

Blender™

Blender™

4th Edition

by Jason van Gumster

Blender™ For Dummies®, 4th edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Blender is a registered trademark of Blender Foundation in the EU and USA. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO

REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS

OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES

OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF

FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION

THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019956695

ISBN 978-1-119-61696-2; ISBN 978-1-119-61698-6 (ePub); ISBN 978-1-119-61699-3 (ePDF)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

Introduction . 1

Part 1: Wrapping Your Brain Around Blender 7

CHAPTER 1: Discovering Blender . 9

CHAPTER 2: Understanding How Blender Thinks . 25

CHAPTER 3: Getting Your Hands Dirty Working in Blender . 63

CHAPTER 4: Working in Edit Mode and Object Mode . 77

Part 2: Creating Detailed 3D Scenes . 111

CHAPTER 5: Creating Anything You Can Imagine with Meshes 113

CHAPTER 6: Sculpting in Virtual Space . 157

CHAPTER 7: Using Blender’s Non-Mesh Primitives . 189

CHAPTER 8: Changing That Boring Gray Default Material . 229

CHAPTER 9: Giving Models Texture . 267

CHAPTER 10: Lighting and Environment . 297

Part 3: Get Animated! . 333

CHAPTER 11: Animating Objects . 335

CHAPTER 12: Rigging: The Art of Building an Animatable Puppet 367

CHAPTER 13: Animating Object Deformations . 411

CHAPTER 14: Letting Blender Do the Work for You . 433

CHAPTER 15: Making 2D and 2.5D Animation with Grease Pencil 461

Part 4: Sharing Your Work with the World 497

CHAPTER 16: Exporting and Rendering Scenes . 499

CHAPTER 17: Editing Video and Animation . 513

CHAPTER 18: Compositing Images and Video . 531

CHAPTER 19: Mixing Video and 3D with Motion Tracking . 553

Part 5: The Part of Tens . 577

CHAPTER 20: Ten Tips for Working More Effectively in Blender 579

CHAPTER 21: Ten Excellent Community Resources . 589

Index . 597

Table of Contents vii

Table of Contents

INTRODUCTION . 1

About This Book .2

Foolish Assumptions .2

Icons Used in This Book .4

Beyond the Book .4

Where to Go from Here .5

PART 1: WRAPPING YOUR BRAIN AROUND BLENDER 7

CHAPTER 1: Discovering Blender . 9

Getting to Know Blender .10

Discovering Blender’s origins and the strength of the
Blender community .11

Making open movies and games . .12

Getting to Know the Interface .15

Working with an interface that stays out of your way 17

Resizing areas .19

Maximizing an area .20

The menu that is a pie .22

CHAPTER 2: Understanding How Blender Thinks 25

Looking at Editor Types .25

General editors .26

Animation editors .28

Scripting editors .29

Data editors .29

Understanding the Properties editor .30

Navigating in Three Dimensions .32

Orbiting, panning, and zooming the 3D Viewport 32

Changing views .35

Selecting objects .40

Taking advantage of the 3D cursor .40

Extra Features in the 3D Viewport .44

Quad View .44

Regions .45

Collaborating (with others and yourself) with annotations 48

Don’t know how to do something? Hooray for fully
integrated search! .49

Customizing Blender to Fit You .50

Using preset workspaces .51

Blender workflows .55

viii Blender For Dummies

Setting user preferences .57

Using custom event maps .58

Speeding up your workflow with Quick Favorites 61

CHAPTER 3: Getting Your Hands Dirty Working in Blender 63

Grabbing, Scaling, and Rotating .64

Differentiating Between Coordinate Systems .64

Transforming an Object by Using Object Gizmos 67

Activating object gizmos .68

Using object gizmos .69

Saving Time by Using Hotkeys .72

Transforming with hotkeys .73

Hotkeys and coordinate systems .73

Numerical input .76

The Sidebar . .76

CHAPTER 4: Working in Edit Mode and Object Mode 77

Making Changes by Using Edit Mode .77

Switching between Object mode and Edit mode 78

Selecting vertices, edges, and faces .79

Working with linked vertices .84

Still Blender’s No. 1 modeling tool: Extrude 85

Adding to a Scene .90

Adding objects .90

Meet Suzanne, the Blender monkey .92

Joining and separating objects .93

Creating duplicates and links .95

Discovering parents, children, and collections 101

Saving, opening, and appending .108

PART 2: CREATING DETAILED 3D SCENES 111

CHAPTER 5: Creating Anything You Can Imagine
with Meshes . 113

Pushing Vertices .114

Getting familiar with Edit mode tools .116

Adding geometry by insetting .117

Cutting edges with the Knife .122

Rounding your corners by beveling .126

Spiraling new geometry into existence with the Spin tool 130

Working with Loops and Rings .131

Understanding edge loops and face loops 132

Selecting edge rings .134

Creating new loops .135

Table of Contents ix

Simplifying Your Life as a Modeler with Modifiers 137

Understanding modifier types .140

Doing half the work (and still looking good!) with the
Mirror modifier .147

Smoothing things out with the Subdivision Surface modifier . . .149

Using the power of Arrays .153

CHAPTER 6: Sculpting in Virtual Space . 157

Adding Background Images in the 3D Viewport 158

Mastering the types of image objects .159

Changing image object properties .160

Adjusting your image objects .162

Setting Up Your Sculpting Workspace .163

Sculpting a Mesh Object .166

Understanding sculpt tool types .166

Tweaking brush properties .173

Refining control of your tools .174

Creating custom brushes .176

Using Blender’s texture system to tweak brushes 176

Sculpting with the Multiresolution modifier .177

Freeform Sculpting with Dynamic Topology (Dyntopo) 180

Understanding the Basics of Retopology .184

CHAPTER 7: Using Blender’s Non-Mesh Primitives 189

Using Curves and Surfaces . .190

Understanding the different types of curves 192

Working with curves .193

Understanding the strengths and limitations of Blender’s
surfaces .212

Using Metaball Objects .213

Meta-wha? .214

What metaball objects are useful for .217

Adding Text . .217

Adding and editing text .218

Controlling text appearance .219

Deforming text with a curve .227

Converting to curves and meshes .228

CHAPTER 8: Changing That Boring Gray Default Material 229

Understanding Materials and Render Engines 230

Quick ’n’ Dirty Coloring .233

Setting diffuse colors .233

Assigning multiple materials to different parts of a mesh 235

Using vertex colors .240

x Blender For Dummies

Setting Up Node Materials .247

Adjusting your workspace to work with materials 248

Working with nodes .249

Understanding shaders .250

Playing with Materials in Blender .251

Demystifying the Principled BSDF .252

Combining shaders with the Mix Shader node 258

Playing with the Shader to RGB node .263

CHAPTER 9: Giving Models Texture . 267

Adding Textures .267

Using Procedural Textures .268

Understanding Texture Mapping .272

Making simple adjustments with the Texture Mapping panel . . .272

Using texture coordinates .273

Understanding Object coordinates
and the UV Project modifier .278

Unwrapping a Mesh .281

Marking seams on a mesh .282

Adding a test grid . .283

Generating and editing UV coordinates .284

Painting Textures Directly on a Mesh .287

Preparing to paint .288

Working in Texture Paint mode .290

Using textures on your Draw tool .292

Saving Painted Textures and Exporting UV Layouts 295

CHAPTER 10: Lighting and Environment . 297

Lighting a Scene .297

Understanding a basic three-point lighting setup 298

Knowing when to use which type of light .301

Lighting for Speedy Renders .317

Working with three-point lighting in Blender 318

Using Look Dev to set up lighting .318

Setting Up the World .320

Changing the sky to something other than dull gray 320

Understanding ambient occlusion .325

Working with Light Probes in Eevee .328

Baking from your light probes .330

Understanding the limitations of light probes 332

PART 3: GET ANIMATED! . 333

CHAPTER 11: Animating Objects . 335

Working with Animation Curves .336

Customizing your screen layout for animation 338

Inserting keys .340

Table of Contents xi

Working with keying sets .345

Working in the Graph Editor .351

Editing motion curves .352

Using Constraints Effectively .356

The all-powerful Empty! .357

Adjusting the influence of a constraint .360

Using vertex groups in constraints .361

Copying the movement of another object .361

Putting limits on an object .363

Tracking the motion of another object .365

CHAPTER 12: Rigging: The Art of Building an
Animatable Puppet . 367

Creating Shape Keys .368

Creating new shapes .368

Mixing shapes .370

Knowing where shape keys are helpful .372

Adding Hooks .373

Creating new hooks .373

Knowing where hooks are helpful .375

Using Armatures: Skeletons in the Mesh .375

Editing armatures .376

Putting skin on your skeleton .390

Bringing It All Together to Rig a Character .396

Building Stickman’s centerline .396

Adding Stickman’s appendages .397

Taking advantage of parenting and constraints 400

Comparing inverse kinematics and forward kinematics 403

Making the rig more user friendly .407

CHAPTER 13: Animating Object Deformations . 411

Working with the Dope Sheet .411

Selecting keys in the Dope Sheet .412

Working with markers .415

Recognizing different kinds of keyframe indicators 416

Animating with Armatures .418

Principles of animation worth remembering 420

Making sense of quaternions (or, “Why are there
four rotation curves?!”) .423

Copying mirrored poses .424

Doing Nonlinear Animation .425

Working with actions .426

Mixing actions to create complex animation 429

Taking advantage of looped animation .430

xii Blender For Dummies

CHAPTER 14: Letting Blender Do the Work for You 433

Using Particles in Blender .435

Knowing what particle systems are good for 436

Using force fields and collisions .440

Using particles for hair and fur .442

Giving Objects Some Jiggle and Bounce .446

Dropping Objects in a Scene with Rigid Body Dynamics 449

Simulating Cloth .450

Splashing Fluids in Your Scene .452

Smoking without Hurting Your Lungs: Smoke Simulation
in Blender .457

Creating a smoke simulation .457

Rendering smoke .458

CHAPTER 15: Making 2D and 2.5D Animation
with Grease Pencil . 461

Getting Started with the 2D Animation Workspace 462

Working with Grease Pencil tools .464

Drawing with Grease Pencil .465

Sculpting Grease Pencil objects .470

Editing Grease Pencil objects .472

Understanding Grease Pencil Materials .473

Mastering Grease Pencil Layers .478

Automating Your Drawings with Grease Pencil Modifiers 482

Animating with Grease Pencil .488

Using a hand-drawn animation workflow with
Grease Pencil objects .488

Rigging Grease Pencil objects for animation 492

Integrating Grease Pencil with a 3D Scene .495

PART 4: SHARING YOUR WORK WITH THE WORLD 497

CHAPTER 16: Exporting and Rendering Scenes . 499

Exporting to External Formats .499

Rendering a Scene .502

Creating a still image .502

Creating a sequence of still images for editing or
compositing .509

CHAPTER 17: Editing Video and Animation . 513

Comparing Editing to Compositing .514

Working with the Video Sequencer .514

Adding and editing strips .518

Adding effects and transitions .525

Rendering from the Video Sequencer .527

Table of Contents xiii

CHAPTER 18: Compositing Images and Video . 531

Understanding Nodes .531

Getting Started with the Compositor .534

Rendering in Passes and Layers .535

Discovering Passes Available in Eevee and Cycles 536

Understanding Cycles-only Light Passes .540

Meet Cryptomatte .542

Working with Nodes .544

Configuring the backdrop .545

Identifying Parts of a Node .547

Navigating the Compositor .548

Adding nodes to your compositing network 549

Grouping nodes together .550

Discovering the Nodes Available to You .550

Rendering from the Compositor .552

CHAPTER 19: Mixing Video and 3D with Motion Tracking 553

Making Your Life Easier by Starting with Good Video 554

Knowing your camera .554

Keeping your lighting consistent .556

Having images in good focus .557

Understanding the scene .558

Getting Familiar with the Motion Tracking Workspace 559

Tracking Movement in Blender .561

Adding markers and tracking . .563

Solving camera motion from tracker data .569

Setting up your scene for integrating
with your video footage .573

Where to Go from Here .575

PART 5: THE PART OF TENS . 577

CHAPTER 20: Ten Tips for Working More Effectively
in Blender . 579

Use Tooltips and Integrated Search .579

Take Advantage of the Quick Favorites Menu .580

Look at Models from Different Views .580

Don’t Forget about Add-ons .582

Lock a Camera to an Animated Character .582

Name Everything .583

Do Low-Resolution Test Renders .583

Use Annotations to Plan .586

Ask for Help .586

Have Fun, but Take Breaks .587

xiv Blender For Dummies

CHAPTER 21: Ten Excellent Community Resources 589

Blender .org .589

Blender ID .590

Blender manual .590

Developer blog .590

Bug reporting and developer discussions .590

builder .blender .org .591

Blender Cloud .592

BlenderArtists .org .592

BlenderNation .592

BlenderBasics.com .593

blender.stackexchange.com .593

CGCookie.com .593

Blend Swap (blendswap.com) .593

Blender.community . .594

Blender Today .594

Right-Click Select .594

Blender NPR .595

Social Media .595

Blender .chat .596

INDEX . 597

Introduction 1

Introduction

W
elcome to Blender For Dummies, 4th Edition, your introduction to one of
the most well-known free programs for creating 3D computer graphics.
With Blender, you can create characters, props, environments, and

nearly anything else your imagination can generate. And it’s not just about creat-
ing objects. You can set them in motion, too. Tell a story in an animation, walk
people through a world of your own creation, or add a special effect to some video
footage. It’s all possible. They still haven’t quite designed a way for Blender to
give you a foot massage if you’ve had a bad day, but in all seriousness, it’s difficult
to imagine a task in computer animation that you can’t do with Blender. And just
think: the developers of Blender have included all these features in a package you
can download for free and run on nearly any computer. Crazy!

Blender sits at a very unique position in the world of 3D computer graphics. In the
distant past, to get into 3D modeling and animation, you had only a few options,
and most of them were too expensive, too limiting, or — ahem — too illegal for
people just trying to see what this whole 3D thing was all about. Blender circum-
vents all those issues because it’s free. And not just zero-cost free, but freedom
Free. Blender is open source. A world full of developers and users regularly con-
tribute code and documentation, adding enhancements and improvements at a
mind-boggling pace.

Of course, 3D computer graphics is a complex topic, and all software of this type
is dense with buttons, options, settings, and unique ways of working. Perhaps
more than any other program like it, Blender has carried a pretty heavy reputation
for being difficult to understand. Blender wasn’t typically viewed as software for
beginners. But, with the updates in the release of Blender 2.80 and if I’ve done
my job right, this book will help get you started at a sprint. Blender For Dummies,
4th Edition is not just a book on using Blender. Sure, I explain why things in
Blender work in their peculiar Blenderish ways, but I also make a point to explain
core principles of 3D computer graphics as they are relevant. There’s no use in
being able to find a button if you’re not really sure what it does or how it works.
My hope is that with this combined knowledge, you can actually take advantage of
Blender’s unique traits to create your own high-quality 3D art as quickly and
 efficiently as possible. Perhaps you can even become as addicted to it as I am!

2 Blender For Dummies

About This Book

Blender is an extremely complex program used for the even more complex task of
producing high-quality 3D models and animations. As such, I can’t cover every
single feature and button in Blender. For a more comprehensive manual, refer to
the excellent online documentation available through Blender’s website at
https://docs.blender.org/manual.

Because I want to bring you up to speed on working in 3D space with Blender so
that you can start bringing your ideas to life as soon as possible, I focus on intro-
ducing you to the fundamental “Blender way” of working. Not only do I show you
how something is done in Blender, but I also often take the time to explain why
things are done a certain way. This approach should hopefully put you on the fast
track to making awesome work, and also allow you to figure out new parts of
Blender on your own when you come across them.

Throughout the book, I refer to the Blender community. Blender’s user commu-
nity is probably one of its most valuable assets. It really is a feature all its own,
and I would be remiss to neglect to mention it. Not only do many members of the
community create great work, but they also write new code for Blender, write and
edit documentation, and help each other improve. And understand that when
I make reference to the Blender community, I include you in that community as
well. As of right now, you are a Blenderhead — a fellow Blender user and, therefore,
a member of the Blender community.

Blender is a truly cross-platform program, running on Linux, Windows, and Mac
OS X. Fortunately, not much in Blender differs from one platform to another.
However, for the few differences, I’ll be sure to point them out for you.

Foolish Assumptions

I’ve written this book for two sorts of beginners: people who are completely new
to the world of 3D, and people who know a thing or two about 3D, but are com-
pletely new to Blender.

Because of the various types of beginners this book addresses, I tend to err on the
side of explaining too much rather than too little. If you’re someone who is already
familiar with another 3D computer graphics program, such as Maya, 3DS Max,
Modo, or even an earlier version of Blender, you can probably skip a number of

https://docs.blender.org/manual/

Introduction 3

these explanations. Likewise, if you’re a complete newbie, you may notice that I
occasionally compare a feature in Blender to one in another package. However,
that comparison is mostly for the benefit of these other users. I write so that you
can understand a concept without having to know any of these other programs.

I do, however, make the assumption that you have at least a basic understanding
of your computer. I assume that you know how to use a mouse, and I highly rec-
ommend that you use a mouse with at least two buttons and a scroll wheel. You
can use Blender with a one- or two-button mouse or even a laptop trackpad, and
I provide workarounds for the unfortunate souls in that grim state (cough . . . Mac
users . . . cough), but it’s certainly not ideal.

An exception is if you’re using Blender with a drawing tablet like the ones pro-
duced by Wacom. Recent updates introduced in Blender 2.80 have tried to make
the program more accessible to tablet users, and although tablets are much less
expensive these days than they have been in the past, not everyone has one. For
that reason, I focus primarily on using Blender with a mouse, although I will
occasionally point out where having a tablet is helpful. Because Blender makes use
of all your mouse buttons, I stipulate whether you need to left-click, right-click,
or middle-click. And in case you didn’t already know, pressing down on your
mouse’s scroll wheel typically accesses the middle mouse button. I also make use
of this cool little arrow (➪) for indicating a sequence of steps. It could be a series
of hotkeys to press or menu items to select or places to look in the Blender inter-
face, but the consistent thing is that all these items are used for steps that you
need to perform sequentially.

I also assume that you’re working with Blender’s default settings and theme. They
have changed substantially with the release of version 2.80. You can customize the
settings for yourself (in fact, I still use the presets from previous releases of
Blender; 20 years of muscle memory doesn’t go away easily), but if you do, Blender
may not behave exactly like I describe in the book. For that reason, and contrary
to previous editions of this book, I focus mostly on accessing features through the
menu system rather than using hotkeys. Hotkeys are meant to be customized, but
the menus in Blender remain a consistent way of accessing features. Bearing in
mind the point about Blender’s themes, you may notice that the screenshots of
Blender’s interface are lighter in this book than you see onscreen because I created
a custom Blender theme that would show up better in print. If I used Blender’s
default theme colors, all the figures in the book would appear overly dark. I include
this custom theme at blenderbasics.com if you want your copy of Blender to
match what’s shown on these pages.

http://www.blenderbasics.com/

4 Blender For Dummies

Icons Used in This Book

As you flip through this book, icons periodically appear next to some paragraphs.
These icons notify you of unique or valuable information on the topic at hand.
Sometimes that information is a tip, sometimes it’s more detail about how some-
thing works, sometimes it’s a warning to help you avoid losing data, and some-
times they’re images that match icons in Blender’s interface (there’s a lot of them).
For the icons that aren’t in Blender’s interface, the following are descriptions of
each icon in this book.

This icon calls out suggestions that help you work more effectively and save time.

This icon marks something that I think you should try to keep in mind while
working in Blender. Sometimes it’s a random tidbit of information, but more
often than not, it’s something that you’ll run into repeatedly and is, therefore,
worth remembering.

Working in 3D can involve some pretty heavy technical information. You can usu-
ally work just fine without ever having to know these things, but if you do take the
time to understand it, I bet you dollars to donuts that you’ll be able to use Blender
more effectively.

This icon doesn’t show up often, but when it does, I definitely recommend that
you pay attention. You won’t blow up your computer if you overlook it, but you
could lose work.

Blender is a fast-moving target. Quite a bit has changed since the previous edition
of this book. These icons point out things that are new or different in Blender so
that you can get to be at least as effective (and hopefully more effective) with the
current version as you were with past versions.

Beyond the Book

Blender For Dummies, 4th Edition, includes the following online goodies only for
easy download:

 » Cheat Sheet: You can find the Cheat Sheet for this book here: www.dummies.
com/cheatsheet/blender

http://www.dummies.com/cheatsheet/blender
http://www.dummies.com/cheatsheet/blender

Introduction 5

 » Extras: I keep and maintain a website at blenderbasics.com with additional
resources. I have a whole bunch of tutorials, both in written and in video
format, specifically for readers of this book. Also, Blender’s a big, fast-moving
program. I do my best on that site to chronicle changes in Blender that affect
the content of this book (and perhaps share a new tip or two as well).

Where to Go from Here

Wondering where to start? The easy answer here would be to say “Just dive on in!”
but that’s probably a bit too vague. This book is primarily intended as a reference,
so if you already know what you’re looking for, flip over to the table of contents or
index and start soaking in the Blendery goodness.

If you’re just starting out, I suggest that you merely turn a couple of pages, start
at Chapter 1, and enjoy the ride. And even if you’re the sort of person who knows
exactly what you’re looking for, take the time to read through other sections of the
book. You can find a bunch of valuable little bits of information that may help you
work more effectively.

Regardless of how you read this book, though, my one hope is that you find it to
be a valuable resource that allows you to flex your creative muscles and, more
importantly, have fun doing it.

http://www.blenderbasics.com/

1Wrapping Your
Brain Around
Blender

IN THIS PART . . .

Getting comfortable with Blender

Customizing the interface

Working in 3D

Starting to create in Blender

CHAPTER 1 Discovering Blender 9

Chapter 1

Discovering Blender

I
n the world of 3D modeling and animation software, programs have tradition-

ally been expensive — like, thousands-of-dollars-and-maybe-an-arm expen-

sive. That’s changed a bit in the last few years, with software companies moving

to more subscription-based ways of selling their programs. The entry cost is
lower, but paying each month can still add up pretty quickly. There are some valid

reasons for the high prices. Software companies spend millions of dollars and

countless hours developing these programs. And the large production companies
that buy this kind of software for their staff make enough money to afford the
high cost, or they hire programmers and write their own in-house software.

But what about us, you and me: the little folks? We are the ambitious dreamers
with big ideas, high motivation . . . and tight budgets. How can we bring our ideas
to life and our stories to screen, even if only on our own computer monitors?
Granted, we could shell out the cash (and hopefully keep our arms) for the expen-

sive programs that the pros use. But even then, animation is a highly collaborative
art, and it’s difficult to produce anything in a reasonable amount of time without
some help.

We need quality software and a strong community to work, grow, and evolve with.
Fortunately, Blender can provide us with both these things. This chapter is an
introduction to Blender, its background, its interface, and its community.

IN THIS CHAPTER

 » Figuring out what Blender is and

what it’s used for

 » Understanding Blender’s history

 » Getting familiar with the Blender

interface

10 PART 1 Wrapping Your Brain Around Blender

Getting to Know Blender

Blender is a free and open source 3D modeling and animation suite. Yikes! What a
mouthful, huh? Put simply, Blender is a computer graphics program that allows
you to produce high-quality still images and animations using three-dimensional
geometry. It used to be that you’d only see the results of this work in animated
feature films or high-budget television shows. These days, it’s way more perva-

sive. Computer-generated 3D graphics are everywhere. Almost every major film
and television show involves some kind of 3D computer graphics and animation.
(Even sporting events! Pay close attention to the animations that show the scores
or players’ names.) And it’s not just film and TV; 3D graphics play a major role in
video games, industrial design, scientific visualization, and architecture (to name
just a few industries). In the right hands, Blender is capable of producing this kind
of work. With a little patience and dedication, your hands can be the right hands.

One of the things that makes Blender different and special compared to other
similar 3D software is that it is freely available without cost, and that it’s free and

open source software.

Being free of cost, as well as free (as in freedom) and open source, means that not
only can you go to the Blender website (www.blender.org) and download the
entire program right now without paying anything, but you can also freely down-

load the source, or the code, that makes up the program. For most programs, the
source code is a heavily guarded and highly protected secret that only certain
people (mostly programmers hired by the company that distributes the program)
can see and modify. But Blender is open source, so anybody can see the program’s
source code and make changes to it. The benefit is that instead of having the pro-

gram’s guts behind lock and key, Blender can be improved by programmers (and
even non-programmers) all over the world!

Because of these strengths, Blender is an ideal program for small animation com-

panies, freelance 3D artists, independent filmmakers, students beginning to learn
about 3D computer graphics, and dedicated computer graphics hobbyists. It’s also
being used (if a bit clandestinely) more and more in larger animation, visual
effects, and video game studios because it’s relatively easy to modify, has a very
responsive development team, and no need for the headache of licensing servers.

Blender, like many other 3D computer graphics applications, has had a reputation
for being difficult for new users to understand. At the same time, however, Blender
is also known for allowing experienced users to bring their ideas to life quickly.
Fortunately, with the help of this book and the regular improvements introduced
in each new release of Blender, that gap is becoming much easier to bridge.

http://www.blender.org/

CHAPTER 1 Discovering Blender 11

Discovering Blender’s origins and the
strength of the Blender community

The Blender you know and love today wasn’t always free and open source. Blender
is actually quite unique in that it’s one of the few (and first!) software applications
that was “liberated” from proprietary control with the help of its user community.

Originally, Blender was written as an internal production tool for an award-
winning Dutch animation company called NeoGeo, founded by Blender’s original
(and still lead) developer, Ton Roosendaal. In the late 1990s, NeoGeo started mak-

ing copies of Blender available for download from its website. Slowly but surely,
interest grew in this less-than-2MB program. In 1998, Ton spun off a new com-

pany, Not a Number (NaN), to market and sell Blender as a software product. NaN
still distributed a free version of Blender, but also offered an advanced version
with more features for a small fee. There was strength in this strategy and by the
end of 2000, Blender users numbered well over 250,000 worldwide.

Unfortunately, even though Blender was gaining in popularity, NaN was not mak-

ing enough money to satisfy its investors, especially in the so-called “dot bomb”
era that happened around that time. In 2002, NaN shut its doors and stopped
working on Blender. Ironically, this point is where the story starts to get exciting.

Even though NaN went under, Blender had developed quite a strong community
by this time, and this community was eager to find a way to keep their beloved
little program from becoming lost and abandoned. In July of 2002, Ton provided a
way. Having established a non-profit organization called the Blender Foundation,
he arranged a deal with the original NaN investors to run the “Free Blender” cam-

paign. The terms of the deal were that, for a price of €100,000 (at the time, about
$100,000), the investors would agree to release Blender’s source code to the
Blender Foundation for the purpose of making Blender open source. Initial esti-
mations were that it would take as long as six months to one year to raise the
necessary funds. Amazingly, the community was able to raise that money in a
mere seven weeks.

Because of the Blender community’s passion and willingness to put its money
where its metaphorical mouth was, Blender was released under the GNU General
Public License on October 13, 2002. With the source in the community’s hands,
Blender had an avalanche of development and new features added to it in a very
short time, including somewhat common features like Undo (a functionality that
was conspicuously missing and highly desired since the initial releases of Blender
by NeoGeo).

12 PART 1 Wrapping Your Brain Around Blender

Nearly two decades later, the Blender community is larger and stronger than ever.
Blender itself is a powerful modern piece of software, competitive in terms of
quality with similar software costing thousands of dollars. Not too shabby.
 Figure 1-1 shows screenshots of Blender from its early days to the Blender of today.

Making open movies and games

One of the cool things about the programmers who write Blender is that many of
them also use the program regularly. They’re writing code not just because they’re
told to do it, but because they want to improve Blender for their own purposes.
Many of Blender’s developers started as artists who wanted to make Blender do
something it hadn’t been able to do before. Part of the programmers’ motivation
has to do with Blender’s open source nature, but quite a bit also has to do with the
fact Blender was originally an in-house production tool, built for artists, based on
their direct input, and often written by the artists themselves.

FIGURE 1-1:
Blender through

the years:

Blender 1.8 (top

left), Blender 2.46

(top middle),

Blender 2.72 (top

right), and the

major changes

apparent in the

Blender of today

(bottom).

CHAPTER 1 Discovering Blender 13

Seeking to get even more of this direct artist feedback to developers, the Blender
Foundation launched “Project Orange” in 2005. The project’s purpose was to cre-

ate an animated short movie using open source tools, primarily Blender. A team of
six members of the community were assembled in Amsterdam, in the Nether-

lands, to produce the movie. Roughly seven months later, Elephants Dream pre-

miered and was released to the public as the first open movie. This means that not

only was it created using open source tools, but all the production files — 3D
models, scenes, character rigs, and so on — were also released under a permissive
and open Creative Commons Attribution license. These files are valuable tools for
discovering how an animated film is put together, and anyone can reuse them in
their own personal or commercial work. Furthermore, if you don’t like Elephants

Dream, you’re free to change it to your liking! How many movies give you that
luxury? You can see the film and all the production files for yourself at the proj-
ect’s website, www.elephantsdream.org.

Due to the success of the Orange project, Ton established the Blender Institute in
2007 for the expressed purpose of having a permanent space to create open movie
and game projects, as well as provide the service of training people in Blender.
Since then, the Blender Institute has churned out open projects (most codenamed
with a type of fruit) every couple of years. Like with Elephants Dream, both the final
product and the production files for each project are released under a permissive
Creative Commons license. More recently, the Blender Institute has spun off a
separate entity, the Blender Animation Studio, a Blender-based animation studio
with the goal of producing and releasing a feature-length animated film. Table 1-1
summarizes each of the Blender Institute’s open projects.

TABLE 1-1	 Open Projects from the Blender Institute

Year Fruit Title Details

2005 Orange Elephants Dream

(elephantsdream.org)

Animated Short Film (improved animation, basic
hair, node-based compositing)

2008 Peach Big Buck Bunny

(bigbuckbunny.org)

Animated Short Film (enhanced particles, large
scene optimization, improved rendering, more
 animation and rigging tools)

2008 Apricot Yo Frankie!

(yofrankie.org)

Video Game (asset creation pipeline, real-time
 viewport, updates to the Blender Game Engine)

2010 Durian Sintel

(sintel.org)

Animated Short Film (battle-test Blender 2.5,
detailed sculpting, large environments)

(continued)

http://www.elephantsdream.org/
http://www.elephantsdream.org/
http://www.bigbuckbunny.org/
http://www.yofrankie.org/
http://www.sintel.org/

14 PART 1 Wrapping Your Brain Around Blender

Year Fruit Title Details

2012 Mango Tears of Steel

(tearsofsteel.org)

Live Action Short Film (visual effects tools, motion
tracking, Cycles rendering)

2013 N/A Caminandes 2: Gran Dillama

(caminandes.com)

Animated Short Film (cartoony animation with a
minor focus on furry characters)

2015 Gooseberry Cosmos Laundromat

(cosmoslaundromat.org)

Animated Short Film (large-scale internationally
 collaborative productions with Blender Cloud)

2015 N/A Glass Half

(cloud.blender.org/p/
glass-half)

Animated Short Film (cartoony animation with
 non-photorealistic real-time rendering)

2016 N/A Caminandes 3: Llamigos

(caminandes.com)

Animated Short Film (cartoony characters with a
secondary focus on VR rendering)

2018 N/A Hero (cloud.blender.
org/p/hero)

Animated Short Film (2D and 2.5D animation using
Grease Pencil)

2018 N/A The Daily Dweebs (cloud.
blender.org/p/

dailydweebs)

Animated Short Film (fast turnaround cartoony
animation)

2019 N/A Spring (cloud.blender.
org/p/spring)

Animated Short Film (battle-test Blender 2.80,
Eevee viewport)

TABLE	1-1	(continued)

JOINING THE COMMUNITY

Congratulations! As a Blender user, you’re a part of our community. You’re joining a

diverse group that spans all age ranges, ethnicities, professional backgrounds, and parts

of the globe. We are a passionate bunch: proud of this little 3D program and more than

willing to help others enjoy using it as much as we do. Have a look at Chapter 21 for a
list of community resources that are invaluable, not only for discovering the intricacies

of using Blender, but also for improving yourself as an artist.

You can find innumerable opportunities for critique, training, discussion, and even col-
laboration with other artists, some of whom might also be Blender developers. I’ve

made quite a few good friends and colleagues through the Blender community, both
through the various community websites as well as by attending events like the annual

Blender Conference. I go by the name “Fweeb” on these sites and I look forward to see-

ing you around!

http://www.tearsofsteel.org/
http://www.caminandes.com/
http://www.cosmoslaundromat.org/
http://cloud.blender.org/p/glass-half/
http://cloud.blender.org/p/glass-half/
http://www.caminandes.com/
http://cloud.blender.org/p/hero
http://cloud.blender.org/p/hero
http://cloud.blender.org/p/dailydweebs
http://cloud.blender.org/p/dailydweebs
http://cloud.blender.org/p/dailydweebs
http://cloud.blender.org/p/spring
http://cloud.blender.org/p/spring

CHAPTER 1 Discovering Blender 15

Figure 1-2 shows rendered images from a bunch of the open projects.

With the completion of each of these projects, the functionality and stability of
Blender significantly increased. Much of the content of this book wouldn’t even
exist without these projects. For example, Chapter 14 starts with using Blender’s
particle system to achieve exciting effects along with hair and fur. All the content
in Chapter 18 is focused on the Compositor, a way of combining and enhancing still

images and animations. In fact, nearly all of Part 3 is devoted to features that were
enhanced or directly added for one of these open projects.

All these projects continue to exhibit the strength of the Blender community. Each
of them were financed in a large part by DVD presales (and now Blender Cloud
subscriptions) from users who understand that regardless of the project’s final
product, great improvements to Blender are the result, and everyone benefits
from that.

Getting to Know the Interface

Probably one of the most daunting aspects of Blender for newcomers and sea-

soned 3D professionals alike has been its unique and somewhat peculiar interface.
For a long time, the interface has arguably been the most controversial feature
Blender has had. In fact, at one time, merely calling the interface a feature would
raise the blood pressure of some of you who tried using Blender in the past, but
gave up in frustration when it did not behave as expected.

FIGURE 1-2:
Open projects

from the Blender

Institute help

drive Blender

development

(Blender

Foundation, www.

blender.org).

http://www.blender.org/
http://www.blender.org/

16 PART 1 Wrapping Your Brain Around Blender

Although the interface wasn’t the primary focus, the interface updates to Blender
added in the 2.5 series of release made great strides toward alleviating that frus-

tration, and the improvements continue through to today. In fact, with the release
of version 2.80, Blender’s interface is more welcoming to newcomers than ever

before. As a small example, when you first launch Blender, the “splash image”
provides you with some quick setup options to configure Blender to your liking
right from the start. If you’re more familiar with other programs’ hotkeys and
mouse behavior, you may want to try using the “Industry Compatible” shortcuts.
If you’re a long-time Blender user like me, you may choose the Blender 2.7X
shortcuts. This book is written with the assumption that you’re going with the
default choices in this splash screen. Figure 1-3 shows the splash image you’re
presented with when you start Blender for the first time.

If you click anywhere other than the splash screen, the splash screen goes away,
and you’re greeted with Blender’s default General file in the Layout workspace,
shown in Figure 1-4. If you’re looking at the interface for the first time, you may
think it appears pretty daunting. However, the purpose of this book is to help you
get the hang of Blender (and its interface) with a minimum of pain.

This book explains some of the design decisions in Blender’s interface and ulti-
mately allows you to be productive with it. Who knows, you might even start to
like it and wonder why other programs don’t work this way!

FIGURE 1-3:
The Blender

splash screen.

CHAPTER 1 Discovering Blender 17

Working with an interface that
stays out of your way

The first thing to understand about Blender’s interface is its basic organization.
Figure 1-4 displays a single Blender window. Your base Blender session consists of
a workspace that can be made up of one or more windows. Workspaces are accessi-
ble from the tabs at the top of each Blender window. A Blender window can consist
of one or more areas that you can split, resize, and join at will. In all cases, an area
defines the space of an editor, such as the 3D Viewport, where you actually make
changes and modifications to your 3D scene. Each editor can include one or more
regions that contain additional features or tools for using that editor. An example of
a region that all editors have is a header region that’s generally at the top of the

editor; the header typically includes menus and buttons to give you access to
 features in that editor. Some regions, like the 3D Viewport’s Sidebar, have tabs and

panels within them.

Figure 1-5 illustrates the hierarchical breakdown of the building blocks in
 Blender’s interface.

Knowing this organizational structure, the next important thing to know is that
Blender is designed to be as non-blocking and non-modal as possible. Areas in
Blender never overlap one another (non-blocking), and using one feature of
Blender typically won’t restrict you from using any of the others (non-modal). As
an example, some other software packages, if you want to change the material on
a 3D object, may open a dialog or sub-window. This dialog is an overlapping

FIGURE 1-4:
The default

Blender interface.

18 PART 1 Wrapping Your Brain Around Blender

window that not only blocks things behind it from view, but in some cases also
prevents you from making any changes to your file. This scenario isn’t the case
with Blender. In Blender, the Shader Editor never gets in the way of the 3D View-

port unless you explicitly want it to.

At first, working in a non-blocking, non-modal interface may seem to be really
restrictive. How do you see different types of editors? Can you see them at the same
time? Everything looks like it’s nailed in place, so is it even possible to change any-

thing? Fortunately, all these things are possible, and you get the benefit of never
having your view of one area obstructed by another. Having an unobstructed work-

space is a great way to be able to see at a glance what’s going on in your file. Fur-

thermore, if you absolutely need multiple windows that can overlap, you can have
them. For example, you might have two computer monitors that are different sizes
and you’d like a full-sized Blender window in each. I show you how to do this later
in this chapter in the “Duplicating an area to a new window” section.

This non-blocking window philosophy, combined with the fact that Blender’s
entire interface is written in a standardized programming library for graphics
called OpenGL, is the precise reason that Blender looks the same, no matter where
you run it. Whether you run it from Linux, Windows, or a Mac, Blender looks and
behaves like Blender. An additional benefit to being written in a 3D library like
OpenGL is that many parts of Blender’s interface allow you to zoom in on them.
Try it! Hover your mouse cursor over the Properties editor (the editor on the right
side) and press Numpad Plus (+) or Numpad Minus (-). You can make the panels
in this editor much larger or smaller than they are by default. Pretty cool!

FIGURE 1-5:
A typical Blender

workspace

includes at least

one window

containing areas

populated by

editors, which in

turn incorporate

one or more

regions

sometimes filled
with tabs and

panels.

CHAPTER 1 Discovering Blender 19

Resizing areas

Regardless of the type of editor that’s contained in an area, you modify and change
all areas in a Blender window the same way. To change the size of an area, left-
click the border between two areas and drag it to a new position. This method
increases the size of one area while reducing the size of those that adjoin it. If you
have only one area in your Blender window, it’s exactly the same size as that win-

dow. To resize it, you need to either adjust the size of its parent Blender window
or split a new area into that space, as covered in the next section.

Splitting and removing areas

While working in Blender, it’s pretty common that the workspace you’re in isn’t
quite what you need to work efficiently, but you don’t need as extravagant of a
change as a whole new workspace. Sometimes you may just need an additional 3D
Viewport, or you may want to see the Image Editor in addition to the 3D Viewport.

To create either of these layout changes, you need to split an existing area into two.

You can split or join areas by right-clicking the border between two areas and
choosing either Split Area or Join Area from the menu that pops up. Most editors
also have a View ➪ Area submenu that provides you options for splitting. However,
there’s a faster way. It’s a little tricky to get used to, though. Look at the corners
in the bottom left and top right of any area. Notice how the corners are rounded
and when you move your mouse cursor near them, the cursor changes from the
standard pointer to crosshairs. These are the area’s corner widgets, and they’re a

shortcut for splitting and joining areas. To split any area into two, follow these
steps:

1. Left-click one of the corner widgets and drag your mouse cursor away

from the area’s border and into the area.

2. Drag your mouse cursor left or right to split the area vertically.

Dragging it up or down splits the area horizontally.

As you drag your mouse, the areas update in real time so that you can see the
result of the split while you’re working.

If you decide that you actually don’t want to split the area, you can cancel the
operation by right-clicking or pressing Esc.

If you want to remove an area, the process is similar. Rather than splitting an area
in two, you’re joining two areas together. So instead of left-clicking the corner
widget and dragging your mouse cursor away from the area border, drag it towards

the border of the area you want to join with. This action darkens the area your
mouse is in and draws an arrow to indicate which area you want to remove.

20 PART 1 Wrapping Your Brain Around Blender

When I work in Blender, I find myself constantly changing the screen layout by
splitting and joining new areas as I need them.

Duplicating an area to a new window

In addition to splitting and joining areas, you can use an area’s corner widgets to
duplicate that area into a new Blender window of its own. You can move that
 window to a separate monitor (if you have one), or it can overlap your original
Blender window. And within this new Blender window, you can split the duplicated
area into additional ones as you like. This area-duplication feature is a slight
 violation of Blender’s non-overlapping principles, but the benefits it provides for
users with multiple computer screens make it very worthwhile.

To take advantage of this feature, follow these steps:

1. Shift+left-click one of the corner widgets in an area and drag your mouse

cursor away from it in any direction.

This step duplicates the area you clicked in and creates a new Blender window

to contain it.

You can also achieve this effect from the header menu of some editors by
choosing View ➪ Area ➪ Duplicate Area into New Window.

2. Close the additional Blender window by clicking the close button that

your operating system adds to the border of the window.

Maximizing an area

When working in Blender, you also occasionally need to maximize an area. Maxi-
mizing an area is particularly useful when you’re working on a model or scene,
and you just want to get all the other areas out of your way so you can use as much
screen space as possible for the task at hand.

To maximize any area, hover your mouse cursor over it and press Ctrl+Spacebar.

You can toggle back to the tiled screen layout by either pressing Ctrl+Spacebar

again or clicking the Back to Previous button at the top of the window. These
options are available in the header menus of nearly all editor types by choosing
View ➪ Area ➪ Toggle Maximize Area. You can also right-click the header and
choose Maximize Area from the menu that appears. If the area is already maxi-
mized, then the menu item will say Tile Area.

CHAPTER 1 Discovering Blender 21

You may notice another option in the View ➪ Area menu, Toggle Fullscreen Area.
This option gives you even more screen space by hiding the menus and work-

space tabs at the top of the Blender window. The hotkey to toggle this is
Ctrl+Alt+Spacebar.

CUSTOMIZING HEADERS

All editors in Blender have a horizontal region called the header that usually runs along

the top of the editor. The header usually features specialized menus or buttons specific
to the editor you’re using. Here are some ways you can customize the header:

• Hide the header. If you right-click the header, you get a menu with the Show

Header check box that you can use to toggle the visibility of the header. When the

header is hidden, you’re left with only a small down-arrow icon in the right corner

of the editor. If the header is at the bottom of the editor, the arrow icon points up

and appears at the bottom right of the editor. Left-click this icon and the header

reappears.

• Scroll the header’s menus. There will be occasions while working that you make

an area too narrow to show all the menus and buttons in it. No worries. All headers

in all of Blender’s editors are scrollable. If you have a narrow area where parts of

the header are obscured, hover your mouse cursor over the header and scroll your

mouse wheel to slide the contents of the header left and right. You could also

middle-click and drag the header to do the same thing.

• Hide menus in the header. Of course, maybe you don’t want to be constantly

scrolling the contents of your header. You’d rather just save space by hiding the

menus. Right-click the header and toggle the Show Menus option to collapse the

menus for that header down to a single button with an icon of three lines (some-

times called a hamburger menu).

• Change the location of the header. You can also change the location of the

header to either the top or bottom of the editor it belongs to. To do so, right-click

the header and choose Flip to Top (or Bottom, depending on where your header

currently is).

• Hide or show Tool Settings. This one is specific to the 3D Viewport. If you right-
click the header for the 3D Viewport, there’s an additional check box that you can

use to toggle the visibility for settings on your active tool and regain a bit of screen

real estate.

22 PART 1 Wrapping Your Brain Around Blender

The menu that is a pie

There’s a recent addition to Blender’s user interface that’s worth mentioning.
That addition is a feature called pie menus. Technically, they existed in previous
releases of Blender, but weren’t enabled by default. Contrasted with the more
conventional linear, list-type menu, a pie menu lists your menu options radially
around your mouse cursor. This setup has a few advantages:

 » Each menu item has a much larger click area. With a typical list-type menu,

after you find the menu item you want, you need to precisely click a relatively
small area. Having a small click area can be especially frustrating if your

primary input is with a pen tablet like many artists have. With a pie menu, you

need only to have your mouse cursor in the general area around your menu

selection (its slice of the pie). Because you don’t need to be as precise with

your mouse, you can navigate menus faster with less stress on your hand.

 » Menu options are easier to remember. As humans, we tend to naturally

think about things spatially. It’s much easier to remember that a thing is up or

left or right than to remember that it’s the sixth item in a list of things.

Because the menu items are arranged in two-dimensional space, pie menus

take advantage of our natural way of recalling information. Also helpful for

memory is the fact that any given pie menu can only have as many as eight

options.

 » Selecting menu items is a gestural behavior. A gestural interface relies on

using mouse movement to issue a command. Pie menus are not purely

gestural, but by arranging the menu items spatially, you get many of the same

advantages provided by gestures. Most valuable among these advantages is

the reliance on muscle memory. After working with a pie menu for an

extended period of time, selecting menu items becomes nearly as fast as

using hotkeys, and for essentially the same reasons. You’re no longer thinking

about the direction you’re moving your mouse cursor (or which key you’re

pressing). You’ve trained your hands to move in a specific way when you want
to perform that task. Once you get to that point (it doesn’t take very long),

you’ll find that you’re working very quickly.

Before you get too excited about pie menus, they have a couple of limitations:

 » Pie menus are basically limited to a maximum of eight menu items. (It’s

possible to have more items, but if a pie menu has more than eight items, it

becomes cluttered and the speed and memory advantages of pie menus are

lessened.) Blender has a number of very long menus; therefore, they don’t all

translate nicely to the pie menu model. This means that some menus will be

pies and others will not. Hopefully, as development continues on Blender,

these menus will migrate to being more pie-like.

CHAPTER 1 Discovering Blender 23

 » Some pie menus aren’t enabled by default. A number of hotkeys are bound to

pie menus already, but you can enable even more as add-ons from

Preferences. (Read more about Blender add-ons in Chapter 2.)

The process of enabling additional pie menus is easy:

1. Open User Preferences (Edit ➪ Preferences) and go to the Add-ons section.

2. On the search field on the upper right of the window, type pie menu.

The add-on list should have one choice available: 3D Viewport Pie Menus.

3. Enable the pie menu add-on you want by left-clicking its check box.

Additional pie menus are now enabled.

That’s it! By default, Blender automatically saves what you set in Preferences, so
additional pie menus will be automatically enabled each time you start Blender.

To try out pie menus, you don’t have to actually enable any add-ons at all. With
your mouse cursor in the 3D Viewport, press Ctrl+Tab to show the Mode pie menu.
You should see a menu like the one in Figure 1-6. Throughout this book, you’ll see
what each of these modes can be used for. The point here is to recognize pie
menus and know how to use them.

With the menu still visible, move your mouse cursor around the screen. Notice
that the highlighted area of the circular slice indicator at the center of the menu
points to your mouse cursor. Also notice that as you move your mouse cursor,
individual menu items highlight when you enter their slice of the menu. This
highlighting is how you know which menu item is currently ready to be picked.
Press Esc to close the menu without selecting anything.

FIGURE 1-6:
Your first pie

(menu)!

24 PART 1 Wrapping Your Brain Around Blender

You can choose menu items in a pie menu in two ways:

 » Press, release, click: This can be considered the standard method:

1. Press and release the hotkey that activates the menu.

In this example, press and release Ctrl+Tab.

2. Move your mouse cursor to your desired menu item’s slice.

3. Choose that menu item by clicking anywhere within its slice.

The current active slice is indicated by the circular slice indicator at the

center of the menu, as well as the highlighting of each menu item as your

mouse cursor enters its slice.

 » Press, hold, release: I think of this method as the fast way.

1. Press and hold the hotkey that activates the menu.

In this example, press and hold Ctrl+Tab.

2. Move your mouse cursor to your desired menu item’s slice.

3. Release the hotkey to choose that menu item.

Even without enabling any add-ons, pie menus are still used throughout Blender’s
interface, so it’s worth getting used to them. One of the advantages of the add-ons
is that they enable you to configure which hotkeys have an associated pie menu,
so you can disable some of those pies if you’d like.

CHAPTER 2 Understanding How Blender Thinks 25

Chapter 2

Understanding How
Blender Thinks

I
t’s time to get intimate with Blender. No, I don’t mean you need to start placing

scented candles around your computer. I mean that this chapter’s focus is a

detailed introduction to Blender’s interface and how you can start finding your
way around in it. First of all, it’s pretty important to have an understanding of the

various types of editors that Blender has and how to access them. These editors

are the gateways and tools for creating whatever you want.

With the knowledge of what you can do with these editors, the next thing is actu-

ally building those creations. To do so, you need to understand how to work in a

virtual three-dimensional space, and specifically, you need to understand how
Blender handles that space. I also cover these topics in this chapter.

Looking at Editor Types

In many ways, Blender isn’t so much one program as it is a bunch of different
programs sharing the same interface and access to the same data. Thinking of it

this way, each of Blender’s editor types is kind of its own little program in a

Blender area.

IN THIS CHAPTER

 » Familiarizing yourself with Blender’s

windows

 » Working in three-dimensional space

 » Using the regions in the 3D Viewport

 » Adjusting Blender’s interface to fit
the way you work

26 PART 1 Wrapping Your Brain Around Blender

In fact, with the introduction of Workspaces in Blender 2.80, there’s a much

greater emphasis on having Blender’s workflow cater to users familiar with other
specific applications. So, for example, if you’re familiar with common interfaces
for non-linear video editors, Blender’s Video Editing workspace will make use of

many of the same interface paradigms that you’re used to. Likewise for the

 Animation or Sculpting workspaces. The Blender developers have worked very
hard to balance Blender’s internal consistency with the expectations of people

migrating from other applications.

That said, once you’re in a workspace, you still have the ability to re-organize and

adjust it, adding and removing areas and editors as you see fit. As noted in the
previous chapter, a Blender area can contain any editor type. You can see what

editor types are available by left-clicking the button on the far left of that editor’s

header. Figure 2-1 shows the menu that appears when you press this button.

Each editor type serves a specific purpose, but you can organize them into four
basic categories, as shown in the menu: general editors, animation editors, script-

ing editors, and data editors. The following subsections give you an overview of

each editor, organized by category.

General editors

The editors covered in this section are usually the most common way of interfacing

with objects in your 3D scene and actually creating things in Blender.

You may notice that the same hotkey combination gets listed for multiple editors.

The reason for this re-use of hotkeys is because those editors often get used

together in a particular workflow or have a similar work paradigm, so having the
same hotkey allows you to quickly toggle or shuffle through those editors.

FIGURE 2-1:
The Editor

Type menu.

CHAPTER 2 Understanding How Blender Thinks 27

These are editors you use to make things in a Blender scene:

 » 3D Viewport (Shift+F5): Arguably the most-used editor in Blender, the 3D
Viewport shows you the three-dimensional view of your model or scene and
provides access to many of the tools you can use to modify it.

 » Image Editor (Shift+F10): With the Image Editor, you can do basic image
editing, masking, and digital painting.

 » UV Editor (Shift+F10): To apply images to the surface of your 3D objects,
you often need to go through a process called unwrapping to edit the texture
coordinates for your models (see Chapter 9). The UV Editor gives you the bulk
of the tools necessary to complete that process.

 » Shader Editor (Shift+F3): Blender has a node-based editor for creating
and modifying materials and textures. Both Cycles and Eevee, Blender’s
two integrated render engines, make heavy use of the Shader Editor for
materials and lighting.

Chapters 8 to 10 cover materials, textures, and lighting extensively.

 » Compositor (Shift+F3): Similar to the Shader Editor, Blender uses a node-
based system for compositing, or mixing images after they’ve been rendered.
To find out all about the Compositor, have a look at Chapter 18.

MENUS IN BLENDER

There’s a somewhat unique quirk of Blender’s menus. Because editors and their head-
ers can literally be just about anywhere in a Blender window, depending on how you’ve
split it, menus will either roll down or up from wherever you click, depending on where
there’s the most available space. Furthermore, the menus are designed to help you by
keeping the distance you need to move your mouse cursor as short as possible. In prac-
tice, this means that when you open a menu from an editor’s header near the bottom
of the Blender window, it flows upward with the first menu item at the bottom, closest
to your mouse cursor. When you open a header menu near the top of the Blender win-
dow, it flows downward and the first item is at the top.

For floating menus like the Add (Shift+A) menu in the 3D Viewport (covered in Chapter 4),
the behavior is a little bit different. Those menus always list the first item at the top; how-

ever, Blender remembers the last item you picked in any of these floating menus and
automatically places that item under your mouse cursor. Again, this is for speedy work-
flow. The idea is that if you chose one menu item last time, it’s likely that you want to pick
it again this time. To reduce the distance you have to move the mouse cursor, Blender
facilitates this notion by jumping directly to the last menu item you chose.

28 PART 1 Wrapping Your Brain Around Blender

 » Texture Node Editor (Shift+F3): The Shader Editor is a great place to
generate materials for your 3D objects, but sometimes you need a specific
interface for building textures. That’s what the Texture Node Editor is for.
Think of it as a Compositor of image data before you render. I get into the
Texture Node Editor a little bit in Chapter 9.

 » Video Sequencer (Shift+F8): Blender’s Video Sequencer is a lightweight
video editor. The Video Sequencer isn’t as powerful as some other programs
created specifically for editing video, but it’s quite effective for stringing a
sequence of scenes together and doing basic effects, overlays, and transitions.
See Chapter 17 for more on the Video Sequencer.

 » Movie Clip Editor (Shift+F2): The Movie Clip Editor is the primary go-to
editor for Blender’s motion tracking features. Motion tracking is a process
where the software analyzes moving parts of a video in an effort to relate
them to 3D space. With video that’s been successfully motion tracked, you
can integrate 3D models into recorded video. Have you ever wondered how
they get computer-generated monsters to look like they’re in the same room
as living actors? Motion tracking! Chapter 19 is all about motion tracking in
Blender.

Animation editors

The following editors relate specifically to animation:

 » Dope Sheet (Shift+F12): The Dope Sheet is where you create and adjust your
overall animation using actions or keying sets. You can use actions to animate
all of a character’s movement in a scene, or you can mix them together in the
NLA Editor. Keying sets give you the ability to group together a bunch of
different animatable attributes.

 » Timeline (Shift+F12): If you’re working on an animation, the Timeline editor
offers you a convenient way to quickly jump from one moment in your
animation to another as well as play back the animation. You can also do
some simple keyframe editing from this editor.

 » Graph Editor (Shift+F6): Blender’s Graph Editor shows a graphical represen-
tation of animatable attributes in your scene as they change over time.

 » Drivers (Shift+F6): Drivers are a bit of an advanced rigging topic. Simply put,
drivers give you the ability to control one animatable parameter with the
values of another. For example, you could control the Z-axis rotation of one
object with the Y-axis location of another. The Drivers editor is what you use
to map and define that relationship.

CHAPTER 2 Understanding How Blender Thinks 29

 » Nonlinear Animation: The Nonlinear Animation editor allows you to mix
pre-animated actions on a single character (such as mixing a waving hand
animation with a walking animation to have your character walk and wave her
hand at the same time).

Scripting editors

The following editors are useful for automating tasks within Blender:

 » Text Editor (Shift+F11): Blender’s integrated Text Editor is not only handy for
keeping notes about your scenes and models, but once you become a more
advanced user, it’s also a convenient place to write and test your own Python
scripts and material shaders in Blender.

 » Python Console (Shift+F4): The Console is a pretty handy editor that’s more
often utilized by advanced users to help write custom Python scripts. It’s a
“live” console where you can use the Python language to directly issue
commands to Blender.

 » Info: The Info editor displays basic information about your scene. It also
serves as a report space where warnings and errors are logged. This can be
used to figure out what happened if a feature doesn’t work as expected.

Data editors

The following editors are particularly useful for working with data that you want

to pull into Blender or that already exists within your Blender session:

 » Outliner (Shift+F9): The Outliner gives a hierarchical view of all the
objects in your scene along with the ability to see how they’re related to
one another. It’s also a quick way to select objects and do simple manipula-
tions in a complex scene.

 » Properties (Shift+F7): You can manipulate nearly all the different attributes
for your scene and the objects within it via this editor. You can find out more
about this topic later in this chapter in the section “Understanding the
Properties editor.”

 » File Browser (Shift+F1): This editor allows you to look through the files on
your computer. It also allows you to look at the innards of your Blender
projects to see how things are structured or for linking to other projects.

 » Preferences: Also available from the Edit menu, the Preferences editor allows
you to customize how you interact with Blender.

30 PART 1 Wrapping Your Brain Around Blender

Understanding the Properties editor

After the 3D Viewport, the Properties editor is probably the second-most used

editor type in Blender. You use buttons and values in this editor to modify the

attributes of your scene and elements within it. Because this editor can manipu-

late so many parts of a scene, it’s broken down and organized into a series of

subsections known as contexts.

You can access each of the various contexts by using the tabs along the left side of

the Properties editor. It’s worth noting here that these contexts are ordered

logically from large contexts (such as Scene Properties) to progressively smaller
contexts (such as Object Data Properties) as you go from left to right. It’s also
good to know that the available contexts in the Properties editor can change

depending on what your active selection is in the 3D Viewport. For example, if you

have a camera object selected, the Modifiers tab of the Properties editor isn’t
 visible (because modifiers can’t be applied to cameras). The following list describes
each subsection of the Properties editor:

 » Active Tool: Contrasted with previous versions of Blender, releases after
version 2.80 feature the concept of active tools where you can select a tool to
work on something in your scene. I cover this more throughout the book, but
for the time being, it’s worth it to know that this tab of the Properties editor is
where you can find settings and controls for whatever tool you have active.

 » Render: The Render context has controls that determine what the final
output of your scene will look like when you decide to render it to an image or
video. Chapter 16 covers these properties in more depth.

 » Output: Whether you render to a still image, a sequence of images, or a
video, Blender needs to know how that image data should be saved to your
hard drive. The Output tab of the Properties editor is where you set those
parameters.

 » View Layer: You can organize the output of your scene in view layers, useful
for compositing different render outputs into a final image (see Chapter 18).
The properties in this context give you control over organizing your render
layers.

 » Scene: The properties in this context dictate the nature of your scene,
including things like the active camera, units of measurement, and the
strength of gravity if you’re using simulated physics.

 » World: The buttons and values in the World context control the environment
that your scene is built in. They have a large influence on the final output of
your scene.

CHAPTER 2 Understanding How Blender Thinks 31

 » Object: Any object in your scene is going to have its own set of properties that
you can modify. The Object context allows you to make changes that affect an
object as it relates to the scene.

 » Modifiers: A lot of work goes into building 3D models, so it’s to your benefit
to take advantage of your computer and have it do as much work for you as
possible. Let it take care of boring procedural steps like mirroring parts of
your object or making it smoother while you focus on the more interesting
steps in the process. Modifiers are great tools to facilitate these kinds of healthy
shortcuts, and allow for more advanced uses in animation. This tab is where you
manage those modifiers. You can find out more about modifiers in Chapter 5.

 » Particles: In computer graphics, particle systems are often used to create
special effects or manage the behavior of groups of objects. This context
of the Properties editor is where you manage particle systems in Blender.
Working with particles is a pretty advanced topic. Chapter 14 gives you a brief
introduction to the possibilities that they have.

 » Physics: In the spirit of making your computer do as much work for you as
possible, having the computer simulate physical behavior in your objects is
sometimes helpful. It lends realism to animations and can often help you
work faster. The Physics tab gives you controls for simulating physics on your
objects. See Chapter 14 for more on these topics.

 » Object Constraints: When working in 3D — particularly with animation — it’s
often useful to constrain the properties of one object to that of another.
Constraints automate parts of your scene and help make it much more
manageable. Chapter 12 goes into constraints more deeply.

 » Object Data: Buttons and values in the Object Data context change slightly
depending on what sort of object you’ve selected, but their primary purpose is
to give you the ability to work with the fundamental structural elements of
your object.

“Object Data” is a generic term. Think of this section as properties based on
what you’ve got selected. Even the icon for Object Data Properties changes
depending on your selection. For example, if you have a camera object
selected, the Object Data tab would hold camera properties, and the icon for
this section looks like a camera. If you have a curve object selected, the icon
looks like a curve and on support forums, some users may refer to it as the
Curve Properties tab.

 » Bone: The Bone context is available only if your active selection is an
Armature object. Armatures, sometimes called skeletons in other programs,
are used for animation in Blender and they consist of a set of bone sub-
objects. The Bone tab of the Properties editor is where you can adjust
attributes of a specific bone that you’ve selected in the armature.

32 PART 1 Wrapping Your Brain Around Blender

 » Bone Constraints: Similar to the properties in the Object Constraints tab, this
context helps you manage constraints. The difference, however, is that this
subsection is available only if your active selection is an Armature in Pose
Mode, and it’s for managing constraints on bones rather than objects.
Chapters 11 and 12 cover constraints and the use of constraints on bones.

 » Material: The controls in the Material context of the Properties editor allow
you to dramatically change the appearance of objects in your scene. Chapter 8
goes into this context in much more detail.

 » Texture: You can use textures built in this context as custom brushes when
painting and sculpting in Blender. This context is where you can edit those
textures. You can find out more on texturing brushes (and your 3D models!)
in Chapter 9.

Throughout this book, I frequently refer to the tabs of the Properties editor by the

name of that tab context, followed by the word “Properties.” So I may refer to the
Output tab of the Properties editor as “Output Properties.” It’s a fast way of refer-

ring to that context, and it doesn’t require always writing it out the long way.

Navigating in Three Dimensions

The 3D Viewport is probably the most-used editor in all of Blender. The purpose

of this section is to guide you to understanding how to wield this part of Blender

like a virtual 3D ninja!

All right, so perhaps I am a little over the top with the whole ninja thing, but

hopefully this section takes you at least one or two steps closer to that goal.

Orbiting, panning, and zooming
the 3D Viewport

When trying to navigate a three-dimensional space through a two-dimensional

screen like a computer monitor, you can’t interact with that virtual 3D space

exactly like you would in the real world, or as I like to call it, meatspace. The best

way to visualize working in 3D through a program like Blender is to imagine the

3D Viewport as your eyes to this 3D world. But rather than thinking of yourself as

moving through this environment, imagine that you have the ability to move this

entire world around in front of you.

The most basic way of navigating this space is called orbiting. Orbiting is the rough

equivalent of rotating the 3D world around a fixed point in space. In order to orbit

CHAPTER 2 Understanding How Blender Thinks 33

in Blender, middle-click anywhere in the 3D Viewport and drag your mouse cursor

around.

Occasionally, you have the need to keep your orientation to the world, but you’ll

want to move it around so that you can see a different part of the scene from the
same angle. In Blender, this movement is called panning, and you do it by holding

Shift while middle-clicking and dragging your mouse cursor in the 3D Viewport.
Now when you drag your mouse cursor around, the world shifts around without

changing the angle that you’re viewing from.

The third way of navigating 3D space is when you want to get closer to an object in

your scene. Similar to working with a camera, this movement is called zooming the

view. In Blender, you can zoom in two ways. The easiest method is by using your

mouse’s scroll wheel. By default, scrolling forward zooms in and scrolling back zooms

out. However, this method doesn’t always give you fine-grained control, and, even
worse, some people don’t have a mouse with a scroll wheel. In these cases, you can

zoom by holding Ctrl while middle-clicking in the 3D Viewport. Now, when you drag

your mouse cursor up, you zoom in, and when you drag your mouse cursor down, you

zoom out. If you prefer to move your mouse horizontally rather than vertically for

zooming, you can adjust this behavior in the Navigation section of Preferences.

For the pedantic among us, you may notice that this use of the word “pan” isn’t

an accurate reflection of what panning is in meatspace. When working with a
 traditional film or video camera, panning is the act of horizontally rotating the

camera, like when capturing a panorama (the origin of the word pan). Unfortu-

nately, this word has been re-appropriated in computer graphics to generically

mean moving along a plane in 3D space. Likewise, zooming in Blender isn’t exactly

like zooming in a real camera; it’s more like moving the whole camera closer or

farther away from the subject. It makes me sad, but that’s just the way things are.

If you happen to be working with a mouse that doesn’t have a middle mouse button

or you work with a pen and tablet interface, you should go to Preferences under

Input and enable the Emulate 3 Button Mouse check box. With this check box

enabled, you can emulate the middle mouse button by pressing Alt+left-click. So
orbiting is Alt+left-click, panning is Shift+Alt+left-click, and zooming is done with

Ctrl+Alt+left-click. Table 2-1 has a more organized way of showing these hotkeys.

TABLE 2-1	 Keyboard/Mouse Keys for Navigating 3D Space

Navigation Three-Button Mouse Emulated 3-Button Mouse

Orbit Middle-click Alt+left-click

Pan Shift+middle-click Shift+Alt+left-click

Zoom Ctrl+middle-click Ctrl+Alt+left-click

34 PART 1 Wrapping Your Brain Around Blender

Introduced with Blender 2.80, there are now some additional navigation controls

in the upper right corner of the 3D Viewport. You can see them in Figure 2-2 as the
four icons and mini navigation axes. These controls are particularly helpful when

working in Blender with a drawing tablet, but they’re also handy if you just don’t

want to use the keyboard as much while working. The following list describes how

each control works:

 » Navigation mini-axes: This unique widget not only shows you the orientation
from which you’re viewing your 3D scene, but it also gives you immediate
control over orbiting the view. Click and drag on these colored axes to orbit
your view just like you would by middle-clicking.

As an additional bonus feature, if you click any of the circles at the extent of
any of these axes, Blender automatically gives you a view of your scene as
if looking down that axis. This method is a very quick way of seeing the front,
side, and top views of an object you’re making.

 » Zoom control: Click and drag this icon to zoom in and out of your scene.
Just like Ctrl+middle-clicking, move your mouse cursor up to zoom in and
down to zoom out.

 » Pan control: Click and drag this icon to pan the view. This is the same as
Shift+middle-clicking and dragging anywhere in the 3D Viewport.

 » Camera view toggle: Click the camera icon to toggle between your normal
user view of the 3D scene and the view from the perspective of your camera
object.

FIGURE 2-2:
Navigation

controls at the
top right of the

3D Viewport give
you fast

mouse-based
control over
how you see

your 3D scene.

CHAPTER 2 Understanding How Blender Thinks 35

 » Perspective/Orthographic projection toggle: Click this icon to switch
between perspective and orthographic views. The orthographic view of a
3D scene is similar to how technical drawings and blueprints are done.
If two objects are the same size, they always appear to be the same size,
regardless of how far away from you they are. This view is ideal for getting
sizes and proportions correct in your models, especially if they’re based on
blueprints or technical drawings. The perspective view is more akin to how
you actually see things. That is, objects in the distance look smaller than
objects that are near you.

Changing views

Although using the mouse to work your way around the 3D space is the most com-

mon way to adjust how you view things, Blender has some menu items and hotkey

sequences that help give you specific views much faster and more accurately than
you can do alone with your mouse.

The View menu

On occasion, you want to know what a model looks like when it’s viewed directly

from the front, side, or top. Blender has some convenient shortcuts for quickly

switching to these views. Aside from the navigation controls in the upper right

of the 3D Viewport, the most obvious way to change views is to use the
View ➪ Viewpoint menu in the 3D Viewport’s header, as shown on the left of

 Figure 2-3. This menu lets you choose a variety of angles, including the top, front,
right, and the view from the active camera in your scene.

You can also use pie menus, as described at the end of Chapter 1, for an even faster
menu to change views. With your mouse cursor hovered over the 3D Viewport,

press Tilde (~). When you press this hotkey, a pie menu appears under your mouse
cursor. The options in this pie menu are conveniently arranged for changing

views. Move your mouse cursor up to change to top view, down for bottom view,

left and right for their respective views, and so on. It’s really incredibly fast. It

feels almost like you’re flinging the 3D Viewport around in front of you. On the
right side of Figure 2-3 is the pie version of the View menu.

Behold the power of the numeric keypad!

The View menu and navigation controls are certainly helpful, even with the pie

menu, but you can change your view in an even faster way: the numeric keypad.

Each button on your keyboard’s numeric keypad has an extremely fast way of

changing your viewing angle in the 3D Viewport. Figure 2-4 is an image of the
numeric keypad with an indication of what each key does.

36 PART 1 Wrapping Your Brain Around Blender

If the image in Figure 2-4 doesn’t quite work for you as a reference, Table 2-2
shows what each key does in a table-based format.

In Figure 2-4, notice that the hotkeys are arranged in a way that corresponds
with how you would expect them to be. Top view is at the top of the keypad at
Numpad 7. The front view is accessed at Numpad 1, and if you move to the right
on the keypad, you can see the right side view by pressing Numpad 3. Because it’s

the view you render from, the active camera is the most important and, therefore,

gets the largest key at Numpad 0. Pressing Numpad 5 is a quick way to toggle

between orthographic and perspective views.

If you’re ever unsure about what view you’re looking from, have a look in the

upper left corner of the 3D Viewport. The first line tells you the view angle and
whether you’re looking at it in perspective or orthographic view.

FIGURE 2-3:
The View menu in

the 3D Viewport
(left) and the pie
menu version of

the View menu
(right).

FIGURE 2-4:
The numeric

keypad is your
ultimate tool

for navigating
3D space.

CHAPTER 2 Understanding How Blender Thinks 37

The notions of what is left and right in the 3D Viewport are relative to you, not the

object or scene you’re working in. That is, if you model a character who’s facing

you from the front view, pressing Numpad 3 (right side view) shows your
 character’s left side. This setup can be a bit confusing in writing or conversation,

but while you’re working, it’s really not much of an issue. I actually tend to think

of the right and left side views as side view and other side view to avoid confusing

myself.

Here is where the numeric keypad shows its real power. With the numeric keypad,

you can just as easily view the opposite angle (bottom, back, or other side views)
as you can the standard views. To see the opposite side of the standard views,

press Ctrl while hitting the corresponding Numpad key. For example, if you want

to see the bottom view, press Ctrl+Numpad 7.

Now, maybe you got a little bit excited and hit Ctrl+Numpad 0 to see what the

opposite of the camera view is and had some unexpected results. Ctrl+Numpad 0

does something entirely different than pressing Ctrl in combination with the other
Numpad numbers. The Ctrl+Numpad 0 hotkey actually allows you to treat any

selectable object in Blender as a camera, with the view looking down the object’s

local Z-axis. You can also access this functionality from the View menu at

View ➪ Cameras ➪ Set Active Object as Camera. If you’re confused, take a quick
look at the beginning of Chapter 3 for more explanation on local and global
 coordinate systems. The ability to treat any object as a camera may seem like a

strange feature to have, but it can be really helpful for doing things like aiming

lights and checking the line of sight of an object or a character.

TABLE 2-2	 Hotkeys on the Numeric Keypad

Hotkey Result Hotkey Result Hotkey Result

1 Front Ctrl+1 Back + Zoom in

2 Orbit back Ctrl+2 Pan down - Zoom out

3 Right side Ctrl+3 Left side / Toggle local view

4 Orbit left Ctrl+4 Pan left . View selected

5 Perspective/
Orthographic

6 Orbit right Ctrl+6 Pan right

7 Top Ctrl+7 Bottom

8 Orbit forward Ctrl+8 Pan up

0 Camera view Ctrl+0 Set active object as
camera

Ctrl+Alt+0 Set user view as
camera

38 PART 1 Wrapping Your Brain Around Blender

Another cool thing you can do with Numpad 0 is to quickly snap the camera to

your user view. For example, say that you’ve been working on a 3D model for a

while from a certain angle, and you want to see what the model looks like in a

render from that specific angle. Rather than try to grab and rotate your camera to
get close to this same angle, you can simply press Ctrl+Alt+Numpad 0 or choose

View ➪ Align View ➪ Align Active Camera to View, and the camera jumps directly to

where you’re viewing your model. I find myself using this hotkey sequence quite
a bit when I’m creating my models. Sometimes it’s just easier to change your user
view and snap your camera to it than it is to aim the camera how you want it.

The numeric keypad also gives you the ability to navigate your scene like you

might normally do with your mouse. You use the 8, 4, 6, and 2 keys on the numeric

keypad. Numpad 8 and Numpad 2 orbit the view towards and away, respectively,

whereas Numpad 4 and Numpad 6 orbit it left and right. By default, Blender does

these rotations in 15-degree increments, but you adjust this amount to be more
fine or coarse in Preferences in the Navigation section with the value labeled
Rotation Angle. Orbiting with the Numpad is a nice way to get a quick turntable
view of a scene, particularly if you have your View rotation set to Trackball in

Preferences. You can also pan the view by pressing Ctrl in combination with any

of these buttons. For example, Ctrl+Numpad 4 and Ctrl+Numpad 6 pan the view

left and right. You can even zoom the view by using the Numpad Plus (+) and
Numpad Minus (–) keys.

Two more useful hotkeys are on the numeric keypad: Numpad Slash (/) and Num-

pad Dot (.). These keys are somewhat more esoteric than the other keys, but they
definitely come in handy.

Of the two, I tend to use Numpad Slash the most. Pressing Numpad Slash (/)
toggles what Blender calls Local View. Basically, Local View hides everything in

your scene except for the object or objects you’ve selected. Local View is really

helpful for temporarily isolating a single object or set of objects in a complex

scene so that you can work on it without anything else getting in your way.

The Numpad Dot (.) hotkey also comes in handy when you want to focus on a
specific part of your scene. Pressing Numpad Dot (.) centers the objects you’ve
selected in the 3D Viewport. Centering is particularly useful if you’ve rotated or

panned everything out of sight, and you want to bring your selected objects back

into view.

One other key worth mentioning, although it’s not exactly on the numeric keypad,

is the Home key. Whereas using Numpad Dot (.) brings your selected objects into
view, pressing Home zooms your view back until all objects in your scene are vis-

ible in the 3D Viewport. Home is a very convenient key for getting an overall idea

of what’s going on in your scene.

CHAPTER 2 Understanding How Blender Thinks 39

Ways to see your 3D scene

Aside from changing the angle from which you view your 3D world, you may also

want to change how the world is shown in the 3D Viewport. In particular, I’m

referring to what is called the viewport shading. By default, Blender starts in the

Solid shading type, which shows your models as solid 3D objects, lit by the studio
lights you can set in Blender’s Preferences under Lights. You can change the view-

port shading from the 3D Viewport’s header by clicking any of the Viewport Shad-

ing buttons, as shown in Figure 2-5.

There are four possible viewport shading types:

 » Wireframe: This viewport shading type shows the objects in your scene as
transparent line-drawings. The wireframe viewport shading type is a good
quick way to get an idea of the structure of your models. And because
Wireframe is a bunch of lines, Blender doesn’t have to worry about shading
and, therefore, doesn’t tax your computer’s processor as much. On older
computers, Blender is a lot more responsive using Wireframe than any of the
other viewport shading types.

 » Solid: Solid is the default viewport shading type that Blender starts with. Solid
is usually the standard mode for working in Blender. It’s the shading type that
allows you to focus on just the geometry of your model without being
distracted by materials or scene lighting.

 » Look Dev: Short for “look development,” Look Dev is a process in computer
graphics where you focus on creating the materials and shaders on your
objects, their “look.” Sometimes this process is also called surfacing your
objects. Blender’s Look Dev viewport shading type attempts to faithfully show
you what your object looks like when textured and lit. Do note that the default
behavior is not to use the lighting from your scene, but instead you have the
option to light your scene using an assortment of different lighting scenarios,
defined by high dynamic range images, or HDRIs.

 » Rendered: As you might expect, this viewport shading type renders your
scene in the 3D Viewport from whatever arbitrary perspective you want.
Depending on the complexity of your scene, this is a great way to get a very
accurate preview of your final rendered images.

Fair warning: the Rendered viewport shading type can be extremely slow
when using the Cycles renderer. It’s much more responsive when using Eevee.
See Chapter 16 for more on the differences between Cycles and Eevee.

You can also change viewport shading types by pressing Z to reveal a shading pie

menu. The options here are the same as the shading types described in the previ-

ous paragraph. The only difference is that they’re faster to access by using the pie
layout. Figure 2-5 has the pie menu of viewport shading types on the right side.

40 PART 1 Wrapping Your Brain Around Blender

You may also notice that if you have more than one 3D Viewport window, they

don’t all have to have the same viewport shading type. You can see the wireframe

of your model in one editor while adjusting the lighting using the Shaded draw
type in another.

Selecting objects

How you select objects used to be one of the most controversial design decisions

in Blender’s interface: In nearly every other program, you select things — be they
text, 3D objects, files, or whatever — by left-clicking them. In the past, this was
not the case in Blender. We used to select with right-click. See the “Why Right-
click Select?” sidebar for more on why this used to be the case.

In the modern default behavior for Blender, however, selection is how you would

expect. Left-click on any object in your scene and it becomes selected. Shift+left-

click another object and it’s added to your selection set. Shift+left-click it again,

and it’s removed from the selection. Nice and easy.

Taking advantage of the 3D cursor

“Okay,” you say, “What’s with this funky crosshair in the middle of my 3D View-

port? It seems pretty useless.”

That crosshair is the 3D cursor. It’s a unique concept that I’ve seen only in Blender,

and this design is anything but useless. The best way to understand the 3D cursor

is to think about a word processor or text editor. When you add text or want to

change something in one of those programs, it’s usually done with or relative to

the blinking cursor on the screen. Blender’s 3D cursor serves pretty much the

same purpose, but in three dimensions. When you add a new object, it’s placed

wherever the 3D cursor is located. When you rotate or scale an object, you can do

it relative to the 3D cursor’s location. And when you want to snap an object to a

specific location, you do it with the 3D cursor.

FIGURE 2-5:
Viewport shading

types from the
3D Viewport’s

header (left)
and from a pie

menu (right).

CHAPTER 2 Understanding How Blender Thinks 41

WHY RIGHT-CLICK SELECT?

So why in the world did older versions of Blender have right-click to select as the default
behavior? Left-clicking was bound to placing Blender’s 3D cursor. I talk more about the
3D cursor later in this chapter, but in the meantime, you’re probably thinking, “But why?”

Although right-clicking to select certainly seems strange, there is actually a good reason
for choosing to do it this way. This design decision wasn’t made at random or just to be
different for the sake of being different. There are actually three reasons for doing it this
way. One is philosophical, and the other two are practical.

• Separating selection from action: In the right-click selection paradigm, the left
mouse button is intended to be used to perform or confirm an action. You left-click
buttons or menus and left-click to confirm the completion of an operation like mov-
ing, rotating, or scaling an object, and you use it to place the 3D cursor. Selecting an
object doesn’t really act upon it or change it. So right-click is used to select objects
as well as cancel an operation before it’s completed. This setup is a bit abstract, but
as you work this way, it does actually begin to make sense.

• Prevention of accidental mis-clicks: A functional example would be interacting
with the 3D manipulator and other tools (as covered in Chapter 3). If action and
selection are on the same mouse button, it’s quite easy to accidentally move an
object using the 3D manipulator when you only meant to select, and vice versa.
Likewise on any of Blender’s time-based editors, it was difficult to scrub without
accidentally selecting a keyframe. As of Blender 2.80, there’s an explicit (and some-
what small) region for scrubbing, so this is less of an issue now, but at the price of
being able to scrub anywhere in the editor.

• Prevention of Repetitive Stress Injury (RSI): Computer graphics artists like 3D
modelers and animators are known for working at a computer for insanely long
stretches of time. Repetitive stress injury, or RSI, is a real concern. The more you
can spread the work across the hand, the lower the chance of RSI. By making it so
that you’re not doing every single operation with the left mouse button, the right-
click option helps in this regard.

Bottom line, the right-click-to-select paradigm really is a nice, efficient way of working in
3D space after you get used to it. Although this book is written with the default left-click
behavior in mind, I encourage you to try out right-click selection by enabling the Blender
27X preset in the Keymaps section of the Preferences editor. It takes a little getting used
to, but for me it’s a faster, safer way to work.

42 PART 1 Wrapping Your Brain Around Blender

There are three primary ways to move the 3D cursor in your Blender scene:

 » Shift+right-click: If you Shift+right-click anywhere in the 3D Viewport, Blender
places the 3D cursor directly at that location, oriented with its axes towards
the viewport. This means of placing the 3D cursor is super-fast, but you’re
limited in orientation options because it uses only the same orientation as the
one you’re using to look into the 3D Viewport.

 » Sidebar View tab: If you press N while in the 3D Viewport, Blender should
reveal its Sidebar region along the right side of the editor area. If you go to the
View tab, you should see a panel labeled 3D Cursor. From the Location and
Rotation value fields in this panel, you can very accurately adjust the position
and orientation of the 3D cursor.

 » Cursor tool: Along the left side of the 3D Viewport is Blender’s Toolbar. The
second tool from the top looks just like the 3D cursor. When you choose to
activate this tool, you can place the 3D cursor anywhere in your scene with a
simple left-click. That in itself is nice, but the real benefits of using this tool
are the options you get in the Active Tool context of the Properties editor. Of
particular interest is the Orientation drop-down menu. By default, this menu
is set to View, reflecting the same behavior you get when Shift+right-clicking.
However, you can change to any of the following options:

• None: If you choose None as your orientation, Blender just keeps the
3D cursor at whatever orientation it’s currently using.

• View: This orientation type is the default behavior. The 3D cursor simply
points at you through the 3D Viewport.

• Transform: Choosing the Transform orientation option tells Blender to
have the 3D cursor share the same orientation as is set in the Transform
Orientation menu in the 3D Viewport’s header. By default, that menu is set
to Global, but there are other options as well, covered in Chapter 3.

• Geometry: The Geometry option is extremely handy while modeling. If
you left-click to place the 3D cursor on an object in your scene, not only will
Blender place the 3D cursor there, but its orientation will also adjust to
match the surface geometry of that object. This feature is most useful
when trying to place an object so it looks like it’s naturally protruding from
an object’s surface.

Figure 2-6 shows the 3D Viewport’s Sidebar region as well as the Active Tool
 context of the Properties editor where you can have these controls over your

3D cursor.

CHAPTER 2 Understanding How Blender Thinks 43

In terms of adjusting your 3D Viewport, you can use the 3D cursor as a quick way

to recenter your view. Simply place the 3D cursor anywhere in the 3D Viewport by
Shift+right-clicking. Now press Shift+C. This hotkey combination relocates the 3D
cursor to the origin coordinates of the 3D environment and then brings all objects

into view. The Shift+C hotkey combination is like pressing Home with the added

benefit of moving the cursor to the origin.

In Chapter 3, I cover the topic of moving, scaling, and rotating objects. Usually,
you want to use Blender’s default behavior of doing these operations relative to

the median point of the selected objects. However, you can also perform any of

these operations relative to the 3D cursor by pressing the Period (.) key on your
keyboard and choosing 3D Cursor from the pie menu that appears. Alternatively,

you can select 3D Cursor from the Pivot Point menu in the 3D Viewport’s header.

Figure 2-7 shows the two menus you can use for changing your pivot point. The
default behavior is Median Point.

FIGURE 2-6:
You can control

the position and
orientation of

your 3D cursor
from the

Sidebar in the
3D Viewport, as

well as the Active
Tool context of
the Properties

editor when
the Cursor tool

is active.

FIGURE 2-7:
The Pivot Point

menu in the
3D Viewport’s

header (left) and
as a pie menu

(right).

44 PART 1 Wrapping Your Brain Around Blender

The 3D cursor is also very useful for snapping, or moving a selection to a specific
point in space. For a better idea of what snapping means, hover your mouse over

the 3D Viewport and press Shift+S. A menu like the one in Figure 2-8 appears.

Through this menu, you can snap your selected object to a fixed coordinate on the
grid in the 3D Viewport, the location of the 3D cursor, or to the center of the grid,

also known as the world origin of the scene. You also have the ability to snap the

3D cursor to the middle of multiple selected objects, a fixed location on the grid,
or to the active object in the scene. This method is a very effective way to move an
object to a specific point in 3D space, and it’s all thanks to the little 3D cursor.

Extra Features in the 3D Viewport

A handful of additional features in Blender’s 3D Viewport are worth mentioning.

They can be classified as productivity enhancers, learning aids, or comfort fea-

tures for users migrating from other programs. This section outlines a few of

these features.

Quad View

If you’ve used other 3D graphics programs, you may be used to something referred

to as Quad View, where the 3D Viewport is split into four regions: top, front, and

right orthographic views, along with a user perspective view. You can create a

 layout similar to this through the somewhat arduous task of manually splitting

areas and then setting up each area as a 3D Viewport from each of those

 perspectives. However, with no clear way to lock those views in place, you could

very easily change one of your orthographic views to user perspective on accident.

FIGURE 2-8:
The Snap menu.

CHAPTER 2 Understanding How Blender Thinks 45

Fortunately, there’s a better way. Go to the 3D Viewport’s header and choose

View ➪ Area ➪ Toggle Quad View or use the hotkey Ctrl+Alt+Q, and your 3D View-

port will switch to look like the one in Figure 2-9.

When toggling back to Full View from Quad View, Blender always jumps back to

whatever angle you’re viewing from in the user perspective view quadrant.

Regions

In Chapter 1, I briefly describe regions as areas in an editor that give you addi-
tional tools specific to that editor. In fact, you’ve already had exposure to a couple
types of region in this chapter: the header, the Toolbar, and the Sidebar. This sec-

tion focuses on the latter two in more detail.

Flanking either side of the 3D Viewport is a Toolbar on the left, and on the right is

a region for modifying the properties of the 3D Viewport, referred to as the Sidebar.

The Sidebar

You can toggle the visibility of the Sidebar by choosing View ➪ Sidebar in the
header or by pressing N (for iNformation) while your mouse cursor is in the 3D
Viewport. In fact, quite a few editors in Blender have a Sidebar. And with the
exception of the Text Editor, which uses Ctrl+F (because it would be annoying if

the Sidebar popped up every time you typed an N in the Text Editor), you can con-

sistently open all of them by using the N hotkey.

FIGURE 2-9:
Using the

Ctrl+Alt+Q hotkey,
you can quickly
switch between

Blender’s regular
viewport and a

Quad View
viewport like

some other 3D
programs have.

46 PART 1 Wrapping Your Brain Around Blender

In the 3D Viewport, the Sidebar serves three primary purposes, each designated by
a specific tab:

 » Item: From the Item tab, you can directly modify your selected object by typing
in explicit location, rotation, and scale values within the Transform panel.

 » Tool: The Tool tab has much the same content you would see in the Active
Tool context of the Sidebar. This tab is particularly useful if you’re working
with a maximized 3D Viewport (Shift+Spacebar). I tend to use it a lot when
sculpting and painting.

 » View: The View tab is dedicated to customizing your 3D Viewport. From here,
you can control features like the viewport camera (which is different from
the scene camera), the location and orientation of the 3D cursor, and the
collections that are visible in the 3D Viewport. Chapter 4 has more on working
with collections. The View tab is also where you can control annotations in
the 3D Viewport. There’s more on annotations later in this chapter.

The Toolbar

The Toolbar is located along the left side of the 3D Viewport. You can toggle its

visibility by choosing View ➪ Toolbar in the 3D Viewport’s header or by using the

T hotkey.

The Toolbar is a new feature in Blender, as of version 2.80. It allows you to have a

workflow similar to other computer graphics applications where you first select a
tool and then use that tool to act on an object or selection. Depending on what

mode you’re in (Edit mode, Object mode, Sculpt mode, and so on), you will have a
whole bunch of tools or only a handful.

Tool Settings

Specific to the 3D Viewport’s header, there’s an additional space at the top of that
region, sometimes referred to as the Topbar. This area of the header is where you

see some of the specific settings available for whatever tool you choose in the
Toolbar. You can toggle the visibility of the Topbar by choosing View ➪ Tool Set-
tings in the 3D Viewport’s header menu.

The controls in the Topbar are really handy, but they’re also available in the Side-

bar as well as the Active Tool tab of the Properties editor. Personally, I tend to hide

the Topbar to save screen space, but if you’re used to programs like Photoshop or

Krita, you may find the Topbar more familiar.

CHAPTER 2 Understanding How Blender Thinks 47

The Last Operator panel

There’s an additional quasi-region in the 3D Viewport that’s extremely useful. At

the bottom left of the 3D Viewport is the Last Operator panel. If you’ve just opened

Blender, you won’t see this panel at all (because you haven’t done anything yet).
However, if you perform an action in Blender — also known as an operator — like
moving your selected object or adding a new object, this panel updates to display

values relevant to that operator. Using this panel, you can perform a quick, rough
operation and then tweak it to be more precise. For example, if you add a UV
Sphere to your scene (Add ➪ Mesh ➪ UV Sphere), Blender adds a UV Sphere object
to your scene at the location of the 3D cursor with 32 segments and 16 rings. Using
the Last Operator panel, you can not only adjust the location of your new sphere,

but you can also modify the number of segments and rings it has. You can see

more on how the Last Operator panel is used in Chapter 5.

Depending on the last action you do in Blender, the Last Operator panel can

 sometimes take up quite a bit of space, so you may choose to leave it collapsed.

However, it can be annoying to constantly move your mouse back to the Last

Operator panel just to expand and collapse it. Fortunately, there’s a faster way.

You can access the Last Operator panel by pressing F9. Upon doing so, a “floating”
Last Operator appears under your mouse cursor. Figure 2-10 shows the floating
Last Operator panel after adding a UV sphere to the scene.

FIGURE 2-10:
You can open a

floating Last
Operator panel
by pressing F9.

48 PART 1 Wrapping Your Brain Around Blender

You should note that the Last Operator panel is relevant only for the last operation

you actually performed. It’s not a construction history, and it doesn’t persistently

remain in memory after you perform subsequent operations. For example, if you

add a UV Sphere and then immediately rotate that sphere, there’s no way for you
to adjust the number of segments and rings in it from the Last Operator panel.

Even if you undo the rotate operation, those Last Operator values won’t return

(after all, Undo is another operation). The Last Operator panel relates to the last
thing you did — no more, no less.

Collaborating (with others and yourself)
with annotations

If you’re making anything big with 3D computer graphics like a movie or a video

game, you’re most likely going to be collaborating with other people. 3D computer

graphics in general, and animation specifically, is an extremely collaborative art
form. Otherwise, it would take forever to get anything completed. If you’re

 working with other people, it’s often useful to be able to pass notes to each other

within the context of your work so you can give helpful feedback or let the next

person in the pipeline know why you did something. In fact, this can even be

 useful if you’re working solo. I leave notes to myself all the time in my .blend

files as reminders so I don’t have to mentally keep track of every random design
decision I made while working.

Blender’s annotation feature gives you the ability to leave these kinds of notes in

your .blend files, right in the editor you’re working in. The controls for annota-

tions are at the bottom of the View tab of the Sidebar. Expand the Annotations
panel and you should see a button labeled New. Click that button and the panel

will expand to look like what’s shown in Figure 2-11.

The list box can hold multiple layers of annotations. By default Blender

 pre-populates this list box with a single layer named Note. To the left of the layer

is a color swatch that dictates the color of any annotations on that layer. Add and

remove layers by using the plus and minus buttons to the right of the list box.

Below the layer list box is a Thickness slider that controls the thickness of any

annotations you make on that layer.

The easiest way to make a new annotation is to use the Annotate tool in the

 Toolbar. Activate this tool by clicking and you’re instantly able to start writing and

drawing in your 3D Viewport on your active annotation layer. If you hold down

your mouse button while clicking the Annotate tool in the Toolbar, you also get

options to draw lines, polygons, and erase.

CHAPTER 2 Understanding How Blender Thinks 49

For faster access to annotating, you don’t have to use the Annotate tool. You can

just hold down D while left-clicking and dragging your mouse cursor in the 3D

Viewport. This action gives you quick access to Annotate’s draw tool and lets you

add marks on whichever annotation layer you have active in the Sidebar.

Technically, you can even animate your annotations (for giving feedback on ani-

mated work). You just need to scrub forward on the Timeline and make a new
annotation mark. Your annotations will update on playback as you change to those

frames. You can adjust the timing of your annotations from the Grease Pencil con-

text of the Dope Sheet.

You can actually make quite detailed and intricate animations using annotations

alone. However, if you’re going to try and do full-blown 2D or 2.5D animation, I

suggest you use Blender’s Grease Pencil objects instead. They’re more powerful

and way better-suited for the job. See Chapter 15 for more on animating with
Grease Pencil.

Don’t know how to do something? Hooray
for fully integrated search!

Blender has a search feature that’s fully integrated into Blender’s interface. If

you’ve been working your way through this chapter, you’ve probably already used

it when adding custom event maps.

FIGURE 2-11:
The Annotations

panel in the
View tab of the

Sidebar is where
you control how

your annotations
look in the

3D Viewport.

50 PART 1 Wrapping Your Brain Around Blender

The benefit here is that if you know the operation you want to perform, but don’t
know where to go in Blender’s interface to access it, you can simply search for that

operator and perform it immediately. How’s that for awesome?

The fastest way to access Blender’s integrated search feature from any editor is to

press F3. A blank menu with a search field at the top appears. From here, simply
start typing the name of the operator you want, and Blender updates the menu

with search results that match what you’ve typed. Furthermore, if a hotkey is

associated with that operation, it shows up to the right of the operator name in the

menu so that you can remember the hotkey in the future. As an example, open the

search menu (F3) and type save. As you type, the menu updates with operations

within Blender that relate to saving.

Using the integrated search feature is a great way to familiarize yourself with the
way Blender works, even more so if you’re migrating from another program. In

that case, you know the terminology for what you want to do; you just have to find
out how Blender does it. Figure 2-12 shows Blender’s integrated search menu.

Customizing Blender to Fit You

You can tweak Blender’s screen layout, known as a workspace, to virtually any

configuration you can imagine. However, Blender’s customization features go
much deeper than just readjusting the areas in a Blender window. With a little

FIGURE 2-12:
Blender’s

integrated search
menu is a great

way to get

familiar with
Blender’s

operators.

CHAPTER 2 Understanding How Blender Thinks 51

time and effort, you can completely overhaul Blender to be as comfortable of a
work environment as possible. This ability to customize is especially useful for

people who are migrating to Blender from other 3D graphics programs. I won’t

say that you can make Blender behave exactly like any of these other programs,

but sometimes little things like using the same keyboard shortcuts help make the

transition smoother.

Although this section gives you the means to completely bend Blender’s interface

to your will, bear in mind that unless otherwise specified, this book relies on the
default settings that ship with Blender. Unless you can remember your custom-

ized behaviors, it may be more helpful to use Blender’s default settings (File ➪

Defaults ➪ Load Factory Settings).

Using preset workspaces

You can make a variety of workspaces depending on the sort of work you’re doing.

By default, Blender comes with a variety of preset workspaces, broken up into five
major categories: General, 2D Animation, Sculpting, VFX, and Video Editing. Each
category has two or more workspaces to choose from, with a few workspaces

available in multiple categories. To see all the categories and workspaces availa-

ble, click on the plus (+) tab at the end of the series of workspace tabs at the top of
your Blender window.

If you don’t see the plus tab, your screen resolution may be set such that all the

tabs aren’t visible. Hover your mouse cursor over the tabs and scroll your mouse

wheel to expose the tabs that have gotten obscured by other parts of Blender’s

interface.

Once you click on the plus tab, you should be greeted with a menu like the one

shown in Figure 2-13.

The following sections give a quick breakdown of each workspace per category.

FIGURE 2-13:
Add any

workspace to
your Blender

window by
navigating the

menu invoked by
clicking the plus

icon at the end of
the workspace
tabs along the

top of the
Blender window.

52 PART 1 Wrapping Your Brain Around Blender

General

These workspaces are the most common in a general 3D animation workflow.

 » Animation: The Animation workspace gives you a screen layout with an
assortment of editors that allow you to animate in your 3D scene efficiently.
See Chapters 11 and 13 for more on using this workspace.

 » Compositing: Compositing is the art of mixing images (or, more commonly,
sequences of images, like in videos) so they look like a single integrated image.
This workspace is where you can do everything from simple color adjustment
to adding balls of electricity to a character’s hands. Chapter 18 has more on
compositing in Blender.

 » Layout: In 3D animation, the layout stage is where you block in your scene
and figure out how your characters and camera are positioned relative to
each other and their environment. It’s where all your scene planning starts,
so it makes sense that this workspace is the default one that loads when
you first launch Blender. The screen layout for this workspace is a good
general-purpose place to start any 3D project.

 » Modeling: Unless everything in your scene is supposed to be simple cubes
and spheres, you’re going to want to have more complex-looking characters,
props, and environments. The modeling workspace is an ideal workbench for
building your 3D creations. Chapters 5, 6, and 7 get heavily into modeling and
using this workspace.

 » Rendering: Once you’ve gone through the process of building out and
animating your scene, you’re likely interested in sharing the results. Not
everyone has a copy of Blender (but they could, it’s free!), so the common
practice is to render that scene to image or video. From the Rendering
workspace, you can focus on refining those final output images, getting
Blender to produce the highest quality output in the shortest possible
amount of time. Chapter 16 covers rendering in more detail.

 » Scripting: Scripting in this case doesn’t refer to writing screenplays (though
you could technically use this workspace for that. I have!). Instead, in this case,
scripting is the process of writing little snips of code to automate steps in your
process and generally make your life in 3D more pleasant. Writing scripts is a
more advanced topic than this book covers, but there are plenty of online
resources if you’re interested in learning. In any case, this workspace is what
you’d use if you were writing scripts.

