Arduino Programming

Agus Kurniawan

Copyright

Arduino Programming using MATLAB
Agus Kurniawan
1st Edition, 2015

Copyright © 2015 Agus Kurniawan

Table of Contents

Copyright

Preface

1. Preparing Development Environment
1.1 Arduino

1.1.1 Arduino Uno
1.1.2 Arduino I.eonardo

1.1.3 Arduino Mega 2560
1.1.4 Arduino Due

1.2 Electronic Components
1.2.1 Arduino Starter Kit

1.2.2 Fritzing

1.2.3 Cooking-Hacks: Arduino Starter Kit

1.2.4 Arduino Sidekick Basic kit
1.3 Matlab
1.4 Testing
2. Setting Arduino Development for MATLAB

2.1 Getting Started

2.2 Setting up Arduino Development for MATL.AB

2.3 Connecting Arduino Board to Computer

2.4 Hello Arduino: Blinking LED
3. Working with Digital 1/0

3.1 Getting Started

3.2 Demo : LED and Pushbutton
3.2.1 Wiring
3.2.2 Writing a Program
3.2.3 Testing

4. Working with PWM and Analog Input

4.1 Getting Started

4.2 Demo Analog Output (PWM) : RGB LED
4.2.2 Writing Program
4.2.3 Testing

4.3 Demo Analog Output Voltage: LED Brightness

4.3.1 Wiring
4.3.2 Writing a Program

4.3.3 Testing

4.4 Demo Analog Input: Working with Potentiometer

4.4.1 Wiring

4.4.2 Writing Program
4.4.3 Testing
5. Working with 12C
5.1 Getting Started

5.2 Writing Program
5.3 Demo 1: Scanning [12C

5.4 Demo 2: Reading Data from Sensor Based 12C
6. Working with SPI

6.1 Getting Started
6.2 Demo : SPI L.oopback

7. Working with Servo Motor

7.1 Getting Started
7.2 Wiring
7.3 Writing a Matlab Program
7.4 Testing
8. Measuring and Plotting Sensor Data in Real-Time
8.1 Getting Started

8.3 Writing a Program
8.4 Testing

Source Code

Contact

Preface

This book was written to help anyone want to develop Arduino board using MATLAB with Arduino supported. It
describes the basic elements of Arduino development using MATLAB.

Agus Kurniawan

Depok, September 2015

1. Preparing Development Environment

1.1 Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software. This board uses Atmel microcontroller series. There are many
Arduino hardware models that you can use. Further information about Arduino products,
you can visit on website http://arduino.cc/en/ .

You must one Arduino hardware to follow practices in this book. I recommend to obtain
one of the following Arduino hardware:

Arduino Uno
Arduino Leonardo
Arduino Mega 2560
Arduino Due

You can buy this product on your local electronic store. You also can order it by online.
Find it on http://arduino.cc/en/Main/Buy. The following is the list of Arduino store you
can buy

Arduino store, http://store.arduino.cc/

Amazon, http://www.amazon.com

Cooking-hacks, http://www.cooking-hacks.com/index.php/shop/arduino.html
RS Components, http://www.rs-components.com

Element 14, http://www.element14.com

EXP-Tech, http://www.exp-tech.de

Because Arduino is an open-source hardware, people can build it. It’s called Arduino
compatible. Generally it’s sold in low prices.

1.1.1 Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328. You can download
the datasheet file, http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf .

Further information about Arduino Uno, you can read it on
http://arduino.cc/en/Main/ArduinoBoardUno .

http://arduino.cc/en/
http://arduino.cc/en/Main/Buy
http://store.arduino.cc/
http://www.amazon.com
http://www.cooking-hacks.com/index.php/shop/arduino.html
http://www.rs-components.com
http://www.element14.com
http://www.exp-tech.de
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://arduino.cc/en/Main/ArduinoBoardUno

™o huu--r'mﬂr-lt
i HE i i

DIGITAL (PWH—) E B

: O@U NO)_

............. e -ﬂl
ARDUINO = .

h R

b [
- ‘ W ARDUTSD . O - MADE TH ITI:I..'I

1.1.2 Arduino Leonardo

The Arduino Leonardo is a microcontroller board based on the ATmega32u4. Download

datasheet for this product on
http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf .

Visit this product to get the further information on
http://arduino.cc/en/Main/ArduinoBoardl.eonardo

n::nz'r.tl. Pt prGITAL (PwM-) E E

% LEONARDO

ARDUINO

.|=“E
..n_

i

RESET
13V

1.1.3 Arduino Mega 2560

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. You can

download the datasheet file on
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF.

Further information about Arduino Mega 2560, you can visit on

http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF

http://arduino.cc/en/Main/ArduinoBoardMega2560 .

| Wi e
e L

1.1.4 Arduino Due

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-
M3 CPU. You can download the datasheet, http://www.atmel.com/Images/doc11057.pdf.

If you want to know about Arduino Due, I recommend to visit this website,

http://arduino.cc/en/Main/ArduinoBoardDue.

e
ARDUINO® (}_

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.atmel.com/Images/doc11057.pdf
http://arduino.cc/en/Main/ArduinoBoardDue

1.2 Electronic Components

We need electronic components to build our testing, for instance, Resistor, LED, sensor
devices and etc. I recommend you can buy electronic component kit.

1.2.1 Arduino Starter Kit

Store website: http://arduino.cc/en/Main/ArduinoStarterKit

1.2.2 Fritzing

Store website: http://shop.fritzing.org/ .

