines spun 

electric generators that created forward and reverse current pulses at these 

relatively low frequencies.
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Low-voltage DC currents are virtually harmless, but “mains” voltages 

and currents easily start fires that burn buildings to the ground, cause 

severe painful burns, and produce potentially lethal electrical shocks.

In keeping with the lethal nature of high-voltage, high-current 

electrical energy, solid-state systems have been developed for both 

controlling the dangerous high power levels and isolating them from the 

low-voltage control circuitry.

The advantage of AC current, when properly isolated from the 

controlling circuitry, lies in the ability to power motors, illumination 

fixtures, and heating elements directly without any need for conversion 

into DC prior to usage. Mains or AC electrical power cycles from zero to 

a maximum forward value and then decreases back to zero rising to its 

maximum reverse value before decreasing back to the zero value, thus 

completing the cycle. AC power is usually controlled with thyristors or 

four-layer P-N-P-N semiconducting components fabricated into either 

of two types of device: the silicon-controlled rectifier (SCR) whose 

conduction can be regulated for half of the AC cycle or the triac that can 

control conduction for the full AC cycle. SCRs and triacs have limited 

frequency response and hence are used mainly at 50–60 Hz but are 

serviceable up to 400 Hz AC power frequencies. The SCR is a multilayered 

diode with a “gate” that allows the diode to be switched from a blocking to 

a conducting mode at any point in its normally conducting portion of the 

AC waveform. By placing two SCRs in parallel but conducting in opposite 

directions to form the silicon bilateral switch or triac, it becomes possible 

to control the forward and reverse cycles of the AC power waveform from 

the signals applied to a common gate.

As noted, both SCRs and triacs are diode-type devices, fabricated 

with gates that allow the circuit designer to control one or both directions 

of the passage of AC power cycles through the device itself and hence 

through the load. ICs have been developed that use photo-diodes optically 

coupled to a silicon bilateral switch to provide a means of optical isolation 

for separating gate control circuitry from the high-energy AC power 
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flowing through the silicon switching devices. Optical isolator chips are 

available in two formats consisting of devices that transmit a control 

signal to randomly begin conducting and devices that are able to detect 

the zero-crossing point of the main power signal. If the AC power cycle is 

randomly “chopped,” radio frequency interference (RFI) or more general 

electromagnetic interference (EMI) can be generated, and filters must be 

used for suppression of the unwanted radiation. Zero-crossing detector 

circuitry that turns the AC controlling device on and off only at the zero-

crossing point minimizes the generation of significant RFI.

Random-phase or zero-crossing, optical isolation integrated circuitry 

operates from low-voltage DC sources, so if standard digital logic circuitry 

is to be used with triac control of mains AC power, then a source of the 

required DC power must be available. Batteries or the simple dedicated 5 V 

supply illustrated in Figure 10-11 may be used.

The use of solid-state devices to control AC power provides the 

researcher with two methods for using the energy. In the first and simplest 

method, the full AC voltage can be applied to the load, and the time at 

which the full current is allowed to flow is varied. The second form of 

Figure 10-11.  A Typical AC to 5-Volt DC Output Power Supply
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control involves varying the voltage applied to the load. The AC voltage 

cycles between 0 and 120, and the solid-state switching devices can be 

used to apply any portion in the cycle (between 0 and 120 volts) to the 

load, 60 times a second. The AC waveform is a sinusoidal phenomenon in 

which the voltage magnitude follows a sine curve. By selecting a portion 

of the waveform to apply a voltage to the load, the power control is called 

“phase angle control.” Voltage variation is somewhat complex and should 

be used only when required. By applying the full AC voltage to the load 

and varying the time of full power application, the power delivered to the 

load can be controlled, and the radio frequency noise generated is greatly 

reduced and minimized when zero-crossing switching is used.

Pulse width modulation concepts introduced in Chapter 7 and applied 

previously in a motor control exercise are usually applied in DC power 

systems but can also be used to exert a rudimentary coarse control of AC 

power.

The optical isolators used in this portion of the exercise are random 

and zero-crossing units.

�Experimental
�Hardware
A 60 to 15 watt incandescent light bulb is a good visual demonstration load 

for this AC power control exercise. The socket for the bulb and a mounting 

bracket for holding a potentiometer control, while serving as a heat sink 

for the triac mount, along with a terminal block and the breadboard 

for mounting the controlling circuitry, should all be affixed to a sturdy 

wood or metal base as depicted in Figure 10-12. Recalling the dangers 

associated with AC mains voltages and currents, all of the wiring carrying 

mains power must be securely fastened, properly insulated, and covered 

according to local electrical building codes. Insulation on wires carrying 
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mains power should be carefully cut to ensure no bare wire surface is 

exposed after the screw terminal connection on the terminal block is 

tightened. All exposed wire surfaces or soldered connections carrying 

mains power must be insulated with liquid plastic insulator, silicone 

sealant, or heat shrink tubing. Never power up any circuit with exposed 

conductors carrying mains current.

The numerical designations in the author’s experimental setup 

(Figure 10-12) are explained in the following text.

Item 1 is a 60 W light bulb in an electrical code compliant receptacle 

properly mounted on a ¾ in (1.8 cm) high-density fiberboard. Item 2 

is a 250 VAC terminal board with approved cord and plug (N.B. cover 

removed for clarity). Item 3 is a 400 VAC, 6 A, BTA06 STMicroelectronics, 

TO-220 tabbed triac on its heat sink, with heat-shrink wrapped conductors 

eliminating exposed conductor surfaces. Item 4 is the duty cycle control 

potentiometer, and item 5 is the optical isolation triac control ICs used 

in the demonstration exercises. The number 6 marks the position of the 

bipolar 555 timer, and item 7 is the 9 V battery power supply.

The 60 W bulb initially used as a visually active experimental load was 

subsequently replaced with a much cooler-surfaced 15 W bulb often used 

as an interior light in home appliances.
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�Circuit Schematic
Figure 10-13 is a typical block diagram representing an experimental setup 

for control of AC mains power with a triac and optical isolator.

Figure 10-13.  Triac and Optical Isolator AC Current Control

Figure 10-12.  An AC Current Control Test Apparatus with an 
Incandescent Light Bulb
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For this exercise, a manually controllable, DC pulse source can be 

assembled from a 555 timer configured for astable operation with its duty 

cycle controlled manually, through a potentiometer diode network, as 

used previously for a 90% range of duty cycle variation.

The circuit diagram in Figure 10-13 has been drawn in a configuration 

using the Fairchild semiconductor MOC 3022 that may be powered from 

either a 5 V supply or a 9 V battery when a suitable current limiting resistor 

is used in the MOC 3022 internal LED illumination circuit. Controlled AC 

power is applied to the load circuitry by energizing the low-voltage pulse 

generation circuit and then plugging in the AC power cord to the mains 

supply.

The circuit of Figure 10-13 has been drawn with a MOC 3022 random-

phase optical isolator triac driver in place. The MOC 3061 zero-crossing 

device can be used in the same manner as depicted in Figure 10-14.

In order to conduct an important visual display of the resultant effects 

of the application of a pulse width variation technique to an AC current 

control, the circuit depicted in Figures 10-12, 10-13, and 10-14 should be 

built on a prototyping breadboard with the components in Figure 10-14.

After assembling and examining the effects on the light bulb filament 

of altering the duty cycle of the 555 timer with the 0.1 μF capacitor in the 

timing network, the capacitor should be changed to a 1.0 μF unit and the 

duty cycle varied over the available range again.

Although the circuit being assembled is for demonstration only, it 

is good practice to use low-leakage plastic film or ceramic capacitors in 

timing operations.
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�Software
No screen display page components or scripting is required for this 

exercise.

�Observations
A handheld multimeter able to measure frequency in Hz was used to 

measure the output frequency of the 555 timer circuit square wave that 

was found to be approximately 75–124 Hz for the 0.1 μF capacitor and 

8–12 Hz for the 1.0 μF unit.

The initial setup assembled on a breadboard with a 0.1 μF in the timing 

circuit and using the MOC 3022 was able to vary the brightness of the lamp 

from about half power to full on. At the half-on power setting that was near 

the end of potentiometer rotation, the lamp flashed and flickered, and the 

timer output was found to erratically move between 75 and 82 Hz.

Figure 10-14.  A 5-Volt 555 Timer IC Control of Line Power
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Replacement of the timing capacitor with a much larger 1.0 μF unit 

greatly lowered the 555 timer pulse rate frequency range from 12.6 Hz to 

7.6 Hz. At the full rotation of the potentiometer to the 12.6 Hz position, the 

lamp is fully lit and does not flicker. Rotation of the potentiometer to the 

point at which the frequency meter reads 7.8 Hz causes a visually smooth 

decrease in the lamp luminosity and a concomitant increase in erratic 

lamp flickering until at the low end of the frequency range the lamp is 

essentially off but flickers with an erratic, very-low-level luminosity.

Although the PWM on/off power application of the AC line voltage 

through the optical isolator was able to roughly regulate the energy 

delivered to the lamp, the system does not function as a smooth lamp 

dimmer, but could work for non-lighting applications.

�Discussion
A majority of the world’s electric power grids carry energy created from 

rotating generators driven by water, steam, or more recently wind turbines. 

AC electrical energy can be passed through transformers for conversion 

to high-voltage forms for transmission over great distances and converted 

back into high-current relatively lower voltages forms for consumer use. 

Most of the world’s power grids are operating at AC frequencies of 50 or 

60 Hz.

For dissipative use as in incandescent or fluorescent lighting, heating, 

or turning electric motors, the AC power can often be used as received 

from the power distribution grid with minimal alteration.

Triac control of the power being applied to the incandescent bulb load 

in the demonstration circuit is controlled by the pulse rate delivered by 

the battery-powered 555 timer. The timing network used in the 555 timer 

astable mode of operation as shown in Figure 10-14 is able to allow the 

duty cycle to vary from approximately 5 to 95%. Thus, the power delivered 

to the load is variable over a considerable range but never turned fully off 

nor fully on.
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For the simple purposes of non-inductive or strictly resistive usage 

of AC currents, the various forms of describing AC as rms (root-mean-

square), peak-to-peak, or average can be used in the basic electrical 

calculation formulas but must be used consistently and cannot be mixed. 

If rms is used in Ohm’s law, then all the values for voltage and current must 

be in unit values of rms.

If the lamp were replaced with a heating element inside a closed, 

insulated container, the heat produced could be crudely regulated by the 

on/off ratio controlled by the potentiometer that would in turn coarsely 

regulate the temperature. Recalling the graphic data of Figure 10-5, it can 

be seen that the span of the duty cycle is the span of control available by 

using pulse width variation.

Only very simplified AC circuit analysis and electromagnetic 

interference (EMI) are being examined in this exercise. AC electronics is 

frequency dependent and becomes very complicated as the frequency 

increases. In any experimental work involving higher frequencies such as 

is found in communications, induction heating, and nuclear magnetic or 

electron spin resonance spectroscopy, the literature must be consulted for 

much more specific and detailed information.

If circuits are to be protected from either generating or picking up EMI, 

they must be totally isolated from radiation by being completely encased 

in grounded metal boxes. If the circuits draw power from the grid, then the 

grounded metal boxes and their wiring must, for safety, conform to the 

local electrical building codes.

In most of the power control applications examined thus far, DC current 

has been involved, and hence there is no frequency component to be 

considered. However, an attempt to use PWM techniques with an alternating 

current power delivery at a fixed frequency of either 50 or 60 Hz immediately 

places limitations and restrictions on the nature of the PWM methodology.

In the circuit diagram depicted in Figure 10-14, a circuit has been built 

with a center-tapped potentiometer that can allow a resistance variation 

of approximately 50 kΩ. Examination of the expanded nomograph 
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in Figure 9-1 suggests that for the 50 kΩ–0.1 μF combination, the 

experimenter should expect the timer to oscillate in the hundreds of Hz 

range.

Recall that the potentiometer diode arrangement is used to allow the 

variation of the duty cycle with only minor changes in the frequency of 

oscillation. If power is being delivered to the load through a triac device 

that is allowing current to flow in a manner oscillating at 50 or 60 Hz, then 

a tenth of a second the load will see five or six power cycles. If the 555 timer 

is turning the IR diode in the opto-isolator on and off hundreds of times per 

second, the triac will appear to be on for a substantial amount of the time.

If the frequency of the timer pulse train is lowered to 10 Hz, then 

the duty cycle variation can be made to span five or six power cycles of 

the power oscillating through the triac. Figure 10-15 depicts a tenth of 

a second time span in which the five power cycles are marked with the 

points that would switch the IR diode off at the nominal duty cycle settings.

Figure 10-15.  A Tenth of a Second Graphical Representation of 
a 50 Hz AC Power Supply and a 10 Hz 555 Timer IC Variation of 
Output Duty Cycle
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As noted previously, at the higher frequency, the light bulb is brightly 

illuminated most of the time and can only be dimmed slightly and flickers 

erratically. At a frequency approximately ten times lower, the bulb can be 

dimmed over its entire range of illumination but flickers as the luminosity 

decreases to zero.

A further extension of the PWM method with AC systems is used in 

power control applications in which the frequency of the on/off switching 

is measured in seconds and minutes. Long time duration PWM power 

controls are often used in heating control applications where a large 

thermal mass exhibits a large time lag between the application of power 

to the heater element and an increase in temperature is seen in the mass 

being heated. AC-powered heating systems with large time delays can be 

calibrated and a PWM control system established.

A PWM system can be employed to precisely control the power delivered 

to a load through using semiconductors to pass only small portions of 

the power cycle to the load in a technique known as phase angle control. 

