


Copyright

Arduino	Programming	using	MATLAB

Agus	Kurniawan

1st	Edition,	2015

Copyright	©	2015	Agus	Kurniawan



Table	of	Contents
Copyright

Preface

1.	Preparing	Development	Environment

1.1	Arduino

1.1.1	Arduino	Uno

1.1.2	Arduino	Leonardo

1.1.3	Arduino	Mega	2560

1.1.4	Arduino	Due

1.2	Electronic	Components

1.2.1	Arduino	Starter	Kit

1.2.2	Fritzing

1.2.3	Cooking-Hacks:	Arduino	Starter	Kit

1.2.4	Arduino	Sidekick	Basic	kit

1.3	Matlab

1.4	Testing

2.	Setting	Arduino	Development	for	MATLAB

2.1	Getting	Started

2.2	Setting	up	Arduino	Development	for	MATLAB

2.3	Connecting	Arduino	Board	to	Computer

2.4	Hello	Arduino:	Blinking	LED

3.	Working	with	Digital	I/O



3.1	Getting	Started

3.2	Demo	:	LED	and	Pushbutton

3.2.1	Wiring

3.2.2	Writing	a	Program

3.2.3	Testing

4.	Working	with	PWM	and	Analog	Input

4.1	Getting	Started

4.2	Demo	Analog	Output	(PWM)	:	RGB	LED

4.2.1	Wiring

4.2.2	Writing	Program

4.2.3	Testing

4.3	Demo	Analog	Output	Voltage:	LED	Brightness

4.3.1	Wiring

4.3.2	Writing	a	Program

4.3.3	Testing

4.4	Demo	Analog	Input:	Working	with	Potentiometer

4.4.1	Wiring

4.4.2	Writing	Program

4.4.3	Testing

5.	Working	with	I2C

5.1	Getting	Started

5.2	Writing	Program

5.3	Demo	1:	Scanning	I2C



5.4	Demo	2:	Reading	Data	from	Sensor	Based	I2C

6.	Working	with	SPI

6.1	Getting	Started

6.2	Demo	:	SPI	Loopback

7.	Working	with	Servo	Motor

7.1	Getting	Started

7.2	Wiring

7.3	Writing	a	Matlab	Program

7.4	Testing

8.	Measuring	and	Plotting	Sensor	Data	in	Real-Time

8.1	Getting	Started

8.2	Wiring

8.3	Writing	a	Program

8.4	Testing

Source	Code

Contact



Preface
	

	
This	book	was	written	to	help	anyone	want	to	develop	Arduino	board	using	MATLAB	with	Arduino	supported.	It
describes	the	basic	elements	of	Arduino	development	using	MATLAB.

	

Agus	Kurniawan

Depok,	September	2015



1.	Preparing	Development	Environment



1.1	Arduino

Arduino	is	an	open-source	electronics	prototyping	platform	based	on	flexible,	easy-to-use
hardware	and	software.	This	board	uses	Atmel	microcontroller	series.	There	are	many
Arduino	hardware	models	that	you	can	use.	Further	information	about	Arduino	products,
you	can	visit	on	website	http://arduino.cc/en/	.

You	must	one	Arduino	hardware	to	follow	practices	in	this	book.	I	recommend	to	obtain
one	of	the	following	Arduino	hardware:

Arduino	Uno
Arduino	Leonardo
Arduino	Mega	2560
Arduino	Due

You	can	buy	this	product	on	your	local	electronic	store.	You	also	can	order	it	by	online.
Find	it	on	http://arduino.cc/en/Main/Buy.	The	following	is	the	list	of	Arduino	store	you
can	buy

Arduino	store,	http://store.arduino.cc/
Amazon,	http://www.amazon.com
Cooking-hacks,	http://www.cooking-hacks.com/index.php/shop/arduino.html
RS	Components,	http://www.rs-components.com
Element	14,	http://www.element14.com
EXP-Tech,	http://www.exp-tech.de

Because	Arduino	is	an	open-source	hardware,	people	can	build	it.	It’s	called	Arduino
compatible.	Generally	it’s	sold	in	low	prices.

1.1.1	Arduino	Uno

The	Arduino	Uno	is	a	microcontroller	board	based	on	the	ATmega328.	You	can	download
the	datasheet	file,	http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf	.

Further	information	about	Arduino	Uno,	you	can	read	it	on
http://arduino.cc/en/Main/ArduinoBoardUno	.

http://arduino.cc/en/
http://arduino.cc/en/Main/Buy
http://store.arduino.cc/
http://www.amazon.com
http://www.cooking-hacks.com/index.php/shop/arduino.html
http://www.rs-components.com
http://www.element14.com
http://www.exp-tech.de
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://arduino.cc/en/Main/ArduinoBoardUno


1.1.2	Arduino	Leonardo

The	Arduino	Leonardo	is	a	microcontroller	board	based	on	the	ATmega32u4.	Download
datasheet	for	this	product	on
http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf	.

Visit	this	product	to	get	the	further	information	on
http://arduino.cc/en/Main/ArduinoBoardLeonardo	.