 » Sculpting: Modern 3D modeling tools have evolved to the point that they’re
almost like working with digital clay. This way of working is much more
familiar to artists with a traditional art background and Blender, being a

CHAPTER 2 Understanding How Blender Thinks 53

modern 3D application, totally supports this approach. Use the Sculpting
workspace to digitally sculpt your 3D assets. See Chapter 6 for more on
sculpting in Blender.

 » Shading: The default materials in nearly any 3D application are flat and
boring. It’s up to you to provide realism and interest to your objects’ surfaces.
Chapter 8 covers the tools necessary to go through this process, and the
Shading workspace is a critical part of that workflow.

 » Texture Paint: Whereas shading covers general material properties like
roughness and reflectivity, texture painting is where you can really add a lot
of detail and explicit color to your objects. The Texture Paint workspace is
designed to make this process as straightforward as possible. See Chapter 9
for more on working with textures.

 » UV Editing: For the most part, hand-painted textures are flat images. Like
the longitude and latitude lines on a globe, you need a coordinate system to
map the pixels of your flat image texture to the surface of your object. That
process, called UV mapping, is covered in Chapter 9 and makes use of the
UV Editing workspace.

2D Animation

With the release of version 2.80, Blender has also become a full-fledged
2D animation tool in addition to being the “Swiss Army chainsaw” of the 3D world.
These workspaces give a 2D animator the best possible work environment that

Blender can offer. See Chapter 15 for more on animating in 2D in Blender.

 » 2D Animation: This workspace very much resembles the Layout workspace
used in 3D animation. The primary difference is that the 3D Viewport is
configured to look more like a blank canvas than a 3D environment, and the
rest of the layout is geared for animating.

 » 2D Full Canvas: This workspace is similar to the 2D Animation workspace, but
it’s more of a distraction-free approach. The drawing area in the 3D Viewport
is maximized, and every other area in the Blender window is either removed
or minimized as much as possible.

 » Compositing: Animation is animation. Eventually you’re going to be mixing
images together. This workspace is exactly the same as the Compositing
workspace previously described.

 » Rendering: Similarly, whether you’re animating in 2D or in 3D, your output
from Blender needs to be rendered. This workspace is the same as the
Rendering workspace already described.

54 PART 1 Wrapping Your Brain Around Blender

Sculpting

Over the last handful of years, digital sculpting has become the way that the

majority of 3D assets are created. If your primary interest is in digital sculpting,

then the two workspaces in this section are the ones you most want to focus upon.

 » Sculpting: This is the same workspace described previously. This workspace is
just easier to find than digging into the General menu.

 » Shading: If you’re sculpting, then you’re also probably interested in custom-
izing the surface of your sculpted work, so the Shading workspace (just like
the one already described) is quite handy to have at the ready.

VFX

Visual effects, or VFX for short, is the art of taking existing footage — often
 captured with a camera, but it could also be animation footage — and modifying
it to achieve a particular effect. Maybe you want to make a daytime scene look like
it’s happening at night or perhaps you want to put a dragon in footage of your

front yard. That’s all VFX and the workspaces in this section are tuned to getting
that job done well. Chapters 18 and 19 of this book go into more detail on Blender’s
VFX tools.

 » Compositing: This workspace is the same as the one used in the General
category as well as the 2D animation one. Compositing is at the heart of VFX
work, so it makes sense to include it among this group.

 » Masking: If you’re mixing footage together, be it live action or animated,
chances are good that you’re going to have to hide or otherwise remove
something from the shot, be it the strings on a puppet or an entire house in
a neighborhood. You do this with masking, and because you’re dealing with
moving images, it’s a more involved process than you might be used to if
you’ve only ever done something like that in a single image editor like GIMP
or Photoshop. So Blender has a whole workspace dedicated to masking.

 » Motion Tracking: In VFX, you’re dealing with moving images. To make your
3D assets seamlessly integrate, it’s useful to track the movement in your
footage. Blender has a built-in motion tracker, which gives you the ability to
track the location of the video camera in 3D space as well as the movement
of objects on screen. This workspace is tuned to help you use the motion
tracker as effectively as possible.

 » Rendering: As with most work that you produce in Blender, it has to be
rendered to output files that you can share. This workspace is the same one
that has been described previously.

CHAPTER 2 Understanding How Blender Thinks 55

Video Editing

If you’re creating animations in 3D or 2D, chances are good that you’re not doing

a single shot in isolation. It’s more likely that you’re interested in chaining a

series of animated sequences in a particular order with a specific timing as a
means of telling a story. That’s the nuts and bolts of video editing and the two

workspaces in this category.

 » Rendering: This workspace is the same one described in preceding sections.
Once you finish editing your video, you need to output the results to a video
file of its own. The Rendering workspace is the best place to go through
that process.

 » Video Editing: This is the workspace where you can do the actual work of
editing video footage, whether it comes from external files captured by a
camera or directly from Blender scenes. See Chapter 17 for more on Blender’s
video editing tools.

Blender workflows
The main categories I just described in the previous sections — General, 2D Ani-
mation, Sculpting, VFX, and Video Editing — are more than just categories for
nesting workspaces. They’re also Blender workflows. When you start a new Blender

project with File ➪ New, that project can be one of those five workflow types. Each
workflow can be considered as a bundle of workspaces, with the workspace tabs
along the top of the Blender window arranged in the basic order you would go

through for that workflow from start to finish. Blender’s default behavior is to
launch with the General workflow and put you in the Layout workspace, because
layout is one of the first steps in a general 3D animation process.

In addition to clicking on a workspace tab to use it, you can cycle through work-

space tabs by pressing Ctrl+Page Up and Ctrl+Page Down.

You can rename any workspace to any name you want by double-clicking its tab.

The default workspace names work reasonably well for most situations, but as

I work, I tend to customize a workspace to the point that I’m using it for something
quite different from its original name. So in that case, I’ll often rename the
 workspace to better reflect what it is I’m doing. Get used to the idea of naming
everything in your projects. Trust me, being in the habit of using a reasonable

name makes life infinitely easier. It’s especially true when you come back to an
old project and you need to figure out what everything is.

56 PART 1 Wrapping Your Brain Around Blender

The workspace tabs at the top of the Blender window are arranged in an order that

reflects the common steps in a workflow. However, that may not be the way you
do things. Right-click any tab and Blender provides you with options to put the
tab at the front or back of the list, duplicate it, or remove it altogether. As of this

writing, you can’t reorder tabs by dragging and dropping, but hopefully that

 feature will come in future releases of Blender.

Creating a new workspace

To create a new workspace, left-click the plus tab at the end of the series of

 workspace tabs and choose the workspace that most closely matches the screen

layout you want to work within. From here, you can make the changes to create

your own custom workspace layout (like renaming it!). For example, you may
want to create a 2D painting workspace or a multi-monitor workspace with a

 separate window for each of your monitors.

If you want Blender to always launch in a different workflow than the General one,
you need to save a new startup file. This is basically a template file that Blender
uses to store the preferred environment that you want to start in. For example, say

your primary interest is 2D animation and you want Blender to always launch with

the workspace tabs for that workflow; follow these steps:

1. Start a new Blender session in the 2D Animation workflow by choosing
File ➪  New ➪  2D Animation.

2. Choose File ➪  Defaults ➪  Save Startup File to set this workflow as your
default work environment the first time you launch Blender.

Customizing the Blender environment

You can use this same method, outlined in the previous section, if you’ve fully

customized your Blender environment to something completely different from
any of the default workflows. When you use the Save Startup File feature, Blender
saves your current settings, workspaces, and even 3D scenes to a special .blend

file called startup.blend that gets loaded each time Blender starts. So any models
you have in the 3D Viewport and any changes you make to other workspaces are

saved, too. Fortunately, if you’ve made a mistake, you can always return to the

default setup by choosing File ➪ Load Factory Settings and re-create your custom
layouts from there.

This behavior of saving a special startup.blend file is fine for setting up custom
workspaces, but it has no influence on changes you make in Preferences (such as
custom hotkeys or themes). Those kinds of changes are automatically stored
 separately when you make them. Your startup file doesn’t have any effect on

CHAPTER 2 Understanding How Blender Thinks 57

changes made in Preferences (see the next section for more on configuring your
preferences in Blender). This way, you can store custom workspaces without
overwriting more important settings like keymaps and preferred add-ons.

When adjusting the layout of your workspaces, the menus and buttons in the

header of an editor can be obscured or hidden if the area is too narrow. This sce-

nario happens particularly often for people who work on computers with small

monitors, but it can also sometimes happen on high resolution, or HiDPI, 2k and

4k screens. In this case, you can do three things:

 » Right-click in the header area and toggle Header ➪  Show Menus.

The menus are collapsed into a single button with an icon consisting of three
lines, sometimes called a hamburger menu. This frees up a little bit of space,
but on smaller monitors, it may not be enough.

 » Hover your mouse cursor over the header region and scroll your mouse

wheel.

If any parts of the header are obscured, you can scroll them in and out of
view.

 » Middle-click the header and drag your mouse left and right.

The contents of the header move left and right so that you can bring those
obscured buttons into view. I personally like this approach because it feels
more direct.

Setting user preferences

This section on user preferences is by no means comprehensive. The number of

options available in Blender’s Preferences editor is mind-bogglingly large. My

intent here is to introduce you to the editor itself. Have a look on this book’s

supplementary website (blenderbasics.com) for setting some of the most useful
and relevant options in the Preferences editor. For specific details on every single
 button, see the online documentation available at https://docs.blender.org/

manual.

Of course, the first question is, “Where exactly are the controls for user

 preferences?” Well, the Preferences editor is just like any other editor in Blender
and can, therefore, appear in any area you want it to by using the Editor Type

menu in the header region of any editor. (For more information, see the section

“Looking at Editor Types,” earlier in this chapter.) Of course, you can also choose
Edit ➪ Preferences, and Blender creates a new window just for the Preferences

editor. Although creating a separate window is a bit of a violation of Blenders non-

overlapping philosophy, it is sometimes nicer because you don’t have to replace or

http://www.blenderbasics.com
https://docs.blender.org/manual
https://docs.blender.org/manual

58 PART 1 Wrapping Your Brain Around Blender

split any of your existing areas to get a Preferences editor. Also, it’s unlikely that

you’ll be modifying your preferences frequently while working on a Blender

 project, so the chances are low that this overlapping window will get in your way.

If you choose Edit ➪ Preferences, and you don’t see a new window with the

 Preferences editor, your Blender window may be in a full-screen state and your

operating system’s window manager may not be allowing the window with

 Preferences to sit atop that full-screen window. To get around this issue, toggle

off the full-screen view by choosing Window ➪ Toggle Window Fullscreen.

By default, Blender automatically saves any changes you make in the Preferences

editor so they’ll persist to the next time you launch Blender. If you don’t want this

auto-save behavior, click the button with the three-line icon (sometimes called a

hamburger menu). You’ll get a menu that includes a toggle option for Auto-Save
Preferences. Click that menu item to toggle it off. With auto-save disabled, you
manually choose to save them as your personal defaults by clicking the Save
 Preferences button at the bottom of the Preferences editor next to the hamburger

menu.

Using custom event maps

Blender has one of the most customizable event systems of any application I’ve

worked with. An event system is required for a complex program to interact with

you and me, the users. Each time you press a button or move your mouse, it

 registers with the program as an event. The program then handles the event by

performing an action of some sort. As an example, moving your mouse registers

as an event, which then triggers your computer to perform the action of updating

the location of the mouse cursor on your monitor.

Blender provides you the ability to customize the event system to suit your needs,

mapping events to a wide variety of possible Blender operations. Don’t like using

a particular hotkey in Blender’s default configuration? You’re free to change it.
And that’s just the start!

The majority of the Keymap section in Preferences (Edit ➪ Preferences) is devoted
to modifying how events are handled within Blender. This list of events is partic-

ularly daunting to look at, and you can easily get lost among all those expanding

and collapsing categories of events. Fortunately, you can modify how events are

handled in a much easier way, and you don’t even have to use the Preferences

editor if you don’t want to. Instead, you can follow these steps:

1. Find the operator you want to bind in Blender’s menu system.

As mentioned earlier in this chapter, an operator is a thing that Blender does;
it’s the thing that happens when you click a menu item in Blender’s interface.

CHAPTER 2 Understanding How Blender Thinks 59

As an example, say that you want to change the hotkey for saving a project
from Ctrl+S (the current hotkey) to Ctrl+W, the hotkey used in older versions of
Blender. You can find this operator by going to the menus at the top of your
Blender window and choosing File ➪  Save. Go to that menu item, but don’t click

it yet. Just hover your mouse cursor over it and proceed to the next step.

2. Right-click the menu item for the operator and choose Change Shortcut

from the menu that appears.

In this example, choose File ➪  Save, right-click it, and choose Change Shortcut.
Blender prompts you for a new hotkey.

3. When prompted, use the new hotkey that you want to assign to the

operation.

In this case, you press Ctrl+W.

Congratulations! Your new hotkey is assigned!

Figure 2-14 shows this process in action.

As of this writing, Blender doesn’t warn you if you attempt to assign a hotkey that

has already been bound to another operator. Blender simply double-binds the

hotkey, favoring default behaviors over custom ones. Blender’s interface will still

say your custom hotkey is assigned to the desired action, but it just won’t work as

expected. Currently, the only way to get around this problem is to make sure that

your desired hotkey isn’t already assigned.

FIGURE 2-14:
Customizing a

hotkey sequence
directly from

Blender’s menus.

60 PART 1 Wrapping Your Brain Around Blender

Of course, for ultimate control, the Keymap section of Preferences is really the

way to go. As daunting as this section may appear, it’s actually pretty easy to use.

The most effective way to make use of the event editor is to use the search feature,
a text field with a magnifying glass icon:

1. In the search filter field, type all or part of the operator you want to
customize and press Enter.

The listing below updates with Blender’s best guesses for the operator you’re
looking for. Alternatively, you can just drill down through the categories until
you find the event you want. Using the previous example, you might type
“save” in this field to find the Save Blender File operator.

If you don’t know the name of the operator, you can search by the hotkey it
uses. Left-click the drop-down menu to the left of the search filter field. You
can choose between Name (the default) to search by operator name or
Key-Binding to search by hotkey.

2. Modify the event you want to change.

Changing an actual event is much like the process used to add hotkeys to
menu items. It works like so:

(a) Use the Type of Event Mapping drop-down menu displayed to the right or the

operation name to stipulate whether the event is coming from a keyboard,

mouse, text input, or some other source. For example, if you’re adjusting a
hotkey, make sure that you’ve set it to Keyboard.

(b) Left-click the Type of Event field that comes after the Type of Event Mapping
menu. It will either be blank or already have an event in it. Upon doing so,
Blender prompts you for your new custom event (hotkey, mouse click,
and so on).

(c) Set the event with the action you want assigned to it. For example, if you’re
changing a hotkey, simply enter the key combination you want to use. If you
decide that you don’t want to change the event, just click anywhere outside
of the Event Type field.

While you’re editing your events, you might notice that a Restore button appears
at the top of the section you’re working on. At any time, if you decide that you

want to revert to the system defaults, click the Restore button. Everything goes
back to the way it initially was.

You can also use this interface to activate and deactivate events, delete events, and

restore them to their initial values. Furthermore, if you expand the event’s details

by left-clicking the triangle to the left of the operation name, you have even more

advanced controls.

CHAPTER 2 Understanding How Blender Thinks 61

Customizing the event system can be a pretty involved topic, so if you’re really

interested in making extensive changes, it’s to your benefit to play with the event
system editor in the Keymap section of Preferences a lot and make heavy use of

the Restore buttons so that you can get Blender back to its defaults if something
messes up.

After you have your events customized, you can save them to an external file that
you can share with other users or simply carry with you on a USB drive so that
your customized version of Blender is available wherever you go. To do so, click

the Export button at the top right of the Preferences editor. A File Browser opens,

and you can pick where you want to save your configuration file. The configura-

tion is saved as a Python script. To load your custom configuration, it’s possible to
load your script in Blender and just run it. However, simply using the Import but-

ton at the top of the Preferences editor is much easier.

Speeding up your workflow
with Quick Favorites

As you work more and more with Blender, you may find that there are certain
operators that you use frequently. However, perhaps you don’t want to go through

the hassle of finding a free hotkey to use as a custom event. Well, dear artist,
Blender has a special feature just for you: the Quick Favorites menu. The Quick

Favorites menu is your own custom menu that you can populate with the tasks

you perform most frequently in Blender.

To access the Quick Favorites menu, press Q. By default, you get an empty menu
that tells you that there are no menu items found. Of course, you’re certainly

going to want to start adding things to this menu. The process for adding menu

items to Quick Favorites is much like creating a custom keymap:

1. Use Blender’s menus to navigate to the operator you want to add to the

Quick Favorites menu.

2. Right-click the menu item you want to add and choose Add to Quick

Favorites.

And there you go! In just two steps, you’ve just added an operator to your Quick

Favorites menu. If you ever want to remove an item from your Quick Favorites

menu, just call up Quick Favorites (Q), right-click the menu item in question, and
choose Remove from Quick Favorites.

62 PART 1 Wrapping Your Brain Around Blender

The Quick Favorites menu is context sensitive, so you can effectively have different
Quick Favorites available in each editor. For example, if you put Add Marker in the

Quick Favorites menu of your Timeline, that menu item won’t appear when you

invoke Quick Favorites from the 3D Viewport.

As of this writing, there’s no easy way to re-order your Quick Favorites menu.

Items get added to this menu on a first-come, first-served basis. So if you added
a menu item to Quick Favorites early on and you want it at the bottom of Quick

Favorites, you’ll need to remove it first and then re-add it.

CHAPTER 3 Getting Your Hands Dirty Working in Blender 63

Chapter 3

Getting Your Hands Dirty
Working in Blender

B
lender is built for speed, and its design heavily emphasizes working as

quickly and efficiently as possible for extended periods of time. On more
than one occasion, I’ve found myself working in Blender for 10 to 15 hours

straight (or longer). Although, admittedly, part of this ridiculous scheduling has
to do with my own minor lunacy, the fact that I’m able to be that productive for

that long is a testament to Blender’s design. This chapter gets you started in
 taking full advantage of that power. I cover the meat and potatoes of interacting
with three-dimensional (3D) space in Blender, such as moving objects and editing

polygons.

If you’ve worked in other 3D programs, chances are good that a number of Blender

concepts may seem particularly alien to you. Although this divide is reduced with
each update, to quote Yoda, “You must unlearn what you have learned” in your

journey to become a Blender Jedi. If you’ve never worked in 3D, you may actually
have a slight advantage over a trained professional who’s used to a different
workflow. Hooray for starting fresh!

IN THIS CHAPTER

 » Understanding transform

orientations

 » Making changes to 3D objects

 » Speeding up the process with hotkeys

64 PART 1 Wrapping Your Brain Around Blender

Grabbing, Scaling, and Rotating

The three most basic ways of changing an object in a 3D scene are called transforma-

tions by mathematicians. In Blender, the terms are a little bit more straightforward:

 » Change location using translation.

 » Change size using scale.

 » Change rotation using orientation.

Rather than use the mathematical terms of translation, scale, and orientation,

most Blenderheads use the terms grab, scale, and rotate, respectively. Other pro-

grams might use the term move in place of grab or size in place of scale. Whatever
you call them, and whatever program you use, these three operations place any

object in 3D space at any arbitrary size and with any arbitrary orientation.

Differentiating Between
Coordinate Systems

Before you bound headlong into applying transformations to your objects, you

need to understand how coordinate systems work in 3D space. All coordinate sys-

tems in Blender are based on a grid consisting of three axes:

 » The X-axis typically represents side-to-side movement.

 » The Y-axis represents front-to-back movement.

 » The Z-axis goes from top to bottom.

This grid system with axes is referred to as the Cartesian grid. The origin, or cen-

ter, of this grid is at the (0,0,0) coordinate. The difference in the coordinate sys-

tems within Blender lies in the way this grid is oriented relative to a selected 3D

object. Figure 3-1 shows the Transform Orientations menu in the 3D Viewport
header when you left-click it as well as the corresponding pie menu that you can

see by pressing the Comma (,) hotkey.

If you’re coming from another 3D program, you may find the way Blender handles
coordinates a bit disorienting. Blender uses what’s known as a “right-handed,
Z-axis up” convention. Some programs (such as Cinema 4D and Maya) have the
Y-axis representing vertical movement and the Z-axis going from front to back.
And still other programs have either Z or Y as the vertical axis, but oriented in a

CHAPTER 3 Getting Your Hands Dirty Working in Blender 65

left-handed convention. Currently, you can’t change the coordinate system in
Blender to match any of these programs, so the right-handed, Z-up system is one

of those things that migrating users just need to get used to.

As Figure 3-1 shows, you can choose from six orientations: Global, Local, Normal,

Gimbal, View, and Cursor. Working in any of these coordinate systems gives you
absolute control of how your object lives in 3D space. Depending on how you’d like
to transform your object, one orientation may be more appropriate than the others.
Blender also gives you the ability to create custom orientations. That topic is slightly
more advanced than I have room to cover in this book, but after you create a custom

orientation, it also becomes available on the Transform Orientations menu.

This list describes details of the six possible orientations:

 » Global: You see this orientation of Blender’s base grid in the 3D Viewport.

In many ways, the Global orientation is the primary orientation to which
everything else relates, and it’s the base coordinate system described at the
beginning of this section. The Z-axis, marked in blue, runs vertically in the
space. The Y-axis is marked in green, moving along the front-to-back line, and
the X-axis is in red, along the side-to-side line. The origin is located directly at
the center of the grid.

 » Local: In addition to the Global orientation, each 3D object in Blender has a
local coordinate system. The base of this system isn’t the same as the Global
coordinate system’s base. Instead, this coordinate system is relative to the
center point, or origin, of your object. The object origin is represented by the

orange dot that’s usually located at the center of your 3D object. By default,
when you first add a new object in Blender, its Local coordinate system is
aligned to the Global axis, but after you start moving your object around, its
Local coordinate system can differ greatly from the Global orientation.

FIGURE 3-1:
The Transform

Orientations

menu from the

3D Viewport’s

header (left) and

when invoked as

a pie menu by

pressing the

Comma (,) hotkey.

66 PART 1 Wrapping Your Brain Around Blender

 » Normal: The Normal orientation is a set of axes that’s perpendicular to some

arbitrary plane. When working with just objects, this description doesn’t really
apply, so the Normal orientation is exactly the same as the Local orientation.
When you begin editing meshes, though, Normal orientation makes more
sense because you have normals (imaginary lines that extend perpendicular

to the surface of a triangle or plane) to work with. Blender also uses the
Normal orientation for the local coordinate system of bones when working

with armatures for animation. A nice way to think about the Normal orienta-

tion is the “more local than local” orientation. Chapter 4 covers editing meshes
in more detail, and Chapter 12 covers working with armatures in depth.

 » Gimbal: When you rotate an object about its X-, Y-, and Z-axes, the angles
about those axes are known as Euler (pronounced like oiler) angles.

Unfortunately, a side effect of using Euler angles is that you have the possibil-
ity of running into gimbal lock. You run into this problem when one of your

rotation axes matches another one. For example, if you rotate your object
90 degrees about its X-axis, then rotating around its Y-axis is the same as
rotating about its Z-axis; mathematically speaking, they’re locked together,
which can be a problem, especially when animating. This orientation mode in
Blender helps you visualize where the axes are, so you can avoid gimbal lock.

 » View: The View orientation appears relative to how you’re looking at the 3D

Viewport. Regardless of how you move around in a scene, you’re always
looking down the Z-axis of the View coordinate system. The Y-axis is always

vertical, and the X-axis is always horizontal in this orientation.

 » Cursor: In Chapter 2, I cover the use of Blender’s 3D cursor for adding objects
and using it as a reference when modeling. You can also use the 3D cursor’s

orientation as a reference to transform orientation by selecting this option

from the Transform Orientations menu.

All these coordinate-system explanations can be (please forgive the pun)
 disorienting. An easy way to visualize this concept is to imagine that your body
represents the Global coordinate system, and this book is a 3D object oriented in

space. If you hold the book out in front of you and straighten your arms, you move
the book away from you. It’s moving in the positive Y direction, both globally and
locally. Now, if you twist the book to the right a few degrees and do the same
thing, it still moves in the positive Y direction globally. However, in its local
 orientation, the book is moving in both a positive Y direction and a negative

X direction. To move it in just the positive local Y direction, you move the book in
the direction in which its spine is pointing.

To relate this concept to the View orientation, assume that your eyes are the View
axis. If you look straight ahead and move the book up and down, you’re translat-
ing it along the View orientation’s Y-axis. Gimbal orientation would be if you

CHAPTER 3 Getting Your Hands Dirty Working in Blender 67

rotate the book 90 degrees toward you, rotating about its X-axis. Then its Y- and
Z-axes are locked together. For a clear reference, the 3D manipulator in Figure 3-2
shows the difference between the coordinate systems.

The last object you select is the active object. If you’re using the Local, Gimbal, or
Normal orientations and select multiple objects, the transform operations happen
relative to the active object’s orientation.

You can quickly change the coordinate system you’re using by using the Comma (,)
hotkey to invoke a Transform Orientation pie menu.

Transforming an Object by
Using Object Gizmos

In Blender’s default configuration, there doesn’t appear to be a clear way to grab,
scale, or rotate whatever you have selected. In other 3D applications, there are
object gizmos, widgets, or manipulators that give you onscreen controls for trans-

forming objects. Blender has them as well.

FIGURE 3-2:
The Global, Local,

Normal, Gimbal,
View, and Cursor

coordinate

orientations.

68 PART 1 Wrapping Your Brain Around Blender

In all transform orientations under Blender, red represents the X-axis, green
the Y, and blue the Z. If you think about the primary colors for light, a handy way
to think of this is XYZ = RGB.

Activating object gizmos

Figure 3-3 shows the various kinds of transform gizmos you have available in
Blender.

There are two primary ways that you can make transform gizmos visible in the 3D
Viewport:

 » Toolbar: The Toolbar along the left side of the 3D Viewport has four buttons

for tools dedicated to transforming your objects. They’re located just below
the Cursor tool. In order from top to bottom, they are as follows:

• Move: Also referred to as grabbing or translating. You get a set of colored

axes at the origin of your object. Click and drag on the arrow of any axis to
move your selection along it. Click and drag one of the squares between

two axes and you can move your selection along the plane formed by

those axes.

• Rotate: Choose this tool and you get a set of colored circles around your

selected object’s origin. Click and drag one of the colored circles to rotate
your selection about that axis.

• Scale: The default behavior that you get when you select this tool is a set

of axes that look and behave very similar to those for the Move tool.
However, if you hold down your mouse button when selecting this tool,
you get access to another tool called the Scale Cage. With that tool, a
box-shaped “cage” appears around your selection. Click and drag any point

on the cage to scale in that direction.

• Transform: The Transform tool is a general-purpose tool that allows you

to move, scale, or rotate without changing tools.

FIGURE 3-3:
Blender gives you

an assortment of

transform tools:
Move, Rotate,

Scale, Scale Cage,
and Transform.

CHAPTER 3 Getting Your Hands Dirty Working in Blender 69

The advantage of using the transform tools in the Toolbar is that you have

quick access to them with a mouse, and their icons make it very clear what
they do. Also, the Toolbar is the only way you can activate the Scale Cage tool.
The downside of the tools in the Toolbar is that they can only be activated one

at a time. If you want to move your object and then rotate it, you have to
constantly go back to the Toolbar to change tools. This is alleviated somewhat

with the general Transform tool, but that often shows more than you really
want. Furthermore, in order to use any of these tools you have to stop using
another tool (like any of the Select tools or any of the assorted tools available

in Edit mode).

 » Gizmos menu: There’s another option to give you the ability transform your

selection in the 3D Viewport. The Gizmos menu in the header of the 3D
Viewport, as shown in Figure 3-4, has a section devoted to object gizmos
containing check boxes for Move, Rotate, and Scale. They’re all disabled by
default, but if you enable any one of them, you’ll get a control gizmo that looks
just like the corresponding one you get when activating one of the transform
tools in the Toolbar. There are two distinct advantages to activating object
gizmos this way:

• Multiple activation: You can activate any combination of gizmos. If you

want to see just the Move and Rotate gizmos, just enable those check
boxes. Enable them all and you get the same as the Transform tool. Or, as
is the default, you can disable them so they’re not in your way at all.

• Always active: A key feature of the object gizmos approach is that they’re
always there, regardless of what tool you’re using in Object mode or Edit
mode. This approach saves you time because you’re not always switching

between tools just to move your selection around (and then trying to
remember what tool it was you were using before moving). Generally
speaking, this means you end up working faster.

The only real downsides of the Gizmos menu approach is that enabling and
disabling gizmos is slightly slower because it requires an additional click to

expand the Gizmos menu, and you don’t have access to the Scale Cage tool
for scaling.

Using object gizmos

General usage for the object gizmos is described in the preceding section; how-

ever, there are some additional nuanced controls that you have while transform-

ing your selection in the 3D Viewport.

70 PART 1 Wrapping Your Brain Around Blender

Notice that when you have the Move, Rotate, or Scale gizmos active, a white circle
appears either around the origin of the gizmo or all the way around the gizmo.
Refer to Figure 3-3 if you need a refresher. This white circle control gives you the
ability to transform your object relative to your current view angle (except for
Scale, which gives you the ability to uniformly scale on all axes). For example, you
can move a selected object in the XY plane of the View orientation by left-clicking
and dragging this circle with the Move gizmo active. This convenient shortcut
prevents you from having to continually switch orientation modes for the

manipulator.

You can use the Ctrl and Shift keys while transforming to have more control. Move
in fixed increments with default settings by holding down Ctrl. Hold down Shift
while transforming an object to make adjustments on a finer scale. Hold down the
Ctrl+Shift key combo while transforming to make adjustments in smaller fixed
increments. Interestingly, these same modifier keys work when using any of
Blender’s value input fields.

This fixed-increment control is similar to (though not exactly the same as) the
basic snapping to the grid, or increment snapping, found in other 2D and 3D applica-

tions. Blender also offers the ability to snap your selected object to other objects
(or parts of them), called snap targets, in your scene. Choices for snap targets are
Increment, Vertex, Edge, Face, Volume, Edge Center, and Edge Perpendicular. You can
snap directly to the 3D scene’s grid by toggling the Absolute Grid Snap check box.
You choose which snap target you want to use by left-clicking the Snapping menu
in the 3D Viewport’s header, as shown in Figure 3-5.

FIGURE 3-4:
The Gizmos

menu in the 3D
Viewport’s header

gives you the

ability to activate

transform gizmos

so they’re always

available.

CHAPTER 3 Getting Your Hands Dirty Working in Blender 71

Holding Ctrl while transforming is actually a way to temporarily enable snapping

behavior based on a chosen snap target. However, you may prefer snapping to be
the default behavior (so you don’t have to hold down Ctrl). You can enable snap-

ping by left-clicking the magnet icon next to the Snapping menu in the 3D View-

port’s header or by using the Shift+Tab hotkey. This option tells Blender to snap
as default and that holding down Ctrl then temporarily disables snapping.

Here are the different available types of snap targets in Blender:

 » Increment: In Blender’s default behavior, your selection is snapped to fixed
increments of Blender’s base unit.

 » Vertex: The vertex is the fundamental element of a mesh object in Blender.
Using this target, the center of your selection snaps to vertices or points
(for curves and armatures) in other objects or the same object.

 » Edge: The line connecting vertices is referred to as an edge. Select this target

to snap your selection to edges in objects of your scene.

 » Face: Edges connect to one another to create polygons, referred to as faces.

Choose this option to snap to them with your selection.

 » Volume: When faces connect to create a surface, that closed surface is
referred to as a volume. You can choose this option to snap your selection

to an object’s volume. This option is particularly useful when creating a rig
for animating characters, as described in Chapter 12.

 » Edge Center: Whereas Edge snapping snaps your selection to any close point

on an edge, the Edge Center option snaps you to the center of an edge that
you move your mouse cursor near.

FIGURE 3-5:
The Snapping

menu.

72 PART 1 Wrapping Your Brain Around Blender

 » Edge Perpendicular: The Edge Perpendicular option is a little tricky to wrap

your head around. It works relative to the original location of your selection.

When you translate your selection, Blender draws a small X at its original
location. You can snap to any edge that makes a perpendicular angle with

that X.

Snapping targets work in both Object mode as well as Edit mode. For more infor-

mation on Edit mode, vertices, edges, and faces, see Chapter 4.

You can quickly change snap modes by using the Shift+Ctrl+Tab hotkey
combination.

You can observe the changes made to your object in real time by looking in the

3D Viewport’s header as you transform it. Figure 3-6 shows how the header
explicitly indicates how much you’re changing the object in each axis.

Transform operations are consistent across all manipulator modes in Blender, so
you can apply any of these methods of interacting with the Translate manipulator
in the Rotate and Scale manipulator modes. And don’t forget that you aren’t lim-

ited to working in just the Global coordinate system. You can choose any of the
other six orientations from the Transform Orientation menu and the object giz-

mos adjust to fit that orientation.

Saving Time by Using Hotkeys

Many Blender users find that the object gizmos obstruct their view too much when
working, so they never enable them or even use the transform tools from the

Toolbar. But wait, with the gizmos gone, how do I transform my objects? I’m glad
you asked. Enter one of the most powerful features of Blender: hotkeys.

Part of the beauty of Blender’s hotkeys are that they take a lot of pressure off of
your mouse hand and shorten the distance of mouse-based operations. The accu-

mulation of these little time-saving actions is what makes using hotkeys so

powerful.

FIGURE 3-6:
You can view

changes in the

3D Viewport’s

header.

CHAPTER 3 Getting Your Hands Dirty Working in Blender 73

Transforming with hotkeys

You can access nearly every piece of major functionality in Blender with hotkeys.
Transforms are no exception. One of the other terms for moving in Blender is
grabbing. That naming has specific significance as it pertains to hotkeys. To see
what I mean, follow these steps to Grab/Move your object:

1. Select the object you want to move.

2. Press G.

Congratulations! You moved your object.

3. Confirm the move by left-clicking or pressing Enter.

Cancel by right-clicking or pressing Esc.

To rotate your object, press R. Scale it by pressing S. See a pattern here? Quite a
few of Blender’s default hotkeys are easy to remember. Most of them just use the
first letter from the operation in question. And just like when using the gizmo, the
familiar Ctrl, Shift, and Ctrl+Shift keypresses for snapping and fine adjustments
still apply.

Also, because Blender tries to maintain consistency throughout its interface, you
can use these hotkeys in more than just the 3D Viewport. For example, the same
grab and scale operations work when you edit keyframes and motion curves in the

Graph Editor. How’s that for convenient?

In addition to emphasizing efficiency, Blender is designed to allow you to work for
as long as possible while incurring the least amount of repetitive stress. For this
reason, relatively few operations in Blender require you to hold down a key. Typi-
cally, you press and release a key to begin the operation; you confirm its comple-

tion by left-clicking with your mouse or pressing Enter. To cancel the operation
instead of confirming, right-click or press Esc. In fact, this keyboard combination
even works on some operations that require you to hold down a button. For exam-

ple, if you try to split an area (left-click and drag a corner widget) and then decide

you don’t actually want to split it, you can right-click or press Esc while adjusting
the boundary between areas; the operation stops.

Hotkeys and coordinate systems

By default, your transformations all happen in the View coordinate system when
you use hotkeys. So no matter how you’re viewing the scene, you’re working in
the XY plane of the 3D Viewport.

74 PART 1 Wrapping Your Brain Around Blender

Suppose, however, that you want to grab your object and move it in the global
Z-axis. You use a sequence of keypresses to do this action. Follow these steps to
grab an object and move it to the global Z-axis:

1. With your object selected, press G.

You’re now in Grab/Move mode.

2. Without canceling this operation, press Z.

A blue line should appear that indicates the global Z-axis. Your object is locked
to move only along that line. If you press Y, your object moves only along the
global Y-axis, and pressing X constrains it to the global X-axis.

Pretty neat, huh? This method of using a sequence of hotkeys works with rotating
and scaling as well (for example, R ➪ Z rotates around the global Z-axis and S ➪ X

scales along the global X-axis).

What about any of the other orientations? That’s easy too. All you need to do is set
the orientation you want from the Transform Orientations menu as described ear-

lier in this chapter. Even though you’re not using gizmos to transform your selec-

tion, Blender still pays attention to the choice you’ve made in this menu. After you
choose your preferred transform orientation, just use the standard G ➪ X/Y/Z hot-

key sequence to move your object along the corresponding axis in that transform
orientation.

Again, this method of using a sequence of keypresses works with scaling and
rotation as well. Keying the sequence R ➪ Y rotates around your chosen orienta-

tion’s Y-axis and S ➪ Z scales along your chosen orientation’s Z-axis.

If you keep your transform orientation set to Global, there’s a shortcut to trans-

forming on the local axis. Just press that axis hotkey a second time. That is, if
you’re using the Global transform orientation and you want to move your selection

along the Local Z-axis, press G ➪ Z ➪ Z.

One of the more powerful features of the transform gizmos is the ability to work
in a plane rather than just one axis. You can work in a plane with hotkeys as well.
Use Shift plus the letter of the axis that’s perpendicular to the plane you want to
move in. For example, to scale your object in the global XY plane, press
S ➪ Shift+Z. For the global YZ plane, press S ➪ Shift+X. This same methodology
also works for the Grab operation (though, not for the Rotate operation because

rotating around a plane doesn’t make much sense).

Table 3-1 shows most of the useful hotkey sequences for transforming your
objects assuming you’re in the Global transform orientation.

CHAPTER 3 Getting Your Hands Dirty Working in Blender 75

An even faster way to constrain to axes involves using the middle mouse button.
As an example, select an object and grab (G) it. Now move your mouse in roughly
the direction of the X-axis and then middle-click. A red line should appear through
your object’s origin, and the object should be locked to moving along that line,

constraining you to that axis. The same thing works in both the Y- and Z-axes. For
an even more interactive way of constraining axes, hold down your middle mouse
button while you’re grabbing. All three axes appear, and your object locks to one
of them as you bring your mouse closer to them. I absolutely love this feature.

While you’re working with hotkeys to transform your objects in Blender, it’s
worth noting that Blender has a tweak mode that allows for making very fast grab

adjustments with your mouse. To make use of tweak mode, you first need to have
the Select tool active. By default Blender starts with the Box Select tool active. To
change to the regular Select tool, left-click and hold on the Box Select tool in the
Toolbar (it’s the first one at the top). After about a second, the Toolbar will expand
to show you four possible selection tools: Select, Select Box, Select Circle, and
Select Lasso. Choose the first one, Select. Once you’ve activated the Select tool,
left-click and drag your mouse cursor on any object in your 3D scene. This shortcut
takes you right into grabbing as if you’d selected the object and then pressed G,

only faster! You can even press the middle mouse button while working to enable
axis constraints. The moment you release your mouse button, you’re done
 grabbing. Now that you know how tweak mode works, you can take full advantage
of this time-saving feature.

TABLE 3-1	 Useful Hotkey Sequences for Transformations

Grab Scale Rotate Orientation

G S R View

G ➪  Z S ➪  Z R ➪  Z Global Z-axis

G ➪  Y S ➪  Y R ➪  Y Global Y-axis

G ➪  X S ➪  X R ➪  X Global X-axis

G ➪  Z ➪  Z S ➪  Z ➪  Z R ➪  Z ➪  Z Local Z-axis

G ➪  Y ➪  Y S ➪  Y ➪  Y R ➪  Y ➪  Y Local Y-axis

G ➪  X ➪  X S ➪  X ➪  X R ➪  X ➪  X Local X-axis

G ➪  Shift+Z S ➪  Shift+Z N/A Global XY plane

G ➪  Shift+Y S ➪  Shift+Y N/A Global XZ plane

G ➪  Shift+X S ➪  Shift+X N/A Global YZ plane

G ➪  Shift+Z ➪   Shift+Z S ➪  Shift+Z ➪  Shift+Z N/A Local XY plane

G ➪  Shift+Y ➪  Shift+Y S  ➪  Shift+Y ➪  Shift+Y N/A Local XZ plane

76 PART 1 Wrapping Your Brain Around Blender

Numerical input

Not only can you use hotkeys to activate the various transform modes, but you can
also use the keyboard to explicitly input exactly how much you would like your
object to be transformed. Simply type the number of units you want to change
after you activate the transform mode.

As an example, suppose that you want to rotate your object 32 degrees around the
global X-axis. To do so, press R ➪ X ➪ 32 and confirm by pressing Enter. Translate
your object -26.4 units along its local Y-axis by pressing G ➪ Y ➪ Y ➪ -26.4 ➪ Enter.
These steps can be a very quick and effective means of flipping or mirroring an
object because mirroring is just scaling by -1 along a particular axis. For example,
to flip an object along the global Z-axis, press S ➪ Z ➪ -1 ➪ Enter. For consistency,
these numerical input operations are also available when using the 3D

manipulator.

As mentioned briefly in Chapter 2 when covering the Preferences editor, Blender
has the ability to use mathematical equations as part of the numerical input sys-

tem. This system is called the Blender’s advanced numerical input system. To take
advantage of this feature, press the Equal (=) key before entering your numerical
input. As an example, say you have a model of a car that’s 4.6 meters long; you
want to move it along the Y-axis by 6 car lengths. Sure, you could do the math in
your head (or with a calculator, if necessary), but it’s even easier to let Blender

handle the math for you by pressing G ➪ Y ➪ =4.6*6 ➪ Enter. This advanced
numerical input system even allows for simple math functions and constants,

such as sine, cosine, and pi (π). So, if you find that you need to rotate an object
about its X-axis by the cosine of 2π (that’s 1°, by the way), you could use the

 following key sequence: R ➪ X ➪ =cos(2*pi) ➪ Enter. If you’re coming from an
industrial design or architecture background, this is an immensely useful feature.

The Sidebar

One other way to explicitly translate, scale, and rotate your object is through the
Sidebar region (see Chapter 2) of the 3D Viewport. To reveal the Sidebar, go to
View ➪ Sidebar in the 3D Viewport’s header, or press N while your mouse cursor
is in the 3D Viewport. The Sidebar sits along the right side of the 3D Viewport, and
the Item tab of the Sidebar includes a Transform panel that allows you to explicitly
enter numerical values (and simple math expressions) for Location, Rotation,
Scale, as well as general Dimensions for your selection.

When in Object mode, the values in the Sidebar don’t change depending on which
coordinate system you’ve selected. Location and Rotation are always in the Global
orientation, whereas Scale is always in Local.

CHAPTER 4 Working in Edit Mode and Object Mode 77

Chapter 4

Working in Edit Mode
and Object Mode

W
hen working on a scene in Blender, your life revolves around repeatedly
selecting objects, transforming them, editing them, and relating them
to one another. You regularly shift from dealing with your model in

Object mode to doing refinements in Edit mode.

And this process isn’t only for modeling, but also for most of the other heavy tasks
performed in Blender. Therefore, you can reuse the skills you pick up in this
 chapter in parts of Blender that have nothing to do with 3D modeling, such as
animating, rigging, compositing, and motion tracking. Even if you don’t know
how to do something, chances are good that if you think like Blender thinks, you’ll
be able to make a successful guess.

Making Changes by Using Edit Mode

Moving primitive objects around is fun and all, but you’re interested in getting in
there and completely changing the primitive objects that ship with Blender
(described in detail in this chapter) to match your vision. You want to do
3D modeling. Well, you’re in the right place. This section introduces you to Edit
mode, a concept that’s deeply embedded throughout Blender for editing objects.

IN THIS CHAPTER

 » Making changes to your 3D objects

 » Adding new objects to a scene

 » Saving, opening, and appending

.blend files

78 PART 1 Wrapping Your Brain Around Blender

Even though this section is focused mostly on polygon modeling, also called mesh

editing, most of the same principles apply for editing curves, surfaces, armatures,
and even text.

When you understand how Blender thinks, figuring out unknown parts of the
program is much easier.

Switching between Object mode
and Edit mode
In Chapter 3, you do just about everything in Object mode. As its name indicates,
Object mode is where you work with whole objects. However, Object mode isn’t
very useful for actually changing the internal structure of your object. For exam-
ple, select the cube in the default scene. You know that you can turn it into a more
rectangular shape by scaling it along one of the axes. But what if you want to turn
the cube into a pyramid? You need to modify the actual components that make up
the cube. These changes are made by entering Edit mode.

There are a handful of different ways you can get to Edit mode. To get there by
menu, left-click the Interaction Mode button in the 3D Viewport’s header. It
should say Object Mode right now, because that’s the mode you’re currently in.
From the drop-down menu that appears, select Edit Mode (see Figure 4-1).
Be aware that if you’re working with an object other than a mesh, such as an
armature, the contents of this menu may vary slightly to relate more to that
object. However, with the exception of Empties (see Chapter 11), Lights, Cameras,
and Speakers, all objects have an Edit mode.

Of course, Blender also has a hotkey to enter Edit mode. Actually, technically
speaking, the hotkey toggles you between Object mode and Edit mode. Pressing
Tab is the preferred way to switch between modes in Blender, and it’s used so
 frequently that Blender users often use Tab as a verb and say they’re tabbing into
Edit mode or Object mode. This language is something you come across fairly
often in Blender user forums and in some of Blender’s online documentation.

A slightly better approach, in my opinion, is to use pie menus. Press Ctrl+Tab to
open a pie menu with the option of many modes. It isn’t quite as fast as toggling
with Tab, but it can be pretty fast if you use the hold hotkey ➪ drag mouse
 cursor ➪ release hotkey method of using the pie menu. More importantly, you get
the added benefit of easily choosing other modes. Figure 4-1 shows the Interac-
tion Mode menu in the 3D Viewport’s header and the Mode pie menu.

CHAPTER 4 Working in Edit Mode and Object Mode 79

There’s another means of entering Edit mode that’s really quite handy: You can
use Blender’s workspaces to your advantage. By default, Blender launches when
you’re in the Layout workspace, which is a decent general purpose workspace that
you can use to get a lot done. However, the Layout workspace isn’t specifically
geared for modeling. If you switch to the Modeling workspace (click the Modeling
tab at the top of the Blender window), Blender automatically toggles Edit mode for
your selected objects.

As Figure 4-2 shows, the Modeling workspace doesn’t really look all that different
from the Layout workspace. It’s basically the same area configuration, minus the
Timeline at the bottom and with a little more space for the Properties editor. That
said, there’s a lot of value in using the right workspace for the job. A good work-
flow would be to select the object you want to work on in the Layout workspace
and then jump over to the Modeling workspace (you can get there by hotkey using
Ctrl+PageDown) to edit the components of your model in Edit mode. And after
you’re done, you can pop back over to the Layout workspace (Ctrl+PageUp) to pick
another object to work on in Object mode.

Selecting vertices, edges, and faces
Regardless of how you get into Edit mode, once you’re there the cube changes
color and dots form at each of the cube’s corners. Each dot is a vertex. The line that
forms between two vertices is an edge. A face in Blender is a polygon that has been
formed by three or more connecting edges.

In the past, faces in Blender and other applications were limited to only three-
sided and four-sided polygons, often referred to as tris (pronounced like tries) and
quads. Since that time, Blender — like many other programs — gained support for
something called an ngon that can have a virtually limitless number of sides. But
don’t let Blender’s ngon functionality go to your head. There still are some limita-
tions and caveats, as covered in the “A word on ngons” sidebar later in this
 chapter. Generally, you should think of ngons as a “process” tool. With some
exceptions, like architectural models, a finished model should only consist of just

FIGURE 4-1:
On the left, the

Mode button

allows you to

switch between

Object mode and

Edit mode for a

selected object.

On the right, the

mode selection

pie menu.

80 PART 1 Wrapping Your Brain Around Blender

three- and four-sided faces. In fact, most detailed character models are made
almost completely with quads and an occasional triangle, and all 3D geometry is
reduced to triangles when it gets to your computer hardware.

For polygon editing, you can use three different types of Edit modes, sometimes
called selection modes: Vertex Select, Edge Select, and Face Select. By default, the
first time you tab into Edit mode, you’re in Vertex Select mode.

Two visual cues in the Blender interface clue you in to what selection mode you’re
using. First, for Vertex Select mode, you can see the individual vertices in the mesh.
Second, as Figure 4-3 shows, three new buttons appear in the 3D Viewport’s header
when you’re in Edit mode. The button on the left (it has an icon of a cube with a
dot over one corner) is enabled, indicating that you’re in Vertex Select mode.

To the right of the Vertex Select button is a button displaying an icon of a cube
with a highlighted edge. Click this button to activate Edge Select mode. When you
do, the vertices are no longer visible on your mesh. Clicking the last button in this
block, which has an icon of a cube with one side marked in solid, activates Face
Select mode. When Face Select mode is active, vertices aren’t visible, and each
polygon in your mesh can be selected as a single unit.

FIGURE 4-3:
The Edit mode

Select buttons.

FIGURE 4-2:
The Modeling

workspace gives

you quick access

to Edit mode and

a screen layout

that’s more

specifically
geared for

modeling.

CHAPTER 4 Working in Edit Mode and Object Mode 81

Now, you may notice that the selection mode buttons are blocked together, kind
of like they can be used together. That’s because they can! In any given Edit mode
session you can have multiple selection modes active at the same time. Simply
Shift+left-click the selection mode buttons to get this functionality. Some Blender
modelers like to have Vertex Select and Edge Select modes active at the same time
to speed up their workflow. This combined selection mode gives them immediate
control at the vertex and edge level, and you can easily select the faces by Box-
selecting across two edges.

Blender also has some handy hotkeys for quickly switching between vertex, edge,
and face selection. They’re the numbers 1, 2, and 3 across the top of your keyboard
(not the Numpad!). A handy mnemonic to help you remember which key belongs
to which selection mode is to remember how many vertices make up each one.
A vertex is a single unit, so the hotkey for Vertex Select is 1. It takes two vertices
to make an edge, so the hotkey for Edge Select is 2. And a face consists of three or
more vertices, so the hotkey for Face Select is 3. You can activate Combo Select by
holding Shift while pressing any of these hotkeys (for example, if you’re in Vertex
Select and you also want to be in Edge Select, press Shift+2). Figure 4-4 shows the
default cube in each of the select modes, as well as a Combo Select mode.

As Figure 4-4 shows, it can be a little bit tricky to tell whether you’re in Edge
Select or Face Select at a glance. To make things a little more clear, I recommend
that you enable face centers (sometimes called face dots) in the Viewport Overlays
roll-out menu in the header of the 3D Viewport. Expand the menu by clicking the
down arrow that’s to the right of the Viewport Overlays icon and you should see a
menu like the one in Figure 4-5.

This menu is large, but about halfway down, under the label of Mesh Edit Mode,
there are a series of check boxes. One of which is a check box somewhat vaguely
labeled Center. Enable that check box and you should see a small dot appear at the
center of your faces while you’re in Face Select mode. That should give you a little
bit more of a visual cue to indicate which mode you’re in.

FIGURE 4-4:
Vertex Select,

Edge Select, Face

Select, and

Combo Select

modes.

82 PART 1 Wrapping Your Brain Around Blender

By default, the first time you tab into Edit mode on a newly added object, all
 vertices/edges/faces (sometimes called components) are selected. Selecting things
in Edit mode works just like selecting anywhere else:

 » Left-click any component to select it.

 » Select and deselect multiple components by Shift+left-clicking them.

 » Select all components by pressing A.

 » Deselect all components by pressing Alt+A or clicking in an empty space in the

3D Viewport.

 » Use one of the select tools from the Toolbar (left-click and hold on the Select

tool icon in the Toolbar to see all available select tools):

• Select: This tool only allows selecting by clicking and Shift+left-clicking on

individual components.

• Box Select: Left-click and drag to draw a box around the components you

want to select. Shift+left-click and drag to add to your select. Ctrl+left-click

and drag to remove from your selection set.

• Circle Select: This tool is sometimes called brush select because selection is

a lot like painting. Any vertices that you run your mouse cursor over while

holding down the left mouse button are selected. Shift+left-click and

FIGURE 4-5:
Use the Viewport

Overlays roll-out

menu to enable

face centers so

it’s easier to tell

what selection

mode you’re

using.

CHAPTER 4 Working in Edit Mode and Object Mode 83

Ctrl+left-click work like they do with the Box Select tool. You can change the

size of your Circle Select’s “brush” by adjusting the Radius value in the

Active Tool tab of the Properties editor.

• Lasso Select: The Lasso Select tool allows you to draw an arbitrary shape

in the 3D Viewport using left-click and drag. Any component within the

shape you draw is selected. Shift+left-click and Ctrl+left-click work like they

do with the preceding two selection tools.

 » The selection tools I just mentioned are also available without going to the

Toolbar, so you can still select large groups of vertices without changing your

active tool. They operate a little bit differently from the dedicated Toolbar tools:

• Box Select by pressing B. Then you can left-click and drag your mouse
cursor to add to your selection. Deselection is done with middle-click and

drag. Get out of Box Select by right-clicking or pressing Esc.

• Circle Select is activated by pressing C. In this case, you can quick change
the radius of your selection brush by scrolling your mouse wheel.

• To use Lasso Select functionality, Ctrl+right-click and drag your mouse

cursor around the vertices you want to select. Anything within that

selection region is added to your selection.

Although the hotkey approach to these selection tools is a much faster way to
work than constantly going to the Toolbar to switch tools, you do lose the ability
to navigate the 3D Viewport while selecting with them. So if you’re doing a com-
plex selection that requires you to move around your scene, the dedicated tools are
probably the better way to go.

And, of course, all these selection tools also work in Object mode. Figure 4-6
shows what the various selection tools look like when in use.

For a slightly faster way to switch between dedicated tools, you can use the
Shift+Spacebar hotkey combination to open a little Toolbar menu next to your
mouse cursor. Figure 4-7 shows what this menu looks like.

FIGURE 4-6:
Border Select,

Circle Select, and

Lasso Select.

84 PART 1 Wrapping Your Brain Around Blender

If you’re using Blender’s default settings, you can’t see through your model. You
can’t select the vertices, edges, and faces on the back side of the model unless you
orbit the 3D Viewport to see those vertices or drop into the wireframe viewport
shading setting. (Press Z to open the viewport shading pie menu.) On occasion,
however, you may find it useful to see (and select) those hidden vertices while in
one of the other viewport shading types. To do so, click the Show X-ray button.
Located to the left of the viewport shading types block in the 3D Viewport’s header,
this button has an icon of a cube with a dotted line of its back face visible through it.
By default, the Show X-ray toggle is disabled, but you can click this button to
reveal the vertices, edges, and faces on the back of your model. The hiding of those
rear vertices is often referred to as backface culling, and it’s incredibly useful when
you’re working with complex models. For faster access, you can press Alt+Z.

Working with linked vertices
Another handy way to select things in Edit mode is by selecting linked vertices.
Linked vertices are a set of vertices within a mesh that are connected by edges. In
order to understand linked vertices better, go through the following steps:

1. Select your default cube in Blender and tab into Edit mode (or switch to
the Modeling workspace).

All the vertices are selected. If not, press A.

2. With all the vertices selected, choose Mesh ➪ Duplicate from the
3D Viewport’s header or press Shift+D to duplicate your selection.

FIGURE 4-7:
You can open a

little Toolbar

menu near your

mouse cursor

by pressing
Shift+Spacebar.

CHAPTER 4 Working in Edit Mode and Object Mode 85

Blender creates a copy of your selection and automatically switches to grab

mode, allowing you to move the duplicate set of vertices, edges, and faces

immediately.

3. Use your mouse to move your new cube off the original and confirm your
placement by left-clicking or pressing Enter.

None of the vertices in the original cube are selected. Each cube represents a

set of linked vertices. So what if you want to select all the vertices in that cube,

too? Sure, you can use the various selection tools in the Toolbar, but on complex

meshes, even those tools can get cumbersome. Instead, move to the next step.

4. Place your mouse cursor near any vertex in the original cube and press L.

Blam! All the vertices in both your cubes are selected.

Of course, the natural next question is, “How do I deselect linked vertices?” That’s
just as easy. Place your mouse cursor near any vertex on the duplicate cube you
created and press Shift+L. All vertices connected to the one near your mouse cur-
sor are deselected. I’ve found myself using L and Shift+L pretty heavily when try-
ing to place teeth in a mouth I’ve modeled. These hotkeys are very handy.

Quite a few more selection options are available to you when working with meshes.
I describe these selection methods in detail in Chapter 5.

While you’re in Edit mode, you can work only with the current selected objects.
You can’t select and manipulate other objects while you’re in Edit mode. That
said, as of Blender 2.80, it is possible to have more than one object in Edit mode at
the same time. Simply select multiple objects and tab into Edit mode as you nor-
mally would with just one object. The only caveat is that this works only on objects
of the same type. If, for example, you have a mesh and a metaball selected, only
one of them (typically the last one selected) will go into Edit mode when you
press Tab.

Still Blender’s No. 1 modeling tool: Extrude
Besides transform operations (see Chapter 3), the most commonly used modeling
tool in Blender is the Extrude operator. In meatspace, extrusion is a process whereby
some material is pushed through a shaped hole of some sort. When you were a kid,
did you ever cut out a shape in cardboard and force clay or mud or Play-Doh
through it? If so, you were extruding. If not, you certainly missed out on a good
solid five to ten minutes of fun (but don’t worry, it’s never too late to start).

86 PART 1 Wrapping Your Brain Around Blender

In 3D, extrusion follows a similar concept, except you don’t have to create the hole
to extrude through. Instead, that shape is determined by your selection, and you
can extend that selection in any direction. Follow these steps to extrude:

1. Select the object you want to edit.

2. Tab into Edit mode or switch to the Modeling workspace.

3. Select the vertices, edges, or faces you want to extrude.

Use any of the selection methods listed in the previous section.

4. Extrude your selection in one of several ways:

• Vertex, Edge, or Face menus in the 3D Viewport’s header.

Quite sensibly, because the Extrude operator is used so frequently, it’s the

first choice in each of these menus. Do note that Blender will extrude only

A WORD ON NGONS

Ngons are a fantastic help when modeling 3D meshes. However, there are still some

limitations. For example, an ngon cannot currently have a hole in it — not on its own, at
least. As the figure shows, to get a hole, you need to have two faces. There need to be
edges that connect from the inner ring of vertices to the outer ring.

As mentioned earlier in the chapter, it’s best to think of ngons as a process tool. On any

mesh that’s likely to be used in animation (like a character model) or included in real-

time environment like a video game, the finished mesh should be composed of only
tris and quads. An exception to this rule of thumb might be for architectural models
or models intended to be rendered as still images. Because those meshes won’t be
deformed by something like an armature or a lattice and they don’t have to work in a

game engine, often you can get away with leaving ngons in them.

CHAPTER 4 Working in Edit Mode and Object Mode 87

the components associated with the menu you use. So even if you have a

whole face selected, if you choose Vertex ➪ Extrude Vertices, Blender

extrudes only the vertices in your selection rather than the whole face.

Most frequently, you’ll probably want to use Face ➪ Extrude Faces.

• Extrude tool.

When you tab into Edit mode, the Toolbar on the left side of the 3D Viewport

expands with a whole mess of additional tools you can choose from. The first
of these added tools, of course, is the Extrude tool. Actually, that button is the

home of a few different extrusion tools, but I cover that later in the chapter.
The default tool for extrusion is Extrude Region, and it has an icon like the

one to the left. When you choose this tool, a yellow gizmo appears on your

mesh: a plus sign in a circle with a line to your selection. Left-click and drag

that gizmo to extrude your selection in the direction it’s pointing.

• E hotkey.

The E hotkey is by far the fastest way to extrude in Blender. When you press

E, your selection is extruded and Blender automatically puts you in grab

mode on your newly extruded parts. This means all your constraint hotkeys

still work as well. Want to extrude your selection along the global X-axis?

Press E ➪ X and off you go! If you have a face selected, your new extrusion is
constrained to move only along its normal. If you don’t want this con-

strained behavior, middle-click your mouse (without moving it) and the

constraint is removed, allowing you to freely move your extrusion around.

There are advantages and disadvantages to Blender’s extrude operator leaping
directly into grab mode when you use the hotkey approach. The advantages are
that you have all the transform functionality, such as axis-locking, snapping, and
numerical input immediately available to you. The disadvantage is that, because
of this autograb behavior, if you cancel the operation by right-clicking or pressing
Esc, the newly extruded vertices, edges, or faces are still there, just located in
exactly the same place as the vertices, edges, or faces that they originated from.

For this reason, if you cancel an extrude operation, make sure that your duplicate
vertices, sometimes called doubles, are no longer there. A quick way to check is to
press G after you cancel your extrusion. If it looks like you’re extruding again, you
have doubles.

You can get rid of doubles in a variety of ways:

 » If the canceled extrusion operation was the last thing you did, undo it by
pressing Ctrl+Z. This solution usually is the quickest.

 » If you still have the doubles selected, delete them. You can activate the

delete operation with hotkeys (X or Del), choosing to Mesh ➪ Delete ➪ Vertices

88 PART 1 Wrapping Your Brain Around Blender

in the 3D Viewport’s header. If you use the Delete hotkey, you see a menu

where you decide what elements of the mesh you want to delete. In this case,

you choose Vertices. The disadvantage of this method is that it also removes

the faces created by those vertices.

 » If you’re unsure whether you have doubles from previous canceled
extrusions, use Blender’s special Merge Vertices function:

1. In Edit Mode, select all by choosing Select ➪ All from the 3D Viewport’s
header or pressing A.

2. Right-click in the 3D Viewport and choose Merge Vertices ➪ By

Distance.

With this operator, Blender removes all doubles from your mesh. You can

also find this option in Vertex ➪ Merge Vertices ➪ By Distance in the 3D

Viewport’s header, as well as with the Alt+M hotkey.

If you have Blender’s mesh auto-merge feature enabled (it’s disabled by default,
but can be enabled in the Active Tool tab of the Properties editor within the Options
panel), you might expect that duplicate vertices automatically are removed/
merged if you have a canceled Extrude operation. This isn’t the case. Those
extruded vertices will remain in place until you move them, so don’t assume that
you’re automatically safe from having doubles when auto-merge is enabled.

Looking at the Toolbar, if you click and hold on the Extrude tool’s icon, you have
more than one Extrude tool available to you. Your choices are as follows:

 » Extrude Region: The default Extrude tool is Extrude Region, and it’s the

only one that currently has a gizmo associated with it. It works exactly as
described earlier in this section. Click the gizmo to extrude your selection.

Once extruded, you can tweak your extrusion’s position and rotation using

regular transform tools.

 » Extrude Along Normals: Every component in a mesh has a normal, an

imaginary line that sticks out orthogonally from that vertex, edge, or face.

This tool is most useful when you have multiple faces selected in your mesh.
It keeps the components of your selection joined like with the Extrude Region
tool, but each face in the new extrusion moves along its own normal. To use

this tool, just click and drag in the 3D Viewport and your selection will extrude

accordingly. If you enable the Offset Even check box in the Active Tool tab of
the Properties editor, this extrusion tool is very helpful for architectural and

hard surface modeling. Chapter 5 has more on normals and the different
approaches to modeling.

CHAPTER 4 Working in Edit Mode and Object Mode 89

MODELING ORGANICALLY WITH
PROPORTIONAL EDITING

Often, when you’re modeling organic objects or objects with smoothly curved surfaces,

such as characters, creatures, or sports cars, you may find yourself pushing and pulling
a bunch of vertices to obtain that smooth surface. You can simplify this process by using

Blender’s Proportional Editing feature.

If you come from another 3D package, you might recognize proportional editing as

being similar to the soft select feature. You activate proportional editing by left-clicking

the Proportional Editing button, which looks like two gray concentric circles in the

3D Viewport’s header. The hotkey for this operation is O. Now when you perform a
transform operation, a circle appears around your selection. Your transformation

 influences any vertices that are within this circle with a gradual falloff.

You can adjust the influence circle used by proportional editing by scrolling your
mouse wheel or pressing Alt+Numpad Plus (+) and Alt+Numpad Minus (–). Additionally,

you can control how gradual the falloff is by using the Proportional Editing Falloff pull-
down menu next to the Proportional Editing button in the 3D Viewport’s header, or

by choosing one of the options that appears in a pie menu when you press Shift+O.

The Proportional Editing feature in Blender has one more useful option. On complex

meshes, you may want to use proportional editing on one set of vertices that are

 connected to each other, but not to other nearby vertices in the same mesh. For

 example, say that you’ve modeled a character and her hand is at her side near her leg,

and you’d like to smoothly edit her hand and pull it away from the leg without having

to gradually adjust the vertices of the arm. Proportional editing is the perfect tool for
this job. However, when you try to use proportional editing as described in the previous

paragraphs, other leg vertices are within the influence circle, and you end up moving
those unintentionally. Wouldn’t it be great if proportional editing could understand

that you only want to move the hand? Well, I have good news: It can! Expand the
Proportional Editing Falloff pull-down menu in the 3D Viewport header and enable
the Connected Only check box. Alternatively, press Alt+O. With the Connected Only
option enabled, proportional editing adjusts only vertices connected to each other

within its influence area. Neat, huh?

Proportional editing works in Object mode as well. This capability can be really handy,

but it can sometimes yield undesirable results if you want to use this feature only

while in Edit mode. For this reason, double-check your 3D Viewport’s header before
 performing a transformation to see whether proportional editing is enabled.

90 PART 1 Wrapping Your Brain Around Blender

 » Extrude Individual: The Extrude Individual tool works like Extrude Along

Normals, but your extruded components aren’t connected as a cohesive unit.

Instead, in the case of faces, each face in your selection extrudes on its own

along its own local normals.

 » Extrude to Cursor: This tool gives you the fastest way to make a long series

of extrusions. Say you’re modeling tree branches or the profile of a wine glass.
The Extrude to Cursor tool is the way to go. Simply click in the 3D Viewport

and your selection extrudes right to that point. If you hold down your mouse

button, you can tweak the position of your extrusion as you go. Working this

way is particularly useful when you’re doing a series of extrusions, one right

after the other, such as when you’re roughing out a shape by “drawing” with

vertices and edges.

Technically, this tool’s feature is also available outside the tool system. While

in Edit mode, if you Ctrl+right-click in the 3D Viewport, whatever you have

selected is extruded to that location.

The Blender 27X keymap has a wide assortment of hotkeys for quickly accessing
these extrude operators without using the Toolbar; however, most of those hotkeys
are disabled in the new default keymap. Of course, you’re welcome to add your
own hotkeys and add to the Quick Favorites menu to speed up your own workflow.

For some simple examples of how to make a model using the extrude operator,
visit the tutorials I’ve placed on www.blenderbasics.com.

Adding to a Scene

There’s got to be more to life than that plain default cube, right? Indeed, there is.
Blender offers a whole slew of primitives, or basic objects, to build from.

Anytime you add a new object in Blender, the origin of that object is located wher-
ever you place the 3D cursor.

Adding objects

To add a new object to your scene in Object mode, you can use the Add menu in the
3D Viewport’s header. However, I find it faster to hover my mouse cursor over
the 3D Viewport and use the Shift+A hotkey. The menu that appears is the same as
the Add menu at the top of the editor, but you don’t have to move your mouse as
far to make a selection. Whichever way you choose to invoke the menu, you’re

http://www.blenderbasics.com/

CHAPTER 4 Working in Edit Mode and Object Mode 91

given the option of a wide variety of primitives to put into the scene. You have the
following choices:

 » Mesh: Meshes are polygon-based objects made up of vertices, edges, and

faces. They’re the most common type of modeling object used in Blender.

Chapter 5 goes into high detail on modeling with meshes. The majority of
other types of primitives listed here are covered in Chapter 6.

 » Curve: Curves are objects made up of curved or straight lines that you

manipulate with a set of control points. Control points are similar to vertices,

but you can edit them in a couple of ways that vertices can’t be edited.

Blender has two basic forms of curves, Bézier curves and NURBS (Non-

Uniform Relational B-Spline) curves. You can also use curves as paths to

control other objects.

 » Surface: A surface is similar to a mesh, but instead of being made up of

vertices, edges, and faces, surfaces in Blender are defined by a set of NURBS
curves and their control points.

 » Metaball: Metaball objects are unique primitives with the cool ability to melt

into one another and create a larger structure. They’re handy for a variety of

effects that involve blobby masses, such as clouds or water, as well as quick,
rough, clay-like models.

 » Text: The text object allows you to bring type into your 3D scene and manipu-

late it like other 3D objects.

 » Grease Pencil: Grease Pencil objects are an advanced version of Blender’s

annotation feature that you can use to make 2D images and animations.

Chapter 15 has a ton more on using Grease Pencil objects.

 » Armature: Armature objects are skeleton-like structures that consist of linked

bones. You can use the bones in an armature to deform other objects. Bones

are particularly useful for creating the puppet-like controls necessary for

character animation. There’s a lot more detail on armatures in Chapter 12.

 » Lattice: Like armature objects, you can use lattices to deform other objects.

They’re often used in modeling and animation to squash, stretch, and twist

models in a non-permanent way.

 » Empty: The unsung hero of Blender objects, Empties don’t show up in

finished renders. Their primary purpose is merely to serve as a reference
position, size, and orientation in 3D space. This basic purpose, however,

allows them to work as very powerful controls.

 » Image: Image objects are special kinds of Empties that can be used for

background and reference images while you work.

92 PART 1 Wrapping Your Brain Around Blender

 » Light: Light objects are necessary for lighting your scene. Just like in the

physical world, if you don’t have any light, you don’t see anything.

 » Light Probe: Light probe objects are specific to Blender’s Eevee renderer.
They’re used to capture indirect lighting and provide more realism to scenes

rendered in Eevee. See Chapter 10 for more information on how to use light
probe objects.

 » Camera: Like real-world cameras, camera objects define the location and
perspective from which you’re rendering your scene.

 » Speaker: You can use a speaker object in your scene to create immersive

3D sound.

 » Force Field: In the simplest terms, a force field is an Empty that acts like the

source of some physical force such as wind or magnetism. Force fields are
used primarily with Blender’s integrated physics simulation. I briefly touch
upon force fields in Chapter 14.

 » Collection Instance: A collection is a set of objects you define as being
related to each other in some way. The objects in a collection don’t have to

be the same type. Collections are handy for organization as well as appending
sets of objects from external files.

When adding new objects, be aware of whether you’re in Object mode or Edit
mode. If you add while in Edit mode, then your add options are limited to the type
of object you’re editing. That is, if you’re in Edit mode on a mesh, you can add only
new mesh primitives. Also, your new object’s data is joined with the object you’re
editing. If you don’t want the object data to join, then make sure that you tab back
to Object mode before adding anything new.

Meet Suzanne, the Blender monkey
Many 3D modeling and animation suites have a generic semi-complex primitive
used for test renders, benchmarks, and examples that necessitate something a
little more complex than a cube or sphere. Most of these other programs use the
famous Utah teapot as their test model.

Blender has something a little more interesting and unique. Blender has a monkey
head that’s affectionately referred to as Suzanne, a reference to the ape in two of
Kevin Smith’s films: Jay and Silent Bob Strike Back and Mallrats (close to the end).
You can add Suzanne to your scene by pressing Add ➪ Mesh ➪ Monkey. If you look
through the Blender community’s forums and much of Blender’s release docu-
mentation, you see Suzanne and references to her all over the place. I happen to
know that she’s even shown up in an official U.S. patent. Even the annual awards
festival at the Blender Conference in Amsterdam is called the Suzanne Awards.
Figure 4-8 shows a test render featuring Suzanne.

CHAPTER 4 Working in Edit Mode and Object Mode 93

If you absolutely must have a teapot as your test mesh, you can have that, too.
It’s in the Extra Objects add-on for meshes. Enable this add-on by going to the
Add-ons section of Preferences (Edit ➪ Preferences) and looking in the Add
Mesh category. Once enabled, you can find the teapot in the Add menu
(Add ➪ Mesh ➪ Extras ➪ Teapot+).

Joining and separating objects

In the course of creating models for your scenes, you may need to treat separate
objects as a single one, or break the parts of a single object into their own distinct
objects — for example, you may accidentally add a new primitive while you’re still
in Edit mode. Of course, you can simply undo, tab into Object mode, and re-add your
primitive, but why act like you made a mistake and go through all those extra steps?

There’s another way. When you add a new primitive while in Edit mode, all the
elements of your new primitive are selected, and nothing from your original object
is selected. If only there were a command that would let you break this primitive
away from the container object and into an object of its own. Fortunately, there is.
While in Edit mode, choose Mesh ➪ Separate ➪ Selection, and your new primitive is
separated into its own object. You can also access this function by hotkey
(P ➪ Selection).

Tab back into Object mode and select your new object. Its origin is located in the
same place as its original object’s origin. To put the origin of your new object at
its actual center, choose Object ➪ Set Origin ➪ Origin to Geometry in the 3D View-
port’s header. This Origin to Geometry operation checks the size of your object
and calculates where its true center is. Then Blender places the object’s origin at
that location.

FIGURE 4-8:
Suzanne!

94 PART 1 Wrapping Your Brain Around Blender

You can also specify that the object’s origin be placed wherever your 3D cursor is
located by choosing Object ➪ Set Origin ➪ Origin to 3D Cursor.

A third option is similar to Origin to Geometry, but it moves the object’s content
rather than the origin itself. Perform this operation by choosing Object ➪ Set
 Origin ➪ Geometry to Origin.

As expected, you can also join two objects of the same type into a single object. To
do so, select multiple objects. You can practice using the Box Select or Lasso Select
tools, or you can simply Shift+click objects to add them to your selection. The last
object you select is considered your active object and is the object that the others
join into. With your objects selected, join them by choosing Object ➪ Join from the
3D Viewport’s header or by using the Ctrl+J hotkey combination.

You can join objects of the same type only. That is, you can join two mesh objects,
but you can’t join a mesh object with a curve object. It’s possible to get around this
by converting objects to be the same time (Object ➪ Convert to). However, using
parenting or collections (discussed later in this chapter in the section “Discover-
ing parents, children, and collections”) may be more appropriate.

UNDERSTANDING THE DIFFERENCE
BETWEEN JOINS AND BOOLEANS

This is a bit of a terminology thing. If you’ve never worked in 3D computer graphics

before, you might expect that a join operation on two objects would result in a single,

connected mesh. That’s not quite how it works. Earlier in this chapter, I explain that an

object can consist of both linked and unlinked elements. There’s no requirement that,

for example, all the vertices in a mesh object are linked by faces and edges. When you

join two separate objects using Object ➪ Join, you’re really just bundling them into the

same object datablock. You aren’t changing any of the component mesh data.

To actually merge meshes into a single linked unit, you need to either

• Edit the mesh data manually — merging vertices and creating new edges and faces
as necessary.

• Use a Boolean — an operation that does a logical (for example, and, or, intersection)

combination of two meshes.

In Blender, Booleans are done with a modifier. Modifiers are covered in more detail
in Chapter 5.

CHAPTER 4 Working in Edit Mode and Object Mode 95

Creating duplicates and links
In the section “Working with linked vertices,” earlier in this chapter, an example
involved duplicating your selected vertices by using Mesh ➪ Duplicate. As you may
expect, this operation also works in Object mode (the hotkey is the same —
Shift+D — but the menu item is slightly different at Object ➪ Duplicate Objects).
This duplication method is great if you intend to take an existing object and
use it as a starting point to model another, more individualized object by tweaking
it in Edit mode. However, suppose that you want your duplicated object to be
identical to the original in Edit mode. And wouldn’t it be nice if, when you do go
into Edit mode, your changes happen to the original as well as to all the duplicates?
For duplicated objects that you have to edit only once, you want to use the power
of linked duplicates. Linked duplicates are objects that share the same internal
datablocks.

Linking objects, in this case, is different from the linked vertices described earlier
in this chapter. The fact that the same word is used in a couple different ways can
be a bit confusing, but there’s a mnemonic that can help you keep things straight:

 » Linked vertices (as described earlier in the chapter) are specific to Edit mode.

 » Linked objects (as described in this section) are specific to Object mode.

Linking data between objects

Linked duplicates are similar to what other programs call instance copies. The
process to create a linked duplicate is pretty straightforward:

1. Select the object you want to duplicate.

2. With the object selected, choose Object ➪ Duplicate Linked from the 3D
Viewport’s header or use the Alt+D hotkey combination.

From here, the behavior is just like regular duplication.

The object is automatically in grab mode.

3. Place the object with your mouse and confirm its new location by
left-clicking or by pressing Enter.

You can use a few other methods to verify that this duplicated object is, in fact, a
linked duplicate. The easiest way is to tab into Edit mode on the original object or
on any of the duplicates. When you do, all the linked objects appear to go into Edit
mode, and any changes you make here automatically update all the other objects
immediately. Figure 4-9 shows three linked duplicates of Suzanne being simulta-
neously modified in Edit mode.

96 PART 1 Wrapping Your Brain Around Blender

FIGURE 4-9:
Editing duplicated

Suzannes!

UNDERSTANDING DATABLOCKS:
FUNDAMENTAL ELEMENTS IN
A BLENDER FILE
To really understand how data linking works in Blender, it’s essential to know how data-

blocks work. A simple and obvious definition of a datablock is that it’s literally a block of

data. However, there’s obviously more to it than that. Datablocks are used throughout

both Blender’s interface and its internal structure, so understanding how they work and

how you can take advantage of them goes a long way to understanding Blender itself.

Nearly every critical element in Blender is stored in a type of datablock, from work-

spaces and scenes to objects and animations.

Not only is a datablock a handy way to store information, but it also allows Blender to

treat this information like a database. In particular, you can link datablocks and let them

share information. As an example, say that you’ve created an excellent wood material,

and you want to have two objects — a table and a chair — look like they’re both made
of the same wood. Well, rather than re-create that exact same material for each object,

you can simply link both object datablocks to the same material datablock. Your com-

puter uses less memory, and, more importantly, you have less work to do. And because

datablocks are used throughout Blender, this same concept works in all kinds of situa-

tions: sharing textures between materials, sharing particle systems between objects,

and even sharing worlds between scenes. It’s an incredibly powerful feature of Blender,

and I refer to datablocks a lot throughout this book.

CHAPTER 4 Working in Edit Mode and Object Mode 97

A second way to verify the linked status of duplicates is to look in the Object Data
tab of the Properties editor. At the top of this panel, look at the top datablock field.
This datablock field gives the name of the mesh datablock that your active object is
using. In this case, that mesh datablock is named, appropriately, Suzanne. To the
right of the name is the number of objects linked to this datablock. In other words,
this number is the count of your linked duplicates. In the case of Figure 4-9, the
number is 3. If your datablock is linked to only one object, also known as having
one user, then there’s no number at all. Figure 4-10 shows how this panel looks
when one of the Suzannes in the previous figure is selected.

Another way to visualize linked data in Blender is to consider that Blender treats
the internal structure of its .blend files like a database. As I cover in the “Under-
standing Datablocks: Fundamental Elements in a Blender File” sidebar in this
chapter, all datablocks in your scene — including objects, materials, and mesh
data — can be linked and shared between one another. The real power comes in
allowing multiple objects to share with each other. For example, you can have
objects share materials, mesh data, actions, and even particle systems. And dif-
ferent scenes can even share objects! Taking advantage of this feature not only
reduces the size of your .blend files, but it can also seriously reduce the amount
of redundant work you have to do. Figure 4-11 shows a data schematic for the
previous scene involving the three linked duplicates of Suzanne. You can see how
the datablocks in that scene relate to one another.

FIGURE 4-10:
Three objects are

sharing this

datablock.

98 PART 1 Wrapping Your Brain Around Blender

So say that you’ve been using Blender for a while without knowing about linked
duplicates, and your .blend file is rife with redundant mesh data. Is there a way
to get rid of those regular duplicates and make them linked duplicates? Of course!
Follow these steps:

1. Select all the objects that you want to share the same data.

Use any of the selection tools available to you (Box, Circle, Lasso, and

Shift+click). All the objects must be of the same type, so you can’t have a

mesh object and a curve object share the same datablock.

2. With each desired duplicate selected, add to your selection (Shift+click)
the object with the datablock that you want to share with the others.

This step makes that last-selected object the active object.

3. Choose Object ➪ Make Links from the 3D Viewport’s header menu or
press Ctrl+L to open the Make Links menu.

4. Choose the second option from the top, Object Data.

Kerplooie! All the selected objects now link to the same internal data.

Figure 4-12 shows the preceding process, using a bunch of cubes and a Suzanne
object.

FIGURE 4-11:
A data schematic

of linked

Suzannes.

FIGURE 4-12:
Linking cubes

to Suzanne.

CHAPTER 4 Working in Edit Mode and Object Mode 99

You probably noticed that the Make Links menu had some other interesting
options. Following is a description of what each one does:

 » Objects to Scene: If you have multiple scenes in your .blend file, you can
make those scenes share the same objects. This option reveals another menu

with all the scenes in the file. By choosing a scene, the object or objects that
you selected have linked duplicates created in that other scene.

 » Object Data: This option is the one you used in the preceding example.

Object Data links the internal data — be it a mesh, a curve, a lamp, or nearly
any other object — of the selected objects to the internal data of the active
object. For this option to work, all the selected objects must be of the same

type. This is the only option where having objects of the same type is

important.

 » Materials: Choosing this option causes all the selected objects to share the

same material settings. For more information on materials, see Chapter 8.

 » Animation Data: This option relates directly to animation. It’s the set of

keyframes that describe the motion of an animated object, called actions.

(Chapter 13 has more information on actions.) Choosing this option causes
all your selected objects to share the same actions as the active object.

 » Collection: In the “Discovering parents, children, and collections” section of

this chapter, you see how Blender allows you to organize your objects into

collections. Choosing this option puts all the selected objects in the same

collection.

 » Instance Collection: One cool thing about collections is that you can gener-

ate them as duplicated instances in a few ways. Choosing this option allows

multiple objects to share the same instance collection.

 » Modifiers: A modifier is an operation that Blender performs on your object’s

data without permanently changing that data (see Chapter 5). Modifiers allow
you to have very complex models that are still manageable, while retaining

the simple editability of the original data. Unlike most of the other options in

the Make Links menu, this option doesn’t link the same modifier to multiple
objects. What it really does is copy the modifier and its settings from one
object to another. In the future, you may be able to treat modifiers as linkable
datablocks, but that is not currently the case.

 » Fonts: This option is specific to text objects. If you want to change the font
on a bunch of text objects at the same time, it can be a pretty tedious manual
process. However, by choosing this option, you can quickly set the same fonts

for all selected text objects.

100 PART 1 Wrapping Your Brain Around Blender

 » Transfer UV Maps: UV maps (covered in Chapter 9) are used for mapping a
2D image to the surface of your 3D object. You can share UV coordinate

layouts between multiple 3D objects that share the same mesh topology

(objects that have the same number and connections between vertices,

but not necessarily the same vertex positions).

Like modifiers, this doesn’t really link datablocks; it actually copies the UV
layout from one mesh to the other. If you edit the layout after that, it only has

an effect on the active object.

Unlinking datablocks
Of course, if Blender has a way to create links and duplicates, you’d logically (and
correctly) think that you can convert a linked duplicate into an object with its own,
non-shared datablock. In Blender, this process is called giving that datablock a
single user.

The reason for the single user terminology goes back to how these datablocks are
tied together. From the perspective of the datablock, each object that’s connected
to it is considered a user. Refer to Figure 4-12: Each Cube object is a user of the
Suzanne datablock. By choosing to use the Make Single User operator, you’re
effectively telling Blender to duplicate that datablock and make sure that it
 connects to only a single object. To make an object have single user data, select the
object you want and then choose Object ➪ Relations ➪ Make Single User in the
3D Viewport’s header. You see a menu with the following options:

 » Object: Use this option when you have an object linked to multiple scenes

and you want to make changes to it that appear only in the specific scene that
you’re currently working on.

 » Object & Data: For cases like the preceding example with the linked Suzanne

meshes where you have a linked duplicate that you’d like to edit indepen-

dently of the other meshes, choose this option. Doing so effectively converts a
linked duplicate into a regular duplicate.

 » Object & Data & Materials: If you have an object that is not only sharing

internal object data with others, but also sharing material settings, choose this

option, and both those datablocks are duplicated and singly linked to your

selected object. Using this option is a pretty good way to make sure that your

selected object isn’t sharing with any other objects at all.

 » Materials: In cases where you no longer want to share materials between

objects, choosing this option makes sure that your selected object has its own

material settings independent of all the other objects.

CHAPTER 4 Working in Edit Mode and Object Mode 101

 » Object Animation: This option is the inverse of the Make Links ➪ Animation

Data option. If your selected object is sharing actions with any other objects,

choosing this option makes sure that it has actions of its own.

Another way to make object data a single user is to use the datablock buttons in
Blender’s interface. In Figure 4-10, the number 3 is highlighted, showing that
three objects share that particular datablock. If you left-click that number, you
make that a single user datablock. This little button shows up in many places
throughout the Blender interface. The datablocks that it operates on vary with
context (for example, seeing this button in the Material tab of the Properties
 editor means that it’s working on a material datablock; seeing it in the Dope Sheet
means that it’s working on actions, and so on), but it always means the same
thing: Create a datablock like this one that has only the selected object as its user.

There is one other way to make object data a single user: Use the Outliner. Right-
click an object data entry and choose ID Data ➪ Make Single User from the menu
that appears. There are a few datablocks (such as material actions) where this is
the only clear way to make them single user.

Discovering parents, children,
and collections
Working in 3D, you may encounter many situations where you’ll want a set of
objects to behave like a single organizational group. Now, if the objects are all the
same type, you can join them into a single object, but even with the L and Shift+L
linked selection operations in Edit mode, this approach can get unwieldy. And
joining them into a single object requires you to tab into Edit mode each time you
want to work with an individual item. That’s not very efficient, and it doesn’t give
you the flexibility of working with different kinds of objects as a single unit. The
better way to organize your objects is with parent-child relationships or with
collections.

With the release of Blender 2.80, Blender got the ability to have multiple objects
in Edit mode at the same time. This feature certainly helps when trying to model
an object consisting of multiple parts, but even with this handy feature, there are
times when parenting and collections are a better course of action.

Establishing parent-child relationships
between objects
Creating parent-child relationships between objects, or parenting in Blenderese,
organizes the objects hierarchically. An object can have any number of children,

102 PART 1 Wrapping Your Brain Around Blender

but no object can have more than a single parent. To make an object a parent,
 follow these steps:

1. Select the objects you want to be children.

They don’t have to be of the same type.

2. Make your last selection (the active object) the object that you want to
become the parent.

3. Choose Object ➪ Parent ➪ Object in the 3D Viewport’s header menu or use
the Ctrl+P ➪ Object hotkey combination.

After you confirm the operation by left-clicking or pressing Enter, Blender adds
a dotted line from the origin of each child object to the origin of the parent.

Now when you select just the parent object and perform a transform opera-

tion on it, it affects each of its children. However, if you select a child object and
transform it, none of the other children or the parent object is influenced.

A good mnemonic device for remembering the correct order for selecting objects
when you want to create a parent-child relationship is to think of the order people
get off of a boat when they’re abandoning ship: “Children first!”

Parenting is a great way to organize a set of objects that have a clear hierarchy. For
example, say that you’ve modeled a dinner table and the chairs to go around it.
Now you want to place that table and chairs in a room, but the room is scaled
much smaller than the table and chairs. Rather than select, scale, grab, and move
each object into place, you can parent each of the chairs to the table. Then you can
just select and transform the table. When you do so, all the chairs transform right
along with it, as if they were a single object! Woohoo!

To clear a parent relationship, the process is only two steps:

1. Select the child object that you want to remove from the hierarchy.

2. Choose Object ➪ Parent ➪ Clear Parent in the 3D Viewport’s header or
press Alt+P to clear the parent relationship.

If you use the hotkey, you see a pop-up menu with three options:

• Clear Parent: This option removes the parent-child relationship between

your selected object and its parent. If the parent object was transformed

after the parenting took place, the cleared child jumps back to the position,

scale, and rotation that it was in before it was parented.

• Clear and Keep Transformation: This option behaves the same as Clear

Parent, except any transformations that were made while the selected

object was a child are applied. This means that the cleared child does not

snap back to its original pre-parented state. Aside from the dashed

CHAPTER 4 Working in Edit Mode and Object Mode 103

relationship line between the former child and parent disappearing,

nothing should appear to change in your 3D scene.

• Clear Parent Inverse: This option is a bit tricky to understand. It actually

does not remove the link between the selected child object and its parent.

Instead, it basically clears the parent’s transformation from the child. Clear

Parent Inverse is handy for situations where you’ve transformed an object

before parenting it, and you want it to relate to the parent as if it had not

been transformed prior to parenting. To be honest, I don’t use this option

very often, but it’s certainly good to have around when you need it.

Another quick way of parenting within Blender is from the Outliner. But in order
to do this parenting operation, you need to change the Outliner’s display mode. By
default, the Outliner uses the View Layer display mode. To change its display
mode, click the Display Mode drop-down menu at the top of the Outliner. In this
case you want to choose the Scenes display mode. Now, from the Scenes display
mode of the Outliner, you can left-click the icon of any object and drag it over the
name of another object in the Outliner (essentially dropping it in like copying a
file into a folder on your computer’s file browser). That action automatically cre-
ates a parent-child relationship between the two objects. On complex scenes, this
is an extremely handy trick.

Many game engines and other 3D applications have a notion of grouping that’s
very different from how Blender works. They tend to treat all members of a group
as a single unit, regardless of which one gets selected. They also tend to treat
groups hierarchically; an object can only belong to one group (in turn, that group
can be a member of another group, but the base object is still only a member of
one). In fact, this behavior is a lot more like Blender’s parenting. To mimic this
behavior more seamlessly, follow these steps:

1. Create an Empty object near the center of your “grouping” of objects and
display it as a cube (Add ➪ Empty ➪ Cube).

2. Adjust the size of the Empty from the Last Operator panel (it’s the Radius
value) to roughly include all the objects in your grouping.

3. Name the Empty something clever to indicate the grouping’s name.

4. Make all objects you’re grouping a child of the Empty (select each object,
select the Empty, Ctrl+P ➪ Object).

With this bit of legwork done, you can select the Empty’s cube outline to trans-
form your whole grouping. Even better, your grouping will be hierarchically orga-
nized in the Scenes display mode of the Outliner. Many game-engine export
scripts properly recognize and translate this structure to their native means of
grouping.

104 PART 1 Wrapping Your Brain Around Blender

Creating collections
Of course, under some circumstances, parenting doesn’t make sense for organiz-
ing a set of objects. A good example is a lighting setup that you want to adjust and
reuse. Sure, you can rationalize that perhaps the key light is the most important
light and, therefore, should be the parent, but that logic is a bit of a stretch and
doesn’t make much sense in more complex setups. You could also add an Empty
to the scene and parent all your lights to it. That solution works, but what if you
wanted to make a duplicate instance of that light rig?

For these cases, Blender’s collections feature is ideal. You may not be aware of this,
but if you’ve been working in Blender, you’ve been using collections all along. Fire
up a new Blender session and have a look at the Outliner. You should see something
like what’s shown in Figure 4-13. By default, all Blender sessions start with two
collections: a Scene Collection that binds objects to a particular scene in your
.blend file, and a general collection — named Collection — within that scene. All
the default objects (the cube, camera, and light) are part of the collection.

If you’re coming from another 3D application, you might think of collections like
groups or layers, but they’re so much more than that in Blender. Collections are
not only a great way to organize your scenes, but they’re also an integral part of
other processes in Blender such as instancing and compositing.

Even with just the one collection in your scene, there are a few things you may
want to do from the Outliner. For the first thing, I strongly recommend that you
rename your collection to something that makes sense to you. Nothing is more
confusing than opening an old project and seeing your collections named Collec-
tion, Collection 1, Collection 2, and so on.

To rename a collection, double-click its name in the Outliner and type the new
name you’d like to use. You can’t do this with the scene collection, but any collec-
tion within the scene is fair game.

FIGURE 4-13:
The Outliner is

where you

manage

collections. Four

chapters into this

book and you’ve

been using them

all along!

CHAPTER 4 Working in Edit Mode and Object Mode 105

Looking back at Figure 4-13, notice also that the collection has a check box to the
left of its name and an eye icon to the right of it. Both these controls seem to have
a similar effect on the objects in the 3D Viewport, but in application, they’re used
very differently. The check box is specific to how the collection relates to your
 current view layer, used when rendering and compositing (see Chapter 18 for
more on view layers). If you disable the check box, that collection is basically
 disabled for this part of your scene. The eye icon will also hide the objects from
your scene if you click on it to disable it, but the difference is that those objects
aren’t disabled, they’re just not currently visible in the 3D Viewport.

To test the difference between these two controls, disable one and then render
your scene (Render ➪ Render Image). Then re-enable it and disable the other
before rendering again. You should notice that when you disable the check box,
nothing appears when you render, but when you click the eye icon to close it, your
objects in the collection still appear when you render.

For a faster way to control the visibility of collections in your scene, you can use
the Collections panel in the View tab of the 3D Viewport’s Sidebar. That panel lists
all the collections enabled in your current view layer and provides you with toggles
to control visibility.

Playing with one collection is fun and all, but it’s when you have multiple collec-
tions that you can really see this feature sing. From the View Layers display mode
of the Outliner, you can create a new collection by clicking the New Collection
button on the right side of the Outliner’s header. Clicking this button adds a new
empty collection to your scene. You can populate that collection by dragging and
dropping objects into it.

Of course, you’re not always working in the Outliner. Sometimes the Outliner is
hidden or you’re working with a maximized 3D Viewport (Ctrl+Spacebar) and you
don’t want to shrink it just to see the Outliner. Fortunately, you can also manage
collections from the 3D Viewport. The easiest way to create a new collection from
the 3D Viewport is to move one or more objects to it. Follow these steps:

1. Select all the objects you want to include in the new collection.

As an example, say you want the lights in your scene to be in their own

collection, so you start off by selecting all your lights.

2. Choose Object ➪ Collection ➪ Move to Collection or use the M hotkey.

A secondary menu appears with a list of your current collections in your scene.

Choose the menu item at the bottom that says New Collection. A pop-up will

appear where you can name your new collection. In this example, you might

choose to name that collection Lights. After you confirm the collection’s name
by clicking OK, all your selected objects are moved to your new collection.

106 PART 1 Wrapping Your Brain Around Blender

Looking in the Outliner, you should now see that your selected objects (in this
example, your lights) are no longer in your original collection, but in your newly
added one. You can also go to the Object tab of the Properties editor and look in the
Collections panel to see what collections an object belongs to.

Actually, this is an important point that highlights another example of how col-
lections and parenting differ. Whereas an object can have only one parent, it can
be a member of any number of collections. Let me write that again for emphasis.
An object can belong to multiple collections.

You might find yourself wondering what possible uses there could be for having
objects be members of multiple collections. The simple (but not easy) explanation
is scene organization. This is especially true as your scenes become more and more
complex. You may have a scene full of foliage. Each tree, flower, and shrub is part
of a corresponding collection, each named “trees”, “flowers”, and “shrubs”. Now
say you’re doing a little physics simulation on that scene and you only want the
tallest trees and shrubs to be affected by that wind force. You wouldn’t want to pull
your trees and shrubs from their collections to a collection called “physics”. It
would be much better if those trees and shrubs could be members of both
collections.

If you choose the Object ➪ Collection menu, you have a number of options:

 » Move to Collection (M): This menu item invokes the operator used in the

preceding example. Whatever objects you have selected get moved to

another collection, either pre-existing or new.

 » Link to Collection (Shift+M): This operator is similar to moving your selection

to a collection, but it does so without being removed from any collections your

selected objects are already members of. This is how you get an object to be

part of multiple collections.

 » Create New Collection (Ctrl+G): This option is always available and creates

a new collection, adding your selected objects to it. Be warned, though. As of
this writing, when you add a new collection with this menu item, it doesn’t

show up in the Outliner, even though you can plainly see it in the Object tab of

the Properties editor. For the time being, I’d suggest that you avoid using this

menu item.

 » Remove from Collection (Ctrl+Alt+G): This option is always available, and

choosing it removes the selected objects from any collections they may be a

member of. Removing all objects from all collections doesn’t delete those

collections while your Blender session is still active.

 » Remove from All Unlinked Collections (Shift+Ctrl+Alt+G): This is a quick

shortcut to remove the selected objects from all the collections they may be a

member of.

CHAPTER 4 Working in Edit Mode and Object Mode 107

 » Add Selected to Active Collection (Shift+Ctrl+G): To use this feature, you

need to pay attention to which object is your active object (hint: it’s the most

recent object you’ve selected). Then any objects you have selected become

members of all the collections your active object is a member of.

 » Remove Selected from Active Collection (Shift+Alt+G): Choose this option,

and all your selected objects (including the active object) are removed from

any collections in the active object.

In addition to having objects as members of multiple collections, you can also nest
collections within each other to give yourself a bit of a hierarchical organization.
The easiest way to nest collections within one another is through the Outliner.
Simply click and drag one collection into another, and then that collection and all
the objects in it becomes a member of the collection you moved it into.

Selecting with parents and collections
When you’re using parenting and collections, you gain the ability to rapidly select
your objects according to their groupings. Choose Select ➪ Select Grouped or press
Shift+G, and you see a menu with a variety of options:

 » Children: If you have a parent object selected, choosing this option adds all

that object’s children to the list of selected objects.

 » Immediate Children: Similar to selecting all children, except this option

traverses down the hierarchy by one step only. Children of children are not

added to the selection.

 » Parent: If the object you’ve selected has a parent object, that parent is added

to the selection.

 » Siblings: This option is useful for selecting all the children of a single parent. It

does not select the parent object, nor does it select any children that these

sibling objects may have.

 » Type: This option is useful for making very broad selections. Use Type when

you want to select all lights or all meshes or armatures in a scene. This option

bases its selection on the type of object you currently have as your active

object.

