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Introduction 

If you've done some Arduino tinkering and wondered how you could incorporate the Kinect in your 
projects — or the other way around — this book is for you.  

If you haven’t actually done any tinkering but you are looking for a good way to get started, this 
book might also be for you. Even though this is not intended as an introductory book, we have tried to 
assume as little knowledge from the reader as possible, starting from the installation of every tool you 
will be using and thoroughly explaining every new concept appearing in the book.  

The Structure of This Book 
This is a practical book. As such, you are going to be driven through a series of projects evolving from 
simple to complex, learning all you need to know along the way. The book starts with three introductory 
chapters oriented to getting you acquainted with Arduino, Kinect, and Processing in the least amount of 
time possible so you can go straight into building cool projects. From Chapter 4, you will be led through 
a series of 10 fun projects increasing in complexity, starting with the Arduino and Kinect equivalent of 
"Hello World" and finishing with the construction and programming of a Kinect-driven delta robot.  

The Content of the Chapters 
Each chapter will lead you step-by-step through the construction of the physical project, the building of 
the necessary circuits, the programming of the Arduino board, and the implementation of the 
Processing programs that connect the Kinect data to your Arduino board. Most projects will involve the 
implementation of two separate programs, the Arduino program and the Processing program. Arduino 
code will be displayed in bold monospace typeface, like this: 

digitalRead(A0); // This is Arduino Code 

Processing programs will be written in normal monospace font style, like this: 

fill(255,0,0); // This is Processing Code 

In each chapter, you will be introduced to the specific concepts and techniques that you will need to 
build that particular project—and probably some of the following ones. If you are an experienced 
programmer, you might want to read this book non-sequentially, starting by the project that interests 
you the most. If you are a programming beginner, you will find it easier to start with the first project and 
build up your knowledge as you progress through the book.  

This is a list of topics that will be introduced in each chapter, so if you are interested in a specific 
concept you can jump straight to the right project. 

• Chapter 1: You will learn everything you need to know about the Arduino 
platform, you will install the necessary drivers and software, and you will write 
your first Arduino program. 

• Chapter 2: This chapter will help you discover what’s inside that amazing new 
device that has changed human-computer interfaces: the Kinect.  
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• Chapter 3: You will discover the Processing programming language and IDE. You 
will install Processing, build your first Processing programs, and learn a great deal 
about working in 3D. 

• Chapter 4: You will learn about communicating with Arduino and Kinect through 
serial, you will develop your own communication protocol, and you will use hand 
tracking for the first time. You will also learn how to use pulse width modulation 
and how to work with LEDs and light sensors.  

• Chapter 5: This chapter will teach you to hack a remote control and use body 
gestures to control your TV set. You will learn how to use relays and how to build a 
circuit on a prototyping shield. You will even develop your own gesture 
recognition routine. 

• Chapter 6: You will learn to work with servos and how to communicate through 
networks and over the Internet. You will also use Kinect’s skeleton tracking 
capabilities to drive a puppet with your body gestures. 

• Chapter 7: The Arduino Nano and the XBee wireless module will be introduced in 
this chapter. You will also learn all about resistors and color LEDs. You will take 
the skeleton tracking to three dimensions and use it to control a series of lamps 
responding to your presence. 

• Chapter 8: Przemek Jaworski has contributed this amazing drawing arm project. 
In this chapter, you will work with Firmata, a library that allows you to control the 
Arduino from Processing without the need to write any Arduino code. You will 
also learn how to build a tangible table to control your robotic arm. 

• Chapter 9: You will be introduced to DC motors and how to control them using H-
bridges. You will also learn how to use proximity sensors. You will use all these 
techniques to control a RC car with hand gestures. 

• Chapter 10: This project will teach you how to hack a bathroom scale to provide 
user weight data wirelessly. You will learn how to acquire data from a seven-
segment LCD display, and you will then combine the data with the Kinect skeleton 
tracking to implement user recognition and body mass index calculation. 

• Chapter 11: You will build a wireless, wearable circuit on a glove using the 
Arduino LilyPad, flex sensors, and an XBee module. You will then implement your 
own simple computer-assisted design (CAD) software, and you will use your 
wireless interface to draw 3D geometries by moving your hand in space. 

• Chapter 12: This chapter will teach you to parse, transform, and recompose raw 
point clouds in order to perform 360-degreee scans of objects using just one 
Kinect and a turntable that you will build. Then you will learn how to write your 
own .ply file export routine and how to import the point data into Meshlab to 
prepare it to be 3D printed or rendered. 

• Chapter 13: This final project will teach you the basics of inverse kinematics and 
how to use all the techniques from throughout the book to build a Kinect-
controlled delta robot. 

This book has been intentionally built upon multi-platform, open source initiatives. All the tools 
utilized in the book are free and available for Mac OSX, Windows, and Linux on commercial licenses. 

Because of the three-dimensional nature of the data that you can acquire with the Kinect, some of 
the more advanced projects rely on the use of trigonometry and vector math. We have tried to cover the 
necessary principles and definitions, but if your mathematical skills are somewhat rusty, you might want 
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to consider having a reference book at hand. John Vince’s Mathematics for Computer Graphics (Springer, 
2006) is an amazing resource. Web sites like Wolfram Alpha (www.wolframalpha.com) or mathWorld 
(http://mathworld.wolfram.com) can be helpful as well. 

Every chapter will include the necessary code to make the project work. You can copy this code from 
the book or you can download the necessary files from Apress (www.apress.com)  or the book’s web site 
(www.arduinoandkinectprojects.com). 

If you need to contact the authors, you can find us via the following addresses: 

• Enrique Ramos Melgar:  enrique@esc-studio.com  

• Ciriaco Castro Díez:   ciriaco@esc-studio.com  

• Przemek Jaworski:   studio@jawordesign.com 
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Arduino Basics 

by Enrique Ramos 

This first chapter is dedicated to Arduino, one of the two cornerstones of this book. The following pages 
cover the basics of the Arduino hardware and software. By the end of the chapter, you will have installed 
the platform on your computer and you will have programmed two examples using the Arduino 
integrated development environment (IDE).  

The structure of an Arduino sketch will be analyzed and each function explained. You will learn 
about the Arduino input and output pins. You will also learn the basic concepts of electricity, circuits, 
and prototyping techniques that you will be using throughout the book.  

It is highly likely that this is not the first book on Arduino that you have held in your hands. If you 
are an experienced Arduino user, you should  consider reading these pages as a refresher. If you are a 
complete beginner, read carefully! 

 

Figure 1-1. Arduino Uno 
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What is Arduino? 
Arduino is an open source electronics prototyping platform composed of a microcontroller, a 
programming language, and an IDE. Arduino is a tool for making interactive applications, designed to 
simplify this task for beginners but still flexible enough for experts to develop complex projects. 

Since its inception in 2005, more than 200,000 Arduino boards (see Figure 1-1) have been sold, and 
there is a rapidly increasing number of projects using Arduino as their computing core. The Arduino 
community is vast, and so is the number of tutorials, reference books, and libraries available. Being open 
source means that there are Arduino clones that you can choose for your projects. Advanced Arduino 
users are constantly developing shields for the available Arduinos as well as completely new Arduino-
compatible boards specializing in different tasks. 

The intentional simplicity of approach to the Arduino platform has permitted an access to physical 
computing for people who would have never thought of using or programming a microcontroller before 
the Arduino/Wiring era. 

A Brief History of Arduino 
Arduino was born in 2005 at the Interaction Design Institute Ivrea, Italy, as a fork of the open source 
Wiring Platform. The founders of the project, Massimo Banzi and David Cuartielles, named the project 
after Arduin of Ivrea, the main historical character of the town. 

Hernando Barragán, a student at the same Institute, along with Diego Gonzalez Joven, had 
developed Wiring in 2003 as his master’s thesis, which was supervised by Massimo Banzi and Casey Reas 
(one of the initiators of Processing). The idea behind Wiring was to allow an easy introduction to 
programming and sketching with electronics for artists and designers—in a similar mindset in which 
Casey Reas and Ben Fry had developed Processing some years earlier (you will learn more on the history 
of Processing in Chapter 3). 

Arduino was built around Wiring but developed independently from 2005. The two projects are still 
very much alive, so everything you will be doing in this book with Arduino could also be done with 
Wiring boards and IDE. 

Installing Arduino 
The first thing you need to do if you want to work with Arduino is to buy an Arduino board and a 
standard USB cable (A-to-B plug if you are using an Arduino Uno). Well, of course you will need more 
than this if you want to build any reasonable useful application, but for the moment you’ll just work with 
the bare essentials.  

Arduino runs on Windows, Mac OS X, and Linux, so there’s a version of Arduino for you whatever 
your OS. Go to the Arduino software web site at http://arduino.cc/en/Main/Software and download the 
version of the software compatible with your system. If after reading the following sections you are still 
having trouble with the installation, you can have more detailed information at 
http://arduino.cc/en/Guide/HomePage. 

Installation on Mac OS X 
After you have downloaded the .zip file, uncompress it. You can drag the Arduino application to your 
Applications folder, and then run from there. Pretty easy, right? 
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If you are using a board older than Arduino Uno (Duemilanove, Diecimila, or older), you need to 
install the drivers for the FTDI chip on the board. You can find the drivers and the instructions at 
http://www.arduino.cc/en/Guide/MacOSX. 

Installation on Windows 
First, download the Windows .zip file and uncompress it. You will see a folder called arduino-1.0. This is 
your Arduino folder and you need to store it somewhere in the computer from where you can later run 
the program. The Program Files folder would seem like a reasonable place for the Arduino software, but 
feel free to choose an alternative location. 

You need to install the Arduino drivers before you can start working with your board. Assuming you 
are installing an Arduino Uno, follow these steps: 

• Plug your board to your computer, and wait for Windows to start the driver 
installation process. After a while, it will fail. No problem. 

• Click Start menu and open the Control Panel. 

• Go to System and Security, then System and then Device Manager. 

• Find the Arduino Uno port listed under Ports (COM & LPT). 

• Right-click on it, and choose “Update Driver Software,” selecting “Browse my 
Computer for Driver Software.” 

• Finally, navigate and select the Arduino Uno’s driver file named ArduinoUNO.inf 
located in the Drivers folder of the Arduino software folder you have just 
downloaded. Windows will successfully install the board now. 

Installation on Linux 
If you are working on Linux, the installation process is slightly different depending on your Linux 
distribution, and unfortunately we don’t have the space to detail all of them in this book. You can find all 
the information you need at http://www.arduino.cc/playground/Learning/Linux. 

Testing the Arduino 
Once you have installed the Arduino software and drivers, you need to perform a little test to make sure 
that everything is working properly.  

Arduino has a built-in LED connected to pin 13, so you can actually test the board without having to 
connect any extra hardware to it. Among the numerous Arduino examples included with the Arduino 
IDE, there is an example called Blink that makes this built-in LED to blink every second. You will learn 
more about pins, LEDs, and Arduino code in the following sections, but for the moment, you are going 
to use this example as a way to find out if your Arduino is communicating properly with your computer 
and if the sketches can be uploaded to the board. 

Connect your Arduino board to your computer and run the Arduino software. On the Tools menu, 
select Board, and make sure that the right kind of board is selected. In our case, we want to check that 
the Arduino Uno board is ticked (see Figure 1-2).  
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Figure 1-2. Board selection 

After this, select the serial device under the Serial Port option in your Tools menu. If you are working on 
Mac OS X, the port should be something with /dev/tty.usbmodem (for the Uno or Mega 2560) or 
/dev/tty.usbserial (for older boards) in it (see Figure 1-3). If you are using Windows, the port is likely to 
be COM 3 or higher. 

 

Figure 1-3. Serial port 
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Now everything should be ready for you to upload your first program to your Arduino board. You 
will be using one of the classic Arduino examples for this test. Click the Open button on your toolbar and 
navigate to 1.Basics  Blink, as shown in Figure 1-4. Then upload the sketch by clicking the Upload 
button (the one with the arrow pointing right on your toolbar). After some seconds, you will get a 
message saying “Done Uploading” on the status bar, and the LED marked with a capital “L” on your 
board will start blinking every second. If you succeeded in this, your Arduino is correctly set up, and you 
can move on to learning about the Arduino hardware and software. 

 

Figure 1-4. Opening the Blink example 

Arduino Hardware 
You can think of the Arduino board as a little brain that allows you to connect together a vast range of 
sensors and actuators. The Arduino board is built around an 8-bit Atmel AVR microcontroller. 
Depending on the board, you will find different chips including ATmega8, ATmega168, ATmega328, 
ATmega1280, and ATmega2560. The Arduino board exposes most of the microcontroller’s input and 
output pins so they can be used as inputs and outputs for other circuits built around the Arduino. 



CHAPTER 1  ARDUINO BASICS 

6 

 Note A microcontroller is just a small computer designed for embedded applications, like controlling devices, 

machines, appliances, and toys. Atmel AVR is an 8-bit single chip microcontroller developed by Atmel in 1996. 

If you go to http://arduino.cc/en/Main/Hardware, you will find a surprisingly vast range of Arduino 
boards. Each one of them has been designed with a different purpose in mind and thus has different 
amount of pins and electronics on board (see Figure 1-5). 

The Arduino Uno is, at the time of writing, the simplest Arduino board to use. For the rest of the 
book, whenever we refer to Arduino board, we actually mean an Arduino Uno unless explicitly stated (we 
will also work with Arduino Nano and Arduino Lilypad in further chapters). 

Figure 1-5. Official Arduino boards (from http://arduino.cc) 

Arduino is open source hardware and as such, every official board’s schematics are available to the 
public as EAGLE files (EAGLE is a PCB layout, autorouter, and CAM software by Cadsoft). In this way, if 
none of the board designs seem to satisfy your needs, or if you want to have access to cheaper boards, 
you can actually make your own Arduino-compatible board. If you want to know how to do this, get 
Arduino Robotics (Apress, 2011) and you will learn all you need to know to make your own Arduino 
clone. If you are thinking of creating your own Arduino clones for commercial purposes, make sure you 
read the Arduino policy at http://arduino.cc/en/Main/Policy. 
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Arduino Input and Output Pins 
The Arduino Uno has 14 digital input/output pins and six analog input pins, as shown in Figure 1-6. As 
mentioned, these pins correspond to the input/output pins on your ATmega microcontroller. The 
architecture of the Arduino board exposes these pins so they can be easily connected to external circuits. 

Arduino pins can be set up in two modes: input and output. The ATmega pins are set to input by 
default, so you don’t need to explicitly set any pins as inputs in Arduino, although you will often do this 
in your code for clarity.  

 

Figure 1-6. Arduino digital pins (top) and analog pins (bottom) 

Digital Pins 
Arduino has 14 digital pins, numbered from 0 to 13. The digital pins can be configured as INPUT or 
OUTPUT, using the pinMode() function. On both modes, the digital pins can only send or receive digital 
signals, which consist of two different states: ON (HIGH, or 5V) and OFF (LOW, or 0V).  

Pins set as OUTPUT can provide current to external devices or circuits on demand. Pins set as INPUT 
are ready to read currents from the devices connected to them. In further chapters, you will learn how to 
set these pins to INPUT so you can read the state of a switch, electric pulses, and other digital signals. You 
will also learn how to work with digital pins set as OUTPUT to turn LED lights on and off, drive motors, 
control systems, and other devices. 

Six of these pins can also be used as pulse width modulation pins (PWM). Chapter 4 covers what this 
means and how to use PWM pins. 

Analog Input Pins 
The Atmega microcontrollers used in the Arduino boards contain a six-channel analog-to-digital 
converter (ADC). The function of this device is to convert an analog input voltage (also known as 
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potential) into a digital number proportional to the magnitude of the input voltage in relation to the 
reference voltage (5V).  

The ATmega converter on your Arduino board has 10-bit resolution, which means it will return 
integers from 0 to 1023 proportionally based on the potential you apply compared to the reference 5V. 
An input potential of 0V will produce a 0, an input potential of 5V will return 1023, and an input potential 
of 2.5V will return 512. 

These pins can actually be set as input or output pins exactly as your digital pins, by calling them A0, 
A1, etc. If you need more than six digital input or output pins for a project, you can use your analog pins, 
reading or writing to them as if they were digital pins. You will be using this trick in Chapter 10 when you 
need 16 digital input pins. 

Pull-Up Resistors 
Whenever you are reading a digital input from one of your Arduino pins, you are actually checking the 
incoming voltage to that pin. Arduino is ready to return a 0 if no voltage is detected and a 1 if the voltage 
is close to the supply voltage (5V). You need to ensure that the incoming voltages are as close as possible 
to 0 or 5V if you want to get consistent readings in your circuit. 

However, when the pins are set to input, they are said to be in a high-impedance state, which means 
it takes very little current to move the pin from one state to another. This can be used to make 
applications that take advantage of this phenomenon, such capacitive touch sensors or reading LEDs as 
photodiodes, but for general use this means that the state of a disconnected input pin will oscillate 
randomly between 1 and 0 due to electrical noise. 

To avoid this, you need to somehow bias the input to a known state if no input is present. This is the 
role of the ATmega built-in pull-up resistors.  

 

Figure 1-7. Pull-up and pull-down resistors (from Wikipedia) 

Looking at Figure 1-7, you can see that whenever the switch is open, the voltage Vout, which is the 
voltage you will read at the input pin, is very near Vin, or 5V. When the switch is closed, all the current 
flows through the resistor to ground, making Vout very close to ground, or 0V. In this way, your input pin 
is always driven to a consistent state very close to 0 or 5V. 

The pull-down resistor works the same way, but the signal will be biased or pulled down to ground 
when the switch is open and to 5V when the switch is closed.  
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The ATmega chip has 20K pull-up resistors built in to it. These resistors can be accessed from 
software in the following manner: 

pinMode(pin, INPUT);         // set pin to input  
digitalWrite(pin, HIGH);     // turn on pullup resistors 

Arduino Shields 
Arduino shields are boards that have been designed to perform a specific task and can be plugged on top 
of a compatible Arduino board directly, extending the Arduino pins to the top so they are still accessible.  

There are a few official Arduino shields and a vast number of unofficial ones that you can find on the 
Internet (see Figures 1-8 and 1-9). And the best thing, you can create your own Arduino shields by using 
an Arduino-compatible Protoshield or by printing your own PCB compatible with the Arduino design. 

    

Figure 1-8. Arduino XBee Shield (left) and Arduino Prototyping Shield (right) 

 

Figure 1-9. Official Arduino shields 
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Arduino IDE 
The Arduino IDE is a cross-platform application written in Java and derived from the IDE for Processing 
and Wiring. An IDE is basically a program designed to facilitate software development. The Arduino IDE 
includes a source code editor (a text editor with some useful features for programming, such as syntax 
highlighting and automatic indentation) and a compiler that turns the code you have written into 
machine-readable instructions.  

But all you really need to know about the Arduino IDE is that it is the piece of software that will 
allow you to easily write your own Arduino sketches and upload them to the board with a single click. 
Figure 1-10 shows what the IDE looks like. 

 

Figure 1-10. Arduino IDE  

Take a moment to familiarize yourself with the IDE. Table 1-1 offers a description of all the buttons 
you will find in the toolbar. 
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Note that the line of text that you see at the bottom-right of the IDE is actually telling you the 
Arduino board and the serial port you have selected. If they don’t correspond to what you expect, you 
can change them following the steps from the section “Testing the Arduino.” 

Table 1-1. Arduino Development Environment (from http://arduino.cc) 

Symbol Description 

 
Verify  
Checks your code for errors. 

 
Upload  
Compiles your code and uploads it to the Arduino I/O board.  

 
New  
Creates a new sketch. 

 
Open  
Presents a menu of all the sketches in your sketchbook. Clicking one will open it within the 
current window. 

 
Save  
Saves your sketch. 

 
Serial Monitor  
Opens the serial monitor. 

If these symbols look somewhat different from those in your Arduino IDE, you probably have an old 
version of the Arduino tools. Go to  http://arduino.cc/en/Main/Software and download the latest 
version. At the time of writing, Arduino 1.0 is the current software version. 

 Note In Arduino version 1.0, the sketches are saved with the extension .ino instead of the old extension .pde 

(the same as Processing sketches). You can still open .pde sketches created with previous versions. 

Serial Monitor 
The Serial Monitor (at the top right of your Arduino IDE) is a tool to display the serial data being sent 
from the Arduino board to the computer (see Figure 1-11). You need to match the baud rate on your 
serial monitor to the baud rate you specify in the Arduino sketch sending data. The baud rate is the 
number of symbol changes transmitted per second. 

The serial monitor is very useful in the debugging of Arduino programs (the process of finding and 
fixing the defects in the program so it behaves as expected). Whenever you’re not sure what is wrong 
with the code, ask Arduino to print messages to the serial monitor so you can peek into the state of the 
program at that precise moment. 
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Figure 1-11. Arduino Serial Monitor 

You will make extensive use of serial communication throughout the book, as it is the main way to 
get Arduino to communicate with Processing and thus with the Kinect data. 

Arduino Language 
The Arduino language is implemented in C/C++ and based in Wiring. When you write an Arduino 
sketch, you are implicitly making use of the Wiring library, which is included with the Arduino IDE. This 
allows you to make runnable programs by using only two functions: setup() and loop(). As mentioned, 
the Wiring language is inspired by Processing, and the Arduino language structure is inherited from the 
Processing language, where the equivalent functions are called setup() and draw(), as you will see in 
Chapter 3.  

You need to include both functions in every Arduino program, even if you don’t need one of them. 
Let’s analyze the structure of a simple Arduino sketch using again the Blink example. Open your Arduino 
IDE, and select Open   1.Basics  Blink. 

The setup() Function 
The setup() function is run only once, right after you upload a new sketch to the board, and then each 
time you power up your Arduino. You use this function to initialize variables, pin modes, start libraries, 
etc. In this example, the setup() function is used to define pin 13 as output: 

void setup() {                 
    pinMode(13, OUTPUT);      
} 
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The loop() Function 
The loop() function is run continuously in an endless loop while the Arduino board is powered. This 
function is the core of most programs. 

In this example, you turn pin 13’s built-in LED on using the function digitalWrite() to send a HIGH 
(5V) signal to the pin. Then you pause the execution of the program for one second with the function 
delay(). During this time, the LED will remain on. After this pause, you turn the LED off, again using the 
function digitalWrite() but sending a LOW (0V) signal instead, and then pause the program for another 
second. This code will loop continuously, making the LED blink. 

void loop() { 
  digitalWrite(13, HIGH);  
  delay(1000);              
  digitalWrite(13, LOW);     
  delay(1000);               
} 

This code would not actually be seen as a valid C++ program by a C++ compiler, so when you click 
Compile or Run, Arduino adds a header at the top of the program and a simple main() function so the 
code can be read by the compiler. 

Variables 
In the previous example, you didn’t declare any variables because the sketch was rather simple. In more 
complex programs, you will declare, initialize, and use variables. 

 Variables are symbolic names given to a certain quantity of information. This means you will 
associate a certain piece of information with a symbolic name or identifier by which you will refer to it.  

Variable Declaration and Initialization 
In order to use a variable, you first need to declare it, specifying at that moment the variable’s data type. 
The data type specifies the kind of data that can be stored in the variable and has an influence in the 
amount of memory that is reserved for that variable.  

 As Arduino language is based on C and C++, the data types you can use in Arduino are the same 
allowed in C++. Table 1-2 lists some of the data types you will use throughout this book. For a complete 
listing of C++ data types, you can refer to C++ reference books and Internet sites. 

Table 1-2. Arduino Fundamental Data Types 

Name Description Size Range 

char Character or small integer 1byte Signed: -128 to 127 
Unsigned: 0 to 255 

boolean Boolean value (true or false) 1byte True or false 

int Integer 4bytes Signed: -2147483648 to 2147483647 
Unsigned: 0 to 4294967295 
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Name Description Size Range 

long  Long integer 4bytes Signed: -2147483648 to 2147483647 
Unsigned: 0 to 4294967295 

float Floating point number 4bytes +/- 3.4e +/- 38 (~7 digits) 

double Double precision floating point number 8bytes +/- 1.7e +/- 308 (~15 digits) 

When you declare the variable, you need to write the type specifier of the desired data type followed 
by a valid variable identifier and a semicolon. In  the following lines, you declare an integer, a character, 
and a Boolean variable: 

int myInteger; 
char myLetter; 
boolean test; 

This code has declared the variables, but their value is undetermined. In some cases, you want to 
declare the variable and set it to a default value at the same time. This is called initializing the variables. 
If you want to do this, you can do it in the following way: 

int myInteger = 656; 
char myLetter = 'A'; 
boolean test = true; 

By doing this, your three variables are set to specific values and you can start using them from this 
moment on. 

In other cases, you want to declare the variables first and initialize them later. You will see this 
happening frequently, as it’s necessary when you want to declare the variable as global but its value 
depends on other variables or processes happening within the setup(), draw(), or other functions. 

int myInteger; 
char myLetter; 
boolean test; 
 
setup(){ 
 myInteger = 656; 
 myLetter = 'A'; 
 test = true; 
} 

Variable Scope 
When you declare your variables, the place you do it within the code will have an impact on the scope in 
which the variable will be visible. If you declare your variable outside of any function, it will be 
considered a global variable and will be accessible from anywhere in the code. If you declare your 
variable within a function, the variable will be a local variable and will only be accessible from within the 
same function. Let’s do an example from the Blink sketch. 

int ledPin = 13; 
void setup() { 
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  pinMode(ledPin, OUTPUT);      
  int myOtherPin = 6; 
  pinMode(myOtherPin, OUTPUT);      
} 
 
void loop() { 
  digitalWrite(ledPin, HIGH);   // set the LED on 
  delay(1000);              // wait for a second 
  digitalWrite(ledPin, LOW);    // set the LED off 
  delay(1000);              // wait for a second 
} 

This code will upload and run smoothly, behaving exactly as the original Blink example. You have 
declared and initialized the integer ledPin at the beginning of your program, outside of any function, so 
it is considered a global variable visible from within the other functions in the code. 

The variable myOtherPin, on the other hand, has been defined within the setup() function. You have 
used the variable to set the pin defined by the variable to OUTPUT. If you tried to use the variable from the 
loop() function, Arduino would throw an error at you, saying “’myOtherPin’ was not declared in this 
scope”. And that’s right; you have declared and initialized the variable within the setup() function, 
making it a local variable and only visible from within the function in which it was declared. 

Your First Arduino Project 
You are going to write an example Arduino sketch involving all the elements you just learned in the 
previous sections. This is only a very first step in the development of an Arduino project, but it will be 
enough to summarize this chapter on Arduino basics. 

You are going to build a very simple circuit first, and then you will program it using your Arduino 
IDE. You will need your Arduino board, a breadboard, an LED, a 220-ohm resistor, a potentiometer, and 
some wires to build this example.  

Breadboard 
When working with electronics, it is often useful to “sketch” the circuit quickly so you can test it before 
building it in a more permanent form. Using a solderless breadboard, you can easily prototype 
electronics by plugging elements together. As the elements are not soldered to the board, the board can 
actually be reused as many times as you want (see Figures 1-12 and 1-13). 
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Figure 1-12. Bredboard connection diagram 

Figure 1-13. Project sketched on a breadboard 

Note that the pins flanked by blue and red lines on your breadboard (the top two rows and the 
bottom two rows in Figure 1-13) are connected together horizontally, so you can use them to provide 5V 
and ground to all the elements on the project. The other pins are connected in vertical strips broken in 
the middle. You use these linked strips to connect the resistor to the LED and the potentiometer pins to 
5V, ground, and the Arduino Analog Input Pin 0. 

Building the Circuit 
Try to replicate this circuit on your breadboard and connect it to the Arduino as you see happening in 
Figure 1-14. The LED is connected to analog pin 11, and the middle pin of the potentiometer is 
connected to analog pin 0. The ground and 5V cables are connected to the Arduino GND and 5V pins. 
Note that the LED has a shorter leg (cathode), which needs to be connected to ground. The longer one is 
connected to the resistor. If you are curious about the functioning of LEDs and why you are using a 220-
ohm resistor, there is a whole section on resistors in Chapter 7.  
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The goal of this project is to control the brightness of the LED by turning the potentiometer. A 
potentiometer is basically a variable resistor that you control by turning the knob. Note that the 
potentiometer is not connected to the LED or the resistor at all; it’s just connected to the Arduino board. 
You acquire the values coming from the potentiometer from Arduino and use these values to drive the 
brightness of the LED. All of this is done in the Arduino code. 

Programming the Arduino  
Now you are going to write the code that will permit you to drive the LED by turning your potentiometer. 
You will use serial communication to check the values that you are getting from the potentiometer in 
runtime using the Serial Monitor. 

First, you declare a global integer variable called ledPin that defines the LED pin number during the 
execution of the program.  

int ledPin = 11; 

The setup() Function 
After this, you write the setup() function in which you start serial communication at a baud rate of 9600 
and define the pinMode of your LED pin to OUTPUT so you can write to it. 

void setup() { 
  Serial.begin(9600); 
  pinMode(ledPin, OUTPUT);   
} 

 

Figure 1-14. Your first Arduino project 
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The loop() Function 
In the loop() function, the first thing you do is declare a new local integer variable called sensorValue to 
store the value of the potentiometer connected to analog pin 0. You initialize the variable to this value by 
using the analogRead() function and specifying A0 (Analog 0) as your pin. If you were to read analog pin 
1, you would write A1, and so on. 

Then you print the value from the potentiometer to the serial buffer using the function 
Serial.println(). If you open the Serial Monitor while the program is running, you will see that the 
values coming from the potentiometer range from 0 to 1023. 

You want to use this value to set the brightness of your LED, but you have stated that the scope of 
the brightness needs to be in a range of 0 to 255. The solution to this issue will be mapping the values of 
the potentiometer from its range to the range of the potentiometer. You will use this technique very 
often in your projects; luckily, Arduino has a function to perform this operation called map(). 

The map() function takes five arguments: map(value, fromLow, fromHigh, toLow, toHigh).  
The argument value is the current value to be mapped. fromLow and fromHigh define the lower and 

higher values of the source range, and toLow and toHigh, the lower and higher values of the target range. 
In your case, your LED brightness needs to be defined as map(sensorValue,0,1023,0,255), so if the 

sensor value is 1023, the LED brightness is 255. The map() function will always return an integer, even in 
the case that the mapping would result in a floating point number. 

Once you have determined the brightness of the LED, you write this value to the LED pin using the 
function analogWrite(pin, value). 

void loop() { 
  int sensorValue = analogRead(A0); 
  Serial.println(sensorValue); 
   
  int ledBrightness = map(sensorValue,0,1023,0,255); 
  analogWrite(ledPin, ledBrightness); 
} 

Upload this program to your Arduino board, and you will be able to change the brightness of your 
LED by turning the potentiometer. You will develop more advanced control techniques in Chapter 4, but 
before you move on, let’s go through some basic concepts on electronics. 

Circuit Diagrams 
We just described the circuit using photos and text. But when we get to more complicated circuits, this 
will not be enough. The way circuits should be represented is with circuit diagrams, or schematics. 

Circuit diagrams show the components of a circuit as simplified standard symbols and the 
connections between the devices. Note that the arrangement of the elements on a diagram doesn’t 
necessarily correspond to the physical arrangement of the components. 

There are numerous software packages that facilitate the drawing of schematics, but there is one 
designed to be used by non-engineers, and it works nicely with Arduino projects: Fritzing. 

Fritzing 
Fritzing is an open source tool developed at the University of Applied Sciences of Potsdam in Germany; 
it’s aimed at artists and designers who want to develop their prototypes into real projects. You can (and 
should) download Fritzing from http://fritzing.org. 

Fritzing has a graphical interface that allows the user to build the circuit as in the physical world, 
connecting together breadboards, Arduinos, LEDs, resistors, etc. Then you turn this visual 
representation into a circuit diagram just by changing the view, as shown in Figures 1-15 and 1-16.  
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Figure 1-15. Breadboard view of your project in Fritzing 

 

Figure 1-16. Schematics view of your project in Fritzing 
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AC/DC 
Mains electricity is alternating current (AC), but you will be using direct current (DC) for all your 
projects. AC is actually cheaper to produce and transmit from the power plants to your home. That is the 
reason why all the plugs in our households give us alternating current. But AC is also more difficult to 
control, so most electronic devices work with a power supply that converts AC into DC. 

 The current provided by your USB is DC, as is the current you get from a battery or a computer 
power supply, so you won’t work with AC at all in this book. Every time we speak about electricity or 
current in the book, we are referring to DC. 

Ohms Law 
Electricity, or electrical current is, very generally, the movement of electrons through a conductor. The 
intensity (I) of this current is measured in amperes (A).  

The force pushing the electrons to flow is called voltage, which is the measure of the potential 
energy difference relative between the two ends of the circuit. Voltage is measured in Volts, or V. 

The conductor through which the electrons are flowing will oppose some resistance to their 
passage. This force is called resistance, and it is measured in ohms (Ω). 

Georg Ohm published a treatise in 1827 describing measurements of voltage and current flowing 
through circuits. Today, one of these equations has become known as Ohm’s law, and it ties together 
voltage, current, and resistance. 

I =
V

R
  

Putting this into words, the equation states that the current flowing through a conductor (I) is 
directly proportional to the potential difference (V) across the two ends. The constant of proportionality 
is called resistance  (R). 

Resistance is then the measure of the opposition to the passage of an electric current through an 
element. The opposite of resistance is conductance (G). 

R =
V

I
       G =

I

V
       G =

1

R
 

Ohm’s law can be rewritten in three different ways depending on which elements of the equation 
you already know and which one you are trying to calculate. 

I =
V

R
        R =

V

I
        V = R ⋅ I  

Joule’s Law 
Joule’s first law, also known as Joule Effect, was declared by James Prescott Joule in the 1840s. This law 
states that the power dissipated in a resistor, in terms of the current through it and its resistance, is 

P = I 2 ⋅R  

If you apply the previous equations to Joule’s law, you will be finally able to calculate the power in 
watts as a value derived by multiplying current by voltage. 



CHAPTER 1  ARDUINO BASICS 

 

22 

P = I ⋅V  

This helps you to choose the correct power rating for elements such as resistors and to calculate the 
power consumption from battery-driven supplies. This, in turns, lets you estimate how long your project 
will run on a set of batteries. 

Summary 
This first chapter has taken you through an overview of the Arduino platform in which both the Arduino 
hardware and software have been thoroughly analyzed.  

Your Arduino board should be properly configured now, the Arduino IDE should be installed on 
your computer, and you should be communicating seamlessly with your board via USB. You have had a 
brief refresher course on basic electrical concepts, and you have warmed up with a couple of examples. 

This introduction doesn’t intend to be a substitute for more introductory works. If this is your first 
contact with Arduino, you might want to consider having a look at some other titles like Beginning 
Arduino (Apress, 2010) before you go deeper into this book, or at least have one at hand just in case. 

After finishing this chapter, hopefully you are craving more exciting projects, but don’t rush into it! 
You still have to go through some fundamental concepts about the other cornerstone of this book: the 
Kinect. 
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Kinect Basics 

by Enrique Ramos 

The Kinect, shown in Figure 2-1, was launched on November 4, 2010 and sold an impressive 8 million 
units in the first 60 days, entering the Guinness World Records as the “fastest selling consumer 
electronics device in history.” The Kinect was the first commercial sensor device to allow the user to 
interact with a console through a natural user interface (using gestures and spoken commands instead 
of a game controller). The Kinect is the second pillar of this book, so we will spend this chapter getting 
you acquainted with it.  

In the following pages, you will learn the story of this groundbreaking device, its hardware, software, 
and data streams. You will learn what a structured-light 3D scanner is and how it is implemented in the 
Kinect sensor. You will learn about the different data you can acquire from your Kinect (such as RGB, 
infrared, and depth images), and how they are combined to perform motion tracking and gesture 
recognition. Welcome to the world of Kinect! 

 

Figure 2-1. The Kinect 
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A Brief History of the Kinect 
Microsoft announced the Kinect project on June 1, 2009 under the code name Project Natal. The name 
was changed to Kinect on June 13, 2010; it is derived from the words “kinetic” and “connect” to express 
the ideas behind the device. The motto of the marketing campaign for the launch was, very 
appropriately, “You are the controller.” 

This first launch caused a worldwide frenzy, and hackers soon found the one “open door” in this 
amazing device. Unlike other game controllers, the Kinect connection was an open USB port, so it could 
potentially be connected to a PC. Unfortunately, Microsoft had not released any PC drivers for the device 
and didn’t seem to be willing to do so in the near future. 

 Note Drivers are computer programs that allow other higher-level computer programs to interact with 
hardware devices. They convert a well-known and predictable API (application programming interface) to the 

native API built into the hardware, making different devices look and behave similarly. Think of drivers as the 
translators between the hardware and the application or the operating system using it. Without the proper drivers, 

the computer wouldn’t know how to communicate with any of the hardware plugged into it! 

Hacking the Kinect 
Right after the Kinect was released in November 2010, and taking advantage of the Kinect’s open USB 
connection, Adafruit Industries offered a bounty of $1,000 to anybody who would provide “open source 
drivers for this cool USB device. The drivers and/or application can run on any operating system—but 
completely documented and under an open source license.” After some initial negative comments from 
Microsoft, Adafruit added another $2,000 to the bounty to spice it up. 

The winner of the $3,000 bounty was Héctor Martín, who produced Linux drivers that allowed the 
use of both the RGB camera and the depth image from the Kinect.  

The release of the open source drivers stirred a frenzy of Kinect application development that 
caught the attention of the media. Web sites dedicated to the new world of Kinect applications, such as 
http://www.kinecthacks.com, mushroomed on the Internet. The amazed public could see a growing 
number of new applications appear from every corner of the world. 

Official Frameworks 
But the Kinect hackers were not the only ones to realize the incredible possibilities that the new 
technology was about to unleash. The companies involved in the design of the Kinect soon understood 
that the Kinect for Xbox 360 was only a timid first step toward a new technological revolution—and they 
had no intention of being left behind. 

In 2010, PrimeSense (the company behind Kinect’s 3D imaging) released its own drivers and 
programming framework for the Kinect, called OpenNI. Soon after that, it announced a partnership with 
ASUS in producing a new Kinect-like device, the Xtion. 

In 2011, Microsoft released the non-commercial Kinect SDK (software development kit). In 
February 2012, it released a commercial version, accompanied by the Kinect for Windows device. 

And this is where we stand now. Laptops with integrated Kinect-like cameras are most probably on 
their way. This is only the beginning of a whole range of hardware and applications using the technology 
behind Kinect to make computers better understand the world around them. 
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The Kinect Sensor 
The Kinect sensor features an RGB camera, a depth sensor consisting of an infrared laser projector and 
an infrared CMOS sensor, and a multi-array microphone enabling acoustic source localization and 
ambient noise suppression. It also contains an LED light, a three-axis accelerometer, and a small servo 
controlling the tilt of the device. 

 Note The infrared CMOS (complementary metal–oxide semiconductor) sensor is an integrated circuit that 
contains an array of photodetectors that act as an infrared image sensor. This device is also referred to as IR 

camera, IR sensor, depth image CMOS, or CMOS sensor, depending on the source.  

Throughout this book we will focus on the 3D scanning capabilities of the Kinect device accessed 
through OpenNI/NITE. We won’t be talking about the microphones, the in-built accelerometer, or the 
servo, which are not accessible from OpenNI because they are not part of PrimeSense’s reference design. 

The RGB camera is an 8-bit VGA resolution (640 x 480 pixels) camera. This might not sound very 
impressive, but you need to remember that the magic happens in the depth sensor, which is completely 
independent of the RGB camera. 

The two depth sensor elements, the IR projector and IR camera, work together with the internal chip 
from PrimeSense to reconstitute a 3D motion capture of the scene in front of the Kinect (Figures 2-3 and 
2-4). They do this by using a technique called structured-light 3D scanning, which we will discuss in 
depth at the end of this chapter. The IR camera also uses a VGA resolution (640 x 480 pixels) with 11-bit 
depth, providing 2,048 levels of sensitivity.  

Figure 2-3. Kinect hardware 
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Figure 2-4. Left to right: Kinect IR camera, RGB camera, LED, and IR projector (photo courtesy of ifixit) 

Of course, there is much more going on within the sensor. If you are interested in the guts of the 
Kinect device, the web site ifixit featured a teardown of the Kinect in November 2010 
(http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066). 

Positioning your Kinect 
The Kinect’s practical range goes from 1.2m to 3.5m. If the objects stand too close to the sensor, they will 
not be scanned and will just appear as black spots; if they are too far, the scanning precision will be too 
low, making them appear as flat objects. If you are using the Kinect for Windows device, the range of the 
camera is shorter, from 40cm to 3m.  

Kinect Capabilities 
So what can you do with your Kinect device and all of the hi-tech stuff hidden inside? Once the Kinect is 
properly installed and communicating with your computer, you will be able to access a series of raw data 
streams and other capabilities provided by specific middleware. In this book, we will use the OpenNI 
drivers and NITE middleware. 

RGB Image 
Yes, you can use the Kinect as a 640 x 480 pixel webcam. You will learn how to access Kinect’s RGB image 
using OpenNI in Chapter 3. 
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IR Image 
As Kinect has an infrared CMOS, you can also access the 640 x 480 IR image using OpenNI. This is also 
covered in Chapter 3. 

Depth Map 
The depth map is the result of the operations performed by PrimeSense’s PS1080 chip on the IR image 
captured by Kinect’s IR CMOS. This VGA image has a precision of 11 bits, or 2048 different values, 
represented graphically by levels of grey from white (2048) to black (0).  

In Chapter 3, you will learn how to access and display the depth image from Processing using the 
OpenNI framework and how to translate the gray scale image into real space dimensions. There is one 
detail that you should take into consideration: the sensor’s distance measurement doesn’t follow a linear 
scale but a logarithmic scale. Without getting into what a logarithmic scale is, you should know that the 
precision of the depth sensing is lower on objects further from the Kinect sensor.  

Hand and Skeleton Tracking 
After the depth map has been generated, you can use it directly for your applications or run it through a 
specific middleware to extract more complex information from the raw depth map.  

In the following chapters, you will be using NITE middleware to add hand/skeleton tracking and 
gesture recognition to your applications. Chapter 4 will teach you how to use hand tracking to control 
LED lights through an Arduino board. Chapter 5 will introduce NITE’s gesture recognition, and you will 
even program your own simple gesture recognition routine. Chapter 6 will teach you how to work with 
skeleton tracking. 

The algorithms that NITE or other middleware use to extract this information from the depth map 
fall way beyond the scope of this book, but if you are curious, you can read Hacking the Kinect by Jeff 
Kramer et al (Apress, 2012), in which you will find a whole chapter on gesture recognition. 

Kinect Drivers and Frameworks 
In order to access the Kinect data streams, you will need to install the necessary drivers on your 
computer. Because of the rather complicate story of this device, there are a series of choices available 
that we will detail next.  

OpenKinect: Libfreenect Drivers 
Soon after creating the Kinect open source drivers for Adafruit, Héctor Martín joined the OpenKinect 
community (http://openkinect.org), which was created by Josh Blake with the intention of bringing 
together programmers interested in natural user interfaces (NUIs). OpenKinect develops and maintains 
the libfreenect core library for accessing the Kinect USB camera. It currently supports access to the RGB 
and depth images, the Kinect motor, the accelerometer, and the LED. Access to the microphones is 
being worked on. 
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PrimeSense: OpenNI and NITE 
Throughout this book, we will be using OpenNI and NITE to access the Kinect data streams and the 
skeleton/hand tracking capabilities, so here is a little more detail on this framework. The Israeli company 
PrimeSense developed the technology behind Kinect’s 3D imaging and worked with Microsoft in the 
development of the Kinect device. In December 2010, PrimeSense created an industry-led, not-for-profit 
organization called OpenNI, which stands for open natural interaction (http://www.openni.org). 

This organization was formed to “certify and promote the compatibility and interoperability of 
natural interaction (NI) devices, applications, and middleware.” The founding members of the OpenNI 
organization are PrimeSense, Willow Garage, Side-Kick, ASUS, and AppSide.  

OpenNI 
In order to fulfill its goal, OpenNI released an open source framework called OpenNI Framework. It 
provides an API and high-level middleware called NITE for implementing hand/skeleton tracking and 
gesture recognition.  

 

Figure 2-5. OpenNI abstract layered view (courtesy of PrimeSense) 

Because OpenNI breaks the dependency between the sensor and the middleware (see Figure 2-5), 
the API enables middleware developers to develop algorithms on top of raw data formats, independent 
of the sensor device that is producing the data. In the same way, sensor manufacturers can build sensors 
that will work with any OpenNI-compliant application. 



CHAPTER 2  KINECT BASICS 

 

30 

Kinect was the first implementation of the PrimeSense reference design; its optics and microchip 
were developed entirely by PrimeSense. Then Microsoft added a motor and a three-axis accelerometer 
to the design. This is why OpenNI doesn’t provide access to the motor or the accelerometer; they are 
specific to the Kinect implementation.  

PrimeSense is a fabless (fabrication-less) semiconductor company. It makes its revenue by selling 
hardware and semiconductor chips while outsourcing fabrication. It’s mainly a B2B (business to 
business): it sells solutions to manufacturers who insert these solutions into consumer products. This is 
exactly the way in which it was involved in the development of the Kinect with Microsoft.  

PrimeSense then sells its technology to manufacturers such as ASUS and other computer or 
television manufacturers. But for this market to be developed, there needs to exist an ecosystem of 
people creating natural interaction-based content and applications. PrimeSense created OpenNI as a 
way to empower developers to add natural interaction to their software and applications so this 
ecosystem would flourish.  

NITE 
For natural interaction to be implemented, the developer needs more than the 3D point cloud from 
Kinect. The most useful features come from the skeleton and hand tracking capabilities. Not all 
developers have the knowledge, time, or resources to develop these capabilities from scratch, as they 
involve advanced algorithms. PrimeSense decided to implement these capabilities and distribute them 
for commercial purposes but keep the code closed, and so NITE was developed. 

 Note There has been much confusion about the differences between OpenNI and NITE. OpenNI is 
PrimeSense’s framework; it allows you to acquire the depth and RGB images from the Kinect. OpenNI is open 

source and for commercial use. NITE is the middleware that allows you to perform hand/skeleton tracking and 

gesture recognition. NITE is not open source, but it is also distributed for commercial use. 

This means that without NITE you can’t use skeleton/hand tracking or gesture recognition, unless 
you develop your own middleware that processes the OpenNI point cloud data and extracts the joint 
and gesture information. Without a doubt, there will be other middleware developed by third parties in 
the future that will compete with OpenNI and NITE for natural interaction applications. 

In Chapter 3, you will learn how to download OpenNI and NITE, and you will start using them to 
develop amazing projects throughout the rest of the book. 

Microsoft Kinect for Windows 
On June 16, 2011, six months after PrimeSense released its drivers and middleware, Microsoft 
announced the release of the official Microsoft Kinect SDK for non-commercial use. This SDK offered 
the programmer access to all the Kinect sensor capabilities plus hand/skeleton tracking. At the time of 
writing, Kinect for Windows SDK includes the following: 

• Drivers for using Kinect sensor devices on a computer running Windows 7 or 
Windows 8 developer preview (desktop apps only) 

• APIs and device interfaces, along with technical documentation 

• Source code samples 
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Unfortunately, the non-commercial license limited the applications to testing or personal use. Also, 
the SDK only installs on Windows 7, leaving out the Linux and Mac OSX programmer communities. 
Moreover, the development of applications is limited to C++, C#, or Visual Basic using Microsoft Visual 
Studio 2010.  

These limitations discouraged many developers, who chose to continue to develop applications 
with OpenNI/NITE plus their OS and developing platform of choice, with an eye towards the 
commercialization of their applications. 

From February 2012, the Kinect for Windows includes a new sensor device specifically designed for 
use with a Windows-based PC and a new version of the SDK for commercial use. The official Microsoft 
SDK will continue to support the Kinect for Xbox 360 as a development device.  

Kinect Theory 
The technique used by PrimeSense’s 3D imaging system in the Kinect is called structured-light 3D 
scanning. This technique is used in many industrial applications, such as production control and 
volume measurement, and involves highly accurate and expensive scanners. Kinect is the first device to 
implement this technique in a consumer product. 

Structured-Light 3D Scanning 
 Most structured-light scanners are based on the projection of a narrow stripe of light onto a 3D 

object, using the deformation of the stripe when seen from a point of view different from the source to 
measure the distance from each point to the camera and thus reconstitute the 3D volume. This method 
can be extended to the projection of many stripes of light at the same time, which provides a high 
number of samples simultaneously (Figure 2-6). 

 

Figure 2-6. Triangulation principles for structured-light 3D scanning (from Wikipedia, 
http://en.wikipedia.org/wiki/Structured_Light_3D_Scanner, licensed under the Creative Commons 
Attribution-Share Alike 3.0 Unported license) 
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The Kinect system is somewhat different. Instead of projecting stripes of visible light, the Kinect’s IR 
projector sends out a pattern of infrared light beams (called an IR coding image by PrimeSense), which 
bounces on the objects and is captured by the standard CMOS image sensor (see Figure 2-7). This 
captured image is passed on to the onboard PrimeSense chip to be translated into the depth image 
(Figure 2-8). 

 

Figure 2-7. Kinnect IR coding image (detail) 

 

Figure 2-8. Depth map (left) reconstituted from the light coding infrared pattern (right) 
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Converting the Light Coding Image to a Depth Map 
Once the light coding infrared pattern is received, PrimeSense’s PS1080 chip (Figure 2-9) compares that 
image to a reference image stored in the chip’s memory as the result of a calibration routine performed 
on each device during the production process. The comparison of the “flat” reference image and the 
incoming infrared pattern is translated by the chip into a VGA-sized depth image of the scene that you 
can access through the OpenNI API. 

 

Figure 2-9. PrimeSense PS1080 system on chip (image courtesy of PrimeSense) 

Kinect Alternative: ASUS Xtion PRO 
After PrimeSense released the OpenNI framework, ASUS and PrimeSense announced their intention to 
release a PC-compatible device similar to Kinect. In 2012, ASUS revealed the Xtion PRO, an exact 
implementation of PrimeSense’s reference design that only features a depth camera. It was followed by 
the Xtion PRO LIVE that, like Kinect, includes an RGB camera well as the infrared camera (Figure 2-10). 
ASUS claims its device is “the world’s first and exclusive professional PC motion-sensing software 
development solution” because the Xtion is designed to be used with a PC (unlike the Kinect, which was 
initially designed for the Xbox 360). ASUS is also creating an online store for Xtion applications where 
developers will be able to sell their software to users. 
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 Note ASUS Xtion is OpenNI- and NITE-compatible, which means that all the projects in this book can also be 

implemented using an Xtion PRO LIVE camera from ASUS! 

 

Figure 2-10. ASUS Xtion PRO LIVE (image courtesy of ASUS) 

Summary 
This chapter provided an overview of the Kinect device: its history and capabilities, as well as its 
hardware, software, and the technical details behind its 3D scanning. It was not the intention of the 
authors to give you a detailed introduction to all of the technical aspects of the Kinect device; we just 
wanted to get you acquainted with the amazing sensor that will allow you to build all the projects in this 
book—and the ones that you will imagine afterwards. 

In the next chapter, you will learn how to install all the software you need to use your Kinect. Then 
you will implement your first Kinect program. Now you are the controller! 
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Processing 

by Enrique Ramos 
This book is about making projects with Kinect and Arduino, and one of the most direct ways of 
interfacing them is through Processing, a Java-based, open source programming language and IDE. You 
should be familiar with Arduino by now, so you will be glad to know that the Processing IDE much 
resembles Arduino’s. In fact, the Arduino IDE was based on the Processing IDE (see Figure 3-1). 

 

Figure 3-1. Processing and Arduino IDEs side by side  
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One of the best features of Processing is that, being built on Java, there is a vast community of 
people creating Processing libraries that you can use for your projects without having to worry (too 
much) about the scary, dark places hidden behind every class and method. Kinect is no exception to 
this, and thus Processing is able to talk to Kinect devices through several libraries available from its web 
site. Processing is also capable of talking to Arduino using serial communication. 

This chapter will get you acquainted with the basics of the Processing language and Simple-OpenNI, 
one of Processing’s Kinect libraries. Throughout the rest of the book, you will be creating Kinect and 
Arduino projects that talk through Processing and Simple-OpenNI, so the understanding of these 
techniques is essential to the development of any of the upcoming projects. 

Processing Language 
Casey Reas and Ben Fry, both formerly of the Aesthetics and Computation Group at the MIT Media Lab, 
created Processing in 2001 while studying under John Maeda. One of the stated aims of Processing is to 
act as a tool to get non-programmers started with programming. On the Processing web site 
(http://www.processing.org), you can read this introduction: 

Processing is an open source programming language and environment for people who want to 
create images, animations, and interactions. Initially developed to serve as a software sketchbook and to 
teach fundamentals of computer programming within a visual context, Processing also has evolved into 
a tool for generating finished professional work. Today, there are tens of thousands of students, artists, 
designers, researchers, and hobbyists who use Processing for learning, prototyping, and production. 

Processing is based in Java, one of the most widespread programming languages available today. 
Java is an object-oriented, multi-platform programming language. The code you write in Java is 
compiled into something called bytecode that is then executed by the Java Virtual Machine living in your 
computer. This allows the programmer (you) to write software without having to worry about the 
operating system (OS) it will be run on. As you can guess, this is a huge advantage when you are trying to 
write software to be used in different machines. 

 Processing programs are called sketches because Processing was first designed as a tool for 
designers to quickly code ideas that would later be developed in other programming languages. As the 
project developed, though, Processing expanded its capabilities, and it is now used for many complex 
projects as well as a sketching tool. 

We won’t have space in this book to discuss the ins and outs of the Processing language, but if you 
are familiar with Java, C++, or C#, you will have no problem following the code in this book. For a 
thorough introduction to Processing, I strongly recommend Ira Greenberg’s monumental Processing: 
Creative Coding and Computational Art.  

Installing Processing 
Installing Processing is definitely not much of a hassle. Go to http://www.processing.org and download 
the appropriate version for your OS of choice. If you are a Windows user and you aren’t sure if you 
should download the Windows or Windows without Java version, go for the Windows version. The other 
version will require you to install the Java Development Kit (JDK) separately. Once you have downloaded 
the .zip file, uncompress it; you should find a runnable file. If you run it, you should get a window like 
the one depicted in Figure 3-2. 

Processing will work on any OS from wherever you store it. If you are a Mac OS X user, you might 
want to put it in your Applications folder. On Windows, Program Files would seem like a good place for a 
new program to live. On Linux, users tend to store their programs in /usr/bin or /usr/local, but you can 
create your own folder. 



CHAPTER 3   PROCESSING 

 

37 

 

Figure 3-2. Processing IDE 

Processing IDE 
As mentioned, the Processing IDE is very similar to the Arduino IDE described in Chapter 2. There is a 
console at the bottom of the Processing IDE; a message area that will warn you about errors in the code 
and at runtime; a text editor where you will write your code; plus a tab manager and a toolbar at the top 
of the IDE. 

The Processing toolbar has a distribution of buttons similar to Arduino, yet with some differences 
(see Figure 3-2). The New, Open, and Save buttons play the same roles as in Arduino. But instead of 
having Verify and Upload buttons at the left, there are Run and Stop buttons. You might have guessed 
what they are for, but just in case, the Run button will run your application and the Stop button will halt 
it. There is another button called Export PApplet; pressing it will convert the Processing code into Java 
code and then compile it as a Java Applet, which can be embedded in a web browser. This is the way 
you’ll find Processing Applets, or PApplets, displayed on the Internet. 

The Standard button on the right side of the toolbar is used to change the mode from Standard to 
Android (this is for Android Application development, and we are not going to get anywhere near 
Android Apps in this book, so you can forget about it.) 
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A First Processing Sketch 
Processing was designed for simplicity, and it allows you to create runnable programs with just a few 
lines of code. Your first Processing sketch will get you acquainted with the basic structure on a 
Processing program. But first, let’s get into some general programming concepts. 

Processing Variables 
Variables are symbolic names used to store information in a program. There are eight primitive data 
types in Java, and they are all supported in Processing: byte, short, int, long, float, double, boolean, and 
char. A detailed explanation of each one of these data types would be beyond the scope of this book, but 
we will state some general rules. 

Integers (int) will be used to store positive and negative whole numbers (this means numbers 
without a decimal point, like 42, 0, and -56. An integer variable can store values ranging from -
2,147,483,648 to 2,147,483,647 (inclusive). If you need to store larger numbers, you need to define your 
variable as a long. 

Whenever you need more precision, you will be using floating-point numbers, or floats, which are 
numbers with a decimal place (23.12, 0.567, -234.63). The data type double works the same way as float, 
but it is more precise. In general, Processing encourages the use of floats over doubles because of the 
savings in memory and computational time. 

The data type boolean stores two values: true and false. It is common to use booleans in control 
statements to determine the flow of the program. 

The character data type, or char, stores typographic symbols (a, U, $). You will use this data type 
when you want to display or work with text. 

Even though String is not a proper Java primitive, we are going to discuss it here, as you will be 
using it to store sequences of characters. String is actually a class (more about this in Chapter 4), with 
methods for examining individual characters, comparing and searching strings, and a series of other 
tools that you will use to work with text and symbols in your programs. 

Variable Scope 
Whenever you declare a variable, you are implicitly setting a scope, or realm of validity for the variable. If 
you declare the variable within a function, you will be able to access it only from within that specific 
function. If you define the variable outside of any function, the variable will be set as a global variable 
and every function in the program will be allowed to “see” and interact with the new variable. 

Structure of a Processing Sketch  
Open your Processing IDE and declare a timer integer variable outside of any function. As mentioned, 
variables defined like this are treated as global variables in Processing, so you can call them from any 
method and subclass.  

int timer; 

setup() Function 
Next, include a setup() function. This function is called once in the lifetime of a program (unless you call 
it explicitly from another function). For this project, you are only going to specify the size of your sketch 
within this function. 
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void setup(){ 
  size(800,600); 
} 

You can include comments in your code as a means to remind yourself—or inform anybody else 
reading your code—about specific details of the code. There are two main types of comments: single line 
comments, which start with two forward slash characters, and multi-line comments, used for large 
descriptions of the code. You can include some comments in your setup() function in the following way: 

void setup(){ 
  // The next function sets the size of the sketch 
  size(800,600); 
  /* 
    This is a multiline comment, anything written between the two multiline commment  
    delimiters will be ignored by the compiler. 
  */ 
} 

There is a third kind of comment, the doc comment (/** comment */), which can be used to 
automatically generate Javadocs for your code. You won’t be using this sort of comment in this book, but 
they can be extremely useful when writing programs intended to be used by other people. 

draw() Function 
Next, you need to include a draw() function that will run as a loop until the program is terminated by the 
user. You are going to draw a circle on screen that will move to the right of the screen as time passes. 
Remember to include a background() function to clear the frame with a color at every iteration. If you 
comment it out (temporarily remove it by adding // to the beginning of the line), you will see that the 
circles are drawn on top of the previous ones. 

void draw() { 
  background(255); 
  ellipse(timer, height/2, 30, 30); 
  timer = timer + 1; 
} 

Now you are ready to run your sketch. Press the Run button at the top-left of your Processing IDE 
(marked with a red arrow in Figure 3-3) and you will see a new window open with a white circle running 
to the right side.  

Well, that was your first Processing sketch! I take it you are much impressed. You’re going to rush 
into a much deeper discussion on vector classes and 3D processing in the next few pages, so if you are 
completely new to Processing, you should have one of the introductory books to Processing at hand. 
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Figure 3-3. Your first Processing sketch 

Processing Libraries 
Processing libraries are lines of Java code that have been packaged into a .jar file and placed in the 
libraries folder in your system so you can call its functions from any Processing sketch. There are two 
sorts of libraries: core libraries, like OpenGL and Serial, which are included with Processing when you 
download it, and contributed libraries, which are created and maintained by members of the Processing 
community. Contributed libraries need to be downloaded and stored in the libraries folder in your 
system. If you are a Mac OS X user and you have saved the Processing application in the Applications 
folder, the path will be the following: 

/Applications/Processing/Contents/Resources/Java/modes/java/libraries 

To open your Processing application on Mac OS X (it is essentially a folder, so to find the libraries 
folder), right-click the icon and select “Show Package Contents” from the pop-up menu. 

If you are working on a Windows machine and you have put the Processing folder in the Program 
Files folder, this will be your path: 

C:\Program Files\processing-1.5.1\modes\java\libraries 
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If you are a Linux user, wherever you save your Processing folder, the path to the libraries folder will 
be the following: 

processing-1.5.1/modes/java/libraries 

At the time of writing, there are three Kinect libraries available for Processing (shown in Table 3-1). 
Two of them are OS-specific, and one works on Mac OS X, Linux, and Windows. They also differ in the 
functions they implement. 

Table 1-1. Kinect Libraries 

Library Author Based on OS 

Openkinect Daniel Shiffman OpenKinect/Libfreenect Mac OS X 

dLibs Thomas Diewald OpenKinect/Libfreenect Windows 

simple-openni Max Rheiner OpenNI/NITE Mac OS X, Windows, Linux 

The previous chapter covered how Kinect was developed and why there are several ways to access 
the Kinect data stream depending on the drivers and middleware you choose. If you look at the list of 
Kinect libraries for Processing in Table 3-1, you will realize that the two of them are based on 
OpenKinect and available only for one operating system. In this book, you are going to focus on Max 
Rheiner’s Simple-OpenNI because it is multi-platform and built upon Primesense’s OpenNI/NITE 
middleware, which means you can perform skeletonizing and hand recognition off the shelf. If you are 
doing projects where you only need the point cloud, you can use one of the other two libraries, which, as 
an advantage, provide access to the motor built inside your Kinect device. 

Simple-OpenNI 
Simple-OpenNI is a NITE and OpenNI wrapper for Processing implemented by Max Rheiner, a media 
artist and software developer currently lecturing at Zurich University.  

What does this mean? Well, NITE and OpenNI are implemented in C++, and Rheiner has wrapped 
all the functions and methods in such a way that they are accessible from Java; then he wrote a library to 
make the Java code available from Processing. This allows us, Processing lovers, to have all the 
functionality of OpenNI and NITE available from our favorite programming language. 

Installing Simple-OpenNI 
You learned how to install a Processing library in the previous section, but there are some specific 
prerequisites for this library to work on your computer. After you have installed the prerequisites 
described next, you can go to the download web site at http://code.google.com/p/simple-openni/ 
downloads/list to download the library and install it in your Processing libraries folder. 

Installing Simple-OpenNI requires the previous installation of OpenNI and NITE on your machine. 
There is a very detailed description on how to do this on the Simple-OpenNI web site at 
http://code.google.com/p/simple-openni/, which we have reproduced here for you to follow.  
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Installation on Windows 
Follow these steps if you are running Simple-OpenNI on a Windows machine: 

• Download and install OpenNI. 

http://www.openni.org/downloadfiles/opennimodules/openni-binaries/20-latest-unstable 

• Download and install NITE.  

http://www.openni.org/downloadfiles/opennimodules/openni-compliant-middleware-binaries/33-
latest-unstable 

The installer will ask you for the key; use this one: 
0KOIk2JeIBYClPWVnMoRKn5cdY4= 

 

Install the Primesense driver (Asus Xtion Pro, etc.). 

• Download and install Primesensor. 

http://www.openni.org/downloadfiles/opennimodules/openni-compliant-hardware-binaries/31-
latest-unstable 

 

Install the Kinect driver. 

• Download SensorKinect, unzip it, and open the file at 
/avin2/SensorKit/SensorKinect-Win-OpenSource32-?.?.?.msi 

https://github.com/avin2/SensorKinect 

If everything worked out, you should see the camera in your Device Manager (under Primesensor: 
Kinect Camera, Kinect Motor). You can now download and install the Simple-OpenNI Processing library. 

Installation in Mac OS X 
If you are working on Mac OSX, this is your lucky day! Max Rheiner made an installer that goes through 
the whole installation process automatically. This should at least work with Mac OS X 10.6.  

Install OpenNI the Short Way (OpenNI v1.1.0.41 and NITE v1.3.1.5) 

• Download the Installer. 

http://code.google.com/p/simple-openni/downloads/detail?name=OpenNI_NITE_Installer-OSX-
0.20.zip&can=2&q=#makechanges 

• Unzip the file and open a terminal window. 

• Go to the unzipped folder, OpenNI_NITE_Installer-OSX. 

> cd ./OpenNI_NITE_Installer-OSX  

• Start the installer. 

> sudo ./install.sh 

If this installation didn’t work for you, try the following, longer method. 
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Install OpenNI the Official Way 

Those programs have to be on your system in order to install OpenNI: 

• Xcode 

http://developer.apple.com/xcode/  

• MacPorts 

http://distfiles.macports.org/MacPorts/MacPorts-1.9.2-10.6-SnowLeopard.dmg  

• Java JDK (This will be already installed after you installed Processing) 

 When you have finished installing these programs, you can install OpenNI. Open the terminal and 
type in these commands: 

> sudo port install git-core  
> sudo port install libtool 
> sudo port install libusb-devel +universal 
> mkdir ~/Development/Kinect 
> cd Kinect 
> tar xvf OpenNI-Bin-MacOSX-v1.0.0.25.tar.bz2 
> sudo ./install.sh 
> mkdir ~/Development/Kinect 
> cd ~/Development/Kinect 
> mkdir OpenNI 
> mkdir Nite 
> cd OpenNI 
> tar xvf OpenNI-Bin-MacOSX-v1.0.0.25.tar.bz2 
> sudo ./install.sh 

You can now download and install the Simple-OpenNI Processing library. 

Installation on Linux 
If you are a Linux user, these are the steps to install Simple-OpenNI. First, download the install files 
(stable or unstable, 32-bit or 64-bit): 

• OpenNI 

http://openni.org/downloadfiles/2-openni-binaries  

• Nite 

http://openni.org/downloadfiles/12-openni-compliant-middleware-binaries  

• Kinect drivers  

https://github.com/avin2/SensorKinect 

• Primesense drivers (Asus Xtion Pro, etc.) 

http://openni.org/downloadfiles/30-openni-compliant-hardware-binaries  

• Uncompress all files to a folder. 

• Install OpenNI. 

> cd ./yourFolder/OpenNI-Bin-Linux64-v1.1.0.41  
> sudo install 
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• Install NITE (the installer asks you for the key; enter the following: 
0KOIk2JeIBYClPWVnMoRKn5cdY4=) 

> cd ./yourFolder/Nite-1.3.1.5 
> sudo install 

• Install the Kinect driver. 

Decompress ./yourFolder/avin2-SensorKinect-28738dc/SensorKinect-Bin-Linux64-
v5.0.1.32.tar.bz2 

> cd ./yourFolder/SensorKinect-Bin-Linux64-v5.0.1.32 
> sudo install 

• Install the Primesense driver (only if you use an Asus Xtion or the Primesense 
Developer Kit). 

> cd ./yourFolder/Sensor-Bin-Linux64-v5.0.1.32 
> sudo install 

You can now download and install the Simple-OpenNI Processing library. 

Accessing the Depth Map and RGB Image 
Now that you have installed the Simple-OpenNI Processing library, let’s try a very simple example that 
will access the data streams from Kinect from Processing.  