1.1.3	Arduino	Mega	2560

The	Arduino	Mega	2560	is	a	microcontroller	board	based	on	the	ATmega2560.	You	can
download	the	datasheet	file	on
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF.

Further	information	about	Arduino	Mega	2560,	you	can	visit	on

http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF


http://arduino.cc/en/Main/ArduinoBoardMega2560	.

1.1.4	Arduino	Due

The	Arduino	Due	is	a	microcontroller	board	based	on	the	Atmel	SAM3X8E	ARM	Cortex-
M3	CPU.	You	can	download	the	datasheet,	http://www.atmel.com/Images/doc11057.pdf.

If	you	want	to	know	about	Arduino	Due,	I	recommend	to	visit	this	website,
http://arduino.cc/en/Main/ArduinoBoardDue.

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.atmel.com/Images/doc11057.pdf
http://arduino.cc/en/Main/ArduinoBoardDue


1.2	Electronic	Components

We	need	electronic	components	to	build	our	testing,	for	instance,	Resistor,	LED,	sensor
devices	and	etc.	I	recommend	you	can	buy	electronic	component	kit.

1.2.1	Arduino	Starter	Kit

Store	website:	http://arduino.cc/en/Main/ArduinoStarterKit

1.2.2	Fritzing

Store	website:	http://shop.fritzing.org/	.

You	can	buy	Fritzing	Starter	Kit	with	Arduino	UNO	or	Fritzing	Starter	Kit	with	Arduino
Mega.

http://arduino.cc/en/Main/ArduinoStarterKit
http://shop.fritzing.org/


1.2.3	Cooking-Hacks:	Arduino	Starter	Kit

Store	website:	http://www.cooking-hacks.com/index.php/shop/arduino/starter-
kits/arduino-starter-kit.html

http://www.cooking-hacks.com/index.php/shop/arduino/starter-kits/arduino-starter-kit.html


1.2.4	Arduino	Sidekick	Basic	kit

Store	website:	http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html

Alternative	online	store

http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/

http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html

http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html
http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/
http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html


1.3	Matlab

MATLAB	Support	Package	for	Arduino	hardware	enables	you	to	use	MATLAB®	to
communicate	with	the	Arduino®	board	over	a	USB	cable.	This	package	is	based	on	a
server	program	running	on	the	board,	which	listens	to	commands	arriving	via	serial	port,
executes	the	commands,	and,	if	needed,	returns	a	result.

This	support	package	is	available	for	R2014a	and	later	releases.	It’s	available	on	32-bit
and	64-bit	Microsoft®	Windows®,	64-bit	Mac	OS,	and	64-bit	Linux®.

I	will	explain	how	to	set	up	Matlab	for	Arduino	development	on	chapter	2.



1.4	Testing

For	testing,	I	used	Arduino	Uno	R3	and	Arduino	Mega	2560	on	OSX	and	Windows	10
platforms	with	Matlab	2015b.

I	also	used	Arduino	Sidekick	Basic	kit	for	electronic	components.



2.	Setting	Arduino	Development	for	MATLAB

This	chapter	explains	how	to	work	on	setting	up	Arduino	board	on	a	computer	and	then,
access	it	from	MATLAB.



2.1	Getting	Started

In	this	chapter,	we	set	up	Arduino	board	development	using	MATLAB	support	package
for	Arduino	hardware.	To	set	up	this	development,	you	must	have	MATLAB	2014a	or
later	and	MATLAB	account	to	verify	while	installing.



2.2	Setting	up	Arduino	Development	for	MATLAB

In	this	section,	we	try	to	set	up	Arduino	development	for	MATLAB.	You	can	configure
MATLAB	Support	Package	for	Arduino	hardware	using	MATLAB	2014a	or	later.	We	also
need	internet	connection	to	download	this	package.

Let’s	start.	

Run	MATLAB	application.	Click	Get	Hardware	Support	Packages	on	Add-Ons	icon
on	toolbox.

Then,	you	get	a	dialog.	Select	Install	from	Internet.

If	done,	click	Next>	button.



Select	Arduino	on	Support	for.	You	should	see	two	Arduino	support	packages.	You	can
select	both.

If	done,	click	Next>	button.



You	will	be	asked	to	logon	with	your	MATLAB	account.	You	should	have	MATLAB
license.	Click	Log	In	button.

You	should	the	authentication	dialog.	Fill	your	account.	After	that,	click	Log	In	button.

If	success,	you	should	get	a	software	license	agreement.	Checked	I	accept	and	then	click
Next>	button.



You	will	get	confirmation.	Click	Next>	button.

Click	Install	button	to	start	installation.



After	done,	you	will	be	asked	to	configure	Arduino	board.	Select	Arduino	and	then,	click
Next>	button.

Confirmation	form	will	be	shown.	Click	Continue>	button.