However, phase angle control involves establishing and coordinating the 

zero-crossing point in both of the power cycle and the PWM control signal 

that is beyond the simple introductory nature of this exercise.

�Current Control with Raspberry Pi 
and Python
�Introduction

�Control of Larger DC Currents
As has been pointed out in previous exercises, the RPi has a limited ability 

to supply any sizable currents from the GPIO pins. Higher currents from 

external sources can however be controlled from some of the pins on the 

RPi array.
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An excellent summary of current control hardware and circuitry is 

collected online.3

High-current DC, in the 30–60 A range, can be controlled with 

metal oxide semiconductor field effect transistors (MOSFETs) such as a 

FQP30N06L from ON Semiconductor or Fairchild. FET semiconductors 

often require a strong signal to enter into the conduction mode, and hence 

the experimenter using the GPIO array as a controlling source must make 

sure that the FET transistor selected is compatible with the 3.3 V available 

from the array pins. The L in the FQP30N06L indicates a device with a gate 

compatible with low-voltage control signals.

Moderate current handling capability can be realized with Darlington 

pair transistors schematically depicted in Figure 10-16.

Bipolar junction transistors (BJTs) are current control devices. The 

main current through the device flows between the collector and emitter. 

Current flow between collector and emitter is controlled by the much 

smaller base current. Amplification of the base current makes the BJT a 

sensitive device able to amplify very small, weaker signals from sensors 

3 https://elinux.org/RPi_GPIO_Interface_Circuits.

Figure 10-16.  NPN Darlington Pair Transistors
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such as solar cells and thermocouples. The device fabricated from 

Darlington pair transistors is able to amplify the current in proportion to 

the product of the two amplification factors for the transistors in the pair. 

The dual-transistor assembly is also significantly more sensitive to base 

current than the single transistors used to create the device.

Two common Darlington pair transistors are the TIP 120 and 122 that 

are available as tabbed, three-terminal devices, in the TO-220 package. 

The devices are able to work at up to 60 and 100 V, respectively, and, with 

proper heat sinks, can operate with 5 A currents.

�Experimental
�Non-inductive Loads
To demonstrate a current control technique with the GPIO array of the 

RPi, a Python-tkinter GUI screen slider control will be used to manage 

the power from a 12 V supply illuminating an automotive incandescent 

lamp. The incandescent lamp is purely a resistive load and hence requires 

no diodes to bypass the destructive voltage spikes generated by inductive 

loads such as motor coil windings.

A TIP 122 Darlington pair transistor and a resistor were mounted on a 

prototyping board and connected to the 12 V battery power supply and the 

automotive lamp. The current control demonstration circuit is depicted in 

Figure 10-17.
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The automotive lamp was found to draw 1.25 A from a 6 V source at 

a bright red heat that corresponds to a filament resistance of 4.80 Ω. The 

expected current draw at full power with a 12 V supply should thus be 

approximately 2.5 A well within the manufacturer’s recommended 5 A 

capacity for the TO-220 package.

The Python-tkinter GUI slider control as created by Listing 10-1 is 

depicted in Figure 10-18.

Figure 10-17.  Circuit for Incandescent Light Current Control
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Figure 10-19 is a detailed view of the tkinter scale or slider power 

control icon. Arrow captions and percentage numerical quantity identifiers 

have been applied to the image by the author while the text and immediate 

slider value number are created by the appropriate entries made in Listing 10-1.  

Extended detail has been added to Figure 10-19 to aid in describing the 

embedded features of the tkinter icon in the “Discussion.”

Figure 10-18.  A Python-tkinter GUI Sliding Power Controller for 
an Incandescent Lamp Load with Console Value Display of PWM 
Percentage
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�Observations
The sliding scale widget depicted in Figure 10-19 performs as expected 

with the lamp filament completely off with the slider to the extreme left 

of the trough and at a yellow-red incandescence with the slider at the 

extreme right. The variations in filament intensity were similar to those 

observed in Chapter 7, Figures 7-7 and 7-9.

The scale or slider control must be moved slowly in order to follow the 

changing positional values. The icon has a much finer degree of control as 

detailed in the “Discussion” section.

�Discussion
All circuitry wiring carrying hundreds of milliamps and amperes of 

currents should be properly connected with soldered joints or tight 

mechanical connections and insulated to prevent short circuits. High 

current discharges from short circuits even at low voltage can produce very 

high heat arcs that melt metals, ignite combustibles, and cause painful 

burns.

Figure 10-19.  A tkinter Scale or Slider Screen Icon Controller for the 
RPi.GPIO PWM Library Function
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Tkinter is a Python library that enables the implementation of a 

number of icons for assembling an active, custom SCADA GUI for the RPi. 

A substantial amount of functionality is built into the icons available from 

the tkinter collection.4

In many tutorials on using tkinter and other GUI creation libraries, the 

icons such as buttons, sliders, scroll bars, and other screen icon devices 

are often referred to as “widgets” and given the symbol w in programming 

code.

In Listing 10-1, a tkinter instance of a window is created and set to the 

designator of master. The interior of the master window is scanned for 

mouse-activated events by the mainloop() function. Widgets are created 

on-screen or instantiated in code within the actively scanned area of the 

master window to accomplish the task at hand. If the widget in the window 

must communicate with the Python program in which the tkinter window 

is running, a “callback” function must be invoked to communicate with 

code outside the active area of the master window.

In simplified terms, it can be said that each widget is displayed inside 

a small window on the monitor display screen. The space inside the small 

window is scanned by the tkinter program looking for mouse click “events'' 

that may occur within the frame. Mouse clicks or mouse button clicks can 

be used to drag the edges of screen objects to resize them, activate their 

display controls, and minimize, maximize, or exit from the program.

An ability to communicate with the Python code in which the tkinter 

window and widget are running allows the experimenter to gain access 

to the RPi serial port and as is detailed in Chapter 11 connect the screen 

widget to electro-mechanical systems for SCADA operations.

Figure 10-18 depicts the RPi screen obtained when Listing 10-1 is 

launched with the diagnostic print statement in the callback function 

active. The print statement causes the numerical position of the slider 

index that appears over the index line on the slider button to be printed 

4 effbot.org/tkinterbook/
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to the Python console. The line containing the print statement in the 

scale or slider program’s callback function can be commented out after 

code operation has been validated or when not needed for error tracing 

diagnostics.

Figure 10-19 has arrow captions that denote the two extreme values 

to which the indicator slide can be dragged with the mouse cursor and a 

clicked left mouse button. If the experimenter needs to finely set the PWM 

value from the screen icon, the index button can be dragged to the desired 

approximate position and then adjusted to the final desired position with 

the cursor tip. If the slider index button is to be increased in value by single 

digits, the cursor tip is placed on the top edge of the slider trough between 

the slider button and the 100% end of the slider scale and single-clicked 

for each desired single-digit increase in the index button position. If from 

the rough positioning the index value is to be decreased, the cursor tip is 

placed between the index slider button and the 0% end of the scale and 

single-clicked to the desired final position.

�Power Control to Inductive Loads
�Introduction
A RPi controlling a TIP 122 as depicted in Figure 10-17 can be used to 

control the power delivered to a brushless DC motor as depicted in 

Figure 10-4, but the coils in the motor are an inductive load and produce 

a back electromotive force (EMF) in the form of a voltage spike, when the 

magnetic field enveloping the coils collapses. To prevent the back EMF 

from destroying the PN junctions in the power transistor, a suitably sized 

diode should be placed in parallel with the load.

RPi PWM signals from the scale-slider GUI described previously 

could be used to replace the 555 timer–potentiometer power control to a 

transistor used to regulate the current delivered to a brushless DC  
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motor and hence manage the speed of the motor as seen in Figure 10-4.  

A Python break beam RPM monitor could also be set up using the circuitry 

described in Chapter 8 to monitor the motor speed and thus duplicate the 

DAQFactory exercise in terms of the RPi-Python combination.

However, rather than perform a translation from one system to 

another, a very useful higher-current delivery demonstration that does 

not use PWM can be developed with the RPi and Python to power stepper 

motors.

�Experimental
Stepper motors can be inexpensively controlled from the RPi with a  

single ULN2803 or ULN2804, eight–Darlington pair array IC ($3 CDN).  

A ULN280n consists of an eight–Darlington pair array of power transistors, 

in an 18-pin, dual in-line package. (DIP) The IC array has been fabricated 

with the bypass diodes already in place for use in driving inductive loads.

Each of the Darlington array transistor pairs is an “open collector” 

configuration in which the transistor is acting as an on/off switch. In the 

open collector configuration, the device to be powered is connected to the 

positive side of the power supply and the open collector of the transistor. 

The emitters of all the pairs share a common connection to the negative or 

“ground” terminal of the RPi GPIO array and the #9 pin on the ULN280n 

IC as seen in Figure 10-20. Toggling the GPIO pins between high and low 

switches the current flow through the motor coils and indicator LEDs on 

and off.

As has been repeatedly suggested in numerous previous exercises, the 

circuitry in which the ULN2803 is to be used should be built up, tested, and 

validated from basic first principles to a completed working final electronic 

power controller configuration. The RPi program should be developed to 

run a series of four LEDs connected to the ULN280n prior to being used in 

an attempt to connect to and power an actual stepper motor.
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A standard application of the ULN280n IC array has been modified 

with the addition of four LEDs to the basic circuit used for the control of a 

stepper motor. A four-LED array aids visually in assembling and validating 

the stepwise implementation of this complex system.

Figure 10-20 is a semi-schematic diagram of a connection in which 

the RPi GPIO array is interfaced through a power controlling IC to an 

illustrative stationary four-coil, multiple permanent magnet rotor, stepper 

motor.

As can be seen in the preceding figure, the toggling of GPIO 18 with a 

Python code taking the #1 pin on ULN2803 high and then low will cause 

a current pulse through the A-E stationary coil creating a magnetic field 

and illuminating the first diode. A transient pulse of current through the 

Figure 10-20.  Schematic for Stepper Motor Control with a 
ULN2803
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coil will create a localized magnetic field that will cause rotor rotation to 

a position in which the nearest permanent magnetic pole of the opposite 

sign aligns with that of the transient in the stationary motor coil. If the 

Python code controlling the GPIO array now delays for a short period of 

time to allow for rotor rotation and field alignment before repeating the 

logic high/low toggling action on GPIO 23 to pulse a current through coil 

E-B and illuminate the second diode, a second “step” of rotor rotation will 

occur. Repetition of the toggling action interspersed with short time delays 

for GPIO array pins 24 and 25 will illuminate the third and fourth diodes as 

the stepper motor shaft completes one rotation.

In simplified terms, it can be said that to control the stepper motor 

from the RPi GPIO array with the circuit of Figure 10-20, the experimenter 

must assemble a Python program to sequentially illuminate the LED array 

as described in Chapter 3 and in Listings 10-2 and 10-3 provided at the end 

of this chapter.

Figure 10-21 depicts one of the author’s experimental configurations 

on a prototyping board.
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In Figure 10-21 item 1 is a Model 3 Raspberry Pi with the appropriate 

GPIO input pins connected to the first four channels of the ULN2803 black 

DIP mounted in the center of the prototyping board (item 2). The power 

control IC output pins are in turn connected to the four input pins of the 

stepper motor wiring harness seen in the upper right-hand corner of the 

prototyping board, while four additional wires power the green LED array 

seen in the upper left-hand corner of the board. An arrow points to the 

illuminated LED in the array. Listing 10-2 is presented as a diagnostic 

utility that illuminates a designated LED, but in reality, with the circuit of 

Figure 10-20, it “single-steps” the stepper motor. Listing 10-3 written as a 

continuous “single stepping” extension of Listing 10-2 in reality provides 

fundamental control over stepper motor actions from the RPi GPIO array.

Figure 10-21.  Experimental Setup for Stepper Motor Driver Python 
Program
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Item 3 is a USB hub with a thumb drive, and item 4 is a low-power 

28BYJ-48 geared stepper motor. The slowly moving motor shaft has a 

transparent tape “flag” with black pen marker lines to aid in displaying 

shaft rotary motion. Also seen in the figure is a GPIO pin position and 

identification aid that helps in pin location during the complex hookup 

wiring as seen in Figure 10-21.

Figure 10-22 displays a very inexpensive ($19 CDN) board-mounted 

stepper motor and IC driver. A 28BYJ-48 motor (item 1) on the board is 

widely used by hobbyists and can be used for this exercise. The small 

stepper motor module is widely available from most hobby or electronics 

stores and online suppliers. Item 2 is the motor wiring harness, and item 3 

is the array of input pins to connect to the GPIO array on RPi.

Figure 10-22.  A Commercially Available SMT Stepper Motor Driver 
Module
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Although presented in a very simplistic manner, stepper motor control 

is not a trivial matter; and in keeping with the introductory nature of this 

work, the investigator is referred to the written and online literature for the 

explanations and computer code for dealing with the advanced topics of 

stepper motor controls as listed in the “Discussion” section of this topic.

A four-unit, D cell battery pack, charged with four alkaline cells, was 

initially used by the author to provide a 6 V output and a 12,000 mAh rating 

to power a larger stepper motor during wiring validation and rotation 

testing. Subsequently a geared stepper motor (approx. 1:64, actually 

63.6839:1) commonly used in robotics and available from numerous 

mail-order sources as a model 28BYJ-48 ($5 USD) was used to develop 

the motor driver programs in the code listings for this exercise. The small 

stepper can be powered with 5–12 V and is reportedly capable of 15 rpm 

with a DC coil resistance of 50 Ω that at 5 volts should draw 1/10 A well 

within the RPi 5 V output current capability of slightly below an ampere. 