First, import the Simple-OpenNI library, and declare the variable kinect that will contain the 
Simple-OpenNI object, like so: 

import SimpleOpenNI.*; 
SimpleOpenNI kinect; 

Within setup(), initialize the kinect object, passing this (your PApplet) as an argument. As you saw 
in Chapter 2, the Kinect has a standard RGB camera and an infrared camera on board, used in 
combination with an infrared projector to generate the depth image for 3D scanning. Enable the depth 
map and RGB images in your kinect object and the mirroring capability that will mirror the Kinect data 
so it’s easier for you to relate to your image on screen. (Try the same sketch without enabling mirroring, 
and you will see the difference.) Then, set your sketch size to the total size of the RGB and depth images 
placed side by side, so you can fit both in your frame. 

void setup() { 
  kinect = new SimpleOpenNI(this); 
  // enable depthMap and RGB image 
  kinect.enableDepth(); 
  kinect.enableRGB(); 
  // enable mirror 
  kinect.setMirror(true); 
 
  size(kinect.depthWidth()+kinect.rgbWidth(), kinect.depthHeight()); 
} 

The first thing you need to do in the draw loop is to update the kinect object so you will get the 
latest data from the Kinect device. Next, display the depth image and the RGB images on screen, as in 
Figure 3-4. 
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void draw() { 
  kinect.update(); 
  // draw depthImageMap and RGB images 
  image(kinect.depthImage(), 0, 0); 
  image(kinect.rgbImage(),kinect.depthWidth(),0); 
 
} 

 

Figure 3-4. Depth map and RGB image 

Alright, so in 14 lines of code you are accessing the RGB and depth images of the Kinect. If you want 
to access the infrared image, you can use enableIR instead of enableRGB, and then kinect.irWidth() 
instead of kinect.rgbWidth(), and kinect.irImage() for kinect.rgbImage(). 

 Note You can’t capture an RGB image and an IR image at the same time with the current firmware. You can, 

however, capture the depth map and RGB or the depth map and IR. 

Both images are 640x480 pixels. Well, that’s not very impressive for the RGB camera, just an average 
low-quality webcam. The magic comes from the depth map. You are actually getting a 640x480 pixel 
three-dimensional scan in real time (30fps). The levels of grey you see in Figure 3-4 represent the 
distances to the Kinect camera. So from this image, you are getting a two-dimensional image in which 
every pixel has embedded information of its distance to the camera. Could you reconstruct the spatial 
volume in the image? Yes, you can, and you’re going to do it. But let’s first make clear what we’re talking 
about when we talk about 3D. 
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The Third Dimension 
This might sound less intriguing than talking about the fourth or the fifth dimension, but it is still a 
subject that provokes many a headache to anybody getting into the world of computer graphics, so let’s 
take a close look at what we mean when we talk about 3D.  

We all live in a three-dimensional world, though our screens and human interfaces have 
traditionally been two-dimensional. With the advent of real-time 3D scanners like the Kinect, this 
limitation is somewhat left behind. We can interact with the computer using the three dimensions of 
physical space (or at least the three we are aware of, if you ask some physicists!).  

Our screens are still 2D, though, so representing the three dimensions of space on the display 
requires some nasty math dealing with perspective and projections—which luckily we don’t have to 
work out by ourselves because somebody did for us already. Processing has full 3D support and two 
different 3D renderers, P3D and OpenGL. You’re going to focus on OpenGL because it is the more 
powerful of the two. 

Processing in 3D 
Let’s do a quick example of a Processing 3D sketch. There are two 3D primitives already implemented in 
Processing, box() and sphere(). You’re going to draw a three-dimensional box on screen. 

For this, you need to import the OpenGL Processing core library into your sketch so you can set your 
renderer to OPENGL in the size() function within setup(). Then, in the draw() loop, set the background 
to white, move to the center of the screen, and draw a cube of 200 units each side (see Figure 3-5). 

import processing.opengl.*; 
void setup() 
{ 
  size(800, 600, OPENGL); 
} 

void draw() 
{ 
  background(255); 
  noFill(); 
  translate(width/2,height/2); 
  box(200); 
} 
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Figure 3-5. A cube in Processing 

The function translate() that you have used in the previous example makes part of the Processing 
transform functions. These functions have in common the fact that they affect the current 
transformation matrix. 

Matrix Transforms 
The transformation matrix is the frame of reference that Processing uses to print objects on screen. If 
you don’t alter the transformation matrix, the origin of coordinates (the zero point to which all the 
coordinates refer) will be placed at the top-left corner of your screen, the x-axis pointing right, and the y-
axis pointing down. 

If you draw a rectangle on screen, you can specify the x and y coordinates of its center in the 
parameters because the function is rect(x, y, width, height). But if you want to draw a box, it has no 
position parameters, being just box(width, height, depth) or even just box(size). 

So if you want to draw a box at a different position than the global origin of coordinates, you need to 
change the frame of reference to the place and orientation that you want the box to be in, so that when 
you draw the box, it will appear at the desired position. This will be performed with matrix transforms. 

Look at the following code and see what it does on screen (shown in Figure 3-6):  

import processing.opengl.*; 
void setup() 
{ 
  size(800, 600, OPENGL); 
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} 
 
void draw() 
{ 
  background(255); 
  noFill(); 
  translate(mouseX,mouseY); 
  rotate(45); 
  box(200); 
} 

 

Figure 3-6. Controlling a box with the mouse position 

If you want to modify the transformation matrix for some operations and then return it back to 
where it was, you can use the methods pushMatrix() and popMatrix(). The first method will push the 
current matrix onto something called the matrix stack, from where you can recover it using popMatrix(). 
You don’t need to worry too much about the matrix stack at the moment; you just need to understand 
that you can save the current matrix with pushMatrix(), do some transformations and draw some 
objects, and then restore the previous matrix with popMatrix(), so you can continue drawing objects 
within the previous frame of reference. This is illustrated by the following code and shown in Figure 3-7: 

import processing.opengl.*; 
void setup() 
{ 
  size(800, 600, OPENGL); 
} 
 
void draw() 
{ 
  background(255); 
  noFill(); 
 
  pushMatrix(); 
  translate(mouseX,mouseY); 
  rotate(45); 
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  box(200); 
  translate(300,0); 
  box(50); 
  popMatrix(); 
 
  translate(200,200); 
  box(100); 
} 

 

Figure 3-7. Three boxes drawn on different reference systems 

If you play with the previous applet for a while, you’ll realize that the two larger cubes follow the 
mouse and are rotated 45 degrees, while the intermediate cube remains static in its place. Analyzing the 
code, you will understand why. First, you pushed the matrix, and then you translated it to the mouse 
coordinates, rotated it by 45 degrees, and drew the largest box. Then you translated the matrix again on 
the x-axis, but because the matrix was already translated and rotated, it resulted in a diagonal 
movement, so the second cube is drawn rotated at the bottom right of the first.  

Then, you popped the matrix, so you came back to the original reference system; you then 
translated the restored matrix by a certain distance in x and y, and drew the third box, which will not 
move at all with the mouse. The last transform doesn’t accumulate because every time you start a new 
draw() loop, the matrix gets reset. 

For now, you will be drawing three-dimensional geometry on screen and looking at it from one 
point of view. But the best part of 3D geometry is that it can be seen from any point of view in space. This 
is what you are going to explore in the next section. 
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Camera Control Libraries 
In order to visualize 3D space, all CAD packages make use of mouse-driven camera control capabilities, 
so you can orbit around your objects and get a better understanding of the geometry. As you’re dealing 
with 3D data acquisition with the Kinect, you are going to include a camera control library into your 3D 
sketches. At the time of writing, there are several camera control libraries on the Processing web site. 

• Peasycam by Jonathan Feinberg 

• Obsessive Camera Detection (OCD) by Kristian Linn Damkjer 

• Proscene by Jean Pierre Charalambos 

In this book, you are going to use the KinectOrbit library for your examples. This library is quite 
simple and somewhat rudimentary, but it is pretty straightforward to use. Also, it incorporates the 
possibility of saving viewpoints, so you don’t need to be orbiting around every time you open a sketch. 
Furthermore, it keeps the camera roll to zero to avoid the Kinect point cloud appearing upside-down or 
strangely rotated on screen. The camera in the library is especially set up to work with the Kinect point 
cloud, so you won’t need to worry about clipping planes, unit scales, direction of the axes, and other 
issues that can be off-putting when beginning to work in 3D.  

You can download the KinectOrbit library from the book’s web site at 
http://www.arduinoandkinectprojects.com/kinectorbit. If you have a preference for another camera 
control library, or want to implement your own, feel free to substitute it for KinectOrbit in every project 
using it.  

KinectOrbit Example 
Let’s do a quick test with this library. After installing the KinectOrbit library following the directions 

in the “Processing Libraries” section, open a new sketch and import the KinectOrbit and OpenGL 
libraries. Then declare a KinectOrbit object and call it myOrbit. 

import processing.opengl.*; 
import kinectOrbit.*; 
 
KinectOrbit myOrbit; 

Within setup(), specify the size of the sketch and the 3D renderer, and initialize the myOrbit object.  

void setup() 
{ 
  size(800, 600, OPENGL); 
  myOrbit = new KinectOrbit(this); 
} 

Within the draw() method, set a background color, push the myOrbit object, draw a box at the origin 
of the coordinate system with a side length of 500 units, and pop the orbit. After this, draw a square on 
screen using the Processing function rect() for comparison. 

void draw() 
{ 
  background(255); 
  myOrbit.pushOrbit(this); 
  box(500); 
  myOrbit.popOrbit(this); 
  rect(10,10,50,50); 
} 
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Figure 3-8. 3D View Controlled by KinectOrbit 

Run the sketch and observe that the box appears to be in perspective from a defined viewpoint, 
while the rectangle has been drawn in screen coordinates (see Figure 3-8). The library is actually 
designed to work in a very similar way as the pushMatrix() and popMatrix() functions introduced earlier 
in this chapter. This means that your KinectOrbit object will allow you to control the perspective from 
which you are seeing everything drawn inside the pushOrbit/popOrbit loop, while anything drawn 
outside that loop will be drawn from the default coordinate system. This is why the rectangle is drawn on 
screen as if no orbit library were used. 

You can control the point of view by using the mouse. The controls are the following: 

• Right button drag: Pan the camera. 

• Left Button drag: Orbit around the objects. 

• Wheel: Zoom in and out. 

If you like a view in particular, you can save it by pressing the P key, and then retrieve it by pressing 
the O key. When you start the sketch again, it will start in the latest viewpoint that you saved. The 
viewpoint parameters will be stored in a file named orbitSet_0.csv in your data folder. If you delete this 
file at some point, it will be created again when you run the sketch and set to the default values. 

You can also control the gizmos and visualization style of your orbit object. For more information, 
refer to the Javadoc of KinectOrbit on the web site. Now let’s do a test with the Kinect in 3D. 
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Kinect Space  
You have already accessed Kinect’s depth map in the “Accessing the Depth Map and RGB Image” 
section and wondered if you can get that map translated back into the real-scale 3D coordinates of the 
objects. The following sketch does that for you. It starts pretty much like the depth map example but 
includes a function that shows the real coordinates of the points. First, import the appropriate libraries, 
declare Simple-OpenNI and KinectOrbit objects, and initialize them in the setup() function, enabling 
the depth map only. 

import processing.opengl.*; 
import SimpleOpenNI.*; 
import kinectOrbit.*; 
 
KinectOrbit myOrbit; 
SimpleOpenNI kinect; 
 
void setup() 
{ 
  size(800, 600, OPENGL); 
  myOrbit = new KinectOrbit(this, 0); 
  kinect = new SimpleOpenNI(this); 
  // enable depthMap generation  
  kinect.enableDepth(); 
} 

In the draw() function, include a pushOrbit/popOrbit loop; inside it, add the drawPointCloud() 
function and draw the Kinect frustum with the method drawCamFrustum(), already included in 
SimpleOpenNI.  

 Note In computer graphics, the term “frustum” describes the three-dimensional region visible on the screen. 
The Kinect frustum is actually the region of space that the Kinect can see. The Simple-OpenNI method 
drawCamFrustum()  draws this region on screen, so you know exactly what portion of the space is being tracked. 

This method also draws a three-dimensional representation of the Kinect device for reference. 

void draw() 
{ 
 
  kinect.update(); 
  background(0); 
 
  myOrbit.pushOrbit(this); 
  drawPointCloud(); 
  // draw the kinect cam and frustum 
  kinect.drawCamFrustum(); 
 
  myOrbit.popOrbit(this); 
} 
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Now, you need to implement the function drawPointCloud(), which draws each pixel from the 
depth map in its real-space coordinates. You first store the depth map into an array of integers. You 
realize that it is not a bi-dimensional array, but a linear array; Processing images are linear arrays of 
pixels. If you want to access a pixel with coordinates x and y, use the following code: 

index = x + y * imageWidth; 

You are going to represent only a number of pixels in the array because the full 640x480 image gets 
pretty heavy for your processor when represented as 3D points. The integer steps is going to be used as a 
step size within the for() loops in order to skip some of the pixels. 

void drawPointCloud() { 
  // draw the 3d point depth map 
  int[]   depthMap = kinect.depthMap(); 
  int     steps   = 3;  // to speed up the drawing, draw every third point 
  int     index; 

Next, initialize a PVector that will contain the x, y, and z coordinates of the point you want to draw 
on screen and then run through the depth image pixels using two nested for loops.  

 Note A PVector is a Processing implementation of a vector class. A vector is a set of three values 
representing the x, y, and z coordinates of a point in space. Vectors are used extensively in mathematics and 

physics to represent positions, velocities, and other more complicated concepts. The Processing PVector class 
implements several methods that you can use to get the vector’s magnitude and coordinates, and to perform 
vector math operations, like adding and subtracting vectors or dot and cross products. 

  PVector realWorldPoint; 
  stroke(255);  
  for (int y=0;y < kinect.depthHeight();y+=steps) 
  { 
    for (int x=0;x < kinect.depthWidth();x+=steps) 
    { 

If you want to see each point with the depth map color, include the following line: 

      stroke(kinect.depthImage().get(x,y)); 

Within the loop, you first find out the index associated with the x and y coordinates in the depth 
map. Then, if the depthMap point with the current index is not 0, call the function 
depthMapRealWorld()[index] to return the 3D coordinates of the current point, which you display with 
Processing’s point() function. (Note that all dimensions returned are in millimeters.) 

      index = x + y * kinect.depthWidth(); 
      if (depthMap[index] > 0) 
      {  
        realWorldPoint = kinect.depthMapRealWorld()[index]; 
        point(realWorldPoint.x, realWorldPoint.y, realWorldPoint.z); 
      } 
    } 
  } 
} 
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Figure 3-9. Depth map image and depth map in real-world coordinates 

Run the example and spend some time spinning around the model (see Figure 3-9). Have a look at 
the Kinect frustum in relation to the Orbit gizmo. The horizontal axis is X (red), the vertical axis is Y 
(green), and the depth axis is Z (blue), as you can see in Figure 3-10. The Kinect considers itself the origin 
of coordinates (a little pretentious, I would say), so all coordinates are a function of the Kinect’s position 
in space. 

 

Figure 3-10. Kinect device and frustum plus the Orbit gizmo 

Linear and Two-Dimensional Arrays 
If you’re now wondering why you have been going from linear arrays to two-dimensional arrays and 
back, note that you could have done the deal with the following code: 

void drawPointCloud () { 
  for (int i=0; i<kinect.depthMapRealWorld().length;i+=3) { 
    stroke(255); 
    point(kinect.depthMapRealWorld()[i].x, kinect.depthMapRealWorld()[i].y, 
kinect.depthMapRealWorld()[i].z); 
  } 
} 
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But if you get closer to your point cloud, you can see that you have lost control of your “pixel 
dropping.” In the previous code, you were drawing one every steps rows of pixels and one every steps 
columns of pixels, so you were still drawing a consistent grid of points. With the linear array approach, 
you are drawing one every steps pixels on the linear array representing the image, whichever column 
and row that pixel is placed in. In this way, you aren’t producing a consistent grid. Working with two-
dimensional arrays gives you more control over the way you parse and represent your Kinect point 
cloud, so you’ll continue to do it this way. 

So you now have a 3D point cloud that represents the real world position of every point scanned by 
the Kinect. You will be doing many things with this information later in the book. For starters, as you also 
have an RGB camera installed on your Kinect device, could you associate the color image from the RGB 
camera to the point cloud to get a 3D picture of what the Kinect sees? 

Coloring the Point Cloud 
Coloring the point cloud should  be as straightforward as setting the color of each point as the color of 
the equivalent point in the RGB Image. This could be done by enabling the RGB image in the setup() 
and then changing the stroke color to the color of the RGB image at the same index. You should 
comment out the following line: 

//stroke(kinect.depthImage().get(x,y)); This is commented out 

And you should add this line to the code after setting the value of index: 

 stroke(kinect.rgbImage().pixels[index]); 

Your points are now colored according to the RGB camera, but to your surprise, the image and the 
3D point cloud don’t match! This is easy to explain. The RGB camera and the infrared cameras can’t 
occupy the same spot in the Kinect, so they are close to each other but slightly separated. The images 
they are capturing are thus slightly off. In order to make them match, you need to call a Simple-OpenNI 
method to align the point cloud with the RGB image. The setup() function looks this: 

void setup() 
{ 
  size(800, 600, OPENGL); 
  myOrbit = new KinectOrbit(this, 0); 
  myOrbit.setPanScale(3); 
  kinect = new SimpleOpenNI(this); 
  // enable depthMap and RGB generation  
  kinect.enableDepth(); 
  kinect.enableRGB(); 
  // align depth data to image data 
  kinect.alternativeViewPointDepthToImage(); 
} 

Now you should get a pretty neat point cloud that displays the real colors of every pixel. 
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Figure 3-11. RGB image on non-calibrated point cloud (left) and calibrated point cloud (right) 

If you do the same thing and render the results on screen, you will realize what’s happening. If you 
don’t add this method, the depth map image is different from your RGB image. It appears slightly bigger 
and displaced (have a look at Figure 3-11). If you add the method, you can observe in Figure 3-12 that 
the depth map has been modified as to be more similar to the RGB image. 

Figure 3-12. Depth map calibrated to fit RGB image 

NITE Functions 
Up until now, everything you have been doing could have been done with any of the other two libraries 
based in OpenKinect. But you have seen a lot of cool applications on the Internet in which the 
programmers make use of hand and skeleton tracking to allow user interaction. Well, these functions are 
not included with OpenNI itself; they require an external module called NITE, which is not open source 
but is still free and publicly available, and which includes all the algorithms that Primesense has 
developed for user interaction. 
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Luckily, Max Rheiner has also wrapped nearly all of NITE functions within Simple-OpenNI, so you 
can access them from Processing. Let’s see how. 

Hand Tracking 
Because of our skillful use of our upper limbs, hand tracking is a very useful feature for natural 
interaction. We can very precisely position our hands in space, and we can perform a vast amount of 
gestures with them. These abilities can be used to drive parameters or trigger different behaviors in your 
natural interaction applications. OpenNI/NITE includes a framework for hand tracking and hand 
gesture recognition that you can use off the shelf. This is a great feature that doesn’t exist in the official 
Microsoft SDK, at least in the beta version. 

To take advantage of this, you need to include a series of functions or methods in your main 
Processing sketch that will be called (the proper term is “invoked,” which sounds a little spooky) from 
the Simple-OpennNI library when certain events are triggered. 

 Note The way you interact with OpenNI/NITE events is by making use of reflection, an advanced programming 
technique that allows you to invoke methods from a superclass. This is similar to the way you deal with key and 

mouse events in Processing. You include a void keyPressed() function that you don’t explicitly call from your 
draw() function, but you know it will be called whenever you press a key on the keyboard. The hand tracking 

methods work the same way, triggered by hands or gestures recognized by NITE middleware. 

Let’s have a look at these methods and their application. The onCreateHands() method is called 
when a hand is detected and a hand object is initialized. You get an integer containing the hand ID, a 
PVector defining its position on recognition, and a float with the timestamp value. You can add more 
code here that will run when a hand is recognized. 

void onCreateHands(int handId, PVector pos, float time){ 
 
} 

The function onUpdateHands() is called every time Kinect updates the hand data. You get a new 
position vector and time for the hand. Add here the code you want to run when a hand is updated. 

void onUpdateHands(int handId, PVector pos, float time){ 
 
} 
 

When a hand is destroyed (when it disappears from screen or is not recognizable any more), the 
function onDestroyHands() will be invoked. 

void onDestroyHands(int handId, float time){ 
 
} 

NITE also calls two methods related to gesture recognition. The onRecognizeGesture() function is 
called when NITE recognizes a gesture. The string strGesture contains the name of the gesture 
recognized (Wave, Click, or RaiseHand). You also get the start and end positions of the gesture in two 
three-dimensional PVectors. 
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void onRecognizeGesture(String strGesture, PVector idPosition, PVector endPosition){ 
 
} 

Finally, the function onProgressGesture() is triggered while the gesture is in progress but before it 
has been recognized. It gives you the percentage of completion of the gesture, along with the gesture 
type and the current position of the hand. This is normally a very short period of time, but it can be 
useful for some applications. 

void onProgressGesture(String strGesture, PVector position,float progress){ 
 
} 

You will learn how to work practically with these techniques later in this book. In the next chapter, 
you will be using hand tracking to drive the brightness of a couple of LED lights; in Chapter 5, you will 
use it to create a gesture-based remote control. You will even control a robot using hand tracking in the 
last chapter of the book. 

Skeleton Tracking 
Skeleton tracking is probably the most impressive of NITE’s, and therefore of Kinect’s, capabilities. This 
framework allows the computer to understand a person’s body position in 3D and to have a quite 
accurate idea of where the person’s joints stand in space at every point in time. This is quite an 
overwhelming feature if you think that not so long ago you needed to buy a daunting amount of material 
including several cameras, special suits, and so on in order to acquire the same data. 

The only downside of skeleton tracking (for certain projects) is the need for the user to stand in a 
certain “start pose” to allow the middleware to detect the user’s limbs and start the tracking (see Figure 
3-13). This inconvenience seems to have been fixed in the current version of the official Microsoft SDK 
and will likely disappear from NITE, but for the time being, you’ll have to make do with it. 

     

Figure 3-13. User in start pose, calibrated, and tracked 

Let’s have a look at the callback functions that you need for skeleton tracking. You can add any code 
you want to all of these functions and it will run when the functions are called by Simple-OpenNI. In 
each of the functions, add a println() function to print out the user ID and some other messages to the 
console, so you know what methods are being triggered in runtime. 

When a new user is recognized, the function onNewUser() is called. The user hasn’t been 
“skeletonized” yet, just detected, so you need to start the pose detection routine if you want to track the 
user’s limbs. 
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void onNewUser(int userId){ 
 println("onNewUser - userId: " + userId); 
  kinect.startPoseDetection("Psi",userId); 
} 

The function onLostUser() is invoked when Simple-OpenNI isn’t able to find the current user. This 
usually happens if the user goes off-screen for a certain amount of time. 

void onLostUser(int userId){ 
println("onLostUser - userId: " + userId); 

} 

When you recognize the user, you ask Simple-OpenNI to start looking for a starting pose. When this 
pose is detected, the method onStartPose() is called. At this moment, you can stop the pose detection 
routine and start the skeleton calibration. 

void onStartPose(String pose,int userId){ 
 println("onStartPose - userId: " + userId + ", pose: " + pose); 
  kinect.stopPoseDetection(userId);  
  kinect.requestCalibrationSkeleton(userId, true); 
} 

If the user abandons the start pose before the calibration has finished, Simple-OpenNI calls the 
method onEndPose(). 

void onEndPose(String pose,int userId){ 
 println("onEndPose - userId: " + userId + ", pose: " + pose); 
} 

The method onStartCalibration() marks the beginning of the calibration process, which can take 
some seconds to perform. 

void onStartCalibration(int userId){ 
  println("onStartCalibration - userId: " + userId); 
} 

Finally, if the user has stood long enough for the calibration to take place, the method 
onEndCalibration() is called, indicating the end of the calibration process. If the process was indeed 
successful, Simple-OpenNI starts tracking the skeleton; from that point on, you can abandon your pose 
and start moving. The newly created skeleton closely follows each one of your movements. 

If the calibration process was not successful for some reason, Simple-OpenNI returns to the pose 
detection mode so you can restart the whole process. 

void onEndCalibration(int userId, boolean successfull){ 
 println("onEndCalibration - userId: " + userId + ", successfull: " + successfull); 
  if (successfull) { 
    println("  User calibrated !!!"); 
    kinect.startTrackingSkeleton(userId); 
  }  
  else { 
    println("  Failed to calibrate user !!!"); 
    println("  Start pose detection"); 
    kinect.startPoseDetection("Psi", userId); 
  } 
} 

As with hand tracking, you will be learning how to effectively work with skeleton tracking in this 
book using practical examples. In Chapter 6, you will be controlling a puppet with skeleton tracking; in 



CHAPTER 3  PROCESSING 

 

60 

Chapter 7, you will do three-dimensional skeleton tracking to develop a user control system for a lighting 
installation. 

Summary 
This chapter has packed many important concepts that will be further explored in practical projects 
throughout the rest of the book. You learned how to install Processing on your computer and how to 
install the Simple-OpenNI library that you will be using to acquire the data from Kinect.  

You went through a couple of simple examples to illustrate the structure of Processing sketches and 
the use of the Simple-OpenNI library. You will be using Processing and Simple-OpenNI to interface with 
Kinect and Arduino in every single project, so this is a very important tool. 

You also learned about the concept of three-dimensional space, which you will be using in some of 
the more advanced projects in the second half of the book, and you implemented a couple of examples 
of 3D applications based on the Kinect point clouds. 

As you move forward in this book, you may want to re-read some of the sections of this chapter to 
better understand the basic concepts.  
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Arduino and Kinect: “Hello World” 

by Enrique Ramos 

In previous chapters, you learned to work with Arduino, Processing, and Kinect independently. Now you 
are going to build a simple project to illustrate the power of the combination of the three. This is the 
Arduino and Kinect equivalent of the typical “Hello World” programming exercise.  

Imagine you have several LED lights and you want to turn them on and off—or even dim them at 
will from your favorite sofa—just by waving a hand at them. You need sensors that can recognize the 
waving gesture and the brightness control gestures. Here is where the Kinect hand-tracking and gesture 
recognition capabilities come in handy! You also need to be able to send the order to the lights to turn on 
or off and to set their brightness to a certain level; this is done through the Arduino board. In the course 
of this project, you will learn several techniques such as serial communication and pulse width 
modulation (PWM) that you will be using in many other projects throughout this book. 

 

Figure 4-1. “Hello World” built on a breadboard 
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Parts List for Hello World 
This is a very simple project so you are going to build it on a breadboard (see Figure 4-1). All you need is 
a couple of LEDs, your Kinect, an Arduino board, and a light-sensing resistor or photocell. Table 4-1 lists 
the required parts. 

Table 4-1. The Parts List 

Part Description Price 

2 LEDs Basic 5mm LED $0.35 each 

3 Resistors (2x220ohm, 1x10k) You can buy them in packs. $0.25 each 

Photocell Sparkfun SEN-09088 or similar $1.50 

Arduino Board Your best friend! $30 

Kinect Sensor  From Amazon or any other retailer $140 

Breadboard We used Sparkfun PRT-00112, but any one will do. $11.95 

 Note For every project in this book, you are expected to have a Kinect Device ($140) and an Arduino ($30), so 

these won’t be included in the parts lists in the following chapters. 

Before you start building, let’s talk about serial communication. Serial is the base of any 
communication between your Arduino board and your computer, unless you are using a Bluetooth or 
Ethernet shield. Whenever you are uploading a program to the board, you are doing it through one of 
your computer’s serial ports.  

Serial Communication 
Serial communication is a somehow “simple” communication protocol based on sequentially sending 
data bit by bit. All Arduino boards have one or more serial ports that load the sketches into the board 
and communicate with the computer at runtime. You are going to use serial communication to talk to 
the Arduino board from Processing and vice versa. 

Of course, there is a library that allows you to control an Arduino board from a Processing sketch 
without having to write any Arduino code. But wait a minute; you’re reading this book, so you must like 
coding! You’re going to write your own serial communication protocol! Apart from the sheer pleasure of 
coding, writing your own protocols allows you to have a greater control over the data flows and the way 
the devices communicate. 
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 Caution    Digital pins 0 (TX) and 1 (RX) on the Arduino are used for serial communication. If you are using 
serial, you can’t use them for digital input or output! One very common mistake is forgetting this and thus 

connecting a sensor or actuator to one of these pins, which will result in crazy values or behaviors. Watch out! 

You’re going to write a very simple serial communication routine that will allow you to turn an LED 
on and off from a Processing sketch. There are other serial communication examples in Processing and 
Arduino, so you may want to have a look at those, too. 

Serial-Controlled LED 
First, you need to write an Arduino sketch that will turn an LED on and off depending on the data in the 
serial buffer. You’ll use the built-in LED at pin 13 for this example; it’s the very tiny square light with an 
“L” next to it next to the Arduino logo (see Figure 4-2). 

 

Figure 4-2. Arduino with serial received (RX) LED and built-in LED at pin 13 (L) on 

Within setup(), you first initialize the serial communication and set pin 13 as an output pin. 
(Remember that pins are set to input by default, so you need to set them as output if you are planning to 
use them as such.) 

void setup() { 
  Serial.begin(9600); 
  pinMode(13, OUTPUT);      
} 

In loop(), you check if there is any data in the serial buffer, and if so, read the most recent byte of 
information and store it in input. If input equals 1, turn the LED on; otherwise, turn it off.  
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void loop(){ 
  if (Serial.available()>0) {  
      byte input=Serial.read(); 
      if(input == '1'){ 
      digitalWrite(13, HIGH);  
    }else{ 
      digitalWrite(13, LOW);  
    } 
  } 
} 

 Note The number ‘1’ is within single quote marks both in the Processing sketch and in the Arduino code to 
indicate that you mean the character 1, represented by the binary value 00110001. If you wrote it without quotes 
in both places, it would still work because you are sending the decimal value 1, represented by the binary value 
00000001. If you mix characters and decimal values, such as sending ‘1’ and then writing if(input == 1) 

without quote marks, you are comparing two different values (the binary number 00110001 is not the same as 

00000001), which would cause your if statement to always be wrong! 

Now it’s time to write a Processing sketch that will send a serial ‘1’ message if the mouse is on the 
right side of the Processing frame, and a ‘0’ if it is on the left side. First, import the Serial library into your 
sketch and create an object of the serial class. 

import processing.serial.*; 
Serial myPort;  

Within setup(), set the size to 255x255, so no value of your mouse coordinate is higher than what 
can be contained in a byte of information. (You’ll see why later on.) Then you get the name of the first 
serial port on your computer and initialize the Serial object to that port. 

void setup()  
{ 
  size(255, 255); 
  String portName = Serial.list()[0];  
  myPort = new Serial(this, portName, 9600); 
} 

In the draw() function, create a rectangle for visualization purposes and check which side of the 
screen your mouse X-coordinate is on. If it is on the left side of the screen, write a ‘1’ character to the 
serial port, and a ‘0’ if it is on the right side. 

void draw() { 
  noStroke(); 
  rect(0,0,width/2,height); 
 
if (mouseX>width/2) { 
    myPort.write('1'); 
  } 
  else { 



CHAPTER 4   ARDUINO AND KINECT: “HELLO WORLD” 

 

65 

    myPort.write('0'); 
  } 
} 

If everything went as planned, the Arduino LED should now be controlled by the position of your 
mouse. This is great for controlling one device in binary mode (on/off), but what if you want to set the 
brightness of the LED to a certain level? You could send one byte to control 256 levels of brightness, thus 
creating a dimmer.  

Arduino has two kinds of pins, analog and digital. You can emulate analog values by using PWM. If 
you have been wondering what these three letters next to some digital pins meant, now you know!  

Pulse Width Modulation 
Pulse width modulation is basically turning the power on and off so quickly that, because of our eye’s 
persistence of vision, we perceive the light as being permanently on, but with less intensity. In this way, 
by changing the percentage of time that the electricity is on and off, we can trick our eyes into perceiving 
different intensities of continuous light (see Figure 4-3). This is very different from using a digital-to-
analog converter (DAC), which  instead creates a genuine varying voltage that we can use to get different 
intensities from an incandescent lamp.  

 

Figure 4-3. Pulse width modulation 

PWM-Controlled LED 
You’re going to use pulse width modulation to create a dimmer for your light depending on the X-
position of your mouse in the Processing sketch. Change the pin number to a PWM-enabled pin (we 
have chosen 11 here), read your input value as an integer, and send the value straight to your pin using 
analogWrite. Done! You have a serial driven dimmer! 

Well, this is not quite true. When working with LEDs, you need to limit the current to a safe value for 
the LED, so let’s add a resistor. (This is why you’re building this circuit on a breadboard.) There are many 
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LED resistor calculators on the Internet, but trust me on this one—you need a 220-ohm resistor for this 
circuit, as indicated in the diagram in Figure 4-4.  

Figure 4-4. LED circuit 

 Note In the previous example you didn’t use a resistor because pin 13 has a resistor attached to it, soldered to 
the board. You should try not to use this pin for input, as the internal resistor will pull the voltage level down, giving 
you a LOW signal at all times. If you absolutely need to use it as an input, you must use an external pull-down 

resistor. Pull-up and pull-down resistors are described in Chapter 1. 

void setup() { 
   Serial.begin(9600); 
   pinMode(11, OUTPUT);      
} 
void loop(){ 
    if (Serial.available()) { // If data is available to read, 
      int input=Serial.read(); 
      analogWrite(11, input);  
    } 
} 

In the Processing sketch, you only need to replace the draw() function with the following one: 

void draw(){ 
  // Create a gradient for visualisation 
  for(int i = 0; i<width; i++){ 
    stroke(i); 
    line(i,0,i,height);  
  } 
  // Send the value of the mouse's x-position 
    myPort.write(mouseX); 
} 

Note that you are now sending and reading the X-coordinate as an integer, so you can use it to set 
the brightness directly on the write() function. Figure 4-5 shows the Processing sketch and the setup on 
the breadboard. 
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Figure 4-5. Processing sketch and LED mounted on breadboard 

Writing Your Own Communication Protocol 
Everything you did in the previous example works well because you’re only controlling one LED and you 
can live with 256 values. But what if you want to control two or more devices and define a whole range 
for each? What if you want to pass on float values? Then you need to set up your own communication 
protocol, which you will do in this example. 

You’re going to use an event trigger, a signal to tell Arduino that the communication has started and 
that it can start reading the following bytes and use them to modify its behavior. Let’s build on the 
previous example by adding another LED that will be controlled by the Y-coordinate of the mouse. 

Serial-Controlled LEDs 
You are now going to try to dim two LEDs by sliding your mouse through a Processing sketch. The X-
position of the mouse will drive the brightness of one of the LEDs, while the Y-coordinate of the mouse 
will drive the other LED. 

First, you need to declare the integers you’re using in your Arduino sketch and define your pins as 
output. 

int val, xVal, yVal; 
void setup() { 
  Serial.begin(9600); 
  pinMode(10, OUTPUT);      
  pinMode(11, OUTPUT);   
} 

In the loop, you check if enough data has been sent from the computer. You need two different 
values (one for each LED) and an event trigger character that indicates the start of the communication. 
Once you have identified the event trigger, you can read the next two values and send them straight to 
your LEDs. 

 



CHAPTER 4  ARDUINO AND KINECT: “HELLO WORLD” 

 

68 

void loop(){ 
 
  // check if enough data has been sent from the computer: 
  if (Serial.available()>2) {  
    // Read the first value. This indicates the beginning of the communication. 
    val = Serial.read(); 
    // If the value is the event trigger character 'S' 
    if(val == 'S'){ 
      // read the most recent byte, which is the x-value 
      xVal = Serial.read(); 
     // Then read the y-value 
      yVal = Serial.read(); 
    }     
  } 
  // And send those to the LEDS! 
  analogWrite(10, xVal);  
  analogWrite(11, yVal);  
} 

Load the Arduino sketch into your Arduino board. Now you need to implement the Processing 
sketch that will write the X and Y values to the serial port and talk to the code that is running in the 
Arduino. This is pretty similar to the previous example; you’re only adding the event trigger character 
and two different values sequentially.  

import processing.serial.*; 
Serial myPort;  
 
void setup()  
{ 
  size(255, 255); 
  String portName = Serial.list()[0]; // This gets the first port on your computer. 
  myPort = new Serial(this, portName, 9600); 
} 
 
void draw() { 
  // Create a gradient for visualisation 
  for (int i = 0; i<width; i++) { 
    for (int j = 0; j<height; j++) { 
      color myCol = color(i,j,0); 
      set(i, j, myCol); 
      } 
    } 
 
     
// Send an event trigger character to indicate the beginning of the communication 
    myPort.write('S'); 
    // Send the value of the mouse's x-position 
    myPort.write(mouseX); 
    // Send the value of the mouse's y-position 
    myPort.write(mouseY); 
} 
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That’s it! You are now sending two different values from Processing to control two different devices 
with your Arduino board (see Figure 4-6). Of course, you can extend the same logic to three, four, or any 
higher number of devices attached to your Arduino board. 

 

Figure 4-6. Two LEDs mounted on the breadboard 

Now you know how to send serial data from your Processing sketch to your Arduino board, so what 
about telling your lights when to turn off without a mouse or a keyboard? It’s time to bring in the Kinect! 

Kinect-Controlled LEDs 
You are going to take the previous example and change the mouse input to Kinect input. The aim is to 
have the brightness of two LEDs driven by the position of your hand. This is the first project in which you 
use your Kinect, so let’s proceed one step at a time. 

The Arduino code for this example is the same as that in the previous example, so if you skipped it, 
go back and copy the Arduino code and upload it to your board. 

First, import the required libraries for the project and declare the variables that will be associated to 
the Simple—OpenNI and Serial objects.  

import SimpleOpenNI.*; 
import processing.serial.*; 
SimpleOpenNI kinect; 
Serial myPort; 

Then define two PVectors to contain the position of the hand as defined by the Kinect (handVec),  
the position of the hand in projective screen coordinates (mapHandVec), and a color for the hand- 
tracking point. 
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PVector handVec = new PVector(); 
PVector mapHandVec = new PVector(); 
color handPointCol = color(255,0,0); 

In setup(), you start by initializing the Simple-OpenNI object, passing the current PApplet (this) as a 
parameter. Then you enable all the functions you will be using. You need the depth map (to see yourself 
on screen), the hands, and the gestures. Use the Wave gesture to tell the Kinect when to start tracking 
your hand. Finally, set the sketch size according to Kinect’s depth map size and initialize the Serial 
object as you did in the previous example. 

void setup() { 
  kinect = new SimpleOpenNI(this); 
  // enable mirror 
  kinect.setMirror(true); 
  // enable depthMap generation, hands and gestures 
  kinect.enableDepth(); 
  kinect.enableGesture(); 
  kinect.enableHands(); 
  // add focus gesture to initialise tracking 
  kinect.addGesture("Wave"); 
  size(kinect.depthWidth(),kinect.depthHeight()); 
  String portName = Serial.list()[0]; // This gets the first port on your computer. 
  myPort = new Serial(this, portName, 9600); 
} 

Now is the moment to add the Simple-OpenNI callbacks (the functions that the library invokes when 
it recognizes certain events). The first one is triggered when a gesture is recognized, in this case when 
you wave at the Kinect. You then remove the gesture from the capabilities, so Kinect doesn’t keep 
looking for gestures. Once you know a gesture has been performed, you tell NITE to start tracking hands 
at the position where the gesture occurred. 

void onRecognizeGesture(String strGesture, PVector idPosition, PVector endPosition) 
{ 
  kinect.removeGesture(strGesture);  
  kinect.startTrackingHands(endPosition); 
} 

This will trigger the creation of a Hand object. After creating the hand, change the color of your hand 
tracking point to green to indicate that the gesture was recognized. 

void onCreateHands(int handId, PVector pos, float time) 
{ 
  handVec = pos; 
  handPointCol = color(0, 255, 0); 
} 

Finally, every time the position of the hand is updated, update the hand vector so you can work with 
it in the draw() function. 

void onUpdateHands(int handId, PVector pos, float time) 
{ 
  handVec = pos; 
} 

The first thing to do in the draw() function is to update the Simple-OpenNI object (kinect), which in 
turn calls the three previous functions. Once updated, the position of handVec is also updated, but 
handVec contains the real-scale 3D position of the hand, so you need to map its coordinates to your 2D 
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screen coordinates. Luckily, Simple-OpenNI has a specific method for performing this operation (with a 
rather long name), which you will use to this effect.  

void draw() { 
  kinect.update(); 
  kinect.convertRealWorldToProjective(handVec,mapHandVec); 

You now have all the data you need from the Kinect, so it’s time to print the depth image to the 
screen and draw the hand-tracking point from the mapped coordinates. 

  image(kinect.depthImage(), 0, 0); 
  strokeWeight(10); 
  stroke(handPointCol); 
  point(mapHandVec.x, mapHandVec.y); 

And lastly, send the event trigger character ‘S’ to the serial port, followed by the values of your hand 
position mapped to the limits of a serial message (0-255). 

   // Send a marker to indicate the beginning of the communication 
    myPort.write('S'); 
    // Send the value of the mouse's x-position 
    myPort.write(int(255*mapHandVec.x/width)); 
    // Send the value of the mouse's y-position 
    myPort.write(int(255*mapHandVec.y/height)); 
} 

So, if you did things right, you should now have two LED lights on your breadboard that you can 
control with the vertical and horizontal movements of your hand. The Processing screen should look 
something like Figure 4-7. 

 

Figure 4-7. Processing screen with hand tracking 

Let’s add one more feature to this project; you have been talking to Arduino from Processing, but 
serial communication works both ways, so you can use serial to send data back from the Arduino sensors 
into Processing. This generates a communication feedback loop that will be very useful in later projects. 
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Feedback from Arduino 
Your sketch works and you are seeing your depth image on the screen. Let’s imagine that you prefer 
seeing your RGB image on the screen whenever possible, but if the lighting level of the room is too low, 
you want the image to revert back to the depth image. You can do this by getting feedback from a light-
sensing resistor connected to your Arduino board. 

You’re going to use a very simple and cheap photocell. This cell provides a full range of values 
between 0 and 1023 (depending on the resistor), so connect it to the analog input pin 0. The circuit for 
the photocell includes a 10k resistor and looks something like the diagram in Figure 4-8. 

 

Figure 4-8. Photocell circuit 1; voltage output increases with brightness 

This kind of circuit is called a resistive divider, which is a special case of voltage divider, a circuit that 
produces an output voltage (in your case, going to analog pin 0) that is a fraction of the input voltage 
(5V). The output voltage can be easily found applying Ohm’s law. 

Vout =
R2

R1 + R2
⋅Vin  

R1 is the value of the resistor connected to Vin, and R2 is the value of the resistor connected to 
ground. The fixed resistor should have the same order of magnitude as the variable’s resistor range.  
In your case, the photocell has a range of 1K (in bright light) to 10K (in the dark). You’re using a 10K 
fixed resistor, which, applying the equation, will give you a voltage output range of 4.54V to 2.5V. 

There is a catch to this circuit. If you switch the position of the photocell and the resistor (see Figure 
4-9), it will still work but the values will be inverted; this means the numbers will grow as the light 
decreases. You can use it either way; just be aware of the input you are getting when you read the data in 
analog pin 0. 

 

Figure 4-9. Photocell circuit 2; voltage output decreases with brightness 
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The full circuit is getting a little more complicated now, so we are including the full schematics that 
we produced with Fritzing, as covered in Chapter 1 (see Figures 4-10 and 4-11). 

   

Figure 4-10. The physical project and Fritzing breadboard view 

 

Figure 4-11. Project schematics produced with Fritzing 
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In the Arduino sketch, you add a variable to store the value of the photocell and the pin number for 
your analog input. The setup() function will stay unchanged. 

int val, xVal, yVal; 
int sensorValue; 
int sensorPin = 0; 
 
void setup() { 
  // initialize the serial communication: 
  Serial.begin(9600); 
  // initialize the serial communication: 
  pinMode(10, OUTPUT);      
  pinMode(11, OUTPUT);   
} 

Then add two lines at the beginning of the loop() to read the values of the resistor and send a 
message to the serial port. You can add a little delay later in order to allow the analog-to-digital 
converter to stabilize after the last reading. 

void loop(){ 
  // Check Values from the Photocell 
  sensorValue = analogRead(sensorPin);  
  Serial.println(sensorValue); 
  // wait a bit for the analog-to-digital converter  
  // to stabilize after the last reading: 
  delay(10); 
   
  // check if data has been sent from the computer: 
  if (Serial.available()>2) { // If data is available to read, 
    val = Serial.read(); 
    if(val == 'S'){ 
      // read the most recent byte (which will be from 0 to 255): 
      xVal = Serial.read(); 
      yVal = Serial.read(); 
    }     
  } 
  analogWrite(10, xVal);  
  analogWrite(11, yVal);  
} 

In the Processing sketch, add a variable to store the values received. 

import SimpleOpenNI.*; 
import processing.serial.*; 
SimpleOpenNI kinect; 
Serial myPort; 
 
PVector handVec = new PVector(); 
PVector mapHandVec = new PVector(); 
color handPointCol = color(255, 0, 0); 
int photoVal; 

Within setup(), enable the RGB image and, after initializing the port, specify that Processing doesn’t 
generate a serialEvent() until a newline character has been received.  
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void setup() { 
  kinect = new SimpleOpenNI(this); 
  // disable mirror 
  kinect.setMirror(true); 
 
  // enable depthMap generation, hands and gestures 
  kinect.enableDepth(); 
  kinect.enableRGB(); 
  kinect.enableGesture(); 
  kinect.enableHands(); 
 
  // add focus gesture to initialise tracking 
  kinect.addGesture("Wave"); 
 
  size(kinect.depthWidth(), kinect.depthHeight()); 
  String portName = Serial.list()[0]; // This gets the first port on your computer. 
  myPort = new Serial(this, portName, 9600); 
  // don't generate a serialEvent() unless you get a newline character: 
  myPort.bufferUntil('\n'); 
} 

In the draw loop, create a conditional clause that will display RGB or the depth image on screen 
depending on the value of the photocell that you are acquiring inside the serialEvent() method 
described next. Then draw the hand point and send its values, as you did previously. 

void draw() { 
  kinect.update(); 
  kinect.convertRealWorldToProjective(handVec,mapHandVec); 
  // Draw RGB or depthImageMap according to Photocell  
  if (photoVal<500) { 
    image(kinect.rgbImage(), 0, 0); 
  } else { 
    image(kinect.depthImage(), 0, 0); 
  } 
 
  strokeWeight(10); 
  stroke(handPointCol); 
  point(mapHandVec.x, mapHandVec.y); 
 
  // Send a event trigger character to indicate the beginning of the communication 
  myPort.write('S'); 
  // Send the value of the mouse's x-position 
  myPort.write(int(255*mapHandVec.x/width)); 
  // Send the value of the mouse's y-position 
  myPort.write(int(255*mapHandVec.y/height)); 
} 

Next, add a serialEvent() method, which is called by Processing when you receive the newline 
character (remember you sent a Serial.printline from Arduino, which includes a newline character at 
the end of the message). Read the message, trim any white spaces, and convert it to an integer. 

void serialEvent (Serial myPort) { 
  // get the ASCII string: 
  String inString = myPort.readStringUntil('\n'); 
  if (inString != null) { 



CHAPTER 4  ARDUINO AND KINECT: “HELLO WORLD” 

76 

    // trim off any whitespace: 
    inString = trim(inString); 
    // convert to an integer 
    photoVal = int(inString);  
  }  
  else { 
    println("No data to display"); 
  } 
} 

The NITE callbacks stay the same, as in the previous example. You just add some print line 
commands to keep track of the process on the console. 

void onCreateHands(int handId, PVector pos, float time) 
{ 
  println("onCreateHands - handId: " + handId + ", pos: " + pos + ", time:" + time); 
  handVec = pos; 
  handPointCol = color(0, 255, 0); 
} 

void onUpdateHands(int handId, PVector pos, float time) 
{ 
  println("onUpdateHandsCb - handId: " + handId + ", pos: " + pos + ", time:" + time); 
  handVec = pos; 
} 

void onRecognizeGesture(String strGesture, PVector idPosition, PVector endPosition) 
{ 
  println("onRecognizeGesture - strGesture: " + strGesture + ", idPosition: " + idPosition + 
", endPosition:" +   endPosition); 
  kinect.removeGesture(strGesture);  
  kinect.startTrackingHands(endPosition); 
} 

In this way, whenever the lighting level drops under a certain threshold, your image is automatically 
changed to the depth image, which is independent of the ambient light. 

Summary 
This chapter was all about making Kinect and Arduino talk through Processing, and you now have a 
working example. You are indeed gathering information from the physical world with your Kinect device 
and sending that information from Processing to Arduino through serial communication. You are also 
gathering lighting level information through a photocell connected to the Arduino board and modifying 
the Processing visualization according to it. 

During this process, you used Kinect’s hand-tracking capabilities for the first time, learned how to 
use serial communication, and wrote your own protocols. You have also learned how to use photocells, 
voltage dividers, and Arduino PWM-enabled pins. This is probably enough for an introductory project; 
the next chapter has even more exciting stuff! 
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Kinect Remote Control 

by Ciriaco Castro and Enrique Ramos 

Imagine controlling all your home appliances remotely just using body movements and gestures. There 
are a number of machines and devices that can be controlled electrically in an automated house, such as 
television sets, DVD players, radios, lamps, and the heating system. In order to avoid the problem of 
tinkering with mains power and the obvious risks of opening up expensive devices, this chapter will 
focus on hacking an external element that can control a broad range of devices: a general-purpose 
remote control. Hacking a remote control is a really simple job; you just open the remote and connect it 
to an Arduino board. You then use the Kinect to perform gesture recognition in order to activate 
different functions. 

In this project you will learn how to use NITE’s gesture recognition capabilities and you’ll even 
implement a simple gesture recognition routine yourself. You will send the data gathered to Arduino 
using serial communication, so you will ultimately be able to control the remote control with your body 
movements. This application can be used on pretty much any infrared-based remote control just by 
connecting the Arduino pins to the correct buttons on the remote. 

Parts List for Kinect Remote Control 
All you need for this project is a general-purpose remote control (the guts of which you can see in Figure 
5-1), your Kinect, an Arduino board, a prototyping shield, some relays, and a bunch of cables for 
connecting them. Table 5-1 has more details on the required parts. 
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Figure 5-1. Parts of the remote control 

Table 5-1. The Parts List 

Part Description Price 

1 universal remote control From Amazon or any other retailer $11.99 

1 prototype shield We used Sparkfun DEV-07914, but any one will do. $16.95 

5 breakaway headers-straight For connecting your Arduino to the prototype Shield $1.50 

1 connector strip Screw connector for joining cables $0.95 

4 5V reed relay Similar to Sparkfun COM-00100 $1.95/each 

You’ll start by hacking the remote control, connecting it to Arduino, and testing it to make sure it 
works properly. Then you’ll develop the Kinect sketch that will track your hands and gestures. Once 
everything is neat and tidy, you will connect the Kinect to Arduino using serial communication, as you 
did in the previous chapter. 

There is a wide range of remote controls available and they all look quite different from each 
another, but as long as they are infrared-based they all work pretty much in the same way. 

Hacking a Remote Control 
Remote controls are completely inactive until you push a button. When you hit one of the buttons, the 
remote will send a signal to a receiver device, which should interpret the signal and perform the action 
you intend it to perform. Some remote controls use radio signals to communicate with the receiver 
devices, but most communicate via infrared light. You’ll be focusing on infrared remotes.  
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When you hit a button on your remote, you are actually closing one of the open circuits inside it. At 
that moment, the remote starts to send a signal that goes to the receiver device. This carrier signal 
consists of a series of precisely spaced infrared pulses constituting a code that is processed by the 
receiver device. Once decrypted, the receiver triggers different functions according to the signal 
received. Apart from sending out pulses that encode the instructions for the receiver, the remote control 
sends a short code that identifies the device for which the message is intended.  

The first thing you need to do is pair the universal remote control with the device that you want to 
control. Put the batteries in and follow the instructions. Pay attention to how long you have to press a 
button for a command to be transmitted because this information is useful for refining the Arduino code 
that controls the remote. Once you have tested the device (by changing channels and volume), it’s time 
to move on to the most interesting part: opening up the remote (see Figure 5-2)! 

 

Figure 5-2. Opening the remote 

Remove the batteries and the screws so you can see the printed circuit board. Observe that the 
buttons are made of plastic and have a conductive material on the inner side. You have to locate the 
solder pads, which are the areas where you can solder your cables (see Figure 5-3). When you connect 
them back, you bridge the circuit in the same way as you do by holding a button.  
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Figure 5-3. Wires soldered to the remote pads 

Normally two pins connect when the button is pressed, but some remotes have four to make the 
connection stronger. Sometimes it is not easy to find which solder pads you want to connect in order to 
transmit the right command. There are two main ways of finding them. The most straightforward 
method is by putting the batteries back in the remote and using a short cable to try to connect the right 
pads. You can sit in front of the TV, try the connections you think are right, and check what happens! A 
second, more scientific option is by using a multimeter to measure the resistance between the pads. If 
you are testing the right pads, you will see a change from high values of resistance to very low values 
when you press a button. 

In this project, you need to find the right pads for sending the commands Channel+, Channel -, 
Volume +, and Volume -. Once you find them, you can connect the cables so that they are ready to be 
soldered to the prototype shield. Use cables of different colors so you don’t lose track of them! 

Connecting the Remote to Arduino 
We’re going to explain the basics of how to build a prototype shield and how to connect it to Arduino. 
Here you will find enough information for building it, but if you want a deeper explanation and 
information on how to build other Arduino applications, look to the book Practical Arduino by Jonathan 
Oxer and Hugh Blemings (Apress, 2009). 

The way that the remote control circuit operates is by closing a circuit. When you hold a button, it 
works as a mechanical switch. You are going to perform the same function by using relays. A relay is an 
electrically operated switch that controls a circuit with a low-power signal; both circuits remain 
electrically isolated. In your case, a low current coming from Arduino controls the flow of current in the 
remote control. 5v relays require about 20 mA to operate, meaning that you can connect them directly to 
your Arduino outputs (Figure 5-4). 
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Figure 5-4. Remote control switches testing a relay 

First, you’re going to do a test on a breadboard in order to understand how to connect a relay to your 
Arduino board: you’re going to control a LED through a relay.  

 

Figure 5-5. Testing the relay on a breadboard 
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Relays have their input (coil connection) in the central pair of pins and the output on the outer pair 
of pins. First you insert the relay in the breadboard, making sure it spans unconnected rows. Connect 
power (5V) and ground to the breadboard. Then insert the LED into the breadboard, connecting the 
short leg to ground. After that, connect the relay. Input pins are connected to pin 2 of the Arduino board 
and ground. For the output, connect power in one end and a resistor in the other that connects to the 
longer leg of the LED. This constitutes the basic circuit, as shown in Figures 5-5 and 5-6. Then you 
upload into Arduino the example Blink, changing the output pin to pin  2. 

void setup() {                 
  pinMode(2, OUTPUT);  // Set the digital pin as an output. 
} 
void loop() { 
  digitalWrite(2, HIGH);   // set the LED on 
  delay(1000);              // wait for a second 
  digitalWrite(2, LOW);     // set the LED off 
  delay(1000);           // wait for a second 
} 

Your Arduino sends a signal to the relay, and the relay allows the current to pass during the same 
time that your signal is High (which is 1 second, according to the code). You will hear a little noise, 
meaning the relay is switching on and off. 

 

Figure 5-6. Schematics of the relay circuit 
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 Tip It’s necessary to introduce a diode in order to protect your circuit. This is due to the way a relay operates; 
it generates a magnetic field to mechanically close the circuit. When the relay is turned off, the magnetic field 
stops and generates a reverse spike. This is potentially dangerous for your circuits, as you are receiving a negative 

voltage on the same pin where you were supplying positive voltage. If the spike is big enough, it can damage the 
circuit. In order to solve this problem, you can connect a diode across the relay coil, protecting your Arduino. 
Diodes work only in one direction, stopping the negative voltage from going to your Arduino. To connect them, you 

need to connect the cathode lead (the end with the stripe) towards the Arduino pin output and the anode lead to 
the ground. It’s important to take this into consideration when you are using high voltage. However, due to the 
range you are using in this exercise (very low power), it’s unlikely that the relay will damage your Arduino, so 

you’re not going to incorporate them in your prototype shield.  

Assembling the Prototype Shield 
Now that you understand the principles behind a relay, you can start building stuff! The first thing is to 
mount four relays on the prototype shield. Observing the shield, you can identify one line for power and 
other line for ground. There should be enough space for assembling four relays (Figures 5-7 and 5-8).  

 

Figure 5-7. Four relays on the prototype shield 
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Figure 5-8. Back of prototype shield 

Start by fitting the relays and soldering the necessary connectors (two legs of inputs and two legs of 
outputs). Then, using short cables, connect one of the coils of each relay together and to the ground (see 
Figure 5-9).  

 

Figure 5-9. Relays connected to Arduino shield 

You can also incorporate the breakaway headers to connect the prototype shield to the Arduino (see 
Figure 5-9). Once the headers are fitted, turn the prototype shield around and connect the other coil to 
the matching Arduino digital pin. In this example, you’re using pins 5, 6, 7, and 8, but you can use any of 
them; just make sure they’re coordinated with the code (see Figure 5-10)!  
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Figure 5-10. Breakaway headers 

You have the relays’ inputs connected to Arduino, so now you connect the outputs; just connecting 
a pair of cables to each output connection will do (see Figure 5-11). Make sure you leave enough length 
to connect them to the remote control. You can screw one connector in each cable to make it easy to 
connect them with the cables coming from the remote control. 

 

Figure 5-11. Finished shield 

You’re almost done. Attach the prototype shield to your Arduino board and connect each pair of 
cables with the corresponding ones on the remote control. Table 5-2 lists the correct connections and 
Figure 5-12 shows the end result. 

 

4
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Table 5-2. Remote Control Connections 

Pair of Cables from Relay Pair of Cables on Remote 

Arduino pin 5 Channel + 

Arduino pin 6 Channel - 

Arduino pin 7 Volume + 

Arduino pin 8 Volume - 

Figure 5-12. Remote connected to Arduino 

Now your prototype shield is ready to be tested! If your remote control runs on 3V, instead of using 
its own batteries you can run it from Arduino. Just remove the batteries and solder a pair of wires in the 
positive and ground terminals, connecting them to the 3.3V pin and ground respectively (+ goes to 
3.3V!). This allows the remote control to take its power from the Arduino so you don’t have to worry 
about batteries running down.  

Testing the Circuit 
Now that you have the prototype shield ready and connected to the remote control, it’s time to program 
your Arduino in order to do the first tests! Once you’re sure that it’s working and ready to receive data, 
you can develop the Processing application that will drive the remote. 
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Let’s start from the basic Arduino code for testing. You begin by defining a set of variables, assigning 
a symbolic name to each pin (5,6,7,8). You also define a pulse that is the time that the pin is going to be 
High, equivalent to the time that you hold a button in the remote control. 

int ChannelPlusPin = 5; 
int ChannelLessPin = 6; 
int VolumePlusPin = 7; 
int VolumeLessPin = 8; 
int pulse = 250;    

After defining the variables, start the setup() function. Describe each pin as outputs and start the 
serial communication. 

void setup(){  pinMode(ChannelPlusPin, OUTPUT); 
  pinMode(ChannelLessPin, OUTPUT); 
  pinMode(VolumePlusPin, OUTPUT); 
  pinMode(VolumeLessPin, OUTPUT); 
  Serial.begin(9600);// Start serial communication at 9600 bps 
} 

Before starting the loop(), define an external function to perform a series of commands. This 
function is called from the loop(), modifying the state of each pin to High (on), waiting some time (pulse 
previously defined), and returning Low (off). The function takes two arguments for the pin number and 
the pulse. The Serial.print commands write text to the serial port (ON, name of the pin used, and OFF) 
so you can be aware of which function has been called at every moment.  

void updatePin (int pin, int pulse){ 
  Serial.println("RECEIVED"); 
  Serial.println(pin);  
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
  Serial.println("OFF"); 
} 

The main loop() function is where all the action happens. Arduino is listening for available serial 
data. If there is data, it will be stored inside a char variable; according to the value, it will call the 
updatePin() function to the pin assigned. If the message is “1”, Arduino will modify the state of the pin 
ChannelPlus (Pin 5), activating it for a period of time. In other words, this will turn on the relay 
connected to this pin, activating the remote control and changing the channel to the next one. After the 
pulse time has elapsed, the pin will be brought back to low voltage, so the relay will be turned off and the 
mechanism will come to a steady state, waiting for new data to come in. 

void loop(){ 
   if (Serial.available()) { 
    char val=Serial.read(); 
    if(val == '1') { 
      updatePin(ChannelPlusPin, pulse); 
    } else if(val == '2') { 
     updatePin(ChannelLessPin, pulse); 
    } else if(val == '3') { 
    updatePin(VolumePlusPin, pulse); 
    } else if(val == '4') { 
   updatePin(VolumeLessPin, pulse); 
    }  
  } 
} 
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This code is written for four commands, so you’re using just four pins; feel free to add more pins and 
more commands in order to have a full set of instructions for your remote control. 

Once you have finished writing your code, plug the Arduino into the USB port, select the correct 
Arduino (in our case Arduino Uno), verify the sketch, and upload it!  

In physical computing it’s a good idea to get accustomed to frequently checking if everything is 
connected correctly. So take a moment now to check the following: 

• The Arduino is connected with a USB cable to the computer. 

• The remote control has working batteries. 

• The Arduino is plugged into your prototype shield. 

• The TV is on. 

• The remote control is pointing towards the TV.  

For testing purposes, use the serial communication console to introduce your values by typing on 
the keyboard (see Figure 5-13). Double-check that serial communication is at the same baud rate as the 
one specified in the code (9600 in our case). 

 

Figure 5-13. Using the Serial Monitor to input data 

Enter a value of 1 in the text area. You should read a response from your Arduino saying that the 
data has been received and the pin number being used, followed by an off message. If everything worked 
as expected, the remote should have changed the channel up to the next one; you should be able to send 
the other commands by manually introducing other values as 2, 3, or 4. 
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Kinect Hand Tracking and Gesture Recognition 
You now have a hacked remote control that is connected to an Arduino board and is just waiting for data 
to stream in. Your next goal is to easily communicate the commands “next channel,” “previous 
channel,” “volume up,” and “volume down” to the remote using hand gestures. 

We have figured out that the easiest way to tell the Kinect that we want to change the channel is by 
doing a quick movement with our hand to the left or right, so you’re going to implement a right or left 
“swipe” gesture for that purpose. For the volume, we could have done the same with “up” and “down”, 
but it is not that easy to “swipe” upwards or downwards (try it!), and it’s nicer to have a continuous 
control over the volume, so we have decided that the good old-fashioned potentiometer will do the deal. 
You will use the circle detector included with NITE to allow you to smoothly change the volume. 

Libraries and Setup 
Start by importing the core Serial and OpenGL libraries and the Simple-OpenNI library to your sketch; 
also, declare the variables for the Serial and Simple-OpenNI objects. 

import SimpleOpenNI.*; 
import processing.opengl.*; 
import processing.serial.*; 
 
SimpleOpenNI kinect; 
Serial myPort; 

In the previous project you used NITE through Simple-OpenNI callbacks, but you didn’t declare the 
NITE objects explicitly. In this project, you’re going to use two NITE functions: hand tracking and 
gesture recognition for the waving, hand raising, and circle detection. For this purpose, you declare an 
XnVSessionManager object to deal with NITE gesture recognition, an XnVPointControl object to keep track 
of the hand points, and an XnVCircleDetector to trigger events when it recognizes a circle being drawn 
with a hand. 

 Note All classes, objects, and methods starting with “XnV” refer to NITE commands. 

XnVSessionManager sessionManager; 
XnVPointControl pointControl; 
XnVCircleDetector circleDetector; 

This project requires that you display text on screen, so you need to declare a text font. In this 
project, we used SansSerif-12, so you need to create the font first by going to Tools menu > Create Font. 

PFont font; 

The sketch tracks your hand as it moves on screen, and then it triggers events whenever it 
recognizes a “channel change” or “volume change” gesture, which each have their own timing. This 
requires the main draw() loop to run in three different modes. It remembers these modes in the variable 
called mode. 

int mode = 0; 
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Now declare the variables for the hand tracking and volume control functions. For hand tracking, 
you need a signal that a hand is being tracked (handsTrackFlag), variables for hand positions (real 
position and projected on screen), and the arrayList of PVectors containing previous positions. 

boolean handsTrackFlag = true; 
PVector screenHandVec = new PVector(); 
PVector handVec = new PVector(); 
ArrayList<PVector>    handVecList = new ArrayList<PVector>(); 
int handVecListSize = 30; 

For volume control and channel, you declare previous and current rotations of the hand in the 
circle, a radius, an angle for the volume control gizmo, and its center in absolute and relative 
coordinates. For channel change, you need a changeChannel integer to define the direction of the change 
and a channelTime timer to keep track of the channel change gizmo. 

float rot; 
float prevRot; 
float rad; 
float angle; 
PVector centerVec = new PVector(); 
PVector screenCenterVec = new PVector(); 
int changeChannel; 
int channelTime; 

In setup(), initialize all the objects and then enable the functions that you expect to be using 
through the execution of the program. You need the depth map, gestures, and hands enabled in the 
kinect object. 

void setup(){ 
  // Simple-openni object 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(true); 
 
  // enable depthMap generation, hands + gestures 
  kinect.enableDepth(); 
  kinect.enableGesture(); 
  kinect.enableHands(); 

This is important: initialize the NITE session manager by adding the two gestures you’ll be working 
with, and then initialize the hand point controller and circle detector. Call the methods 
RegisterPointCreate, RegisterPointDestroy, and RegisterPointUpdate in the point control object 
(passing the current applet “this” as a parameter) so the XnVPointControl object will invoke your 
callback functions. Now you have a control in the processes triggered at the creation, destruction, and 
update intervals of a hand point. 

In the same way, call the RegisterCircle and RegisterNoCircle in the circle detector so it invokes 
your callbacks for circle detection. Finally, add the listeners to the NITE session so they get initialized 
when you start your session. 

  // setup NITE  
  sessionManager = kinect.createSessionManager("Wave", "RaiseHand"); 
  // Setup NITE.s Hand Point Control 
  pointControl = new XnVPointControl(); 
  pointControl.RegisterPointCreate(this); 
  pointControl.RegisterPointDestroy(this); 
  pointControl.RegisterPointUpdate(this); 
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  // Setup NITE's Circle Detector 
  circleDetector = new XnVCircleDetector();   
  circleDetector.RegisterCircle(this);  
  circleDetector.RegisterNoCircle(this);  
 
  // Add the two of them to the session   
  sessionManager.AddListener(circleDetector); 
  sessionManager.AddListener(pointControl); 

Wow, that was a little bit difficult! Don’t worry if you didn’t quite understand what was going on 
with these functions; it will all become clearer when you get to the callback functions. The only things 
you have left to do in your setup() function are to set the size of the sketch to match the depthMap and to 
initialize the font and the serial communication. 

  size(kinect.depthWidth(), kinect.depthHeight());  
  smooth(); 
  font = loadFont("SansSerif-12.vlw"); 
   
  String portName = Serial.list()[0]; // This gets the first port on your computer. 
  myPort = new Serial(this, portName, 9600); 
} 

Now, before you get into the draw() loop, you need to write the callbacks from NITE so all the 
previous declaring and calling of weird functions makes some sense. 

NITE Callbacks 
What you have done by setting up these objects is take advantage of NITE’s gesture recognition 
framework. Now you can include a series of functions (the ones you specified!) that will be invoked when 
specific events are triggered by NITE.  