You can buy Fritzing Starter Kit with Arduino UNO or Fritzing Starter Kit with Arduino
Mega.

http://arduino.cc/en/Main/ArduinoStarterKit
http://shop.fritzing.org/

1.2.3 Cooking-Hacks: Arduino Starter Kit

Store website: http://www.cooking-hacks.com/index.php/shop/arduino/starter-
kits/arduino-starter-kit.html

http://www.cooking-hacks.com/index.php/shop/arduino/starter-kits/arduino-starter-kit.html

1.2.4 Arduino Sidekick Basic kit

Store website: http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html

Alternative online store
http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/

http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html

d NI T EETR LR L llllil..i.‘

%E

http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html
http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/
http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html

1.3 Matlab

MATLAB Support Package for Arduino hardware enables you to use MATLAB® to
communicate with the Arduino® board over a USB cable. This package is based on a
server program running on the board, which listens to commands arriving via serial port,
executes the commands, and, if needed, returns a result.

This support package is available for R2014a and later releases. It’s available on 32-bit
and 64-bit Microsoft® Windows®, 64-bit Mac OS, and 64-bit Linux®.

I will explain how to set up Matlab for Arduino development on chapter 2.

1.4 Testing

For testing, I used Arduino Uno R3 and Arduino Mega 2560 on OSX and Windows 10
platforms with Matlab 2015b.

2. Setting Arduino Development for MATLAB

This chapter explains how to work on setting up Arduino board on a computer and then,
access it from MATLAB.

2.1 Getting Started

In this chapter, we set up Arduino board development using MATLAB support package
for Arduino hardware. To set up this development, you must have MATLAB 2014a or
later and MATLAB account to verify while installing.

2.2 Setting up Arduino Development for MATLAB

In this section, we try to set up Arduino development for MATLAB. You can configure
MATLAB Support Package for Arduino hardware using MATLAB 2014a or later. We also
need internet connection to download this package.

Let’s start.

Run MATLAB application. Click Get Hardware Support Packages on Add-Ons icon
on toolbox.

| =mr
\me) (O} Preferences

Simulink Layout

[l Set Path Add-Ons| Help = Request Support
s * Library - J ; -
SIMULINK MENT |
éé Get Add-Ons

[\.'..-" (4 Community

&
£
=

&
®
=
=N
=N
1
o
=
v

n Get Hardware Support Packages

Check for Product Updates |

Then, you get a dialog. Select Install from Internet.

If done, click Next> button.

[R Support Package Installer

Select an action

© Install from Internet
Download from Internet
Install from folder
Uninstall

¥ Help me select an action

» Help me set up hardware for an installed support package

MNext = Cancel Help

Select Arduino on Support for. You should see two Arduino support packages. You can
select both.

If done, click Next> button.

L N Support Package Installer

Select support package to install
Show: Al (72) i

Support for: Support packages:

Arduing Instalied Latest Required
BeagleBoard Varsion Version Déscalptin: Base Product
BeagleBone Black Acquire inputs and send
DCAM Hardware 1 & Install 15.2.0 MATLAB
Data Translation Frame Grabbers Bun models on Arduing

g E 2 8 15.2.0 Simulink
Digilent Analog Discovery & install 5
DirectSound Audio
Freescale Kinetis Microcontrollers
GenlGam Interface
GigE Vision Hardware
Hamamatsu Hardware

Installation folder: /Users/agusk/Documents/MATLAB/SupportPackages/R2015b Browse...

< Back Mext = Cancel Help

You will be asked to logon with your MATLAB account. You should have MATLAB
license. Click Log In button.

[N] Support Package Installer

Log in to MathWorks Account

Please log in to your MathWorks account to continue the installation.
Click "Log In" to continue.

< Back Loeg In Cancel Help

You should the authentication dialog. Fill your account. After that, click Log In button.
Jocuments » MATLAR » . .
Command Window

' & MathWorks Account Log In

Don't have an account? Create an account

Email address:

Password:

| Login |
Keep me logged on
W Forgot your password?
" —

If success, you should get a software license agreement. Checked I accept and then click
Next> button.

[N] Support Package Installer

MATHWORKS AUXILIARY SOFTWARE LICENSE AGREEMENT

IMPORTANT NOTICE

READ THE TERMS AND CONDITIONS OF THIS MATHWORKS ALXILLARY
SOFTWARE LICENSE AGREEMENT (THE *AGREEMENT") CAREFULLY BEFORE
CHECKING "I ACCEPT" OR ACCESSING THESE MATERIALS (AS DEFINED
BELOW].

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE
"LICENSEE") AND THE MATHWORKS, INC. ("MATHWORKS") CONCERNING THE
SOFTWARE AND DOCLUMENTATION MADE AVAILABLE FOR ACCESS
HEREUMNDER (COLLECTIVELY, THE *MATERIALS").

BY CHECKING "I ACCEPT" OR ACCESSING THESE MATERIALS, YOU ACCEPT
THE TERMS OF THIS AGREEMENT.,

9 1 accept
< Back Mext = Cancel Help

You will get confirmation. Click Next> button.

[N] Support Package Installer

Third-party software licenses

You have chosen to install
MATLAB Support Package for Arduino Hardware
Simulink Support Package for Arduino Hardware.

Third-party software will be installed from the following locations:

MATLAB Support Package for Arduino Hardware

Firmata Library hitp:/firmata.org license
Adafruit Motor Shield V2 Library http/fwww.adafruit.com license
Arduino software hitparduing.cc license

This utility enables you to download and install the third party software listed above.
This list may contain open source software, including software licensed under the
terms of the General Public License.

By clicking "Install® on the next screen, you will be downloading and installing the
software listed above.

Click Install button to start installation.