The	program	will	check	if	your	platform	needs	Arduino	driver	or	not.	If	you’re	working
on	Linux	and	Mac,	you	don’t	need	a	driver.	You	need	to	install	Arduino	driver	if	you’re
working	on	Windows	platform.	Click	Next>	button	if	done.



Installation	is	over.	Click	Finish	button	to	close	installation.



2.3	Connecting	Arduino	Board	to	Computer

Now	you	can	connect	Arduino	board	to	computer.	Then,	verify	which	serial	port	is	used
for	Arduino	board.	On	Mac	platform,	you	type	this	command.

$	ls	/dev/cu*

On	Linux	platform,	you	type	this	command.
$	ls	/dev/tty*

You	can	use	Device	Manager	on	Windows	platform.

After	that,	you	should	see	serial	port	of	Arduino	board	which	is	attached	on	the	computer.

My	OSX	detected	my	Arduino	board	used	/dev/cu.usbmodem1421	serial	port.

On	MATLAB	command	Windows,	type	this	command
>>	a	=	arduino

MATLAB	will	detect	your	Arduino	board.	You	should	detected	Arduino	board
information	on	Maltab	Command	Window.





2.4	Hello	Arduino:	Blinking	LED

In	this	section,	we	build	a	blinking	LED	program	using	MATLAB.	Arduino
Uno/Mega/Leonardo	boards	provides	onboard	LED	which	is	connected	on	pin	13.	

Let’s	start	to	write	our	Blink	program.

Firstly,	you	set	working	folder	on	MATLAB.	You	can	change	it	on	MATLAB	IDE,	see	a
red	arrow.

Then,	click	New	Script	icon	to	create	a	new	script	file.

After	that,	you	can	get	a	script	editor,	shown	in	Figure	below.



board	=	arduino();

led	=	'D13';

for	k=1:10

				disp('turn	on	LED');

				writeDigitalPin(board,led,1);

				pause(1);

				disp('turn	off	LED');

				writeDigitalPin(board,led,0);	

				pause(1);

end

disp('close	Arduino	board');

clear	board;

Save	those	scripts	into	a	file,	called	blinking.m.	Now	you	can	run	it.
>>	blinking

You	may	get	error	message,	shown	in	Figure	below.



This	error	occurs	because	we	create	arduino	object	while	there	is	existing	arduino	object.
We	can’t	use	multiple	arduino	object.	Delete	existing	arduino	on	Workspace	Window.	See
a	red	arrow	on	above	Figure.

We	can	clear	our	arduino	object	usage	using	clear	syntax.

Now	you	can	run	the	program	again.	The	following	is	a	sample	output	of	blinking
program.



You	should	see	blinking	LED	on	Arduino	board.





3.	Working	with	Digital	I/O

In	this	chapter	I’m	going	to	explain	how	to	work	with	digital	I/O	on	Arduino	board	and
write	a	program	for	demo.



3.1	Getting	Started

MATLAB	support	for	Arduino	board	provides	three	functions	which	we	can	use	on	digital
I/O	processing.	The	following	is	the	functions:

configurePin()	is	used	to	define	pin	mode	either	as	input	or	output.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
writeDigitalPin()	is	used	to	write	digital	data	into	a	specific	digital	pin.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/writedigitalpin.html
readDigitalPin()	is	used	to	read	digital	input	on	specific	digital	pin.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/readdigitalpin.html

To	illustrate	how	to	work	with	digital	I/O,	we	build	a	simple	program	by	utilizing	LED
and	pushbutton.

http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writedigitalpin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/readdigitalpin.html


3.2	Demo	:	LED	and	Pushbutton

we	build	a	program	using	LED	and	pushbutton.	When	we	press	a	pushbutton,	LED	will
lighting.	It’s	a	simple;).

3.2.1	Wiring

The	following	is	hardware	wiring:

LED	is	connected	to	Arduino	digital	pin	9
Pushbutton	is	connected	to	Arduino	digital	pin	8

A	sample	of	hardware	implementation	is	shown	in	Figure	below.

3.2.2	Writing	a	Program

Now	you	can	write	these	scripts.
function	[]	=	led_pushbutton()

pushbutton	=	'D8';

led	=	'D9';

board	=	arduino();



finishup	=	onCleanup(@()	exitprogram(board));

configurePin(board,pushbutton,'DigitalInput');

disp('press	Ctr-C	to	exit');

while	1

				state	=	readDigitalPin(board,pushbutton);

				writeDigitalPin(board,led,state);

				disp(state);

				pause(0.5);				

end

				

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

We	use	onCleanup(),	http://www.mathworks.com/help/matlab/ref/oncleanup.html	,	to
catch	CTRL+C	for	quiting	the	program.

Save	this	program	into	file,	called	led_pushbutton.m.

3.2.3	Testing

Run	this	program	by	typing	this	command	on	Command	Window	on	Matlab.
>>	led_pushbutton

Press	pushbutton.	Then,	you	should	see	lighting	LED.	Press	CTRL+C	to	exit	program.

Program	output:

http://www.mathworks.com/help/matlab/ref/oncleanup.html


LED	is	lighting	while	a	pushbutton	is	pressed.