 » Collection: Use this option to select objects that live in the same collections. If

an object is in multiple collections, any objects that share any collection with

your selected object are added to the selection.

 » Hook: If you’ve added hooks, which are objects that control selected vertices

or control points in an object, this option selects them. You can find more
information on hooks in Chapter 12.

108 PART 1 Wrapping Your Brain Around Blender

 » Pass: Similar to layers, objects may have a Pass Index value that is useful for

compositing and post-production work in Blender. Choosing this option

selects any objects that share the active object’s Pass Index value. You can

find more information on passes and the Pass Index in Chapter 18.

 » Color: This option allows you to select objects that have the same color,

regardless of whether or not they link to the same material datablock.

 » Keying Set: Keying sets (covered more in Chapter 13) are used for organizing a
group of objects and properties for animation. They’re properties that all have

keyframes set at the same time. This option selects all objects that share the

current object’s keying set.

 » Light Type: This option is similar to the Type option, though it’s specific to
lights. If you currently have a light selected, choosing this option also selects

any lights of the same type (such as Spot, Point, Area, and so on).

Saving, opening, and appending

Quite possibly the most important feature in any piece of software is the ability to
save and open files. Having quick access to saving and opening files was especially
useful for early versions of Blender, which lacked any sort of undo function.
Blender users learned very quickly to save early, save often, and save multiple
versions of their project files. One beneficial side effect of this history is that
Blender reads and writes its files very quickly, even for complex scenes, so you
very rarely ever have to wait more than a second or two to get to work or save your
project.

To save to a new file, choose File ➪ Save As from the main header or use the
Shift+Ctrl+S hotkey combination. One strange thing that you may notice is that
Blender doesn’t open the familiar system save dialog that Windows, Mac, or Linux
uses. This is for a couple reasons. Because Blender uses its own File Browser inter-
face, you can be guaranteed that no matter what kind of computer you use, Blender
always looks and behaves the same on each platform. And as another point, the
Blender File Browser has some neat Blender-specific features that aren’t available
in the default OS save dialogs.

Take a look at the File Browser shown in Figure 4-14. The header for this editor
features an assortment of buttons for navigating your hard drive’s directory
structure and filtering the files shown. If you’ve used the file browser that comes
with your operating system, most of these buttons should be familiar to you. The
options in the side region on the left of the File Browser are there to give you
shortcuts to various locations on your computer’s hard drive.

CHAPTER 4 Working in Edit Mode and Object Mode 109

The largest portion of the File Browser is devoted to actually showing files and
folders. The topmost text field in this region is the current path on your hard drive
to the folder/directory you’re currently viewing. At the bottom of the File Browser
is the text field for the actual name of your file. In this field, type your project’s
name. Pressing Enter or clicking the Save As button at the bottom right corner
saves the file for you. Between the header and Current File text field is a list of the
files in the current folder. Figure 4-14 shows the Blender File Browser and labels
the various buttons in it.

By default, Blender pops up the File Browser as a child of the main Blender
window. Although this behavior is familiar if you use other applications, it breaks
the general non-blocking philosophy of the Blender interface. If you want to retain
the single-window approach, you can go to the Interface section of Preferences
(Edit ➪ Preferences) and within the Temporary Windows sub-section you can set
File Browser to Full Screen rather than its default of New Window.

Saving after the first time
After you save your .blend file once, saving gets much quicker. To do a fast save
while you’re working, choose File ➪ Save or, even faster, press Ctrl+S.

FIGURE 4-14:
The Blender

File Browser.

110 PART 1 Wrapping Your Brain Around Blender

On larger projects, however, you may not want to continually overwrite the same
file. In those cases, it’s often more favorable to save progressive versions of your
project as you work on it. You can open the File Browser and type a new name for
each version — but it’s slow. Often, when people save versions of a project file,
they usually append a number to the end of the filename (for example, file1.
blend, file2.blend, file3.blend, and so on). Blender knows this habit and aims
to help you out.

The ultra-fast way is with the following hotkey sequence: Shift+Ctrl+S ➪ Numpad
Plus (+) ➪ Enter. Pressing Numpad Plus (+) while in the File Browser automatically
appends that number to your filename for you. And if the file already has a num-
ber, it increments it by one. For logical consistency, pressing Numpad Minus (–)
decrements that value. How’s that for speedy? If you prefer to use your mouse,
you can also perform the same function in the File Browser by left-clicking the
Plus (+) and Minus (–) buttons after the filename text field.

Opening a file
Opening a .blend file is a straightforward task. Choose File ➪ Open or press
Ctrl+O. The File Browser opens again and allows you to choose which file you want
to load. To load the file, left-click the filename and click the Open Blender File
button in the upper right corner. If you have a large monitor and you don’t want
to move your mouse that far or you’re just interested in speedy shortcuts, you can
quickly select and open a file by double-clicking it.

Blender also gives you the ability to append datablocks from external .blend files.
This is a bit of an advanced topic, but if you want to know more, I cover it on this
book’s supplemental website (blenderbasics.com).

http://www.blenderbasics.com

2Creating Detailed
3D Scenes

IN THIS PART . . .

Working with vertices, modifiers, and meshes

Making 3D models with Sculpt mode

Modifying curves and surfaces

Manipulating materials

Constructing textures

Employing (and enjoying!) lighting

CHAPTER 5 Creating Anything You Can Imagine with Meshes 113

Chapter 5

Creating Anything
You Can Imagine
with Meshes

P
olygon-based meshes are at the core of nearly every piece of computer-

generated 3D artwork, from video games and architectural visualization to

television commercials and feature-length films. Computers typically handle
meshes more quickly than other types of 3D objects like NURBS or metaballs (see

Chapter 7), and meshes are generally a lot easier to control. In fact, when it comes
down to it, even NURBS and metaballs are converted to a mesh of triangles — a
process called tessellation — when the computer hardware processes them.

For these reasons, meshes are the primary foundation for most of Blender’s func-

tionality. Whether you’re building a small scene, creating a character for anima-

tion, or simulating water pouring into a sink, you’ll ultimately be working with

meshes. Working with meshes can get a bit daunting if you’re not careful, because
you have to control each vertex that makes up your mesh. The more complex the
mesh, the more vertices you have to keep track of. Chapter 4 gives you a lot of the
basics for working with meshes in Edit mode, but this chapter exposes handy

Blender features that help you work with complex meshes without drowning in a

crazy vertex soup.

IN THIS CHAPTER

 » Working with vertices

 » Keeping good topology by taking

advantage of loops and rings

 » Applying modifiers such as Mirror,
Subdivision Surface, and Array

114 PART 2 Creating Detailed 3D Scenes

Pushing Vertices
A mesh consists of a set of vertices connected by edges. Edges connect to each
other to form faces. (Chapter 4 covers this in more detail, along with how to work
with each of these mesh building blocks.) When you tab into Edit mode or switch
to the Modeling workspace on a mesh, you can manipulate that mesh’s vertices

(or edges or faces) with the same basic move, rotate, and scale tools that work on
all objects in the 3D Viewport, as well as the very handy extrude tool. These actions
form the basis for 3D modeling, so much so that some modelers refer to them-

selves as vert pushers because sometimes it seems that all they do is move little

points around on a screen until things look right.

Of course, modeling has more to it. You actually have a choice between three pri-
mary methodologies when it comes to modeling:

 » Box modeling: As its name indicates, box modeling starts with a rough

shape — typically a box or cube. By adding edges and moving them around,
the artist forms that rough shape into the desired model. Bit by bit, you refine
the model, adding more and more detail with each pass.

This technique tends to appeal to people with a background in traditional
sculpture because the processes are similar. They’re both primarily subtrac-

tive in nature because you start with a rough shape and bring about more
detail by cutting into it and reducing that shape’s volume. If you need to add
more volume to the mesh outside of the initial box shape, you select a set of
edges or faces and extrude them out or pull them out. If you need to bring
part of the mesh in from the initial box shape, you select those edges or faces
and either extrude inward or just pull them in. Box modeling is a great way to
get started in modeling, but you run a danger of ending up with really blocky
models if you aren’t careful about how you move your edges around.

 » Point-for-point modeling: Point-for-point modeling consists of deliberately
placing each and every vertex that comprises the model and creating the
edges and faces that connect these vertices. The process is actually not as bad
as it sounds. You can think about point-for-point modeling like drawing in
three dimensions. And as you may expect, this technique appeals to people
who come from a drawing background (or control freaks like me!). The
advantage of this method is that you can control the final look of your model,
and you’re less inclined to end up with a boxy shape. However, some beginner
modelers fall into the trap of getting too detailed too quickly with this
technique, so you have to be careful.

 » 3D sculpting and retopology: Within the last handful of years, this approach
to modeling has taken hold of the 3D computer graphics world to the point
that it’s now the dominant method. The process works like this: Using
specialized sculpting tools in 3D software, you start by creating a model with

CHAPTER 5 Creating Anything You Can Imagine with Meshes 115

no regard at all for topology, or how the vertices, edges, and faces are
arranged in your mesh. And then after arriving at a the form you want for
your model, you retopologize (retopo for short), creating a second mesh with
cleaner topology, based on the shape and form of your sculpt. The retopo
step uses a combination of specialized retopo tools and the traditional
modeling methods described in the preceding bullets. Initially, this technique
may sound like you’re doing double the work, but it almost always produces
better results and is a much more comfortable way to work for artists with a
traditional art background. See Chapter 6 for more detail on this technique.

The especially cool thing is that Blender supports all three of these basic modeling
techniques so you can use any one of them. Or, even better, you have the freedom
to take a hybrid approach and combine them as needed while you work. Figure 5-1
shows the difference between a rough human head started with box modeling
techniques, a point-for-point method, and sculpting.

Regardless of all the tools that get covered in this chapter, remember that one of

Blender’s most powerful modeling tools is the humble Extrude operator, as cov-

ered in Chapter 4. In fact, the vast majority of your modeling workflow in Edit
mode can be covered with just a few operators:

 » Extrude (E): As covered in the previous chapter, you can use the various
Extrude operators in the Vertex, Edge, and Face menus to extend geometry
from existing components in your mesh.

 » New Edge/Face from Vertices (F): If you select two vertices and press F (or
choose Vertex ➪ New Edge/Face from Vertices), Blender creates an edge
between those vertices. If you select three or more vertices and run the same
operator, Blender creates a face or an ngon from those vertices.

FIGURE 5-1:
From left to right,

box modeling,
point-for-point

modeling, and
sculpting a simple

human head.

116 PART 2 Creating Detailed 3D Scenes

 » Duplicate (Shift+D): Any geometry you have in your object can be duplicated
with the Shift+D hotkey combination or by choosing Mesh ➪ Duplicate. From
there, you can do further extruding and face or edge creation.

 » Delete (X): The variety of delete and dissolve features available when you
press X or choose Mesh ➪ Delete is amazingly large. The biggest thing to
remember is that Delete operators completely remove components, whereas
Dissolve operators try to remove components between linked vertices.

 » Connect Vertex Path (J): If you have two vertices on the same face that aren’t
already connected by an edge, you can explicitly add that edge by pressing J
(as in join) or by choosing Vertex ➪ Connect Vertex Path.

All the other modeling operators and tools in Blender are basically more conven-

ient ways of chaining these basic operators together.

Getting familiar with Edit mode tools
With the release of Blender 2.80, the Blender development team introduced a new
approach to Blender’s traditional modeling workflow. Whereas in the past an
effective Blender modeler would be required to make use of all manner of hotkeys
and “finger gymnastics” to make a model, the latest version of Blender doesn’t
have that requirement. Of course, the older hotkey-based approach is still there
for those of us who’ve grown to love it for its direct, unobtrusive, and downright

fast way of working. However, if you’re new to Blender (which, my guess is that
you may be if you’re reading this book), you might appreciate the comfort of hav-

ing the tool-based approach available.

When you tab into Edit mode or switch to the Modeling workspace, the 3D View-

port’s toolbar expands to provide you with a wide assortment of tools for mesh

editing. In fact, depending on the size of your computer screen, there may be more
tools there than you have screen space to see. You could certainly use your mouse’s
scroll wheel to scroll up and down the whole Toolbar, but that approach could get
really annoying, especially if you happen to be working with a pen-based tablet

interface. Fortunately, there’s a workaround. If you move your mouse cursor to
the rightmost edge of the Toolbar, you should notice that the mouse cursor
changes to a pair of arrows pointing left and right. Click and drag from there and
you’re able to expand the width of the Toolbar. If you pull to the right about
double the size of the Toolbar, you’ll get two columns of tool buttons. Pull even
farther and the Toolbar goes back to being a single column, but with text descrip-

tions of each tool. For working on smaller computer screens, I recommend using
the two-column variation. Figure 5-2 shows the expanded versions of the Toolbar
when in Edit mode.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 117

If you notice, the tools in the Toolbar have a color coding. Tools with a green
accent are tools that add geometry to your mesh, whereas tools with a violet

accent modify existing geometry. I go into detail on a few frequently used tools
later in this chapter, but the following two sections have a quick list of all the

mesh editing tools available to you in the Toolbar.

Unfortunately, due to the constraints of the length of this book, I’m not able to
include a full description of each tool in the Edit mode Toolbar. However, I have

given full descriptions of each on (www.blenderbasics.com).

When working with tools from Blender’s Toolbar, pay close attention to the status
bar at the bottom of the Blender window. Blender uses that space to display mouse
and hotkey hints on how to use the tools when they’re activated.

Adding geometry by insetting
In the preceding section, I introduced you to the Inset Faces tool. Simply put, an
inset on a face is similar to extruding that face and scaling it inward. What goes on
under the hood is slightly more involved than that. The benefits of insetting rather
than scaling become much more apparent when you start working with complex

shapes. Have a look at the model shown in Figure 5-3. On the left is the result you

FIGURE 5-2:
You can expand

the Toolbar in
Blender’s 3D
Viewport by

clicking its border
and dragging to

the right.

www.blenderbasics.com

118 PART 2 Creating Detailed 3D Scenes

get when extruding and scaling, whereas on the right you can see what happens

when insetting. In short, insetting gives you a much more even border because the
new vertices move along their normals relative to their old position instead of

simply scaling down to a single point.

Using the Inset Faces tool
As of this writing, there are no widgets or fancy gizmos in the 3D Viewport for the

Inset Faces tool. When you activate this tool by clicking on it in the Toolbar, not
much of anything changes in the 3D Viewport. However, if you look at the status
bar at the bottom of the Blender window, you get some hints about how the tool

works. You have four basic controls:

 » Select: If you left-click on your mesh, you can select components of your
mesh as if you had the Select tool active.

I suggest you work in Face Select when using the Inset Faces tool. The tool will
still work in the other selection modes, but it’s faster to select the faces you
want to inset if you’re in Face Select.

 » Inset Faces: When you left-click and drag anywhere in the 3D Viewport, that
action triggers the Inset Faces operator to start working. Drag toward your
selection to inset farther. Drag away from your selection to bring your new
geometry closer to the edge that generated it.

 » Rotate View: One of the benefits of using a tool-based workflow is that you
retain the ability to navigate the 3D Viewport (as described in Chapter 2) while
you work. Even with the Inset Faces tool active, you can middle-click and drag
to orbit around your scene, Shift+middle-click to pan, and use your mouse’s
scroll wheel to zoom.

FIGURE 5-3:
Insetting (right)
creates a nicer

border on a
complex shape

than just
extruding and

scaling (left).

CHAPTER 5 Creating Anything You Can Imagine with Meshes 119

 » Call Menu: While you work with the Inset Faces tool, a context menu is always
available. Open it by right-clicking in the 3D Viewport. This menu gives you
quick access to other modeling operators while you still have the Inset Faces
tool active.

Advanced insetting with hotkeys
The Inset Faces tool is great in its own right, but there’s a faster way to access the
Inset Tool’s functionality, regardless of whatever the active tool is. You can use
hotkeys. Nearly all the tools in the Toolbar are really a friendly interface wrapped
around an operator. An operator is what you call an action that does something in
Blender. Under the hood, the Inset Faces tool makes use of Blender’s Inset Faces
operator. Using hotkeys, you can give yourself direct access to the operator with-

out pulling your mouse all the way to the Toolbar and changing tools.

To directly access the Inset Faces operator, press I when you have one or more
faces selected in Edit mode. When you press and release the I hotkey, Blender puts
you in a kind of Inset Faces mini-mode where you can immediately inset your
selection by moving your mouse cursor. You don’t have the ability to navigate
your scene or call a context menu while in this mini-mode, but you do have access

to a few other handy features of the Inset Faces operator:

 » Thickness (move your mouse cursor): While in the Inset Faces operator’s
mini-mode, moving your mouse cursor around allows you to adjust the
thickness of the border that insetting creates.

 » Confirm (Enter or left-click): When you’ve gotten your inset to the place you
want, left-click or press Enter to confirm the operation and hop out of the
mini-mode.

 » Cancel (Esc or right-click): If it turns out that you don’t really want to inset
anything at all, you can right-click or press Esc to get out of the Inset Faces
mini-mode.

 » Depth (Ctrl): This functionality is a convenient feature of the Inset Faces
operator. If you hold down Ctrl while moving your mouse cursor, you can
move your newly inset faces along their normals. With this feature, you’re not
limited to keeping your inset faces in the same plane as the faces they
originated from. You basically get an extrude operation built-in for free!

 » Outset (O): Sometimes, what you really want is the ability to outset your
selected faces, or create a border around your selection rather than inside it.
Press and release O while in the Inset Faces mini-mode and you gain the
ability to make an outset of your selection.

120 PART 2 Creating Detailed 3D Scenes

 » Boundary (B): Quite often, when you’re insetting faces, you’re doing that on a
closed mesh or a mesh that forms a solid volume. However, on occasion, you
may have a mesh that has open edges, or edges that don’t have any neighbor-

ing faces, also known as boundary edges. In those situations, the Inset Faces
operator might give you some pretty funky results trying to inset those open
edges. Press and release B while in the Inset Faces mini-mode to toggle
whether you want insetting to work on boundary edges.

 » Individual (I): Sometimes when you work, you don’t want to inset your whole
selection of faces as a single unit, but instead you’d rather inset each face in
your selection individually. In a way, it’s kind of similar to the difference
between the Extrude Region and Extrude Individual tools. In the case of the
Inset Faces operator, though, they’re both packed into the same place. Press
and release I while in the Inset Faces mini-mode to toggle whether you want
to inset a region or each face individually.

You can see the available options of direct-access operators like Inset Faces by
looking at the header of the 3D Viewport while you’re working.

All the hotkeys I just described are actually also available when you’re using the

Inset Faces tool. Blender just doesn’t tell you that you can use them. So, for exam-

ple, if you have the Inset Faces tool active and you decide you want to add depth
to your inset faces while you work, just hold Ctrl after you left-click and drag to
start insetting. You don’t have to choose between the operator and tool. You can
use both!

Cleaning up ugly geometry by merging
Be careful when you inset on very complex shapes, though. It’s very easy to get
ugly intersecting faces (especially at corners) if you inset too far without paying
attention to what you’re doing. That intersecting geometry can give you all kinds
of problems down the road when you get to adding materials to your mesh, and

especially when animating.

If you get these kinds of nasty intersections, don’t worry too much. It’s not overly
difficult to clean them up. The most straightforward approach is to use Blender’s
merge operator. Assume you took the mesh in Figure 5-3 and inset it too far.
You’ll end up with a couple problem areas, like the ones shown in Figure 5-4.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 121

To fix these intersection issues, I recommend using Blender’s Merge operator.
You can find it in the 3D Viewport’s menu at Vertex ➪ Merge Vertices. Alterna-

tively, you can invoke the Merge operator by using the Alt+M hotkey combination.
In either case, Blender provides you with a submenu that gives you the following
choices:

 » At First: This option is available only if you’re in Vertex Select, but its function-

ality is easy to understand. If you select a series of vertices and run this
operator, all those vertices will be merged at the location of the first one you
selected. This option may not be visible in the menu if you mass select a
bunch of vertices all at once (because in that case, there was no first vertex).

 » At Last: Like At First, this variation of the Merge operator is available only in
Vertex Select and visible only if you have an active vertex (the last vertex you
select; it should be highlighted brighter than the others). When you choose
this operator, all your selected vertices merge at the location of your active
vertex.

 » At Center: This option is always available to use. When you choose this menu
item, all your selected vertices merge to a single one at the median point of
that selection. This option is a good default choice if you’re unsure about
which one you want to use.

 » At Cursor: There are times when you want to merge vertices at a very specific
location that isn’t the median point of your selection or the location of any one
of your vertices. In that case, you want to choose the At Cursor option. With
this option, all your selected vertices merge at the location of your 3D cursor.
When you use this option, I suggest you place your 3D cursor first, and then
run the Merge at Cursor operator.

FIGURE 5-4:
Insetting can

cause ugly
overlapping

intersections at

corners.

122 PART 2 Creating Detailed 3D Scenes

 » Collapse: In Chapter 3, I cover the concept of having multiple parts within a
single object, sometimes called mesh islands. If you have a mesh object with a
few different islands in it and you choose the Collapse variant of the Merge
operator, each island is merged into a single vertex.

 » By Distance: In Chapter 3, I also introduce the concept of removing doubles or

merging a bunch of vertices that are in the same location (or near each other
within a certain threshold). That kind of behavior is what you get when you
run the Merge by Distance operator.

With a minute or so of quick selecting and merging, you can take those messed up
corners from Figure 5-4 and clean them up so they look like the ones in
Figure 5-5.

Cutting edges with the Knife
You can also add geometry to your mesh by cutting into it using the Knife tool.
Blender’s Knife tool gives you the powerful ability to add arbitrary vertices, edges,
and faces on the surface of your mesh objects. Usually the Knife tool is used as a
starting point for another modeling operation that you do after it. For example,
maybe you have a wall and you want it to look like there’s a hole with a bunch of

cracks in it. You might use the Knife tool to draw the shape of the hole and those
cracks before extruding or deleting the faces for that hole. Figure 5-6 gives an
illustration of this example.

FIGURE 5-5:
Clean corners on

your inset, thanks
to the power of

the Merge
operator!

CHAPTER 5 Creating Anything You Can Imagine with Meshes 123

Using the Knife tool
When you select the Knife tool from the Toolbar, your mouse cursor changes to
look like a precision crafting knife. Similar to the Inset Faces tool, you can navi-
gate the 3D Viewport while this tool is active and you have quick access to a con-

text menu by right-clicking. However, once you left-click anywhere in the
3D Viewport, you enter a Knife mini-mode (kind of like the Inset Faces mini-mode
that you get when using the I hotkey in Edit mode). When that happens, you still
retain the ability to navigate the 3D Viewport, but your mouse’s right-click gets

new functionality. The following list is all the functions you have available in the
Knife tool’s mini-mode:

 » Cut Edges (left-click): By left-clicking and dragging your mouse cursor in the
3D Viewport, you can draw across the edges you want to cut. If you just
left-click and release without dragging, you can define locations for new
vertices in your mesh and the Knife automatically generates the edges
between them.

While you’re making cuts, watch the red and green squares that appear along
your cut line. These represent the vertices that the Knife will create once you
confirm:

• Red squares are vertices that will definitely be created.

• Green squares are a pre-visualization of these new vertex locations.

They show only when you’re in the middle of a specific cut.

 » Navigate (middle-click): Even in the Knife tool’s mini-mode, you can still
navigate the 3D Viewport (orbit, pan, and zoom) with your middle mouse
button.

FIGURE 5-6:
Using the Knife

tool, you can
prepare your

mesh for other

mesh operations

like extruding.

124 PART 2 Creating Detailed 3D Scenes

 » Confirm (Enter/Spacebar): When you finish cutting with the Knife, press
Enter or Spacebar to confirm your cuts (the latter is faster because your hand
is already closer to Spacebar than Enter).

 » Cancel (Esc/Right-click): To quit the Knife mini-mode without performing any
cuts at all, either right-click or press Esc.

 » Close Cut (Double left-click)/New Cut (E): You can perform multiple
separate cuts while in the Knife mini-mode. If you double-click or press E, you
can start a new cut anywhere else on your current mesh. The only difference
between double-clicking and pressing E is that pressing E stops your cut at the
last place you clicked, whereas double-clicking adds one last vertex to your cut
before allowing you to switch.

 » Midpoint Snap (Ctrl): If you hold Ctrl while making your cuts, you’re telling
the Knife that you want new vertices to be placed at the midpoint of any edge
your cut line crosses. If you’re drawing straight cut lines with the left-click-and-
release method, you can see the planned location of your new midpoint
vertices as green squares.

 » Ignore Snap (Shift): By default, Blender snaps the Knife to an edge if your
mouse cursor is near it. However, there are occasions when you need to
precisely place a new vertex near an edge, but not directly on it. In those cases,
the default snapping behavior can be particularly frustrating. If you hold Shift
while using the Knife, the default snapping behavior is temporarily disabled.

 » Angle Constraint (C): Occasionally, you need to make a cut that’s perfectly
horizontal, vertical, or at a 45° angle (relative to the view axis). Press and
release C to toggle the Knife’s ability to constrain your cuts to these axes.

Try to avoid holding down C for the angle constraint feature; otherwise, you
may notice that your cut line jitters erratically. This is because the angle
constraint feature is conflicting with snapping.

 » Cut Through (Z): In some instances, you may want the Knife to cut through
both sides of a mesh with the same cut line (for example, if you’re modeling a
four-post bed and you want to add a cut at the same height on all four posts).
If you press Z while in the Knife mini-mode, you toggle the Knife’s ability to
perform this kind of cut through the mesh.

The Knife’s cut-through feature works regardless of whether you can actually
see the other side of your mesh (such as when in wireframe viewport shading
or when you have Show X-ray enabled). For this reason, it’s always a good idea
to check the other side of your mesh after doing a cut to make sure you get
your intended results.

In Blender’s interface, you’ll sometimes see the abbreviations LMB (left mouse
button), MMB (middle mouse button), and RMB (right mouse button). Through-

out this text I’ll default to using the longer form.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 125

Just like with the Inset Faces tool, you can also access the operator behind the
Knife tool regardless of what tool is currently active in the Toolbar by using a
hotkey. In the case of the Knife tool, you can get to the Knife operator’s mini-
mode by pressing K. From there, Blender acts just as if you’d clicked on the Knife
tool in the Toolbar and started cutting.

Bisecting
If you long-press the button in the Toolbar that you use to enable the Knife tool,
a menu expands from there, giving you access to another cutting tool, the Bisect

tool. Whereas the Knife tool operates only on the surface of your mesh (unless you
enable the cut-through feature by pressing Z), the Bisect tool is meant to cut
through by default.

Unlike the Knife tool, the Bisect tool works only on selected edges and faces in
your mesh. So if you only have disconnected vertices or nothing selected, Blender
will give you a warning if you try to use the Bisect tool. So before you use the
Bisect tool, most of the time you’ll want to select all the components of your mesh

by pressing A.

With your components selected and your Bisect tool active, you use the tool by
left-clicking and dragging your mouse cursor across your mesh. When dragging
your mouse cursor, Blender draws a straight line from where you first click to
where your mouse cursor is currently located. This line is your bisecting line.
When you release your left mouse button, there’s a cut that goes all the way
through your mesh, with all the necessary edges and vertices required to make

that cut. Furthermore, you have the ability to adjust your bisecting cut with a
gizmo that appears, as shown in Figure 5-7.

FIGURE 5-7:
The Bisect gizmo

allows you to
adjust your

bisecting cut after
you’ve made it.

126 PART 2 Creating Detailed 3D Scenes

The controls for the Bisect tool’s gizmo are fairly straightforward. Left-click and
drag the yellow arrow to adjust the placement of your cut. Left-click and drag the
light blue circle to rotate your cut.

The Bisect tool’s gizmo is placed at the first place you click when you draw your
bisecting line, so all rotations of your cut are relative to that point. If you need to
rotate that cut relative to a specific location, pay close attention to where you
make your first click.

Like the Inset Faces tool and Knife tool, there is a direct-access operator for the
Bisect operator. However, unlike those other operators, there’s no default hotkey
bound to the Bisect operator. To access it, you need to choose Mesh ➪ Bisect. From
there, you can either assign your own hotkey or add the Bisect operator to your

Quick Favorites menu. For more on setting your own hotkeys and managing the
Quick Favorites menu, see Chapter 2.

Rounding your corners by beveling
I mention earlier in this chapter that nothing in nature has a perfectly sharp
corner. Sure, knives are sharp and glass broken at right angles can cut you, but
if you zoom in close enough, even those edges are rounded, just on a much finer
scale. Barring exceptions like those, just about everything else in nature is going
to have a rounded corner that you can see. If you want to make detailed
3D models with realistic geometry, you need to add that kind of rounding to the

corners on your meshes. The Bevel tool is designed exactly for this purpose.

Like a few of the tools in Blender’s Toolbar, the Bevel tool doesn’t have a dedi-
cated gizmo of its own, so when you activate the Bevel tool, you don’t see much

change in the 3D Viewport. Also, similar to the Bisect and Inset Faces tools, you
need to have some components selected on your mesh. Figure 5-8 shows a
simple mesh on the left and that same mesh beveled in a few different ways to
its right.

FIGURE 5-8:
The Bevel tool
gives you the
ability to add

realism to your
models by

rounding their

corners.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 127

I suggest you use Edge Select when working with the Bevel tool. You don’t need to
switch tools to make your selection. Just like the Inset Faces tool, you can use left-
click to select components while the Bevel tool is active.

Using the Bevel tool
With your edges selected, left-click and drag your mouse cursor in the 3D View-

port and you’ll enter the Bevel tool’s mini-mode (like that of the Knife and Inset
Faces tools). If you look at the status bar at the bottom of your Blender window,
you can see that the Bevel tool’s mini-mode gives you the following options:

 » Width: With your left-mouse button held down, you can drag your mouse
cursor around the 3D Viewport to adjust the width of the bevel you’re adding
to your selection. When you’re pleased with how the bevel looks on your
selected edges, just release the left mouse button to confirm the operation.

 » Cancel (Esc/right-click): Of course, if you don’t like the way the bevel is
looking, you can always cancel with right-click or Esc.

 » Mode (M): You can choose an assortment of modes or width types for

controlling the behavior of your bevel. Basically, these modes define how the
width of your bevel is measured. For the most part, the default mode of Offset
should suit you just fine, but you can cycle through these options by pressing
M if you need more precise control:

• Offset: In the simplest case of a bevel, you’re creating two new edges
where before there was only one. With the Offset width type, the bevel
width is the distance of each of those new edges from the original edge.
For bevels with multiple segments, the offset width is the two outermost
edges of the bevel.

• Width: This type is simpler to explain. It’s the overall width of your bevel.
Nice and easy.

• Depth: When you create a simple bevel, your two new edges create a face
between them. The perpendicular distance between that new face and the
location of the original edge is the bevel depth. That bevel depth is the
measurement you’re using if you choose this width type.

• Percent: The Percent width type is wacky and somewhat difficult to
explain. It’s the percentage of the length of adjacent edges when sliding.
What this means is when you bevel one edge on a cube, your two new
edges slide this distance along their neighboring faces. If you set the
percentage width to 50%, each of your new bevel edges are exactly
halfway down their neighboring faces. At 100% your bevel turns the cube
into a ramp.

128 PART 2 Creating Detailed 3D Scenes

 » Segments (S/scroll wheel): As far as the Bevel tool is concerned, a segment

is a face between newly created edges of the Bevel operator. The default
number of segments in your bevel is 1. The fastest way to increase the
number of segments in your bevel is to use the scroll wheel on your mouse.
However, if you’re already holding down the left mouse button (or you’re
using a drawing tablet), it can be awkward to scroll the mouse wheel. So your
alternative choice is to press and release S (while still keeping the left mouse
button held down). After pressing S, moving your mouse cursor no longer
adjusts the width of your bevel and instead that movement adjusts the
number of segments in your bevel.

 » Profile (P): Like the S hotkey for adjusting the number of segments in your
bevel, you can adjust the profile or curve shape of your bevel by pressing and
releasing P while in the Bevel tool’s mini-mode.

 » Clamp Overlap (C): In the description of the Inset Faces tool, I explained that
the tool could occasionally give you ugly geometry with overlapping edges and
faces. The Inset Faces tool doesn’t have an automatic way of handling that
problem, but the Bevel tool does. If you notice that your bevel is generating
overlapping faces, you can tell Blender to just stop making your bevel width
larger. Toggle this feature on by pressing and releasing C.

 » Vertex Only (V): By default the Bevel tool operates on selected edges in your
mesh. You also have the ability to bevel just the vertices of your selection.
Toggle this behavior by pressing and releasing V.

 » Outer Miter (O)/Inner Miter (I): The miter of a bevel is a corner where two or
more bevel edges meet, like wrapping around the top of a cube. When you
have more than one segment on your bevel, there are a few different ways
the edges of those segments can be routed. Use the O and I toggles to cycle
through the different miter types for inner and outer miters.

 » Harden Normals (H): The default behavior for the new faces of your bevels is
for Blender to shade them flat, so you see all the facets of the new faces. If
you press H, you can toggle the Harden Normals feature, effectively making
your bevels look smoother with fewer additional segments.

 » Mark Seam (U)/Mark Sharp (K): The Bevel tool does what’s known as a
destructive operation. The name sounds scarier than it is. A destructive

operation is an operation that you perform on a mesh that cannot easily be
removed. Yes, you always have the Undo feature, but if you do a few other
modeling operations after beveling, it’s much more difficult to undo. In
contrast, Blender has other modeling features, called modifiers, that are

non-destructive. There’s more on modifiers later in this chapter, but a number
of them work on edges that you mark in Edit mode. The U and K toggles while
Beveling allows you to mark your new bevel edges as seams (for UV unwrap-

ping; see Chapter 9) or as sharp (for the Subdivision Surface modifier, covered
later in this chapter).

CHAPTER 5 Creating Anything You Can Imagine with Meshes 129

Taking the hotkey-and-tweak
approach to beveling
You may have noticed from the preceding section that the Bevel tool has a whole
mess of options. That many options is difficult to keep in your brain and on a
small computer screen, you might not even be able to see the whole list of options

in the status bar while you make your bevel. For that reason, I prefer to take a
slightly different approach when I bevel. For one, I like to directly invoke the Bevel
operator by pressing Ctrl+B. You get into the same Bevel mini-mode, but you
don’t have to move your mouse to the Toolbar and change to the tool. Further-

more, you don’t have to hold down your left mouse button while beveling, so it’s

less stressful on your joints during long modeling sessions.

Also, I don’t think too hard on any of the details of my bevel. I just make sure
I select the edges I want, press Ctrl+B, adjust the bevel width to something close

to what I want, and press left-click or Enter to confirm. The reason why I don’t
think too hard on the details is because of the second half of this approach: I use
the Last Operator panel. Whether you use the Bevel tool or you call the operator
like I do, at the bottom left of your 3D Viewport, you should see the Last Operator
panel with the word Bevel on it. It’s collapsed by default, but if you expand it, you
see all your bevel options right there, clearly labeled, and it’s easy to make live

adjustments. Figure 5-9 shows the bevel options available in the Last Operator
panel.

FIGURE 5-9:
The Last

Operator panel
gives you all the

necessary
controls for

tweaking your
bevel, clearly

labeled and easy
to adjust.

130 PART 2 Creating Detailed 3D Scenes

Spiraling new geometry into
existence with the Spin tool
If you’re familiar with the traditional meatspace skills of machining or wood-

working, you may know about a tool called a lathe. If you’ve never worked with a
lathe, you’re missing out on a whole bunch of fun. A lathe is a machine that you

use to spin a length of material around an axis, and while it’s spinning, you use

various tools to dig in and cut away material from what’s being spun. Lathes are
used to make everything from bowls to baseball bats, and they’re prized for their

ability to turn flat objects into round, cylindrical objects.

In 3D computer graphics, there’s a similar tool. In fact, on some other 3D applica-

tions, they even call it a lathe tool. In Blender, however, it’s the Spin tool. Like
extruding, there are a few important differences between how you spin geometry
in 3D space compared to how you do it on a lathe in meatspace. The most impor-

tant difference is that lathes work subtractively. They achieve a round shape by
removing material. In contrast, Blender’s spin tool takes a given profile and
extrudes it radially to generate that round shape. Figure 5-10 shows a rough pro-

file of a wine glass and the resulting mesh when you use the Spin tool.

Unlike most of the other tools discussed in this chapter, the Spin tool does not

have an operator that you can access through a menu. You can find it using
 Blender’s integrated search feature (F3), but it’s not available in any of the menus
in the 3D Viewport. You’re best off using the Spin tool and Spin Duplicates tool
from the Toolbar rather than trying to take a hotkey-based approach.

When you select the Spin tool from the 3D Viewport’s Toolbar, Blender provides
you with a handy little blue arc-shaped gizmo with plus symbols on either side of

FIGURE 5-10:
Using the Spin

tool, you can turn
flat profiles into

beautiful
cylindrical

shapes.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 131

it. Left-click and drag on either of the plus symbols and you start spinning your
selected geometry around a single axis. If you hold down Ctrl while spinning, the
gizmo gets little white tic marks and your spin steps in fixed increments. When
you release your left mouse button, the gizmo gains additional move-and-

rotation controls that you can use to tweak the axis about which you did your spin.

When you first do a spin operation with the Spin tool, the results might appear a little
bit rough. That roughness is because the default setting for the Spin tool is to only use
9 steps divided by however many degrees you’re spinning. To smooth things out,
expand the Last Operator panel from the bottom of the 3D Viewport and increase the
Steps value. Figure 5-11 shows what the Spin tool’s Last Operator options are.

One interesting thing about the options in the Last Operator panel for the Spin
tool is the check box labeled Duplicate. If you toggle this check box on, Blender
removes all the connecting edges and faces between each of your newly generated

profiles. Enabling this check box gives you the exact same functionality as you get
in the Spin Duplicates tool. Both the Spin tool and the Spin Duplicates tool work
exactly alike. The only difference is whether this check box is enabled by default.

Working with Loops and Rings
Regardless of whether you’re box modeling or point-for-point modeling, under-

standing the concepts of loops and rings definitely makes your life as a modeler a
lot less crazy.

FIGURE 5-11:
Use the Last

Operator panel to
tweak the

number of steps
or to have precise
control over your

spin axis.

132 PART 2 Creating Detailed 3D Scenes

Understanding edge loops and face loops
Generally speaking, an edge loop is a series of edges that connect to form a path

where the first and last edges connect to each other — well, that’s the ideal case
anyway. I like to call this kind of closed edge loop a “good” edge loop.

Of course, then you probably want to know what a “bad” edge loop is. Well, you
can have a path of edges that don’t connect at the beginning and end of the loop,

but calling these loops bad isn’t really accurate. It’s better to refer to edge loops
that stop before reconnecting with their beginning as terminating edge loops.
Although you generally want to avoid creating terminating edge loops in your

models, you can’t always avoid having them, and sometimes you actually need

them for controlling how edges flow along the surface of your mesh.

To get a better understanding of the difference between closed edge loops and ter-

minating edge loops, open Blender and add a UV sphere (Add ➪ Mesh ➪ UV Sphere).
Tab into Edit mode or switch to the Modeling workspace on the sphere and Alt+left-

click one of the horizontal edges on the sphere. This step selects an edge loop that
goes all the way around the sphere like the latitude lines on a globe, as shown in

the left image of Figure 5-12. This loop is a closed edge loop. Press Alt+A to deselect

all and now Alt+left-click a vertical edge. When you do, you select a path of vertices
that terminates at the top and bottom poles, or junctions of the sphere, as shown

in the right image of Figure 5-12. That’s a terminating edge loop.

The vertical loop doesn’t go all the way around because, technically speaking, edge
loops rely on four-point poles, or a vertex that’s at the junction of four edges. Imag-

ine that following an edge loop is like driving through a city (one with a proper grid

of city blocks). The four-point pole is like a four-way stop, where you have the
option of going left, right, or straight. Well, to properly follow the loop, you keep

FIGURE 5-12:
A closed edge

loop (left) around
a sphere and a

terminating edge

loop (right) on a
sphere.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 133

traveling straight. However, if you come to a fork in the road (a three-point pole)
or a five-way (or more) intersection, you can’t necessarily just go straight and be
sure that you’re following the loop. Therefore, the loop terminates at that intersec-

tion. That’s why the horizontal edge loop in Figure 5-12, which is made up entirely
of four-point poles, connects to itself, whereas the vertical loop stops at the top

and bottom of the sphere, where all the edges converge to a single junction.

In addition to edge loops, you can also have face loops. A face loop consists of the

faces between two parallel edge loops. Figure 5-13 shows horizontal and vertical face
loops on a UV sphere. In Blender, you can select face loops when you’re in Face Select
mode (in Edit mode, press 3 on the row of numbers at the top of your keyboard or use

the Face Select button in the header of the 3D Viewport) the same way you select
edge loops in Vertex Select or Edge Select modes: Alt+left-click a face in the direction

of the loop you’d like to select. For example, going back to the UV sphere, to select a
horizontal face loop, Alt+left-click the left or right side of one of the faces in that

loop. To select a vertical face loop, Alt+left-click the top or bottom of the face.

In some Linux window managers, the Alt key manipulates windows, which super-

sedes Blender’s control of it and prevents you from doing a loop select. Most win-

dow managers allow you to remap that ability to another key (like the Super or

Windows key). However, if you use a window manager that doesn’t offer that
remapping ability, or you just don’t feel like remapping that key, you can still

select loops by using Shift+Alt+left-click. This key combination is actually for
selecting multiple loops, but if you have no geometry (vertices, edges, or faces)
selected, it behaves just like Alt+left-click.

FIGURE 5-13:
Some face loops

selected on a
sphere.

134 PART 2 Creating Detailed 3D Scenes

Selecting edge rings
Say that instead of wanting to select an edge loop or a face loop, you’d like to select

just the edges that bridge between two parallel edge loops, as shown in Figure 5-14.
These edges form an edge ring. You can select edge rings only from Edge Select
mode (in Edit mode, press 2 on the row of numbers at the top of your keyboard or
use the Edge Select button in the header of the 3D Viewport). When you’re in Edge
Select mode, you can select an edge ring by using Ctrl+Alt+left-click. Trying to use
this hotkey sequence in Vertex Select or Face Select mode just selects a face loop.

Being able to use rings and loops for selecting groups of vertices in an orderly

fashion can be a huge benefit and timesaver for modeling. More importantly,
when creating organic models like humans or faces, using edge loops effectively
to control your topology makes the life of a character rigger and animator a lot

more pleasant. (You can find out more on this topic in the sidebar “The impor-

tance of good topology,” later in this chapter.)

If you’re more comfortable working from menus, you can select both edges and
loops from the Select menu in the 3D Viewport. The key to using these menu items
is that you need to have a base selection to start with first. So, for example, if you
want to select an edge ring, follow these steps:

1. Select one of the edges in the ring you want to select.

2. Choose Select ➪ Select Loops ➪ Edge Rings.

The Select ➪ Select Loops submenu actually has some extra selection options that
are pretty handy. When you navigate to this menu, you have the following options
(these choices work best from Edge Select mode):

FIGURE 5-14:
An edge ring

selected on a UV
sphere.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 135

 » Edge Loops: Just like the preceding example, first select an edge that’s on the
loop you want, and then choose this menu option to select the whole loop.

 » Edge Rings: This choice is the one described in the preceding example. Select
an edge on the ring you want and then pick this option from the menu.

 » Select Loop Inner-Region: This menu option requires that you already have a
closed loop of edges selected. It doesn’t have to be a full edge loop; it just
needs to be a closed loop of some sort that connects to itself, like a trace of
edges around an eye on a face. Then, when you choose this menu item, all the
vertices, edges, and faces enclosed in that loop are selected.

 » Select Boundary Loop: When modeling (especially point-for-point modeling),
your mesh may not always be fully enclosed, or water-tight. Open meshes can
be problematic if, for example, you’re 3D printing your model. So you want to
close those holes, or boundaries. This menu item can help with that. Select all
the vertices in your mesh and then choose this menu item. Blender selects
the edge loops around any boundaries you may have.

Creating new loops
The ability to select loops and rings is nice, but the ability to create new loops is
even more helpful when you want to add detail to a model. You can detail with
what’s called a loop cut. The easiest way to add a loop cut is with the Loop Cut tool,
as described earlier in this chapter. When in Edit mode, follow these steps:

1. Enable the Loop Cut tool in the 3D Viewport’s Toolbar.

Alternatively, you can simply press Ctrl+R to access the Loop Cut operator

directly. Regardless of how you choose to make a loop cut, when you run your
mouse cursor over your model, a yellow line is drawn on the mesh, indicating
where you might want to add your edge loop.

2. After you decide where you want to cut, left-click and drag to place your
newly created edge loop. Left-click and release places the new edge loop
at the exact midpoint between its neighboring loops.

If you’re using the Ctrl+R hotkey combination, left-click and release (right-click
cancels the whole operation if you’re using the Ctrl+R hotkey combination).
Then Blender automatically enables the Edge Slide operator on your new loop.
With edge slide, you can move your mouse around, and your loop travels along
the surface of the mesh between its neighboring loops, allowing you to place it
precisely where you want it to go when you left-click, just like the Edge Slide tool.

If you want your new loop cut to sit at the exact midpoint between its neighboring
loops with the Ctrl+R hotkey, right-click after the Loop Cut operator drops you
into edge slide.

136 PART 2 Creating Detailed 3D Scenes

When doing a loop cut, you can actually do multiple parallel loop cuts at the same
time if you use the Ctrl+R hotkey. When you activate the Loop Cut operator
(Ctrl+R), scroll your mouse wheel, and you’ll be able to add multiple loops all at
the same time. If you don’t have a scroll wheel on your mouse or you simply prefer
to use your keyboard, you can adjust the number of loops in your cut by pressing

Page Up and Page Down. To do the same thing with the Loop Cut tool, you need to
make use of the Last Operator panel.

THE IMPORTANCE OF GOOD TOPOLOGY
If you listen to modelers talk or if you visit some of the web forums where 3D modelers
hang out, you’ll hear the words topology and edge flow pretty often. These concepts are very
important for a modeler, particularly if your model is destined to be animated. These terms
refer to how the vertices and edges of your mesh lay out across its surface. Even when
sculpting (see Chapter 6), 3D modelers will often use a base mesh that has good topology
as their starting point. Or, when they’re done sculpting, they’ll take the model through a
process known as retopology to give it a clean edge flow that’s usable in animation. To that
end, whether you’re sculpting or just straight modeling, keep a few key guidelines in mind:

• Use quads. Try to avoid triangles and ngons in your final mesh whenever possible.
They’re fine to use as stand-ins while your work, but four-sided polygons look
better when subdivided, and they also tend to deform more cleanly when an arma-

ture is used to animate them.

• Minimize the use of poles that don’t have four edges. Remember that a pole is
where multiple edges join at a single vertex. The UV Sphere mesh has two large
poles at its top and bottom. Poles are harder to avoid than triangles, but you should
do what you can to minimize their use because they can terminate edge loops, and
they don’t deform as nicely as four-edged poles. If you’re forced to use a pole, try to
put it in a place on the mesh that won’t deform a lot when it’s animated.

• Holes such as mouths and eye sockets should be encircled by concentric edge
loops. This guideline is particularly important for character models that may be
animated. Having concentric edge loops makes it easier to deform and animate
these highly expressive parts of the face.

• Edges should follow anatomy (at least on the face). Following the flow of
anatomy — particularly musculature — is important on face models because doing
so yields cleaner, more natural deformations. For example, the crease from the
side of the nose flows around the mouth. For limbs, following musculature is less
imperative; tube-type topology usually should be fine.

If you’re aiming for anatomical realism in your models, following these little rules really
makes the lives of riggers and animators much easier (and it helps make the final ani-
mation look better).

CHAPTER 5 Creating Anything You Can Imagine with Meshes 137

If you ever want to use edge slide without creating a new loop, select the edge loop
(or portion of an edge loop) that you want to slide and use the Edge Slide tool.
Alternatively, you can use the even faster hotkey sequence G ➪ G.

Simplifying Your Life as a
Modeler with Modifiers

Working with meshes can get complicated when you have complex models con-

sisting of lots and lots of vertices. Keeping track of these vertices and making
changes to your model can quickly become a daunting and tedious task, even with

well-organized topology. You can quickly run into problems if you have a sym-

metrical model where the left side is supposed to be identical to the right, or if you

need more vertices to make your model appear smoother. In these times, you
really want the computer to take on some of this tedious additional work so you

can focus on the creative parts.

Fortunately, Blender actually has a feature, called modifiers, that helps tackle the

monotony. Despite their rather generic-sounding name, modifiers are an
extremely powerful way to save you time and frustration by letting the computer

assume the responsibility for grunt work, such as adding smoothing vertices or

making your model symmetric. Another benefit of modifiers is that they’re non-

destructive, meaning that you can freely add and remove modifiers to and from
your object. As long as you don’t apply the modifier, it won’t actually make any
permanent changes to the object itself. You can always return to the original,
unmodified mesh.

You can access modifiers for your mesh in the Modifiers tab of the Properties edi-
tor (its button has an icon of a blue wrench). Left-click the Add Modifier button to
see a list of the available modifiers. Figure 5-15 shows the Modifier Properties
with the list of available modifiers for meshes.

Because of space constraints, I can’t give an extensive description on every modi-
fier in the list, but I give a brief description of each later in this section. That said,
all Blender’s modifiers share some of the same controls between them. Figure 5-16
shows the Modifiers section with two modifiers added, Array and Bevel.

The first thing to notice is that the modifiers are stacked one below the other. This
stacking is by design. What’s more, the order in which the modifiers appear in the
stack is important because one modifier feeds into the next one. So the second
modifier — Bevel, in this case — doesn’t operate on the original mesh data. Bevel
actually operates on the new mesh data provided by the first modifier, Array, in
this example.

138 PART 2 Creating Detailed 3D Scenes

FIGURE 5-15:
All the modifiers

you can use on
mesh objects.

FIGURE 5-16:
The Array and

Bevel modifiers in
Modifier

Properties.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 139

The stacking order for modifiers is a little bit counterintuitive if you think about it
in terms of layers, where one builds on top of another. Blender’s modifier stack
doesn’t work like that. Instead, you’re better off thinking of Blender’s modifier
stack as a snowball rolling down a hill. Each modifier you hit on the way down the
hill adds something or changes something about your snowball, modifying it

more and more as it comes to the base of the hill. The topmost modifier is the first
modifier and operates on the original mesh data. The modifier immediately below
it works on the data that comes from the first modifier, and so on down the line.

In the preceding example, the object is first made into an array. Then the mesh
created by the Array modifier has its edges beveled so that they’re not as sharp-
cornered. You can change the stacking order by using the up/down arrow buttons
on the right side of each modifier block. Left-clicking the up arrow raises a mod-

ifier in the stack (bringing it closer to being first), and the down arrow lowers it.
You can left-click the X at the top right of any block to remove the modifier alto-

gether. The downward triangle to the left of each modifier’s name collapses and
expands that modifier block when you left-click it. Collapsing the modifier block
is useful for hiding a modifier’s controls after you’ve decided upon the settings
you want to use.

Between the modifier name field and the stacking order buttons are three or four
additional buttons, depending on whether your selected object is in Edit mode.
From left to right, the first three buttons control whether the modifier is enabled
for rendering (camera icon), viewing in Object mode (screen icon), and viewing in
Edit mode (editing box icon).

You may be wondering why you’d ever want to disable a modifier after you’ve
added it to the stack, instead of just removing it and adding it back in later. The
main reason is that many modifiers have an extensive set of options available to
them. You may want to see how your object renders with and without the modifier
to decide whether you want to use it. You may want to edit your original mesh
without seeing any of the changes made by the modifier. If you have a slow com-

puter (or if you want your fast computer to be as responsive as possible), you want
to have the modifier enabled only when rendering so that you can still work effec-

tively without your computer choking on all the data coming from Blender. Fur-

thermore, in more advanced scenarios, you can even animate whether a modifier
is enabled.

Some modifiers, like Array, have an additional fourth button with an inverted
triangle icon at the end of the button block. Its tooltip says that enabling this but-
ton will “adjust edit cage to modifier result.” The edit cage is the input mesh, prior

to any influence by the modifier. Enabling this button means that not only are the
effects of the modifier visible in Edit mode, but you can also select and perform
limited changes to the geometry created by the modifier.

140 PART 2 Creating Detailed 3D Scenes

Only two more buttons are common among all modifiers: the Apply and Copy but-
tons. Left-clicking the Apply button takes the changes made by the modifier and
directly applies them to the original object. Applying is a destructive operation and

actually creates the additional vertices and edges in the original mesh to make the

mesh match the results produced by the modifier and then removes the modifier
from the stack. Although modifiers themselves are non-destructive, meaning that
they don’t permanently change the original object, the Apply button is the one

exception.

The Apply button works only if the object you’re working on is in Object mode.

The Copy button creates a duplicate version of the modifier and adds it to the stack
after the modifier you’re duplicating. You probably won’t be using this function
very often, but it’s useful when you need to double up a modifier, such as if you
want to use one Subdivision Surface modifier with simple subdivisions to get more
raw geometry and then use a second Subdivision Surface modifier to smooth or
curve that additional geometry.

Understanding modifier types
The list of modifiers that you have available in Blender is long. At the time of this
writing, there are 52 modifiers available for you to use on mesh objects. A subset
of modifiers also works on other object types like curves (see Chapter 7 for more
on other non-mesh object types), and Grease Pencil objects have their own set of
modifiers (see Chapter 15). However, Blender’s modifier stack is primarily
designed to handle mesh data, so that’s where you have access to the largest

number of modifiers.

This section gives you a brief summation of each modifier; at the end of this
chapter, I show some detailed information on working with a few specific
modifiers. I encourage you to play with each modifier on its own to get a real feel
for how they work.

Modify modifiers
The first column of modifiers is somewhat of a hodge-podge; it’s a bit of a dump-

ing ground for modifiers that don’t really fit anywhere else. The main common
feature across these modifiers is that they affect vertices or vertex data. With the
possible exception of the UV Project modifier, these modifiers are more commonly
used in the complex scenes that a more advanced Blenderhead may have, so don’t

sweat too much if you don’t see an immediate-use case for them. The modifiers
in this column are:

CHAPTER 5 Creating Anything You Can Imagine with Meshes 141

 » Data Transfer: When you’re working on large projects, it’s common to have
multiple versions of a mesh that’s worked on by multiple people or different
meshes that have similar types of internal data like vertex groups, UV maps,
or vertex colors. You might want to simplify your life by transferring that data
between meshes, so you don’t have to redo work that’s already been done.
Saving that time is what the Data Transfer modifier is here for.

 » Mesh Cache: This modifier replaces all your mesh’s geometry with new data
from a mesh cache file. In large-scale animated productions, it’s common
practice to take completed character animation (set up with a complex
animation rig; see Chapter 12) and “bake” it into the vertex data before
moving on to lighting and rendering. This modifier facilitates that workflow.

 » Mesh Sequence Cache: The Mesh Sequence Cache modifier is very similar to
the Mesh Cache modifier, but it’s arguably more powerful because it uses an
incredibly versatile open source file format called Alembic. This is the same
file format used by large production studios to help with final adjustments
after animation is complete.

 » Normal Edit: If you’re working in video game development or architectural
visualization, you often work with models that have a much lower vertex
count than those used in, for example, film animation. When working with
fewer faces in your mesh, you tend to pay a lot more attention to how the
normals on those faces point so you can better hide the faceted nature of
your models. The Normal Edit modifier gives you the ability to procedurally
adjust the normals on your model and mix the results back in.

To make use of the Normal Edit modifier or the Weighted Normal modifier,
you need to enable the Auto Smooth check box in the Normals panel of
Object Data Properties.

 » Weighted Normal: This modifier is similar to the Normal Edit modifier, but it
gives you a different set of controls and the results override your mesh’s
normals instead of mixing back with them.

 » UV Project: Think of the UV Project modifier as a video projector or a slide
projector. It produces a similar effect to an object-mapped texture (see
Chapter 9), though it’s more flexible.

 » UV Warp: The UV Warp modifier is similar to the UV Project modifier, as it
modifies your mesh’s UV coordinates (see Chapter 9 for UV coordinates). The
difference, however, is that the UV Warp modifier gives you the ability to rig
and deform your UV coordinates for animation much like you would rig the
vertex data of your mesh.

 » Vertex Weight Edit/Mix/Proximity: As their names imply, these three
modifiers manipulate vertex weights. Vertices in a mesh can belong to one or
more vertex groups (I cover vertex groups in detail in Chapter 12). For each

142 PART 2 Creating Detailed 3D Scenes

vertex, you can define a weight (a numeric value from 0.0 to 1.0) defining how
much a vertex belongs to a particular group. These modifiers give you more
control over those vertex weights. (They’re particularly useful in complex
animation rigs.)

Generate modifiers
The Generate category of modifiers contains the most commonly used modifiers
in a Blender modeler’s arsenal. They’re a procedural means of adding — and in
some cases removing — geometry in your mesh. And because they’re modifiers,
they can be stacked to produce pretty complex models from simple base

objects . . . and then the parameters in that stack of modifiers can be animated!
The list of available modifiers in this category is extensive. The following is a
quick run-through of each of them:

 » Array: The basic functionality creates one or more copies of your base mesh
and places them based on an offset value you define. The Array modifier is
one of my favorites; I go into it in more detail later in this chapter.

 » Bevel: Nothing in the real world has perfectly sharp corners or edges. They’re
always slightly rounded, even if a little bit. The Bevel modifier helps you add
that little touch of realism to your object. This modifier is the non-destructive
version of the Bevel tool described earlier in this chapter, and a lot of the
same options from that tool can be used in this modifier.

 » Boolean: The Boolean modifier allows you to mix two meshes together,
adding, subtracting, or intersecting a separate mesh with your current one.

This modifier can sometimes generate some pretty ugly topology.

 » Build: With this relatively simple modifier, the individual faces in your mesh
appear over time. You can also reverse the effect to have your mesh slowly
disappear over time, one face at a time.

 » Decimate: Occasionally you will need to reduce the amount of geometry in
your model (for example, your model might need to be used in a video game,
a segment of the 3D computer graphics field renowned for having tight
geometry budgets for each object). The Decimate modifier can give you a
head start in reducing your model’s geometry.

 » Edge Split: When modeling, you can define whether a face in your mesh gets
rendered as smooth or flat. More often than not, you’ll want it to appear
smooth. However, in doing this, you lose definition at hard edges in your
model. You could add a Bevel modifier to fix this, but if you’re trying to keep
your vertex count down, that may produce more geometry than you want.
The Edge Split modifier lets you keep sharp edges without adding a significant
amount of geometry.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 143

 » Mask: The Mask modifier gives you the ability to define some vertices in your
mesh as being hidden from view, depending on either their membership in a
vertex group or their relation to an armature bone.

 » Mirror: This modifier duplicates the geometry in your base mesh and flips it
along one or more of your object’s local axes. It’s extremely useful when
you’re modeling anything that’s symmetric in nature. I cover the Mirror
modifier in more detail later in this chapter.

 » Multiresolution: This modifier subdivides your mesh by the same rules used
in the Subdivision Surface modifier (covered later in this section). The
difference is that Multiresolution can be applied multiple times, and you can
use Sculpt mode to freely edit the generated vertices at any of the subdivision
levels you generate. I cover the Multiresolution modifier in more detail in
Chapter 6.

 » Remesh: There are times when the topology of your mesh just is not salvage-

able (such as when doing heavy sculpting or using Booleans). The Remesh
modifier can give you a more reasonable starting place for a mesh with
cleaner topology (or at least evenly spaced faces for more detailed sculpting).

 » Screw: The Screw modifier duplicates the geometry of your mesh one or
more times and rotates those duplicates about one of its local axes. You can
use this to create helix shapes (like springs and, well, screws) as well as a way
to generate an object from a simple profile, similar to what you can do with
Blender’s Spin tool (described earlier in this chapter). There’s a tutorial that
covers this technique on this book’s website (www.blenderbasics.com).

 » Skin: Using the Skin modifier, the vertices and edges in your mesh are given a
“skin.” That is, new geometry is generated around them, based on a radius
you define in Edit mode. In a way, it’s similar to increasing the Bevel value on a
curve object as described in Chapter 7. This modifier gives you a fantastic way
to generate base meshes for sculpting or sprawling organic shapes like vines
and other vegetation. As an additional bonus, this modifier can also generate
an armature object with properly defined vertex weights so you more easily
deform and animate your mesh.

 » Solidify: Polygon faces in 3D graphics are infinitely thin. So if you try to look at
them from certain angles, they simply aren’t visible. Of course, that doesn’t
match the real world. In meatspace, everything has a little bit of thickness. The
Solidify modifier is a quick and easy way to add that thickness to any mesh.

 » Subdivision Surface: This modifier is one of the most useful (and frequently
used) in Blender. Simply put, the Subdivision Surface modifier adds vertices to
your mesh by subdividing each edge and face. (I cover it in more detail later in
this chapter.) This behavior allows for more detail and smoother surfaces on
your mesh. It’s especially useful for organic models like plants and animals.

http://www.blenderbasics.com/

144 PART 2 Creating Detailed 3D Scenes

 » Triangulate: Some game engines (the code “under the hood in a video game”)
require that all meshes consist of only triangular faces. Quads and ngons
aren’t allowed. Using this modifier, you can get an idea of what your model
looks like with all triangular faces, without prematurely committing to that
topology.

 » Wireframe: The Wireframe modifier is somewhat like the Skin modifier in
that it creates geometry around each of the edges in your mesh. The controls
and purpose of this modifier are different, however. Instead of being used to
generate a base mesh as a starting point, the Wireframe modifier is most
useful in generating renderable wireframes of your mesh so you can cleanly
show its topology to your peers.

Deform modifiers
In computer graphics, the word deform doesn’t carry any kind of negative conno-

tation. When something is deformed in computer graphics, it means that sub-
components of that thing have been moved. In the case of 3D computer graphics,
those sub-components are the vertices, edges, and faces that make up your mesh’s

geometry. Knowing that, it isn’t hard to figure out that the modifiers in the
Deform category are used to change the position of geometry in your mesh. Unlike
the Generate modifiers, none of these modifiers add or remove geometry. They
just move that geometry around, based on either a set of rules or external controls.
Although these modifiers can be used for modeling, they’re more frequently
employed as tools for creating animation rigs (see Chapter 12). The following is a
brief description of each Deform modifier:

 » Armature: When it comes to animation rigs, the Armature modifier is the tool
of choice for starting. This modifier is the mechanism that binds your mesh to
an armature object and allows the bones of that armature to control the
geometry in that mesh.

 » Cast: Simply put, this modifier pushes the geometry in your mesh to match
one of three primitive forms: a sphere, a cylinder, or a cube.

 » Curve: The Curve modifier is similar to the Armature modifier, but it uses
it as a curve object rather than the bones of an armature object to define
your mesh’s deformation. This is useful if you’re rigging something that has
a naturally curved change in shape, like a cartoon fish.

 » Displace: Using a grayscale image often referred to as a height map (lighter
pixels represent high areas, darker pixels represent low areas), the Displace
modifier can offset individual vertices from their initial location. This can be a
handy way to add bumpy detail or even model some terrain.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 145

 » Hook: This modifier binds one or more vertices in your mesh to an external
object. Hooks are useful for bulging or stretching part of your mesh. They’re
also useful for controlling curve objects. Chapter 12 has a whole section
dedicated to hooks and the Hook modifier.

 » Laplacian Deform: The deformation capabilities of hooks and armatures are
very powerful, but they can occasionally “fuzz out” the details in your model or
create excessive distortion that doesn’t preserve the volume of your base
mesh. The Laplacian Deform modifier helps to alleviate that problem compu-

tationally (as opposed to the more manual methods using lattices or the Mesh
Deform modifier).

 » Lattice: Lattices are special objects in Blender that consist of a boxy network
of interconnected control points. When a mesh has a Lattice modifier, you can
use one of these lattice objects to perform broad deformations. In cartoony
character animation, lattices can be particularly useful for giving characters
convincing squash and stretch effects.

 » Mesh Deform: In its simplest explanation, the Mesh Deform modifier allows
you to use a regular mesh to achieve some of the same deformation effects
that a lattice can give you. There are trade-offs, of course, but that gets into a
much more advanced discussion on rigging.

 » Shrinkwrap: Using the Shrinkwrap modifier, you can snap the vertices of your
current mesh to the surface of another mesh, as if you wrapped that other
mesh in shrinkwrap. As an example, if you’re doing a cartoon-style animation
that involves the cliché of a bulge of water traveling along a water hose, you
can achieve that effect with this modifier. Additionally, some modelers use
this modifier to help get a starting point when they retopo a sculpt (see
Chapter 6).

 » Simple Deform: This modifier gives you the ability to twist, bend, taper, or
stretch your mesh relative to its local Z-axis.

 » Smooth: Sometimes you have a model with a lot of hard edges and creases,
but you need a version that’s generally much smoother.

 » Smooth Corrective: Typically speaking, most people refer to this as the
Corrective Smooth modifier rather than “Smooth Corrective.” The naming
here is different just so it can be more conveniently grouped with the other
smooth modifiers. The Corrective Smooth modifier is especially useful in
character rigs where the armature or lattice might cause some funky defor-

mations. The Corrective Smooth modifier can help automatically clean up
some of that nastiness. It’s also handy for generating more natural deforma-

tions in character rigs by giving the impression of muscle or fat on a character.

146 PART 2 Creating Detailed 3D Scenes

 » Smooth Laplacian: Like the Corrective Smooth modifier, the naming here is a
bit different from what we call it. It’s just named Smooth Laplacian in the
modifier menu to group it with the other smooth modifiers. The Laplacian
Smooth modifier does essentially the same thing as the Smooth modifier, but
it uses a different smoothing algorithm. Generally speaking, the Smooth
Laplacian modifier is slower than the Smooth modifier, but on complex
meshes, this modifier usually gives more appealing results. The Smooth
Laplacian modifier can be particularly useful for cleaning up meshes from 3D
scanners or the Remesh modifier.

 » Surface Deform: Think of the Surface Deform modifier as a variation of the
Mesh Deform modifier. The difference, however, is that the Mesh Deform
modifier typically makes use of a mostly enclosed mesh, whereas the Surface
Deform modifier only deals with a mesh’s surface, so it works well using open
meshes. One of the most typical use cases for this modifier is if you do a cloth
simulation on a plane and you want to transfer the movement of that plane to
a more complex mesh, like chainmail.

 » Warp: Using the location, orientation, and scale of any two reference objects,
you can use the Warp modifier to distort your mesh, stretching its vertices
from the origin of one object to the origin of the other.

If you’re familiar with proportional editing, as described in Chapter 4, think of
this modifier as a way to give you that capability without directly selecting any
vertices.

 » Wave: If you apply the Wave modifier to a somewhat heavily subdivided
plane, it gives an appearance similar to dropping a pebble in a still pond. Of
course, you don’t have to use a subdivided plane; the Wave modifier works on
any mesh. Fair warning: If your mesh has only a few vertices in it, you will not
see the wave effect. It will just appear like your whole mesh is moving up and
down as a single unit.

Simulate modifiers
The last column of modifiers contains the Simulate modifiers. With a couple of
exceptions (Explode and Ocean), you almost never add these modifiers from the
Modifier tab of the Properties editor. They get automatically added to your mesh
when you add a particle system from the Particle tab of the Properties editor or
add a physics simulation from the Physics tab of the Properties editor. It’s an
advanced topic, but Chapter 14 has a bit more detail on using particles and physics
simulations from within Blender.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 147

Doing half the work (and still looking
good!) with the Mirror modifier
When I was first learning how to draw the human face, I used to have all sorts of
problems because I’d draw half the face and then realize that I still needed to do
nearly the exact same thing all over again on the other side of the face. I found it
tedious and difficult to try to match the first half of my drawing. Without fail, the
first couple of hundred times I did it, something would always be off. An eye
would be too large, an ear would be too high, and so on. I’m not embarrassed to
say that it actually took me quite a long time to get drawings that didn’t look like

Sloth from The Goonies. (Some of my co-workers might argue that some of my
drawings still look that way!)

Fortunately, as a 3D computer artist, you don’t have to go through all that trial

and error. You can have the computer do the work for you. In Blender, you use the
Mirror modifier (Modifier Properties ➪ Add Modifier ➪ Mirror). Figure 5-17 shows
the buttons and options available for this modifier.

The Mirror modifier basically makes a copy of all the mesh data in your object and
flips it along its local X-, Y-, or Z-axis, or any combination of those axes. The Mir-

ror modifier also has the cool feature of merging vertices along the center seam of
the object so that it looks like one unified piece. By changing the Merge Limit value,
you can adjust how close vertices have to be to this seam in order to be merged.

FIGURE 5-17:
The Mirror

modifier.

148 PART 2 Creating Detailed 3D Scenes

The X, Y, and Z check boxes dictate which axis or axes your object is mirrored
along. For most situations, the default setting of just the local X-axis is all you
really need. I nearly always enable the Clipping check box. This option takes the
vertices that have been merged — as dictated by the Merge Limit value — and
locks them to the plane that your mesh is being mirrored across. That is, if you’re
mirroring along the X-axis, then any vertices on the YZ plane are constrained to
remain on that plane. This feature is great when you’re working on vehicles or
characters where you don’t want to accidentally tear a hole along the center of

your model while you’re tweaking its shape with proportional editing (O) enabled.
Of course, if you do have to pull a vertex away from the center line, you can tem-

porarily disable this check box. The Clipping option also prevents inner faces from
being created along the center line of your model when extruding.

Instead of mirroring relative to the object’s origin, you can also mirror relative to
another object. Use the object datablock field below the axis check boxes labeled
Mirror Object. By default, the Mirror modifier uses the object’s origin as the basis
for what to mirror. However, by clicking in this field and choosing the name of any
other object in your scene, you can use that object’s origin as the point to mirror

across. With the Mirror Object feature, you can use an Empty (or any other object)
as a kind of dynamic origin. With a dynamic origin, you’re able to do fun things
like animate a cartoon character splitting in half to get around an obstacle (liter-

ally!) and joining back together on the other side.

Blender’s text fields have integrated search, which means that you can type the
first few letters of an object’s name and if the name is unique, Blender displays a
list of objects in your scene that match what you’ve typed.

The next check box is labeled Vertex Groups. As mentioned in the previous sec-

tion, you can assign vertices in a mesh to arbitrary groups, known as vertex groups,

which you can designate in the Object Data tab of the Properties editor, as shown
in Figure 5-18.

FIGURE 5-18:
Vertex groups are

created within

the Object Data
tab of the

Properties editor.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 149

Chapter 12 covers the actual process of creating vertex groups and assigning indi-
vidual vertices to a group. However, the most basic way uses the following steps:

1. Left-click the plus (+) icon to the right of the list of vertex groups in the
Object Data tab of the Properties editor.

A new vertex group named Group appears in the list box.

2. From Edit mode, select some vertices in your mesh and press the Assign
button below the vertex group list.

You now have a vertex group with a set of vertices assigned to it.

Here’s how the Vertex Groups check box in the Mirror modifier works: Say that
you’ve selected some vertices and assigned them to a group named Group.R, indi-

cating that it’s the group for some vertices on the right-hand side. And say that
you’ve also created another group called Group.L for the corresponding vertices

on the left-hand side, but because you have not yet applied the Mirror modifier,
you have no way to assign vertices to this group. Well, if you have the Vertex
Groups check box enabled, the generated vertices on the left side that correspond

with the Group.R vertices are automatically assigned to Group.L. You don’t even
have to apply the modifier to get this result! This effect propagates to other modi-
fiers that are based on vertex group names, such as the Armature modifier.

Referring to Figure 5-17, the Flip U and Flip V check boxes under the label of Tex-

tures in the Mirror modifier do the same kind of thing that the Vertex Groups
check box does, but they refer to texture coordinates, or UV coordinates. You can
find out about UV coordinates in Chapter 9. The simplest explanation, though, is
that UV coordinates allow you to take a flat image and map it to a three- dimensional
surface. Enable these buttons on the modifier to mirror the texture coordinates in
the UV Editor and possibly cut your texture unwrapping time in half. To see the
results of what these buttons do when you have a texture loaded and your model

unwrapped, open the Sidebar in the UV Editor (View ➪ Sidebar or N) and look in the
View tab. Within the Display panel of that tab, expand the Overlays sub-panel and
left-click the Modified check box. Hooray for nondestructive modifiers!

You can use the UV offset sliders back in the Mirror modifier’s controls to manu-

ally tweak the position of your object’s UV coordinates.

Smoothing things out with the
Subdivision Surface modifier
Another commonly used modifier, especially for organic models, is the Subdivision

Surface modifier. Old-school Blender users may refer to the Subdivision Surface

150 PART 2 Creating Detailed 3D Scenes

modifier as the Subsurf modifier. If you have a background in another 3D modeling
program, you may know subdivision surfaces as sub-ds or subdivs.

If you’re not familiar with subdivision surfaces, the concept goes something like
this: Blender takes the faces on a given mesh and subdivides them with a number

of cuts that you arbitrarily decide upon (usually one to three cuts, or levels of subdi-

vision). Now, when the faces are subdivided, Blender moves the edges of these faces
closer together, trying to get a smooth transition from one face to the next. The end
effect is that a cube with a Subdivision Surface modifier begins looking more and
more like a ball with each additional level of subdivision, as shown in Figure 5-19.

Now, the really cool thing about subdivision surfaces is that because they’re

implemented as a modifier, you get the smooth benefit of additional geometry
without the headache of actually having to edit all those extra vertices. In the pre-

ceding cube example, even at a subdivision level of 6, if you tab into Edit mode,

you control that form with just the eight vertices that make up the original cube.
This ability to control a lot of vertices with a relative few is a very powerful way of
working, and nearly all high-end 3D animations use subdivision surfaces for just

this reason. You have the smooth organic curves of dense geometry with the much
more manageable control of a less dense, or low poly mesh, referred to as a cage.

For a better idea of the kind of results you can get with the Subdivision Surface

modifier, break out Suzanne and apply it to her with the following steps:

1. Add a Monkey mesh (Add ➪ Mesh ➪ Monkey).

Ooh! Ooh! Ooh!

2. Set smooth rendering on the monkey (Object ➪ Shade Smooth).

At this point, Suzanne is pretty standard. She looks smoother than the faceted
look she had when first added, but she’s still blocky looking.

FIGURE 5-19:
A cube with

increasing levels
of subdivision

from 1 to 6.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 151

3. Add a Subdivision Surface modifier to the monkey (Modifier
Properties ➪ Add Modifier ➪ Subdivision Surface or use the Ctrl+1 hotkey
combo).

Now that’s Suzanne! Instantly, she looks a lot more natural and organic, even
despite her inherently cartoony proportions. Feel free to increase the View
number in the Subdivision Surface modifier to see how much smoother
Suzanne can be. I caution you not to go too crazy, though. Setting subdivisions
above 3 might choke your computer a bit if it’s too slow.

4. Tab into Edit mode and notice that the original mesh serves as the
control cage for the subdivided mesh.

Editing the components of the cage directly influences the appearance of the
modified mesh within the cage.

Figure 5-20 shows the results of each step.

As powerful as the Subdivision Surface modifier is, only a limited number of
options come with it in the modifier stack. Figure 5-21 shows the Subdivision
Surface modifier block as it appears in Modifier Properties. The first option is a
choice between Catmull-Clark subdivision or Simple subdivision. The former is
the default, subdividing and smoothing your mesh as expected. The latter works
more like using the Smooth tool while in Edit mode. It gives you more vertices in
your meshes, but not the same kind of organic smoothness that the Catmull-Clark
method provides. The Simple subdivision method is good for some situations,
though, so it’s nice that the option is available.

FIGURE 5-20:
Adding the

Subdivision
Surface modifier

to Suzanne.

FIGURE 5-21:
The Subdivision

Surface modifier.

152 PART 2 Creating Detailed 3D Scenes

The next set of values, labeled Subdivisions, allow you to set the level of subdivi-
sion that you see on your model. The first value is labeled Render. When you create
the final output of your scene or animation, Blender uses this level of subdivision
for your model, regardless of which level you set for the 3D Viewport. The Render
value can be set to any whole number between 0 and 6. Typically it’s set to a
higher value than the View value (described next) because you usually want
smoother, higher-quality models in your final render than you do in the 3D View-

port. Don’t go too crazy with setting this value. On most of my work, which can
get pretty detailed, I rarely ever use a setting higher than 3.

Beneath the Render value is a similar input, labeled View, that dictates the number

of subdivisions your mesh uses in the 3D Viewport. The View value has the same
range as the Render one. Because I like to keep my 3D Viewport fast and respon-

sive, I tend to keep this number down at 1. Occasionally, I push it up to 2 or 3 to
get a quick idea of what it might look like in the final output, but I always bring it
back down to 1 or 0.

At the bottom of the Subdivisions column is a value field labeled Quality. It has the
same range as the Render and Value fields, but its use is slightly different. Basi-
cally, the algorithm that’s used to make the smooth subdivisions in your mesh can

be tuned for accuracy. Higher Quality values give you more accurate results that
may take longer to calculate, whereas lower Quality values are faster, but might

not be as accurate in the placement of subdivision components.

The Subdivision Surface modifier automatically subdivides your UV texture coor-

dinates for you as well (see Chapter 9). However, you do get some additional con-

trol over how those UV coordinates are subdivided with the drop-down menu

under the Options label. From this menu, you can choose for your UV coordinates
to be smoothed (the default), or kept sharp at the boundaries.

The Optimal Display check box is something I typically like to leave turned on all
the time. Optimal Display hides the extra edges created by the modifier when you
view the model in wireframe viewport shading. On a complex scene, hiding the
edges can definitely help you make sense of things when working in wireframe.
Figure 5-22 shows the difference Optimal Display makes on a Suzanne model with
three levels of subdivision.

When working with the Subdivision Surface modifier, I typically like to have the
Optimal Display option enabled, along with the Adjust Edit Cage to Modifier Result
button at the top of the Subdivision Surface modifier panel. Everyone’s different,
though, so play with it on your own and see what works best for you.

CHAPTER 5 Creating Anything You Can Imagine with Meshes 153

Using the power of Arrays
One of the coolest and most-fun-to-play-with modifiers in Blender is the Array
modifier. In its simplest application, this modifier duplicates the mesh a specified
number of times and places those duplicates in line, evenly spaced apart. Have a
model of a chair and need to put lines of chairs in a room to make it look like a

meeting hall? Using a couple of Array modifiers together is a great way to do just
that! Figure 5-23 is a screenshot of Blender being used to create that sort of scene.

FIGURE 5-22:
Using Optimal

Display on a
mesh with three

levels of
subdivision.

FIGURE 5-23:
Filling a room
with chairs by

using the Array
modifier.

154 PART 2 Creating Detailed 3D Scenes

You’re not limited to using just one Array modifier on your object. I achieved the
effect in Figure 5-23 by using two Array modifiers stacked together, one for the
first row of chairs going across the room and the second to create multiple copies
of that first row. Stacking multiple arrays is an excellent way to build a complex
scene with just one object.

Blender’s Array modifier is loaded with all kinds of cool functions that you can use
in lots of interesting ways. Some ways facilitate a desire to be lazy by making the
computer do as much of the repetitive, tedious tasks as possible. (For example,
you can use the Array modifier to model a staircase or a chain-link fence or a wall
of bricks.) However, you can also use the Array modifier to do some really incred-

ible abstract animations or specialized tentacles or even rows of dancing robots!

The bulk of the power in the Array modifier lies in how it handles offsets, or the

distances apart that the duplicates are set relative to one another. The Array mod-

ifier offers three different sorts of offsets, all of which you can use in combination
with one another by enabling their check boxes:

 » Constant Offset: This offset adds a fixed distance to each duplicated object in
the array. So setting the X value beneath this check box to –5.0m shifts each of
the duplicates 5 meters in the negative X direction. The same behavior
happens in the Y- and Z-axes when you set the values for those offsets as well.

 » Relative Offset: Think of the Relative Offset as a multiplication factor, based
on the width, height, and depth of the object. So no matter how large or small
your object is, if you set the Z value to 1.0, for example, each duplicated object
in the array is stacked directly on top of the one below it. This type of offset is
the one that’s used by default when you first add the Array modifier.

 » Object Offset: The Object Offset is my personal favorite offset because of its
incredible versatility. It takes the position of any object you pick in the Object
field — I prefer to use Empties for this purpose — and uses its relative
distance from the mesh you added to Array as the offset. But that’s just the
start of it! Using this offset also takes into account the rotation and scale of
the object you choose. So if you have an Empty that’s 1 meter away from your
object, scaled to twice its original size, and rotated 15 degrees on the Y-axis,
each subsequent duplicate is scaled twice as large as the previous one and
rotated an additional 15 degrees. Now you can make a spiral staircase like the
one in Figure 5-24. And if you feel inclined to create an animation of a
staircase where the stairs can be collapsed into each other and hidden, it’s as
simple as animating the offset object!

CHAPTER 5 Creating Anything You Can Imagine with Meshes 155

You also have a lot of control over how many duplicates the Array modifier cre-

ates, thanks to the Fit Type drop-down menu at the top of the Array modifier
block. By default, the Fit Type is set to Fixed Count, and you explicitly enter the
number of duplicates in the Count field below it. Fixed Count isn’t your only Fit
Type option, however. You actually have three:

 » Fixed Count: This option lets you explicitly enter the exact number of
duplicates you would like to create, up to 1,000.

The maximum value of 1,000 for the Fixed Count value is what’s known as a
“soft maximum” in Blender. This means that if you adjust that value using the
mouse, it caps out at 1,000. However, if you click in that field, you can
manually type numbers much larger than 1,000. Blender will use that
manually entered number.

 » Fit Length: This option creates the proper count of duplicate objects to fit in
the distance that you define. Bear in mind that this length isn’t exactly in
whole units. It uses the local coordinate system of the object that you’re
making an array of, so the length you choose is multiplied by the scale of that
original object, as shown in the 3D Viewport’s Sidebar (N).

 » Fit Curve: If you choose this option, you can choose the name of a curve
object in the Object datablock field below it. When you do, Blender calculates
the length of that curve and uses that as the length to fill in with duplicated
objects. Using this option together with a Curve modifier is a nice quick-’n-
dirty way of creating a linked metal chain.

FIGURE 5-24:
(1) Model the

step. (2) Add an
Empty for Object
Offset and rotate

in Z. (3) Add the
Array modifier.

(4) Make it pretty.

156 PART 2 Creating Detailed 3D Scenes

Another cool feature in the Array modifier is the ability to merge the vertices of
one duplicate with the vertices that it’s near in another duplicate, similar to the

Mirror modifier. With the Merge check box enabled and some fine adjustment to
the Distance value, you can make your model look like a single unified piece,
instead of being composed of individual duplicates. I’ve used this feature to model
rope, train tracks, and stair rails, for example. The First Last check box toggles to
determine whether the vertices in the last duplicated instance are allowed to

merge with the nearby vertices in the first object of the array. Use merging with
Object Offset, and you can create a closed loop out of your duplicates, all merged
together.

Say that you’re using the Array modifier to create a handrail for your spiral stair-

case, and you don’t want the handrail to simply stop at the beginning and end.
Instead, you’d like the end of the handrail to have ornamental caps. You could
model something and try to place it by hand, but that process can get problematic

if you have to make changes or animate the handrail in the future. (Hey, this is
computer graphics. Handrails that move and are animated make complete sense!)
So another way to place ornamental caps on a handrail is to use the Start Cap and
End Cap fields in the Array modifier. After you model what you want the cap to
look like, you can pick or type the name of that object in these fields, and Blender
places it at the beginning and the end of the array, respectively. Pretty slick, huh?

BLENDER AND REAL-WORLD UNITS
Blender has support for real units. Blender defaults to using meters as its base unit of
measurement, but you’re not limited to that. You can explicitly set the unit system
(imperial, metric) you want and the base units in that system from the Units panel in the
Scene tab of the Properties editor.

It’s worth noting that when you change the units you use in Scene Properties, you’re
really only modifying Blender’s grid system. The underlying mesh data doesn’t change.
The only change is in how the numbers for dimensions appear in Blender’s interface.

CHAPTER 6 Sculpting in Virtual Space 157

Chapter 6

Sculpting in Virtual Space

O
ver the years, as computers have gotten more powerful and more capable
of handling dense models with millions of vertices (sometimes called
high-poly meshes, an abbreviation of high-polygon meshes), computer

graphics artists have wanted more and more control over the vertices in their
meshes. Using a Subdivision Surface modifier is great for adding geometry to
make models look more organic, but what if you’re modeling a monster and you
want to model a scar in his face? You have to apply the modifier to have access and
control over those additional vertices. And even though the computer may be able
to handle having them there, a million vertices is a lot for you to try to control and
keep track of, even with all the various selection methods and proportional edit-
ing. Fortunately, Blender supports multiresolution meshes and a Sculpt mode that
allows for dynamic topology.

Without the advent of digital sculpting, it would be much, much more difficult to
achieve high detail 3D models like the one in Figure 6-1 as quickly as we have
them these days. In the past, all that detail would have to be faked with textures
or left out entirely. Or a single model with really high detail would take months to
create, and only the most powerful computers of the time would be able to read
such geometry, let alone edit it. Now, 3D artists regularly produce this kind of
work in “speed sculpting” sessions over their lunch breaks. Living in the future is
awesome.

IN THIS CHAPTER

 » Working with reference images

 » Sculpting meshes to have extremely

high detail

 » Figuring out the art of retopology

158 PART 2 Creating Detailed 3D Scenes

Adding Background Images
in the 3D Viewport

Before going headlong into the process of sculpting, it’s worth it to take a moment
and consider reference material. In meatspace media, artists use reference mate-
rial all the time. Sometimes they work from a live reference like a model or still
life, and sometimes they work using photographic reference. Why would it be any
different when working with digital art? Of course, computers capable of doing
high-level sculpting aren’t quite as portable as most people would like in order to
work from live reference (but it’s getting there!). So the majority of digital artists
work from photographic or image references.

When working with meshes or any other type of 3D object in Blender, reference
images are often helpful for getting proper proportions and scale. It’s certainly
possible to use a separate application (and even a separate monitor) to display
your reference material while you work. However, you can use a reference more
directly by loading an image into the background of the 3D Viewport. To do so,
I suggest you add a Background image object to your scene by following these
steps:

FIGURE 6-1:
Blender’s sculpt

tools give you the

ability to create

highly detailed

3D models as
quickly as you

could with

traditional

media.

CHAPTER 6 Sculpting in Virtual Space 159

1. Add a Background image object (Add ➪  Image ➪  Background).

Blender opens a File Browser where you can find your reference image on
your hard drive. I suggest you use the Thumbnails display mode to more easily
search for your image visually.

2. Find your reference image and click the Load Background Image button

in the upper right-hand corner.

Double-clicking also works. Either way, you return to the 3D Viewport and your
selected image is loaded at the location of the 3D cursor, oriented to match
whatever angle you’re currently looking at in the 3D Viewport.

If you want to quickly get an image in your 3D Viewport, you can also drag and drop
it from a File Browser right into the 3D Viewport. You can do this from both Blend-
er’s native File Browser as well as the one that’s built into your desktop operating
system (such as Explorer in Windows or Finder in Mac OS X). It should be noted,
though, that if you use this technique, the image you add doesn’t behave like a
background image by default. You need to make some adjustments to that image
object. There’s more on making those adjustments in the next few sections.

Mastering the types of image objects

You might notice that Blender offers you two types of image objects in the Add
menu: Reference and Background. Actually, there are three. Look at the bottom of
the Add ➪ Empty menu and see that there’s an Empty type named Image. Now
here’s a little secret: All three of them are the same thing. The Reference and
Background image types are just Image Empties with some additional settings
already set for your convenience.

Figure 6-2 shows all three image objects in the same 3D scene with a simple
object crossing in front of each of them so you can have an idea of how they work.

The following list gives a quick rundown of the differences between each image
object:

 » Image Empty (Add ➪  Empty ➪  Image): All three of the objects in this list are
basically Image Empties, just with different default behaviors. When you add a
basic Image Empty like this one, it’s added like a regular object in your Blender
scene, oriented to match the world axes with its face pointing up the Z-axis.
There is no image preloaded. You need to choose an image separately from
the Object Data tab of the Properties editor.

160 PART 2 Creating Detailed 3D Scenes

 » Reference (Add ➪  Image ➪  Reference): When you add a Reference image
object, Blender first opens a File Browser (like the example in the preceding
section) where you can immediately pick the image you want to load. After
picking your image, it’s oriented to match your viewing angle in the 3D
Viewport and its size is set to 5m. Other than that, all its settings are just like
loading a regular Image Empty.

 » Background (Add ➪  Image ➪  Background): The process for loading a
Background image is exactly the same as loading a Reference image. The
difference, however, is that some of the settings in Object Data Properties are
changed. In particular, the Depth buttons are set to Back and the Side buttons
are set to Front. These settings ensure that the Background image object
behaves like an actual background image.

Changing image object properties

So by knowing how these image objects work, you can make any one of them act
like another with a few changes in Object Data Properties, shown in Figure 6-3.

The following is a quick run-down of the properties you have available for all
Image Empties:

 » Display As: At their core, Image Empties are just like any other Empty object
and can, therefore, be changed into any other Empty type from this drop-
down menu.

 » Size: Use this value field to change the visible size of the Image Empty in the
3D Viewport. The next section shows you a more visual way of adjusting size.

FIGURE 6-2:
The three kinds

of image objects:
Image Empty,

Reference, and
Background.

CHAPTER 6 Sculpting in Virtual Space 161

 » Use Alpha: If your image has an alpha channel, or transparency, enable this
check box and that transparency will be used when the image is displayed in
the 3D Viewport. But even if the image itself doesn’t have an alpha channel, if
you want to reduce the overall opacity of your image, enable this check box
and use the Transparency slider (covered next).

 » Transparency: This value slider is only active if you enable the Use Alpha
check box. By adjusting this value you can control how transparent your
Image Empty is. Sometimes when you’re using these references, it’s handy to
be able to see through them so you can see the actual 3D model you’re
working on.

 » Offset X/Y: Using these values, you can adjust the position of your image
relative to its origin in the 3D Viewport. The next section covers a more visual
way of adjusting these values.

 » Depth: The Depth property gives you control over how your Image Empty is
shown in the 3D Viewport relative to other objects in the scene. You have
three options:

• Default: This is (appropriately) the default behavior for Image Empties and
Reference images. They act just like any other object in the scene. If your
image object is behind another object in the scene, it’s occluded. If it’s in
front, it blocks the visibility of that other object.

• Front: Choose this option and your image object is treated like it’s always
in the foreground, regardless of its location in 3D space. If you have this
option enabled, you’ll probably want to enable the Use Alpha check box
and adjust your image object’s transparency.

FIGURE 6-3:
The Object Data

tab of the
Properties editor

is where you can

modify the
properties of

Image Empties.

162 PART 2 Creating Detailed 3D Scenes

• Back: This option is the default for Background images. Regardless of
where the image object is located in your scene, all other objects appear in
front of it.

 » Side: The three choices for the Side property control which side of the Image
Empty shows your image data. The default behavior for Image Empties and
Reference images is for the image to be visible on both sides of the image
plane, whereas the default behavior for Background images is to be visible
only on the Front side.

 » Display Orthographic/Perspective: These two check boxes control the
visibility of your Image Empty when looking at your scene with Orthographic
or Perspective orientation (toggleable by pressing Numpad 5). Often when
you’re using blueprints or technical drawings as references, you want them
visible only when looked at from orthographic view, so in that case you would
disable the Display Perspective check box.

You can always change the image that’s displayed with an Image Empty using the
controls in the Image panel. For animation reference, you can also choose to load
a movie file or image sequence.

Adjusting your image objects

Whether you’re using a plain Image Empty, a Reference image, or a Background
image, you may not want that image object to be where Blender puts it by default.
Fortunately, Blender also gives you some handy visual controls for modifying an
Image Empty. Of course, you still have access to all the basic transform tools
described in Chapter 3. However, wouldn’t it be nice if you had visual controls for
the Size and Offset controls in Object Data Properties? Fortunately, there are!

With an image object in the 3D Viewport, move your mouse cursor over the edges
of that image object. You should see the edges of your image object turn bright
yellow with square control points at each corner. If you click and drag anywhere
on this yellow edge, you can visually change the size of your image object. Which-
ever side or corner that you click, the opposite side or corner acts as the reference
relative to that which you’re resizing.

Now, move your mouse cursor to somewhere near the center of your image object.
You should notice that the yellow borders reappear and there’s an X-shaped set of
crosshairs at the center. If you click and drag those crosshairs, you can visually
change the X and Y offset values for your image object.

CHAPTER 6 Sculpting in Virtual Space 163

However, what if your image object is rotated to face the wrong direction and you
want to fix that? Well, the Image Empty is still a 3D object, so standard rotation
controls still work there. If you need the Image Empty to face along one of the
world axes, you just need to clear rotation (Alt+R or Object ➪ Clear ➪ Rotation) and
then use the Rotate tool (or hotkeys) to rotate the object 90 degrees on whichever
axis you need.

If you need your image object to be oriented to match some arbitrary viewing
angle that you’re using, there’s a handy set of steps you can perform:

1. Orient the 3D Viewport to the angle you want to work from.

2. In the header of the 3D Viewport, change the Transform Orientation

dropdown to View.

3. Select your image object.

4. In the 3D Viewport’s header, choose Object ➪  Transform ➪  Align to
Transform Orientation.

And just like that, your image object is facing you!

There’s one other way to have reference images when you work. Camera objects
can have their own background images that you can only see when looking through
the camera (Numpad 0). You can activate and control camera background images
from the Object Data tab of the Properties editor when you have a camera object
selected. Chapter 19 has more on using camera background images.

Setting Up Your Sculpting Workspace
As you might expect, you can jump over to Sculpt mode from any 3D Viewport by
using the Mode dropdown in that 3D Viewport’s header. You can get there even
faster using the Ctrl+Tab hotkey. And if you’re using the default file you get when
you choose File ➪ New ➪ General, there’s also a Sculpting workspace available on
the third tab from the left. You can pop on over to that tab and Blender automati-
cally has you set up in Sculpt mode with a 3D Viewport that’s already configured
to get out of your way so you can get on with sculpting.

That said, although it’s handy to know that Sculpt mode is always available, most
people who do 3D sculpting don’t typically start with a cube. Sculpting usually
requires more geometry to push around to get the detail you want, so most sculp-
tors want to start with a more dense mesh. You could go through the process of

164 PART 2 Creating Detailed 3D Scenes

subdividing and smoothing a cube every time you want to sculpt, but the Blender
developers have given you a better, faster way to get started. From the main menu,
choose File ➪ New ➪ Sculpting and you get a Blender window that looks like the
one in Figure 6-4.

When you create a new sculpting session, there are only two workspace tabs at the
top of the Blender window, Sculpting and Shading. Their layouts are just like their
corresponding workspaces when you have a new General work session. However,
one big difference is that instead of starting with just a cube as your starting
primitive in the 3D Viewport, there’s a high-poly sphere, ready and waiting for
you to start sculpting in Sculpt mode.

Referring to Figure 6-4, you may notice that Sculpt mode has quite a few more
tools in the Toolbar available when compared to the Edit mode tools described in
Chapter 5. For this reason, if you’re just now starting out with 3D sculpting in
Blender, I recommend that you expand the Toolbar so it’s large enough to display
the names of each tool as shown back in Figure 5-2. To expand the Toolbar, move
your mouse cursor to the right edge of the Toolbar until the cursor icon changes
to a set of arrows pointing left and right. Then left-click and drag to the right to
expand the Toolbar. At first, you see the tool icons switch to a two-column con-
figuration, and then eventually as you expand further, the tool names get revealed.

FIGURE 6-4:
The default work

environment
when you

choose File ➪  
New ➪  

Sculpting.

CHAPTER 6 Sculpting in Virtual Space 165

MATCAPS: A DISPLAY OPTION FOR
SCULPTING

When sculpting in Blender, you may find that the material for your object and lighting
settings in the 3D Viewport doesn’t give you a good enough sense of the detail you’re
adding to your mesh. To get around this, you might set up a specific lighting environ-

ment and material for sculpting, or you might try adjusting the Studio Lights from the
Lights section of Preferences. However, both of those options can be time-consuming to
set up, and they aren’t necessarily easy to tweak while in the process of sculpting.

Enter matcaps, short for material captures. A matcap is an image that encapsulates all
the properties of a material, including lighting. By mapping that material to the face nor-
mals of a mesh, you can make that mesh appear to have the material and lighting cap-

tured by the matcap.

Blender ships with 23 preset matcaps that you can quickly and temporarily map to all
visible objects in the 3D Viewport. To use them, you need to be in Solid viewport shad-

ing. From there, expand the Viewport Shading rollout and choose Matcap from the
Lighting type. Upon enabling matcaps, the ball in the lighting preview changes to display
a ball with a matcap material. This is your currently active matcap. If you left-click that
preview, it expands as shown in the figure to let you choose one of the other available
matcaps.

(continued)

166 PART 2 Creating Detailed 3D Scenes

Sculpting a Mesh Object

For each of the available tools in the Tool bar, they work by left-clicking with the
brush cursor over the mesh and dragging your mouse cursor around the 3D View-
port. Due to this brush-style of editing, using a drawing tablet can be very
beneficial.

Most tools feature a circular “brush cursor” that follows your mouse cursor as you
move it around the 3D Viewport. When you bring the brush cursor near the surface
of the object you’re sculpting, it rotates to conform with that surface. This style of
viewing the brush cursor is particularly important when sculpting because you
often need to know how your sculpting tool is oriented in space.

In the default Sculpt workspace, the tool properties for all tools have symmetry
activated along your sculpt object’s local X-axis. You can tell it’s working because
on the opposite side of your mesh, a small dot mirrors the position of the brush
cursor as you move it over your mesh.