The motor weighs 30 gm and is encased in a metal housing with two screw 

mount lugs for easy positioning on experimental setups.

�Observations
In keeping with the previously noted philosophy that a working complex 

system is assembled from simpler, tested, and operationally validated sub-

components, the following procedure was invoked.

After an initial configuration of the ULN2803, the motor, and the 

GPIO array physical pin connections in accordance with that depicted in 

Figure 11-20, the LED illumination program of Listing 10-2 was run with a 

2-second delay once for each of the GPIO values of 18, 23, 24, and 25 (array 

physical pins 12, 16, 18, and 22; recall the array is counted across not along 

the row). As each GPIO connection was enumerated, the corresponding 

LED illumination was visually confirmed to validate the RPi GPIO 

connection to the appropriate motor coil leads.
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After the system validation with the individual LEDs, the second 

program of Listing 10-3 using a while loop to step through the four coil 

connections was launched with the same 2 s delay as used previously to 

validate the correct sequential activation of the motor coils and confirm 

the rotation of the stepper motor.

A 2 s time delay produces a very small step in the highly geared motor, 

but decreasing the time delay to 1/8 of a second induced a slow but 

distinct stepping action.

�Discussion
Listings 10-2 and 10-3 are rudimentary codes that are designed to 

demonstrate to the investigator how a stepper motor works and is 

controlled. To expand motor applications, the experimenter can reverse 

the motor’s continuous rotation by sequentially activating the coils in the  

reverse manner than is presented in the rotation programs. To drive  

the stepper motor into a positional service in which the rotor steps a 

fixed number of increments in a clockwise or counterclockwise rotation, 

the correct coil-energizing code can be enclosed in a Python do loop 

construct.

There are a significant number of different actions that can be 

programmed into a stepper motor that are beyond the simple codes 

presented here to implement forward and reverse continuous rotation 

and speed variation that are detailed in the large engineering and robotics 

literature on stepper motors that should be examined for more complex 

stepper motor applications.

For applications or experimenting with larger stepper motors such as 

those salvaged from obsolete equipment, a separate power supply and 

heavier current draws may be required to achieve motor rotation. The 

GPIO array can be used to activate either Darlington pair transistors or 

heavier MOSFET devices, but both of these types of transistor must be 

Chapter 10  Current Control



405

protected with bypass diodes to avoid semiconductor destruction by the 

back EMF from the motor coils. Heavier current draws by larger systems 

may also require heat sinks for the semiconductors in use.

�Control of AC Currents
�Introduction
Python and the RPi can be used to demonstrate the limited PWM control 

of AC electrical energy with the same, very inexpensive ICs used with the 

DAQFactory programs as listed previously. Multiple ampere triac devices 

capable of over 400 VAC operation and optical isolation devices can be 

obtained from mail-order houses for less than $2. An incandescent light 

bulb powered from the 110 V AC line can be used as an electrical load for 

the RPi demonstration as illustrated in Figure 10-12 with these inexpensive 

components.

For safety and compliance with the law, all wiring involving line 

electrical energy must be completely covered or insulated when assembled 

in accordance with local electrical wiring and building codes.

�Experimental
Figure 10-23 depicts the circuit to be used to control the AC power 

delivered to the incandescent light bulb load. The BTA06 triac should be 

mounted on a heat sink sufficient for the passage of current that will be 

used in the load selected for the exercise. Small incandescent lamps for 

the interiors of domestic cooking ovens can be obtained in small wattages 

down to 15 watts.
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The circuit of Figure 10-23 has replaced the 555 timer and 

potentiometer of Figure 10-13 used in the DAQFactory line power control 

exercise with the pulse width modulation control function available from 

the RPi. The GPIO pin has sufficient power to not only drive the triac gate 

but also simultaneously drive an optional LED “pilot” light and its current 

limiting resistor connected to the GPIO 21 pin and ground immediately 

before the 220 Ω resistor protecting the input to the MOC 3061.

As noted, the RPi.GPIO library contains the functions necessary 

to apply a PWM signal from the GPIO array with sufficient power to 

illuminate a 5 mm LED. An internal LED in the MOC 3061 is used to turn 

on the triac and thus pass power to the lamp filament to light the bulb.

Listing 10-1 is the PWM program for this power control. The listed 

program generates the scale or slider widget depicted in Figures 10-18 and 

10-19, and the duty cycle is determined by the scale or slider horizontal 

position.

A RPi.GPIO library implementation of a PWM power control operation 

involves the selection and setting of a number of variable parameters. The 

operator must select the frequency of the PWM pulse train and the initial 

duty cycle of the control signal and manually insert the selections in the 

two lines of code listed in the following. Once the selections are entered 

Figure 10-23.  110 VAC Line Control for Raspberry Pi
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into the code, the program can be run, and the slider button will apply the 

custom configured PWM power control signal to the triac controlling the 

power illuminating the lamp:

pwm = GPIO.PWM(18, 500) # PWM signal on pin 18 

set to 500Hz

pwm.start(0) # initial starting value for the duty 

cycle

To demonstrate the difference between PWM power control with 

DC and AC power supplies, the slider or scale program is run starting 

with a typical default PWM frequency of 500 Hz. When the slider icon is 

displayed, the lamp should be cycled through its 0–100% power cycle, and 

the effects realized with the power control technique noted.

To accumulate more data to evaluate the effect of the different PWM 

frequencies on the AC power delivered to the lamp, the frequencies 

of the PWM signal can be manually halved from the line frequency 

approximation of 64 Hz down to 8 Hz, and notes on the effects seen on the 

light bulb illumination can be collected.

�Observations
Table 10-2 tabulates the semi-quantitative effects seen in the illumination 

of the small AC-powered light bulb at the various nominal PWM 

frequencies.
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Luminosity was semi-quantitatively measured with a photographic 

light meter by measuring the dial indicator displacement from its zero 

position at a fixed distance from the illuminated light bulb.

�Discussion
A PWM frequency variation study is possible with the RPi and the RPi.GPIO 

library because the PWM frequency is software and not hardware controlled.

As can be seen from Table 10-2, the optimum correlation between 

PWM frequency and power delivery to the light bulb appears to occur 

between 16 and 32 Hz.

Attempts to apply PWM control methods to a 60- or 50-cycle AC power 

source are only coarsely effective when the PWM signal wavelength is 

equal to or larger than the wavelength of the power delivered to the load.

As indicated by the data tabulated in Table 10-2 and depicted in 

Figure 10-15, when the PWM signal is applied to an AC power source with 

a wavelength shorter than that of the control signal, the PWM function can 

Table 10-2.  110 VAC Light Bulb Luminous Output at  

Nominal PWM Frequency
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exert a coarse control over the power delivered to the load. A low-intensity 

lamp flicker at low PWM values can be caused by the control signal turning 

the power signal on at its maximum point in the power cycle. As the length 

of the PWM signal increases, the power signal is able to cycle through one 

or more complete cycles; and as observed in the experiments, the flicker or 

flashing dies out as the PWM signal approaches 100% duty cycle.

The investigator will see both light flickering of variable intensity and 

flickering from completely off to full on evident in virtually all the PWM 

frequency variation experiments conducted. The lack of coordination 

between the phase angles of the two signals creates completely random 

flickering and cyclic pulsing of the lamp intensity in the very responsive 

low-mass lamp filament.

As noted previously, in order for the PWM signal to be used to 

modulate or control the application to the load of only a portion of the AC 

waveform called phase angle control, complex additional circuitry must 

be in place to detect and coordinate the zero-crossing point of both the 

power supply wave and the PWM signal. A variation of PWM control of an 

AC power source can be used for heating and other long-term applications 

where multiple full power cycles are applied to the load in timed pulses.

�Code Listings
�Raspberry Pi–Python Codes

Listing 10-1.  A Horizontal Sliding Current Control Icon

# �A Horizontal Sliding Current Control Icon for the Raspberry 

Pi GPIO Array

# �In RPI.GPIO pin 18 in BCM numbering or pin 12 in BOARD 

numbering has

# �a PWM function of 0-100%. A slider is a standard Tkinter icon 

with a
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# �call back function to send slider position data 0 to 100% 

back to the python

# �program running the RPI.GPIO library to adjust / alter the 

PWM values.

#

from tkinter import *

import RPi.GPIO as GPIO

import time

#

# library set up

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(18,GPIO.OUT)

pwm = GPIO.PWM(18, 500) # PWM signal on pin 18 set to 500Hz

pwm.start(0) # initial starting value for the duty cycle

#

# tkinter scale or slider control icon set up

#

# �set up call back function to process the slider value. Print 

statement

# in callback is a development/error diagnostic utility

#

def Val(val):     # �callback function definition (outside Tk() 

window instance)

    val = w.get() # the get function reads the slider value

    print(val)    # �diagnostic utility comment out when not  

in use

    �pwm.ChangeDutyCycle(val) # RPI library function to alter 

the PWM power applied to the load

#
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master = Tk()     # window instance

master.title("Arduino in Science")  # �a title for the main 

window that holds the 

widget

w = Scale(master, from_=0, to=100, orient=HORIZONTAL, 

label="PWM Controller", command=Val)  # �creates widget, scale, 

text and names callback 

function

w.pack()          # display scale or slider icon instance

#

mainloop()        # main loop over window construct.

GPIO.cleanup()    # reset GPIO pins to low.

Listing 10-2.  RPi GPIO Pin Identification Utility

# Locate Physical Pins and GPIO Designations with LEDs

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#

GPIO.setup(25, GPIO.OUT)

GPIO.output(25, GPIO.HIGH) # caution open collector - ULM2803

time.sleep(2)

GPIO.output(25, GPIO.LOW)
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Listing 10-3.  Continuous Stepper Motor Rotation

# Illuminate LEDS repeatedly in sequence

import RPi.GPIO as GPIO

import time

#

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#

# �A while loop repeats the cycle till terminated from the 

keyboard

#

while True:

    # illuminate the first LED on GPIO 18

    GPIO.setup(18, GPIO.OUT)

    GPIO.output(18, GPIO.HIGH)

    time.sleep(0.125)

    GPIO.output(18, GPIO.LOW)

    #

    # illuminate the second LED on GPIO 23

    GPIO.setup(23, GPIO.OUT)

    GPIO.output(23, GPIO.HIGH)

    time.sleep(0.125)

    GPIO.output(23, GPIO.LOW)

    # illuminate the third LED on GPIO 24
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    GPIO.setup(24, GPIO.OUT)

    GPIO.output(24, GPIO.HIGH)

    time.sleep(0.125)

    GPIO.output(24, GPIO.LOW)

    # illuminate the fourth LED on GPIO 25

    GPIO.setup(25, GPIO.OUT)

    GPIO.output(25, GPIO.HIGH)

    time.sleep(0.125)

    GPIO.output(25, GPIO.LOW)

�Summary
–– Constant current sources are required for numerous 

electronic and experimental science operations.

–– Exacting DC current control can be achieved in the 

analog format with discrete electronic components or 

integrated circuits and in the digital format with pulse 

width modulation techniques.

–– Sinusoidal AC current control uses solid-state devices 

functioning as controlled diodes passing selected 

portions of the sine wave power profile to the load as 

determined by device gate activation.

–– Precise current control is required to regulate typical 

loads such as continuous motor rotation speeds or 

activate discrete inductive, stepper motor actions.
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–– Exercises demonstrating the problems inherent in 

using basic DC pulse width modulation techniques as 

AC power controls are presented as a prelude for 

understanding advanced microcontroller techniques 

using a PWM variant to control mains power.

–– In Chapter 11, the microcontroller is introduced, and 

its ability to function as a “smart” I/O device and sensor 

interface is presented.
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CHAPTER 11

Microcontrollers 
and Serial 
Communications
During the 40 years in which the 555 timer, 741 op-amp, and Exar XR-2209 

have been in production, complete central processing units (CPUs) for 

digital computing have been developed in the form of microprocessors. 

Microprocessors have in some circumstances been used to create far more 

flexible control systems, with fewer parts than were available with the 

legacy, discrete, multiple-chip-based assemblies.

A microprocessor is a computer central processing unit in an IC chip 

format, while a microcontroller could be considered to be a “micro-

miniature computer” designed for embedded applications. An embedded 

system is usually one dedicated to a specific task, may be written in the 

assembly or the C language for optimum speed and efficiency, and may 

have limited I/O capabilities. A microcontroller contains a microprocessor, 

memories, and programmable input/output peripherals, all combined to 

form a single unit either in a printed circuit board format or as an IC chip.

Microprocessors have been in use for many years, and Parallax Inc.’s 

“BASIC Stamp” and the PIC series of microprocessors from the Microchip 

company are two of the systems that have been available to the advanced 
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hobbyists and specialists for many years. Both the Stamp and PIC series 

of microcontrollers require some detailed knowledge of computer science 

and electronics to be used in nontrivial applications.

Readily available constantly improving, inexpensive microprocessor 

chips, advances in software, and Internet growth have led to the 

establishment of sizable “online” communities of physical computing 

enthusiasts. Physical computing interest has grown to the size where 

commercial enterprises are able to supply the rapidly growing Internet-

based online communities with circuit boards and integrated circuitry. In 

forums, individual community members exchange ideas and information, 

thus developing “open source” systems for which members contribute 

both written code software and hardware configuration developments to 

improve and expand the applications for the systems at hand.

Interest in physical computing in which a PC is used to control electro-

mechanical systems has grown to the point at which online, open source 

physical computing platforms have come into being permitting both the 

non-engineering or new computer experimentalist to begin to create and 

use microcontroller devices to control electro-mechanical systems.