@@ Support Package Installer
Confirm installation
ou have chosen to install

MATLAB Support Package for Arduino Hardware
Simulink Support Package for Arduino Hardware

in /Users/agusk/Documents/MATLAB/SupportPackages/R2015b.

< Back Install Cancel Help

After done, you will be asked to configure Arduino board. Select Arduino and then, click
Next> button.

@@ Support Package Installer

Set up support package
Choose a support package to start the setup process.
Support package for: Arduino (MATLAB) &)

Mext = Cancel Help

Confirmation form will be shown. Click Continue> button.

[N] Support Package Installer

Installfupdate complete
The following support packages have been successfully installed:

MATLAE Support Package for Arduino Hardware
Simulink Support Package for Arduino Hardware

The support package you installed requires additional setup tasks.

Select "Continue” to perform the setup tasks.

Gonlim_.la > Close Help

The program will check if your platform needs Arduino driver or not. If you’re working
on Linux and Mac, you don’t need a driver. You need to install Arduino driver if you’re
working on Windows platform. Click Next> button if done.

[N] Support Package Installer

Driver installation is not required on your platform.

< Back Mext = Cancel Help

Installation is over. Click Finish button to close installation.

@@ Support Package Installer
Support package setup complate

You have completed the setup tasks.
3 Show support package examples

Finisn

2.3 Connecting Arduino Board to Computer

Now you can connect Arduino board to computer. Then, verify which serial port is used
for Arduino board. On Mac platform, you type this command.

. $ 1ls /dev/cu* |

On Linux platform, you type this command.

W § Is /dev/tty*

You can use Device Manager on Windows platform.
After that, you should see serial port of Arduino board which is attached on the computer.

My OSX detected my Arduino board used /dev/cu.usbmodem1421 serial port.

&] T agusk — bash — B0x14

agusks 1s Sdev/cus

fdev/cu.Bluetooth=Incoming=Port fdev/cu.usbmodemld42l
fdev/cu.Bluetooth-Moden

agusks

On MATLAB command Windows, type this command

. >> a = arduino

MATLAB will detect your Arduino board. You should detected Arduino board
information on Maltab Command Window.

>> a = arduino
Updating server code on board Uno (/dev/tty.usbmodeml421). Please wait.

arduino with properties:

Port: '/dev/tty.usbmodeml421'
Board: 'Uno'
AvailablePins: {'D2-D13', 'A@-A5'}
Libraries: {'I2C', 'SPI', 'Servo'}

2.4 Hello Arduino: Blinking LED

In this section, we build a blinking LED program using MATLAB. Arduino
Uno/Mega/Leonardo boards provides onboard LED which is connected on pin 13.
Let’s start to write our Blink program.

Firstly, you set working folder on MATLAB. You can change it on MATLAB IDE, see a
red arrow.

"

HOME PLOTS

_ g e _ . iE i, New Variable | & Analyze Code]~ - L
Ly S L3 [5)Find Files L,{}_J (= 'j‘ 15| 1] ©} ¢
I;l') Open Variable Jl_{r" Run and Time
New Mew Open || Compare Import Save e Simulink Layout |j‘15
ript - - Data Workspace [Clear Workspace = @Chartammands = Library b
FILE VARIABLE CODE SIMULINK EN
L > T A [¥ Users » agusk » Documents ¢ MyBooks » pepress » arduino_prog_matlab » codes
Current Folder = Command Window
B |Name . =>> a = arduino

Updating server code on board Uno (/dev/tty.usbmodeml42:

da =

arduino with properties:

Then, click New Script icon to create a new script file.

HOME FLOT: APPS

Pl

| ’] -, New Variabl
|-£_'rl‘ Ll..lj "-j l,l_aFindFiles & I:I.-E:ﬁ s New varianle

L1 » Open Variable ¥
Mew New Open | | Compare Import Save

Script * - Data ‘Workspace EEC?HI Workspace

_ ! FILE VARIABLE

| 4= =p i /v Users » agusk » Documents » MATLAE »

Guseceis)
E MName & ﬁ£ i

Apps

After that, you can get a script editor, shown in Figure below.

@0 e Editor - untitled2

! | untitled2 i

= G

script ln 1 Col 1

board = arduino();

led = 'D13';

for k=1:10
disp('turn on LED');
writeDigitalPin(board, led,1);
pause(1);
disp('turn off LED');
writeDigitalPin(board, led,0);
pause(1);

end

disp('close Arduino board');
clear board;

Save those scripts into a file, called blinking.m. Now you can run it.

W >> blinking

You may get error message, shown in Figure below.

— L Dpen Variable = L7 Run and Tume =)
New Mew Open | Compars Import Save Simlink Layout Setpah Add-Ors Melp < RaguestSuppart
Script W > = Data pace) Clear R * | 4 Clear Commands » Library - = - A= PH
e TNVIRCMENT RESOUALES

(%] WARIARLE CooE
L R [| { ® Users » agusk » Documents ¢ MyBooks » pepress » arduino_prog_matlab » codes
Current Folder G

Command Window

f_ —h »» blinking
& Plinking.m Error using blinking {Line 2
blinking.m- Failed te open serial port fdev/tty.usbmodem1421 to communicate with board Uno. Make sure there is no
other MATLAB arduine object for this board. For troubleshooting, see Arduino Hardware Treubleshosting.
fa‘ 5
"
Workspace s
Hame & Walyd
&a Ix] arduing

This error occurs because we create arduino object while there is existing arduino object.
We can’t use multiple arduino object. Delete existing arduino on Workspace Window. See

a red arrow on above Figure.
We can clear our arduino object usage using clear syntax.