4.	Working	with	PWM	and	Analog	Input

This	chapter	explains	how	to	work	with	Arduino	Analog	I/O	using	MATLAB.



4.1	Getting	Started

MATLAB	support	for	Arduino	board	provides	five	functions	which	we	can	use	on	analog
I/O	processing.	The	following	is	the	functions:

configurePin()	is	used	to	define	pin	mode	either	as	input	or	output.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
writePWMVoltage()	is	used	to	write	PWM	voltage	on	digital	pin.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmvoltage.html
writePWMDutyCycle()	is	used	to	set	PWM	duty	cycle	on	digital	pin.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmdutycycle.html
readVoltage()	to	read	analog	input	on	Analog	pin.
Reference:	http://www.mathworks.com/help/supportpkg/arduinoio/ref/readvoltage.html

In	this	chapter,	we	try	to	access	Arduino	Analog	I/O	using	MATLAB.	There	are	three
scenarios	for	our	cases:

Controlling	RGB	LED
Controlling	LED	brightness
Reading	Analog	input	using	Potentiometer

Let’s	start.

http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmvoltage.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmdutycycle.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/readvoltage.html


4.2	Demo	Analog	Output	(PWM)	:	RGB	LED

In	this	scenario	we	build	a	program	to	control	RGB	LED	color	using	Arduino	Analog
output	(PWM).	

Please	be	careful	if	you	want	to	work	with	Arduino	PWM.	If	you	have	Arduino	Mega,	you
will	see	PWM	label	so	you	obtain	PWM	pins	easily	but	if	you	have	Arduino	Uno,	it	writes
DIGITAL	(PWM	~).	It	means	your	PWM	pins	can	be	found	on	DIGITAL	pins	which	pin
with	~,	for	instance,	~3,~5,~6,~9,	~10,	~11.

For	Arduino	Mega	2560,	you	can	see	PWM	pins	on	picture	below	(see	red	arrow).

For	Arduino	Uno	R3,	you	can	see	PWM	pins	as	below.



RGB	LED	has	4	pins	that	you	can	see	it	on	Figure	below.

To	understand	these	pins,	you	can	see	the	following	Figure.

Note:

Pin	1:	Red
Pin	2:	Common	pin
Pin	3:	Green



Pin	4:	Blue

Now	we	can	start	to	build	a	program	and	hardware	implementation.

4.2.1	Wiring

Firstly	we	implement	RGB	LED	hardware.	The	following	is	a	hardware	schema.

For	our	testing,	we	configure	the	following	PWM	pins.

Arduino	Mega	2560:

RGB	LED	pin	1	(red)	is	connected	to	Arduino	PWM	pin	3
RGB	LED	pin	2	is	connected	to	Arduino	VCC	5V
RGB	LED	pin	3	(green)	is	connected	to	Arduino	PWM	pin	5
RGB	LED	pin	4	(blue)	is	connected	to	Arduino	PWM	pin	6

Arduino	Uno	R3:

RGB	LED	pin	1	(red)	is	connected	to	Arduino	PWM	pin	3



RGB	LED	pin	2	is	connected	to	Arduino	VCC	5V
RGB	LED	pin	3	(green)	is	connected	to	Arduino	PWM	pin	5
RGB	LED	pin	4	(blue)	is	connected	to	Arduino	PWM	pin	6

Here	is	a	sample	implementation	with	Arduino	Uno	R3.

4.2.2	Writing	Program

To	display	a	certain	color,	we	must	combine	colors	from	red,	green,	blue.	MATLAB
provides	API	for	PWM	like	Arduino	API	such	as	writePWMDutyCycle()	with	analog
value	from	0	to	1.	

Let”s	start	to	build	a	program.	Firstly,	open	MATLAB.	Then,	write	these	scripts.
function	[]	=	led_rgb()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

configurePin(board,'D3','PWM');

configurePin(board,'D5','PWM');

configurePin(board,'D6','PWM');

disp('press	Ctr-C	to	exit');

while	1

				disp('red');

				write_rgb(board,0,1,1);	%	red				

				pause(1);

				

				disp('green');



				write_rgb(board,1,0,1);	%	green				

				pause(1);

				

				disp('blue');

				write_rgb(board,1,1,0);	%	blue				

				pause(1);

				

				disp('yellow');

				write_rgb(board,0,0,1);	%	yellow				

				pause(1);

				

				disp('purple');

				write_rgb(board,0.3,1,0.3);	%	purple				

				pause(1);

				

				disp('aqua');

				write_rgb(board,1,0,0);	%	aqua				

				pause(1);

end

				

end

%	testing	for	Arduino	Uno

function	write_rgb(board,r,g,b)

writePWMDutyCycle(board,'D3',r);

writePWMDutyCycle(board,'D5',g);

writePWMDutyCycle(board,'D6',b);

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	this	program	as	led_rgb.m.

This	program	will	generate	six	colors:	red,	green,	blue,	yellow,	purple,	and	aqua.