Regarding hand recognition, you call functions when the hand points are created, destroyed, and 
updated (see Figure 5-14). Upon creation of a hand point, you set the flag to true so you know that a 
hand is being tracked, set the handVec PVector to the position of the hand by using the parameter coming 
from NITE’s call of the function, clear the list, and add the first point. 

void onPointCreate(XnVHandPointContext pContext){ 
  println("onPointCreate:"); 
  handsTrackFlag = true; 
  handVec.set(pContext.getPtPosition().getX(),  
                       pContext.getPtPosition().getY(),  
                       pContext.getPtPosition().getZ()); 
  handVecList.clear(); 
  handVecList.add(handVec.get()); 
} 

On hand destruction, set the flag to false. 

void onPointDestroy(int nID){ 
  println("PointDestroy: " + nID); 
  handsTrackFlag = false; 
} 
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Figure 5-14. Hand tracked by XnVPointControl 

And whenever the hand point is updated, you update the hand vector and add another point to the 
list. If the list is larger than the size specified, get rid of its oldest element. 

void onPointUpdate(XnVHandPointContext pContext){ 
  handVec.set(pContext.getPtPosition().getX(),  
                       pContext.getPtPosition().getY(),  
                       pContext.getPtPosition().getZ()); 
  handVecList.add(0, handVec.get()); 
  // remove the last point 
  if (handVecList.size() >= handVecListSize)  {  
    handVecList.remove(handVecList.size()-1); 
  } 
} 

The circle detector has its own callback functions as well: one for the circle “being there” and one 
when there is no circle. Simple. 

When there is a circle, you get your rotation from the parameter fTimes. This parameter gives you 
the number of rotations your hand has made around the circle, so a 90 degree rotation will mean fTimes 
is equal to 0.25. This is very useful when you want to control the volume with a constant rotation of your 
hand. You need to extract your angle as well, which you also get from fTimes with a little function. You 
need the circle’s center as well, so you extract it from the circle object with circle.getPtCenter(). But be 
careful! The center you are given doesn’t include a z-coordinate! You get the z-coordinate from the hand 
vector, and then you convert to projective to get the projection of the circle on screen for visualization. 
You then extract the radius of the circle and set your sketch mode to “1”, or volume control mode. 

void onCircle(float fTimes, boolean bConfident, XnVCircle circle) 
{ 
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  println("onCircle: " + fTimes + " , bConfident=" + bConfident);  
  rot = fTimes; 
  angle = (fTimes % 1.0f) * 2 * PI - PI/2; 
  centerVec.set(circle.getPtCenter().getX(), circle.getPtCenter().getY(), handVec.z); 
  kinect.convertRealWorldToProjective(centerVec, screenCenterVec); 
  rad = circle.getFRadius(); 
  mode = 1; 
} 

If there is no circle, you just tell your program to go back to mode “0”, or waiting mode. 

void onNoCircle(float fTimes, int reason) 
{ 
  println("onNoCircle: " + fTimes + " , reason= " + reason);   
  mode = 0; 
} 

Draw Loop and Other Functions 
The previous callback functions give you all the data you need from your Kinect device. Now you 
transform the data into clear signals to be sent to the Arduino, and you implement a simple interface to 
understand on screen what is happening in your code.  

The main draw() loop, as usual, updates the kinect object, and draws the depth map on screen so 
you can follow what the Kinect is seeing. Then the loop runs into a switch statement that breaks the loop 
into three different paths.  

void draw(){ 
  background(0); 
  kinect.update(); 
  kinect.update(sessionManager); 
  image(kinect.depthImage(), 0, 0);  // draw depthImageMap  

The switch structure chooses one of the cases’ blocks according to the value of the mode variable. 
While mode is 0 (waiting mode), you keep checking the x-component of the hand to identify the swipe 
gesture. Then you draw the hand position and tail. 

If mode is 1 (volume control mode), you call the function volumeControl(), which will draw the 
gizmo and send the volume signal to Arduino. 

If mode is 2 (channel change mode), you get stuck in a loop that sends the channel change signal to 
Arduino, draws the gizmo, and avoids any other signal to be attended to for a number of frames. 

  switch(mode) { 
    case 0: 
    checkSpeed();  
    if (handsTrackFlag) { drawHand(); }  
    break; 
 
    case 1:  
    volumeControl();    
    break; 
 
    case 2: 
    channelChange(changeChannel); 
    channelTime++;   
if (channelTime > 10) { 
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      channelTime = 0; 
      mode = 0; 
    } 
    break; 
  } 
} 

The checkSpeed() function is where you have implemented your simple swipe gesture recognition. 
If you think about it, what is different in that gesture from the normal behavior of the hand? Its 
horizontal speed! Actually, just by analyzing the current horizontal speed of the hand, you can detect the 
channel change gesture. And as you can extract the current hand position and the previous one from 
your handVecList, you can measure the difference in their x-coordinates to set a threshold that defines 
when the hand is in normal movement and when it is swiping. Set a threshold of 50mm between frames 
(this may need to be fine-tuned for faster or slower computers). 

If you recognize a gesture, you send the program to channel change mode and then set the 
channelChange variable to 1 for right direction and -1 for left direction. 

void checkSpeed() { 
   
  if (handVecList.size() > 1) { 
    PVector vel = PVector.sub(handVecList.get(0), handVecList.get(1)); 
    if (vel.x > 50) { 
      mode = 2; 
      changeChannel = 1; 
    } 
       else if (vel.x < -50) { 
      changeChannel = -1; 
      mode = 2; 
    } 
 
  } 
} 

When the main loop is in channel change mode, it calls channelChange and passes in a parameter 
defining the side of the gesture. If it’s the first loop (channelTime is equal to 0), you send the channel 
change signal to the Arduino. In any case, you draw an arrow with some text to indicate that you are 
changing the channel (see Figure 5-15). You limit the sending of the signal to the first loop to make sure 
you’re not sending repeated signals while the arrow is displayed on screen. 

void channelChange(int sign) { 
  String channelChange; 
  pushStyle(); 
  if (sign==1) { 
    stroke(255, 0, 0); 
    fill(255, 0, 0); 
    // Send the signal only if it's the first loop 
    if (channelTime == 0)myPort.write(1); 
    textAlign(LEFT); 
    channelChange = "Next Channel"; 
  } 
  else{ 
    stroke(0, 255, 0); 
    fill(0, 255, 0); 
    // Send the signal only if it's the first loop 
    if (channelTime == 0)myPort.write(2); 
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    textAlign(RIGHT); 
    channelChange = "Previous Channel"; 
  } 
 
  // Draw the arrow on screen 
  strokeWeight(10); 
  pushMatrix(); 
  translate(width/2,height/2); 
  line(0,0,sign*200,0); 
  triangle(sign*200,20,sign*200,-20,sign*250,0); 
  textFont(font,20); 
  text(channelChange,0,40); 
  popMatrix(); 
  popStyle(); 
 
} 

    

Figure 5-15. Next channel and previous channel gestures 

When you enter volume control mode in the main draw loop, you call the volumeControl method. 
This function draws the circle that NITE has detected by making use of the radius, center, and angle 
variables updated on every circle update.  

You need to check if the present rotation of the hand is bigger than the previous one (meaning you 
are rotating clockwise) or smaller (counter-clockwise rotation). In the first case, you send the “volume 
up” signal to the Arduino, and in the second one, “volume down.” You don’t need to worry that you are 
sending repeated signals because that is exactly what you do when you hold the volume button down on 
your remote! You also display the circle and the current rotation of the hand on screen, as shown in 
Figure 5-16.  

void volumeControl() { 
  String volumeText = "You Can Now Change the Volume"; 
  fill(150); 
  ellipse(screenCenterVec.x, screenCenterVec.y, 2*rad, 2*rad); 
  fill(255); 
 
  if (rot>prevRot) { 
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    fill(0, 0, 255); 
    volumeText = "Volume Level Up"; 
    myPort.write(3); 
  } 
  else { 
    fill(0, 255, 0); 
    volumeText = "Volume Level Down"; 
    myPort.write(4); 
  } 

  prevRot = rot; 
  text(volumeText, screenCenterVec.x, screenCenterVec.y); 
  line(screenCenterVec.x, screenCenterVec.y, screenCenterVec.x+rad*cos(angle),  
  screenCenterVec.y+rad*sin(angle)); 
} 

Figure 5-16. Volume control gizmo turning the volume up 

Finally, add a drawHand function very similar to the one you implemented in the previous chapter 
(thus we won’t go into the details again here). 

void drawHand() { 

  stroke(255, 0, 0); 
  pushStyle(); 
  strokeWeight(6); 
  kinect.convertRealWorldToProjective(handVec, screenHandVec); 
  point(screenHandVec.x, screenHandVec.y); 
  popStyle(); 

  noFill(); 
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  Iterator itr = handVecList.iterator();  
 
  beginShape(); 
  while ( itr.hasNext ())  
  {  
    PVector p = (PVector) itr.next();  
    PVector sp = new PVector(); 
    kinect.convertRealWorldToProjective(p, sp); 
    vertex(sp.x, sp.y); 
  } 
  endShape(); 
 
} 

To sum up, once the sketch is up and running you can wave your hand in front of the Kinect (saying 
hello with your hand) and a red dot will appear in the center of your hand. This means NITE has 
recognized your hand and it’s tracking it. You’ll also see a long tail of the 30 last positions of your hand.  

If you swipe your hand horizontally (much in the same way as Tom Cruise in the movie Minority 
Report), you’ll see the channel change signal on screen. If you do a circular movement with your hand, 
you’ll see the volume control gizmo. If you want to stop the volume control, you need only move your 
hand away from the virtual circle that you have drawn in space.  

It’s fun to see how awkward it is at the beginning, but you quickly get used to the different 
movements. If you find that the swipe gesture is too sensitive or too narrow, you can change the 
threshold until you feel more comfortable with it. 

You have to run this code with the Arduino connected to your computer; otherwise you’ll get a serial 
error. If you want to run it without an Arduino, you can comment out all the calls to the serial object. 

Connecting the Processing Sketch to Arduino  
So now you have a Processing sketch that recognizes several different gestures and an Arduino 
programmed to control a remote. And you have cunningly prepared your Processing sketch to send the 
same serial data that you are using to control your Arduino. 

So that’s it! If you connect both the Kinect and the Arduino to your computer, upload the previous 
code to your Arduino, and run the Processing sketch, you should be able to stand back, wave at your 
Kinect, and start controlling your TV with hand gestures! Play with it, and get to ready impress your 
guests with a session of channel zapping without a remote. They’ll surely be most impressed. 

Summary 
This chapter led you through the process of opening a remote control, examining its inner workings, and 
connecting it to your Arduino board in order to control it from your computer. Then you used NITE’s 
gesture recognition capabilities, complemented with your own implementation of a gesture recognition 
routine, to alter the state of the remote by using body gestures. 

 As a result, you have built a system that allows you to control a home appliance (a TV set in this 
case) by waving, swiping, and circling your hand in space without the need of any electronic device in 
your hand.  

This example aims to constitute a base for hacking any other appliances controlled by a remote. 
This is only the principle. Once you have opened a TV remote control, you can investigate other 
connections and see which commands are sent. Most infrared remote devices work by the same 
principles, so you can also hack a remote-control car or helicopter and control these devices with the 
movement of your hands or your body! You’ll see more of this in the following chapters so stay tuned!  
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Kinect Networked Puppet 

by Enrique Ramos and Ciriaco Castro 

In this chapter, you are going to make use of one of the most amazing capabilities of the Kinect: skeleton 
tracking. This feature will allow you to build a gesture-based puppeteering system that you will use to 
control a simple, servo-driven puppet. 

Natural interaction applied to puppetry has an important outcome: the puppeteer (you) and the 
puppet don’t need to be tied by a physical connection anymore. In the second part of the chapter, you 
will extend your project and implement network connectivity that will permit you to control the puppet 
remotely from any point in the world, as shown in Figure 6-1. 

This project will introduce you to the ins and outs of skeleton tracking so you can detect the user’s 
joints and limbs movements in space. The user data will be mapped to servo angles and transmitted via 
the Internet to a remote receiver program, which will in turn send them to the Arduino board controlling 
the servos of the robotic puppet.  

Throughout the following pages, you will also be learning how to drive servos from Arduino and 
how to communicate over networks with a few lines of code using Processing’s Net library. 

 

Figure 6-1. Web puppet controlled by a remote user 
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Table 6-1. The Parts List 

Part Description Price 

8 small servos Hi Tec HS 55 $9.99 each 

1 big servo Hi Tec HS-311 $7.99 

Strip board 94 x 53 mm copper $16.95 

Extension lead cables 1 for each servo $ 1.75 each 

23 breakaway headers-straight You should have a bunch of these already somewhere 
in your lab, or bedroom… 

$ 1.50 

1 green Perspex board Colored acrylic 400 x 225 mm $ 15.50 

1 black Perspex board Colored acrylic 450 x 650 mm $ 19.50 

The Puppet 
We have set out to use only open source tools in this book, so we’re going to use an open source design 
for the puppet. We have thus chosen the Android Robot by Google, the symbol for their open source 
mobile phone OS, which is licensed under the Creative Commons Attribution. The design will need to be 
slightly altered to add some joints to allow a higher range of movements. You will also design and build a 
stage were the robot will stand.  

 Note Android Robot can be found at http://www.android.com/branding.html. Parts of the design of this 
chapter’s robot are modifications on work created and shared by Google and used according to terms described in 

the Creative Commons 3.0 Attribution License. 

Servos  
The movements of your puppet will be based on the rotation of nine small servos, so now is a good 
moment to understand the theory behind servo control. Servos are DC motors that include a feedback 
mechanism that allows you to keep track of the position of the motor at every moment. The way you 
control a servo is by sending it pulses with a specific duration. Generally, the range of a servo goes from 1 
millisecond for 0 degrees to 2 milliseconds for 180 degrees. There are servos that can rotate 360 degrees, 
and you can even hack servos to allow for continuous rotation.  

You need to refresh your control signals every 20ms because the servo expects to get an update 
every 20ms, or 50 times per second. Figure 6-2 shows the normal pattern for servo control. 
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Figure 6-2. Servo wave form 

In Chapter 3, you learned about pulse width modulation (PWM) and you used it to dim an LED 
lamp. The way you control servos is very similar to PWM, but in this case, you will be dealing with the 
pulsing yourself instead of sending an analog value and allowing Arduino to break it down to pulses. 

There is a Servo library included with Arduino, but you are going to write your own servo control 
functions. This will save you from a lot of problems when working with a number of servos. Let’s see the 
differences in the two approaches to servo control with a simple example. 

For the sake of this example, you will connect a servo to the digital pin 5 and control it with a 
potentiometer connected to analog pin 0. The following is the code you need for that using the Servo 
library. First, import the Servo library and declare the servo object. 

#include <Servo.h> 
Servo servo1; 

In setup(), use the Servo.attach() function to set the servo to pin 5. 

void setup() { 
  servo1.attach(5);  
} 

And in loop(), read the potentiometer value and map its values to a range of 0-180. Finally, write the 
angle value to the servo and add a delay to allow the servo to reach the new position. 



CHAPTER 6  KINECT NETWORKED PUPPET 

 

102 

void loop() 
{ 
  int angle = analogRead(0);  
  angle = map(angle, 0, 1023, 0, 180);  
  servo1.write(angle);  
  delay(15);  
} 

If you were using your own servo control instead, this would look something like the following: 

int servoPin = 5; 
unsigned long previousMillis = 0; 
long interval = 20;    
 
void setup() { 
  pinMode (servoPin, OUTPUT); 
} 
 
void loop() { 
  int pot = analogRead(0);  
  int servoPulse = map(pot,0,1023,500,2500); 
  // Update servo only if 20 milliseconds have elapsed since last update 
  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;   
    updateServo(servoPin, servoPulse); 
  } 
} 
 
void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

This requires a little explanation. The updating of the servos follows a very similar logic to the “blink 
without delay” Arduino example. (This is one of the examples included with Arduino IDE and is used to 
control time-depending events without the use of a delay. If you have never seen this sketch, go to the 
Arduino examples and have a good look at it. You will find it within 2.Digital in the Arduino examples.) 
You need to send a pulse to the servo every 20ms but you don’t want to add delays to your code, so 
you’re not interfering with other time-dependent routines included in the future project. When you have 
been running for longer than the specified interval, you update the servo. Note that the servo sends a 
HIGH pulse and then there is a delay. This one is inevitable because you need to send a very precise 
pulse, and anyway it’s such a short delay (in microseconds) that you can live with it. 

If you want to control several servos at the same time, you only need to add some more pins and 
update all of them at the same time! Let’s add another servo and make it move just through half its 
rotational span (90 degrees). 

int servo1Pin = 5; 
int servo2Pin = 6; 
unsigned long previousMillis = 0; 
long interval = 20;    
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void setup() { 
  pinMode (servo1Pin, OUTPUT); 
  pinMode (servo2Pin, OUTPUT); 
} 
 
void loop() { 
  int pot = analogRead(0); // Read the potentiometer 
  int servo1Pulse = map(pot,0,1023,1000,2000); 
  int servo2Pulse = map(pot,0,1023,1500,2000); 
 
  // Update servo only if 20 milliseconds have elapsed since last update 
  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;   
    updateServo(servo1Pin, servo1Pulse); 
    updateServo(servo2Pin, servo2Pulse); 
  } 
} 
 
void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

This control technique is the one you will be using throughout the rest of the chapter and in further 
chapters that make use of servos. Try to familiarize yourself with the dynamics of servo control with a 
couple of servos only. When you are ready, you can move on to the following sections where you will be 
controlling up to nine servos at the same time. 

Building the Stage 
Now that you know what a servo is and how it works, let’s move on to an easier bit: the stage. Basically 
you want a background and some support from which to hang the puppet. You’re using black Perspex so 
your robot will stand out. The stage consists of a hollow base to hide all the mechanisms plus a 
backdrop, as you can see in Figure 6-4.  

Figure 6-3 shows the stage parts as per the Illustrator file provided (C06_Stage_Parts.ai). The two 
small rectangular pieces have been added in order to support your Arduino and give stability to the 
stage. Note that the front is slightly raised to hide the gap between the robot’s feet and the stage.  

The two round holes on the central element permit the servo cables to reach the Arduino board at 
the base. The rectangular hole is for the servo that rotates the robot.  
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Figure 6-5. Servo fixed to the base 

 The robot is attached to two supports that are also made of black Perspex so they don’t stand out 
from the background, as shown in Figure 6-6. These supports are connected to a disc, thereby allowing 
rotation. This disc will be screwed to a servo circular horn, and then attached to the rotation servo that 
you have previously fixed to the base. 

    

Figure 6-6. Servo arm fixed to disc (left), and robot supports (right) 

Building the Puppet 
The puppet is made of laser-cut green Perspex. If you are thinking of using the same design, you can use 
the Illustrator vector files included with this book (C06_Puppet_Parts.ai) and shown in Figure 6-7. 
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Figure 6-7. Puppet pieces 

There is a front body that covers up all the mechanisms and a back body that connects all the servos 
and is fixed to the support. Both bodies are connected by four bolts passing through the holes provided 
for that purpose, which you can see in Figure 6-8. 

 

Figure 6-8. Assembling servos to the back body 

Now you can start to assemble the legs and arms, screwing the double servo arm, and fixing a second 
servo, as shown in Figure 6-9. 



CHAPTER 6   KINECT NETWORKED PUPPET 

107 

Figure 6-9. Arms/legs with servomotors 

Before screwing and fixing all arms to the corresponding servos, you should set all servos to the middle 
position (1500) so later you can map them in an easy way. The complete arm will look like that in 
Figure 6-10. 

Figure 6-10. Arm assembled 

Repeat the same process with the other arm and legs. Once you have all these parts assembled, attach 
the arms and legs to the back body piece and fix the puppet onto the stage, as shown in Figure 6-11. 
You’re now ready to build the circuit!  
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Figure 6-11. The assembled puppet on the stage. The front of the body has not been attached yet. 

The front body piece is the last thing that you assemble once everything is double-checked. Now you 
have the puppet up and running.  

Building the Circuit 
The circuit that you are going to prepare is going to be plugged into the Arduino board and is designed 
to control nine servomotors. You first run all servos using just the power of your USB connection, but 
you then add an external power source, as all servos working at the same time will exceed the power of 
the USB (Figure 6-12). You will use Arduino pins 3, 4, 5, 6, 7, 8, 9, 10, and 11, following the diagram in 
Figure 6-13. 

Build your circuit on a strip board. Start by measuring the amount of strips that you need and 
soldering the breakaway headers. Make sure that the Arduino USB cable is at one extreme of the board 
so the cable can be plugged and unplugged without interfering with the breakaway headers. 
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Figure 6-12. Circuit components 

 

Figure 6-13. Circuit diagram 

Double-check the direction of the copper strips on the back of the strip board, and start scratching 
the strips so you are sure that you don’t connect the two rows of pins on your Arduino. 

You can use a potentiometer to check the resistance between strips to make sure that there is no 
connection. After that, you are ready to start soldering the breakaway header corresponding to Arduino 
pins 3, 4, 5, 6, 7, 8, 9, 10, and 11. Then you solder a breakaway header for ground and 5V.  
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After soldering, double-check that they are placed correctly by plugging the shield into your Arduino 
board and making sure that it attaches easily (Figure 6-14). You might need to bend some of the headers 
with a nipper to get the shield properly connected. 

 

Figure 6-14. Strip board and Arduino 

Now start soldering the breakaway headers for your servos. Before doing this, look at the servo 
cables. Servos have three cables: black for ground, red (middle one) for power, and yellow or brown for 
the signal. The signal comes from the Arduino pin; power and ground can come from Arduino 5V and 
ground or from an external power source. The important thing is that the circuit ground is connected to 
Arduino ground; otherwise you won’t be able to control your servos, and they will behave in strange ways. 

Due to the geometry of the strip board, you should arrange the headers in two columns, leaving a 
group of four headers together (2 for arms, 2 for legs) and one for the rotation of the robot. The circuit 
will look like that in Figure 6-15. 

 

Figure 6-15. Strip board and headers 
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After completing the soldering, it’s time to scratch the connection between the signals (yellow cable 
of the servo motors). With a little patience and a scalpel, remove the copper that connects the line (see 
Figure 6-16). After you have removed all the material, check that the connection is completely broken by 
using a multimeter.  

 

Figure 6-16. Scratched strip board 

The next step is to connect power and ground. Solder a cable that connects the 5V pin to the power 
column (middle pin of the header) and a small cable that connects the power of the other column 
(Figure 6-17). Repeat the same process with the ground (one cable form Arduino ground to the ground 
column, and a small cable connecting the two columns ground between them). 

 

Figure 6-17. Strip board, power, and ground 

Now, connect all the signals to the corresponding pin. You need to solder one cable connecting the 
Arduino pin strip to the header signal. It is important that you do this in a tidy and orderly manner (see 
Figures 6-18 and 6-19) so it’s easy for you to remember which pin number connects to each servo. 
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Figure 6-18. Strip board, all pins connected front 

 

Figure 6-19. Strip board, all pins connected back 

Then you can plug in your Arduino (Figure 6-20) and do a first test. 
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Figure 6-20. Strip board, connected for test 

Testing the Servos 
The code for this first test is quite similar to the one in the servo introduction, but instead of using a 
potentiometer you are going to keep the servo moving from 0 to 180 degrees and back to zero. This way 
you can check if all of the servos work properly or if you have to debug the circuit (making sure that the 
soldering is right!). 

The code calls all the servo pins as outputs and updates each pin with a pulse that will change between 
values 500-2500 (0-180 degrees). Once it arrives at 2500, it will decrease to 500.  

int servo3Pin = 3; 
int servo4Pin = 4; 
int servo5Pin = 5; 
int servo6Pin = 6; 
int servo7Pin = 7; 
int servo8Pin = 8; 
int servo9Pin = 9; 
int servo10Pin = 10; 
int servo11Pin = 11; 
 
int servoPulse = 1500; 
int speedServo = 50; 
 
unsigned long previousMillis = 0; 
long interval = 20;    
 
void setup() { 
  pinMode (servo3Pin, OUTPUT); 
  pinMode (servo4Pin, OUTPUT); 
  pinMode (servo5Pin, OUTPUT); 
  pinMode (servo6Pin, OUTPUT); 
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  pinMode (servo7Pin, OUTPUT); 
  pinMode (servo8Pin, OUTPUT); 
  pinMode (servo9Pin, OUTPUT); 
  pinMode (servo10Pin, OUTPUT); 
  pinMode (servo11Pin, OUTPUT); 
} 
 
void loop() { 
 
  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;   
 
    updateServo(servo3Pin, servoPulse); 
    updateServo(servo4Pin, servoPulse); 
    updateServo(servo5Pin, servoPulse); 
    updateServo(servo6Pin, servoPulse); 
    updateServo(servo7Pin, servoPulse); 
    updateServo(servo8Pin, servoPulse); 
    updateServo(servo9Pin, servoPulse); 
    updateServo(servo10Pin, servoPulse); 
    updateServo(servo11Pin, servoPulse); 
     
     servoPulse += speedServo; 
     if(servoPulse > 2500 || servoPulse <500){ 
     speedServo *= -1; 
    } 
  } 
} 
 
void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

Once you upload the code, all servos should start to move. If one servo doesn’t move, check the 
circuit, the connections, and the Arduino pin (in case the fault is in the code). 

Obviously, the Arduino 5V power isn’t enough for running all nine servos at the same time. You can 
see that the Arduino power LED starts to fade out and blink; also, the servos aren’t moving properly and 
instead make a hiss, like they are struggling. To avoid this, add an external power source to your circuit. 

The first thing is to cut the cable that connects with the Arduino 5V pin (you don’t want to fry your 
Arduino!). Then you connect a 3-battery clip to your circuit (see Figure 6-21). Solder the red cable power 
to the servo power stripe and the ground to the servo ground stripe. Note that ground is still connected 
to Arduino ground.  
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Figure 6-21. Circuit with battery clip 

So now you can have a pack of four AA batteries in a battery holder connected to the battery clip. 
This should be enough power to move all your servos. Another option is to connect a power adapter 
plugged into a mains socket, but make sure that the output voltage is 5V. Later in the book, we will 
explain another way of getting a constant 5V current using a computer power supply. 

Setting the Servos to the Starting Position 
Reconnect your Arduino and the batteries and check that all servos move smoothly. You’re almost ready 
to start coding. The last thing you need to do is set all servos to a starting position, so you can fix all of 
the servo arms.  

You’re going to send all shoulder and leg servos to 500 (0 degrees) or 2500 (180 degrees) depending if 
they are on the left side or right side, and the elbows to 1500 (90 degrees), allowing the movement in two 
directions. The last thing is to position the servo that will rotate the puppet to 1500 (90 degrees). Figure 
6-22 shows all the angles. 
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Figure 6-22. Puppet servo angles 

The code is similar to the previous; you’re just commenting or deleting some lines (the ones that 
change the servo pulse) and adding new servo pulses for the 90 and 180 degrees position. 

int servo3Pin = 3; 
int servo4Pin = 4; 
int servo5Pin = 5; 
int servo6Pin = 6; 
int servo7Pin = 7; 
int servo8Pin = 8; 
int servo9Pin = 9; 
int servo10Pin = 10; 
int servo11Pin = 11; 
 
int servoPulse = 500; 
int servoPulse2 = 1500; 
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int servoPulse3 = 2500; 
int speedServo = 50; 

unsigned long previousMillis = 0; 
long interval = 20;    

void setup() { 
  pinMode (servo3Pin, OUTPUT); 
  pinMode (servo4Pin, OUTPUT); 
  pinMode (servo5Pin, OUTPUT); 
  pinMode (servo6Pin, OUTPUT); 
  pinMode (servo7Pin, OUTPUT); 
  pinMode (servo8Pin, OUTPUT); 
  pinMode (servo9Pin, OUTPUT); 
  pinMode (servo10Pin, OUTPUT); 
  pinMode (servo11Pin, OUTPUT); 
} 

void loop() { 
unsigned long currentMillis = millis(); 
if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;   
    updateServo(servo3Pin, servoPulse);//lef Shoulder 
    updateServo(servo4Pin, servoPulse2);//left Elbow 
    updateServo(servo5Pin, servoPulse);//left Hip 
    updateServo(servo6Pin, servoPulse2);//left Knee 
    updateServo(servo7Pin, servoPulse3); //right Shoulder 
    updateServo(servo8Pin, servoPulse2);//rigt Elbow 
    updateServo(servo9Pin, servoPulse3);// right Hip 
    updateServo(servo10Pin, servoPulse2);//right Knee 
    updateServo(servo11Pin, servoPulse2);//move it to the central position 
  } 
} 

void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

That servo position will be the starting position of the puppet. Once this position has been fixed, you 
know the orientation of all limbs so you can screw in your servo arms. Then you cover everything with 
the front body piece and use some cable ties to hold the cables in position (see Figure 6-23). Just make 
sure you keep enough length to allow the movement!  
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Figure 6-23. Puppet completed 

Skeleton Tracking On-Screen 
The first thing you need to get sorted for this project is tracking your skeleton with Kinect. We briefly 
described skeletonization in Chapter 3, but here you are going to delve deeply into it, so hang on! 

You will start off by tracking the skeleton on-screen, and then you will attach the virtual puppet to 
the physical one you have just built. Simple-OpenNI provides a nice interface for skeleton tracking and a 
couple of callback functions to which you can add your own code. Start by importing and initializing 
Simple-OpenNI. 

import SimpleOpenNI.*; 
SimpleOpenNI kinect; 

Set the mirroring to On so it’s easy for you to relate to your on-screen image, and enable the depth 
image and the User. Pass the parameter SimpleOpenNI.SKEL_PROFILE_ALL to this function to enable all the 
joints. Set your sketch size to the depth map dimensions. 

public void setup() { 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(true); 
  kinect.enableDepth(); 
  kinect.enableUser(SimpleOpenNI.SKEL_PROFILE_ALL);  
  size(kinect.depthWidth(), kinect.depthHeight()); 
} 

In the draw() loop, simply update the Kinect data, draw the depth map, and, if Kinect is tracking a 
skeleton, call the function drawSkeleton() to print your skeleton on screen. 
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public void draw() { 
  kinect.update(); 
  image(kinect.depthImage(), 0, 0); 
  if (kinect.isTrackingSkeleton(1)) { 
    drawSkeleton(1); 
  } 
} 

We took this drawSkeleton() function from one of the examples in Simple-OpenNI. It takes an 
integer as a parameter, which is the user ID (it will be always 1 if you are just tracking a single skeleton). 
This function runs through all the necessary steps to link the skeleton joints with lines, defining the 
skeleton that you will see on screen. The function makes use of the public method drawLimb() from the 
Simple-OpenNI class. 

void drawSkeleton(int userId) { 
  pushStyle(); 
  stroke(255,0,0); 
  strokeWeight(3); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_HEAD, SimpleOpenNI.SKEL_NECK); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_NECK, SimpleOpenNI.SKEL_LEFT_SHOULDER); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER, SimpleOpenNI.SKEL_LEFT_ELBOW); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_ELBOW, SimpleOpenNI.SKEL_LEFT_HAND); 
 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_NECK, SimpleOpenNI.SKEL_RIGHT_SHOULDER); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER, SimpleOpenNI.SKEL_RIGHT_ELBOW); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_ELBOW, SimpleOpenNI.SKEL_RIGHT_HAND); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER, SimpleOpenNI.SKEL_TORSO); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER, SimpleOpenNI.SKEL_TORSO); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_LEFT_HIP); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_HIP, SimpleOpenNI.SKEL_LEFT_KNEE); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_KNEE, SimpleOpenNI.SKEL_LEFT_FOOT); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_RIGHT_HIP); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_HIP, SimpleOpenNI.SKEL_RIGHT_KNEE); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_KNEE, SimpleOpenNI.SKEL_RIGHT_FOOT); 
  popStyle(); 
} 

Simple-OpenNI Events 
Use the Simple-OpenNI callback functions to trigger the pose detection and skeleton tracking 
capabilities. The function onNewUser() is called when a user is detected. You know the user is there, but 
you haven’t calibrated their skeleton yet, so you start the pose detection. 

public void onNewUser(int userId) { 
  println("onNewUser - userId: " + userId); 
  if (kinect.isTrackingSkeleton(1))  return; 
  println("  start pose detection"); 
  kinect.startPoseDetection("Psi", userId); 
} 

When the user is lost, you simply print it on the console. 

public void onLostUser(int userId) { 
  println("onLostUser - userId: " + userId); 
} 



CHAPTER 6  KINECT NETWORKED PUPPET 

 

120 

When you detect a pose, you can stop detecting poses (you already have one!) and request a 
skeleton calibration to NITE. 

public void onStartPose(String pose, int userId) { 
  println("onStartPose - userId: " + userId + ", pose: " + pose); 
  println(" stop pose detection"); 
  kinect.stopPoseDetection(userId); 
  kinect.requestCalibrationSkeleton(userId, true); 
} 

You also display messages when the pose is finished and when the calibration has started. 

public void onEndPose(String pose, int userId) { 
  println("onEndPose - userId: " + userId + ", pose: " + pose); 
} 
public void onStartCalibration(int userId) { 
  println("onStartCalibration - userId: " + userId); 
} 

If the calibration is finished and it was successful, you start tracking the skeleton. If it wasn’t, you 
restart the pose detection routine. 

public void onEndCalibration(int userId, boolean successfull) { 
  println("onEndCalibration - userId: " + userId + ", successfull: " + successfull); 
  if (successfull) { 
    println("  User calibrated !!!"); 
    kinect.startTrackingSkeleton(userId); 
  }  
  else { 
    println("  Failed to calibrate user !!!"); 
    println("  Start pose detection"); 
    kinect.startPoseDetection("Psi", userId); 
  } 
} 

Run this sketch and stand in front of your Kinect in the start pose. After a few seconds, your skeleton 
should appear on screen, and follow your every movement until you disappear from screen (see Figure 
6-24). 

     

Figure 6-24. Start position and calibrated user 
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Angle Calculation 
With the previous program, you were able to track your skeleton and display it on screen. That is the 
base of your puppet control. Now you need to implement a routine that translates your poses to the 
angles of eight servos that will ultimately drive the puppet. 

The eight servos are placed on the shoulders, elbows, hips, and knees of your puppet. If you can find 
out the current bending angles of your joints, you can map those angles to the servos and thus make the 
puppet move like you. You implement this with the cunning use of geometry. 

Taking the previous code as a base, you include a series of routines that will use the skeleton to 
calculate all the joints’ angles. First, add some PVectors at the beginning of the sketch (outside of any 
function) to store the position of all your joints. 

// Left Arm Vectors 
PVector lHand = new PVector(); 
PVector lElbow = new PVector(); 
PVector lShoulder = new PVector(); 
// Left Leg Vectors 
PVector lFoot = new PVector(); 
PVector lKnee = new PVector(); 
PVector lHip = new PVector(); 
// Right Arm Vectors 
PVector rHand = new PVector(); 
PVector rElbow = new PVector(); 
PVector rShoulder = new PVector(); 
// Right Leg Vectors 
PVector rFoot = new PVector(); 
PVector rKnee = new PVector(); 
PVector rHip  = new PVector(); 

You also need a PVector array to contain the angles of your joints.  

float[] angles = new float[9]; 

You’re interested in nine angles, one for each servo on your puppet. 

• angles [0] Rotation of the body 

• angles [1] Left elbow 

• angles [2] Left shoulder 

• angles [3] Left knee 

• angles [4] Left Hip 

• angles [5] Right elbow 

• angles [6] Right shoulder 

• angles [7] Right knee 

• angles [8] Right Hip 

You will be wrapping all these calculations into a new function called updateAngles() that you call 
from your main draw() function only in the case you are tracking a skeleton. Add this function to the if 
statement at the end of the draw() function, and then print out the values of the angles array. 
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  if (kinect.isTrackingSkeleton(1)) { 
    updateAngles(); 
   println(angles); 
    drawSkeleton(1); 
} 

You need a function that calculates the angle described by the lines joining three points, so 
implement it next; call it the angle() function. 

float angle(PVector a, PVector b, PVector c) { 
   
  float angle01 = atan2(a.y - b.y, a.x - b.x); 
  float angle02 = atan2(b.y - c.y, b.x - c.x); 
  float ang = angle02 - angle01; 
  return ang; 
} 

The function updateAngles() performs the calculation of all these angles and stores them into the 
previously defined angles[] array. The first step is storing each joint position in one PVector. The 
method getJointPosition() helps you with this process. It takes three parameters: the first one is the ID 
of the skeleton, the second one is the joint you want to extract the coordinates from, and the third one is 
the PVector that is set to those coordinates. 

void updateAngles() { 
  // Left Arm 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_HAND, lHand); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_ELBOW, lElbow); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_SHOULDER, lShoulder); 
  // Left Leg 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_FOOT, lFoot); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_KNEE, lKnee); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_LEFT_HIP, lHip); 
  // Right Arm 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_HAND, rHand); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_ELBOW, rElbow); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_SHOULDER, rShoulder); 
  // Right Leg 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_FOOT, rFoot); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_KNEE, rKnee); 
  kinect.getJointPositionSkeleton(1, SimpleOpenNI.SKEL_RIGHT_HIP, rHip); 

Now you have all your joints nicely stored in the PVectors you defined for that purpose. These are 
three-dimensional vectors of real-world coordinates. You transform them to projective coordinates so 
you get the second angles (remember your puppet is pretty flat!), but first you need to extract your body 
rotation angle (see Figure 6-25), which is the only rotation of the plane that you need.  

  angles[0] = atan2(PVector.sub(rShoulder, lShoulder).z,  
  PVector.sub(rShoulder, lShoulder).x); 
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Figure 6-25. Rotation of the body 

After this angle has been calculated, you can transform all the joints to projective coordinates (on 
screen coordinates). 

  kinect.convertRealWorldToProjective(rFoot, rFoot); 
  kinect.convertRealWorldToProjective(rKnee, rKnee); 
  kinect.convertRealWorldToProjective(rHip, rHip); 
  kinect.convertRealWorldToProjective(lFoot, lFoot); 
  kinect.convertRealWorldToProjective(lKnee, lKnee); 
  kinect.convertRealWorldToProjective(lHip, lHip); 
  kinect.convertRealWorldToProjective(lHand, lHand); 
  kinect.convertRealWorldToProjective(lElbow, lElbow); 
  kinect.convertRealWorldToProjective(lShoulder, lShoulder); 
  kinect.convertRealWorldToProjective(rHand, rHand); 
  kinect.convertRealWorldToProjective(rElbow, rElbow); 
  kinect.convertRealWorldToProjective(rShoulder, rShoulder); 

And finally, you use the angle function you implemented previously to compute all the necessary 
angles for the control of the puppet. 

  // Left-Side Angles 
  angles[1] = angle(lShoulder, lElbow, lHand); 
  angles[2] = angle(rShoulder, lShoulder, lElbow); 
  angles[3] = angle(lHip, lKnee, lFoot); 
  angles[4] = angle(new PVector(lHip.x, 0), lHip, lKnee); 
  // Right-Side Angles 
  angles[5] = angle(rHand, rElbow, rShoulder); 
  angles[6] = angle(rElbow, rShoulder, lShoulder ); 
  angles[7] = angle(rFoot, rKnee, rHip); 
  angles[8] = angle(rKnee, rHip, new PVector(rHip.x, 0)); 
} 

Now you have all the data you need to control your puppet! If you run the angle calculation sketch 
and start the skeleton tracking, you will see the values of your joints’ angles appear on the console. You 
could now connect the serial cable to your computer, add a serial communication protocol, and start 
driving the puppet straight away. But let’s build some flexibility into this application. You want to be able 
to control the puppet remotely through the Internet, and to do this you need to learn some basics of 
network communication.  
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Network Communication 
In previous chapters you used Serial communication to send messages from your computer to the 
Arduino board. Now you are going to follow an analogous process to let two machines communicate 
over the Internet. 

Luckily, Processing includes a core library called Network that will help you go about the network 
communication with just a few lines of code. Start Processing and go to examples/Libraries/Network to 
open the SharedCanvasServer and SharedCanvasClient examples. (We won’t explain the whole code 
because you are going to do that with your own project later, but we will use these sketches to illustrate 
the concepts.)  

If you run the SharedCanvasServer sketch, you get a frame in which you can draw lines with your 
mouse. Not very impressive. If you open the SharedCanvasClient, you get the same but Processing 
throws a “Connection refused” error at you in the console. If you open the server sketch first, and then 
the client sketch, you have two canvases and no errors. Now, if you paint in one of them, the lines appear 
on the other one as well, as shown in Figure 6-26. You have two Processing sketches talking to each 
other; that’s a good start! 

    

Figure 6-26. Shared canvas 

Communicating Within a Local Network 
If you try the same over two computers, though, it won’t work. If you look into the setup functions of the 
server sketch, you find the line in which you are starting the server. 

s = new Server(this, 12345); 

And in the client sketch, you’ll find the line in which you start the client. 

c = new Client(this, "127.0.0.1", 12345); 

The client is trying to connect to the computer with IP address 127.0.0.1 through port 12345. Well, 
this address happens to be the localhost address of the computer. It worked well as long as you had both 
sketches running on the same computer, but if you want to make them work on different machines, you 
need to provide the client with the IP address of the server. You can find the internal IP address of your 
computer easily. On a Mac, open Network Preferences; it’s on the top right. You should see something 
like “AirPort is connected to xxxxxx and has the IP address 192.168.0.101.” On a PC, go to the Start menu. 
In “Search programs and files” write cmd and press Enter. You have opened a console. Now type ipconfig 
in the console and press Enter again. Many text lines will appear, one of which says something like “IPv4 
Addres..:192.168.0.103”. This is your IP address. 
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If you go now to your client sketch and substitute the 127.0.0.1 with the IP address of the machine in 
which you are running the server (the other computer) and run both sketches (remember to run the 
server first), it should work smoothly.  

c = new Client(this, "192.168.0.101", 12345); 

Now you have two Processing sketches running on different computers talking to each other. But 
the ultimate goal is to be able to communicate over the Internet. Can this code make that happen? Can I 
go to my friend’s house with the client sketch, run it, and be connected to my machine at home? Well, 
unfortunately not yet. The IP addresses you’ve been using are internal IP addresses. They are good as 
long as both computers are connected to the same local network. The local IP address is known only by 
the router, so if you go beyond the reach of your local network, these addresses won’t make sense any 
more. What you need is the external IP address of your router.  

Communicating over the Internet 
The easiest way to find your external IP address is using a web site. If you go to www.whatsmyip.com or 
similar, you will find a line saying “Your IP Address Is: 24.28.51.56” or a similar number. This is you 
external IP address, the one you need to include in your Client sketch if you want to connect to your 
computer from a computer outside of your local network. 

But you need to do just one more thing on the server side. The client is trying to connect to your 
computer using the external IP; now you need to tell the router that any incoming connection addressed 
to the port 12345 needs to be send to your machine. This is called port forwarding. If you are an online 
gamer, you probably know about port forwarding because you need to set up socket connections when 
you want to play online games. What you are trying to establish here is a synchronous connection, or 
socket, which is a bi-directional open communication channel between your machine and another 
machine over the Internet. 

Port forwarding depends on the router you are using at home, but in general, if you type 
192.168.0.1 in your browser, it will lead you to your router configuration menu. Provided that you have 
the user name and password (by default, it is often “admin”), you will find the port forwarding setting 
somewhere in the menu. You need to specify the IP address of the computer you are forwarding to (your 
server computer), and the port that the communication is sent to (12345 in our example), both in TCP 
and UDP. Dig your router’s instructions manual from the dark place you hid it five years ago (or find the 
manual on the Internet, in the likely case you have no remote clue where your hard copy could be) if you 
need some help. 

You should now be in a position where you can run your server sketch on your computer (where 
you forwarded the port) and have one of your geeky friends run the client sketch with your external 
address at his home computer. The two sketches should be communicating smoothly across 
neighborhoods, countries, and even continents! 

Server Applet: Sending the Angles over a Network 
So now that you know how to communicate across networks, you are going to add this functionality to 
your angle calculation sketch so you can send the angles over the network for another program to 
retrieve them from a remote location.  

All your helper functions and callbacks stay the same, but you add some lines to the setup() and 
draw() functions. You first import the Network library and declare a Server object. Then you initialize all 
the PVectors and the angles array as per your previous code. 

import processing.net.*; 
import SimpleOpenNI.*; 
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SimpleOpenNI kinect; 
Server s; // Server Object 
 
// Left Arm Vectors 
PVector lHand = new PVector(); 
PVector lElbow = new PVector(); 
PVector lShoulder = new PVector(); 
// Left Leg Vectors 
PVector lFoot = new PVector(); 
PVector lKnee = new PVector(); 
PVector lHip = new PVector(); 
// Right Arm Vectors 
PVector rHand = new PVector(); 
PVector rElbow = new PVector(); 
PVector rShoulder = new PVector(); 
// Right Leg Vectors 
PVector rFoot = new PVector(); 
PVector rKnee = new PVector(); 
PVector rHip = new PVector(); 
 
// Articulation Angles 
float[] angles = new float[9]; 

In the setup() function, you initialize the server object, passing the port you are communicating 
through as a parameter. 

public void setup() { 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(true); 
  kinect.enableDepth(); 
  kinect.enableUser(SimpleOpenNI.SKEL_PROFILE_ALL); 
 
  frameRate(10);  
  size(kinect.depthWidth(), kinect.depthHeight()); 
 
  s = new Server(this, 12345); // Start a simple server on a port 
} 

And finally, at the end of the draw() loop and only in case you are tracking a skeleton, you write a 
long string of characters to your port. The string is composed of all the joint angles separated by white 
spaces, so you can split the string at the other end of the line. 

public void draw() { 
  kinect.update();  // update the Kinect 
  image(kinect.depthImage(), 0, 0);  // draw depthImageMap 
if (kinect.isTrackingSkeleton(1)) { 
    updateAngles(); 
    drawSkeleton(1); 
 
    // Write the angles to the socket 
    s.write(angles[0] + " " + angles[1] + " " + angles[2] + " "  
       + angles[3] + " " + angles[4] + " " + angles[5] + " " 
       + angles[6] + " " + angles[7] + " " + angles[8] + "\n"); 
  } 
} 
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Client Applet: Controlling the Puppet 
The server applet is finished and ready to start sending data over the Internet. Now you need a client 
sketch to receive the angle data and send it to Arduino to get translated into servo positions that will 
become movements of your puppet. 

You’re going to implement a virtual puppet resembling the physical puppet (Figure 6-27), so check 
that everything is working properly before sending data to the servos. You will implement the serial 
communication at the same time, so once everything is working you only need to check that the serial 
boolean is set to true for the data to be sent to Arduino. 

Figure 6-27. Client applet  

After importing the Net and Serial libraries, create a boolean variable called serial that you set to 
false if you haven’t plugged the serial cable yet and want to try the sketch. You are going to be 
displaying text, so you also need to create and initialize a font. 

import processing.net.*; 
import processing.serial.*; 

Serial myPort; 
boolean serial = true; 
PFont font; 

You need to declare a client object called c, declare a String to contain the message coming from the 
server applet, and a data[] array to store the angle values once you have extracted them from the 
incoming string. You are going to use a PShape to draw a version of your physical puppet on screen so 
you can test all the movements virtually first. 
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 Note PShape is a Processing datatype for storing SVG shapes. You can create SVG files with Adobe Illustrator, 

and then show them in Processing using PShapes. For more information, refer to the Processing help. 

Client c; 
String input; 
float data[] = new float[9]; 
PShape s; 

In the setup() function, initialize the client object. Remember to replace the IP address with the 
external IP of the server computer if you are communicating over the Internet or the internal IP if you 
are communicating within the same local network. You will need to add the file Android.svg (provided 
with the chapter images) to your sketch folder so it can be loaded into the PShapes. 

void setup()  
{ 
  size(640, 700); 
  background(255); 
  stroke(0); 
  frameRate(10);  
 
  // Connect to the server's IP address and port 
  c = new Client(this, "127.0.0.1", 12345); // Replace with your server's IP and port 
  font = loadFont("SansSerif-14.vlw");  
  textFont(font); 
  textAlign(CENTER); 
  s = loadShape("Android.svg"); 
  shapeMode(CENTER); 
  smooth(); 
 
  if (serial) { 
    String portName = Serial.list()[0]; // This gets the first port on your computer. 
    myPort = new Serial(this, portName, 9600); 
  } 
} 

Within the draw() loop, check for incoming data from the server; in a positive case, read is as a 
string. Then trim off the newline character and split the resulting string into as many floats as there are 
sub-strings separated by white spaces in your incoming message. Store these floats (the angles of your 
limbs sent from the server sketch) into the data[] array. 

Run a little validation test, making sure that all the values acquired fall within the acceptable range 
of -PI/2 to PI/2. 

void draw()  
{ 
  background(0); 
  // Receive data from server 
  if (c.available() > 0) { 
    input = c.readString(); 
    input = input.substring(0, input.indexOf("\n")); // Only up to the newline 
    data = float(split(input, ' ')); // Split values into an array 
 
    for (int i = 0 ; i < data.length; i++) { 
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      if(data[i] >  PI/2) { data[i] = PI/2; } 
      if(data[i] < -PI/2) { data[i] = PI/2; } 
    } 
  } 

Once the data is nicely stored in an array, draw your puppet on screen and add the limbs in the 
desired position. You first draw the shape on screen in a specific position, which you have figured out by 
testing. Then use the function drawLimb() to draw the robot’s limbs using the angles in the data array as 
parameters. 

 shape(s, 300, 100, 400, 400); 
  drawLimb(150, 210, PI, data[2], data[1], 50); 
  drawLimb(477, 210, 0, -data[6], -data[5], 50); 
  drawLimb(228, 385, PI/2, data[4], data[3], 60); 
  drawLimb(405, 385, PI/2, -data[8], -data[7], 60); 

Then draw an array of circles showing the incoming angles in an abstract way so you can debug 
inconsistencies and check that you are receiving reasonable values. 

  stroke(200); 
  fill(200); 
  for (int i = 0; i < data.length; i++) { 
    pushMatrix(); 
    translate(50+i*65, height/1.2); 
    noFill(); 
    ellipse(0, 0, 60, 60); 
    text("Servo " + i + "\n" + round(degrees(data[i])), 0, 55);  
    rotate(data[i]); 
    line(0, 0, 30, 0); 
    popMatrix(); 
  } 

And finally, if your boolean serial is true, use the sendSerialData() function to communicate the 
angles to Arduino. 

  if (serial)sendSerialData(); 
} 

The drawLimb() function is designed to draw an arm or leg on screen starting at the position 
specified by the parameters x and y. The angle0 variable specifies the angle that you have to add to the 
servo angle to accurately display its movement on screen. angle1 and angle2 determine the servo angles 
of the first and second joint angles on the limb. Limbsize is used as the length of the limb. 

void drawLimb(int x, int y, float angle0, float angle1, float angle2, float limbSize) { 
  pushStyle(); 
  strokeCap(ROUND); 
  strokeWeight(62); 
  stroke(134, 189, 66); 
  pushMatrix(); 
  translate(x, y); 
  rotate(angle0); 
  rotate(angle1); 
  line(0, 0, limbSize, 0); 
  translate(limbSize, 0); 
  rotate(angle2); 
  line(0, 0, limbSize, 0); 
  popMatrix(); 
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  popStyle(); 
} 

The function sendSerialData() works similarly to the ones used in previous chapters, sending a 
triggering character to Arduino and then writing a series of integer data values to the serial port. These 
values are the angles mapped to a range of 0 to 250, expressed as integers. 

void sendSerialData() { 
  myPort.write('S'); 
  for (int i=0;i<data.length;i++) { 
    int serialAngle = (int)map(data[i], -PI/2, PI/2, 0, 255); 
    myPort.write(serialAngle); 
  } 
} 

Final Arduino Code 
If you run the server applet and then the client applet, you should be able now to control your virtual 
puppet by dancing in front of your Kinect, as shown in Figure 6-28. Once you have all of your Processing 
code ready, it’s time to plug in your Arduino and type the last bits of code. 

   

Figure 6-28. Server and client applets communicating over a network 

 You’re going to store the values coming from the client Processing sketch, and remap these values 
from 0-255 to the range of the servo (500 to 2500). It is important to match the data coming from the 
Processing sketch with the right pin of Arduino, and map it in the right direction (clockwise or 
counterclockwise) in order to match the movements. The rest of the functions are those you have been 
using since the beginning of this chapter. 

float temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; 
// Joint Servos 
int servo3Pin = 3; //shoulder 1 
int servo4Pin = 4; // arm 1 
int servo5Pin = 5; // shoulder 2 
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int servo6Pin = 6; // arm 2 
int servo7Pin = 7; // hip 1 
int servo8Pin = 8; // leg 1 
int servo9Pin = 9; // hip 2 
int servo10Pin = 10; //leg 2 
int servo11Pin = 11; //rotation 
 
//initial pulse values 
int pulse1 = 500; 
int pulse2 = 1500; 
int pulse3 = 2500; 
int pulse4 = 1500; 
int pulse5 = 500; 
int pulse6 = 2500; 
int pulse7 = 2500; 
int pulse8 = 500; 
int pulse9 = 1500; 
 
int speedServo = 0; 
unsigned long previousMillis = 0; 
long interval = 20;    
 
void setup() { 
  pinMode (servo3Pin, OUTPUT); 
  pinMode (servo4Pin, OUTPUT); 
  pinMode (servo5Pin, OUTPUT); 
  pinMode (servo6Pin, OUTPUT); 
  pinMode (servo7Pin, OUTPUT); 
  pinMode (servo8Pin, OUTPUT); 
  pinMode (servo9Pin, OUTPUT); 
  pinMode (servo10Pin, OUTPUT); 
  pinMode (servo11Pin, OUTPUT); 
 
  Serial.begin(9600); 
} 
 
void loop() { 
  if (Serial.available() > 18) {  
    char led = Serial.read(); 
    if (led == 'S'){ 
      temp1 = Serial.read();  
      temp2 = Serial.read(); 
      temp3 = Serial.read(); 
      temp4 = Serial.read(); 
      temp5 = Serial.read(); 
      temp6 = Serial.read(); 
      temp7 = Serial.read(); 
      temp8 = Serial.read(); 
      temp9 = Serial.read(); 
    } 
  } 
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Next, remap the angles from the incoming range (0-255) to the servo range (500-2500). 

pulse9 = (int)map(temp1,0,255,2500,500); //rotation 
pulse2 = (int)map(temp2,0,255,500,2500); //leftElbow 
pulse1 = (int)map(temp3,0,255,500,2500); //left Shoulder 
pulse4 = (int)map(temp4,0,255,2500,500); //left Knee 
pulse3 = (int)map(temp5,0,255,500,2500); //left Hip 
pulse6 = (int)map(temp6,0,255,2500,500); //right Elbow 
pulse5 = (int)map(temp7,0,255,2500,500); //right Shoulder 
pulse8 = (int)map(temp8,0,255,500,2500); //right Knee 
pulse7 = (int)map(temp9,0,255,2500,500); //right Hip 

And finally, move the servo to the new position. 

  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;  
 
    updateServo(servo3Pin, pulse1); 
    updateServo(servo4Pin, pulse2); 
    updateServo(servo5Pin, pulse3); 
    updateServo(servo6Pin, pulse4); 
    updateServo(servo7Pin, pulse5); 
    updateServo(servo8Pin, pulse6); 
    updateServo(servo9Pin, pulse7); 
    updateServo(servo10Pin,pulse8); 
    updateServo(servo11Pin, pulse9); 
  } 
} 
 
void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

Now upload your code into Arduino, call your most remote Kinect-enabled friend, and ask him to run 
the server code and dance in front of his Kinect. Then run your client applet, sit down, and enjoy the 
performance! 

Summary 
In this chapter, you learned how to use NITE’s skeleton tracking capabilities from Processing and how to 
use the data acquired to control a physical puppet. You were introduced to servos and how to control 
them from Arduino; you also learned how to make use of network communication, both within a local 
network and beyond, spanning across the Internet.  

The outcome of the chapter is a system with which you can control remote devices using natural 
interaction from home. In this example, you used it to control a puppet that literally copies your body 
gestures, but the concept can be endlessly extended. You could develop it to control more complicated 
devices, using other types of natural interaction algorithms and adapting it to your particular needs. 
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Mood Lamps 

by Ciriaco Castro and Enrique Ramos 

Light greatly affects the spaces we inhabit. We all try control the lighting levels and quality in our homes 
by installing specific lighting fixtures, wall lamps, spotlights, etc. to create the desired ambience. In this 
chapter, you are going to learn how to build your own wireless RGB LED lamp and how to install a 
lighting control system that lets you modify the state of several lamps via body gestures. This lighting 
system will also be aware of your position in the room and will respond by increasing the brightness of 
the lamp closest to you. 

You will learn about the RGB color mode so you can build lamps like the one in Figure 7-1 that will 
cast a wide spectrum of colors using four LED lights: three colored (red, green, and blue) and one white. 
You will use wireless communication via two XBee modules, and you will work with a smaller version of 
your board, the Arduino Nano. The use of spatial body gesture recognition will take you to a deeper 
exploration of three-dimensional NITE’s skeleton tracking capabilities. Finally, you will have a first 
encounter with data storage and retrieval from external files, so you can save and load the layout of your 
lamps. Table 7-1 lists the required parts for this chapter. 

 

Figure 7-1. RGB lamp 
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Table 7-1. The Parts List  

Part Description Price 

1 Arduino Nano Little brother in the Arduino family $33.99  

2 XBee 1mW antenna series1 Wireless module $22.95 each 

XBee Explorer Regulated From SparkFun or similar  $9.95 

XBee Explorer dongle From SparkFun or similar  $24.95 

Strip board 94 x 53 mm copper $3.95 

23 breakaway headers-
straight 

You should have a bunch of these already from 
previous chapters. 

$1.50 

1 ultra bright white LED From SparkFun or similar  $1.50 

1 ultra bright red LED From SparkFun or similar  $1.50 

1 ultra bright green LED From SparkFun or similar  $1.50 

1 ultra bright blue LED From SparkFun or similar  $1.50 

1 translucent pencil holder From your favorite stationery store $2.99 

RGB Color Space 
Throughout this chapter, we will frequently talk about colors, hues, and color spaces. You will build the 
whole spectrum of colors using a combination of three LEDs (red, green, and blue), and you will add one 
extra white LED for intensity at certain moments. If you are familiar with any graphics software, you will 
easily recognize the RGB palette. If you are not so familiar with the RGB color space, you will find the 
following introduction pretty useful.  

The RGB color model is an additive color model in which a series of basic colors (red, green, and 
blue) are added together to reproduce a broad spectrum of colors. The original purpose of the RGB color 
model was sensing, representing, and displaying images in electronic devices such as television sets and 
computers screens.  

To form a color on an RGB display, you need three colored lights superimposed. By modifying the 
intensity of each color, you achieve the right mixture to represent the intended color. Zero intensity of 
each component forms the darkest color (no light means black), and full intensity on the three forms 
white. (Note that it’s difficult to achieve real white by physically mixing the light of three LEDs. You can 
buy RGB LED lights that are quite good at achieving this effect, but for this project you’ll use three 
different lights for a more dramatic effect.) 

If one of the lamps has a much higher intensity than the others, the resulting light will have a hue 
similar to this color. If two lamps are shining with full intensity, the result will be a secondary color 
(cyan, magenta, or yellow). Secondary colors are formed by the sum of two primary colors with the same 
intensity: cyan is green + blue, magenta is red + blue, and yellow is red + green, as shown in Figure 7-2. 
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Figure 7-2. RGB chart 

Common applications of the RGB color model are the display of colors on television sets and 
computer monitors. Each pixel of the screen is composed by three small and very close but still separate 
RGB light sources. If you stand close enough to the screen, you can distinguish the source’s colors (this 
means really close). Otherwise, the separate sources are indistinguishable, which tricks the eye into 
seeing a given solid color. 

In computing, the component values are often stored as integer numbers in the range of 0 to 255, 
and this is the way you will work with color intensities in Arduino and Processing: going from values 0 
(light off) to 255 (full intensity). 

Color changes the quality of an ambience. By modifying lighting effects and hues, you can alter your 
perception of a space. The Chinese theory of Feng Shui takes the use of color to a more profound level, 
associating energies and moods according to the right combination of colors. You can apply different 
colors to a room according to different situations or moods, whether by following the directions of 
millenary Feng Shui or just your personal taste. 

Arduino Nano 
Due to the size of your lamp, the use of an Arduino Nano is more appropriate for this project. An 
Arduino Nano, shown in Figure 7-3, is a small and complete Arduino board designed and produced by 
Gravitec. It has some minor differences from the Arduino Uno you used in previous projects. Instead of 
having a standard USB socket, it has a Mini-B USB. The pins are the same as on the Arduino Uno, just 
male instead of female. 
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Figure 7-3. Arduino Nano 

As you saw in Chapter 1, each of the 14 digital pins on the Nano can be used as input and output. 
You also have an LED on pin 13, and you can use digital pin 0 (RX) for receiving and 1(TX) for 
transmitting serial communication. Remember to select the correct Arduino board in the Arduino IDE. 

For powering the Arduino Nano you can use the Mini-B USB connection, a 6-20V unregulated 
external power supply in pin 30, or a 5V regulated external power supply in pin 27. This is important 
because you will use a wireless connection, so both the wireless module and the Arduino board will be 
externally powered. 

Building the Circuit 
Let’s build your circle step by step. First, you will build the circuit that allows the control of the four LEDs 
from Arduino, and then you will make the whole installation wireless by adding a battery pack and an 
XBee radio module. Figure 7-4 shows the whole setup. 
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Figure 7-4. Lamp circuit 

Get started by connecting the four LEDs (white, red, green, and blue) to your Arduino Nano, building the 
circuit using a strip board. The components are shown in Figure 7-5. 
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Figure 7-5. Components 

As usual, you start by cutting the strip board into a small enough size so you can insert the circuit 
inside your pencil holder but large enough to connect all the components. For the moment, you are 
keeping it simple—just controlling the LEDs using your Mini USB connection—but you will increase the 
amount of components later when you add the wireless XBee module. 

Once you have cut the piece, scratch the board before soldering the pins that will hold your Arduino 
Nano, as shown in Figure 7-6. Double-check the direction of the copper strips on the back of the board 
so you don’t connect the two rows of pins to your Arduino. 

 

Figure 7-6. Scratched strip board 
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After that, position your breakout headers and solder them to the strip board. You could actually 
place the Arduino Nano and solder it to your strip board if you want to make a permanent installation, 
but let’s use the breakout headers so you can easily detach the Arduino board for other projects.  

In principle, you don’t need to connect all the pins to the board; you can add more later if you need 
them. First, solder the breakout headers that correspond to the analog pins, ground, and serial 
communication, and some of the digital pins on the other side to give some stability to the Arduino 
Nano, as shown in Figure 7-7. 

 

Figure 7-7. Breakout headers (detail) 

Resistors 
The next step is to solder the resistors for the LEDs. In Chapter 4, we asked you to trust our choice of a 
resistor. Now that you are a bit more experienced, you will learn how to choose the right resistor 
according to the kind of LED you are using. 

LEDs are semiconductors. The flow in an LED is an exponential function of the voltage across it, 
meaning that a small change in voltage can produce a huge change in current. Using a resistor, you will 
manage to have current and voltage linearly related. This means that a change in voltage will now 
produce a proportional change in current, thus limiting the current in the LED to a safe value. 

 Note In order to know which resistor is adequate, you can use an online resistor calculator, like 
http://led.linear1.org/1led.wiz, in which you can introduce the supply voltage, diode-forward voltage, and 

diode-rated current to obtain a suitable resistance value and the equivalent resistor color code. 
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Understanding Resistor Color Codes 
Resistors have a series of color stripes that denote their resistance value. Normally, resistors have a four-
band code. The first two bands represent the most significant digits of the resistance value. Colors are 
assigned to the numbers between 0 and 9, and the color bands basically translate the numbers into a 
visible code. Table 7-2 provides the code. 

Table 7-2. Resistor Color Code 

Black Brown Red Orange Yellow Green Blue Violet Gray White 

0 1 2 3 4 5 6 7 8 9 

So if a resistor has brown and red as the first two bands, the most significant digits will be 1 and 2 
(12). The third band is the multiplier using the power of ten (or how many zeros to add to your most 
significant values), using the same assigned value for each color as in the previous step. For example, if 
you have a resistor that has brown, red and red, that means 12 (significant digits brown =1, red =2) x 100 
(multiplier, red =2 meaning 102) = 1200Ω (1.2kΩ).  

The last band is called the tolerance band (the deviation from the specified value) and it’s usually 
spaced away from the others. Gold means 5% of tolerance and silver means 10% of tolerance; if there’s 
no tolerance band that means a 20% of tolerance. 

The values of your LEDs from the distributor’s specifications are as follows: 

• White LED: Supply voltage 5V, forward voltage 3.3V, rated current 30mA, meaning 
a resistor of 68 ohms (color code: blue, grey, black). 

• Red LED: Supply voltage 5V, forward voltage 1.85V, rated current 30mA, meaning 
a resistor of 120 ohms (color code: brown, red, brown). 

• Green LED: Supply voltage 5V, forward voltage 3.3V, rated current 25mA, meaning 
a resistor of 150 ohms (color code: brown, green, brown). 

• Blue LED: Supply voltage 5V, forward voltage 3.3V, rated current 30mA, meaning a 
resistor of 68 ohms (color code: blue, grey, black). 

Now that you know your resistors, you can solder them to your board. You’re going to use pins 5, 9, 
10, and 11 for your LEDs (white, red, green, and blue), and scratch the strip board to separate all 
grounds, as shown in Figures 7-8 and 7-9. 
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Figure 7-8. Resistors soldered on board 

 

Figure 7-9. Resistors soldered on board (back) 

The next step is to connect all grounds together and back to Arduino’s ground, and then solder the 
LEDs to your circuits, as shown in Figure 7-10 and 7-11. Make sure that the right color is connected to 
the right pin; also remember that the shorter legs on the LEDs (cathode) connect to ground and the 
longer legs connect to the resistors. 
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Figure 7-10. LEDs on circuit 

 

Figure 7-11. LEDs on circuit (back) 

Testing the Circuit 
Now that everything is soldered, you can use a simple piece of code to test the circuit. This code 
programs the LEDs to dim at different speeds so you can appreciate the richness and variety of the 
colors resulting from the mix. The code is based on the Fade example from Arduino; it’s been modified 
to drive more than one LED. 
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int whiteLED = 5; 
int redLED = 9; 
int greenLED = 10; 
int blueLED = 11; 
 
int Wbr = 0; 
int Rbr = 0;  
int Gbr = 0;  
int Bbr = 0;  
 
int Wspeed = 0; 
int Rspeed = 2; 
int Gspeed = 3; 
int Bspeed = 5; 
 
void setup()  {  
  pinMode(whiteLED, OUTPUT); 
  pinMode(redLED, OUTPUT); 
  pinMode(greenLED, OUTPUT); 
  pinMode(blueLED, OUTPUT); 
}  
 
void loop()  {  
  analogWrite(whiteLED, Wbr); 
  analogWrite(redLED, Rbr); 
  analogWrite(greenLED, Gbr); 
  analogWrite(blueLED, Bbr); 
 
  Wbr +=  Wspeed; 
  if (Wbr == 0 || Wbr == 255) { 
    Wspeed *= -1 ;  
  }  
  Rbr +=  Rspeed; 
  if (Rbr == 0 || Rbr == 255) { 
    Rspeed *= -1 ;  
  }  
  Gbr +=  Gspeed; 
  if (Gbr == 0 || Gbr == 255) { 
    Gspeed *= -1 ;  
  }  
  Bbr +=  Bspeed; 
  if (Bbr == 0 || Bbr == 255) { 
    Bspeed *= -1 ;  
  }  
 
  delay(30); 
} 
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Figure 7-12. RGB lamp test 

Run this code and watch your lamp change colors smoothly (Figure 7-12). Each LED changes its 
intensity at a different speed. You can tweak the code and change the speed of each lamp at will. The 
lamp looks good now, but you still have a Mini USB cable attached to it. The USB cable brings power and 
data to the Arduino, so removing it means you need to plug an external power source and a wireless 
module to the board, as shown in Figure 7-13. 