Now you can run the program again. The following is a sample output of blinking
program.

& & MATLAB R2015b

HOME PLOTS APPS

u:rj’ Ell.[_'l iJ Loy Find Files & Hﬁi Gy New Variable L Analyze Code

: L{) Open Variable = ﬁf Run and Time
Mew Mew Open || Compare Import Save i =
Script * - Data Workspace [Clear Workspace ~ | Clear Command:

FILE VARIARLE CODE

<2 = 51 I [0/ » Users » agusk » Documents » MyBooks » pepress ¢ arduino_p

Current Folder] Command Window

E Name & >> blinking
;Jb”nhngJﬂ turn on LED
blinking.m~ turn off LED
turn on LED
turn off LED
turn on LED
turn off LED
turn on LED
turn off LED
turn on LED
turn off LED
turn on LED
turn off LED
turn on LED
turn off LED
turn on LED
Details Lt turn off LED
turn on LED
Workspace O] turn off LED
Name 4 Value ' turn on LED
EH k 10 turn off LED
(laee] led ‘D13’ close Arduino board

fg >> |

You should see blinking LED on Arduino board.

3. Working with Digital I/O

In this chapter I’'m going to explain how to work with digital I/O on Arduino board and
write a program for demo.

3.1 Getting Started

MATLAB support for Arduino board provides three functions which we can use on digital
I/0O processing. The following is the functions:

e configurePin() is used to define pin mode either as input or output.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.ht
o writeDigitalPin() is used to write digital data into a specific digital pin.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/writedigitalpin.
e readDigitalPin() is used to read digital input on specific digital pin.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/readdigitalpin.t

To illustrate how to work with digital I/O, we build a simple program by utilizing LED
and pushbutton.

http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writedigitalpin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/readdigitalpin.html

3.2 Demo : LED and Pushbutton

we build a program using LED and pushbutton. When we press a pushbutton, LED will
lighting. It’s a simple;).

3.2.1 Wiring

The following is hardware wiring;:

e LED is connected to Arduino digital pin 9
e Pushbutton is connected to Arduino digital pin 8

A sample of hardware implementation is shown in Figure below.

3.2.2 Writing a Program

Now you can write these scripts.

function [] = led_pushbutton()
pushbutton = 'D8';

led = 'D9';

board = arduino();

finishup = onCleanup(@() exitprogram(board));

configurePin(board, pushbutton, 'DigitalInput');
disp('press Ctr-C to exit');
while 1
state = readbDigitalPin(board, pushbutton);
writeDigitalPin(board, led, state);
disp(state);
pause(0.5);
end

end

function exitprogram(b)
clear b;

disp('program has exit');
end

We use onCleanup(), http://www.mathworks.com/help/matlab/ref/oncleanup.html , to
catch CTRL+C for quiting the program.

Save this program into file, called led_pushbutton.m.

3.2.3 Testing

Run this program by typing this command on Command Window on Matlab.

. >> led_pushbutton

Press pushbutton. Then, you should see lighting LED. Press CTRL+C to exit program.

Program output:

http://www.mathworks.com/help/matlab/ref/oncleanup.html

Command Window

== led_pushbutton
press Ctr-C to exit
]
]

8

1
1

program has exit
Operation terminated by user during led pushbutton (line 13)

LED is lighting while a pushbutton is pressed.

4. Working with PWM and Analog Input

This chapter explains how to work with Arduino Analog I/O using MATLAB.

4.1 Getting Started

MATLAB support for Arduino board provides five functions which we can use on analog
I/0O processing. The following is the functions:

e configurePin() is used to define pin mode either as input or output.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.ht
e writePWM Voltage() is used to write PWM voltage on digital pin.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmvolta
e writePWMDutyCycle() is used to set PWM duty cycle on digital pin.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmdutyc
e readVoltage() to read analog input on Analog pin.

Reference: http://www.mathworks.com/help/supportpkg/arduinoio/ref/readvoltage.htn

In this chapter, we try to access Arduino Analog I/0O using MATLAB. There are three
scenarios for our cases:

e Controlling RGB LED
e Controlling LED brightness
¢ Reading Analog input using Potentiometer

Let’s start.

http://www.mathworks.com/help/supportpkg/arduinoio/ref/configurepin.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmvoltage.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writepwmdutycycle.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/readvoltage.html

4.2 Demo Analog Output (PWM) : RGB LED

In this scenario we build a program to control RGB LED color using Arduino Analog
output (PWM).

Please be careful if you want to work with Arduino PWM. If you have Arduino Mega, you
will see PWM label so you obtain PWM pins easily but if you have Arduino Uno, it writes
DIGITAL (PWM ~). It means your PWM pins can be found on DIGITAL pins which pin
with ~, for instance, ~3,~5,~6,~9, ~10, ~11.

For Arduino Mega 2560, you can see PWM pins on picture below (see red arrow).

L
ra U
| -

=

V= o e
o e -G) " T

el

DIGITAL (PWM~)

R :...E §
|
B Y™r*E &

: axumm - | RDUINO

i wi
b puii-piam) B

RGB LED has 4 pins that you can see it on Figure below.

To understand these pins, you can see the following Figure.

1
4
3
2
Note:
e Pin 1: Red

e Pin 2: Common pin
e Pin 3: Green

e Pin 4: Blue

Now we can start to build a program and hardware implementation.

4.2.1 Wiring

Firstly we implement RGB LED hardware. The following is a hardware schema.

4/ 3 VCC 5v
PWM pins

Arduino

For our testing, we configure the following PWM pins.