4.2.3	Testing

Upload	and	run	the	program.	You	should	see	several	color	on	RGB	LED.
>>	led_rgb

The	following	is	a	sample	demo	on	Command	Window	on	MATLAB.



The	following	is	a	sample	demo	on	hardware.





4.3	Demo	Analog	Output	Voltage:	LED	Brightness

In	this	demo,	we	try	to	control	LED	brightness	by	controlling	voltage	on	LED.	MATLAB
for	Arduino	support	provides	writePWMVoltage()	function	to	set	voltage	on	PWM	pins.
We	can	set	a	voltage	value	from	0	to	5	for	Arduino	Uno/Mega	and	0	-	3.3	for	Arduino
Due.	

Let’s	build.

4.3.1	Wiring

We	connect	a	LED	on	PWM	pin	on	digital	pin	3.	The	following	is	my	hardware	wiring.

4.3.2	Writing	a	Program

Now	you	can	open	MATLAB	and	write	these	scripts.
function	[]	=	led_brightness()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

configurePin(board,'D3','PWM');

disp('press	Ctr-C	to	exit');



while	1

				for	k	=	0:5

								writePWMVoltage(board,'D3',k);

								pause(1);

				end

				for	k	=	5:-1:0

								writePWMVoltage(board,'D3',k);

								pause(1);

				end			

end

				

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	these	scripts	into	a	file,	called	led_brightness.m.

This	program	will	set	voltage	value	on	PWM	pin	on	digital	pin	3	from	0	to	5	and	then	set
a	value	from	5	to	0	too.

4.3.3	Testing

Make	sure	Arduino	board	already	connected	to	your	computer.	You	can	run	the	program
by	typing	this	command.

>>	led_brightness

On	hardware	side,	you	should	see	LED	brightness	changing	gradually.





4.4	Demo	Analog	Input:	Working	with	Potentiometer

In	this	section,	we	learn	how	to	read	analog	input	on	Arduino	board.	For	illustration,	I	use
Potentiometer	as	analog	input	source.	Our	scenario	is	to	read	analog	value	from
Potentiometer.	Then,	display	it	on	console.

Let’s	start!.

4.4.1	Wiring

To	understand	Potentiometer,	you	see	its	scheme	in	Figure	below.

You	can	connect	VCC	to	Arduino	board	on	VCC	+5V	pin.	Vout	to	Arduino	board	Analog
input	A0.	In	addition,	GND	to	Arduino	board	GND.	The	following	is	hardware
implementation.	I	use	slide	potentiometer.



4.4.2	Writing	Program

Firstly,	create	a	program	via	MATLAB.	To	read	analog	input,	we	can	use	readVoltage()
function.	Ok,	Let’s	write	these	scripts.

function	[]	=	potentiometer()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

disp('press	Ctr-C	to	exit');

while	1

				analog	=	readVoltage(board,'A0');

				disp(['analog=	',num2str(analog)]);

				pause(1);				

end

				

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	this	code	as	potentiometer.m



4.4.3	Testing

To	run	the	program,	you	can	type	this	command.
>>	potentiometer

You	should	see	analog	value	on	Command	Window.



5.	Working	with	I2C

In	this	chapter	we	learn	how	to	work	with	I2C	on	Arduino	board	using	MATLAB.



5.1	Getting	Started

The	I2C	(Inter-Integrated	Circuit)	bus	was	designed	by	Philips	in	the	early	’80s	to	allow
easy	communication	between	components	which	reside	on	the	same	circuit	board.	TWI
stands	for	Two	Wire	Interface	and	for	most	marts	this	bus	is	identical	to	I²C.	The	name
TWI	was	introduced	by	Atmel	and	other	companies	to	avoid	conflicts	with	trademark
issues	related	to	I²C.

I2C	bus	consists	of	two	wires,	SDA	(Serial	Data	Line)	and	SCL	(Serial	Clock	Line).	You
can	see	I2C	pins	on	Arduino	board	as	follows:

Arduino	Uno:	A4	pin	as	SDA	and	A5	as	SCL	pin
Arduino	Mega	2560:	Digital	pin	20	as	SDA	and	Digital	pin	21	as	SCL

MATLAB	for	Arduino	support	provides	several	functions	to	access	I2C	protocol.	You	can
read	it	on	http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html	.

For	testing,	I	used	PCF8591	AD/DA	Converter	module	with	sensor	and	actuator	devices.
You	can	find	it	on	the	following	online	store:

Amazon,	http://www.amazon.com/PCF8591-Converter-Module-Digital-
Conversion/dp/B00BXX4UWC/
eBay,	http://www.ebay.com
Dealextreme,	http://www.dx.com/p/pcf8591-ad-da-analog-to-digital-digital-to-
analog-converter-module-w-dupont-cable-deep-blue-336384
Aliexpress,	http://www.aliexpress.com/

In	addition,	you	can	find	this	device	on	your	local	electronics	store/online	store.

http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html
http://www.amazon.com/PCF8591-Converter-Module-Digital-Conversion/dp/B00BXX4UWC/
http://www.ebay.com
http://www.dx.com/p/pcf8591-ad-da-analog-to-digital-digital-to-analog-converter-module-w-dupont-cable-deep-blue-336384
http://www.aliexpress.com/


This	module	has	mini	form	model	too,	for	instance,	you	can	find	it	on	Amazon,
http://www.amazon.com/WaveShare-PCF8591T-Converter-Evaluation-
Development/dp/B00KM6X2OI/	.