 

Figure 7-13. XBee and battery clip 
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To substitute the USB power on your freestanding module, connect a battery clip to your circuit. But 
first you need to solder a new header connecting pin 30 in your Arduino (Vin, a 6-20V unregulated 
external power supply). Then connect the red cable in the battery clip (power) to this new pin and the 
black cable (ground) to the other grounds (Figure 7-14). 

 

Figure 7-14. Battery clip 

 Connect the battery holder to the battery clip and observe that the lights behave the same way as 
when the mini USB cable is connected. The code was already uploaded from the previous test and 
Arduino just followed the routine without receiving any external data from the computer. 

XBee Wireless Module 
You’re now going to add an XBee to the circuit. XBee is a brand name from Digi International for a family 
of radio modules. These wireless modules allow your Arduino to communicate wirelessly with your 
computer, avoiding the inconvenience of having cables sticking out of your beautiful lamps.  

XBee pins are spaced 2 mm apart, which means that XBee can’t be directly connected to a 
breadboard. The XBee modules must be first connected to an XBee Explorer USB (broadcaster) and to an 
XBee Explorer Regulated (receiver). 

The first step is to install the drivers in order for your computer to recognize the XBee module. The 
XBee Explorer uses a FTDI chip to convert the serial transmission to USB signals. The FTDI drivers can be 
found at http://www.ftdichip.com/FTDrivers.htm. Select the right platform and install the drivers. After 
installing the drivers and plugging in your XBee Explorer mini USB, you should be able to see your device 
using Terminal (ls /dev/tty.*) if you are using a Mac or by going to Start/Control panel/Hardware and 
Sound/Device Manager/ Universal Serial Bus controllers if you are a Windows user. 
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Once you have your broadcaster installed, you need to connect your receiver to the Arduino board. 
You could plug your XBee into a shield that connects the module directly to Arduino, but for this project 
you are going to use the normal XBee Explorer so you can analyze the connections.  

XBee has many pins but it takes only five of them to create a working wireless connection with 
Arduino via its built-in serial communication protocol. The five connections that you have to make 
between the Arduino board and the XBee Explorer Regulated are described in Table 7-3 and shown in 
Figures 7-15 through 7-17. 

Table 7-3. XBee Explorer Regulated to Arduino Connections 

XBee Explorer Regulated Pins Arduino Board Pins 

XBee 3.3V Arduino 3.3V 

XBee GND Arduino GND 

XBee DIN Arduino TX (Digital Pin 1) 

XBee DOUT Arduino RX (Digital Pin 0) 

XBee DIO3 Arduino RESET 

 

Figure 7-15. XBee Explorer connected to Arduino 
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Figure 7-16. Strip board with serial connections 

Figure 7-17. Strip board with serial connections (back) 

The last step is to power your XBee, so pick a cable for power from the 3V Arduino pin to the XBee 
Explorer’s VCC or 3.3V, and connect Arduino’s ground to the XBee Explorer’s ground.  

Once you have the circuit assembled (Figure 7-18), pile it so it fits it inside your plastic pencil holder, 
building your lamp (Figure 7-19). 



CHAPTER 7   MOOD LAMPS 

 

148 

 

Figure 7-18. Final circuit 

 Tip A piece of advice: perforate a hole on top of the pencil holder so if the components get stuck inside, you 

can push them out. 

 

Figure 7-19. Pencil holder 
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After assembling the lamp, the next step is to use the Kinect to control the light’s colors. You will 
learn how to control several lights at the same time, implementing code that will work on any number of 
lamps, from one to as many as you can build. If you feel patient, build a couple more of them! 

Arduino Programming 
Now it’s time to implement and upload the Arduino code to the board, so you can move on to 
programming the user-lamp interaction in Processing. The following Arduino code declares the LED pin 
variables and four integers (Wval, Rval, Gval, and Bval) that store the brightness level of each LED. You 
are building several lamps, so you will declare an integer called lampNumber that determines which lamp 
it is. You need to change this number before uploading the code to every lamp’s Arduino, starting from 
zero and counting up.  

int whiteLED = 5; 
int redLED = 9; 
int greenLED = 10; 
int blueLED = 11; 
 
int WVal, RVal, GVal, BVal; 
int lampNumber = 0; 

Within the setup() function, start the serial communication and set the four pins as output. 

void setup() { 
  Serial.begin(9600); 
  pinMode(whiteLED, OUTPUT); 
  pinMode(redLED, OUTPUT); 
  pinMode(greenLED, OUTPUT); 
  pinMode(blueLED, OUTPUT); 
} 

Within the loop() function, check if you have enough data in the serial buffer and read the first 
value. If this value is the event trigger ‘S’, read the next piece of data, which you interpret as the number 
of the lamp for which the communication is intended. If it’s equal to this lamp’s lampNumber, read the 
following four numbers and apply their values directly to the four LEDs connected to the Arduino. 

void loop(){ 
if (Serial.available()>5) {   char val = Serial.read(); 
    if(val == 'S'){ 
       
      int messageNumber = Serial.read(); 
      if(messageNumber == lampNumber){ 
        WVal = Serial.read(); 
        RVal = Serial.read(); 
        GVal = Serial.read(); 
        BVal = Serial.read(); 
      } 
    }     
  } 
  analogWrite(whiteLED, WVal);  
  analogWrite(redLED, RVal);  
  analogWrite(greenLED, GVal);  
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  analogWrite(blueLED, BVal);  
} 

The Lamp Class 
The goal of this chapter is to create a lighting installation that is aware of the users and behaves 
according to their position in space. The lamps will also be controlled by intentional body gestures 
performed by the users. You’re going to spend the rest of this chapter developing the software that will 
gather user information from Kinect and translate it into precise orders for each of your lamps, which 
will be broadcast with an XBee module attached to your computer. 

At this moment, you have presumably fabricated a few lamps, each equipped with an XBee wireless 
module, a battery clip, and an Arduino Nano with specific code on board. It would be very useful for you 
to create a piece of code in Processing that could define the present state of each lamp and allow you to 
set each of the lamps’ parameters according to the information from the Kinect. This code structure 
should be implemented as a class. 

This is the first class you are implementing from scratch in the book, so it’s a good moment to give 
you a refresher on object-oriented programming (OOP). If this sounds scary, don’t panic. You have been 
using OOP throughout all of the previous chapters and projects; we just haven’t talked about it explicitly. 
OOP is a vast and complex subject, and it would be out of the scope of this book to attempt a thorough 
introduction, but we’re hoping this will be a reasonable starting point for you to get acquainted with the 
topic so you can understand the following chapters. 

Object-Oriented Programming 
First of all, object-oriented programming is a programming paradigm, or programming style, based on 
the use of objects for the design of computer programs. There is a long list of available programming 
paradigms, and they all differ in the abstractions used to represent the elements of a program. This 
means they are different in the way they think about the computation, not in the type of computation 
they perform. You can tackle the same problem using different programming paradigms, and thus many 
programming languages allow the implementation of code using several of them. 

OOP uses classes and objects, which are instances of classes, to structure the code. Classes are used 
as blueprints to create objects to represent the elements in the code. In the next pages, you will use 
classes, fields, constructors, and methods to implement the class Lamp, which represents the lamps you 
have just built and programmed in the previous sections. This class allows you to create instances of 
your lamp objects, and store and affect their positions and RGB values in a structured way.  

Java, the programming language on which Processing is based, is an object-oriented programming 
language and as such, every time you programmed in Processing, you were using OOP. In Java, the 
convention is to store each class in a separate file, and in Processing this translates to writing each class 
in a separate tab (Figure 7-20). This will automatically create a new .pde file in your sketch folder with 
the name of the tab. 
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Figure 7-20. Creating a new tab in Processing 

Class Declaration 
The first line of code for the new class starts with the word “class,” followed by the name you have 
chosen for the class. It is good coding practice to start class names with a capital letter. All the rest of the 
class code is contained within the curly brackets that you open after the class’s name. 

class Lamp { 
   // Your code goes here 
} 

Field Description 
After declaring your class, you declare the fields, or properties of the class. In your case, you want to be 
able to control the position of each lamp object and the brightness of its four LEDs, so you declare one 
PVector to keep track of the lamp’s position and four integers for LED brightness. 

  class Lamp { 
  PVector pos; 
  int R, G, B, W; 

In Java, classes, fields, and methods can be preceded by access specifiers defining the visibility of the 
members. The access specifier is a keyword preceding the declaration of the element. There are three 
main types of visibility in Java. 

• private: The field can only be accessed only by the class. 

• protected: the field can be accessed by the class and its subclasses. 

• public: The member can be accessed from anywhere. 

 Note In Processing, the using of public members is encouraged at all times, so the visibility of every member 
will be public unless otherwise specified. This is the reason why you normally won’t be explicitly defining the 

visibility of a member in your code. 
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Constructor 
The constructor is a subroutine or method that has the same name as the class and doesn’t have an 
explicit return type. The constructor is called at the creation of an object, and it initializes the data 
members (fields) of the class. There can be multiple constructors for the same class as long as they take 
different sets of parameters at the creation of the objects. 

In your Lamp class, you only need one constructor; it will take three floats as parameters. The 
constructor initializes the PVector defining the position of the lamp to the x, y, and z parameter values 
and sets the blue LED to full brightness so you can see that the lamp has been initialized. 

  Lamp(float x, float y, float z) { 
    this.pos = new PVector(x, y, z); 
    this.B = 255; 
  } 

Methods 
Methods are functions declared within the class. Public methods can be accessed from other classes, 
and they can be declared as void if you don’t need them to return a value or any kind of data. Getters and 
setters are just special ways of calling methods used to change or acquire a specific property of the class. 
They are sometimes called accessor methods. 

The first method in your class sets the lamp’s RGB parameters. It takes three integers and directly 
applies them to the R, G, and B fields of your object. 

  public void setColor(int r, int g, int b) { 
    R = r; 
    G = g; 
    B = b; 
  } 

You also need the current state of the LEDs in the lamp, so you implement a function that returns an 
array of three integers containing the RGB values. 

  public int[] getColor() { 
    int[] colors = { R, G, B }; 
    return colors; 
  } 

Although you won’t be using this function in your code, it could be useful for some other 
application to be able to change the lamp’s position from another class, including your main Processing 
draw() loop, so implement a setter for your lamp’s position PVector. 

  public void setPos(PVector pos) { 
    this.pos = pos; 
  } 

Implement a draw() method that takes care of the display of the lamp on screen. It’s called from the 
main draw() loop, so you can see your lamps at their right position and colors. Note that this function 
could be called render(), display(), or any other name that you feel is more descriptive. 

  public void draw() { 
    pushMatrix(); 
    translate(pos.x, pos.y, pos.z); 
    pushStyle(); 
    if (W == 255) { 
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      fill(W); 
    }  
    else { 
      fill(R, G, B); 
    } 
    noStroke(); 
    box(100, 150, 100);  
    popStyle(); 
    popMatrix(); 
  } 

   

Figure 7-21. The lamp closer to the user will glow at full intensity 

The method updateUser() takes the user’s position in space and checks if the lamp is closer than a 
certain threshold distance. If it is, it makes the white LED glow at full brightness, assuming that the user 
could use a bit of light for reading or finding his way around (Figure 7-21). 

  public void updateUserPos(PVector userCenter) { 
    float dist = pos.dist(userCenter); 
    if (dist < 1000) { 
      W = 255; 
    }  
    else { 
      W = 0; 
    } 
    stroke(200); 
    line(pos.x, pos.y, pos.z, userCenter.x, userCenter.y, userCenter.z); 
  } 

Finally, drawSelected() is called when the user has successfully selected a lamp by pointing at it, 
and it will display a gizmo around the lamp so you know the lamp is selected. 

  public void drawSelected() { 
    pushMatrix(); 
    translate(pos.x, pos.y, pos.z); 
    pushStyle(); 
    noFill(); 
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    stroke(R, G, B); 
    box(150, 225, 150); 
    popStyle(); 
    popMatrix(); 
  } 

Remember that all this code should be within the curly braces you opened after your class 
declaration. After you close the last method, there should be a closing curly brace to close the class. 

User Control Sketch 
You have implemented a Lamp class that you can use to represent your physical lamps in the code. Now 
you need to write the necessary routines to allow for gesture-based user control and the sending of 
serial data from your computer. You’re going to use NITE’s user and skeleton tracking capabilities for 
this purpose. 

You encountered skeleton tracking in previous projects, but this time you are going to be using 
three-dimensional skeleton tracking to check where the user is pointing in space. You’re also going to 
implement a simple gesture-recognition routine to trigger the creation of lamps. 

First and foremost, you need to tell Processing to import all the libraries that you will be using in the 
project. These are Processing’s OpenGL and Serial libraries, KinectOrbit, and Simple-OpenNI. 

import processing.opengl.*; 
import kinectOrbit.KinectOrbit; 
import processing.serial.Serial; 
import SimpleOpenNI.SimpleOpenNI; 

Variable Declaration 
You now need to declare all the libraries’ objects and create a File object where you store your lamp’s 
positions and colors. This is detailed in the data storage and retrieval section. 

SimpleOpenNI kinect; 
KinectOrbit myOrbit; 
Serial myPort; 
File lampsFile; 

The Boolean serial defines if you are initializing and using serial communication. The userID 
integer keeps track of the current user, and the PVector userCenter contains the current position of the 
user. You also need to create an ArrayList of Lamp objects so it’s easy to add more lamps in runtime. 

boolean serial = true; 
int userID; 
PVector userCenter = new PVector(); 
ArrayList<Lamp> lamps = new ArrayList<Lamp>(); 

Setup() Function 
The setup() function sets the frame’s size and renderer, initializes the Simple-OpenNI object, and 
enables the Mirror, depth map, and user capabilities. 

public void setup() { 
  size(800, 600, OPENGL); 
  smooth(); 
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  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(true); 
  kinect.enableDepth(); 
  kinect.enableUser(SimpleOpenNI.SKEL_PROFILE_ALL); 

The KinectOrbit object is initialized now, passing this as a parameter, and you set the gizmo 
drawing to true. The file lampsFile is also initialized now; it’s important that you do it now instead of 
doing it in the Variable Declaration section, as otherwise the data path won’t refer to the data folder in 
your Processing sketch. 

  myOrbit = new KinectOrbit(this, 0); 
  myOrbit.drawGizmo(true); 
 
  lampsFile = new File(dataPath("lamps.txt")); 

 To finish the setup(), initialize the serial communication if you have set your serial variable to 
true. 

  if (serial) { 
    String portName = Serial.list()[0];  
    myPort = new Serial(this, portName, 9600); 
  } 
} 

Draw() Function 
The first lines in your draw() function update the data from Kinect and set the background color to 
black. You then push the KinectOrbit so you can control the camera view with your mouse and call the 
function drawPointCloud(), which draws the raw point cloud from Kinect on screen. You only display 
one every six points for speed. 

public void draw() { 
  kinect.update(); 
  background(0); 
 
  myOrbit.pushOrbit(); 
  drawPointCloud(6); 

 

Figure 7-22. User recognized by Kinect 
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 Then you check if there is a user in the Kinect’s field of view, and if so, you get his center of mass 
using the Simple-OpenNI function getNumberOfUsers(), which sets the second parameter (your PVector 
userCenter) to the center of mass of the user userID (Figure 7-22). You use the center of the user’s mass 
to update each of the lamps in your ArrayList. 

  if (kinect.getNumberOfUsers() != 0) { 
    kinect.getCoM(userID, userCenter);  
    for (int i = 0; i < lamps.size(); i++) { 
      lamps.get(i).updateUserPos(userCenter);  
    } 

Then, if apart from having detected a user, you are also tracking his skeleton, you call the function 
userControl(), and you draw the skeleton on screen. If you’re not tracking a skeleton, you simply print 
the user’s point cloud on screen for reference (Figure 7-23). 

    if (kinect.isTrackingSkeleton(userID)) { 
      userControl(userID);  
      drawSkeleton(userID);  
    }  
    else { 
      drawUserPoints(3);  
    } 
  } 

 

Figure 7-23. Use point cloud (left) and user skeleton (right) 

Now you draw each lamp on screen and the Kinect camera frustum, and you pop the KinectOrbit 
object. If the serial Boolean is true, you call the sendSerial() function. 

  for (int i = 0; i < lamps.size(); i++) { 
    lamps.get(i).draw(); 
  } 
  kinect.drawCamFrustum(); 
  myOrbit.popOrbit(); 
 
  if (serial)  { 
    sendSerialData(); 
  } 
} 
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User Control 
The function userControl() performs the computations that are most specific to this project. This 
function gets the user’s right arm position from Kinect and uses the joint alignment to check whether the 
user is pointing at a lamp or not. Then it uses the left hand position to change the color of the selected 
lamp. This function also contains the implementation of the lamp creation gesture recognition.  

First, you create PVectors to store the three-dimensional positions of the body joints you need for 
your user control. Then you use the Simple-OpenNI function getJointPositionSkeleton() to get the 
joint’s coordinates and set your vectors to these positions. 

private void userControl(int userId) { 
  PVector head = new PVector(); 
  // Right Arm Vectors 
  PVector rHand = new PVector(); 
  PVector rElbow = new PVector(); 
  PVector rShoulder = new PVector(); 
  // Left Arm Vectors 
  PVector lHand = new PVector(); 

  // Head 
  kinect.getJointPositionSkeleton(userId, SimpleOpenNI.SKEL_HEAD, head); 
  // Right Arm 
  kinect.getJointPositionSkeleton(userId, SimpleOpenNI.SKEL_RIGHT_HAND,  
  rHand); 
  kinect.getJointPositionSkeleton(userId, SimpleOpenNI.SKEL_RIGHT_ELBOW,  
  rElbow); 
  kinect.getJointPositionSkeleton(userId,  
  SimpleOpenNI.SKEL_RIGHT_SHOULDER, rShoulder); 
  // Left Arm 
  kinect.getJointPositionSkeleton(userId, SimpleOpenNI.SKEL_LEFT_HAND,  
  lHand);   

Lamp Control 
The way you check if the user is pointing at a lamp is by checking that his right arm is stretched; if it is, 
you check where in space it is pointing. For this, you need the vectors defining the user’s forearm and 
arm; these are easily found by subtracting the vector defining the shoulder position from the one 
defining the elbow position, and doing the same operation with the elbow and the hand PVectors 
(Figure 7-24). 

  PVector rForearm = PVector.sub(rShoulder, rElbow); 
  PVector rArm = PVector.sub(rElbow, rHand); 
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Figure 7-24. Right arm angles and lamp 

Once you have these vectors, you can check whether the user’s right arm is stretched. You do this by 
testing if the angle between the two PVectors (the complementary of the elbow angle) is lesser than the 
threshold you have set to PI/8, or 22.5 degrees. If the right arm is indeed stretched, you test the angle 
between the right arm’s PVector and the angle defining the direction from the right hand to the lamp’s 
position. The smaller the arm-lamp angle is, the more directly the right hand is pointing at the lamp. You 
have set this threshold to PI/4, or 45 degrees, so it’s easier for the user to select a lamp.  

If you are under the threshold, you use the Lamp object’s method setColors(), passing as a 
parameter the halved x, y, and z distances of the left hand to the user’s head. This way the user can 
change the color parameters of the lamp using unique body gestures (Figure 7-25). 

 

Figure 7-25. User control of a lamp’s RGB values 

if (PVector.angleBetween(rForearm, rArm) < PI / 8f) { 
for (int i = 0; i < lamps.size(); i++) { 
      PVector handToLamp = PVector.sub(rHand, lamps.get(i).pos); 
      if (PVector.angleBetween(rArm, handToLamp) < PI / 4) { 
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PVector colors = PVector.sub(head, lHand); 
        lamps.get(i).setColor((int) colors.x / 2,  
        (int) colors.y / 2, (int) colors.z / 2); 
        lamps.get(i).drawSelected(); 
      } 
    } 
  } 

Lamp Creation 
Until now, we have been talking about lamps that you haven’t created yet. You have a series of physical 
lamps that you want to be able to control from your code, and you have implemented a way to control 
virtual lamps in your program. Now, if you can make the coordinates of your virtual lamps coincident to 
the physical lamps, you’ll be getting somewhere. 

The way you do this is by implementing gesture recognition that allows the user to tell the program 
where the lamps are placed physically. You basically place the lamps in the space and then stand by 
each of the lamps and tell the computer, “Hey, here is a lamp!” 

This gesture should be something the user can do without too much effort but one that is not 
common enough to trigger a random series of lamps every minute. The gesture we came up with is 
touching your head with two hands, which is a reasonably good balance between easiness and rareness; 
it also has the advantage of being extremely easy to detect. You only need to check the distances of the 
right and left hands to the head; if both are smaller than 200mm you create a lamp positioned at the 
user’s center of mass. This is not their exact location, but it’s a reasonably good approximation. 

There is one more test you need to perform. If you don’t explicitly avoid it, the program will create 
lamps at every loop the whole time your hands are on your head. To avoid this, set a proximity limit so if 
the lamp about to be created stands closer than 200mm to any other lamp, it won’t be created. This way, 
even if you keep your hands on your head for a minute, only one lamp will be created until you move 
away by the specified distance (Figure 7-26). 

if (head.dist(rHand) < 200 && head.dist(lHand) < 200) { 
    boolean tooClose = false; 
    for (int i = 0; i < lamps.size(); i++) { 
      if (userCenter.dist(lamps.get(i).pos) < 200) { 
        tooClose = true; 
      } 
    } 
    if (!tooClose) { 
      Lamp lampTemp = new Lamp(userCenter.x, userCenter.y,  
      userCenter.z); 
      lamps.add(lampTemp); 
    } 
  } 
} 
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Figure 7-26. Lamp generation by body gestures 

Data Storage and Retrieval 
You have installed your lamps all over your living room, and you have told your program where each of 
them is located by using your lamp-creation gesture. But you don’t want to have to do this every time 
you restart your sketch. It would be great to be able to save the current lamp layout together with their 
individual states to an external file that can be retrieved in future sessions. This is the purpose of the 
functions saveLamps() and loadLamps(). 

You use the previously defined lampsFile file to store the information, employing the Processing 
function saveStrings() for this purpose. This function allows you to save an array of strings into a file 
with just one line of code. The first parameter that the function takes is the file you want to save your 
data to and the second one is the array of strings.  

In your case, you need first to transform each of your lamps’ position coordinates and RGB values to 
strings, and then store the information for each lamp in one line of code, separating the data with blank 
spaces so you can find them later.  

void saveLamps() { 
  String[] lines = new String[lamps.size()]; 
  for (int i = 0; i < lamps.size(); i++) { 
    lines[i] = String.valueOf(lamps.get(i).pos.x) + " " 
      + String.valueOf(lamps.get(i).pos.y) + " " 
      + String.valueOf(lamps.get(i).pos.z) + " " 
      + Integer.toString(lamps.get(i).getColor()[0]) + " " 
      + Integer.toString(lamps.get(i).getColor()[1]) + " " 
      + Integer.toString(lamps.get(i).getColor()[2]); 
  } 
  saveStrings(lampsFile, lines); 
} 

The function loadLamps() performs the inverse task to the previous one. You use the Processing 
function loadStrings() to save each line in the file to a string in the array of strings stringArray, and 
then you split each line at the blank spaces and convert each substring into floats defining the position 
of the lamp and three integers defining its color. You then create the necessary lamps and set their color 
values to the ones loaded from the file. 
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void loadLamps() { 
  String lines[] = loadStrings(lampsFile); 
  for (int i = 0; i < lines.length; i++) { 
    String[] coordinates = lines[i].split(" "); 
    Lamp lampTemp = new Lamp(Float.valueOf(coordinates[0]),  
    Float.valueOf(coordinates[1]),  
    Float.valueOf(coordinates[2])); 
    lampTemp.setColor(Integer.valueOf(coordinates[3]),  
    Integer.valueOf(coordinates[4]),  
    Integer.valueOf(coordinates[5])); 
    lamps.add(lampTemp); 
  } 
} 

These two functions are called when you press the s and l (the letter l, not number 1) keys on your 
keyboard. The Processing callback function keyPressed() takes care of invoking them when a new 
keyboard event is triggered. 

public void keyPressed() { 
  switch (key) { 
  case 's': 
    saveLamps(); 
    break; 
  case 'l': 
    loadLamps(); 
    break; 
  } 
} 

Serial Communication 
The serial function performs the task of sending the necessary data to coordinate the physical lamps to 
the ones you are seeing on your screen. For each lamp you send the event trigger ‘S’, followed by the 
number of the lamp the message is intended for, and then the W, R, G, and B values. 

void sendSerialData() { 
    for (int i = 0; i < lamps.size(); i++) { 
    myPort.write('S'); 
    myPort.write(i); 
    myPort.write(lamps.get(i).W); 
    myPort.write(lamps.get(i).R); 
    myPort.write(lamps.get(i).G); 
    myPort.write(lamps.get(i).B); 
  } 
} 

Display Functions 
The following functions are used to print the Kinect point clouds and user skeleton on screen. You saw 
how to display the Kinect point cloud in Chapter 3. 

void drawPointCloud(int steps) { 
  int[] depthMap = kinect.depthMap(); 
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  int index; 
  PVector realWorldPoint; 
  stroke(255); 
  for (int y = 0; y < kinect.depthHeight(); y += steps) { 
    for (int x = 0; x < kinect.depthWidth(); x += steps) { 
      index = x + y * kinect.depthWidth(); 
      if (depthMap[index] > 0) { 
        realWorldPoint = kinect.depthMapRealWorld()[index]; 
        point(realWorldPoint.x, realWorldPoint.y, realWorldPoint.z); 
      } 
    } 
  } 
} 

The drawing of the user points builds on the same principles as the previous function, but you sort 
the depth map points according to the color of the equivalent point in the user map. The user map is an 
array of pixels with value 0 if the Kinect determines they are background pixels, and a higher value, 
starting at 1, for the pixels defining the users. 

This function allows you to print the user’s pixels in a different color, so you can observe on screen 
what Kinect is considering to be your user. 

void drawUserPoints(int steps) { 
  int[] userMap = kinect.getUsersPixels(SimpleOpenNI.USERS_ALL); 
  // draw the 3d point depth map 
  PVector[] realWorldPoint = new PVector[kinect.depthHeight() * kinect.depthWidth()]; 
  int index; 
  pushStyle(); 
  stroke(255); 
  for (int y = 0; y < kinect.depthHeight(); y += steps) { 
    for (int x = 0; x < kinect.depthWidth(); x += steps) { 
      index = x + y * kinect.depthWidth(); 
      realWorldPoint[index] = kinect.depthMapRealWorld()[index].get(); 
      if (userMap[index] != 0) { 
        strokeWeight(2); 
        stroke(0, 255, 0); 
        point(realWorldPoint[index].x, realWorldPoint[index].y,  
        realWorldPoint[index].z); 
      } 
    } 
  } 
  popStyle(); 
} 

The next two functions are from Simple-OpenNI’s 3d skeleton tracking example. They both use 
functions specific to Simple-OpenNI to draw the user’s limbs on screen.  

void drawSkeleton(int userId) { 
  strokeWeight(3); 
  // to get the 3d joint data 
  drawLimb(userId, SimpleOpenNI.SKEL_HEAD, SimpleOpenNI.SKEL_NECK); 
  drawLimb(userId, SimpleOpenNI.SKEL_NECK,  
  SimpleOpenNI.SKEL_LEFT_SHOULDER); 
  drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER,  
  SimpleOpenNI.SKEL_LEFT_ELBOW); 
  drawLimb(userId, SimpleOpenNI.SKEL_LEFT_ELBOW,  
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  SimpleOpenNI.SKEL_LEFT_HAND); 
 
  drawLimb(userId, SimpleOpenNI.SKEL_NECK,  
  SimpleOpenNI.SKEL_RIGHT_SHOULDER); 
  drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER,  
  SimpleOpenNI.SKEL_RIGHT_ELBOW); 
  drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_ELBOW,  
  SimpleOpenNI.SKEL_RIGHT_HAND); 
 
  drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER,  
  SimpleOpenNI.SKEL_TORSO); 
  drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER,  
  SimpleOpenNI.SKEL_TORSO); 
 
  drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_LEFT_HIP); 
  drawLimb(userId, SimpleOpenNI.SKEL_LEFT_HIP,  
  SimpleOpenNI.SKEL_LEFT_KNEE); 
  drawLimb(userId, SimpleOpenNI.SKEL_LEFT_KNEE,  
  SimpleOpenNI.SKEL_LEFT_FOOT); 
 
  drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_RIGHT_HIP); 
  drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_HIP,  
  SimpleOpenNI.SKEL_RIGHT_KNEE); 
  drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_KNEE,  
  SimpleOpenNI.SKEL_RIGHT_FOOT); 
 
  strokeWeight(1); 
} 
 
void drawLimb(int userId, int jointType1, int jointType2) { 
  PVector jointPos1 = new PVector(); 
  PVector jointPos2 = new PVector(); 
  float confidence; 
 
  // draw the joint position 
  confidence = kinect.getJointPositionSkeleton(userId, jointType1,  
  jointPos1); 
  confidence = kinect.getJointPositionSkeleton(userId, jointType2,  
  jointPos2); 
  stroke(255, 0, 0, confidence * 200 + 55); 
  line(jointPos1.x, jointPos1.y, jointPos1.z, jointPos2.x, jointPos2.y,  
  jointPos2.z); 
} 

Simple-OpenNI Callbacks 
The Simple-OpenNI callbacks are the same functions you used in the previous chapter. The only point 
to notice is that you update the userID integer to the last user you detected in the onNewUser() function. 

Speaking of classes and member visibility, you should add the keyword “public” before every 
callback function. This is unnecessary in Processing, but if you are using another IDE, such as Eclipse, 
you will need to set all the callbacks as public or Simple-OpenNI won’t invoke them. 
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public void onNewUser(int userId) { 
  println("onNewUser - userId: " + userId); 
  println("  start pose detection"); 
  kinect.startPoseDetection("Psi", userId); 
  userID = userId; 
} 
 
public void onLostUser(int userId) { 
  println("onLostUser - userId: " + userId); 
} 
 
public void onStartCalibration(int userId) { 
  println("onStartCalibration - userId: " + userId); 
} 
 
public void onEndCalibration(int userId, boolean successfull) { 
  println("onEndCalibration - userId: " + userId + ", successful: " + successfull); 
  if (successfull) { 
    println("  User calibrated !!!"); 
    kinect.startTrackingSkeleton(userId); 
  }  
  else { 
    println("  Failed to calibrate user !!!"); 
    println("  Start pose detection"); 
    kinect.startPoseDetection("Psi", userId); 
  } 
} 
 
public void onStartPose(String pose, int userId) { 
  println("onStartdPose - userId: " + userId + ", pose: " + pose); 
  println(" stop pose detection"); 
  kinect.stopPoseDetection(userId); 
  kinect.requestCalibrationSkeleton(userId, true); 
} 
 
public void onEndPose(String pose, int userId) { 
  println("onEndPose - userId: " + userId + ", pose: " + pose); 
} 
 

Summary 
You were introduced to a broad range of topics in this chapter. You learned how to implement three-
dimensional skeleton tracking and use it to perform custom gesture recognition. You also had a 
refresher on object-oriented programming, and you learned how to write a new class from scratch. 

On the hardware side of things, you built Arduino-based autonomous devices, each with its own 
power source and wireless module, which permitted the communication of the units with your 
computer. You also learned about the RGB color space and that you can reproduce the whole color 
spectrum with only three RGB LEDs (Figure 7-27). You also learned how to calculate the appropriate 
resistors for the LEDs. In the end, you were able to control a whole lighting system with body gestures 
and make it aware of your position in space so it could respond by lighting the closest lamps to you with 
a higher intensity.  
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Figure 7-27. RGB lamp color change 

You can think of this chapter as a general introduction to building any sort of application for 
intelligent houses. Imagine applying this sort of gesture control to any of your home appliances. The 
introduction of the XBee wireless module adds a new set of possibilities for using Arduino remotely, and 
you will explore these possibilities in future chapters of this book.  
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Kinect-Driven Drawing Robot 

by Przemek Jaworski 

In this chapter, you will be using some of the techniques that you learned in previous chapters and 
exploring them further with a different goal in mind. You will be using servos to build a robotic arm that 
is able to draw algorithmic patterns on paper (Figures 8-1 and 8-2).  

 

Figure 8-1. Visualization of the installation 
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Figure 8-2. Drawing robot in action 

Why an arm and not a two-axis pen plotter? Actually, an arm-like robot is simpler to construct and 
much easier to code. As in Chapter 6, you’re going to use servo motors, which are less complicated than 
steppers (no need for endstops and other sensors). In the course of this chapter, you will use Firmata, a 
library that allows you to control your Arduino board from Processing without the need to write any 
Arduino code.  

Your robot will be controlled by a Kinect-based tangible table, through which you will be able to 
issue instructions to the robot by moving your hands. It will be as simple as pointing your finger to an 
area and your robot will follow, drawing either your finger strokes or some sort of pre-defined 
algorithmic pattern. Table 8-1 lists the required parts and Figure 8-3 shows them. 

Table 8-1. The Parts List  

Part Description Price 

Screws, medium  M4 screws, 25 mm length, and nuts $5  

Screws, small M3 screws, 20mm length, and nuts $3 

K’lik construction system Choose the Starter Pack with a mix of various sized plates $12 

Power Supply Optional 5V, could be hacked ATX one $34.99 

Three servo motors Hitec HS-311 or similar $7.99 
each 
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Part Description Price 

Extension lead cables Three for each servo $1 

Paper clips To attach the device to the table $5 for 
pack 

Two right angle metal brackets To mount the robot $1 

 

Figure 8-3. Some parts shown graphically 

The parts taken from a slotted-plate construction system are 13 large plastic plates, 14 mid-sized 
plates, and 14 small joints (to make the structure more rigid). Apart from three servos (standard 0-180 
degree servos, similar to those used in earlier exercises), you’ll need six small screws to assemble the 
arms to the servo horns (they’re usually supplied with the servos) and 14 short M4 screws (16 or 20mm 
length). Paper clips will be used to fasten the pen to the robot and the base to the table. 
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Building the Robot 
Before you start, a few words must be said about the construction. I used a slotted-plate construction kit 
(K’lik - available from web sites like http://www.mindsetsonline.co.uk). You can use any similar system 
consisting of perforated plates that can be connected at straight angles or by screws. The robot itself is 
actually quite simple. It consists of three moveable parts: a base that holds Arduino and one servomotor, 
and three parts constituting the arms. 

The construction doesn’t really have to look exactly as shown in Figure 8-4, as there are many ways 
of assembling a similar robot. Parts can be designed differently, even 3D printed or CNC machined. I 
leave this to your creativity. Just note that I’ll be describing to a slotted-plate construction system. 
Optionally, you could make all required parts out of plastic or Perspex. 

The most important thing is to build a steady base with one servo (it will move the rest of the 
mechanism, so it has to be quite sturdy) and make sure it can be securely attached to the table. The 
other three parts, shown in Figure 8-4, should be made as light as possible; this will make it easier and 
faster to move.  

 

Figure 8-4. Construction of the arm 

Perhaps it’s best to start with easiest elements, so let’s focus on the arm at the end of the robot 
(Part 1).  

Part 1 
Part 1 is the part that holds the pen, so it’s the lightest part of all. The assembly drawing in Figure 8-5 
shows the elements and their contact points for Part 1. Use two M4 screws to fasten two plates together 
and two small M3 screws to attach it to servo horn. The bracket needs to be attached to the servo via the 
screw that comes with it. Figure 8-6 shows the finished part. 
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Figure 8-5. Part 1 assembly 

 

Figure 8-6. Part 1 finished 

Part 2 
Part 2 is a bit more complex as it includes an assembly of plates that hold the servo that connects Part 2 
to Part 1. The assembly should look like Figure 8-7. 
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Figure 8-7. Part 2 assembly 

Note that the top part is a set of two mid-sized plates, and not one large plate. They both stiffen the 
end so the piece can hold the servo attached to the front, as shown in Figure 8-8. The servo is attached 
with four standard M3 screws and one central screw.  

 

Figure 8-8. Part 2 finished 

Part 3 
Part 3 is the one closest to the base. Its construction is very similar to Part 2. The only difference is that it 
contains one more large plate at the bottom, additionally stiffening the structure (Figure 8-9). This plate 
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is fitted here because this part is positioned higher above the table than other parts, so there is enough 
clearance to do so. 

 

Figure 8-9. Part 3 assembly 

To connect the servo to the previous part, note that the spacing between the holes of the 
construction plates and those of the servo screws are different. You can drill new holes in the 
construction set or you can attach the servo to the arm using rigid wire (tightening it with pliers and 
rotating the ends spirally); see Figure 8-10. If you laser-cut your own parts, the holes will align, so you 
can simply use screws. 

 

Figure 8-10. Part 3 finished 
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The Base 
The base consists of four large plates and four small plates holding the servo in the middle. Additionally, 
there are two sets of three small plates joined in a corner shape to increase the rigidity of the part. Each 
corner shape is positioned at one side of the base (Figure 8-11). 

 

Figure 8-11. Base assembly 

The Arduino board can be attached by screwing it to the plastic parts using the mounting holes in 
the PCB and one M4 screw and nut (Figure 8-12). 

     

Figure 8-12. Arduino board assembled to the base 

Finally, attach the base to a small pad, which you then clip to the table (Figure 8-13). This way the 
robot stays in place, but you can move it easily if needed.  



CHAPTER 8   KINECT-DRIVEN DRAWING ROBOT 

 

175 

 

Figure 8-13. Assembled robot 

Building the Circuit 
The wiring of this project is quite simple as you are only using three servos. Just connect each servo’s 
GND connection with GND on Arduino, +5V wire to +5V on Arduino, and the signal wires to pins 9, 10, 
and 11 (see Table 8-2 and Figure 8-14). The positive voltage wire (+5V) is usually a red one, ground is 
black, and the signal wire is orange or yellow.  

Table 8-2. Servo Connections  

Servo 1 
Ground 

Servo 1 
+5V 

Servo 1 
Signal 

Servo 2 
Ground 

Servo 2 
+5V 

Servo 2 
Signal 

Servo 3 
Ground 

Servo 3 
+5V 

Servo 3 
Signal 

Arduino 
GROUND 

Arduino 
5V 

Arduino 
Pin 9 

Arduino 
GROUND 

Arduino 
5V 

Arduino 
Pin 10 

Arduino 
GROUND 

Arduino 
5V 

Arduino 
Pin 11 
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Figure 8-14. The circuit (signal wires connect to pins 9, 10, and 11 at the top.) 

If you have a +5V power supply that can provide more than 0.5A, simply connect it to Arduino using 
the built-in socket. This is only necessary if your computer/laptop USB port is not able to meet the 
demand. In some newer computers, USB ports are powerful enough to drive three small servos without 
a problem. 

Testing the Circuit 
Next, test the servos. In previous projects, you learned how to drive your servos using Arduino code and 
how to control their positions using serial communication from Processing. In this project, you will take a 
different approach: you will utilize a Processing library to manipulate the servos directly from Processing.  

Firmata and the Arduino Library for Processing 
The Arduino library is one of Processing’s core libraries so you don’t need to install it. This library 
communicates to a firmware installed in your Arduino board called Firmata, eliminating the need to 
write any separate Arduino code to drive your servos.  

As opposed to previous examples, everything is in one piece of code in this project. This approach is 
very advantageous for some uses but is not applicable to freestanding Arduino projects. Arduino can’t be 
used without a computer if you are using this library, so it always needs to be connected to the computer 
via USB cable or other wireless means. If the library doesn’t exist by default on your Arduino IDE, you 
can download it from http://www.arduino.cc/playground/Interfacing/Processing. 

Before you start testing the circuit, you must upload the Firmata code to Arduino so it’s ready to 
listen to the instructions via serial port. Open Arduino environment and navigate to File  Examples  
Firmata  Servo Firmata. Make sure you have the proper board and COM port selected, and press the 
Upload button. After the successful upload, you can write your first servo navigation program. 

Servo Test 
Open the Processing environment and type the following code: 

import processing.serial.*; 
import cc.arduino.*;  
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Arduino arduino; 
int servoPin = 11; // Control pin for servo motor 
void setup(){ 
  size (180, 100); 
  arduino = new Arduino(this, Arduino.list()[0]); 
  arduino.pinMode(servoPin, Arduino.OUTPUT); 
} 
 
void draw(){ 
  // the servo moves to the horizontal location of the mouse 
  arduino.analogWrite(servoPin, mouseX);  
} 

Note that you’re using pin 11 for connecting the servo, which is a PWM pin. You’re also not using 
any COM ports in this program. Instead you’re asking the computer for a list of available Arduinos (there 
might be more than one) and specifying which one you’re using. That’s what Arduino.list()[0] means. 
However, sometimes it detects other devices connected to COM ports as Arduinos, so depending on 
your setup, you might have to use Arduino.list()[1] instead. 

Once you run this simple Processing application, your servo should rotate as you move your mouse 
within the app’s window. The servo accepts angles from 0 to 180; hence the 180-pixel width used. 

Upon successful testing of this simple setup, you can move on to construct the kinetic part of the 
installation. The difference between the previous example and your final piece is that you’re going to be 
using three servos connected to PWM pins 9, 10, and 11. (Depending on your Arduino version, you 
might have more PWM pins. It’s easy to recognize them by a small white PWM mark). All GND wires 
should go to GND on Arduino and all power wires to +5V.  

Robot Simulation 
The main routine of the installation is the following: you’re going to scan a tangible table area, detect a 
hand (or a pointer) over the table, filter the point cloud, and extract the X and Y coordinates of where the 
robot should move. These X and Y values will be translated into servo angles in order to make the robot 
move to the same location. Let’s have a look at the geometry of your robot.  

You have three modules, each driven by separate servo and each able to rotate between 0 and 180 
degrees. Let’s assume the length of each module is exactly 150mm. This means you must translate these 
X and Y coordinates into angular values sent to each servo. This might look complicated, but fortunately 
you can use some simple geometric dependencies to find and use the angles.  

Look at the diagram in Figure 8-15. You can see that each X and Y coordinate can be translated into 
polar coordinates: length L and rotation angle. This is true for all points lying within maximum reach of 
the robot and within a 0-180 angle in relation to upper horizontal edge of your working area. 
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Figure 8-15. Robot angles 

This translation, however, poses a small problem. As you can see in the right drawing in Figure 8-15, 
sometimes (or most of the time) there are two ways of reaching a given position. The tip of the pen will 
reach XY point in both cases, so how do you decide which one to use? 

The truth is, that once you choose one side, you can’t reach all the points in your working area 
simply because your robot is hitting the limits of its arm’s servo rotation. Each servo can only rotate from 
-90 to 90 degrees (or 0 to 180, depending on reference angle), so the pen’s closer position to the base will 
be reached by the robot bending into a C shape.  

For the purpose of this exercise, you’re going to simplify the problem. You’ll assume that your robot 
is always using only one side. To do that, you’re going to rotate the base by 45 degrees, as shown in 
Figure 8-16. 

Figure 8-16. Robot span (example setup) 
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This way, the working area resembles a slice of the circle with its minimum and maximum reach 
arcs cut off at the top and bottom (Figure 8-17). Of course, you could use a more intelligent algorithm 
allowing use of more space, but to keep things uncomplicated, just stick to this setup. 

 

Figure 8-17. Robot’s working area 

Angle Measuring Program 
Finally, you must tackle the translation from Cartesian coordinates (XY) to polar coordinates 
(angle/distance). Knowing the X and Y and your origin of coordinates (the pivotal point of the first 
segment’s servo), you can easily calculate the distance to the pen’s desired X and Y position using 
Processing’s dist() function. The angle doesn’t pose a big challenge because it’s usually derivable from 
the arcsine. The functions return an angle based on the proportion of the sides of a triangle formed by 
the XY point, the origin (0,0) point, and its projections on the axis of the coordinate system. In this case, 
your angle will be arcsine(Y coordinate/total length L), assuming the base is at the (0,0) point. 

To make more sense of it, let’s test the angle-measuring program. 

void setup(){ 
size (800, 600); 
} 
 
void draw(){ 
  background(255); 

First, center your X coordinate in the middle of the screen. 

  translate(width/2, 0);  

 Then, capture the coordinates of your pen tip (mouse). 

  float penX = mouseX - width/2;  
  float penY = mouseY; 
   
  ellipse(penX, penY, 20, 20);//draw pen tip 
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  ellipse(0, 0, 20, 20); 
   
  line(0, 0, penX, penY); 
  float len = dist(0, 0, penX, penY); //let's measure the length of your line 

  The asin() function returns an angle value in a range of 0 to PI/2, in radians. The following line 
makes sure that the angle is greater than PI/2 (90 degrees) when penX is negative: 

  float angle = asin(penY/len); 
  if (penX < 0) { angle = PI - angle; } 

 Then output the angle value converted from radians to degrees. 

  println("angle = " + degrees(angle));  
  println("length = " + len);//print out the length  

 And finally, draw your angle as an arc. 

  arc(0, 0, 200, 200, 0, angle);  
} 

This demonstrates how to extract any angle from the proportions of a triangle defined by three 
points. But the goal is to find not one but three angles, one for each servo; therefore you need to go a bit 
further. If you look at Figure 8-18, you can see how to perceive the virtual model of the robot. This 
should make it much easier to understand the math behind it.  

 

Figure 8-18. Robot’s angles (assuming no 45 degree rotation has been applied yet) 

Robot Simulation Program 
Let’s imagine that the length of your reach (described previously as L) can be split into three 
components, being perpendicular projections of each sub-arm onto a straight line. They’re called d’, d, 
and d’ again (the first and last ones are the same). Using this method, you can codify each polar 
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coordinate (angle and length) as an angle and two different lengths (d’ and d). But wait a minute; don’t 
you need the angles, not the lengths, to drive the servos? 

That’s right. Therefore, having d’ and d, you can use their proportion, and the asin()function again, 
to determine it! 

So, the length of your reach is L. 

L = dist(0, 0, penX, penY) 
 
But also, looking closely at Figure 8-18, you can determine that 

L = d’ + d + d’ = 2 * d’ + d 
 
D is given (150mm in your robot), so 

d’ = (L – 150mm) / 2 
 
Therefore your angle (a) is 

a = acos(d’/d) = acos(d’/150) 
 
Voila! So now you have all you need: the polar coordinates of the XY point (angle and length) and 

the internal angles of the trapezoidal shape formed by your arms. Using that, you can deduct the 
following: 

• Angle of first servo: main angle + a 

• Angle of second servo: 90 – a 

• Angle of third servo: 90 - a 

Note that these angles are relative to the position of each servo. 
You are going to build this sketch from the Angle Measuring sketch (described before), so add the 

following code at the very end of draw() function, just before the closing curly bracket.  
First, constrain the length to the physical size of the robot’s parts. 

  if (len > 450) { len = 450; } 
  if (len < 150) { len = 150; } 

 Then, use what you have just learned to calculate your three servo angles. 

  float dprime =  (len - 150) / 2.0; 
  float a = acos(dprime / 150); 
  float angle1 = angle + a; 
  float angle2 = -a; 
  float angle3 = -a; 

 And finally, use the angles to draw the robot on screen.  

  rotate(angle1); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
   
  rotate(angle2); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
   
  rotate(angle3); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
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After running it, you should see the image shown in Figure 8-19. 

 

Figure 8-19. Screenshot from the program 

The full code for this exercise, declaring the angles as global variables, is as follows: 

float angle1 = 0;  
float angle2 = 0;  
float angle3 = 0; 
 
//servo robot testing program 
void setup(){ 
size (800, 600); 
} 
 
void draw(){ 
  background(255); 
  translate(width/2, 0); //you need to center your X coordinates to the middle of the screen 
  float penX = mouseX - width/2; //you're capturing coordinates of your pen tip (mouse) 
  float penY = mouseY; 
  ellipse(penX, penY, 20,20); 
  ellipse(0,0, 20,20); 
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  line(0,0, penX, penY); 
  float len = dist(0,0, penX, penY); //let's measure the length of your line 
  float angle = asin(penY/len); //asin returns angle value in range of 0 to PI/2, in radians 
  if (penX<0) { angle = PI - angle; }  // this line makes sure angle is greater than PI/2 (90 
// deg) when penX is negative 
  println("angle = " + degrees(angle)); //you're outputting angle value converted from radians 
// to degrees 
  println("length = " + len);//print out the length  
  arc(0,0,200,200, 0, angle); //let's draw your angle as an arc 
  if (len>450) len = 450; 
  if (len<150) len = 150; 
   
  float dprime = (len - 150)/2.0; 
  float a = acos(dprime/150); 
  angle1 = angle + a; 
  angle2 =  - a; 
  angle3 =  - a; 
   
  rotate(angle1); 
  line(0,0,150,0); 
  translate(150,0); 
   
  rotate(angle2); 
  line(0,0,150,0); 
  translate(150,0); 
   
  rotate(angle3); 
  line(0,0,150,0); 
  translate(150,0); 
   
} 

The simulation shows the position of the robot on screen. Notice that the len variable is limited to a 
range of 150 to 450 in order to be physically reachable. This just makes sure that you’re working in 
realistic working area.  

This concludes the virtual testing phase. Let’s get back to the wires and the Arduino. 

Driving the Physical Robot 
You should have your robot built. The Firmata code should be uploaded to the Arduino board and the 
three servos should be connected to pins 9, 10 and 11. Using the servo-testing program, make sure that 
servo1pin is the one connected to Part 1, servo2pin to Part 2, and servo3pin to Part 3 and the base.  

Add the Serial and Arduino libraries to your previous code, and use them to send the angles to the 
servos through the Arduino board.  

import processing.serial.*; 
import cc.arduino.*; 
Arduino arduino; 
 
int servo1pin = 11; 
int servo2pin = 10; 
int servo3pin = 9; 
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float angle1 = 0; //declaration of all 3 angles for servos 
float angle2 = 0;  
float angle3 = 0; 
void setup(){ 
size (800, 600); 
arduino = new Arduino(this, Arduino.list()[0]); 
arduino.pinMode(servo1pin, Arduino.OUTPUT); 
arduino.pinMode(servo2pin, Arduino.OUTPUT); 
arduino.pinMode(servo3pin, Arduino.OUTPUT); 
} 
 
void draw(){ 
  background(255); 
  translate(width/2, 0);  
   
  float penX = mouseX-width/2; 
  float penY = mouseY; 
   
  ellipse(penX, penY, 20,20); 
  ellipse(0, 0, 20, 20); 
   
  line(0, 0, penX, penY); 
  float len = dist(0, 0, penX, penY); //let's measure the length of your line 
  float angle = asin(penY/len);  
  if (penX < 0) { angle = PI - angle; } 
   
  println("angle = " + degrees(angle)); //output angle in degrees 
  println("length = " + len);//print out the length  
  arc(0,0,200,200, 0, angle); //let's draw your angle as an arc 
  if (len > 450) { len = 450; } 
  if (len < 150) { len = 150; } 
   
  float dprim = (len - 150)/2.0; 
  float a = acos(dprim/150); 
  angle3 = angle + a; 
  angle2 = -a; 
  angle1 = -a; 
   
  rotate(angle3); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
   
  rotate(angle2); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
   
  rotate(angle1); 
  line(0, 0, 150, 0); 
  translate(150, 0); 
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Use the Arduino library to send the values of the angles to the Arduino board. 

  arduino.analogWrite(servo1pin, 90-round(degrees(angle1))); // move servo 1 
  arduino.analogWrite(servo2pin, 90-round(degrees(angle2))); // move servo 2 
  arduino.analogWrite(servo3pin, round(degrees(angle3))); // move servo 3   
} 

These last three lines are the instructions to move the servos. Due to some differences between 
graphical interpretation on screen and the way the servos operate, you must add some modifications. 
First, you must convert angles from radians to degrees, but you also must change the values by making 
them negative (flipping direction) and adding a half-rotation. This is because the middle of the angular 
scope of rotation is not 0 (then the scope would be from -90 to 90 degrees), but 90 (as it goes from 0 to 
180). The exception from this rule is your base servo, which takes the same angle as in the graphic 
representation. 

After connecting the Arduino and launching this program, you’ll see all the servos straighten up to 
one line. Then they start following the on-screen geometry. Try to use gentle movements; otherwise the 
servos will move abruptly and could unfasten the assembly if it’s slightly weak. Generally, it’s a good idea 
to calibrate the servos first by dismantling the sub-arms and connecting them again once the servos get 
a signal from Arduino (without the program running). They are usually set to 90 degrees automatically, 
so once you secure the robot in straight position, they retain this as starting point. 

After some experimenting, depending on your mechanical setup, you might want to fine-tune the 
way the robot applies angles to joints. It’s best to do this by using multipliers on angles (shown in bold 
for emphasis). 

  arduino.analogWrite(servo1pin, 90-round(degrees(angle1*1.25))); // move servo 1 
  arduino.analogWrite(servo2pin, 90-round(degrees(angle2*1.35))); // move servo 2 
  arduino.analogWrite(servo3pin, round(degrees(angle3))); // move servo 3 

It’s a matter of trial and error, and some common sense, to find the best values. The goal is to match 
the orientation of the robot with what you see on screen. 

After verifying that everything works, use a paper clip to attach the pen to the furthest sub-arm. Now 
you can use your mouse to express your creativity on paper! 

Kinect: Tangible Table Interface 
To make the installation complete, you need to add the sensing part. It will allow you to use gestures to 
control the drawing or, you could also say, make your robot interpret your posture and draw something 
on its own. 

You then need to add another layer of computational mechanisms, the one that interprets gestures 
and translates them into a set of XY coordinates to pass to the robot. In this way, you connect the two 
sides together: the Kinect scans your hand or finger, extracts XY coordinates from it, and passes it on to 
the robot simulation Processing sketch, which converts the data into a series of servo rotations.  

The idea of extracting gestures or coordinates from your hands and fingers is not that simple, 
though, because the orientation of the point cloud is a bit tricky in relation to the table. You could, of 
course, hang the Kinect from the ceiling, make sure it’s perpendicular to the table, and align it with your 
(0,0) point, which is the base of the robot. In practice, however, this could be hard to realize; the 
orthogonal aligning, precision, and installation of the sensor are quite complicated tasks (and drilling 
holes in the ceiling might not be the best idea). 

You’re going to pursue a slightly different path. You’ll assume that the Kinect is somewhere in space, 
in any orientation, and you will try to fine-tune it with the scene inside the program. In practice, this is a 
much more flexible approach and less prone to errors than other techniques. 
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To make things easy, use a tripod to mount the Kinect and make it point to the middle of your 
working area. Make sure the Kinect is in a horizontal position, only tilting towards the table (not tilting 
left or right), as shown in Figure 8-20.  

 

Figure 8-20. Tangible table setup; scanning volume is shown with dotted lines. 

After positioning the Kinect on the tripod, open the DepthMap3d example from the Simple-OpenNI 
examples and look at the point cloud. You will see that the surface of the table is at an angle with the 
Kinect’s coordinate system, making it difficult to extract coordinates from your position in space (Figure 
8-21). With the example running, you can rotate the point cloud to see that, when viewed at a certain 
angle (from the side), the table is indeed angled. Moreover, the coordinate system to which these points 
refer is related to the Kinect itself; the (0,0,0) point is the sensor’s camera. The task is to make the point 
cloud coexist in the same coordinate system as your robot. 
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Figure 8-21. Kinect uncalibrated point cloud 

Calibrating the Point Cloud 
You need to align the table surface to your coordinate system by transforming the Kinect point cloud 
coordinates. What does this mean?  

You must virtually rotate the table (tilt it) so it stays perpendicular to the Kinect axis (therefore being 
in the XY plane; see Figure 8-22). Also, you must shift it a bit so the origin (0,0) point matches your 
robot’s origin of coordinates. 

Once the point cloud has been aligned, the z-coordinate (or depth) of each point allows you to filter 
the point cloud and extract only the relevant data. In your case, this means the finger position, whenever 
it is close enough to the table. 
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Figure 8-22. Rotating the point cloud 

This might seem a little complicated at first, but the effort is worth it as you can now fine-tune the 
calibration with program variables, which is not possible in an orthogonal, mechanically fixed setup (or 
it requires moving the sensor).  

Figure 8-22 illustrates the strategy: after rotating the table (point cloud) to the perpendicular 
position, you get the Z axis and mark all points that have X and Y = 0. What’s most important, though, is 
that you can now filter the point cloud and cut out unnecessary bits like the background. 

How do you do that? You won’t use conventional Processing rotations with matrices such as 
rotateX(). Rotations and translations with standard 3D matrices keep the coordinates of each point 
unchanged. This means that even though the point (or object) appears in completely different place, it 
still has the same X, Y, and Z coordinate. It’s more like moving coordinate system around, together with 
all its contents. 

Rotation Equations 
Back in the old days when there was no hardware graphics acceleration or OpenGL, there was no way of 
using glTranslate and glRotate to draw scenes in 3D. Coders working on 3D interactive games had to 
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create mathematical descriptions of their 3D worlds by themselves. Even in 2D games, there was a need 
to rotate things on screen. 

Well, to keep things simple, let’s have a look at equations they were using. If you get a point on plane 
(X, Y) and want to rotate it, you have to calculate it like this: 

angle = your rotation 

newX = X * cos(angle) – Y * sin(angle) 

newY = X * sin (angle) + Y * cos(angle) 

Yes, that’s it! If you want to understand these equations, don’t Google them, or you risk being scared 
to death by the hundreds of scientific papers about 3D rotations of geometric entities! The best way to 
find an explanation is to search for old game-writing tutorials or simple computer graphics books from 
the 90s (such as those by Bowyer and Woodwark or Foley and Van Damme).  

How does it work? Imagine you have a point on plane with coordinates (1, 0). If you want to rotate it, 
you multiply it with the previous operation and you get 

newX = 1 * cos(angle) 

newY = 1 * sin(angle) 

This is, in fact, an equation for a circle, where the angle is between 0 and 360 degrees. Using sin, cos, 
and the previous operations, you can rotate any two coordinates around a (0,0) point, getting in return 
true numerical values of its coordinates (which is what you need!). So, after this lengthy explanation, 
let’s put these concepts to use. 

Rotating the Point Cloud 
Let’s start coding another example from scratch. The following code is derived from standard 
DepthMap3D code found in Simple-OpenNI examples. It displays the point cloud and allows you to 
rotate it. Then, after rotating the view so you look at the table from the side, you virtually rotate the point 
cloud until the table stands in a perpendicular position to the Kinect. You then hardcode the rotation 
angle into your code so the program is calibrated. 

Import all the necessary libraries and initialize the Simple-OpenNI object. Then declare the 
variables that control the perspective. 

import processing.opengl.*; 
import SimpleOpenNI.*; 
SimpleOpenNI kinect; 
 
float        zoomF = 0.3f; 
float        rotX = radians(180);  
float        rotY = radians(0); 

The float tableRotation stores your rotation angle. This is the value that needs to be assigned a 
default value for the calibration to be permanent. 

float        tableRotation = 0; 

The setup() function includes all the necessary functions to set the sketch size, initialize the 
Simple-OpenNI object, and set the initial perspective settings. 

void setup() 
{ 
  size(1024, 768, OPENGL);   
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  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(false); // disable mirror 
  kinect.enableDepth(); // enable depthMap generation  
  perspective(95, float(width)/float(height), 10, 150000); 
} 

Within the draw() function, update the Kinect data and set the perspective settings using the 
functions rotateX(), rotateY(), and scale(). 

void draw() 
{ 
  kinect.update();   // update the cam 
  background(255); 
  translate(width/2, height/2, 0); 
  rotateX(rotX); 
  rotateY(rotY); 
  scale(zoomF); 

Then declare and initialize the necessary variables for the drawing of the point cloud, as you have 
done in other projects. 

  int[]   depthMap = kinect.depthMap(); // tip – this line will throw an error if your Kinect 
// is not connected 
  int     steps   = 3;  // to speed up the drawing, draw every third point 
  int     index; 
  PVector realWorldPoint; 

 Set the rotation center of the scene for visual purposes to 1000 in front of the camera, which is an 
approximation of the distance from the Kinect to the center of the table. 

  translate(0, 0, -1000);   
  stroke(0); 
 
  PVector[] realWorldMap = kinect.depthMapRealWorld(); 
  PVector newPoint = new PVector(); 

To make things clearer, mark a point on Kinect’s z-axis (so the X and Y are equal to 0). This code 
uses the realWorldMap array, which is an array of 3D coordinates of each screen point. You’re simply 
choosing the one that is in the middle of the screen (hence depthWidth/2 and depthHeight/2). As you are 
using coordinates of the Kinect, where (0,0,0) is the sensor itself, you are sampling the depth there and 
placing the red cube using the function drawBox() (which you implement later). 

  index = kinect.depthWidth()/2 + kinect.depthHeight()/2 * kinect.depthWidth(); 
  float pivotDepth = realWorldMap[index].z;  
  fill(255,0,0); 
  drawBox(0, 0, pivotDepth, 50);   

When you finish the program and run it, you’ll discover that the point on the z-axis hits the table 
and lands somewhere in the middle of it. If it doesn’t, move your Kinect and tripod so it hits the middle 
of the table. Feel free to adjust the tilt and the height of the sensor but don’t rotate it around the tripod; 
keep it perpendicular to the table. 

The red cube is a special point. It’s used to determine the axis of your rotation. To make it clearer, 
and accessible in the rest of the code, the local variable pivotDepth is assigned this special depth value. 

You are now ready to virtually tilt the table and display the tilted points. But which pair of 
coordinates should you use for rotation? You have three: X, Y, and Z. The answer is Y and Z. The X 
coordinate stays the same (right side of the table, which is positive X, stays on the right; the left side, 
negative X, on the left). 
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  for(int y=0; y < kinect.depthHeight(); y+=steps) 
  { 
    for(int x=0; x < kinect.depthWidth(); x+=steps) 
    { 
      index = x + y * kinect.depthWidth(); 
      if(depthMap[index] > 0) 
      {  
        realWorldPoint = realWorldMap[index]; 
        realWorldPoint.z -= pivotDepth; 
         
        float ss = sin(tableRotation); 
        float cs = cos(tableRotation); 
         
        newPoint.x = realWorldPoint.x; 
        newPoint.y = realWorldPoint.y*cs - realWorldPoint.z*ss; 
        newPoint.z = realWorldPoint.y*ss + realWorldPoint.z*cs + pivotDepth; 
        point(newPoint.x, newPoint.y, newPoint.z);   
      } 
    } 
  }  

 Now, display the value of your tableRotation. It tells you the value of the tilt, as you will be rotating 
it by eye. After you find the proper alignment, it must be written down and assigned to the variable at the 
beginning of the program (so the table stays rotated all times). 

  println("tableRot = " + tableRotation); 
  kinect.drawCamFrustum();   // draw the kinect cam 
} 

Within the KeyPressed() callback function, add code that reacts to the pressing of keys 1 and 2 by 
changing the values of tableRotation in small increments/decrements. Also, listen for input from the 
arrow keys to change the point of view. 

void keyPressed() 
{ 
  switch(key) 
  { 
  case '1': 
    tableRotation -= 0.05; 
    break; 
  case '2': 
    tableRotation += 0.05; 
    break; 
  } 
 
  switch(keyCode) 
  { 
  case LEFT: 
    rotY += 0.1f; 
    break; 
  case RIGHT: 
    // zoom out 
    rotY -= 0.1f; 
    break; 
  case UP: 
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    if(keyEvent.isShiftDown()) 
    { 
      zoomF += 0.02f; 
    } 
    else 
    { 
      rotX += 0.1f; 
    } 
    break; 
  case DOWN: 
    if(keyEvent.isShiftDown()) 
    { 
      zoomF -= 0.02f; 
      if(zoomF < 0.01) 
        zoomF = 0.01; 
    } 
    else 
    { 
      rotX -= 0.1f; 
    } 
    break; 
  } 
} 

Finally, add a small, useful function that draws the box. Create another tab (call it functions, for 
example), and paste the following: 

void drawBox(float x, float y, float z, float size) 
{ 
  pushMatrix(); 
    translate(x, y, z); 
    box(size); 
  popMatrix(); 
} 

Run the code and use the arrow keys (LEFT/RIGHT) to view the cloud from the side (meaning you 
rotate it graphically, without changing anything with coordinates). The table surface should appear as a 
thin line of tilted points. Then, using keys 1 and 2, you should be able to tilt the table (proper rotation, 
changing Y and Z coordinates) and find its best position. Aim to make it close to perpendicular to the 
Kinect axis, as per Figure 8-23. 
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Figure 8-23. Kinect calibrated point cloud 

And there you go! Your table is virtually rotated now, so it seems like the Kinect is looking straight at 
it. Using the output from Processing, hardcode the value of this rotation into the program. Simply change 
tableRotation at the beginning of the code to whatever the readout is on your console (mine was –1.0, 
but yours might be different). If you run the program again, you’ll see the table straight from the top.  

You also need to hardcode the value of pivotDepth so when you move your hand on the table, the 
rotation pivot won’t change. Substitute this line in your code: 

float pivotDepth = realWorldMap[index].z; 

By this one: 

float pivotDepth = 875; 

In our case, the centre of our tangible table was 875mm away from the Kinect, but you will need to 
extract this value from your table rotation code. 
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Point Cloud Filtering 
As you look at the scene from the side, try to manipulate the objects on the table by looking at the 
screen. What’s visible? You can probably see some objects, your hands, and some background (like the 
floor). You should also see the table surface. The thing is, most of this is not necessary for your tracking. 
The only object you’re interested in is the hand/pointer (anything that can be clearly distinguished from 
the rest of the point cloud).  

 

Figure 8-24. Point cloud filtering 

Take a look at Figure 8-24. It clearly shows how the point cloud is structured and which depths you 
can ignore. By simply adding an if() statement around the point drawing function, you can get rid of 
most of the unnecessary data. 

First, declare the zCutOffDepth global variable at the top of your sketch. 

        float        zCutOffDepth = 1200; 

Then, add a conditional wrapper around the point drawing function. 
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        if (newPoint.z < zCutOffDepth) { 
          point(newPoint.x, newPoint.y, newPoint.z);  
        } 

To know the value in runtime, add following line at the very end of the draw() function (before the 
closing curly brace): 

        println("cutOffDepth = " + zCutOffDepth); 

This reads the value and hardcodes it for later. To be able to change this cut-off depth at any time, 
add two more cases into the keyPressed() function, inside the switch(key) statement. 

  case '3': 
    zCutOffDepth -= 5; 
    break; 
  case '4': 
    zCutOffDepth += 5; 
    break; 

Run the code with these additions. Viewing the point cloud sideways, press keys 3 and 4 until you get 
rid of all the points at the bottom of the table. In fact, you’re also going to cut off the robot itself, leaving 
only some space about 100mm above the table. After performing this, you should see nothing—just a 
pure white screen. But as soon as you hover your hand above the table, it should appear as black points. 

As before, once the calibration is done, you should hardcode the value of zCutOffDepth at the 
beginning of the program. In my setup, it was something around 700mm, but yours might be different, 
depending on how close the Kinect is to the table.  

Finding the Finger Position 
Now let’s get back to the main idea: extracting the X and Y coordinates of the pointer and passing them 
on to the robot-driving mechanism (which already knows how to translate Cartesian coordinates to 
three separate servo angles). 

To get the X and Y coordinates, you will use a trick to find a special point in the entire point cloud: 
your finger tip. In a typical case, it’s the lowest point above the table, assuming you’re considering the 
hand only. Usually you hold your hand in such a way that the finger is the object closest to the surface 
(or its tip, actually). Therefore, your task is simply to find the lowest point in scanned area. 
Mathematically speaking, this is the point with highest Z-coordinate. 

To make things clearer and easier to understand, I will first describe the changes necessary to 
complete this task and then I will include the entire code of the draw() function so you can see the 
changes in context. 