An open source platform called the Arduino project from Italy has 

been specifically developed in which the Atmel series of microprocessor 

chips has been used to build a series of very small and inexpensive 

microcontroller circuit boards. Originally conceived to provide non-

specialists with the ability to endow design, artistic, and hobbyist projects 

with interactive capabilities, the system has also become a popular rapid 

prototyping technique for the trained or experienced electro-mechanical 

developers and serious experimental researchers.

A microcontroller is able to accept coded instructions, process those 

instructions, and manipulate its on-chip input and output peripherals, to 

perform the task required by the coding. Usually the coded instructions are 

written and then assembled on a host PC running a program known as an 
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“integrated development environment” (IDE). Error-free code developed 

in the IDE is then transferred (or uploaded) into the microcontroller via a 

USB connection for actual execution.

The Arduino project has produced several circuit boards that 

use the ATmega series of 8-bit microprocessor chips, together with 

clock oscillators and additional circuitry to form a USB-accessible, 

programmable microcomputer. The boards are programmed from a PC-

hosted IDE based upon the Processing programming language. Both the 

Arduino and Processing language projects are open source creations with 

freely downloadable software, tutorials, projects, and online help from 

user forums. The systems are fully supported by numerous textbooks, 

manuals, and commercially available hardware sources and, through the 

online forums, are constantly advancing and evolving.

As of the time of this writing, the most recent Arduino board release 

is the Uno revision 3. Figure 11-1 depicts an original Uno board that uses 

an Atmel AT328 (8-bit) microprocessor, flash, SRAM (static random-

access memory), and EEPROM (electrically erasable programmable 

read-only memory) with a 16 MHz clock and serial port I/O. The clock 

speed provides time resolution into the microsecond range, and the serial 

port I/O can be accessed by the COM (serial communications) ports of 

the PC hosting DAQFactory. Variations of the Uno board are available 

with Microchip PIC 32-bit microprocessors that use significantly greater 

clock speeds, have greatly extended I/O capabilities, and are completely 

compatible with the code previously developed for the Arduino 8-bit 

systems. (In Figure 11-1, note the socket mounting of the main chip. Newer 

devices are all surface mount technology (SMT).)

Microprocessors provide flexibility and are able to provide 

programmed timing functions in both input and output modes that greatly 

improve the control and reading of sensors or motion control devices.
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An open source platform concept is extremely useful for experimental 

science. A microprocessor chip supported by various I/O interfacing 

circuitry, a crystal-controlled clock, and other supporting hardware, all 

mounted on a very small, inexpensive, readily available circuit board, can 

function as a “smart” peripheral. Smart peripherals can greatly augment 

both the sensitivity and range of data collection through high-speed time 

averaging that often reveals trends, which might otherwise remain hidden 

from the experimenter.

An open source concept also brings many minds from different 

disciplines to focus on a single problem, and the advantage that this brings 

to the increase in the development of knowledge is virtually unmeasurable. 

In the following exercises, the basic ability of the microprocessor to read 

sensors and control motion devices will be demonstrated as a basis for 

more complex and focused applications in actual experimental scientific 

measurements. After establishing the communications link between the 

Figure 11-1.  The Arduino Uno Microcontroller
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Arduino monitoring a simple light-dependent resistor (LDR) and the host 

computer, the ability of the microprocessor to expand the functionality of 

experimental inquiry through such concepts as digital signal processing 

and increased timing capability will be demonstrated.

In preparation for subsequent experimental measurements 

and assembly of laboratory apparatus, the basics of two-way serial 

communications with simple electro-optical light detection and PC 

graphical display of streamed sensor data will be developed in this chapter.

�Experimental: Microprocessor to Host PC 
Communications – “Uploading”
Before proceeding with this exercise, the reader should be familiar with 

the fundamentals of microprocessors and their applications. As noted, 

the Arduino project is an excellent place for those without a background 

in physical computing or electronics to begin to learn and apply the 

basic skills required to use microprocessors. There are sufficient books, 

tutorials, and project descriptions available at the open source website 

that, if read or reviewed, will enable the experimental researcher to 

become comfortable in designing and creating microprocessor-controlled 

experimental setups.

The current exercise is predominantly concerned with interfacing 

a microprocessor with a PC running or hosting the DAQFactory 

SCADA software. Once the interface is established, the flexibility of 

microprocessors will be evident as analog-to-digital converted data is 

streamed out to the PC on the serial connection between sensor and PC 

for supplementary data processing and very flexible graphical data display.

To begin assembling the utilities required to use the microprocessor, 

download and expand the compressed files from the Arduino website for 

the operating system in use (Windows and RPi for the author). Install the 

drivers for the Uno board on the PC hosting the DAQFactory software. 
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Once the PC is able to see the Uno board, launch the IDE for the Arduino 

and run the “Blink” test software, termed a “sketch,” to ensure the basic 

hardware-software connection between PC and Uno board is functional.

To transfer data from the Uno board to the PC and ultimately into 

the DAQFactory software for graphical display, a serial communications 

protocol must be established between the software of the two computing 

devices. The communications protocol must operate both ways permitting 

data to be “uploaded” to the PC-hosted DAQFactory software from 

the Uno board and to “download” to the UNO instructions and control 

commands from the PC DAQFactory software. The bidirectional data 

transfer is conducted by the USB connected between the PC and Uno 

board. The two software “ends” of the USB are the communications (COM) 

ports on either of the two systems. Care must be exercised to ensure that 

the microcontroller is communicating with the correct COM port being 

used by the software on the PC. The PC usually has several COM ports, 

while the microcontroller may have only one.

COM port communication consists of passing ones and zeros back and 

forth between the PC and the peripheral. Since the electrical pulses that 

make up the binary information are transmitted and received in a linear 

fashion, one after another, the data transmission is called serial. The more 

sophisticated and powerful PC is termed the host/master, and the smaller 

dedicated microcontroller is termed the client/slave. Binary information 

is uploaded from client/slave to host/master and downloaded from host/

master to client/slave. All binary information transfer between the two 

devices is conducted under a standard set of rules called a “serial protocol.” 

There are many standard serial protocols in use, and it is possible to create 

a simple special serial protocol if required. The DAQFactory software 

manual contains an entire chapter on serial communications, and a 

separate “Serial/Ethernet Communications Guide” is available from the 

AzeoTech website. By following these guides with the suggested code, the 

experimentalist will be able to create and configure a simple protocol to 
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receive streamed data in the “On Receive” event of their user protocol as 

seen in Figure 11-7. Once the ability to receive streamed data has been 

established and is made available as a named DAQFactory channel, the 

powerful statistical and graphics capabilities of DAQFactory can be used to 

display the incoming data. There are several methods that DAQFactory can 

use to implement serial communications that will be developed in later 

portions of this manuscript.

As the Uno-type boards are functioning as a “smart” sensor or 

peripheral and may be moved around between different fixed location 

workstations, mobile wireless laptops, notebooks, or other computing 

devices, different COM ports may be required to support the serial 

communications. COM port selection can be managed from the Tools 

menu on the Arduino IDE, while the location of the COM port being 

used on the PC can be located with the operating system utilities such as 

“Device Manager” in Windows-based systems.

As noted in Chapter 8 on counting and timing, there is a limit to the 

response time of the DAQFactory software. If the Arduino board software 

produces a stream of data that is too fast for DAQFactory to process, the 

cursor response of the main screen becomes sluggish and erratic. To slow 

a data stream that is too fast, a delay statement can be entered into the 

main loop of the Arduino sketch to moderate the transmission rate of the 

outgoing data.

The Arduino IDE monitor does not display the data streaming from 

the Uno board to the PC when the DAQFactory program is receiving the 

stream. The stream arriving at the PC can be displayed graphically or 

“broadcast” for entry into a spreadsheet such as Excel.

In the primary portion of this exercise, a light-dependent resistor will 

be used to provide an analog, varying input for the Arduino Uno board 

that will be passed through an analog-to-digital converter (ADC) and then 

serially transmitted to the host for a virtually real-time-based, graphical 

display by the DAQFactory software.

Chapter 11  Microcontrollers and Serial Communications



422

�Hardware
A USB microcontroller board, such as an Arduino Uno, will be used to 

monitor the output from a 5 V biased voltage divider, formed by a light-

dependent resistor and a 10 kΩ resistor. The Arduino is providing the 

10-bit A/D converted value in the very small 2.75 in (7 cm) × 2 in (5 cm) × 

0.5 in (1.2 cm) circuit board rather than the much larger robust 4 in (10.3 

cm) × 6 in (15.2 cm) × 1 in (2.45 cm) LabJack.

�Circuit Schematic

The 5 V supply and ground are derived from the Arduino board. Analog-

to-digital conversion is accomplished by connecting the junction of 

the sensor and resistor to the first analog input pin A0 (A zero) on the 

microcontroller. The analog signal is converted into a digital value between 

1023 and 0 (1024 or 210 data points). The light-dependent resistor is a thin 

flat strip of cadmium sulfide semiconductor mounted on a flat plane, 

encased with a protective transparent coating. Cadmium sulfide photo 

resistors are available from many local, mail-order, or online electronics 

supply sources and are usually priced in the $1–2 range.

Figure 11-2.  An LDR Biasing Circuit
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�Software
The software for this “upload” portion of the exercise is divided into two 

parts. The first programs the Arduino board, and the second provides 

the “strip chart recorder” graphical output display from the DAQFactory 

program.

Listing 11-1 (all listings are at the end of the chapter) provides a 

copy of the Arduino sketch that monitors the voltage at the LDR–10 kΩ 

resistor junction. (A sketch is the Arduino documentation name for the 

set of program instructions assembled and validated in the integrated 

development environment (IDE) program running on the PC or RPi that 

the microcontroller will follow.)

In essence the Arduino code reads the junction voltage value with the 

A0 input of the system’s 10-bit A/D converter and then prints the value to 

the Arduino COM 3 port with a line feed instruction after each value, every 

500 ms.

In order for the DAQFactory program to be able to read the data placed 

on the COM 3 port by the Arduino, a port identified as “com_3” must be 

created and configured in the SCADA graphing software.

The author’s DAQFactory program channel table was configured with 

the channel name “ArduinoStream” that was set to receive data from the 

device called com_3. The com_3 port had been named, configured, and 

then set up according to the following sequence of selections depicted in 

Figures 11-3 to 11-8.

Initially the Quick menu of Figure 11-3 is used to start the 

configuration process.
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Selecting the Device Configuration option brings up the Device 

Configuration window of Figure 11-4.

From the window of Figure 11-4, the New Serial selection is made to 

bring up the Ethernet / Serial Device port configuration window as seen in 

Figure 11-5.

Figure 11-3.  Quick Device Configuration

Figure 11-4.  Device Configuration Window
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In the window of Figure 11-5, the new com device must be named with 

a DAQFactory-acceptable name (names must begin with letters and can 

contain only letters, numbers, and the underscore). After having entered 

an acceptable name, the Configure button must be clicked to bring up the 

Serial Port Configuration window as seen in Figure 11-6.

Figure 11-5.  Serial Device Naming and Configuration Selection

Figure 11-6.  Serial Port Configuration Window
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For the purposes of this introductory exercise, the default options 

should be accepted and the Save button used to return to the Ethernet / 

Serial Device window of Figure 11-5.

To complete the connection between the Arduino serial port and the 

DAQFactory port, a serial communications method or protocol must be 

specified with the New Protocol button of the Ethernet / Serial Device 

window.

Figure 11-7 displays the Protocol Configuration window.

On opening this window, the Protocol Name and File Name are blank, 

and the I/O Types and Functions selection defaults to the top of the list. 

A name should be specified for the protocol, and a file name with the 

location must also be specified for the protocol that is stored separately 

from the rest of the normal documents. The separate storage of the 

protocol allows sharing of the protocol but also means the protocol has to 

be moved if the host computer is updated or changed.

Figure 11-7.  The Protocol Configuration Window and “On Receive” 
Event Data Parsing Script
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To complete the connection in which the Arduino is independently 

streaming out data, a script must be prepared to be executed each time 

a complete entity of data arrives on the com_3 port. The script is entered 

into the “On Receive” selection of the I/O Types and Functions list. The 

complete code is in Listing 11-2.

Once the com port protocol has been created and saved, the Channel 

Table View can be used to fill in the entries required to establish the 

channel to receive the streamed Arduino data as depicted in Figure 11-8.

With the filling in of the entries in the Channel Table View and the 

clicking of the “Apply” button seen in Figure 11-8, the channel should 

begin filling with timestamped data.

The data can be viewed in tabulated form by expanding the Channels 

heading in the workspace panel and double-clicking the desired channel 

to bring up the Channel details window with five tabs. Selecting the Table 

tab will display the timestamp and data arriving at the port with the 

most recent values at the top (see Chapter 6, Figure 6-14). The Graph tab 

displays a graph of the data. The Event tab displays any code that may be 

applied to data manipulation of the channel values. The Main and Details 

tabs contain numerous named channel configurations and options.

Figure 11-8.  Creation of the Channel for Streamed Data
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�Page Components Required
Channel data can be displayed with a two-dimensional or 2D graph screen 

component expanded to use as much of the screen as possible. A suitable 

display is seen in Figure 11-9 with the time axis set to a 5-minute interval 

(300 seconds) and the Arduino ADC converter values received, scaled from 

0 to 1000 units on the charted output.