Regardless of the tool that you have active, if it has a brush cursor, you can quickly
adjust the radius of that cursor by pressing F. When you press that hotkey, the
brush cursor stops in place and snaps to face you. Then, as you move your mouse
cursor towards and away from the center of the brush cursor, you can visually
adjust the radius of your brush tip.

Likewise, you can also visually adjust the strength of your brush by pressing
Shift+F. As you move your mouse cursor closer to the center of the brush cursor in
this scenario, you increase the strength value of your brush.

Understanding sculpt tool types

Each type of tool in the Toolbar serves a different purpose when sculpting.
The first thing you may notice is that there’s a kind of color coding for each tool.

Of course, it’s worth noting that if you choose to use matcaps in the 3D Viewport the
matcap is applied to all objects visible from the 3D Viewport, whether you’re sculpting
them or not. Fortunately, this is easy to get around using collections or local view
(Numpad+Slash [/]).

All told, matcaps are a fantastically useful feature for 3D sculptors and modelers. It’s
worth it to take advantage of them as part of your modeling process.

(continued)

CHAPTER 6 Sculpting in Virtual Space 167

These colors serve to help you categorize each tool so you can find what you’re
looking for more quickly. Granted, it’s worth noting that because many brushes
have the ability to invert their behaviors, these color categories serve mostly as
guidelines rather than strict delineations. The organizational categories are as
follows:

 » Blue: Generally speaking, tools with blue in their icons are tools that add
material to your sculpt and make it larger in the spots where you use that
tool. I call these additive tools.

 » Red: The tools with red in their icons are typically used to remove material
from your sculpt and dig in on the surface. I refer to these as subtractive tools.

 » Yellow: The yellow-icon tools tend to get used for moving the parts of your
sculpt around. I tend to think of these as move tools, though because the
Rotate tool is among them, you might think of them as transform tools.

 » White: The tools in this category don’t really change the shape of your sculpt.
They’re more used in concert with the other tools that you have available. I call
these tools helper tools.

You always have fast access to any tool in the Toolbar by using the Shift+Spacebar
hotkey combination in the 3D Viewport.

Additive tools

If you’re starting with a raw sphere as your sculpting primitive, you’re often going
to go to the additive tools first to rough in the general shape of whatever it is that
you’re sculpting. The following is a brief description of each of these tools:

 » Draw: The Draw tool is the default sculpting tool and it basically pulls the
surface of your mesh outward. It can also push geometry inward if you enable
the Subtract direction in the Brush panel within the Active Tool tab of the
Properties editor (as with most of the additive tools, you can subtract on the
fly as you sculpt by holding down Ctrl). By default, the Draw tool works with an
even falloff, so the raised areas you draw tend to flow smoothly back into the
rest of the mesh. For quick access to the Draw tool, you can use the X hotkey.

 » Draw Sharp: This tool is a bit of an exception to the “additive tool” paradigm I
introduced in this section because by default it digs into the mesh you’re
sculpting on. That said, it’s kind of nice that it’s near the top of the Toolbar
because it’s a really handy tool to have available for cutting into your sculpt
and defining details like wrinkles and the start of creases.

168 PART 2 Creating Detailed 3D Scenes

 » Clay: The Clay brush is pretty unique among Blender’s sculpt tools. Its primary
purpose is to make large changes, adding or subtracting volume from your
base mesh and dealing with details later.

Unlike the Draw tool, which just moves vertices along their local normals, the
Clay tool uses a reference plane that you can customize from this brush’s
settings. The Clay tool is also useful for merging unlinked meshes within the
same object. For fast access to the Clay tool, you can use the C hotkey.

 » Clay Strips: This tool behaves similarly to the regular Clay tool, but the
technical difference is that it uses a cube to define the brush area rather than
a sphere like the Clay tool.

In practice, you should find that the Clay Strips tool feels more like you’re
building up layers of clay as you work and often yields a textured surface with
a bunch of wrinkles and ridges. This tends to be one of my go-to tools when
roughing in the form of my sculpts.

 » Layer: The Layer tool is like using the Draw tool with a maximum height that it
pulls the vertices, basically creating a raised mesa on the surface of your
mesh. For a simple mnemonic, remember that the Layer tool relates to the
Draw tool in the same way that the Clay Strips tool relates to the Clay tool. For
fast access to the Layer tool, use the L hotkey.

 » Inflate: When you run the Inflate tool over your mesh, vertices move outward
along their own local normals. If the Subtract direction in the Brush panel of
your Active Tool Properties is enabled (or you’re holding Ctrl while sculpting),
the vertices move inward. This tool is good for fattening or shrinking parts of a
model. The difference between this tool and the Blob tool is that Blob inflates
vertices in a distinctly spherical way, whereas the Inflate tool works purely
based on vertex normals. You can quickly call this tool to use by pressing I.

 » Blob: When you sculpt with the Blob tool, vertices under your stroke are
pushed outward or inward in a spherical shape.

This tool is good for adding or removing large forms to or from your mesh
when creating rough starting sculpts.

 » Crease: In a way, the Crease tool is the opposite of the Blob tool. Instead of
pushing vertices away from the center of the brush cursor, the Crease tool
pulls vertices closer, sharpening indentations and ridges alike. In contrast to
the Pinch tool described in the next section, the Crease tool uses a reference
plane, much like the Clay tool does. The hotkey for the Crease tool is Shift+C.

Subtractive tools

In traditional sculpting or carving, you spend a lot of time digging into the surface
of your sculpture. You define your shape by removing material from it. In digital

CHAPTER 6 Sculpting in Virtual Space 169

sculpting you can do the same thing. That said, you often use subtractive tools in
the digital realm for adding detail after you’ve roughed in the general shape. The
following are the subtractive tools that Blender has available:

 » Smooth: If you have jagged parts of your mesh or undesirable surface
irregularities created while sculpting, using the Smooth tool cleans up those
bumpy parts and makes the surface of your mesh, well, smoother.

You can choose the Smooth tool quickly by using the S hotkey, but there’s a
faster way to do it. By pressing and holding Shift while you sculpt, you can
have quick access to the Smooth tool at any time, regardless of your current
active tool. This quick-access feature makes for a very fast sculpting workflow.

 » Flatten: The Flatten tool lowers or raises vertices to an average height in an

attempt to get them to be as flat, or planar, as possible. If you’re sculpting a
landscape and you decide to remove a hill, this tool is the one to use. The
other setting for this tool, Contrast (accessible from the Brush panel in
Active Tool Properties or by holding Ctrl while sculpting), pushes vertices
up and down away from that average height, increasing the overall distance
between them.

 » Fill: Using the Fill tool, you can (depending on the tool settings) raise recessed
vertices on your mesh as if filling a ditch, or you can deepen that ditch without
having an effect on the vertices that are at “sea level.”

 » Scrape: The Scrape tool is the logical opposite of the Fill tool. Whereas Fill
raises or lowers only the vertices that are below “sea level,” the Scrape tool
works only on vertices that are above sea level. In practical application, you
use this tool to flatten mountains or grow them larger.

Move tools

There are times when sculpting that you need to make dramatic changes to your
mesh. You may need to pull a whole section to one side, or perhaps you need to
rotate the limb of a character. These use cases are where the tools in this category
really excel. The following is a description of each tool with yellow in its icon:

 » Pinch: If you choose the Pinch tool, vertices are pulled toward the center of
your brush cursor as you move it over the surface of the mesh. Pinch is a
great way to add ridges and creases to a model, though perhaps with a bit
less control than you have with the Crease tool, which more frequently
pushes topology inward or outward. Fast access to the Pinch tool can be had
with the P hotkey.

 » Grab: When you left-click and drag your mouse cursor on a mesh with the
Grab tool activated, the vertices within the tool cursor’s circle are moved to

170 PART 2 Creating Detailed 3D Scenes

wherever you drag your mouse. Grab is like selecting a bunch of vertices in
Edit mode and pressing G. In fact, you can also quickly choose this tool in
Sculpt mode by pressing G.

On a related note, if you’re using Dyntopo (covered later in this chapter), the
Grab tool is one of the few that doesn’t add or remove vertices to your mesh.
It just moves them around. If you want to add and remove vertices while also
moving them around, try the Snake Hook tool described next.

 » Snake Hook: The Snake Hook tool is very similar to the Grab tool except it
gives you more control over what you can do when you pull the vertices
away from the main portion of your mesh. This is especially true if you’re
sculpting with Dyntopo enabled because the Snake Hook tool generates
new geometry, whereas the Grab tool doesn’t. With enough geometry, you
can actually sketch in 3D with the Snake Hook tool. It’s useful for making
things like spines, tentacles, and dreadlocks. Use the K hotkey to quickly
activate the Snake Hook tool.

 » Elastic Deform: An exciting new addition to Blender’s sculpting tool suite is
the Elastic Deform tool. When you first choose this tool, it seems a lot like
the Grab tool, but there’s so much more to it. Based on research done at
Pixar, the Elastic Deform tool is a Grab-style tool that preserves volume and
proportions on your model as you work with it. And if you look through the
tool settings for Elastic Deform, you’ll find additional deformation controls for
grabbing on just one or two axes, plus twist and scale deformations. You can
use this tool like you would the Grab brush, but it really shines when sweeten-

ing the look of an already developed model (like shape keys for additional
expressiveness when animating).

 » Thumb: To think about the Thumb tool effectively, imagine you’re working
with real clay. If you put your thumb on the clay surface and massage it in a
particular direction, the area under your thumb also flattens out. That’s the
basic effect of the Thumb tool. It’s like the Nudge tool (described next) with
the additional feature of flattening the area that you push.

 » Nudge: Using the Nudge tool, you can push vertices a bit at a time in the
direction of your tool stroke. Think of it as a much more nuanced version of
the Grab tool.

 » Pose: Sometimes when you’re sculpting a character, you may want to
adjust that character’s pose. Maybe you’re doing a “pure sculpt” that isn’t
intended for animation, so you don’t need the traditional T-pose for rigging
(see Chapter 12). Or perhaps you are sculpting for animation, but you want
to check a test pose without going through the full process of rigging. These
scenarios are ideal use cases for the Pose tool. It’s a great, fast way to rotate
parts of your model with an offset radius, much like rotating a bone in a
rigged character.

CHAPTER 6 Sculpting in Virtual Space 171

 » Rotate: The Rotate tool, as its name indicates, is a tool for rotating vertices in
your mesh. When you left-click and drag your mouse on your mesh, the tool
remains stationary and the position of your mouse cursor determines how
much the vertices within the area of your tool rotate. It can feel a little
unwieldy to work with at first, but the Rotate tool can be exceedingly useful
once you master its wily ways.

Helper tools

Sculpting isn’t just about adding and subtracting material from digital clay. Some-
times you need to make changes to underlying mesh structure or protect parts of
your mesh when sculpting details nearby. These are the scenarios where the
helper tools are, um . . . helpful. The following tools are what Blender offers to
help you while you sculpt:

 » Simplify: Of the helper tools, the Simplify tool is the only one that isn’t for
hiding or isolating parts of your mesh. Instead, you use it to reduce the
amount of geometry in your mesh while sculpting. Because this tool actually
changes the topology, or the number of vertices and how they’re connected,
on your mesh, it works only when you have Dyntopo enabled. Read more
about Dyntopo later in this chapter in the section entitled “Freeform sculpting
with dynamic topology (Dyntopo).”

 » Mask: There are occasions in sculpting when you want to preserve a part of
your mesh and prevent yourself from accidentally sculpting those vertices.
The Mask tool was created specifically for that purpose. Enable the Mask tool
(you can do so quickly by pressing M) and you can paint the vertices on your
mesh that you want to protect. Hold Ctrl while painting and you can erase the
mask. If you want to clear the mask altogether, you can choose Sculpt ➪  Clear
Mask or use the Alt+M hotkey combination.

 » Box Mask: If you need to mask off large regions of your mesh while you
sculpt, it can be tedious to manually paint every part of the mesh you want to
mask. The Box Mask tool comes to the rescue. Using it, you draw a box (like
with the Box Select tool in Object mode and Edit mode). Any geometry in that
box gets masked. You can use the Box Mask tool to subtract an existing mask
by holding Ctrl while drawing your box.

For quick access to the Box Mask tool, press B. After drawing your mask,
you’re returned to whatever tool you were using before pressing B. One
weird behavioral quirk if you’re using the Box Mask tool this way is that it
behaves like Box selecting with B in Object and Edit mode. That is, with
hotkey-activated Box Mask, you can’t navigate the 3D Viewport, and mask
subtraction is done by clicking and dragging with the middle mouse button.

172 PART 2 Creating Detailed 3D Scenes

A key thing to remember about the Box Mask tool (and the Lasso Mask tool
described next) is that it always works through your mesh. That is, if you’re
sculpting the head of a character and you use the Box Mask tool on the eye
from the front view, the back of that character’s head will also have a box-
shaped mask.

 » Lasso Mask: The Lasso Mask tool isn’t visible by default. You need to long-
press the Box Mask tool icon to reveal it. However, once you activate the
Lasso Mask tool, it works as you expect. Draw an enclosed shape over your
mesh and anything within that shape gets masked. Like the Box Mask tool, the
Lasso Mask always works all the way through your mesh.

 » Box Hide: The Box Hide tool works just like the Box Mask tool, but instead of
merely masking off parts of your mesh, this tool hides them altogether. There
are two main reasons why you’d want to hide parts of your mesh rather than
mask them:

• Part of your mesh is in the way. By hiding the bit that’s in the way, you
can get to hard-to-reach parts of your mesh and sculpt them.

• Performance. When you sculpt, the vertex count of your mesh can
skyrocket. On really large or really detailed sculpts, you can easily get
millions (or tens of millions) of vertices in your mesh. If you have an older
computer or a not-so-great video card, that amount of geometry can bring
your machine to its knees. By strategically hiding parts of your mesh, you
can ensure that Blender is working only with a limited amount of geometry
and get the 3D Viewport to be a bit more responsive.

It’s worth noting that the Box Hide tool is the only tool in Sculpt mode that
doesn’t adhere to any Symmetry setting you choose. There’s more on
Symmetry later in this chapter.

 » Mesh Filter: The Mesh Filter tool is a great, quick way to apply a general
modeling adjustment to your sculpt. Unlike the rest of the tools in Sculpt
mode, there’s no visible brush cursor in the 3D Viewport when you choose
this tool. You just click and drag in the 3D Viewport, and you can control the
influence of the filter you pick from your tool settings. Clicking and dragging to
the right increases the influence of the filter, whereas dragging left decreases
it. By default, the filter type is set to Inflate, but you also have the choices of
Smooth, Scale, Sphere, and Random.

It’s also worth noting that although the Mesh Filter tool affects your whole
mesh, it does still respect any masks you’ve created with the masking tools
described in the preceding bullets. So you can actually control where on your
sculpt the Mesh Filter tool works.

CHAPTER 6 Sculpting in Virtual Space 173

Tweaking brush properties

Regardless of the tool you have selected while working in Sculpt mode, all the set-
tings for each tool are located in the Active Tool tab of the Properties editor. If you
prefer to work with a maximized 3D Viewport (Ctrl+Spacebar), you also have
access to your tool settings from the Tool tab of the 3D Viewport’s Sidebar. And for
quick access to frequently used tool settings, you can use the Topbar in the 3D
Viewport’s header. In most other workspaces, I often keep the 3D Viewport’s Top-
bar hidden, but it can be pretty handy for sculpting and painting. For the sake of
not pointing to all three locations every time I mention a setting, I’ll spend the
bulk of this chapter referring to how the tool settings are organized in the Active
Tool tab of the Properties editor.

As you work your way down Active Tool Properties, you get finer and finer control
of the settings for your sculpting tool. In fact, the first panel, Brush, just contains
a brush datablock, which serves as a means of storing for all the subsequent set-
tings in that tool. By default, each tool only has a single brush datablock assigned
to it. Within a tool, you can create as many different brushes as you’d like. Switch
your brushes by clicking on the brush icon above the datablock and choose the
preset brush you’re interested in.

The Radius and Strength sliders below the list of brush datablocks control the size
and strength of the brush you’re currently using. As I describe earlier in this
chapter, you can use hotkeys for changing these values while in the 3D Viewport
so that you don’t have to constantly return to the Active Tool Properties:

 » To change brush radius, press F, move your mouse until the brush cursor is
the desired size, and left-click to confirm.

 » To adjust the brush strength, press Shift+F and move your mouse cursor
toward the center of the circle that appears to increase the strength or away
from the center to decrease the strength. When you’re at the strength you
want, left-click to confirm.

Additionally, if you happen to have a drawing tablet, you can bind the Radius and
Strength values to the pressure sensitivity of your tablet. Each value slider has a
button to its right with an icon of a pen with circles radiating from it. Left-click
this toggle button on either slider, and Blender recognizes the pressure informa-
tion from your tablet.

The next set of important controls available while in Sculpt mode are a pair of
buttons in the Brush panel. Depending on which sculpt tool you’re using, these
labels may be named Add and Subtract, Flatten and Contrast, Inflate and Deflate,
or they may not be there (for move tools like Grab, Snake Hook, and Rotate).
Regardless of what they’re named, if they’re available, pressing Ctrl while using

174 PART 2 Creating Detailed 3D Scenes

the tool does the opposite behavior. For example, if you’re using the Draw tool
with Add enabled, the normal behavior creates a small hill wherever you draw
with the brush cursor. If you Ctrl+left-click and drag, you sculpt a small valley
instead.

When working with additive tools like Draw, Inflate, or Layer, an additional check
box, labeled Accumulate, appears in the Options sub-panel at the bottom of the
Brush panel. By default, when you use these tools, they move the faces on your
mesh relative to the normals that they have when you start making your stroke,
regardless of how many times you paint over them in a single stroke. This default
behavior is helpful because it prevents your mesh from quickly expanding uncon-
trollably. However, if you want to use a face’s immediate normal when you run
your brush cursor over it, then you should enable this check box. Among the sub-
tractive tools, the Flatten tool is the only one with the Accumulate option, and is
enabled by default.

Refining control of your tools
The rest of the panels in Active Tool Properties are available for each of Sculpt
mode’s tools. With a few exceptions, each set of properties you set is specific to
the brush datablock that you’ve got active, and you can use them when building
your own custom brushes. The next section gets into custom brushes in more
detail. The following describes each panel in Active Tool Properties:

 » Texture: You can create brush textures in Blender and use them to influence
your brushes. The Texture panel is where you assign a texture to your current
brush. It’s the same system that’s used for Texture Paint mode in Blender.
See Chapter 9 for more information on creating textures and Texture Paint
mode. If you already have textures created in your .blend file, left-clicking
the texture icon gives you the ability to choose which one you want to use on
your active brush.

 » Stroke: The Stroke panel holds settings that dictate what happens when
you’re dragging the brush over your mesh. The most valuable setting in this
panel is Stroke Method. The options in this menu dictate how your brush
movement influences your mesh. For fun, choose the Layer brush and set the
Stroke Method to Anchored. When you left-click and drag your brush over
your model, you get a neat mesh tsunami that originates from the location
you clicked.

 » Falloff: Within this panel are settings for adjusting how the influence of your
brush changes from its center to its extremities. You can use an assortment of
curve presets, or you can use the curve editor interface to make your own
custom falloff profile.

CHAPTER 6 Sculpting in Virtual Space 175

 » Display: The Display panel has controls for how the brush cursor appears in
the 3D Viewport as you sculpt. You can control the color of the brush cursor
itself, whether it’s visible at all, and the transparency of your brush as you
adjust its size and strength.

 » Dyntopo: If you choose to enable Dyntopo for dynamic topology sculpting,
your controls for Dyntopo behavior are in this panel, as covered in detail later
in this chapter.

 » Symmetry: This panel controls how the sculpt brushes modify your mesh
relative to the object’s local axes. For example, if you left-click the X check box
next to the Mirror label, anything you do on the left side of the mesh auto-

matically also happens on the right side of the mesh (this is the default
behavior when you first load a Sculpting workspace). Symmetry is an excellent
timesaver for doing involved tasks like sculpting faces. The X, Y, and Z lock
buttons in this panel prevent your sculpted vertices from moving along any of
those axes if they’re enabled.

 » Options: The Options panel is kind of a dumping ground for miscellaneous
brush properties that you may want to set while you work. Among the most
important are the check boxes under the Unified Brush sub-panel. If you want
the size or strength of your brush to persist regardless of the sculpt tool you
choose, enable these check boxes. By default, the Size check box is enabled.

TOOLS AND BRUSHES: WHAT’S
THE DIFFERENCE?
If you’re familiar with other digital sculpting applications, Blender’s way of handling tools
and brushes may seem a little odd to you. Whereas in other programs the terms tool

and brush can almost be used interchangeably, that’s not the case with Blender. In
Blender, a sculpt tool can encapsulate one or more brushes. The tool is the thing you
click in the 3D Viewport’s Sidebar. The brush is a datablock that you can select from
Active Tool Properties.

The primary advantage of this approach is organization. Even in 2D digital painting
application, brush libraries can explode to be a massive wall of little brush icons that
you have to scroll through to try and successfully find the one you’re looking for. It’s
almost as bad as trying to find the right font when doing typographical work. By having
tools with the ability to load their own individual brush datablocks, you can have a much
more organized approach, and you’re more likely to be able to find the brush you’re
looking for.

176 PART 2 Creating Detailed 3D Scenes

 » Remesh: As you sculpt, you may find that your mesh’s geometry can start
to get difficult to control. Either you’ll have way too many vertices, thereby
hurting performance, or maybe you’d just like to have a more even distribu-

tion of vertices and faces so you can add more detail where it’s needed.
The controls in the Remesh panel give you the ability to adjust your mesh
as you work.

Creating custom brushes

Using the controls in Active Tool Properties while in Sculpt mode, you can create
your own custom brush datablock for your currently active sculpt tool. Follow
these steps:

1. Create a new brush datablock by clicking the Add Brush button in the

brush datablock.

The Add Brush button doesn’t have any text; it has an icon that looks like two
pieces of paper, as shown in the left margin. Adding a new brush datablock in
this manner duplicates the current active brush.

2. Name your new brush by typing in the datablock field.

Now you can go about customizing your brush. When you save your .blend

file, the brush datablock is saved with it.

Using Blender’s texture system
to tweak brushes

In the Texture panel, you can pick a texture to influence the behavior of your
brush. Any texture made in Texture Properties or the Texture Node Editor can be
used as a brush when you sculpt. Textured brushes are an excellent way to get
more details added to your mesh while sculpting. Choose an existing texture by
left-clicking the texture square in this panel and picking from the thumbnail
images that appear. (See Chapter 9 for more information on creating and loading
textures in Blender.) Figure 6-5 shows the Texture panel in Active Tool
Properties.

You may want to enable the Rake check box beneath the Angle value when you’ve
loaded a texture. With this option toggled on, the texture is rotated as you sculpt
to match the motion of the brush. Using Rake helps you avoid creating unnatural
patterns from your textures when you sculpt.

CHAPTER 6 Sculpting in Virtual Space 177

If you’re sculpting with the Multiresolution modifier (see the next section) and
you have a high level of subdivisions, it can be taxing on your computer, using a
lot of memory to store all those additional vertices. If you use too many levels of
subdivision, your computer may run out of memory, and Blender may lock up or
crash. This can also happen if you’re sculpting with Dyntopo and add a lot of fine
details to your sculpt. In an effort to prevent a crash and give themselves more
vertices to play with, many 3D sculptors in Blender often go to the System section
of Preferences (Edit ➪ Preferences) and disable Global Undo as well as change the
number of undo steps from the default value of 32 down to 0. This modification
removes the safety net of undo, but it can often significantly improve Blender’s
performance while sculpting.

Sculpting with the Multiresolution
modifier

The default Sculpting workspace gives you a fairly high-density starting mesh to
play with Sculpt mode, but if you’re working with just that mesh, you’ll quickly
discover that you need more geometry to get enough detail in your sculpt. You
could subdivide the mesh in Edit mode or add (and apply) a Subdivision Surface
modifier, but that workflow is destructive and gives you more geometry at the
expense of performance.

FIGURE 6-5:
Use the Texture

panel in Active

Tool Properties to

make use of a
texture on your

active sculpt tool.

178 PART 2 Creating Detailed 3D Scenes

Multiresolution (or multires) meshes address the problem of having to apply the
Subdivision Surface modifier before you can directly control the vertices that it
creates. With a multires mesh, you can freely move between a level 1 subdivision
and a level 6 subdivision, just like with the Subdivision Surface modifier. However,
the difference is that you can directly control the vertices of the level 6 subdivision
just as easily as the level 1 subdivision by using Blender’s Sculpt mode. And you
can see changes made in either level — to varying levels of detail, depending on
the level you’re looking at. (If you make a very fine detail change in level 6, it may
not be readily apparent at level 1.)

Creating a multires mesh is just like adding any other modifier to a mesh object.
Go to Modifiers Properties and choose Multiresolution from the Add Modifier
menu. Figure 6-6 shows what the Multiresolution modifier’s controls look like
after being added to your selected object.

The Multiresolution modifier is similar in appearance to the Subdivision Surface
modifier, covered in Chapter 5. By default, the Multiresolution modifier starts
with zero subdivisions on your mesh. Use the Subdivide button to increase the
level of subdivision that you want to add to your mesh. Subdividing increments
the values for Sculpt and Render but leaves the Preview value at 0. Like the View
and Render values in the Subdivision Surface modifier, these values control how
many levels of subdivision you see in the 3D Viewport, both while sculpting and
when your model is rendered, respectively.

However, unlike with the Subdivision Surface modifier, you don’t have exactly six
levels of subdivision to switch between. In the Multiresolution modifier, the num-
ber can be as low as zero and as high as your computer’s processor and memory
can handle. And before adding a level, you have the option of choosing Catmull-
Clark Subdivision or Simple Subdivision, like you can with the Subdivision Surface
modifier.

FIGURE 6-6:
The

Multiresolution
modifier block.

CHAPTER 6 Sculpting in Virtual Space 179

You can’t freely change between subdivision types on a given level with the Mul-
tiresolution modifier. Changing from Catmull-Clark to Simple (or vice versa) has
an effect on all multires levels.

If you have a Subdivision Surface modifier on your mesh, I recommend applying it
to your mesh or removing it from the modifier stack before adding the Multiresolu-
tion modifier. Because the Multiresolution modifier uses the same process to create
subdivision levels, you really don’t need to have both active at the same time.

After you add a level, you have some additional options available. Clicking Delete
Higher removes all subdivision levels greater than the level you’re currently in. So
if you have five levels of subdivision and you’re at level three, clicking Delete
Higher effectively kills levels four and five.

Enabling the Optimal Display check box does the same thing that the correspond-
ing check box does in the Subdivision Surface modifier: It prevents Blender from
showing subdivided edges in the 3D Viewport. Some 3D modelers who use sculpt-
ing tools like to overlay the model’s wireframe on the mesh as they work so that
they can have an idea of how their topology looks. (See the sidebar “The impor-
tance of good topology” in Chapter 5 for more information.) Without Optimal
Draw enabled, the 3D Viewport of your model can quickly get cluttered, so enabling
this check box simplifies the display for you.

Now, if you try to tab into Edit mode on a multires mesh, you still see only the
vertices available to you in the cage provided by the base mesh. So how do you
actually edit all those additional vertices created by the Multiresolution modifier?
The answer: Sculpt mode.

When working in Sculpt mode and using the Multiresolution modifier, the general
workflow is to start at low levels of subdivision to block out the rough shape of
your model, and then proceed to higher levels of subdivision for more detailed
elements of your model. The process is very much like traditional sculpting in
meatspace, as well as box modeling in the CG world. The only difference in this
case is that the Multiresolution modifier allows you to freely move between high
and low levels of subdivision, so you don’t have to block out your whole model in
a single go.

Nothing says that you’re required to use the Multiresolution modifier when
sculpting in Blender. In fact, Sculpt mode works just fine without any Multireso-
lution modifier at all. That said, the Multiresolution modifier uses some accelera-
tion structures that make Blender capable of sculpting meshes with millions of
vertices without breaking a sweat. If you try to sculpt on meshes that large with-
out the Multiresolution modifier, performance can often be orders of magnitude
worse.

180 PART 2 Creating Detailed 3D Scenes

Freeform Sculpting with Dynamic
Topology (Dyntopo)

One of the most groundbreaking features to hit Blender’s modeling community in
recent years was the ability to have dynamic topology (Dyntopo for short) while in
Sculpt mode. Simply put, when you enable Dyntopo, your sculpting brush can add
or remove geometry from your mesh on the fly. Need more detail in just one part
of your model? There’s no need to use the Multiresolution modifier and bump up
the vertex count for your whole mesh. Just enable Dyntopo and add that detail
exactly where you need it.

To use Dyntopo, you need to be in Sculpt mode. While in Sculpt mode, look at the
Active Tool tab of the Properties editor. A panel there is named, appropriately,
Dyntopo. Left-click the check box at the top of the panel and you’re off to the
races, sculpting with dynamic topology. Alternatively, you can also enable Dyn-
topo with Ctrl+D while in Sculpt mode. Figure 6-7 shows the Dyntopo panel in
Active Tool Properties.

FIGURE 6-7:
The Dyntopo

panel in Active

Tool Properties

allows you to

enable dynamic
topology while in

Sculpt mode.

CHAPTER 6 Sculpting in Virtual Space 181

For such a powerful feature, there are relatively few options specific to Dyntopo.
The following is a quick rundown of the options available in the Dyntopo panel:

 » Detail Size: Dyntopo works by modifying edges within the area of your brush
cursor. The Detail Size field defines a value that lets Dyntopo decide whether a
specific edge gets modified, based on its length. This value can either be in
screen pixels or a percentage, depending on the detail type method that you
choose (I cover detail types in this list). While sculpting, you can adjust this
value with the Shift+D hotkey so you don’t have to constantly return to the

Active Tool Properties.

 » Refine Method: Dyntopo can subdivide edges in your mesh and collapse

them, removing additional detail. The options in this drop-down menu allow
you to control which behavior you want your sculpt brush to use:

• Subdivide Edges: If an edge within your brush cursor is longer than the
detail size, it’s subdivided. This refine method is great for fine details,
creases, and sharp peaks.

• Collapse Edges: When you choose the Collapse Edges option, short edges
get collapsed into a single edge. In the case of Dyntopo, a short edge is
defined as being two-fifths (2⁄5) the length of the detail size. This option is
great for evening out your topology and removing long skinny triangles
that may render weirdly. However, the trade-off is that it also removes any
fine details smaller than the detail size.

• Subdivide Collapse: The Subdivide Collapse option is the default. With this
refine method, edges within the area of your brush cursor are subdivided
and collapsed, relative to the detail size. This behavior makes the Subdivide
Collapse option well-suited for quickly roughing the general forms of your
sculpt.

 » Detailing: When sculpting, it’s common for artists to arbitrarily navigate
around their model as they work, orbiting, panning, and zooming to get the
best view of the section that they’re sculpting.

Zooming specifically presents an interesting challenge for Dyntopo because
sometimes you want the detail size to remain the same regardless of how
much you zoom in or out from your model; other times, you want to do more
detailed work as you zoom closer. The options in this drop-down menu let
you choose:

• Relative Detail: This is the default setting. Choose this option to define
detail size relative to the pixels on your screen. If you zoom out far enough,
all the edges in your mesh become smaller than the detail size. If you zoom
in, you only subdivide smaller edges.

182 PART 2 Creating Detailed 3D Scenes

• Constant Detail: Choose the Constant Detail option if you want the detail
size to remain the same, regardless of how much you zoom in or out from
your model. With this option, detail size is defined as a percentage of the
base unit you define in the Scene tab of the Properties editor (the default is
1 meter). Additionally, the Detail Size field at the top of the Dyntopo panel
gets an eyedropper button. Left-click that button to sample the geometry
in your mesh. This means that you can click the eyedropper on a part of
your mesh and the Detail Size field is set to match the edge lengths in that
region.

• Brush Detail: If you pick Brush Detail, then the Detail Size is determined by
the percentage of your brush cursor. Increase the radius of your brush
cursor and you increase the edge length. Reduce the brush radius and you
generate more detailed topology.

• Manual Detail: Choose this value and edge length is fixed based on the
Resolution value you set at the top of the Dyntopo panel. Higher
Resolution values mean you sculpt with more detail, regardless of brush
size or how close you’re zoomed in on your mesh.

 » Smooth Shading: The Smooth Shading check box toggles between smooth
shading and flat shading for your entire mesh while sculpting. This is mostly a
personal preference, though some sculptors claim to have a more responsive
3D Viewport with Smooth Shading disabled.

 » Remesh: The Remesh sub-panel within the Dyntopo panel should not be
confused with the main Remesh panel in Active Tool Properties. This sub-
panel is the one you use while working in Dyntopo to tweak the topology of
your sculpt as you work, according to the detail settings you configure in the
Dyntopo panel.

• Symmetrize: With Dyntopo, you can take geometry that you’ve sculpted
on one half of your mesh and mirror it to the opposite side. For example, if
you did some sculpting without using the features in the Symmetry panel
(described earlier in this chapter), you may want to mirror that geometry to
at least give you a detailed starting point for the other side of your mesh.
Left-click the Symmetrize button to do exactly that, based on the direction
(such as “from the negative X-axis side of the mesh to the positive X-axis
side”) defined in the Direction drop-down menu above the buttons in the
Remesh sub-panel.

• Optimize: As you sculpt with Dyntopo enabled, your brush may become
less responsive, with strokes lagging behind your brush cursor as you
work. If you run into that, try clicking the Optimize button. When you click,
Blender recalculates and rebuilds the underlying data structure that

Dyntopo uses to speedily edit the edges on your mesh, often alleviating
some sculpting performance slowdowns.

CHAPTER 6 Sculpting in Virtual Space 183

• Detail Flood Fill: The Detail Flood Fill button is visible only if you have your
detail type set to Constant Detail or Manual Detail. Assuming that you have
chosen either of those, you can click the Detail Flood Fill button to subdi-
vide (and/or collapse, depending on your chosen detail refine method)
every edge in your mesh to match your desired detail size. This is a pretty
useful tool for uniformly changing the detail in your mesh (increasing or
decreasing it) all at once.

As of the writing of this text, the Symmetrize feature of Dyntopo does not respect
any masking that you’ve painted on your mesh. So if you’ve painted a mask in the
hope that Symmetrize will only have an effect on the unmasked vertices of your
mesh, you’re a bit out of luck. Symmetrize will happily mirror your mesh regardless
of the mask, removing or changing those vertices that you wanted to preserve.

Of course, the power that a feature like Dyntopo presents also necessarily comes
with a few caveats:

 » You can’t have both Dyntopo and a multires mesh at the same time. It’s kind
of difficult to have fixed subdivision levels if the underlying topology is
constantly changing.

 » Because Dyntopo dramatically changes your mesh topology, it will not
preserve additional mesh data like vertex groups, UV coordinates, or vertex
colors. Also, if you have some faces on your mesh set to smooth shading and
others to flat shading, that also gets changed so all faces are either one or the
other, depending on whether you toggle the Smooth Shading check box in the
Dyntopo panel.

 » Although you can reduce vertices using Dyntopo, it’s not currently possible to
sculpt a hole in your mesh.

 » Unless your model is being used in a still image and never rigged for anima-

tion, it almost always will be necessary to retopologize a mesh that’s been
sculpted with Dyntopo enabled. This chapter ends with a primer on doing
retopology in Blender.

Caveats and trade-offs aside, Dyntopo is an extremely powerful tool for modern
3D modelers. I daresay most of the complex models you see on films, television,
and the Internet are made with sculpting techniques rather than traditional mod-
eling techniques. In terms of workflow, it goes something like this:

1. Start with a base mesh.

Depending on what you’re modeling, the base mesh could be as simple as a
sphere like you get in the default Sculpting workspace, or a somewhat more
complex rough form for the model, such as a 3D stick figure to start a

184 PART 2 Creating Detailed 3D Scenes

character model. In the ideal case, whatever your base mesh is, it should have
evenly distributed faces (that is, all the faces on your base mesh should be
roughly the same size).

2. Sculpt with Dyntopo.

With Dyntopo enabled, use the various sculpting tools to produce your
impressive 3D sculpt.

3. From Object mode, create a new mesh.

It doesn’t much matter what kind of mesh it is. When you get into Edit
mode, you’ll need to initially delete all the geometry in it so you can start
the next step.

4. Retopologize the sculpt using the newly created mesh.

At this point, you’re basically using the sculpt as a 3D reference model to which
you can snap your clean topology vertices. The next section in this chapter
covers retopology.

5. Finalize and polish the retopologized mesh.

This is where details are re-added using traditional modeling techniques. In
this step, you may also bake some of that additional detail from the high
resolution sculpt into a texture that you apply to your retopologized mesh.
Chapter 9 has more on baking textures from your geometry.

Understanding the Basics of Retopology

When it comes to retopologizing your mesh, or retopo for short, Blender doesn’t
really have much in the way of dedicated tools built into it (yet!). A few very useful
add-ons, such as RetopoFlow, have been created by third-party developers to help
with the retopo process, but they don’t ship with Blender by default. That said, if
you find that sculpting and modeling are your favorite aspects of 3D computer
graphics, you’ll be going through the retopo process a lot. In that situation,
I recommend that you investigate and ultimately purchase those add-ons. But it’s
still worthwhile to know what Blender can do on its own as well. Retopo add-ons
can get you part of the way there, but most of the time, you still need to finish
with Blender’s native tools.

So if there aren’t any dedicated retopo tools in Blender, exactly how do you
 retopologize your mesh? The answer is deceptively simple. You combine Blender’s
native modeling tools with clever use of snapping (see Chapter 3 for a more

CHAPTER 6 Sculpting in Virtual Space 185

thorough overview of snapping). There are some shortcuts, such as trying to use
the Shrinkwrap modifier to snap the vertices of a clean topology mesh to the sur-
face of your sculpt. However, when it comes down to it, you’re really going to need
to do point-for-point modeling. One of the best tools to use for that purpose is the
Poly Build tool in Edit mode.

Once you finish your 3D sculpt, follow these steps as the basic process for
retopologizing:

1. From Object mode, create a new mesh (Add ➪  Mesh ➪  Plane).

In this example, I’m using a plane, but it could be any mesh, as you’ll see in the
next step. In fact, some modelers use an add-on that creates a zero-vertex
mesh object for exactly this kind of thing.

2. Rename your new mesh object to something that makes sense.

It could be something like Character.retopo, for example, as long as it’s
anything other than the primitive mesh’s name.

3. Tab into Edit mode on your new mesh.

4. Select all the vertices in this new mesh and delete them (Select ➪  A,
Mesh ➪  Delete ➪  Vertices).

Now you have a mesh object with no data inside.

5. In the Snap Element drop-down menu in the 3D Viewport’s header, set it

to use Face snapping.

This step is important; it’s what makes the rest of the retopo process possible.
You can also enable snapping by toggling the button with the magnet icon, but
because of the idiosyncrasies of how the Poly Build tool works, I prefer to just
enable snapping on the fly by pressing Ctrl.

6. Activate the Poly Build tool.

This is the tool that you’re going to use to generate the retopologized version
of your sculpt.

7. Ctrl+left-click on the surface of your 3D sculpt.

This creates the first vertex of your retopo mesh. By holding down the Ctrl
button when left-clicking, you’re telling Blender to snap your new vertex right
on the surface of your sculpt mesh.

8. Ctrl+left-click again on the surface of your 3D sculpt.

Now you have an edge between the vertex you created in Step 8 and this
vertex.

186 PART 2 Creating Detailed 3D Scenes

9. Ctrl+left-click a third time on the surface of your 3D sculpt.

With this move you have three vertices and two edges. Now is where the
strength of the Poly Build tool really starts to kick in.

10. Hold Ctrl and move your mouse cursor near the “corner” vertex that’s

connected to both edges (don’t click anywhere just yet).

You should see a concave quad like the one in Figure 6-8. When you hold down
Ctrl, you get a preview of the geometry that the Poly Build tool is going to
create for you.

11. Still holding Ctrl, left-click and drag your mouse from that corner vertex

to form a quad.

Because you’re holding down Ctrl, your new vertex snaps to the surface of your
sculpt. If you want to adjust the position of any vertex, left-click and drag that
vertex around (press Ctrl while dragging to keep it snapped to the surface of
your sculpt).

12. Repeat the process of Steps 10 and 11 along one of the edges of your

newly formed quad to pull out a triangular face from it.

Don’t worry too much about this being a triangle. You’ll turn it into a quad in
the next step.

13. Repeat Steps 10 and 11 again along the longest edge of your new triangle

to pull it into a quad.

Now you have two connected quads snapped to the surface of your sculpt!
Figure 6-9 shows the general process to get this far in a more visual step-by-
step format.

FIGURE 6-8:
Beginning to

model with the
Poly Build tool.
You start with

three vertices and

you can pull a

face from that.

CHAPTER 6 Sculpting in Virtual Space 187

14. Continue using the Poly Build tool along with the rest of Blender’s built-in

mesh editing tools to lay out the vertices of your retopologized mesh.

As you work, keep in mind the basic guidelines outlined in the sidebar in
Chapter 5, “The importance of good topology.” This step comprises the
somewhat tedious and time-consuming process of retopologizing your mesh.
However, when you’ve already made your sculpt, you have a clear plan that
shows what your final mesh should look like. At this point, you’re basically
playing “connect the dots” on the surface of your 3D sculpt. Once you get up to
speed, this is a much more effective way of modeling than the traditional box
modeling or point-to-point modeling methods described in Chapter 5.

Figure 6-10 shows a mesh sculpted using Dyntopo and that same model after it’s
been retopo’d.

FIGURE 6-9:
Using the Poly

Build tool to start

retopologizing
your sculpt.

FIGURE 6-10:
On the left, a

model sculpted
with Dyntopo;
on the right is

the same model
after being

retopologized.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 189

Chapter 7

Using Blender’s Non-
Mesh Primitives

A
lthough polygon-based meshes tend to be the bread and butter for model-
ers using Blender, they aren’t the only types of objects available to you for
creating things in 3D space. Blender also has curves, surfaces, metaball

objects, and text objects. These objects tend to have somewhat more specialized
purposes than meshes, but when you need what they provide, they’re extremely
useful.

Curves and surfaces are nearly as general purpose as meshes; they’re particularly
handy for anything that needs to have a smooth, non-faceted look. They’re also
important for models that require mathematical precision and accuracy in their
appearance. Metaball objects are great at creating organic shapes that merge into
one another, such as simple fluids. You can also use them to make a roughly
sculpted model from basic elements that you can detail further in Sculpt mode.
Text objects are exactly what they sound like: You use them to add text to a scene
and manipulate that text in all three dimensions. This chapter tells you more
about working with all these types of objects. There are also Grease Pencil objects,
but they’re a bigger topic (see Chapter 15 for more detail).

IN THIS CHAPTER

 » Working with curve objects and
NURBS surfaces

 » Understanding the benefits of
metaball objects

 » Using text in Blender

190 PART 2 Creating Detailed 3D Scenes

Using Curves and Surfaces

So, what’s the biggest difference between curves and surfaces when compared to
meshes? Math! Okay, I’m sorry. That was mean of me; I know that math can be a
four-letter word for many artists, but don’t worry; you won’t have to do any math
here. What I mean to say is that curves and surfaces can be described in the com-
puter as a mathematical function. You describe meshes, on the other hand, using
the positions of all the individual vertices that they’re composed of. In terms of
the computer, curves and surfaces have two advantages:

 » Curves and surfaces are very precise. When you get down to it, the best that

a mesh can be is an approximation of a real object. A mesh can look really,

really good, but it’s not exact. Because curves are defined by math, they’re
exactly the correct shape, which is why designers and engineers like them.

 » Curves and surfaces take up less storage memory. Because the shape is

mathematically defined, the computer can save that shape by saving the
math, rather than saving all the individual points. Complicated curves and

surfaces can often take up quite a bit less hard drive space than the same

shape made with meshes.

Of course, these advantages come with some caveats, too. For one, curves and
surfaces can sometimes be more difficult to control. Because curves and surfaces
don’t really have vertices for you to directly manipulate, you have to use control

points. Depending on the type of curve, control points can sit directly on the shape
or float somewhere off of the surface as part of a control cage.

Even though curves and surfaces are perfect mathematical descriptions of a shape,
the computer is actually an imperfect way of displaying those perfect shapes. All
3D geometry is eventually tessellated when the computer processes it (see
Chapter 5). So even though curves and surfaces can take less memory on a
computer, displaying them smoothly may actually take more time and RAM for
the computer to process. To speed up things, you can tell the computer to use a
rougher tessellation with fewer triangles. As a result, what you see in Blender is
an approximation of that perfect curve or surface shape. Do you find yourself
thinking, “But hey, I thought curves were supposed to be perfect mathematical
descriptions of a shape. What gives with these facets?” Well, the curve is perfect.
It’s just hard for the computer to show it to you directly.

But despite these minor disadvantages, using curves and surfaces is a really smart
move in quite a few cases. For example, most designers like to use curves for com-
pany logos because curves can scale in print to any size without looking jagged or
aliased around its edges. As a 3D artist, you can easily import the curves of a logo
design and give the logo some depth, dimension, and perhaps even some
animation.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 191

And speaking of animation, curves have quite a few handy uses there as well. For
example, you can use a curve to define a path for an object to move along. You can
also use curves in Blender’s Graph Editor to display and control the changes to an
object’s properties over time. For modeling purposes, curves are great for pipes,
wires, and ornate organic shapes. Figure 7-1 shows a park bench. Only curves
were used to model its sides.

A set of curves used to define a shape in three dimensions is a surface. In some
ways, curve surfaces are very similar to meshes that have the Subdivision Surface
modifier applied because they both have a control cage defining the final shape
that’s created. The difference is that the curve surface has space and precision
benefits that meshes don’t have. Also, surfaces are a little bit easier to add textures
to because you don’t have to go through the additional step of unwrapping, or flat-
tening the surface, so you can apply a two-dimensional texture to it. When you use
a surface, you get that unwrapping for free because it’s already done for you.

For these reasons — especially the precision — architects, industrial designers,
and engineers prefer to work with surfaces. Someone designed just about every-
thing in your house, including your water faucet, your coffee maker, your televi-
sion, your car, and even the house itself. If an item was manufactured within the
last 20 years, chances are good that it was designed on a computer and visualized
with surfaces. Also, before the advent of subdivision surfaces, early characters for
computer animations were modeled using curve surfaces because they were better
at achieving organic shapes.

FIGURE 7-1:
With the

exception of the

slats for the seat

and back, this

entire park bench

was modeled

with curves.

Model credit: Bob Holcomb

192 PART 2 Creating Detailed 3D Scenes

Of course, if you’re seen using curves to build a character these days, you may be
viewed as a bit of masochist . . . especially if you try to do it in Blender. Even
though you can do a lot with Blender’s curves and surfaces, the toolset for work-
ing with them is quite a bit smaller than what a designer might expect if they’re
familiar with an application that has more dedicated support for curves and sur-
faces. I personally wouldn’t recommend Blender if you’re trying to do that kind of
CAD-style design. That’s a recipe for frustration.

Understanding the different
types of curves
In Blender, you can add curves by choosing Add ➪ Curve and selecting the type of
curve you’d like to use from the menu that appears. As shown in Figure 7-2, you
can use two main kinds of curves: Bézier curves and NURBS curves. (The Path curve
is a specific type of NURBS curve.)

You generally use Bézier curves more for text and logos. Bézier curves work in
three dimensions by default, but you can get them to lock to a single 2D plane if
you need to. You can tell that you’re using a Bézier curve because if you tab into
Edit mode to look at it, each control point has a pair of handles that you can use to
give additional control over the curve’s shape.

FIGURE 7-2:
The Add ➪

Curve menu.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 193

NURBS stands for Non-Uniform Relational B-Spline. The control points in NURBS
curves don’t have handles like Bézier curves do. By default, NURBS control points
don’t normally even touch the curve shape itself. Instead, the control points are
weighted to influence the shape of the curve. Control points with higher weights
attract the curve closer to them. Figure 7-3 shows the same curve shape made
with Bézier curves and with NURBS curves.

Although curves can work in three dimensions and can even create three-
dimensional shapes like the park bench in Figure 7-1, you can’t arbitrarily join them
to create a surface like you would if you were connecting vertices and edges to make
a face on a mesh. If you want to create a surface, you need to actually navigate to the
Surfaces menu (Add ➪ Surface), as shown in Figure 7-4. Notice that NURBS Curve
and NURBS Circle are also options on this menu. Be aware, however, that Blender
treats these types of NURBS differently than the NURBS curves available in the Curve
menu. In fact, Blender doesn’t even allow you to perform a Join (Object ➪ Join)
between NURBS curves and NURBS surface curves. This limitation is a bit
inconvenient, I know, but the situations where you’d actually want to do something
like that are rare enough that you don’t need to worry about it that much.

Working with curves
Surprisingly few specialized controls are specific to curves. Blender’s transform
tools (move, scale, and rotate) work as expected. However, there are much fewer
tools available in the Toolbar and they all have different icons. I get into a few of
these tools later in this section, but here’s a quick rundown of what’s available:

 » Draw: When you select the Draw tool, your mouse cursor changes to look like

a paintbrush as a signal that you can draw your curves in 3D space, much like

you can with the Annotate tool or Grease Pencil objects. There’s more on

using this tool later in this section.

FIGURE 7-3:
An arbitrary

shape created

with Bézier

curves (left) and

NURBS curves

(right).

194 PART 2 Creating Detailed 3D Scenes

 » Extrude tools: Although the tool icons are different, the functionality of these
extrusion tools is very similar to their counterparts in mesh tools (see

Chapter 5). One important difference to note, however, is that the extrude
operator works only on the end points (the first and last control points of the
curve). If you try to extrude a control point that isn’t an end point, Blender just

creates a new control point.

• Extrude: This tool works like it’s counterpart in mesh tools; it even has the

same yellow gizmo with a big plus sign on it. Left-click and drag that plus

sign to extrude a new control point from the end of your curve.

• Extrude Cursor: If you’re familiar with 2D vector drawing applications like

Inkscape or Adobe Illustrator, this tool behaves similarly to the Pen tool in

those programs. It also works like the Extrude Cursor tool for mesh

objects. Left-click in the 3D Viewport and a new control point is added,

connected to the last end point on your curve. This tool is similar to the

Draw tool, but it’s more for when you want to precisely place each control

point in your curve.

 » Radius: Each control point in a Blender curve has its own radius value. There’s

more on what this radius value is used for later in the section called

“Extruding, beveling, and tapering curves,” but the main thing to remember

here is that Radius tool is a quick way of visually adjusting the radius of one or

more control points in your curve.

 » Tilt: Similar to the radius value, every control point on a curve also has a tilt

value that controls how much the control point is rotated along the axis of its

handles, similar to the roll angle of bones (see Chapter 12). This tool gives you
visual control over that tilt value.

FIGURE 7-4:
The Add ➪  

Surface menu.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 195

 » Randomize: It’s not likely that you’re going to need the Randomize tool

frequently, but when you do need it, you’ll be glad that it exists. When you

select this tool, you can add some randomness to the placement and rotation

of your selected control points by left-clicking and dragging your mouse

cursor left and right.

When using the various curve tools from the Toolbar, it’s important to remember
that these tools operate on your current selection. If you don’t have anything
selected, you’re not going to see much results from these tools. Fortunately, even
with any of these tools active, you can still make selections on your curve with
left-click.

If you start with the Circle primitive (Add ➪ Curve ➪ Circle), you should notice that
it’s a cyclic, or closed curve. In contrast, the Bézier curve primitive is a non-cyclic,
or open curve. Regardless of the primitive you start with, you can always toggle
any given curve between being cyclic and non-cyclic with any control point
selected (not just the start or end) by choosing Curve ➪ Toggle Cyclic in the
3D Viewport’s header or using the Alt+C hotkey. Figure 7-5 shows a cyclic (closed)
and non-cyclic (open) Bézier curve.

If you make a 2D curve cyclic, it creates a flat plane in the shape of your curve. And
putting one cyclic curve within the borders of another curve actually creates a hole
in that plane. However, this trick doesn’t work with 3D curves because they aren’t
planar. In those situations, you should use a surface. There’s more detail on 2D
and 3D curves in the section entitled “Changing 3D curves into 2D curves.”

FIGURE 7-5:
The same Bézier

curve, cyclic (left)

and non-cyclic

(right).

196 PART 2 Creating Detailed 3D Scenes

Drawing curves
When you get right down to it, Blender’s curve objects aren’t all that different
from paths and curves that you might be familiar working with in 2D vector draw-
ing applications. Sure, Blender’s curves have the ability to exist in three dimen-
sions rather than two, but the basic concepts are essentially the same. For that
reason, it shouldn’t be surprising that Blender has a tool that allows you to draw
curves directly in the 3D Viewport.

To start using the curve’s Draw tool, you first need a curve object. Unlike Grease
Pencil objects (see Chapter 15), there’s not a default empty object. If I’m about to
draw a custom curve, I typically perform the following steps:

1. Add a Bézier curve (Add ➪  Curve ➪  Bézier).

2. With the new curve still selected, tab into Edit mode.

3. Delete all the control points.

Now you have an empty curve object that you can start drawing in.

Using the Draw tool for curves is deceptively simple. All you have to do is click and
drag in the 3D Viewport and Blender converts that stroke to a curve for you. That
process is a great start, but of course there are some additional (and helpful!) fea-
tures built into this tool. A lot of the power of the Draw tool comes from its tool
settings. You can find the tool settings for the Draw tool in the Active Tool tab of the

THE ANATOMY OF A BÉZIER CURVE

Before you go headlong into making all manner of cool things with Bézier curves, it’s worth

taking a moment to understand the parts of a curve. There are three parts to a curve:

• Control points: The control points define the shape of the curve. They’re like verti-
ces in mesh objects. On Bézier curves, the curve always intersects a control point.

• Control point handles: Every control point has a pair of handles that you can use

to control the rotation of that control point.

• Curve segments: Between two control points is a segment that’s mathematically

defined by the location and rotation of the control points.

In its simplest form, a complete curve consists of two control points and a segment

between them. And unlike meshes, curves don’t “fork.” A control point can have at most

one segment going into it and one segment going out of it. There’s no such thing as a

control point that connects three or more segments.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 197

Properties editor. They’re also available in the Tool tab of 3D Viewport’s Sidebar
(for those times when you’re working with a maximized 3D Viewport) as well as the
Topbar in the 3D Viewport’s header. Figure 7-6 shows the Draw tool’s settings.

Like I said, the Draw tool is deceptively simple. There are a lot of controls and
options that you have the ability to customize. The five options at the top of the
Draw tool’s settings give you basic controls:

 » Type: There are two different ways that Blender can generate curves based
on the stroke you draw:

• Bézier: The Bézier draw type is the default setting. When you have this

type chosen, Blender attempts to generate smooth curves with only as

many control points as is necessary to produce the shape of your curve. All

the other settings for the Draw tool are available when you choose this

draw type.

• Poly: Choose this draw type for a true “what you see is what you get”

drawing experience. Blender will create a lot of control points with straight

segments between them in an effort to exactly match whatever shape you
draw. The Poly draw type is less computationally expensive than the Bézier

type, but it results in a curve with a lot more control points, and you don’t

get any of the additional tool settings described in this section.

FIGURE 7-6:
The Draw tool’s

settings give you

a lot of additional

power when

creating curves.

198 PART 2 Creating Detailed 3D Scenes

 » Tolerance: When drawing with the Bézier draw type, you can use this setting

to tune how Blender generates the curve from your stroke. Larger Tolerance

values give you fewer control points and a smoother resulting curve. Smaller

Tolerance values more accurately match your stroke at the expense of having

more control points to manage.

 » Method: The choices in this drop-down menu dictate the algorithm that

Blender uses to generate curves from your strokes. There are two choices:

• Refit: This is the “higher quality” choice and the default behavior. This

choice does a better job of matching the stroke you draw at the expense of

using more computational power.

• Split: This approach is faster to compute, but is less accurate. If you find that
your computer is having a hard time keeping up with your strokes as you

draw, then you may want to try choosing this curve generation method.

 » Detect Corners: Curves don’t have to be smoothly flowing things; they can
have sharp corners. Keep this check box enabled and Blender will attempt to

detect when you draw a corner and put a control point with free handles at

that corner (see the section “Editing Bézier curves” for more on the different
kind of handles a control point can have).

 » Corner Angle: If you have the Detect Corners check box enabled, this value is

the angle you have to draw your stroke before Blender recognizes it as a

corner. The default value of 70 degrees is a good place to start, but if you’re

drawing something with a lot of right angles, you may want to set this value to

a little bit higher than 90 degrees.

Looking back at Figure 7-6, below the Draw tool’s main settings, you may also
notice a sub-panel labeled Curve Stroke. Strangely, the first handful of settings in
that sub-panel look really familiar, like almost a repeat of what’s in the Draw
tool’s settings directly above them. It’s because they are a repeat of those settings.
That seems rather goofy. Why would the Blender developers keep such an obvious
redundancy like this? The answer is because you don’t actually have to use the
Draw tool from the Toolbar to access Blender’s curve-drawing functionality.
While you’re in Edit mode on your curve object, try the following steps:

1. Choose the Box Select tool.

You can click its button on the Toolbar or use the W hotkey.

2. Within the 3D Viewport use Blender’s integrated search feature to find
the Draw Curve operator.

Press F3 and type draw in the search popup; the Draw Curve operator should

be the third choice in the menu.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 199

3. Click the Draw Curve option from the search menu.

Boom! You’re able to draw a curve stroke just as if you were using the Draw

tool. Once you make your stroke and Blender generates a curve from it, you’re
back in the Box Select tool.

Unfortunately, as of this writing, right-clicking a search result doesn’t give you a
menu, and there’s no way to add a hotkey to a search result or include it in your
Quick Favorites menu. And the Draw Curve operator isn’t included in any menu,
so there’s no way to add it that way, either. You have to use the keymap editor in
Preferences (Edit ➪ Preferences) and add it manually. Hopefully this oversight
gets resolved in future releases of Blender.

In the meantime, there are still a few more tool settings in the Curve Stroke sub-
panel that you can make use of while drawing your curves. Below the Corner Angle
value (the second one), you can adjust the following settings:

 » Pressure Radius: If you use Blender with a drawing tablet like those Wacom

makes, Blender can take advantage of the pressure sensitivity of that device

while drawing curves. Enable the Use Pressure button (it has an icon like the

one to the left) and as you draw your curve, Blender will register the pressure

of your pen on the tablet as a change in radius. The harder you push down,

the larger the radius. See the section entitled “Extruding, beveling, and

tapering curves” for more on making use of the radius on control points.

 » Taper Radius: Even if you’re not using a pressure-sensitive drawing tablet,

you can still take advantage of organic changes in curve radius. By adjusting

the Start and End Taper Radius values, you make your curves have smoother

fall-offs at the start or end of your stroke.

 » Projection Depth: The two options under the Projection Depth label work as

radio buttons; only one is available at a time:

• Cursor: This is the default setting. Imagine that there’s a plane located at

the 3D cursor and rotated to match the orientation from which you’re

looking at the 3D Viewport. That imaginary plane is where Blender

generates the curve from your stroke.

• Surface: The Surface option for Projection Depth is super cool. When you

enable this option, you can draw curves on any surface in your scene. A

simple example would be if you wanted to model vines growing up the

side of a tree. A more complex example might be like what’s in Figure 7-7,
where it looks like a sculpture made by wrapping wire around an invisible

Suzanne.

200 PART 2 Creating Detailed 3D Scenes

When you enable the Surface option for Projection Depth, you get a few

additional options to control how that projection works. The Offset value
defines how far off the surface the curve is generated. If you want that
Offset to remain persistent with changes to the curve radius, enable the
Absolute Offset check box. If you only want to use the target object’s
surface as a starting point, enable the Only First check box and Blender will
only use the depth of the first place your stroke hits the mesh as its
reference point for generating curves (as if you chose Cursor projection

and placed your 3D cursor somewhere on the surface of the target object).

Changing 3D curves into 2D curves
Curves are initially set to work in three dimensions by default. Working in three
dimensions gives you the ability to move curve control points freely in the X-, Y-,
or Z-axes. You can optionally lock the points in your curve object to be constrained
to its local XY plane.

You can still transform a 2D curve in three dimensions, but you have to do that
from Object mode.

To lock the curve to working only in two dimensions, go to Object Data Properties
(see Figure 7-8) and left-click the 2D button.

FIGURE 7-7:
Using the curve’s

Draw tool along

the surface of

another object,

you can make

some very

interesting and

detailed models.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 201

When you tab to Edit mode on a 3D curve, you may notice that the curve has little
arrows spaced along it. These arrows are curve normals and indicate the direction
of the curve as well as the curve’s radius (see the next section). To adjust the
 visible size of these curve normals, expand the Overlays roll-out menu from the
3D Viewport’s header and look at the bottom. There’s a slider there named
Normals that you can use to adjust the size of your curve normals in case you have
a large scene and the curve normals aren’t easily visible. You can hide curve
normals altogether by deactivating the check box to the left of that slider.
In 2D curves, curve normals aren’t displayed.

That said, all curves have direction, even cyclic ones. The direction of a curve isn’t
normally all that important unless you’re using the curve as a path. In that situa-
tion, the direction of the curve is the direction that the animated object is travel-
ing along the curve. You can switch the direction of the curve by choosing
Segments ➪ Switch Direction from the 3D Viewport’s header.

Figure 7-8 shows the Object Data tab of the Properties editor when a curve is
selected.

The controls in Object Data Properties are relevant to all curves, regardless of type.
Some of the most important controls are in the Shape panel. You’ve already seen
what the 2D and 3D buttons do. Below them are the Resolution Preview U and

FIGURE 7-8:
The controls for

editing curves.

202 PART 2 Creating Detailed 3D Scenes

Render U values. These values define the resolution of the curve. Remember that
Blender shows you only an approximation of the real curve. Increasing the resolu-
tion here makes the curve look more like the curve defined by the math, at the cost
of more processor time. That’s why you see two resolution values:

 » Preview U: The default resolution. It’s also what you see in the 3D Viewport.

 » Render U: The resolution that Blender uses when you render. By default, this

resolution is set to 0, which means Blender uses whatever value is in

Preview U.

Extruding, beveling, and tapering curves
A little farther down in Object Data Properties, the controls in the Geometry panel
pertain primarily to extruding and beveling your curve objects. The Offset value is
the exception to this rule. It’s pretty interesting because it allows you to offset the
curve from the control points. The effect of the Offset value is most apparent (and
helpful) on cyclic curves. Values less than 1 are inset from the control points,
whereas values greater than 1 are outset.

The ability to inset or outset your curve with the Offset value is a quick way to put
an outline on a logo or text because Blender doesn’t have a stroke function for
curves like what’s available in Inkscape or Adobe Illustrator.

Be careful when adjusting the Offset value by a lot, especially on curves with acute
angles. Blender curves don’t dynamically add or remove control points as you
adjust the Offset value, so it can be easy to give yourself some ugly self-intersecting
geometry.

The Extrude value is probably the quickest way to give some depth to a curve,
especially a 2D curve. However, you don’t want to confuse the curve Extrude value
with the extrude capability you get by using the Extrude tool or the E hotkey. The
Extrude value affects the entire curve in Object mode, rather than just the selected
control points in Edit mode. On a cyclic 2D curve, the flat planar shape that gets
created extends out in both directions of the local Z direction of the curve object,
with the caps drawn on it. And you can even control whether Blender draws the
front or back cap by using the Fill Mode drop-down menu up in the Shape panel.
If you extrude a non-cyclic curve, you end up with something that looks more like
a ribbon going along the shape of the curve. The ribbon look is also what happens
when you increase the extrude value on a 3D curve. Figure 7-9 shows some of the
different effects that you can get with an extruded curve.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 203

Of course, one drawback to extruding a curve is that you get a really sharp edge at
the corners of the extrusion. Depending on what you’re creating, harsh edges tend
to look “too perfect” and unnatural. Fortunately, Bevel can take care of that for
you. To give an extruded curve more natural corners, simply increase the Depth
value within the Bevel sub-panel and you get a result similar to what happens
when you use the Bevel tool on meshes (see Chapter 5) or the Bevel modifier. You
can adjust the roundness of the bevel by increasing the Resolution value. Like the
Preview U and Render U values, this value increases the resolution of part of the
curve. In this case, it’s the resolution of the bevel, like the Segments value on the
Bevel tool for mesh objects. Increasing the Resolution value makes a smoother,
more rounded bevel. Beveling works on both cyclic and non-cyclic curves.

But say that you want something more ornate, kind of like the molding or trim
you’d find around the doorway on a house. In that case, you want to use a bevel

object. Using a bevel object on your curve basically means that you’re going to use
the shape of one curve to define the bevel on another.

To get a better idea of how you can use bevel objects, follow these steps:

1. Create a Bézier circle (Add ➪  Curve ➪  Circle).

In the Object Data tab of the Properties editor, make sure that the circle is a
2D curve.

2. In Edit mode, use the Scale tool (or the S hotkey) to scale up the circle
nice and large so that you can see what’s going on.

Tab back to Object mode when you’re done.

3. Create a Bézier curve (Add ➪  Curve ➪  Bézier).

For simplicity’s sake, this curve should be a 2D curve, too.

4. Tab into Edit mode and edit your new curve a bit to get the bevel shape
that you want.

Keep the curve non-cyclic for now.

5. When you’re done editing, tab back out to Object mode.

FIGURE 7-9:
Some of the

different things
you can do with

an extruded

curve.

204 PART 2 Creating Detailed 3D Scenes

6. Select your Bézier circle and look to the Geometry panel in Object Data
Properties. In the Bevel sub-panel, find the name of your Bézier curve
object in the Object field.

If you didn’t rename it (although you should have!), it’s probably called

something like BezierCurve or BezierCurve.001. After you select your bevel

object, it looks like you’ve spun the shape of your Bézier curve around your

Bézier circle. Now for fun, follow the next step.

7. Go back to your bevel object curve, tab into Edit mode, and make it cyclic
(Curve ➪  Toggle Cyclic).

Now you have an enclosed, water-tight shape that follows the main Bézier

circle’s path. Even better, any edits you make to this Bézier are automatically

shown in real time on the circle.

8. For extra kicks, select the Bézier circle and tab into Edit mode; select any
control point and use the Radius tool to shrink or fatten the beveled
shape around that control point.

If you’re prone to hotkeys, you can change the radius without using the tool by

pressing Alt+S. Slick, huh?

When you use a bevel object, you’re essentially handing control of the curve’s
shape over to the bevel object. That being the case, after you use it, changing the
values for Extrude, Bevel Depth, and Bevel Resolution has no effect on the curve
for as long as you have the bevel object there.

Figure 7-10 shows the results of these steps.

If you’re using a curve to model anything roughly cylindrical in shape such as a
pipe or a tube, you actually don’t need to use a bevel object curve at all. It’s a bit
of a hidden function, but you can get the same effect by just beveling the curve. I
know that sounds odd (how do you bevel something that doesn’t have any cor-
ners?), but trust me, it works. Follow these steps:

FIGURE 7-10:
Having fun

by adding a

bevel object to a

Bézier circle.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 205

1. Add a new curve object (Add ➪  Curve ➪  Bézier).

2. Adjust the Fill Mode property for your curve.

Look in the Shape panel of Object Data Properties. For a 2D curve, set the Fill
Mode to None. For a 3D curve, set it to Full.

3. In the Geometry panel, increase the Depth value within the Bevel
sub-panel.

You just beveled without needing to add another object to your scene. Hooray!

One less bevel object to hide!

4. Thicken or make thinner your new tube-y pipe at different points along
its length by selecting individual control points in Edit mode and using
the Radius tool.

You can also adjust a control point’s radius from the Sidebar of the

3D Viewport (N). It’s the Radius value within the Item tab.

In the preceding examples, I show that you can use the Radius tool on individual
control points to shrink or fatten the thickness of the extrusion (or bevel). How-
ever, perhaps you’d like to have more control along the length of the curve. This
situation is where you’d use taper objects. Like bevel objects, the taper objects use
one curve to define the shape of another. In this case, you’re controlling the curve
radius along the length of the curve, and it uses the same workflow as bevel objects:
Create a separate curve that dictates the taper shape, and then choose that curve in
the Taper Object field of the curve you’d like to control. Figure 7-11 shows how a
taper object can give you complete control of a curve’s shape along its length.

FIGURE 7-11:
Using a taper

object to control

a curve’s

lengthwise shape.

206 PART 2 Creating Detailed 3D Scenes

I prefer to create my bevel object and taper object curves in the top view (Numpad 7)
along the X-axis. This way, I have a good frame of reference for the curve’s center
line. That’s important because bevel objects use the center line to define the front
and back of a curve’s extrusion. You can think of taper objects as a kind of profile
that revolves around its local X-axis. Bringing your control points to the center
line makes the tapered curve come to a point, whereas moving them away from
the center line increases the thickness.

The datablock drop-down menus for Taper Object and Bevel Object can get really
crowded in a complex scene. Scrolling through all the curve objects can be tedious;
even if you did a good job of using sensible naming, it can be annoying or time-
consuming to type in that name or search for it. Fortunately, Blender offers two
shortcuts that make filling these fields (and any other fields like them) very
convenient:

 » Drag and drop: If you’re using the Layout workspace, then you have an

Outliner in the area above your Properties editor. If you navigate to your
object in the Outliner, you can left-click it in the Outliner and drag it to the
Taper Object or Bevel Object field in Object Data Properties.

 » Object eyedropper: If the Taper Object or Bevel Object fields are empty,
there’s an eyedropper on the right-hand side of it. If you left-click that

eyedropper icon, your mouse cursor becomes an eyedropper and you can

then left-click on any object in the 3D Viewport. If you left-click a curve object,

its name automatically populates this field. This is a fantastic tool for complex
scenes or if you (ahem) didn’t give your objects good, clear names.

Adjusting curve tilt
In addition to a radius value, every control point also has a tilt value. In other pro-
grams, the tilt may be called the twist property. To get a good idea of what you can
do with tilt, try the following steps:

1. Create a Bézier Curve (Add ➪  Curve ➪  Bézier) and tab into Edit mode.

2. Make the curve cyclic (Curve ➪  Toggle Cyclic).

You may also want to select the handles and rotate them so there’s a

cleaner arc.

3. Select one of the control points and activate the Tilt tool from the
Toolbar.

4. Click and drag in the 3D Viewport, moving your mouse cursor around the
selection in a clockwise fashion.

Watch how the Tilt value in the 3D Viewport’s header changes.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 207

5. Confirm completion by releasing your mouse button.

If you increase the Extrude and Bevel Depth values in Object Data Properties,
you should now have something that looks a bit like Figure 7-12.

Editing Bézier curves
The most defining aspect of Bézier curves are the handles on their control points.
You can switch between the different types of handles by choosing Control
Points ➪ Set Handle Type from the 3D Viewport’s header menus or by using the
V hotkey. Handles on Bézier curves are always tangential to the curve and come in
one of four varieties in Blender. The following is what’s available in the Set Handle
Type menu; use it with one or more handles selected:

 » Automatic: These handles are set by Blender to give you the smoothest

possible result in the shape of your curve. They appear in orange in the

default theme and generally form a straight line with equal lengths on either

side. If you try to rotate an Automatic handle, it immediately reverts to an

aligned handle.

 » Vector: Vector handles are not aligned with each other. They point directly to

the next control point. The shape of the curve is an exactly straight line from

one control point to the next. Editing a handle on a vector control point turns

it into a free handle.

FIGURE 7-12:
Fun with the

tilt function!

Mmmmmm . . .
twisty.

208 PART 2 Creating Detailed 3D Scenes

 » Aligned: Aligned handles are locked to one another, always forming a straight

line that’s tangential to the curve. By default, they appear in a pinkish color.

If you move one handle on a control point, the other moves in the opposite
direction to balance it out. You can, however, have aligned handles of differing
lengths.

 » Free: Free handles are sometimes referred to as broken handles. They appear

red in the default theme and don’t necessarily have to be aligned with one

another. Free handles are best suited for giving you sharp corners that

smoothly flow to the next control point.

 » Toggle Free/Align: This is an additional option for quickly toggling a control

point between being free and aligned.

The handle is not the control point. The handle is the “arm” that extends from the
control point. All control points have two handles. If you select the control point
(the dot between handles), you select the control point and both of its handles. If
you click only one of the handle dots, then you’re only controlling that one handle
on the control point.

Figure 7-13 shows four curves with the same exact control points, but each with
different types of handles. And, yes, you can mix handle types in a single curve.
It’s actually quite handy when you need a figure to be smooth in some parts and
pointy in others.

FIGURE 7-13:
The same curve

with aligned, free,

auto, and vector

handles.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 209

As you work with curve objects, you may find that you want to add a new control
point in the middle of a segment. Or perhaps you find you have too many control
points and you want to remove one. In 2D vector drawing applications, this is
often built into some kind of pen tool. Blender doesn’t have a pen tool, but you do
have the same basic operations that are available when editing meshes (see
Chapter 5).

Say you want to add a control point in the middle of a curve segment. With meshes,
one of the easiest ways to accomplish this task is to subdivide. The same goes for
curves! Select the control points on either side of a segment and choose
Segments ➪ Subdivide from the 3D Viewport’s header menu. You can have even
faster access from the right-click context menu. And just like editing meshes,
once you subdivide, you can look to the Last Operator panel to quickly add more
subdivision cuts.

If you want to remove one or more control points, select them and choose
Curve ➪ Delete ➪ Dissolve Vertices. There’s an option in that menu to just delete
vertices, but I find that the Dissolve Vertices operator does a better job of preserv-
ing the curve shape after deleting.

You can also remove segments while keeping control points in place using the
same menu. Select the two control points on either side of the segment you want
to remove and choose Curve ➪ Delete ➪ Segments.

For faster access to the delete operators, use the X hotkey.

Editing NURBS curves and surfaces
NURBS are a different kind of beast in terms of controls. They also have control
points, but NURBS curves are conspicuously without handles.

Blender treats a NURBS curve differently than a NURBS surface curve. With that
caution in mind, though, whether you’re dealing with a curve or a surface curve,
the following things generally apply to all NURBS:

 » Each control point has a weight. The weight, which is a value greater than

zero, influences how much that control point influences the curve. In Blender,
you set the weight in the Transform panel of the 3D Viewport’s Sidebar within

the Item tab. There, for any selected control point, you have the ability to

directly modify the X, Y, or Z location of the control point as well as its weight,

indicated by the W value. The value in the W field is averaged across all
selected control points. (Note that the W field weight value affects the curve
differently from the value in the Weight field below it. The latter refers to
actual weight for purposes of simulating physics. Chapter 14 touches on
physics simulation in Blender.)

210 PART 2 Creating Detailed 3D Scenes

 » NURBS have knots. In math terms, knots are vectors that describe how the

control points influence the resulting curve. In Blender, you have three
settings that you can assign to knots from the Active Spline panel in the Object
Data tab of the Properties editor:

• Cyclic U: Enabling this check box is the same as choosing Curve ➪  Toggle
Cyclic from the 3D Viewport’s header menu.

• Bézier U: Enable this check box and the NURBS curve starts to behave like

a Bézier curve with every control point working like a free handle on a

Bézier curve. Every three control points act like the center and two handles

on a Bézier curve’s control points. In order for this feature to work, you

need to have the Cyclic U check box disabled and the Order U property
(described momentarily) must be a value of 3 or 4.

• Endpoint U: Endpoint knots, in contrast to the default disabled setting,

bring the curve all the way to the last control points, regardless of weight. If

you toggle this check box on, the Cyclic U check box needs to be disabled.

 » NURBS have an order. An order is another math thing. What it really means,

though, is that the lower the order, the more the curve directly follows the

lines between control points. And the higher the order, the smoother and

more fluid the curve is as it passes the control points. You can also change the
values for order in the Active Spline panel below the Bézier U and Endpoint U

check boxes.

Figure 7-14 shows the influences that curve weights, knot types, and order can
have on a NURBS curve.

FIGURE 7-14:
Decreasing curve

weights on a

control point,

differences
between the

three knot types,

and increasing

the order of a

curve.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 211

If you’re using a NURBS surface, you might notice in the Active Spline panel that
you can independently set the knot, order, and resolution controls for a U or a V
value. If you’re dealing with just a curve, the U direction is all you need to worry
about and, therefore, all that Blender shows you. However, a NURBS surface works
in two directions: U and V. If you add a NURBS Surface (Add ➪ Surface ➪ NURBS
Surface), you can visually tell the difference between the U segments, which are
reddish, and the V segments, which are yellow.

One really cool thing you can do easily with NURBS surfaces that’s difficult to do
with other types of surfaces is a process called lofting. (Other programs may call it
skinning, but because that term actually means something else for rigging, I use
lofting here.) Basically, lofting is the process of using a series of NURBS surface
curves with the same number of control points as a series of profiles to define a
shape. The cool thing about lofting in Blender is that after you have the profiles in
place, the process is as simple as selecting all control points (A) and choosing
Control Points ➪ Make Segment. The classic use for lofting is modeling the hull of
a boat, as you see in the following steps and in Figure 7-15:

1. Add a NURBS surface curve (Add ➪  Surface ➪  NURBS Curve) and tab into
Edit mode.

2. Select All and Rotate –90 degrees around the X-axis.

You can use the Rotate tool or use the hotkey sequence R ➪  -90. In either case,
the bottom of your boat is started.

3. Model a cross-section of the boat’s hull.

There are no handy Extrude or Draw tools for Blender’s NURBS surface objects,

so you have to rely on the 3D Viewport’s header menu (particularly the Control

Points menu) or with hotkeys. You can add more control points using extrude

(Control Points ➪  Extrude Curve and Move) and move them around with the
Move tool or the G hotkey.

When modeling your cross-section, it would be a good idea to make the curve

cyclic in the U direction. You can use the menu (Surface ➪  Toggle Cyclic ➪  Cyclic
U) or the check box in the Active Spline panel of Object Data Properties. Try to
keep the cross-section as planar as possible. I like to work from an ortho-

graphic front view (Numpad 1).

4. Select all control points in your cross-section (Select ➪  All).

5. Duplicate your hull profile along the Y-axis.

Whether you’re duplicating from the menu (Surface ➪  Add Duplicate) or using
the Shift+D hotkey, you should press Y immediately after to constrain your

movement to the Y-axis.

212 PART 2 Creating Detailed 3D Scenes

6. Make adjustments to the new cross-section to suit your tastes, but do not

add or remove any control points.

Lofting requires that each cross-section has the exact same number of control

points. If you add or remove control points from a cross-section, it doesn’t work.

7. Repeat Steps 5 and 6 until you’re satisfied.

8. Select everything in your NURBS surface object (Select ➪  All) and connect
them together (Control Points ➪  Make Segment).

You’ve made a canoe!

Understanding the strengths and
limitations of Blender’s surfaces
When compared to other tools that work with NURBS surfaces, Blender admittedly
falls short in some functions. You can extrude surface endpoints, do lofting, and
even spin surface curves (sometimes called lathing in other programs) to create
bowl or cup shapes. However, that’s about it. Blender currently doesn’t have the
functionality to do a ton of other cool things with NURBS surfaces, such as using
one curve to trim the length of another or project the shape of one curve onto the
surface of another.

A QUICK NOTE ON PATHS

You might be begrudging the fact that I glazed over adding a Path curve

(Add ➪  Curve ➪  Path). The reason is that you can turn any curve into a path. By default,
when you add a path, it’s really a shortcut for adding a straight NURBS curve. Any curve

can behave as a path, though. You just need to enable the check box at the top of the

Path Animation panel in Object Data Properties. By enabling this check box, Blender
understands that a curve is a path that you can use to control the movement of an ani-

mated object.

FIGURE 7-15:
Using lofting

to create the

hull of a boat.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 213

However, there’s hope. It’s been slow coming, but Blender makes a little progress on
the integration of better NURBS tools from time to time. Unfortunately, that progress
ultimately is excruciatingly slow. If you want to work exclusively with NURBS, your
only real choices are to wait with the rest of us or use a different program.

Using Metaball Objects

Metaball objects are cool little 3D surfaces that have been part of computer graphics
for a long time. Sometimes metaball objects are referred to as blobbies. The prin-
ciple behind metaball objects is pretty simple: Imagine that you have two droplets
of water, and you begin moving these two droplets closer and closer to each other.
Eventually, the two droplets are going to merge and become a single, larger drop-
let. That process is basically how metaball objects work, except you have complete
control over when and how much the droplets merge, and you can re-separate
them again if you’d like.

You can also do something that’s more difficult in the real world: You can subtract
one droplet from the other, rather than add them together into a merged object.
They’re a ton of fun to play with, and there are some pretty neat applications for
them. Figure 7-16 shows two metaballs being merged.

FIGURE 7-16:
Merging two

metaballs.

214 PART 2 Creating Detailed 3D Scenes

Meta-wha?
Metaball objects are a bit like curves and NURBS in that their entire existence is
defined by math. However, unlike NURBS or even meshes, you can’t control the
surface of a metaball object directly with control points or vertices. Instead, the
shape of their surface is defined by a combination of the object’s underlying
structure (a point, a line, a plane, a sphere, or a cube) and its proximity to other
metaball objects. There are five metaball object primitives:

 » Ball: The surface in this primitive is based on the points being all the

same distance from a single origin. You can move and scale a metaball

ball uniformly, but you can’t scale it in just one direction.

 » Capsule: Whereas the basis for a metaball ball is a single point, the basis for a

metaball capsule is the line between two points. You can scale the surface

uniformly, like a metaball ball, but you can also scale it in its local X-axis.

 » Plane: The metaball plane’s underlying structure is, as you may have guessed,

a plane. You have both the local X- and the local Y-axis for scaling, as well as

scaling uniformly.

 » Ellipsoid: At first glance, you might mistake this metaball object for a metaball
ball. However, rather than being based on a single point, this object is based

on a sphere. So if you keep the local X, Y, and Z dimensions equal, a metaball

ellipsoid behaves just like a metaball ball. However, you can also scale in any

of the three individual axes.

 » Cube: Like the metaball ellipsoid, the metaball cube is based on a three-

dimensional structure — specifically, a cube. You have the ability to scale this
primitive independently in the X, Y, or Z directions.

A cool thing about metaball primitives is that they’re actually primitive compo-
nents in their own rights. The options available in the Add menu are just a starting
point. A metaball object can consist of one or more metaball primitives that behave
as components of the object. Because they’re each full-fledged components (kind
of like vertices, edges, and faces on meshes), you can select them as individual
pieces while in Edit mode. Furthermore, while you’re in Edit mode, you can change
one metaball component primitive to another metaball type on the fly. To do so,
use the Active Element panel in Object Data Properties. Figure 7-17 shows each of
the primitives along with the default settings for them in the Active Element panel.

The Active Element panel always displays the Stiffness value for the selected
metaball component. This value controls the influence that the selected metaball
component has on other metaball components. The Stiffness value is indicated
visually in the 3D Viewport with a green ring around the metaball component’s
origin. You can adjust the Stiffness value here in the panel, or if you select the
green ring, you can use the Scale tool (or the S hotkey) scale to adjust the Stiffness

CHAPTER 7 Using Blender’s Non-Mesh Primitives 215

visually. By selecting the reddish, pinkish ring outside of that green ring, you can
select the actual individual metaball component.

And depending on the type of metaball component primitive you’re using, other
values of X, Y, and Z may appear in the Active Element panel while you’re in Edit
mode. You can adjust these values here or in 3D Viewport by scaling as described
in Chapter 3. At the bottom of the panel are buttons to either hide the selected
metaball component or give it a negative influence, subtracting it from the posi-
tive, and therefore visible, metaball components.

When you tab back out to Object mode, you can move your combined metaball
object (a meta-metaball object?) as a single unit. Note, however, that even though
you’ve grouped these metaball components into a single Blender object, they
don’t live in a vacuum. If you have two complex Blender objects made up of
metaballs, bringing the two of them together actually causes them to merge. Just
keep that as something you may want to bear in mind and take advantage of in the
future.

As a single Blender object, though, you can control a few more things using the
Metaball panel, as shown in Figure 7-18. This panel is always available to metaball
objects, whether in Object mode or Edit mode, and it sits at the top of the Object
Data tab of the Properties editor.

FIGURE 7-18:
The Metaball

panel.

FIGURE 7-17:
The five metaball
object primitives.

216 PART 2 Creating Detailed 3D Scenes

The first two values in the Metaball panel are resolution values:

 » Viewport: Controls how dense the generated mesh is for the metaball object

in the 3D Viewport. Lower values are a finer mesh, whereas higher values
result in much more of an approximation.

 » Render: Does the same thing as the Viewport value, except it has an effect
only at render time. The reason is that metaball objects can get really complex

quickly, and because they’re generated entirely by math, these complex

combinations of metaball objects tend to use a lot of computer-processing

power.

Working at a larger Viewport size in the 3D Viewport helps keep your computer
responsive while you work, whereas a finer Render value keeps things pretty on
output.

The Threshold value is an overall control for how much influence the metaballs in
a single Blender object have over each other. This value has a range from 0 to 5,
but in order for a metaball object to be visible, its individual Stiffness value must
be greater than the Threshold value.

At the bottom of the Metaball panel is a drop-down menu labeled Update on Edit
that controls how the metaball objects get updated and displayed in the 3D View-
port. You have four choices:

 » Always: The slowest and most accurate, this setting is the default. Every

change you make in the 3D Viewport happens instantly (or as fast as your

computer can handle it).

 » Half: This option reduces the resolution of the metaball object as you move or

edit it, increasing the responsiveness of the 3D Viewport. When you finish
transforming the metaball object, it displays in full resolution again.

 » Fast: As the name implies, this setting is nearly the fastest. When you enable

this button, Blender hides the metaball objects when you perform a trans-

form and then re-evaluates the surface when you finish. Fast works very
nicely, but the downside is that you don’t get the nice visual feedback that

Always and Half give you.

 » Never: This method is certainly the fastest update. Basically, if you try to edit a

metaball object, it hides everything and never updates in the 3D Viewport.

Although Never may not seem useful at first, if you decide to bind your
metaball object to a particle system as a way of faking fluids, turning this
setting on definitely increases performance in the 3D Viewport.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 217

What metaball objects are useful for
So what in the world can you actually use metaball objects to make? I actually have
two answers to this question: all sorts of things, and not much. The reason for this
seemingly paradoxical answer is that you can use metaball objects to do quick,
rough prototype models, and you can also use them with a particle system to gen-
erate simple fluid simulations. However, with the advent of advanced modeling
tools like sculpting and subdivision surfaces, metaball objects don’t get used as
often for prototyping. And with more advanced fluid simulation and rendering
technology, metaball objects are also used less for those applications as well. They
have a tendency to use a lot of computer-processing power and don’t often give
good topology by themselves.

That said, even though metaball objects are used less for these purposes, that
doesn’t mean that they’re never used. In fact, not too long ago, I used a set of
metaballs with a glowing halo material to animate the life force being forcefully
pulled out of a guy in a scene for a local filmmaker. I could probably have used a
particle system or fluid simulator to do this effect, but using metaballs was actu-
ally faster to set up, and I had more direct control over where everything was
placed on the screen.

Furthermore, if you’re a 3D sculptor and you like to use Blender’s Dyntopo feature
(see Chapter 6), I’d definitely encourage you to try out metaballs as a means of
giving yourself a base mesh to start sculpting upon. Just glom together a bunch of
metaball components into the rough base shape you want and convert to a mesh
(Object ➪ Convert to ➪ Mesh from Curve/Meta/Surf/Text) for sculpting. So don’t
count metaball objects out just yet. These little suckers still have some life left.
Besides, they’re fun to play with!

Adding Text

Over the years, working with text in Blender has come a long, long way. The way
you work with text in Blender has quite a few differences from what you might
expect of word-processing software like LibreOffice or Microsoft Word. What you
may not expect is that Blender’s text objects share a few features in common with
desktop publishing programs like Adobe InDesign or Affinity Publisher.

Blender’s text objects are really a specialized type of curve object. Nearly all the
options I describe for curves also apply to text. (See the section “Using Curves and
Surfaces,” earlier in this chapter.) For example, you can quickly bring text objects
into the third dimension using the Extrude, Bevel, and even the Bevel Object and
Taper Object fields. Figure 7-19 shows an example of the interesting things you
can do with a single text object in Blender.

218 PART 2 Creating Detailed 3D Scenes

Adding and editing text
You add a text object in Blender the same way you add any other object. Choose
Add ➪ Text, and a text object appears at the location of your 3D cursor with the
word “Text” as its default content.

To edit the text, you tab into Edit mode. After you’re in Edit mode, the controls
begin to feel a bit more like a word processor, although not exactly. For example,
you can’t use your mouse cursor to highlight text, but if you press Shift+← and
Shift+→, depending on where the text cursor is located, you can highlight text
this way.

Shift+Ctrl+←/→ highlights whole words at a time. Backspace deletes text and
pressing Enter gives you a new line.

Aside from just typing, there are other ways to add text to your text object. If you
happen to have a relatively large chunk of text, Blender’s text objects support copy
and paste. Simply highlight the text you want in another application and copy it
(the universal hotkey combination for this is Ctrl+C, but you can usually also do
this from a right-click menu). Then, in Blender with your text object in Edit mode,
paste the text from your system clipboard by either using Edit ➪ Paste from the
3D Viewport’s header or using the Ctrl+V hotkey combination.

If you have a lot of text — like, say, the credits for a short animated film — Blender
has another handy feature. In the 3D Viewport’s header menu, choose Edit ➪ Paste
File. Upon doing so, Blender provides you with a File Browser that you can use to
pick any text file on your hard drive. The entirety of that text will be added to your
text object. Super handy!

FIGURE 7-19:
Taking advantage

of the curve-

based nature of

Blender text

objects.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 219

Controlling text appearance
Whether you’re adding text by typing or pulling from a text file, the default look
of Blender’s text object is not what you’re probably going to want to use. More
often than not, you’re going to want to use a custom font with customized spacing
and placement of the letters in the text you’re adding. This section covers how to
make your text look really nice. It all starts from Object Data Properties, as shown
in Figure 7-20. The first set of controls should look familiar if you already under-
stand how curve objects work. For text, however, there are additional formatting
controls.

Changing fonts
An important thing that’s different about Blender’s text objects is the way they
handle fonts. If you’re used to other programs, you may expect to see a drop-
down menu that lists all the fonts installed on your computer with a nice preview
of each. Blender has that ability, but it is not accessed in quite the same way. What
you need to do is left-click the Load button to the right of the Regular Font data-
block in the Font panel of Text Properties. Blender then shows you a File Browser
where you can track down the actual font file for the typeface that you want to use.

Once in the File Browser, enable the Thumbnails display mode for the File Browser
(see Chapter 4 for more information on using the File Browser). Then, when you
navigate to a fonts folder on your hard drive, you should see something like what’s
shown in Figure 7-21.

FIGURE 7-20:
The Object Data

tab of the

Properties editor,

sometimes

referred to as

Text Properties.

220 PART 2 Creating Detailed 3D Scenes

Here are the standard places you can find fonts on Windows, Mac, and Linux
machines:

 » Windows: C:\Windows\Fonts

 » Mac OS: /System/Library/Fonts or /Library/Fonts

 » Linux: /usr/share/fonts

After you load a font, it’s available for you to use in that specific .blend file when-
ever you want it from the font datablock list. You always have Blender’s built-in
font available as well.

Fonts in Blender are datablocks just like meshes or materials. That means if
they’re not actively used in your scene, they won’t be saved to your .blend file,
and when you re-open your file any unused fonts will need to be reloaded. So if
you load a lot of fonts and want to have them available the next time you open this
.blend file, I would recommend that you give your font datablock a fake user by
clicking the shield icon to the right of the datablock.

Now you would think that after you have a font loaded, you should be good to go,
right? Well, not quite. Blender’s method of handling bold and italic in text is also
kind of unique. You actually load a separate font file for each one (hence the four
separate Font datablocks: Regular, Bold, Italic, and Bold & Italic). Typically, you
use these datablocks to load the bold and italic versions of the font file you choose
in the Regular datablock. However, that’s not a hard-and-fast requirement. You
can actually use an entirely different font altogether. Although the ability to

FIGURE 7-21:
Blender’s File

Browser can give

you previews of

what the fonts on

your computer

look like.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 221

choose different fonts in the Bold and Italic datablocks is perhaps a mild abuse of
the terms, that ability does provide a pretty handy workaround. Technically
speaking, Blender doesn’t allow you to arbitrarily change fonts in the middle of a
text object. However, using the different font datablocks, you can get around that
problem by making your Bold or Italic font the other fonts you want to use. Choos-
ing a font file for any style of font is pretty straightforward:

1. In the Font panel of your text object’s Object Data Properties, left-click
the Load button on the font datablock you want to change.

By default, the built-in font, Bfont, is chosen for all four datablocks.

2. Navigate your hard drive using the File Browser and choose the font you
want to use.

3. Use your chosen font in your text object.

As an example, say that you chose a new font for the Bold datablock. You can

assign that font to characters in your text object with the following steps:

(a.) From Edit mode (Tab), highlight the text you want to change (Shift+← or Shift+→).

(b.) Toggle Bold (Font ➪  Toggle Bold or press Ctrl+B in the 3D Viewport).

Figure 7-22 shows the results of using multiple fonts in a single text object.

You may find that while you’re typing, you need certain special characters like the
copyright symbol or the upside-down question mark for sentences written in
Spanish. For these situations, you have three options:

 » If the special character is common, you may find it in Edit ➪  Special
Characters.

 » You can memorize the hotkey combination for various commonly used

special characters as listed in Blender’s online documentation. For example,

you can insert the copyright symbol (©) by pressing O ➪  Alt+Backspace ➪  C.

 » If the character is rare or just not in the menu, but you have it in a text file
outside of Blender, you can use copy and paste or the Edit ➪  Paste File
operator as described earlier to get that character into your text object.

FIGURE 7-22:
Using the Bold

and Italics fonts

to use widely

different fonts in
a single text

object.

222 PART 2 Creating Detailed 3D Scenes

Some fonts don’t always include glyphs for every special character possible. So if
you use one of the preceding methods to add a special character and you don’t see
that character appear in Blender, you may need to try a different font.

Another unique feature that Blender’s text objects have is the ability to use any
other Blender object as a font character. So if you want to use Suzanne the monkey
every time the uppercase S character is used, you can actually do that. If you want
to model letters with metaball objects and spell something with them, like in
Figure 7-23, you can do that. With your text object selected, have a look in Object
Data Properties. Within the Font panel, there’s a Transform sub-panel with a field
labeled Object Font. Just follow these steps:

1. Type the name of your font “family” in Object Font.

You can choose any name you like. I like to end my name with a dot (.) so I can

differentiate my characters later. For example, you could use MetaLetter.

(ending in the period) in this case.

2. Model a character you want to use.

In this example, I’m using metaball objects, so I use Add ➪  Metaball ➪  Ball as
my starting point and work from there.

3. Name this object with the family name plus the character it will
represent.

In this case, if you modeled an uppercase W, you’d call it MetaLetter.W. A

lowercase W would be MetaLetter.w.

Now you see why I use the dot (.) at the end of the family name in Step 1. It
helps keep things organized.

4. Repeat Steps 2 and 3 for each character you need.

5. Select your text object and enable vertex instances (from Object
Properties, Instancing ➪  Verts).

6. Adjust size and spacing to fit.

And poof! You’ve got metaletters!

7. To finish, move the original font text to another (hidden) collection so
that it’s out of the way of your metaletters.

One detail to note here is that your metaletters don’t merge into each other like
you might expect them to. This is a shortcoming within Blender. To my knowl-
edge, a good workaround currently doesn’t exist.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 223

Looking back at the Object Data tab of the Properties editor for your text object,
there are a few more handy settings in the Transform sub-panel within the Font
panel. There’s a block of fields to control how the text appears in the selected text
object:

 » Size: This field allows you to adjust the font size on a scale from 0.010 to 10.
Changing the font size value is generally a better way to change the size of

your text instead of simply scaling the text object. Think of it like you would

think about scaling a mesh or curve object in Edit mode.

 » Shear: Shearing is a quick-and-dirty way to fake italic on a font. Values

between 0 and 1 tilt characters to the right, whereas values between –1 and
0 tilt them all to the left.

 » Object Font: As described in the preceding text, using this field, you can
actually define Blender objects as characters in a font.

 » Text on Curve: If you need your text to flow along the length of a curve
object, use this datablock field to choose that particular curve object.

Either choose your curve object from this field or click the eyedropper icon to
use an eyedropper for picking an object from the 3D Viewport (as I described

earlier in this chapter for Taper Objects and Bevel Objects).

 » Underline Position: Adjust this value to control the position of the underline,

if enabled (Font ➪  Toggle Underline or Ctrl+U on highlighted text). This value

has a range from –0.2 to 0.8.

 » Underline Thickness: From this field, you can control the thickness of the
actual underline, if enabled (Font ➪  Toggle Underline or Ctrl+U on highlighted

text). You can set this value between 0.01 and 0.5.

 » Small Caps Scale: If you enable the Small Caps toggle that’s among the other

formatting buttons in the Font panel (Bold, Italic, Underline), this value

controls how small your small capital letters are relative to regular capital

letters.

FIGURE 7-23:
Wheeeee!

Metaletters!

224 PART 2 Creating Detailed 3D Scenes

Adjusting paragraph styles
The Paragraph panel consists of two sub-panels, Alignment and Spacing. The
Alignment sub-panel has a pair of settings to help you align your text relative to
the origin of the text object. For Horizontal alignment, you have the following
options:

 » Left: Aligns text to the left. The text object’s origin serves as the left-hand

guide for the text.

 » Center: All text is centered around the text object’s origin.

 » Right: Aligns text to the right. The text object’s origin serves as the right-hand

guide for the text.