Previously, you filtered the point cloud using the depth value and removed points that were too far. 
Now the time has come remove all the points that are outside of your working area (which is a rectangle). 

To filter the cloud a bit more, you must draw your reference area first. I assume this is 800 x 600 mm 
(it would be useful to place a sheet of paper with these dimensions on the table). The Kinect should be 
pointing to the middle of it, which will be your (0,0) point. Therefore, to draw it, you need these four 
lines right after the point drawing loop (be careful to type the coordinates properly). 

  line(-400, -300, pivotDepth,  400, -300, pivotDepth); 
  line(-400,  300, pivotDepth,  400,  300, pivotDepth); 
  line( 400, -300, pivotDepth,  400,  300, pivotDepth); 
  line(-400, -300, pivotDepth, -400,  300, pivotDepth); 

You are using pivotDepth as a z-coordinate so the lines are drawn on the table. After running the 
program, you should see a rectangle at table depth. 
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To clean things up a bit more, let’s filter out points that are outside of this area. So, in the condition 
that currently resides right before the point-drawing command 

        if (newPoint.z < zCutOffDepth) { 
          point(newPoint.x, newPoint.y, newPoint.z);  
        } 

 change it to  

if ((newPoint.z < zCutOffDepth) && 
    (newPoint.x < 400) &&  
    (newPoint.x > -400) &&  
    (newPoint.y < 300) &&  
    (newPoint.y > -300)) { 

  point(newPoint.x, newPoint.y, newPoint.z);  
        } 

This will get rid of all the points outside of the table boundary. Run the  program; you should see a 
rectangle with red box in it (in the middle of the table). If you hover your hand above the work area, you 
should be able to see it on screen (and nothing else; once the zCutOffDepth variable is set properly, it 
should cut out unnecessary noise). 

Since the cloud is filtered, you’re left with just the space directly above the table. If there are no 
objects in this space, you receive zero points from the scan. Once you put something there (your hand or 
a stick), it should appear. Knowing this, you can safely add more filtering conditions, the ones you 
require to find the lowest point above the table. 

Let’s declare a special variable, something that will store your target as a point, so all three 
coordinates are known. This should be at the beginning of the code, so it’s defined as a global coordinate. 

PVector pointer = new PVector(); 

Then, for each loop, you have to reset the maximum depth value found (the depth of the furthest 
point in Z direction you’ve found each time). This is reset just before your main scanning loop, right 
after the drawBox(0,0, pivotDepth, 50); line. 

  float maxDepth = 0; 

To find the point, go to the core of the scanning loop and add a conditional statement just after the 
instruction that draws each point. This statement checks if the point you’re drawing is the furthest one 
(closest to the table).  

          if (newPoint.z > maxDepth) 

Then it stores its value for later, along with the depth value encountered. In other words, it stores two 
things: the maximum depth found during scanning (the point closest to the table), and the x, y, and z 
coordinates of this point.  

To summarize, these steps are highlighted in bold in the following block of code, which is the main 
scanning loop in its entirety: 

  float maxDepth = 0; 
  for(int y=0;y < context.depthHeight();y+=steps) 
  { 
    for(int x=0;x < context.depthWidth();x+=steps) 
    { 
      index = x + y * context.depthWidth(); 
      if(depthMap[index] > 0) 
      {  
        realWorldPoint = realWorldMap[index]; 
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        realWorldPoint.z -= pivotDepth; //subtract depth from z-coordinate 
         
        float ss = sin(tableRotation); 
        float cs = cos(tableRotation); 
         
        newPoint.x = realWorldPoint.x; //x doesn't change 
        newPoint.y = realWorldPoint.y*cs - realWorldPoint.z*ss;//rotate Y 
        newPoint.z = realWorldPoint.y*ss + realWorldPoint.z*cs;//rotate Z 
        newPoint.z += pivotDepth; //add depth back again 
      if ((newPoint.z < zCutOffDepth) && 
          (newPoint.x < 400) &&  
          (newPoint.x > -400) &&  
          (newPoint.y < 300) &&  
          (newPoint.y > -300))  
          { 
            point(newPoint.x,newPoint.y,newPoint.z);  //draw point! 
            if (newPoint.z>maxDepth) //store deepest point found 
            { 
              maxDepth = newPoint.z; 
              pointer.x = newPoint.x; 
              pointer.y = newPoint.y; 
              pointer.z = newPoint.z; 
            } 
          } 
        } 
        
      } 
    } 
  } 

Finally, after the loop has been executed, you can draw the deepest point as a yellow box by adding the 
following code right after the loop: 

  fill(255,255,0); 
  drawBox(pointer.x,pointer.y,pointer.z,50); 
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Figure 8-25. Finding the finger position 

The yellow box now shows the tip of one of the fingers on the pointing hand. Because all this 
information is stored in the pointer variable, you can easily retrieve it and direct the robot with it.  

You should see something resembling Figure 8-25. The yellow box might be a little bit shaky, but it 
should always stick to the lowest (closest to the table) part of the point cloud. If you see parts of the table 
or parts of the robot, it means your zCutOffDepth is miscalibrated. If so, return to the calibration part of 
the “Point Cloud Filtering” section and fine-tune this value until you get clean scan of the space above 
the work area. 

Virtual Robot Model 
Before you connect the robot to this piece of code, you need to make sure it works. Let’s start with a 
virtual version of it. As before, you determine the angle based on XY coordinates; however, you need to 
align both coordinate systems together. The point cloud’s coordinate system has its center where the red 
box is and you need it aligned with the robot’s main pivot point. Knowing that the robot’s center point 
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needs to be reconfigurable, let’s declare it as two variables. At the end of the draw() loop, add the 
following code: 

  float robotX = 0; 
  float robotY = -300; 
 
  pushMatrix(); 
    translate(0,0, pivotDepth); 
    ellipse(robotX, robotY, 30,30);  
    ellipse(pointer.x, pointer.y, 30,30);  
    line(robotX, robotY, pointer.x, pointer.y); 
  popMatrix(); 

You use pushMatrix() and popMatrix() to make sure you’re drawing in the table’s depth. By using 
translate(0,0, pivotDepth) you’re pushing your drawing plane; from now on, your Z depth is equal 
zero at table’s surface. This makes the task of drawing on it simpler as you can use two-dimensional 
commands like ellipse(). 

 

Figure 8-26. The finger position projected on the table 
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What you see in Figure 8-26 is a projection of the tip of the pointer (made by projecting it on the 
table) connected with the virtual robot’s center. This is exactly what you were doing at the beginning, so 
now you can easily copy and paste the previous code and use it to detect the angles. You should be able 
to run your code and see something similar. 

To draw entire virtual robot with its sub-arms, the last block of code in the draw() function can be 
modified to look like the following:  

  //=========================== 
  //you're drawing the robot now 
  //===========================   
  float robotX = 0; 
  float robotY = -300; 
 
  pushMatrix(); 
      translate(0, 0, pivotDepth); 
      ellipse(robotX, robotY, 30, 30);  
      ellipse(pointer.x, pointer.y, 30, 30);  
      line(robotX, robotY, pointer.x, pointer.y); 
 
      float penX = pointer.x; //you're capturing coordinates of your pen tip (mouse) 
      float penY = pointer.y; 
      float len = dist(robotX, robotY, penX, penY); //let's measure the length of your line 
      float angle = asin((penY-robotY)/len); //asin returns angle value in range of 0 to PI/2, 
// in radians 
      if (penX<0) { angle = PI - angle; } // this line makes sure angle is greater than PI/2 
// (90 deg) when penX is negative 
      println("angle = " + degrees(angle)); //you're outputting angle value converted from 
// radians to degrees 
      println("length = " + len);//print out the length  
      arc(robotX, robotY, 200, 200, 0, angle); //let's draw your angle as an arc 
      if (len > 450) { len = 450; } 
      if (len < 150) { len = 150; } 
       
      float dprime = (len - 150) / 2.0; 
      float a = acos(dprime / 150); 
      float angle3 = angle + a; 
      float angle2 = - a; 
      float angle1 = - a; 
       
      translate( robotX, robotY ); 
      rotate(angle3); 
      line(0, 0, 150, 0); 
      translate(150, 0); 
       
      rotate(angle2); 
      line(0, 0, 150, 0); 
      translate(150, 0); 
       
      rotate(angle1); 
      line(0, 0, 150, 0); 
      translate(150, 0); 
 
  popMatrix(); 
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Your robot’s center pivot point is not 0,0 anymore. It’s been replaced by robotX and robotY. This is 
good because you can change it as you recalibrate/retune the robot. 

This is quite close to you want to achieve. You already have the following: 

• XY coordinates of the finger (pointer) 

• All three angles for the servos 

• Both coordinate systems tuned together 

By this point, you should see the virtual model of the robot in your work area, as shown in Figure 8-27. 

 

Figure 8-27. Virtual robot driven by the user’s finger 

Polishing the Input 
Is this everything you need to drive the robot? Well, yes, but at this stage there is small danger arising. 
Looking at the behavior of the virtual instance of the robot, there’s something quite quirky about it. It’s 
shaky and performs unstable movements.  
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Due to the filtering of the point cloud and the way the lowest point above the table is captured, in 
some cases you can observe very rapid movements of the arm. For example, when you point your finger 
to the middle of the working area, the robot will move there. But when you retract your hand from it, it 
will follow it at all costs—and will then suddenly get repositioned somewhere near the boundary 
(following the path of your hand). Sometimes the robot is somewhere on the table, and once you insert 
your hand into the scanning area, it will move towards it very quickly.  

This is okay in your virtual world. In the context of a physical installation, it could be dangerous. It 
might damage the robot, which is simply not able to move 50cm in 100 milliseconds. To avoid this, you 
need to add the following functionalities: 

• Movement smoothing 

• Further point cloud filtering, cutting off all points above certain height 

The first task is to remember all pointer positions and average the last 20 of them. The second is 
quite easy: just add another condition to the point cloud filtering statement. 

Let’s start with second one. Replace the if() statement in main scanning loop with this code: 

        if ((newPoint.z > zCutOffDepth - 50) &&  
            (newPoint.z < zCutOffDepth) &&  
            (newPoint.x < 400) &&  
            (newPoint.x > -400) &&  
            (newPoint.y < 300) &&  
            (newPoint.y > -300)) { 

As you can see, you just added one more statement at the beginning. This, in conjunction with 
second statement, only allows a thin slice of points to pass the filter. Its thickness is exactly 50mm. In 
practice, this means that you can withdraw the hand in upper direction, and it won’t make the robot 
follow it. It ignores the hand once it’s at a safe height. 

The first task, however, is slightly more complex: you need to build an array with all the positions of 
the pointer stored. Declare it somewhere at the beginning of the program, outside of the setup() and 
draw() functions. 

PVector [] path = new PVector[100]; //you're declaring array of 100 points 

Then allocate memory for it at the end of setup() function. 

for(int i = 0; i < 100; i++){ 
   path[i] = new PVector(); 
} 

Once this is done, you need to store pointer X and Y values in them. This is done by adding the 
following lines after the main scanning loop, but before you draw the robot: 

path[frameCount % 100].x = pointer.x; 
path[frameCount % 100].y = pointer.y; 

frameCount is the number of frames rendered from the beginning. The modulo operator (%) makes 
sure this never goes out of bounds, as the array is only 100 records long. (The last position in the array is 
number 99, actually, as you’re counting from 0.) 

Next, inside the robot drawing routine (inside of the pushMatrix() block, and after translate() 
command), add the following code: 

 for (int i = 0; i < 100; i++){ 
   ellipse(path[i].x, path[i].y, 5, 5); 
 } 

This displays your path in the form of small dots, following the pointer’s trajectory. You can test the 
code now to see how the trajectory shows. Make sure to wave your hand above the table; you can also 
use a stick or a paper tube. 
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Finally, you need to average some values. Do this by taking the last 20 positions (you can use more 
or less, depending on robustness of the installation). So, instead of these two lines  

      float penX = pointer.x; //you're capturing coordinates of your pen tip (mouse) 
      float penY = pointer.y; 

write these two lines 

      float penX = 0; //you're resetting pen coordinates 
      float penY = 0; 
//and adding fractions of 20 last positions to them 
      for (int i = 0; i < 20; i++) {  
        penX += path[(frameCount + 100 - i) % 100].x/20.0; 
        penY += path[(frameCount + 100 - i) % 100].y/20.0; 
      } 

Test the changes and observe how smooth the movement is now (Figure 8-28). This definitely 
makes it less prone to damage. 

 

Figure 8-28. User input smoothed 
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The Drawing Robot in Action 
The last step is to add a few extra instructions to send the robot angles to the Arduino and thus drive the 
robot. First, declare the libraries and the Arduino instance and then initialize it. Next, declare the 
variables defining the servo pins. The following block goes at the very beginning of the program: 

import processing.serial.*; 
import cc.arduino.*; 
Arduino arduino; 
 
int servo1pin = 11; 
int servo2pin = 10; 
int servo3pin = 9; 

Within setup(), initialize the Arduino object and set the pin modes, after the size() command. 

arduino = new Arduino(this, Arduino.list()[1]); 
arduino.pinMode(servo1pin, Arduino.OUTPUT); 
arduino.pinMode(servo2pin, Arduino.OUTPUT); 
arduino.pinMode(servo3pin, Arduino.OUTPUT); 

At the very end of the draw() function, add three lines of code that send the angles of the robot to the 
Arduino board using the Arduino library. Remember the reasoning behind the angle transformations 
from the “Driving the Physical Robot” section. 

arduino.analogWrite(servo1pin, 90-round(degrees(angle1*1.0))); // move servo 1 
arduino.analogWrite(servo2pin, 90-round(degrees(angle2*1.0))); // move servo 2 
arduino.analogWrite(servo3pin, round(degrees(angle3))); // move servo 3  

And voila! After some initial play (you might still recalibrate it a bit), you can add a pen (by attaching 
it with a paper clip) and start sketching! Your small gestural control of servo-powered mechanism is 
finally working! 

Figures 8-29 and 8-30 show the robot at work. You can see a video of the piece at 
www.vimeo.com/34672180. 
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Figure 8-29. The drawing robot at work 

 

Figure 8-30. The robot drawing patterns on a sheet of paper 
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Summary 
This project had you building your own robotic drawing arm and programming it to follow the 
movements of your hand on a tangible table. You figured out how to parse the Kinect point cloud data 
using geometrical rules and how to  acquire your finger position, which you used as the guide for the 
movements of the robotic arm. 

Unlike the rest of the projects in this book, this project didn’t require you to write any Arduino code 
at all. Instead, you learned how to use the Arduino Processing library and the Firmata Arduino firmware 
to control your motors directly from Processing. 

Further alterations and improvements on this project could include adding an external power 
supply for better responsiveness of the servos or adding a microservo to lift and lower the pen to control 
the drawing flow. 

I recommend spending some time calibrating this robot properly for a good match between the 
coordinate readouts from the Kinect’s scanning and the positioning of the arm. For advanced 
experimentators, you can try to hang the projector above the table and project an image of the virtual 
robot onto the physical one. It leads to proper calibration and adds a new layer of augmented 
information. 
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Kinect Remote-Controlled Vehicles 

by Ciriaco Castro 

In Chapter 5, you learned how to hack a remote control in order to control different devices via your 
body movements. In this chapter, you are going a step further in the control of devices by hacking an RC 
vehicle’s electronics. You’re going to use a RC car, but the same logic can be applied to any RC vehicle 
(helicopter, boat, etc.). 

You are going to learn how to use an H-Bridge to control motors. Using the Kinect, you are going to 
produce an easy interface that connects body movements with the vehicle’s movements (Figure 9-1) and 
you’ll apply what you learned from the XBee technology to do it wirelessly. Finally, you are going to 
create an automated routine that will avoid crashes by using a proximity sensor and certain 
programmed behaviors. Figure 9-2 shows the parts you’ll need for this chapter and Table 9-1 lists the 
specifics. 

 

Figure 9-1. Kinect and the RC vehicle 
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Figure 9-2. RC vehicle components 

Table 9-1. The Parts List 

Part Description Price 

1 RC vehicle Pick a RC car big enough to carry an Arduino board 
(approximately 20 x 10 cm). Make sure it has two motors. 

Our cost 
$23.99  

2 XBee 1mW Chip Antenna - 
Series 1 

XBee 1mW Chip Antenna - Series 1 $22.95 each 

XBee Explorer USB You will need a mini USB cable to connect it. $24.95 

XBee Explorer Regulated To interface the XBee with the Arduino $9.95 

1 prototype shield SparkFun DEV-07914 or similar $16.95 

23 Breakaway headers-
straight 

You should have a bunch of these already from previous 
chapters. 

$1.50 

1 infrared distance sensor  From SparkFun or similar  $8.75 

1 motor driver Dual H-Bridge from SparkFun or similar $5.89 

Electrical Motors and the H-Bridge 
Before hacking and programming the car, let’s talk about electrical motors and how you are going to 
drive them using an H–Bridge. 
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An electric motor converts electrical energy into mechanical energy. Most electric motors operate 
through the interaction of magnetic fields and current conductors to generate the force. The kind of 
motor in most toys is a DC motor (Figure 9-3). A DC motor is an electric motor that runs on direct 
current (DC) electricity, usually from batteries. 

 

Figure 9-3. RC motor and H-Bridge 

To control a motor, you can turn it on and off using only one switch (or transistor). But controlling 
the direction is a bit more difficult. It requires a minimum of four switches (or transistors) arranged in a 
clever way. This can be simplified using an H-Bridge. 

H-Bridges are four switches (or transistors) arranged in a shape that resembles an H. Each H-Bridge 
can control two motors. Each H-Bridge has 16 pins (eight per side), as shown in Figure 9-4. Figure 9-5 
shows the schematic of an H-Bridge. 

 

Figure 9-4. H-Bridge pins 
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Figure 9-5. H-Bridge schematic 

You are going to use the H-Bridge to drive two motors. Each pair of channels is equipped with an 
ENABLE input (pins 1 and 9). A separate supply input is provided in pins 8 and 16, allowing operation at 
a lower voltage. Pins 4, 5, 12, and 13 are connected to ground. Each side of the H-Bridge has two 
transistors (pins 2 and 7, and pins 10 and 15). One is responsible for pushing this side to HIGH and the 
other for pulling this side to LOW. When one side is pulled HIGH and the other LOW, the motor spins in 
one direction. If you want the motor to spin in the opposite way, you just have to reverse the transistors 
(the first side LOW and the latter HIGH). 

Pins 3 and 6 are connected to the poles of one motor, and pins 11 and 14 are connected to the poles 
of a second motor. According to the direction of the current, the motor will spin in one direction or the 
opposite one. 

Hacking a Car 
Now that you understand these basic concepts of the motor, you can start to build your RC vehicle. The 
first step is to open up and observe what’s inside (Figure 9-6). You should see a circuit and a series of 
cables. Looking at the circuit, you can see a RC receiver that controls the behavior of the motors. If you 
follow the cables, there are two that connect the circuit to the batteries. Another two connect the circuit 
to the front motor, and another two connect the circuit to the back motor. RC cars normally have two 
motors. The front one turns the vehicle left and right. The back one provides traction, which is the 
moving of the vehicle frontwards and backwards. 
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Figure 9-6. RC car opened 

You’re not going to use the existing circuit because you’re going to build your own. So cut the cables 
that connect the actual circuit to the motors and the cables that connect to the batteries. Unscrew the 
board and leave the car ready for your new circuit (Figure 9-7).  

 

Figure 9-7. RC car, just motors and electrical cables 

You’re going to drive the car using your Arduino. As a first step, you will be using serial data coming 
from a simple Processing sketch. Later, once everything is up and running, you will use the Kinect and a 
XBee module to drive the car with your body movements. 

Start by joining the power and ground cables coming from the battery pack to a power jack so you 
can plug your Arduino using just the external batteries (Figure 9-8).  
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Figure 9-8. RC car with the electrical connection to battery pack 

So far, you’ve had an overview of electrical motors and the H-Bridge. You have opened an RC 
vehicle, looked inside, and extracted the circuit in order to start to building a new one. 

Building the Circuit 
The next step is to prepare your Arduino board and connect it to an H-Bridge in order to control the 

two motors (the back one that provides the traction and the front one that provides the direction). In this 
project, you’re going to use a prototype shield instead of fusing the strip panel. A prototype shield is a 
platform for building a new project; it makes it easier to connect an Arduino to all the external bits and 
pieces. Shields are normally designed to sit on top of an Arduino, facilitating the connections. There are 
some pins that connect to the Arduino pins and there’s a prototyping area where you solder your 
external components.  

Start by soldering your breakaway headers in order to plug them into your Arduino board. Then 
solder two cables to 5V Arduino and ground and plug your H Bridge (Figure 9-9). 
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Figure 9-9. Prototype board and the H-Bridge 

Next, solder the H-Bridge and start making all the connections. The H-Bridge chip is going to be 
used as two bridges controlling two separate motors. Connect the H-Bridge’s pins 8 and 16 to 5V voltage. 
You can power the motors and the H Bridge using any external power device (connecting it to these 
pins), but remember to share the ground with the Arduino board. In this case, everything is powered 
through the Arduino (Figure 9-10). 

 

Figure 9-10. H-Bridge connected with power 

Then connect the H-Bridge pins 4, 5, 12, and 13 to ground. The next set of cables that you are going 
to solder are the transistors to Arduino pins. Link Arduino pins 11 and 5 with H-Bridge pins 10 and 15, 
and Arduino pins 6 and 10 with H-Bridge pins 2 and 7. The circuit will look like the one in Figures 9-11 
and 9-12. 
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Figure 9-11. H-Bridge with inputs for power and ground 

 

Figure 9-12. H Bridge with inputs for power and ground (back) 

The next step is to connect the ENABLE inputs. Use a cable that connects H-Bridge pins 1 and 9 with 
Arduino pins 9 and 8. Remember to have a line in your code that allows them to be HIGH in order to 
activate the H-Bridge. The last step is to solder the H-Bridge OUT pins (pins 3, 6, 11, and 14) to the motor 
poles. Figures 9-13 and 9-14 show the circuit from the front and the back. 
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Figure 9-13. H-Bridge ready for connecting motors 

 

Figure 9-14. H-Bridge ready for connecting motors (back) 

The diagram in Figure 9-15 shows the whole circuit. 



CHAPTER 9   KINECT REMOTE-CONTROLLED VEHICLES 

 

216 

 

Figure 9-15. Circuit diagram 

Testing the Circuit 
It’s time to test the circuit. You are going to use a simple Processing sketch that will activate each motor 
according to the position of the mouse, using serial communication with Arduino (Figure 9-16). 
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Figure 9-16. Processing sketch for testing 

The code imports the Serial library in order to create serial communication with Arduino. After that, 
a series of variables are defined in order to store the values that are going to be transmitted. Finally, 
other variables are used for building a little car simulation that shows a visual description of what are 
you transmitting. These variables are used inside a car() function. 

import processing.serial.*; 
Serial myPort; 
boolean serial = true; 
 
int Val01, Val02, Val03; 
float temp01, temp02, temp03, temp04; 
 
//car variables 
int carwidth= 70; 
int carheight =120; 
int wheels=30; 
float angle; 
float speed, wLine, wLinePos; 
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Setup Function 
The setup() function just declares the size of your sketch and defines the port used for transmitting the 
data. 

void setup() { 
  size(300, 300); 
  smooth(); 

  if (serial) { 
    String portName = Serial.list()[0]; 
    myPort = new Serial(this, portName, 9600); 
  } 
} 

Draw Function 
The draw() function defines the arrow from a series of PVectors. One is defined from the mouse position 
(end of the arrow) and the other from the center of the canvas. Once you know these positions, you 
create another PVector that is the subtraction of the first two. After that, you call the function 
drawVector() that is defined by two PVectors (and will be explained later). 

void draw() { 
  background(255); 
  PVector mouse = new PVector(mouseX, mouseY); 
  PVector center = new PVector(width/2, height/2);   
  PVector v = PVector.sub(mouse, center); 

  //Draw  vector between 2 points 
  drawVector(v, center); 
  noFill(); 

The next part of the code defines the values sent via serial communication. You map the X 
coordinates in a range of values from 0 (left) to 255 (right). In order to do this, you define a temporary 
value as the difference between the mouse’s X position and the canvas’ center. This value is remapped in 
the range in a temporary float. Then you introduce a series of if conditionals so the final value that you 
to transmit is 0 (no movement), 1 (turn left), and 2 (turn right). These values activate an action in your 
virtual car simulation. 

For the Y coordinate you also use a temporary value that refers to the mouse’s Y coordinate and the 
center of the canvas. You remap this value between -255 (bottom area), 0 (center), and 255 (top area). 
This is the value that you pass. 

The back motor is going to have two values: one that marks the direction (Val02) and other that 
marks the speed (Val03). The Val02 variable respond to 0 (don’t activate the motor), 1 (activate it 
forward), and 2 (activate it backward). So according to the position of the mouse, it will change; if it’s 
closer to the center, the motor won’t be activated; if it’s far, the car will go forward or backwards. 

Another condition that you want to introduce is speed; this value depends on the distance of the 
mouse to the center. At the moment, just two speeds are defined: one of 140 and another of 200. 

  temp01 = mouseX-width/2; 
  temp02 = height/2- mouseY; 
  temp03= int(map(temp01, -width/2, width/2, 0, 255)); 
   
//turn left 
if (temp03<100) { 
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    Val01=1; 
    angle=-PI/4; 
  } 
 
//turn right  
  else if (temp03>150) { 
    Val01=2; 
    angle=PI/4; 
  } 
 
//no turn 
  else {      
    Val01=0; 
    angle=0; 
  } 
 
// decide where to move 
  temp04= int(map(temp02, -height/2, height/2, -255, 250)); 
//move front 
  if (temp04>0 && temp04>50) { 
    Val02=1; 
  } 
 
//move back 
  else if (temp04<0 && temp04<-50) { 
    Val02=2; 
  } 
 
//don't move 
  else { 
    Val02=0; 
    speed=0; 
  } 
 
//decide speed 
  if (temp04>100 && temp04<150) { 
    Val03=140; 
    speed= speed+0.5; 
  } 
  else if (temp04>150) { 
    Val03=200; 
    speed++; 
  } 
  else if (temp04<-100 && temp04>-150) { 
    Val03=140; 
    speed= speed-0.5; 
  } 
  else if (temp04<-150){ 
    Val03=200; 
     speed--; 
  } 

The next lines of code just draw a couple of circles to define the motor area where the motor won’t 
work. This area is introduced in case you want to stop the car and not keep it constantly in movement. 

8
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Then you call the car() function that represents a virtual car on the screen. The last line of the draw() 
function just sends serial data. 

  ellipse(width/2, height/2, width/3, width/3); 
  ellipse(width/2, height/2, width/6, width/6); 
 
car(); 
  if (serial){ 
    sendSerialData(); 
  } 
} 

DrawVector Function 
The drawVector() function represents an arrow starting from the center of your screen towards your 
mouse position (an arrow between two points). You mark the points using PVectors, but you also want 
to represent an arrowhead that points toward the direction that the car will move. 

The arrowhead is represented by two lines. But you have to do a bit of math in order to have the 
rotation. You translate locally the coordinate system using pushmatrix and translate. These functions 
locate a new local origin to be the reference for the rotation of the arrowhead.  

The angle that you rotate your coordinate system is defined by the PVector function heading2d. This 
function returns a float that defines the angle of rotation for the vector. So once your coordinate system 
has been rotated, you define the lines that form your arrow: a vertical line (remember that you have just 
rotate your UCS) that goes from 0,0 to the length (or magnitude) of your PVector, and for the head, you 
just define two lines from the extreme to both sides.  

The last step is to use popmatrix to close the translations and rotations. 

void drawVector(PVector v, PVector loc) { 
  pushMatrix(); 
  float arrowsize = 4; 
  translate(loc.x, loc.y); 
  stroke(0); 
  rotate(v.heading2D()); 
  float len = v.mag(); 
  line(0, 0, len, 0); 
  line(len, 0, len-arrowsize, +arrowsize/2); 
  line(len, 0, len-arrowsize, -arrowsize/2); 
  popMatrix(); 
} 

Car Function 
The car() function represents a diagramatic verison of your car. The central rectangle defines the body 
and the four small ones represent the wheels. Select a blue color and use the functions pushMatrix and 
popMatrix to represent each rectangle on the screen, allowing rotation for the front wheels. So, 
according to the values received (or the mouse position), the wheels turn in one direction or the other. 
Finally, to represent the speed, you define a red line that crosses the back wheels, simulating the 
rotation of the wheels.  

void car() { 
rectMode(CENTER); 
  //body 
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  noFill(); 
  stroke(30, 144, 255); 
  rect(width/2, height/2, carwidth-wheels/2, carheight); 
 
  //front wheels 
  pushMatrix(); 
  translate(width/2-carwidth/2+wheels/4, height/2-carheight/2+wheels); 
  rotate(angle); 
  rect(0, 0, wheels/2, wheels); 
  popMatrix(); 
  pushMatrix(); 
  translate(width/2+carwidth/2-wheels/4, height/2-carheight/2+wheels); 
  rotate(angle); 
  rect(0, 0, wheels/2, wheels); 
  popMatrix(); 
 
  //back wheels 
  pushMatrix(); 
  translate(width/2, height/2); 
  rect(-carwidth/2+wheels/4, carheight/4, wheels/2, wheels); 
  rect(carwidth/2-wheels/4, carheight/4, wheels/2, wheels); 
//line simulating speed 
  stroke(255, 0, 0); 
  line(-carwidth/2, wLine, -carwidth/2+wheels/2, wLine); 
  line(carwidth/2, wLine, carwidth/2-wheels/2, wLine); 
  wLine=(carheight/4+wLinePos+speed); 
 
  if (wLine<carheight/4-wheels/2) { 
    wLine=carheight/4+wheels/2; 
    speed=0; 
    wLinePos=wheels/2; 
  } 
  else if (wLine>carheight/4+wheels/2) { 
    wLine=carheight/4-wheels/2; 
    speed=0; 
    wLinePos=-wheels/2; 
  } 
  popMatrix(); 
} 

SendSerial Function 
The sendSerial() function is the same as in previous chapters; it just sends data with a letter before it in 
order to recognize and avoid any loss of data. 

void sendSerialData() { 
  myPort.write('S'); 
  myPort.write(Val01); 
  myPort.write(Val02); 
  myPort.write(Val03); 
} 
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With this code, you send four values of serial data to drive your motors. The first value is just to 
identify the car, the second value is a range for moving the front motor, the third value defines a 
direction, and fourth value defines a speed. Now you have a sketch that sends serial data to your Arduino 
according to your mouse position. You are really close to your first test but first you need to program 
your Arduino. 

Arduino Testing Sketch 
The code starts by declaring floats and the Arduino pins that are connected to your H-Bridge. Note that 
for the back motor you use analog pins.  

float Val01, Val02, Val03; 
int motorFrontLeft = 11;   // H-bridge leg 10 
int motorFrontRight = 5;  // H-bridge leg 15  
int motorBackUp = 6;     // H-bridge leg 2 (PWM) 
int motorBackDown = 10;  // H-bridge leg 7 (PWM) 
int enablePinFront = 8; // H-Bridge leg 9 
int enablePinBack = 9; // H-Bridge leg 1 

Setup Function 
The setup() function just declares the start of serial communication and the Arduino pin mode; in this 
sketch all pins are outputs. 

void setup() { 
  // initialize the serial communication: 
  Serial.begin(9600); 
  // Set the pin modes 
  pinMode(motorFrontLeft, OUTPUT);  
  pinMode(motorFrontRight, OUTPUT);  
  pinMode(motorBackUp, OUTPUT); 
  pinMode(motorBackDown, OUTPUT); 
  pinMode(enablePinFront, OUTPUT); 
  pinMode(enablePinBack, OUTPUT); 
} 

Loop Function 
Start by reading the serial data. If any data is available, the first piece of information should match the 
letter S. If this is the case, continue reading and store the values as floats.  

After reading the values, you introduce a series of if conditionals that will drive the motors 
according to the values obtained. For the front motor drive, you get values 1 (turn left), 2 (turn right), and 
0 (no action in case you want to drive in a straight line). If the values are 1 or 2, the H-Bridge’s ENABLE 
pin is active, meaning that the motor starts to work and the direction is defined by the functions 
TurnLeft() and TurnRight().  

For the back motor, you receive two values (Val02 and Val03); one defines the direction and the 
other defines the speed.  

Variable Val02 defines the direction. If its value is 1, it puts the H-Bridge ENABLE pin as HIGH and 
calls the MoveUp() function that is defined by a value (speed). If variable Val02 is 2, the ENABLE pin is 
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HIGH and calls the function MoveDown() runs, moving the car in the opposite direction. Finally, if variable 
Val02 is 0, the ENABLE pin is LOW, meaning that this motor is disconnected and the car won’t move. 

Variable Val03 defines the speed of the motor. Potentially, you could have values from 0 to 255, but 
according to the Processing sketch you just have  two speeds, normal and fast, with values of 140 and 200. 

void loop() { 
  // check if data has been sent from the computer: 
  if (Serial.available()>4) { // If data is available to read, 
    char val = Serial.read(); 
    if(val == 'S') { 
      Val01 = Serial.read(); 
      Val02 = Serial.read(); 
      Val03 = Serial.read(); 
    } 
  } 
 
  // turning left and right 
  if (Val01==1) { 
    enable(enablePinFront); 
    TurnRight(); 
  } 
  else if (Val01==2) { 
    enable(enablePinFront); 
    TurnLeft(); 
  } 
  else if(Val01==0)disable(enablePinFront); 
   if (Val02==1) { 
    enable(enablePinBack); 
    MoveUp(Val03); 
  } 
  else if (Val02==2) { 
    enable(enablePinBack); 
    MoveDown(Val03); 
  } 
  else if(Val02==0) { 
   disable(enablePinBack); 
   } 
 
} 

Turning Functions 
The functions for turning right and turning left are similar. Each function sets one pin to HIGH and one 
to LOW. The direction of the current flow, and therefore the direction of the motor, is determined by 
which pin is in which state. The function is straightforward: a digitalWrite is applied to the Arduino 
pins. 

//function to turn Right 
void TurnRight(){ 
  digitalWrite(motorFrontRight,HIGH); 
  digitalWrite(motorFrontLeft,LOW); 
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} 
 
//function to turn Left 
void TurnLeft(){ 
  digitalWrite(motorFrontLeft,HIGH); 
  digitalWrite(motorFrontRight,LOW); 
} 

Move Functions 
The move functions are similar to the turning functions; the main difference is that you use analogWrite 
with an external value defined in the void. This value marks the speed of rotation of the motor. So instead 
of using HIGH and LOW, you use speed: 255 as a maximum value and 0 to indicate the car has stopped. 

//function to move 
void MoveUp(int speedD){ 
  analogWrite(motorBackUp,speedD); 
  analogWrite(motorBackDown,0); 
} 
//function to move reverse 
void MoveDown(int speedD){ 
  analogWrite(motorBackDown,speedD); 
  analogWrite(motorBackUp,0); 
} 

Enable/Disable Functions 
The enable and disable functions just write HIGH or LOW to the pin marked when they are called. You 
use them for the H-Bridge ENABLE pins, activating or disconnecting the motors. 

void enable(int pin){ 
  digitalWrite(pin, HIGH); 
} 
void disable(int pin){ 
  digitalWrite(pin, LOW); 
} 

Now you’re ready to test your car for the first time! Upload your Arduino code (leaving the USB 
cable plugged into the car; you need it for the serial communication). Run the Processing sketch and 
move your mouse. The car should move and turn according to your mouse position! 

Proximity Sensors 
Now let’s introduce a bit more complexity. You are going to use a proximity sensor in the front part of 
the car to check the distance from another object. Using the values it returns, you are going to introduce 
a routine of “stopping the car” inside your Arduino code. The idea is to avoid collisions. The code will let 
you control the car but if it is going to crash with an object, it will override your movements and 
automatically stop (and actually move backwards a little).  
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The routine will check the value coming from the proximity sensor and it will compare it with a 
threshold (a value that we have defined previously in the code).   

If this value is higher than the threshold it will mean that an object is really close. If that is the case, 
the back motor will start to turn backwards for a short period of time and after that it will check again the 
value coming from the sensor, repeating this routine if the value is still bigger than the threshold.  

If the value from the sensor is smaller than the threshold it means that there is not any object close 
enough, and there is no risk of crashing, so the car will move normally.  

An analog infrared (IR) distance sensor is a really simple component (Figure 9-17). It shines a beam 
of IR light from an LED and measures the intensity of light that is bounced back using a phototransistor. 
If you film this sensor with a cellphone or a camera and you look at the sensor through the screen, you 
will see the IR LEDs glowing.  

 

Figure 9-17. Infrared proximity sensor 

To make it work, just connect +5v and ground, and an analog signal will be returned (Figure 9-18). 
This signal is in a voltage proportional to the distance between the sensor and an object in front of it. 
The sensor you are using has a range of 80 cm (0.4 volts) and 10 cm (3 volts). 

 

Figure 9-18. Proximity sensor connected to Arduino 
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You can work with the values that come from the sensor if you choose an appropriate maximum 
value to act as threshold in order to activate your stop car function. 

The IR proximity sensor has been used in many interactive applications. Even if you are just using 
the outcome voltage coming from the sensor, it’s worthwhile to know how the sensor works and how 
you can measure real distances with it. (You can skip this explanation if you want.) 

The voltage returned is not linear, as you can see in Figure 9-19. 

 

Figure 9-19. Proximity sensor’s voltage/distance graph 

However, you can convert the voltage returned to distance using an equation. Depending of the model of 
sensor, this equation will vary. For the Arduino code, the equation for transforming inputs to distance is 

float distance = 12343.85 * pow(analogRead(sensorPin),-1.15); 

Before adding it to your circuit, do a quick test by connecting a sensor to your Arduino board using a 
pigtail or an infrared sensor jumper. Use this code for the test: 

int sensorPin = 0;  
void setup(){ 
  Serial.begin(9600); 
} 
 
void loop(){ 
  int val = analogRead(sensorPin); 
  //float val = 12343.85 * pow(analogRead(sensorPin),-1.15); 
  Serial.println(val); 
  delay(100); 
} 

Use Arduino analog Pin 0 for receiving the values, and start the serial communication. Next, choose 
which values you want out of the Arduino: the voltage (int val) or the distance (float val). Finally, just 
add a delay to slow down the output. 
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Figure 9-20. Proximity sensor’s output values 

The values that you obtain in the Serial Monitor, depending on the code you use, are between 650 
(really close) and 20 (object far away), as shown in Figure 9-20. If we comment the int val and 
uncomment the line float val, we will use the equation previously described in the code. If we upload 
this “modified” code to Arduino we will obtain values between 70 and 7, meaning real distance in 
centimeters. Using this equation is great because we have real values, but it also gives us a big error 
when the object is really far away, due to the math that you applied.)  

Enough theory! Let’s get back to the RC vehicle. To keep things simple, use the voltage values. In 
your case, just knowing the threshold value that indicates that your car is close to an object is enough to 
activate your stop car routine. 

After testing, add the sensor to your car circuit. Just solder the cables to power, ground, and analog 
pin 0 in your prototype board. The circuit looks like the one in Figure 9-21. 
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Figure 9-21. Proximity sensor connected 

Fix the sensor on the front area of the car using some removable adhesive (in case you want to use 
the sensor for another application), as shown in Figure 9-22. 

Figure 9-22. Proximity sensor on car’s front 

Now change the Arduino code in order to get an automated response according to the data coming 
from the sensor. As mentioned, the idea is to stop the car and reverse it for long enough to avoid a 
collision. If the data coming from the sensor is high (meaning an object is really close), the back motor 
will automatically reverse.  

Add a few variables to the beginning of the code. A new variable (Val04) activates or deactivates the 
automatic response. The sensor is incorporated with an analog IN pin (pin0), an initial value, and a 
threshold value to mark the distance from which the automated response will be active. 
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float Val01, Val02, Val03, Val04; 
(....) 
int sensorPin =  0; 
int sensorValue=0; 
int Value =500; //threshold for detecting object 

Setup Function 
The setup() function remains the same. 

Loop Function 
The loop() function incorporates this new value from the serial data. According to the value of Val04, 
Arduino reads the data coming from the sensor (automatic response on) or just marks this value as 0 
(automatic response off). 

Then you add a general if before all the functions, marking the value coming from the sensor and 
comparing it to the threshold. In other words, if no object is close, you drive the vehicle with your 
Processing sketch, but if an object is nearby, the code jumps directly to the new function called 
stopCar(). 

void loop() { 
if (Serial.available()>5) { 
    char val = Serial.read(); 
    if(val == 'S'){ 
      Val01 = Serial.read(); 
      Val02 = Serial.read(); 
      Val03 = Serial.read(); 
      Val04 = Serial.read(); 
    } 
  } 
   
if (Val04= 1)sensorValue = analogRead(sensorPin); 
else sensorValue=0; 
 
  // turning left and right 
  if (sensorValue<Value) { 
    if (Val01==1){ 
      enable(enablePinFront); 
      TurnRight(); 
    } 
    else if (Val01==2) { 
      enable(enablePinFront); 
      TurnLeft(); 
    } 
    else if(Val01==0)disable(enablePinFront); 
    if (Val02==1) { 
      enable(enablePinBack); 
      MoveUp(Val03); 
    } 
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    else if (Val02==2) { 
      enable(enablePinBack); 
      MoveDown(Val03); 
    } 
    else if(Val02==0) {  
       disable(enablePinBack);  
       } 
  } 
 
  else { 
    enable(enablePinBack); 
    stopCar();  
  } 
} 

Move Functions 
All move functions remain the same. You just add a new function stopCar() that exists only to call the 
previous function MoveDown() and disable the back motor once it has moved backwards. This function 
acts as a brake, avoiding collisions. 

void stopCar(){ 
for(int i=0; i<2000; i++){ 
    MoveDown(200); 
} 
    disable(enablePinBack);    
} 

Once you have connected the proximity sensor, you can test your car. Upload this new Arduino 
code (you are still not wireless, so you need to leave the USB cable plugged to your Arduino board). Run 
the previous Processing sketch again and move your mouse. The car should move as before, but if you 
put an object in front of it, it should stop and then move backwards. 

XBee and Wireless  
The last step is to add a wireless module. You learned how to use XBee modules for wireless 
communication in pervious chapters. (Have a look at those chapters for a refresher on the concepts and 
how to install drivers in case you haven’t done it before.) 

As you have seen, you can use an XBee shield or just connect the cables that you need. In this case, 
you want to everything as compact as possible, so solder the cables coming from the XBee Explorer as 
described in Table 9-2 and shown in Figure 9-23. 

Table 9-2. XBee Explorer Regulated to Arduino Connections 

XBee Explorer Regulated Pins Arduino Pins 

XBee 3.3V Arduino 3.3V 

XBee GND Arduino GND 
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XBee Explorer Regulated Pins Arduino Pins 

XBee DIN Arduino TX (Digital Pin 1) 

XBee DOUT Arduino RX (Digital Pin 0) 

XBee DIO3 Arduino RESET 

 

Figure 9-23. XBee Explorer 

If you solder the cables on your prototype shield, the circuit will look like that in Figure 9-24. 

 

Figure 9-24. XBee on the circuit 

Now just tidy up the cables and fix them to the vehicle to avoid disconnections when the vehicle is 
in movement. The final vehicle will look like Figure 9-25. 
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Figure 9-25. The complete hacked RC car 

The very last step is to prepare a Kinect sketch and start driving your car. But first, test the car. Plug 
your XBee Explorer USB to your computer, run the Processing sketch, and make sure that data is getting 
to your Arduino. You should see a flashing Arduino LED RX. If that’s happening, you should be able to 
drive your car just using your mouse. 

Kinect RC Interface 
Now you’re going to use the movement of your hand to drive the vehicle. 

• According to its relative position to the center of the screen, you can drive the car, moving it 
towards this direction.  

• If your hand is in the central position, the vehicle won’t move. 

• If you draw a circle with your hand, you activate a virtual switch, turning on and off the 
automatic response, as shown in Figure 9-26. 

The automatic response marks if Arduino is going to read the data coming form the sensor, and 
therefore it will react automatically when an object is really close using the function stopcar().  

In the case this automatic response is off, the data coming from the sensor will be overwrite to 
0, meaning that the car will be “blind” respect the objects that are in front and won’t have any 
automatic reaction. 

Note that this circle should be drawn close to the center of the screen where the car is not in 
movement so the gesture of doing a circle won’t drive the car over the place.   
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Figure 9-26. Safety mode on and off 

Similar code has been used in the previous chapters. You’re just creating a few new functions and 
putting some text on the screen in order to display live data. The code is based on hand and circle 
recognition. Start by importing the libraries. 

import SimpleOpenNI.*; 
import processing.opengl.*; 
import processing.serial.*; 
 
SimpleOpenNI kinect; 
Serial myPort; 

Next, declare the NITE objects explicitly, using the NITE functions for hand tracking, gesture 
recognition, and circle detection. You declare the session manager (that deal with NITE gesture 
recognition), control points (that deal with hand points), and circle detector. 

// NITE 
XnVSessionManager sessionManager; 
XnVPointControl pointControl; 
XnVCircleDetector circleDetector; 

You’re going to work with text on the screen so you declare a font and some strings. (You declare 
them here in order to avoid null values once you start your Processing sketch. They update their value 
once the hand has been detected.) 

// Font for text on screen 
PFont font; 
String Ctext; 
String dir; 
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The other variable that you declare is handTrackFlag, which refers to a hand being detected. The 
same principle is applied to the boolean circleTrackFlag. Other variables that you declare are PVectors 
that represent the positions of the hand on the screen, and the position of the hand in the real world. 
Then other PVectors will represent the center of a circle when we do the gesture and again we use two 
different variables: one representing the center on the screen and another representing the center in the 
real world. Other variables are radius and a counter t, that will serve for changing the state of a Boolean 
activating or deactivating the automated response. PVector v is the difference between the screen center 
and your hand position but in 2D. Boolean automated sends data about using the proximity sensor or 
not, and Boolean serial allows you to send serial data. The last set of values is a set of temporary ones 
that are remapped before being sent via serial communication to Arduino. 

// Variables for Hand Detection 
boolean handsTrackFlag = false; 
boolean circleTrackFlag = false; 
PVector screenHandVec = new PVector(); 
PVector handVec = new PVector(); 
int t = 0; 
float rad; 
PVector centerVec = new PVector(); 
PVector screenCenterVec = new PVector(); 
 
PVector v = new PVector(); 
boolean automated=true; 
 
boolean serial = true; 
int Val01, Val02, Val03, Val04; 
float temp01, temp02, temp03, temp04; 

Setup Function 
In the setup() function, you initialize all the objects that you will be using later on, starting from the 
Kinect ones and then calling the NITE session manager where listeners will be added. As explained in 
previous chapters, you need to call methods create, destroy and update, so the methods XnVControl() 
and XnVDetector() invoke your callback functions in order to create, destroy and update one object (a 
circle or a hand detection). 

void setup() { 
// Simple-openni object 
kinect = new SimpleOpenNI(this); 
kinect.setMirror(true); 
// enable depthMap generation, hands + gestures 
kinect.enableDepth(); 
kinect.enableGesture(); 
kinect.enableHands(); 
 
// setup NITE  
sessionManager = kinect.createSessionManager("Wave", "RaiseHand"); 
// Setup NITE.s Hand Point Control 
pointControl = new XnVPointControl(); 
pointControl.RegisterPointCreate(this); 
pointControl.RegisterPointDestroy(this); 
pointControl.RegisterPointUpdate(this); 
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  // Setup NITE's Circle Detector 
  circleDetector = new XnVCircleDetector();   
  circleDetector.RegisterCircle(this);  
  circleDetector.RegisterNoCircle(this);  
 
// Add it to the session   
sessionManager.AddListener(pointControl); 
sessionManager.AddListener(circleDetector); 

After calling the Nite methods, add the size of your canvas and initialize the font (which should be 
added to the data folder). You also initialize the Strings that you defined before and finally start your 
serial communication (depending on a Boolean, so it’s easy to connect and disconnect). 

// Set the sketch size to match the depth map 
size(kinect.depthWidth(), kinect.depthHeight());  
smooth(); 
 
// Initialize Font 
font = loadFont("SansSerif-12.vlw"); 
Ctext="Automated mode ON"; 
dir = "-"; 
 
//Initialize Serial Communication 
  if (serial) { 
    String portName = Serial.list()[0]; // This gets the first port 
    myPort = new Serial(this, portName, 9600); 
  } 
} 

Draw Function 
The purpose of this sketch is to send data to Arduino, according to the hand position and the gesture 
that you perform in front of the Kinect camera. You start by calling a black background and a PVector to 
mark the center of the screen, as shown in Figure 9-27. 

   

Figure 9-27. Driving the car 
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After that, you update the Kinect object so you can see what your Kinect is seeing. 

void draw() 
{ 
  background(0); 
  PVector centerL = new PVector(width/2, height/2);   
  // Update Kinect data 
  kinect.update(); 
  // update NITE 
  kinect.update(sessionManager); 
 
  // draw depthImageMap 
  image(kinect.depthImage(), 0, 0); 

Next, you calculate the difference in 2D (just XY coordinates) between the projection of the hand 
and the center of the canvas. This operation should be familiar; remember your Processing test sketch? 
You are doing the same thing but using the data coming from the Kinect. 

    //displacement between the centre and the hand in 2D 
  v.x = screenHandVec.x-centerL.x; 
  v.y = screenHandVec.y-centerL.y; 

Next, call a series of functions depending on whether the Kinect is tracking a hand. If so, it draws a 
hand and an arrow and then drives the car. If the Kinect detects a circle, it draws on the screen. A series 
of functions is running and updated continuously: some text on the canvas and the data that you are 
sending via serial. 

  if (handsTrackFlag){ 
    drawHand(); 
    drawArrow(v, centerL); 
    controlCar(); 
  } 
  if (circleTrackFlag){ 
    drawCircle(); 
  } 
  textDisplay(); 
  if (serial){ 
  sendSerialData(); 
  } 
} 

Other Functions 
The function controlCar() maps all the data in just a few values in order to transmit them to the 
Arduino. This function is similar to the one used previously in the Processing sketch. It just remaps the 
arrow vector according to the coordinates X and Y and then stores these values. It uses temporary values 
to remap them with a series of if conditions in order to have a clean output. 

void controlCar() { 
  temp01 = screenHandVec.x-width/2; 
  temp02 = height/2- screenHandVec.y; 
  temp03 = int(map(temp01, -width/2, width/2, 0, 255)); 
   
  if (temp03 < 75) { 
    Val01 = 1; 
  } 
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  if (temp03 > 175) { 
    Val01 = 2; 
  } 
  if ((temp03 > 75) && (temp03 < 175)) { 
    Val01 = 0; 
  }   
  temp04= int(map(temp02, -height/2, height/2, -255, 250)); 
  if ((temp04 > 0) && (temp04 > 50)) { 
    Val02 = 1; 
  } 
  else if ((temp04 < 0) && (temp04 < -50)) { 
    Val02 = 2; 
  } 
  else { 
    Val02 = 0; 
  }   
  if ((temp04 > 100) && (temp04 < 150)) { 
    Val03 = 140; 
  } 
  if (temp04 > 150) { 
    Val03 = 200; 
  } 
 
  if ((temp04 < -100) && (temp04 > -150)) { 
    Val03 = 140; 
  } 
  if (temp04 < -150) { 
    Val03 = 200; 
  }  
  //println(Val01 + "   "  + Val02+ "   "  + Val03+ "   "  +Val04 ); 
} 

The Other function represents the hand on the screen. Once the hand is detected, it appears as a red 
dot that makes the same movements as your hand. There’s also a function for representing a circle in 
case the gesture is detected. With the counter t, you can change the Boolean automated every time the 
new circle is produced. So the automated behavior is activated and deactivated with the same function. 
If you draw a circle, the automated behavior is turned off, and if you repeat the gesture, it’s on again. 
These gestures also change the color of the circle and the text referring to the automated mode as well as 
Val04, which is sent via serial.  

// Draw the hand on screen 
void drawHand() { 
 
  stroke(255, 0, 0); 
  pushStyle(); 
  strokeWeight(6); 
  kinect.convertRealWorldToProjective(handVec, screenHandVec); 
  point(screenHandVec.x, screenHandVec.y); 
  popStyle(); 
 
} 
void drawCircle() { 
if(t == 1)automated=!automated; 
    if (automated == true){ 
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      Val04 = 0; 
      noFill(); 
      strokeWeight(6); 
      stroke(0, 255, 0); 
      ellipse(screenCenterVec.x, screenCenterVec.y, 2*rad, 2*rad); 
      textAlign(LEFT); 
      Ctext = "Automated mode ON"; 
    } 
    if (automated==false){ 
      Val04 = 1; 
      noFill(); 
      strokeWeight(6); 
      stroke(255, 0, 0); 
      ellipse(screenCenterVec.x, screenCenterVec.y, 2*rad, 2*rad); 
      textAlign(LEFT); 
      Ctext = "Automated mode OFF"; 
    } 
     
   // println(automated); 

} 

The function drawArrow represents an arrow between two PVectors. It was used at the beginning of 
the chapter and it is pretty straightforward. 

void drawArrow(PVector v, PVector loc){ 
  pushMatrix(); 
  float arrowsize = 4; 
  translate(loc.x, loc.y); 
  stroke(255, 0, 0); 
  strokeWeight(2); 
  rotate(v.heading2D()); 
  float len = v.mag(); 
  line(0, 0, len, 0); 
  line(len, 0, len-arrowsize, +arrowsize/2); 
  line(len, 0, len-arrowsize, -arrowsize/2); 
  popMatrix(); 
} 

textDisplay represents live text (meaning that the values update automatically) on the screen. The 
function text asks for a value or string plus X and Y positions. In this sketch, you are showing the car’s 
direction, speed of the back motor, and whether the automated mode is activated or not. According to 
the values you are sending to Arduino, you make the rules for representing these values using a series of 
if conditionals. The last function is sendSerialData, which as usual uses a letter to identify each message. 

void textDisplay(){ 
   text(Ctext, 10, kinect.depthHeight()-10); 
   int value; 
   if(Val02 == 0) { 
     value=0;  
     } 
   else { 
     value = Val03; 
    } 
   text("Speed: "+value, 10, kinect.depthHeight()-30);  
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   text("Direction: "+dir, 10, kinect.depthHeight()-50); 
    
  if ((Val02 == 1) && (Val01 == 0)) { 
    dir ="N"; 
  } 
  if ((Val02 == 2) && (Val01 == 0)) { 
    dir="S"; 
  } 
  if ((Val02 == 0) && (Val01 == 1)) { 
    dir="W"; 
  } 
  if ((Val02 == 0) && (Val01 == 2)) { 
    dir="E"; 
  } 
  if ((Val02 == 1) && (Val01 == 2)) { 
    dir="NE"; 
  } 
  if ((Val02 == 2) && (Val01 == 2)) { 
    dir="SE"; 
  } 
  if ((Val02 == 2) && (Val01 == 1)) { 
    dir="SW"; 
  } 
  if ((Val02 == 1) && (Val01 == 1)) { 
    dir="NW"; 
  } 
} 
 
void sendSerialData() { 
  // Serial Communcation 
  myPort.write('S'); 
  myPort.write(Val01); 
  myPort.write(Val02); 
  myPort.write(Val03); 
  myPort.write(Val04); 
} 

The last part is the NITE callbacks. As shown in previous chapters, they refer to the events of 
creating an object (hand or circle) once the gesture is detected, destroying it when the hand or the circle 
has gone off the screen, and updating them. Hand events and circle events have different callbacks. The 
only lines that are new are the ones that refer to the counter t. Each time a new circle is created, the 
counter starts to add, meaning that just once it will have the value of 1 (which is necessary for changing a 
Boolean). Each time that circle is destroyed, this counter comes back to 0. 

// XnVPointControl callbacks 
void onPointCreate(XnVHandPointContext pContext) { 
  println("onPointCreate:"); 
  handsTrackFlag = true; 
  handVec.set(pContext.getPtPosition().getX(), 
              pContext.getPtPosition().getY(), 
              pContext.getPtPosition().getZ()); 
   
} 
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void onPointDestroy(int nID) { 
  println("PointDestroy: " + nID); 
  handsTrackFlag = false; 
} 
 
void onPointUpdate(XnVHandPointContext pContext) { 
  handVec.set(pContext.getPtPosition().getX(),  
              pContext.getPtPosition().getY(),  
              pContext.getPtPosition().getZ()); 
} 
 
// XnVCircleDetector callbacks 
void onCircle(float fTimes, boolean bConfident, XnVCircle circle) { 
  println("onCircle: " + fTimes + " , bConfident=" + bConfident);  
  circleTrackFlag = true; 
  t++; 
  centerVec.set(circle.getPtCenter().getX(),  
                circle.getPtCenter().getY(), handVec.z); 
  kinect.convertRealWorldToProjective(centerVec, screenCenterVec); 
  rad = circle.getFRadius(); 
} 
 
void onNoCircle(float fTimes, int reason) { 
  println("onNoCircle: " + fTimes + " , reason= " + reason);   
  circleTrackFlag = false; 
  t = 0; 
} 

Now, test this code with your vehicle. The Arduino code hasn’t changed, so just plug the Kinect and 
the XBee USB Explorer. Run the new Processing sketch and start to drive, as shown in Figure 9-28! 

 

Figure 9-28. Driving your RC vehicle 
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Summary 
If you use this code (make sure that the Boolean serial is set to true), you will be sending serial data to 
drive a hacked RC car. Using the position of your hand, you will be able to drive it; using a gesture, you 
can activate a simple anti-collision system. 

You have learned several new things in this chapter. Regarding hardware, you learned about RC 
motors and how to drive them using a simple H-Bridge. You opened a remote control car and, using the 
components, reprogrammed its behavior using Arduino. You also learned how proximity sensors work 
and the kind of data you can obtain from them. 

This application is only the principle; the same logic can be applied to any RC vehicle. Next time, 
hack a helicopter or a boat! Just open it up, investigate what’s inside, and start to have fun!
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Biometric Station 

by Enrique Ramos 

In 1487, Leonardo da Vinci created a drawing that he entitled “The Vitruvian Man,” depicting what he 
believed to be the ideal human proportions. But these proportions are not only a matter of beauty. 
Height, weight, and other body measures can actually be an indicator of appropriate development and 
general health in both children and adults. Kinect has a device that can precisely measure all your body 
proportions in real time. If you combine this ability with other sensors, you can create a general-purpose 
biometric station for your personal use and delight.  

Throughout this chapter, you will learn how to hack a bathroom scale and connect it wirelessly to 
your computer, how to combine the incoming data with the Kinect point cloud and skeleton data, and 
how to compare this information to external databases for different purposes. Table 10-1 shows the 
parts required for this project. You will be able to identify people, automatically get body mass indexes, 
and check whether they fall within desirable ranges, as shown in Figure 10-1. You will store that 
information so you can create graphs of the evolution.  

This is an advanced chapter in terms of programming techniques, and it will introduce some Java 
file parsing techniques and the use of Java AWT components. Welcome to Kinect biometrics! 

 

Figure 10-1. A Kinect user being scanned and recognized 
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Table 10-1. Parts list 

Part Description Price 

Electronic bathroom scale With LCD display! $20-40 

XBee Shield To interface the XBee with your Arduino $24.95 

XBee Explorer USB You will need a mini USB cable to connect it $24.95 

2 XBee modules XBee 1mW Chip Antenna - Series 1 $22.95 each 

Stackable headers 6-pin and 4-pin. At least two of each $0.50 each 

1 Prototype Shield SparkFun DEV-07914 or similar. $16.95 

Hacking a Bathroom Scale 
In this project you will combine weight information with volume information from the Kinect sensor. 
You learned how to acquire Kinect data in a previous chapter, so now you need to figure out how to get 
the weight information into the computer. Well, one option is to type the information in, but that would 
be too easy, wouldn’t it? You’re going to go a little further and hack a standard bathroom scale to 
communicate wirelessly with your computer, so you can get the volume and weight information at the 
same time (Figure 10-2).  

 

Figure 10-2. Scale after removing the cover and LCD 
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Hacking a bathroom scale would seem to be a simple task. If you have previously worked with 
pressure sensors, you might think that it’s just a matter of finding the analog output, reading it from your 
Arduino, and mapping the values to the real weight. Well, it happens to be slightly more complicated 
than that. Most modern scales use the combined output of one to four strain gauges. The main PCB 
processes this information and displays it on the LCD.  

If, after a close inspection of your PCB, you don’t find any analog output that makes sense regarding 
weight data, look at the back of the PCB. There’s often a three-pin breakaway header (Figure 10-3) that 
provides an analog signal that changes depending on the state of the scale (off, weighing, weight found). 
You will see how to use this information later.  

 

Figure 10-3. PCB breakaway headers connected to an analog sensor cable 

Trying to get information from the strain gauges directly seems downright impossible, so why not 
let the PCB do its job and just sniff the weight information as it’s passed to the LCD? This lets the PCB do 
all computation and means that you get the same numbers as are shown on the LCD. 

LCD hacking is a very handy technique indeed; the same approach can be applied to any other 
appliance or device with a built-in LCD (which is pretty much every single device you can buy today). 
You might as well be getting the minutes remaining before you can eat your microwaved meal or the 
temperature in your home boiler. But for the moment, let’s stick to the weight on your bathroom scale. 

Seven-Segment LCD 
Most bathroom scales, and actually most built-in LCDs, are seven-segment displays (Figure 10-4). This 
includes calculators and all kind of home appliances. They are widely used because this is a very 
optimized way of displaying decimals compared to dot-matrix displays, as every number can be 
encoded in one byte of information; seven bits defining the number, and one extra for the decimal point. 
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Figure 10-4. Individual segments (from Wikipedia), and the LCD on your scale. 

The information is usually encoded in the order of gfedcba or abcdefg, but you can find other 
encodings, as you will see in this chapter. You have to check the signals from the PCB to the LCD to 
figure out the encoding of your scale, so first let’s hack the scale. 

Hacking the LCD 
Once you have removed the cover and exposed the guts of your scale, you’re probably looking at an LCD 
display attached to a printed circuit board (PCB). Unscrew the LCD from the PCB. There will be some 
form of connection between the LCD and the 16 pins on the PCB (Figure 10-5). In our case, it was 
connective rubber that we kept for future repositioning. 

The ultimate goal here is to acquire and decode the information sent from the PCB to the LCD, so 
you solder one wire to each of the LCD pins. (Later you will try to figure out which ones define the eight 
bits of information relevant to you.) Use flexible wrap wire or a 16-wire ribbon cable, preferably; hook-
up wire is too sturdy and could strip the PCB connectors off. 

 If there are connections on the PCB that you can use without impeding the repositioning of the 
LCD, use those so you can still read the numbers on your scale as depicted in Figure 10-6. This will be 
extremely helpful when analyzing the information from the pins. 

 

Figure 10-5. Main PCB with LCD pin connections (at the top) 
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Test that all pins are properly connected and there is no electrical flow between them. Then replace 
the LCD and the scale cover, leaving all the LCD wires and the analog cable you previously connected 
outside. You will probably need to carve an indent on the plastic cover with a scalpel so you can pass the 
wires through. Connect all the cables to an Arduino prototyping shield so they are ready to be easily 
plugged into your board (Figures 10-6 through 10-8). 

 

Figure 10-6. Wires soldered to LCD pins. The rubber connection can still be plugged in. 

 

Figure 10-7. Arduino and XBee module plugged and LCD repositioned 
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Figure 10-8. Arduino Prototype Board connected to all the LCD pins and the PCB 

Add an XBee module to the board, as explained in Chapter 7, and put everything into a transparent 
plastic box along with an external power supply (Figure 10-9). This way, you won’t need to depend on 
the USB cable’s length to use your scale. 

 

Figure 10-9. Scale finished and plugged to the Arduino and XBee module 
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Acquiring the LCD Signal 
You have a pretty exciting cryptographic exercise ahead. When you connect your shield to the Arduino 
and read the values coming from the LCD pins, you will be overwhelmed by a constant flow of ones and 
zeros passing through your Serial Monitor. Don’t despair; you are going to make sense of all this in the 
next few pages! 

Connect your Arduino to your computer and start a new Arduino sketch. If you found a breakout 
header like the one shown previously, you might be able to power your scale from the Arduino; connect 
the pins to ground and 3.3V so you can get by without using a battery. 

By now you should be acquainted with Arduino code, so you should have no problem reading 
through the following code. 

#define dataSize 16 
int data [dataSize]; 

void setup() { 
  Serial.begin(9600); 
  pinMode(2,INPUT); 
  pinMode(3,INPUT); 
  pinMode(4,INPUT); 
  pinMode(5,INPUT); 
  pinMode(6,INPUT); 
  pinMode(7,INPUT); 
  pinMode(8,INPUT); 
  pinMode(9,INPUT); 
  pinMode(10,INPUT); 
  pinMode(11,INPUT); 
  pinMode(12,INPUT); 
} 

void loop() { 
  for(int i = 2; i<13; i++){ 
    data[i-2] = digitalRead(i);  
  } 
  data[11] = digitalRead(A5); 
  data[12] = digitalRead(A4); 
  data[13] = digitalRead(A3); 
  data[14] = digitalRead(A2); 
  data[15] = digitalRead(A1); 

  for(int i = 0; i<dataSize; i++){ 
    Serial.print(data[i]); 
  } 
  Serial.println(); 
} 

You are defining your pins as inputs (only the digital ones) and then storing their current digital 
readings in the array of integers you have called data. Note that the order is defined by the connections 
you used. In your Arduino, you connected the LCD pins left to right from Arduino pin 2 to 12 and then 
from analog 5 to 1, hence the order of the readings. 
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You then print the resulting array to your serial port. If you open the Serial Monitor, you will be 
confronted with something similar to the following lines: 

0000000011100000 
1000000000000000 
0000000001010000 
0010000000000000 
0000000011110000 
0000000011100000 
0100000000000000 

This won’t really make any sense to you yet, but you can start to identify a pattern. There are a series 
of sparse ones written on the left side of the string, and then some more tightly grouped at the center-
right. Not much, but it’s a start. 

Reading the LCD Signal 
Every line of code seems to be different, but an LCD should keep the pins high for a while, turn them off, 
and them on again for a certain time. Arduino should be faster than that, so you should get at least a 
couple of consecutive lines that look the same every time. You might have guessed the answer already: 
Arduino can indeed loop faster than the LCD cycle, but the serial printing slows it down considerably, so 
you don’t get the same reading twice. Let’s test this with some more sophisticated code. 

You defining a bi-dimensional array named serial that will store fifty lines of LCD signals. 
Whenever it acquires the fifty lines, it prints them to the Serial Monitor. This way, you’re not slowing 
down your Arduino every cycle, so you should be able to gather the information faster. When you print 
the information out, you will, of course, spend some time and certainly skip some cycles, but you will 
still have a consistent stream of data in your serial array. 