�Observations
In a darkened condition, the cadmium sulfide, light-dependent resistor 

(LDR) exhibits a resistance of 75 kΩ. Under the illumination of a close, 

very strong white LED, the LDR resistance drops to 250 Ω. In the circuit 

configuration depicted in Figure 11-2, the observed voltage should vary 

from approximately 0.6 to 5 V as the lighting changes from darkness to 

intense brightness. The Arduino ADC is a 10-bit device that will scale 

the voltage to 1024 units or 4.9 mV/division at 5 V input. A 5-volt input 

is realized when the LDR resistance drops virtually to zero or under 

very strong lighting conditions. The configuration in which the LDR and 

fixed resistor are assembled causes the graphical trace to rise upward in 

proportion to the intensity or brightness of the light falling on the detector. 

The graphical display thus mirrors what the eye sees as higher illumination 

is toward the top of the graph and deepening darkness causes the trace to 

decrease. The simple plotting of the streamed Arduino data is not linear 

with illumination. (See “Discussion.”)

Variations in the light falling on the Arduino-mounted LDR caused the 

response changes depicted in Figure 11-9.
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In Figure 11-9 a strong LED when shone on the LDR saturated the 

monitoring system in section 1. In section 2 the overhead lights were 

turned off, and in section 3 the room lights were turned off, leaving 

only the diffused window light to illuminate the detector. Section 4 was 

recorded with a cover placed over the LDR in the darkened room, and 

section 5 measured the light leakage into the cover when the room lights 

were turned back on. Section 6 shows the reproducibility of the monitor 

when normal room lighting was restored.

Although the response of the LDR is quick and sensitive, rapid, 

flickering obstruction of the light falling on the LDR causes the display to 

lag behind the lighting changes.

Figure 11-9.  Graphical Recording of Illumination Variation on 
Arduino-Mounted LDR
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�Discussion
The speed at which the clock on the microprocessor runs provides 

access to the higher speeds required to monitor some rapidly occurring 

physiochemical events in the experimental sciences. However, the serial 

port is easily able to receive data at a rate far above that at which the 

computer screen can be updated. If the rate of data being streamed into the 

PC port is too high, the cursor response will slow, and it has actually frozen 

the cursor on the author’s system. If the data rate is too high, the Arduino 

may have to be slowed with a delay statement in the microprocessor’s 

main loop. Alternatively the data can be streamed into the DAQFactory 

program and the logging functions used to store data in files at up to 20 

points per second (20 Hz) for later retrieval and examination. The LabJack 

devices (model U3) are able to sample at full resolution at data rates up to 

2500 samples/s. Data streamed or collected at these rates must be saved in 

memory for processing after the closure of the data stream.

A light-dependent resistor is a thin film of semiconductor deposited 

beneath a protective transparent covering. Ambient light falling on 

the detector causes electrons to be knocked from the semiconducting 

material, and the resistance of the device drops as current flows through 

the strip and the circuit connected to its two leads. The dark resistance 

for the author’s setup is usually measured in the range of 75 kΩ or higher, 

while under strong illumination, the resistance may fall to only several 

hundreds of ohms. LDRs can be obtained with dark resistances into the 

megohm range and usually exhibit a green spectral response similar to 

that of the human eye.

Cadmium sulfide is one of the more common and inexpensive light-

dependent resistors. When the circuit shown in Figure 11-2 is used to 

create a varying voltage and the signal is connected to the analog input pin 

A0 of the Arduino board, a 10-bit analog-to-digital converter provides a 

numerical value with a 1 in 1024 part resolution of the input analog signal 

to the USB–COM port serial output.
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Configuring a light-sensitive resistor in a voltage divider circuit 

provides a very simple method for conversion of light intensity into a 

measurable voltage. However, the conversion is not linear.

In the circuit of Figure 11-2, the LDR has been connected to the 5 V 

supply and a 10 kΩ “pull-down” resistor connected between the LDR 

and ground. The analog voltage observed at the LDR–pull-down resistor 

junction is given by the voltage divider equation

Vanalog = V+5 * ( Rpull down/(RLDR + Rpull down))

A typical cadmium sulfide LDR may vary from a dark resistance of  

75 kΩ to a 1 kΩ resistance in bright light. An Excel spreadsheet can be 

used, as illustrated in Figure 11-10, to calculate and display a plotting of 

the analog voltage output for variations in the resistance of the LDR as 

depicted in the circuit drawn in Figure 11-2.

Figure 11-10.  Analog Output of a 10 kΩ–LDR Voltage Divider 
Circuit
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The curvature seen in Figure 11-10 is typical of that seen when the 

sensor is between the voltage source and the grounded pull-down resistor. 

The curve will be the same exponential shape but inverted for a circuit  

in which the sensor is connected between ground and a pull-up  

resistor to the positive voltage supply. Each curve generated for an 

individual LDR and fixed value resistor will be slightly different because  

of the manufacturing variations in both the photocell and resistance.  

The preceding curve is best represented by a logarithmic curve of the form 

y = -1.053ln(x) + 12.173 with a variance of R2 = 0.9939.

As can be seen in Figure 11-10, there are two areas in which the 

curvature of the analog output decreases and starts to trend toward 

linearity. In the upper left-hand quadrant of the plot, there are high analog 

output changes being caused by small changes in the LDR resistance. 

In the lower right-hand quadrant of the plot, large changes in the LDR 

resistance are making small changes in the low value of the voltage output. 

The experimenter may wish to change the value of the pull-up or pull-

down resistor and replot the curve shown previously to find the optimum 

conditions for using a resistive sensor in a voltage divider configuration. 

For accurate quantitative use of the voltage divider configuration for 

sensor measurements, the investigator should calibrate the system at hand 

with as many data points as possible over the sensor range of interest.

�Experimental: Host PC to Microprocessor 
Communications – “Downloading”
�Introduction
In the first portion of this exercise, data has been harvested by the 

microprocessor and sent to the host computer for real-time graphical 

display, archival storage, and possible production of a hardcopy format.
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In this section the host computer and microprocessor will be 

configured for the Arduino to receive commands from the host via the 

serial port. The host will be configured with a DAQFactory control screen 

containing buttons that will activate a LED and start a very simple script to 

cycle a LED on and off several times.

�Hardware
For simplicity an LED and an appropriate current limiting resistor are 

inserted into a prototyping board and connected in series between pin 13 

and ground on the Arduino board.

�Software
The author’s DAQFactory program for the graphical display of streamed 

Arduino data was used to provide a fresh blank page on which several 

buttons were installed as illustrated in Figure 11-11.

Each of the buttons labeled ON and OFF was configured as described 

in previous exercises. For simplicity, in situations where a simple action is 

required from the downloaded instruction, the Quick Sequence selection 

was made from the action list as shown in Figure 11-12.

By clicking the highlighted Quick Sequence entry, the text screen of 

Figure 11-13 is opened, and the required instructions can be entered.

Figure 11-11.  Buttons for Control of Arduino LED
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Figure 11-12.  The Quick Sequence Selection

Figure 11-13.  The Quick Sequence Text Entry Panel
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Quick Sequences do not appear in the listings of formally programmed 

sequences accessed by expanding the Sequences menu option in the 

workspace. The linking of the single line of Quick Sequence text to transmit 

an “H” or “L” is all that is required to activate the ON/OFF button when the 

Arduino code of Listing 11-4 receives the command to alter the LED status.

A sequence programmed to effect a series of on/off actions for 

transmission can be prepared in the normal manner for the DAQFactory 

software. The leftmost button in Figure 11-11 flashes the Arduino LED on 

and off five times at 3-second intervals in accordance with Listing 11-3.

�Observations
When the buttons on the DAQFactory control screen are clicked, the LED 

on the Arduino board is activated or inactivated in accordance with the 

button labels.

�Discussion
When working through the “downloading” commands exercise, each piece 

of the communications link can be independently tested as the system is 

built up. The LED and its current limiting resistor can be tested by loading 

and running the required sketch and sending an uppercase H or L from the 

Arduino serial port. The LED will light and extinguish as instructed.

The serial port display must be closed on the Arduino for the port to 

be available for use by the DAQFactory program. Once the connection is 

made from the screen button code to the Arduino, any attempts to use the 

port by the Arduino in troubleshooting will invoke a “port in use” error 

response from the Arduino. The Arduino must be shut down and rebooted 

to regain access to the port.
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The DAQFactory side of the two-way link and the correct operation 

of the Arduino sketch can be also be confirmed by accessing the com_3 

monitor (com3 in earlier programs) in DAQFactory and manually 

transmitting an uppercase H with the entry box and Send button on the 

monitor window. The manual transmission should activate the Arduino-

mounted LED, and a manual transmission of the uppercase L should then 

turn the LED off.

The two port monitors accept and transmit H/L, but the scripting 

commands must use the quotation marks to designate “H” and “L” as the 

uppercase ASCII characters.

�Raspberry Pi and Arduino
In the previous exercises, the Raspberry Pi has used different libraries for 

its GPIO pin array to communicate with the outside world. Each of the 

three libraries has different abilities and limitations that can virtually be 

eliminated by using the Arduino microcontroller as a smart peripheral.

Recall that Arduino programs are written in the integrated 

development environment (IDE) that is a program downloaded from the 

Arduino website. RPi and Arduino communicate on the USB that should 

not be connected when the IDE program is downloaded and installed with 

the terminal entry

$ sudo apt-get install arduino

On completion of the software installation, the USB cable can be 

connected, and from the Tools menu in the IDE, select Board and set the 

type to Arduino Uno. The serial port option / dev / ttyACM0 should be 

selected to complete the configuration process.

The safest and simplest way to communicate between the RPi and the 

Arduino is via the USB connection. (See “Discussion.”)
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Figure 11-14 illustrates the microcontroller start menu on the RPi after 

the installation of the Arduino IDE.

Examination of the menu entries in Figure 11-14 reveals that a 

very large body of open source code has been written for the Arduino 

microcontroller allowing it to interface to both hardware and software. 

A USB connection between the RPi and the Arduino makes much of this 

analog and digital interfacing code accessible to the computational power 

of the RPi.

�Experimental
With configuration complete, the Blink program can be selected through 

Examples ➤ Basic, compiled and uploaded to the Arduino, which should 

then flash the LED once per second.

Figure 11-14.  The Arduino Menu on the RPi
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Once the LED on the Arduino flashes as programmed, the simple 

process to interface the two devices is complete and validated.

One of the more important experimental aspects of the Arduino-

RPi connection lies in using the computing power of the RPi as a plotter 

to graphically display the data collected by sensors interfaced to the 

Arduino. A simple example of the graphical display capabilities available 

can be demonstrated by plotting the signal from a LDR as various lighting 

conditions change in the environment in which the sensor is positioned.

Five volts from the Arduino is used to bias the LDR with a 5.49 kΩ 1% 

metal film, pull-down resistor similar to the circuit depicted in Figure 11-2. 

The Arduino active code is essentially the same as that listed in Listing 11-1 

with minor changes in only the program comments to accommodate the 

different pull-down resistor value.

The signal from the LDR can be digitized by connection to the A0 input 

of the Arduino’s 10-bit ADC, which is then sent to the serial port of the 

microcontroller for viewing or reading by a Python plotting program. The 

serial plotter code is listed in Listing 11-5.

�Observations
After configuring the LDR sensor and the Arduino and starting the plotting 

program on the RPi, the trace of Figure 11-15 was recorded. On initial start-

up, the plotter program creates a small window on the right-hand side of the 

display with the interactive screen on the left. The streaming printed column 

of numbers and characters seen on the left of the interactive screen are the 

transmitted characters and the numbers to be plotted. (See “Discussion.”)

As noted in Chapter 9, the matplotlib plotting programs are displayed 

with a panel of buttons beneath the lower left-hand corner of the active 

display for invoking several functions such as scale expansion, stepping 

forward and back in frames, or saving the plot as applicable for the type of 

data being displayed.
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Recall that the timing markings on the graphical plotting display must 

be calibrated for quantitative use.

Figure 11-16.  Recorder Tracing of Room Lighting Intensity 
Variations Monitored by a Light-Dependent Resistor

Figure 11-15.  Plotting Data from Arduino
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In Figure 11-16 the full-screen option button has been used to expand 

the recorded plot from the small window visible in Figure 11-15. At the 

extreme left of the plot, the tracing was recording the room light leaking 

under the cover placed over the LDR. The trace dropped to virtually zero 

as the room window was covered and the room lighting was turned off. 

The first large displacement at about a minute and a half was due to the 

uncovering of the window. The second step-up was due to the turning 

on of the overhead incandescent light at about two-and-a-half minutes, 

followed by the left- and right-hand desk lamps at three and four minutes. 

The maximum trace value was created by shining a bright LED light on the 

sensor from a distance of about an inch (2.5 cm). Exact relative times since 

session start and expanded sections of the trace can be accessed with the 

aid of the tool buttons beneath the lower-left corner of the display. (See 

Chapter 9.)

�Discussion
The flashing of the LED with the Blink program has often been cited as 

the physical computing equivalent of the console printout of the “Hello 

World!” program run by all students when learning a new computer 

language. In essence the RPi is sending commands to the Arduino for 

execution. The free, open source software that has been developed and 

published for the Arduino and RPi is substantial and requires constant 

reviewing for the experimentalist or investigator to remain up-to-date with 

this rapidly evolving technology.

Plotting of the data generated by the sensor connected to and possibly 

controlled by the Arduino is accomplished with a slightly modified version 

of the matplotlib strip chart recorder program. A slight modification of 

the original code is necessary for the plotter to be able to read the serial 

port. Serial port transmissions involve patterns of 1’s and 0’s that have to 

be translated into transmissible packets of data, received and parsed back 
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into numerical values for plotting. Arduino is programmed and operates 

in the C language, while the RPi uses Python. As an aid to configuring 

the parsing code and validating the data transmission prior to plotting, 

the characters received by the Python end of the serial connection are 

printed out “as received” on the console display and then printed again 

in the format suitable for recognition as the data for plotting. The print 

statements can easily be commented out when the software is performing 

as intended.