Arduino Mega 2560:

RGB LED pin 1 (red) is connected to Arduino PWM pin 3
RGB LED pin 2 is connected to Arduino VCC 5V

RGB LED pin 3 (green) is connected to Arduino PWM pin 5
RGB LED pin 4 (blue) is connected to Arduino PWM pin 6

Arduino Uno R3:

e RGB LED pin 1 (red) is connected to Arduino PWM pin 3

e RGB LED pin 2 is connected to Arduino VCC 5V
e RGB LED pin 3 (green) is connected to Arduino PWM pin 5
e RGB LED pin 4 (blue) is connected to Arduino PWM pin 6

Here is a sample implementation with Arduino Uno R3.

4.2.2 Writing Program

To display a certain color, we must combine colors from red, green, blue. MATLAB
provides API for PWM like Arduino API such as writePWMDutyCycle() with analog
value from 0 to 1.

Let”s start to build a program. Firstly, open MATLAB. Then, write these scripts.

function [] = led_rgb()
board = arduino();
finishup = onCleanup(@() exitprogram(board));
configurePin(board, 'D3"', 'PWM"');
configurePin(board, 'D5', 'PWM');
configurePin(board, 'D6"', 'PWM');
disp('press Ctr-C to exit');
while 1
disp('red');
write_rgb(board,0,1,1); % red
pause(1);

disp('green');

write_rgb(board,1,0,1); % green
pause(1);

disp('blue');
write_rgb(board,1,1,0); % blue
pause(1);

disp('yellow');
write_rgb(board,0,0,1); % yellow
pause(1);

disp('purple');
write_rgb(board,0.3,1,0.3); % purple
pause(1);

disp('aqua');
write_rgb(board,1,0,0); % aqua
pause(1);

end

end

% testing for Arduino Uno
function write_rgb(board,r,g,b)
writePwWwMDutyCycle(board, 'D3',r);
writePwMDutyCycle(board, 'D5',q);
writePwWwMDutyCycle(board, 'D6',b);
end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save this program as led_rgb.m.

This program will generate six colors: red, green, blue, yellow, purple, and aqua.

4.2.3 Testing

Upload and run the program. You should see several color on RGB LED.

. >> led_rgb

The following is a sample demo on Command Window on MATLAB.

Command Window

>> led_rgb
press Ctr-C to exit
red

green

blue
yellow
purple
agua

red

green

blue
yellow
purple
agua

red

green

blue
yellow

The following is a sample demo on hardware.

4.3 Demo Analog Output Voltage: LED Brightness

In this demo, we try to control LED brightness by controlling voltage on LED. MATLAB
for Arduino support provides writePWM Voltage() function to set voltage on PWM pins.
We can set a voltage value from 0 to 5 for Arduino Uno/Mega and 0 - 3.3 for Arduino
Due.

Let’s build.

4.3.1 Wiring

We connect a LED on PWM pin on digital pin 3. The following is my hardware wiring.

4.3.2 Writing a Program

Now you can open MATLAB and write these scripts.

function [] = led_brightness()

board = arduino();

finishup = onCleanup(@() exitprogram(board));
configurePin(board, 'D3"', 'PWM');

disp('press Ctr-C to exit');

while 1
for kK = 0:5
writePwMVoltage(board, 'D3"',k);
pause(1);
end
for k = 5:-1:0
writePwMVoltage(board, 'D3"',k);
pause(1);
end
end

end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save these scripts into a file, called led_brightness.m.

This program will set voltage value on PWM pin on digital pin 3 from 0 to 5 and then set
a value from 5 to 0 too.

4.3.3 Testing

Make sure Arduino board already connected to your computer. You can run the program
by typing this command.

. >> led_brightness

On hardware side, you should see LED brightness changing gradually.

4.4 Demo Analog Input: Working with Potentiometer

In this section, we learn how to read analog input on Arduino board. For illustration, I use
Potentiometer as analog input source. Our scenario is to read analog value from
Potentiometer. Then, display it on console.

Let’s start!.

4.4.1 Wiring

To understand Potentiometer, you see its scheme in Figure below.

You can connect VCC to Arduino board on VCC +5V pin. Vout to Arduino board Analog
input AO. In addition, GND to Arduino board GND. The following is hardware
implementation. I use slide potentiometer.

4.4.2 Writing Program

Firstly, create a program via MATLAB. To read analog input, we can use readVoltage()
function. Ok, Let’s write these scripts.

function [] = potentiometer()

board = arduino();

finishup = onCleanup(@() exitprogram(board));

disp('press Ctr-C to exit');

while 1
analog = readVoltage(board, 'A0"');
disp(['analog= ', num2str(analog)]);
pause(1);

end

end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save this code as potentiometer.m

4.4.3 Testing

To run the program, you can type this command.

. >> potentiometer

You should see analog value on Command Window.

Open Variable = Run and Time =
u_} pe EE Simulink Layout @ Set Path
¢space ') Clear Workspace v |/ Clear Commands ~ Library =
VARIABLE ' CODE | SIMULINK ENVIRONM

Jocuments » MyBooks » pepress » arduino_prog_matlab » codes

Command Window

>> potentiometer
press Ctr-C to exit
analog= 8.92864
analog= 8.92864
analog= 2.9423
analog= 4.5943
analog= 2.8855
analog= 2.2434
analog= @.28348
analog= 8.72336
analog= 1.6471
analog= 2.7615
analog= 3.4262
analog= 4.8827
analog= 5
analog= 5
analog= 3.7683
analog= 3.2454
analog= 2.7273
analog= 1.9648
analnn= 1_.374%8

5. Working with 12C

In this chapter we learn how to work with I2C on Arduino board using MATLAB.