#define dataSize 16 
int data [dataSize]; 
#define lines 50 
int serial [lines][dataSize]; 
int index; 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(2,INPUT); 
  pinMode(3,INPUT); 
  pinMode(4,INPUT); 
  pinMode(5,INPUT); 
  pinMode(6,INPUT); 
  pinMode(7,INPUT); 
  pinMode(8,INPUT); 
  pinMode(9,INPUT); 
  pinMode(10,INPUT); 
  pinMode(11,INPUT); 
  pinMode(12,INPUT); 
} 
 
void loop() { 
  for(int i = 2; i<13; i++){ 
    data[i-2] = digitalRead(i);  
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  } 
  data[11] = digitalRead(A5); 
  data[12] = digitalRead(A4); 
  data[13] = digitalRead(A3); 
  data[14] = digitalRead(A2); 
  data[15] = digitalRead(A1); 
 
  for(int i = 0; i<dataSize; i++){ 
    serial[index][i] = data[i]; 
  } 
  index++; 
  if(index==lines){ 
    index=0; 
    for(int i = 0; i<lines; i++){ 
      for(int j = 0; j<dataSize; j++){ 
        Serial.print(serial[i][j]); 
      } 
      Serial.println(); 
    } 
    Serial.println("__________________"); 
  } 
} 

If you upload this sketch and open the Serial Monitor, you will get a surprisingly different 
panorama: 

0000000001010000 
0000000001010000 
0000000001010000 
0000000011110000 
0000000011110000 
__________________ 
1000000000000000 
1000000000000000 
0000000000000000 
0010000000000000 
0010000000000000 

You can see that the LCD pins are sending a pattern for a time and then changing to another 
pattern. You can’t synchronize your Arduino to the LCD, but you can write code that reads the numbers 
only if they have changed and if they are maintained for at least two cycles (to avoid misreading at the 
transition point). 

#define dataSize 16 
int data [dataSize]; 
int previousData [dataSize]; 
#define lines 50 
int serial [lines][dataSize]; 
int index; 
 
// Booleans defining the change 
boolean changed; 
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boolean scanning; 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(2,INPUT); 
  pinMode(3,INPUT); 
  pinMode(4,INPUT); 
  pinMode(5,INPUT); 
  pinMode(6,INPUT); 
  pinMode(7,INPUT); 
  pinMode(8,INPUT); 
  pinMode(9,INPUT); 
  pinMode(10,INPUT); 
  pinMode(11,INPUT); 
  pinMode(12,INPUT); 
} 
 
void loop() { 
  for(int i = 2; i<13; i++){ 
    data[i-2] = digitalRead(i);  
  } 
  data[11] = digitalRead(A5); 
  data[12] = digitalRead(A4); 
  data[13] = digitalRead(A3); 
  data[14] = digitalRead(A2); 
  data[15] = digitalRead(A1); 

Check if the numbers have changed from the previous reading 

  int same = 0; 
  for(int i = 0; i<dataSize; i++){ 
    if(data[i]==previousData[i])same++; 
    previousData[i] = data[i]; 
  } 
  if(same<dataSize){ 
    changed=true; 
    scanning=true; 
  } 
  else{ 
    changed=false; 
  } 

If the numbers have NOT changed and if they have occurred at least twice (so scanning is true), 
store the the data into the serial[] array. 

  if(changed == false && scanning == true){ 
   for(int i = 0; i<dataSize; i++){ 
      serial[index][i] = data[i]; 
    } 
    index++; 
    scanning=false; 
  } 
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Finally, if you have reached the buffer limit, reset the index to 0 and run a for loop to print each line 
in your serial[] array to serial.   

  if(index==lines){ 
    index=0; 
    for(int i = 0; i<lines; i++){ 
      for(int j = 0; j<dataSize; j++){ 
        Serial.print(serial[i][j]); 
      } 
      Serial.println(); 
    } 
    Serial.println("__________________"); 
  } 
} 

This will actually give you the key to reading the scale’s LCD signals. If you open your Serial 
Monitor, you now see a clear pattern in the flow of data streaming from the scale. 

1000000000000000 
0010000000000000 
0001000000000000 
0000000011100000 
0000000011110010 
0000000001010000 
0000000011110000 
0100000000000000 

This is your data stream when the scale is showing a 0.0 kg signal. If you settle on another weight, 
the signal will look differently. Let’s try 67.4kg. 

1000000000000000 
0010000000000000 
0001000000000000 
0000001001000000 
0000001101010010 
0000001001110000 
0000001111100000 
0100000000000000 

Well, that’s good; you can now see that there is a pattern that repeats itself at the far-left of your 
strings, and then some numbers that change at the center. The ones appearing on the right side are 
actually defining if the kg or lb symbol is turned on. 

After quite a lot of testing, we were able to identify the pins that carried the information on the digits 
and the ones that dealt with other elements. You should run a similar trial and error process to find out 
the order in your particular scale. This was the one in ours. 

Pin  0   1   2   3      4    5       6   7      8   9      10  11      12  13  14  15 
 

1   0   0   0   |   0   0   |   0   0   |   0   0   |   0   0   |   0   0   0   0 
0   0   1   0   |   0   0   |   0   0   |   0   0   |   0   0   |   0   0   0   0 
0   0   0   1   |   0   0   |   0   0   |   0   0   |   0   0   |   0   0   0   0   

The first three rows don’t change with the weight, so they can be used to identify the start of the 
message when pin 3 is turned on. 
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0   0   0   0   |   0   0   |   1   0   |   0   1   |   0   0   |   0   0   0   0  
0   0   0   0   |   0   0   |   1   1   |   0   1   |   0   1   |   0   0   1   0  
0   0   0   0   |   0   0   |   1   0   |   0   1   |   1   1   |   0   0   0   0  
0   0   0   0   |   0   0   |   1   1   |   1   1   |   1   0   |   0   0   0   0  

After the three first rows have passed, the fifth to eighth rows carry the important information. 
Columns 4-5 each consist of 8 bits, defining the hundreds. Columns 6-7 define the tens, 8-9 the units, 
and 10-11 the decimals. Column 14 provided information on the unit used (kg or lbs). 

0   1   0   0   |   0   0   |   0   0   |   0   0   |   0   0   |  0   0   0   0  

The last row is always constant and can be used to identify the end of the message. 

Sending the Signal to Processing 
You have acquired the information sent to the LCD display. You now want to decode it so you can work 
with the weight. You are going to send the raw information to Processing and write a decoder to 
transform this information into numbers. 

Stop scanning columns 12, 13, and 15 because they don’t add any useful information. Write a 
routine that checks the start of the message (one on column 3) and the end of the message (one on 
column 2) and sends to serial all the rows in between. Also send the information coming from analog pin 
0 connected to the PCB’s analog output that changes with the state of the weighing process. 

#define dataSize 13 
int data [dataSize]; 
int previousData [dataSize]; 
#define lines 4 
int serial [lines][dataSize]; 
int index; 
// Booleans defining the change 
boolean changed; 
boolean scanning; 
boolean start; 
int state; 
int previousState; 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(2,INPUT); 
  pinMode(3,INPUT); 
  pinMode(4,INPUT); 
  pinMode(5,INPUT); 
  pinMode(6,INPUT); 
  pinMode(7,INPUT); 
  pinMode(8,INPUT); 
  pinMode(9,INPUT); 
  pinMode(10,INPUT); 
  pinMode(11,INPUT); 
  pinMode(12,INPUT); 
} 
 
void loop() { 
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  for(int i = 2; i<13; i++){ 
    data[i-2] = digitalRead(i);  
  } 
  data[11] = digitalRead(A5); 
  data[12] = digitalRead(A2); 
  state = analogRead(A0); 
 
  // Check if the numbers have changed from the previous reading 
  int same = 0; 
  for(int i = 0; i<dataSize; i++){ 
    if(data[i]==previousData[i])same++; 
    previousData[i] = data[i]; 
  } 
  if(same<dataSize){ 
    changed=true; 
    scanning=true; 
  } 
  else{ 
    changed=false; 
  } 
 
  if(changed == false && scanning == true){ 
    if(data[1] == 1){ 
      start=false; 
      Serial.println('S'); 
      for(int i = 0; i<4; i++){ 
        for(int j = 0; j<dataSize; j++){ 
          Serial.print(serial[i][j]); 
        } 
        Serial.println(); 
      } 
      Serial.print('X'); 
      Serial.println(state); 
    } 
    if(start){  // If you have started the message 
      for(int i = 0; i<dataSize; i++){ 
        char number[1]; 
        // Serial.print(itoa(data[i], number, 10)); 
        //        Serial.print(" "); 
        serial[index][i]=data[i]; 
      } 
      index++; 
    } 
    scanning=false; 
    if(data[3] == 1){ 
      start=true; 
      index = 0; 
    } 
  } 
} 
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This code will output the following data stream to the serial buffer: 

S 
0000000001100 
0000000001111 
0000000011110 
0000000010110 
X532 
S 
0000000001100 
0000000001111 
0000000011110 
0000000010110 
X532 

You have enough data to identify the start and end of the information package, and all the necessary 
data to recompose the weight information at the other end of the line. 

Decoding the LCD Signal 
The decoding process is far simpler than the acquisition of the information. At this point, you can easily 
write a Processing program that receives the information from Arduino and decodes it into numbers you 
can understand. You are going to pack this process into a class so you can reuse the implementation in 
different applications. 

This class is called LCD. You input a two-dimensional array defining the individual number on the 
seven-segment display and you get a float defining the weight. 

public class LCD { 
  private float data; 
  int lcdArray[][] = new int[4][13]; 
  private String units = "kg"; 
  private int state; 
  boolean foundWeight; 
  boolean scanning; 
 
  int[] zero =   { 1, 1, 1, 0, 1, 1, 1 }; 
  int[] one =    { 0, 0, 1, 0, 1, 0, 0 }; 
  int[] two =    { 1, 1, 0, 1, 1, 0, 1 }; 
  int[] three =  { 1, 0, 1, 1, 1, 0, 1 }; 
  int[] four =   { 0, 0, 1, 1, 1, 1, 0 }; 
  int[] five =   { 1, 0, 1, 1, 0, 1, 1 }; 
  int[] six =    { 1, 1, 1, 1, 0, 1, 1 }; 
  int[] seven =  { 0, 0, 1, 0, 1, 1, 1 }; 
  int[] eight =  { 1, 1, 1, 1, 1, 1, 1 }; 
  int[] nine =   { 1, 0, 1, 1, 1, 1, 1 }; 
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Figure 10-10. Seven-segment display code 

The arrays you just defined are a blueprint to check your data against. They are based on the 
distribution of the seven-segment bits coming from Arduino. After, again some intensive testing 
sessions, we found the pattern depicted in Figure 10-10. 

The method getReading() returns the real value of the weight. 

  public float getReading() { 
    return data; 
  } 

Use the method setLcdArray() to input the new values from Arduino into your LCD class to keep 
the numbers updated. You convert every character to an integer, store them in the lcdArray, and run the 
update() method to update your real value. 

  public void setLcdArray(char[][] stringData) { 
    if (stringData[1][12] == '1') { 
      units = "kg"; 
    }  
    else if (stringData[2][12] == '1') { 
      units = "lb"; 
    } 
  for (int i = 0; i < stringData.length; i++) { 
        for (int j = 0; j < stringData[0].length; j++) { 
          lcdArray[i][j] = Character.digit(stringData[i][j], 10); 
        } 
      } 
    this.update(); 
  } 

Within the update function, you reorganize your main two-dimensional array into a three-
dimensional array that stores the four two-dimensional arrays defining each of the digits. 

public void update() { 
    int[] digits = new int[4]; 
    int[][][] segments = new int[4][4][2]; 
 
    for (int i = 0; i < lcdArray.length; i++) { 
      for (int j = 4; j < 6; j++) { 
        segments[0][i][j - 4] = lcdArray[i][j]; 
      } 
      for (int j = 6; j < 8; j++) { 
        segments[1][i][j - 6] = lcdArray[i][j]; 
      } 
      for (int j = 8; j < 10; j++) { 
        segments[2][i][j - 8] = lcdArray[i][j]; 
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      } 
      for (int j = 10; j < 12; j++) { 
        segments[3][i][j - 10] = lcdArray[i][j]; 
      } 
    } 

Then you use the function getNumber(), passing each of the bi-dimensional arrays and thus getting 
an array of the individual numbers displayed on the LCD. 

    for (int i = 0; i < digits.length; i++) { 
      digits[i] = getNumber(segments[i]); 
    } 

Lastly, you recompose the individual digits into the real value of the weight by multiplying the 
hundreds by 100, the tens by 10, the units by 1, and the decimals by 0.1. This real value is stored in the 
float variable data. 

    data = digits[0] * 100 + digits[1] * 10 + digits[2] + digits[3] * 0.1; 
  } 

You use the function getNumber() to get the decimal number represented by each of your seven-
segment bi-dimensional arrays. This process starts by extracting the seven relevant bits of the incoming 
array and storing them in a linear array. You compare this array to each one of the number blueprints 
that you defined previously. If it matches one of them, the corresponding number will be returned. 

  public int getNumber(int segments[][]) { 
    int flatSegment[] = new int[7]; 
    for (int i = 0; i < segments.length; i++) { 
      for (int j = 0; j < segments[0].length; j++) { 
        if (i + j == 0) { 
          flatSegment[i * 2 + j] = segments[i][j]; 
        }  
        else if (!(i == 0 && j == 1)) { 
          flatSegment[i * 2 + j - 1] = segments[i][j]; 
        } 
      } 
    } 
    if (Arrays.equals(flatSegment, zero)) { return 0; }  
    else if (Arrays.equals(flatSegment, one))   { return 1; }  
    else if (Arrays.equals(flatSegment, two))   { return 2; }  
    else if (Arrays.equals(flatSegment, three)) { return 3; }  
    else if (Arrays.equals(flatSegment, four))  { return 4; }  
    else if (Arrays.equals(flatSegment, five))  { return 5; }  
    else if (Arrays.equals(flatSegment, six))   { return 6; }  
    else if (Arrays.equals(flatSegment, seven)) { return 7; }  
    else if (Arrays.equals(flatSegment, eight)) { return 8; }  
    else if (Arrays.equals(flatSegment, nine))  { return 9; }  
    else { 
      return 0; 
    } 
  } 

The setState() function is used to set the state of the scale from the main sketch. You perform a 
check of the state of the scale and set the scanning and foundWeight Boolean values accordingly. 

  public void setState(int state) { 
    this.state = state; 
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    if (state < 518 && state > 513) { 
      scanning = true; 
    } 
    if (state < 531 && state > 526 && scanning) { 
      foundWeight = true; 
    } 
  } 

The following function displays the raw data in array form on screen. 

  public void displayArray(int x, int y) { 
    pushMatrix(); 
    translate(x, y); 
    for (int i = 0; i < lcdArray[0].length; i++) { 
      for (int j = 0; j < lcdArray.length; j++) { 
        text(lcdArray[j][i], 20 * i, j * 20); 
      } 
    } 
    popMatrix(); 
  } 
} 

Note that the last curly brace the closing curly brace for the whole class.  

Using the Weight Data 
You are going to write a first simple sketch to test the decoding process. Then you will use it with your 
Kinect data, so let’s check that it works properly before starting to make things more complex. 

Start a new sketch and create a separate tab in which you paste the LCD class. Then go back to the 
main tab and add all the necessary code to acquire serial communication. Then declare and initialize the 
LCD object, and declare a character array to store the incoming data. 

import processing.serial.*; 
Serial myPort; 
PFont font; 
LCD lcd; 
char[][] stringData = new char[4][13]; 
int currentLine; 

public void setup() { 
  size(400, 300); 
  font = loadFont("SansSerif-14.vlw"); 
  textFont(font); 
  String portName = Serial.list()[0]; // This gets the first port on your computer. 
  myPort = new Serial(this, portName, 9600); 
  myPort.bufferUntil('\n'); 
  lcd = new LCD(); 
} 

The main draw() function updates the LCD with the latest data from Arduino, displays the array 
data, and draws the result weight on the screen, as shown in Figure 10-11. 

public void draw() { 
  background(0); 
  lcd.setLcdArray(stringData); 
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  lcd.displayArray(50, 50); 
  text(lcd.data + " " + lcd.units, 50, 200); 
} 

 

Figure 10-11. Testing the LED data decoder 

You have worked with the serialEvent() function previously in this book, so it shouldn’t be 
completely unknown to you. Trim the newline character from your incoming string, and then check 
whether you have received a start or end of communication character.  

public void serialEvent(Serial myPort) { 
String inString = myPort.readString(); 
inString = inString.substring(0, inString.indexOf('\n') - 1); 

If you receive an S, set the current line to 0, so all new data is stored on the first line of your data 
array. 

  if (inString != null) { 
    if (inString.equals("S")) { 
      currentLine = 0; 
    }  

If the first character of your incoming string is an X, this means you are done with this reading. The 
numbers following the X are the reading of your LCD state. Pass that value to the LCD object. 

    else if (inString.charAt(0) == 'X') { 
      String newState = inString.substring(1); 
      lcd.setState(Integer.valueOf(newState)); 
    }  

Otherwise, check if the length of the array is correct, that you are not beyond the fourth line, and 
store the values of the incoming characters into the stringData array. 

    else { 
      if (inString.length() == 13 && currentLine<4) { 
        for (int i = 0; i < stringData[0].length; i++) { 
          stringData[currentLine][i] = inString.charAt(i); 
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        } 
        currentLine++; 
      } 
    } 
  }  
  else { 
    // increment the horizontal position: 
    println("No data to display"); 
  } 
} 

And that’s all! When you run this you should see the array of ones and zeros on the screen defining 
the LCD pins information and the real value of the weight displayed on the scale. You’re done with the 
weight data acquisition; let’s have fun with it and your Kinect data! 

Implementing the Biometric Recognition 
You have probably had enough of playing with your scale by now, so you’re going to plunge straight into 
the final piece of code that will use skeleton tracking to recognize users and the weight input to generate 
body mass index (BMI) values. The basic functioning of the program is the following; whenever a user 
enters the field of vision of Kinect, you start tracking him. Find the highest and lowest points defining 
your user and extract the height of the person from those points. At the same time, you skeletonize the 
user and extract the proportions of their limbs to use as a footprint to match the user with previously 
saved information. If the footprint is similar to an existing user, you  recognize him and retrieve the data 
from previous readings. You also have an input interface that allows you to create new users, stating 
their names and dates of birth. Once you have all of the skeleton and height data, the user steps on the 
bathroom scale and you read his weight. You then save all the current information in an external CSV file 
and calculate the person’s BMI and display it on screen. 

 Note A CSV (comma-separated values) file is a file format that stores tabular data separated by commas. It is 

used extensively in the transfer of data between applications.  

Controlling the height and weight of children from early life up to adulthood can be a good way to 
keep track of adequate development, so for the sake of this exercise, compare your data to the male 
BMI-for-age chart for children less than 20 years old. You can find this chart at 
http://www.cdc.gov/growthcharts/clinical_charts.htm. This chart applies to US citizens; you can 
probably find equivalent charts from your government’s health program. 

Imports and Variable Declaration  
The first thing you need to do in your Processing sketch is to import the external libraries that you need 
for this process. You are building a basic user interface, so import Java AWT and AWT.event, which are 
part of the Java Foundation Classes and allow you to interact with your sketch in runtime by introducing 
new users. 

import processing.serial.*; 
import SimpleOpenNI.*; 
import java.awt.*; 
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import java.awt.event.*; 
 
SimpleOpenNI kinect; 
Serial myPort; 
PFont font; 
PFont largeFont; 
LCD lcd; 

You are going to be juggling quite a few external files, so next you define an array called files that 
stores all the previous user data files that exist in the data folder. You also declare a current user file, two 
AWT TextFields, and one button for the user interface. 

// User Input and Files 
File[] files; // Existing user files 
File userFile; // Current user 
TextField name; 
TextField birthdate; 
Button b = new Button("New User"); 

The serial variables are similar to previous examples. The stringData array stores the incoming 
information from Arduino and one integer, currentLine, which you use in the process of parsing the 
incoming data. The Boolean scan is set to true, and then it is changed to false once you have acquired 
the final weight information. 

// Serial Variables 
boolean serial = true; 
char[][] stringData = new char[4][13]; 
int currentLine; 
boolean scan = true; 

The numeric user data is stored in the array of floats userData. You also store some user information 
in String format, such as the name and date of birth.  

// User Data 
float[] userData = new float[11]; 
int user; // Current user ID 
String userName = "new User"; 
String userBirthDate = "00/00/0000"; 
int userAge; 
float userBMI; 
float userHeightTemp; 

You declare a double array to keep the data in the chart that you want to display, and a File object 
defining the chart CSV file. The String today contains the current date. 

// Charts 
float[][] chart; 
File chartFile; 
String today; 

Setup Function 
The setup() function is slightly longer than usual due to the user interface elements and the objects 
managing the external files. The first half of the function deals with the Simple-OpenNI object and the 
Processing fonts.  
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Along with the depthMap and the user capabilities, you enable the scene from NITE. The scene allows 
you to separate the background from the foreground user. This means you can select the 3D points that 
make up the user’s volume and extract dimensions from it, namely the user height (Figure 10-12). 

 

Figure 10-12. Kinect scene: the user is automatically recognized. 

public void setup() { 
  size(1200, 480); 
  smooth(); 
 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(true); 
  kinect.enableDepth(); 
  kinect.enableScene(); 
  kinect.enableUser(SimpleOpenNI.SKEL_PROFILE_ALL); 
 
  font = loadFont("SansSerif-12.vlw"); 
  largeFont = loadFont("SansSerif-14.vlw"); 
  textFont(largeFont); 
  lcd = new LCD(); 
 
  if (serial) { 
    String portName = Serial.list()[0]; // This gets the first port 
    myPort = new Serial(this, portName, 9600); 
    myPort.bufferUntil('\n');   // don't generate a serialEvent() unless you get a newline 
  } 

User Interface 
Now you initialize the AWT objects that constitute your user interface (Figure 10-13). The input is based 
on two Java AWT TextFields and one button. You actually position these three elements out of the 
Processing frame, right under it. When one user is detected, you resize the height of the Processing 
frame, but not the applet, so you then expose the part of the frame containing the interface. The two text 
fields contain the name and date of birth of the new user.  
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Figure 10-13. User interface 

  // Setting Up the User Input Elements 
  name = new TextField(40); 
  birthdate = new TextField(40); 
  frame.add(name); 
  frame.add(birthdate); 
  frame.add(b); 
  name.setBounds(20, height + 27, 200, 20); 
  name.setText("Your Name"); 
  birthdate.setBounds(260, height + 27, 200, 20); 
  birthdate.setText("Date of Birth dd/mm/yyyy"); 
  b.setBounds(520, height + 27, 100, 20); 

You need to add an action listener to your button so an action is triggered when you press it. In your 
case, you store the user name and date of birth and you call the function newUser(), passing these 
strings as parameters. 

  b.addActionListener(new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      userName = name.getText(); 
      userBirthDate = birthdate.getText(); 
      newUser(userName, userBirthDate); 
    } 
  } 
  ); 

You want to be able to recognize users created in previous sessions. For this, you need to scan the 
data folder in search of CSV files starting with the characters “user_”. Use Java’s FilenameFilter for this 
purpose. The following lines first get a list of all files in the data folder and then apply the filter and store 
the resulting files into the File array files. You then print the file names to the console for debugging. 

  // Acquire the user files already on the folder 
  File directory = new File(dataPath("")); 
  FilenameFilter filter = new FilenameFilter() { 
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    public boolean accept(File dir, String name) { 
      return name.startsWith("user_"); 
    } 
  }; 
  files = directory.listFiles(filter); 
  println("List of existing user files"); 
  for (File f : files) { 
    println(f); 
  } 

To finish the setup() function, you choose the chart you are going to be comparing your results to 
and trigger the function readChart(), which retrieves all the data from the file. You also get the current 
date with the function getDate(). 

  // Acquire the chart file 
  chartFile = new File(dataPath("charts/Male_2-20_BMI.CSV")); 
  readChart(chartFile); 
  getDate(); 
} 

Draw Function 
The draw() loop, in contrast to the setup() function, is quite simple because you have implemented the 
main routines into separate functions that are detailed next. The first thing you do in each loop is to 
update the data from the Simple-OpenNI and LCD objects.  

public void draw() { 
  kinect.update(); 
  background(0); 
  lcd.setLcdArray(stringData); 
  image(kinect.sceneImage(), 0, 0); 

Then, if you have detected a user, you update the height data, as you are taking it from the user 
point cloud. 

  if (kinect.getNumberOfUsers() != 0) { 
    updateUserHeight(); 
  } 

If you are tracking a skeleton as well, you draw it on screen and update the user data from his limbs 
proportions. 

if (kinect.isTrackingSkeleton(user)) { 
    drawSkeleton(user); 
    updateUserData(user); 
  } 

Then, if you are still scanning the weight (scan is true), and the LCD object’s variable foundWeight is 
true (meaning you got a steady weight), you try to recognize the user from previous users, and then you 
store the first piece of data (the weight from the scale) in the first position of your userData array and the 
height in its second position. You then update the BMI value and save the user for future retrieval. You 
set the scan Boolean to false so you stop updating the values. 

   if (lcd.foundWeight && scan) { 
    userRecognition(); 
    userData[0] = lcd.data; 
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    userData[1] = userHeightTemp; 
    userBMI = userData[0]/pow(userData[1] /1000, 2); 
    saveUser(); 
    scan = false; 
  }  

And finally, you take care of the visualization by printing the chart and the user data on the right 
side of your Processing screen. 

  printUserData(); 
  drawChart(); 
} 

Additional Functions 
You probably guessed it: a short draw loop means a quite extensive list of additional functions! Some of 
these functions are very similar to code used in previous examples, so we won’t go into detail on those. 
Others are more complex and will be described exhaustively, explaining what they do and when they 
are called. 

Before you get into the user functions, there is a helper function called getDate() that uses the Java 
Calendar class to fetch the current date and store it in the variable today. It also calculates the age of the 
current user by subtracting the user’s date of birth from the current date. 

public void getDate() { 
  Calendar currentDate = Calendar.getInstance(); 
  SimpleDateFormat formatter = new SimpleDateFormat("dd/MM/yyyy"); 
  today = formatter.format(currentDate.getTime()); 
  Date todayDate = currentDate.getTime(); 
  Date userDate = null; 
  try { 
    userDate = formatter.parse(userBirthDate); 
  }  
  catch (ParseException e) { 
    e.printStackTrace(); 
  } 
  long diff = todayDate.getTime() - userDate.getTime(); 
  userAge = (int) (diff/31556926000l); 
} 

New User 
The newUser() function is called whenever you press the New User button in your user interface. The 
user name and date of birth are passed as arguments.  

You first need to check if you have pressed the button without entering a name or a date, in which 
case you  prompt the user to insert the data. Then, you use the Java function DateFormat() to check 
whether the date that has been inserted corresponds to the format you are expecting. If it doesn’t, a 
parse exception is thrown and caught by your try-catch statement, and you prompt the user to insert a 
properly formatted date of birth (which doesn’t mean it is the real one anyway…). 

If the data is correct, you proceed to check whether there is already a user with that name in the 
system, in which case you simply use that file for the rest of the time. If it doesn’t exist, you create it and 
add the user name and date of birth to the first line in the file. You finally flush and close the 
PrintWriter. 
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public void newUser(String name, String birth) { 
  // Start the user file  
  if (name.equals("Your Name") || birth.equals("Date of Birth dd/mm/yyyy")) { 
    println("Please insert your name and date of Birth"); 
  }  
  else { 
    DateFormat format = new SimpleDateFormat("dd/MM/yyyy"); 
    try { 
      format.parse(birthdate.getText()); 
      PrintWriter output; 
      userFile = new File(dataPath("user_" + userName + ".csv")); 
      if (!userFile.exists()) { 
        output = createWriter(userFile); 
        output.println(name + "," + birth); 
        output.flush(); // Write the remaining data 
        output.close(); // Finish the file 
        getDate(); 
        println("New User " + name + " created successfully"); 
      } 
      else { 
        setPreviousUser(userFile); 
      } 
    }  
    catch (ParseException e) { 
      System.out 
        .println("Date " + birthdate.getText() 
        + " is not valid according to " 
        + ((SimpleDateFormat) format).toPattern() 
        + " pattern."); 
    } 
  } 
} 

Updating User Data 
You call updateUserData() from the draw() loop in every cycle if you are tracking a skeleton. This 
function first stores all the real world coordinates of the user’s joints; then it calculates the dimensions of 
arms, forearms, thighs, shins, and shoulder breadth; and then it stores all of this data in the userData 
array, starting from the third position (the first two are occupied by the weight and height).  

This array serves later as an identifier for the user. The body proportions stored in the userData array 
can be matched and compared to other users’ identifiers and thus the person tracked can be recognized. 
The first step is to initialize all the PVectors that store the location of the user’s joints. 

void updateUserData(int id) { 
  // Left Arm Vectors 
  PVector lHand = new PVector(); 
  PVector lElbow = new PVector(); 
  PVector lShoulder = new PVector(); 
 
  // Left Leg Vectors 
  PVector lFoot = new PVector(); 
  PVector lKnee = new PVector(); 
  PVector lHip = new PVector(); 
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  // Right Arm Vectors 
  PVector rHand = new PVector(); 
  PVector rElbow = new PVector(); 
  PVector rShoulder = new PVector(); 
 
  // Right Leg Vectors 
  PVector rFoot = new PVector(); 
  PVector rKnee = new PVector(); 
  PVector rHip = new PVector(); 

Then you use the getJointPositionSkeleton() function to get the real world coordinates into the 
vectors. 

  // Left Arm 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_HAND, lHand); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_ELBOW, lElbow); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_SHOULDER, lShoulder); 
  // Left Leg 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_FOOT, lFoot); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_KNEE, lKnee); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_LEFT_HIP, lHip); 
  // Right Arm 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_HAND, rHand); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_ELBOW, rElbow); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_SHOULDER, rShoulder); 
  // Right Leg 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_FOOT, rFoot); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_KNEE, rKnee); 
  kinect.getJointPositionSkeleton(id, SimpleOpenNI.SKEL_RIGHT_HIP, rHip); 

And finally, you store the distances between certain joints in the userData array.  

  userData[2] = PVector.dist(rHand, rElbow);  // Right Arm Length 
  userData[3] = PVector.dist(rElbow, rShoulder);  // Right Upper Arm Length 
  userData[4] = PVector.dist(lHand, lElbow);  // Left Arm Length 
  userData[5] = PVector.dist(lElbow, lShoulder);  // Left Upper Arm Length 
  userData[6] = PVector.dist(lShoulder, rShoulder); // Shoulder Breadth 
  userData[7] = PVector.dist(rFoot, rKnee);  // Right Shin 
  userData[8] = PVector.dist(rHip, rKnee);  // Right Thigh 
  userData[9] = PVector.dist(lFoot, lKnee);  // Left Shin 
  userData[10] = PVector.dist(lHip, lKnee);  // Left Thigh 
} 

Updating User Height 
The detection of the user’s height is not based on skeleton tracking but directly on the point cloud, so 
you implement a separate function for it. This function is called from draw in case you’re tracking a user 
in the scene. 

You have previously worked with functions that parsed and printed on screen the Kinect point 
cloud. This function is similar, but you won’t print any of the points. What you want to do is to find out 
the higher and lower points from the user point cloud so you can subtract their Y coordinates and thus 
find the real height of the user in millimeters (Figure 10-14). 
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Figure 10-14. User height from highest and lowest points  

You will only use one of every three points to speed up the process; if you want a more precise 
measurement, you can decrease the steps to 1. Use userMap from Simple-OpenNI to get a flat image of 
the points that define the user.  

void updateUserHeight() { 
  int steps = 3; 
  int index; 
  int[] userMap = kinect.getUsersPixels(SimpleOpenNI.USERS_ALL); 
  PVector userCenter = new PVector(); 
  PVector[] realWorldPoint = new PVector[kinect.depthHeight() * kinect.depthWidth()]; 

Then you initialize the userTop and userBottom PVectors to the center of the mass of the user, so you 
can start looking for a top and bottom pixel from a neutral ground. 

  kinect.getCoM(1, userCenter); // Get the Center of Mass 
  PVector userTop = userCenter.get(); 
  PVector userBottom = userCenter.get(); 

And you run a loop checking every point in the depth map looking for user points. You determine 
that a point belongs to a user if the equivalent pixel in the userMap is not black. If you find a user point, 
you check if it’s higher than the higher pixel found or lower than the lowest pixel found; in positive case, 
you set it as the highest or lowest point. 

  for (int y = 0; y < kinect.depthHeight(); y += steps) { 
    for (int x = 0; x < kinect.depthWidth(); x += steps) { 
      index = x + y * kinect.depthWidth(); 
      realWorldPoint[index] = kinect.depthMapRealWorld()[index].get(); 
      if (userMap[index] != 0) { 
        if (realWorldPoint[index].y > userTop.y) 
          userTop = realWorldPoint[index].get(); 
        if (realWorldPoint[index].y < userBottom.y) 
          userBottom = realWorldPoint[index].get(); 
      } 
    } 
  } 
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Once you have found the highest and lowest points, you store the value of the difference of their Y 
coordinates into userHeightTemp. But you won’t do it straight away. You want to smooth the noisy data 
to avoid continuous oscillations of the value, so you use Processing’s lerp() function to progressively 
make the transition from one value to the next one. 

  userHeightTemp = lerp(userHeightTemp, userTop.y - userBottom.y, 0.2f); 
} 

Saving the User 
If you have successfully created a user and tracked his weight, height, and proportions, now you want to 
store this information into the previously created CSV file (Figure 10-15).  

For this, you create a File object with the name of the current user, and if you find that it doesn’t 
exist yet, you  prompt the user to insert his name and birth date. If the file does exist, use a Java 
BufferedWriter to append information to the file without wiping it out. 

 

Figure 10-15. Structure of the user information CSV file 

private void saveUser() { 
  userFile = new File(dataPath("user_" + userName + ".csv")); 
  if (!userFile.exists()) { 
    println("Please Enter your Name and Date of Birth"); 
  }  else { 
    try { 
      FileWriter writer = new FileWriter(userFile, true); 
      BufferedWriter out = new BufferedWriter(writer); 
      out.write(today); 
      for (int i = 0; i < userData.length; i++) { 
        out.write("," + userData[i]); 
      } 
      out.write("\n"); 
      out.flush(); // Write the remaining data 
      out.close(); // Finish the file 
    }  
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
    println("user " + userName + " saved"); 
  } 
} 

User Recognition 
Now you have all the data you need from your current user, and you want to know if the same user was 
previously registered in the system. This means that there is a CSV file containing very similar limb 
lengths to the ones of the current user.  

In order to find this out, you make use of the generalization of the concept of vector subtraction to a 
higher-dimensional space. What? Well, the next few lines are a technical explanation of how to measure 
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the similitude between two users based on the skeleton data. If you are not that interested in 
multidimensional vector operations, simply skip the math and use the code provided next! 

Vector Subtraction in Higher Dimensions 

You are using the Cartesian coordinate system with basis vectors. 

e1 = (1, 0, 0)  e2 = (0,1, 0)  e3 = (0, 0,1)  

If the subtraction of two two-dimensional vectors is 

a− b = (a1 − b1)e1 + (a2 − b2 )e2  

and the subtraction of two three-dimensional vectors is  

a− b = (a1 − b1)e1 + (a2 − b2 )e2 + (a3 − b3)e3  

then the subtraction of n-dimensional vectors will be 

a− b = (a1 − b1)e1 + (a2 − b2 )e2 +......+ (an − bn )en  

This means that you can treat your user data array as a multidimensional vector and calculate  
the distance or difference between two users as the magnitude of the vector resulting from subtracting 
the two.  

a− b = c          c = c1
2 + c2

2 + c3
2 +...+ cn

2  

This is performed by the function getUserDistance(), which takes an array as parameter and returns 
the magnitude of the vector resulting from the subtraction of the vector “pattern” and the one formed 
by the user data, excluding the two first parameters, so the recognition doesn’t get affected by changes in 
weight or height. 

float getUserDistance(float[] pattern) { 
  float result = 0; 
  for (int i = 0; i < pattern.length; i++) { 
    result += pow(pattern[i] - userData[i + 2], 2); 
  } 
  return sqrt(result); 
} 

 

Figure 10-16. Users being compared to previously stored information 
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The function userRecognition() is the bit of code that deals with comparing the current user to the 
information previously stored in CSV files (Figure 10-16). First, you create an array of floats that stores 
the distances of the current user to the various previously stored users, hence the size of it being 
files.length.  

Then, for each user file, you read its content; if the line contains more than two chunks of data (so 
it’s not the header), you store all the relevant floats in the array pattern, and you get its distance to your 
current user data using the previously defined function getUserDistance(). 

private void userRecognition() { 
  float[] distances = new float[files.length]; 
  for (int i = 0; i < files.length; i++) { 
    String line; 
    try { 
      BufferedReader reader = createReader(files[i]); 
      while ( (line = reader.readLine ()) != null) { 
        String[] myData = line.split(","); 
        if (myData.length > 2) { 
          float[] pattern = new float[9]; 
          for (int j = 3; j < myData.length; j++) { 
            pattern[j - 3] = Float.valueOf(myData[j]); 
          } 
          distances[i] = getUserDistance(pattern); 
        } 
      } 
    }  
    catch (IOException e) { 
      e.printStackTrace(); 
      println("error"); 
    } 
  } 

Once you have all the distances, or differences, you only need to find the user that is closest to your 
current user; if this distance is small enough (after some testing, we set the minimum to 100), you set the 
user in the file as the current user (Figure 10-17). 

  int index = 0; 
  float minDist = 1000000000; 
  for (int j = 0; j < distances.length; j++) { 
    if (distances[j] < minDist) { 
      index = j; 
      minDist = distances[j]; 
    } 
  } 
  if (minDist < 100) 
    setPreviousUser(files[index]); 
  println("Recognising User"); 
} 

The function setPreviousUser() simply retrieves the user data from the selected file and updates 
the user name and birth date. 

private void setPreviousUser(File file) { 
  String line; 
  try { 
    BufferedReader reader = createReader(file); 
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    line = reader.readLine(); 
    String[] myData = line.split(","); 
    userName = myData[0]; 
    userBirthDate = myData[1]; 
    getDate(); 
  }  
  catch (IOException e) { 
    e.printStackTrace(); 
    println("error"); 
  } 
  println("User set to " + "userName, born on" + userBirthDate); 
} 

 

Figure 10-17. Users being compared 

Reading and Drawing the Chart 
The following functions follow the same principles and methods you used to read the user data from 
external files, but this time you read the chart files and transform the numeric data into graphs 
representing the percentiles of BMI. 

private void readChart(File file) { 
  String line; 
  int lineNumber = 0; 
 
  try { 
    int lines = count(file); 
    chart = new float[lines][11]; 
    BufferedReader reader = createReader(file); 
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    while ( (line = reader.readLine ()) != null) { 
      String[] myData = line.split(","); 
      if (lineNumber == 0) { 
      }  
      else { 
        for (int i = 0; i < myData.length; i++) { 
          chart[lineNumber - 1][i] = Float.valueOf(myData[i]); 
        } 
      } 
      lineNumber++; 
    } 
  }  
  catch (IOException e) { 
    e.printStackTrace(); 
    println("error"); 
  } 
} 

The function count() is a helper function used to find out how many lines you will be reading from a 
CSV file.  

public int count(File file) { 
  BufferedReader reader = createReader(file); 
  String line; 
  int count = 0; 
  try { 
    while ( (line = reader.readLine ()) != null) { 
      count++; 
    } 
  }  
  catch (IOException e) { 
    e.printStackTrace(); 
    println("error"); 
  } 
  return count; 
} 

The function drawChart() simply runs through the chart array and draws the lines defining the 
percentiles. You can apply this method to every chart you have included in the data folder of the sketch. 

private void drawChart() { 
  float scaleX = 2; 
  float scaleY = 10; 
 
  pushStyle(); 
  stroke(255); 
  noFill(); 
  pushMatrix(); 
  translate(0, height); 
  scale(1, -1); 
  translate(660, 20); 
  line(0, 0, 500, 0); 
  line(0, 0, 0, 300); 
  for (int i = 1; i < chart[0].length; i++) { 
    beginShape(); 
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    for (int j = 0; j < chart.length - 1; j++) { 
      vertex(chart[j][0] * scaleX, chart[j][i] * scaleY); 
    } 
    endShape(); 
  } 
  strokeWeight(10); 
  stroke(255, 0, 0); 
  point(userAge*12*scaleX, userBMI*scaleY); 
  popMatrix(); 
  popStyle(); 
} 

Graphic Output 
The following functions handle the on-screen representation of the user data in text form and the 
drawing of the user’s skeleton. 

private void printUserData() { 
  fill(255); 
 
  text("Data at " + today, 660, 20); 
  text("Current User: " + userName, 660, 40); 
  text("Date of Birth " + userBirthDate, 660, 60); 
  text("Current Age " + userAge, 660, 80); 
 
  text("User Weight: " + userData[0] + " " + lcd.units, 660, 100); 
  text("User Height: " + userHeightTemp/1000 + " m", 660, 120); 
  text("User BMI: " + userBMI + " kg/m2", 660, 140); 
  fill(255, 255, 150); 
  text("BMI at ages 2-20", 1000, 20); 
} 
 
void drawSkeleton(int userId) { 
  pushStyle(); 
  stroke(255, 0, 0); 
  strokeWeight(3); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_HEAD, SimpleOpenNI.SKEL_NECK); 
 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_NECK, SimpleOpenNI.SKEL_LEFT_SHOULDER); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER, SimpleOpenNI.SKEL_LEFT_ELBOW); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_ELBOW, SimpleOpenNI.SKEL_LEFT_HAND); 
 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_NECK, SimpleOpenNI.SKEL_RIGHT_SHOULDER); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER, SimpleOpenNI.SKEL_RIGHT_ELBOW); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_ELBOW, SimpleOpenNI.SKEL_RIGHT_HAND); 
 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER, SimpleOpenNI.SKEL_TORSO); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_SHOULDER, SimpleOpenNI.SKEL_TORSO); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_LEFT_HIP); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_HIP, SimpleOpenNI.SKEL_LEFT_KNEE); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_KNEE, SimpleOpenNI.SKEL_LEFT_FOOT); 
 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_TORSO, SimpleOpenNI.SKEL_RIGHT_HIP); 
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  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_HIP, SimpleOpenNI.SKEL_RIGHT_KNEE); 
  kinect.drawLimb(userId, SimpleOpenNI.SKEL_RIGHT_KNEE, SimpleOpenNI.SKEL_RIGHT_FOOT); 
  popStyle(); 
} 

Serial Event 
The serialEvent() function is entirely derived from the previous example implemented in the “Using 
the Weight Data” section. This function acquires the data from Arduino and sets the LCD state to the 
incoming data. 

public void serialEvent(Serial myPort) { 
  // get the ASCII string: 
  String inString = myPort.readString(); 
  inString = inString.substring(0, inString.indexOf('\n') - 1); 
  if (inString != null) { 
    if (inString.equals("S")) { 
      currentLine = 0; 
    }  
    else if (inString.charAt(0) == 'X') { 
      String newState = inString.substring(1); 
      lcd.setState(Integer.valueOf(newState)); 
    }  
    else { 
      if (inString.length() == 13 && currentLine < 4) { 
        for (int i = 0; i < stringData[0].length; i++) { 
          stringData[currentLine][i] = inString.charAt(i); 
        } 
        currentLine++; 
      } 
    } 
  }  
  else { 
    println("No data to display"); 
  } 
} 

Simple-OpenNI User Events 
These are the same good old Simple-OpenNI callbacks as usual. The only hint of novelty is the last line in 
the onNewUser() function, which increases your Processing frame height by 54 pixels so the user interface 
is displayed. 

public void onNewUser(int userId) { 
  println("onNewUser - userId: " + userId); 
  println("  start pose detection"); 
  kinect.startPoseDetection("Psi", userId); 
  frame.setSize(width, height + 54); 
} 
 
public void onLostUser(int userId) { 
  println("onLostUser - userId: " + userId); 
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} 
 
public void onStartCalibration(int userId) { 
  println("onStartCalibration - userId: " + userId); 
} 
 
public void onEndCalibration(int userId, boolean successfull) { 
  println("onEndCalibration - userId: " + userId + ", successfull: " 
    + successfull); 
 
  if (successfull) { 
    println("  User calibrated !!!"); 
    kinect.startTrackingSkeleton(userId); 
    user = userId; 
  }  
  else { 
    println("  Failed to calibrate user !!!"); 
    println("  Start pose detection"); 
    kinect.startPoseDetection("Psi", userId); 
  } 
} 
 
public void onStartPose(String pose, int userId) { 
  println("onStartdPose - userId: " + userId + ", pose: " + pose); 
  println(" stop pose detection");  kinect.stopPoseDetection(userId); 
  kinect.requestCalibrationSkeleton(userId, true); 
} 
 
public void onEndPose(String pose, int userId) { 
  println("onEndPose - userId: " + userId + ", pose: " + pose); 
} 

Summary 
This has been quite a heavy project on the programming side. You had to acquire rather noisy data from 
a bathroom scale’s LCD, and you made sense of it by reverse-engineering its logic until you had the 
numeric data you wanted. You then built a whole framework for human biometric scanning and you 
implemented a user interface plus a data storage and retrieval system. You even managed to perform 
user recognition using NITE’s skeleton tracking capabilities, and you output all the gathered data on 
screen for visualization.  

You used some Kinect biometrics in this project; obviously, there are innumerable spin-off 
projects to be generated from this. You could start by building a system to show all the available 
growth and weight charts on screen, or you could extract only the user-recognition implementation 
and build your own home security system. You could also implement a fitness evaluator from the user 
shape, and try to classify people according to body shapes and dimensions. If you have some 
commercial vision, you should definitely give a go to an online fitted clothes try-on service based on 
Kinect’s three-dimensional scanning! 
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Figure 10-18. Leonardo’s Vitruvian Man, and a not-so-Vitruvian Kinect user 
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3D Modeling Interface 

by Enrique Ramos 
So far you’ve used Kinect to accurately track your movements in space, but when it comes to “clicking,” 
you can’t seem to dispense with your mouse. In this project, you’re going to build a wearable user 
interface that will complement Kinect’s tracking capabilities with accurate multi-clicking and you will 
use it to build 3D geometries by drawing directly in space. 

Your user interface will be mounted on a standard glove and will use an Arduino LilyPad as its 
computational core. You will learn how to use the bending of your fingers as an input device via flex 
sensors. You will then learn how to develop your own simple CAD program to translate the position of 
your hand and the bending of your fingers into 3D geometries (as shown in Figure 11-1) that you will 
then export as .dxf files readable by other CAD and 3D-modeling packages. 

Figure 11-1. 3D modeling with the glove interface 
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The Interface 
In previous chapters, you explored several ways of interacting with your computer using Kinect’s 3D 
scanning plus NITE’s hand and skeleton tracking capabilities. But the “clicking” precision using gesture 
recognition is rather inaccurate and can be discouraging for some applications. 

In this chapter, you are going to bridge this gap by building a wearable wireless user interface that 
can be used as a 3D interface for several applications (Figure 11-2). You will take advantage of Kinect’s 
excellent 3D hand-tracking capability, and you will complement it with a way to trigger different 
behaviors in your program without using conventional keyboard and mouse devices.  

 

Figure 11-2. 3D modeling interface 

Table 11-2 lists all the components necessary for this project and Figure 11-3 shows what they look like. If 
you need to buy all of the Arduino LilyPad stuff, we recommend the LilyPad Beginner’s Kit from SparkFun, 
which includes most of the components for this project plus other parts you may find useful later.  

Table 11-1. Parts List 

Part Description Price 

One glove (I guess you will have to buy two though…) From $5 

4 flex sensors FLX-01-M from Images SI or similar $10.00 each 

4 10KΩ resistors For the voltage dividers $0.25 each 

Arduino LilyPad Simple You could also use the LilyPad main board $19.95 

LilyPad XBee XBee breakout for LilyPad $14.95 
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Part Description Price 

XBee Explorer USB You will need a mini USB cable to connect it. $24.95 

2 XBee modules XBee 1mW Chip Antenna - Series 1 $22.95 each 

FTDI Basic Breakout 5V You will need this to program your LilyPad. $14.95 

USB A to MiniB Cable To connect the FTDI to the computer $4.95 

Conductive thread You only need a 60ft bobbin for the project. $2.95 

Needle To sew your own circuit $1.00 

LiPo Battery - 110mAh Polymer lithium ion battery $6.95 

 Note You are using the Arduino LilyPad Simple in this project. As a result, you also need to use Arduino’s 
SofwareSerial library to communicate with the XBee radio module, as you can’t access pins 0 and 1 on the LilyPad 
Simple. This way of transmitting information is actually much slower than using pins 0 and 1, but it’s good enough 
for this project. If you are planning on adding more demanding transmission of information to this project, you 

should consider using the standard Arduino LilyPad board. For more information, see the “Going Wireless” section. 

 

Figure 11-3. Project parts 
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Arduino LilyPad 
When working on wearable technology with Arduino, it’s difficult to find a better option than the 
Arduino LilyPad, an Arduino board developed cooperatively by Leah Buechley and SparkFun Electronics 
specifically to be sewn to fabric and clothing for wearable applications. 

For this project, you are going to use the Arduino LilyPad Simple board. This board has fewer 
connections than the standard Arduino LilyPad, but it includes a built-in power socket for plugging in a 
LiPo battery plus an on/off switch. This will simplify the circuit by eliminating the need to sew an extra 
power supply to your glove. 

Note that there’s no USB connection on the LilyPad board (Figure 11-4). To connect the board to 
the computer, you will need to use an FTDI Basic Breakout that plugs into the 6-pin male header on the 
top of the LilyPad board. The FTDI Basic Breakout (Figure 11-5) can be plugged to the computer with a 
USB MiniB cable.  

 

Figure 11-4. Arduino LilyPad Simple board 

 

Figure 11-5. FTDI Basic Breakout 



CHAPTER 11   3D MODELING INTERFACE 

 

283 

Flex Sensors 
Flex sensors are electronic components that change resistance when bent. As with any other kind of 
variable resistors, they must be used with a voltage divider to get changing voltages into your analog 
input pins (Figure 11-6). This kind of sensors has been used extensively in the fabrication of virtual 
reality gloves. 

10K Resistor

Flex Sensor

Analog Input Pin

GND

5V

 

Figure 11-6. Voltage divider for flex sensor 

For this project, you will use four two-directional Bi-Flex Sensors from Images Scientific 
Instruments. These sensors decrease their resistance as they are bent in either direction. (This feature is 
something you don’t really need for the project, as your fingers only bend in one direction, so you can 
choose any other flex sensors as long as they fit nicely into the glove’s fingers.) 

There are three versions of the FLX-01 sensors, depending on the resistance ranges. This project 
calls for the FLX-01-M (medium resistance range of 20K-50K) and 10K resistors for each sensor, which 
provides a reasonable input range. The kind of circuit you are using for each sensor is called a voltage 
divider (see Figure 11-6). We discussed the calculation of output voltages and resistors for voltage 
dividers in the section “Feedback from Arduino” in Chapter 4. Go back to this section if you need a 
refresher. 

The first thing you need to do is to install the flex sensors in the glove. There are many ways of 
doing this. Our gloves had a double skin, so we decided to insert the sensors between the fake-leather 
exterior skin and the fluffy interior one. After measuring the length of the sensor from the tip of each 
finger, cut some small incisions, just large enough for the sensors to slip into. Then insert one sensor in 
each finger, leaving the cables to protrude from the slits. Only use sensors for the thumb, index, middle, 
and ring fingers (Figure 11-7). Leave the little finger out because of the difficulty of controlling it 
independently (unless you are a piano player!) and because there are only four accessible analog pins 
on the LilyPad Simple.  
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Figure 11-7. Flex sensors installed in the glove 

Sewing the Circuit 
Yes, that’s the right word. This time you won’t be “building” your circuit; you’ll be “sewing” it (Figure 
11-8). For wearable applications, you use conductive thread instead of normal wires to connect the 
components in the circuit; the result is a more flexible, stable, and lightweight design. A piece of advice: 
if you have never sewn a button in your life, you may want to get some help from more experienced 
relatives or friends before you put a needle in your hand! 

 

Figure 11-8. Sewing the circuit 
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The main idea is to link the LilyPad pins to the right components with the conductive thread. Note 
that you want to avoid the threads touching each other, just as you would do on a normal circuit. 
Sometimes you will need to cross threads but you don’t want them to join electrically. The best way 
around this is to arrange for them to be on different sides of the skin at the crossing point.  

Start by sewing a test circuit using your Arduino LilyPad and the four flex sensors. After proper 
testing, you can add other components.  

First, sew the Arduino LilyPad to the glove, and then sew the connections to the flex sensors and the 
resistors (Figure 11-9). To connect the flex sensors, expose a section of the cables and loop around the 
exposed wires with your conductive thread. Then cut off the rest of the cable. If you look carefully at 
Figure 11-10, you can see that the ground thread connecting all the resistors together goes under the 
exterior skin most of the time so that it doesn’t connect to the cables going from the flex sensors to the 
Arduino LilyPad pins. 

 

Figure 11-9. Flex sensors circuit 
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Figure 11-10. The circuit sewn to the glove 

Test that the connections are correct using a multimeter and then connect the board to your 
computer using the FTDI Basic Breakout. Now you can load and test your first program (Figure 11-11). 

 

Figure 11-11. The LilyPad connected to the FTDI Basic Breakout 
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Testing the Circuit 
Now that you have sewn the circuit, you need to check that everything works properly. To do so, you will 
upload an Arduino program to your board to read the input from the flex sensors and send it via serial so 
you can see the values on the screen. 

Arduino Serial Sender 
Open a new Arduino sketch and declare four integer variables, one for each finger. In the setup() 
function, start serial communication at 9600 baud. 

int finger1, finger2, finger3, finger4; 
void setup() { 
  Serial.begin(9600); 
} 

In the loop() function, read the four sensors using analogRead() and send their values to the serial 
buffer, separating them by blank spaces and finishing with a println() function call to get a newline 
character at the end of each cycle. 

void loop() { 
  finger1 = analogRead(A5); 
  finger2 = analogRead(A4); 
  finger3 = analogRead(A3); 
  finger4 = analogRead(A2); 
   
  Serial.print(finger1); 
  Serial.print(" ");  
  Serial.print(finger2); 
  Serial.print(" ");  
  Serial.print(finger3); 
  Serial.print(" ");  
  Serial.println(finger4); 
} 

Upload this code and open the Serial Monitor. If you put the glove on and bend your fingers, you 
should see the numbers changing within a range of 100 to 700 or similar.  

Processing Glove Data Receiver 
It will be much easier to understand this data if you can get a visual representation of it, so you’re going 
to build a simple Processing sketch that will receive the values and draw them on screen as variable-
width rectangles. You will reuse some of these elements in the final project. 

Open a new Processing sketch and import the Serial library. Then initialize the serial port and an 
array of four floats to contain the data from the flex sensor for each finger. The data from Arduino is 
actually integers, but you declare the fingerData array as a float data type because you are smoothing 
out the incoming data and the result may turn out to be floating point numbers. Then, within the 
setup() function, set the sketch size and initialize the serial communication. 
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import processing.serial.*; 
Serial myPort;  
float[] fingerData = new float[4]; 
 
void setup() { 
  size(800, 300); 
  // Serial Communication 
  String portName = Serial.list()[0]; 
  myPort = new Serial(this, portName, 9600); 
  myPort.bufferUntil('\n'); 
} 

The draw() function begins by defining a black color for the background and then drawing a 
rectangle for each finger, the width based on the finger data from Arduino. 

void draw() { 
  background(0);  
  for (int i = 0; i < fingerData.length; i++) { 
    rect(0, 50+i*50, fingerData[i], 20); 
  } 
} 

The serialEvent() function is triggered every time you get a newline character in the serial buffer. 
You have programmed the Arduino to send the four values from the flex sensors separated by blank 
spaces, so you need to get the string and split it at every blank space.  

public void serialEvent(Serial myPort) { 
String inString = myPort.readStringUntil('\n'); 
  if (inString != null) { 
    String[] fingerStrings = inString.split(" "); 

If you have the correct amount of String values (four), you convert every String to a float and then 
you add it to the fingerData[] array. You place the conversion inside a try{} … catch{} block to avoid 
the program stopping completely when it gets an anomalous character from Arduino, which happens 
occasionally. Use the Processing function lerp() to smooth out quick oscillations in the incoming data. 
Figure 11-12 shows what the data could look like. 

    if (fingerStrings.length==4) { 
      for (int i = 0; i < fingerData.length; i++) { 
        try { 
          float intVal = Float.valueOf(fingerStrings[i]); 
          fingerData[i] = lerp(fingerData[i], intVal, 0.5); 
        }  
        catch (Exception e) { 
        } 
      } 
    } 
  } 
} 
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Figure 11-12. Finger-bending test 

Going Wireless 
Now that you have the basics of the glove interface working, you are going to improve your device by 
eliminating the cables. The ultimate goal of this project is an intuitive interface that works via your hand 
movements, so having a cable attached to it is not quite ideal.  

To free yourself from the inconvenient cables, you need to add a power source to your glove design 
and an XBee radio module to transmit serial data wirelessly. You have used the XBee radio module in 
several other projects, so you should be acquainted with it already. If you skipped the previous chapters, 
read the introduction to XBee in Chapter 7. 

LilyPad XBee 
Happily, there’s a LilyPad XBee breakout board that works on the same principles as the main LilyPad 
board. You are going to add this XBee breakout to your glove, and you will use an XBee Explorer USB 
connected to your computer to receive the information (Figure 11-13). 

Figure 11-13. XBee Explorer USB 
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Connecting the XBee breakout to your LilyPad board isn’t difficult. The way you normally do it is by 
attaching the + and - pins on the XBee breakout to 5V and ground on the LilyPad and the rx and tx to 
pins 1 and 0. But that’s on a standard LilyPad board. You’re using a LilyPad Simple, and after close 
inspection, you see that pins 0 and 1 don’t exist. (Well, they do exist but the architecture of the LilyPad 
doesn’t expose them.) So what should you do? Can you use the XBee module with the LilyPad Simple? 
The answer to this problem is one of the Arduino’s core libraries: SoftwareSerial. 

SoftwareSerial Library 
Arduino’s built-in support for serial communication in pins 0 and 1 occurs via a piece of hardware called 
UART (Universal Asynchronous Receiver/Transmitter), which is built into the ATmega microcontroller.  

You can’t access pins 0 and 1 on the LilyPad Simple, but you can replicate the serial reception and 
transmission functionality on other pins using the SoftwareSerial library, which is included with the 
Arduino IDE. This way of transmitting information is actually much slower than using pins 0 and 1, but 
it’s still good enough to transmit the information from the glove in this project. If you are planning on 
adding some more demanding transmission of information to this project, you should definitely 
consider using the standard Arduino LilyPad board. 

Wireless Arduino Code 
Let’s modify the previous Arduino code to work with the XBee through pins 5 and 6 using this library. 
First, you need to include the SoftwareSerial library and initialize a SoftwareSerial object, passing pin 
numbers 5 and 6 as parameters. Call the object XBee. This is the first time you’re using an Arduino library 
in this book. You have previously included libraries in Processing by selecting Import Library in the 
Sketch menu or typing something like import SimpleOpenNI.*; directly in the text editor. In Arduino, the 
syntax is different because the language is based on C instead of Java. You can still go to Sketch > Import 
Library and choose SoftwareSerial; you’ll see a new line of code in your text editor, #include 
<SoftwareSerial.h>, which is the Arduino equivalent of the Processing import statement. 

So wherever you wrote Serial on your previous code, you now write XBee. The resulting code is the 
following: 

#include <SoftwareSerial.h> 
SoftwareSerial XBee(5,6); 
int finger1, finger2, finger3, finger4; 
 
void setup() { 
  XBee.begin(9600); 
} 
 
void loop() { 
  finger1 = analogRead(A5); 
  finger2 = analogRead(A4); 
  finger3 = analogRead(A3); 
  finger4 = analogRead(A2); 
 
  XBee.print(finger1); 
  XBee.print(" ");  
  XBee.print(finger2); 
  XBee.print(" ");  
  XBee.print(finger3); 
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  XBee.print(" ");  
  XBee.println(finger4); 
} 

This is the Arduino code that you will be using for the rest of this chapter. Before trying this code 
with the previous Glove Receiver Processing sketch, you need to sew the XBee to the glove circuit. Figure 
11-14 shows the final circuit for the project with the components arranged as in the physical device. It 
will take you some time to sew all the connections. Be sure to  make the connections solid and reliable; 
otherwise, the movement of your hands will end up loosening them. 

Apart from the XBee, you need to introduce the LiPo battery in order to make the glove completely 
autonomous. Just plug it in the LilyPad power supply socket and put the battery inside the glove (Figure 
11-15). If your gloves have a double skin, this is the perfect place to hide it. 

 

Figure 11-14. Glove circuit completed 

    

Figure 11-15. The LilyPad Xbee on the circuit (left) and the LiPo battery (right) 
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Implementing the Modeling Interface 
Now that the physical device is ready and the code is uploaded to the Arduino LilyPad and sending serial 
data, it’s time to write your 3D modeling interface program in Processing. 

Let’s define 3D modeling as the creation of 3D geometries with specialized software. These 
geometries are defined by surfaces and lines, which in turn are defined by points. You begin by defining 
points in space and then linking these points together with lines and surfaces, as you can see in Figure 
11-16. You implement this by writing a very simple computer-aided design (CAD) software program 
(detailed in the “Geometric Classes” section) that you can control with your glove. This software is based 
on a main Processing routine and three helper classes that deal with particular functions and data 
structures. 

The first class, GloveInterface, is derived from your previous Glove Data Receiver example and 
deals with the information coming from the glove via serial. The other three classes are the Point, Line, 
and Shape classes, which are the basic blocks of your geometrical constructions. 

 

Figure 11-16. 3D modelling with the glove interface 

The GloveInterface Class 
This class deals with the finger-bending information from the flex sensors. Due to the different sizes and 
forms of your fingers and the particularities of the different flex sensors, the ranges of the data coming 
from each one of the fingers will be slightly different. You want to control the incoming data with the 
same functions, so you need to map these values to standard ranges with a calibration function. 
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 First, declare the GloveInterface class in its own tab, as you saw in Chapter 7. Then declare a File 
object to store the calibration information so you don’t need to repeat the calibration process every time 
you run the program.  

public class GloveInterface { 
  File fingerCal; 

You need three PVectors to handle the position of your hand in space, the position that you consider 
to be the origin of coordinates (which is determined by the position of the hand at the moment of 
recognition), and the position of the glove in your model space (pos). 

 PVector pos = new PVector(); 
 PVector zeroPos = new PVector(); 
 PVector handPos = new PVector(); 

You also need an array to store the bending state of each finger as per the data from the Arduino 
(fingerState[]) and then after calibration (fingerStateCal[]). The calibration data is stored in the 
fingerCalibration[] nested array, which you initialize to predetermined values.  

The integer currentFinger defines the finger that is “clicked” at any specific moment, which is 
determined using the setFingerValues() function. The default value (99) doesn’t correspond to any of 
the four fingers you are following and it’s identified as no finger clicked. 

  float[] fingerState = new float[4]; 
  float[] fingerStateCal = new float[4]; 
  float[][] fingerCalibration = {{0,600},{0,600},{0,600},{0,600}}; 
  public int currentFinger = 99; 

You only implement one constructor taking no arguments. Within this constructor, specify the file 
containing your calibration data. If the file already exists, get the data in the file using the function 
getCalibration(). 

  GloveInterface() { 
    fingerCal = new File("data/fingerCal.txt"); 
    if (fingerCal.exists()) { 
      getCalibration(); 
    } 
  } 

Setter Functions 
You implement three setter functions: one to set the fingers’ state, another to set the current glove 
position, and a third one to set the initial or zero position. 

The function setFingerValues() is called from the main routine every time you get new data from 
Arduino via the serial interface. This function takes an array of strings as its first argument. The first step 
in the function is to convert each String in the array into a float and store them in the fingerState[] 
array. This code is very similar to the code from the Glove Data Receiver sketch, but it uses a try{} … 
catch{} block to avoid the execution, stopping when incorrectly formatted strings are received.  

  public void setFingerValues(String[] fingerStrings) { 
      for (int i = 0; i < fingerState.length; i++) { 
      try { 
        float intVal = Float.valueOf(fingerStrings[i]); 
        fingerState[i] = PApplet.lerp(fingerState[i], intVal, 0.2f); 
      }  
      catch (Exception e) { 
      } 
    } 
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After acquiring the fingers’ states, use the fingerCalibration values to remap the incoming data 
from the calibration values to the desired range of 0-600. The way you calibrate the interface is by 
opening all your fingers and storing the “stretched” values into the zero index element of each array in 
fingerCalibration. Then you close your fingers and store the “maximum bending” state into the index 1 
of each array in fingerCalibration. By mapping each of the incoming values from these ranges to the 
desired range (0-600), you make sure that a stretched finger means a value close to 0 and a fully bent 
finger casts a value close to 600. You analyze these calibration functions at the end of the class. 

    for (int i = 0; i < fingerStateCal.length; i++) { 
      fingerStateCal[i] = PApplet.map(fingerState[i], fingerCalibration[i][0], 
fingerCalibration[i][1], 0, 600); 
    } 

Finally, you determine if one of the fingers is “clicked” by checking which one of the fingers presents 
a higher bending state and if its value is over a threshold (300). The current finger is stored in the integer 
currentFinger. 

    float maxBending = 0; 
    currentFinger = 5; 
    for (int i = 0; i < fingerStateCal.length; i++) { 
      if (fingerStateCal[i] > maxBending && fingerStateCal[i] > 300) { 
        maxBending = fingerStateCal[i]; 
        currentFinger = i; 
      } 
    } 
  } 

The function setPosition() takes a PVector defining the current position of your hand in global 
coordinates, which is stored in the handPos PVector. Then you translate this value to your modeling 
coordinate system by subtracting the zeroPos PVector from it. The zeroPos PVector updates from the 
main routine by calling the setZeroPos() function. 

  public void setPosition(PVector inputPos) { 
    this.handPos = inputPos; 
    this.pos = PVector.sub(inputPos, zeroPos); 
  } 
 
  public void setZeroPos(PVector handPos) { 
    this.zeroPos = handPos; 
  } 

Display Functions 
The draw() function simply draws a point on screen of the coordinates of your glove interface. The 
switch() statement changes the color of the point depending on the current finger. 

  public void draw() { 
    pushStyle(); 
    switch (currentFinger) { 
    case 0: 
      stroke(255, 0, 0); 
      break; 
    case 1: 
      stroke(0, 255, 0); 
      break; 
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    case 2: 
      stroke(0, 0, 255); 
      break; 
    case 3: 
      stroke(255, 255, 0); 
      break; 
    case 5: 
      stroke(255, 255, 255); 
      break; 
    } 
    strokeWeight(20); 
    if(!record){ 
      point(pos.x, pos.y, pos.z); 
    } 
    popStyle(); 
  } 

Note that you put the point() function within an if() statement that only draws if the Boolean 
record is not true. This is due to the dxf export library that you will be bringing in later; this Processing 
library can’t export points so you need to avoid the printing of points when exporting. You do this every 
time you draw points in this program. 

The drawData() function draws the same information on screen as the Glove Data Receiver sketch, 
letting you see the calibrated bending state of each finger. 

  public void drawData() { 
    for (int i = 0; i < fingerStateCal.length; i++) { 
      rect(0, 50 + i * 50, (int) fingerStateCal[i], 20); 
    } 
  } 

Calibrating the Interface 
We have already explained how the calibration of the device works. The following three functions take 
care of setting the calibration data, storing it in the external file, and retrieving it on demand. 