In normal usage the matplotlib strip chart recorder program has 

variables and labels identified in the comments for x, y, and time axis 

scaling. Axis labeling may also need to be modified to plot and identify the 

data at hand.

The RPi and Arduino are both capable of using 3.3- or 5-volt power 

supplies, and for some applications using direct serial communications, 

a voltage level adjusting circuit may be required to avoid damage to 

electronic components. Level adjusting circuits are detailed in several 

published and online sources.1

�Code Listings
Listing 11-1.  Arduino Code

// �Single LDR readings with serial transmission for DAQFactory 

SCR display.

// �The voltage at the junction of an LDR biased by +5 v and 

with a 10K ohm

// resistance to ground is monitored by the A0 input.

1 1) elinux.org/RPI_GPIO_Interface_Circuits
2) �Raspberry Pi Cookbook 2nd Edn., Monk, O’Reilly Media Inc., ISBN 

978-1-491-93910-9
3) Electronics Cookbook, Monk, O’Reilly Media Inc., ISBN 978-1-491-95340-2
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//

//

void setup()

{

  // initialize serial port

  Serial.begin(9600);

}

//

void loop()

{

  // read A0

  int val1 = analogRead(0);

  // read A1

  // print to serial port

  Serial.println(val1);

  //Serial.print(" ");

  // delay

  delay(500);

 }

Listing 11-2.  DAQFactory “On Receive” Serial Port Parsing Script

if (strIn == Chr(13))

   private string datain = ReadUntil(13)

   Channel.AddValue(strDevice, 0, "Input", 0, 

StrToDouble(DataIn))

Endif

Listing 11-3.  DAQFactory Sequence Code for Writing to com_3 Port

 for (Private.Counter = 0, Counter < 5, Counter ++)

   device.com_3.Write("H")

   delay(3)
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   device.com_3.Write("L")

   delay(3)

endfor

Listing 11-4.  Arduino Code to Be Run on DAQFactory Screen 

Button Command

//�Simple DAQFactory - Arduino Serial Communications Program, 

Mar. 3, 2012

//�An LED with an appropriate CLR is connected between pin 13 

and ground on the Arduino

//�The pgm below waits for an incoming character. If the 

character is an upper case H, the LED is

//�turned on. If the character is an upper case L the LED is 

turned off. The state of the LED is

//�thus determined by the nature of the character in the serial 

import buffer.

//

//

const int ledPin = 13;        // the pin with the LED and CLR

int incomingByte;             // a variable to hold the 

incoming data

//

//

void setup(){

  Serial.begin(9600);         // initialize communication

  pinMode(ledPin, OUTPUT);    // set the pin function

}

//

void loop() {

  // check for incoming serial data

  if (Serial.available() > 0) {
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    // �read the last byte in the serial buffer

       incomingByte = Serial.read();

    // if the byte is H (ASCII 72), turn on the LED

    if (incomingByte == 'H') {

      digitalWrite(ledPin, HIGH);

    }

    // if character is an L (ASCII 76) turn the LED off

    if (incomingByte == 'L') {

      digitalWrite(ledPin, LOW);

    }

  }

 }

Listing 11-5.  RPi-Python Code for Reading and Plotting Serial Port 

Data

# A Strip Chart Recorder for Raspberry Pi with Serial Input

# �SCR Plotting of changing LDR data from room environment.  

�LDR data from 5 volt

# �5.49 K 1% MFR pull-down cct on A0 and output on Arduino 

serial port for plotting

#

import matplotlib

import numpy as np

from matplotlib.lines import Line2D

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

import serial

#

#
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#

class Scope:

    def __init__(self, ax, maxt=10, dt=0.02):

        """maxt time width of display"""

        self.ax = ax

        self.dt = dt

        self.maxt = maxt

        self.tdata = [0]

        self.ydata = [0]

        self.line = Line2D(self.tdata, self.ydata)

        self.ax.add_line(self.line)

        self.ax.set_ylim(0.0, 1024.0)  # y axis scale

        self.ax.set_xlim(0, self.maxt)

    def update(self, y):

        lastt = self.tdata[-1]

        if lastt > self.tdata[0] + self.maxt: # reset the arrays

            self.tdata = [self.tdata[-1]]

            self.ydata = [self.ydata[-1]]

            �self.ax.set_xlim(self.tdata[0], self.tdata[0] + 

self.maxt)

            self.ax.figure.canvas.draw()

        t = self.tdata[-1] + self.dt

        self.tdata.append(t)

        self.ydata.append(y)

        self.line.set_data(self.tdata, self.ydata)

        return self.line,

#
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ser = serial.Serial("/dev/ttyACM0", 9600)

#

def rd_data():

    while True:

        inPutln = ser.readline()

        print("inPutln = ", inPutln)

        line = int(str(inPutln)[slice(2,-3)]) # �convert arduino 

serial output 

stream

        # �to a Python string, parse out the numerical symbols 

and convert to a value

        print(line)

        yield (line)

fig = plt.figure()

fig.suptitle("The Scientyst's Ayde", fontsize = 12)

ax = fig.add_subplot(111)

ax.set_xlabel("Time")

ax.set_ylabel("Arduino LDR ADC Units")

scope = Scope(ax)

# �uses rd_data() as a generator to produce data for the update 

func, the Arduino LDC

# �value is read by the plotting code in 10 minute windows for 

the animated

# �screen display. Software overhead limits response speed of 

display.

ani = animation.FuncAnimation(fig, scope.update, rd_data, 

interval=50,

blit=False)

plt.show()
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�Summary
–– Microcontrollers can be considered as smart interfaces 

in the SCADA architecture that use serial port commu-

nications to up- and download instructional com-

mands and data between the host computer and 

remote processes.

–– Microcontrollers can greatly augment the digital signal 

processing and I/O capabilities of the host computer.

–– A microcontroller and a single-board computer can 

form the basis of one of the least expensive SCADA 

implementations available.

Extensive use of the microcontroller and the techniques and software 

described in the previous ten chapters of this book are applied to the tasks 

of implementing experimental determinations in the next work of this 

series, Arduino Measurements in Science.
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�APPENDIX A

List of Abbreviations
A/D analog to digital

ADC analog-to-digital converter

AGM absorbed glass mat (a form of lead acid battery)

AMR anisotropic magnetoresistance

API application programming interface

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

AO analog output

AWG American wire gauge

BCD binary-coded decimal

BJT base junction transistor (either an NPN or a PNP)

BLDC brushless direct current (a type of DC-powered motor)

BMS battery management system

BoB breakout board (adapter to use SMT IC with a prototyping board)

C4D capacitively coupled contactless conductivity detection

C and C++ a compact efficient programming language and a variation for 

Windows applications

(continued)
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CCC constant current charging

cGLP current good laboratory practice (a QA/QC protocol)

CLR current limiting resistor

CMOS complementary metal oxide semiconductor

CNTRL Ctrl key

COM serial communication port

cps cycles per second

CPU central or computer processing unit (a term used to describe the 

main processor chip)

CPVC chlorinated polyvinyl chloride

CR carriage return (in printer control code)

CSA Canadian Standards Association

CSM current shunt monitor (an ASIC for current measurement)

CSS chip slave select (in four-line SPI data transmission protocol)

CSV comma-separated values (a common file data storage  format)

CV computer vision

DHCP Dynamic Host Configuration Protocol

DI/O digital input/output

DIP dual in-line package

D/L download

DMM digital multimeter

DPM digital panel meter

DSP digital signal processing

(continued)
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DUT device under test

DVM digital voltmeter

EEPROM electrically erasable programmable read-only memory

EMF electromotive force

EMI electromagnetic interference

EPS electric potential sensors

ERH equilibrium relative humidity

ESD electrostatic discharge

FFT fast Fourier transform or flicker fusion threshold

FOV field of view

FID flame ionization detector

FSD full-screen display or full-scale displacement

GND ground

GPIO general-purpose input/output

GPR ground penetrating radar

GPS global positioning system

GPU graphics processing unit

GUI graphical user interface

HAT hardware added on top  (RPi add-on boards)

HDMI high-definition multimedia interface

HMI human-machine interface

(continued)
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HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS Secure HyperText Transfer Protocol

I2C or I2C inter-integrated circuit (data transmission protocol)

ICAP inductively coupled argon plasma (also ICP, a spectroscopic source)

ICFT input capture feature of the timer (ATmega328)

IDE integrated development environment

IEPE integrated electronics piezo-electric (vibration sensors)

IMS ion mobility spectroscopy (plasma chromatography)

IMU inertial measurement unit

INS inertial navigation systems

INU inertial navigation unit

I/O or IO input/output

IP Internet protocol

IR infrared

ISR interrupt service routine (programming code)

ISRC internal stray resistance and capacitance (on a circuit board or IC chip)

ITO indium tin oxide

LAN local area network (of computers)

LCD liquid crystal display

LDR light-dependent resistor

LED light emitting diode

(continued)
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LF line feed (in printer control code)

LFP lithium iron phosphate (a lithium ion battery chemistry)

LiMH lithium metal hydride (a type of rechargeable battery and chemistry)

LSB least significant bit

MA moving average (a form of DSP)

MAC media access control

mAh milliampere hours  (sometimes as mAhr)

mcd millicandela (a measure of light intensity)

MEMS micro-electro-mechanical systems

MHz mega-Hertz (a frequency of millions of cycles per second)

MISO master in slave out (four-line SPI data transmission protocol)

MOSFET metal oxide semiconductor field effect transistor

MOS metal oxide semiconductor

MOSI master out slave in (four-line SPI data transmission protocol)

MPCLC multiple plate capacitor load cell

MPPT maximum power point transfer

MSB most significant bit

N.C. normally closed (relay or switch normal configuration, often NC)

NiMH nickel metal hydride (a rechargeable battery chemistry)

NIST National Institute of Standards and Technology

NMR nuclear magnetic resonance (a form of spectroscopy and the basis 

for medical imaging)

N.O. normally open  (relay or switch normal configuration, often NO)

(continued)
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NPN a base junction transistor consisting of a P type of semiconductor 

between two N types

NTC negative temperature coefficient  (a term used with thermistors)

OCV open circuit voltage

OH-MPCLC over had multiple plate capacitor load cell

OS operating system

PC personal computer (IBM/Microsoft Windows OS)

PCB printed circuit board

PDIP plastic dual in-line package

PE polyethylene (a plastic)

PGA programmable gain amplifier

PID photo ionization detector or proportional, integral, derivative  (a 

control algorithm)

PIN an intrinsic PN junction used in high-sensitivity photo diodes, a thick 

light-sensitive layer

PIR passive infrared (an infrared sensor)

PLC programmable logic controller

PM permanent magnet

PNP a base junction transistor consisting of an N type of semiconductor 

between two P types

PV photo-voltaic

PVC polyvinyl chloride (a plastic)

PVDF polyvinylidene di-fluoride (an inert plastic polymer)

PWD pulse width difference

(continued)
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PWM pulse width modulation

PZT lead zirconate titanate

RMB-PUM right mouse button pop-up menu

RC resistor-capacitor (electronic circuit time constant elements or radio 

controlled)

RE rare earth

REM rare earth magnet

RF radio frequency

RFI radio frequency interference

RGB red,  green, and blue (the three basic colors used in LED displays)

RH relative humidity

rms root mean square (a measurement form used with AC or sinusoidal 

power signals)

RPi Raspberry Pi

RPM revolutions per minute (a measure of rotation speed)

RTC real-time clock

RTD resistance temperature device

RTV room temperature vulcanization (a term used to describe a silicone 

sealant/adhesive)

SAR successive approximation register (a type of ADC)

SBC Single-board computer

SC specific conductivity

SCADA supervisory control and data acquisition

SCC short circuit current

(continued)
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SCL(K) the clock line designation in four-line SPI data transmission protocol

SCR silicon controlled rectifier or strip chart recorder

SD secure data (a plug-in digital data storage media/card)

SDA I2C serial protocol for slave data

SHE standard hydrogen electrode

SLI starting lighting ignition  (a form of lead acid battery)

SOIC-8 small outline integrated circuit eight-pin SMT-defined package format

SIP single in-line package (an IC with only a single row of power I/O pins)

SMBUS System Management Bus  (a simple one-wire serial communications 

protocol)

SMT surface mount technology

SoC state of charge or system on a chip

SPAD single-photon avalanche diode

SPC statistical process control

SPI serial peripheral interface

SRAM static random-access memory

SS slave select

SSR solid-state relay

TCR temperature coefficient of resistance

TEC thermoelectric conversion or converter

TEG thermoelectric generator

TIA trans-impedance amplifier

TIG tungsten inert gas (a form of welding)

ToF time of flight (a form of distance measurement or mass spectrometry)

(continued)
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tpi threads per inch

TTL transistor-transistor logic

UART universal asynchronous receiver-transmitter (serial data transmission 

protocol or IC)

UAV un-manned aerial vehicle

ui /UI user interface

URL universal resource locator (an Internet address)

USB Universal Serial Bus

UTC universal time coordinates

VCO voltage-controlled oscillator

Vdd voltage drain (usually the positive supply)

VLS visual light systems (a communications technique)

VOM volt-ohm meter

VRSLA valve-regulated sealed lead acid (a form of battery)

Vss voltage source supply (usually ground potential)

VVC variable value component (a GUI screen numerical display of 

DAQFactory software)
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�APPENDIX B

List of Suppliers
Chapter IC or Part

1 LabJack U3-HV https://Labjack.com/support/datasheets/u3

LabJack U12-HV https://Labjack.com/support/datasheets/u12

chipKIT https://reference.digilentinc.com/

reference/microprocessor/uc32/start

Arduino 

RedBoard

www.sparkfun.com/products/13975

Arduino 

(BlueBoard)

www.arduino.cc/

CD4050 www.ti.com/lit/ds/symlink/cd4049ub.pdf

2 MCP3008 www.microchip.com/wwwproducts/en/MCP3008

4 2N3904/2N3906 www.onsemi.com/pub/Collateral/2N3906-D.