 » Justify: Aligns text both on the left and on the right. If the line is not long

enough, Blender adds spacing, or kerning, between individual characters to fill
the space. This option requires the use of text boxes. (See the next section,

“Working with text boxes,” for more details.)

 » Flush: This option works similar to the way Justify does, but with one excep-

tion: If the line is the end of a paragraph, it forces the text to align both sides.

Like Justify, this option requires the use of text frames.

In addition to the preceding Horizontal alignment options, Blender also offers a
few Vertical alignment options (they’re especially worth thinking about if you
have multiple lines of text):

 » Top Base-Line: This is the default alignment. The baseline of text is the line

upon which text is written. As an example, the lowercase letter g goes below

the baseline, whereas the uppercase G sits upon it in most fonts. With this

alignment option chosen, the text object’s origin acts as the baseline for the

first line of text.

 » Top: Choose this option and your text object’s origin acts as the top of your

block of text. All text flows beneath it.

 » Center: If you choose Center vertical alignment, the origin of your text object

is at the vertical center of your block of text.

 » Bottom: This choice is the inverse of Top alignment. The text object’s origin

acts as the bottom of your block of text. All text that you add is above the

origin.

 » Bottom Base-Line: If you only have one line of text, this choice looks exactly

like the default setting of Top Base-Line. However, it’s pretty easy to notice a

difference with multiple lines of text. Choose this vertical alignment option
and the baseline of the last line of text is in line with your text object’s origin.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 225

From the Spacing sub-panel, you can customize the amount of spacing between
characters and lines in your text. You have the following four values available to
adjust:

 » Character Spacing: The global distance between all characters in your text

object, also known as tracking. This value has a range from 0 to 10.

 » Word Spacing: Globally defines the space between words in your text object.
This field also has a range from 0 to 10.

 » Line Spacing: Line distance, also referred to as leading (pronounced “leding”).

This value defines the distance between lines of text in your text object and it
also has a range from 0 to 10.

 » Offset: These values offset the text object from its default position. X values
less than zero shift it left and Y values less than zero shift down, whereas

values greater than zero shift it right (X) or up (Y).

If you’re familiar with typography, you may notice two things right off the bat.
First, the terms used here are not the standard typography terminology, and sec-
ond, the values are not in your typical percentage, point, pica, or pixel sizes. These
differences exist for two primary reasons. First, Blender is a 3D program intended
for 3D artists, many of whom may not be familiar with typography terms and
sizes. The second reason dovetails with the first one, but it’s a bit more on the
practical side. Blender text objects are 3D objects that can be just about any size in
virtual 3D space. Sizes like points, pixels, and picas don’t really mean anything in
3D because there’s not a frame of reference, like the physical size of a printed
piece of paper.

Working with text boxes
Both the Flush and the Justify horizontal alignment options in the Paragraph
panel require the use of something called text boxes. The Left, Center, and Right
align options all work relative to the location of the text object’s origin. However,
if you want to align your text on both the left and the right side, you need more
than one reference point. Text boxes are a way of providing those reference points,
but with a couple of additional benefits as well. Basically, text boxes are a rectan-
gular shape that defines where the text in your text object lives. Text boxes are
similar to the frames you might use in desktop publishing programs. They’re also
one of those things that you normally don’t see in 3D software.

To work with text boxes, you use the Text Boxes panel. By default, Blender gives
you a single text box, but all its dimensions are zeroed out. That means that the
text box dynamically adjusts to whatever you type in your text object. To get the
most out of text boxes, you need to adjust the Size X and Y fields to a specific size
(determined by whatever base units you set in the Scene tab of the Properties

226 PART 2 Creating Detailed 3D Scenes

editor). The Offset X and Y fields determine where the top-left corner of the text
box is located. As you adjust these values while in Edit mode, you should see a
dashed rectangle in the 3D Viewport.

You should also note that you can control overflow, or what happens when the text
in your text object takes up more space than the text box allows. The Overflow
drop-down menu offers you three choices:

 » Overflow: This the default setting. The width of your text box is respected,

but if you have text that runs longer than the height of your text box, that text

will just run past (or overflow) the borders of your text box.

 » Scale to Fit: Choose this option and Blender will scale the letters in your text

object so all of them will fit within the space of your text box.

 » Truncate: This option is arguably the most brutal. If your text doesn’t fit
within the space you define for your text box, Blender just hides it.

Now, the cool thing about text boxes is that you can actually define more than one
and place them arbitrarily in your scene. Add a text box by left-clicking the Add
Textbox button in the Text Boxes panel. If you have more than one text box
defined, the text can overflow from one box into another. Using multiple text
boxes is an excellent way to get very fine control over the placement of your text.
You can even do newspaper-style multi-column text this way, as shown in
Figure 7-24.

FIGURE 7-24:
Using text

boxes to get

multi-column

text layouts.

CHAPTER 7 Using Blender’s Non-Mesh Primitives 227

If you’re working with a lot of text, you may find that Blender doesn’t perform as
speedily as you’d like while editing. If you left-click the Fast Editing check box in
the Shape panel, Blender uses just the outline of the text in the 3D Viewport while
in Edit mode. This adjustment gives Blender a bit of a performance boost so that
you’re not waiting for characters to show up seconds after you finish typing them.

Deforming text with a curve
Another really powerful thing you can do with Blender’s text objects is have the
text flow along the length of a curve. This way, you can get text that arcs over a
doorway or wraps around a bowl or just looks all kinds of funky. The key to this
feature is the Text on Curve field in the Font panel (look in the Transform sub-
panel). To see how this feature works, follow these steps:

1. Create a text object (Add ➪  Text).

Feel free to populate it with whatever content you want.

2. Create a curve to dictate the text shape (Add ➪  Curve ➪  Bézier).

This curve is your control. You’re using a Bézier curve here, but a NURBS curve

works fine as well. Also, I like to make my curve with the same origin location
as my text object. Granted, that’s just my preference, but it works nicely for

keeping everything easily manageable.

3. Select your text object and choose the name of your control curve in the
Text on Curve field.

Blam! The text should now follow the arc of the curve. If you select the curve

and tab into Edit mode, any change you make to it updates your text object

live. Figure 7-25 shows 3D text along a curve.

FIGURE 7-25:
Text on a curve.

228 PART 2 Creating Detailed 3D Scenes

You should keep your curve as a 2D curve. Because the text is technically a special
type of 2D curve, trying to get it to deform along a 3D curve won’t work. For text
to follow a 3D curve, you’re going to need to convert the text into a mesh. You can
do that conversion explicitly, as described in the next section, or you can do it
implicitly by giving the text object a Curve deform modifier. Modifiers work on
curve objects, but internally those curves are converted to meshes. In simple
cases, this may work just fine. More often than not, you’ll want the control of
explicitly doing the conversion yourself.

Converting to curves and meshes
Of course, although Blender’s text objects are pretty powerful, curves and meshes
just do some things better. Fortunately, you don’t have to model your text by
using meshes and curves unless you really, really want to. Instead, you can con-
vert your text object into a curve or a mesh by choosing Object ➪ Convert To ➪ Curve
from Mesh/Text or Object ➪ Convert To ➪ Mesh from Curve/Meta/Surf/Mesh. If
you’re curious as to some specific cases why you’d want to make this conversion,
here are a few:

 » Custom editing the characters for a logo or a specific shape (convert
to a curve)

 » Needing to share your .blend file, but the license of your font prevents you
from legally packing it into the .blend (convert to a curve)

 » Getting extruded text to follow a 3D curve (convert to a mesh)

 » Rigging the letters to be animated with an armature (convert to a mesh

or curve)

 » Using the letters as obstacles in a fluid simulation (convert to a mesh)

 » Using the letters to generate a particle system (convert to a mesh)

The “Convert to” menu is also available for curve objects, surfaces, and metaball
objects to convert them to meshes. Just be aware that most of these conversions
are permanent. You can’t go back on them without using the undo operator.

CHAPTER 8 Changing That Boring Gray Default Material 229

Chapter 8

Changing That Boring
Gray Default Material

A
s you work on your models in Blender, you’re eventually going to get tired
of that plastic gray material that all Blender objects have by default.
Nothing against neutral colors — or plastic, for that matter — but the

world is a vibrantly colorful place, and you may occasionally want to use these
colors in your 3D scenes. Sure, it’s helpful to add matcaps to your objects while
sculpting (see Chapter 6), but that’s just a temporary thing meant to help you
while you work. Eventually, you’re going to want something more specific to your
model. To add colors to your scenes and models, you use materials and textures.
Think of a material as a collection of instructions that you give Blender to describe
the appearance of your 3D object. What color is it? Is it see-through? Is it shiny
enough to show a reflection? In some ways, Blender’s way of adding materials and
textures to an object is one of the most confusing parts of the program. It can be
a pretty big challenge to wrap your brain around the full functionality of it.

This chapter is intended to give you the skills to know enough to be dangerous
with Blender’s materials. Hopefully, with a little practice, you can become lethal.
Well, lethal might be the wrong word: I don’t think I’ve ever heard of anyone killed
by excessively sharp specular highlights. (Don’t worry if you don’t get the joke
right now. After you finish this chapter, you’ll realize how horrible a pun this is.)

IN THIS CHAPTER

 » Understanding how Blender handles

materials

 » Taking advantage of Vertex painting

 » Trying your hand at a practical

example

230 PART 2 Creating Detailed 3D Scenes

Understanding Materials
and Render Engines

Before you throw yourself down the rabbit hole of working with materials, it’s
worth it to stop and consider the type of image you’re trying to produce. Are you
trying to achieve photorealism? Do you want a more cartoony look? Is your image
(or animation) meant to have the appearance of a technical illustration? It’s helpful
to ask the questions before you start working on your materials, because the
answers will dictate the render engine that you choose. A render engine, or renderer,
is what you use to convert the 3D data in your scene to a 2D image (or series of
images, for animation). As you can imagine, there are all kinds of ways to convert
3D data into an image. Each has its own strengths and weaknesses. More impor-
tantly, every render engine has a different way of going through this conversion,
so each has its own preferred way to work with materials and textures. So it’s best
to know the final look you’re trying to attain and, by extension, the most suitable
renderer to get there before you start to seriously add materials to your objects.

Blender supports a wide array of render engines, but three are built in. To pick the
render engine you want to use, go to the Render tab of the Properties editor and
look at the Render Engine dropdown at the top of that tab. You have three choices:

 » Eevee: Eevee is the newest render engine added to Blender. In fact, if you’re

working in Blender, you’re already using Eevee. Eevee is what’s known as a

real-time render engine and uses technologies similar to those found in

modern video games to get very realistic results in fractions of a second.

Eevee is built on a multi-platform graphics programming specification called
OpenGL. As a matter of fact, Blender’s entire interface, including the 3D
Viewport, is generated using Open GL.

The benefit of Eevee is that it’s very fast while still maintaining an ability to
produce very real-looking images because it supports PBR (physically based

rendering) materials that model the behavior of real, meatspace materials.

Furthermore, one of the aims of Eevee is to have materials that behave as

similar to Cycles (discussed further on) as possible. That said, don’t make the

mistake of thinking Eevee is just limited to realism. Eevee also supports an

NPR (non-photorealistic rendering) approach for cartoon-style rendering. Just

about the only real drawback to Eevee is that it still uses a lot of tricks to get

the results it does, as opposed to using a fully accurate model of how light

works. So there are some materials and lighting scenarios that are difficult for
it to pull off realistically.

 » Workbench: This one is meant for fast previews while modeling and animat-

ing. In fact, it’s basically the same as what’s used for Solid viewport shading

mode in the 3D Viewport, regardless of the render engine you choose for

CHAPTER 8 Changing That Boring Gray Default Material 231

output. The Workbench engine isn’t actually meant to be used as an output

renderer, but you’re fully free to do so if it’s got the look you need (like for

cartoony renders).

 » Cycles: For images that need to appear as realistic as possible, Cycles is the

best Blender renderer for the job. The reason is because Cycles is a ray-trace

renderer, meaning it calculates how light rays bounce around your scene as

its means of generating a final image. Sure, you can achieve a level of realism

using Eevee, but that process can sometimes be at the expense of a lot of time

and confusion. The material system that Cycles uses can be a bit intimidating

for first-timers, but it’s extremely powerful. Like Eevee’s materials, Cycles’
materials are PBR materials, meaning that they also have a strong relationship

to materials in the physical world. This increase in realism does come at the

expense of rendering speed, but that cost is mitigated by two facts:

• Artist time versus computer time: If a realistic look will take more time,

it’s less costly (both financially and mentally) to have that time absorbed by
a computer churning through rendering than by an artist sweating over

hacky tweaks in every shot.

• GPU acceleration: Cycles can take advantage of additional processing

power on the graphics processing unit (GPU) of some video cards. Of

course, Eevee uses the GPU to draw to the screen too, but in a slightly

different way compared to how Cycles does it. Using GPU acceleration, a
Cycles render process can often be ten times faster than rendering on the

CPU alone.

You can find more detailed information on the differences between Eevee and
Cycles in Chapter 16. In general, I recommend that if you still don’t know what
final look you’re trying to achieve, you should render with Cycles. It’s a more
mature render engine with more features. Despite being slower than Eevee, real-
istically behaving materials are slightly easier to set up in Cycles. And if you decide
that you want a more stylized look, it’s not too difficult to either cheat that
stylized look in Cycles or migrate your materials to Eevee. Figure 8-1 shows the
same model rendered in Workbench, Eevee, and Cycles.

FIGURE 8-1:
From left to right,

the same 3D
model rendered

in Workbench,

Eevee, and

Cycles.

232 PART 2 Creating Detailed 3D Scenes

It is actually possible to take advantage of features in both render engines, but the
process is a bit advanced. The short version goes something like this (this assumes
all your modeling and animation is done and you just need to do materials,
 lighting, and rendering):

1. From the Scene datablock at the top of your Blender window, name your

current scene according to its current renderer (for example, Scene.

Eevee).

2. Make a linked copy of your current scene (left-click the Plus[+] button

next to the Scene datablock and choose Linked Copy).

3. Name your new scene according to the other render engine (for example,

Scene.Cycles).

4. In your new scene, change the render engine to the other render engine

(for example Cycles, if the original scene used Eevee).

5. Create a new empty scene (Scene datablock Plus[+] ➪  New) and name it

Composite.

WHATEVER HAPPENED TO
BLENDER INTERNAL?
If you’re reading this book as someone who’s used earlier releases of Blender, you may

find yourself wondering what happened to the old Blender Render (sometimes referred
to as Blender Internal or BI) render engine. The short answer is that Blender Render has

been decommissioned. Blender Internal was the old man of rendering in Blender. The

core of this renderer was essentially the same as when Blender was first released over
20 years ago. It had additional features bolted onto it over the years, like the Junk Lady

in the 1980s film, Labyrinth. Despite its age and the fact that it’s not in any modern
releases of Blender, BI still is a very capable render engine. It can be very fast, especially

if you’re aiming for a stylized or cartoony look. BI’s material system was more straight-

forward for simple materials, but it quickly became a slow, tangled mess of kludges and

fakery as you tried to create more complex or realistic materials.

For all intents and purposes, Blender Internal has been supplanted by Eevee and the

Blender development team will no longer be supporting BI. That said, there are still a
few features in BI that Eevee doesn’t yet support. If you absolutely need those features

and can’t find a way to migrate to Eevee or Cycles for your rendering needs, there’s
still some hope. One of the beautiful things about open source software is that it never
truly goes away. The last release of Blender to include Blender Internal was 2.79b.
That version of Blender can still be downloaded from the Blender website any time
you want to use it.

CHAPTER 8 Changing That Boring Gray Default Material 233

6. In the Composite scene, combine render layers from your Eevee scene

with those from your Cycles scene using the Compositor.

This is the advanced part. See Chapter 18 for more on render layers and
compositing.

It’s worth noting that by using the Linked Copy method of creating a new scene,
the objects in your Cycles scene share the same materials as those in your Eevee
scene because, technically speaking, they are the same objects. If you want to have
different materials based on your chosen render engine, you’re going to have to
work a bit more with data linking and unlinking in Blender. That’s a bit of an
involved process, so I’ve included an example on the supplemental website for
this book, blenderbasics.com.

Quick ’n’ Dirty Coloring

By default, all newly added objects in Blender share a gray, plastic-like material,
whether you’re using Eevee or Cycles. Unless your model is a rhinoceros or a
stretch of sidewalk, you may be wondering how you change the material’s color.
There are quite a few ways to make that change, and they vary a bit depending on
what your final goal is in your image. This chapter starts with the simple methods
and builds up to some of the more advanced ones.

Setting diffuse colors
The simplest way to set an object’s color is from Material Properties. If your object
doesn’t have a material, follow these steps to add a new material to your object:

1. Left-click the Plus(+) button next to the list box at the top of Material

Properties.

This step adds a material slot (covered in more detail in the next section) to the

list box that you can populate with a new material. Technically speaking, this

step isn’t required because the next step automatically does this for you.

However, it’s helpful to go through this process the first time you add a
material to an object in Blender so you know what’s going on when things are

automated for you.

2. Left-click the New button in the materials datablock below the material

slots list box.

Figure 8-2 shows the default settings available when you add a new material.

http://www.blenderbasics.com/

234 PART 2 Creating Detailed 3D Scenes

Although there’s an almost overwhelming number of settings when you add a new
material to your object, defining the primary color for your material is really quite
straightforward with the default material that comes on an object in Blender. For
this simple case, you only need to set the diffuse color for the material. A diffuse
color is the color that a material reflects when light hits it. In Figure 8-2, you
should notice that there’s a color swatch labeled Base Color. Left-click on the
color swatch and Blender’s color picker pops up. Figure 8-3 shows what the color
picker looks like.

FIGURE 8-2:
The Material tab

of the Properties

editor with a

single basic

material added.

FIGURE 8-3:
Blender’s color

picker.

CHAPTER 8 Changing That Boring Gray Default Material 235

The default color picker is a bit different from what you might find in other graph-
ics applications. Left-click anywhere in the large color wheel to choose the color
you want to use. Scroll your mouse wheel or use the vertical slider to the right of
the color wheel to adjust brightness.

Picking absolute white with your mouse in this color picker is difficult. You can
use the value sliders at the bottom of the picker, but the fastest way is to press
Backspace on your keyboard and scroll your mouse wheel all the way up. After
that, adjust the alpha slider (labeled A) to 1.000; otherwise, you’ll have a color
picked, but it’ll be totally transparent.

Another cool feature is that the color picker gives you a sampler. Left-click the
Sample button below the value slider (it has an icon of an eyedropper), and your
mouse pointer changes to an eyedropper as well. The next place you left-click is
sampled for color, making it your selected color. You can sample any color in
Blender’s interface, including the buttons and icons, if you want to.

In fact, when working in design, it’s often best to work with a limited and consis-
tent color palette. So some artists will paint an image (or set up objects in the
3D Viewport) with blobs of the exact colors they want to limit themselves to. Then
whenever they need that color, it’s readily available to be sampled with the
eyedropper.

If you find Blender’s current color picker to be a bit disorienting, you have the
ability to choose other color pickers in Preferences (Edit ➪ Preferences) in the
Interface section, as covered in Chapter 2.

Assigning multiple materials to
different parts of a mesh
Using the same material across an entire object is great for objects that are the
same uniform material, but what if you want to use multiple different materials
on the same object? For that situation, you want to use material slots. Basically,
you create a material slot, sometimes referred to as a material index, by defining a
set of object subcomponents — faces in meshes, individual characters in text, and
control points in curves and surfaces — and assigning them to a material.

You create material slots directly from the top of Material Properties. In fact, if
you added a diffuse color (as described in the previous section), you’ve already
added one material slot. You add more material slots the same way: left-click the
Plus(+) button next to the material slots list box and then left-click the New but-
ton in the materials datablock below the list box. However, to actually make use of
those new materials in each material slot, you have to be in Edit mode.

236 PART 2 Creating Detailed 3D Scenes

For an idea of how this process works, say that you want to model a beach ball and
give it the classic primary-colored panels. Follow these steps:

1. In the 3D Viewport, set your viewport shading to Look Dev by clicking its

icon in the upper right.

As described in Chapter 2, Look Dev viewport shading is meant to be used for
defining and refining the materials on your objects. It’s a good habit to get
used to using for steps in this chapter. In fact, you may even want to perform

these steps from the Shading workspace, accessed with the tabs at the top of

your Blender window.

2. Add a UV sphere mesh (Add ➪  Mesh ➪  UV Sphere).

Using the Last Operator panel or the F6 pop-up panel, edit the UV sphere to

have 12 segments, 12 rings, and a radius of 1m. You may also add a

Subdivision Surface modifier (Ctrl+1) and set the faces to render as smooth

(Object ➪  Shade Smooth).

3. Tab into Edit mode and switch to Face Select mode (Tab, 3).

4. Add a new material using the material datablock in Material Properties.

Left-click the New button to add a new material, or choose an existing material

from the datablock drop-down menu.

5. Use the datablock text field to name your material.

For this example, name it White.

6. Change the base color to white as described in the previous section.

The entire ball turns white. All the faces are currently assigned to this material

slot.

7. In the 3D Viewport, use face loop select to select two adjacent vertical

face loops.

The easiest way to select a face loop is by Alt+left-clicking an edge perpendicu-

lar to the face loop you want to select. Shift+Alt+left-click the neighboring edge

to get the adjacent loop. See Chapter 5 for more on selecting mesh
components.

8. Back in Material Properties, add another new material slot.

Left-click the button with the Plus (+) icon in the upper left of the materials list

box. An empty material slot appears at the bottom of the materials list box.

9. Left-click the New button in the material datablock.

You should get a material named something like Material.001.

CHAPTER 8 Changing That Boring Gray Default Material 237

10. Change the material name to Blue.

11. Change the base color to blue like in Step 6.

After you change the color of this swatch, you might expect the faces that you

have selected to automatically change to match this color. That’s not quite how

it works: Even though you have these faces selected, they’re still assigned to

the White material slot. Perform the next steps to remedy that situation.

12. Assign the selected faces to the current material slot, Blue, by clicking

the Assign button beneath the material list box.

The moment you left-click the Assign button, the selected faces all change to

the blue color you picked in Step 11.

13. Using the process in Steps 7 through 12, work your way around the

sphere, creating and assigning colors for the other panels.

If you create a beach ball like the one in Figure 8-4, you should end up with
four material slots, one for each color on the ball.

FIGURE 8-4:
Creating a beach

ball with a UV

sphere and four

material slots.

238 PART 2 Creating Detailed 3D Scenes

Material slots aren’t limited to being used only by meshes. You can also use them
on curves, surfaces, and text objects. The process is similar to meshes, with one
main exception. Meshes, as shown in the preceding example, allow you to assign
 individual faces to different material slots. This exception isn’t the case with
curves, surfaces, and text objects, which assign material slots to discrete closed
entities. So you can assign individual text characters and curves to a material slot.
However, you can’t set the material slot of an individual control point or a portion
of a text character. Figure 8-5 shows material slots working on a curve, surface,
and text object.

It’s worth noting the datablock field below the material slots list box. From this
datablock field, you can tie a material to the current active material slot in the list
box (you make a material slot active by clicking on it). This datablock functions
the same as any other datablock field, as explained in Chapter 4.

From left to right, here is a description of what each button in the datablock does.

 » The Material button on the left gives you the ability to choose any existing

material that you’ve already created.

 » The text field allows you to give your material a custom name. Simply left-click
in the field and type the name you want to use. The name is automatically
updated in the list box of material slots. It’s the same functionality as double-

clicking the name in the material slot list box.

 » If your material is linked to more than one object, it has a numbered button

next to it, representing the number of objects using this material. Left-clicking

this button ensures that the datablock has only a single user — it creates a
copy of the material that is used only by the current active object.

 » Enable the button with a shield on it to give your material a fake user. Without

a fake user, if you unlink a material from all objects, it has no users and won’t

be saved in your .blend file. Giving the material a fake user ensures that your

FIGURE 8-5:
Material slots on

curves, surfaces,

and text objects.

CHAPTER 8 Changing That Boring Gray Default Material 239

material sticks around when you save. Fake users are great if you want to

create a .blend file as a material library.

 » Clicking the New Material button adds a new material datablock and assigns it

to your active material slot. If there’s already a material datablock chosen

when you click this button, your new material is actually a duplicate of it.

 » The X button disconnects the material datablock from the active material slot

in the list. It’s important to remember that clicking the X button doesn’t

necessarily delete the material from your .blend file. That only happens if
your material has no users and you reload your .blend file after saving.

To the right of the material datablock is a small drop-down menu with a mesh
icon on it. This is the Link menu. The Link drop-down menu after the node button
is a pretty unique control. Using these menu options requires recalling informa-
tion about how .blend files are structured. Chapters 2 and 4 detail how .blend
files are structured, but basically Blender objects are just containers for the low-
level data (mesh, curve, and so on). Now, here’s how this information relates to
materials. By default, Blender’s materials link to the low-level data, as indicated
by the Link drop-down menu in the Context panel being set to Data. However, you
also have the option of linking the material to the object as well, as shown in the
schematics of Figure 8-6.

Why is having the ability to link a material to either the mesh or the object a useful
option? Well, say that you have a bunch of objects that are linked duplicates
(Objects ➪ Duplicate Linked), sharing the same mesh information. If the material
is linked to the mesh, all your linked duplicates have the exact same material. If
you want to have a different material for each duplicate, you can link the material
to the object datablock rather than the mesh datablock. Figure 8-7 shows a set of
linked duplicate Suzanne heads, each with a different material.

FIGURE 8-6:
A schematic

showing a

material linked

to a mesh and

to an object.

240 PART 2 Creating Detailed 3D Scenes

Using vertex colors

One downside to material slots is the fact that, although they make defining
 multiple colors and materials on a single mesh easy, there’s a very distinct line
between materials. The color of one material doesn’t smoothly transition into the
next. For example, if you want to create a car with a paint job that’s light blue near
the ground and smoothly transitions to a bright yellow on its roof and hood, you
can’t effectively do this color graduation with material slots. You could use a
 texture, as described in Chapter 9, but that might be overkill for a simple object.
There is another technique that gives you an effective way of quickly coloring a
mesh without the hard-edged lines that material slots give you: vertex colors.

The way vertex colors work is pretty simple. You assign each vertex in your mesh
a specific color. If the vertices that form a face have different colors, a gradient
goes from each vertex to the others; the color is most intense at the vertex and
more blended with other colors the farther away it gets.

Although vertex colors are a very flexible way of adding smoothly transitioning
colors to your object, they work only on mesh objects. You can’t use vertex colors
on other objects like curves, text, or metaballs.

Of course, trying to explicitly set the color for each and every vertex in a mesh can
get really tedious on complex meshes. To alleviate this problem, Blender has a
Vertex Paint mode. You activate Vertex Paint mode by selecting the mesh object
that you want to paint in the 3D Viewport and then pressing Ctrl+Tab to reveal
Blender’s mode switching pie menu. You can also use the mode drop-down menu
in the 3D Viewport’s header.

When you enter Vertex Paint mode, your mouse cursor changes to include a paint
brush circle similar to the one you see when in Sculpt mode and the Tools tab
available in the Toolbar changes to show paint-related tools, as shown in
Figure 8-8.

FIGURE 8-7:
Linked duplicates

of Suzanne,

except they don’t

share the same

material.

CHAPTER 8 Changing That Boring Gray Default Material 241

Blender provides you with four basic tools for vertex painting (in addition to the
Annotate tool, which is always present):

 » Draw: The Draw tool (ironically using a paintbrush icon) is the default tool for
vertex painting. Of all the available tools, it’s the only one capable of adding

new color to your vertices. All the other tools are meant for adjusting colors

already present.

 » Blur: Similar to the blur tool in digital painting programs, Blender’s Blur tool

for vertex painting mixes colors from adjacent vertices to help achieve a

smooth transition of colors.

 » Average: The Average tool is similar to the Blur tool in that it attempts to

smooth the transition between colors. This tool just uses a slightly different
algorithm. Instead of factoring colors from adjacent vertices, this tool factors

in only the colors that are within the circle of the brush size. Oftentimes, I’ll

roughly get the smooth transition with this tool and then make refining
adjustments with the Blur tool.

 » Smear: Blender’s Smear tool for vertex painting is also very similar to the

corresponding tool in 2D digital painting programs. When you click and drag
the brush circle around your mesh, you can pull color from one region into

another, as if smudging or smearing it with your finger.

Of course, the primary tool for vertex painting is the Draw tool. With this tool
active, the Active Tool tab of the Properties editor has a veritable flood of options
available, as shown in Figure 8-9.

If you want to keep the Properties editor on another tab (like the Object or Material
tabs), I’d recommend that you use the Tool tab of the 3D Viewport’s Sidebar to
work with all the Draw tool’s settings. It’s faster to access (especially if you’re
working with a full screen 3D Viewport) and it has all the same settings that are
available in the Active Tool tab. Even faster access can be had with the settings in
the Topbar of the 3D Viewport’s header.

FIGURE 8-8:
The paint tools in

the Toolbar.

242 PART 2 Creating Detailed 3D Scenes

The most relevant options for vertex painting with the Draw tool are in the Brush
panel. Here you set the color you want to use and control how that color is applied
to the selected object. You can choose the color you want by adjusting the embed-
ded color picker in the Color Picker sub-panel.

Using the tool in the 3D Viewport goes pretty much how you would expect. Left-
click and drag over the geometry on your object and you assign those vertices the
color you’ve chosen in the color picker. For your convenience, Blender always
displays the colors you’re painting in vertex paint mode, regardless of the view-
port shading you’ve chosen.

If you feel the need to adjust the visibility of your vertex paint as you’re working,
you can adjust the Vertex Paint Opacity slider at the bottom of the Overlays rollout.

Painting controls are similar to the sculpting controls described in Chapter 6. The
Radius and Strength sliders in Active Tool Properties control the size of your brush
tip and how much influence your chosen color has, respectively. If you’re working
with a pressure-sensitive drawing tablet, you can enable the pressure sensitivity
toggles for each of these values.

Of course, the fastest way to adjust the radius and strength of the Draw tool is
with hotkeys. Press and release F to visually resize the radius of your brush (left-
click to confirm when you get the size you want). Use Shift+F to change the brush’s
strength.

FIGURE 8-9:
The Active Tool

tab of the

Properties editor

gives you a bunch

of settings for the

Draw tool when
vertex painting.

CHAPTER 8 Changing That Boring Gray Default Material 243

Below the Radius and Strength sliders in the Brush panel is a drop-down menu
labeled Blend. Typically, the option chosen in this menu is pre-set, depending on
the specific brush you’ve chosen. However, by adjusting blending modes manu-
ally, you can have direct control over how the paint color is applied to your verti-
ces. If you’ve ever used a 2D digital painting application like Krita or Photoshop,
these blending mode options should look familiar to you. The following are your
choices; I’ve broken them down by general classification:

 » Mix: Mix simply blends the defined color with the color that the vertex already
has assigned, according to whatever value is set by the Strength slider. In

most cases, this is the setting you want to use for the Draw tool.

 » Darken modes: These modes include Darken, Multiply, Color burn, and
Linear burn. All these choices take the dark values of the color you’ve chosen

in the color picker and make any vertices you paint over darker by that value.

So if you use a light color (like white), your painting will have no effect on any
vertices that are already dark. The specific differences between each of these
blend modes is really in the mathematical algorithm used to figure out how
much darker things will be. If you want to get to black by darkening, I’d

recommend you use the Multiply blend mode.

 » Lighten modes: Consider these modes as the inverse of the darken modes.

Your choices here are Lighten, Screen, Color dodge, and Add. The lightness of

your chosen color is added to the color on vertices that you paint. Like the

darken blend modes, the differences between these modes is in the algorithm
used. If you want to get to white by lightening, I’d suggest using the Add blend

mode.

 » Mixing modes: In contrast to the actual Mix mode (which is more like a

“Replace” mode), these blending modes have algorithms that define how your
chosen color combines with the existing colors on your vertices to arrive at a

new color. Your options in this section are Overlay, Soft light, Hard light, Vivid

light, Linear light, and Pin light.

 » Inversion modes: These modes include Difference, Exclusion, and Subtract.
In short, use these blend modes to flip the current color on a vertex to its
opposite value on the color wheel. Green colors turn red, white turns black,

yellow turns violet.

 » Color modes: Pick these modes to tweak the influence of color on the vertices
you paint over. Typically when you use these blend modes, your chosen paint

color will be grayscale — typically either white or black — signifying how much
influence you’re painting. Your choices here are Hue, Saturation, Color, and
Luminosity.

244 PART 2 Creating Detailed 3D Scenes

 » Alpha modes: In this last block of blend modes you have two options that

aren’t really blend modes that affect color like the other modes. These choices,
Erase Alpha and Add Alpha, are blend modes that exclusively affect the alpha,

or transparency, of your colors. Typically, if you’re painting with these blend

modes, your chosen color will be grayscale, like with the color modes.

As a handy shortcut, if you right-click in the 3D Viewport, you get a small pop-
over that gives you quick access to a color picker and sliders for adjusting the
Draw tool’s radius and strength.

As you paint, you may want to have a better idea of where the vertices that you’re
painting actually exist on your mesh, especially on low poly meshes, or meshes that
don’t have a lot of actual geometry. In those cases, it’s helpful to have Blender
overlay the object’s wireframe in the 3D Viewport. To do so, navigate to the Over-
lays rollout and left-click the Wireframe check box beneath the Geometry label.
Blender adds the wireframe over the surface of the object, making it much clearer
where each of the vertices of the mesh lie.

By default, the base vertex color for an object is a flat white. If you would rather
start with a different base color for your whole object, choose Paint ➪ Set Vertex
Colors (Shift+K) from the 3D Viewport’s header. Doing that sets all the vertices in
your mesh to have the color you defined in the Vertex Paint color picker.

You can have multiple sets, called layers, of vertex colors. Over in Object Data
Properties, there’s a Vertex Colors panel with a list box in it. When you enter
 Vertex Paint mode for the first time, this list box automatically gets a vertex color
layer, named Col, added to it. You can rename the layer by double-clicking it. New
vertex color layers can be added by left-clicking the Plus (+) button next to the list
box. Figure 8-10 shows the Vertex Colors panel in Object Data Properties with a
few vertex color layers.

Although you can have multiple layers of vertex colors, you can set only one as
active for painting. To make a vertex color layer active for painting, left-click the
vertex color layer’s name.

Defining color palettes
In the “Setting diffuse colors” section of this chapter, I mention that it’s a
 common practice for artists and designers to work with a palette of very specific
colors. If you’re painting the walls of your house blue and green, you usually want
to make sure that if you run out of paint, you get the exact same blue and green.
Otherwise, your walls are going to look all kinds of hideous. Likewise when vertex
painting, if you choose a particular color, it’s good to have a way to come back to
that color later if you need to. Fortunately, in Blender’s painting system, you have
this capability built-in. Conveniently, they’re called palettes.

CHAPTER 8 Changing That Boring Gray Default Material 245

Look at the bottom of the Brush panel (if you need to, refer to Figure 8-9). Notice
a sub-panel named Color Palette? That’s where you can create, transfer, and reuse
palettes in Blender, the same as any other datablock.

To create a new palette, left-click the New button in the palette datablock.
A new palette is created, named Palette. You should also notice that below the
color picker, there are now two new buttons: Plus (+) and Minus (-). Left-click the
Plus (+) button and the current color gets added to the current active palette. You
can tell because a square color swatch with your chosen color appears beneath the
Plus (+) and Minus (-) buttons. You can add as many colors as you want to your
palette. As you work, if you want to go back to a color in your palette, just left-
click its square swatch.

When a color in your palette is picked, a little dark triangle appears in the upper
left corner of the palette square. If you ever want to remove a color from the
 palette, simply choose the color and then left-click the Minus (-) button.

Creating painting masks

Occasionally when vertex painting, your mesh may have some faces on it that you
don’t want to receive any of the color you’re currently painting. In this case, you
define face selection masking by left-clicking the Paint Mask button in the
3D Viewport’s header. It has an icon of a cube with one face highlighted, like the
one to the left.

FIGURE 8-10:
You can add

multiple layers of

vertex colors to a

single mesh

object from the

Vertex Colors

panel within

Object Data
Properties.

246 PART 2 Creating Detailed 3D Scenes

When you enable the painting mask, you can select faces of your mesh by using
Shift+left-click. After you do, these faces are the only ones affected by your paint-
ing. This is an excellent method of isolating a portion of your mesh for custom
painting without changing the color of the faces around that area. By using a paint
mask, you can actually get the hard-edged color changes that you get with mate-
rial slots, should you want such a thing.

Making vertex paint renderable

Now, just because you’ve gone and painted some fun colors on the vertices in your
object, that doesn’t mean they actually show up when you render, not by default.
If you pop back into Object mode, you may be surprised that you can no longer see
all your meticulously painted vertex colors. Don’t worry, your vertex paint is still
there. It’s just not being used by your object’s material. You need to tell Blender
that the base color for your object shouldn’t be a solid color but rather one of your
vertex paint layers.

The steps to get your vertex colors visible isn’t as complex as it sounds. For this
example, everything happens in the Material tab of the Properties editor:

1. In the Surface panel, ensure that the Use Nodes button is enabled.

All new materials in Blender have this toggle enabled by default, but some-

times you may run across a material where it isn’t enabled (especially on files
that may have originated from older versions of Blender). The material system

for both Eevee and Cycles is node-based. For all but the most simple of

materials, you should use the Shader Editor to tweak and customize your

materials. There’s more on that later in this chapter. Fortunately, for this

example, it can stay pretty simple. You don’t actually need to work in the Node

Editor right now.

2. Left-click the connector button (its icon is a small circular dot) to the right

of the color swatch and choose Vertex Color from the (exceedingly large)

menu that appears.

This act tells Blender that, rather than use the color defined by the swatch, you
want to connect some attribute (in this case, the vertex colors you’ve painted)

to control the color. After you choose Vertex Color (it’s in the far left column of

the menu that appears), the color swatch is replaced with a drop-down menu

that has Vertex Color | Color as the chosen option. Below that menu is an

unlabeled text field. This text field is where you can enter the name of a
specific vertex color layer.

CHAPTER 8 Changing That Boring Gray Default Material 247

3. (Optional) In the vertex paint layer field, type the name of the vertex
color layer you want to use.

If you enter nothing here, Blender chooses the first vertex color layer in the
Vertex Colors panel of Object Data Properties. If you want another layer, take a
quick glance at the Vertex Colors panel in Object Data Properties to check the
name of the vertex color layer you want.

That should do the trick. Now when you render (Render ➪ Render Image) or use
Rendered viewport shading, your vertex colors should be visible on your object.
Figure 8-11 shows what your Surface panel in Material Properties should look like.
The figure also shows the corresponding node configuration that Blender auto-
matically creates for you.

Setting Up Node Materials

As covered in the preceding “Making vertex paint renderable” section, it’s entirely
possible to work with Cycles materials from the Material tab of the Properties edi-
tor. However, working that way can be a bit clunky, and it doesn’t take full advan-
tage of the power afforded by Cycles. When Cycles was first integrated into
Blender, the developers decided that they would take full advantage of Blender’s
node editing capabilities. Although this section details parts of the node editor
specific to materials — specifically the Shader Editor — see Chapter 18 for a
broader overview of node editing in general. That chapter covers node editing in
the context of the compositing, but the interaction and navigation work the same
for materials as well.

FIGURE 8-11:
On the left, the

Surface panel of

the Material tab

of the Properties

editor when you

use vertex colors

on your mesh. On

the right is the

node graph that

Blender

automatically

creates as a

result.

248 PART 2 Creating Detailed 3D Scenes

Adjusting your workspace
to work with materials

The best workspace in Blender for working with materials is the Shading work-
space, as shown in Figure 8-12.

While the right side of the Blender window remains large — the same as the Lay-
out workspace, with an Outliner and Properties editor — everything to the left of
that is quite a bit different. There’s still a large 3D Viewport in the middle of the
window, but by default it’s set to Look Dev viewport display.

Furthermore, the Toolbar is hidden and there are two strange-looking spheres in
the bottom right corner of the 3D Viewport. Those two spheres are your Look Dev
preview spheres. Recall from Chapter 2 that Look Dev viewport display is intended
to help you set up materials for your objects in all manner of lighting scenarios. So
in the Shading workspace, the 3D Viewport is configured to use a high dynamic

range image (HDRI) as its source of lighting. The left Look Dev preview sphere
shows what a mirror ball would look like in that lighting, whereas the right Look
Dev sphere shows what a ball with a plain white material would look like in the
same lighting.

Blender ships with a handful of HDRIs that you can use for lighting. If you expand
the Shading rollout in the 3D Viewport’s header, you should see something like
what’s shown in Figure 8-13. Notice that you see the same mirror ball in this

FIGURE 8-12:
The Shading

workspace is

ideal for working

with node

materials.

CHAPTER 8 Changing That Boring Gray Default Material 249

rollout as the Look Dev preview sphere. Click the mirror ball in the rollout and
Blender provides you with six different HDRIs that you can choose from to test
your materials in different lighting scenarios.

If you have your own HDRIs that you want to use for Look Dev viewport shading,
you can configure Blender to recognize them from the Lights section of Prefer-
ences (Edit ➪ Preferences).

The second most important editor in the Shading workspace is the Shader Editor
that’s beneath the 3D Viewport. When you’re working with Blender’s node-based
materials, this editor is really where you spend the majority of your time. The
3D Viewport is mostly there so you can see the results of your work.

Working with nodes

Earlier in this chapter (see the section titled “Making vertex paint renderable”),
I mention the Use Node toggle in Material Properties and the fact that it’s enabled
by default. Likewise, in the header of the Shader Editor, there’s a corresponding
Use Nodes check box that’s also enabled by default. If you happen to have a .blend
file with materials that was made prior to Blender 2.80, you need to enable this
toggle (in either the Shader Editor or Material Properties) to make use of Eevee or
Cycles.

When the use of nodes is enabled on your Cycles material, the default node net-
work you have is very simple: a Principled BSDF shader node connected to a Mate-
rial Output node. All materials need to have a Material Output node. The Material
Output node is how material properties get mapped to your object; if your material
node network doesn’t have this node, then Cycles doesn’t know anything about
your material.

FIGURE 8-13:
Use the Shading

rollout to change

the HDRI used to
light your scene

in Look Dev
viewport shading.

250 PART 2 Creating Detailed 3D Scenes

The Principled BSDF shader is sometimes referred to as an “ubershader,” meant
to give you enough settings to replicate the behavior of most natural materials. In
a way, you can think of it as a massive shader network that’s been bundled into a
single node that’s more convenient to work with than rewiring your own custom
network. I go into more detail on the Principled BSDF shader later in this chapter.

If you’ve already worked with the Compositor (see Chapter 18), you should notice
that material nodes have another socket color in addition to the standard yellow,
blue, and gray sockets. Material nodes may also have a green socket that indicates
a shader input or output. See the next section for more detail on the shaders avail-
able to you in Cycles and Eevee.

Understanding shaders

The workhorses of Cycles’ materials are the shaders. A shader is a computer algo-
rithm that dictates how a material behaves and what colors it sends to the camera.
Shaders control reflectivity, transparency, and general color. By intelligently mix-
ing shaders with each other (often using textures — see Chapter 9), you can create
some very striking and convincing materials in your 3D scene. To see the shaders
available to you, choose Add ➪ Shaders in the Shader Editor. Figure 8-14 shows the
list of shaders.

FIGURE 8-14:
From the Shader

Editor you can

add shaders to

your material.

CHAPTER 8 Changing That Boring Gray Default Material 251

Many of the shaders, like the Principled BSDF, have “BSDF” at the end of their
names. BSDF is an abbreviation for bidirectional scattering distribution function.
That’s a fancy way of saying “mathy description of how light interacts with a
surface.” Due to length limitations for this book, I can’t give a thorough descrip-
tion of all the things that can be done with node-based shaders and materials.
Complete books can be (and have been!) written on that topic alone. My website
for this book, www.blenderbasics.com, gives a practical example that should give
you a clear idea of how to proceed.

Playing with Materials in Blender

Building materials for 3D objects (sometimes referred to as surfacing) is an intri-
cate and detailed art in its own right. The well for that area of study runs deep.
Within the confines of the pages of this book, there’s no way I could give you

UNDERSTANDING HOW LIGHT REFLECTS

To understand materials, it helps if you have an idea of how human sight works. Most

render engines use eyesight as the basic model for how they work. In order to see,

you need to have light. The light comes from one or more sources and bounces off
of any object within its range. When the light hits these objects, they influence the
 direction that the light bounces and how much of the incoming light is absorbed versus

reflected. When you look around, you’re seeing light bounced off of these objects and
into your eyes.

Most render engines, Eevee and Cycles included, use a simplified version of this sce-

nario. The following sentence sums up the biggest difference as it pertains to Eevee:
Unless otherwise stipulated, light bounces only once. Professional photographers often

have their flash aimed away from their subject and into an umbrella-shaped reflector
that bounces light back to whatever they’re shooting. The light from the flash has at
least two bounces to get to the camera’s lens; once off of the umbrella and once off of
the subject. Because this fairly common meatspace scenario uses more than one light

bounce, it’s a bit difficult to set up something similar in Eevee and expect it to work
accurately (although it’s easier with light probe objects, as described in Chapter 10).
That said, if you’re rendering with Eevee, you might be better off directly lighting your
scenes, so that your materials themselves control that one bounce of the light into the

3D camera.

Exceptions to this rule do, of course, exist, as do ways to cheat around them. You can

use techniques covered throughout this chapter and in Chapter 9, to implement those
cheats. Or you could render using Cycles.

http://www.blenderbasics.com/

252 PART 2 Creating Detailed 3D Scenes

an exhaustive rundown of every possible shader scenario that you could find
yourself encountering. However, what I can do is give you a sensible overview of
the tools and how they work. Armed with that fundamental understanding, you
should be able to sit down at Blender and get results that look good. Furthermore,
you should be able to simply play with the Shader Editor to run it through its paces
and really get a sense of what’s possible.

Demystifying the Principled BSDF

It’s somewhat ironic that the Principled BSDF is meant to simplify the surfacing
process for artists. One glance at the bevy of sliders and values and color swatches
in that node, shown in Figure 8-15, could get a person to scream out, “This is the
easy way?!”

And the answer, strangely enough, is yes. Materials in meatspace are deceptively
complex things with all manner of exotic surface properties. If you wanted to
make a node network that gives you all the flexibility and possibilities wrapped in
the Principled BSDF node, you’d have an enormous tangled mess of nodes and
noodles that could be even more difficult to parse yourself, let alone share with
others. And even then, that “noodle soup” shader network isn’t likely to respond
to light in as physically correct a way as the Principled BSDF.

FIGURE 8-15:
The Principled

BSDF node makes
our lives as artists

easier.

CHAPTER 8 Changing That Boring Gray Default Material 253

If you break down the Principled BSDF node, it’s actually quite a bit more man-
ageable than it seems. This section is a rundown of the most useful and relevant
controls on this enormous node. Note that I’ve organized this section differently
than the order of controls as they appear in the node. I’ve structured it this way to
make explaining things a bit easier.

Color inputs

As far as I’m concerned, one of the primary functions of a material is to give your
objects some form of color. Colorless renders with gray materials — sometimes
called clay renders — have their place and can be made to look quite nice, but life
is full of color. It’d be great if our art reflected that life.

 » Base color: As covered near the start of this chapter, the base color is where

everything starts for your material’s color. It can be the color you choose from

the swatch in the node, or you can connect a color (like vertex colors via the

Attribute node) input to its socket. Chapter 9 has a lot more on giving your
materials color variation with textures, and a big part of that is wiring textures

to this socket.

 » Emission: You can actually use the Principled BSDF as a light source by setting
this color swatch (near the bottom of the node) to any color other than black.

Do note that although this works out of the box when rendering with Cycles,
you need to use a light probe object if you want emission values to work as a

light source in Eevee. Chapter 10 has more on lighting. That said, emission
values are still useful in Eevee if you want to have flat-shaded, cartoon-style
coloring.

 » Alpha: When working with color in digital applications, you typically have four

color channels that you work with: red, green, blue, and alpha (RGBA). The

first three color channels are color primaries when dealing with additive color
(like light, as opposed to subtractive color, like paint). The fourth color

channel, alpha, may not be familiar to you. The alpha color channel relates to

the opacity of the color. Higher values are more opaque, whereas lower

values are more transparent.

If you’re rendering with Eevee, adjusting the Alpha value won’t give you any vis-
ible results the way Blender is configured by default. To enable transparency in
your Eevee renders, go to Material Properties and scroll down to the Settings
panel. Change the Blend Mode drop-down menu from Opaque to either Alpha
Blend (higher quality, slower to render) or Alpha Hashed (lower quality, faster to
render). Figure 8-16 shows the Settings panel in Material Properties.

254 PART 2 Creating Detailed 3D Scenes

Another thing to remember is that if you’re trying to get physically correct trans-
parency, like with glass, then you don’t actually want to mess with the Alpha
value. There’s another control in the Principled BSDF, Transmission, that’s better
suited for that kind of transparency (more on that control later in the next sec-
tion). Alpha transparency is more useful for masking with textures, like if you
want to use an image of a leaf on a plane instead of modeling the whole leaf itself.
See Chapter 9 for more on using textures.

Reflection and refraction inputs
Reflectivity is a material property that describes how much light that material
bounces away from it. A perfect mirror is fully reflective and, therefore, bounces
back 100 percent of the light rays that hit it, whereas black velvet has very low
reflectivity. Refraction is how much light bends when traveling through a trans-
parent or semitransparent material. Refraction is what makes eyeglasses work to
correct people’s vision or why a straw looks broken when put into a glass of water.

A common challenge of 3D computer graphics is making your materials reflective
and refractive in a physically correct way. Fortunately, adding those properties to
your materials in Blender isn’t too difficult when using the Principled BSDF. Quite
a few of the Principled BSDF node’s inputs are dedicated to material features that
could be classified as relating to reflectivity and refractivity. The following are the
most relevant ones:

FIGURE 8-16:
Use the Settings

panel in the

Material tab of

the Properties

editor to

configure the
transparency of

your material

when rendering

with Eevee.

CHAPTER 8 Changing That Boring Gray Default Material 255

 » Distribution: This control is the very first drop-down menu at the top of the
node. This property is the same control found in the Glossy and Glass BSDFs.
The distribution method is the algorithm that the render engine uses to

generate reflections. If you’re rendering with Cycles, you have two choices
when it comes to distribution type (these options are still visible if you’re

rendering with Eevee, but only GGX is used):

• GGX: GGX is the default distribution method. It’s fast and reasonably

accurate.

• Multiscatter GGX: Also referred to as multiple-scattering GGX, this distribu-

tion method is more accurate because it takes multiple bounces of light

into account. The trade-off is that those accurate results take longer to
generate.

 » Metallic: This input is your primary control over the reflectivity of your
material. A value of 1.00 makes your material completely reflective, whereas a
value of 0 makes your material reflect only its base color. As you play with this
value, you may find yourself wondering why at a value of 1.00 your material
doesn’t seem as perfectly reflective as the Look Dev mirror ball. That’s
because of the next input mentioned next in this list, Roughness.

If you talk to enough people who do surfacing frequently, you’ll sometimes

hear them refer to a material’s dialectric, or non-metal component. In

meatspace, a material is either metallic or it isn’t. The Metallic input on

Blender’s Principled BSDF gives you the ability to cheat a bit and make
materials that are partially metallic and partially dialectric (like maybe dirty

metal).

 » Roughness: Think of the Roughness value of the Principled BSDF as the
amount of polish you have on your material. A silver spoon is highly reflective
and can have a mirror-like finish on it. However, if that spoon is tarnished, the
reflections get blurred out to the point that the surface of the spoon almost
starts behaving like a diffuse material. The default value for this input is 0.500.
If you drop it down to 0 with a Metallic value of 1.00, you get the mirror finish
you’d expect.

 » Specular: As I mention elsewhere in this chapter, think of the specular value

as being a kind of reflectivity, but only for your light sources. Technically
speaking, it’s the reflectivity of dialectric materials. The specular value doesn’t
account for any color input from the environment around your material.

Specularity is also generally less computationally expensive to calculate in a

render engine like Eevee. Say, for example, you’re trying to replicate the

shininess of polished black leather shoes. Although you could tweak the

Metallic and IOR inputs to get results that look good, you can usually get there

faster with more physical accuracy by just dialing up the Specular value and

leave the Metallic input alone (unless you have chrome shoes, of course).

256 PART 2 Creating Detailed 3D Scenes

 » IOR: IOR is an abbreviation for index of refraction, or a numerical representa-

tion of how much a material bends light. This input is most relevant for

materials that you can see through, like glass or water. The cool thing is that

because Eevee and Cycles are meant to be physically correct render engines,

IOR values match their real-world counterparts. The IOR of air, for example, is

1.00, meaning that light appears unbent. The default IOR in the Principled

BSDF is 1.45, about halfway between the IOR of water and the IOR of glass.
There are look-up tables on the Internet for the IOR values of all manner of

materials. Generally speaking, realistic materials won’t have an IOR greater

than 2.00.

 » Transmission: I mention in the preceding section that if you want a material

like glass, you don’t want to adjust the Alpha value of your Principled

BSDF. Instead, this value, Transmission, is the one you want to work with. It’s
called Transmission because it’s a value that describes how much light is

transmitted through your material. A Transmission value of 1 tells Blender that

your material is completely see-through. The result looks like a material with

an Alpha of 0, but the difference is that things seen through your material are
distorted, as if looking through a lens.

Being a ray-tracing render engine, Cycles has support for reflection and refraction
“for free” because that’s just how that kind of render engine works. Eevee is not
a ray tracer, so it needs to rely on a few cheats to get decent results. If you’re
working with a material in Eevee and you need good reflection and refraction
behavior, there are a few settings you should adjust so the results are visible in
your renders (and the 3D Viewport):

 » In Render Properties, enable the Screen Space Reflections check box.

 » In Material Properties, go to the Settings panel and enable the Screen Space

Refraction check box for each refractive material in your scene.

In both these scenarios, enabling each check box makes Eevee render slower.
However, if you need reflection and refraction, but you don’t want to break out the
heavy guns of Cycles, that small speed hit is necessary.

Subsurface scattering inputs

As I cover earlier in this chapter, subsurface scattering is basically what you see on
the back of your hand when you hold a flashlight against your palm. It’s the effect
of light being distributed through a volume of material, be it wax, skin, or orange
juice. The Principled BSDF has a set of controls for subsurface scattering right at
the top of the node.

CHAPTER 8 Changing That Boring Gray Default Material 257

If you’re using Eevee as your render engine, you may want to enable the Subsur-
face Translucency check box from the Settings panel in the Material tab of the
Properties editor. It’s not critical to enable this value, but doing so can give you
more accurate results.

 » Subsurface method: This control is the second drop-down menu at the top

of the node. With this drop-down menu you have a choice of the algorithms

Blender uses to generate the subsurface scattering effect:

• Christensen-Burley: By default, the subsurface method is set to use

something called Christensen-Burley. In computer graphics, a lot of

algorithms get named after the people who came up with them. The

Christensen-Burley subsurface scattering method is one such algorithm.

It’s a decent general-purpose choice that works in both Eevee and Cycles.

• Random Walk: If you want more accurate results (especially for thin and

curved surfaces) and you’re rendering with Cycles, I’d suggest you try out

the Random Walk algorithm. It’s slower than Christensen-Burley, but the

results tend to be a lot better.

 » Subsurface: This slider controls how much subsurface scattering you have in

your object. For realistic subsurface scattering, typical values for this setting

are generally pretty low (less than 0.5).

 » Subsurface radius: This control is one of the more difficult ones to under-

stand. Notice that the input socket for this control is blue, indicating a vector

input (see Chapter 18 for more on socket colors for nodes). However, it’s a bit
more complex than that. Each of the three values is the distance that light

scatters through the material, broken up by red, green, and blue color

channels. The reason for this strangeness is because one of the most

common uses for subsurface scattering is for skin, and in skin red light tends

to scatter more deeply. That’s why the default values for this control are 1.00

for red, 0.20 for green, and 0.10 for blue. If you’re making a material that isn’t

skin, you’ll probably want to change these values.

 » Subsurface color: This color socket is the base color for your subsurface

scattering effect. Typically the color will be pretty close to the base color
you’ve chosen, though perhaps with a higher saturation value. For example, if

you’re making a skin material, you’ll probably make this color red. Of course,

that’s assuming you’re making human skin. If it’s alien skin, you’ll probably

choose a different color altogether.

258 PART 2 Creating Detailed 3D Scenes

Combining shaders with
the Mix Shader node

If you’ve never had experience with a node-based workflow, Blender’s material
system may seem to be needlessly complicated to you. You could even find yourself
thinking that if everything was a Principled shader of some sort, we wouldn’t
need nodes at all. Of course, that’s not true. There’s an enormous amount of
power that you get by having the flexibility to mix shaders and other elements in
your materials. See Chapter 18 for a more generalized overview of node-based
image processing, and Chapter 9 has more on specifically using nodes for image
textures. However, to give you a taste of what’s possible, I’m going to suggest that
you have a look at the deceptively unassuming Mix Shader node.

I cover the Mix Shader briefly earlier in this chapter in a section entitled “Under-
standing shaders.” As Figure 8-17 shows, it’s a fairly simple thing: three input
sockets and a single output. And only one of those input sockets, Fac, has a value
that you can manually adjust. Despite its sparse dressing, though, the Mix Shader
is one of the most helpful nodes available when working on materials for your
objects.

Say you have a model and you want it to be half one material and half another.
Admittedly, this is a bit of a contrived example, but bear with me. Sure, you could
use the model’s geometry and material slots to do the material separation, but
what if you need the separation of materials to follow a line that doesn’t match
your geometry? Heavily modifying your mesh topology just to account for arbi-
trary material changes is a lot of extra work and it’s difficult to make changes to
in the future. Furthermore, what if you want to animate the change in material?
Maybe you have a cartoon character whose face needs to grow red from bottom to
top, like a thermometer, as she gets angry. This is the sort of thing for which
 having node-powered materials really excels.

Continuing on this example, I’d like to walk you through the steps of building a
fairly simple node network that produces the effect described in the preceding
paragraph. For this example, I’m going to use Suzanne, but you’re welcome to use
any object you’d like (for simplicity, I’d recommend a mesh-based model). From

FIGURE 8-17:
The Mix Shader

node doesn’t look

like much, but

there’s a

bucketful of

awesome in

those four

sockets.

CHAPTER 8 Changing That Boring Gray Default Material 259

a new general Blender session (File ➪ New ➪ General), switch to the Shading work-
space and work through the following steps:

1. Delete the default cube (X).

2. Add Suzanne (Add ➪  Mesh ➪  Monkey).

While you’re here, I would recommend that you set Suzanne’s shading to

smooth (Object ➪  Shade Smooth) and give her a Subdivision Surface modifier
with two subdivisions (Ctrl+2).

3. Give Suzanne a new material.

You can do this from Material Properties, or click the New button in the

Material datablock in the Shader Editor’s header. While you’re here, I’d suggest

you name your material something sensible. I named mine HotFace.

4. Tweak the material on Suzanne to taste.

In the simplest case, just give her a Principled BSDF base color, like maybe
some form of blue. So far, so good. Your Blender window should look some-

thing like what’s shown in Figure 8-18. It’s a simple scene with a Suzanne model
that has a basic two-node material (Principled BSDF and Material Output).

5. Add a new Principled BSDF node (Add ➪  Shader ➪  Principled BSDF).

When your new node is added, Blender puts it wherever your mouse cursor

is in the Shader Editor. As you move your mouse cursor around, the node
moves with it. Place the node in the editor area by left-clicking. It’s not overly

FIGURE 8-18:
Suzanne is here,

ready to be

made angry!

260 PART 2 Creating Detailed 3D Scenes

important where in the editor you place your new node; I’d just recommend

you place it somewhere to the left of the Material Output node.

6. In your new Principled BSDF node, set the base color to red.

Left-click the Base Color swatch in the node and use the color picker to set

that color as red. As you make this change, nothing should happen in the
3D Viewport. Nothing is happening because even though you’re modifying a
shader node, that node isn’t connected to anything else in the node network.

So none of your changes are visible in the material . . . yet.

7. Add a Mix Shader node along the noodle between your original Principled

BSDF and the Material Output node (Add ➪  Shader ➪  Mix Shader).

When you add your Mix Shader node, you’ll automatically be moving it around,

just as in Step 5. If you drag your mouse cursor (with the Mix Shader node in
tow) over the noodle between your original Principled BSDF and the Material
Output node, you should notice that the noodle is highlighted. If you left-click at

that point, Blender will automatically insert the Mix Shader along that noodle.

8. Wire your new, red Principled BSDF node to the top Shader socket on the

Mix Shader node.

Even though your original Principled BSDF is already connected to that top
Shader socket, if you connect your red Principled BSDF to that same socket, the
original connection is bumped down. If you used blue and red base colors, you

should notice that Suzanne is now a lovely shade of purple.

Pause a moment while you’re working through these steps to wrap your head

around what’s happening here. You’ve run two Principled BSDF nodes through
a single Mix Shader node and routed that node’s Shader socket to the Material

Output node. The result is an even mix of your two Principled BSDFs. If you
adjust the Fac slider in the Mix Shader node, you can control the influence of
each shader. Dragging the Fac slider left and right, you can change Suzanne
from blue to red and back again. That’s already pretty cool and it shows the

basics of what can be done with the Mix Shader node, but it’s not exactly the

change described in the initial example. You want the red color to grow from

the bottom of Suzanne’s chin to the top of her head. For that effect, you need
to add a few more nodes.

9. Add a Gradient Texture node (Add ➪  Texture ➪  Gradient Texture) and
wire its Color socket to the Fac socket on your Mix Shader node.

Chapter 9 has a lot more on textures, but the Gradient Texture node is a
simple node that creates a procedural gradient that you can use in your

materials. By wiring this texture node to the Fac socket on the Mix Shader,

you’re telling Blender to use that gradient to control the influence of each of
your Principled shaders. Where the gradient would be black, your Suzanne is

blue. Where the gradient would be white, she’s red. And in the various gray

states in between, you have a smooth transition of colors through purple from

CHAPTER 8 Changing That Boring Gray Default Material 261

one ear to the other. Of course, although that smooth transition is nice, it’s not

quite like the thermometer effect described in the example. You want the
transition from blue to red to be much more abrupt than that.

10. Add a ColorRamp node (Add ➪  Converter ➪  ColorRamp) along the noodle
between your Gradient Texture node and the Mix Shader node.

Just like when you added the Mix Shader node in Step 7, you can drag the
ColorRamp node over the noodle until it’s highlighted, and when you place the

node by left-clicking, Blender automatically routes the noodle through your

node. The ColorRamp node maps incoming grayscale values (on its Fac socket)

to a color ramp that you define. When you first add this node to your shader
network, it shouldn’t appear that anything has changed in the 3D Viewport. That
makes sense because at this point, the ColorRamp node is a simple black-to-

white gradient; you’re mapping the values of your Gradient Texture node to an

identical linear gradient. The next step is where you seize control of that texture.

11. In the ColorRamp node, change the Interpolation from Linear to Constant

by clicking the drop-down menu on the right side of the node.

Yikes! Your whole Suzanne is now red! That’s not what you wanted, either. But
wait . . . it actually is what you want. Notice that instead of being a linear gradient,

the whole color ramp is now black. At each end of the color ramp there’s a little

house-shaped controller called a color stop. The left one has a little black rectan-

gle under its roof, and the right one has a white rectangle. If you’ve worked with

gradient editors in image editing programs before, these color stops should be

familiar. They represent a point on the color ramp where you define a specific
color. If you click and drag the white color stop (the one on the right) to the left,

you should see the 3D Viewport update so one-half of Suzanne’s face is blue and
the other is red. By dragging the color stop left and right, you can control exactly

where her face changes from blue to red, as shown in Figure 8-19.

Of course, most thermometers don’t work from side to side. They get red from

the bottom up. To accommodate that feature of your material, you need to

rotate how your gradient is mapped to your mesh.

12. Add a Texture Coordinate node (Add ➪  Input ➪  Texture Coordinate) and wire
its Generated socket to the Vector socket on your Gradient Texture node.

Chapter 9 has more on texture coordinate systems, but generally speaking,
texture coordinates are how 3D software maps two-dimensional elements
(like most textures) to a three-dimensional surface. When you wire up this
noodle, there should be no visible change in the 3D Viewport. The reason is
because the Gradient Texture node defaults to using Generated texture

coordinates when nothing is connected to its Vector input socket. However,

in order to rotate your effect, you need to modify how those coordinates are
mapped to your mesh. The Mapping node (added in the next step) doesn’t

have a default coordinate system, so you need the Texture Coordinate node
to provide that input.

262 PART 2 Creating Detailed 3D Scenes

13. Add a Mapping node (Add ➪  Vector ➪  Mapping) along the noodle between
your Texture Coordinate node and the Gradient Texture node.

No change should be visible in the 3D Viewport because all the values on the
Mapping node are at their defaults. You’ve added the node, but you haven’t yet

changed any mapping. That happens in the next step.

14. Click the Texture button in the upper left of the Mapping node and

change the Y-axis rotation value to -90 degrees.

Clicking the Texture button in the Mapping node tells it that it’s dealing with

texture coordinates (the Mapping node can be used to remap all kinds of

values, not just texture coordinates). Changing the Y-axis rotation value is

the key, though. Once you make that change, the vertical transition across
Suzanne’s face becomes horizontal, as shown in Figure 8-20.

As a bonus, you can animate the position of that color transition by keyframing the
Position value of the white color stop in the ColorRamp node. Simply move the color
stop to one place, right-click the Pos field and choose Insert Keyframe from the
menu that appears. Then move forward in the time, adjust the position of that color
stop again, and insert a new keyframe. Boom! Suzanne with animated cartoon anger.

And there you have it! So much of the power that you get from Blender’s node-
based material system comes from the Mix Shader node. Furthermore, because
you’re mixing shaders, it’s not just about mixing colors. You can have half of
Suzanne be transparent. Or maybe you want to mix shaders so part of her face
looks metallic and another part is glass. This power and flexibility is what you get
when you start finding creative ways to mix materials in the Shader Editor.

FIGURE 8-19:
With the

ColorRamp node,

you can control

what parts of

Suzanne’s face

are red or blue.

CHAPTER 8 Changing That Boring Gray Default Material 263

It’s also possible to do shader mixing with the Add Shader node, but that node is less
flexible than the Mix Shader node. And if you’re concerned about realism, the Add
Shader node can be problematic for non-emitting materials because it doesn’t adhere
to the concept of energy conservation. One of the laws of physics is that matter
 cannot be created or destroyed. The same is generally true for energy, and light is a
form of energy. So unless you intend for your material to be a source of light, it
shouldn’t be adding any energy into your scene. So as a general rule of thumb, use
the Mix Shader for regular materials and the Add Shader for sources of light.

Playing with the Shader to RGB node

With all this talk of realism and physically correct materials, it’s sometimes easy
to forget that we’re working in the digital realm. It’s our imaginations, powered
by electricity! Why aim for realism when you can literally make anything you
want? Just because the sky is blue and grass is green in meatspace, that doesn’t
mean you have to faithfully replicate that in your work. You can make the sky and
grass purple and orange if you want. And a cloudless sky doesn’t have to be a
smooth gradient at all. It can be textured or painterly or some wild thing that
I can’t imagine or put into words.

This mindset is the heart and spirit of non-photorealistic rendering, or NPR for
short. NPR materials are a whole segment of the computer graphics world that, in
my humble opinion, doesn’t get focused on enough. Artistically speaking, the
whole world is open to you. Practically speaking, a large portion of the community
of artists that work with NPR materials tends to focus on making 3D artwork that

FIGURE 8-20:
The temperature

is rising and

Suzanne is

getting angry.

You wouldn’t like

Suzanne when

she’s angry.

264 PART 2 Creating Detailed 3D Scenes

looks like it was drawn, painted, or cartoony. And Eevee has a node that’s a
 powerful tool for that kind of artist: the Shader to RGB node.

The Shader to RGB node only works when you’re rendering with Eevee. Being a
ray tracer, it’s more difficult to make Cycles do some of the crazy non-
photorealistic things that are possible with Eevee.

If you add a Shader to RGB node to your Shader Editor (Add ➪ Converter ➪ Shader
to RGB), you may note that there is not much to it. As shown in Figure 8-21, the
Shader to RGB node is even sparser than the Mix Shader node. There’s not even a
Fac slider. Just a single Shader socket input and two output sockets, one for color
and one for alpha.

The power of the Shader to RGB node is all in what it can do. To give you just
a taste of what’s possible, open up a new general Blender scene (File ➪ New ➪
General) and switch over to the Shading workspace. Then, work through the
following steps:

1. Delete the default cube (X).

The cube is nice and all, but this example calls for something a little more

exciting.

2. Add Suzanne to your scene (Add ➪  Mesh ➪  Suzanne).

As with the example in the preceding section, give Suzanne smooth shading

(Object ➪  Shade Smooth) and a Subdivision Surface modifier with 2 subdivi-
sions (Ctrl+2).

3. Give Suzanne a new material.

The easiest way to give her a material is to left-click the New button in the

Material datablock within the header of the Shader Editor. Be sure to name

your material something that makes sense, like Cartoon Monkey.

4. Select the Principled BSDF in your new material and delete it (X).

For this example, the Principled BSDF is a bit overkill.

FIGURE 8-21:
The lowly Shader

to RGB node. Just

wait until you see

what this thing

can do!

CHAPTER 8 Changing That Boring Gray Default Material 265

5. Add a Diffuse BSDF (Add ➪  Shader ➪  Diffuse BSDF) and wire its BSDF
output socket to the Surface input socket of the Material Output node.

At this point, things are pretty dull. You have a Suzanne in your scene with a

material that looks a bit like unbaked clay. The next few steps are where you

start to see something cool.

6. Add a Shader to RGB node (Add ➪  Converter ➪  Shader to RGB) and wire it
inline between your Diffuse BSDF node and your Material Output node.

You can add a node inline by dragging it over an existing noodle and placing it

when the noodle gets highlighted.

You may find yourself disappointed with the results here. After all, you just did
it. You added the “incredible” Shader to RGB node. Rainbows of unimaginable

awesomeness should be shooting out of the back of your computer now,

right? Well, not quite. There are still a few steps to go. See, right now you have

a yellow Color socket from the Shader to RGB node wired to the green Surface

socket on the Material Output node. That’s two different kinds of data. The
Material Output node expects shader data to be connected to that Surface

socket. So you should give it that.

7. Add a new Emission shader node (Add ➪  Shader ➪  Emission) and place it
inline between your Shader to RGB node and the Material Output node.

In performing this step, you’ve at least gotten all your matching sockets

properly connected to one another. The result, however, is still that boring clay

monkey.

Let me pause a moment to explain what’s going on. Working from the left of

your shader network to the right, your first Diffuse BSDF is taking all the
lighting data from your scene (in Look Dev viewport shading, that’s the light in
the scene and the HDRI image connected to the 3D Viewport’s world environ-

ment). By wiring that Diffuse BSDF to the Shader to RGB node, you’re telling
Eevee to take that lighting information and interpret it as color data mapped to

the surface of Suzanne, kind of like a texture (see Chapter 9). Then, by wiring
your Shader to RGB node to an Emission shader, you’re telling Eevee to use

that color data as a kind of texture for that Emission shader before sending the

shader data to the Material Output node.

So, in short, the Shader to RGB node lets you treat shader data (light, basically)

as if it were a texture that’s dynamically mapped to your mesh. This means that

you now have the ability to do fun texturing and image processing tricks to

shader data. To see what I mean, go on to the next steps.

8. Add a ColorRamp node (Add ➪  Converter ➪  ColorRamp) inline between
your Shader to RGB node and your Emission shader node.

Again, the immediate results may appear somewhat lackluster. However,

things are about to change.

266 PART 2 Creating Detailed 3D Scenes

9. In the ColorRamp node, left-click the Plus (+) button above the color ramp

gradient.

Blender should add an additional color stop at the halfway point of the

ColorRamp node’s gradient. The color at that color stop should be 50% gray.

10. Change the ColorRamp’s Interpolation drop-down menu from Linear to

Constant.

Now things are starting to get interesting. Instead of having a drab clay kind of

look, Suzanne now has a bold shadow that looks like it was filled with a heavy
ink pen. If you add more color stops and tweak their positioning in the

ColorRamp node, your Blender session could look something like what’s

shown in Figure 8-22.

And that’s it! Sure, this is a fairly rudimentary example, but if you combine the
Shader to RGB node with the tools I describe to you in the next chapter, you can
generate some very interesting and complex non-photorealistic materials for
your models while still having them react correctly to your scene lighting. Play
with this node network. Mess around with it! Add things! Maybe you’ll come up
with something you never imagined was possible.

FIGURE 8-22:
The Shader to

RGB node can

give you Suzanne

with cartoony or

comic book

lighting.

CHAPTER 9 Giving Models Texture 267

Chapter 9

Giving Models Texture

I
f you want a more controlled way of adjusting the look of your object than

what’s described in Chapter 8, then using material shaders alone won’t get you
there. You can use Vertex Paint, but if you’re working on a model that you

intend to animate, Vertex Paint can cause you to have many extraneous vertices
just for color. Those vertices end up slowing down the processes of rigging,
 animating, and even rendering. Also, you may want to have material changes that
are independent of the topology and edge flow of your mesh.

For those sorts of scenarios, you’re going to want to use textures, which is the
focus of this chapter.

Adding Textures

Generally speaking, a texture is a kind of image that you stretch or tile over the
surface of your object to give it more detail without adding more geometry. Not
only can textures influence the color of your object, but they can also allow you to
make additional adjustments, such as stipulating the shininess of some specific
parts of the model. For example, on a human face, skin tends to be shinier across
the nose and forehead, and somewhat duller around the eyes. With textures, you
can control these sorts of things. If you’ve read through Chapter 8, then you’ve
seen some examples of that using the Gradient Texture.

IN THIS CHAPTER

 » Working with textures

 » Creating procedural textures

 » Thinking about texture mapping

268 PART 2 Creating Detailed 3D Scenes

When it comes to textures that are applied to your material, textures are just other
nodes that you add to your node network. It’s possible to add a texture from the

Material tab of the Properties editor from the connector button to the right of any

property (it’s the button with a small circle icon). However, you have a lot more
control if you do it from the Shader Editor by pressing Add ➪ Texture and choosing

your desired texture node from the menu. In all but the most simple of use cases,
you should use the Shader Editor to add textures to your materials. For this reason,
just like in Chapter 8, the “home base” for working with textures and materials in
Blender is the Shading workspace. Figure 9-1 shows the textures available when
you open this menu.

You might notice that the Properties editor has a Texture tab and that there’s also

a specific Texture Node Editor that you can put in any area. Those specific controls
aren’t necessarily for material textures. You can make procedural textures that can

be used when painting, sculpting, and drawing with Grease Pencil. Those textures
are referred to as Brush textures and I get into them more later in this chapter.

Using Procedural Textures

Blender offers basically two kinds of textures: image-based textures and proce-

dural textures. Unlike image-based textures, where you explicitly create and load
an image (or sequence of images) as a texture, procedural textures are created in
software with a specific pattern algorithm.

FIGURE 9-1:
If you render with

Cycles, you add

textures directly

in your material

node network.

CHAPTER 9 Giving Models Texture 269

The advantage of procedural textures is that you can quickly add a level of detail
to your objects without worrying about the unwrapping described later in this

chapter in the section “Unwrapping a Mesh.” The software handles mapping the
texture to the mesh for you. Another advantage of procedurals is that they’re reso-

lution independent; they don’t get blurry or pixelated when you zoom in very close.

Of course, procedurals can be a bit more difficult to control than image-based
textures. For example, if you have a character with dark circles under his eyes,
getting those circles to show up only where you want can be pretty tough, maybe
even impossible if you’re only using procedurals. So the ideal use for procedural
textures is as broad strokes where you don’t need fine control. Or you may make a
procedural texture and mix it with an image-based texture that you use as a mask
to dictate where that procedural texture appears. Procedural textures are also

great for creating a foundation or a base to start with, such as providing the rough
texture of an orange rind’s surface.

BEHOLD THE POWER OF THE RAMP!

A powerful and under-recognized tool in Blender is the ramp. A ramp is basically a

 gradient, and its editor interface is used in a few different places in Blender’s interface.
In Blender’s node editors (Shader Editor, Compositor, Texture Editor), you can add
ColorRamp node by choosing Add ➪  Converter ➪  ColorRamp. Ramps are a great way, for
example, to adjust the color of the stripes in a Wave texture or determine which colors you
want to use for your Gradient texture. Chapter 8 has an example of using the ColorRamp
node with the Shader to RGB node to create cartoon-style and hand-drawn materials. The
ramp editor works much like gradient editors in other programs. By default, it starts with a

color stop positioned at either end of a colorband bar, and the color smoothly transitions

from one side to the other. The color can be any value in the RGB spectrum, and, using the
color picker, you also can control its transparency with the alpha value.

To change the position of a color stop, first select it by left-clicking its position in the
 colorband. Then drag it left and right on the colorband or adjust the Pos value in the
number field below the colorband. Color stop positions count up from left to right,
 starting at 0. So with the default arrangement, the black color on the left is 0, and the
white color on the right is 1. After you select the color, you can change its value by left-
clicking the color swatch and using the color picker.

To add a new color stop, left-click the Plus (+) button. A color stop appears at the
 halfway point in the colorband. You can delete any color stop by selecting it and left-

clicking the Delete button.

It may not seem like much, but mastering ramps and knowing when to use them makes

your workflow for adding materials and textures much faster.

270 PART 2 Creating Detailed 3D Scenes

The following is a list of procedural textures available:

 » Brick texture: As its name implies, this procedural texture node creates a

simple brick texture. This may seem like an awfully specific texture to
generate procedurally, but I’ve also used it to create grid patterns and stripes.

 » Checker texture: Similar to the Brick texture, this procedural texture’s name
explains exactly what it does. Many times, it gets used as a placeholder or test

pattern, but it’s also useful for quickly making textures for race flags, plaid,
picnic blankets, and — yes — checker boards.

 » Environment texture: The Environment texture in Cycles is an image-based
texture (and therefore not procedural) typically connected to the Color socket
of the Background node for the World shader network. See Chapter 10 for
more on setting up your World environment.

 » Gradient texture: The Gradient texture is one of the unsung heroes in

Blender’s procedural texture arsenal. This texture may seem like a simple
gradient, but with the right mapping, it’s really quite versatile. I use Gradient
textures for mixing two other textures together, creating simple toonlike

outlines for meshes, and adjusting the color along the length of hair strands.

You can see the real power of the Gradient texture when you use it with a

ColorRamp node, as with the example near the end of Chapter 8.

 » IES texture: The IES texture requires that you use a text-based data file called
an IES profile. An IES profile describes how the intensity of a light source varies
based on direction from its source. It’s used for Light objects and is most
frequently used in architectural visualization for lighting interior scenes with
very specific kinds of lights.

 » Image texture: The Image texture is not a procedural texture, but I’m
including it in this list because it’s visible in the Texture menu. Quite a bit of
the rest of this chapter is devoted to working with image-based textures.

 » Magic texture: At first glance, the Magic texture may seem to be completely
useless — or at the very least, too weird to be useful. However, I’ve found
quite a few cool uses for this eccentric little texture. If you treat the Magic
texture as a bump map or a normal map, it works well for creating a knit

texture for blankets and other types of cloth. If you stretch the texture with

your mapping controls, you can use it to re-create the thin filmy look that
occurs when oil mixes with water. And, of course, you can use it to make a

wacky wild-colored shirt.

CHAPTER 9 Giving Models Texture 271

 » Musgrave texture: This procedural texture is extremely flexible and well
suited for organic materials. You can use the Musgrave texture for rock cracks,
generic noise, clouds, and even as a mask for rust patterns. As a matter of
fact, with enough tweaking, you can probably get a Musgrave texture to look
like nearly any other procedural texture. Of course, the trade-off is that this
texture can sometimes take a bit longer to render than most of the other

textures.

 » Noise texture: The Noise texture is a good general-purpose texture. You can

treat the Noise texture as a go-to texture for general bumps, smoke, and

cloud-like effects.

 » Point Density: The Point Density texture is used primarily with Blender’s
particle system to generate volumetric textures. These kinds of materials are
well suited for creating smoke and clouds. (See Chapter 14 for more on
Blender’s particle system.)

 » Sky texture: The Sky texture is similar to the Environment texture in that it’s
typically used in the node network for the World shaders. The difference is
that the Sky texture is not image-based. It’s procedural and can be tweaked to
give your scene the feeling of a wide array of external environments. See
Chapter 10 for more on how to use this node.

 » Voronoi texture: The Voronoi procedural texture is best thought of as a

family of textures in a single node. A lot of the control comes from the Feature

Output drop-down menu (it’s the third drop-down menu in the node). Like the
Musgrave texture, the Voronoi texture is pretty versatile too. You can use it to
create scales, veins, stained glass, textured metals, or colorful mosaics.

 » Wave texture: At its core, this texture can be used to make nearly any striped

effect. You can have everything from simple stripes to more turbulent stripes
like in polished marble. With a little bit of creativity, you can even use the
turbulence in this texture as a fire texture.

 » White Noise: White Noise is one of the simplest procedural textures in

Blender. Aside from its Dimensions drop-down menu, this texture has no

custom controls of its own; it’s simply raw noise, which means that you’ll never
get the same results twice using this texture. Each time you render it, the

noise pattern is different. This lack of predictability may be annoying if you’re
looking to do a bump map. However, if you’re looking to have white noise
on an old TV screen, this texture is perfect.

Figure 9-2 shows each of these textures applied to a smooth sphere.

272 PART 2 Creating Detailed 3D Scenes

Understanding Texture Mapping

After you create your texture, be it procedural or image-based, you’re going to
have to relate that texture to your material and, by extension, the surface of your
object. This process is called mapping. Mapping basically consists of relating a

location on a texture to a location on the surface of an object. This section walks

you through the process of texture mapping in Blender.

Making simple adjustments with
the Texture Mapping panel

If you reveal the Shader Editor’s Sidebar, Blender gives you controls for your
material. More importantly, the Item tab shows specific controls for the active
node that you have selected. For most of Blender’s texture nodes, there’s a panel
at the bottom of the Item tab labeled Texture Mapping. Figure 9-3 shows the Tex-
ture Mapping panel for the Gradient texture.

The only texture nodes that don’t have a Texture Mapping panel are the IES, Point
Density, and White Noise textures.

Near the end of Chapter 8, there’s an example of using a Gradient texture with a
ColorRamp node to mix two materials on Suzanne’s face to make it look like she

gets more angry. The last few steps of that example involve using a Mapping node
to rotate the texture so the gradient is horizontally oriented rather than vertically
oriented. Technically speaking, the Mapping node wasn’t necessary for that
example. You could perform the same rotation directly from the Texture Mapping

panel of the Gradient texture. Change the mapping Type from Point to Texture

and adjust the Y rotation to -90 degrees.

FIGURE 9-2:
Blender’s texture

nodes.

CHAPTER 9 Giving Models Texture 273

One of the big advantages of using the Texture Mapping panel as opposed to an
explicit Mapping node is that it can dramatically simplify the appearance of your

node network. With fewer nodes in the Shader Editor, it’s easier to get a high-
level understanding of what the node network is doing because there’s less clutter.

That said, you’re also hiding details, especially if, like me, you often work in the
Shader Editor with the Sidebar collapsed. If you’re coming back to a material that

you haven’t worked with for a long time or you’re collaborating with other artists,
it may not be immediately clear why your texture is rotated or scaled a particular

way. For myself, I tend to err on the side of clarity, even if it makes my node net-
work a little bit messier. So more often than not, I’ll use the Texture Coordinate
node and Mapping node as described in the next sections rather more frequently

than I’ll use the Texture Mapping panel in the Shader Editor’s Sidebar.

Using texture coordinates

For the most explicit control over texture mapping, you handle that with the
 Texture Coordinate node and the Mapping node. It all starts with the Texture

Coordinate node. Generally speaking, texture coordinates are what define your
 texture map. Recall that texture mapping is the process of telling the computer

what parts of a texture should appear on your 3D object, and where. The “where”
is the critical part of that sentence. Because 3D geometry is, well, geometry, it
consists of number of points, or coordinates, in space. Textures, whether they’re
two-dimensional like images or three-dimensional like many procedural textures,
have coordinate systems of their own. For example, an image consists of a grid of

FIGURE 9-3:
Most texture

nodes have a
Texture Mapping

panel in the Item

tab of the Shader
Editor’s Sidebar.

274 PART 2 Creating Detailed 3D Scenes

pixels, and each pixel has its own X and Y coordinate on that image. Texture coor-
dinates are the glue that you use to relate the coordinate system of the texture to

the coordinate system of your 3D geometry.

If you add a Texture Coordinate node in the Shader Editor (Add ➪ Input ➪ Texture

Coordinate), you get a node with the following output sockets available:

 » Generated: This socket is the default for procedural textures, and it generates

texture coordinates based on the object’s local coordinates. The Generated
coordinate system works fine for most situations, especially when you’re using
procedural coordinates on a deforming animated object.

 » Normal: Choosing this socket causes the texture to be mapped according to

the normal vectors along the surface of the object. This coordinate system is
helpful for effects that require textures to react to the viewing angle of the
camera.

 » UV: UV coordinates are probably the most precise way of mapping a texture

to an object. NURBS surfaces have UV coordinates by default. For meshes,
however, getting UV coordinates requires you to go through a process called
unwrapping, covered later in this chapter in the “Unwrapping a Mesh” section.
UV coordinates are the default coordinates for image textures.

 » Object: This neat option allows you to use a different object’s location as a
means of placing a texture on your object. To tell Blender which object you

want to use, pick or type its name in the Object field at the bottom of the
node. For example, you can load an image texture of a logo and place that

logo on a model of a car by using the location, size, and orientation of an

Empty. If you have no object selected in the Object field, then the Object
coordinates socket refers only to that object’s coordinates and not those of
another object.

 » Camera: Camera coordinates are a way of getting a somewhat precise

mapping based on the location and orientation of the camera.

 » Window: This coordinate system uses the coordinates from the finished
render window. In other words, it uses the camera’s coordinates. But unlike
Camera coordinates, which keep the texture undistorted, this option always

stretches the texture to fit the window’s dimensions.

 » Reflection: The Reflection coordinate system uses the direction of a reflection
vector to map your texture to the object. Basically, you can use this option
with an environment map texture to get fake reflections when you don’t need
the accuracy of Cycles’ ray tracing or Eevee’s screen space reflections.

CHAPTER 9 Giving Models Texture 275

The basics of using the Texture Coordinate node work like this:

1. Add a Texture Coordinate node (Add ➪  Input ➪  Texture Coordinate) to
your material in the Shader Editor.

2. Connect the socket of your desired texture coordinate system to the

Vector input socket on your chosen texture node in your material.

The texture node could be any of the ones available in the Shader Editor when
you press Add ➪  Texture. All of them have a blue Vector input socket on their
left sides.

3. Optionally, add a Mapping node (Add ➪  Vector ➪  Mapping) and wire it on
the noodle between your Texture Coordinate node and your texture

node.

The Mapping node is what gives you more control over the texture coordinates
on your object. They’re the exact same controls available in each texture node’s
Texture Mapping panel in the Item tab of the Shader Editor’s Sidebar. The
difference is that because you’re using a node, the results of the Mapping node
can be shared with multiple texture nodes at the same time.

4. Connect the Color output socket on your texture node to the Color input

socket on your desired shader node.

If you want your texture to influence the color of your diffuse shader, you
explicitly connect it to the Diffuse BSDF node’s Color socket or the Base Color
socket of the Principled BSDF node. Want your grayscale texture to influence
the roughness of your glossy shader? Connect it to the Roughness socket on a

Glossy BSDF or the Principled BSDF. In a way, using nodes is a much more
direct way of mapping and applying textures to a material, because you can

zoom out on the node network and get a really complete understanding of the

material all at once.

Figure 9-4 shows a simple node network that maps a single image to the surface
of a sphere using Camera coordinates and the Mapping node.

You may be reading all this and find yourself saying, “Great, but how do I fake
having more detail with a bump map or a normal map?” Fortunately, that’s also
easy. If you have a texture (like the Noise texture) that you want to use as a bump
map, all you need to do is wire it to the Displacement socket of the Material Output
node, as shown in Figure 9-5. Easy!

If you want to have different bumps on different shaders in the same material,
that’s also possible, though a bit more complex. Rather than wire your Noise tex-
ture to the Displacement socket on the Material Output node, add a Bump node
(Add ➪ Vector ➪ Bump) and wire your texture to its Height socket. Then wire the

Normal output socket of your Bump node to the Normal input socket of any shader
node. And voilà! Custom bumpiness on any shader!

276 PART 2 Creating Detailed 3D Scenes

Looking back at the Texture Coordinate node, if you have experience with other
3D software you may notice that quite a few of the coordinate systems you might
expect to find appear to be missing. Fortunately, the coordinate systems you’re
looking for are actually available; you just need to use a different node. Specifically,
you need to use the Geometry node. This is for organizational reasons. Basically,
some coordinate systems have more to do with object geometry than they do with

FIGURE 9-4:
Using the Texture

Coordinate node

and the Mapping

node to put an

image texture at

a specific location
on your object.

FIGURE 9-5:
Bump mapping is

easy. Just connect

your texture to

the Displacement

socket of your

Material Output

node.

CHAPTER 9 Giving Models Texture 277

the texture. They’re really independent of the texture. For that reason, Blender’s
developers felt it made more sense to organize them in the Geometry node. If you
add it by pressing Add ➪ Input ➪ Geometry, you have the following sockets
available:

 » Position: Choosing this socket uses the scene’s coordinates to define the
texture space. So if you have an animated object with a texture mapped this
way, the texture will seem to be locked in place as the object moves across it.
Global coordinates produce kind of a strange effect, but it’s helpful in a few
situations, such as faking shadows on a moving character.

 » Normal: At first, this may appear to be the same as the Normal socket in the
Texture Coordinate node. However, the difference is in coordinate systems.
This vector uses world-space coordinates, whereas the one from the Texture
Coordinate node uses object-space coordinates. What this really means is that

these normals basically always point the same way relative to the world,
whereas Texture Coordinate normals move and rotate with your object.
Generally speaking, most of the time you’re going to want normals from the
Texture Coordinate node.

 » Tangent: In some ways, this option is similar to Normal coordinates.

However, instead of using the surface normal, it uses a tangent vector to map
the texture coordinates.

 » True Normal: If your object is using smooth shading (most organic objects
are) or bump mapping, that effect is achieved by manipulating the normals of
a mesh. However, there are occasions where you want the “true” normal —
the geometry’s normal before those additional manipulations. The vector from
this socket gives you that normal.

 » Incoming: The vector from this socket points back toward the camera. You
can use this socket to influence the effect of a texture based on whether the
underlying geometry points to the camera.

 » Parametric: This socket is typically for much more advanced use. It gives the
actual world space coordinates of the shading points, or the places on the

surface of your object where a ray tracer’s rays intersect it.

 » Backfacing: This is one of two non-vector sockets on the Geometry node. It’s
an array of 1s and 0s; 1s for the side of a face in your object that point along

the same direction as the surface normal, and 0s for the sides that point in the

opposite direction of the surface normal.

 » Pointiness: This socket is available only if you’re rendering with Cycles (it’s
visible if you render with Eevee, but not functional). Like the Backfacing socket,
this one is also not a vector value. Think of it as a grayscale value related to
how curved the surface geometry of your object is. With this socket, you can

278 PART 2 Creating Detailed 3D Scenes

procedurally control the placement of a color or material based on how

concave your mesh is. Pointiness values are immensely useful if you want to
darken concave parts of your mesh without using like ambient occlusion (as
described in Chapter 10). You can also use it to show aging or wear on objects.
Figure 9-6 shows an example of using the Pointiness values of a mesh’s
geometry to put rust in the creases.

Understanding Object coordinates
and the UV Project modifier
Object coordinates are a bit of a funky set of coordinates to wrap your brain around.

One typical use case is as I described in the preceding section: using the coordi-
nates of one object to map them to your selected object. If you don’t include a

specific object to use for your mapping, then the data from the Object coordinates
socket are primarily useful for getting undistorted procedural textures applied to

your object.

There are two main differences between Generated coordinates and Object
 coordinates (without a separate target Object):

 » Generated coordinates “stick” to your object and Object coordinates do not.
If your object is deformed by an animation rig, such as with an armature or
lattice, and you’re using Generated coordinates, the texture will move and

FIGURE 9-6:
Using the

Pointiness

socket, you can
procedurally add

rust on an object

in its creases,

where it’s likely
to grow first.

CHAPTER 9 Giving Models Texture 279

deform with your object. If you’re using Object coordinates, those deforming
parts of the object will appear to slide under the texture — not usually the
desired effect.

 » Generated coordinates stretch a texture to the bounding box of your object,

whereas Object coordinates impart no such distortion. This point is especially

important if you’re creating a procedural material that needs to look nice and
unstretched, regardless of your object’s size.

So there’s a bit of a trade-off here. Fortunately, this trade-off isn’t a frequent prob-
lem. If an object uses deforming animation (see Chapters 12 and 13), you typically
don’t use procedural textures, so it’s less common to use Object mapping on them.

But what if you need a bit more flexibility? Maybe you want to project the texture
from more than one object, or perhaps you want to take advantage of UV unwrap-
ping that you’ve done, instead of blindly using Object coordinates. For that, you need
to use a different method. Namely, you should make use of the UV Project modifier.
The UV Project modifier treats one or more objects as external “projectors” that
project a texture on your object much like a movie projector shows a movie on a
screen. The only limitation is that your object must already be UV unwrapped.

If you’re working with a NURBS surface, the unwrapping already is done automati-
cally. Also, all Blender’s mesh primitives come already unwrapped. However,
if you’ve heavily modified your mesh object with modeling or sculpting — the more
common case — you need to unwrap manually (see the next section).

Assuming that your object already is unwrapped, follow these steps to project a
texture on your mesh with the UV Project modifier:

1. Add an Empty object to your scene (from the 3D Viewport,

Add ➪  Empty ➪  Plain Axes).

This Empty object is what you’ll use as your “projector.” The image texture will
appear to project along the Empty’s local Z-axis. I recommend giving this Empty
a custom name like Projector, but you can leave it with its default name. Just
remember that name.

2. With your object selected, add a UV Project modifier from the Modifier
tab of the Properties editor.

I know I’m drilling the point, but again, make sure that your object is already
unwrapped.

3. Fill in fields on the UV Project modifier.

(a) (Optional) If your mesh has more than one UV unwrapping, use the UV Map field
to choose the UV layer on which you want the UV Project modifier to work.

280 PART 2 Creating Detailed 3D Scenes

(b) In the Object field below the Projectors value, pick the name of the Empty you’re
using as a projector.

4. Set up your material to use UV textures in the Shader Editor.

(a) Add an Image Texture node (Add ➪  Texture ➪  Image Texture) and load an image
texture from your hard drive.

By default, UV-mapped image textures tile, or repeat, when they reach

the end of the image. If you don’t want this repeating behavior, click the
Extension drop-down menu in the Image Texture node (it’s the third one
down) and change it from Repeat to Clip.

(b) Connect the Color output socket of the Image Texture node to the Color input
socket of the Principled BSDF node.

With those steps complete, you should be able to move the Empty around and see
the texture slide around the surface of your object in the 3D Viewport.

Figure 9-7 shows what your Blender screen layout might look like.

If you create a separate UV layer in the UV Maps panel within Object Data

 Properties, you can apply the UV Project modifier on that layer. Then, using those
modified UV coordinates (covered in the next section of this chapter), your decal
texture is mapped without any need for that projector empty to remain in the

scene.

FIGURE 9-7:
Positioning a

texture on an

object using the

UV Project

modifier.

CHAPTER 9 Giving Models Texture 281

You can use the same texture with multiple projectors by increasing the Projectors

value in the UV Project modifier. When you increase the number of Projectors, you
get additional projector object fields beneath it.

Unwrapping a Mesh

The most precise type of mapping you can use is UV mapping. UV mapping also

allows you to take advantage of other Blender features, such as Texture Paint
mode, the UV Project modifier (see the preceding section), and texture baking.
With NURBS surfaces, you get UV coordinates for free as part of their structure.
However, Blender is predominantly a mesh editor, and in order to get proper
UV coordinates on your mesh objects, you must put those meshes through a
 process known as unwrapping.

To understand this process, think about a globe and a map of the world. The map
of the world uses the latitude and longitude lines to relate a point on the three-

dimensional surface of the globe to the two-dimensional surface of the map.
In essence, the world map is an unwrapped texture on the globe, whereas the
 latitude and longitude lines are the UVs. Figure 9-8 shows a visualization of this
process.

Because UV unwrapping is such a common task in computer graphics, Blender
actually has a specific workspace dedicated to the process of unwrapping and
editing UV coordinates. In the default General Blender start file, it’s the fourth tab
from the left, labeled UV Editing. Figure 9-9 shows what this workspace screen
layout looks like.

FIGURE 9-8:
UV unwrapping

a 3D mesh is like
making a map

of the Earth.
Image texture credit: NASA

282 PART 2 Creating Detailed 3D Scenes

When you switch to the UV Editing workspace, Blender automatically tabs your
selected objects into Edit mode so you can get right to work with fewer button

presses.

The UV Editing workspace is basically the Modeling workspace with two areas

covering the majority of the Blender window. On the right, closest to the Outliner
and Properties editor, is the familiar 3D Viewport, with your selected objects in
Edit mode. On the left, there’s a UV Editor. The UV Editor is where you edit the
UV coordinates of your mesh.

Marking seams on a mesh

The basics of unwrapping a mesh in Blender is a two-step process of selecting all
vertices (Select ➪ All) in Edit mode and choosing UV ➪ Unwrap from the 3D View-
port’s header menu (or by using the U hotkey).