The function calibrateFinger() is called from the main Processing routine by pressing a key on the 
keyboard. It takes the finger to be calibrated (i) and the state being calibrated (j), which is 0 if calibrating 
the stretched state or 1 if calibrating the bent state. You first store the present non-calibrated state of the 
finger into the fingerCalibration[] array and then call the saveCalibration() function. 

  public void calibrateFinger(int i, int j) { 
    fingerCalibration[i][j] = fingerState[i]; 
    saveCalibration(); 
  } 

saveCalibration() converts the fingerCalibration double array into a linear array of strings and 
uses the saveStrings() function to store all the values into the fingerCal file. 

  private void saveCalibration() { 
    String[] mySettings = new String[8]; 
    for (int k = 0; k < fingerCalibration.length; k++) { 
      mySettings[k] = String.valueOf(fingerCalibration[k][0]); 
      mySettings[k + 4] = String.valueOf(fingerCalibration[k][1]); 
    } 
    PApplet.saveStrings(fingerCal, mySettings); 
  } 
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Lastly, the function getCalibration() performs the opposite process, using loadStrings() to 
retrieve the strings from the fingerCal file and storing these values into the fingerCalibration array 
after converting them into floats. 

  private void getCalibration() { 
    String[] mySettings = PApplet.loadStrings(fingerCal); 
    for (int k = 0; k < fingerCalibration.length; k++) { 
      fingerCalibration[k][0] = Float.valueOf(mySettings[k]); 
      fingerCalibration[k][1] = Float.valueOf(mySettings[k + 4]); 
    } 
  } 
} 

Geometric Classes 
In order for you to be able to draw in three dimensions with your new glove interface, you need to 
implement your own modeling software or link your Processing interface to existing CAD software. 
You’re going to take the first approach by implementing a very, very simple and limited CAD program.  

CAD, or computer-aided design, is the software that allows engineers, architects, and designers to 
draft with a computer. There are plenty of commercial CAD and 3-D modeling software packages—and a 
few good open source options. The very basic blocks of the geometrical constructions generated with 
modeling software are the notions of point, line, and surface. You are going to create a separate class for 
each of these basic geometric concepts, which you will then use to generate the geometry (Figure 11-17). 

     

Figure 11-17. Points, lines, and surfaces defined by your program 

Point Class 
As you build your geometry, a point is defined as a specific location in 3D space. This location is 
described by three coordinates: x, y, and z. For your purposes, this location can be treated as a vector 
(x,y,z), which means you could use the PVector class to define your points. Instead, you are going to 
write your own Point class to be able to add a couple more functions to your point objects. 

Note that the class Point will have two fields: a PVector describing its position and a Boolean 
variable that is true if the element has been selected. You implement only one constructor taking a 
PVector as parameter that is used as the point’s position. 

public class Point { 
  PVector pos; 
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  private boolean selected; 
 
  Point(PVector pos) { 
    this.pos = pos; 
  } 

The draw() function displays the point on screen. Note that you again put the point() function 
within an if() statement that only draws if the Boolean record is not true.  

  void draw() { 
    pushStyle(); 
    strokeWeight(10); 
    if (selected) { 
      stroke(255, 255, 0); 
    } 
    else { 
      stroke(200); 
    } 
    if (!record){ 
     point(pos.x, pos.y, pos.z); 
    } 
    popStyle(); 
  } 

Finally, implement three more functions that allow you to change the position of the point, select it, 
and unselect it (Figure 11-18). 

  public void setPos(PVector newPos) { 
    this.pos = newPos; 
  } 
 
  public void select() { 
    this.selected = true; 
  } 
  public void unSelect() { 
    this.selected = false; 
  } 
} 

 

Figure 11-18. Selected point 
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Line Class 
As you saw in the previous section, a line is a one-dimensional geometrical element. A line is by definition 
infinite, but in this case, whenever we talk about lines, we’re actually referring to line segments.  

A line segment is a portion of a line, and it can be defined by two points. You have probably heard 
line defined as “the shortest path between two points,” which is pretty close to the sense the word line 
will have in your code. 

Your Line class, then, has two Point objects as fields. These two points define the line and are used 
within the draw() function to display the line on screen by using Processing’s line() function. 

public class Line { 
  Point p1; 
  Point p2; 
 
  Line(Point p1, Point p2) { 
    this.p1 = p1; 
    this.p2 = p2; 
  } 
 
  void draw() { 
    pushStyle(); 
    stroke(255); 
    line(p1.pos.x, p1.pos.y, p1.pos.z, p2.pos.x, p2.pos.y, p2.pos.z); 
    popStyle(); 
  } 
} 

Shape Class 
The Shape class represents triangular surfaces in your program. A surface is a two-dimensional 
geometrical element. Your Shape objects represent portions of planes, or flat surfaces, defined by three 
points (Figure 11-19). Triangular shapes are the basis of many polygonal modeling programs; for you, 
they constitute the only way in which your software will represent surfaces. 

The Shape class uses an ArrayList of Point elements to store the points defining it. You could have 
used three points instead, but this way lets you extend the concept further and draw complex shapes 
consisting of more than three points. The draw() function makes use of Processing’s beginShape(), 
vertex(), and endShape() functions to draw your shapes on screen. In the future, you might want to 
dynamically add points to this function in runtime, so add a function addPoint() for this purpose. 

public class Shape { 
  ArrayList<Point> points = new ArrayList<Point>(); 
  Shape( ArrayList<Point> points) { 
    for (Point pt : points) { 
      this.points.add(pt); 
    } 
  } 
 
void draw() { 
    pushStyle(); 
    fill(255); 
    stroke(150); 
    beginShape(); 
    for (int i = 0; i < points.size(); i++) { 
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      vertex(points.get(i).pos.x, points.get(i).pos.y, points.get(i).pos.z); 
    } 
    endShape(PConstants.CLOSE); 
    popStyle(); 
  } 

  void addPoint(Point newPoint) { 
    points.add(newPoint); 
  } 
} 

Figure 11-19. Freeform three-dimensional geometry built with triangular shapes 

Modeling Interface Main Program 
Now that you have your helper classes implemented, you can write the main routine. This code drives 
the program’s workflow and makes use of the previous classes to achieve the ultimate goal of allowing 
you to make 3D geometries using your glove interface. Add more of Processing’s core libraries so you 
can export the geometries you create to .dxf files and import them into other CAD software. 

Imports and Fields 
You need to import five libraries for this project: three core libraries (OpenGL, Serial, and DXF) and two 
external libraries (Simple-OpenNI and KinectOrbit).  

import processing.opengl.*; 
import processing.serial.*; 
import processing.dxf.*; 
import SimpleOpenNI.*; 
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import kinectOrbit.*; 
 
KinectOrbit myOrbit; 
SimpleOpenNI kinect; 
 
Serial myPort; // Initialize the Serial Object 
boolean serial = true; // Define if you're using serial communication 

You are implementing hand recognition using NITE’s XnVSessionManager, as you did in Chapter 5, 
so you must initialize the appropriate objects. 

XnVSessionManager sessionManager; 
XnVPointControl pointControl; 

You then declare the GloveInterface object glove and four ArrayList collections defining the 
geometry’s points, selected points, lines, and shapes. Use ArrayList collections because you don’t know 
how many points, shapes, or lines the user will create; ArrayList collections provide you with the 
flexibility you need for the program. The integer thresholdDist defines how close the glove interface 
needs to be from a point for it to be selected. 

private GloveInterface glove; 
ArrayList<Point> points = new ArrayList<Point>(); 
ArrayList<Point> selPoints = new ArrayList<Point>(); 
ArrayList<Line> lines = new ArrayList<Line>(); 
ArrayList<Shape> shapes = new ArrayList<Shape>(); 
int thresholdDist = 50; 

The boolean record serves to indicate when you want to save your geometry as a .dxf file. It is set to 
false by default, so you avoid creating a new file in the first loop. 

boolean record = false; 

Setup Function 
The setup() function starts by defining the sketch size and renderer, and it then initializes the 
KinectOrbit object. You then set KinectOrbit to draw the orbiting gizmo on screen and the Coordinate 
System axes. You also use the function setCSScale() to set the size of the CS axes to 200 mm. (You can 
change these settings to any other configuration.)  

public void setup() { 
  size(800, 600, OPENGL); 
  myOrbit = new KinectOrbit(this, 0, "kinect"); 
  myOrbit.drawGizmo(true); 
  myOrbit.drawCS(true); 
  myOrbit.setCSScale(200); 

Now you initialize the Simple-OpenNI object and all the capabilities you need, including the 
sessionManager and pointControl objects. 

  // Simple-openni 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(false); 
  kinect.enableDepth(); 
  kinect.enableGesture(); 
  kinect.enableHands(); 
 



CHAPTER 11   3D MODELING INTERFACE 

 

301 

  sessionManager = kinect.createSessionManager("Wave", "RaiseHand");  // setup NITE 
  pointControl = new XnVPointControl();   // Setup NITE's Hand Point Control 
  pointControl.RegisterPointCreate(this); 
  pointControl.RegisterPointDestroy(this); 
  pointControl.RegisterPointUpdate(this); 
  sessionManager.AddListener(pointControl); 

And finally, you initialize the serial communication and the GloveInterface object. 

  if (serial) { 
    String portName = Serial.list()[0]; // Get the first port 
    myPort = new Serial(this, portName, 9600); 
    myPort.bufferUntil('\n'); 
  } 
 
  glove = new GloveInterface();  // Initialize the GloveInterface Object 
} 

Draw Function 
As usual, you pack most of the processes into additional functions, so the draw() function presents a 
clear scheme of the program’s workflow. The first step is to update the Simple-OpenNI object (kinect) 
and the sessionManager. Then you set the background to black. 

public void draw() { 
  kinect.update(); // Update Kinect data 
  kinect.update(sessionManager); // update NITE 
  background(0); 

This program behaves differently depending on which finger is bent. You do this by means of a 
switch() statement with four case handlers. The four possible behaviors are moving an existing point, 
creating a new point, adding a line between two points, or adding a new shape (Figure 11-20). 

  switch (glove.currentFinger) { 
  case 0: 
    movePoint(); 
    break; 
  case 1: 
    addPoint(); 
    break; 
  case 2: 
    addLine(); 
    break; 
  case 3: 
    addShape(); 
    break; 
} 
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Figure 11-20. Triggering Actions with your Fingers and thumb 

After this switch() statement, all the geometrical operations have been performed, so you only need 
to draw the results on screen. You first push the KinectOrbit object so you can control your point of view 
of the geometry. 

myOrbit.pushOrbit(this); // Start Orbiting 
 

After pushing the KinectOrbit, check if the boolean record is true; if so, use the beginRaw() method 
to save the geometry into the file output.dxf. Then draw the glove and the points, lines, and shapes. The 
drawClosestPoint() function highlights the closest point to your glove interface if the distance is smaller 
than thresholdDist. 

  if (record == true) { 
    beginRaw(DXF, "output.dxf"); // Start recording to the file 
  } 
 
  glove.draw(); 
  drawClosestPoint(); 
 
  for (Point pt : points) { 
    pt.draw(); 
  } 
  for (Line ln : lines) { 
    ln.draw(); 
  } 
  for (Shape srf : shapes) { 
    srf.draw(); 
  } 

Before you pop the KinectOrbit, check again the state of the record variable. If it’s true (and you are 
recording the .dxf file), you end the recording and set the record variable to false. After this, you pop the 
KinectOrbit and, if you want to see the finger data printed on screen, call the method drawData() from 
the glove object. 

  if (record == true) { 
    endRaw(); 
    record = false; // Stop recording to the file 
  } 
  myOrbit.popOrbit(this); // Stop Orbiting 
  glove.drawData(); 
} 



CHAPTER 11   3D MODELING INTERFACE 

 

303 

Additional Functions 
The movePoint() function is called when you bend your thumb. It checks all the existing points; if their 
distance to your glove object is under thresholdDist, it changes the point’s position to the position of 
your glove (which is your hand’s position). In this way, you can actually move the points around with 
your hand, just as if they were standing around you in space. 

You use a Java for-each loop to run through the ArrayList points. This is equivalent to using a 
standard for loop, simplifying this common form of iteration. You can read it as “For each Point object 
in the ArrayList points, do {  }.” The Point instance pt is set to a different Point object inside points in 
every loop. 

void movePoint() { 
  for (Point pt : points) { 
    if (glove.pos.dist(pt.pos) < thresholdDist) { 
      pt.setPos(glove.pos); 
    } 
  } 
} 

The addPoint() function creates a new point at the position of your glove. Bending your index finger 
triggers this function. To avoid the creation of multiple adjacent points, you won’t create a point if there 
is another point closer than thresholdDist. 

void addPoint() { 
  Point tempPt = new Point(glove.pos.get()); 
  boolean tooClose = false; 
  for (Point pt : points) { 
    if (tempPt.pos.dist(pt.pos) < thresholdDist) { 
      tooClose = true; 
    } 
  } 
  if (!tooClose) { 
    points.add(tempPt); 
  } 
} 

Bending your middle finger calls the addLine() function. This function proceeds in two steps. First, 
it checks if there is a point closer than the defined threshold. If there is one and it’s not already 
contained in the ArrayList selPoints, it selects the point and adds it to selPoints.  

Then, if there is more than one point selected, it creates a new line between the two points in 
selPoints and adds it to the ArrayList lines. Finally, it unselects everything using the unSelectAll() 
function. 

void addLine() { 
  for (Point pt : points) { 
    if (glove.pos.dist(pt.pos) < thresholdDist) { 
      pt.select(); 
      if (!selPoints.contains(pt)) { 
        selPoints.add(pt); 
      } 
 
      if (selPoints.size() > 1) { 
        Line lineTemp = new Line(selPoints.get(0), selPoints.get(1)); 
        lines.add(lineTemp); 
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        unSelectAll(); 
      } 
    } 
  } 
} 

The last geometry creation function, addShape(), is called when you bend your third finger. This 
function works in the same way as addLine(), but it waits until you have three selected points to create a 
new Shape object, adds it to the ArrayList shapes, and unselects all the points. 

private void addShape() { 
  for (Point pt : points) { 
    if (glove.pos.dist(pt.pos) < thresholdDist) { 
      pt.select(); 
      if (!selPoints.contains(pt)) { 
        selPoints.add(pt); 
      } 
      if (selPoints.size() > 2) { 
        Shape surfTemp = new Shape(selPoints); 
        shapes.add(surfTemp); 
        unSelectAll(); 
      } 
    } 
  } 
} 

The unSelectAll() function runs through all the points in your sketch and unselects them; then it 
clears the selPoints ArrayList. 

void unSelectAll() { 
  for (Point pt : points) { 
    pt.unSelect(); 
  } 
  selPoints.clear(); 
} 

The previously used drawClosestPoint() function takes care of changing the onscreen appearance 
of the points that are close enough to the glove to be modified with the other functions. 

void drawClosestPoint() { 
  for (Point pt : points) { 
    if (glove.pos.dist(pt.pos) < thresholdDist) { 
      pushStyle(); 
      stroke(0, 150, 200); 
      strokeWeight(15); 
      point(pt.pos.x, pt.pos.y, pt.pos.z); 
      popStyle(); 
    } 
  } 
} 
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Processing Callbacks 
You use two Processing callback functions in this project. First, the serialEvent() function calls every 
time you receive a newline character from serial. This function acquires the string from the serial 
communication, splits it, and passes the resulting array of strings as a parameter to the glove object 
using the method setFingerValues(), which updates the finger-bending values.  

public void serialEvent(Serial myPort) { 
  String inString = myPort.readStringUntil('\n'); 
  if (inString != null) { 
    String[] fingerStrings = inString.split(" "); 
    if (fingerStrings.length == 4) { 
      glove.setFingerValues(fingerStrings); 
    } 
  } 
} 

You use the keyPressed() Processing callback function to calibrate your glove interface. Numbers 1 to 
4 set the stretched values for your fingers, and q, w, e, and r characters set the maximum bending values. 
Additionally, the character d triggers the saving of the geometry into the previously defined .dxf file. 

public void keyPressed() { 
  switch (key) { 
  case '1': 
    glove.calibrateFinger(0, 0); 
    break; 
  case '2': 
    glove.calibrateFinger(1, 0); 
    break; 
  case '3': 
    glove.calibrateFinger(2, 0); 
    break; 
  case '4': 
    glove.calibrateFinger(3, 0); 
    break; 
  case 'q': 
    glove.calibrateFinger(0, 1); 
    break; 
  case 'w': 
    glove.calibrateFinger(1, 1); 
    break; 
  case 'e': 
    glove.calibrateFinger(2, 1); 
    break; 
  case 'r': 
    glove.calibrateFinger(3, 1); 
    break; 
  case 'd': 
    record = true; 
    break; 
  } 
} 
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Simple-OpenNI Callbacks 
Finally, you add the Simple-OpenNI callback functions. Within onPointCreate(), you set the zero 
position of your glove. This has the effect of setting the origin of coordinates to the point in space where 
the waving gesture was recognized. This makes it easier for the user to be drawing at an acceptable 
distance from the origin. 

public void onPointCreate(XnVHandPointContext pContext) { 
  println("onPointCreate:"); 
  PVector handVec = new PVector(pContext.getPtPosition().getX(), pContext 
    .getPtPosition().getY(), pContext.getPtPosition().getZ()); 
  glove.setZeroPos(handVec.get()); 
} 
 
public void onPointDestroy(int nID) { 
  println("PointDestroy: " + nID); 
} 

Within the onPointUpdate() function, you call the setPosition() method from your glove object to 
update the position of the glove image on screen to reflect your current hand position. 

public void onPointUpdate(XnVHandPointContext pContext) { 
  PVector handVec = new PVector(pContext.getPtPosition().getX(), pContext 
    .getPtPosition().getY(), pContext.getPtPosition().getZ()); 
  glove.setPosition(handVec); 
} 

 

Figure 11-21. 3D geometries created with the interface 

Run this program and start playing with the position of your hands and the bending of your fingers 
(Figure 11-21). Soon you will develop an intuitive understanding of the functioning of the program; 
after some time, you will be able to create some pretty complex 3D geometries without having touched 
your mouse.  

When you are satisfied with your results, press the d key on your keyboard and you’ll get a file called 
output.dxf in your Processing sketch folder. Note that .dxf is a file format created by Autodesk (the 
company behind AutoCAD) for importing and exporting data from AutoCAD to other programs.  
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You have chosen .dxf because there is a Processing core library that does all the exporting for you, 
but if you are curious enough to read the next chapter, you will learn how to implement your own 
routine to export .ply files, which are compatible with many other modeling programs. 

Summary 
This project led you through the building of a wearable, lightweight, wireless user interface designed to 
work in combination with Kinect’s hand-tracking capabilities that ultimately allowed you to create 3D 
geometries in an intuitive way, without using any conventional human interface devices. 

You built the interface on a glove, using the Arduino LilyPad board in combination with flex sensors 
to read the bending of your fingers and a couple of XBee radio modules to transmit the information to 
your computer wirelessly. You also learned how to use the Arduino SoftwareSerial library to use any pin 
on the Arduino for serial communication. 

Finally, you implemented your own simplified CAD software to deal with the basic geometrical 
entities and data structures that constituted your constructions. This software is controllable by your 
glove interface. 

This software and interface are just the bare bones of what could be the beginning of a new 
standard in human-computer interfaces. Thanks to the Kinect, you are no longer limited to the two 
dimensions of conventional devices. Now you can use the full mobility of your body as a way to input 
data into your applications.  

i
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Turntable Scanner 

by Enrique Ramos 
If you’re like most people, one of the first things that comes to mind when you see a Kinect point cloud, 
or any 3D scanner point cloud, is that it’s only one-sided. There are a number of techniques that can be 
used to perform a 360-degree volumetric scan and then reconstruct the implicit surface into a three-
dimensional mesh. One way is to use a turntable. 

In this chapter, you will build a DIY turntable, connect it to your computer, and scan objects from 
every point of view. Then, you will learn how to process the scanned data and patch the different point 
clouds into one consistent point set. There will be a fair bit of trigonometry and vector math involved in 
this process, so you might want to keep a reference book handy. 

You will then implement your own exporting routine to output files containing your point cloud 
data in a format readable by other software. Finally, you will learn how to use Meshlab to reconstruct the 
implicit surface from your point cloud so you can use or modify it in any modeling software, or even 
bring the modified volume back to the physical world with a 3D printer. Figure 12-1 shows the 
assembled system. 

 

Figure 12-1. Assembled Kinect and turntable 
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The Theory  
The ultimate goal of this project is to be able to scan an object from all 360 degrees around it to get the full 
point cloud defining its geometry. There are a number of techniques that you could use to achieve this.  

First, you could use several Kinect cameras, all connected to the same computer and placed around 
the object you want to scan. There are a couple of downsides to this technique. First, you need to buy 
several Kinect devices, which is expensive. Then, every time you need to scan something you need to set 
up the Kinects, which takes a large amount of space. 

Another option is to use SLAM and RANSAC-based reconstruction. These are advanced 
computational techniques that allow you to reconstruct a scene from different scans performed with a 
3D-scanner without having any kind of information about the actual position of the camera. The 
software analyzes the different point clouds and matches them by detecting the presence of outliers 
(RANSAC stands for RANdom SAmple Consensus, SLAM for Simultaneous Localization and Mapping). 
Nicolas Burrus implemented a very successful scene reconstruction that is included in his software 
RGBdemo (http://nicolas.burrus.name), and Aaron Jeromin has adapted the RGBdemo code to create 
a homemade turntable scanner, the results of which you can see in Figure 12-2 and on its YouTube site 
at http://www.youtube.com/user/ajeromin. 

But turntable scanners are nothing new, nor do they depend on the capabilities of the Kinect. 
Commercial 3D scanning companies offer turntables to be used with their 3D scanning cameras, like 
Mephisto from 4ddynamics. Structured light-based 3D scanners have been around for a while, and you 
can find a few DIY examples on the Internet, such as SpinScan 
(http://www.thingiverse.com/thing:9972). 

  

Figure 12-2. Spinscan (left) and an image produced by Aaron Jeromin’s turntable scanner (right) 

As clearly announced in the introduction, you’re going to take the turntable approach. But you’re 
not going to rely on any library or complicated algorithms for this project. You are going to build a 
simple but accurate turntable and use very basic geometrical rules to reconstruct a scene from several 
shots of the same geometry taken from different points of view. Then you will use another open source 
piece of software, Meshlab, to reconstruct the unstructured point cloud generated by your Processing 
sketch from the Kinect data.  

r
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Figure 12-3. Turntable diagram 

When you scan an object with the Kinect, there is always a visible side, the one that the Kinect can 
“see”, and a hidden side that you can’t capture with a single shot (Figure 12-3). If you mount your object 
on a rotating base, or turntable, you can rotate the object so that point P is on the visible side. You can 
then rotate the turntable to any angle and thus be able to see the object from every point of view.  

But you want to reconstruct the whole object from different shots, so you  need to have all points 
defining the object referred to the same coordinate system. In the original shot, point P was defined by 
the coordinates P(x,y,z); when you rotate the platform to see the point, the coordinates of P change, 
being now P(x’,y’,z’). This is only a problem if you don’t know how much the platform has rotated. But if 
you know precisely the angle of the platform from the original shot, you can easily retrieve the original 
coordinates P(x,y,z) from the transformed ones P(x’,y’,z’) using basic trigonometry. Let’s call your angle 
α; you are rotating the point around the y-axis, so the transformation will be the following:  

x = x’ * cos(α) – z’ * sin(α); 
y = y’ 
z = x’ * sin(α) + z’ * cos(α); 
 
By applying this simple transformation, you can scan from as many points of view as you want and 

then reconstruct the volume in a consistent coordinate system. You are going to build a turntable that 
will allow you to rotate the object 360 degrees, knowing at all times the precise angle at which you are 
rotating the object so you can retrieve the global coordinates of the scanned points (Figure 12-4). You are 
going to start by building the turntable, and then you will learn how to process the data.  

c
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Figure 12-4. Reconstruction of an object from three different views. 

This project can be built entirely from cheap parts you can find in hardware stores and hobbyist shops. 
Table 12-1 lists the requirements.  

Table 12-1. The Parts List 

Part Description Price 

2 swivel discs From the hardware store $6.59 each 

2 metal box shapes We used some post bases we found in a DIY shop $7.69 each 

Aluminum angle 2.40m From the hardware store $12.95 

Acrylic sheet  Thick enough to be stable $17.59 

Multi-turn potentiometer DFRobot Rotation Sensor V2 $4.74 

Continuous rotation servo Parallax (Futaba) $13.79 

Servo bracket Lynxmotion Aluminum  $11.95 

Gears We adapted the gear kit from Vex $12.99 

1 prototype shield SparkFun DEV-07914, but any one will do. $16.95 

Building a Turntable 
A turntable is a platform mounted on a swivel that can rotate around a center point. Yes, it’s exactly like 
the turntable on any record player. We actually considered using an old record player for this project, 
but in the end it was cheaper to build our own.  

There is something that you will need to bear in mind during the whole process of building the 
turntable: accuracy. The purpose of building such a device is to have a platform that can hold a 
reasonable weight without collapsing and that can rotate freely using a servo motor. The higher the 
precision of your physical device, the higher the consistency of the point clouds when you patch them 
together, so try to be thorough with your dimensions and tolerances! 
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We started this project by building a prototype of the turntable so we could test basic algorithms 
and principles. The prototype consisted of a cardboard box with a servo sticking out of its top face, as 
you can see in Figure 12-5. On the servo, we attached a circle of cardboard. That was it. This prototype 
was, obviously, not accurate enough: the servo could only rotate 180 degrees so we couldn’t scan our 
object all around. However, it was very useful for understanding the basic principles and for developing 
the software that we will discuss in a later section. 

 

Figure 12-5. Turntable prototype  

The issue of the 180-degree rotation of standard servos was a key issue in the design of our final 
turntable. We could have used a continuous rotation servo or hacked a standard servo into rotating 
continuously, but then we would lose the feedback. In other words, we could drive the servo forward and 
backward, but we wouldn’t know the precise position of the turntable. An option that immediately came 
to mind was a 360-degree servo. However, power was also an issue for the prototype, so we wanted to 
increase the torque of our motor with gears. The final solution was to use a continuous rotation servo 
and build our own feedback system with a multi-turn potentiometer. The two were connected with 
gears to the turntable, increasing the power of the servo seven times. Let’s proceed step by step to the 
building of the turntable. Figure 12-6 shows all of the parts of the turntable. 
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Figure 12-6. Turntable parts 

Connecting the Gears 
The gears you’re using have a one-to-seven ratio, so the large gear rotates once every seven turns of the 
smaller gears. This is perfect for this project because your potentiometer can turn up to ten times, and 
the three gears fit perfectly onto the base. But they come from a gear kit from Vex Robotics, so the gears 
don’t fit naturally with the Parallax servo or the potentiometer. The first thing you need to do is modify 
the gears so you can fit them tightly with the other two components (Figure 12-7). 

For the potentiometer, drill a hole in the middle of the gear slightly smaller than the diameter of the 
potentiometer’s shaft. This way you’ll be able to push it in, and it will rotate the shaft without the need 
for gluing or attaching it permanently. Start with a small drill bit and go bigger step by step. Otherwise, 
you might drill a non-centered hole. 

For the motor, you need to drill a hole only about a fourth of the depth of the gear (see Figure 12-7). 
The servo shaft is pretty short, and you’re going to be attaching the gear on the other side of the metal 
base. Don’t worry if the gear is slightly loose; you’re going to secure it to the servo with a screw.  
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Figure 12-7. Gear adapted to the servo 

Now you can attach the potentiometer and the servo to the base. First, check the position of the 
gears so you have an idea of where the holes need to be drilled for the potentiometer  (see Figures 12-8 
and 12-9). 

 

Figure 12-8. Potentiometer asssembled to the base 
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Figure 12-9. Gears assembled to the base 

 

Figure 12-10. Potentiometer and servo assembled to the base 
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The fixing of the servo and the potentiometer is highly dependent on the base element you have 
chosen. In our case, there was enough to space the servo bracket and the potentiometer with a couple of 
nuts. Note that we have attached the potentiometer and the servo to the sides of the base (Figure 12-10) 
instead of the top plate. This is to avoid any protruding bolts or nuts on the top plate that would get in 
the way of the swivel. 

You should achieve a good match for the three gears so they rotate together without effort. The large 
gear will be attached to the acrylic sheet later. Make sure the gears are parallel to the base so there is no 
friction when the motor is in action.  

The next step is to attach the swivel to the base (Figure 12-11), making sure that its center of rotation 
is as close to the center of rotation of the larger gear as you can possibly manage. This is very important 
because a badly centered swivel will not rotate when assembled! 

 

Figure 12-11. Swivel and gears 

The large gear won’t be attached to the base. You attach it to the acrylic sheet that you previously 
cut in a disc shape 29cm in diameter. You fix the gear to the disc with a central screw, and you add 
another to avoid the differential rotation of the disc and the gear (Figure 12-12). 
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Figure 12-12. Disc and gear ready to be assembled 

You could declare your turntable ready at this point, but you are going to attach a base for the 
Kinect to it so you don’t have to calibrate the position of the Kinect every time you use the scanner.  

The Kinect base is exactly like the one you used for the turntable, so both will be at the same height, 
and the Kinect will stand at pretty good position. First, cut the aluminum angle into two 1.2m pieces and 
drill three holes on each end to the same spacing of the holes on the bases (Figure 12-13). 

 

Figure 12-13. Bracing aluminum angles after drilling the holes 
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Figure 12-14. Assembled turntable 

Figure 12-14 shows two bases separated by more than 1m, which is enough for the Kinect to be able 
to scan a medium-sized object. If you are thinking of scanning larger objects, play a little with your 
Kinect first to determine an ideal distance to the turntable. Once you have calibrated your Kinect and 
your turntable (check that the center of your turntable is coincident with the center of the scanning 
volume in your sketch), you can attach the Kinect to the base or simply draw a contour that will tell you 
where to place it every time. If you fancy a cooler finishing, you can countersink the screws and add a 
vinyl record to your turntable as a finishing surface (see Figure 12-15).  

 

Figure 12-15. Assembled turntable 

Building the Circuit 
The turntable circuit is a very simple circuit with only a servo motor and a potentiometer. You’re 
building it on a SparkFun Arduino prototype shield because you want the circuit to be usable for this 
and other projects. The circuit includes an analog reader on pin 0 and a servo, as shown in Figures 12-16 
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and 12-17. The circuit leaves two three-pin breakaway headers ready to for the servo and the 
potentiometer.   

Figure 12-16. Arduino prototype shield with breakaway headers 

Figure 12-17. Arduino prototype shield (back) 
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Figure 12-19. Testing the range of the potentiometer  

After some intensive testing sessions, we worked out that 360 degrees on the turntable meant a 
range of 724 in the potentiometer values (Figure 12-19) . So use a start position of 100 and an end 
position of 824. In other words, whenever the potentiometer is at 100, you know your angle is zero; 
whenever the potentiometer reads 824, you know you have reached 360 degrees. The potentiometer 
values change in proportion to the angle, so you can always work out the angle from the values read 
from the potentiometer. 

// Start and end values from potentiometer (0-360 degrees) 
int startPos = 100; 
int endPos = 824; 

The continuous rotation servo doesn’t work like a normal servo. You still have a range of 500-2500 
microseconds for your pulses, but instead of the pulse meaning a specific angle, any pulse under 1500 
microseconds makes the servo to turn forward, and any pulse over 1500 microseconds sends the servo 
turning backward. Create a couple of variables for the forward and backward pulses.  

// Forward and backward pulses 
int forward = 1000; 
int backward = 2000; 
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Your Arduino sketch works in two states: state=0 means stand and wait for orders and state=1 
means move toward the target angle. PotAngle is the variable storing the potentiometer values. 

int state = 1;    // State of the motor 
int targetAngle = startPos;  // Target Angle 
int potAngle;     // Current angle of the potentiometer 

In the setup() function, you only need to start the serial communication and define your servo pin 
as output. 

void setup(){ 
  Serial.begin(9600); 
  pinMode (servoPin, OUTPUT); 
} 

The main loop() function is completely engulfed within an “if()” statement that executes once 
every 20 milliseconds. This makes sure that you only talk to the servo within the acceptable range and 
that you don’t send too much serial data and saturate the channel. 

void loop() {     
  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;   

The first thing you do in the loop is read the value of the potentiometer and print it out to the serial 
port. After this, you perform a data validation check. If the read value is out of your range (100-824), you 
move the potentiometer in toward your range and you set the state to zero so it stops moving. 

    potAngle = analogRead(0);  // Read the potentiometer 
    Serial.println(potAngle);  // Send the pot value to Processing 
    if(potAngle < startPos){  // If you have 
      state = 0; 
      updateServo(servoPin,forward); 
      Serial.println("start"); 
    }  
    if(potAngle > endPos){ 
      state = 0; 
      updateServo(servoPin,backward); 
      Serial.println("end"); 
    } 

 Now you need to check if you have any data in your serial buffer. You will implement a separate 
function for this, so here you simply have to call it. Finally, if your state is 1, you call the function 
goTo(targetAngle), which moves the servo towards your goal. 

    checkSerial();  // Check for values in the serial buffer 
    if(state==1){ 
      goTo(targetAngle); 
    } 
  } 
} 

The function goTo() checks whether the current reading from the potentiometer is higher or lower 
than the target angle and updates the servo accordingly. The step of the servo is larger than one unit, so 
you have allowed a buffer zone of 10 units to avoid the oscillation around a target value. If you are within 
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the accepted range from the target, you set your state to 0 and wait for orders and then you send a 
message through the serial channel saying that you have reached your intended position. 

void goTo(int angle){ 
  if(potAngle-angle < -10) { 
    updateServo(servoPin,forward); 
  } 
  else if(potAngle - angle > 10){ 
    updateServo(servoPin,backward); 
  } 
  else { 
    Serial.println("arrived"); 
    state=0; 
  } 
} 

The orders you are waiting for will come via serial communication. In the checkSerial() function, 
you look into the serial buffer, and if there is at least two data, you read the first one. If this happens to be 
the trigger character ‘S’, you check the next one, which you interpret as the new target angle for the 
turntable. You map this value from 0-255 to the whole range of the potentiometer, and you set your state 
to 1, which allows the turntable to move toward this new value. 

void checkSerial(){ 
  if (Serial.available() > 1) { // If data is available to read, 
    char trigger = Serial.read(); 
    if(trigger == 'S'){ 
      state = 1; 
      int newAngle = Serial.read(); 
      targetAngle = (int)map(newAngle,0,255,startPos,endPos); 
    } 
  } 
} 

The updateServo() function is the same as that used throughout the book. You write a high signal to 
the servo pin for the amount of microseconds that you have passed as an argument.  

void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

This simple code allows you to control the rotation of the turntable from any serial-enabled 
software (In your case, Processing). On top of that, this Arduino code is sending out messages with the 
current angle of the turntable and whether the target position has been reached. Let’s see how to use this 
data and your turntable to scan 3D objects. 

Processing Code 
You are going to write a slightly complex piece of code that will communicate with the Arduino board 
and interpret the incoming data to reconstruct a three-dimensional model of the objects standing on the 
turntable. We covered the geometrical principles behind the patching of the different scans at the 
beginning of the chapter, but we will expand on this in the pages that follow. 
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We looked for a complex and colorful shape for this example and, because we are writing this in 
November, the first thing we found was a little figure of Santa in a dollar store (Figure 12-20). We will be 
using this figure for the rest of the chapter. If you can find one too, you’ll have a complete, full-color 
model of your favorite Christmas gift-bringer inside of your computer by the end of the chapter, as per 
Figure 12-21. Let’s start coding! 

 

Figure 12-20. Our example model 

 

Figure 12-21. Our example model in scanning space 
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Variable Declaration 
The imports are the usual ones: Serial, OpenGL, Simple-OpenNI, and KinectOrbit. You define a 

Boolean variable called serial that initializes the serial ports only if it is true. This is useful if you want to 
test stuff with the serial cable disconnected and you don’t want to get those nasty errors. If you want to 
play with the sketch without connecting the Arduino, change it to false. The String turnTableAngle 
holds the string coming from Arduino containing the current angle of the turntable. 

import processing.serial.*; 
import processing.opengl.*; 
import SimpleOpenNI.*; 
import kinectOrbit.*; 
// Initialize Orbit and simple-openni Objects 
KinectOrbit myOrbit; 
SimpleOpenNI kinect; 
// Serial Parameters 
Serial myPort; // Initialize the Serial Object 
boolean serial = true; // Define if you're using serial communication 
String turnTableAngle = "0"; // Variable for string coming from Arduino 

You initialize four ArrayLists. The first two, ScanPoints and scanColors, contain the current 
scanned points and their colors. This means the points being scanned currently by the Kinect and 
contained within your scanning volume. The ArrayLists objectPoints and objectColors contain all the 
points that configure your scanned objects patched together. These are the points that will be exported 
in .ply format. 

// Initialize the ArrayLists for the pointClouds and the colors associated 
ArrayList<PVector> scanPoints = new ArrayList<PVector>(); // PointCloud 
ArrayList<PVector> scanColors = new ArrayList<PVector>(); // Object Colors 
ArrayList<PVector> objectPoints = new ArrayList<PVector>(); // PointCloud 
ArrayList<PVector> objectColors = new ArrayList<PVector>(); // Object Colors 

The following variables define the “model space,” the volume that contains your objects. The float 
baseHeight is the height of your base from your Kinect coordinate system. In our case, it was placed 
67mm under the Kinect camera. modelWidth and modelHeight are the dimensions of the model space. 
Anything that falls within this volume will be scanned. 

// Scanning Space Variables 
float baseHeight = -67; // Height of the Model's base 
float modelWidth = 400; 
float modelHeight = 400; 
PVector axis = new PVector(0, baseHeight, 1050); 

You need to define some additional variables. The scanLines parameter defines how many rows of 
the Kinect depth image you use at every scan (Figure 12-22). Think of a traditional structured 3D 
scanner. A single line is scanned at every angle. This parameter can be set to low values if you have a 
pretty symmetrical geometry around its center. Low scanLines values need to be used with a high 
number of scans, defined by the size of shotNumber[]. Play with these two parameters until you achieve 
a smooth result in your point cloud. In our example, we used a high number of lines, 200, and only three 
shots or patches. 
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Figure 12-22. The scanLines parameter set to 5 (left), 25 (center), and 65 (right) 

The variable scanRes defines the number of pixels you take from your scan. One is the higher 
resolution. If you chose a higher number than 1, you will skip a number of pixels in every scan. The 
Boolean variables and currentShot integer are used to drive the flow of the sketch depending on the 
incoming data. 

// Scan Parameters 
int scanLines = 200; 
int scanRes = 1; 
boolean scanning; 
boolean arrived; 
float[] shotNumber = new float[3]; 
int currentShot = 0; 

Setup and Draw Functions 
Within the setup() function, you initialize all your KinectOrbit, Simple-OpenNI, and serial objects. 

You also need to work out the angle corresponding to every shot you want to take. The idea is to divide 
the 365 degrees of the circle, or 2*PI radians, into the number of shots specified by the size of the 
shotNumber[] array. Later, you send these angles to the Arduino and you take a 3D shot from every one of 
them. Lastly, you move the turntable to the start position, or angle zero, so it’s ready to scan. 

public void setup() { 
  size(800, 600, OPENGL); 
  // Orbit 
  myOrbit = new KinectOrbit(this, 0, "kinect"); 
  myOrbit.drawCS(true); 
  myOrbit.drawGizmo(true); 
  myOrbit.setCSScale(200); 
  myOrbit.drawGround(true); 
  // Simple-openni 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(false); 
  kinect.enableDepth(); 
  kinect.enableRGB(); 
  kinect.alternativeViewPointDepthToImage(); 
 
  // Serial Communication 
  if (serial) { 
    String portName = Serial.list()[0]; // Get the first port 
    myPort = new Serial(this, portName, 9600); 
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    // don't generate a serialEvent() unless you get a newline 
    // character: 
    myPort.bufferUntil('\n'); 
  } 
 
  for (int i = 0; i < shotNumber.length; i++) { 
    shotNumber[i] = i * (2 * PI) / shotNumber.length; 
  } 
  if(serial) { moveTable(0); } 
} 

Within the draw() function, you first update the Kinect data and start the Orbit loop. Pack all the 
different commands into functions so the workflow is easier to understand.  

public void draw() { 
  kinect.update(); // Update Kinect data 
  background(0); 
 
  myOrbit.pushOrbit(this); // Start Orbiting 

First, you draw the global point cloud with the drawPointCloud() function, which takes an integer as 
parameter defining the resolution of the point cloud. As you’re not very interested in the global point 
cloud, you speed things up by only drawing one every five points. 

  drawPointCloud(5); 

Then you update the object points, passing the scanLines and scanRes defined previously as 
parameters. As you will see later, this function is in charge of transforming the points to the global 
coordinate system. 

  updateObject(scanLines, scanRes); 

You have two Boolean values defining if you are in the scanning process and whether you have 
reached the next scanning position. If both are true, you take a shot with the function scan().  

  if (arrived && scanning) { scan(); } 

The last step is to draw the objects, the bounding box, and the camera frustum. And of course, close 
the Kinect Orbit loop. 

  drawObjects(); 
  drawBoundingBox(); // Draw Box Around Scanned Objects 
  kinect.drawCamFrustum(); // Draw the Kinect cam 
  myOrbit.popOrbit(this); // Stop Orbiting 
} 

Additional Functions 
The drawPointCloud() function is similar to the one previously used to visualize the raw point cloud 

from the Kinect. You take the depth map, bring it to real-world coordinates, and display every point on 
screen. Skip the number of points defined by the steps parameter. The dim, background points on 
Figure 12-23 are the result of this function. 

void drawPointCloud(int steps) { 
  // draw the 3D point depth map 
  int index; 
  PVector realWorldPoint; 
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  stroke(255); 
 
  for (int y = 0; y < kinect.depthHeight(); y += steps) { 
    for (int x = 0; x < kinect.depthWidth(); x += steps) { 
      index = x + y * kinect.depthWidth(); 
      realWorldPoint = kinect.depthMapRealWorld()[index]; 
      stroke(150); 
      point(realWorldPoint.x, realWorldPoint.y, realWorldPoint.z); 
    } 
  } 
} 

 

Figure 12-23. Scanned figure in the bounding box 

The drawObjects() function displays on screen the point cloud defining the object being scanned. 
This function has two parts: first, it displays the points stored in the objectPoints ArrayList, which are 
the object points patched together. Then it displays the points stored in the scanPoints ArrayList, which 
are the points being currently scanned. All these points are displayed in their real color and with 
strokeWeight = 4, so they stand out visually, as you can see on Figure 12-23. 

void drawObjects() { 
  pushStyle(); 
  strokeWeight(4); 
 
  for (int i = 1; i < objectPoints.size(); i++) { 
    stroke(objectColors.get(i).x, objectColors.get(i).y, objectColors.get(i).z); 
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    point(objectPoints.get(i).x, objectPoints.get(i).y, objectPoints.get(i).z + axis.z); 
  } 

  for (int i = 1; i < scanPoints.size(); i++) { 
    stroke(scanColors.get(i).x, scanColors.get(i).y, scanColors.get(i).z); 
    point(scanPoints.get(i).x, scanPoints.get(i).y, scanPoints.get(i).z + axis.z); 
  } 

  popStyle(); 

} 

The drawBoundingBox() function displays the limits of the scanning volume. Anything contained 
within this volume is scanned. 

void drawBoundingBox() { 
  stroke(255, 0, 0); 
  line(axis.x, axis.y, axis.z, axis.x, axis.y + 100, axis.z); 
  noFill(); 
  pushMatrix(); 
  translate(axis.x, axis.x + baseHeight + modelHeight / 2, axis.z); 
  box(modelWidth, modelHeight, modelWidth); 
  popMatrix(); 
} 

The scan() function is in charge of storing the current point cloud into the object point cloud. You 
need to avoid multiplying the number of points unnecessarily, so you implement a loop in which you 
check the distance from each new point to every point already stored in the objectPoints ArrayList. If 
the distance from the new point to any of the previously stored points is under a certain threshold (1mm 
in our example), you won’t add this point to the object point cloud. Otherwise, you add the point and the 
corresponding color to the object ArrayLists. 

void scan() { 
  for (PVector v : scanPoints) { 
    boolean newPoint = true; 
    for (PVector w : objectPoints) { 
      if (v.dist(w) < 1) 
        newPoint = false; 
    } 

    if (newPoint) { 
      objectPoints.add(v.get()); 
      int index = scanPoints.indexOf(v); 
      objectColors.add(scanColors.get(index).get()); 
    } 
  } 

After taking the shot and adding it to the object point cloud, check if the shot taken was the last of 
the list. If the shot is not the last one, you tell the turntable to move to the next position and you set the 
“arrived” Boolean to false. This prevents the sketch from taking any other shot before you get an 
“arrived” signal from Arduino indicating you have reached the target position. If the shot happens to be 
the last one, you set the scanning Boolean to false, declaring the end of the scanning process. Figure  
12-24 shows the three steps in this scanning process.  

  if (currentShot < shotNumber.length-1) { 
    currentShot++; 
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    moveTable(shotNumber[currentShot]); 
    println("new angle = " + shotNumber[currentShot]); 
    println(currentShot); 
    println(shotNumber); 
     
  }  
  else { 
    scanning = false; 
  } 
  arrived = false; 
} 

 

Figure 12-24. Three-step scan 

The updateObject() function is where the computation of the world coordinates of the scanned 
points takes place. You declare an integer to store the vertex index and a PVector to store the real 
coordinates of the current point. Then you clear the ArrayLists of your scanned points so you can update 
them from scratch. 

void updateObject(int scanWidth, int step) { 
  int index; 
  PVector realWorldPoint; 
  scanPoints.clear(); 
  scanColors.clear(); 

You need to know the current angle of the turntable in order to compute the global coordinates of 
the points. You work out this angle by mapping the integer value of your turnTableAngle string from its 
range (100-824) to the 365-degree range in radians (0-2*PI). Remember that turnTableAngle is the string 
coming from Arduino, so it changes every time you rotate your turntable. 

  float angle = map(Integer.valueOf(turnTableAngle), 100, 824, 2 * PI, 0); 

The next lines draw a line at the base of the bounding box to indicate the rotation of the turntable. 

  pushMatrix(); 
  translate(axis.x, axis.y, axis.z); 
  rotateY(angle); 
  line(0, 0, 100, 0); 
  popMatrix(); 

Now, you run in a nested loop through your depth map pixels, extracting the real-world coordinates 
of every point and its color. 
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  int xMin = (int) (kinect.depthWidth() / 2 - scanWidth / 2);  int xMax = (int) 
(kinect.depthWidth() / 2 + scanWidth / 2); 
  for (int y = 0; y < kinect.depthHeight(); y += step) { 
    for (int x = xMin; x < xMax; x += step) { 
      index = x + (y * kinect.depthWidth()); 
      realWorldPoint = kinect.depthMapRealWorld()[index]; 
      color pointCol = kinect.rgbImage().pixels[index]; 

If the current point is contained within the defined scanning volume or bounding box (this is what 
the scary-looking “if()” statements check), you create the PVector rotatedPoint to store the global 
coordinates of the point. 

      if (realWorldPoint.y < modelHeight + baseHeight && realWorldPoint.y > baseHeight) { 
        if (abs(realWorldPoint.x - axis.x) < modelWidth / 2) {  // Check x 
          if (realWorldPoint.z < axis.z + modelWidth / 2 && realWorldPoint.z > axis.z - 
modelWidth / 2) {  // Check z 
 
            PVector rotatedPoint; 

The coordinate system transformation process happens in two steps. First, you need to get the 
coordinates of the vector from the center of the turntable. The axis vector defined the coordinates of the 
center of the turntable from the Kinect coordinate system, so you only need to subtract the coordinates 
of the axis vector to the real-world point coordinates to get the transformed vector. Then you need to 
rotate the point around the y-axis by the current angle of your turntable. You use the function 
vecRotY()to do this transformation  (Figure 12-25). 

            realWorldPoint.z -= axis.z; 
            realWorldPoint.x -= axis.x; 
            rotatedPoint = vecRotY(realWorldPoint, angle); 

 

Figure 12-25. Coordinate system transformations 
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Now your rotatedPoint should contain the real-world coordinates of the scanned point, so you can 
add it to the scanPoints ArrayList. You also want to add its color to the scanColors ArrayList so you can 
retrieve it later. Finally, you close all the curly brackets: three for the if() statements, two for the for() 
loops, and the last one to close the function updateObject() function. 

            scanPoints.add(rotatedPoint.get()); 
            scanColors.add(new PVector(red(pointCol), green(pointCol), blue(pointCol))); 
          } 
        } 
      } 
    } 
  } 
} 

The vecRotY() function returns the PVector resulting from the operation of rotating of the input 
PVector by the input angle. 

PVector vecRotY(PVector vecIn, float phi) { 
  // Rotate the vector around the y-axis 
  PVector rotatedVec = new PVector(); 
  rotatedVec.x = vecIn.x * cos(phi) - vecIn.z * sin(phi); 
  rotatedVec.z = vecIn.x * sin(phi) + vecIn.z * cos(phi); 
  rotatedVec.y = vecIn.y; 
  return rotatedVec; 
} 

You use the function moveTable(float angle)  every time you want to send a new position to your 
turntable. The input angle is in degrees (0-360). This function sends a trigger character ‘S’ through the 
serial channel to indicate that the communication has started. Then you send the input angle remapped 
to one byte of information (0-255). It prints out the new angle for information. 

void moveTable(float angle) { 
  myPort.write('S'); 
  myPort.write((int) map(angle, 0, 2*PI, 0, 255)); 
  println("new angle = " +  angle); 
} 

All the preceding functions are called from the draw() loop or from other functions. You also need to 
include two additional functions that you won’t be calling explicitly but will be called by Processing in 
due time. The first one is the serialEvent() function. It is called every time you get a new line character 
in your serial buffer (you specified this in the setup()function). If you receive a string, you trim off any 
white spaces and you check the string. If you receive a “start” or “end” message, you just display it on 
the console. If you receive an “arrived” message, you also set your Boolean arrived to true so you know 
that you have reached the target position. 

If the message is not one of the preceding ones, that means you should be receiving the current 
angle of the turntable, so you update your turnTableAngle string to the incoming string. 

public void serialEvent(Serial myPort) { 
  // get the ASCII string: 
  String inString = myPort.readStringUntil('\n'); 
  if (inString != null) { 
    // trim off any whitespace: 
    inString = trim(inString); 
    if (inString.equals("end")) { 
      println("end"); 
    }  
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    else if (inString.equals("start")) { 
      println("start"); 
    }  
    else if (inString.equals("arrived")) { 
      arrived = true; 
      println("arrived"); 
    }  
    else { 
      turnTableAngle = inString; 
    } 
  } 
} 

The keyPressed() function is called whenever you press a key on your keyboard. You assign several 
actions to specific keys, as described in the following code. 

public void keyPressed() { 
  switch (key) { 
  case 'r': // Send the turntable to start position 
    moveTable(0); 
    scanning = false; 
    break; 
  case 's': // Start scanning 
    objectPoints.clear(); 
    objectColors.clear(); 
    currentShot = 0; 
    scanning = true; 
    arrived = false; 
    moveTable(0); 
    break; 
  case 'c': // Clear the object points 
    objectPoints.clear(); 
    objectColors.clear(); 
    break; 
  case 'e': // Export the object points 
    exportPly('0'); 
    break; 
  case 'm': // Move the turntable to the x mouse position 
    moveTable(map(mouseX, 0, width, 0, 360)); 
    scanning = false; 
    break; 
  case '+':  // Increment the number of scanned lines 
    scanLines++; 
    println(scanLines); 
    break; 
  case '-':  // Decrease the number of scanned lines 
    scanLines--; 
    println(scanLines); 
    break; 
  } 
} 

Note that you implement mouse actions for moving to the start position; also, if you press the 
[S]key, you start the scan from the start position. The turntable is first sent to the zero position and then 
you start scanning. 
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The M key helps you control the turntable. Pressing it sends the turntable to the angle defined by 
the x-coordinate of your mouse on the Processing frame (remapped from 0-width to 0-360). For 
example, pressing M while your mouse is on the left edge of the frame sends the turntable to 0 degrees, 
and pressing it while the mouse is on the right edge sends it to 360 degrees.  

The key E calls the function exportPly to export the point cloud. This leads to the next step. At the 
moment, you have being able to scan a figure all around and have on your screen a full point cloud 
defining its shape (Figure 12-26) . But remember you wanted to convert this point cloud to a mesh so 
you can bring it to 3D modeling software or 3D print it. You are going to do this with another open 
source software package, so you need to be able to export a file recognizable by this software. You will 
use the polygon file format, or .ply, for this exporting routine, which you will implement yourself. You’ll 
see how in the next section. 

 

Figure 12-26. Figure after 360-degree scan 

Exporting the Point Cloud 
As stated in the introduction, you are going to mesh the point cloud using an open source software 
package called Meshlab,  which can import unstructured point clouds in two formats, .ply and obj. 
There are several Processing libraries that allow you to export these formats, but exporting a .ply file is 
so simple that you are going to implement your own file exporter so you can control every datum you 
send out. 

The .ply extension corresponds to polygon file format, or stanford triangle format. This format can 
be stored in ASCII and binary files. You will use ASCII so you can actually write your data directly to an 
external file and then read it from Meshlab. 
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The .ply format starts with a header formed by several lines. It starts by declaring “I am a ply file” 
with the word “ply” written on the first line. Then it needs a line indicating the type of .ply file. You 
indicate that you are using ASCII and the version 1.0. You then insert a comment indicating that you are 
looking at your Processing-exported .ply file. Note that comments start with the word “comment”—
pretty literal, eh? 

 Note The next lines are not Processing code, but the lines that will be written on your .ply file! 

ply 
format ascii 1.0 
comment This is your Processing ply file 

These three first lines are constant in every file you export. You could add a comment that changes 
with the name of the file or any other information. If you want to add a comment, just make sure your 
line starts with the word “comment”. 

The next lines, still within the header, declare the number of vertices, and the properties you are 
exporting for each of them. In your case, you are interested in the coordinates and color, so you declare 
six properties: x, y, z, red, green, and blue. You now close the header. 

element vertex 17840 
property float x 
property float y 
property float z 
property uchar red 
property uchar green 
property uchar blue 
end_header 

After closing the header, you have to write the values of all the properties stated for each vertex, so 
you get a long list of numbers like this: 

0.0032535514 0.1112856 0.017800406 125 1 1 
0.005102699 0.1112856 0.017655682 127 1 81 
-0.0022937502 0.10943084 0.018234566 130 1 1 
……… 

Each line represents the six properties declared for each vertex in the order you declared them and 
separated by a white space. Let’s have a look at the code you need to implement to effectively producing 
.ply files containing the object point cloud that you previously generated. 

 Note In this case, you are only exporting points, but .ply files also allow you to export edges and faces. If you 
wanted to export edges and faces, you would need to add some lines to your header defining the number of edges 

and faces in your model and then a list of faces and a list of edges. You can find information on the .ply format at 

http://paulbourke.net/dataformats/ply.  
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The exportPly Function 
First, you declare a PrintWriter object. This class prints formatted representations of objects to a text-
output stream. Then you declare the name of the output file and you call the method createWriter(), 
passing file name in the data path as a parameter. 

void exportPly(char key) { 
  PrintWriter output; 
  String viewPointFileName; 
  viewPointFileName = "myPoints" + key + ".ply"; 
  output = createWriter(dataPath(viewPointFileName)); 

Now you need to print out all the header lines. The number of vertices is extracted from the size of 
the objectPoints ArrayList.  

  output.println("ply"); 
  output.println("format ascii 1.0"); 
  output.println("comment This is your Processing ply file"); 
  output.println("element vertex " + (objectPoints.size()-1)); 
  output.println("property float x"); 
  output.println("property float y"); 
  output.println("property float z"); 
  output.println("property uchar red"); 
  output.println("property uchar green"); 
  output.println("property uchar blue"); 
  output.println("end_header"); 

After closing the header, you run through the whole objectPoints ArrayList, and you print out its x, 
y, and z coordinates and the integers representing their color parameters. You want the output to be in 
meters, so you scale down the point coordinates by dividing the values by 1000.  

  for (int i = 0; i < objectPoints.size() - 1; i++) { 
    output.println((objectPoints.get(i).x / 1000) + " " 
      + (objectPoints.get(i).y / 1000) + " " 
      + (objectPoints.get(i).z / 1000) + " " 
      + (int) objectColors.get(i).x + " " 
      + (int) objectColors.get(i).y + " " 
      + (int) objectColors.get(i).z); 
  } 

When you are done with your point cloud, you flush the PrintWriter object and you close it. Now 
you should have a neat .ply file in the data path of your Processing file! 

  output.flush(); // Write the remaining data 
  output.close(); // Finish the file 
} 
 

You have now gone through the whole process of scanning a three-dimensional object and 
exporting the resulting point cloud to a .ply file. You will next learn how to use this point cloud to 
generate a surface using Meshlab. 
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Surface Reconstruction in Meshlab 
Surface reconstruction from unorganized point sets is a complicated process requiring even more 
complicated algorithms. There is a lot of research out there on how this process can be performed, and 
luckily for you, there are several open source libraries like CGAL (http://cgal.org) and open source 
software like Meshlab  (http://meshlab.sourceforge.net) that you can use to perform these operations 
without being an accomplished mathematician. 

Meshlab is an open source system for the processing and editing of 3D triangular meshes. It was 
born in 2005 with the intention of helping with the processing of the unstructured models arising in 3D 
scanning. That is pretty much the state you are in: you have 3D scanned a figure and need to process the 
point cloud and reconstruct the implicit surface.  

Meshlab is available for Windows, Mac OSX and Linux, so whatever your OS, you should now go to 
the web site and download the software. You’ll start using it right now! 

If you have already installed Meshlab, .ply files should be automatically associated to it, so you can 
double-click your file and it will open in Meshlab. If this is not the case, open Meshlab and import your 
file by clicking the File menu, and then Import Mesh. 

If your file was exported correctly and the number of vertices corresponds to the declared number 
of vertices, when you open the file you should see on screen a beautifully colored point cloud closely 
resembling your scanned object, like the one shown in Figure 12-27.  

 

Figure 12-27. Point cloud .ply file opened in Meshlab 

If your file contains inconsistencies (like a different number of points declared and printed), 
Meshlab can throw an “Unexpected end of file” error at you. If you click OK, you won’t see anything on 
the screen. Don’t panic! The points are still there, but you have to activate the Points view on the top bar, 
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and then you will see the point cloud. It won’t be colored, though. You can then go to the Render menu 
and choose Colors/Per Vertex. After this, you should see an image similar to the previous one. 

Now orbit around your point cloud and identify any unwanted points. Sometimes Kinect detects 
some points in strange places, and it helps the reconstruction process to get rid of those. Sometimes the 
Kinect is not perfectly calibrated with the turntable, so you will have slight inconsistencies in the 
patched edges. To delete the unwanted points, select the Select Vertexes tool from the top menu bar. 
You can select several points together by holding the Control or Command key down. After selecting, 
you can click Delete Selected Vertices on the right of the top menu bar (Figure 12-28).   

 

Figure 12-28. Delete unwanted points 

You are now ready to start the surface reconstruction process. First, you need to compute the 
normal vector on your points, which is the vector perpendicular to the surface of the object at each 
point, pointing out of the object. This provides the reconstruction algorithm information about the 
topology of your object. Go to the Filters/Point Set menu and choose “Compute normal for point sets.” 
This should bring up a menu. Choose 16 as the number of neighbors and click Apply. The process 
shouldn’t take more than a couple of seconds. It may seem like nothing changed, but if you go to the 
Render menu and tick Show Vertex Normals, you should now see the point cloud with all the normals in 
light blue. 

Go to the Filters/Point Set menu again and click Surface Reconstruction: Poisson. In the menu, 
there are several parameters that we won’t have the time to discuss in this book. These parameters have 
an influence on how precise the reconstruction is, how many neighboring points are taking into 
account, and so on. Chose 16 as Octree Depth and 7 as Solver Divide; depending on your object and the 
quality of the scan, the optimum parameters can greatly change, so try to find yours.  
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Figure 12-29. Mesh generated by Poisson reconstruction 

Figure 12-30. Vertex colors transferred to the mesh 
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After a couple of painfully long minutes, you should get a pretty neat surface like the one in Figure 
12-29. The last step is transferring the colors of the vertices to your mesh, so you can export the fully 
colored mesh to any other software. Go to Filters/Sampling and choose Vertex Attributes Transfer. Make 
sure that the Source Mesh is your point cloud, and the Target Mesh is your Poisson Mesh. Tick only 
Transfer Color and click Apply. The mesh should show now a pretty similar range of colors to the 
original figure (Figure 12-30),  and you are done!! 

If your point cloud was not what you would call “neat,” sometimes the Poisson reconstruction will 
throw something much like a potato shape slightly smaller than your point cloud. Don’t be discouraged; 
Meshlab can fix it! In the previous step, instead of transferring the colors only, transfer the geometry as 
well. You will get then a nicely edged shape like the one in the Figure 12-31.  

 

Figure 12-31. Vertex geometry and color transferred to the mesh 

Go to “Filters/Smoothing, Fairing, and Deformation” and click HC Laplacian Smooth. Apply the 
filter as many times as needed to obtain a reasonably smooth surface. With a little luck, the result will be 
reasonably good, considering you started from a pretty noisy point cloud. 

One last tip on this process: sometimes you’ll get an error on the importation process, the computed 
normal will be inverted, and the figure will look pretty dark. Again, you can use Meshlab to invert your 
face normals. Go to “Filters/Normals, Curvature, and Orientation” and click Invert Faces Orientation. 
This should make your mesh appear brighter. Check that the light toggle button is on. Sometimes the 
switch is off and you might get the impression that your normals are inverted; if you have just forgotten 
to turn on the light, do it on the top menu bar! 

You have generated a mesh that can be exported to a vast number of file formats compatible with 
CAD packages, 3D printers and other 3D modeling software. Go to File/Export Mesh As and choose the 
file format you need. We exported it as a .ply file with colors and imported it into Blender (see Figure 
12-32), a great open source modeling software freely available from  www.blender.org.  
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Figure 12-32. The figure mesh imported into Blender 

If your goal is to replicate your object with a 3D printer, there are plenty of services online that will 
take your STL model, print it (even in color), and send it to you by mail. But, being a tinkerer, you might 
be willing to go for the DIY option and build yourself a RepRap. This is a pretty astonishing concept of 
self-replicating 3D-printer, which means that RepRap is partially made from plastic components that you 
can print using another RepRap. It is certainly the cheapest way to have your own 3D printer, so have a 
look at http://reprap.org/ for plenty of information on where to buy the parts and how to build it. 

Summary 
In this chapter you learned several techniques for working with raw point clouds. You haven’t made use 
of any of the NITE capabilities, so actually this project could be done using any of the available Kinect 
libraries, as long as you have access to the Kinect point data.  

You used gears, a servo, and a multi-turn potentiometer to build a precise turntable that can be 
controlled from Processing and that provides real-time feedback of its rotational state. You acquired 3D 
data with your Kinect and patched the data together using geometrical transforms to form a 360-degree 
scan of an object. You even built your own file-exporting protocol for your point cloud and learned how to 
process the point cloud and perform a Poisson surface reconstruction using Meshlab. The outcome of this 
process is an accurate model of your 3D object that you can export to any 3D modeling software package. 

The possibilities of 360-degree object scanning for architects, character artists, and people working 
in 3D in general are endless. Having this tool means that for less than $200 (including your Kinect!) you 
have a device that can take any three-dimensional shape and bring its geometry and colors into your 
computer to be used by any application. It’s your task now to imagine what to do with it! 
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Kinect-Controlled Delta Robot 

by Enrique Ramos and Ciriaco Castro 

This last chapter of the book will guide you through the process of building and programming your own 
Kinect-controlled delta robot (Figure 13-1). You will learn everything from the inverse kinematics of this 
specific kind of robot to the programming of the hand tracking routines and the process of translating the 
data from the virtual simulation into electrical pulses for the operation of the physical robot. 

Delta robots, or parallel robots, are not only great for industrial use, where they perform a variety 
of tasks at incredibly high speeds, but they are also beautiful to watch and relatively simple to build. 
They rely on the use of parallelograms to translate the rotational movement of three independent 
motors into a precise 3D position of the robot’s effector. You are building a basic gripper in this project, 
but the effector could actually be any manipulator you can think of. Imagine this effector changed into 
a magnetic gripper, a laser welding/cutting tip, or a nozzle for 3D printing. After you  understand the 
concepts in this project, you will build a platform extendable to any kind of robotic application. 

   

Figure 13-1. Delta robot simulation and physical robot 
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You will need quite a few components and materials for the development of this project, but they are all 
widely available and reasonably priced (see Table 13-1). You will find most components in your local 
hardware store; the motors are standard servos you can find at SparkFun and similar retailers. The ball 
joints are perhaps the most specific pieces for this project, but there are a number of online shops where 
you can find them. 

Table 13-1. The Parts List 

Part Description Price 

6 aluminum rods  M6 diameter, 450 mm length $10.82  

12 ball joints M6 diameter. We found them at reidsupply $3.86 each 

1 aluminum pipe M8 diameter, to be used as a spacer $2.25 

3 aluminum square bars 240 mm length, 20 mm side $8.24 

3 aluminum square bars 60 mm length, 20 mm side $2.12 

1 steel corrugated rod M6 diameter, to be cut in 60 mm length pieces $5.49 

Perspex board Clear acrylic board 3 x 420 x 720 mm $15.80 

L brackets 2 x 20 mm side, 6 x 50 mm side. From hardware store $4.05 

Timber board MDF 1200 x 350 x 20 mm $5.85 

Power supply We found it at Amazon. $34.99 

3 servo motors Hitec HS-805BB $39.99 each 

2 servo motors Hitec HS-311 $7.99 each 

Extension lead cables 1 for each servo and 1 for LED lights $1.75 each 

Strip board 94 x 53 mm copper $1.05 

2 LEDs Basic LED 5 mm $0.35 each 

1 resistor 220ohm You can buy them in packs. $0.25 each 

23 breakaway headers-straight You should have a bunch of these already somewhere 
in your lab or bedroom. 

$1.50 

About This Project 
This project was born at the Adaptive Architecture and Computation MSc program at the Bartlett, UCL. We 
created the first version of the Kinect-driven delta robot together with Miriam Dall’Igna under installation 
artist Ruairi Glynn. After finishing the project, we had the opportunity to develop a new, much larger 
version of the installation called “Motive Colloquies” at the prestigious Centre Pompidou in Paris, together 
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with Ruairi Glynn and the London School of Speech and Drama. You can view a first version of the project 
at http://vimeo.com/20594424 and the performance at Pompidou Centre at http://vimeo.com/25792567. 

The Delta Robot  
What exactly is a delta robot? A delta robot is a type of parallel robot invented by Reymond Clavel in the 
1980s. The basic idea behind it is the use of parallelograms in the design of the robot’s legs in order to 
keep the orientation of an end platform, or effector, that has three degrees of translational freedom but 
no rotation. The robot consists of only three motors that control the rotation of the three legs, which 
transform these rotations into a specific pose determined by the connectivity and the nature of the joints 
of the structure. 

There are many industrial applications for this type of robot, mainly due to their low inertia, which 
allows high accelerations. This makes delta robots some of the fastest robots ever built; they are 
especially useful for picking and packaging processes. Run a search on the Internet for “delta robot” and 
you will be surprised by the variety of applications and the amazing speeds these robots can achieve. 

Building a Delta Robot 
Let’s start putting things together so you can get your fantastic delta robot working. As mentioned, your 
delta robot has three limbs (even though there are some four-legged members of the family) attached to a 
fix base on one end and to the robot’s effector on the other end. The fix base accommodates three servos 
and the Arduino board; it is the only static part of the robot. The legs constitute a kinematic chain that 
translates the servos’ rotational states into specific spatial positions of the effector, which is composed of 
a rotating base and a gripper, controlled by two small servos. 

The Legs 
In order to describe the robot’s limbs, we’re going to use an analogy of a human leg. Each leg is composed 
of “thigh” (one strong piece that stands the torque coming from the motor), “shin” (two parallel pieces that 
are connected to the effector and the thigh), that are connected through a “knee” consisting of ball joints. 
These legs connect to the effector on an “ankle” joint and to the base on the “hip,” which is the joint 
controlled by the servo motors.  