PDF and www.onsemi.com/pub/

Collateral/2N3903-D.PDF

6 ADC0804 www.ti.com/lit/ds/symlink/adc0804-n.pdf

MCP3201 ww1.microchip.com/downloads/en/

devicedoc/21290d.pdf

7 TIP 122 www.onsemi.com/pub/Collateral/TIP120-D.PDF

8 LM555 www.ti.com/lit/ds/symlink/lm555.pdf

(continued)
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Chapter IC or Part

9 CMOS 555 www.ti.com/lit/ds/symlink/lmc555.pdf

Bipolar 555 www.st.com/resource/en/datasheet/

cd00000479.pdf

Exar XR-2209 www.maxlinear.com/ds/xr2209v202.pdf

10 LM741 www.ti.com/lit/ds/symlink/lm741.pdf

LF411 www.ti.com/lit/ds/symlink/lf411.pdf

CD4013 www.ti.com/lit/ds/symlink/cd4013b.pdf

MOC 3022 www.mouser.ca/datasheet/2/239/MOC302-

1175440.pdf

BTA06 www.st.com/resource/en/datasheet/ 

bta06.pdf

MOC 3061 www.mouser.ca/datasheet/2/308/

fairchild%20semiconductor_

moc3061m-1191638.pdf

FQP30N06L www.onsemi.com/products/discretes-

drivers/mosfets/fqp30n06l

ULN2803 www.ti.com/lit/ds/symlink/uln2803a.pdf

11 LDR www.farnell.com/datasheets/77395.pdf or 

www.resistorguide.com/photoresistor/
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Index

A
AC current

advantage, 380
circuit analysis, 388
circuit schematic, 384, 385
experimentation, 405–407
50 Hz and 10 Hz 555 timer IC 

variation, 389
5-volt 555 timer IC control of 

line power, 386
5-volt DC output power  

supply, 381
hardware, 382, 383
110 VAC bulb output, 408
110 VAC line control, 406
hydro-electric facilities, 379
introduction, 405
mains/household current, 379
observations, 386, 387, 407
optical isolator chips, 381
potentiometer diode 

arrangement, 389
power control  

applications, 388, 390
power grids, 387
PWM frequency, 408
random flickering and cyclic 

pulsing, 409

random-phase/zero- 
crossing, 381

SCR, 380
software, 386
solid-state devices, 381
test apparatus, 384
timer pulse train, 389
timing network, 387
triac and optical isolator, 384

ADC0804, 163–167
Aliasing, 331
Analog-to-digital conversion 

(ADC), 19, 46, 155, 421
ADC0804, 163–167
adjustable analog signal  

source, 160
binary array, 154
circuitry, 160
coding

decimal-to-binary 
conversion via serial 
connection, 190–192

decimal-to-binary sequence 
codes, 185, 186, 188

diode array illumination, 
195–197

GPIO pin array, 206
GPIO pin values to zero, 207
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MCP3008 10-bit ADC, 
202–206

read A0 ADC channel, 198
on receive code, 

ArduinoStream channel, 198
script code, clear display, 189
script code, decrease 

converted value, 189
script code, increase 

converted value, 188
sequence code, clearing 

display, 194
sequence code, decreasing 

converted value, 194
sequence code, increasing 

converted value, 193
12-bit binary LED visual 

display, 199, 201, 202
write data to serial port, 50 

ms intervals, 198
DAC, 157
data sheet, 161
decimal-to-binary (see 

Decimal-to-binary 
conversions)

divider equation, 160
downstream device, 166
8-bit LED display, 161, 164
electrical signal values, 154
electro-mechanical basis, 156
electronic signal, 163
hardware demonstration, 162

history, 154
IC devices, 156
implementation, 159
mechanisms, 155
microcontrollers

active channel time stamped 
data listing, 175

configuration sequence, 173
data passing through port, 176
edit box configuration 

window, 170
experimentation, 169, 170, 

172–174
input channels, 168
nonresponsive  

displays, 175, 176
observations, 174
serial communications, 168
serial control, 169
system development and 

programming, 176
variable value component 

display, 171
variable value configuration 

page, 171, 172
monitored variable value, 167
observations, 162
panel, 160
Raspberry Pi

binary-decimal conversions, 
177, 178

binary visualization  
display, 182

experimentation, 179, 180

Analog-to-digital conversion 
(ADC) (cont.)
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GPIO lines, 182
interfaces selection  

window, 184
LED array testing output, 183
MCP3008 circuit, 180
observations, 180, 181
screen output, 181
selection menu, 184
SPI configuration, 184
12-bit binary LED display, 

decimal value 62, 178, 182
resistance networks, 155
serial data output protocols, 166
water metering system, 165

Application-specific integrated 
circuit (ASIC), 353

Arduino project, 416, 417
“ArduinoStream”, 423
Arduino Uno microcontroller, 418
Assembly language  

programming, 239
Asynchronous communication, 185

B
Base numbering systems, 153
Binary-decimal conversions,  

177, 178
Bipolar junction transistors  

(BJTs), 391
Bistable circuit, 246
Bit banging, 221
Break beam optical  

techniques, 274

Brushless direct current (BLDC)
duty cycle, 369
experimental cooling fan current 

load testing setup, 364
fan motor RPM  

measurement, 367
555 PWM, optical tachometer 

circuit, 370
555 timer signal, 362
Hall effect detectors, 370
hardware, 363–365
observations, 368, 369
oscilloscope display, optical 

beam chopper output, 368
rotational optical scanning 

operations, 362
software, 367

C
Cadmium sulfide, 430
Central processing  

units (CPUs), 415
Chip slave select (CSS), 184
Circuit operating theory, 355
Client/slave, 420
Clock line (SCLK), 184
Complex instruction set computing 

(CISC), 23
Constant current sources

circuit schematic, 357, 359
current mirror, 354
feedback configuration, 360
hardware, 355
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load resistance, 360
observations, 359
op-amp, 356
op-amp balancing, 356
op-amp power transistor 

configuration, 361
operational amplifiers, 355
software, 359
thermal equilibrium, 361

Converter/conversion  
resolution, 154

Counting events/timing
coding

b, s and r quick  
sequences, 293

counting events, 288
cumulative time of intervals, 

287, 288
IR break beam interrupt-

driven counter, 302, 303
IR break beam with interrupt 

activity, 300, 301
polling IR break beam 

monitor program, 299
PWM script, 290
Python scheduled event 

program, 295, 296
reset counter, 289
reset stopwatch, 287
RPi.GPIO push button timer, 

297, 298
RPi three-button stopwatch 

timer GUI, 293, 294

scheduled time timer, 283, 284
stopwatch timer, 285, 286
stopwatch timer code, 

290–292
hardware (see Hardware time/

timing)
microcontroller clocks, 

timekeeping and event 
counting

experimentation, 262, 263
functions, 261
millisecond resolution 

timing session, 264
observations, 263–265
screen-activated button, 265
sensors/process controls, 261
serial port monitor  

record, 263
stopwatch control panel, 262
stopwatch program 

development, 264
switch contact bouncing, 261
timer functions, 265

Python and Raspberry Pi
detecting and counting 

events, 270–272
experimentation, 273–276
familiar current time  

format, 267
GPIO programming 

demonstrations, 273
internet connection, 265
interrupt event detection 

program output, 279

Constant current sources (cont.)
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I/O libraries, 281
observations, 276–280
optical break beam  

circuit, 282
polling program output, 278
rising edge push button 

timer output, 276
scheduler modules, 282
scheduler program  

output, 269
scheduling events, 268, 269
short elapsed time 

determination, 277
three-button stopwatch 

timer, 268
tick count, 266, 267
time-based  

measurements, 282
software (see Software time/

timing)
Current control

AC (see AC current)
AC electronics, 354
coding

continuous stepper motor 
rotation, 412, 413

horizontal sliding icon,  
409, 411

constant (see Constant current 
sources)

DC (see DC currents)
implementation, 353
limitations, 354
monitoring, 353

power to inductive loads (see 
Inductive loads)

Raspberry Pi and Python
DC currents, 390, 392
extreme values, 397
incandescent light current 

control, 393
non-inductive loads, 

392–394
observations, 395
print statement, 396
Python-tkinter GUI slider 

control, 394
slider screen icon  

controller, 395
tkinter, 395, 396
widgets, 396

sensor management, 353
Current limiting resistor (CLR),  

23, 27, 31, 55, 93

D
Daemons, 223, 272
Data acquisition (DAQ), 2
Data entry

AnalogUp() and AnalogDwn() 
functions, 105

Arduino microcontroller
computing systems, 105
DAQFactory control screen, 

107, 108
experimentation, 106–109
numerical values, 105

INDEX
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observations, 109
PWM activation code, 110
SCADA software, 106
serial monitor, 110

button component multiple 
action selection panel, 102

coding
DAQFactory code, 115, 116
declare variables, 112
fade in and out, green LED 

brightness, 113, 124, 125
flashing, Arduino-mounted 

LED, 124
flash red LED, 112
“flsh_Rpts” screen-entered 

loop index counter, 126
GPIO array, 129
host computer screen, 127
LED illumination intensity 

variation, 113, 114
multiple-button colored 

diode selection,  
119–121, 123

multiple-button control, 118
PWM power application 

requests, 126, 127
read power consumption, 116
red LED on and read LED 

current, 115
toggle red LED illumination, 

116, 117
configuration panel, descriptive 

text component, 101

control panel, LED illumination 
repetitions, 100

control system, 93
diode intensity, 93, 94
edit box main tab completed, 100
edit box main tab, set channel, 99
edit box ready for sizing, 100
hardware, 94, 95
NPN and PNP power control, 104
observations, 103
output, Python screen entry, 111
page components 

requirements, 96–99, 102
prototype circuit, 95
Raspberry Pi, 110–112
scripting, 103

DB-25 connector, 131, 132
DC currents

BJT, 391
BLDC (see Brushless direct 

current (BLDC))
FET semiconductors, 391
NPN Darlington pair  

transistors, 391
stepper motors (see Stepper 

motors)
Decimal-to-binary conversions

ADC (see Analog-to-digital 
conversion (ADC))

DAQFactory panel, 158
hardware, 158
software, 158, 159

Differential time measurement, 239
Digital signal processing (DSP), 137

Data entry (cont.)
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Digital signals
binary and decimal numerical 

domains, 137
binary numbering and digital 

electronics, 131
CD4050 buffers, 136
coding

clear byte display, 150
8-bit binary byte display, 

143–146
8-bit binary LED display, 

146–149
microcontroller LED byte 

display, 142
sum active binary digit 

values, 141, 142
DB-25 connector, 131, 132
8-bit byte LED  

display, 134
8-bit byte LED display control 

panel, 135
hardware, 132, 134
high/low electrical energy 

levels, 131
LabJack U12, CB25 terminal 

board and 8-bit LED  
array, 133

microcontroller LED 
demonstration array

8-bit byte, bitwise numerical 
display, 137

8-bit byte keypad, bitwise 
display, 138

experimentation, 137, 138

observations, 138
summing program, 139

numerical representation, 136
observations, 136
program output and 8-bit byte 

LED display control  
panel, 140

Raspberry Pi, 139, 141
software, 134, 135

Digital systems function, 209
Digital-to-analog conversion 

(DAC), 157
Digital visualization, 138
Downloading

hardware, 433
observations, 435
port in use error response, 435
serial port display, 435
software

Arduino LED control, 433
Quick Sequence  

selection, 434
Quick Sequence text entry 

panel, 434
Dual in-line package (DIP),  

318, 398
Dual-sloped triangular waveform

dual-battery bipolar power 
supply, 319

function generator, 318, 319
observations, 320
positive and negative voltage 

ramps, 319
pull-up resistor, 321
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XR-2209 function generator, 320
XR-2209 VCO, 318

Duty cycle, 210, 217, 256, 259, 365, 
366, 369

E
easyGUI, 18, 20
Edge detection, 270
Electrical pulses, 245
Electrolytic capacitors, 333
Electromagnetic interference 

(EMI), 381, 388
Electro-mechanical  

systems, 416
Electromotive  

force (EMF), 397
Electronic oscillators, 240
Event counting, 244–247
Event detection, 271

F
Fade/fading effect, 93
Fairchild semiconductor MOC 

3022, 385
Field effect transistors (FETs), 245
555 timer IC-based motor 

controller, 366
Flip-flop/latch, 245
Frequency determination, 244–247
Function generators, 318