This	module	use	PCF8591	IC	and	you	can	read	the	datasheet	on	the	following	URLs.

http://www.electrodragon.com/w/images/e/ed/PCF8591.pdf
http://www.nxp.com/documents/data_sheet/PCF8591.pdf

http://www.amazon.com/WaveShare-PCF8591T-Converter-Evaluation-Development/dp/B00KM6X2OI/
http://www.electrodragon.com/w/images/e/ed/PCF8591.pdf
http://www.nxp.com/documents/data_sheet/PCF8591.pdf


In	this	chapter,	we	build	a	program	to	access	sensor	via	I2C	using	Arduino	software
on	Arduino	board.



5.2	Writing	Program

We	use	PCF8591	AD/DA	Converter	as	I2C	source.	You	can	connect	PCF8591	AD/DA
Converter	to	Arduino	board	directly.	In	this	demo,	I	use	Arduino	Uno.

The	following	is	our	wiring	lab

PCF8591	AD/DA	Converter	SDA		—>	Arduino	SDA	(A4)
PCF8591	AD/DA	Converter	SCL		—>	Arduino	CLK	(A5)
PCF8591	AD/DA	Converter	VCC		—>	Arduino	VCC	+5V
PCF8591	AD/DA	Converter	GND	—>	Arduino	GND

Hardware	implementation	can	be	shown	in	Figure	below.



5.3	Demo	1:	Scanning	I2C

After	attached	our	sensor	to	Arduino,	we	can	scan	our	I2C	address	using	scanI2CBus()
function.	On	Arduino	Uno,	we	use	0	for	I2C.

Write	these	scripts.
board	=	arduino();

address	=	scanI2CBus(board,0);	%	uno	=	0

disp(['i2c	address:	',	address]);

clear	board;

Save	the	program	into	a	file,	called	i2c_scan.m.

Run	the	program.
>>	i2c_scan

On	Command	Window,	you	should	see	I2C	address	of	sensor	device.	For	instance,	my
sensor	was	detected	on	0x48.

I2C	address	will	be	used	on	the	next	demo.



5.4	Demo	2:	Reading	Data	from	Sensor	Based	I2C

We	use	I2C	on	Arduino	board	using	i2c	object,	see
	http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html	.	PCF8591
AD/DA	Converter	module	has	three	sensor	devices:	Thermistor,	Photo-voltaic	cell	and
Potentiometer.	This	module	runs	on	I2C	bus	with	address	0x48.	In	this	case,	we	read	all
sensor	data.

Write	these	scripts.
function	[]	=	i2c_sensor()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

disp('press	Ctr-C	to	exit');

PCF8591	=	'0x48';

PCF8591_ADC_CH0	=	'40';	%	thermistor

PCF8591_ADC_CH1	=	'41';	%	photo-voltaic

PCF8591_ADC_CH3	=	'43';	%	potentiometer

i2c	=	i2cdev(board,PCF8591);

disp(['thermistor		',	'photo		',	'potentiometer']);	

while	1

				thermistor	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH0));

				pause(0.5);

				photo	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH1));

				pause(0.5);

				potentiometer	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH3));

				pause(0.5);

				disp([thermistor,	photo,	potentiometer]);								

end

				

end

function	adc	=	read_adc(dev,config)

write(dev,config);

read(dev,	1);

out	=	read(dev,	1);

adc	=	out;

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	these	scripts	into	a	file,	called	i2c_sensor.m.

Run	the	program.
>>	i2c_sensor

http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html


If	success,	you	should	see	values	for	Thermistor,	Photo-voltaic,	and	potentiometer.



6.	Working	with	SPI

In	this	chapter	I’m	going	to	explain	how	to	work	with	SPI	on	Arduino	board	using
MATLAB.



6.1	Getting	Started

The	Serial	Peripheral	Interface	(SPI)	is	a	communication	bus	that	is	used	to	interface	one
or	more	slave	peripheral	integrated	circuits	(ICs)	to	a	single	master	SPI	device;	usually	a
microcontroller	or	microprocessor	of	some	sort.