For the thigh part, we selected hollow square sections due to their higher resilience to bending 
moment and torsion. Before starting to build the first limb, you need to drill small holes on these bars 
in order to connect them to the servos. These holes should be the same diameter as the bolt that you use 
to connect this bar to the servos. It’s important to be really accurate because this union needs to be as 
strong as possible if you want to achieve a good level of accuracy (Figure 13-2).  

 

Figure 13-2. Thigh connected to the servo horn 
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You need to measure the position of the holes according to the plastic servo horn. Once you have 
drilled these holes (you need a minimum of two), you can join the square bar to the servo leg using a 
couple of bolts. On the other end, drill one hole in the perpendicular plane. This time it’s bigger: the 
same diameter as the corrugated rod that you are going to pass through (6 mm diameter). The next job 
is to prepare the shin’s aluminum rods. You have to thread them using a diestock in order to screw 
them into the ball joint (Figure 13-3). If you don’t have the right tool, you can use standard steel 
corrugated rods instead of the aluminum ones. Note that this option may require that you use shorter 
legs or more powerful servos, because of the increase in weight. 

 

Figure 13-3. Threaded aluminum rod and ball joint ready for assembly 

Once you put together the aluminum rod and the ball joint on each end, repeat the process with 
another aluminum rod, making sure they are exactly the same length. 

Next, you join all these elements together and finish your first leg. The use of ball joints is key for 
this project. The leg’s joints should allow full rotational freedom for the correct movement of the robot. 
Pass the corrugated rod trough the ball joint, the square section bar, and the second ball joint, as shown 
in Figure 13-4.  

 

Figure 13-4. Ball joint assembly 
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In order to allow the free rotation of the ball joint, use a series of spacers. First, you screw in a 
couple of nuts on both sides of the square section bar in order to fix it with the rod, and then you fit a 
short section of the aluminum tube (5 mm will do); this allows for ball joint movement without clashing 
with the corrugated rod. These spacers are fitted before and after the ball joint. Finally, put a nylon nut 
on the ends (Figure 13-5). If you don’t have nylon nuts around, you can use two nuts, locking them 
together tightly in order fix the articulation. 

 

Figure 13-5. Leg articulation finished  

You now have one leg ready. Just repeat the same process two times (Figure 13-6), paying 
attention to the position of the holes in the square section bars (dimensions should be consistent on 
the three legs!) and the length of the aluminum rods. These two factors play a key role in the final 
accuracy of the robot’s movements. Once you have your legs ready, move on to building the base. 

 

Figure 13-6. Legs ready to be assembled to the base and effector 
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The Base 
The base holds the servo motors and is the piece connecting the whole robot to the cantilevered timber 
plank acting as a support. If you are planning to build your robot differently, just pay attention to the 
clearance for the legs. When the robot moves, the legs come higher than the base, so you need to make 
room for them to move freely. 

You are going to fabricate the base out of Perspex, but any other rigid material will work. We built 
our base using a laser cutter, so we got a pretty neat and accurate shape and holes. If you want to laser-
cut your base, there are some good online services where you can send the vector file (dwg, ai or pdf) 
and they will ship the finished product. Otherwise, you can use the files from the book’s web site to 
trace over and cut your base with a good old scalpel.  

The base shape is a triangle (Figure 13-7) on which you place each leg’s axis aligned to the middle 
point of each side. Use a triangle of 440 mm per side. The servos are held via L brackets so the rotation 
happens on the right plane. You subtract a rectangular shape in each side in order to allow the thigh to 
lift over the plane of the base. You also chop the triangle vertices to save some Perspex and have a 
smaller base (Figure 13-8).  

 

Figure 13-7. Base shape 
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Figure 13-8. Laser-cut base and servo with an L bracket 

Once the piece is cut, you just have to screw the servo motors to the brackets, fixing their position; 
pay special attention to the distance that they are fixed from the border, which must be equal (Figure 
13-9). The next step is to screw the brackets that hold the servos to the base.   

 

Figure 13-9. Assembled base 
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The Effector 
The effector is a triangular piece that moves parallel to the plane of the base (Figure 13-10). You build it 
out of a triangular piece of Perspex with 135mm sides. The aluminum rods are joined to this piece.  

Use the same type of joint that you saw in the union between thigh and shin. Start by fixing the 
small square bars to the triangle. Draw a series of holes in the medians of the triangle and a 
rectangular shape where you insert a new servo motor for the gripper. Don’t forget to also draw the 
holes for fixing the servos to this piece! Once the piece is cut, drill some small holes into the square 
bars, making them match up with the ones in the effector. These square bars stick out of the triangular 
shape in order to have enough room to connect them to the legs. Before fixing them with some screws 
and nuts, drill a hole in one of the extremes (in the perpendicular plane) to build the same type of joint 
previously described. This hole must be big enough to let an M6 rod pass through it. 

   

Figure 13-10. Effector drawing and assembly 

Once all the holes are drilled, fix the square bars to the Perspex piece, conforming to the effector. Now 
join it to the legs. Remember to use the same type of node you used previously: square bar in the center, 
nut fixing it on both sides, spacer, ball joint, spacer, nylon nut, or double nut. 

Now that the three legs are joined to the effector, you can join them to the base! Just fix the servo leg 
to the servomotor and screw them in so they don’t come off (believe me, they do). And that’s it! Your 
delta robot is nearly finished. But no robot is complete without an effector end. The robot needs a tool to 
act in the world; you’re going to build a gripper, a robotic hand that will catch anything within its reach. 

The Gripper 
The gripper is used by the robot to pick up objects. It’s a really simple mechanism that can open and close 
using just one servo. You will laser-cut the Perspex pieces and assemble them into the gripper 
mechanism. The gripper shown in Figure 13-11 is a modified version of a design from 
http://jjshortcut.wordpress.com, which is a modification on a design from http://www.diniro.net (one 
beautiful example of Internet sharing!). We altered the design to account for the thickness of the material, 
the specific servos, and the effector size; we also added a circular base.  
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Figure 13-11. Gripper parts 

Note that all the holes have been marked in order to make the assembly easier and also to allow 
the rectangular shape to host a servo. The rotation of the servo is transmitted to the gears; this closes 
the gripper. The gripper is assembled to a base that allows rotation in the perpendicular plane using 
another servomotor. 

You start by assembling the first gear with the servo horn, then assemble the first servo to the big 
piece, and continue with the rest of pieces, using bolts and nylon nuts or double nuts. Once you have 
the complete mechanism, test it by moving it with your hand. It should have a pretty smooth movement 
(Figure 13-12). Secure all bolts but don’t over tight them. Add some rubber adhesives in order to have a 
more stable grip (Perspex doesn’t have enough friction, so objects just slip away!). 

 

Figure 13-12. Half gripper 
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Figure 13-13. Motor assembled on the gripper 

Once your gripper is assembled, connect it to the effector. Remember that you left enough space to 
fix one servo to the effector (Figure 13-13). Then adjust a servo horn to the gripper circular base. After 
that, fix it to the servo and screw it. Lastly, assemble the gripper with the circular base. To avoid too 
much vibration, use two mini L brackets, one on each side. The final piece should look like the one in 
Figure 13-14.  

 

Figure 13-14. Assembled gripper 

As a final touch, we added a couple of red LEDs on both sides of the gripper simply as an effect 
(Figure 13-15). The quaint face-like effect it conveys is quite theatrical when the robot is in action. 
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Figure 13-15. Assembled gripper with servo and LEDs on board 

Hanging the Robot 
You cantilever the robot using an MDF board that you previously cut in the same shape as the robot’s base 
(Figure 13-16), allowing the legs to go over the base plane. It is very important that you allow this 
movement. If you attach the robot directly to a flat surface (say you screw the base to your ceiling), the 
legs won’t be able to go over the base plane and the robot’s movements will be severely limited.  
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Figure 13-16. Cantilevered MDF board 

Mark the holes and use long screws to fix this MDF board to the base. Once everything is 
assembled, use a timber shelve as a platform and use a couple of clamps to fix the robot hanging in 
space (Figure 13-17). It’s important to measure this height because you need to add a working plane if 
you want to have a surface where you can leave objects for the robot to pick (Figure 13-18).  

 

Figure 13-17. Hanging the robot from the board 
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Figure 13-18. Robot setup 

You can use a normal table as a working plane. You place the Kinect under the working plane—at 
the right height to detect your movements but also far enough from the robot as you never know what 
these creatures are capable of! 

Building the Circuit 
Now it’s time to deal with the wiring. You have two LEDs and two servos in the gripper plus three big 
servos for the legs, and you need to connect them to your main circuit. Connect some extension lead 
cables from the gripper to connect the LEDs and the servos, running it from one leg through cable ties. 
Another option is to use some cable tidy (a plastic spiral that collects all cables inside), shown in Figure 
13-19.  
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Figure 13-19. Cable tidy 

Then you connect shorter extension cables for the three servos on the legs. Note that you need an 
external 5V power supply for this project; the 5V power supply coming from the Arduino is not stable 
enough for the power requirements of all servos working at the same time. 

The circuit contains five servos (three for the legs and two for the gripper), two LEDs with their 
resistors, your Arduino, and an external power supply. Arduinos pins 9, 10, and 11 control three servos 
for the legs. Pins 5 and 6 control the gripper’s servos and pin 3 controls the LEDs, as per Figure 13-20.  
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Figure 13-20. Delta robot circuit 

 

Figure 13-21. Circuit materials 
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To build the circuit, you are going to use a strip board (Figure 13-21). Start by measuring it and 
soldering the breakaway headers that connect to your Arduino board (Figure 13-22). It’s important that 
you have a good look at the back of the strip board and confirm the direction of the copper strips before 
starting to solder! If you want to give it more stability, you can add more headers than necessary. The 
important ones are ground and pins 9, 10, 11, 5, 6, and 3.  

 

Figure 13-22. Strip board with soldered headers 

After soldering, double check that they are placed correctly by plugging the shield to your Arduino 
board, making sure that it comes in easily. You may have to bend some of the headers with a nipper to 
get the shield properly connected. 

The next step is to solder strips of three headers that are plugged to the female lining from the 
servos. Put them in the same column, leaving a distance between them; leave three rows in between. 
On each pin you get power (red wire), ground (black wire), and signal (yellow wire), as you saw in the 
previous chapters when we introduced servo motors. All servos are going to share ground and power, 
which come from an external power supply; leave the third pin connected independently to the 
corresponding Arduino pin (Figure 13-23).  
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Figure 13-23. Headers for the servos 

 After soldering five of them (one for each servo), solder a strip of two for later connecting the LED. 
In this case, you share just the ground (common for all the circuit) so it is shifted respective to the 
previous column; in other words, one pin is in the same column as the ground and the other completely 
independent in another strip. 

Now turn over the strip board and scratch some lines into the copper so you disconnect pins that 
shouldn’t be connected (servos’ signal). You can use a scalpel to remove the copper that connects the 
line. Then check that the connection is completely broken by using a multimeter. 

The next step is to connect the ground to the Arduino ground pin (ground is common in the circuit). 
After that, connect each signal pin to the corresponding pin on the Arduino. Now all your servos are 
connected to the Arduino. For the LED, connect a resistor between the strip that is connected with pin 3 
on the Arduino board and the power free pin that you left before for the LED (Figure 13-24). 

 

Figure 13-24. Finished board 
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The last step is to solder two cables in the strip’s power and ground for the servos. These two 
cables are connected to an external power source. You can use a PC power supply for a smooth 5V 
power out. The only trick is to hack it so it works without being connected to a computer motherboard.  

You will use the so-called paperclip trick. Make sure that the power is off and the power supply is 
disconnected (Figure 13-25); find the 20/24-pin connector that is used to connect the power supply to 
the motherboard. In the 20-pin block, find the green wire; there is only one and beside it are two black 
(ground cables). On the other end, connect the green wire with any of the grounds using a small piece 
of wire; it doesn’t matter which ground you choose as both will work.  

Figure 13-25. The paperclip trick 

And that’s it! For safety, wrap some electrical tape around this connection so it’s not exposed. Now 
you can pick any thin cable (5V) and connect red (power) and black (ground) to your circuit 

Everything is ready now! Plug your homemade shield to Arduino, plug all the servos in the 
correspondent pins (making sure that they are the correct ones, and that ground, power, and signals 
are correct!). Connect your LED cable (again making sure that you correctly connect ground and 
power!), connect the power and ground to your external power supply  (Figure 13-26), and you’re ready 
to bring in the code!  

Figure 13-26. Finished circuit 
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Delta Robot Simulation Software 
You now have a (theoretically) working delta robot hanging from a support, and you have built a circuit 
attached to an Arduino board to control the robot. It’s time to give it a brain! This role is fulfilled by your 
Processing sketch, which will tell the three servos to go to certain positions in order to move the effector 
to a precise point in space. You will also send the necessary data to determine the rotation and the state 
of the gripper. You will, of course send all this information to Arduino through serial communication; your 
board is in charge of transmitting the right messages to the right devices at the right times.  

You are going to proceed step by step. First, you are going to develop the delta robot classes and test 
them with a simple example. When you are sure the simulation is working properly, you’ll add all the 
Kinect and Serial methods, and then you will implement the Arduino program that will translate the 
serial data into pulses that the servos can understand. But first, we need to clarify an important concept. 

Inverse Kinematics 
When you work with robots, you often need to make use of inverse kinematics. But what on Earth is that? 
When you have a jointed, flexible object, or kinematic chain (like your delta robot, or any other articulated 
robot), there are two problems that you usually need to solve when studying its movements. 

• If I move all the motors or actuators in the structure to certain states, what is the 
resulting pose of the robot? 

• If I want to achieve a specific pose, what are the required states of my actuators in 
order to achieve it? 

The first question can be answered by forward kinematics, the second one by inverse kinematics. In 
your case, what you want is to be able to drive the robot’s effector to specific points in space so it can 
follow your hand; this is within the realm of inverse kinematics. You have a pretty straightforward 
structure, driven by only three servos (the other two are unrelated to the robot’s position in space), but 
you need to find out how the three independent spatial coordinates of x, y, and z that define the desired 
position of the effector translate back through the kinematic chain to the three rotations of the servos. 
This is achieved by analyzing the connection and geometry of the robot and the constraints this 
geometry imposes on the robot’s kinematics.  

The goal of the inverse kinematics of a leg is to find the servo rotation necessary to achieve a 
specific effector position in space. Let’s assume for a second you are looking at a simpler, two-
dimensional problem. If you need to find out the servo angle for the diagram in Figure 13-27, the 
answer is obtained through planar geometry. The code that gives you the answer is the following: 

float c = dist(posTemp.x + effectorSize, posTemp.y, baseSize, 0); 
float alpha = acos((-a2 + thigh * thigh + c * c) / (2 * thigh * c));  
float beta = -atan2(posTemp.y, posTemp.x); 
servoAngle = alpha - beta; 
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Figure 13-27. Delta robot’s inverse kinematics in 2D and 3D 

But you are not in a two-dimensional world, so you need to resolve the problem for a three-
dimensional structure. If you look closely at the Figure 13-27, you can see that the problem can be reduced 
to a two-dimensional problem in which the dimension of the shin is reduced to its projection on the plane 
of the servo rotation. This projection, called a2 in the code, is obtained by simple triangle theory. 

float a2 = shin * shin - posTemp.z * posTemp.z; 

Once a2 is known, you only need to substitute it for the shin in the previous equations and you get 
the answer to the three-dimensional problem. 

float c = dist(posTemp.x + effectorSize, posTemp.y, baseSize, 0); 
float alpha = acos((-a2 + thigh * thigh + c * c) / (2 * thigh * c));  
float beta = -atan2(posTemp.y, posTemp.x); 
servoAngle = alpha - beta; 

■ Note This has been a very brief introduction to delta robot’s inverse kinematics, but there are plenty of 
resources on the Internet where you can find more information on this topic. Another advantage of delta robots is 

the extent to which they have been studied and the availability of good online information about them. 

Now you need to structure your delta robot classes. 
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DeltaRobot Class 
The delta robot simulation consists of the DeltaRobot class (Figure 13-28), containing the main 
parameters and routines, and a DeltaLeg class, where you deal with the inverse kinematics and the 
drawing functions for each leg. Let’s start with the DeltaRobot class. You need a series of fields defining 
the position of the effector at each moment in time, and a zeroPos PVector that establishes the position 
from which you define the movements of your effector. 

 

Figure 13-28. Delta robot classes 

You define a variable called numLegs that defines the number of legs of your robot. Yes, you can 
actually increase the number of legs to 4, 5, or any higher number. The fact that there is no 23-legged 
parallel robot out there is because any high number of legs would just be a waste of material (three 
being the minimum necessary number of legs for stability). Having said that, one of the fastest 
commercial delta robots, the Adept Quattro, is based on a four-leg architecture, so feel free to play with 
the parameter. The results are certainly curious (Figure 13-29).  

class DeltaRobot { 
   PVector posVec = new PVector(); // Position of the Effector 
   PVector zeroPos; 
   int numLegs = 3; // Number of legs 
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Figure 13-29. Two distant (and pretty bizarre) cousins of your delta robot, with 5 and 150 legs 

You then set an array called DeltaLeg to contain the three (or any other number of) legs of the 
robot, and an array of floats for the angles of the joints driven by the servos (the upper joints). You also 
declare the variables that set the dimensions of your specific delta robot, and three variables defining 
the maximum span of your robot in the three axes: robotSpanX, robotSpanZ, and maxH). You need to 
respect these distances if you don’t want to send unreachable locations to your robot, as this would 
lead to the legs disappearing in the case of the simulation, or worst, a damaged robot if you are driving 
the physical robot. 

  DeltaLeg[] leg = new DeltaLeg[numLegs]; // Create an array of deltaLegs 
  float[] servoAngles = new float[numLegs]; // Store the angles of each leg 
  float thigh, shin, baseSize, effectorSize; // Delta-Robot dimensions 
  float gripRot = 100; 
  float gripWidth = 100; 
  // Maximum dimensions of the Robot space 
  float robotSpanX = 500; 
  float robotSpanZ = 500; 
  float maxH; 

You have come to the main constructor of the DeltaRobot class. It takes as parameters the lengths of 
the hip and ankle elements, and the size of the base and the effector. Note that when you refer to the 
base and effector sizes, you mean the distance between the center of the base/effector and the axis of 
the joint attached to the element (Figure 13-30).  
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Figure 13-30. Base and effector sizes in the sketch 

DeltaRobot(float thigh, float shin, float baseSize, float effectorSize) { 
    // Set the variables 
    this.thigh = thigh; 
    this.shin = shin; 
    this.baseSize = baseSize; 
    this.effectorSize = effectorSize; 
    this.maxH = -(thigh + shin) * 0.9f; // Avoid the effector going out of range 
    zeroPos = new PVector(0, maxH / 2, 0); 

The DeltaLegs need to be initialized to the right dimensions, those that you extract from your 
robot’s parameters. Each leg is initialized to a certain angle, one that you find by dividing the full 
circle (2*Pi radians) by the number of legs. In our sketch, we added PI/6 because we wanted to center 
the legs from the Kinect point of view. 

for (int i = 0; i < numLegs; i++) { 
      float legAngle = (i * 2 * PI / numLegs) + PI / 6; 
      leg[i] = new DeltaLeg(i, legAngle, thigh, shin,  baseSize, effectorSize); 
    } 
  } 

Once all your variables are initialized, you add some methods to your main delta robot class. The 
public methods you call from the main sketch are moveTo() and draw(). 

The moveTo() method takes a PVector as a parameter. You use this method to tell the robot to go to 
a specific position from your main sketch. You consider this PVector to be the relative position of the 
robot’s effector to the point specified as zero position. The resulting position of your robot’s effector is 
the result of adding the incoming PVector to the zero position.  

public void moveTo(PVector newPos) { 
    posVec.set(PVector.add(newPos, zeroPos)); 

Within this method, and before passing the new position to each leg, you need to make sure that 
the position is a “legal” position, which means a position physically reachable by the robot. The 
position is legal if it is contained within a parallelepiped of the dimensions defined by the variables 
robotSpanX, robotSpanZ, and maxH. If one of your coordinates is out of this virtual volume, trim the value 
to the maximum value of the movement on that axis. 

    float xMax = robotSpanX * 0.5f; 
    float xMin = -robotSpanX * 0.5f; 
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    float zMax = robotSpanZ * 0.5f; 
    float zMin = -robotSpanZ * 0.5f; 
    float yMax = -200; 
    float yMin = 2*maxH+200; 
 
    if (posVec.x > xMax) posVec.x = xMax; 
    if (posVec.x < xMin) posVec.x = xMin; 
    if (posVec.y > yMax) posVec.y = yMax; 
    if (posVec.y < yMin) posVec.y = yMin; 
    if (posVec.z > zMax) posVec.z = zMax; 
    if (posVec.z < zMin) posVec.z = zMin; 

Finally, move each leg to its new position and inquire what angle is necessary to move your 
servos to in order to achieve it. The servo angle is stored in an array for later. 

    for (int i = 0; i < numLegs; i++) { 
      leg[i].moveTo(posVec); // Move the legs to the new position 
      servoAngles[i] = leg[i].servoAngle; // Get the servo angles 
    } 
  } 

By this step, you have all the data you need to drive the robot (the three servo angles), so you can 
now implement a serial communication protocol and start driving your robot straight away. But let’s 
develop the class a little further to include a whole visualization interface for your robot. You will 
ultimately have a virtual model of the delta robot that behaves exactly like the physical model and that 
you can visualize on screen. We think this is important for the project because it’s a good idea to make 
sure everything is working before you output the values to the servos, but the whole project would work 
perfectly without the visual side. We also consider this simulation to be of great help in understanding 
the behavior of the machine, and it will later prove very useful when you bring the Kinect input along.  

The public method draw()is called from your main routine when you want to print your delta robot 
on screen. This method changes the main matrix to a different position so the delta robot is shown at a 
certain height instead of at the origin of coordinates, because later this origin is the Kinect device. 
Then you call each leg’s own draw() function and the drawEffector() function that  draws the gripper. 

   public void draw() { 
    stroke(50); 
    pushMatrix(); 
    translate(0, -maxH, 0); 
 
    for (int i = 0; i < numLegs; i++) { 
      leg[i].draw(); 
    } 
 
    drawEffector(); 
    popMatrix(); 
  } 

The drawEffector() function displays the effector and the gripper you have attached to it. We won’t 
go into much detail on this because it is mainly an exercise of changing transformation matrices and 
drawing elements so you end up having a simplified model of your gripper that can be rotated, open, 
and closed at will (Figure 13-31).  
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Figure 13-31. Effector and gripper simulation 

   void drawEffector() { 
    // Draw the Effector Structure 
    stroke(150); 
    fill(150, 50); 
      beginShape(); 
      for (int i = 0; i < numLegs; i++) { 
        vertex(leg[i].ankleVec.x, leg[i].ankleVec.y,  
        leg[i].ankleVec.z); 
      } 
      endShape(CLOSE); 
    // Draw Gripper 
    stroke(200, 200, 255); 
    fill(200, 50); 
 
    // Translate your Coordinate System to the effector position 
    pushMatrix(); 
    translate(posVec.x, posVec.y - 5, posVec.z); 
    rotateX(-PI/2); // Rotate The CS, so you can drwa  
    ellipse(0, 0, effectorSize / 1.2f, effectorSize / 1.2f); 
    rotate(map(gripRot, 35, 180, -PI / 2, PI / 2)); 
 
    for (int j = -1; j < 2; j += 2) { 
      translate(0, 2 * j, 0); 
      beginShape(); 
      vertex(-30, 0, 0); 
      vertex(30, 0, 0); 
      vertex(30, 0, -35); 
      vertex(15, 0, -50); 
      vertex(-15, 0, -50); 
      vertex(-30, 0, -35); 
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      endShape(CLOSE); 
 
      for (int i = -1; i < 2; i += 2) { 
        pushMatrix(); 
        translate(i * 20, 0, -30); 
        rotateX(PI / 2); 
        ellipse(0, 0, 10, 10); 
        rotate(i * map(gripWidth, 50, 150, 0, PI / 2.2f)); 
        rect(-5, -60, 10, 60); 
        translate(0, -50, 0); 
        rotate(-i * map(gripWidth, 50, 150, 0, PI / 2.2f)); 
        rect(-5, -60, 10, 60); 
        popMatrix(); 
      } 
    } 
    popMatrix(); 
  } 

There is one more function to add, but you only use in the next example. The updateGrip() method 
can be called from the main sketch whenever you want to change the rotation and width of the gripper. 

  public void updateGrip(float gripRot, float gripWidth) { 
      this.gripRot = gripRot; 
      this.gripWidth = gripWidth;  
  } 
} 

deltaLeg Class 
Your main DeltaRobot class is complete now, and you have built the necessary interfaces to drive the 
robot from your main program, but the most important part of the code is yet to be implemented: working 
out the inverse kinematics of the robot and getting the servo angles necessary to achieve the desired 
pose.  

In the deltaRobot class, when moving the robot to a new position, you use a “black box” that gives 
you the servo angles. This black box is the deltaLeg class. This class has a series of variables defining 
the id of the leg, position of the effector, angle of the servo, angle of the leg, and the real-world 
coordinates of the leg’s joints, which is used for visualization. 

class DeltaLeg { 
  int id; // id of the leg 
  PVector posVec = new PVector(); // Effector Position 
  float servoAngle; // Anlgle between the servo and the XZ plane 
  float legAngle; // Y rotation angle of the leg 
 
  // Universal position of the joints 
  PVector hipVec, kneeVec, ankleVec; 
 
  float thigh, shin, baseSize, effectorSize; // Sizes of the robot's elements 
   DeltaLeg(int id, float legAngle, float thigh, float shin, float base, float effector) { 
    this.id = id; 
    this.legAngle = legAngle; 
    this.baseSize = base; 
    this.effectorSize = effector; 
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    this.thigh = thigh; 
    this.shin = shin; 
  } 

The following function, moveTo, functionis actually where the magic happens. This short function 
converts the input position vector into a servo rotation. This is the equivalent of saying that this is the 
function dealing with the robot’s inverse kinematics. (We ran through the delta robot’s inverse 
kinematics previously, so we just repeat the code here.) 

  void moveTo(PVector thisPos) { 
    posVec.set(thisPos); 
    PVector posTemp = vecRotY(thisPos, -legAngle); 
 
    // find projection of a on the z=0 plane, squared 
    float a2 = shin * shin - posTemp.z * posTemp.z; 
 
    // calculate c with respect to base offset 
    float c = dist(posTemp.x + effectorSize, posTemp.y, baseSize, 0); 
    float alpha = (float) Math.acos((-a2 + thigh * thigh + c * c) / (2 * thigh * c));  
    float beta = -(float) Math.atan2(posTemp.y, posTemp.x); 
    servoAngle = alpha - beta; 
    getWorldCoordinates(); 
  } 

 The function getWorldCoordinates() function updates the PVectors defining the joints of the leg 
in world coordinates, so it can draw them on screen. Use the helper functions vecRotY() and vecRotZ() 
to perform the vector rotations.  

   void getWorldCoordinates () { 
    // Unrotated Vectors of articulations 
    hipVec = vecRotY(new PVector(baseSize, 0, 0), legAngle); 
    kneeVec = vecRotZ(new PVector(thigh, 0, 0), servoAngle); 
    kneeVec = vecRotY(kneeVec, legAngle); 
    ankleVec = new PVector(posVec.x + (effectorSize * (float) Math.cos(legAngle)), posVec.y,  
    posVec.z - 5 + (effectorSize * (float) Math.sin(legAngle))); 
  } 
 
   PVector vecRotY(PVector vecIn, float phi) { 
    // Rotates a vector around the universal y-axis 
    PVector rotatedVec = new PVector(); 
    rotatedVec.x = vecIn.x * cos(phi) - vecIn.z * sin(phi); 
    rotatedVec.z = vecIn.x * sin(phi) + vecIn.z * cos(phi); 
    rotatedVec.y = vecIn.y; 
    return rotatedVec; 
  } 
 
   PVector vecRotZ(PVector vecIn, float phi) { 
    // Rotates a vector around the universal z-axis 
    PVector rotatedVec = new PVector(); 
    rotatedVec.x = vecIn.x * cos(phi) - vecIn.y * sin(phi); 
    rotatedVec.y = vecIn.x * sin(phi) + vecIn.y * cos(phi); 
    rotatedVec.z = vecIn.z; 
    return rotatedVec; 
  } 
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The public draw() function  functionis called from the deltaRobot’s draw() function and takes care 
of displaying the geometry of the leg on screen. Once again, we won’t go into much detail here, but you 
can follow the comments in the code. 

  public void draw() { 
    // Draw three lines to indicate the plane of each leg 
    pushMatrix(); 
    translate(0, 0, 0); 
    rotateY(-legAngle); 
    translate(baseSize, 0, 0); 
    if (id == 0) stroke(255, 0, 0); 
    if (id == 1) stroke(0, 255, 0); 
    if (id == 2) stroke(0, 0, 255); 
    line(-baseSize / 2, 0, 0, 3 / 2 * baseSize, 0, 0); 
    popMatrix(); 
     
    // Draw the Ankle Element 
    stroke(150); 
    strokeWeight(2); 
    line(kneeVec.x, kneeVec.y, kneeVec.z, ankleVec.x, ankleVec.y,  
    ankleVec.z); 
    stroke(150, 140, 140); 
    fill(50); 
    beginShape(); 
    vertex(hipVec.x, hipVec.y + 5, hipVec.z); 
    vertex(hipVec.x, hipVec.y - 5, hipVec.z); 
    vertex(kneeVec.x, kneeVec.y - 5, kneeVec.z); 
    vertex(kneeVec.x, kneeVec.y + 5, kneeVec.z); 
    endShape(PConstants.CLOSE); 
    strokeWeight(1); 

    // Draw the Hip Element 
    stroke(0); 
    fill(255); 
     
    // Align the z axis to the direction of the bar 
    PVector dirVec = PVector.sub(kneeVec, hipVec); 
    PVector centVec = PVector.add(hipVec, PVector.mult(dirVec, 0.5f)); 
    PVector new_dir = dirVec.get(); 
    PVector new_up = new PVector(0.0f, 0.0f, 1.0f); 
    new_up.normalize(); 
    PVector crss = dirVec.cross(new_up); 
    float theAngle = PVector.angleBetween(new_dir, new_up); 
    crss.normalize(); 

    pushMatrix(); 
    translate(centVec.x, centVec.y, centVec.z); 
    rotate(-theAngle, crss.x, crss.y, crss.z); 
    // rotate(servoAngle); 
    box(dirVec.mag() / 50, dirVec.mag() / 50, dirVec.mag()); 
    popMatrix(); 
  } 
} 
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Driving the Delta Robot Simulation with the Mouse 
You have wrapped all functions you need for driving and visualizing a delta robot in two classes that you 
can add to any Processing sketch, so let’s run a first test. 

You are going to implement the simplest of applications and drive a virtual model of a delta robot 
with your mouse position.  Import OpenGL and your Kinect Orbit library; then initialize a deltaRobot 
object to play with. 

import processing.opengl.*; 
import kinectOrbit.KinectOrbit; 

import SimpleOpenNI.*; 

// Initialize Orbit and simple-openni Objects 
KinectOrbit myOrbit; 
SimpleOpenNI kinect; 
 
// Delta Robot 
DeltaRobot dRobot; 
PVector motionVec; 
 
public void setup() { 
  size(1200, 900, OPENGL); 
  smooth(); 
 
  // Orbit 
  myOrbit = new KinectOrbit(this, 0, "kinect"); 
  myOrbit.setCSScale(100); 
 
  // Initialize the Delta Robot to the real dimensions 
  dRobot = new DeltaRobot(250, 430, 90, 80); 
} 

Now the only thing you need to do is, within the orbit loop (so you can rotate around), create a 
motion PVector with your mouse coordinates, move the delta robot to that point in space, and draw it 
on screen to see the result. Done!  

public void draw() { 
  background(0); 
  myOrbit.pushOrbit(this); // Start Orbiting 
  motionVec = new PVector(width/2-mouseX, 0, height/2-mouseY);// Set the motion vector 
  dRobot.moveTo(motionVec); // Move the robot to the relative motion vector 
  dRobot.draw();  // Draw the delta robot in the current view. 
    myOrbit.popOrbit(this); // Stop Orbiting 
} 

Run the sketch. You should get a neat image of a delta robot on screen (Figure 13-32). If you move 
your mouse over the sketch, the robot should move around accordingly. 
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Figure 13-32. Mouse-driven delta robot simulation 

Spend some time with your new virtual toy and be delighted by its movements. When we first saw 
a delta robot in action, we were amazed by the richness of the movements that emerged from such a 
simple structure. When you have made friends with this quaint creature, you can move on to the next 
step: driving it with your bare hands. 

Kinect-Controlled Delta Robot 
You are going to reuse the two classes you already created to develop a more complex application. The 
goal is to introduce Kinect and NITE’s hand tracking capabilities to drive the delta robot simulation, and 
then implement your own routine to drive the gripper by tilting, opening, and closing your hand (Figure 
13-33). Then you will add a serial communication routine to send the servo state to Arduino so you can 
plug the software straight into your physical robot and drive it with your hand.  
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Figure 13-33. Delta robot driven by hand gestures 

Import the full set of libraries you have been working with (this means Simple-OpenNI, Serial, 
OpenGL, and KinectOrbit) and then declare the corresponding variables. You are using hand tracking, 
so you need NITE’s Session Manager and Point Control. The Boolean variable serial can be set to 
false if you want to run the sketch without an Arduino board plugged to the computer. 

import processing.opengl.*; 
import processing.serial.*; 
import SimpleOpenNI.*; 
import kinectOrbit.KinectOrbit; 
 
// Initialize Orbit and simple-openni Objects 
KinectOrbit myOrbit; 
SimpleOpenNI kinect; 
Serial myPort; 
boolean serial = true; 
 
// NITE 
XnVSessionManager sessionManager; 
XnVPointControl pointControl; 
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// Font for text on screen 
PFont font; 
 
// Variables for Hand Detection 
boolean handsTrackFlag; 
PVector handOrigin = new PVector(); 
PVector handVec = new PVector(); 
ArrayList<PVector> handVecList = new ArrayList<PVector>(); 
int handVecListSize = 30; 
PVector[] realWorldPoint; 

You want to be able to control the position of the robot and the state of the gripper, so you need to 
declare the PVector motionVec and the two floats gripRot and gripWidth. 

// Delta Robot 
DeltaRobot dRobot; 
PVector motionVec; 
float gripRot; 
float gripWidth; 
 
private float[] serialMsg =  new float[5]; // Serial Values sent to Arduino 

The setup() function initializes all the objects you have previously declared and enables all NITE 
capabilities you are going to be using. Note that you are only adding “wave” gesture recognition to the 
Session Manager because you want to have a better control of hand creation in runtime. If you include 
RaiseHand, as soon as your hand enters Kinect’s field of view you trigger a hand creation event; by 
adding only waving, you can control when and where you start tracking your hand, which is useful in a 
later stage. 

Of course, you also initialize the delta robot object to the dimensions (in mm) of the robot you have 
built and set the serial communication to the first port in your computer where your Arduino is 
connected. 

public void setup() { 
  size(800, 600, OPENGL); 
  smooth(); 
 
  // Orbit 
  myOrbit = new KinectOrbit(this, 0, "kinect"); 
  myOrbit.drawCS(true); 
  myOrbit.drawGizmo(true); 
  myOrbit.setCSScale(100); 
 
  // Simple-openni object 
  kinect = new SimpleOpenNI(this); 
  kinect.setMirror(false); 
  // enable depthMap generation, hands + gestures 
  kinect.enableDepth(); 
  kinect.enableGesture(); 
  kinect.enableHands(); 
 
  // setup NITE 
  sessionManager = kinect.createSessionManager("Wave", "Wave"); 
  // Setup NITE.s Hand Point Control 
  pointControl = new XnVPointControl(); 
  pointControl.RegisterPointCreate(this); 
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  pointControl.RegisterPointDestroy(this); 
  pointControl.RegisterPointUpdate(this); 
 
  sessionManager.AddListener(pointControl); 
  // Array to store the scanned points 
  realWorldPoint = new PVector[kinect.depthHeight() * kinect.depthWidth()]; 
  for (int i = 0; i < realWorldPoint.length; i++) { 
    realWorldPoint[i] = new PVector(); 
  } 
  // Initialize Font 
  font = loadFont("SansSerif-12.vlw"); 
 
  // Initialize the Delta Robot to the real dimensions 
  dRobot = new DeltaRobot(250, 430, 90, 80); 
 
  if (serial) { 
    // Initialize Serial Communication 
    String portName = Serial.list()[0]; // This gets the first port on your computer. 
    myPort = new Serial(this, portName, 9600); 
  } 
} 

Now add the XvN Point Control callback functions, which are pretty similar to the ones you used in 
previous examples for hand tracking. Set your hand tracking flag on or off and update your hand 
PVector and your hand position history ArrayList.  

Add one more line to the onPointCreate function. Because you want to track your hand movements 
after you have waved to the Kinect, you need to set the handOrigin PVector to the point in space where 
the waving took place (Figure 13-34). This allows you to set your motion vector as the relative 
displacement vector of your hand from the hand-creation point.  

 

Figure 13-34. Hand origin and current hand position 
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public void onPointCreate(XnVHandPointContext pContext) { 
  println("onPointCreate:"); 
  handsTrackFlag = true; 
  handVec.set(pContext.getPtPosition().getX(), pContext.getPtPosition() 
    .getY(), pContext.getPtPosition().getZ()); 
  handVecList.clear(); 
  handVecList.add(handVec.get()); 
  handOrigin = handVec.get(); 
} 
 
public void onPointDestroy(int nID) { 
  println("PointDestroy: " + nID); 
  handsTrackFlag = false; 
} 
 
public void onPointUpdate(XnVHandPointContext pContext) { 
  handVec.set(pContext.getPtPosition().getX(), pContext.getPtPosition() 
    .getY(), pContext.getPtPosition().getZ()); 
  handVecList.add(0, handVec.get()); 
  if (handVecList.size() >= handVecListSize) { // remove the last point 
    handVecList.remove(handVecList.size() - 1); 
  } 
} 

The main draw() loop updates the Kinect object and sets a Kinect Orbit loop. Within this loop, you 
update the hand position and draw it, using two specific functions that you implement next.  

public void draw() { 
  background(0); 
  // Update Kinect data 
  kinect.update(); 
  // update NITE 
  kinect.update(sessionManager); 
  myOrbit.pushOrbit(this); // Start Orbiting 
 
  if (handsTrackFlag) { 
    updateHand(); 
    drawHand(); 
  } 

Just to have an idea of the relative motion between the current position of the hand and the origin 
point (where the hand was created), draw a green line between the two. 

  // Draw the origin point, and the line to the current position 
  pushStyle(); 
  stroke(0, 0, 255); 
  strokeWeight(5); 
  point(handOrigin.x, handOrigin.y, handOrigin.z); 
  popStyle(); 
  stroke(0, 255, 0); 
  line(handOrigin.x, handOrigin.y, handOrigin.z, handVec.x, handVec.y,  
  handVec.z); 

And now you store that relative motion vector into the motionVec PVector and use it as a parameter 
to move the delta robot to its new position. You then proceed to draw the delta robot and send the serial 
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data. Add a displayText function that prints on screen the data you are sending to the serial port for 
double-checking. 

  motionVec = PVector.sub(handVec, handOrigin);// Set the relative motion vector 
  dRobot.moveTo(motionVec); // Move the robot to the relative motion vector 
  dRobot.draw();  // Draw the delta robot in the current view. 
  kinect.drawCamFrustum(); // Draw the Kinect cam 
  myOrbit.popOrbit(this); // Stop Orbiting 
  if (serial) {  
    sendSerialData(); 
  } 
  displayText();  // Print the data on screen 
} 

Gripper Control 
You want to implement a routine to control the delta robot’s gripper with your hand movements. Here is 
the theory.  

Using NITE, you have already worked out the position of your hand, that is the very center of your 
palm, and you are using it to set the robot’s position in space. Wouldn’t it be cool to open and close the 
gripper by opening and closing your hand? Well, there is a straightforward way of implementing this 
feature. You know your hand is defined by the set of points around the handVec position, so you can 
parse your point cloud and select all the points within a certain distance of your hand vector. After 
some testing, you set 100mm as a reasonable distance. If you display the points that fall within this 
rule, you get a “white glove” (Figure 13-35), which you use to extract the state of your hand. 

 

Figure 13-35. Hand point cloud 

Once you know what points constitute your hand, you can think about what changes when you 
open and close your hand. No two ways around it: when you open your hand, the total width of your 
point cloud increases, which is to say that the horizontal distance between the rightmost and leftmost 
points (the tips of the thumb and little finger) increases (Figure 13-36).  
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Figure 13-36. Hand width tracking 

In the same way, you can observe that when you tilt your hand forwards and backwards, the total 
height of the point cloud changes, which you can later use to define the rotation of your gripper (Figure 
13-37).    

 

Figure 13-37. Hand tilt tracking  

You need to find these points and calculate their distances. Here’s the routine.  
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void updateHand() { 
  // draw the 3D point depth map 
  int steps = 3; // You can speed up the calculation by using less points 
  int index; 
  stroke(255); 
  // Initialize all the PVectors to the barycenter of the hand 
  PVector handLeft = handVec.get(); 
  PVector handRight = handVec.get(); 
  PVector handTop = handVec.get(); 
  PVector handBottom = handVec.get(); 
 
  for (int y = 0; y < kinect.depthHeight(); y += steps) { 
    for (int x = 0; x < kinect.depthWidth(); x += steps) { 
      index = x + y * kinect.depthWidth(); 
      realWorldPoint[index] = kinect.depthMapRealWorld()[index].get(); 
      if (realWorldPoint[index].dist(handVec) < 100) { 
        // Draw poin cloud defining the hand 
        point(realWorldPoint[index].x, realWorldPoint[index].y, realWorldPoint[index].z); 
        if (realWorldPoint[index].x > handRight.x) handRight = realWorldPoint[index].get(); 
        if (realWorldPoint[index].x < handLeft.x) handLeft = realWorldPoint[index].get(); 
        if (realWorldPoint[index].y > handTop.y) handTop = realWorldPoint[index].get(); 
        if (realWorldPoint[index].y < handBottom.y) handBottom = realWorldPoint[index].get(); 
      } 
    } 
  } 

After running this loop, you have four PVectors storing the four points you need for your purposes. 
You are going to draw a control gizmo using these points. This gizmo is a cube, the size of which will 
change according to your hand’s width. Likewise, the tilt will try to match the tilt of your hand, based on 
its height. 

  // Draw Control Cube 
  fill(100, 100, 200); 
  pushMatrix(); 
  translate(handVec.x, handVec.y, handVec.z); 
  rotateX(radians(handTop.y - handBottom.y)); 
  box((handRight.x - handLeft.x) / 2, (handRight.x - handLeft.x) / 2,  
  10); 
  popMatrix(); 

After running this code ad nauseam, we came up with some numbers that make a good range for 
the hand width and height values. A range of 65-200 works pretty nicely for both parameters. If you 
map this range to 0-255, you will have a pretty smooth value to be passed on to the Arduino board. You 
store the mapped values as gripWidth and gripRot.  

  // Set the robot parameters 
  gripWidth = lerp(gripWidth, map(handRight.x - handLeft.x, 65, 200, 0, 255), 0.2f); 
  gripRot = lerp(gripRot, map(handTop.y - handBottom.y, 65, 200, 0, 255), 0.2f); 
  dRobot.updateGrip(gripRot, gripWidth); 
} 

Include the drawHand() function from previous sketches to keep track of previous hand positions.  

void drawHand() { 
  stroke(255, 0, 0); 
  pushStyle(); 



CHAPTER 13 ■ KINECT-CONTROLLED DELTA ROBOT 

380 

  strokeWeight(6); 
  point(handVec.x, handVec.y, handVec.z); 
  popStyle(); 

  noFill(); 
  Iterator itr = handVecList.iterator(); 
  beginShape(); 
  while (itr.hasNext ()) { 
    PVector p = (PVector) itr.next(); 
    vertex(p.x, p.y, p.z); 
  } 
  endShape(); 
} 

Sending the Data to Arduino 
By now you have all the data you need to control your robot, so you can proceed to sending these 

values to the Arduino board. You will develop the Arduino code in the next section. Remember that you 
were calling a sendSerialData() function from your main draw() loop, so it’s time to implement this 
function.  

First, send the trigger character ‘X’ to indicate the beginning of the serial message. Then you have 
five values to send: three rotations for each arm’s servo position, the gripper’s rotation, and gripper’s 
width. 

Your servos accept a range from 500 to 2500, which gives you 2000 different possible positions. But 
Arduino reads the incoming serial data one byte at a time and, as one byte can only hold 256 values, 
that is the maximum resolution for your servo rotation that you can transmit in one single message. 
This is much lower than the resolution that your servos can use. 

You want to match the resolution of your messages to the 2000 possible servo positions to get as 
smooth a movement of the robot as you can. The way you solve this problem is by splitting your integer 
into two single-byte numbers, sending the two bytes, and then recomposing the integer on the other 
end of the line (i.e. in the Arduino). What you are doing here is developing a protocol, as you learned in 
Chapter 4. To perform this splitting, you are going to make use of bitwise operations.  

■ Note Bitwise operations handle binary numerals at the level of their individual bits. They are fast, primitive 
actions, directly supported by the processor. A detailed explanation of bitwise operations is beyond the scope of 

this book, but you can find more information on www.cplusplus.com/doc/tutorial/operators. 

First, you write the trigger character ‘X’ to the serial buffer to indicate the start of the 
communication. For each leg, you work out your angle as an integer, mapped to the range 0-2000 in 
order to match its range to the range of the servos. You then store it in the serialMessage[] array to be 
displayed on screen later. 

Now you know the integer serialAngle that you want to send via serial. You can proceed to 
decompose it into its more significant byte (MSB) and its less significant byte (LSB), which you send as 
two consecutive serial messages.   

The bitwise operation & 0xFF masks all but the lowest eight bits, so you can use this to extract the 
LSB. The operation >> 8 shifts all bits eight places to the right, discarding the lowest eight bits. You can 
combine this operation with & 0xFF to get the MSB. 
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You cast the two values to byte, because both operations return integers. After this, you are ready 
to write the two values to your serial port. 

void sendSerialData() { 
  myPort.write('X'); 
  for (int i=0;i<dRobot.numLegs;i++) { 
    int serialAngle = (int)map(dRobot.servoAngles[i], radians(-90), radians(90), 0, 2000); 
    serialMsg[i] = serialAngle; 
    byte MSB = (byte)((serialAngle >> 8) & 0xFF); 
    byte LSB = (byte)(serialAngle & 0xFF); 
     
    myPort.write(MSB); 
    myPort.write(LSB); 
  } 

For the grip rotation and width, 256 values are enough. If you are a perfectionist, you can take up 
the challenge of sending all the values as pairs of bytes.  

  myPort.write((int)(gripRot)); 
  serialMsg[3] = (int)(gripRot); 
  myPort.write((int)(gripWidth)); 
  serialMsg[4] = (int)(gripWidth); 
} 

Finally, you display on screen the values that you are passing to the Arduino. This is good practice 
for debugging purposes.  

void displayText() { 
  
  fill(255);  
  textFont(font, 12); 
  text("Position X: " + dRobot.posVec.x + "\nPosition Y: " + dRobot.posVec.y 
     + "\nPosition Z: " + dRobot.posVec.z, 10, 20); 
  text("Servo1: " + serialMsg[0] + "\nServo2: " + serialMsg[1]  
     + "\nServo3: " + serialMsg[2] + "\nGripRot: " + serialMsg[3]  
    + "\nGripWidth: " + serialMsg[4], 10, 80); 
} 

And that’s it! The code you just wrote is ready to communicate with Arduino through serial. Now 
you need to write the Arduino code that will translate the information coming from Processing into 
physical movements of the physical robot. 

Arduino Code 
The code running inside your Arduino board has a simple role: it receives serial data that it remaps to the 
range of the servos and sends the appropriate message to each one of them. 

You need variables to store the temporary values of the incoming data and then integers for the 
pin numbers and different pulses for the five servos. The longs previousMillis and interval deal with 
the spacing between messages sent to the servos. 

unsigned int tempHandRot, tempGrip; 
unsigned int servo1Pos, servo2Pos, servo3Pos; 
 
int ledPin = 3; 
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int servo1Pin = 9; 
int pulse1 = 1500; 
int servo2Pin = 10; 
int pulse2 = 1500; 
int servo3Pin = 11; 
int pulse3 = 1500; 
int handRotPin = 5; 
int handRotPulse = 1500; 
int gripPin = 6; 
int gripPulse = 1500; 
 
long previousMillis = 0; 
long interval = 20;    
 
int speedServo1 = 0; 
int speedServo2 = 0; 
int speedServo3 = 0; 
 
int handRotSpeed = 20; 
int gripSpeed = 20; 

Set all your pins as outputs and initialize the serial port.  

void setup() { 
  pinMode (ledPin, OUTPUT); 
  pinMode (servo1Pin, OUTPUT); 
  pinMode (servo2Pin, OUTPUT); 
  pinMode (servo3Pin, OUTPUT); 
  pinMode (handRotPin, OUTPUT); 
  pinMode (gripPin, OUTPUT); 
 
  Serial.begin(9600); // Start serial communication at 9600 bps 
 
} 

In the main loop, write a high pulse to the LEDs because you’re having them on at all times, and 
then check the state of your serial buffer. If you have received more than eight values, which is what 
you are expecting, and the first of them is the trigger character ‘X’, you start reading the values as bytes. 
After every two values, you recompose the integer using the C function word(), which returns a word 
data type (16-bit unsigned number, the same as an unsigned integer) from two bytes. 

void loop() { 
  digitalWrite(ledPin, HIGH); 
  if (Serial.available()>8) { // If data is available to read, 
    char led=Serial.read(); 
    if (led=='X'){ 
      byte MSB1 = Serial.read(); 
      byte LSB1 = Serial.read(); 
      servo1Pos = word(MSB1, LSB1); 
       
      byte MSB2 = Serial.read(); 
      byte LSB2 = Serial.read(); 
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      servo2Pos = word(MSB2, LSB2); 
       
      byte MSB3 = Serial.read(); 
      byte LSB3 = Serial.read(); 
      servo3Pos = word(MSB3, LSB3); 
       
      tempHandRot = Serial.read(); 
      tempGrip = Serial.read();  
    } 
  } 

And now you remap the pulses from their expected ranges to the servo range 500-2500. 

  pulse1 = (int)map(servo1Pos,0,2000,500,2500); 
  pulse2 =  (int)map(servo2Pos,0,2000,500,2500); 
  pulse3 =  (int)map(servo3Pos,0,2000,500,2500); 
   
  handRotPulse =  (int)map(tempHandRot,0,200,2500,500); 
  gripPulse =  (int)map(tempGrip,0,220,500,2500); 

 And finally, if 20 milliseconds have elapsed, you send the pulses to your servo motors to update 
their angles. Remember that different servos have slightly different ranges,  so you should test your 
servos and find the correct range that drives them from 0 to 180 degrees before remapping the values! 

  unsigned long currentMillis = millis(); 
  if(currentMillis - previousMillis > interval) { 
    previousMillis = currentMillis;    
    updateServo(servo1Pin, pulse1); 
    updateServo(servo2Pin, pulse2); 
    updateServo(servo3Pin, pulse3); 
    updateServo(handRotPin, handRotPulse); 
    updateServo(gripPin, gripPulse); 
 
  } 
} 
 
void updateServo (int pin, int pulse){ 
  digitalWrite(pin, HIGH); 
  delayMicroseconds(pulse); 
  digitalWrite(pin, LOW); 
} 

If all the steps have been implemented appropriately, you should have a working delta robot 
following your hand as you move it in space (Figure 13-38). 
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Figure 13-38. The delta robot in action  

Summary 
This has been quite a long project and its development has required you to master 3D transformations, 
inverse kinematics, hand recognition, point cloud analysis, serial communication, and a long list of 
programming techniques associated with the implementation of a physically accurate simulation of a 
robot. On the physical side, you worked with ball joints, laser cutting, servos, LEDs, and a series of other 
parts required by the making of a precise robotic platform. 

The possibilities that natural interaction introduce in the world of robotics are yet to be explored. 
Not only are you delivered of using interfacing devices such as a mouse or keyboard, but you are also 
on the verge of a richer and more intuitive communication between humans and machines. Tools like 
Arduino and Kinect have allowed us to bridge the gap between our body kinetics and those of a 
machine within a pretty constrained budget and time scale. And this is only a start. You have now the 
tools to start tinkering with more complex applications for your robot, attaching different effectors, 
trying new forms of interaction. Your only limit is your imagination. 
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deltaLeg class 
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servo motors, 345 
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setup, 355 
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access, 44–45 
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disc and gear assemble, 317 
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H 
Hand tracking, 57–58 

Kinect, 28 
connection to Arduino, 97 
draw loop, 93–97 
libraries and setup, 89–91 
NITE callbacks, 91–93 

H-Bridge, 208–210 
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I, J 
IDE. See Integrated development environment 

(IDE) 
Imports and fields, 299–300 
Imports and variable declaration, 261–262 
Integrated development environment (IDE) 

Arduino Development Environment, 10–11 
description, 10 
processing, 37 
serial monitor, 11–12 

IR sensor. See Proximity sensors 

K 
KeyPressed() function, 305 
Kinect 

AC adapter, standard USB connection, 24 
ASUS Xtion PRO, 33–34 
capabilities 

depth map, 28 
hand and skeleton tracking, 28 
IR image, 28 
RGB image, 27 

description, 23 
device, 23 
drivers and frameworks 

libfreenect drivers, 28 
Microsoft Kinect SDK, 30–31 
NITE, 30 
OpenNI, 29–30 

hand tracking, 57–58 
history of 

hacking, 25 
official frameworks, 25 
Project Natal, 25 

Kinect-controlled LEDs, 69–71 
networked puppet 

angle calculation, 121–123 
circuit building, 108–113 
client applet, 127–130 
final Arduino code, 130–132 
network communication, 124–125 
parts, 100 
puppet building, 105–108 
server applet, 125–126 
servos, 100–103, 113–118 
skeleton tracking, 118–120 
stages, 103–105 
updateAngles() function, 122 
web puppet, 99 

PrimeSense, 29–30 
processing 

libraries, 41 
space, 52–55 

purchase, 24 
RC interface, 232–234 

controlCar() function, 236 
draw function, 235–236 
drawArrow() function, 238 
drawCircle() function, 237 
drawHand() function, 237 
sendSerialData() function, 238, 239 
setup() function, 234–235 
textDisplay() function, 238 

remote control 
circuit testing, 86–88 
connection to Arduino, 80–86 
hacking, 78 
hand tracking (see Hand tracking) 
parts, 77–78 
prototype shield assemble, 83–86 

robot (see Robot, Kinect) 
sensor 

features, 26 
hardware, 26–27 
positioning, 27 
structured-light 3D scanning 

technique, 26 
theory 

light coding image to depth map 
conversion, 33 

structured-light 3D scanning, 31–32 
see also Remote-controlled vehicles 

Kinect-controlled delta robot 
Arduino code 

C function word(), 382 
in action, 383 
integers and variables, 381 
serial port output, 382 
servo range, 383 

boolean variable, 373 
components and materials, 344 
data sending 

bitwise operations, 380 
debugging, 381 
grip rotation, 381 
MSB and LSB, 380 
sendSerialData() function, 380 

displayText function, 377 
draw() loop, 376 
gripper 

drawHand() function, 379 
gizmo, 379 
gripWidth and gripRot, 379 
hand width tracking, 377 
handVec position, 377 
tilt tracking, 378 
updateHand(), 378 

hand gestures, 373 
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handOrigin PVector, 375 
kinematics, 343 
Motive Colloquies, 344 
setup() function, 374 
simulation and physical robot, 343 
XvN Point Control callback function, 375 

L 
Lamp class, 150 

description, 150 
OOP 

class declaration, 151 
classes and objects, 150 
constructor, 152 
description, 150 
field description, 151 
methods, 152–154 
new tab creation, 151 

Language processing, 36 
LED 

communication protocol 
Kinect-controlled, 69–71 
serial-controlled, 67–69 

serial communication 
PWM-controlled, 65–67 
serial-controlled, 63–65 

LilyPad XBee breakout board, 289–290 
Line class, 298 
Line() function, 298 
Loop() function, 222–223, 229–230 

M 
Meshlab, Turntable scanner. See Point cloud; 

Surface reconstruction 
Mood lamps 

Arduino Nano, 135 
Arduino programming, 149–150 
circuit building 

battery clip, 145 
breakout headers, 139 
components, 138 
lamp circuit, 137 
resistor color codes, 140–142 
resistors, 139 
RGB lamp test, 144 
scratched strip board, 138 
testing, 142–145 
XBee and battery clip, 144 

lamp class 
description, 150 
OOP, 150–154 

LEDs, 141–142 

parts, 134 
resistors soldered, 140–141 
RGB 

color space, 134–135 
lamp, 133 
lamp color change, 165 

user control sketch, 154 
data storage and retrieval, 160–161 
description, 154 
display functions, 161–163 
draw() function, 155–156 
serial communication, 161 
setup() function, 154 
Simple-OpenNI callbacks, 163–164 
userControl() function, 157–160 
variable declaration, 154 

XBee wireless module 
description, 145 
explorer connected to Arduino, 146 
final circuit, 148 
pencil holder, 148 
strip board, with serial connections, 147 

Move functions, 224, 230 
MovePoint() function, 303 

N 
Network communication 

description, 124 
internet, 125 
local network, 124–125 

Networked puppet, Kinect 
angle calculation, 121–123 
applet 

client, 127–130 
server, 125–126 

circuit building 
Arduino board, 110 
circuit diagram, 108, 109 
components, 108, 109 
headers, 110 
power and ground, 111 
scratched strip board, 111 
strip board, 111–113 

drawLimb() function, 129–130 
final Arduino code, 130–132 
network communication 

description, 124 
internet, 125 
local network, 124–125 
shared canvas, 124 

parts, 100 
puppet 

arm/legs assembled, 107 
final stage, 107, 108, 117, 118 
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Networked puppet, Kinect (continued) 
puppet (continued) 

pieces, 106 
servo angles, 116 
servos, 106 

sendSerialData() function, 130 
servos 

control technique, 103 
object, 101 
Servo.attach() function, 101–103 
starting position setting, 115–118 
testing, 113–115 
wave form, 100, 101 

skeleton tracking 
description, 118 
drawSkeleton() function, 119 
Simple-OpenNI events, 119–20 

stages 
assembled stage, 104 
parts, 103, 104 
puppet rotation servo, 104–105 

updateAngles() function, 122 
web puppet, 99 

NewUser() function, 266–267 
NITE callbacks, 91–93 
NITE functions 

description, 56 
skeleton tracking, 58–60 

O 
Object-oriented programming (OOP) 

accessor methods, 152 
lamp class 

class declaration, 151 
classes and objects, 150 
constructor, 152 
description, 150 
field description, 151 
methods, 152–54 
new tab creation, 151 

OnPointCreate() function, 306 
OnPointUpdate() function, 306 

P, Q 
Point class, 296–297 
Point cloud, 55–56 
Point() function, 295 
PrimeSense 

description, 29 
NITE, 30 
OpenNI, 29–30 
PS1080 system, 33 

Processing 
Arduino IDE, 35 
depth map access, 44–45 
features of, 36 
IDE, 37 
installation, 36 
Kinect 

libraries, 41 
space, 52–55 

language, 36 
libraries, 40–41 
linear and two-dimensional arrays, 54 
NITE functions 

description, 56 
hand tracking, 57–58 
skeleton tracking, 58–60 

point cloud, 55–56 
RGB image access, 44–45 
Simple-OpenNI 

description, 41 
Linux installation, 43–44 
Mac OS X installation, 42–43 
Windows installation, 42 

sketch 
description, 38 
draw() function, 39–40 
setup() function, 38 
structure, 38–40 
variables, 38 

three-dimensional (3D) 
camera control libraries, 50 
cube, 47 
description, 46 
KinectOrbit, 50–51 
matrix transforms, 47–49 

Proximity sensors, 224–229 
loop() function, 229–230 
move functions, 230 
setup() function, 229 

Pulse width modulation (PWM) 
description, 65 
PWM-controlled LED, 65–67 

R 
ReadChart() function, 265 
Remote control, Kinect 

channel gestures, 95 
checkSpeed() function, 94 
circuit testing, 86–88 
connecting to Arduino 

breadboard, 81 
prototype shield assembling, 83–86 
relay circuit, 82 
switch testing, 80–81 
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description, 77 
drawHand function, 96 
fTimes parameter, 92 
hacking, 78 
hand tracking and gesture recognition 

connection to Arduino, 97 
draw loop, 93–97 
libraries and setup, 89–91 
NITE callbacks, 91–93 

parts, 77–78 
prototype shield 

breakaway headers, 84–85 
connections, 86 
front and rear image, 83–84 
relays, 84 

XnVPointControl, 92 
Remote-controlled vehicles 

building the circuit, 212–216 
components, 208 
driving vehicle, 240 
electrical motors and H-Bridge, 208–210 
hacking a car, 210–212 
Kinect RC interface, 232–234 

controlCar() function, 236 
draw function, 235–236 
drawArrow() function, 238 
drawCircle() function, 237 
drawHand() function, 237 
sendSerialData() function, 238, 239 
setup() function, 234–235 
textDisplay() function, 238 

proximity sensors, 224–229 
loop() function, 229–230 
move functions, 230 
setup() function, 229 

testing the circuit 
car() function, 220 
draw() function, 218–220 
drawVector() function, 220 
enable/disable functions, 224 
loop function, 222–223 
move functions, 224 
sendSerial() function, 221 
setup() function, 218, 222 
turning functions, 223 

XBee Explorer for wireless communication, 
230–232 

RGB color model 
applications, 135 
chart, 134–135 
description, 134 

RGB image access, 44–45 
RGB lamp, 133 
Robot, Kinect 

circuit building, 175–176 

circuit testing 
Arduino library, 176 
servo test, 176–177 

construction 
arm, 170 
assembled robot, 175 
base assembly, 174–175 
part 1 assembly, 170–171 
part 2 assembly, 171–172 
part 3 assembly, 172–173 

in action 
at work, 205 
description, 204 
patterns, 205 

installation visual, 167 
parts, 168–169 
physical robot, 183–185 
point cloud 

calibration, 187–188 
filtering, 194–195 
rotation, 189–193 

simulation 
angle measuring program, 179–180 
angles, 178 
simulation program, 180–183 
span, 178 
working area, 179 

tangible table interface 
calibrated point cloud, 193 
finger position, 195–198 
point cloud, 187–195 
rotation equations, 188 
setup, 186 
uncalibrated point cloud, 187 

virtual robot model 
description, 198 
draw() function method, 200–201 
input polishing, 201–203 
pointer projection, 200 
work area, 201 

S 
SaveCalibration() function, 295 
SendSerial() function, 221 
SendSerialData() function, 238, 239 
Serial communication 

description, 62 
PWM, 65 
PWM-controlled LED, 65–67 
serial-controlled LED, 63–65 

SerialEvent() function, 260, 276, 305 
SetFingerValues() function, 293 
SetPosition() function, 294 
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SetState() function, 258 
Setter functions 

setFingerValues(), 293 
setPosition(), 294 
setZeroPos(), 294 

Setup() function, 218, 222, 234–235, 262–263, 
300–301 

SetZeroPos() function, 294 
Shape class, 298–299 
Simple-OpenNI 

callbacks, 276–277 
onPointCreate() function, 306 
onPointUpdate() function, 306 

description, 41 
installation 

Linux, 43 
Mac OS X, 42–43 
Windows, 42 

Skeleton tracking, 58–60, 118 
description, 118 
drawSkeleton() function, 119 
Kinect, 28 
Simple-OpenNI events, 119–120 

SoftwareSerial library, 290 
SparkFun Arduino prototype shield, 319–321 
Structured-light 3D scanning technique 

depth map, 32 
IR coding image, 32 
triangulation principles, 31 

Surface reconstruction 
blender, 342 
color transfer and vertex geometry, 341 
delete points, 339 
3D triangular meshes, 338 
mesh generation, 340 
point cloud, 338 
vertex colors transfer, 341 

Switch() statement, 294 

T 
Tangible table interface 

calibrated point cloud, 193 
finger position, 195–198 
point cloud, 187–195 
rotation equations, 188 
setup, 186 
uncalibrated point cloud, 187 

TextDisplay() function, 238 
Third dimensional (3D) modeling interface 

Arduino LilyPad, 282 
components, 280, 281 
connecting the circuit, 284–286 
flex sensors, 283–284 

geometric classes 
Line class, 298 
Point class, 296–297 
Shape class, 298–299 

glove interface, 279 
GloveInterface class, implementation 

calibrating the interface, 295–296 
display functions, 294–295 
setter functions, 293–294 

main program 
addLine() function, 303 
addPoint() function, 303 
addShape() function, 304 
drawClosestPoint() function, 304 
draw function, 301–302 
imports and fields, 299–300 
movePoint() function, 303 
processing callback functions, 305 
setup function, 300–301 
Simple-OpenNI callback functions, 

306–307 
unSelectAll() function, 303, 304 

testing the circuit 
Arduino serial sender, 287 
processing glove data receiver, 287–289 

wireless communication 
Arduino code, 290–291 
LilyPad XBee breakout board, 289–290 
SoftwareSerial library, 290 

Third dimensional (3D) processing, 46 
camera control libraries, 50 
cube, 47 
description, 46 
KinectOrbit, 50–51 
matrix transforms, 47–49 

Tracking 
hand, 57–58, 89 

connection to Arduino, 97 
draw loop, 93–97 
libraries and setup, 89–91 
NITE callbacks, 91–93 

Kinect 
hand, 28 
skeleton, 28 

skeleton, 58–60, 118 
description, 118 
drawSkeleton() function, 119 
Simple-OpenNI events, 119–120 

Turning functions, 223 
Turntable scanner 

assembled system, 309 
building 

gears connections, 314–319 
parts, 313 
prototype, 313 
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circuit, 319–321 
point cloud 

exportPly function, 337 
ply and obj extension, 335 

surface reconstruction 
blender, 342 
color transfer and vertex 

geometry, 341 
delete points, 339 
3D triangular meshes, 338 
mesh generation, 340 
point cloud, 338 
vertex colors transfer, 341 

theory 
diagram, 311 
Kinect cameras, 310 
Meshlab, 310 
reconstruction, 311 
requirements, 312 
SLAM and RANSAC-based 

reconstruction, 310 
SpinScan, 310 
trigonometry, 311 

see also Arduino code 

U 
UnSelectAll() function, 303, 304 
UpdateUserData() function, 267–268 
UpdateUserHeight() function, 268–270 
User control sketch, mood lamps 

data storage and retrieval, 160–161 
description, 154 
display functions, 161–163 
draw() function, 155–156 
serial communication, 161 
setup() function, 154 
Simple-OpenNI callbacks, 163–164 

 

 

 

 

 

 

 

 

userControl() function 
lamp control, 157–159 
lamp creation, 159–160 

variable declaration, 154 
User interface, 263–265. See also Third 

dimensional (3D) modeling interface 
User recognition, 270 

vector subtraction, 271–273 

V 
Vertex() function, 298 
Virtual robot model 

description, 198 
draw() function method, 200–201 
input polishing, 201–203 
pointer projection, 200 
work area, 201 

Voltage divider, 283 

W 
Wireless interface 

Arduino code, 290–291 
LilyPad XBee breakout board, 289–290 
SoftwareSerial library, 290 

X, Y, Z 
XBee Explorer for wireless communication, 

230–232 
XBee Explorer USB, 289 
XBee wireless module 

description, 145 
explorer connected to Arduino, 146 
final circuit, 148 
pencil holder, 148 
strip board, with serial connections, 147 
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