G
General-purpose input and output 

(GPIO), 50
gpiozero, 20
Graphical data recording

circuit configurations, 306
circuit schematic, 309, 310
clinical and chemical  

analysis, 305
DAQFactory graphical display 

capabilities, 306
default X-Y graphical screen 

display, 311
dual-slope analog ramp, 306
dual-slope triangular waveform, 

318, 320
electronics components, 309
erratic output  

signal/aliasing, 315
555 timer astable  

configuration, 309
hardware and component 

selection, square wave 
output, 307, 309

microcontrollers (see 
Microcontroller data 
plotting)

observations, 313, 314
page components, 310, 312, 313
Python and Raspberry Pi

adjusting plotter  
time base, 343

advantages, 348

Dual-sloped triangular waveform 
(cont.)
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calibrated time base 555 
timer voltage, 347

expanded time scale 555 
timer, 345

experimentation, 341, 342
introduction, 340, 341
live/real-time data plotting, 

348–350
observations, 343, 344
one-minute time scale 

expansion, 555 timer, 346
potentiometer wiper  

voltage, 343
“save a figure” option 

window, 344
scale expansion option, 345
strip chart recorder  

program, 346
time-calibrated plotted trace 

expansion, 347
R-C timing network  

values, 308
recorder trace name  

selection, 312
sawtooth and triangular output 

waveforms, 306
software, 310
timer output at maximum 

resistance, 313
timer output at minimum 

resistance, 314
timing network, 306
triangular and sawtooth 

outputs, 315–318

2D graphical recorder screen 
display, 311

waveform without minimal 
resistance, 314

x-y plotting, 305, 321 (see also 
X-Y data recording)

Graphical user interface  
(GUI), 1, 94

H
Hardware time/timing

astable  
configuration, 258, 259

chip functions, 254
duty cycle variation, 260
experimentation, 257
555 astable cycle, 259
555 IC timer block  

diagram, 255
555 IC timer modes of 

operation, 255
internal voltage divider, 256
mark/space time, 256
observations, 258
operations and configurations, 

timer circuit, 254
resistance values, 260
schematic, 258
square wave/clock signals, 256

Hardware timing, 244–247
HMI devices, 2, 3
Human-machine  

interface (HMI), 131
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I
Inductive loads

experimentation,  
398–400, 402, 403

introduction, 397, 398
observations, 403
stepper motor, 404

Integrated development 
environment (IDE), 40, 51, 
417, 423, 436

Interactive  
navigation, 340

Inter-integrated circuit (I2C/I2C), 
185

Internet of things, 222
Internet time servers, 282
Interrupt-driven event counter 

output, 281
Interrupts, 270, 280
Interrupt service  

routine (ISR), 270, 271
IR break beam  

circuit, 275

J
Jitter, 231, 272

K
Kelvin  

dividers, 155
Kirchhoff’s voltage law, 31
Knob/slider page, 209

L
LDR biasing circuit, 422
Least significant bit (LSB), 155
LED illumination

CMOS buffer IC, 17
coding

button GUI control, 24
manual LED control, 23

DAQFactory and LabJack 
combination, 5, 6

DAQFactory button, 17
data acquisition/HMI devices, 2
digital electrical connection, 1
hardware, 4, 5
interface functioning, 3
machine interface  

connection, 2
observations, testing and 

development, 15, 16
prototyping breadboard and 

assorted components, 4
Raspberry Pi, Python and 

screen push button
assembly and  

configuration, 19
command line methods, 18
direct wiring, GPIO pins to 

prototyping boards, 20
experimentation, 19–21
GPIO pin identification, 19
Kill dialog box, 22
observations, 21, 22
power control, 18
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simple GUI, 22
turnkey system, 23

SCADA software, 17
software

action auto-fill list, 13
action pop-up, Do Action 

Selection, 12
button properties dialog  

box, 10
DAQFactory button action 

screen completed, 14
DAQFactory page naming 

box, 9
exercise road map, 6
I/O channel configuration 

data, 13
main tab, Do Action Button 

Selection, 11
right mouse button pop-up 

menu (RMB-PUM), 6
simple button control, 7
simple button control 

properties, 7
sizing, button icon, 8
text box configuration, 8

LED power control, 5
Light-dependent resistor (LDR), 

419, 428–430
Light emitting diodes (LED)

alkaline/NiMH batteries, 39
Arduino-controlled four-LED 

array, 47
battery power, 38
case structure, 45

channel creation table, 41
circuitry, 33
coding

four-button control screen 
and power consumption 
indicators, 65–67, 69, 70

power draw of four-LED 
array, 72–74

quick sequence code, off 
button, 63

quick sequence code, on 
button, 63

red LED, single-button 
control screen, 57, 58

toggle multiple colored 
LEDs, 58–61

toggle red LED DAQFactory 
quick sequence, 71

toggle red LED DAQFactory 
quick sequence with diode 
power draw, 71

toggling LED on/off, power 
measurement, 63, 65

turn red LED on/off, diode 
current draw, 61, 62

two-button on and off 
control screen, 56

DAQFactory channel table, 34
DAQFactory GUI  

development, 40, 43
DAQFactory serial port  

monitor, 48
DVM, 40
electrical parameters, 30
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experimentation, 29, 30, 32, 
52–54

5 mm parameters, 28
forms, 29
gauge addition, 37
hardware, 32
microcontroller experimental 

interface, 41
microprocessor’s serial port 

number, 42
minimal internal  

resistance, 39
observations, 36, 54, 55
operating values, 27
optical parameters, 31
page components 

requirements, 34–36
physical computing mode, 55
power monitoring, 36, 37, 42, 

52, 55
preliminary coloring, 35
Quick Sequence window, 44
Raspberry Pi, 50, 51
SCADA systems, 47
on screen icon, 43
secondary cell chemistry 

battery, 38
sketches, 45
software, 33
testing and development, 36
toggling action, 45
transmission notation, 49
voltage drop measurement, 46

Luminosity, 408

M
Master in slave out  

(MISO), 184
Master out slave in  

(MOSI), 184
Matplotlib program, 340, 341
Matplotlib strip chart recorder 

program, 440
Metal oxide semiconductor field 

effect transistors 
(MOSFETs), 245, 391

Microcontroller, 415
coding

Arduino code, 441, 442
com_3 port, 442
reading and plotting serial 

port, 444–446
on receive serial port parsing 

script, 442
run DAQFactory screen 

button command, 443
Raspberry Pi and Arduino

direct serial 
communications, 441

experimentation, 437, 438
menus, 437
observations, 438, 440
plotting data, 439, 440
recorder tracing, 439
serial port  

transmissions, 440
terminal entry, 436 (see also 

Microprocessors)
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Microcontroller data plotting
auto-adjusting, 339
data acquisition device, 335
experimentation, 337
observations, 338
serial plotter output, 338
serial plotter selection, 336
start-up noise, 339
typical plotter program, 337
visualization  

technique, 338
Microprocessors

coded instructions, 416
digital computing, 415
electro-mechanical  

systems, 416
embedded system, 415
error-free code, 417
host PC communications

downloading (see 
Downloading)

uploading (see Uploading)
micro-miniature  

computer, 415
physical computing, 416
programmed timing  

functions, 417
rapid prototyping  

technique, 416
Uno board, 417

MOC 3061 zero-crossing  
device, 385

Most significant bit (MSB), 155
Motor rotation, 374

N
2N3904 NPN transistor, 211
Non-inductive  

loads, 392–394
Nonresponsive  

displays, 175, 176

O
Ohm’s law, 16, 357, 388
Open circuit voltage (OCV), 39
Operational amplifiers, 355
Oscillator clocks, 240

P, Q
Parallel ADC integrated  

circuitry, 183
Pattern distortion, 331
Permanent magnet (PM), 371
Phase angle control, 382, 390, 409
Photo interrupter tachometer 

method, 379
Physical computing, 222, 239
Pigpiod, 272
Pigpio operations  

program, 236, 237
Pigpio test utility, 238
Plastic dual in-line package  

(PDIP), 52
Polling, 270, 271, 282
Pulse counting, 245
Pulse train generator  

panel, 251
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Pulse width modulation (PWM), 
51, 94, 106

definition, 210
demonstration, 218, 221
duty cycle, 259
555 timer configuration, 306
frequency, 210, 233, 234, 408
fundamentals, 217
gpiozero library, 225–227, 235
high DC power, 220
high DC waveform, 220
integrated circuitry, 210
low DC power, 219
low DC waveform, 219
motor and incandescent 

lighting applications, 354
observations, 218, 221
pigpio library, 227, 228
power pulses, 221
RPi.GPIO library, 224, 225
sequence program, 232
software implementation, 210
three ADC channels and 

Pause(), 236
three potentiometers, 235
usage, 211

R
Radio frequency interference  

(RFI), 381
Real-time clock (RTC),  

240, 266, 282
“RedBoard” logo box, 41

Reduced instruction set computing 
(RISC), 23

Room temperature vulcanization 
(RTV), 363

R-2R “ladder” network, 156

S
Scheduled event timer, 243
Scheduling events, 268, 269, 273
Scripting

activation button, 80
Arduino LED array, 81
button action tab entries, 78
coding

Arduino LED illumination 
code, 85–87

DAQFactory regular 
sequence code, light show, 
88, 89

Raspberry Pi, light show, 
90–92

descriptive text component, 81
dual-button activation  

screen, 82
experimentation, 82
expressions, 76
hardware, 77
high-speed data transfers, 81
LabJack output connections, 83
languages, 75
LED light show, 79
named sequence entry listing, 78
observations, 80
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process control/data 
acquisition, 75

Raspberry Pi, 83–85
software, 77

Sensor measurements, 353
Serial communications, 48, 168, 

183, 417, 420, 421, 426
Serial/Ethernet Communications 

Guide, 420
Serial peripheral interface (SPI), 

51, 178, 179, 184
Serial protocol, 420
Silicon-controlled rectifier (SCR), 380
Simultaneous scripts, 109
Single-board computer (SBC), 18, 50
Smart peripherals, 418
Software scripting, 239
Software time/timing

batteries, 240
circuit, 251
circuit schematic, 248
determination, 252
evaluation screen, 241
GUI operations, 241
hardware, 248
hardware timing, event 

counting and frequency 
determination, 244–247

manual and automated event 
counting, 253, 254

observations, 252
operations and values, 242
scheduled event timer, 243
scripting, 250, 251

software, 248–252
stopwatch timer, 244
U12 counter usage 

demonstration, 250
variables, 242

Standard numerical analysis base 
conversion algorithm, 153

Stepper motors
actions, 404
alkaline cells, 403
bipolar, PM, 371
capabilities, 371
circuit schematic, 373–375
coil windings, 372
definition, 370
design, 378
digital logic circuitry, 371
D-type flip-flops, 378
experimental setup, 401
555 timer IC-based controller, 373
hardware, 372
observations, 376, 377
obsolete equipment, 404
power control unit, 371
resolution/degree of  

fineness, 372
resonance, 378
screen variable value 

component, 379
SMT, 402
software, page components, 376
test assembly, 375
ULN2803/ULN2804, 398, 399

Stopwatch timer, 244
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Streaming/burst-mode  
operations, 247

Successive approximation register 
(SAR), 51

Supervisory control (SC), 27
Surface mount technology (SMT), 

131, 157, 417
System development/

programming, 176

T
Threading, 93, 103, 109, 271
Time intervals, 239
Timekeeping accuracy, 272
Timing network, 306
Tkinter, 18, 396
Triangular and sawtooth outputs

asymmetrical wave, 315
constant current charging 

source, 316
discharge resistance, 318
555 timer expanded scale, 317
555 timer output voltage 

waveform, 316
linear voltage, 315
observations, 316–318

U
ULN280n IC, 398, 399
Universal asynchronous receiver 

and transmission  
(UART), 185

Uploading
bidirectional data transfer, 420
“Blink” test software, 420
circuit schematic, 422
COM port, 420, 421
DAQFactory channel, 421
dark resistance, 430
data streaming, 421
hardware, 422
LDR voltage divider circuit, 431
observations, 428, 429
page components 

requirements, 428
physiochemical events, 430
pull-down resistor, 431, 432
sensor measurements, 432
serial connection, 419
software

com_3 port, 423
device configuration 

window, 424
protocol configuration 

window, 426
quick device  

configuration, 424
on receive event data 

parsing script, 426
serial device naming  

and configuration 
selection, 425

serial port configuration 
window, 425

streamed data creation, 427
strip chart recorder, 423
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V
Variable intensity control

C code, 223
debouncing, 222
experimentation, 224
GPIO physical computing 

libraries, 231
LED illumination function 

program, 231
lower-level devices, 230
observations

PWM control, RGB LED 
output, 229, 230

PWM frequency variation 
effect, 228

PWM_tst1, 228, 229
tested status, GPIO pins, 230

operating systems, 223
pigpio facility, 223
PWM operations, 222
PWM signals

GPIO pin connection 
schematic, 11 LED, 224

gpiozero library, 225–227
pigpio library, 227, 228
RPi.GPIO library, 224, 225

PWM_tst1, 232
time scale, 231

Variable value components 
(VVCs), 34, 242

Variable voltage control
diode intensity/power, 216
hardware, 211

LabJack analog output 0 control, 
NPN transistor, 212

observations, 216
software

base current and LED 
intensity rotating control 
knob, 215

configuration window, 214
control selection menu, 213
knob tick configuration 

window, 215
Voltage-controlled  

oscillator, 318, 334

W
Water metering system, 165
Widgets, 396
Wire-wound load simulator, 358
Wire-wound resistors, 333

X, Y
X-Y data recording

asymmetrical voltage ramp, 321
axes tab, 323
capacitor voltage and voltage 

square, 324
cyclic charging and discharging 

voltages, 322
finger heat applied to left 

transistor, 332
finger heat applied to right 

transistor, 333
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fixed value capacitors, 334
general tab, 323
graphical display, 326
high and low voltage trace 

variation, 326
higher voltage trace variation, 325
long-term signal distortions, 331
non-reproducible signals, 335
observations, 325

operational circuitry, 327
sources, 327, 328
vs. time recordings, 329–331, 

333, 334
traces tab, 322

Z
Zero-crossing detector  

circuitry, 381

X-Y data recording (cont.)
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