The UV menu has a variety of options, but unless your mesh is simple or a special
case, you should use the first menu item, Unwrap. Blender has very powerful
unwrapping tools, but to take full advantage of them, you need to first define
some seams. Remember that you’re basically trying to flatten a 3D surface to a
2D plane. To do so, you need to tell Blender where it can start pulling the mesh
apart. This location on your mesh is a seam. If you were unwrapping a globe, you
might choose the prime meridian as your seam. I like to think about seams for

unwrapping in terms of stuffed animals, such as a teddy bear. The seam is where
the bear is stitched together from flat pieces of cloth.

FIGURE 9-9:
The UV Editing

workspace is, as

you might expect,

for editing UV

coordinates.

CHAPTER 9 Giving Models Texture 283

To add a seam to your mesh, follow these steps from the 3D Viewport:

1. Tab into Edit mode and switch to Edge Select mode (Tab ➪  2).

You can also add seams from Vertex Select mode, but I find that it’s easier in
Edge Select.

2. Select the series of edges you want to make into a seam.

Using edge loop selection (Alt+left-click) can really be helpful here. Everyone
has their own tastes when it comes to defining seams, but a good general rule
is to put the seams on parts of the mesh that are easier to hide (for example,
behind the hairline on a character, the undercarriage of a car, and so on).

Though edge loop selection can be helpful, it sometimes selects more

edges than you want. So a handy feature in Blender is Select ➪  Select
Linked ➪  Shortest Path in the 3D Viewport’s header menu (you can also
get to this operator by searching for it using Blender’s integrated search
when pressing F3). For an even faster way, you can just use the mouse with
the following steps:

a. Select one vertex or edge.

b. Ctrl+select another vertex or edge.

With the Select Shortest Path feature, if you select two vertices or edges,
Blender will select the shortest path of edges from one to the other. That path

often works very well as a seam for unwrapping.

3. Choose Edge ➪  Mark Seam to mark your selected edges as a seam.

Seams on your mesh are highlighted in red. If you mistakenly make a seam
with the wrong edges, you can remove the seam by selecting those edges and
choosing Edge ➪  Clear Seam.

With your seams defined, you’re ready to unwrap your mesh (UV ➪ Unwrap).

Adding a test grid

The next thing you need is an image for mapping to your mesh. Using a test grid —
basically an image with a colored checkerboard pattern — is common practice
when unwrapping. A test grid is helpful for trying to figure out where the texture
is stretched, or unevenly mapped, on your mesh. To add a test grid, go to the
UV Editor and choose Image ➪ New or press Alt+N. A floating panel like the one in
Figure 9-10 appears. Name the image something sensible, such as Test Grid, and
choose either Color Grid or UV Grid from the Generated Type drop-down menu.
Leave the other settings at their defaults for now and click OK. The UV Editor
updates interactively.

284 PART 2 Creating Detailed 3D Scenes

You can unwrap your mesh without adding a test grid, but a test grid gives you a
good frame of reference to work from when unwrapping.

Also, note the height and width of the test grid image. The most obvious thing is
that it’s square; the height and width are equal. When you create the image, you
can make it nonsquare, but UV texturing is often optimized for square images
(particularly in some game engines), so consider where your 3D model will be
used; if it makes sense, keep its image textures square.

Another tip that helps performance when working with UV textures (especially
for video games) is to make your texture size a power of two — a number that you
get by continually multiplying 2 by itself. The default size is 1,024 pixels square,
or 210. The next larger size is 2,048 (211) pixels, and the next size down would
be 512 (29) pixels. This strange sizing is because computer memory is measured

and accessed in values that are powers of two. So even if you’re not using your
3D model in a video game, it’s still a good idea to stick to the power of two guide-
line. It’s an easy guide to stick to, and every, every little bit of performance opti-
mization helps, especially when you start rendering (see Chapter 16).

Generating and editing UV coordinates

Alrighty, after marking seams on your mesh and adding a test grid for reference,
now you’re ready to unwrap your mesh. From Edit mode, unwrapping is pretty
simple:

1. Select all vertices (Select ➪  All).

2. Unwrap the mesh (U ➪  Unwrap).

Poof! Your mesh is now unwrapped! If you used a Suzanne to practice
unwrapping, you may have something that looks like Figure 9-11.

FIGURE 9-10:
The New Image

floating panel
for adding a test

grid image.

CHAPTER 9 Giving Models Texture 285

If you look at your object in the 3D Viewport, you might be surprised that you
don’t see your test grid in Look Dev or Rendered viewport shading. The reason you
don’t see the image is pretty simple: Even though you loaded the image in the
UV Editor, you never added that image as a texture on your object. From the
UV Editing workspace, you can still do this pretty quickly:

1. Quickly change the UV Editor to a Shader Editor.

You can use the Editor Type menu in the UV Editor’s header, but you can make
this switch more quickly by using the Shift+F3 hotkey combination.

2. In your Shader Editor, add an Image Texture node

(Add ➪  Texture ➪  Image Texture) and wire it to the base color of your
main shader node.

If you have a simple material with just a Principled BSDF, you just wire the
Image Texture node to the Base Color socket.

3. Choose your test grid image from the Image datablock in the Image

Texture node.

If you named your test grid something sensible (like Test Grid), then it should
be pretty easy to find. Once you choose your test grid image, the 3D Viewport
should update to show your image on your mesh (assuming you’re using Look
Dev or Rendered viewport shading).

4. Switch the area with your Shader Editor back to being the UV Editor.

Again, you can use the Editor Type menu in the header, or you can get there

more quickly by using a hotkey combination (in this case, Shift+F10).

FIGURE 9-11:
An unwrapped

Suzanne head.

286 PART 2 Creating Detailed 3D Scenes

From this point, you can edit your UV layout to arrange the pieces in a logical
fashion and minimize stretching. You can tell a texture is stretched with your test

grid. If any of the squares on the checkerboard look distorted or grotesquely

 nonsquare-shaped, stretching has taken place.

Just like in the 3D Viewport, the UV Editor has a Toolbar along its left side with a
similar set of tools. In fact, the first seven tools on the Toolbar are identical to
those in the 3D Viewport. The only minor difference is that the UV Editor has a
2D cursor, rather than a 3D cursor like in the 3D Viewport. Furthermore, the Grab
(G), Rotate (R), and Scale (S) hotkeys all work as expected, as well as the various
 selection hotkeys for Box select (B) and Circle select (C).

Unlike the tools in the 3D Viewport’s Toolbar, the UV Editor’s Toolbar tools don’t
have their properties appear in the Active Tool tab of the Properties editor. Instead,
you need to use the tool settings in the Topbar of the UV Editor’s header.

 Alternatively, you can use the Tool tab of the Sidebar (N).

In addition to the familiar tools, there are also three more tools that give you more
brush-like control when editing your UV coordinates:

 » Grab: In a way, this tool is like the Move tool with Proportional Editing
enabled. The difference is that because this tool behaves more like a brush,
it gives you a much more fluid editing experience. In addition to that, the
settings for this tool (visible in the UV Editor’s Sidebar) allow you to enable
pressure sensitivity if you happen to be working with a pressure sensitive
drawing tablet. The other two tools in this list also support pressure

sensitivity.

 » Relax: This tool is similar to the Smooth tool when sculpting (see Chapter 6),
but it’s not exactly the same. Basically, any vertices that are within the brush
area for this tool get pushed out to the brush edge. The Relax tool can be very
helpful in reducing UV stretching. When using this tool, you may want to

enable the Lock Borders check box in its tool options. That option prevents
the outer borders of UV islands from being moved by this tool.

 » Pinch: The Pinch tool is also very much like its doppelganger in Sculpt mode.
Its behavior is the inverse of the Relax brush. Vertices that fall within the brush
area get pulled in toward the brush’s center.

If you’re trying to fix stretching, you may notice that moving some vertices in
your UV layout to fix stretching in one place distorts and causes stretching in
another part. To help with this problem, Blender offers you two features: vertex
pinning (UV ➪ Pin) and Live Unwrap (UVs ➪ Live Unwrap). They actually work
together. The workflow goes something like these steps:

CHAPTER 9 Giving Models Texture 287

1. In the UV Editor, select the vertices that you want to define as control

vertices.

The control vertices are usually the vertices at the top and bottom of the
center line of a character mesh and some corner vertices. I tend to prefer
using vertices that are on the seam, but sometimes using internal vertices is
also helpful.

2. Pin these selected vertices (UV ➪  Pin or use the P hotkey).

The vertices now appear larger and are a bright red color. If you want to unpin
a vertex, select it and choose UV ➪  Unpin or press Alt+P.

3. Turn on Live Unwrap (UVs ➪  Live Unwrap).

If a check mark appears to the left of this menu item, you know it’s currently
enabled.

4. Select one or more pinned vertices and move them around.

As you edit these pinned vertices, all the other vertices in the UV layout
automatically shift and adjust to compensate for this movement and help
reduce stretching.

When using pinned vertices and Live Unwrap, selecting and moving unpinned
vertices isn’t normally going to be very helpful. The moment you select and
move a pinned vertex, any manual changes you made to unpinned vertices are
obliterated.

If your computer seems to be performing slowly while editing UV coordinates, you
can disable Blender’s live updating feature. You can toggle it from the UV Editor’s
header menu by choosing View ➪ Update Automatically.

Painting Textures Directly on a Mesh

If you followed the earlier sections in this chapter, you have an unwrapped mesh
and a texture on it that doesn’t stretch. Woohoo! But say that, for some crazy rea-
son, you don’t want your object to have a checkerboard as a texture, and you want
to actually use this UV layout to paint a texture for your mesh. You can either paint

directly on the mesh from within Blender or export the UV layout to paint in an

external program like Krita or Photoshop or Substance. I actually prefer to use a
combination of these methods. I normally paint directly on the mesh in Blender to

rough out the color scheme and perhaps create some bump and specularity maps.

Then I export that image along with an image of the UV layout to get more detailed

painting done in an external program.

288 PART 2 Creating Detailed 3D Scenes

Preparing to paint

After you have an unwrapped mesh, the starting point for painting textures on it
is Blender’s Texture Paint workspace. The Texture Paint workspace is one tab to

the right of the UV Editing workspace. When you switch to the Texture Paint
workspace, Blender automatically switches your selection to Texture Paint mode.
Figure 9-12 shows an unwrapped Suzanne in the Texture Paint workspace, ready
to paint.

Of course, you aren’t required to paint from the Texture Paint workspace. You
can activate Texture Paint mode from any workspace with a 3D Viewport by left-

clicking the mode button in the 3D Viewport’s header. Alternatively, Texture Paint
mode is available from the pie that appears when you press Ctrl+Tab.

If you happen to try to enter Texture Paint mode on an object that doesn’t have
any UV layers, Blender will let you know in the Active Tool tab of the Properties
editor. There may be a warning that says “UV Map Needed.” In that case, Blender
offers a button, Add Simple UVs, that quickly unwraps your mesh for you without
seams.

Although it’s tempting to use this means of unwrapping, rather than the steps
covered in the preceding section, I don’t recommend it (especially if you intend on
finalizing your image texture in an external painting program). That said, Blend-
er’s texture painting tools have gotten a lot more powerful over the years. So if
you plan on painting your textures only within Blender, the simple UV unwrap you

FIGURE 9-12:
You can use the

Texture Paint

workspace to

paint textures

on your
unwrapped

meshes.

CHAPTER 9 Giving Models Texture 289

get from clicking this button may be sufficient for your needs. As always, it’s
about knowing what you want and accepting certain trade-offs based on that
knowledge.

Even with your mesh unwrapped, if your material doesn’t feature any Image Tex-
ture nodes, the Texture Slots panel of your Active Tool Properties will state that
you have “No Textures.” This warning appears because you need an image texture
(even a blank one) so Blender knows what you’re painting on.

You can add an image texture to your material as described in the first section of
this chapter, but there’s also a convenience button labeled with a Plus (+) symbol

directly to the right of the box announcing you have no textures. Left-clicking this
button reveals a list of texture types to apply to your material. After you pick one
(such as Base Color), Blender shows a floating panel like the one for adding a new
image in the UV Editor. Decide on the size and type (Blank, UV Grid, or Color Grid)
of your image texture and left-click the OK button at the bottom of the panel.
Blender then automatically generates your image texture and applies it to your

material. (Blender also automatically connects sockets to your shader in the

Shader Editor.) Figure 9-13 shows Active Tool Properties in Texture Paint mode
before and after these warnings are resolved.

After you add your first paint slot, you can add additional ones from that Texture
Slots panel instead of adding images in the Shader Editor. Many Blender artists

tend to use these slots like layers in a 2D painting program such as Krita or
Photoshop.

FIGURE 9-13:
On the left, the

Active Tool tab of
the Properties

editor in Texture

Paint mode if

your material has

no UVs or

textures applied

to it. On the right

is the same tab

after resolving
those issues.

290 PART 2 Creating Detailed 3D Scenes

Working in Texture Paint mode

From here, things are pretty similar to Vertex Paint mode (see Chapter 8), but
with more that you can do. There are more tools in the Toolbar, and Active Tool
Properties has a much wider array of options. In fact, the controls for Texture
Paint mode share even more similarities with Sculpt mode than Vertex Paint mode
(though Texture Paint mode has a lot fewer tools than Sculpt mode does).

For Texture Paint mode, you have the following tools available in both the
3D Viewport and the Image Editor:

 » Draw: As with Vertex Paint mode, described in Chapter 8, the Draw tool
allows you to paint a chosen color on your image texture. Unlike Vertex Paint’s
Draw tool, it doesn’t matter at all what’s going on with the underlying geom-

etry. You paint in the 3D Viewport or the Image Editor and your color shows
up right where you click and drag.

 » Soften: The Soften tool blurs your image texture wherever you paint with it.
This tool works just like blur brushes in other digital painting programs.

 » Smear: With the Smear tool you can smudge your image texture. If you’ve
ever worked with traditional painting or drawing tools in meatspace, this tool
is the equivalent of using a smudge stick, or rubbing your thumb across wet
paint.

 » Clone: If you’re familiar with clone brushes in digital painting software, this tool
works the same way. Basically, rather than painting with a specific color, you’re
painting with colors sourced from some kind of reference. That reference could

be from the same texture you’re working on (for example, you may want to
replicate skin colors in another part of your image) or a separate reference
image altogether. The key is in how you define that reference. Depending on
whether you’re using the Clone tool in the 3D Viewport or the Image Editor,
there are different ways to set your reference:

• From the 3D Viewport: If you’re cloning in the 3D Viewport, you use the
3D cursor as your Clone tool’s reference. Ctrl+left-click on your mesh and

Blender will use the pixels under the 3D cursor as the reference for when
you paint. Each time you lift your brush and place it down again, the Clone

tool resets to that reference point you set with the 3D cursor.

• From the Image Editor: Within the Image Editor, the Clone tool works a

little differently. You don’t set a reference using the 2D cursor. Instead, you
explicitly define your image reference. To tell Blender what image you want
to reference (even if it’s the same image you’re working on) expand the
Tool tab of the Image Editor’s Sidebar and look in the Brush panel. Directly
below the Brush datablock, there’s an Image field. By default, it’s blank, but
if you click that field, you can select an image datablock in your .blend file.

CHAPTER 9 Giving Models Texture 291

Once you choose your image, it will appear superimposed over your actual
image texture. Using right-click and drag, you can adjust the position of

your reference image. Then, when you paint in the Image Editor, whatever
part of the image that’s under your brush is what’s applied to the image
texture that you’re painting.

 » Fill: The Fill tool in Vertex Paint mode also has slightly different behaviors
depending on whether you’re painting in the 3D Viewport or the Image Editor.

• In the 3D Viewport: If you’re using the Fill tool in the 3D Viewport, the
default behavior is just to fill your whole mesh with whatever color you
have selected according to the Strength value you set in Active Tool
Properties.

However, if you enable the Paint Mask button in the 3D Viewport’s header,
you can select individual faces on your mesh and the Fill tool will only put
color in the faces that you’ve selected. The Paint Mask feature also works
for the other tools in Texture Paint mode.

• In the Image Editor: The Fill tool works differently in the Image Editor.
Rather than working within the constraints of your mesh, the Fill tool in the

Image Editor works on the pixels of your image, much like the bucket fill
tool in Photoshop or GIMP. If you click on a pixel with the Fill tool in the
Image Editor, Blender evaluates all the pixels connecting to it and any
pixels that are a similar color will be filled with the color you pick for the Fill
tool. You can control the threshold of how similar colors have to be by
adjusting the Gradient Type slider in the Tool tab of the Image Editor’s
Sidebar.

 » Mask: While you paint, you may find it necessary to temporarily block off
parts of your mesh so they don’t get messed up while you paint on other
parts. You could use the Paint Mask feature just described, but what if you

need to mask something out that doesn’t follow the flow of your geometry?
It’s that situation where the Mask tool is incredibly helpful. That said, even
though you can select the Mask tool in the Image Editor, it only really works in

the 3D Viewport. The workflow goes something like this:

1. In the 3D Viewport, enable the Mask tool.

2. From Active Tool Properties, enable and expand the Mask panel.

The main control you want to pay attention to is the Stencil Image data-

block. You can choose any image you want here, but if you haven’t yet
created a mask, it’s best to make a new image like in the next step.

3. Click the New button in the Stencil Image datablock.

In this case, your new image should be all black. Black pixels on your mask

image are pixels that can be painted through, whereas white pixels are ones

that block painting.

292 PART 2 Creating Detailed 3D Scenes

4. Back in the 3D Viewport, paint your mask.

Your paint marks appear as black paint over your mesh. Don’t worry, your
actual paint job is still there; the mask is just an overlay.

5. Switch to one of the other Texture Paint tools (such as Draw or Fill)
and start painting.

If you look in the Image Editor while you paint in the 3D Viewport, you
should notice that anything that’s under your mask doesn’t get affected by
your paint strokes.

6. When you’re done using your mask for painting, disable the check box

next to the Mask panel in the Active Tool tab of the Properties editor.

Your paint job in the 3D Viewport should now look just like the results in the
Image Editor. Now you’re free to continue painting without a mask.

Using textures on your Draw tool

When you have the Draw tool active, you may have moments where you don’t
want to paint with a perfectly round brush shape. Maybe you want to have a brush
that’s square, or you want your brush to be uneven and mottled. In digital paint-
ing applications, libraries of specialized brushes are often available that give you
these specific kinds of brush shapes and effects. In Blender, you can get similar
behavior by leveraging Blender’s built-in texture system.

Have a look in Active Tool Properties when you have the Draw tool active. Below
the Mask panel, there’s a Texture panel where you can choose a texture for your
brush, so you’re not just painting flat colors. It’s possible to add a new brush tex-
ture from this panel by clicking the New button in the Texture datablock, but
doing so creates only a blank image.

The place where you define brush textures is actually in Texture Properties, shown
in Figure 9-14. It’s the same basic process as using textures for tools in Sculpt
mode (see Chapter 6). As a matter of fact, you can use these exact same brush
textures with both Sculpt mode tools and Texture Paint tools.

The basic steps for making a custom brush texture are pretty straightforward:

1. Choose your texture type from the Type drop-down menu at the top.

The choices in this menu are almost identical to the choices you have available
in terms of texture nodes in the Shader Editor. Here’s a quick rundown:

• None: No texture at all. You probably won’t ever choose this option.
I never do.

CHAPTER 9 Giving Models Texture 293

• Blend: This texture type is basically a Gradient texture. Expanding the

Colors panel for this texture reveals a built-in color ramp so you can have
more control over its gradient.

• Clouds: This texture type is the rough equivalent of what you have
available in the Noise texture node in the Shader Editor.

• Distorted Noise: The Distorted Noise texture is pretty slick. Actually, strike

that; this type of texture is best suited to very rough, complex surfaces. The
way the Distorted Noise texture works is pretty cool, though. You use one

procedural noise texture, specified by the Noise Distortion menu, to distort
and influence the texture of your noise basis. With this combination, you
can get some really unique textures.

• Image or Movie: This texture type is the same as loading an Image texture

node in the Shader Editor.

• Magic: The Magic texture type here is joyously the same as the one in the

Shader Editor.

• Marble: The Marble texture and the Wood texture (described a little later
in this list) are both facets of the Wave texture node in the Shader Editor.
The Marble texture has built-in noise among its stripes.

• Musgrave: The Musgrave texture type for brushes is nearly identical to its
counterpart in the Shader Editor.

FIGURE 9-14:
Create custom

textures for

painting in

Texture

Properties.

294 PART 2 Creating Detailed 3D Scenes

• Noise: Don’t let the naming confuse you too much. This Noise texture type
actually has no relation whatsoever with the Noise texture node in the
Shader Editor. This texture type is more akin to the White Noise node.

• Stucci: Stucci is a nice organic texture that’s most useful for creating bump
maps. The Stucci texture is great for industrial and architectural materials
like stucco, concrete, and asphalt. This texture is also handy if you just

want to give your brush a little variety and roughen it up a bit.

• Voronoi: Though the brush version of this texture has more built-in
controls than its corresponding node in the Shader Editor, the two are
roughly the same.

• Wood: The Wood texture type is the less noisy, straight-laced cousin of the

Marble texture type. As I mention earlier, these two textures together give
you the functionality that’s mirrored in the Wave texture node within the
Shader Editor.

2. After choosing your texture type, tweak its settings.

Most of the time, this step involves adjusting specific properties in the panels
below the texture preview. For most of the texture types mentioned in the
preceding step, you may want to play with changing the Noise Basis value or
tweaking color properties in the Colors panel.

3. Switch back to Active Tool Properties and prepare to start painting.

Technically speaking, once you’ve created a texture or two, you can get right to
painting. If you’ve created multiple brush textures, you can switch between them
by clicking the texture preview at the top of the Texture panel in Active Tool
 Properties. There is one more specific control for textures that you may want to
play around with, though. Specifically, the Mapping dropdown allows you a lot of
flexibility in how the brush behaves as you move it over your mesh. It’s the same
detail as described in Chapter 6 for sculpting, so I recommend you refer to that
chapter if you need a refresher.

The controls in Texture Properties should be sufficient for the majority of custom
brush textures you want to create. However, if you want to make something truly
custom, then the place to go is the Texture Node Editor. Maybe you want a
 procedural texture that makes use of a brick or checker pattern. Or maybe you

have a killer image texture of dirt you want to use, but you need to do some node-
based adjustments to it so it tiles cleanly. That’s just a taste of the kinds of things

you can do from the Texture Node Editor.

To use the Texture Node Editor, you first need to switch an area to use it. If you’re
working in the Texture Paint workspace, I would suggest that you temporarily
change your Image Editor area to the Texture Node Editor. You can do so using the
Editor Type dropdown in the header or by repeatedly pressing the Shift+F3 hotkey
combination to cycle through Blender’s various node editors.

CHAPTER 9 Giving Models Texture 295

When you arrive at the Texture Node Editor, you have just a few small steps to
take before you can use it to customize a brush texture:

1. Use the Texture Type drop-down in the header to choose the Brush

texture type.

Your texture from Texture Properties should already be visible in the Texture
datablock in the Texture Node Editor’s header; however, there aren’t any
nodes visible. You need to tell Blender that you want to use a node network
rather than the settings in the Properties editor to define this texture.

2. Toggle the Use Nodes check box in the header to enable the use of nodes

for your chosen texture.

After you enable the Use Nodes check box, you should see a pair of nodes in

the Texture Node Editor.

Once you activate nodes for your brush texture, you’re off to the races. If you’ve
gotten yourself familiar with the Shader Editor and the Compositor, then quite a
few of the nodes here will be familiar to you. You can create any brush texture

that’s available in Texture Properties, but that’s only the beginning. You have a
real node-based interface in front of you with all the power that comes with it to
make some truly incredible brush textures.

There’s only one caveat to using the Texture Node Editor for brush textures: Per-
formance. If you have an older computer and you make a huge, complex node
network to define a brush texture, your machine may not have enough power to
let Blender show your paint strokes in real time. You have great power here. Just
use it wisely.

Saving Painted Textures and
Exporting UV Layouts

Of course, despite the cool things that you can do with Blender’s Texture Paint
mode, some things are just easier in a full-blown 2D graphics program like Krita or
Photoshop. To work on your image in another program, you need to save the texture
you already painted as an external image. You should also export your UV layout as

an image so that you have a frame of reference to work from while painting.

To save your painted texture, go to the Image Editor and choose Image ➪ Save As.
A File Browser appears, allowing you to save the image to your hard drive in any
format you like. I prefer to use PNG because it has small file sizes and lossless
compression.

296 PART 2 Creating Detailed 3D Scenes

Regardless of whether you’re continuing to paint on your texture in an external

program, I strongly recommend that you save your image file externally. Not only
does doing so reduce the size of your .blend file, but it also serves as a completion
milestone that you can always come back to, like a save point in a video game. And
from the perspective of a person who’s paranoid about data safety (like me),
external saving ensures that your texture is preserved in the event that your
.blend file becomes corrupt or unreadable. It’s a credo I have whenever I do any-
thing with a computer: Save early, save often, save multiple copies.

Even though Blender warns you about this when you save, it’s worth emphasizing
that if you don’t explicitly save your image texture, it will not be saved with your
.blend file. If you close Blender and then re-open the file, all your painting will
be lost. There are only two workarounds for this:

 » Save your image externally. As described in the preceding paragraphs,

choose Image ➪  Save As from the Image Editor.

 » Pack your image in your .blend file. Also from the Image Editor, choose

Image ➪  Pack. This bundles the image in your .blend file so it will be there
when you re-open the file.

In either case, if you continue to paint on your texture in Blender, you will need to
continue to either save it externally or repack it to avoid losing your changes.

With your image saved, the next thing you probably want out of Blender for your
2D image editor is the UV layout of your object. To export the UV layout, you need
to be in the UV Editor while in Edit mode. The fastest way to do this is to just

switch to the UV Editing workspace with the Ctrl+PageUp hotkey combination.

Navigate to UV ➪ Export UV Layout. This opens a File Browser where you can

choose where to save your UV layout on your hard drive.

This UV export feature gives you the option (in the last panel of the left sidebar in
the File Browser) to save in the familiar PNG image format as well as two other
formats: SVG and EPS. Both SVG (Scalable Vector Graphics) and EPS (Encapsulated
PostScript) are vector image formats. If your UV layout is in a vector format, you can
scale it to fit any image size you need without losing any resolution. So you can use
the same UV layout file to paint both low-resolution and high-resolution textures.

Most graphics applications should be able to read SVG files just fine. If you run
into a problem, though, I recommend opening the SVG in GIMP (www.gimp.org)

or Inkscape (www.inkscape.org). Both applications are powerful open source

graphics programs, and freely available to download from their websites. You can
edit your UV texture directly in these programs, or you can use them to convert the
SVG file to a raster format that your graphics application of choice recognizes,
such as PNG or TIFF.

http://www.gimp.org/
http://www.inkscape.org/

CHAPTER 10 Lighting and Environment 297

Chapter 10

Lighting and
Environment

I
n terms of getting the work you create in Blender out to a finalized still image
or animation, having your scene’s environment and lighting set up properly is
incredibly important. It goes along hand in hand with setting up materials on

your object (see Chapter 8) as well as the rendering process (see Chapter 16).
Without light, the camera — and by extension, the renderer — can’t see a thing.
You could create the most awesome 3D model or animation in the world, but if it’s
poorly lit, it won’t be turning any heads.

This chapter covers the types of lights available to you in Blender and details some
of the best practices to use them in your scenes. In addition to lighting details,
I go into setting up the environment in your scene with the settings in World
Properties. In many ways, the topics covered in this chapter are what give your
scenes that final polish, making them look really good.

Lighting a Scene

Lighting has an incredible amount of power to convey your scene to the viewer.
Harsh, stark lighting can give you a dramatic film noir look. Low-angle lights
with long shadows can give you a creepy horror movie feeling, and brighter

IN THIS CHAPTER

 » Taking advantage of different types
of lights in Blender

 » Setting up effective lighting

 » Changing the look of your scene with
background images, colors, and
ambient occlusion

298 PART 2 Creating Detailed 3D Scenes

high-angle lights can make things look like they are taking place during a beautiful
summer day. Or, you can use a bluish light that projects a hard-noise cloud texture
and makes your scene feel like it’s happening under water.

Equally important is setting up your environment. Depending on how you set it
up, you can achieve a variety of looks. You can set your scene in an infinitely large
white space, commonly known as the white void in film and television. Or, you can
adjust your environment such that your scene takes place outside during the day
or somewhere on the moon. When you combine good lighting and a few additional
tricks, you can make your scene take place just about anywhere. Figure 10-1 shows
a pretty simple scene with a few different environment and lighting schemes to
illustrate this point.

Understanding a basic three-point
lighting setup
Before I get too deep into how you light a scene in Blender, you should understand
some standard lighting setups and terminology. The cool thing is that most of this
information isn’t limited to use in 3D computer graphics. It’s actually pretty
standard in professional film, video, and photography. In fact, quite a few
photographers and directors like to use 3D graphics as a form of previsualization
to test out lighting setups before arriving on set for the actual shoot. (And you
thought you were just making pretty pictures on a computer screen! Ha!)

One of the most common ways to arrange lights is called three-point lighting. As
the name implies, it involves the use of three different sets of lights. It’s a com-
mon studio setup for interviews, and it’s the starting point for nearly all other
lighting arrangements. Figure 10-2 shows a top-down diagram of a typical three-
point lighting setup.

FIGURE 10-1:
Different lighting

configurations
can drastically

affect the look of
a scene.

CHAPTER 10 Lighting and Environment 299

The key light
Setting up a three-point lighting scheme starts with placing your subject at the
center of the scene and aiming your camera at that subject. Then you set up your
main light, the key light. The key light is usually the most powerful light in the
scene. It’s where your main shadows come from, as well as your brightest highlights.
Typically, you should set this light just to the left or just to the right of your camera,
and it usually should be higher than your subject. This placement is to ensure that
the shadows fall naturally, and you don’t get that creepy flashlight-under-the-
chin look that your friends used for telling scary stories around the campfire.

The fill light
After your key light is established, the next light you want to place is the fill light.
The purpose of the fill light is to brighten up the dark parts of your subject. The
key light is great for putting shadows on your subject, but without any other light,
your shadows end up being very dark, obscuring your subject. Unless you’re
aiming for a dramatic lighting effect, this look is not what you normally want. The
fill light tends to be less powerful than the key, but you want it to have a wider,
more diffuse throw. The throw is the radius of space that the light reaches. For
example, a flashlight has a narrow throw, whereas fluorescent lights like the ones
used in office buildings throw light wider. You want this wide throw on your fill
because it reduces the amount of highlight and softens the shadows generated by
this light. Typically, you don’t want hard highlights and shadows from your fill to
compete with those from your key. As far as placement goes, you normally want
to place your fill on the opposite side of the camera from the key and roughly at
the same height as your subject, perhaps a little lower than your key light.

FIGURE 10-2:
A typical

three-point
lighting setup.

300 PART 2 Creating Detailed 3D Scenes

Here’s a way to figure out a good place to position your fill light. Draw an imaginary
line from your key light to your subject. Now, with your subject as the pivot point,
rotate that line 90 degrees. When you do, the line points right where you should
place the fill.

The back light

The last light in a three-point lighting configuration is the back light or rim light.
This light shines at the back of your subject, creating a small edge of light around
the profile. That sliver of light helps separate your subject from the background
and serves as the nice little bit of polish that often separates a mediocre lighting
setup from a really good one.

Now, I’ve sat through many long discussions about the best way to position a back
light (yes, my friends are nerds, too). Some people like to place it directly opposite
from the key light, which works well, but sometimes the rim effect competes with
the key’s highlights. Other people prefer placing it opposite to the camera, which,
too, is a good way to go, but if the subject moves, you risk the possibility of blind-
ing the audience. And yet another group of people recommend placing the back
light opposite to the fill. This approach can create a nice rim of light that comple-
ments the key, but it also has the possibility of looking a bit unnatural. As you can
see, everything is a trade-off when it comes to lighting. In fact, the only really
consistent thing that people agree on is that the back light should generally point
toward the subject. The bottom line is that the best course of action is to play
around with your back light and see for yourself where you get the best results.
Figure 10-3 shows the effect of different back-light configurations on a simple
scene with Suzanne.

As for the power and throw, you should typically use a less powerful back light
than your key so things appear natural. The throw can vary because the highlights
are all on the opposite side of your subject. I personally like to keep it narrow, but
a wide throw can work nicely for large scenes.

FIGURE 10-3:
Suzanne, lit with

the back light

placed a few

different ways.

CHAPTER 10 Lighting and Environment 301

That’s basic three-point lighting for you. It works well in computer graphics as
well as the “real world” and it’s the starting point for most other lighting
configurations. Lower the angle of your key to make your subject creepy. Remove
or reduce the power of your fill and back lights to get more dramatic shadows.
Place your key behind your subject to get a mysterious or romantic silhouette. And
that’s just the tip of the iceberg!

Knowing when to use which type of light
After you’re familiar with the basic principles of three-point lighting, you can use
that knowledge to light your scenes in Blender. To add a new light, use Add ➪ Light
and you see the menu shown in Figure 10-4.

Although the lights listed in this section are available in both Cycles and Eevee,
it’s more common to use mesh lights (that is, using meshes as lights in your scene)
than light objects in Cycles. See the section later in this chapter titled “Using mesh
lights in Cycles” for more on setting up and using mesh lights. Of course, some
lights, like the Spot and Sun lights, are still very useful in Cycles as well as Eevee,
so it’s still worth reading through this section if you’ve chosen Cycles as your
renderer.

FIGURE 10-4:
Adding a light in

the 3D Viewport.

302 PART 2 Creating Detailed 3D Scenes

The Light menu (Add ➪ Light) offers you the following types of lights to choose
from:

 » Point: This type of light is sometimes also referred to as an omni light,

meaning that the light is located at a single point in space and light emanates
in all directions from that point. The default Blender scene has a single light of
this type. The Point light is a good general-purpose light, but I prefer to use it
as secondary illumination or as a fill light.

 » Sun: The Sun light represents a single universal light that comes from a single
direction. Because of this single source, the location of the Sun light in your
scene doesn’t really matter; only its orientation is relevant. This type of light is
the only one that affects the look of the sky in your Blender scene’s world and
is well suited as a key light for scenes set outdoors.

 » Spot: In many ways, the Spot is the workhorse of CG lighting. It works quite a
bit like a flashlight or a theater spotlight, and of all the light types, it gives you
the most control over the nature of the shadows and where light lands.
Because of this control, Spots are fantastic key lights.

 » Area: Area lights are powerful lights that behave similar to Spots; however, the
shadows tend to be softer and more accurate because they’re based on having
a grid of lights to work with. As a result, they work well for key lights, but
because they tend to take more time to process, you should use them sparingly.

Figure 10-5 shows what each light type looks like in the 3D Viewport.

FIGURE 10-5:
From left to right,

Point, Sun, Spot,
and Area lights.

CHAPTER 10 Lighting and Environment 303

With the exception of the Point light, each light has some pretty cool control wid-
gets for adjusting their settings on the fly. Notice that each of the other lights
(Sun, Spot, and Area) have a line coming from them that indicates the direction
the light is pointing. Along that line, there’s a yellow circle. Using your mouse
cursor, you can click and drag that dot to quickly adjust the direction that the light
is pointing. And in the case of the Spot light, there’s also a cyan arrow that you can
click and drag to adjust the throw size of the light. You can, of course, adjust these
settings by manually rotating the light or adjusting values in Object Data Properties
(more on that later in this chapter), but these widgets give you quick controls so
you don’t have to leave the 3D Viewport to get the results you want.

Universal light options
When you’ve chosen a type of light and added it to the scene, the controls to
modify these lights are in Object Data Properties. When you have a light selected,
the Object Data tab features a light icon (look in the page margin to the left of this
paragraph). With a couple of exceptions, all the lights share a few of the same
controls. Figure 10-6 highlights the options that are universal for nearly all lights.

One cool thing about Blender’s lights is that you can instantly change light types
whenever you want. Simply select the light you want to work with and choose the
type of light you would like it to be in the Light panel. This feature is great for
quickly sorting out the type of light you want to use. You can test out different
lighting schemes without cluttering the scene by having a bunch of extraneous
lights that you have to move to other layers or hide.

Between Cycles and Eevee, only a few options are available to lights in both. In
Cycles, the bulk of the properties you want to edit are in the Nodes panel

FIGURE 10-6:
Panels and

options available
for all light types.

On the left are
the options

specific to Cycles,
and on the right

are properties
available when

using Eevee.

304 PART 2 Creating Detailed 3D Scenes

(technically, they’re properties of the Emission shader in the Shader Editor). In
Eevee, they’re the first two options in the Light panel of Object Data Properties:

 » Color: To set the color for your light, left-click the color swatch and use
Blender’s color picker.

 » Power: The Power value controls the strength of light emitted by the light,
measured in Watts, like you might see in light bulbs. If you choose to make
your light a Sun light, this value is changed to Strength rather than Power, and
although the value is still set to 1000, it’s not really comparable to light bulb
ratings. For Sun lights, you’ll probably want to start with a Strength value
closer to 1.0.

It’s worth noting that the 1000W light is the default for the scene that ships
with Blender. However, when you add a new light using the Add menu, those
lights have a power of 10W (and a new Sun light has a strength of 1.0).

 » Size: Whether you render with Eevee or Cycles, all lights have a size control of
some sort. Technically speaking, a light isn’t much different from an Empty or
a Camera object. It’s just a point in 3D space. It doesn’t really have any
geometry, so scaling a light in the 3D Viewport is pretty meaningless.
However, to more faithfully calculate the light source, both renderers need a
surface to emit light from, even if it’s not technically real. Depending on the
type of light you choose and the render engine you’re using, the Size property
may have a different name, such as Radius, Angle, or (of course, Size). In all
cases, that Size property lets you adjust the size of that virtual surface. The
section on light-specific options goes a bit deeper into the Size controls for
each kind of light.

The main thing to remember is that if you increase the Size of your light, but
leave its Power value unchanged, it’s still the same amount of light, but it’s
starting off more dispersed. This gives your shadows softer edges, though
with the trade-off of having overall weaker illumination from the light.

The Eevee render engine does a lot to try and keep its look consistent with Cycles.
However, lighting is one of those places where things diverge a bit. Eevee doesn’t
currently support using nodes to define lights, and it doesn’t support mesh lights
either. So unless you’re using the most simple of light settings, it may be difficult
to have Eevee give a true representation of what rendering in Cycles might look like.

That’s pretty much it for the truly universal light properties across both render
engines. However, after you choose a specific renderer, a few more options are
available for all lights. The next two subsections cover those properties. I encourage
you to read both sections so you have a firm understanding of what’s available to
you in each renderer.

CHAPTER 10 Lighting and Environment 305

CYCLES LIGHT PROPERTIES

The amount of properties available to lights in Cycles is really quite sparse. How-
ever, the upside is that those options are very powerful and (for the most part)
available to all light types. These options are available with all lights in Cycles:

 » Max Bounces: Because Cycles is a ray tracer, it’s all about rays bouncing
around your scene. It’s a bit of a simplified description, but imagine one ray
coming from your light. If Max Bounces is set to 0, that ray hits an object in
your scene and stops. All it does is illuminate that object (much like simple
lighting in Eevee). However, if you increase the maximum number of bounces,
you allow that ray to reflect off of objects it strikes.

This reflecting behavior from bounced rays allows for the realistic color
bleeding effect that’s the hallmark of global illumination. Color bleeding is
when light reflected from one surface takes on part of that surface’s color. So
if you have a bright red object in your scene and Max Bounces is set reason-

ably high (like the default value of 1024), other objects near your red one will
take on a slightly reddish hue from the reflected light.

 » Cast Shadow: Cycles’ lights have far fewer controls for shadows than their
Eevee counterparts. However, they retain the ability to disable shadow casting
with this check box. This option is an attractive feature that you don’t get with
mesh lights.

Why would you want to disable a light’s ability to cast shadows? In a three-
point lighting setup, you often want your fill light to illuminate the scene
without contributing unnecessary shadows. In meatspace, lighters go through
a lot of efforts and tricks to try doing this; usually by trying to make the
shadows from the fill light very soft. In CG it’s much easier: You just turn
shadows off. Neat, huh?

You can turn off shadows on any object you want, regardless of the type of
lights, by going to Object Properties, expanding the Visibility panel, and
disabling the Shadow check box in the Ray Visibility sub-panel.

 » Multiple Importance: This check box toggles whether the light uses multiple
importance sampling. Simply put, multiple importance sampling is an algorithm
that allows Cycles to more intelligently choose which rays to use for lighting
your scene. Having this kind of intelligence in sampling becomes important on
larger lights and especially on materials with sharp reflections. Generally, you
should leave this check box enabled.

If you’re rendering with Cycles, you can also apply textures to your lights like you
can with materials for objects. This ability is a great way to use lighting to either
enhance the environment of your scene, or fake certain lighting effects that Cycles
takes a long time to produce on its own. One specific example is caustic effects. If
you have some free time, take a glass of water and shine light through it. Due to

306 PART 2 Creating Detailed 3D Scenes

the refractive nature of the glass and the water, usually you see a strange light
pattern on the table near or around the glass. That effect is an example of caustics
and (if you don’t need 100 percent accuracy) you can fake it with a Voronoi texture
on a Spot light.

On a larger scale, caustics are what make the cool moving patterns you can see on
the bottom of a swimming pool. Figure 10-7 shows the node network you’d need
on a Spot light to achieve this affect. A key thing to pay attention to here is the
Texture Coordinate node. Without that as a reference, Blender doesn’t know how
to relate the texture to the light. See Chapter 9 for more on textures.

Technically speaking, you shouldn’t have to fake caustics if you’re using Cycles,
because they’re naturally built-in. However, caustic effects tend to take a long
time to converge or appear cleanly when rendering with Cycles, requiring a lot
more samples than you may want to use. For that reason, it still makes sense to
occasionally help Cycles along by faking caustics with a texture.

The ability to use the Shader Editor with lights in Cycles also allows you to work
with IES lights. As covered in Chapter 9, IES profiles are text files that describe the
specific shape of a light’s throw area. You know how when you shine a flashlight
at the ground, it doesn’t always create an evenly distributed circle of light?
Sometimes the center of the circle is brighter, or sometimes a bright ring appears
around the edge. That behavior can be difficult to fake with regular image textures.
Fortunately, IES profiles for all kinds of lights are publicly available for download

FIGURE 10-7:
Using a Voronoi
texture mapped

to a Spot light,
you can fake
underwater

caustics.

CHAPTER 10 Lighting and Environment 307

to make use of in your Blender scene; just wire an IES Texture node to the Strength
socket of the Emission node for your light. This feature is especially helpful if
you’re doing architectural visualization, and it’s important to have the lights in
your scene match their real-world counterparts.

EEVEE LIGHT PROPERTIES

This section details the wide assortment of properties available to lights when
rendering with Eevee. On a technical level, even though Eevee is a modern ren-
derer that uses physically based rendering (PBR) techniques, it still tends to use
more tricks and fakery than Cycles in how it handles lights and shadows. As a
result, there are more controls for you to fidget with.

In addition to Color and Power, there’s one additional primary control that’s
available to all lights when rendering with Eevee: the Specular value. In a render
engine like Eevee, reflections from light sources need to be estimated, unlike a ray
traced renderer like Cycles. This estimated reflection of light is known as specularity,
and you can control its influence from your light by adjusting the Specular value.
This value is a multiplication factor, so if you want your specular highlights from
the light to be twice as strong, set this value to 2.0. If you want them half as
strong, use a value of 0.5.

There’s also a Custom Distance sub-panel only available for the Point, Spot, and
Area lights. It’s disabled by default, but if you enable the check box for Custom
Distance, you can have customized control over how far your light projects. The
value is in the units defined in the Units panel of Scene Properties and, if an object
is farther away from the light than that distance, it receives no light. As of writing
this text, there’s not really any visual indicator in the 3D Viewport that shows the
range of this value. With any luck, that will change in future releases of Blender.
In the meantime, you’ll need to rely on using the Rendered shading mode for the
3D Viewport to see exactly how adjusting the distance value changes the lighting
in your scene. If you keep the Custom Distance option disabled, Eevee reverts to
using the inverse square law to define a light’s falloff like Cycles does.

Lights in Cycles don’t have a Distance value, because all light sources (other than
the Sun light) in Cycles share a physically correct falloff rate. Incidentally, all
natural light follows the inverse-square law for falloff. That means that as you get
farther from a light source, the strength of its light decreases by the value of
1/distance2. So, if the Power value of your light is 100W, when you’re 1 meter away,
the light’s effective strength is 50W. At 2 meters away, the light’s effective strength
is 25W. And by the time you get just 5 meters away from your light source, the
effective strength has dropped to a value of just 4W. So to make a scene brighter,
you need to either make one very strong light source (which may be too bright and
overpower the scene) or add multiple smaller lights. The Sun light in Blender is an
exception because it’s an approximation of the real sun, which is so bright and so
far away that we can ignore the inverse-square law at typical scene scales.

308 PART 2 Creating Detailed 3D Scenes

When rendering with Eevee, each light has the option of casting shadows. Shadows
are enabled by default but could be disabled by clicking the check box at the top of
the Shadow panel. If you’re using shadows in Eevee, you should be aware of a
couple options:

 » Clip Start: Consider this value as a secondary control in addition to the Custom
Distance value in the Light panel. Objects that appear between the Clip Start
and the Custom Distance cast shadows, whereas objects outside of this range
do not. Keeping the Clip Start value as close to your shadow-casting objects as
possible gives you the most accurate results. Of all the lights, only the Spot light
shows a visual representation of the Clip Start value in the 3D Viewport.

 » Bias: This value is specific to tweaking how an object self shadows, or how it
casts shadows upon itself. Basically, the Bias value offsets the shadow from
where it connects to the shadow-casting protrusion on your object.
Occasionally, you may get some weird jaggies or artifacts in your shadows.
Increasing the Bias can help get rid of those artifacts, but you should keep this
value as small as possible. If you do have to adjust the Bias, adjust it only as
low as it can go before you get artifacts in your renders. Otherwise, your
shadows will begin to look very unnatural. A good practice is to do a series of
test renders starting with a Bias value of 0.1 and working your way up until
you no longer see artifacts.

You also have the ability to enable contact shadows, or the kinds of shadows that
appear when two objects are touching. This feature is disabled by default, but can
be easily turned on by clicking the check box at the top of the Contact Shadows
sub-panel. Typically, you should only enable contact shadows if you’re having a
lot of problems with light leaking, and other tweaks aren’t helping enough. With
contact shadows enabled, you get the following control options:

 » Distance: Eevee’s contact shadows work by guessing where objects intersect
or come close to intersecting in the 3D Viewport, similar to how Eevee handles
ambient occlusion and screen space reflections (more on this in the section
“Setting Up the World”). The Distance value is measured in the units you
choose in the Units panel of Scene Properties, and it’s what Eevee uses to
estimate those mesh intersections. To work effectively, though, you should try
and keep this value pretty low. The larger you make it, the less accurate your
shadows will be.

 » Bias: This Bias value works exactly the same as the Bias value for regular
shadows. It’s just specific to contact shadows.

 » Thickness: The Thickness value is measured in the same units as your scene.
You may want to bump this value up if you have very thin objects in your
scene, and they’re not being recognized by Eevee as objects that can have
contact shadows.

CHAPTER 10 Lighting and Environment 309

Light-specific options
As you can see back in Figure 10-6, the Point light has options available on nearly
every other light but doesn’t have much in the way of unique controls. However,
the remaining three lights have some interesting options that allow you to opti-
mize their usage to meet your needs.

OPTIONS SPECIFIC TO SUN LIGHTS

The Sun light is incredibly useful because it has the ability to behave more like the
real sun. Unlike all the other lights, the distance of the light from the object (or
objects) you’re lighting doesn’t matter at all when you use a Sun light. For those
other lights, if the light is closer, their influences are stronger. For a Sun light, it
doesn’t matter at all where you place the light in your scene. Both Eevee and
Cycles assume that the light rays from a Sun light are persistent throughout your
scene and completely parallel, as opposed to radiating out from a specific point in
space. Of course, that’s not what’s happening with the real sun, but because it’s
such a far distance from our planet, the approach of the Sun light is a pretty fair
approximation of the real thing.

UNDERSTANDING SHADOW MAPS IN EEVEE

Eevee is not a ray-traced render engine like Cycles is, so it can’t use the same techniques
for generating shadows in your scene. Instead, it uses a technique called shadow map-

ping. Simply put, Eevee looks at the geometry in your scene and estimates where the
shadows will fall. Then it generates a texture of that shadow for all the objects in the
scene. That texture is the shadow map, and Eevee can constantly generate this map on
the fly several times a second. The shadows aren’t quite as accurate as those you’d get
from Cycles, but they’re generated very quickly and they’re often good enough for a lot
of images, especially if you’re making assets for video games.

As a rendering technique for shadows, shadow maps have been around for a long time.
Eevee actually used to support a couple different approaches to generating shadow
maps, but now relies on a single one. Regardless of the shadow-mapping method used,
because they’re based on estimations, shadows in Eevee can sometimes be prone to
light leaking. Light leaking is light showing through an object that ought to be blocking
(occluding) it. Light leaks are particularly common on interior corners when the light is
outside and bright, like a Sun light, or even a very bright Point light that’s close to the
object. Generally speaking, the softer you make the shadows from your lights, the
greater the chance that you’ll have light leakage. You can try to compensate by adjusting
the Light Threshold value in the Shadows panel of Render Properties, but often the bet-
ter solution is to try to have more lights at a lower power to attain soft shadows.

310 PART 2 Creating Detailed 3D Scenes

The only thing that matters is the direction that the Sun is shining. When I use a
Sun light, I tend to leave it right at the scene origin, unless it’s more convenient
to move it someplace else. For me, that placement just makes it easier to find the
light later when I’m looking for it.

Object Data Properties contains only a few controls specific to the Sun light.
Figure 10-8 shows the full set of options available for Sun lights.

In addition to the Color and Strength values, the Sun light has another primary
control: Angle. You might guess that the Angle value has something to do with the
angle that your Sun light’s rays enter your scene. Surprisingly, that guess would
be incorrect. The more complete name for this value is angular diameter. In short,
it’s the Sun light’s size. Specifically, it’s the measure of the diameter of your Sun
in degrees.

“What? Degrees for distance? How is that even a thing?” you might be saying to
yourself. It’s actually a unit used in astronomy. If you were to look at the sun
(don’t really do this!), you could imagine a triangle between you and the top and
bottom of the sun. If you measure the angle of the corner of that triangle where
you stand, that’s the sun’s angular diameter. It’s basically the effective size of the
sun, as perceived from your scene. Figure 10-9 tries to illustrate this concept more
clearly.

FIGURE 10-8:
Controls for the

Sun lights in
Eevee and Cycles.

CHAPTER 10 Lighting and Environment 311

The other set of controls you get on Sun lights when using Eevee are those for a
cascaded shadow map. A cascaded shadow map is a kind of shadow map specifically
useful for creating shadows in a large scene. Because Sun lights are commonly
used for lighting outdoor scenes, it makes sense to have support of these kinds of
shadow maps.

Be a little bit careful when working with cascaded shadow maps, especially if
you’re viewing your scene in the 3D Viewport using the Rendered viewport shading
mode. Cascaded shadow maps are continuously updated, and because they can
create a lot of shadow maps over a large scene, it could slow down the 3D Viewport
considerably.

To tweak your Sun light’s cascaded shadow maps, you have the following controls:

 » Count: Cascaded shadow maps create multiple levels of shadow maps, called
cascades. The Count value is the number of cascades that your Sun light uses.
A higher Count gives better precision, but will also increase your render times.

 » Fade: With cascaded shadow maps, your Sun light has multiple shadow maps.
Ideally, you’d like it if those individual cascades weren’t noticeable. With the
Fade value, you can increase the transition area between cascades and have
them overlap a bit. The trade-off of a larger Fade, however, is that your overall
shadow map resolution is reduced, so your shadows may be less accurate.

 » Max Distance: This value is the maximum distance from your viewing
location to use the cascaded shadow maps. If you keep this value low, you
have better shadow map resolution because you’re using the same number of
cascades over a smaller area.

FIGURE 10-9:
The angular

diameter of a Sun
light is the

perceived size of
the sun as viewed
from your scene.

312 PART 2 Creating Detailed 3D Scenes

 » Distribution: Because you have multiple shadow maps, you have a little bit of
control over how they’re placed in your scene. Because things in the distance
are smaller and harder to see well anyway, it makes the most sense to have
the majority of your accuracy closer to your viewing location. Think of the
Distribution value as the percentage of resolution you want to have devoted
nearer to your viewing location.

OPTIONS SPECIFIC TO SPOT LIGHTS

As Figure 10-10 shows, the controls for Spot lights are pretty consistent regardless
of whether you’re rendering with Eevee or Cycles. The main exception to this is
that the Size control for Spot lights is called Radius if you’re rendering with Eevee,
and Size if you’re rendering with Cycles.

Spot lights also have a handful of settings available for controlling the shape of
the Spot light’s throw area. Those controls are in the Spot Shape panel:

 » Size: This setting controls the width of the Spot’s throw, measured in degrees
(kind of like the Angle value in Sun lights). So a value of 180 degrees is
completely wide, whereas a value of 30 degrees gives you a narrower cone.
Unless I’m doing something special, I like to start with my Spots with a Size
value around 60 degrees.

 » Blend: The Blend value controls the sharpness of the edges at the boundary
where the Spot’s cone of influence ends. Lower values give you a crisp edge,
whereas higher values soften it, making the light appear more diffuse.

FIGURE 10-10:
The controls for

Spot lights in
Eevee and Cycles.

CHAPTER 10 Lighting and Environment 313

 » Show Cone: This feature is incredibly cool and useful. When you enable the
Show Cone check box, Blender allows you to more clearly see the volume of
the cone, making it much easier to see what objects are within your Spot
light’s influence area.

OPTIONS SPECIFIC TO AREA LIGHTS

In some ways, Area lights are very similar to Spots; they have a direction and a
somewhat limited throw area compared to Point lights and Sun lights. The
difference is that you have more control over the size and shape of the Area light
itself. The end result is that shadows generated by Area lights are generally
smoother and more accurate. However, by adding Area lights to your scene, you
can increase your render time dramatically if you’re not careful. Figure 10-11
shows the options and settings for Area lights.

To control the dimensions of your Area light, you first should decide the shape for
the light. Using the Shape drop-down menu, you can set your Area light’s shape
to be a Square, Rectangle (the default), Disk, or Ellipse. If you choose Square or
Disk, you get only one size parameter to adjust, whereas if you choose Rectangle
or Ellipse, you can control the size of your Area light in both its local X and Y axes.

If you’re rendering with Cycles, there’s one additional control that you get on Area
lights. There’s a check box at the bottom of the Light panel labeled Portal. It’s a
funky name, but it’s extremely helpful for lighting interior scenes. If you have an
interior scene where the primary light source is outside (like a Sun light or light
from an environment texture), then your renders are likely to end up being grainy

FIGURE 10-11:
The controls for

Area lights in
Eevee and Cycles.

314 PART 2 Creating Detailed 3D Scenes

or having a lot of little bright spots sometimes called fireflies. The reason why
these interior lighting scenes are so problematic is because you’re basically relying
only on secondary, bounced light to provide illumination. The majority of your
light’s rays are lost outside the walls of your scene, and Cycles doesn’t have
enough rays to quickly converge on a cleanly rendered result. You can try to get
around this by pumping up the light samples in Render Properties, but that leads
to really long render times. The Portal feature of Area lights is a way to get around
that. See the section later in the chapter entitled “Setting up a good interior light-
ing scene” for more details on using Portals.

Using mesh lights in Cycles
When rendering with Cycles, it’s more common to use mesh lights than light
objects, especially if you want the effect of an Area light, but with more control of
the light’s shape. Part of this is historical — it used to be that you’d get much
shorter render times using meshes as lights than by using light objects. The other
reason is more practical: Often, lights take on a specific shape that’s more complex
than the simple look of light objects. Also, if you texture your mesh lights, you can
use all the UV coordinate tricks covered in Chapter 9.

Making any object a light source in Cycles is incredibly easy. You don’t even really
need to use the Shader Editor (at least, not for a simple setup). With your object
selected, just follow these steps:

1. In Material Properties, add a material for your object.

2. In the Surface panel of Material Properties, change the Surface drop-
down menu to Emission.

3. Adjust the Color and Strength values to taste.

That’s it! From the perspective of your material’s node network, you’ve connected
an Emission shader to the Surface socket of your Material Output node, as shown
in Figure 10-12.

One side effect of using a mesh to light your scene is that (unlike light objects)
meshes are visible objects in your scene, just like they would be in meatspace. The
absolute easiest solution is to try to keep your mesh lights off-camera. Sadly,
that’s not always possible. It would be really nice if you could get the benefits of
mesh lights and still keep the mesh object itself invisible from the camera.
Fortunately, that’s pretty easy to do. Just disable the Camera check box in the Ray
Visibility sub-panel of Object Properties (look in the Visibility panel).

CHAPTER 10 Lighting and Environment 315

There’s another way to get those results as well. It isn’t as simple as a check box
and requires a bit of wizardry in the Shader Editor (specifically the Light Path
node). However, by using the Shader Editor, you open the door to the possibilities
of much more complex and interesting lighting. Assuming you have a mesh light
set up like in Figure 10-12, follow these steps in the Shader Editor:

1. Add a Transparent BSDF shader node (Add ➪ Shader ➪ Transparent BSDF).

For organization’s sake, place the Transparent BSDF node below your Emission
node.

2. Add a Mix Shader node (Add ➪ Shader ➪ Mix Shader).

For placement, put the Mix Shader node to the right of your Emission and
Transparent BSDF nodes, but to the left of your Material Output node.

If you drag your Mix Shader node over the noodle connecting your Emission
node to the Material Output node, you should notice the noodle get
highlighted. Let go of the Mix Shader node and Blender will automatically
connect that node in-line and shuffle the Material Output node to the right to
make space for it.

3. Connect the Emission socket of your Emission node to the upper Shader
socket of the Mix Shader node.

Perform this step if you didn’t follow the tip in the previous step.

FIGURE 10-12:
Emitting light

from any mesh in
Cycles is as easy

as wiring an
Emission shader

to the Surface
socket of your

Material Output
node.

316 PART 2 Creating Detailed 3D Scenes

4. Connect the BSDF socket of your Transparent BSDF node to the lower
Shader socket of the Mix Shader node.

If you preview your scene in the 3D Viewport with Rendered viewport shading,
you should see that your mesh light object emits light, but is semitransparent.
If you adjust the Fac slider in the Mix Shader node to a value of 0, your mesh
emits light, but it’s completely solid. At a Fac value of 1, your mesh is
transparent, but it doesn’t emit any light. That’s close, but not quite right. The
magic happens in the next two steps.

5. Add a Light Path node (Add ➪ Input ➪ Light Path).

For organization, place the Light Path node above your Emission node. The
Light Path node is an excellent node in Cycles that’s useful for all sorts of
interesting trickery. The next step will prove the point.

6. Connect the Is Camera Ray socket of the Light Path node to the Fac
socket of your Mix Shader node.

Like magic, your mesh object is invisible in the scene, but it’s still emitting light.

The technical explanation for what you’ve done goes something like this: Your
mesh object checks each ray that comes in contact with it and determines
where that ray came from (the camera, another light source, a shadow, and so
on). Then, by wiring the Is Camera Ray socket to the Fac socket on the Mix
slider, you’re making your material say, “If I’m hit with a camera ray, behave as
if I’m transparent, but if I’m hit with any other ray, behave as if I’m a light.” And
there you go: a mesh light that behaves like a light object.

Figure 10-13 shows what your finished node network should look like.

FIGURE 10-13:
Getting a mesh

light to be
invisible in your
scene requires

playing with the
Light Path node.

CHAPTER 10 Lighting and Environment 317

While this approach is obviously slower than just disabling visibility in Object
Properties, it can also sometimes make your life a bit easier while you work. If
you’re working on a complex scene, the bulk of your attention is focused on the
Shader Editor and the 3D Viewport. It’s easy to forget a little check box in the
Properties editor when you’re trying to figure out why something is or isn’t
showing when you render.

It’s actually possible to use mesh lights with Eevee too. It’s just a little more of a
hassle to set up than with Cycles. You set up the emission material for your mesh
light the same way you do in Cycles (as covered in this section), but then there’s
an extra step of adding something called a light probe. See the section “Working
with Light Probes in Eevee” later on in this chapter for more information.

Lighting for Speedy Renders
This section of the chapter makes a few recommendations and suggestions that
have been hotly debated over the years in CG circles, especially with the recent mod-
ern focus on physically correct rendering and greater emphasis on realism. A big
part of computer graphics has always been about getting good results quickly. That
often results in artists doing little CG “cheats” to get results that look good, but may
not be entirely accurate to how things work in meatspace. I often tell people that
when it comes to computer graphics, if you’re not cheating or faking something,
you’re probably doing it wrong. Even though you can get great results by using ray-
traced shadows everywhere with the highest number of samples, these results all
come at the expense of high memory usage and lengthy render times. So your scene
may look perfect, but if you’re taking 16 hours to render every frame in an anima-
tion, you could be rendering for a month and not even have two seconds of it done.

Granted, quite a bit of deciding how much you “cheat” depends on who you’re
working with and who your audience is. If you’re collaborating with a bunch of
other artists, they may not appreciate having to go through all of your cute tricks
to match a particular look you’ve created. Or if you’re working in architectural or
industrial visualization, it may be important that your lighting be as accurate as
possible. A lot of people will lean towards physically based, accurate setups that
may take longer to render because it saves artist time (it’s cheaper to pay for com-
puters to work than paying an artist for that time).

That said, a large part of being a CG artist is doing everything you can to reduce
the amount of work that needs to be done by both you and the computer, while
still creating high-quality images. You don’t want to be old and gray by the time
your first animation is complete. That’s why many independent CG artists worry
so much about keeping their render times as short as possible and why they make
use of tricks and cheats to cut corners where they can.

318 PART 2 Creating Detailed 3D Scenes

Working with three-point
lighting in Blender
My preferred lighting rig in Blender usually starts with a three-point lighting
setup. Here’s what I normally start with:

 » Key: A Spot works well as the key light in Eevee. Keep all settings at their
default values except for the size of the spot shape. In the Spot Shape
sub-panel, set the Size to 60 degrees. In Cycles, I may use a Spot light as my
key, but more frequently, I use a mesh light.

 » Fill: For a fill light, I may use a large Area light or Sun light. When rendering
with Cycles, I’ll often disable the Cast Shadows and Multiple Importance
options. Occasionally, I may also use a large plane as a mesh light with a low
Strength value.

 » Back: This is the tricky one. The light is behind the subject, so specularity
doesn’t matter as much, but if I’m rendering with Eevee, I normally dial the
specularity on this light down to zero. Don’t get too picky with the location of
the back light just yet. Back lighting is a bit of a mystical art with a lot of trial
and error per shot; it’s one of the rare situations where real-world lights have
an easier time yielding the desired effect. For that reason, you end up
tweaking the location of the back light a lot, so it’s not critical that you get it
right the first time in your initial setup. As for types of lights, a Spot light
usually can work well as a good back light.

This setup is good for studio lighting, and it works really well for scenes set
indoors or for lighting isolated objects. I include an example three-point lighting
.blend file on the website www.blenderbasics.com.

Using Look Dev to set up lighting
Whether you’re working with Cycles or Eevee as your primary rendering engine,
you should previsualize your scene as early as possible. That is, in an ideal situa-
tion, you want to know what your final render is going to look like before you
actually tell Blender to render. In Chapter 8, I introduce using the Shading
workspace and Blender’s Look Dev viewport shading mode. You can use that same
workspace and viewport shading mode to get a strong sense of the result your
lighting setup is going to give you.

That said, you need to make a few modifications to the default Look Dev viewport
shading mode configuration; otherwise, what you see in the 3D Viewport won’t
quite so faithfully match your final rendered output. Granted, if your final rendered
output is with Eevee, then you may as well use the Rendered viewport shading

http://www.blenderbasics.com/

CHAPTER 10 Lighting and Environment 319

mode. It will be just as fast as Look Dev, and you won’t have to make as many
changes. However, if you’re rendering with Cycles, there’s a real benefit to per-
forming the following steps:

1. Go to the Shading workspace.

Click on the Shading tab at the top of the Blender window. The large 3D
Viewport at the center of the workspace layout should already be in Look Dev
viewport shading mode.

2. Enable Scene Lights and the Scene World.

The controls for enabling these two options are in the Shading rollout at the
top right of the 3D Viewport, as shown in Figure 10-14. Enabling these two
check boxes ensures that Blender is using your lights and your world material
(see the next section) to generate the results in Look Dev.

3. (Optional) Enable Screen Space Reflections in Eevee’s render settings.

If your final output is going to be Cycles, you’ll need to temporarily go to
Render Properties and switch back to Eevee. From there, you can enable the
Screen Space Reflections check box. After that, you can switch your render
engine back to Cycles. The reason why this is an optional step is because
Screen Space Reflects are a bit of an exaggerated approximation of the
reflections and bounced light that you naturally get in Cycles with global
illumination.

Now you can quickly test your lighting setup without having to go through a full
render or popping over to Rendered viewport shading mode.

FIGURE 10-14:
To get Look Dev

to more faithfully
represent your
scene lighting,
enable Scene

Lights and the
Scene World.

320 PART 2 Creating Detailed 3D Scenes

Setting Up the World
When you set up your scene for rendering, lighting is really only part of the
equation. You must also consider your scene’s environment. For example, are you
outdoors or indoors? Is it daytime or nighttime? What color is the sky? Are there
clouds? What does the background look like? You have to consider these factors
when thinking about the final look of your image. Whether you’re rendering with
Cycles or Eevee, your starting point for setting up your environment is in the
World tab of the Properties editor, as shown in Figure 10-15.

Changing the sky to something
other than dull gray
If you’ve worked in Blender for a while and gotten a few renders out, you might be
pretty tired of that dull gray background color that the renderers use by default.
Regardless of whether you’re rendering with Eevee or Cycles, you can change that
color really easily. All you need to do is click the color swatch in the Surface panel
of World Properties.

An interesting side effect you might notice when changing the World color
(especially if the 3D Viewport is in Rendered or Look Dev viewport shading) is that
the color has a dramatic influence on the look of your scene. If you change the
World color to be blue, everything in your scene (especially the shadows) will start

FIGURE 10-15:
World Properties

when the active
renderer is Cycles

(left) and Eevee
(right).

CHAPTER 10 Lighting and Environment 321

to carry a blue hue. That’s because Cycles and Eevee treat the World color as
another light source. If you don’t want the World color to have any influence at all,
drop the Strength value down to zero.

Generally speaking, though, the options available in World Properties
seem . . . sparse. This is because these controls are only the most basic available to
you. In reality, Eevee and Cycles see the World as just another kind of material.
Therefore, most of your customization happens in the Shader Editor.

The best way to see what I’m talking about is to work in the Shading workspace. At
the bottom of this workspace is a large Shader Editor. By default, the Shader Editor
is set to edit materials for objects, but you can easily change it to modify your World
material. Use the Shader Type drop-down menu in the Shader Editor’s header to
select the World shader type and you can edit the World material for your scene.

If you don’t see any nodes in the editor, try pressing Home to make your whole
node network visible. If you still don’t see any nodes, try enabling the Use Nodes
check box in the Shader Editor’s header. You should see something like what’s
shown in Figure 10-16. Worst case, you can just manually add the Background and
World Output nodes as shown.

Let’s say you’re using Cycles and you want to have a World material that’s a bit
more sophisticated than just a solid color. No problem! Simply add a Sky Texture
node (Add ➪ Texture ➪ Sky Texture) in the Shader Editor and connect its Color
output socket to the Color input socket on the Background shader node. And there
you have it: a sky. Even better, you don’t necessarily need a Sun light in your scene.

FIGURE 10-16:
Eevee and Cycles

treat the World
like a material, so

most of your
modifications

take place in the
Shader Editor.

This is a simple
node network for
a World material.

322 PART 2 Creating Detailed 3D Scenes

Want to use an image texture for your environment? The Look Dev viewport
shading mode has some really cool images for its World material. If you disable
the Scene World check box in the Viewport Shading rollout, Blender gives you the
choice of eight “chrome balls” to choose as a temporary World material. These
chrome balls are actually reflections of images used for your World environment.
These images are high dynamic range images (HDRIs) and they’re used to give your
scene the look of real-world lighting by actually using a special high-quality
image as a light source.

FIGURING OUT HIGH DYNAMIC RANGE

HDRIs get used a lot in computer graphics, but a lot of people don’t take the time to
stop and figure out what they really are and why they’re helpful, even necessary in
some cases. See, computer technology has a bit of an Achilles Heel. Nearly everything in
a computer that’s a representation of real-world phenomena is an approximation based
on a limited number of samples. When it comes to images, this issue becomes really

apparent. Hold on to your hat, it’s going to get a little technical.

Most images you see on the Internet are RGB images with 256 levels for each of the red,
green, and blue channels. On the upside, the combination of those values gives you
over 16 million possible colors. Pretty good, right? Unfortunately, there are problems.
For one, we humans can actually perceive more colors than that. The other problem is
that the range on those 16 million colors is fixed. If a color in the image is black (0,0,0),
there’s no other color information there, even if the image is of a dark room and you
know there’s a chair in the middle of it because you could see it.

The reason this is a problem is because we perceive light and color on a dynamic range.
Have you ever stepped into a dark room and had to wait a few seconds until your eyes
adjust? Your brain is dynamically adjusting the range of light that your eyes are captur-
ing. Once your brain and eyes sync up again, it’s much easier to see in a space that
seemed to be pitch black a moment before. That’s a kind of example of high dynamic
range in action. The majority of computer image formats don’t work like that; they have
a static range. If a pixel is 100% black, there’s no amount of adjusting you can do to see
what may be in that space.

This behavior makes static range or low dynamic range images problematic for environ-

ment textures used as a lighting source because real world environments have a
dynamic range. Fortunately, as technology has improved over the years, we have cam-

era sensors, image formats, and graphics applications like Blender that support high
dynamic range. Thanks to those advances, we can use HDRIs as light sources in our
scenes and create rendered images that have lighting that more accurately resembles
what we see in meatspace.

CHAPTER 10 Lighting and Environment 323

Unfortunately, you don’t have quick and easy access to the HDRIs that ship with
Blender for Look Dev. That said, there are plenty of great resources for HDRIs that
you can download from the Internet. One of my personal favorite places to find
HDRIs is on hdrihaven.com. That website has oodles of high-quality HDRIs all
released for free with the most permissive Creative Commons license available
(CC0). In fact, the HDRIs that ship with Blender for Look Dev viewport shading
come from that site.

Once you’ve downloaded an HDRI, it’s fairly easy to use it as a texture for your
World environment.

1. In the Shader Editor, add an Environment Texture node (Add ➪ Texture  ➪

Environment Texture).

2. Connect the Environment Texture node’s Color socket to the Color socket
of your Background shader node.

3. Click the Open button for the image datablock in the Environment
Texture node and use the File Browser to find your HDRI.

Figure 10-17 shows a simple World setup using an HDRI as an environment
texture.

FIGURE 10-17:
You can use high

dynamic range
images (HDRIs) as

an environment
texture for your
World material.

http://www.hdrihaven.com/

324 PART 2 Creating Detailed 3D Scenes

“But what if I just want a simple gradient like I used to be able to get in the old
Blender Internal render engine?” Ironically, getting that effect is less
straightforward now than it used to be in older versions of Blender. A viable cheat
(that I’ve used!) would be to use the Compositor and put your render over a
gradient background (see Chapter 18 for more on compositing). But say you’re a
purist and you want to do it all in your World material. That, too, is still possible.
As an example, follow these steps to get a gradient for your World material (these
steps assume you’re starting with the simple node network in Figure 10-18):

1. In the Shader Editor, add a Gradient Texture node (Add ➪ Texture ➪

Gradient Texture) and wire its Color socket to your Background shader
node’s Color input socket.

If you’re previewing your scene in the 3D Viewport with Rendered viewport
shading, you should see your background become completely black. That’s
okay. It’s supposed to be like that. The problem is that the default texture
coordinates don’t map in a way that makes your gradient texture easy to see.

2. Add a Texture Coordinate node (Add ➪ Input ➪ Texture Coordinate) and
connect its Window socket to the Vector input socket on your Gradient
Texture node.

Now you should see your gradient, but there’s a problem. The gradient goes
from left to right, not vertically. You need to tweak your texture coordinates
a bit.

3. Add a Mapping node (Add ➪ Vector ➪ Mapping) in-line between your
Texture Coordinate node and your Gradient Texture node.

At this point, nothing in your background should be changed. You still have a
black-to-white gradient going from left to right. The next step fixes that.

4. In the Mapping node, left-click the Texture button at the top of the node
and change the Z rotation value to 90 degrees.

Woohoo! You’ve rotated your texture and it’s starting to look like what you
want. What you’re missing now are controls for the colors in your gradient.

5. Add a ColorRamp node (Add ➪ Converter ➪ ColorRamp) in-line between
the Gradient Texture node and the Background shader node.

On the face of things, it doesn’t appear like much has changed. That’s because
the default gradient in the ColorRamp node is also black to white.

6. Edit the colors on the ColorRamp node to match the colors you want
along the length of the gradient.

That’s pretty much it. But really, with this setup you have even more control
than you get in the old Blender Internal renderer from before Blender 2.80,
because with the ColorRamp node you can control the position of the colors

CHAPTER 10 Lighting and Environment 325

and even add more colors to your gradient. It’s incredibly powerful. I even
would suggest that you add an RGB Curves node in there to have more control
over the rate of change for the gradient. Figure 10-18 shows an example of
what your final node network may look like.

Understanding ambient occlusion
Take a look outside. Now, hopefully it’s daytime, or this example isn’t going to
work, but notice how much everything seems to be illuminated. Even on a bright
sunny day, the deepest shadows aren’t completely black. The reason is that light
from the sun is basically bouncing off of every surface many times, exposing
nearly all objects to at least some amount of light. In computer graphics, this
phenomenon is often referred to as global illumination, or GI, and it’s pretty
difficult to re-create efficiently.

Another result of GI is that all this bounced light also makes subtle details, creases,
cracks, and wrinkles more apparent. At first, this statement may seem like a
paradox. After all, if light is bouncing off of everything, intuitively, it would make
sense that everything should end up even brighter and seem flatter. However,
remember that not only is the light bouncing off of everything, but it’s also casting
small shadows from all the weird angles that it bounces from. Those small
shadows are what bring out those minor details.

FIGURE 10-18:
A node network
for generating a

flat gradient
background in

Cycles and Eevee.

326 PART 2 Creating Detailed 3D Scenes

The GI effect is most apparent outdoors on overcast days where the light is evenly
diffused by cloud cover. However, you can even see it happening in well-lit rooms
with a high number of light sources, such as an office building with rows and rows
of fluorescent lights lining the ceiling.

The bad news is that the Eevee renderer doesn’t have “true” GI capability. Cycles,
on the other hand, has that capability. So the quickest way to get GI in your scene
is to just render with Cycles. However, there are instances where you need to ren-
der with Eevee, so using Cycles isn’t an option. Fortunately, Eevee does have a
great way of approximating GI, thanks to ambient occlusion (AO). Often called dirty

GI or a dirt shader, AO finds the small details in your object and makes them more
apparent by making the rest of the model brighter or making the details darker.

To enable AO in Eevee, left-click the check box next to the Ambient Occlusion
panel in the Render tab of the Properties editor. When you enable AO, Blender
activates the settings in the Ambient Occlusion panel. This panel gives you all the
controls Eevee has available for configuring AO in your scene. Figure 10-19 shows
the Ambient Occlusion panel in Render Properties for Eevee.

FIGURE 10-19:
You can control

the amount of
ambient

occlusion (AO) in
your scene from

the Ambient
Occlusion panel

in Render
Properties.

CHAPTER 10 Lighting and Environment 327

Most of the controls in the Ambient Occlusion panel are fairly straightforward.
Here’s a description of the options available for AO:

 » Distance: In order to approximate those cool AO shadows, Eevee uses the
proximity of other geometry to decide if a feature (a crack or crease or wedge)
needs the extra shading that AO provides. The Distance value is how you
control whether a nearby bit of geometry is used to generate the AO effect.
Larger values will get you more shadows, but at the risk of looking less
realistic.

 » Factor: The Factor value is the strength of the overall AO effect. The effect
generated by the Distance you set is multiplied by this value. Usually it’s a
good idea to keep this at 1.0, although I recommend that you play with it a bit
to see how it affects your scene. It’s worth noting that 1.0 is a soft limit. If you
want values greater than 1.0, you must type them in manually.

 » Trace Precision: If you increase this value, you will have more accurate AO
shadows, but renders will take longer to complete and may introduce some
noise to your scene.

 » Bent Normals: You’re probably best off leaving this check box enabled. It
limits the calculation of AO shadows to the direction that’s least occluded.
Why calculate shadows that aren’t going to be seen if you don’t have to?

 » Bounces Approximation: This check box is a little bit of helpful fakery that
gives less of a shadowing effect on brighter objects (like shiny plaster). In most
cases, there’s not a real need to disable this option.

Figure 10-20 shows the same scene rendered with AO enabled, as well as without
any AO at all.

FIGURE 10-20:
From left to right,
with their render

times: no
ambient

occlusion and
ambient

occlusion
enabled.

328 PART 2 Creating Detailed 3D Scenes

You can also enable AO in Cycles from World Properties, but the available options

are a lot more limited. When you enable AO in Cycles, the only properties for

tweaking are a Factor and a Distance value, corresponding to the same Factor and

Distance parameters in Eevee’s AO settings. Generally speaking, there isn’t much

call for using AO if you’re rendering with Cycles, because Cycles already has GI.

Working with Light Probes in Eevee

Eevee may not have the fully accurate features of global illumination and

reflections of a ray-traced render engine like Cycles, but that doesn’t mean it
can’t produce high-quality realistic results. Eevee is a modern renderer with an
emphasis on physically based rendering (PBR), so it can get results nearly

comparable to Cycles with much shorter render times. One of the biggest tricks in

getting realistic results in Eevee is the judicious use of light probes. Think of light

probes as specialized Empties that help feed information about the scene to Eevee

for realistic rendering.

The majority of Eevee’s features as a renderer are known as screen space effects.
Features like ambient occlusion and reflections are generated by analyzing only
what’s within the camera’s view. However, if you have an object that’s off camera,
like a tree casting a shadow or another character standing behind the camera,

those objects aren’t going to register with a screen space effect. Light probes work
by providing additional sampling data that Eevee can use to account for those off-
camera objects.

Eevee supports three different kinds of light probes, accessible through the Add
menu in the 3D Viewport (Add ➪ Light Probe). Two of the probes are dedicated to
reflections, and one is focused on indirect lighting (like global illumination):

 » Reflection Cube Map: The Reflection Cube Map light probe is a general-
purpose light probe used for generating reflections on objects (or serving
as a backup if you’re using screen space reflections — enabled in Render
Properties). They require baking (see the next section), but can produce
decent results on surfaces with curved or complex structures. The map
generated by this light probe is sphere-shaped (or box-shaped) and its
influence fades in a falloff region as objects reach the limits of that sphere.

 » Reflection Plane: Of the different light probes that Blender offers for Eevee,
the Reflection Plane is the only one that can be used on the fly. You don’t have
to bake anything. The simplest explanation is that Eevee basically puts a
virtual camera at the location of this light probe and uses those rendered
results as the source for mapping a reflection to the surface of an object.

CHAPTER 10 Lighting and Environment 329

Because it’s a plane, the ideal use for this kind of light probe is on flat surfaces
like mirrors or shiny windows.

 » Irradiance Volume: The Irradiance Volume light probe is used for helping to
generate indirect lighting effects like global illumination. Like the Reflection
Cube Map, the Irradiance Volume can serve as a backup for filling the gaps
with screen space effects, and it also must be baked to be of use. When you
add an Irradiance Volume light probe, you get a box filled with a grid of
sample points. That box and grid are the sample points and area of influence
for the Irradiance Volume.

Earlier in this chapter, I hint that it’s possible to use mesh lights with Eevee, but
it is a little complicated to set up. Light probes are how you use mesh lights in
Eevee.

Figure 10-21 shows each kind of light probe along with its basic settings in Object
Data Properties.

FIGURE 10-21:
From left to right,

the Reflection
Cube Map,

Reflection Plane,
and Irradiance

Volume light
probes.

330 PART 2 Creating Detailed 3D Scenes

To use any of the light probes, the steps are basically the same:

1. Add the light probe to your scene (Add ➪ Light Probe ➪ [your choice of
light probe]).

2. Use Blender’s transform tools to move and rotate the light probe into place.

3. Use the controls in Object Data Properties to refine control of your light
probe’s influence area.

The Falloff value is particularly useful for determining how the light probe’s
influence area fades away over space. If you’re working with an Irradiance
Volume, you should pay a lot of attention to the X, Y, and Z resolution values.
The higher you make these values, the slower your next step will be.

4. Bake your indirect lighting if you’re using a Reflection Cube Map or an
Irradiance Volume.

See the next section for more details on baking indirect lighting from your light
probes.

After you add your light probes with the preceding steps (and bake, if necessary),
you’re ready to render your scene (see Chapter 16).

Baking from your light probes
Light probes are a common trick used in video game render engines because they
have the advantage of pre-computing some of your lighting. That computation is
saved as a light cache by a process called baking. If you’re only using a Reflection
Plane light probe, then you don’t need to worry about baking. Reflection Plane
data is generated on the fly. However, for Reflection Cube Maps and Irradiance
Volumes, you need to bake before they’re of any use to you.

To bake the indirect lighting captured by your light probes, go to Render Properties
and expand the Indirect Lighting panel. You should see something similar to
what’s shown in Figure 10-22.

The following are the settings you should pay the most attention to in this panel:

 » Auto Bake: Enable this check box to automatically re-generate your light
cache any time you modify one of your light probes. It’s handy when you’re
setting up light probes but can slow down your workflow if you have it
enabled for other steps in your process.

 » Diffuse Bounces: Just like with Cycles, the more bounces you have, the more
accurate your light cache is going to be. But the trade-off is that the baking
process takes longer as well.

CHAPTER 10 Lighting and Environment 331

 » Cubemap Size: Basically, a cube map is just a fancy kind of texture, kind of
like a shadow map. This value controls the size of the cube map in the same
way. If your reflections or indirect lighting looks a little jagged at the edges or
otherwise appears to be low resolution, try bumping up this value. For the
most efficient use of memory, it’s recommended to make this value a power
of 2 (for example, 512px, 1024px, 2048px, and so on).

 » Diffuse Occlusion: Irradiance Volumes contribute light to your scene. Like most
things that generate light in Eevee, there’s the chance that it could contribute to
light leakage on indoor scenes. To combat these leaks, each irradiance sample
also stores a shadow map. The Diffuse Occlusion value defines the size of those
shadow maps. Larger sizes should help reduce leaks, but will make baking slower.

Once you’re happy with the configuration parameters you choose, it’s time to get
to baking. Baking is performed with one of the two buttons at the top of the
Indirect Lighting panel:

 » Bake Indirect Lighting: If you have an Irradiance Volume light probe in your
scene or a mix of Irradiance Volumes and Reflection Cube Map probes, then
this is the button you want to click. When you click this button, Blender bakes
the whole light cache for you.

FIGURE 10-22:
The Indirect

Lighting panel
in Render

 Properties is
where you bake
indirect lighting

data captured by
your light probes.

332 PART 2 Creating Detailed 3D Scenes

 » Bake Cubemap Only: If you don’t have any Irradiance Volumes in your scene,
then you can click the Bake Cubemap Only button. This choice usually results
in a finished bake a bit sooner because it doesn’t have to account for all the
bounced light in your scene.

Baking is meant to happen just once before you start rendering. So if you find
yourself coming back to a file and making changes to it, you should probably click
the Delete Lighting Cache button and re-bake your light cache so all your changes
are accounted for prior to rendering.

Understanding the limitations
of light probes
Although light probes are a fantastic tool for getting impressive results with
Eevee, you’re not always going to get renders as accurate as those generated by
Cycles. One of the biggest limitations you might discover is when animating. If
you’ve got reflections or bounced light in your scene, and something moves, then
the light cache needs to be re-baked to account for that change. Unfortunately, as
of this writing, there’s currently no easy way (outside of a Python script) to update
and re-bake your light cache with each frame change. That means that unless
you’re really clever about your usage of light probes, you’re going to see inaccu-
rate lighting and reflections when you animate. The first frame of your animation
will look fine, but subsequent frames will likely be inaccurate.

Another thing to pay attention to is the size of your light probes and their general
coverage area. For example, if you place a Reflection Plane in a spot other than
your mirror object or if it’s rotated slightly differently, you may end up with some
distorted-looking reflections. Of course, if you’re building a carnival funhouse
scene, that might be exactly what you want. But outside of that somewhat
limited-use case, you should probably have it match your mirror’s placement,
size, and orientation.

And you should remember that every light probe you add to your scene can give
you slower render times. So don’t flood your scene with Irradiance Volumes and
Reflection Cube Maps without due consideration.

Don’t let this section get you down, though. There’s still some incredible results
that you can get in Eevee by making smart choices with light probes and mixing
them with Eevee’s wonderful screen space effects.

3Get Animated!

IN THIS PART . . .

Constraining objects

Using shape keys, hooks, and armatures

Animating rigged characters

Simulating physics

Drawing and animating in 3D space

CHAPTER 11 Animating Objects 335

Chapter 11

Animating Objects

I
have to make a small admission: Animation is not easy. It’s time consuming,
frustrating, tedious work where you often spend days, sometimes even weeks,
working on what ends up to be a few seconds of finished animation. An

enormous amount of work goes into animation. However, there’s something
incredible about making an otherwise inanimate object move, tell a story, and
communicate to an audience. Getting those moments when you have beautifully
believable motion — life, in some ways — is a positively indescribable sensation
that is, well, indescribably positive. Animation, and the process of creating
animation, truly has my heart more than any other art form. It’s simply my
favorite thing to do. It’s like playing with a sock puppet, except better because you
don’t have to worry about wondering whether or not it’s been washed.

This chapter, as well as the rest of the chapters in Part 3, go pretty heavily into the
technical details of creating animations using Blender. Blender is a great tool for
the job. Beyond what this book can provide you with, though, animation is about
seeing, understanding, and re-creating motion. I highly recommend that you
make it a point to get out and watch things. And not just animations! Go to a park
and study how people move. Try to move like other people move so that you can
understand how the weight shifts and how gravity and inertia compete with and
accentuate that movement. Watch lots of movies and television and pay close
attention to how people’s facial expressions can convey what they’re trying to say.
If you get a chance, go to a theater and watch a play. Understanding how and why
stage actors exaggerate their body language is an incredibly useful tool for an
animator.

IN THIS CHAPTER

 » Using the Graph Editor

 » Putting constraints on objects and

taking advantage of these

constraints

 » Practicing with animation

336 PART 3 Get Animated!

While you’re going out there seeing the world like an animator, think about how
you can use the technical information in these chapters to re-create those feelings
and that motion with your objects in Blender.

Working with Animation Curves

In Blender, the fundamental way for controlling and creating animation is with
animation curves called f-curves. F-curve is short for function curve, and it describes
the change, or interpolation, between two key moments in an animated sequence.

To understand interpolation better, flash back to your grade school math class for
a second. Remember when you had to do graphing, or take the equation for some
sort of line or curve and draw it out on paper? By drawing that line, you were
interpolating between points. Don’t worry though; I’m not going to make you do
any of that. That’s what we have Blender for. In fact, the following example shows
the basic process of animating in Blender and should help explain things more
clearly:

1. Start in Blender with a new General start file (File ➪ New ➪ General).

2. Select the default cube object and switch to the camera view by clicking

the camera icon in the upper right of the 3D Viewport.

3. Split the 3D Viewport horizontally and change one of the new areas to

the Graph Editor (Shift+F6).

I like to make the lower one the Graph Editor because it’s right above the

Timeline in the Layout workspace.

4. In the 3D Viewport, make sure that the default cube is selected and

choose Object ➪ Animation ➪ Insert Keyframe ➪ Location (you can also
use hotkeys for faster access by pressing I ➪ Location).

This step sets an initial location keyframe for the cube. I give a more detailed

description of keyframes later in the chapter in the “Inserting keys” section. The

important thing to notice is that the left region of the Graph Editor is now

updated and shows a short tiered list with the items Cube, CubeAction, and

Object Transforms.

5. Move the Timeline forward by pressing → a handful of times.

I’d suggest moving forward about ten frames or so. You can tell what frame

you’re on in the 3D Viewport by looking in the upper left corner next to the tool

buttons. The second line of text there should say something like (10)

Collection | Cube. The number in parentheses is your current frame.

CHAPTER 11 Animating Objects 337

6. Grab the cube in the 3D Viewport and move it to another location in

the scene.

You can either use the Move tool or use the G hotkey to immediately start

moving the cube without the need of a transform gizmo.

7. Insert another keyframe (I ➪ Location) in the 3D Viewport.

A set of colored lines appears in the Graph Editor. These colored lines are f-curves.

Each f-curve represents a single attribute, or channel, that’s been animated. If you

expand the Object Transforms block in the Graph Editor by clicking the triangle on

the left side of its name, you can see the three location channels: X Location,

Y Location, and Z Location. To see the actual curves a little bit better, move your

mouse to the large graph section of the Graph Editor and press Home. Your

Blender screen should look something like the one in Figure 11-1.

Congratulations! You just created your first animation in Blender. Here’s what you
did: The largest part of the Graph Editor is a graph (go figure!). Moving from left
to right on this graph — its X-axis — is moving forward in time. The vertical axis
on this graph represents the value of whatever channel is being animated. So the
curves that you created describe and control the change in the cube’s location in
the X-, Y-, and Z-axes as you move forward in time. Blender creates the curves by
interpolating between the control points, called keys, that you created.

FIGURE 11-1:
Animating

the location of

the default

cube object.

338 PART 3 Get Animated!

You can see the result for yourself by playing back the animation. Click the Play
button in the Timeline (alternatively, you can press Spacebar from just about
anywhere in Blender’s interface). A green vertical line, called the timeline cursor,
moves from left to right in the graph. As the timeline cursor moves between your
keyframes, you should see your cube move from the starting point to the ending
point you defined in the 3D Viewport.

To stop the playback, you can either press Spacebar again or you can press Esc. If you
press Spacebar, the timeline cursor stops in place. If you press Esc to stop, the timeline
cursor jumps back to the frame you were on when you first started playing. You can
watch the animation in a more controlled way by scrubbing in the Graph Editor or
Timeline. If you look at the top of each of these editors, you should see a slightly
darker region with numbers running horizontally; this is the scrubbing region. To
scrub, left-click in the scrubbing region of either the Graph Editor or Timeline and
drag your mouse cursor left and right. The timeline cursor follows the location of
your mouse pointer, and you can watch the change happening in the 3D Viewport.

Customizing your screen
layout for animation

There is a workspace in Blender specifically set up for animation named —
conveniently — Animation. You can choose it from the workspaces tabs at the top of
the Blender window or by pressing Ctrl+ Page Up or Ctrl + Page Down until you land on
the Animation tab. Figure 11-2 shows the default Animation workspace in Blender.

FIGURE 11-2:
Blender’s

Animation

workspace is an

excellent place to

animate.

CHAPTER 11 Animating Objects 339

This workspace isn’t too dissimilar from the Layout workspace (especially
compared to the changes you made in the preceding section), but it does have a
few differences. In particular, the 3D Viewport is split to show, on the left, a
camera view of your scene with all the non-renderable elements turned off, giving
you a clean preview of your animation. The Timeline is compressed at the bottom
of the window, so all you see are the playback buttons in its header, and above the
Timeline is a Dope Sheet editor. (For a full reminder of what each editor does,
refer to Chapter 1.)

You may be wondering, however, why this workspace has the compressed Timeline
and why it’s missing the Graph Editor. The quick answer is that there’s a particular
workflow that works well in Blender for animation, and you shouldn’t really need
all the different editors visible at the same time. For example, the Timeline and
the Dope Sheet have very similar high-level visibility of your animation, and
because all three of these animation editors have the same scrubbing ability, you
only really need the playback buttons from the Timeline. You might be thinking,
“But you still haven’t explained why the Graph Editor is missing!” That’s because
it isn’t missing. It’s just not as necessary when you begin an animation.

To understand what I mean, it’s helpful to understand the general workflow for
animation. Generally speaking, when you animate you work in multiple passes,
focusing on more detailed movement (and nuances within that movement) with
every iterative pass. The basic passes are as follows:

1. Planning: This step is frequently done outside of Blender, often with traditional

pen and paper. You create a series of drawings that show the key shots in your

animated sequence, called a storyboard. With a storyboard complete, you have

a much clearer understanding of what’s going to happen in your animation.

You can take the images of your storyboard and assemble them sequentially in

a video editor (or Blender’s Video Sequencer — see Chapter 17 for more on the
Video Sequencer) to create a moving storyboard, called an animatic. I have

even used Blender’s Grease Pencil objects to create animatics so I have my

planning reference right there in the 3D Viewport (see Chapter 15 for more on
using Grease Pencil).

2. Blocking: With your plan in place, the next step is blocking, where you rough

out the biggest movements in your animated sequence. The majority of your

time for this step is spent in the 3D Viewport getting things positioned correctly

for each major keyframe. The rest of your time is spent in the Dope Sheet,

getting the rough timing correct by sliding those keyframes forward and

backward in time.

3. Refining: With your blocking pass complete, your next step is refining your

animation. This is the step where you add the little bits of secondary

movement that really push life into the objects you’re animating. You’re still

340 PART 3 Get Animated!

spending a lot of time in the 3D Viewport to work on those keyframes; you’re

just keying more things and adding more in-between keys to get that refined
movement. And again, you’re spending the rest of your time in the Dope Sheet

where you can adjust the timing on your actions. Often you will have multiple

refining passes before you’re really happy with the results.

4. Final Polish: It’s in final polish where you’re going to get the most use of the

Graph Editor. This step is where you focus on the nuanced changes between

frames. Your focus is tweaking the rate of change, how quickly or slowly the

movement happens from one keyframe to the next. For that process, you

don’t have as much need for the Dope Sheet, so you can swap that editor in

the Animation workspace with a Graph Editor and continue working until

you’re done. Even though this is the final step in the animation process, you
often end up spending a lot of your time here.

If you’re coming to Blender from another 3D animation package, this approach
might seem a bit alien to you. Animators in other software often focus on working
exclusively in the Graph Editor. Part of that is because as much as 80 percent of
your time as animator is spent in final polish (especially if someone else is doing
the planning step). However, another reason, in my opinion, is that the developers
of those other packages focused the majority of their attention on the Graph Edi-
tors, so their equivalent of the Dope Sheet simply isn’t as pleasant to work in as
Blender’s. And for that reason, many animators choose to spend their time in the
Graph Editor in other applications where the more developed tools reside. There’s
nothing wrong with that workflow, of course, but with all the curves visible in the
Graph Editor (regardless of how nice the Graph Editor is), it’s often difficult to get
a nice high-level understanding of your animation’s timing. So it’s really benefi-
cial to become friends with the Dope Sheet.

That said, this chapter focuses mostly on the Graph Editor because, if you’re just
starting as an animator, it’s helpful to have a visual indicator that something is
changing between keyframes, even if you don’t know the best way to change
them. The f-curves between your keyframes in the Graph Editor serve this pur-
pose really well, and should help you get a better understanding of how things
work in computer animation more quickly. If you want more on the Dope Sheet,
have a look in Chapter 13.

Inserting keys

Instead of Ctrl+right-clicking in the Graph Editor to add control points to a spe-
cific f-curve, you have another, more controlled option. Blender also uses
a workflow that’s a lot more like traditional hand-drawn animation. As covered

CHAPTER 11 Animating Objects 341

a little earlier in this chapter, in traditional animation, a whole animated sequence
is planned out ahead of time using a script and storyboards (drawings of the major
scenes of the animation, kind of like a comic book, with arrows to indicate camera
direction or character movement). Then an animator goes through and draws the
primary poses of the character. These drawings are referred to as keyframes, or
keys. They’re the poses that the character must make to most effectively convey
the intended motion to the viewer. With the keys drawn, they’re handed off to a
second set of animators called the inbetweeners. These animators are responsible
for drawing all the frames between each of the keys to get the appearance of
smooth motion.

Translating the workflow of traditional animation to how you do work in Blender,
you should consider yourself the keyframe artist and Blender the inbetweener (at
least to start). On a fully polished animation, it isn’t uncommon to have some kind
of key on every frame of animation. In the quick animating example at the begin-
ning of this chapter, you create a keyframe after you move the cube. By interpolat-
ing the curve between those keys, Blender creates the in-between frames. Some
animation programs refer to the process of having software create these
in-between frames as tweening.

CREATING THE ILLUSION OF MOTION
WITH STATIC IMAGES
To effectively do animation, you really need a firm grasp on how moving pictures work.
This is the fundamental basis of animation, film, television, and even video games.
Without getting into the complex details of psychology and neuroscience, the basics are

this: humans perceive movement as the apparent difference in what we see at two rela-

tively close moments in time.

If you have two images of the same object in different positions, you can create the illu-

sion that the object moves between positions by swapping between those images very

quickly. Now chain a series of those images together and show them in quick succes-

sion. Each image is visible only for a fraction of a second before the next one appears.

This rapid swapping of images tricks our minds into seeing movement on the screen.

Who said science isn’t fun?