SPI	in	Arduino	Uno	board	can	be	defined	on	the	following	pins:

MOSI	on	Digital	pin	11
MISO	on	Digital	pin	12
SCK	on	Digital	pin	13
SS	on	Digital	pin	10

If	you	have	Arduino	Mega,	the	following	is	its	SPI	pins:

MOSI	on	Digital	pin	51
MISO	on	Digital	pin	50
SCK	on	Digital	pin	52
SS	on	Digital	pin	53

In	general,	you	learn	SPI	using	MATLAB	on	this
document,	http://www.mathworks.com/help/supportpkg/arduinoio/spi-sensors.html	.	To
access	SPI	on	Arduino	board	from	MATLAB,	we	can	do	the	following	steps:

Open	Arduino	communication	by	creating	arduino	object	
Open	SPI	connection	by	calling	spidev	with	passing	SS
pin,	http://www.mathworks.com/help/supportpkg/arduinoio/ref/spidev.html	
To	write	and	read	SPI	data,	we	can	use	writeRead	with	passing	spidev
object,	http://www.mathworks.com/help/supportpkg/arduinoio/ref/writeread.html	

In	this	chapter,	we	build	a	SPI	Loopback	app.	Let’s	start!.

http://www.mathworks.com/help/supportpkg/arduinoio/spi-sensors.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/spidev.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writeread.html


6.2	Demo	:	SPI	Loopback

To	develop	SPI	loopback,	we	can	connect	MOSI	pin	to	MISO	pin.	This	means	you
connect	pin	11	to	pin	12	using	cable.

The	following	is	a	sample	of	wiring.

On	MATLAB,	you	can	write	thses	scripts.
function	[]	=	spi_loopback()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

spi	=	spidev(board,	10);

k	=	3;

m	=	10;

n	=	30;

disp('press	Ctr-C	to	exit');

while	1				

				disp('datain:	');

				dataIn	=	[k	m	n];

				disp(dataIn);

				dataOut	=	writeRead(spi,dataIn);

				disp('dataout:	');

				disp(dataOut);

				pause(1.5);

				k	=	k	+	1;

				m	=	m	+	1;

				n	=	n	+	1;

end

				

end



function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	these	scripts	into	a	file,	callsed	spi_loopback.m.	Then,	run	this	program	on
Command	Windows	of	MATLAB.

>>	spi_loopback

A	sample	output	program	can	be	seen	in	Figure	below.



7.	Working	with	Servo	Motor

In	this	chapter	I’m	going	to	explain	how	to	work	with	servo	motor	on	Arduino	board	using
MATLAB.



7.1	Getting	Started

Servo	motor	provides	a	shaft	movement	360	degree.	We	can	control	this	movement	based
on	its	degree.	In	this	scenario,	you	can	use	any	DC	motor	(servo)	that	will	be	connected	to
Arduino.	I	used	a	mini	servo	from	Arduino	Sidekick	Basic	kit.

The	following	is	a	picture	of	my	mini	servo	motor.

To	understand	servo’s	cables,	you	can	identify	as	follows:

Red	cable	is	be	connected	to	5V
Black	or	brown	cable	is	be	connected	to	GND
The	rest	(yellow	or	orange	cable)	is	be	connected	to	Arduino	PWM	pin

The	next	step	we	are	going	to	build	a	MATLAB	program	with	Arduino	and	servo	motor.



7.2	Wiring

To	build	hardware	implementation,	you	can	connect	servo	motor	to	Arduino	by	following
configuration:

Red	cable	is	be	connected	to	5V
Black	or	brown	cable	is	be	connected	to	GND
The	rest	(yellow	or	orange	cable)	is	be	connected	to	Arduino	PWM	pin.	I	used	pin	10
for	Arduino	Uno	R3	or	Arduino	Mega	2560

The	following	is	a	sample	of	hardware	implementation.



7.3	Writing	a	Matlab	Program

We	can	use	servo	object	to	control	server	motor.	You	can	read	it
on	http://www.mathworks.com/help/supportpkg/arduinoio/servo-motors.html	.	We	build	a
program	to	run	a	servo	motor	from	position	0	to	1	using	writePosition()	function.

Write	these	scripts.
function	[]	=	servo_motor()

board	=	arduino();

finishup	=	onCleanup(@()	exitprogram(board));

motor	=	servo(board,'D10');

disp('press	Ctr-C	to	exit');

while	1

				for	pos	=	0:0.25:1

								disp(['position:	',num2str(pos)]);

								writePosition(motor,pos);

								pause(1);

				end

				for	pos	=	1:-0.25:0

								disp(['position:	',num2str(pos)]);

								writePosition(motor,pos);

								pause(1);

				end			

end

				

end

function	exitprogram(b)

clear	b;

disp('program	has	exit');

end

Save	these	scritps	into	a	file,	servo_motor.m.



7.4	Testing

Now	you	can	run	the	program	on	Command	Window	from	MATLAB.
>>	servo_motor

You	should	see	servor	motor	is	running	from	degree	0	to	180	and	then	back	again	from
degree	180	to	0.

A	sample	output	program	can	be	seen	in	Figure	below.



8.	Measuring	and	Plotting	Sensor	Data	in	Real-Time

In	this	chapter	I’m	going	to	explain	how	to	read	data	from	sensor	devices	and	plot	it	on
graph	in	real-time.



8.1	Getting	Started

This	section	has	an	objective	to	show	how	to	work	with	a	real-time	on	measurement.	We
read	data	from	sensor	devices	and	display	it	on	graph.