5.1 Getting Started

The I2C (Inter-Integrated Circuit) bus was designed by Philips in the early ’80s to allow
easy communication between components which reside on the same circuit board. TWI
stands for Two Wire Interface and for most marts this bus is identical to I2C. The name
TWI was introduced by Atmel and other companies to avoid conflicts with trademark
issues related to I2C.

I2C bus consists of two wires, SDA (Serial Data Line) and SCL (Serial Clock Line). You
can see [2C pins on Arduino board as follows:

e Arduino Uno: A4 pin as SDA and A5 as SCL pin
e Arduino Mega 2560: Digital pin 20 as SDA and Digital pin 21 as SCL

MATLAB for Arduino support provides several functions to access 12C protocol. You can
read it on http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html .

For testing, I used PCF8591 AD/DA Converter module with sensor and actuator devices.
You can find it on the following online store:

e Amazon, http://www.amazon.com/PCF8591-Converter-Module-Digital-
Conversion/dp/BO0BXX4UWC/

e eBay, http://www.ebay.com

e Dealextreme, http://www.dx.com/p/pcf8591-ad-da-analog-to-digital-digital-to-

analog-converter-module-w-dupont-cable-deep-blue-336384
e Aliexpress, http://www.aliexpress.com/

In addition, you can find this device on your local electronics store/online store.

http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html
http://www.amazon.com/PCF8591-Converter-Module-Digital-Conversion/dp/B00BXX4UWC/
http://www.ebay.com
http://www.dx.com/p/pcf8591-ad-da-analog-to-digital-digital-to-analog-converter-module-w-dupont-cable-deep-blue-336384
http://www.aliexpress.com/

This module has mini form model too, for instance, you can find it on Amazon,
http://www.amazon.com/WaveShare-PCF8591T-Converter-Evaluation-
Development/dp/BOOKM6X201/ .

This module use PCF8591 IC and you can read the datasheet on the following URLs.

e http://www.electrodragon.com/w/images/e/ed/PCF8591.pdf
e http://www.nxp.com/documents/data_sheet/PCF8591.pdf

http://www.amazon.com/WaveShare-PCF8591T-Converter-Evaluation-Development/dp/B00KM6X2OI/
http://www.electrodragon.com/w/images/e/ed/PCF8591.pdf
http://www.nxp.com/documents/data_sheet/PCF8591.pdf

In this chapter, we build a program to access sensor via [2C using Arduino software
on Arduino board.

5.2 Writing Program

We use PCF8591 AD/DA Converter as I2C source. You can connect PCF8591 AD/DA
Converter to Arduino board directly. In this demo, I use Arduino Uno.

The following is our wiring lab

PCF8591 AD/DA Converter SDA —> Arduino SDA (A4)
PCF8591 AD/DA Converter SCL. —> Arduino CLK (A5)
PCF8591 AD/DA Converter VCC —> Arduino VCC +5V
PCF8591 AD/DA Converter GND —> Arduino GND

Hardware implementation can be shown in Figure below.

5.3 Demo 1: Scanning 12C

After attached our sensor to Arduino, we can scan our I2C address using scanI2CBus()
function. On Arduino Uno, we use 0 for I2C.

Write these scripts.

board = arduino();
address = scanI2CBus(board,®0); % uno = 0
disp(['i2c address: ', address]);

clear board;

Save the program into a file, called i2c_scan.m.

Run the program.

. >> 12c_scan

On Command Window, you should see I2C address of sensor device. For instance, my
sensor was detected on 0x48.

y L[> Open Variable = {7 Run and Time
nport Save o Simu
Data Workspace (' Clear Workspace ¥ | Clear Commands ~ Libr
VARIABLE CODE SIMUL

agusk » Documents » MyBooks » pepress » arduino_prog_matla

Command Window

»>> iZ2c_scan

'i2c address: ' '@x48"

_ﬁ;::-::-

[2C address will be used on the next demo.

5.4 Demo 2: Reading Data from Sensor Based 12C

We use 12C on Arduino board using i2c object, see
http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html . PCF8591
AD/DA Converter module has three sensor devices: Thermistor, Photo-voltaic cell and
Potentiometer. This module runs on I2C bus with address 0x48. In this case, we read all
sensor data.

Write these scripts.

function [] = i2c_sensor()
board = arduino();
finishup = onCleanup(@() exitprogram(board));
disp('press Ctr-C to exit');
PCF8591 = '0Ox48';
PCF8591_ADC_CHO = '40'; % thermistor
PCF8591_ADC_CH1 '41'; % photo-voltaic
PCF8591 _ADC_CH3 = '43'; % potentiometer
i2c = i2cdev(board, PCF8591);
disp(['thermistor ', 'photo ', 'potentiometer']);
while 1
thermistor = read_adc(i2c, hex2dec(PCF8591_ADC_CHO));
pause(0.5);
photo = read_adc(i2c, hex2dec(PCF8591_ADC_CH1));
pause(0.5);
potentiometer = read_adc(i2c, hex2dec(PCF8591_ADC_CH3));
pause(0.5);
disp([thermistor, photo, potentiometer]);
end

end

function adc = read_adc(dev,config)
write(dev,config);

read(dev, 1);

out = read(dev, 1);

adc out;

end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save these scripts into a file, called i2c_sensor.m.