342 PART 3 Get Animated!

To have a workflow that’s even more similar to traditional animation, it’s
preferable to define your keyframes in the 3D Viewport. Then you can use the
Graph Editor to tweak the change from one keyframe to the next. And this
workflow is exactly the way Blender is designed to animate. Start in the 3D
Viewport by pressing I to open the Insert Keyframe menu (you can also choose the
slower route of choosing Object ➪ Animation ➪ Insert Keyframe). Through this
menu, you can create keyframes for the main animatable channels for an object.
I describe the channels here in more detail:

 » Available: If you already inserted keys for some of your object’s channels,

choosing this option adds a key for each of those preexisting curves in the

Graph Editor. If no curves are already created, no keyframes are inserted.

Once you start animating, this is often a really good shortcut to have.

 » Location: Insert a key for the object’s X, Y, and Z location.

 » Rotation: Insert a key for the object’s rotation in the X-, Y-, and Z-axes.

 » Scaling: Insert a key for the object’s scale in the X-, Y-, and Z-axes.

 » LocRot/LocRotScale/LocScale/RotScale: Insert keyframes for various

combinations of the previous three values.

 » Visual Location/Rotation/LocRot/LocRotScal/LocScale/RotScale: Insert

keyframes for location, rotation, or both, but based on where the object is

visually located in the scene. These options are explicitly made for use with

constraints, which I cover later in this chapter in “Using Constraints

Effectively.”

 » Delta Location/Rotation/Scale: The preceding keying options use absolute

coordinates for keying animations. Delta keys, however, use coordinates

relative to your object’s current location, rotation, and scale. Delta keys can be

useful if you want to have many objects with the same animation, but starting

from different origin points. Of course, if you choose Available after choosing
Delta keys, Blender is smart enough to know that you want to use relative

coordinates rather than absolute ones.

Here’s the basic workflow for animating in Blender:

1. Insert an initial keyframe (I or Object ➪ Animation ➪ Insert Keyframe).

A keyframe appears at frame 1 in your animation (assuming you’re at frame 1
when you insert your keyframe).

2. Move forward ten frames (press → ten times).

This puts you at frame 11. Of course, when doing a real animation, your keys

aren’t always going to be ten frames apart, but this is a good way to rough in

your keys. You can go back later and adjust your timing from the Dope Sheet

CHAPTER 11 Animating Objects 343

or Graph Editor. To move forward or back one frame at a time, use the ←

and → keys. Of course, you can also use the Timeline, Graph Editor, or Dope

Sheet to change what frame you are in.

3. Grab your object and move it to a different location in 3D space using the
Move tool.

Again, this example is assuming that you’re animating your object’s location.

4. Insert a new keyframe (I).

Now you should have curves in the Graph Editor that describe the motion of

the cube.

You can insert keys in an easier way using a feature called Autokey. Like its name
indicates, Autokey automatically creates keys when you make changes in your
scene. To enable the Autokey feature, look in the Timeline. To the left of the play-
back controls in the Timeline’s header is a button with a circle icon on it, like the
Record button on a DVR. Left-click it to activate Autokey. Now you can simply use
the transform tools in the 3D Viewport as you move forward in time and key-
frames are automatically inserted for you. Pretty sweet, huh?

By default, Blender uses the LocRotScale keying set (there’s more on keying sets
later in this chapter) for inserting keyframes when Autokey is enabled. This is
worth noting because, if you’re not careful, Autokey can insert keyframes that are
unnecessary or (worse) not wanted. It’s for this reason that when I use Autokey,
I like to insert my initial keyframes manually and then use the Available keying
set for autokeying. The next section covers keying sets and how to choose which
one you’re animating with.

A really cool feature in Blender is the concept of “[almost] everything animat-
able.” You can animate nearly every setting or attribute within Blender. Want to
animate the skin material of your character so that she turns red with anger? You
can! Want to animate the Count attribute in an Array modifier to dynamically add
links to a chain? You can! Want to animate whether your object appears in wire-
frame or solid shading in the 3D Viewport? Ridiculous as it sounds, that, too, is
possible!

So how do you do this miraculous act of animating any attribute? It’s amazingly
simple. Nearly every text field, value field, color swatch, drop-down menu, check
box, and radio button is considered a property and represents a channel that you
can animate. If you look to the right of any of these fields, you should see a small
circular dot. Click that dot and it changes to a larger diamond shape as shown to
the left. When you do that, the field next to your once-circle-now-diamond icon
should change color, indicating that you’ve just set a keyframe for that value. You
can also insert a keyframe for a property by right-clicking it and choosing Insert

344 PART 3 Get Animated!

Keyframes from the menu that appears. Figure 11-3 shows what this menu looks
like. If the property is already keyed on the current frame, the right-click menu
says Replace Keyframes.

Whether you use the keyframe icon or right-click the property, after you insert a
new keyframe for that property, its color changes to yellow (in the default theme),
and a channel for that property is added in the Graph Editor and Dope Sheet. When
you scrub forward or backward in time, the color of the control changes from
yellow to green and the diamond icon changes from solid-filled to just an outline.
The green color and different icon indicate that the property is animated, but
you’re not currently on one of its keys. Insert another keyframe for that property,
and BAM! The field’s color turns to yellow, the diamond fills in again, and you
now have two keyframes for your animated property.

For an even faster way to insert keyframes on properties, hover your mouse over
the property and just press I. This trick even works on the renderability icons
(known as the restrict columns) in the Outliner if you make them visible. How’s that
for awesome?

If you want to insert keyframes on multiple properties at the same time (such as
the aforementioned restricted columns in the Outliner), keep holding the I hotkey
as you run your mouse cursor over those properties. There you go. One key press,
many keyframes. An extremely talented Blender animator I know likes to call this
“painting Blender yellow.”

FIGURE 11-3:
Right-click any

property in the

Properties editor

to insert a

keyframe for it.

CHAPTER 11 Animating Objects 345

Working with keying sets

When working on an animation, you can easily find yourself inserting keyframes
for a bunch of different channels and properties at the same time. The trouble-
some thing is that, on a complex scene, these properties can be located all over
Blender’s interface. Sure, you can insert keys for an object’s location, rotation,
and scale by pressing I in the 3D Viewport, but you may also need to key that
object’s visibility from the Outliner, the influence of a constraint in Constraint
Properties, and the object’s material color from the Shader Editor. They’re all over
the place! It wouldn’t be difficult at all to overlook one while you work, resulting
in an animation that doesn’t quite behave the way you want it to.

This load can be lightened by using more advanced rigging features (see
 Chapter 12), but even that doesn’t really solve it. A complex character rig can have
hundreds of bones and controls to animate. Manually keeping track of all of them
for multiple characters in a scene can be a nightmare. (I know. I’ve tried. We all
have, at least once.)

You know what would be really nice? It would be great if you could make a custom
group of a bunch of properties so you can insert a keyframe for all of them at the
same time, kind of like the LocRotScale option when you press I in the 3D View-
port. Well, guess what? That exact feature exists in Blender. It’s called a keying set.

Actually, the LocRotScale option is a keying set. It’s one of a handful of preconfig-
ured keying sets that ship with Blender. In fact, all the options in the Insert Key-
frame menu (I) are keying sets.

Using keying sets

To use keying sets, start with a look at the left side of the Timeline’s header. The
first button after the Editor Type menu is the Playback rollout. For the time being,
you don’t need to worry about the content of this rollout. The one you are interested
in, however, is the next one, the Keying rollout. Click this button and you should
see a rollout like the one shown in Figure 11-4.

For keying sets, the first row in this rollout is the most relevant. The Keying
rollout contains three widgets for working with keying sets:

 » Active keying set: The field for this drop-down menu is empty by default.
Left-click it to choose one of the available keying sets to be your active one.

If you have an active keying set, you can make this field empty again by
left-clicking the X to the right of your keying set’s name.

346 PART 3 Get Animated!

 » Insert keyframes: Left-click this button to insert a keyframe at the current

frame on the Timeline for every property in the current active keying set. If

you don’t have an active keying set, a little error pops up to let you know.

 » Remove keyframes: Left-click this button to remove any keyframes from the

current frame that belong to any properties in the active keying set.

If you don’t have any keys on the current frame, this button doesn’t do anything.

To quickly choose an active keying set from the 3D Viewport, use the Ctrl+Shift+Alt+I
hotkey combination.

When you choose a keying set, Blender gives preference to the properties in that
keying set when you insert keyframes. This means that with an active keying set
chosen, you don’t get the Insert Keyframe menu if you press I in the 3D Viewport.
Blender just quietly inserts keyframes for all the properties in your chosen keying
set. This lack of immediate feedback may be disorienting at first, but it makes for
a very fast, distraction-free workflow for animating. Also, as mentioned earlier in
this chapter, if you have Autokey enabled, it uses the active keying set. If you don’t
have an active keying set chosen, Autokey defaults to using the LocRotScale
keying set.

Creating custom keying sets

The preconfigured keying sets that come with Blender are handy, but it’s also
useful to define your own keying sets (especially as your animations become more
complex). Keying sets aren’t character or object-specific, so they apply to your
whole scene. This means you can use a keying set to insert keyframes for a whole
group of characters all at the same time if you want.

FIGURE 11-4:
The Timeline’s

Keying rollout has

controls for

choosing your

active keying set

and inserting

keyframes within

that keying set.

CHAPTER 11 Animating Objects 347

Because keying sets are relevant to your whole scene, you can create your custom
keying sets from the Scene tab in the Properties editor, in the Keying Sets panel.
Follow these steps to create a new keying set and populate it with properties to
keyframe:

1. In the Keying Sets panel, left-click the Plus (+) button to the right of the
keying set list box.

The whole panel should expand with a whole host of new parameters and

options you can adjust. The original empty listbox in the panel should be

populated with a single entry, named Keying Set.

2. Adjust your new keying set’s settings.

Double-click its name in the listbox to rename it to something other than the

generic Keying Set that you get by default. You can use the Description text

field to write a few words that explain the purpose of your custom keying set.

The Keyframing Settings sub-panel contains three toggleable settings under

the label of General Override:

• Needed: Enable this option to avoid adding extraneous keyframes to your

animation. If you have a hold, where you’ve set two keyframes and there’s

no change between them, then as long as that property doesn’t change, it

doesn’t make sense to add more keyframes within that hold. So by

enabling the Needed override, Blender adds keyframes only to the

properties that change within a hold. If the property didn’t change, no

keyframe is inserted, regardless of whether you’ve pressed I in the 3D

Viewport.

• Visual: As covered earlier in this chapter, visual transforms are the location,

rotation, and scale of your object as they appear onscreen, including

changes made by constraints. Enable this option and all inserted key-

frames in this keying set will use visual transforms for keying.

• XYZ to RGB: This option is enabled by default. It dictates that any new

f-curves use red, green, and blue for X-, Y-, and Z-axis channels.

You may notice that there are actually two toggle buttons next to each of these
General Override options. One is the familiar check box, and the other has an icon
that looks like a pen over a target. Enable this toggle button to ensure that the
associated property overrides the default keying settings in Blender (set in
Edit ➪ Preferences within the Animation section) for cases where the check box is
in the on or off state. It’s a pretty confusing toggle to think about. In most cases,
if you want to enable the check box for the property this toggle is associated with,
you should enable the default override toggle as well. There’s more on overrides a
little bit later in this chapter.

348 PART 3 Get Animated!

Figure 11-5 shows the Keying Sets panel with a few custom keying sets added in
the list box.

Left-clicking a keying set in the list box of the Keying Sets panel automatically
makes that keying set the active one.

At this point, you’ve created your custom keying set, but it’s an empty container.
You haven’t assigned any properties to it. To add, edit, and remove properties
from your active keying set, you need to use the Active Keying Set sub-panel in
Scene Properties. It appears within the Keying Sets panel when you have a custom
keying set selected in the list box.

To add a new property to your custom keying set, you need to tell Blender where
to find that property. You must give Blender that property’s path, or the way to
navigate through your .blend file’s internal structure to your property. It’s cer-
tainly possible (and sometimes necessary for more obscure properties) to manu-
ally add new paths from the Active Keying Set panel by left-clicking the Plus (+)
button next to the Paths list box and get more specific from there. However, that
can be an excruciatingly tedious process, even if you have a strong working knowl-
edge of .blend file innards.

FIGURE 11-5:
The Keying Sets

panel is where

you add new

custom keying

sets.

CHAPTER 11 Animating Objects 349

There’s a better, easier way to populate your keying set. Rather than go about the
painful, manual way, follow these steps:

1. In Blender’s interface, find the property you want to add to your
keying set.

This could be the material color of your object, just its Y-axis rotation, or its

renderability in the Outliner. It can be any property that’s capable of being

keyframed.

2. Right-click the field, button, or check box for that property.

Among all the various options available in the menu that appears, there should

be either two or three menu items specific to keying sets:

• Add All to Keying Set: If your chosen property is one of a block of

properties (such as X, Y, and Z scale), this option can add all the properties

in that block to your custom keying set. If the property isn’t part of such a

block, this option doesn’t appear in the menu.

• Add Single to Keying Set: Choose this option to add just the property that

you’ve right-clicked to your keying set.

If the property isn’t part of a block of properties, then this menu item reads

as Add to Keying Set.

• Remove from Keying Set: If the property in question already is in your

active keying set, you can choose this option to quickly remove it.

3. Add the property to your active keying set by left-clicking one of the Add

to Keying Set menu items described in the previous step.

Your chosen property is now a member of the active keying set. You can verify

that it’s there by looking at the Paths list box in the Active Keying Set sub-panel

of the Keying Set panel in Scene Properties. Figure 11-6 shows the Active
Keying Set panel with a few paths added.

At the bottom of the Active Keying Set sub-panel is a drop-down menu labeled
F-Curve Grouping. This drop-down menu dictates how animation channels are
grouped in the Dope Sheet and Graph Editor. You have three choices:

 » Keying Set Name: This is the default setting. Animation channels in the Dope

Sheet and Graph Editor are grouped according to the name of your keying set.

It generally works well, but if you have a lot of properties in your keying set,

this can make that grouping seem a bit like a grab bag of animated properties.

 » None: You have the option of not grouping the properties in your keying set

at all. This can lead to pretty messy animation editors, so it isn’t an option

you’ll choose often, but it’s nice to know it’s available.

350 PART 3 Get Animated!

 » Named Group: This is a very powerful option for organizing a large keying

set. If you choose Named Group as your method for f-curve grouping, a text

field labeled Group Name appears below the drop-down menu. Type the
name of a group in that field. Now, if you choose another property in your
keying set and type the exact same group name, both properties are collected

together in the Dope Sheet and Graph Editor. As covered in Chapter 12, this is
extremely useful for complex character rigs.

You may notice in Figure 11-6 that, like the Keying Sets panel, the Active Keying
Set sub-panel features the same three buttons for Keyframing Settings, only now
they’re doubled. You have one set under the label of General Override and another
under the label of Active Set Override. By adjusting these settings in the Active
Keying Set panel, you override the global Keyframing Settings as defined in the
Keying Sets panel, but just for that property.

The override behavior in the Active Keying Set panel works only in an additive
way. That is, if you have Needed disabled as a General Override, enabling it for a
specific property as an Active Set Override will override as expected. However, if
that same option is enabled as a General Override, currently there isn’t a clean
way to do an override that disables it for individual properties in the keying set.

FIGURE 11-6:
The properties of

your active keying

set are listed in

the Active Keying

Set panel of

Scene Properties.

CHAPTER 11 Animating Objects 351

Working in the Graph Editor

After you’ve added keyframes to your scene, the next logical step is to tweak, edit,
and modify those keyframes. As I cover in preceding sections of this chapter, you
can use the Timeline and Dope Sheet to adjust your general timing (and there’s
more on that in Chapter 13). But once you’ve blocked and refined your animation,
the next step is the final polish, focusing on the interpolation between keyframes.
That editing is done in the Graph Editor.

Working in the Graph Editor is very similar to working in the 3D Viewport.
Table 11-1 describes the basic controls available in the Graph Editor.

TABLE 11-1	 Basic controls in the Graph Editor

Navigation

Middle-click+drag Moves around your view of the graph.

Ctrl+middle-click+drag Allows you to interactively scale your view of the curve horizontally and
vertically by moving the mouse vertically or horizontally. Diagonal mouse
movement adjusts in both directions at the same time.

Scroll your mouse wheel Zooms in and out.

Shift+scroll Moves the graph vertically.

Ctrl+scroll Moves the graph horizontally.

Editing

Left-click Selects individual f-curve control points.

Ctrl+right-click Allows you to arbitrarily add points to a selected f-curve in the graph.
Anywhere you Ctrl+right-click in the graph, a new control point is added to
the selected channel.

Left-click and drag in the
graph area

Box Select (pressing B also works).

A Selects all control points.

Alt+A Deselects all control points.

Region Controls

Left-click and drag in the
scrubbing area

Moves the time cursor.

N Hides and reveals the Graph Editor’s Sidebar (similar to the Sidebar in the
3D Viewport).

Left-click a channel in the
left region of the Graph
Editor

Selects the channel. You may need to expand the blocks in this region to drill
down to the actual animation channels (such as X Location, Y Location, and
Z Location).

352 PART 3 Get Animated!

The Graph Editor also has some handy keyboard shortcuts for hiding and reveal-
ing channels. They’re particularly useful when you want to manage a complex
animation with a lot of keyframes and channels. If you select one or more
keyframes, you can use any of these hotkeys:

 » H hides the channels that the selected keyframes belong to.

 » Shift+H hides all channels except for the ones where you’ve selected a

keyframe.

 » Alt+H reveals (“unhides”) all animation channels in the Graph Editor.

You can also click the eye icon to the left of each channel to selectively hide or
unhide its curve from the Graph Editor.

Editing motion curves

The similarities with the 3D Viewport go even further than those described in the
previous section. Not only can you select those control points in the Graph Editor,
but you can edit them like you would edit a 2D Bézier curve object in the 3D
Viewport. The only constraint is that f-curves can’t cross themselves. Having a
curve that describes motion in time do a loopy-loop doesn’t make any sense.

For more detailed descriptions of the hotkeys and controls for editing Bézier
curves in Blender, see Chapter 7. Selecting and moving control point handles, as
well as the changing handle types by pressing V all work as expected (if you want
to change handle types using the menus in the Graph Editor rather than the
hotkey, choose Key ➪ Handle Type). However, because these curves are specially
purposed for animation, you have a few additional controls over them. For
example, you can control the type of interpolation between control points on a
selected curve by pressing T or choosing Key ➪ Interpolation Mode in the Graph
Editor’s header menu. You get the following choices:

 » Interpolation: These three options control the general interpolation from the

current keyframe to the next, and they’re the ones you’ll use most frequently

as an animator.

• Constant: This option is sometimes called a step function because a series

of them look like stair steps. Basically, this interpolation type keeps the

value of one control point until it gets to the next one, where it instantly

changes. Many animators like to use this interpolation mode when

blocking out their animations. This way, they can focus on getting their

poses and timing right without the distraction of in-between frames.

CHAPTER 11 Animating Objects 353

• Linear: The interpolation from one control point to the next is an

absolutely straight line. This option is similar to changing two control

points to have Vector handles.

• Bézier: The default interpolation type, Bézier interpolation smoothly

transitions from one control point to the next. In traditional animation, this

smooth transition is referred to as easing in and easing out of a keyframe.

Of course, you can always edit the control handles on your Bézier

animation curve to customize that behavior to something else.

 » Easing (by strength): The interpolation options in this column are preset,

mathematically defined interpolation methods. You can get the same curve
profile by manually editing the handles of a curve with Bézier interpolation,
but these easing presets are a faster way of getting the same result.

 » Dynamic Effects: When things move in meatspace, there isn’t always a

smooth transition from one pose to the next. When you drop a ball to the

ground, it bounces. When you slam on the brakes while driving, the car

over-extends, lurching forward before settling back to rest. In many cases, you

can (and should) animate this behavior by hand. However, in a pinch, these

three Dynamic Effects interpolations can give you a great starting point:

• Back: In this interpolation type, the curve “overshoots the mark” set by the

keyframe before settling back where you want it. To see what this effect is
like, try slapping the surface of a table, but stopping just before your hand

makes contact. If you watch carefully, you should notice that your hand

goes a bit farther than you want it to before it finishes moving.

• Bounce: The Bounce interpolation is a fun one. It makes your object

appear to bounce before coming to a rest.

• Elastic: Have you ever seen an over-extended rubber band break in half?

The loose ends flop all over the place before they stop moving. The Elastic
interpolation mode gives your object this kind of effect, like it’s stuck to the
floppy end of one of those broken rubber bands.

Figure 11-7 shows the Keyframe Interpolation menu.

FIGURE 11-7:
Changing the

interpolation type

on selected

f-curve control

points.

354 PART 3 Get Animated!

The interpolation mode options work only on the selected control points in the
Graph Editor, so if you want to select all the control points in a single f-curve,
select one of those control points and press L or choose Select ➪ Select Linked in
the Graph Editor’s header menu. Then you can apply your interpolation mode to
the entire curve.

You can also change what a selected f-curve does before and after its first and last
keyframes by changing the curve’s extrapolation mode. You can change a curve’s
extrapolation mode by selecting an f-curve channel in the left region of the Graph
Editor and then pressing Shift+E or choosing Key ➪ Extrapolation Mode in the
Graph Editor’s header menu. When you do, notice four possible choices:

 » Constant Extrapolation: This setting is the default. The first and last control
point values are maintained into infinity beyond those points.

 » Linear Extrapolation: Instead of maintaining the same value in perpetuity

before and after the first and last control points, this extrapolation mode
takes the directions of the curve as it reaches those control points and

continues to extend the curve in those directions.

 » Make Cyclic (F-Modifier): This option adds an f-curve modifier (covered in
the next section of this chapter) that takes all the keyframes in your animation

and repeats them before and after your first and last keyframes.

If you have a looping animation, like a character who never stops waving at

you, this option is an easy way to make that happen.

 » Clear Cyclic (F-Modifier): If your f-curve has a Cycles modifier, it’s possible to
remove that modifier from the Graph Editor’s Sidebar (N), but this menu
option is faster.

Figure 11-8 shows the menu for the different types of extrapolation modes, as well
as what each one looks like with a simple f-curve.

If you have lots of animated objects in your scene, or just one object with a high
number of animated properties, it may be helpful to hide extraneous curves from
view so that you can focus on the ones you truly want to edit. To toggle a curve’s
visibility (or that of an entire keying set), left-click the eye icon next to its name
in the channel region along the left side of the Graph Editor. If you want f-curves
to be visible, but not editable, select a channel from the channel region and either
left-click the lock icon or press Tab. You can also disable the influence of a specific
f-curve or keying set by left-clicking the check box.

CHAPTER 11 Animating Objects 355

As mentioned previously in this chapter, you can quickly mute/hide animation
channels in the Graph Editor by using the H, Shift+H, and Alt+H hotkeys with one
or more selected keyframes.

If you need explicit control over the placement of a curve or a control point, the
Graph Editor has a Sidebar like the 3D Viewport. You open it the same way, too:
Either press N or choose View ➪ Sidebar. Within the F-Curve tab of the Sidebar,
there’s an Active Keyframe panel where you can enter the exact value that you’d
like to set your selected control point or that control point’s handles, as well as
modify that control point’s interpolation type. Figure 11-9 shows the Sidebar in
the Graph Editor.

FIGURE 11-8:
The four

extrapolation

modes you can

have on f-curves.

356 PART 3 Get Animated!

Often, you run into the occasion where you need to edit all the control points in a
single frame so that you can change the overall timing of your animation. You may
be tempted to try and box-select to select the strip of control points you want to
move around. However, a cleaner and easier way is to select just one of the control
points on the frame you want to adjust and press K in the Graph Editor or choose
Select ➪ Columns on Selected Keys. All the other control points on the same frame
as your initial selection are selected.

Using Constraints Effectively
Occasionally, I get into conversations with people who assume that because
there’s a computer involved, good CG animation takes less time to make than tra-
ditional animation. In most cases, this assumption isn’t true. High-quality work
takes roughly the same amount of time, regardless of the tool. The time is just
spent in different places. Whereas in traditional animation, a very large portion of
the time is spent drawing the in-between frames, CG animation lets the computer
handle that detail. However, traditional animators don’t have to worry as much
about optimizing for render times, tweaking and re-tweaking simulated effects,
or modeling, texturing, and rigging characters.

FIGURE 11-9:
The Sidebar (N) in

the Graph Editor.

CHAPTER 11 Animating Objects 357

That said, computer animation does give you the opportunity to cut corners in
places and make your life as an animator much simpler. Constraints are one
feature that fits this description perfectly. Literally speaking, a constraint is a
limitation put on one object by another, allowing the unconstrained object to
control the behavior of the constrained one.

With constraints, you can do quite a lot without doing much at all. Animation is
hard work; it’s worth it to be lazy whenever you can.

To see the actual constraints that you have available, go to the Object Constraints tab
of the Properties editor and left-click the Add Constraint button. Alternatively, you
can choose Object ➪ Constraints ➪ Add Constraint (with Targets) in the 3D Viewport’s
header menu. Either way, you see a menu similar to the one in Figure 11-10.

Because of limitations to this book’s page count, I can’t cover the function of each
and every constraint in full detail. However, the remaining sections in this chapter
cover features found in most constraints and some usage examples for more
frequently used constraints.

The all-powerful Empty!

Of all the different types of objects available to you in Blender, none of them are
as useful or versatile in animation as the humble Empty. An Empty isn’t much —
just a little set of axes that indicate a position, orientation, and size in 3D space.
Empties don’t even show up when you render. However, Empties are an ideal
choice for use as control objects, and they’re a phenomenal way to take advantage
of constraints.

FIGURE 11-10:
The types of

constraints

available by

default within

Blender.

358 PART 3 Get Animated!

Empties can be displayed in the 3D Viewport in a number of ways. Because an
Empty can be used as a control for constraints and animations, sometimes it’s
useful to have it displayed with a particular shape. The following display types are
available in the Add ➪ Empty menu:

 » Plain Axes: Think of this as the default display type. It’s just a set of 3D

crosshairs.

 » Arrows: Occasionally, it’s worthwhile to know specifically which axis is facing
which direction on your Empty. This display type labels each axis in its positive

direction.

 » Single Arrow: This display type works great for a minimalist control. The

arrow points along the Empty’s local Z-axis.

 » Circle: If you want an unobtrusive animation control, the Circle display type is

a good choice. It allows your Empty to be located inside a volume (like an arm

or leg), but still remain selectable because the circle is outside of it.

 » Cube: Choose this display type and your Empty appears like a wireframe

cube.

 » Sphere: Like the Cube display type, this makes your Empty appear as a simple

wireframe sphere.

 » Cone: The Cube and Sphere display types can be handy, but they don’t

naturally give any indication of direction; you don’t know which axis is up. The

Cone display type draws your Empty like a wireframe cone with the point

going along its local Z-axis. It’s as large as a cube or sphere, but not as easy to

lose as a single arrow.

 » Image: With this display type, your Empty appears in the 3D Viewport as a

plane with any image you choose mapped to it. This display type isn’t

particularly useful as a controller for a constraint, but it’s extremely useful in

modeling. You can have a reference image visible in your 3D Viewport from

any direction. Chapter 6 has more on using Image Empties as references for
modeling.

As a practical example of how useful Empties can be, consider that 3D modelers
like to have a turnaround render of the model they create. Basically, a turnaround
render is like taking the model, placing it on a turntable, and spinning it in front
of the camera. It’s a great way to show off all sides of the model. Now, for simple
models, you can just select the model, rotate it in the global Z-axis, and you’re
done. However, what if the model consists of many objects, or for some reason
everything is at a strange angle that looks odd when spun around the Z-axis?

CHAPTER 11 Animating Objects 359

Selecting and rotating all those little objects can get time consuming and annoy-
ing. A better way of setting up a turnaround is with the following rig:

1. Add an Empty (Add ➪ Empty ➪ Plain Axes).

2. Move the Empty to somewhere at the center of the model.

You can use the Move tool or the G hotkey.

3. Select the camera and position it so that the model is in the center

of the view.

4. In Object Constraint Properties, click the Add Object Constraint button

and choose the Child Of constraint (it’s on the right in the Relationship
column).

A constraint panel is added in the Properties editor. You may notice that the

name field in your new Child Of constraint panel is bright red. That’s because
the constraint doesn’t yet have a target object to constrain to. You’ll fix this in
the next step.

5. In the Target field of the Child Of constraint, choose your Empty object.

If your scene is relatively simple, you could find your Empty from the drop-
down list of objects that appears when you click the Target field. On a more
complex scene, I’d recommend that you use the eyedropper at the right of the

field. When you click the eyedropper icon, your mouse cursor turns into an
eyedropper and you can click any object in your 3D Viewport to choose it as

your target object.

After you choose your Empty, your Camera is constrained to your Empty. You

can tell because there’s a light blue dashed line between the Camera and the

Empty to show that relationship. If you notice that the camera jumps to a new

location once you select your Empty, that’s okay. Just click the Set Inverse

button in the Child Of constraint’s panel in the Properties editor.

6. Select the Empty in the 3D Viewport and insert a rotation keyframe

(Object ➪ Animation ➪ Insert Keyframe ➪ Rotation).

7. Move forward in time 50 frames.

8. Rotate the Empty 90 degrees in the Z-axis and insert a new rotation

keyframe (R ➪ Z ➪ 90, I ➪ Rotation).

You can also use the Rotate tool to do your rotation and add your keyframe

from the Object menu instead of using hotkeys. In either case, the camera

obediently matches the Empty’s rotation.

360 PART 3 Get Animated!

9. Open the Graph Editor and set the extrapolation mode for the Z Euler

Rotation channel to linear extrapolation (select the Z Euler Rotation
channel, then choose Channel ➪ Extrapolation Mode ➪ Linear

Extrapolation).

10. Switch back to the 3D Viewport and set it to use the camera view by

clicking on the Camera icon in the upper right corner. Then play back the

animation (Spacebar).

In the 3D Viewport, you see your model spinning in front of your camera.

In this setup, the Empty behaves as the control for the camera. Imagine that a
beam extends from the Empty’s center to the camera’s center and that rotating
the Empty is the way to move that beam.

It’s worth mentioning that this arrangement doesn’t necessarily require that you
use the Child Of constraint. You could also set this up using simple parenting.
However, since this section is about constraints, it seemed like a relevant example
to me.

Adjusting the influence of a constraint
One of the most useful settings available to all constraints is at the bottom of each
constraint block: the Influence slider. This slider works on a scale from 0 to 1, with
0 being the least amount of influence and 1 being the largest amount. With this
slider, your object has the capability of just partially being influenced by the target
object’s attributes. There’s more to it, though.

You can animate any attribute in the Properties editor by right-clicking it and
choosing Insert Keyframe (or pressing I with your mouse cursor hovered over that
property), which means you can easily animate the influence of the constraint. If
you key the Influence value of a constraint, a curve for that influence appears in
the Graph Editor, Dope Sheet, and Timeline.

Say that you’re working on an animation that involves a character with telekinetic
powers using his ability to make a ball fly to his hand. You can do that by animat-
ing the influence of a Copy Location constraint (see the “Copying the movement
of another object” section) on the ball. The character’s hand is the target, and you
start with 0 influence. Then, when you want the ball to fly to his hand, you increase
the influence to 1 and set a new keyframe. KERPLOW! Telekinetic character!

CHAPTER 11 Animating Objects 361

Using vertex groups in constraints

Many constraints (though not all of them) have a Vertex Group field that appears
after choosing a valid mesh object in the Target field.

The Vertex Group option is available only if the target object is a mesh object.
Because none of Blender’s other object types have vertex groups, it wouldn’t make
sense to have this option available to them.

In the Vertex Group field, you can type or choose the name of a vertex group in the
parent mesh. When you do, the constrained object is bound only to those specific
vertices. (See Chapter 12 for details on how to create a vertex group.) After you
choose a vertex group from the Vertex Group field of your constraint, the
relationship line from the constrained object changes to point to the vertices in
that group. Figure 11-11 shows a Suzanne head with a Child Of constraint bound to
a vertex group consisting of a single vertex on a circle mesh.

Copying the movement of another object

Using simple parenting or even the Child Of constraint is helpful in quite a few
instances, but it’s often not as flexible as you need it to be. You can’t control or
animate the parenting influence or use only the parent object’s rotation without
inheriting the location and scale as well. And you can’t have movement of the

FIGURE 11-11:
Parenting an

object to a vertex

group.

362 PART 3 Get Animated!

parent object in the global X-axis influence the child’s local X-axis location. More
often than not, you need these sorts of refined controls rather than the somewhat
ham-fisted regular parenting approach.

To this end, a set of constraints provide you with just this sort of control: Copy
Location, Copy Rotation, and Copy Scale.

You can mix and match multiple constraints on a single object in a way that’s very
similar to the way you can add multiple modifiers to an object. So if you need both
a Copy Location and a Copy Rotation constraint, just add both. After you add them,
you can change which order they come in the stack to make sure that they suit
your needs.

Words and pictures aren’t always the best way of explaining how constraints
work. It’s often more to your benefit to see them in action. To that end, the web-
site that accompanies this book has a few example files that illustrate how these
constraints work. It’s worth it to load them up in Blender and play with them to
really get a good sense for how these very powerful tools work.

Probably the most apparent thing about these Copy constraints is how similar
their options are to one another. The most critical setting, however, is the object
that you choose in the Target field. If you’re using an Empty as your control object,
this is where you choose that Empty or type its name (or use Blender’s eyedropper
feature to let you click on the target object). Until you do so, the Constraint Name
field at the top of the constraint block remains bright red and the constraint sim-
ply won’t work.

Below the Target field are a series of six check boxes. The X, Y, and Z check boxes
are enabled by default, and beneath them are corresponding disabled check boxes,
each labeled Invert. These six check boxes control which axis or axes the target
object influences. If the axis check box is enabled and the Invert check box below
it is also enabled, the target object has an inverted influence on the constrained
object in that axis. Using the preceding Copy Location example, if you disable the
X check box and then move the Empty in the X-axis using the Move tool or the
G ➪ X hotkey sequence, the cube remains perfectly still. However, enabling the X
check box as well as the Invert check box beneath it causes the cube to translate in
an opposite X direction when you move the target Empty.

Next up is the Offset check box, which is useful if you’ve already adjusted your
object’s location, rotation, or scale prior to adding the constraint. By default, this
feature is off, so the constrained object replicates the target object’s behavior
completely and exactly. With it enabled, though, the object adds the target object’s
transformation to the constrained object’s already set location, rotation, or scale

CHAPTER 11 Animating Objects 363

values. The best way to see this is to create a Copy Location constraint with the
following steps:

1. Start with a new General scene (File ➪ New ➪ General).

2. Move the default cube to a different location.

3. Add an Empty (Add ➪ Empty ➪ Plain Axes).

4. Select the cube to your current selection and put a Copy Location

constraint on it (Object ➪ Constraints ➪ Add Constraint (with
Targets) ➪ Copy Location).

5. From Object Constraint Properties, put your Empty in the Target field for
the Copy Location constraint you just added.

The cube automatically snaps directly to the Empty’s location.

6. Left-click the Offset check box in the Copy Location constraint within
Constraint Properties.

The cube goes back to its original position. However, if you move the Empty, its

location influences the cube’s location relative to that point.

Putting limits on an object

Often when you animate objects, it’s helpful to prevent objects from being moved,
rotated, or scaled beyond a certain extent. Say that you’re animating a character
trapped inside a glass dome. As an animator, it can be helpful if Blender forces you
to keep that character within that space. Sure, you could just pay attention to where
your character is and visually make sure that he doesn’t accidentally go farther than
he should be allowed, but why do the extra work if you can have Blender do it for you?

Here are descriptions of what each constraint does:

 » Limit Location/Rotation/Scale: Unlike most of the other constraints, these

three don’t have a target object to constrain them. Instead, they’re limitations

on what the object can do within its own space. For any of them, you can

define minimum and maximum limits in the X, Y, and Z axes. You enable limits
by left-clicking their corresponding check boxes and define those limits in the
value fields below each one.

The For Transform check box that’s in each of these constraints can be pretty

helpful when animating. To better understand what it does, go to the Sidebar

in the 3D Viewport (N). If you have limits and For Transform is not enabled,

the values in the Sidebar change even after you reach the limits defined by
the constraint. However, if you enable For Transform, the values in the

Sidebar are clipped to the limitations you defined with the constraint.

364 PART 3 Get Animated!

 » Limit Distance: This constraint is similar to the previous ones except it relates

to the distance from the origin of a target object. The Clamp Region menu

gives you three ways to use this distance:

• Inside: The constrained object can move only within the sphere of space

defined by the Distance value.

• Outside: The constrained object can never enter the sphere of space

defined by the Distance value.

• On Surface: The constrained object is always the same distance from the

target object, no more and no less.

The On Surface name is a bit misleading. Your object isn’t limited to the

surface of the target object; it’s limited to the surface of an imaginary

sphere with a radius equal to the Distance value.

 » Floor: Technically, the Floor constraint is listed as a Relationship constraint,

but I tend to think of it more as a limiting constraint. It uses the origin of a

target object to define a plane that the origin of the constrained object can’t
move beyond. So, technically, you can use this constraint to define more than
a floor; you can also use it to define walls and a ceiling as well. Remember,
though, that this constraint defines a plane. If your target object is an uneven
surface, it doesn’t use that object’s geometry to define the limit of the
constrained object, just its origin. Despite this limitation, this constraint is

actually quite useful, especially if you enable the Use Rotation check box. This

option allows the constrained object to recognize the rotation of the target

object so that you can have an inclined floor, if you like.

When animating while using constraints, particularly limiting constraints, it’s in
your best interest to insert keyframes using Visual Location and Visual Rotation,
as opposed to plain Location and Rotation. Using the visual keying types sets the
keyframe to where the object is located visually, within the limits of the con-
straint, rather than how you actually transformed the object. For example, assume
that you have a Floor constraint on an object that you’re animating to fall from
some height and land on a floor plane that’s even with the XY grid. For the land-
ing, you grab the object and move it 4 units below the XY grid. Of course, because
of the constraint, your object stops following the mouse when it hits the floor.
Now, if you insert a regular Location keyframe here, the Z-axis location of the
object is set to –4.0 even though the object can’t go below 0. However, if you
insert a Visual Location key, the object’s Z-axis location is set to what you see it
as: 0. If you enable the For Transform check box on all your constraints, you can
get similar behavior and just use regular (non-visual) location and rotation
keyframing.

CHAPTER 11 Animating Objects 365

Tracking the motion of another object

Tracking constraints are another set of helpful constraints for animation. Their
basic purpose is to make the constrained object point either directly at or in the
general direction of the target object. Tracking constraints are useful for control-
ling the eye movement of characters or building mechanical rigs like pistons.

Following are descriptions of each tracking constraint:

 » Track To: Of these constraints, this one is the most straightforward. In other

programs, this constraint may be referred to as the Look At constraint, and

that’s what it does. It forces the constrained object to point at the target

object. The best way to see how this constraint works is to go through the

following steps:

1. Load a new General scene (File ➪ New ➪ General).

2. Add a Track To constraint to the camera with the target object being

the cube.

For a fast way to do this, select your cube, Shift+select your camera, and

choose Object ➪ Constraints ➪ Add Constraint (with Targets) ➪ Track To

from the 3D Viewport’s header menu. When you perform this action, the

camera will have a Track To constraint that automatically sets the cube as

its target.

3. Within the Track To constraint’s panel in Object Constraint Properties,

left-click the -Z button beside the To label.

4. In that same Track To constraint panel, choose the Y-axis from the Up

drop-down menu.

Now, no matter where you move the camera, it always points at the cube’s

origin. By left-clicking the X, Y, and Z buttons next to the To label and choosing

an axis from the Up drop-down menu, you can control how the constrained

object points relative to the target.

 » Locked Track: The Locked Track constraint is similar to the Track To

constraint, with one large exception: It allows the constrained object to rotate

only on a single axis, so the constrained object points in the general direction

of the target, but not necessarily directly at it. A good way to think about the

Locked Track constraint is to imagine that you’re wearing a neck brace. With

366 PART 3 Get Animated!

the brace on, you can’t look up or down; you can rotate your head only left

and right. So if a bird flies overhead, you can’t look up to see it pass. All you
can do is turn around and hope to see the bird flying away.

 » Stretch To: This constraint isn’t exactly a tracking constraint like Track To and

Locked Track, but its behavior is similar. The Stretch To constraint makes the

constrained object point toward the target object like the Track To constraint.

However, this constraint also changes the constrained object’s scale relative to

its distance to the target, stretching that object toward the target. And the

Stretch To constraint can even preserve the volume of the constrained object

to make it seem like it’s really stretching. This constraint is great for cartoony

effects, as well as for controlling organic deformations, such as rubber balls
and the human tongue. On a complex character rig, you can use the Stretch

To constraint to help simulate muscle bulging.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 367

Chapter 12

Rigging: The Art of
Building an Animatable
Puppet

W
hen it comes to character animation, a character is often a single
seamless mesh. As a single seamless mesh, it’s virtually impossible to
animate that character with any detailed movement using the object

animation techniques in Chapter 11. I mean, you can move the whole character
mesh as a unit from one location to another, but you can’t make the character
smile or wiggle her toes or even bend her arms. You can break the mesh apart and
use a complex set of parenting and constraints, but then you lose its nice
seamlessness.

What you really want to do is find ways to animate specific parts of the mesh in a
controlled manner without tearing the mesh apart. To do so, you need to create a
rig for your character. A rig is an underlying structure for your mesh that allows
you to control how it moves. Rigs are an integral part of modern computer
 animation, and if done well, they make the life of an animator monumentally
easier. Think about it like turning your 3D mesh into a remote-control puppet.
This chapter explains the various tools and techniques used to create more
complex rigs. Once you understand all the tools, you can create a rig for nearly any
object in Blender and have a blast animating it.

IN THIS CHAPTER

 » Making shape keys

 » Taking advantage of hooks

 » Working with armatures to control

characters

368 PART 3 Get Animated!

Creating Shape Keys

Whether you have to animate a character or a tree or a basketball with any detail,
it has to deform from its original shape to a new one. If you know what this new
shape looks like, you can model it ahead of time.

As an example, say that you have a cartoony character — maybe the head of a
 certain Blender monkey. You know that you’re going to need her eyes to bulge out,
because that happens to all cartoon characters’ eyes. One way to create this effect
in Blender is by creating a shape key, sometimes called a morph target or a blend
shape in other programs. A rough outline of the process goes something like this
(the next section in this chapter goes into more detail):

1. Starting with your original mesh, edit the vertices without creating new

geometry to the new pose you want to use.

In the cartoony character example, you’d model the character’s eyes all bulgy.

(Yes, bulgy is a real word. I think.)

2. Record this new arrangement of your vertices as a shape key to be used

later when you animate.

Creating new shapes

Assuming that you selected an object that supports shape keys (meshes, curves,
surfaces, and lattices), you can start adding shape keys in the Shape Keys panel of
Object Data Properties.

Depending on the type of object you’re working with, the icon for the Object Data
tab will change to match that type of object. That may seem a bit confusing at
first, but it can be handy for quickly reminding yourself the kind of object you’re
working with. Also, in the default theme, it’s the only icon in the Properties editor
that’s green (to match the object data icon in the Outliner).

Figure 12-1 shows three different states for the Shape Keys panel. By default, this
panel looks pretty innocent and empty with just a list box and a few buttons to the
right of it. However, when you left-click the Plus (+) button, a basis shape is added
to the list. The basis shape is the original shape that the other shape keys in your
object relate to. Left-clicking the Plus (+) button a second time gives you an
additional set of options that control the change from the basis shape to a new
one, named Key 1.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 369

The best way to see how to create new shapes is to go through a practical example.
Staying with the bug-eyed monkey theme, use Suzanne as your test subject, and
follow these steps:

1. Start with a new General workspace and delete the cube (File ➪  New ➪  
General, select the cube, then X or Delete).

2. Add Suzanne, give her a Subdivision Surface modifier, and set her smooth
(Add  ➪   Mesh  ➪   Monkey, Ctrl+1, Object  ➪   Shade Smooth).

3. Change to the front view (Numpad 1).

4. Add a shape key (Properties editor ➪  Object Data tab  ➪   Shape Keys  ➪   
Plus [+]).

Your basis shape is created. The other shapes that you create will be relative to

this one.

5. Add a second shape key (Properties editor ➪  Object Data tab ➪  Shape
Keys ➪  Plus [+]) and rename it, if you want.

The Shape Keys panel looks like the last one in Figure 12-1. You’ve created
Key 1. If you want, you can rename it by double-clicking its name field.
I named mine Eye Bulge.

6. In the 3D Viewport, tab into Edit mode and change the mesh to have

bulged eyes.

Make sure that your Eye Bulge shape key is active in the Shape Keys panel

before making adjustments. As you modify the mode, be sure that you do not

add or remove any geometry in the mesh. You should define the shape by
moving around the vertices, edges, and faces you already have. A quick way to

make Suzanne’s eyes bulge is to move your mouse cursor over each eye and

press L to select just the vertices there. Then with proportional editing (O)

turned on, scale (S) the eyes.

7. Tab back to Object mode.

FIGURE 12-1:
The three

different looks
that the Shape

Keys panel

provides.

370 PART 3 Get Animated!

Figure 12-2 illustrates this process.

This process creates two shape keys: Basis and Eye Bulge. With the Eye Bulge
shape key selected in the Shape Keys panel, you can use the Value slider to
smoothly transition from the Basis shape to the Eye Bulge shape. A value of 0
means that Eye Bulge has no influence and you just have the Basis, whereas a
value of 1 means that you’re fully at the Eye Bulge shape.

But here’s where things get really cool. Notice the Range Min and Max values near
the bottom of the panel. The Min is set to 0.000, and the Max is set to 1.000. Just
for kicks, change the Max value to 2.000 and pull the slider all the way to the right.
Your bulged eyes grow larger than your actual shape key made them. Now change
the Min value to –1.000 and pull the slider to the left. Now Suzanne’s eyes pinch
in to a point smaller than the Basis pose. Figure 12-3 shows the results of these
changes. Adjusting the Min and Max Range values is a great way to provide even
more extreme shapes for your characters without having to do any additional
shape key modeling. How’s that for cool?

Mixing shapes

From this point, you can create additional shape keys for the mesh. Say that you
want to have a shape key of Suzanne’s mouth getting bigger, like she’s screaming
because her eyes have gotten so huge. The process is about the same as when
creating your initial shapes:

1. Add a new shape key (Properties editor ➪  Object Data tab ➪  Shape
Keys ➪  Plus [+]).

Feel free to name this key whatever you want. I called mine Scream.

FIGURE 12-2:
Creating a

bug-eyed shape
key for Suzanne.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 371

2. Tab into Edit mode and model the mouth open with the existing vertices.

Make sure that you’re not touching Suzanne’s eyes. You’re just editing the

mouth to get bigger.

3. Tab back into Object mode.

Figure 12-4 shows the results of this process.

FIGURE 12-3:
Suzanne with

excessively

pinched and

bulged eyes, just

by changing the

minimum and

maximum values

for a single

shape key.

372 PART 3 Get Animated!

After you have the Scream shape key created, you can freely mix it with the Eye
Bulge shape key, or you can have Suzanne screaming with her regular, bulge-free
eyes. The choice is yours. You have the flexibility here to mix and match your
shape keys as it pleases you. And animating the mesh to use these keys is really
easy.

In Blender, “(almost) everything is animatable,” so animating shape keys is as
easy as inserting keyframes on the Value slider in the Shape Keys panel. (Click the
small dot icon to the right of the Value slider, or right-click the Value field and
choose Insert Keyframe from the menu that appears.) Now you can scrub the
timeline cursor forward in time and watch Suzanne bulge and scream to your
complete delight.

To see another nice little bonus, split off a Graph Editor from your 3D Viewport. If
you enable the Show Sliders feature in the Graph Editor (View ➪ Show Sliders), you
can see the numeric values for your shape keys’ influences and even key them
right there.

Knowing where shape keys are helpful

Now, you could do an entire animation using shape keys. But do I recommend it?
No. You can control your meshes in other ways that may give you more natural
movement for things like animating arms and legs.

FIGURE 12-4:
Creating a scream

shape key.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 373

That said, shape keys are the perfect choice for things that you can’t do with these
other means (or, at least, that are very difficult). A big one is facial animation. The
way parts of the face wrinkle up and move around is pretty difficult to re-create
without modeling those deformations. Furrowed brows, squinty eyes, natural-
looking smiles, and phonemes, or mouth shapes for lip-syncing, are where shape
keys shine. You can also team them with other controls discussed throughout this
chapter to achieve cool effects like cartoon stretchiness, muscle bulges, and
morphing objects from one shape to another.

Adding Hooks

Shape keys work well for getting specific predefined deformations, but they can be
pretty limiting if you want to have a little bit looser control over your mesh or if
you’re animating things that move in arcs. For these sorts of situations, you have
another control mechanism: hooks. Hooks are a special kind of modifier that takes
a set of vertices or control points and binds them to be controlled by another
object, usually an Empty.

Creating new hooks

The workflow for adding a hook is pretty straightforward. You tab into Edit mode
and select at least one vertex or control point. Then you press Vertex ➪ Hooks ➪ Hook
to New Object. For faster access, you can use the Ctrl+H hotkey combination. An
Empty is created at a location that’s the median point of all your selected vertices
or control points. You also get a Hook modifier added to Modifier Properties.

Tab back into Object mode and transform the hook. All the vertices or control
points that you assigned to the hook move with it. And using the options in the
Hook modifier, you can control how much influence the hook has over these ver-
tices or control points. The following example gives you a clearer understanding
of adding and modifying the influence of hooks:

1. Start with the default General file in Blender (File ➪  New ➪  General).

2. Select the cube and tab into Edit mode.

All the cube’s vertices are selected by default. If not, select all vertices by

pressing A.

3. Do a multi-subdivide with four cuts (Edge ➪  Subdivide, Last Operator
Panel ➪  Number of Cuts: 4).

4. Select one of the cube’s corner vertices.

374 PART 3 Get Animated!

5. Increase the vertex selection a few times (Select ➪  Select More/Less ➪  
More, or press Ctrl+Numpad Plus [+]).

6. Add a new hook (Vertex ➪  Hooks ➪  Hook to New Empty).

You can also use the Ctrl+H hotkey combination.

7. Tab back into Object mode.

At this point, behavior is as expected. If you select and move the Empty, all the

vertices that hooked to it move as if they’re parented to it.

8. With the cube selected, increase the Radius value in the Hook modifier to
1m (Modifier Properties ➪  Hook-Empty ➪  Radius: 1m).

Now when you select and transform the Empty, the way the vertices follow it is

much smoother, kind of like when you’re modeling with proportional editing

(see Chapter 5). For additional kicks, do the next step.

9. Add a Subdivision Surface modifier to the cube and have it drawn smooth
(Ctrl+1, Object ➪  Shade Smooth).

You can also access the Shade Smooth option using the right-click context
menu while your cube is still selected. Now the transition is even smoother, as

shown in Figure 12-5.

Vertices aren’t just bound to their hook’s location. They’re also controlled by the
hook’s scale and rotation. You can really get some wild and complex deformations
using this deceptively simple feature.

FIGURE 12-5:
A cube smoothly

deformed by a

hook.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 375

Knowing where hooks are helpful

The best use for hooks is for large organic deformations. Like shape keys, hooks
are nice for creating muscle bulges and cartoony stretching. You can even use
them along with shape keys. Because shape keys always use the same shape as the
basis for deformation, adding a hook can bring a bit more variety. For example, in
the bug-eyed Suzanne example from the “Creating Shape Keys” section, you can
add a hook for one of the eyes to make it bulge asymmetrically. These touches give
more character to your 3D characters.

Another great use for hooks is in animating curves in the 3D Viewport. All the
steps in the previous examples of this section work for curves, surfaces, and
Grease Pencil strokes as well as meshes. If you have a curve that you’re using as a
character’s tail, you can add a hook at each control point. Then you can animate
that tail moving around.

Using Armatures: Skeletons in the Mesh

Shape keys and hooks are great ways to deform a mesh, but the problem with
them is that both are lacking a good underlying structure. They’re great for big,
cartoony stretching and deformation, but for a more structured deformation, like
an arm bending at the elbow joint, the motion that they produce is pretty unnat-
ural looking. To solve this problem, 3D computer animation took a page from one
of its meatspace contemporaries, stop-motion animation. Stop-motion animation
involves small sculptures that typically feature a metal skeleton underneath them,
referred to as an armature. The armature gives the model both structure and a
mechanism for making and holding poses. Blender has an object that provides a
similar structure for CG characters. It, too, is called an armature. Armatures form
the basis of nearly all Blender rigs.

To add an armature to your scene, go to the 3D Viewport and choose Add ➪
Armature. Adding an armature creates a single object with a weird shape called an
octahedron. Continuing to use the skeleton analogy, that octahedron is referred to
as a bone in the armature. The wide end of the bone is referred to as the bone’s head
or root, and its narrow end is referred to as the bone’s tail or tip. Typically, a bone
pivots at the head. Figure 12-6 shows a single bone with the head and tail labeled.

If you’re familiar with other 3D animation software, you may be more comfortable
with the concept of working with joints. In those applications, the joint is the
basic atomic unit of an armature, and the bones are just the incidental connection
between joints. I won’t say one approach is inherently superior to the other. You
can make a pretty convincing argument in favor or opposition to either way of
doing it. They’re simply two slightly different solutions to the same problem.

376 PART 3 Get Animated!

Editing armatures

You can take a rather inauspicious single bone armature and do something more
interesting with it. Like nearly every other object in Blender, you can edit the
armature in more detail by selecting it and tabbing into Edit mode or switching to
the Modeling workspace (which automatically brings you into Edit mode). In Edit
mode, you can select the sphere at the bone’s head, the sphere at the bone’s tail,
as well as the bone itself. (Selecting the bone body actually selects both the head
and tail spheres as well.) You can add a new bone to your armature in five ways:

 » Extrude: Select either the head or tail of the bone and press E to extrude a

new bone from that point. This method is the most common way to add new

bones to an armature. If you add a bone by extruding from the tail, you get

the additional benefit of having an instant parent-child relationship. The new
bone is the child of the one you extruded it from. These bones are linked

together, tail to head, and referred to as a bone chain. The Ctrl+right-click
extrude shortcut for meshes and curves also works for bones.

If you prefer to use the tool approach, the Extrude tool is the last tool in the

toolbar. With that tool active, you get a relatively simple widget for extruding a

new bone and adjusting its length. If you long-click that toolbar button, you
can activate the Extrude to Cursor tool, which works by extruding a bone to

wherever you click in the 3D Viewport.

FIGURE 12-6:
An armature

object with a

single bone.

Woohoo!

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 377

 » Duplicate: Select the body of the bone you want and choose Armature ➪  
Duplicate, use the right-click context menu, or press Shift+D to duplicate it
and create a new bone with the same dimensions, parent relationships, and
constraints.

 » Subdivide: Select the body of the bone you want and choose Armature ➪  
Subdivide (or get there from the right-click context menu). You see two
bones in the space that the one you selected used to occupy. The cool thing
about this option is that it keeps the new bone in the correct parent-child
relationship of the bone chain. Also, you can use the Last Operations panel

and do multiple subdivisions.

 » Adding: Choose Add ➪  Single Bone while still in Edit mode. A new bone is
created with its head at the location of the 3D cursor.

Armatures can get very complex very quickly, so you should name your bones as
you add them. Let me say that again: Name your bones as you add them.

The most straightforward way to rename your bones is by pressing F2. Blender
pops up a little rename field that you can use to rename your selected bone
 (incidentally, this works for other objects as well). You can also do it from the
Bone tab of the Properties editor while in Edit mode or Pose mode. From there,
you edit the names of your bones the same way you edit names of other Blender
objects. Left-click the name in the Name field and type the name of a bone that
makes sense. As an example, if you have a two-bone chain to control a character’s
arm, you may name one bone arm_upper and the other arm_lower.

Unfortunately, this approach can be really slow if you’re in Object mode or if
you’re trying to name a lot of bones at the same time (because maybe, ahem, you
forgot to name your bones as you were adding them). For this hopefully rare case,
the Outliner is a good tool for the job. Expand the Armature object to reveal the
hierarchy of bones within it. Double-click the name of any bone (or any object, for
that matter), and you can rename it right there. Figure 12-7 shows the three places
where you can name your bones directly.

If you really do have a whole bunch of bones that you want to rename, there’s an
even faster way. You can use Blender’s built-in Batch Rename operator. This fea-
ture is especially useful if you have multiple bones that you want to rename
according to a set of simple rules. For example, maybe you have six bones that
make up a character’s tail and you were making them quickly, so they’re named
Bone.001, Bone.002, Bone.003, and so on up to Bone.006. If you select those
bones and press Ctrl+F2, Blender pops up the Batch Rename floating panel where
you can do things like find-and-replace to change all bones starting with “Bone”
to “Tail” in one shot. Figure 12-8 shows the Batch Rename panel.

378 PART 3 Get Animated!

Blender has a pretty cool way of understanding symmetric rigs, or rigs that have a
left side that’s identical to the right. For these cases, use a .L and .R suffix on your
bone names. So in the previous example, if you’re rigging a character with two
arms, the bones in the left arm would be named arm_upper.L and arm_lower.L.
The right arm bones would be named arm_upper.R and arm_lower.R. This nam-
ing convention gives you a couple of advantages, but the one that’s most apparent
when modeling your rig is the X-Axis Mirror feature.

To better understand how symmetric rigs and X-axis mirroring work, create a
new armature at the origin (Shift+S ➪ Cursor to World Origin, Add ➪ Armature)
and follow these steps:

1. Tab into Edit mode on your armature and change to front view

(Numpad 1).

2. Rename the single bone to root (F2).

It’s common convention in rigging to use this name for the main parent bone

in the rig.

FIGURE 12-7:
Three different
ways to directly

name your

bones.

FIGURE 12-8:
Press Ctrl+F2 to

activate Blender’s
Batch Rename

operator so you

can change the

names of a bunch

of bones at the

same time.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 379

3. Select the tail of your root bone and extrude (E) a bone to the right.

If you don’t want to use the extrude hotkey, you can Ctrl+right-click or use the
extrude tool.

4. Name this newly extruded bone Bone.R (F2).

5. Select the tail of your root bone again and extrude (E) another new bone,

but this time to the left.

6. Name this bone Bone.L (F2).

7. In the Tool tab of the Sidebar (N), enable the X-Axis Mirror check box.

8. Select the tail of Bone.R and grab it to move it around by using the Move

tool or by pressing the G hotkey.

Now, wherever you move the tail of this bone, the tail of Bone.L matches that

movement on the other side of the X-axis. You can even extrude (E) a new
bone, and a new bone is extruded on both sides of the axis. In this way, X-axis
mirroring can speed up the rigging process immensely.

When editing bones, it’s a good idea to make visible the mesh for which your rig
is intended. This way, you get your proportions correct. A good general rule for
placing bones is to think about where the character’s real anatomical bones would
be located and then use that as a guideline.

Parenting bones

One important thing that makes armatures helpful is the notion of how its bones
relate to one another. The most important of these relationships is the parent-
child relationships between bones. The same hotkeys for parenting and
unparenting objects also work with bones, but with a couple additional features.
To illustrate the additional features when parenting bones, start a new General
file (File ➪ New ➪ General), delete the default cube (X), add a new armature object
(Add ➪ Armature), and then tab into Edit mode. Then follow these steps:

1. Select the single bone created, duplicate it (Armature ➪  Duplicate or
press Shift+D), and place it somewhere in space.

2. Add the original bone to your selection (Shift+select).

3. Choose Armature ➪  Parent ➪  Make or press Ctrl+P to make the original
bone the parent of the duplicate.

You’re given two options:

• Connected: This option moves the entire child bone so its head is in the

same location as the tail of the parent, creating a bone chain as if you’d

created the second bone by extruding it up from the first.

380 PART 3 Get Animated!

• Keep Offset: Choosing this option leaves the child bone in place and

draws a dashed relationship line between the two bones. They’re not

connected, but one still has an influence on the other, kind of like regular
parenting between objects.

4. After you create the parent relationship, select just the child bone.

5. Clear the parent relationship by choosing Armature ➪  Parent ➪  Clear or
by pressing Alt+P.

You have another pair of options:

• Clear Parent: This option removes any sort of parent-child relationship
this bone has. If the bone was connected to the parent bone, it’s now

disconnected, and you can move it around freely. Note that this does not

reposition the child bone back to where you first placed it.

• Disconnect Bone: This option doesn’t actually clear the parent relation-
ship. Instead, if your bones are connected, choosing this option maintains

the parent-child relationship, but the child bone can move independently
of the parent’s tip. The bone behaves as if you made the parent by using

the Keep Offset option.

Figure 12-9 shows how two bones in an armature can be related.

FIGURE 12-9:
Bones that are

unparented (top),

with an offset
parent (middle),

and parented

with a connection

(bottom).

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 381

Even with bones parented — connected or otherwise — if you rotate the parent
bone, the child doesn’t rotate with it as you might expect in a typical parent-child
relationship. That’s because you’re still in Edit mode, which is designed mostly
for building and modifying the armature’s structure. The parent-child relationship
actually works in a special mode for armatures called Pose mode. You access this
mode by pressing Ctrl+Tab, choosing Pose Mode from the Mode menu in the 3D
Viewport’s header, or switching to the Animation workspace with your armature
object selected.

When you’re in Pose mode, if you select individual bones and rotate them, their
children rotate with them, as you might expect. From there, you can swap back
out to Object mode by pressing Ctrl+Tab again, or you can jump back into Edit
mode just by pressing Tab. Chapter 13 has more on working in Pose mode.

Armature properties

When working with armatures, the Properties editor has some sections specific to
armatures with options and controls that are incredibly helpful. Select your
armature and have a look at the Properties editor. In particular, note that in
addition to the green Object Data tab with the Armature icon, two more sets of
tabs appear when you’re in Pose mode: a Bone tab and a Bone Constraints tab.
Figure 12-10 shows the contents of these panels.

As you may have guessed, the Object Data tab of the Properties editor (I think of
this as Armature Properties) provides options for the armature overall, whereas
the Bone tab provides options for the currently selected bone. Looking first at the
contents of the Bone tab, some options and controls are immediately helpful. The

FIGURE 12-10:
Armature-specific

tabs in the

Properties editor.

382 PART 3 Get Animated!

text field at the top lets you rename your bone. The Transform panel (visible only
in Edit mode and Pose mode) gives you precise numeric control over the location
of the head and tail of the selected bone, as well as its roll angle, or the orientation
of the octahedron between the head and the tail, while in Edit mode. For the most
part, these controls are the same as the transform controls in the Item tab of the
3D Viewport’s Sidebar (N). There are a few differences, though. The controls in
each location are presented in a slightly different order. And when you’re in Edit
mode, the Bone tab’s Transform panel only shows some of the envelope deform
options (all of them are available in the Deform Panel). Another small difference
is that the Bone tab’s Transform panel has an additional check box labeled Lock
when you’re in Edit mode on your armature object. Enable this option and Blender
prevents you from transforming the bone in Edit mode. The Lock feature is useful
when building complex rigs where you have a lot of bones and you need to prevent
accidentally moving around some critical ones.

The Bendy Bones panel gives you more refined controls over how the bone itself
deforms. See, a bone in Blender isn’t merely the connection between two joints.
It’s possible for a bone to have multiple internal segments between the head and
tail. Those segments allow additional transformations of the bone like bending
and twisting. In a way, you can think of the bone as a simple Bézier curve with
controls at the head and tail. The bendy bones feature of Blender’s bones give you
a lot of built-in functionality that’s not as quick to set up in other rigging systems.
The Bendy Bones panel gives you control over that functionality. There’s more on
building a rig with bendy bones at the end of this chapter.

Lower in the Bone tab, the Relations panel gives you controls to define how the
selected bone relates to other bones in the armature. In particular, the Parent field
displays the selected bone’s current parent, if it has one, and allows you to choose
a different existing bone as its parent. If you have a parent defined here, the Con-
nected check box beneath it allows you to tell Blender whether it’s connected to its
parent.

If you enable the Connected check box, the selected bone’s head snaps to the
location of its parent’s tail. However, your selected bone’s tail won’t move. This is
a key difference between setting up a parent-child relationship in Bone Properties
and using Ctrl+P in the 3D Viewport.

A series of buttons, known as bone layers, appear at the top of the Relations panel.
Now, if you have any familiarity with older versions of Blender, then these buttons
should be recognizable. However, if you’re new to Blender, then it may not be
immediately clear what these bone-layer buttons do. I like to think of them as
organizational blocks. Each button in this array represents a single bone layer.
Any given bone can belong to one or more bone layers, just like any object can
belong to one or more collections in the Outliner. The reason for this dedicated
organizational structure for bones is because character rigs can get pretty involved.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 383

Using bone layers is a good way to keep your rig logical and organized. Left-click
a layer button to toggle your selected bone’s membership to that layer. If you’d
like the bone to live on more than one layer, you can Shift+left-click the buttons
for those layers. To add your bone to a lot of layers all at once, Shift+left-click and
drag your mouse cursor over the bone layers.

The options in the various armature-related sections of the Properties editor
change a bit between Edit mode (Tab), Object mode, and Pose mode (Ctrl+Tab).
What I cover here is available in Edit mode and Pose mode.

Two other important sets of controls are in Bone Properties. The first is the
Deform panel. Simply put, the check box for this panel is a toggle that tells Blender
whether the selected bone can be mapped to the geometry of your mesh. If the
mesh’s geometry is mapped, or weighted, to the bone, then that bone is considered
a deformer. Deformers should have the Deform check box in Bone Properties
enabled.

Besides deformers, you can also have bones whose purpose is to control the
behavior of the deformer bones. These bones are often referred to as control bones.
To prevent the control bones from inadvertently influencing your mesh’s
 geometry, you should make sure that the Deform check box is disabled in Bone
Properties.

From an organizational standpoint, I tend to put my deformer bones on the lower
row of bone layers while reserving the upper row of bone layers for my control
bones.

Back in Armature Properties (the Object Data tab of the Properties editor), there
are two sets of layer buttons in the Skeleton panel. These buttons correspond to
the bone layers in the Bone tab. The difference is that these layer buttons control
which layers the armature is actually displaying in the 3D Viewport. The layer
buttons under the Protected Layers label have an effect only if you’re linking your
rig into a separate scene file. That topic is a bit more advanced than what this book
covers, so leave it at that for now.

The Viewport Display panel contains a set of buttons for controlling how bones
in the armature are displayed in the 3D Viewport:

 » Display As: This drop-down button gives the choice of four different draw
types for your armature’s bones in the 3D Viewport. Note, however, that

even though the bone display type may not be drawn in the 3D Viewport, its
influences are still valid. That is, even if you’re displaying Stick bones, they still
control the same vertices within the range of the Envelope bones and still

384 PART 3 Get Animated!

make use of the segmentation in B-bones. Figure 12-11 shows examples of
each of these bone display types:

• Octahedral: The default bone display type, the octahedral shape is great

for building a rig because it shows which way a bone points as well as its

roll angle.

• Stick: This display type draws the bones as a thin stick. I like to animate

with my bones in this type so that they stay out of my way.

• B-Bone: B-bones are drawn as boxes. The interesting thing, though, is
that b-bones can be dynamically subdivided and treated as simple Bézier
curves. B-bones are the visualization of choice for bendy bones. To
increase a bone’s subdivisions, select the bone and switch to the Bendy
Bones panel in Bone Properties. In this panel, increase the Segments value,
which makes the deformation from one bone to the next much smoother.

Even if you don’t display the b-bone type, Blender still pays attention to the
Segments value. So if your character deforms in an unexpected way, you

may want to check the Segments value in Bone Properties.

FIGURE 12-11:
The different

display types for

bones in Blender
from top to

bottom:

octahedral,

stick, b-bone,
envelope,

and wire.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 385

• Envelope: This display type draws the bones with a scalable sphere at

each end and a tube for the bone body. Vertices on your mesh that are

within the influence area of these bones will have their locations
influenced by them. Use Alt+S to adjust the size of selected spheres and

tubes in this display type. Ctrl+Alt+S increases the bone’s range. If you don’t

want to use hotkeys, all the envelope controls are available in the Deform

panel within Bone Properties.

• Wire: The wire display type is very similar to stick, but it’s thinner and even

less obtrusive with a thickness of only one pixel. As an additional bonus,

this display type also shoes b-bone bending, so it’s especially useful and a
“working” display type that animators can use.

 » Extra display options: In addition to the bone draw type, there are a series of

additional check boxes in the Viewport Display panel of Armature Properties.

You can enable all, one, or none of these options in any combination you

want.

• Names: This check box toggles the display of each bone’s name in the

3D Viewport. Names can make selecting bones and defining constraints
much easier.

• Axes: This option toggles the display of the center axis of the bones. The

Axes check box is helpful for understanding the bones’ true roll angles.

• Shapes: To help communicate a bone’s purpose to the animator, you

can display any bone in Blender as any object in your scene. While in
Pose mode, select a bone and go to the Viewport Display panel in Bone
Properties. There, you can define the object you want as your bone shape
by choosing it from the Custom Object field. With the Shapes check box
enabled in Armature Properties, the bone is displayed as your chosen

object while in Pose mode, regardless of the bone display type you’ve

chosen.

• Group Colors: To help organize bones in an armature for an animator, you

can actually define custom colors for bones by using bone groups (see the
section later in this chapter called “Making the rig more user friendly”). Set
all facial controls to blue, or the left side of the armature in red. Enable this

check box so that you can make use of those colors.

• In Front: The In Front check box in this panel does the same thing as the In

Front check box in the Object tab of the Properties editor. It allows you to

see the bone in the 3D Viewport, even if it’s technically inside or behind

another object. Enabling this feature makes your bones easier to see and

select when rigging or animating.

386 PART 3 Get Animated!

When building a rig, it’s not uncommon to find yourself frequently switching
between tabs in the Properties editor. In particular, you may find yourself cycling
back and forth between the Object Data tab and either the Bone or Bone Con-
straints tabs. To alleviate the pain of these frequent tab switches, I often split the
Properties editor in half so I can have both tabs quickly accessible at the same
time. Whether you split it vertically or horizontally depends mostly on what you
find most comfortable, but the single-column layout introduced in Blender 2.80
really works well with a narrow Properties editor. Figure 12-12 shows an example
of what this screen might look like.

Taking advantage of bendy bones

Blender’s bones have had the features of b-bones for a long time. However, their
true power and usefulness haven’t been exposed until recently. The bulk of that
power is controlled from the Bendy Bones panel in Bone Properties editor, as
shown in Figure 12-13.

Before working with the Bendy Bones panel, it’s most useful to enable the b-bone
display type in the Viewport Display tab of Armature Properties. Without changing
your armature’s display type, you won’t be able to easily see the effects of any
changes you make in the Bendy Bones panel.

FIGURE 12-12:
Splitting your

Properties editor

can give you the

ability to see two

tabs open at the

same time.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 387

Before going into these controls in detail, it’s worth it to take a moment and wrap
your brain around bendy bone terminology. Looking back at Figure 12-13, notice
that a lot of the controls for bendy bones are labeled In and Out. For clarity’s sake,
it would be much better if you mentally replace “in” with “head” and “out” with
“tail” because that’s what they’re referring to. For example, the Curve In X value
controls how much bend the bone has about the X-axis at the head of the bone,
whereas Curve Out X controls bending about the X-axis of the bone’s tail.
Figure 12-14 illustrates this difference on a single bone.

FIGURE 12-13:
The Bendy Bones

panel in Bone
Properties gives

you full control of

the “bendiness”

of your bones.

FIGURE 12-14:
Adjusting Curve

In X bends the

bone about the

X-axis of its head
(left), whereas

Curve Out

X bends about
the X-axis of that
bone’s tail (right).

388 PART 3 Get Animated!

So, what is it about bendy bones that makes them so special? It’s really easiest to
see with a simple setup using a single bone in the default scene (File ➪ New ➪ General):

1. Delete the default Cube.

2. Add a new armature (Add ➪  Armature).

3. From the Viewport Display panel in Object Data Properties, change the
armature’s display type from Octahedral to B-Bone.

4. Ctrl+Tab into Pose mode.

5. Go to Bone Properties and expand the Bendy Bones panel.

6. In the Bendy Bones panel, increase the Segments parameter to

something relatively large, like 15.

Your Blender workspace should look something like what’s shown in Figure 12-15.

Now you can play with the various parameters in the Bendy Bones panel and get a
good visual sense for what each one does. Most parameters have an “in” (head)
and “out” (tail) variant, as well as X- and Y-axis variants of each. There’s no
Z-axis variant because that’s the axis that runs along the bone; I’ll cover that in a
moment. Your basic options are as follows:

 » Curve: There are four value fields dedicated to adjusting your bendy bone’s
curve, Curve In X, Curve In Y, Curve Out X, and Curve Out Y. These values bend
the bone so it arcs similarly to how handles bend Bézier curves.

FIGURE 12-15:
A single bendy

bone, currently

unbent.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 389

 » Roll: There are only two Roll values, Roll In and Roll Out. These are the values

that control how the bone twists along its local Z-axis (I told you I’d get to it!).
There’s an additional check box after these fields, labeled Inherit End Roll.
Enable this check box if you have a chain of bendy bones and you want this

current one to start with the Roll value that its parent bone has.

 » Scale: Like the Curve parameters, you have four Scale parameters, Scale In X,

Scale In Y, Scale Out X, and Scale Out Y. These parameters work as their name
advertises. You adjust them and the head or tail of the bone is scaled in either

the X- or Y-axis.

 » Ease: If you adjust the Ease parameters, the results on their own might appear

a little weird; you may not be able to tell that anything is happening at all. The

easiest way to see the influence of the Ease parameters is by first setting one of
the Curve parameters. For example, if you set Curve X In to something like 1.00

and then adjust the Ease In value, you should see the bend result from the

Curve In X parameter move up and down the length of the bone. This control

is similar to changing the length of a handle on a Bézier curve.

 » Handle controls: At the bottom of the Bendy Bone panel are a set of controls
related to handles on your bendy bones. Handles are basically the equivalent

of control points on Bézier curves. These options give you advanced control
over those handles and how they behave. For the time being, I recommend

leaving the Start Handle and End Handle parameters at their default value of

Automatic.

Figure 12-16 shows the influence of each of these parameters in isolation (I only
show the results on the X-axis; they look similar along Y) along with a single
example of them all modified at the same time.

When you get to animating your bendy bones, there’s a handy built-in keying set
called B-Bone Shape that you can use for keying all the bendy bone parameters at
the same time. See Chapter 13 for more on animating with keying sets.

“Great,” you say, “I know how bendy bones work, but why would I ever want to
use them?” Fantastically insightful question, dear reader! I’m glad you asked.

FIGURE 12-16:
All the various

bending, twisting,

and scaling you

can do on a

bendy bone gives

you a lot of

dynamic variety

in your rig.

390 PART 3 Get Animated!

The most obvious answer to this would be if you had to build a rig for a cartoony
character. Bendy bones are a fantastic choice for “rubber-hose” style arms
and legs.

However, don’t limit your imagination to just cartoony things. Forearm twists are
notoriously difficult to rig in non-bendy bone systems. You get it for free with the
Roll parameters on bendy bones. Animal tails often require long chains of bones
or a curve with hooks for controls. With just a few bendy bones, you can get all the
tail movement you could ever want. If you need muscle to bulge out when your
character flexes, you can get a simple form of that behavior by animating a bendy
bone’s Scale and Ease parameters. Facial rigs for characters are often a complicated
mix of bones and shape keys (especially for the eyes and mouth). With bendy
bones, a lot of that complexity can be removed.

Long story short (too late?), with a little bit of clever ingenuity, you can use bendy
bones in a rig to give yourself or another animator a bunch of control over how a
character looks when posed.

Putting skin on your skeleton

Armatures and bones are pretty interesting, but they do you no good if they don’t
actually deform your mesh. When you create your own rig and switch to Pose
mode (Ctrl+Tab), you can move, rotate, and scale bones, but the moving bones
have no influence whatsoever on your mesh. What you need to do is bind the ver-
tices of the mesh to specific bones in your armature. This binding process is com-
monly referred to as skinning. Blender has two primary ways of skinning: envelopes
and vertex groups. While envelopes are arguably the fastest way to skin, they’re
also imprecise and can be difficult to control. Vertex groups are the more preferred
approach (as covered in the next section).

Assigning weights to vertices

A vertex group is basically what it sounds like — a set of vertices that have been
assigned to a named group. In many ways, a vertex group is a lot like a material
slot (see Chapter 8). Besides the fact that vertex groups don’t deal with materials,
vertex groups have a couple of distinctions that set them apart from material
slots. First of all, vertex groups aren’t mutually exclusive. Any vertex may belong
to any number of vertex groups that you define.

A side effect of multiple group membership is another distinction: You can give a
vertex a weight, or a numerical value that indicates how much that particular ver-
tex is influenced or dedicated to a specific vertex group. A weight of 1.0 means that
the vertex is fully dedicated to that group, whereas a weight of 0 means that
although the vertex is technically part of the group, it may as well not be.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 391

One thing to note: Vertex groups need to have the exact name of the bones that
control them. So if you have a bone called pelvis, you need a corresponding ver-
tex group with the same name. The vertices assigned to that group then have their
position influenced by the location, rotation, and scale of the pelvis bone, tempered
by the vertices’ individual weights.

To adjust the assignments and weights of vertices in their respective vertex
groups, you can use the Vertex Groups panel in Object Data Properties for your
selected mesh. You create a new group with the Plus (+) button to the right of the
list box. To select the vertices that you want to assign to the group, you need to tab
into Edit mode. With the vertices selected in Edit mode, you can adjust the value
in the Weight slider and then assign them to the vertex group by left-clicking the
Assign button.

If you don’t see the Assign button or Weight slider in the Vertex Groups panel,
then you’re not in Edit mode. Tab into Edit mode and those controls should appear
for you. Figure 12-17 shows the Vertex Groups panel with a few different groups
added to it.

Something to note about vertex weights is that, when used for armatures, they are
normalized to 1.000. That is, a vertex can be a member of two vertex groups and
have a weight of 1.000 for both. In these cases, Blender adjusts the weights
internally so that they add up to 1.000. So in my example, that double-grouped
vertex behaves like it has a weight of 0.500 on both groups.

FIGURE 12-17:
You can use the

Vertex Groups

panel to manually

create vertex

groups from the

vertices in your

mesh.

392 PART 3 Get Animated!

Of course, on a complex armature, this process of creating vertex groups and
painstakingly assigning weights to each vertex can get excessively tedious.
 Fortunately, Blender has a couple tools to make things less painful. First of all,
you don’t have to create all the vertex groups by yourself. Refer to the preceding
section on the process of skinning with envelopes (a daunting task indeed if you
have a rig with hundreds of bones). By parenting the mesh to the armature there,
you’re presented with a few options. If you worked through the preceding section,
you may already be familiar with the basic Armature Deform choice (Object ➪
Parent ➪ Armature Deform). For vertex groups, the additional menu items are
more helpful.

The parenting choices in the Object menu are mind-bogglingly extensive. I per-
sonally prefer to use the Ctrl+P hotkey for parenting because it provides a menu
with a more sane length and more relevant options:

 » Object: This option is just a simple parenting operation. Your whole mesh

becomes a child of the armature object, just as if you’d parented it to another

mesh or an Empty. No modifier is applied to your mesh at all.

You may notice that there are two other object parenting choices, labeled

“(Keep Transform)” and “(Without Inverse)”. These are slightly more difficult-
to-explain parenting relationships, but outside of some very specific scenarios,
they’re not very commonly used. If you’re curious, you can look them up in the

official Blender documentation, but it’s safe to assume that you’ll rarely ever
need them.

 » Armature Deform: As in the envelope skinning example of the preceding

section, this option doesn’t create any vertex groups, thereby ensuring that

the mesh is influenced only by the bone envelopes.

• With Empty Groups: This option creates vertex groups for you using

the names of all the bones with the Deform check box enabled in Bone
Properties. However, it doesn’t automatically assign any vertices to any of

those groups. Use this option if you want to manually assign weights.

• With Envelope Weights: This option is a bit of a compromise. It first
creates the vertex groups based on the bones with their Deform option

turned on. Then it looks at the influence area of the bone envelope and
uses that to assign vertices to each vertex group, with their weights varied

accordingly. The advantage of this option is that it gets you weighted

vertices. The downside, though, is that if the influence area of your
envelopes isn’t set up well, the weight assignment can look messy.

An example of messy assignment would be if you modeled a character

with her hands down at her sides. In that situation, the envelope area for

the hand may intersect with her thigh. So after assigning vertex weights

using envelopes, if you move her hand bone, part of her leg would move

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 393

with it, as shown in Figure 12-18. Not comfortable at all, and potentially
difficult and annoying to clean up. Your better choice in this scenario would
be to use the next parenting option (With Automatic Weights).

• With Automatic Weights: This is my favorite option to use. It works like

the With Envelope Weights option, but instead of using the influence area
of the bone envelopes to determine weights, it uses a more complex

process known as bone heat that generally results in better vertex

assignments and weights.

Long story short, this is the option that you’re most frequently going to use

when skinning your mesh to your armature.

 » Bone: This is a simple parenting operation like the Object option. No

Armature modifier is applied to your mesh. The only difference here is that
rather than parent your mesh to the whole armature object, this option allows

you to parent your object to a single bone.

 » Bone Relative: This option works like the Bone option, but it doesn’t move
the child object if the bone is moved in Edit mode. Technically speaking, it’s

really a shortcut for enabling the Relative Parenting check box in your selected

bone’s Bone Properties. This option is handy for specific uses, but it isn’t
frequently used.

Tweaking vertex weights in Weight Paint mode

Regardless of which option you choose for generating your vertex weights, you’ll
probably still have to go in and manually tweak the weights of the vertices in each
vertex group (unless the object you’re trying to rig is incredibly simple). Trying to
do those tweaks just from the Vertex Groups panel can be pretty tedious and
annoying. Fortunately, there is Weight Paint mode. This mode is almost exactly
like Vertex Paint mode (see Chapter 8), except that rather than painting color on
the mesh, you’re painting the weight assignment to a specified vertex group.

FIGURE 12-18:
Envelope weights

can give you

unpleasant

vertex group
 assignments

(left), whereas

automatic

weights tend to

give much better

results (right).

394 PART 3 Get Animated!

To access Weight Paint mode from Object mode, select the mesh and choose
Weight Paint from the Object Mode drop-down menu in the 3D Viewport’s header.
You can also press Ctrl+Tab and choose Weight Paint mode from the pie menu that
appears. Even if you don’t intend to paint weights, Weight Paint mode is a great
way to see how the weights were assigned by Blender if you used the automatic
method.

The way that weights are visualized is kind of like a thermal map, where red is the
hottest value and blue is the coldest value. Extending this logic to work with bone
weights, vertices that are painted red have a weight of 1.0, whereas vertices
painted blue are either not assigned to the vertex group or have a weight of zero.
The 50 percent weight color is bright green.

If the thermal map color styling isn’t your thing (as can be the case if you’re
 colorblind), you can define your own weight paint color range. Open Preferences
(Edit ➪ Preferences) and navigate to the Editing section on the left sidebar. Within
that section is a panel labeled Weight Paint where you can define a custom gradi-
ent for visualizing vertex weights.

When in Weight Paint mode, you get a bunch of painting panels in the Tool tab of
the Sidebar (N). With a few minor exceptions, these controls are identical to the
ones used in Vertex Paint mode.

When weight painting, it’s often useful to enable the Wireframe check box in the
Viewport Display panel of Object Properties. Enabling this check box overlays the
mesh’s wireframe on it. Seeing the wireframe is especially helpful when weight
painting because it helps you see where the actual vertices on the mesh are. That
way, you’re not just painting in empty space where no vertices exist. The only
slight hiccup is if you’re painting planar vertices, or vertices that all share the same
plane. In this particular case, Blender may try to simplify the wireframe overlay.
Although that simplification may be nice in general, it can be problematic when
painting. To get around that obstacle, enable the All Edges check box in the same
Viewport Display panel of Object Properties.

A handy feature in the Tool tab of the 3D Viewport’s Sidebar while weight painting
is the X-Mirror check box in the Options panel near the bottom of the Sidebar.
X-Mirror can literally cut your weight-painting time in half. When you enable this
check box, Blender takes advantage of the left/right naming convention discussed
earlier in the “Editing armatures” section of this chapter. So if you’re tweaking
the vertex weights on the left leg, Blender automatically updates the weights for
the corresponding bone on the right leg so that they match. If that ain’t cool,
I don’t know what is.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 395

You may notice that there’s a Symmetry panel in the Sidebar as well, and you
might mistakenly think it gives you the same features as X-Mirror. Although
there are more options in the Symmetry panel and it does allow you to paint sym-
metrically, the features there don’t take advantage of the left/right naming
scheme. They merely paint the same weight for a single vertex group on both
sides of your mesh.

The actual process of weight painting is nearly identical to using vertex paint.
However, you need to pay attention to one more thing with weight painting: the
need to tell Blender which vertex group you’re painting. You can do so in two
ways. The slow way, you already know: Select the group from the list box in the
Vertex Groups panel in Object Data Properties.

Of course, the kind Blender developers have provided a faster way: You can select
the bone that you want to paint weights for, even while in Weight Paint mode on
your mesh. Enabling this feature requires a small bit of setup, but it’s totally
worth it:

1. From Object mode, select your armature object.

2. Add your mesh object to your selection (Shift+left-click).

This act also makes your mesh object the active object.

3. Put your mesh in Weight Paint mode (Ctrl+Tab ➪  Weight Paint).

Now when you Ctrl+click a bone, Blender automatically activates the corresponding
vertex group and allows you to paint. As an added bonus, you can test your weights
on the fly by grabbing, rotating, or scaling the selected bone using the transform
hotkeys (G, R, and S, respectively) while you’re still in Weight Paint mode.

Because weight paint relies so much on color, if you’re reading this book in print
or on an e-reader, I highly recommend you look on the web (perhaps on this
book’s website) for full-color images of meshes in Weight Paint mode to get a
better sense of what a weight-painted mesh looks like.

If you choose to use vertex groups (and in most situations, you should), have a
look at the Armature modifier on your mesh. Under the Bind To label are two
check boxes: Vertex Groups and Bone Envelopes. By default, only the Vertex
Groups check box is enabled. However, both options can be enabled. With both
enabled, the mesh is influenced by vertex groups as well as the bone envelopes
from your armature. This double influence can be useful in some instances, but
most riggers tend to prefer to work with just one or the other. This way, you know
that the only reason a vertex is deforming improperly is because its weight isn’t
assigned properly. You don’t have to concern yourself with the influence of the
bone’s envelope.

396 PART 3 Get Animated!

Bringing It All Together to Rig a Character

As you may have guessed, rigging is a pretty intensive process. You need to be
technically minded and creative at the same time. The best riggers I’ve ever met are
the sort of people who fit this description and have an eye for the big picture. Well,
regardless of whether you’re one of these people, the best way to understand the full
process of rigging is to actually create a rig of your own. The examples throughout
the rest of this section are done with a simple stick figure character that I like to use
for creating quick animations that test body language and timing. I love animating
with stick figures, even in 3D. Ninety percent of an animated character’s personality
comes through in that character’s body language. Animating with stick figures
allows you to focus on that essential step and keeps you from getting distracted
with secondary details.

This stick figure, in both rigged and unrigged versions, is available to download
from this book’s supplemental website (blenderbasics.com). With them, you
have a starting point to practice with, as well as a finished reference. Of course,
if you have a character already modeled and want to rig it, that’s great. You can
use the techniques here for rigging nearly anything.

Building Stickman’s centerline

If you load the unrigged stickman file in Blender, the first thing you might notice
is his pose. He’s standing up with his arms out to his sides. This stance is referred
to as a T pose because the character looks like the letter T. This pose is probably the
most common one that modelers use when they create their characters, and it’s
the most preferred pose for riggers. Some modelers may also model with the arms
at the sides, or sometimes they have the arms somewhere halfway between the
T pose and having arms at the side (sometimes called an A pose). There are valid
reasons people give for any of these poses, but ultimately it really comes down to
personal preference.

It’s time to get an armature in this mesh. A good way to start is to create the cen-
terline bones first: the body bones, the head, and the hipbone. To create these
bones, following these steps:

1. Add your armature and start with the first body bone (Add ➪  Armature).

2. Enable In Front viewing for the armature (Armature Properties ➪  
Viewport Display ➪  In Front).

This step ensures that you can always see the bones of your armature.

3. Tab into Edit mode and move this bone up in the Z-axis until it’s around

Stickman’s waistline.

http://www.blenderbasics.com/

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 397

You can use Blender’s transform tools or the G ➪  Z hotkey sequence to do this
move as well as any of the ones following.

4. Select the tail of this bone and move it up in the Z-axis until it’s at the top

of the torso.

Remember that the small end of the bone is the tail.

5. Subdivide this bone into two bones (select the bone,

Armature ➪  Subdivide).

You can also subdivide a bone from the right-click context menu.

6. Name the bottom bone body.1 and the top bone body.2.

7. Select the joint between the two bones and move it back along the Y-axis
a little bit.

This step helps the bones match the natural curvature of the spine.

8. Select the tail of body.2 and extrude it up in the Z-axis to the top of

Stickman’s head.

As explained earlier in the chapter, you can extrude bones using the bone

extrude tool, Ctrl+right-clicking, or by using the E hotkey. I tend to be a hotkey
kind of guy, so I default to pressing E.

9. Name this bone head.

10. Select the head of body.1 and extrude it down in the Z-axis to the bottom

of Stickman’s pelvis.

Remember that the large end of the bone is its head.

11. Name this bone hip.

You have something that looks like Figure 12-19.

Adding Stickman’s appendages

The next step is to create bones for the arms and the legs. You do so by creating
bones for half of the rig and then letting Blender do the rest of the work for you by
mirroring the bones. First things first, though — you have to create that first half
of the rig:

1. Still in Edit mode, switch to the front view, select the head bone, and

duplicate it, putting its root at Stickman’s left shoulder joint (Numpad 1,
select, Armature ➪  Duplicate).

You can also duplicate using the Shift+D hotkey combination. Also note that by

working this way, the new bone is an offset child of the body.2 bone.

398 PART 3 Get Animated!

2. Name this new bone arm_upper.L.

3. Select the tail of arm_upper.L and move it to Stickman’s elbow.

If you’re using the G hotkey to move things rather than using the transform

manipulator, it may help to press Ctrl to guarantee that the bone is perfectly

horizontal.

4. Extrude from this tail to create a new bone along the X-axis that extends

to Stickman’s hand (Armature ➪  Extrude ➪  X).

5. Name this new bone arm_lower.L.

6. From the front view, select the hip bone and duplicate it, placing the new

bone’s head at the top of Stickman’s left leg (Numpad 1, select,

Armature ➪  Duplicate).

For the time being, this duplicated bone is automatically named hip.001.

7. Select hip.001’s tail and move it along the Z-axis to Stickman’s feet

(select, G ➪  Z).

8. Select the main part of hip.001 and subdivide it into two bones (select,

Armature ➪  Subdivide).

9. Rename the top bone from hip.001 to leg_upper.L and name the

bottom bone leg_lower.L.

FIGURE 12-19:
Stickman has an

armature for his

centerline.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 399

10. Select the joint between these bones and move it forward in the Y-axis a
little bit (select, G ➪  Y).

This step gives the knee a little bit of bend, which helps deformation when

adding constraints.

11. Parent leg_upper.L to hip (select leg_upper.L, Shift+select hip,

Armature ➪  Parent ➪  Make ➪  Keep Offset).

You now have something that looks like Figure 12-20.

Now for the really cool part of letting Blender do the work for you. You want to
select all the bones that aren’t on the centerline, duplicate them, and mirror them
along the X-axis. Here are the specific hotkeys and steps:

1. In Edit mode, select all the bones in your armature (Select ➪  All).

2. Make use of the Symmetrize operator (Armature ➪  Symmetrize).

In this one step, all your bones that have the .L suffix are automatically
duplicated, mirrored across your armature object’s X-axis, and properly
renamed with a .R suffix. All the bones along your centerline remain
unchanged (and, even better, there are no unnecessary duplicates).

That’s it! What was once a six-step process with a lot of complicated selection in
previous releases of Blender is now just two steps. Figure 12-21 shows the resulting
bone layout.

FIGURE 12-20:
A half-skeleton

Stickman!

400 PART 3 Get Animated!

Taking advantage of parenting
and constraints
What you currently have in place is the basic structure of the rig’s armature.
The primary function of these bones is to deform the character mesh. Technically,
you could animate with just these bones after you skin them to the mesh. However,
you can (and should) add some additional bones to the armature to make it easier
to animate. They work by taking advantage of the parenting set up by the bone
chains and combining them with some reasonable constraints.

For example, you currently have a structured skeleton in place, but what happens
if you Ctrl+Tab into Pose mode and grab the body.1 bone and move it? Because the
entire upper body is directly or indirectly a child of this bone, the upper torso,
arms, and head move with the body.1 bone. Unfortunately, the lower half of the
body doesn’t share this relationship, so you end up tearing Stickman’s skeleton
in half. Ouch!

To compensate, you need a bone — called a root bone — that both the hip and
body.1 bones relate to, binding the upper half of the body to the lower half.
Moving this bone should move the entire armature. Adding a root bone to the rig
is pretty simple:

1. Tab into Edit mode on the armature and switch to the side view

(Numpad 3).

You can also use the navigation gizmo in the upper right of the 3D Viewport to

align the viewport to the side view.

FIGURE 12-21:
Stickman with a

skeleton in him.

He’s almost

rigged, but he

still needs
some controls.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 401

2. Select the head of either the body.1 or hip bones.

Both heads are located in the same place, so it doesn’t really matter which one
you select.

3. Extrude a new bone along the Y-axis (E ➪  Y) and name it root .

Move in the positive Y direction, toward the back of Stickman.

4. Parent the body.1 and hip bones to the root bone (select body.1,

Shift+select hip, Shift+select root, Armature ➪  Parent ➪  Make ➪  Keep
Offset).

This parent relationship means that you can move the entire armature

by just selecting and moving the root bone. Before creating this parent
relationship, some people may choose to switch the direction of the root

bone (Armature ➪  Switch Direction) so that they can have the root bone’s
tip actually connected to the heads of body.1 and hip. It’s all a matter of

taste, but I prefer not to. Because bones naturally rotate around their head,
it’s more useful to me to keep the head of the root bone in the center of the
character. In my opinion, using this setup helps make bending at the waist

look more natural.

5. Select the root bone and disable the Deform check box in Bone

Properties.

This bone is intended purely to control the other bones. You don’t want any

of the mesh’s vertices assigned to it. Your Stickman rig now looks something
like Figure 12-22.

FIGURE 12-22:
Adding a root

bone to the rig

prevents the top

of the body from

unnecessarily

leaving the

bottom.

402 PART 3 Get Animated!

Another convenient control bone that you may want to add is a head control. Sure,
you can rotate the head bone as you want, but using a bone as the head’s (or eyes’)
target is often easier. That way, when you want the character to look at something,
you just move the target bone to that something’s location. An added benefit is
that by building your rig this way, you can successfully create complex moves,
such as keeping the character looking at an object as he walks by it. To add a head
control to your rig, you use a Track To constraint:

1. Tab into Edit mode and select the head bone.

2. Duplicate the head bone and move it in the Y-axis (Armature ➪  
Duplicate ➪  Y) and name it head_target.

The idea is that you want the control bone to be far enough in front of the face

so that you can have some control without getting in the way of the rest of the

rig. I moved mine about 3 meters out.

3. Clear the parent relationship on the head_target bone (Armature ➪  
Parent ➪  Clear Parent ➪  Clear Parent).

The Alt+P hotkey gives you faster access to clearing the parent relationship.

More importantly, because the head_target bone came into existence by

duplicating the head bone, it inherited the parent relationship to the body.2

bone. You don’t want this relationship because you want to be able to move

the head target independently of the rest of the rig.

4. Ctrl+Tab into Pose mode, select the head_target bone, and then also

select the head bone (select, Shift+select).

5. Add a Track To constraint to the head bone (Shift+Ctrl+C ➪  Track To).

If you look at Bone Constraint Properties, you should notice a Track To
constraint to the head bone, automatically populated with your head_target

bone as its target. The head bone is also colored a nice shade of green.

(You could manually add this constraint yourself, but the Shift+Ctrl+C hotkey

combination is extremely convenient.) Chances are good that the head bone

also rotates toward head_target and points directly at it — not the behavior
you want. You need to change the alignment axes that the constraint works on.

6. In the Track To constraint, change the To axis to Z and the Up axis to Y.

This step fixes the head bone so that it points in the proper direction.

Now when you select the head_target bone and move it around, the face

area of the head bone always points at it.

7. Select the head_target bone and disable the Deform check box in Bone

Properties.

Like the root bone, this bone isn’t meant to be skinned to a mesh. Figure 12-23
shows what your rig looks like now.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 403

Your Stickman rig is mostly functional now. However, another constraint is a
staple of nearly all character rigs and is monumentally helpful to animators. It’s
called an inverse kinematics, or IK, constraint. The next section goes into what this
constraint does, how it works, and how to give your rig its benefits.

Comparing inverse kinematics
and forward kinematics

When it comes to animating characters in 3D with an armature, you have two
ways to move limbs around: inverse kinematics and forward kinematics, or IK and FK.
Kinematic is just a fancy way of saying motion.

By default, your rig is set up to use FK. Say that you have a bone chain, and you
want to place the tip of the last bone to a specific location in 3D space. To do so,
you have to rotate the first bone in the chain, and then the next, and then the next,
and so on until you can get that last bone’s tip properly placed. You’re working
your way forward along the bone chain, from the head to the tip. Because of the
parenting relationships between the bones, you can currently use FK with your
Stickman rig.