Let’s	start!.



8.2	Wiring

We	use	the	same	wiring	from	section	5.2



8.3	Writing	a	Program

Now	you	run	MATLAB	and	write	these	scripts.
function	[]	=	sensing()

board	=	arduino();

disp('press	Ctr-C	to	exit');

h	=	figure(1);

finishup	=	onCleanup(@()	exitprogram(board,h));

PCF8591	=	'0x48';

PCF8591_ADC_CH0	=	'40';	%	thermistor

PCF8591_ADC_CH1	=	'41';	%	photo-voltaic

PCF8591_ADC_CH3	=	'43';	%	potentiometer

i2c	=	i2cdev(board,PCF8591);

hLine1	=	line(nan,	nan,	'Color','red');	

hLine2	=	line(nan,	nan,	'Color',	'blue');

hLine3	=	line(nan,	nan,	'Color',	'black');	

i	=	0;

while	1

				thermistor	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH0));

				pause(0.5);

				photo	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH1));

				pause(0.5);

				potentiometer	=	read_adc(i2c,hex2dec(PCF8591_ADC_CH3));

				pause(0.5);

				

				x1	=	get(hLine1,	'XData');

				y1	=	get(hLine1,	'YData');

				x2	=	get(hLine2,	'XData');

				y2	=	get(hLine2,	'YData');

				x3	=	get(hLine3,	'XData');

				y3	=	get(hLine3,	'YData');

				

				x1	=	[x1	i];

				y1	=	[y1	thermistor];				

				x2	=	[x2	i];

				y2	=	[y2	photo];				

				x3	=	[x3	i];

				y3	=	[y3	potentiometer];

				set(hLine1,	'XData',	x1,	'YData',	y1);	

				set(hLine2,	'XData',	x2,	'YData',	y2);	

				set(hLine3,	'XData',	x3,	'YData',	y3);	

				i	=	i	+	1;

				pause(1);

end

end

function	adc	=	read_adc(dev,config)



write(dev,config);

read(dev,	1);

out	=	read(dev,	1);

adc	=	out;

end

function	exitprogram(b,h)

clear	b;

close(h);

disp('program	has	exit');

end

Save	the	program	into	a	file,	called	sensing.m.

Basically,	the	program	is	similar	to	program	from	section	5.4.	After	read	sensor	data,	we
display	it	using	line	object	from	MATLAB.



8.4	Testing

You	can	run	the	program	by	typing	this	command.
>>	sensing

You	should	see	sensor	data	on	Figure.



Source	Code

You	can	download	source	code	on
http://www.aguskurniawan.net/book/matprog_120x15.zip	.

http://www.aguskurniawan.net/book/matprog_120x15.zip


Contact

If	you	have	question	related	to	this	book,	please	contact	me	at	aguskur@hotmail.com	.	My
blog:	http://blog.aguskurniawan.net

http://blog.aguskurniawan.net

	Copyright
	Preface
	1. Preparing Development Environment
	1.1 Arduino
	1.1.1 Arduino Uno
	1.1.2 Arduino Leonardo
	1.1.3 Arduino Mega 2560
	1.1.4 Arduino Due

	1.2 Electronic Components
	1.2.1 Arduino Starter Kit
	1.2.2 Fritzing
	1.2.3 Cooking-Hacks: Arduino Starter Kit
	1.2.4 Arduino Sidekick Basic kit

	1.3 Matlab
	1.4 Testing

	2. Setting Arduino Development for MATLAB
	2.1 Getting Started
	2.2 Setting up Arduino Development for MATLAB
	2.3 Connecting Arduino Board to Computer
	2.4 Hello Arduino: Blinking LED

	3. Working with Digital I/O
	3.1 Getting Started
	3.2 Demo : LED and Pushbutton
	3.2.1 Wiring
	3.2.2 Writing a Program
	3.2.3 Testing


	4. Working with PWM and Analog Input
	4.1 Getting Started
	4.2 Demo Analog Output (PWM) : RGB LED
	4.2.1 Wiring
	4.2.2 Writing Program
	4.2.3 Testing

	4.3 Demo Analog Output Voltage: LED Brightness
	4.3.1 Wiring
	4.3.2 Writing a Program
	4.3.3 Testing

	4.4 Demo Analog Input: Working with Potentiometer
	4.4.1 Wiring
	4.4.2 Writing Program
	4.4.3 Testing


	5. Working with I2C
	5.1 Getting Started
	5.2 Writing Program
	5.3 Demo 1: Scanning I2C
	5.4 Demo 2: Reading Data from Sensor Based I2C

	6. Working with SPI
	6.1 Getting Started
	6.2 Demo : SPI Loopback

	7. Working with Servo Motor
	7.1 Getting Started
	7.2 Wiring
	7.3 Writing a Matlab Program
	7.4 Testing

	8. Measuring and Plotting Sensor Data in Real-Time
	8.1 Getting Started
	8.2 Wiring
	8.3 Writing a Program
	8.4 Testing

	Source Code
	Contact