Run the program.

l >> i2c_sensor

http://www.mathworks.com/help/supportpkg/arduinoio/i2c-sensors.html

If success, you should see values for Thermistor, Photo-voltaic, and potentiometer.
Data Workspace HCW.WDMM - HCM Commands ~ Libra
© VARIABLE ' ‘CODE SIMULI

s ¢ agusk » Documents » MyBooks » pepress » arduino_prog_matlak
= Command Window

>> iZ2c_sensor
press Ctr-C to exit
thermistor photo potentiometer
189 119 78
189 118 78
189 118 78
189 122 79
1e9 182 78
189 94 78
189 1ee 78
~
89 91 78
@
189 125 78
189 98 78

6. Working with SPI

In this chapter I’'m going to explain how to work with SPI on Arduino board using
MATLAB.

6.1 Getting Started

The Serial Peripheral Interface (SPI) is a communication bus that is used to interface one
or more slave peripheral integrated circuits (ICs) to a single master SPI device; usually a
microcontroller or microprocessor of some sort.

SPI in Arduino Uno board can be defined on the following pins:

MOSI on Digital pin 11
MISO on Digital pin 12
SCK on Digital pin 13
SS on Digital pin 10

If you have Arduino Mega, the following is its SPI pins:

MOSI on Digital pin 51
MISO on Digital pin 50
SCK on Digital pin 52
SS on Digital pin 53

In general, you learn SPI using MATLAB on this

document, http://www.mathworks.com/help/supportpkg/arduinoio/spi-sensors.html . To
access SPI on Arduino board from MATLAB, we can do the following steps:

e Open Arduino communication by creating arduino object
e Open SPI connection by calling spidev with passing SS
pin, http://www.mathworks.com/help/supportpkg/arduinoio/ref/spidev.html
e To write and read SPI data, we can use writeRead with passing spidev
object, http://www.mathworks.com/help/supportpkg/arduinoio/ref/writeread.html

In this chapter, we build a SPI Loopback app. Let’s start!.

http://www.mathworks.com/help/supportpkg/arduinoio/spi-sensors.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/spidev.html
http://www.mathworks.com/help/supportpkg/arduinoio/ref/writeread.html

6.2 Demo : SPI Loopback

To develop SPI loopback, we can connect MOSI pin to MISO pin. This means you
connect pin 11 to pin 12 using cable.

The following is a sample of wiring.

On MATLAB, you can write thses scripts.

function [] = spi_loopback()
board = arduino();
finishup = onCleanup(@() exitprogram(board));
spi = spidev(board, 10);
k 3;
m 0;
n = 30;
disp('press Ctr-C to exit');
while 1
disp('datain: ');
dataIn = [k m n];
disp(dataIn);
dataOut = writeRead(spi,dataIn);
disp('dataout: ');
disp(dataOut);
pause(1.5);
k k + 1;
m=m+ 1,
n n+1;

[T
[

end

end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save these scripts into a file, callsed spi_loopback.m. Then, run this program on
Command Windows of MATLAB.

. >> spi_loopback

A sample output program can be seen in Figure below.

e e -
> Dpen Variable « = R dTi

ﬁ pen varl ﬁa un an me Slmuiint

VARIABLE ; CODE SIMULINK

acuments » MyBooks » pepress » arduino_prog_matlab »

Command Window

>> spi_loopback
press Ctr-C to exit
datain:

3 18 38
dataout:

3 18 38
datain:

4 11 31
dataout:

4 11 31
datain:

5 12 32
dataout:

5 12 32

7. Working with Servo Motor

In this chapter I’'m going to explain how to work with servo motor on Arduino board using
MATLAB.

7.1 Getting Started

Servo motor provides a shaft movement 360 degree. We can control this movement based
on its degree. In this scenario, you can use any DC motor (servo) that will be connected to
Arduino. I used a mini servo from Arduino Sidekick Basic kit.

The following is a picture of my mini servo motor.

To understand servo’s cables, you can identify as follows:

e Red cable is be connected to 5V
e Black or brown cable is be connected to GND
e The rest (yellow or orange cable) is be connected to Arduino PWM pin

The next step we are going to build a MATLAB program with Arduino and servo motor.

7.2 Wiring

To build hardware implementation, you can connect servo motor to Arduino by following
configuration:

e Red cable is be connected to 5V

e Black or brown cable is be connected to GND

e The rest (yellow or orange cable) is be connected to Arduino PWM pin. I used pin 10
for Arduino Uno R3 or Arduino Mega 2560

The following is a sample of hardware implementation.

U H DI >~

v o ARDUIND

7.3 Writing a Matlab Program

We can use servo object to control server motor. You can read it
on http://www.mathworks.com/help/supportpkg/arduinoio/servo-motors.html . We build a
program to run a servo motor from position 0 to 1 using writePosition() function.

Write these scripts.

function [] = servo_motor()
board = arduino();
finishup = onCleanup(@() exitprogram(board));
motor = servo(board, 'D10"');
disp('press Ctr-C to exit');
while 1
for pos = 0:0.25:1
disp(['position: ',num2str(pos)]);
writePosition(motor, pos);
pause(1);
end
for pos = 1:-0.25:0
disp(['position: ', num2str(pos)]);
writePosition(motor, pos);
pause(1);
end
end

end

function exitprogram(b)
clear b;

disp('program has exit');
end

Save these scritps into a file, servo_motor.m.

7.4 Testing

Now you can run the program on Command Window from MATLAB.

l >> servo_motor

You should see servor motor is running from degree 0 to 180 and then back again from
degree 180 to 0.

A sample output program can be seen in Figure below.

i» Open Variable = Run and Time
art Save Lﬂ' ee _ﬁ‘f Simulink
ita Workspace E}Chﬂrﬂbﬁupﬁ: - Egckmr;manM$ ~ Library
VARIABLE CODE SIMULINK

jusk » Documents » MyBooks » pepress » arduino_prog_matlab »

Command Window

=>> servo_motor
press Ctr-C to exit
position: @
position: 8.25
position: 8.5
position: 8.75
position: 1
position: 1
position: 8.75
position: 8.5
position: 8.25
position: @
position: @
position: 8.25
position: 8.5
position: @.75
position: 1
position: 1
position: 8.75
position: 8.5
program has exit
Operation terminated by user during servo _motor (lin

8. Measuring and Plotting Sensor Data in Real-Time

In this chapter I’'m going to explain how to read data from sensor devices and plot it on
graph in real-time.

8.1 Getting Started

This section has an objective to show how to work with a real-time on measurement. We
read data from sensor devices and display it on graph.

Let’s start!.

8.2 Wiring

We use the same wiring from section 5.2

8.3 Writing a Program

Now you run MATLAB and write these scripts.

function [] = sensing()

board = arduino();

disp('press Ctr-C to exit');

h = figure(1);

finishup = onCleanup(@() exitprogram(board,h));

PCF8591 = '0Ox48';

PCF8591_ADC_CHO = '40'; % thermistor
PCF8591_ADC_CH1 '41'; % photo-voltaic
PCF8591 _ADC_CH3 = '43'; % potentiometer
i2c = i2cdev(board, PCF8591);

hLinel = line(nan, nan, 'Color', 'red');

hLine2 = line(nan, nan, 'Color', 'blue');
hLine3 = line(nan, nan, 'Color', 'black');
i=20;

while 1

thermistor = read_adc(i2c,hex2dec(PCF8591_ADC_CHO));
pause(0.5);

photo = read_adc(i2c, hex2dec(PCF8591_ADC_CH1));
pause(0.5);

potentiometer = read_adc(i2c, hex2dec(PCF8591_ADC_CH3));
pause(0.5);

x1 = get(hLinel, 'XData');
yl = get(hLinel, 'YData');
x2 = get(hLine2, 'XData');
y2 = get(hLine2, 'YData');
x3 = get(hLine3, 'XData');
y3 = get(hLine3, 'YData');

x1 = [x1 1i];

yl = [yl thermistor];

X2 = [x2 1i];

y2 = [y2 photo];

X3 = [x3 1];

y3 = [y3 potentiometer];

set(hLinel, 'XData', x1, 'YData', y1);
set(hLine2, 'XData', x2, 'YData', y2);
set(hLine3, 'XData', x3, 'YData', y3);
i=1i+1;
pause(1);

end

end

function adc = read_adc(dev,config)

write(dev,config);
read(dev, 1);

out = read(dev, 1);
adc out;

end

function exitprogram(b, h)
clear b;

close(h);

disp('program has exit');
end

Save the program into a file, called sensing.m.

Basically, the program is similar to program from section 5.4. After read sensor data, we
display it using line object from MATLAB.

8.4 Testing

You can run the program by typing this command.

. >> sensing

You should see sensor data on Figure.

[BN] Figure 1
File Edit View Insert Tools Desktop Window Help |

NEds h AR0984- G 08 @O

130 -

110 | \ Ll I

Source Code

You can download source code on
http://www.aguskurniawan.net/book/matprog_120x15.zip .

http://www.aguskurniawan.net/book/matprog_120x15.zip

Contact

If you have question related to this book, please contact me at aguskur@hotmail.com . My
blog: http://blog.aguskurniawan.net

http://blog.aguskurniawan.net

	Copyright
	Preface
	1. Preparing Development Environment
	1.1 Arduino
	1.1.1 Arduino Uno
	1.1.2 Arduino Leonardo
	1.1.3 Arduino Mega 2560
	1.1.4 Arduino Due

	1.2 Electronic Components
	1.2.1 Arduino Starter Kit
	1.2.2 Fritzing
	1.2.3 Cooking-Hacks: Arduino Starter Kit
	1.2.4 Arduino Sidekick Basic kit

	1.3 Matlab
	1.4 Testing

	2. Setting Arduino Development for MATLAB
	2.1 Getting Started
	2.2 Setting up Arduino Development for MATLAB
	2.3 Connecting Arduino Board to Computer
	2.4 Hello Arduino: Blinking LED

	3. Working with Digital I/O
	3.1 Getting Started
	3.2 Demo : LED and Pushbutton
	3.2.1 Wiring
	3.2.2 Writing a Program
	3.2.3 Testing

	4. Working with PWM and Analog Input
	4.1 Getting Started
	4.2 Demo Analog Output (PWM) : RGB LED
	4.2.1 Wiring
	4.2.2 Writing Program
	4.2.3 Testing

	4.3 Demo Analog Output Voltage: LED Brightness
	4.3.1 Wiring
	4.3.2 Writing a Program
	4.3.3 Testing

	4.4 Demo Analog Input: Working with Potentiometer
	4.4.1 Wiring
	4.4.2 Writing Program
	4.4.3 Testing

	5. Working with I2C
	5.1 Getting Started
	5.2 Writing Program
	5.3 Demo 1: Scanning I2C
	5.4 Demo 2: Reading Data from Sensor Based I2C

	6. Working with SPI
	6.1 Getting Started
	6.2 Demo : SPI Loopback

	7. Working with Servo Motor
	7.1 Getting Started
	7.2 Wiring
	7.3 Writing a Matlab Program
	7.4 Testing

	8. Measuring and Plotting Sensor Data in Real-Time
	8.1 Getting Started
	8.2 Wiring
	8.3 Writing a Program
	8.4 Testing

	Source Code
	Contact