That’s FK. It gets the job done, but it can be awfully difficult and tedious to try to
get the tip of that last bone exactly where you want it. It would be nice if you could
just grab that tip, put it in place, and let the computer figure out how all the other
bones have to bend to compensate. This method of letting the computer figure

FIGURE 12-23:
The Stickman rig,

now with head

control!

404 PART 3 Get Animated!

things out for you, basically, is the essence of IK. You move the tip of the last bone
in the chain, and Blender works backward, from the tip to the head, along the
chain to get the other bones properly placed.

To see what IK is like, select your Stickman armature and Ctrl+Tab into Pose mode.
Now, select the body.2 bone and move it using the Move tool or the G hotkey.
Notice that all the bone does is rotate; it doesn’t actually change its location.
 Cancel that movement (Esc) and go to the 3D Viewport’s Sidebar to access the Tool
tab. In the Pose Options panel, enable the Auto IK check box. Auto IK isn’t a real
IK constraint, but it will help you understand how IK works.

Grab and move the body.2 bone again. Notice that, now, this bone moves around,
and the body.1 bone rotates to compensate for the locations that you try to put
body.2. Selecting the head bone or one of the arm_lower bones results in similar
behavior. Click around and play with Auto IK on your rig. It’s pretty cool. When
you’re done, disable the Auto IK check box in the Sidebar.

IK is really awesome stuff and it’s very powerful, but it’s not the ultimate solution
for animating. See, one of the core principles of animation (as mentioned in
Chapter 13) is that natural movement happens in arcs. Generally speaking, arcing
movement is more believable and, well, natural looking. Things that move in a
straight line tend to look stiff and robotic. Think about how a person’s arms swing
when walking. It doesn’t necessarily matter exactly where the hand is. The entire
arm rotates and swings back and forth. That is FK movement. If you’re animating,
you can easily re-create that motion by keying the rotation of the upper arm bone
at the extreme ends of the action.

In contrast, IK movement tends to happen in a straight line. You’re just keying the
tip of the chain, so that tip moves directly from one location to the next and the
bones along the chain rotate to compensate. To re-create a swinging arm in IK,
you need at least three keyframes: one at each extreme and one in the middle to
prevent the hand from going in a straight line. And even then, the elbow might
flip the wrong direction, or you might need even more intermediary keys to try to
get that smooth arc that you get automatically with FK.

However, where IK shines is when the tip of the bone chain needs to be precisely
positioned. A perfect example is feet. When a person walks, the feet must touch
the ground (if you can walk without touching the ground, I hear there are a num-
ber of superhero organizations with openings). Trying to achieve this effect with
just FK usually ends up with feet that look floaty and not locked into place as the
character moves.

Another example is if your character is holding on to a fixed object and doesn’t
want to let go of it, like a climber on the edge of a cliff or a three-year-old with an
ice cream cone. You want to keep the hand in place and let the elbow bend naturally.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 405

In instances like these, IK is really helpful. The most common use, though, is for
foot and leg rigs on characters. And to that end, you’re going to use the following
steps to add IK controls to the Stickman rig:

1. Tab into Edit mode on the armature and select the tip of the leg_lower.L

bone.

If you have X-axis Mirror enabled in the Pose Options panel of the 3D
Viewport’s Sidebar, you can actually select either the left or right bone. With

X-Axis Mirror enabled, whatever you do on one side of your armature also
happens on the other. If X-Axis Mirror isn’t enabled, go ahead and enable it.

2. Extrude a new bone in the Z-axis (E ➪  Z).

You don’t have to extrude the new bone very far — just enough to know it’s
there.

3. Name this bone leg_IK.L and make sure that the mirrored bone is

named leg_IK.R.

4. Clear the parent-child relationship between leg_IK.L and leg_lower.L

(Alt+P ➪  Clear Parent).

5. Ctrl+Tab into Pose mode, select leg_IK.L, and add leg_lower.L to the

selection (select, Shift+select).

6. Add an IK constraint (Pose ➪  Inverse Kinematics ➪  Add IK to Bone).

You can also use the Shift+Ctrl+C ➪  Inverse Kinematics hotkey. Both provide
the same results: an IK constraint in leg_lower.L’s Bone Constraint
Properties.

7. Go to Bone Constraint Properties panel and, in the Inverse Kinematics

constraint, change the Chain Length value to 2.

By default, the IK bone chain goes all the way back to the head of the hipbone.
You actually want it to have an influence only up to the head of the upper leg
bone. That’s a chain length of two bones.

8. Perform Steps 5 through 7 on leg_IK.R and leg_lower.R.

Sadly, X-Axis Mirror works only in Edit mode, so you have to add your IK
constraints on both sides on your own.

To speed up your workflow, you may want to consider enabling the Copy
Attributes add-on. With that, you can copy selected constraints from one bone
to another using Ctrl+C. You’ll still need to adjust your constraint targets, but if
you have a rig with a lot of IK constraints (like on an insect), every little

speed-up helps.

406 PART 3 Get Animated!

9. Select the leg_IK.L and leg_IK.R bones and disable the Deform check

box in each of their Bone Properties.

Like the root and head_target bones, these control bones should not be

used for skinning. At this point, you have a basic IK rig on your character’s feet.

The rig looks something like what’s shown in Figure 12-24.

Test your rig by selecting the root and moving it around, particularly up and
down the Z-axis. The leg bones in your Stickman rig should bend all by themselves
to compensate for the location of the root bone relative to the IK bones. You can
also select each of the leg_IK bones and move them around to control the bending
of each leg independent of the other.

In doing so, however, you may notice that on some occasions, the legs don’t quite
know how to bend. They may randomly flip backward or roll out in odd angles.
Aside from slightly bending the rig at the knees when you created the leg bones,
you haven’t provided the legs with much of a clue as to how exactly they should
bend. Fortunately, the solution is pretty simple. It’s called a pole target. To define
a pole target, you need to create two more bones, one for each leg:

1. Tab into Edit mode on Stickman’s armature and select leg_IK.L.

Again, because X-Axis Mirror is enabled and you’re in Edit mode, choosing
either leg_IK bone works fine.

FIGURE 12-24:
A basic IK rig

for the legs
of Stickman.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 407

2. Switch to side view, duplicate the bone, and move the new bone to

somewhere in front of the knee (Numpad 3, Armature ➪  Duplicate).

3. Name this bone knee.L and make sure that the mirrored bone is named

knee.R.

4. Switch the direction of knee.L (Armature ➪  Switch Direction).

This step isn’t essential. I just like to have my floating bones point upward.

5. Parent knee.L to leg_IK.L (select knee.L, Shift+select leg_IK.L,

Ctrl+P ➪  Keep Offset).

6. Ctrl+Tab into Pose mode.

7. Select leg_lower.L and in its IK constraint (Bone Constraint Properties),

choose your armature object in the Pole Target field and knee.L in the

Bone field that appears.

This step defines knee.L as the pole target for the left leg’s IK chain. However,

the knee joint for the left leg may instantly pop to the side, bending the leg in

all kinds of weird ways. The next step compensates for that problem.

8. Still in leg_lower.L’s IK constraint panel, adjust the Pole Offset value to
90 degrees.

This step causes the leg’s knee joint to properly point at the knee.L bone.

If it doesn’t, try adjusting the Pole Offset value until it looks correct. Usually
this value is 0, 90, -90, or 180. The default behavior is to point leg_lower.L’s

local X-axis toward the pole. If the local X-axis isn’t forward, adjusting the offset
compensates.

9. Perform Steps 7 and 8 on leg_lower.R.

At this point, you have a fully configured IK rig for both of Stickman’s legs.
You’re nearly ready to animate him.

For reference, your rig looks like the one in Figure 12-25.

At this point, skinning the Stickman mesh to your armature should be pretty safe.
Using the automatic weights method covered in this chapter gives you the best
results, so select the mesh, Shift+select the armature, and press Ctrl+P ➪ With
Automatic Weights. Now when you move around and pose your rig, the Stickman
mesh obediently follows in kind.

Making the rig more user friendly

You have a great basic rig that you can start animating with immediately. How-
ever, you can perform a few tweaks that make this rig even more usable.

408 PART 3 Get Animated!

For one, you can change the way the bones display in the 3D Viewport. Now that
you’re done with the bulk of rigging, knowing which end of a bone is the head or
the tail is a bit less important.

Go to the Viewport Display panel in Object Data Properties and change the bone
type from Octahedral to Stick. Stick bones are the second-least obtrusive bones
immediately available to you (the least obtrusive draw type for bones is the Wire
type, but I find those bones can be a bit hard to see when animating). Now you can
see more of your mesh while you’re animating without as much clutter and
geometry in the way. Figure 12-26 shows the Stickman rig with stick bones.

Another feature in Blender that is quite helpful for organizing your rigs is the
ability to create bone groups. Bone groups are kind of like collections for bones.
They’re another way of organizing your rig in addition to bone layers, as covered
earlier in this chapter. To create bone groups, select the bones you want while in
Pose mode and choose Pose ➪ Bone Groups ➪ Assign to New Group to group them
together. If you try to do this a second time with another set of bones, you have
four options:

 » Assign to New Group: Choosing this option adds the selected bones to a

new bone group. If you have no bone groups already created, this is the only
visible option.

 » Assign to Group: Choosing this option adds your selected bones to the active

group in the list box within the Bone Groups panel of Object Data Properties.

FIGURE 12-25:
A completely

working

Stickman rig.

CHAPTER 12 Rigging: The Art of Building an Animatable Puppet 409

 » Remove Selected from Bone Groups: If the bones you have selected are

part of any groups, choosing this option removes them from all bone groups.

 » Remove Bone Group: Choosing this option removes the group currently

selected in the list box within the Bone Groups panel of Armature Properties.
This option doesn’t remove the bones, just the group that they’re associated

with.

You can rename your bone groups in the Bone Groups panel of Armature
Properties. I used the bone groups feature to create groups for my main bone
chains: left arm, right arm, left leg, right leg, head, and body. Create your
own groups as you see fit.

Beyond organization, bone groups offer an additional benefit. You can define
custom bone colors based on the bone groups you have. The controls are also in
the Bone Groups panel. Make sure that the Group Colors check box is enabled
within the Viewport Display panel and then, in the Bone Groups panel, click the
Color Set drop-down menu and choose a theme color set from the menu that
appears. I used this feature to make all my left-side bones green and my right-
side bones red. It’s a good visual trick to let you or another animator quickly
identify which bones are being used. Figure 12-27 shows what the Bone Groups
panel looks like.

As an additional bonus, when you use bone group colors, those colors also get used
in the channel regions of the Graph Editor and the Dope Sheet. So those colors
aren’t just good for organizing your rig in the 3D Viewport, they’re also extremely
useful for staying organized in your animation editors.

FIGURE 12-26:
Stickman . . .

rigged with sticks!

410 PART 3 Get Animated!

Besides groups, another organizational tool for making your rig more usable are
bone layers. Bone groups make visualizing and selecting your bones easy. However,
bone layers are a faster, more reasonable way of showing and hiding the bones in
your rig. The basics of how bone layers work are covered earlier in this chapter.

As an example, have a look at Stickman’s legs. Because the legs are using an IK
constraint, they’re entirely controlled by the leg_IK and knee bones. And because
you can see the Stickman mesh, you really don’t need to see the leg_upper and
leg_lower bones. In some ways, they just get in the way of seeing your character’s
acting. In that case, moving the bones to a different layer and hiding that layer
makes plenty of sense.

To move these bones to another layer, you could go through the tedious process of
selecting each one, going to the Relations panel in Bone Properties, and selecting
the new layer for it. You could do that, but it’s an extremely slow way to work.
Instead, use this two-step process:

1. Select the bones you want to move.

You can Shift+select each one, box select, or press L with your mouse over the

leg bones to select the entire leg chain. Use whatever feels fastest for you.

2. Press M to open a little Change Bone Layers pop-up.

The pop-up has a block of buttons that look just like those in the Relations
panel of Bone Properties. Only in this case, the change happens on all selected
bones. I moved the bones to the first layer in the second block of layers.

Now, if you ever want to see those bones, just go to Object Data Properties and
enable the layer there in the Skeleton panel. In the meantime, though, your Stick-
man rig is much cleaner, and now you’re really ready to start animating.

FIGURE 12-27:
The Bone

Groups panel
with controls for

bone groups and

bone colors for

those groups.

CHAPTER 13 Animating Object Deformations 411

Chapter 13

Animating Object
Deformations

L
ooking at the title of this chapter, you may find yourself wondering how
this chapter is different from Chapter 11. Both chapters cover animation, but
this chapter covers the cool things you can do in Blender if you’re animating

with a fully rigged mesh. Chapter 11 covers what is often referred to as object

animation — that is, animating the attributes of a single object.

With an animation rig, you have more bits and pieces to manage, keep track of,
and control. Managing all that additional complexity can be daunting if you have
only the Outliner and the Graph Editor to work with. Fortunately, Blender offers a
few more features that help make rigged character animation easier to wrap your
head around.

Working with the Dope Sheet

So you have a rigged character that you want to animate. Awesome! With your
armature selected, change to the Animation workspace by clicking the Animation
tab at the top of the Blender window (you can also press Ctrl+Page Up repeatedly
until you land on the correct workspace tab). Once you’re in the Animation

IN THIS CHAPTER

 » Becoming familiar with the Dope

Sheet

 » Using armatures for animations

 » Animating quickly with the Non-

Linear Animation Editor

412 PART 3 Get Animated!

workspace, your selected armature (or armatures, if you’ve selected more than
one) is automatically in Pose mode, ready to animate.

After changing workspaces, I suggest you enable the Rotate manipulator in the
Gizmos rollout in the header of the 3D Viewport. I’d also recommend that while
you’re in the Gizmos rollout, you set the Transform Orientation drop-down
menu to Normal orientation. You should switch to Normal orientation because
when you’re animating with an armature, most of the time, you’re animating
bone rotations. By setting the Rotation manipulator to the Normal coordinate
space, you can have quick, controlled transformation of bone rotations without
having the 3D manipulator get in your way too much. This way of working is also
a faster way to use transform widgets than constantly switching to the Rotate or
Transform tools.

The next thing you need to pay attention to is the Dope Sheet. As nice as seeing
the Graph Editor may be, seeing all the f-curves for each object and each bone in
your scene can quickly get overwhelming. You need a different editor — one that
gives you a big picture of the keyframes for multiple objects and bones in your
animation. And, perhaps more important, this editor allows you to edit the timing
of bones, objects, and properties individually. The Dope Sheet (Shift+F12) fills
those needs.

In traditional animation, the dope sheet was where the entire animation was
planned out, frame by frame on paper, prior to a single pencil line being drawn by
the animator. In computer animation, it’s taken on a slightly different meaning
and purpose, but the core notion of being able to see your entire animation all at
once is still there. When you have elements in your scene animated, the Dope
Sheet shows a channel for each keyed bone, object, and property.

When it comes to editing the overall timing of a character’s performance, the
Dope Sheet is really the tool for the job.

Selecting keys in the Dope Sheet

Like selecting in other parts of Blender, you can select individual keyframes in the
Dope Sheet by clicking the diamond-shaped keyframe indicator. You can select
multiple keyframes in a variety of ways:

 » Shift+click for selecting multiple individual keys.

 » Click+drag to box-select.

 » A selects all visible keyframes in the Dope Sheet (Alt+A deselects).

CHAPTER 13 Animating Object Deformations 413

 » Select ➪ Columns on Selected Keys or pressing K is an interesting feature.

If you have one or more keyframes selected, this operator selects any other
key in the Dope Sheet that’s on the same frame as your selected key.

 » Select ➪ Column on Current Frame or pressing Ctrl+K gives you similar

functionality to Columns on Selected Keys, but using the time cursor rather
than your current selection.

Initially, you may not think that either of the column key selection methods is all
that useful. However, if you think about the process used for animating —
especially cartoon-style animation — it starts making more sense. The workflow
for animation usually goes from one pose to the next. At each pose that you key,
multiple bones are all keyed at the same time (often with keying sets, as described
in Chapter 11), forming a column in the Dope Sheet. In fact, unless you’re doing
some kind of frantic, shaky animations, it’s a pretty good practice to make sure
that you have nice columns in your Dope Sheet, at least to start. Uneven columns
tend to indicate that your timing may be off on a specific part of the rig. Of course,
this suggestion is a guideline more than a hard-and-fast rule. As your animation
gets closer to being final, your columns will get necessarily messier.

After they’re selected, you can move those keyframes around by clicking on them
and dragging your mouse cursor left and right. Of course, that kind of moving
affects the one key that you click on. You can move a whole column of keys by
clicking and dragging the keyframe icon in the Summary channel at the top.

However, what if you want to move a bunch of different keys on different frames
in the Dope Sheet? The Dope Sheet doesn’t have manipulator gizmos like the
3D Viewport. You can use the operators in Key ➪ Transform, but they’re faster to
access using hotkeys:

 » Move (G): I like to think of this as grabbing rather than moving as a better

way of remembering the hotkey. The operator acts as described. You press G,
move your mouse cursor to place the selected keys, and left-click or press
Enter to confirm.

 » Extend (E): This way of moving keyframes increases the time between two

sets of keys without affecting the timing of the keys before or after (assuming
those keys are also selected). The most common use for this operator is when

you have all the keys in the Dope Sheet selected. From there, you scrub the
time cursor to the time that you want to extend and press E. All the keys after
the time cursor will move as a single group.

 » Slide (Shift+T): I like to think of the keyframe slide operator as the Dope Sheet

equivalent of the edge slide or vertex slide operator when working on meshes

in the 3D Viewport (see Chapter 5 for more on mesh editing). This operator

414 PART 3 Get Animated!

allows you to proportionally tweak the timing between your earliest and latest

selected keyframe in the Dope Sheet. It uses the placement of your time

cursor as a reference (similar to the 3D cursor in the 3D Viewport), so pay
attention to where you place that.

 » Scale (S): The behavior of the Scale operator should be familiar to you. Using

this operator, you can move your selected keys closer together or farther
apart, relative to the location of the time cursor.

Most frequently, you move (G) and scale (S) selected keyframes. When performing
these actions, there’s something you should pay attention to. First of all, when
you scale, extend, or slide selected keyframes, everything is relative to the position
of the time cursor in the Dope Sheet. So if you want to increase the length of your
animation by stretching out the keyframes, put your time cursor at frame 1 before
scaling. If you place your time cursor in the middle or at the end, the keys at the
beginning of your animation are arranged so that they take place before your
animation starts — typically that’s something you don’t want, so be careful.

By default, the Dope Sheet has Nearest Frame snapping enabled. So when moving
your keys, they snap to the closest frame to them. If you disable snapping from
the snaps drop-down menu in the Dope Sheet’s header by changing it to No Auto-
Snap, Blender stops this behavior and allows you to place keys between frames.
However, you normally don’t want this behavior; usually, it weakens the poses
that the audience actually sees and makes it hard to replace keyframes without
causing jumps while animating.

However, if you do have keys located in-between frames, you can quickly fix that
with the Snap Keys feature. Select the keys you want to fix in the Dope Sheet and
choose Key ➪ Snap (you can also invoke the snaps pie menu by pressing Shift+S).

Whether called from the Dope Sheet’s header or the pie menu, you have four
options in this menu:

 » Current Frame: This option snaps all selected keys to the location of the time

cursor in the Dope Sheet.

 » Nearest Frame: Choosing this option takes the selected keys and shifts them

to the even frame number that’s closest to each of them.

 » Nearest Second: Like the Nearest Frame operation, but this option snaps the
selected keys to the nearest frame that’s at the start of a second in time.

 » Nearest Marker: Blender’s Dope Sheet allows you to place reminders on

the Timeline referred to as markers. You can add a new marker at the location
of the timeline cursor by choosing Marker ➪ Add Marker in the header menu

of any of Blender’s time-based editors (Timeline, Dope Sheet, Graph Editor,

CHAPTER 13 Animating Object Deformations 415

Nonlinear Animation editor, and the Video Sequencer) or by using the
M hotkey. There’s more on markers and keyframe indicators in the next
section of this chapter. If you have one or more of these markers on your

Timeline, choosing this option snaps selected keyframes to the marker that’s
nearest to them.

Generally, though, it’s best practice to use Blender’s frame-based auto-snap
 feature that’s enabled by default. You can change the auto-snap method by
left-clicking the drop-down menu on the far right of the Dope Sheet’s header.
This menu has almost all the same options as the preceding list. The only
differences are the Frame Step and Second Step options, which snap keys to
one-frame (or one-second, in the case of Second Step) increments from their
initial locations rather than to exact frames.

Working with markers

When animating, it’s frequently useful to leave notes to yourself in the Timeline.
You may have key timing points noted in your storyboard, or maybe you just need
to have an indicator that shows when a character grabs on to something or when
there’s a camera change. The Dope Sheet doesn’t have the ability to have Annota-
tions like the 3D Viewport or Image Editor. And even if it did, you’d want those
notes to be maintained in sequence with all your keys and you’d want them visible
in all your time-based editors.

The right tool for the job in this case are markers. I mention them briefly in the
preceding section, but markers are basically a means of indicating something
important is happening during your animation. With a little Python scripting, I’ve
even used markers to update text objects in animation (such as for title graphics
in a presentation).

I’m going to use the Dope Sheet to talk about adding and editing markers, but
these same controls also work in the Timeline, Graph Editor, Nonlinear Animation
editor, and Video Sequencer.

To add a marker, place your timeline cursor on the frame where you want the
marker added and choose Marker ➪ Add Marker (or press M). At the bottom of the
Dope Sheet, a new darkened region is added and there’s a little triangle indicator
and dashed line in the same location as your time cursor. This is your new marker.
By default the marker has a name that corresponds to the frame number where
you added it. For example, if you added your marker on frame 35, the text next to
your marker’s triangle will read F_35.

416 PART 3 Get Animated!

To rename your marker, select it (left-click) and choose Marker ➪ Rename Marker
or use the Ctrl+M hotkey combination. Upon doing so, you get a little pop-up
where you can change the name of your marker to something more sensible to
your animation (like “velociraptor explodes here!”).

Selecting and moving works much the same way as with keys. The only thing to
remember is that if you use the G hotkey to move your markers, you need to be
sure your mouse cursor is in the marker region when you do it. Otherwise, you’ll
move your keys rather than the markers.

To remove a marker, select it and choose Marker ➪ Delete Marker or press X.

Figure 13-1 shows an example Dope Sheet with a few helpful markers added to it.

Recognizing different kinds
of keyframe indicators

After working in the Dope Sheet for a while, you might notice that the shapes and
colors of individual keyframes may vary a bit. Some of those shape and color
changes are handled automatically. They’re there to give you an indication of the
type of handle on each key, which should give you an idea of how the interpolation
between frames appears without the need of looking at the Graph Editor. See
Chapter 7 for more on the types of handles available on curves. The following is an
explanation for each shape you may see for keyframes:

 » Diamond: The keyframe has a Free handle type.

 » Solid Circle: The keyframe has auto-clamped handles, meaning that the curve
doesn’t go above or below the value set in the keyframe.

 » Empty Circle: The keyframe has automatic handles, much like curves in the
3D Viewport.

FIGURE 13-1:
Using markers,

you can add

helpful notes to

your animated

sequences.

CHAPTER 13 Animating Object Deformations 417

 » Square: The keyframe has vector handles (and therefore linear interpolation).

 » Rhombus: The keyframe has aligned handles, trying to keep the f-curve as
smooth as possible.

 » Upwards or downwards arrow at the top or bottom of the icon: This isn’t

exactly a shape in its own right, more of an overlay on any of the existing keys.
To see them at all, you need to enable Show Curve Extremes in the View
menu of the Dope Sheet. Once you do that, certain keyframes will have these
little arrow overlays. They serve as a way of indicating whether that’s the

maximum (upwards arrow) or minimum (downwards arrow) value for that

f-curve. So if you have a bouncing ball and you need to know on which frame

it hits the ground, you just need to look at the Z Location channel and find the
keyframe that has a downward arrow overlay.

The space between frames also helps give you an indication of what’s going on
between them, interpolation-wise. That space can have basically three states:

 » No bar: Empty space between keys indicates that the keyframe values are

different and that there’s change happening between them.

 » Solid gray bar (orange if the keyframes are selected): A thick solid bar

between keyframes lets you know that this is a hold. The two keyframes have

the same value and there’s no change between them.

 » Thin green bar: If you’ve manually changed interpolation (Key ➪ Interpolation

Mode or the T hotkey) to anything other than Bézier interpolation, you have
what’s known as fixed interpolation. That means regardless of what you set as

your keyframe handles, it doesn’t matter because the interpolation mode
takes precedence. In those cases there will be a green bar between frames to

show that keyframe handle settings don’t apply.

Other than the shapes and colors Blender automatically sets in the Dope Sheet,
you can actually set keyframe types yourself and color-code them. These custom
keyframe types don’t actually change anything about the shape of your animation
f-curves, but they do serve as handy notes to indicate what you mean to be
 happening in your animation. Think of them like markers, but for specific
keyframes rather than moments in time. To set a custom keyframe type, select the
keyframe you want to modify and choose Key ➪ Keyframe Type, or press the R
hotkey. Either way, you’ll invoke a menu with the following choices:

 » Keyframe: This is the default keyframe type. Just the standard yellow

keyframe icon.

 » Breakdown: Choose this option and your selected keyframes become

slightly smaller and cyan in color to indicate that they’re breakdown frames.
A breakdown frame is the moment between extreme poses. In your typical

418 PART 3 Get Animated!

walk cycle, the breakdown frame is the one where the character’s legs pass

each other.

 » Moving Hold: The Moving Hold keyframe type is slightly smaller (like the

Breakdown keyframe) and more orange in color than the standard keyframe

color. If a hold (as described earlier) is where two keyframes are identical and

there’s no change between them, a moving hold is where two keyframes aren’t

identical, but still really close to one another. In character animation, a moving

hold is how you have a character sit still without looking like a robot that was

suddenly just turned off.

 » Extreme: When you choose the Extreme keyframe type, your selected keys

get slightly larger and pink. In animation, an extreme pose is a primary pose

that shows the character at the limits of that particular action. In a walk cycle,

the extremes are where the legs are farthest from one another.

 » Jitter: Choose this option and the keyframe becomes slightly smaller than the

default keyframe type and green. Sometimes when you’re animating, you add

keyframes where there’s not a huge change from one to the other, but it’s just

enough to provide some realism and life to the movement. You may use this

keyframe type when animating a camera move to indicate that it should look

hand-held rather than like it’s smoothly moving along a track.

Remember that keyframe types don’t actually change anything about your

animation. They’re notes to yourself or other animators that you’re working with

so everyone knows the intent of those keyframes.

Animating with Armatures

If you’re already used to object animation, using armatures to animate in the Dope

Sheet extends naturally from the base that I cover in Chapter 11 (planning, blocking,
refining, final polish). When I animate, I like to use the following process:

1. Plan the animation.

I can’t emphasize this point enough: Know what you’re going to animate and

have an idea about the timing of the motion. Act out the action. If you can,

record yourself acting it out. Video reference is key for seeing subtle move-

ments. Sketch out a few quick thumbnail drawings of the sequence. Even

stick-figure drawings can be really helpful for determining poses and figuring
out camera framing.

2. Set your timeline cursor at frame 1 and create the starting pose for your

character by manipulating its rig in Pose mode.

CHAPTER 13 Animating Object Deformations 419

3. Select all visible bones (Select ➪ All) and Insert a LocRotScale keyframe for

everything (Pose ➪ Animation ➪ Insert Keyframe ➪ LocRotScale).

Granted, there’s a good chance that most of the bones can’t be moved or
scaled, but only rotated, so setting a location or scale keyframe for them is kind
of moot. However, setting a keyframe for all the bones is faster than going
through and figuring out which bones can be keyed for just rotation and which
bones can be keyed for some combination of rotation, location, and scale.

Alternatively, if you’ve set up a keying set for your character (see Chapter 11),
you can pick that keying set from within the Keying rollout in the Timeline.

Then you can insert keyframes for every property in that keying set just by
pressing I.

4. Within the Dope Sheet, make sure all your recently added channels are

selected (they should be by default) and change the interpolation type to

Constant (Key ➪ Interpolation Mode ➪ Constant).

This is kind of an optional step, but it’s really helpful for the blocking pass of
your animation. With Constant interpolation set, you can focus exclusively on
your character’s poses and the timing between those poses without the

distraction of seeing how Blender generates the in-betweens for you.

5. Move the timeline cursor forward to roughly when you think the next

major pose should happen.

It doesn’t really matter which editor you use to adjust the timeline cursor. It
could be the Timeline, the Dope Sheet, or the Graph Editor. In fact, using ←

and →, you can even adjust the timeline cursor from the 3D Viewport.

6. Create your character’s second pose.

If the next pose is a hold, or a pose where the character doesn’t change
position, you can duplicate the keys of the previous pose by selecting them in
the Dope Sheet and choosing Key ➪ Duplicate or by pressing Shift+D.

The Shift+D hotkey combination also works in the Timeline.

7. Select all visible bones (A) and Insert an Available keyframe (Pose ➪

Animation ➪ Insert Keyframe ➪ Available).

Again, if you’re using a keying set, you can just press I. If you wanted, you could
also switch to the Available keying set in the Timeline before inserting keyframes.

8. Continue with Steps 5 through 7 until you complete the last major pose

for your character.

9. Using the Dope Sheet, play back the animation (Spacebar), paying close

attention to timing.

At this point, hopefully your poses are acceptably refined, so you should pay
even more attention to timing than to the accuracy of the poses.

420 PART 3 Get Animated!

10. Go through the keys in the Dope Sheet and tweak the timing of the poses

so that they look natural.

11. Continuing to tweak, go back and start adding additional poses and

keyframes for secondary motions between your major poses.

Somewhere around here you’ve migrated from the blocking phase of anima-

tion to the refining phase. So at this point, you may want to select all the keys
in your animation and switch back to Bézier interpolation (Key ➪ Interpolation

Mode ➪ Bézier). Now you can focus on perfecting the movement between

keyframes.

12. Continue on this course, refining the timing and detail more and more
with each pass.

One luxury of computer animation is the ability to continually go back and tweak
things, make changes, and improve the animation. You can take advantage of this
process by training yourself to work in passes. Animate your character’s biggest,
most pronounced motion first. Make sure that you have the timing down. Then
move to the next pass, working on slightly more detailed parts of the performance.
For example, animate your character’s arm and hand bones before you get into
the nitty-gritty details of animating the fingers. The biggest reason to work this
way is time. It’s much easier to go in and fix the timing on a big action if you do
it earlier. Otherwise, you run into situations where you find yourself shuffling
around a bunch of detail keys after you find out that your character doesn’t get
from Point A to Point B in the right amount of time.

Don’t be afraid to break out a stopwatch and act out the action to find out exactly
how long it takes to perform and what the action feels like. Animation is very
much like acting, by proxy. So it helps to know what some actions actually feel like
when they’re performed. If you’re fortunate enough to have friends, have them
act out the action for you while you time it or even record it to video. Getting
 animation to look right is all about having the proper timing.

Principles of animation worth
remembering

As you create your animations, try to pull from a variety of sources to really cap-
ture the essence of some action, motion, or character expression. My first and
most emphatic recommendation is to keep your eyes open. Watch everything
around you that moves. Study objects and try to get an idea of how their structure
facilitates motion. Then think about how you would re-create that movement.

Of course, merely gawking at everything in the world isn’t the only thing you
should do (and you should be prepared for the fact that people will probably look

CHAPTER 13 Animating Object Deformations 421

at you funny when you do gawk). Studying early animation is also a good idea.
Most of the principles that those wonderfully talented pioneers developed for ani-
mation are still relevant and applicable to computer animation. In fact, you should
remember the classic 12 basic principles of animation that were established by
some of the original Disney animators. These principles are a bit of divergence,
but if your aim is to create good animation, you should know about them and try
to use them in even the most simple animations:

 » Squash and stretch: This one is all about deformation. Because of weight,
anything that moves gets deformed somehow. A tennis ball squashes to an

oval shape when it’s hit. Rope under tension gets stretched. Cartoon charac-

ters hit all believable and unbelievable ranges of this when they’re animated,
but it’s valuable, albeit toned down, even in realistic animation.

 » Anticipation: The basic idea here is that before every action in one direction,
a buildup in the opposite direction occurs first. A character that’s going to
jump bends her knees and moves down first to build up the energy to jump
upward.

 » Staging: The idea of staging is to keep the frame simple. The purpose of

animation is to communicate an idea or a movement or an emotion with

moving images. You want to convey this idea as clearly as possible with
the way you arrange your shots and the characters in those shots. A good
trick here is to use Solid viewport shading. Using the Shading rollout in the

3D Viewport’s header, you can change the Lighting setting to Flat and the
Color setting to Single (and set the color swatch that appears to black).

If you can still tell what’s going on with just a silhouette, then you’ve got
good staging.

 » Straight-ahead action versus pose-to-pose action: These are the two

primary methods of animating. The process that I discuss near the beginning

of this chapter is more of a pose-to-pose technique. Pose-to-pose can be

more organized and structured, but it may result in movement that’s cartoony
or robotic. Straight-ahead action is generally a more open-ended approach

and gives more freedom for improvisation, but the action may be less clear
and more difficult to tweak on future passes. Most modern animators use a
hybrid approach, blocking in the initial poses and then working straight-ahead
between them.

 » Follow through and overlapping action: The idea here is to make sure that

your animations adhere (or seem to adhere) to the laws of physics. If you have

movement in one direction, the inertia of that motion requires you to animate
the follow-through even if you’re changing direction. When a character throws

a ball, his arm doesn’t stop moving when the ball is released. The arm follows
through with its own momentum.

422 PART 3 Get Animated!

 » Ease in and ease out: Ease in and ease out, sometimes known as “slow in, slow
out,” means that natural movement does not stop and start abruptly. It flows
smoothly, accelerating and decelerating. By using Bézier curves in the Graph
Editor, you actually get this principle for free, though that doesn’t mean you
should just take the defaults. Depending on the type of movement, you often
have to customize the degree of easing in your animation (for example, a
bounce eases in and out very fast in a way that doesn’t necessarily look smooth).

 » Arcs: Along the same lines as the previous two principles, most natural
movement happens in arcs. So if your character is changing direction or

moving something, you typically want that to happen in some sort of curved,
arc motion. Straight lines are generally stiff and robotic (and therefore good
for machinery and robots), but they’re also very useful for powerful actions
like punching.

 » Secondary action: These actions are those additional touches that make

characters appear more real to the audience. Clothing that shifts with

character movement, jiggling fat or loose skin, and blinking eyes are just
a few actions that can breathe life into an otherwise stiff, empty puppet.

 » Timing: Timing is, in my opinion, one of the most important of the
12 principles. Everything happens according to time. If the timing is off, it
throws off the effect for the whole animation. I’m not just talking about
controlling the timing of actions to appear believable. I also mean story-based
timing — knowing exactly the right time to make a character give a sad facial
expression that impacts the audience the most. Think of it like telling a joke.
The best punchline in the world will fall flat if you don’t say it at exactly the
right time.

 » Exaggeration: Exaggeration makes animation fun. You can do anything
with animation, and you’re nearly duty-bound to take advantage of that fact.
Otherwise, you may as well just work in video or film with meatspace people.

 » Solid drawing: Solid drawing refers to the actual skill of being able to draw.

Computer animators can get away with not being experts at drawing, but it’s
to your benefit to make the effort. Drawing is an extension of seeing. When
you draw, you turn on a part of your brain that studies how things look
relative to one another. Being able to see the world with these eyes can make

all the difference in re-creating believable motion. Besides, with Grease Pencil
objects (see Chapter 15), you can draw in Blender, too!

 » Appeal: This one is easy. Make things that are awesome. If you’re going to

animate something boring, what’s the point? It needs to be interesting for you
to make, and it’s nice if it’s also interesting for other people to watch.

Those are the basic principles of animation, but not a single one of them is carved
in stone. You can effectively break every one of them and still pull off some
incredible animation. That said, more often than not, it’s in the best interest of

CHAPTER 13 Animating Object Deformations 423

your work and your sanity that you at least start within these principles and then
later on find ways where you can break them in the best way possible.

Making sense of quaternions (or, “Why are
there four rotation curves?!”)

Even though the bulk of your time animating with armatures is spent working
with the Dope Sheet, you still may frequently need to tweak things in the Graph
Editor. If you go to the Graph Editor and view the f-curves for a bone with the
intention of tweaking rotation, you may run into a particularly jarring shock. The
X Rotation, Y Rotation, and Z Rotation channels that you would expect for rotation
aren’t there: They’ve been replaced with four channels to control rotation, called
quaternions. Figure 13-2 shows a set of quaternions in the Graph Editor, describing
the rotation of some bone.

Quaternions are a different way of defining rotations in 3D space, and they’re quite
a bit different from the standard X, Y, and Z rotations, called Euler (pronounced
“oiler”) rotations. Quaternions are used in the rotation of bones because Euler
rotations can get into a nasty situation referred to as gimbal lock, which involves
being mathematically unable to compensate for or adjust a rotation because you
have only three axes to define it. Having that happen in an armature is unacceptable.
Fortunately, quaternions don’t suffer from gimbal lock. However, they do suffer
from another affliction: They have virtually no intuitive relationship to rotation
that non-mathematicians can understand. The best explanation I’ve ever heard is
to imagine a set of springs attached to the object you want to rotate. The W value
has a spring that pulls to the original rest position (a value of 1), whereas the X, Y,
and Z values each have two springs pulling full rotations in each direction (-1 and 1).
This is the reason why the default rotation value for a quaternion is (1, 0, 0, 0).
Of course, even with that explanation, it can still be confusing to think about.

FIGURE 13-2:
Quaternions

in action!
They’re nearly

incomprehensible!

424 PART 3 Get Animated!

To make a long story short, if you’re using quaternion rotations, it may be easier
for you to tweak a rotation by adding additional keyframes to the rotation. If
you’re not fond of mathematics, you may very well go crazy trying to figure out
how they relate to your bone’s rotation.

You aren’t stuck with quaternions if you don’t want them, though. You can control
the rotation mode of any bone in an armature. To do so, select a bone and visit the
Bone tab of the Properties editor. At the bottom of the Transform panel is a drop-
down menu labeled Rotation Mode. By default, it’s set to Quaternion (WXYZ), and
in most cases, you want to use this setting. However, in a couple cases where
you’re sure that you won’t run into gimbal lock problems (like, for example, if you
rigged a bone to define the rotation of a wheel or you’ve rigged an elbow, which
rotates on only one axis), it may be more helpful to use a different rotation mode
like XYZ Euler or Axis Angle. The wheel example also is a good one to note, because
quaternions don’t “spin up” to allow multiple rotations like Euler or Axis Angle
rotations can. So unless your wheel spins only once, it’s in your best interest to
switch.

Copying mirrored poses

One of the beauties of working in computer animation is the ability to take advan-
tage of the computer’s ability to calculate and process things so that you don’t
have to. In the animation world, animators love to find ways that the computer
can do more work. Granted, you can (and should) always temper the computer’s
work with your own artistic eye, but there’s nothing wrong with doing half the
work and letting the computer do the other, boring, tedious, and repetitive half.

With the auspicious goal of getting the computer to do the work for you, Blender
has three incredible operators in the Pose menu of the 3D Viewport. With these
operators (available only when you have selected an armature and it’s in Pose
mode), you can copy and paste poses from and back to the armature:

 » Copy Pose (Ctrl+C): Use this operator and the armature’s pose is stored

in memory.

 » Paste Pose (Ctrl+V): This operator takes the coordinates of all the bones you

selected when copying the pose and applies those coordinates back to your

character exactly as you copied them.

 » Paste Pose Flipped (Shift+Ctrl+V): This operator does the same thing as

Paste Pose, except it takes advantage of Blender’s built-in left/right naming
convention (see Chapter 12 for more details) and pastes the mirrored
version of the pose to your character. Pasting a flipped pose is really handy

CHAPTER 13 Animating Object Deformations 425

if you’re doing something like creating a walk cycle. You can create a left-foot-
forward pose and then use Paste Pose Flipped to instantly create a right-foot-

forward pose. Figure 13-3 shows a character posed one way and then
mirror-pasted to pose the other.

The typical workflow for using these operators goes like this:

1. Select all bones (Select ➪ All).

You can actually get away with selecting just a few bones, but selecting all the
bones actually illustrates my point a little better.

2. Use the Copy Pose operator (Pose ➪ Copy Pose).

The armature’s pose is stored into your computer’s memory.

3. Move to a different location in the Timeline where you’d like your
character to resume this pose.

4. Paste the pose back to the character with either Paste Pose (Pose ➪ Paste

Pose) or Paste Pose Flipped (Pose ➪ Paste Pose Flipped).

Note that after you paste the pose, you need to insert a keyframe for that pose at
that location. Otherwise, the next time you scrub the Timeline, the pose won’t be
there, and you’ll have to copy and paste it all over again.

Doing Nonlinear Animation

Animation is hard work, really hard work. So any time you can cut down the
amount of work you have to do without detracting from the quality of the final
animation, it’s a good thing. Computer animation has given you another cool way

FIGURE 13-3:
All you have to do

is put one foot

forward, and
Blender handles

the other for you.

426 PART 3 Get Animated!

to effectively and efficiently cut corners: nonlinear animation. Nonlinear animation
is a way of animating that you can really do only with computers. The process of
animating is typically very linear and straightforward (see the preceding section).
You may animate in passes, but you’re still generally working forward in time
with the full start-to-finish of your animation already planned out.

What if you didn’t have to work this way? What if you could animate little chunks
of character motion and then mix and match as you like? Imagine mixing a simple
hand-waving motion with a simple jumping animation so that your character is
both jumping and waving her arm? This is the basic concept behind nonlinear
animation. Nonlinear animation takes many of the same principles used in non-
linear video editing and applies them to 3D computer animation. The idea is that
you create a library of simple motions or poses and then combine them any way
you want to create much more complex animated sequences. Using a library of
motions is useful for background characters in larger productions and is also very
handy for video games. Instead of trying to pull a specific set of frames from a
single unified Timeline, video game developers can now just make a call to one or
more of these library animations and let the computer do the rest of the work.

Working with actions

In Blender, the basic building blocks for this library are Actions. Actions are collec-
tions of f-curves, and they are really cool because they have their own datablock.
You can create multiple actions within a single .blend file, share the actions
between armatures, and basically build up a library of movements.

To create a new action, first change the Dope Sheet from the default Dope Sheet
editing context to the Action Editor context using the Mode drop-down menu in
the header. Then you can use the Action datablock, also in the header of the Dope
Sheet, to add a new action, as highlighted in Figure 13-4. This datablock widget is
just like the one used for materials, textures, and even objects in other parts of
Blender’s interface. Create a new action by left-clicking the New button on
the datablock (if you’ve already set keyframes, then you will already have an
action here and you won’t have to click New). After adding a new action, you can
(and should) click in the text area of the datablock and give your new action a
custom name.

With the new action created, you can create another core animation and start
building up your character’s action library. Animate waving each arm, a walk
cycle, various facial expressions, a standing idle animation, and any other simple
action that comes to mind.

CHAPTER 13 Animating Object Deformations 427

Before you create a new action, be sure to left-click the Fake User button in the
datablock widget for your current action (it’s the button with a shield icon on it).
Let me write that again: Give your actions a fake user.

Remember the way that Blender’s datablocks work. If a datablock doesn’t have
any users, it gets destroyed when you close Blender or open a different .blend file.
So if you go through and create a bunch of actions without giving them users, all
those userless actions disappear when you close Blender, regardless of how fre-
quently you saved while working. To ensure that this doesn’t happen, you need to
make sure that all your actions have users. This is where the Fake User button
comes in. When a datablock has that button enabled, it won’t be obliterated when
you close your file.

Although the effort of making a fake user for each action is a good practice to
avoid losing your animation data, a slight problem occurs in that there’s not an
automatic association between your action and your armature object. The upside
is that you can technically reuse the same animation data on multiple objects, but
if you’re not interested in that feature, you either need to use a clever naming
scheme or simply remember which actions belong to which objects. This can get
pretty confusing in a complex scene, so there is a slightly better approach:
stashing.

Stashing an action is actually pushing your action to the Nonlinear Animation
 editor (as described in the next section of this chapter), but it’s muted and not
editable. To stash an action, make sure your Dope Sheet is in its Action Editor
context and look to the header of that editor. To the left of the action datablock is
a button labeled Stash. Left-click that button and your current action gets pushed
as a strip to the Nonlinear Animation editor into a track labeled [Action Stash].
Now your action is stored in a way that’s associated with your armature.

To bring a stashed action back to the Dope Sheet, select its strip in the Nonlinear
Animation editor and choose Edit ➪ Start Editing Stashed Action from the header

FIGURE 13-4:
Using the Action

datablock in the

Dope Sheet to

create a new

action for your

armature.

428 PART 3 Get Animated!

menu. And when you’re done editing it, you can bring it back to its stash by
choosing Edit ➪ Stop Editing Stashed Action.

To remove a stashed action from the Nonlinear Animation editor, left-click its
track and delete it (X). The action is still available to the Action Editor, but it’s no
longer associated with your armature object.

Eventually, your action library will be populated enough that you’ll want to start
mixing and matching them together. To do this, you should use the Nonlinear
Animation editor. Add the Nonlinear Animation editor to the Animation work-
space with the following steps:

1. In the Animation workspace, left-click and drag the seam at the top of

the Dope Sheet up, making more room for that editor.

2. Split the Dope Sheet area in half horizontally so you end up with two

Dope Sheets stacked atop one another.

You can split the Dope Sheet’s area by clicking and dragging from the area’s
corner widget or navigating to View ➪ Area ➪ Horizontal Split in the Dope

Sheet’s header menu.

3. Change the upper Dope Sheet’s editing context to be an Action Editor.

4. Change the lower Dope Sheet to a Nonlinear Animation editor.

Your screen layout may look something like Figure 13-5.

FIGURE 13-5:
An animation

screen layout

with the

Nonlinear

Animation editor

added to it.

CHAPTER 13 Animating Object Deformations 429

The Nonlinear Animation editor is a very cool feature of Blender, but don’t rely on
it too much for animation. Blender has had the Nonlinear Animation editor for a
long time, but it could still use some refinement to be a truly effective tool. The
good news is that the Nonlinear Animation editor is still being developed, and
although it’s likely to go through design iterations in future releases of Blender,
the principles that I explain here should still apply.

Mixing actions to create
complex animation

When you have an action loaded in the Dope Sheet’s Action Editor, you should
notice a bright orange bar in the Nonlinear Animation editor. This orange bar is
the current active action on your armature, and you can push that action on the
Nonlinear Animation editor stack to build your animation.

To add your actions to the Nonlinear Animation editor:

1. Push your current action into the stack by left-clicking the button to

the right of the active channel in the channel region of the Nonlinear
Animation editor (the icon for this button is on the left).

A new Nonlinear Animation track is created, populated with your current action
as another orange strip. The text on the strip should match the name of your

action. The track itself is named NlaTrack (short for nonlinear animation track),
as indicated in the Nonlinear Animation editor’s channel region. Double-click

that name to rename it to something more descriptive.

You can also push an action to the Nonlinear Animation editor from the Dope
Sheet using the Push Down button in the header while in the Action Editor

context. It’s just to the left of the Stash button.

2. Add a new strip in the graph area of the Nonlinear Animation editor

(Add ➪ Action Strip).

You see a menu of all the actions you created.

3. Choose the action you want to add to the Nonlinear Animation editor.

The action is placed in the Nonlinear Animation editor as a strip in the currently

selected track (left-click the track name in the channel region to select a track),

and its start position is wherever the time cursor is located.

If the timeline cursor is in the middle of an existing strip on your selected track,
adding a new strip creates a new track. The existing strip doesn’t get trimmed

or removed.

430 PART 3 Get Animated!

4. Continue to add actions to the Nonlinear Animation editor.

Of course, unless you make the last frame of one Action strip match the pose
at the head of the next frame, the animation looks pretty erratic.

If your action is already in the Nonlinear Animation editor from being stashed (as
described in the previous section), you can’t push it down from the Dope Sheet
because it’s already a strip in the Nonlinear Animation editor. To “unstash” it and
make it an active track, all you have to do is enable and unlock its track by enabling
the check box and disabling the lock on its track. From there, your formerly
stashed action is just like any other action strip in the Nonlinear Animation editor.

The way to smooth out the animation is with the Sidebar (N) in the Nonlinear
Animation editor, shown in Figure 13-6. To make the transition from one strip to
the next smoother, either make sure that the Auto Blend In/Out check box in the
Active Strip panel for each strip is enabled and let them overlap a bit, or manually
set the Blend In and Blend Out values in this panel.

Taking advantage of looped animation

Another benefit of using the Nonlinear Animation editor is the ability to easily
loop any action strip and rescale its timing. In Chapter 11, I explain how to do
looped, cyclic animations using f-curve modifiers, but the Nonlinear Animation
editor gives you even more control. You can loop and rescale the timing in the
Nonlinear Animation editor from within the Sidebar. The Action Clip panel under

FIGURE 13-6:
Using the Sidebar

in the Nonlinear

Animation editor.

CHAPTER 13 Animating Object Deformations 431

the Playback Settings label shows a pair of values: Scale and Repeat. The very first
is Scale, with a default value of 1.0. However, you can increase or decrease this
value as much as you want to adjust the timing on your action, speeding it up or
slowing it down as necessary.

Below the Scale value is Repeat. Like Scale, the default value is 1.0, and you can
increase or decrease the value to taste. As you do, you should see the strip increase
in length proportional to the increase of the Repeat value. Now, to have an
 effective looping animation, it’s definitely in your best interest to make the first
and last poses in the action identical. The easiest way to do so would be to go into
the Dope Sheet, column-select the keys in the first frame (column selecting is
described earlier in this chapter), and duplicate (Shift+D) it to the last frame of
the action. However, you can also use the copy and paste pose operators in the
3D Viewport:

1. In the Dope Sheet, select the action strip you want to loop from the

Actions datablock.

2. While still in the Dope Sheet, scrub the time cursor to the first pose in the
action.

3. In the 3D Viewport, select all bones (A) and use the Copy Pose operator

(Pose ➪ Copy Pose or press Ctrl+C).

4. Back in the Dope Sheet, scrub the time cursor to some place after the last

keyframe.

5. In the 3D Viewport, use the Paste Pose operator (Pose ➪ Paste Pose or

press Ctrl+V).

6. Insert a new keyframe (I ➪ Available).

When you get to this step, all the bones should still be selected, so you don’t
need to reselect anything.

When you return to the Nonlinear Animation editor, the action strip should
automatically be longer to account for the additional frame at the end.

Furthermore, the Action strip should also loop seamlessly upon playback
(Spacebar).

Figure 13-7 shows the Nonlinear Animation editor with a looped strip.

Be careful when changing the scale of Action strips. More often than not, chang-
ing the scale results in a keyframe being placed at what’s called a fractional frame

or intraframe, a spot on the Timeline that isn’t a nicely rounded frame number.
Fractional frames aren’t necessarily a bad thing, but animations do tend to look a
little bit better if the keyframes fall on full frames so that the audience has the
chance to “read” the pose.

432 PART 3 Get Animated!

Many of these animation concepts, especially ones involving the Nonlinear
 Animation editor, are much easier to grasp if you can see them in motion. After
all, this is animation, the art of motion. The .blend files on this book’s website
(www.blenderbasics.com) provide a stronger notion of how these things work
together.

FIGURE 13-7:
Action strips in

the Nonlinear

Animation editor,
looped and

rescaled.

http://www.blenderbasics.com/

CHAPTER 14 Letting Blender Do the Work for You 433

Chapter 14

Letting Blender Do the
Work for You

W
hen animating, some actions are difficult or very time consuming to get
right, such as explosions, fire, hair, cloth, and physics-related actions
like moving fluids and bouncing objects. To get these actions to look

right, one solution is to let the computer do the work and create a simulation of
that action. You use variables like gravity and mass to define the environment,
and the computer calculates how the objects in the scene behave based on the
values you set. Using the computer is a great way to get nearly accurate motion
without the need to key everything by hand.

That said, don’t make the mistake of thinking simulations always give you a huge
time savings in animation. This assumption isn’t necessarily true, because some
highly detailed simulations can take hours, or even days, to complete. Instead,
think of simulations as a way to more reliably animate detailed, physically accu-
rate motion better than you might be able to do by hand alone. If you look at the
process while wearing your “business hat,” paying for a computer to crunch
through a simulation is cheaper than paying for an artist to create it manually.

IN THIS CHAPTER

 » Playing with particles

 » Simulating physics with soft body and

rigid body dynamics

 » Working with cloth simulation

 » Creating fluid animations with
Blender’s fluid simulator

434 PART 3 Get Animated!

This chapter only scratches the surface of what you can do with the simulation tools
in Blender, so you should certainly look at additional resources, such as Blender’s
official online documentation and the wide variety of online tutorials from the
community, particularly those on www.cgcookie.com and www.blenderdiplom.com

to get a full understanding of how each feature works. But hopefully, this chapter
gives you an idea of the possibilities you have at hand.

CHEATING (IN A GOOD WAY)
BY USING QUICK EFFECTS

One of the really cool features added to Blender since the last edition of this book

are a few really handy shortcuts for creating various effects with Blender’s particle
and physics systems. You find them in the Quick Effects submenu by choosing
Object ➪  Quick Effects in the 3D Viewport’s header. When you call this menu, you
have four choices:

• Quick Fur: Using Blender’s particle system, you can use this to set up hair and
fur for your selected object.

• Quick Explode: By combining the particle system with the Explode modifier,
you can procedurally break apart a selected object in your scene.

• Quick Smoke: Blender’s smoke-simulation features require adding some
 additional objects to your scene to define where the simulation occurs. This
Quick Effect sets those objects up for you.

• Quick Fluid: Like the preceding Quick Effect, the fluid simulator also requires
some supplemental objects. Choose this Quick Effect to add those to your scene
along with the necessary modifiers and physics controls.

Usage is pretty straightforward. Select the object you want to add the effect to and
then choose Object ➪  Quick Effects and choose the effect you’d like to add. Blender
then does all the preliminary setup and adds any supplementary objects that the
effect requires to get you going. From there you can go about customizing the effect to
get the results you want. Using these Quick Effects is a great way to cut corners and get
yourself set up more quickly than by going through the process manually, but they’re
no replacement for knowing what you’re doing. My recommendation would be that
before you use the Quick Effects options, you work your way through this chapter so
you understand how the effect works. That way, when you get to customizing it to your
own tastes and needs, you know the best process for going about that.

http://www.cgcookie.com/
http://www.blenderdiplom.com/

CHAPTER 14 Letting Blender Do the Work for You 435

Using Particles in Blender

Blender has had an integrated particle system from its early beginnings. Over the
years, though, it has grown and matured into a much more powerful system for
creating particle-based effects like hair, flock/swarm behavior, and explosions.
And the particle system gets more and more powerful with every release.

The controls for Blender’s particle systems live in the Particles tab of the Proper-
ties editor, as shown in Figure 14-1. Initially, this section looks pretty barren, with
just a single list box. However, if you have a Mesh object selected and click the
Plus (+) button to the right of the list box, a whole explosion of additional panels
for controlling particle behavior appear. Adding a particle system in Particle Prop-
erties also adds a Particle System modifier to your object. Technically, you can
create your new particle system from Modifier Properties as well, but it’s better to
do it from Particle Properties, because that’s where all the particle controls live.

If you click the Play button in the Timeline or press Spacebar after adding the
particle system to your default cube object, you should see little white particles
falling off your cube to the space below it. Press Esc to stop playback.

FIGURE 14-1:
Creating a basic
particle system.

436 PART 3 Get Animated!

Knowing what particle systems
are good for
Particle systems have a handful of good uses. Each use involves large numbers of
individual objects that share some general behavior. Consequently, particle
 systems are ideal for groups of objects that move according to physics, such as
fireworks or tennis balls being continuously shot at a wall. Particle systems are
also good for simulating hair and fur. If the path along which an individual particle
travels could be considered a strand, you could use groups of these particle strands
to make hair. This technique is exactly what Blender does.

There’s also one other use for particle systems: simple flocking or crowd
simulation. Say that you want to have a swarm of gnats constantly buzzing around
your character’s head. A particle system is a great way to pull off that effect.

After you create your first particle system, the context panel at the top of Particle
Properties gives you the simplest controls, allowing you to name your particle
system and add additional ones to your active object. Objects in Blender can have
more than one particle system and can even share the same particle system
 settings between objects. Beneath the Particle datablock are a pair of buttons that
you use to pick which of the two types of particle system behaviors to work with:
Emitter and Hair. In most instances, you’ll probably use the Emitter type. Hair
particle systems are the way to create manageable hair and fur in Blender (there’s
more on hair and fur later in this chapter).

Customizing Emitter settings

If you choose Emitter, the Emission panel has some of the most important settings
for controlling how many particles you have and how long they exist in your
scene. Here’s a brief explanation for each value:

 » Number: As the name implies, this value is the total number of particles
created by the system. After the particle system generates this number of
particles, it stops. You can get additional particles in more than one way, but
the most straightforward (though potentially CPU-intensive) way is to increase
this value.

 » Seed: Particle systems rely on randomness to look organic and natural, but
computer programs themselves are actually incapable of being truly random.
Despite some of the quirky behavior you may have experienced with comput-
ers, it’s true, they can’t be truly random. Randomness has to be computation-
ally generated with an algorithm of some sort. This computed randomness is
said to be pseudorandom, and most pseudorandom algorithms require a seed

CHAPTER 14 Letting Blender Do the Work for You 437

value as a starting point for computing random numbers. The Seed property
for your particle system is the number that your particle system uses to
generate its randomness.

 » Frame Start: This value is the frame where particles start emitting from the
source object. By default, the value is set to frame 1, but if you don’t want to
have your particles start until later in your animation, you can increase the
value in this field. You can also set this value to be negative, so your animation
starts with the particles already in motion.

 » End: This value is the frame where Blender stops emitting particles from the
source object. By default, it’s set to frame 200. With the default values for
Number and Frame Start (1000 and 1.0, respectively), Blender creates five
particles in each new frame in the animation (1000 ÷ 200 = 5) up to frame 200
and then stops generating particles.

 » Lifetime: The Lifetime value controls how long an individual particle exists in
your scene. With the default value of 50.0, a particle born on frame 7 disap-
pears from the scene when you reach frame 57. If you find that you need your
particles in the scene longer, increase this value.

 » Lifetime Randomness: This value pertains specifically to the Lifetime of the
particle. At its default of 0.0, it doesn’t change anything; particles live for the
exact length of time stipulated by the Lifetime value and disappear, or die, at
the end of that time. However, if you increase the Lifetime Randomness value,
it introduces a variation to the Lifetime option, so all the particles born on one
frame disappear at slightly different times, giving a more natural effect.

One additional option to pay attention to in the Emission panel is the Use Modifier
Stack check box within the Source sub-panel. If you’re emitting particles from a
mesh on which you’ve used Generate modifiers (such as the Mirror modifier or
the Remesh modifier), you may want to enable this check box. Otherwise, only the
geometry of your base mesh will emit particles; in some cases, such as hair, that’s
not likely to be what you want.

Choosing physics simulation models

You can associate any particle type (Emitter or Hair) with one of five varieties of
physics simulation models stipulated in the Physics panel with the Physics Type
drop-down menu:

 » None: Very rarely do you have a need to use the None option, but it’s good to
have in those uncommon situations.

 » Newtonian: Typically, the default Newtonian setting is the most useful option
because it tends to accurately simulate real-world physical attributes, such as
gravity, mass, and velocity.

438 PART 3 Get Animated!

 » Keyed: Occasionally you may want to have more explicit control over your
particles, such as when you’re shaping the hair on a character. This is where
Keyed physics come into play. You can use the emitter object of one particle

system to control the angle and direction of another one.

 » Boids: The Boids option tells your particles to have flocking or swarming
behavior, and you get settings and panels to control that behavior.

 » Fluid: The last option, Fluid, is a physics-based choice similar to the Newtonian
option, but particles have greater cohesive and adhesive properties that make
them behave like part of a fluid system.

Creating a basic particle system

To create a basic particle system, follow these steps:

1. In the 3D Viewport, add a mesh to work as your particle emitter

(Add ➪  Mesh ➪  Grid).

In this example, I use a simple grid, but really any mesh works. The key thing to
remember is that, by default, particles are emitted from the faces of your mesh
and move away from the face in the direction of that face’s normal.

2. Navigate to Particle Properties and add a new particle system.

After you click the Plus (+) button next to the Particles list box, all the options
available to particles become visible. If you try to play back the animation now
(press Spacebar or left-click the Play button in the Timeline), you see particles
dropping from your grid.

Don’t stop the playback of your particle system now. Keep it playing as you
work through the rest of the steps in this section. If you do that, you’ll be able
to see Blender update the particle system live as you edit it. This is a really
handy way to work because you can get instant feedback as you modify the
properties of your particle system,

While your particles play, look at your Timeline. Along the bottom edge of
the Timeline is a red bar. Some of that bar may be solid, whereas the rest is
semi-transparent. This is your particle cache, or the movement in your particle
system that Blender has stored in memory. Working with particle caches is a
bit of an advanced topic, but the main thing to know is that when your timeline
cursor is not in the solid red area, that moment in time for your particle system
has not yet been cached. The result is that it may not be accurate to your final
results, and it may play back slower than the cached part. The cache will be
updated with any major changes that you make in Particle Properties.

CHAPTER 14 Letting Blender Do the Work for You 439

3. Decide what type of physics you would like to have controlling your

particles.

Newtonian physics are usually the most common type of particle system used,
but I’m also pretty fond of the Boids behavior for Emitter particle systems. It
just looks cool, and they’re a lot of fun!

4. Adjust the velocity settings to control particle behavior.

You change this setting from the Velocity panel in Particle Properties. For
Newtonian physics, you can give your particles an initial velocity. I tend to
adjust the Normal velocity first because it gives the most immediate results.
Values above 0 go in the direction of each face’s normals, whereas values
below 0 go in the opposite direction. Boid particles don’t require an initial
velocity, but the settings do adjust how each Boid particle interacts with its
neighboring particles.

5. Play back the animation to watch the particles move (Spacebar).

If you followed the tip in Step 2, you could be playing your particle animation
already. If not, press Spacebar or click the Play button in the Timeline and see
what your settings make the particles do. If your particles start behaving in
erratic or unexpected ways, it’s a good idea to make sure that your timeline
cursor in the Timeline is at or before the frame you entered for the Frame Start
value in the Emission panel when you start the animation playback.

Watch how your particles move and behave. You can now either tweak the
particle movement during playback, or if it’s more comfortable for you, press
Esc to stop the playback and adjust your settings before playing the animation
again. I usually use a combination of live adjustments and this back-and-forth
tweaking to refine my particle system’s behavior.

Bear in mind that these steps show a very basic particle system setup, and you’re
just barely scratching the surface of what’s possible. I definitely recommend that
you take some time to play with each of the settings and figure out what they do,
as well as read some of the more in-depth documentation on particles in Blend-
er’s online documentation.

If you change a lot of settings, it’s a good practice to go back to frame 1 and replay
your animation to cache your particle system from the beginning rather than from
just the previous frame. If you like your particle system results, it’s also possible
to save your cache to your hard drive using the Cache panel in Particle Properties.
That way, the next time you re-open your .blend file, your exact particle move-
ment is still there.

440 PART 3 Get Animated!

Using force fields and collisions
After you create a basic particle system, you can have a little bit of fun with it,
controlling the behavior of your particles. You control this behavior by using
forces and deflectors. A force field is a controlling influence on the overall behavior
of the particles, such as wind, vortices, and magnetism. In contrast, you can define
collision objects, or deflectors, for your particles to collide with and impede their
progress. Generally speaking, forces are defined using specialized Empties,
whereas deflectors are created with meshes.

All the controls for forces and deflectors live in the Physics tab of the Properties
editor. For particle force fields, left-click the Force Field button, and a Force Fields
panel appears. If you need collision settings, left-click the Collision button, and
the Collision panel appears.

You typically use these panels to add force and collision behaviors to objects
already in your scene. You select an object and then, from Physics Properties, add
force field and collision properties to that object. For force fields, however, you
can add them in a slightly faster way: from Blender’s Add menu in the 3D View-
port. If you choose Add ➪ Force Field, you get a whole list of forces that you can
add to your scene. Then you can just adjust the settings for your chosen force from
the Force Fields panel in Physics Properties.

Now, I could go through each and every option available for force fields exhaus-
tively, but things usually make more sense if you have an example to work with.
That being the case, follow these steps to create a particle system that generates
particles influenced by a wind force that causes them to collide with a wall and
then bounce off of it:

1. Create a simple particle system.

If you need a refresher, follow the steps in the preceding section to create a
basic Emitter particle system with Newtonian physics.

2. Add a Wind force field (Add ➪  Force Field ➪  Wind).

Notice that the Wind force field object looks like an Empty with circles arranged
along its local Z-axis. This visual cue lets you know the strength and direction of
your wind force. Left-click and drag the yellow arrow gizmo to visually increase
the Strength value in the Force Fields panel. The larger the Strength value, the
larger the space between the four circles of the Wind force field object. Play
back the animation (Spacebar) to see how your wind is affecting the move-
ments of the particles. While playing your animation, if you rotate your Wind
object or adjust its force field settings (in the Force Field panel; the gizmo
disappears when you play your animation), the particles are affected in real
time. Neat, huh?

CHAPTER 14 Letting Blender Do the Work for You 441

For the remaining steps, you don’t have to stop the animation of your particle
system. Let it keep playing. This is one of the benefits of Blender’s non-blocking
user interface philosophy. As you add and change things in your scene, the
particle system updates and reacts in real time.

3. Add a plane (Add ➪  Mesh ➪  Plane).

This plane is your deflector. Grab the plane (feel free to use the Move tool or
the G hotkey) and move it so that it’s in the path of the particles pushed by
your wind force. Rotate (using the Rotate tool or the R hotkey) the plane to
make sure that the particles actually run into it head-on.

If your particle animation is still playing back, you’re not able to see any of the
control gizmos. However, if you choose the tool from the Toolbar, it still works
when you click and drag anywhere in the 3D Viewport. You just don’t have the
gizmo to click on for axis constraints. I prefer to use hotkeys in this case.

4. Make the plane a Collision object.

With your plane still selected, add a Collision panel in Physics Properties.
Whammo! You made a deflector! If you play back the animation (Spacebar) —
or if you’ve been playing the animation the whole time — your particles should
be blown by your wind force into your plane, which they should bounce off of
rather than shoot straight through.

Figure 14-2 shows the results of this step-by-step process. And like the section
preceding this one, you’re just seeing the tip of the iceberg in terms of what’s
possible with forces and deflectors. You can use all sorts of cool forces and settings
to get some very unique behavior out of your particle systems.

FIGURE 14-2:
Creating a wind
force that blows

your particles

into a plane,
which they

bounce off of.

442 PART 3 Get Animated!

Using particles for hair and fur

It would be remiss of me to cover particles and not say anything about Blender’s
hair and fur system. Blender uses particles to create hair and fur for your charac-
ters. As you may have guessed, you choose Hair as the type of particle system you
want from the buttons below the Particle datablock in Particle Properties. From
there, the setup is roughly the same as using a regular Emitter system with New-
tonian physics, but with two notable differences.

The first difference is that Hair particles are, in some ways, easier to edit than
Emitter particles because you can use Blender’s Particle Edit mode to customize
and comb your particle hair. When you start combing in Particle Edit mode,
Blender freezes the particle settings that you already set, and you can tweak and
customize the hair from there. Figure 14-3 shows an object with particle hair
being combed in Particle mode.

If you decide that you don’t like the results you created in Particle Edit mode, you
can always reset your hair particles to their positions defined by the settings in
Particle Properties. To reset your hair particles, left-click the Delete Edit button at
the top of Particle Properties. If you haven’t edited your hair in Particle Edit mode,
this button isn’t visible. But after you start combing, the button appears so that
you can easily reset everything.

You switch to Particle Edit mode by using the Mode menu in the 3D Viewport’s
header or by selecting it from the pie menu option when you press Ctrl+Tab. With

FIGURE 14-3:
Combing hair in

Particle Edit

mode. Suzanne
looks so wise

with a moustache
and beard!

CHAPTER 14 Letting Blender Do the Work for You 443

your emitter object selected, switch into Particle Edit mode. When you’re in
Particle Edit mode, you have the ability to directly edit particle hair with dedicated
tools you can select from the Toolbar. For each tool in Particle Edit mode, you have
a circular brush cursor like the one used in Sculpting and Vertex Paint modes. You
can adjust the brush’s size and strength using the sliders in the Active Tool tab of
the Properties editor or by pressing F and Shift+F, respectively.

The following is a quick description of each tool you have available in Particle Edit
mode:

 » Comb: This tool is the primary workhorse of Particle Edit mode. Use it to
coerce your particle hair and fur into behaving. No more bad hair days!

 » Smooth: The purpose of the Smooth tool is to reduce the kinks and pinches
in your particle hair. I recommend you use it with a fairly light strength value.

 » Add: Sometimes Blender doesn’t spawn hair particles on your mesh where
you think it ought to. Use the Add tool on your mesh (as opposed to the
particle strands themselves, like the Comb and Smooth tools) to increase the
number of particle strands where you click.

 » Length: Left-click and drag the brush cursor of this tool over your particle
hairs and you’ll make those affected strands longer.

 » Puff: Think of the Puff tool as the opposite of the Smooth tool. Where the
Smooth tool tries to remove kinks and bring your particle hairs together, the
Puff tool is what you use to spread them out and put distance between them.

 » Cut: By default, Blender generates particle hairs that are all of the same
length. Using the Cut tool, you can literally give your object a particle haircut.

 » Weight: Whereas in most of Blender when you define the weight of a vertex
or control point, you’re actually adjusting its membership within a group; the
weight values for particles are actual weights. By defining weight values for
your hair particles, you can use that information with other physics simulators
in Blender, like soft bodies (covered later in this chapter) to impart some
physics simulation to your hair.

The other thing that differs in the setup of hair particles is the use of child particles.
Creating and displaying hair particles can take up a lot of computing power. When
animating, you don’t necessarily want to be waiting on Blender to draw all your
character’s fur in the 3D Viewport. To deal with this problem, you have two
 solutions, and the results are best when they’re used together. The first thing is to
reduce the number of viewable particles in the 3D Viewport using the Amount
slider within the Display panel of Particle Properties. The Amount slider changes
the percentage of particles that the 3D Viewport displays. When you make this
change, fewer particles show up in the 3D Viewport, but all of them appear when
you render. You get the best of both worlds.

444 PART 3 Get Animated!

Of course, for characters with a lot of hair, just reducing the displayable particles
may not be enough. In this case, child particles are useful. In the Children panel in
Particle Properties, left-click the Interpolated button. Additional particle strands
grow from the faces of your emitter, with their locations determined by the particles
around them. The Children panel has two amount values: Display and Render.
The Display Amount value dictates how many particles are seen in the 3D Viewport.
For speed while animating, I often set this value to 0. The Render Amount value
controls the number of child particles that each parent particle has at render time.

Even if you’re using Rendered viewport shading, Blender always uses the preview
display amounts for particles in the 3D Viewport and never the render amounts.
This means that, if you’re using an Amount percentage in the Display panel that’s
less than 100%, Rendered viewport shading isn’t showing you an exact depiction
of your final render. The same goes for the Display Amount and Render Amount
values in the Children panel: Rendered viewport shading uses the Display Amount
value, not the Render Amount value.

Rendering hair in Eevee

With the particle system properly generating your hairs, the only thing you have
to worry about now is controlling how Blender renders this hair. Of course, because
Blender ships with two render engines, the process depends on the renderer
you’re using. Here’s a quick-and-dirty rundown of the steps I go through to get
the hair to render nicely using the Eevee renderer:

1. In Render Properties, enable Screen Space Reflections.

Hair is shiny, and enabling Screen Space Reflections helps your hair material
react more naturally to lights in your scene.

2. Still in Render Properties, go to the Hair panel and switch the Hair Shape

Type to Strip.

The default value of Strand gives you thick, full-bodied hair, but it also results in
hair tips that are blocky and squared off. You could fix that issue with color
ramps, but it’s way faster to just change this property.

3. Set up the material for your hair.

Generally speaking, the Principled BSDF should give you all the controls you
need for a relatively decent hair material in Eevee. After setting a base color,
the three material properties that I tend to play with the most are the Metallic,
Roughness, and Anisotropic sliders in the Principled BSDF node. Since you’re
working with only a single node, you can perform this step right from Material
Properties. For a more involved material, you’ll want to use the Shader Editor
(and probably the Shading workspace).

CHAPTER 14 Letting Blender Do the Work for You 445

If you’re going to make your emitter visible, you may also want to use a separate
material for your hair particles. Otherwise, you may have to do a bunch of extra
work to make sure your hair particles are the right color. If you set up a special
material for your hair and name it something memorable, like Hair, you can
choose that material for your particle system from the Render panel in Particle
Properties. A drop-down menu there lists all your object’s material slots; you can
use any one of those.

Rendering hair using Cycles

If you’re rendering with Cycles, the process isn’t all that different than with Eevee.
To render hair particles using Cycles, follow these basic steps:

1. In Render Properties, make sure that the check box for the Hair panel

is enabled.

That’s pretty much all there is to it. Seriously. The rest of the steps here are
tweaking to taste.

2. In Particle Properties, go to the Hair Shape panel and adjust the Radius

Root and Tip values to suit your character.

3. Set up the material for your hair.

Because you’re rendering with Cycles, you have access to the super-cool
Principled Hair BSDF. You can certainly use it like any other shader and
directly color your hair, but there’s a really cool feature nestled in the Color
Parameterization drop-down menu at the top of the Principled Hair BSDF
node. Instead of setting it to direct color, choose Melanin Concentration from
that menu. Melanin is the protein in your hair that gives it color. Darker hair
has more melanin and lighter hair has less. With this option selected, you have
a couple instant sliders (Melanin and Melanin Redness) that you can use to
quickly choose any natural-looking hair color that a character could have!

Because you’re working in Cycles and Eevee doesn’t support the Principled Hair
BSDF, I recommend that you use Rendered viewport shading while you tweak your
hair material. It gives you a very accurate understanding of what your final render
will look like.

Figure 14-4 shows the same particle system as Figure 14-3, but rendered in both
Eevee and in Cycles.

446 PART 3 Get Animated!

Giving Objects Some Jiggle and Bounce

Have you ever sat and watched what happens when a beach ball gets hit or bounces
off of the ground? Or seen what happens when someone places a plate of gelatin
on a table? Or observed how a person’s hair moves when they shake their head?
When these things move and collide with other objects, they have a bit of internal
jiggle that can be difficult to reproduce correctly with regular animation tools.
This jiggling is the basis for what is referred to as soft body dynamics.

You can simulate soft body dynamics in Blender from the Physics tab of the
Properties editor. Left-click the Soft Body button, and a Soft Body panel appears.
In that panel, you can make adjustments and tweak the behavior of your soft body
simulation.

Just as with particle systems, adding soft body dynamics to an object from Physics
Properties also adds a Soft Body modifier to your object. You can verify this addi-
tion by looking in Modifier Properties.

What follows is a basic step-by-step process for creating a simple soft body sim-
ulation with the default cube object:

1. Select the default cube and move it up in the Z-axis so that it floats above
the 3D grid.

You can move the cube using the Move tool or more quickly by using the G
hotkey. You want to give the cube some height to fall from. It doesn’t have to
be very high; 3 to 5 meters should be enough.

FIGURE 14-4:
On the left,

bearded Suzanne
rendered in

Eevee. On the
right, she’s

rendered with
Cycles.

CHAPTER 14 Letting Blender Do the Work for You 447

2. Create a Plane mesh as a ground plane (Add ➪  Mesh ➪  Plane) and scale it
larger so that you have something for the cube to hit (S or use the Scale

tool).

This plane is the surface for your jiggly cube to bounce off of. It may be helpful
to put your 3D cursor at the origin (Shift+S ➪  Cursor to World Origin) before
adding the plane.

3. With your plane still selected, add a Collision panel in Physics Properties

to give your plane collision properties.

Doing so makes Blender understand that the plane is an obstacle for your
falling cube.

4. Back in the 3D Viewport, select your cube.

5. Make a Soft Body panel in Physics Properties.

That’s all you really have to do to enable soft body physics on your 3D objects.
However, in order to get the cube to properly act according to gravity, there’s a
couple more steps. Notice that adding soft body properties to your cube
reveals a bunch of new panels to the Physics tab of the Properties editor.

6. Disable the Goal check box next to its panel.

This step disables the default goal behavior of soft bodies. When Goal is
enabled, you can define a group of vertices in the object to be unaffected by
the soft body simulation. A scenario where you may want to have Goal enabled
would be a character with loose skin, like the jowls of a large dog. You may
want the dog’s snout to be completely controlled by your armature animation,
but have the jowls that hang off to be influenced by soft body simulation. But
because in the case of this cube you want the entire object to be affected by
the simulation, it’s best just to turn it off.

If you play back the simulation now (Spacebar or click the Play button in the
Timeline), it mostly works, but you see the cube start to collapse in on itself
rather unrealistically. The next step can fix that.

7. Expand the Edges panel and enable the check box for the Stiffness
sub-panel.

Enabling this check box helps prevent the edges of your cube from collapsing
in on themselves like a poorly constructed tent.

8. Play back the animation (Spacebar) to watch the cube fall, hit the ground

plane, and jiggle as it lands again.

Pretty cool, huh? Figure 14-5 shows this process being completed. As with
particles, it’s a good practice to make sure that you’re at the start frame of your
animation before playing back your simulation.

448 PART 3 Get Animated!

Now, I have to admit that I cheated a bit in the preceding example by using a cube.
If you were to try those steps with another type of mesh, like a UV Sphere or
Suzanne, the mesh would collapse and look like it instantly deflated when it hit
the ground plane. To get around this issue, you need to adjust one more setting.
In the Edges panel is a Bending setting with a default value of 0.00. This value sets
the bending stiffness of your object. With a setting of 0, you have no stiffness, so
the mesh collapses. However, if you change this setting to a higher value, such as
3.0 or 5.0, the falling mesh retains its shape a little bit better when it collides with
the ground plane. If you change this value on your cube, you can disable the Stiff-
ness check box that you enabled in Step 7. The Stiffness check box gets your mesh
to retain its shape even better, but it can also slow down the soft body calculation
substantially.

Similar to particles, if you look in the Timeline when you play your soft body sim-
ulation, you should see an orange bar along the bottom. If the orange bar is
opaque, Blender has cached that part of the simulation. If it’s semitransparent,
that moment in time has not yet been cached. Cached simulation data plays at a
rate closer to real time. To get a good idea of the timing of your simulation, let it
play through all the way once, ensuring that the simulation gets cached. When you
play it again, you should get a much more reasonable sense of the simulation’s
timing.

FIGURE 14-5:
Dropping a

jiggly cube into
the scene.

CHAPTER 14 Letting Blender Do the Work for You 449

Dropping Objects in a Scene with
Rigid Body Dynamics

Not everything that reacts to physics has the internal jiggle and bounce that soft
bodies have. Say, for example, that you have to animate a stack of heavy steel
girders falling down at a construction site. For that animation, you don’t want to
have a soft body simulation. I mean, you could technically get the correct behavior
with really stiff settings in the Soft Body Edges panel as described in the preceding
section, but that’s a bit of a kludge and potentially very CPU-intensive. You’d be
better off with rigid body dynamics. As their name implies, rigid bodies don’t get
warped by collisions the way that soft bodies do. They either hold their form when
they collide, or they break.

Like the other physical simulation types, the controls for rigid bodies are in
 Physics Properties. You need only left-click the Rigid Body button.

Follow these steps to get a simple rigid body simulation with the default cube:

1. Select the cube and move it up in the Z-axis by a few units.

You can move the cube using the Move tool or more quickly by using the
G hotkey. Like the soft body simulation, 3 to 5 meters should be fine.

2. Create a mesh plane to act as the ground (Add ➪  Mesh ➪  Plane) and
scale it larger so that you have something for the cube to hit (S or use
the Scale tool).

3. With your plane still selected, add a Rigid Body panel in Physics

Properties.

Unlike the soft bodies example, your ground plane should not get a collision
panel. This is unique to how rigid bodies work in Blender.

4. In your newly created Rigid Body panel, change the Type drop-down

menu from Active to Passive.

This tells Blender that the ground plane should be part of the rigid body
calculations, but that it isn’t going to be a moving object. Setting the type to
Passive is basically how you set up a rigid body collider.

5. Back in the 3D Viewport, select your cube.

6. Make a Rigid Body panel in Physics Properties.

That’s the last required step to have your cube drop into the scene. You may
want to give the cube a bit of an arbitrary rotation (use the Rotate tool or the
R ➪  R hotkey sequence) so it lands and bounces around on the plane in a more
interesting way.

450 PART 3 Get Animated!

7. Play back the animation (Spacebar) to watch the cube fall, hit the ground

plane, and bounce around a bit.

Congratulations! You have a rigid body simulation.

Figure 14-6 shows a breakdown of the preceding steps.

Simulating Cloth

Cloth simulation and soft body simulation are very similar in Blender, despite a
few key differences. Both soft bodies and cloth work on open as well as closed
meshes — that is, the mesh could be flat like a plane, or more of a shell like a cube
or sphere. However, soft bodies tend to work better on closed meshes, whereas
cloth is better suited for open ones.

Also, the cloth simulator tends to work better with self collisions. Think about the
fabric of a flowing dress. In the real world, if you bunch up part of a dress, it’s
technically colliding with itself. In computer simulations, you want to re-create
that effect; otherwise, the fold of one part of the dress breaks through the fold of
another part, giving you a completely unrealistic result. The cloth simulator
handles these situations much better than the soft body simulator.

FIGURE 14-6:
Creating a simple

rigid body
simulation.

CHAPTER 14 Letting Blender Do the Work for You 451

Revisiting the simple default cube (File ➪ New ➪ General), here’s a quick walk-
through on getting some cloth to drape across it:

1. Create a mesh Grid (Add ➪  Mesh ➪  Grid) and move it along the Z-axis so
that it’s above the default cube.

You can move the cube using the Move tool or more quickly by using the G
hotkey. This grid is going to be your cloth object. The reason why you’re using a
grid object rather than a plane is because the cloth simulator needs more
vertices to work with than the mere four you get with a simple plane.

2. Scale the Grid so it’s larger than the Cube (use the Scale tool or the S

hotkey).

It doesn’t have to be too high; just a couple of meters should be plenty.

3. Apply smooth shading to the grid.

You can perform this step by choosing Object ➪  Shade Smooth in the 3D
Viewport’s header menu, or you can access it faster from the right-click context
menu. This step is really just to make it look prettier. It has no effect on the
actual simulation.

4. Add a Subdivision Surface modifier to the plane.

You can add the modifier from Modifier Properties, or you can do it more
quickly using the Ctrl+1 hotkey combination. The simulator now has even more
vertices to work with. Of course, adding subdivisions causes the simulation to
take longer, but this amount should be fine. It’s important that you do this
before adding cloth properties to your mesh. Like many other simulators, cloth
is added in Blender as a modifier, and the order in the modifier stack is
important.

5. In Physics Properties, left-click the Cloth button to enable the cloth

simulator.

The default preset for the cloth simulator is Cotton. That preset should work
fine here, but feel free to play and change to something else. You can see the
other available presets by clicking the presets hamburger menu on the right
side of the Cloth panel’s header.

6. In the Collisions panel, enable the Self Collisions check box.

This step ensures that the simulator does everything it can to prevent the cloth
from intersecting with itself.

At this point, your cloth simulation is all set up for the plane. However, if you
were to play the animation with Spacebar right now, the plane would drop
right through the cube. You want the cube to behave as an obstacle, so follow
the next steps.

452 PART 3 Get Animated!

7. Select the cube object and left-click the Collision button in Physics

Properties.

Collision properties appear for your cube. Your simulation is set up.

8. Press Spacebar or click the Play button in the Timeline to watch the

cloth simulate.

Figure 14-7 shows what the results of this process should look like. It’s a
good idea to set your time cursor at the start of your animation in the
Timeline before playing back the simulation.

As with the other simulation types in Blender, if you select your cloth grid object
and look in the Timeline when you play your cloth simulation, you should notice
a bar along the bottom. In the case of cloth simulation, that bar is blue. If it’s
opaque, Blender has cached that part of the simulation. If it’s semitransparent,
that moment in time has not yet been cached. To get a good idea of the timing of
your simulation, let it play through all the way once, ensuring that the simulation
gets cached. On the second time playing, you should get a much more reasonable
sense of the simulation’s timing.

Splashing Fluids in Your Scene

In my opinion, an especially fun feature in Blender is its integrated fluid simulator.
This thing is just really cool and a ton of fun to play with, to boot.

FIGURE 14-7:
Creating a simple
cloth simulation.

CHAPTER 14 Letting Blender Do the Work for You 453

Before running headlong into fluid-simulation land, however, you should know a
few things that are different about the fluid simulator. Like most of the other
physics simulation controls, the main controls for the fluid simulator are in the
Physics tab of the Properties editor. However, unlike particle, cloth, and soft body
simulations, which can technically work in an infinite amount of space, the fluid
simulator requires a domain, or world, for the simulation to take place.

Another difference is that the fluid simulator actually creates a separate mesh for
each and every frame of animation that it simulates. Because of the detail involved
in a fluid, these meshes can get to be quite large and take up a lot of memory. To
account for that size, the fluid simulator actually saves these meshes to your hard
drive in .bobj.gz files. The other simulation systems can also save data to your
hard drive, but because fluid simulation data can take up an enormous amount of
hard drive space, you need to explicitly tell Blender where to save these files. The
whole fluid simulation can’t be cached in RAM. Because these files can get pretty
large, it’s a good idea to confirm that you have plenty of hard drive space available
for storing your simulation.

The fluid simulator has all the features of the other physics simulators. It recog-
nizes gravity, understands static and animated collisions, and has a wide array of
available controls.

Follow these steps to create a simple fluid simulation:

1. Select the default cube and scale it larger using the Scale tool or the S

hotkey.

This cube serves as your simulation’s domain object. The domain can actually
be any shape or size, but I definitely recommend that you use a cube or box
shape as the domain. Other meshes just use their width and height, or
bounding box, so it’s essentially a cube anyway. In this example, I scaled the
default cube by a factor of 5.

2. In Physics Properties, left-click the Fluid button and choose Domain from

the Type drop-down menu.

Now the fluid simulator recognizes your cube as the domain for the simulation.

3. In the Bake panel, set the location where simulation meshes are saved.

By default, Blender sends the .bobj.gz files to their own folder the /tmp

directory. However, I recommend you create your own folder somewhere else
on your hard drive, especially if you’re using Windows and don’t have a /tmp

directory. Left-click the folder icon to navigate to that location with the File
Browser.

454 PART 3 Get Animated!

4. Decide at which resolution you would like to bake the simulation.

These values are set with the Final Resolution and Preview values in the
Settings panel. The Final Resolution property is the value used when you
render. Typically, it’s a higher number than the Preview resolution, which is
usually used in the 3D Viewport. For the Preview value, you want a smaller
number so that it plays back at a reasonable framerate and you can ensure
that your timing is correct. The defaults should work fine for this example,
although higher values would look better. Be careful, though, depending on
the type of machine you’re using: Very large values may try to use more
RAM than your computer has, bringing the simulation time to a crawl or
even crashing Blender itself.

Conveniently, the Bake button within the Bake panel gives you an estimation of
how much memory it expects to need. As long as that is less than the amount
of RAM your computer has available, you should be good to go (though you
may still wait quite a while for a simulation to finish. Blender still has to
calculate the simulation for all those subdivisions).

Blender’s fluid simulator gives you the ability to use multiple threads, or

processing streams on your computer. If you have a modern computer with
multiple cores, you can take advantage of this feature. However — and this is a
pretty big however — each thread requires a separate copy of your simulation
data. This means that whatever number the fluid simulator is estimating for
the amount of RAM it needs, you must multiply it by the number of threads.
So if you’ve set up a simulation with a resolution that uses 1GB of memory
and you set the Simulation Threads value to 4, then you’ll actually need
4GB of memory to do that simulation. If you leave the Simulation Threads
property at its default value of 0, Blender tries to automatically determine
what the appropriate thread count should be.

5. Determine the time that you want to simulate the fluid’s behavior.

The Time Start and End values in the Settings panel are the time of the
simulation, measured in seconds. By default, the simulator starts at 0.000 and
runs until 4.000 seconds. An important thing to realize here is that this time
value is scaled across the full number of frames in your animation, as noted in
the Timeline or the Dimensions panel of Output Properties. If you’re using
Blender’s default frame rate of 24 fps and length of 250 frames, your simula-
tion will be in slow motion, showing 4 seconds of fluid simulation over a span
of roughly 10.4 seconds. For this test, I set the End time in the fluid simulator to
3.000 seconds and the duration of the animation to be 72 frames long.

6. Create a mesh to act as the fluid in your simulation (Add ➪  Mesh ➪  
Icosphere).

I typically like to use an icosphere, but any mesh will work. To give yourself
some more room, you may also want to move this mesh up the Z-axis to

CHAPTER 14 Letting Blender Do the Work for You 455

somewhere near the top of the domain cube so that you have some room for
the fluid to fall.

7. In Physics Properties, left-click the Fluid button and choose Inflow Type
from the drop-down menu.

Your icosphere is set as the source for the fluids entering the domain.
Choosing Inflow means that the mesh constantly produces more and more
fluid as the simulation goes on. If you prefer to have a single fluid object with a
fixed volume, choose Fluid rather than Inflow.

8. (Optional) Give the Inflow object an initial velocity in the negative Z direction.

This step is optional because the fluid simulator does recognize the Gravity
setting in Scene Properties. Adding an initial force in the negative Z direction
here just gives it a little extra push. The value doesn’t have to be large: –0.10
m/s should work just fine. You want to make this value negative so that it
pushes the fluid down. This initial velocity is added to the force already set
by gravity. At this point, your simulation is configured.

9. Select the domain cube and bake the simulation.

Left-click the large Bake button in the Bake panel. I know that this sounds
odd — “Baking fluids? Really? Won’t it boil?” — but that’s the terminology
used. You’re running the simulation for each frame and “baking” that
frame’s simulation result to a mesh that’s saved on your hard drive. If you
look at it in that way, it kind of makes sense.

10. Watch the progress of the fluid simulation.

Depending on how powerful your computer is, this baking process can be
pretty time consuming. I once had a 4-second fluid simulation that took 36
hours to bake. (Granted, it was at a high resolution, and I had a lot of crazy
Inflow objects and complex moving obstacles, so it was entirely my own fault.)
Just know that the more complexity you add to your simulation and the higher
the resolution, the more time it’s going to take. As the progress bar at the top
of the screen shows your simulation processing, you can interactively follow
progress in the 3D Viewport. Remember that Blender has a non-blocking
interface, so you can actually scrub the Timeline, use the ←/→ hotkeys, and
even play back the animation (Spacebar) while Blender is still baking. How’s
that for cool?

11. Play back the finished simulation with Spacebar.

One thing to note here is that your mesh looks faceted. You can easily fix this
issue by choosing Object ➪  Shade Smooth or using the right-click context menu.

And, POW! You have water pouring into your scene! Using these same basic steps,
you can add obstacles to the scene that can move the water around as you see fit.
In fact, that’s basically how I made the cover image for this edition of Blender For
Dummies!

456 PART 3 Get Animated!

If you use the Quick Fluid option from the Quick Effects menu (Object ➪ Quick
Effects ➪ Quick Fluid), Blender basically performs Steps 1 to 7 for you in a single
go, as well as creating a fluid material for your simulation. All you need to do is
tweak the values of your domain and get right to baking. Figure 14-8 shows the
result of using the Quick Effects helper on the default cube object.

FIGURE 14-8:
Using the Quick

Fluid helper
feature can get
your basic fluid

simulation set up
way faster than

doing it manually.

KNOWING WHEN TO USE THE
RIGHT TYPE OF FLUIDS

Blender’s particle system also offers a way to do fluid simulation by choosing the Fluid
physics type from the Physics panel in Particle Properties. And because that choice is
available, you may find yourself wondering why you’d use this mesh-based method
when that one is available. The short answer is that it all depends on what you’re trying
to do. For example, the particle-based fluid technique is useful if you need your fluids
to interact with Blender’s other simulators (force fields, cloth, and so on) or if you’re
simulating large-scale fluids that don’t quite fit in the constraints of a 10-meter cube.
The particle-based method is not so great, however, for detailed small-scale fluid
simulations or if you need to use materials with ray traced transparency or shadows.
The particle-based technique doesn’t currently generate meshes where you can apply
those materials (though that may change in future releases of Blender, one day). For
those situations, the fluid simulation technique covered in this section is more useful.

CHAPTER 14 Letting Blender Do the Work for You 457

Smoking without Hurting Your Lungs:
Smoke Simulation in Blender

In addition to all the other cool physics simulation goodies that come bundled
with Blender, you can also do smoke and fire simulations. The process for setting
up the smoke simulator is in some ways very similar to the fluid simulator in that
it requires that you set up a domain object (under the hood, the algorithms for the
two are pretty similar). However, that’s where the similarities end. For one, the
smoke simulator doesn’t generate mesh objects, so you’re not compelled to find a
clean chunk of hard drive space to store your simulation data. And a much bigger
difference becomes apparent when you get down to trying to render the smoke.

Creating a smoke simulation

Before you can render smoke, you need to set up an initial smoke simulation. Fol-
low these steps:

1. From the default scene, scale the cube up.

For this example, scaling by a factor of 5 should be fine. You can use the Scale
tool or, to get the job done faster, use this hotkey sequence: S ➪  5 ➪  Enter.

2. From Physics Properties, left-click the Smoke button to create a Smoke

panel.

3. In your new Smoke panel, choose Domain as your smoke Type.

When you select Domain from the Type drop-down menu, Blender knows to
treat your cube as a smoke domain. The cube automatically changes to
wireframe display in the 3D Viewport, and you get a whole bunch of additional
panels in Physics Properties. For now, you can leave all these settings at their
defaults.

4. Back in the 3D Viewport, add a simple mesh and lower it a bit (Add ➪  
Icosphere).

This object will be your smoke source. And your smoke naturally will float up,
so it makes sense to lower your object a bit to give the smoke some room to
show up.

5. In Physics Properties, add a Smoke panel for your smoke source.

6. In your new Smoke panel, choose Flow from the Type drop-down menu.

This establishes your smaller object as your smoke source.There are fewer
panels and options for a smoke flow object than a smoke domain, but there’s
still quite a few. Fortunately, you can leave these settings at their defaults
for now.

458 PART 3 Get Animated!

7. Play back your simulation with Spacebar.

Smoke should start billowing up from your flow object and stop when it
reaches the faces of your smoke domain.

8. Tweak your smoke settings to taste.

There’s a lot of playing that you can do here. Not only does the smoke simulator
make smoke, it can simulate fire, and you can add objects to collide with the
smoke in all kinds of interesting ways. You really can lose hours — perhaps
days — of your life messing around with all the settings in the smoke simulator.

Those are the basics of setting up a simple smoke simulation in Blender. As Fig-
ure 14-9 shows, the 3D Viewport gives you a nice preview of your smoke
simulation.

Unfortunately, if you try to render your smoke simulation as is, you’ll be
disappointed. Regardless of whether you’re using Eevee or Cycles, all you’ll see is
the blocky cube shape of your smoke domain. To get your smoke simulation to
render, you need to make a few more improvements, as covered in the next section.

Rendering smoke

In 3D computer graphics, smoke and fire fit into a category of materials referred
to as volumetric effects. In meatspace, there’s no such thing as a smoke object (a
smoking object, yes, but not a smoke object). It isn’t a single object. You see smoke

FIGURE 14-9:
A simple smoke

simulation
displayed in the

3D Viewport.

CHAPTER 14 Letting Blender Do the Work for You 459

because it’s a buildup (a volume) of millions of small particles floating in the air.
They reflect and obstruct light. Unlike solid objects, it just isn’t sufficient to ren-

der the surface of smoke and fire. The result doesn’t look believable. Your renderer
must support volumes.

Fortunately, both the Eevee and Cycles renderers have support for volumetric
materials. And as a matter of fact, setting up volumetric material in Blender has
never been easier, thanks to the Principled BSDF node.

Volumetric data, like smoke simulation, is made up of voxels. A voxel is a volumetric
pixel. This is how Blender stores your smoke simulation. Voxel data from your
simulation is basically treated as a three-dimensional texture for the volumetric
shader. All you need to do is tell Blender where the simulation data is and how it
influences the material’s appearance.

To get your smoke simulation rendered in either Eevee or Cycles, follow these steps:

1. In the 3D Viewport, select your smoke domain object.

Since you’re working with materials and shading, I suggest you perform these

steps from the Shading workspace, as covered in Chapters 8 and 9.

2. If your smoke domain doesn’t already have a material slot, add one by

clicking the Plus (+) icon next to the list box at the top of Material

Properties.

Your smoke domain should have only one material. If you already have a
material slot and material in use, just use that one and skip down to Step 4.

3. In the Material datablock, left-click the New button to add a new

material.

Name the material something descriptive, like Smoke. From this point, you
could continue to work in Material Properties, but it’s much easier to see what’s

going on (and generally good practice) from the Shader Editor.

4. In the Shader Editor, select the Principled BSDF shader node that’s there

by default and delete it.

5. Add a Principled Volume BSDF (Add ➪  Shader ➪  Principled Volume) and
wire it to the Volume socket of the Material Output node.

And poof! (Pun intended.) You have smoke in your render. From here, you can
tweak colors and other attributes of your material to land on the visual effect
that you want. For example, you may want to darken or thicken the feeling of
your smoke.

6. Add a Volume Info node (Add ➪  Input ➪  Volume Info).

7. Wire the Density socket of your Volume Info node to the Density socket

on your Principled Volume node.

460 PART 3 Get Animated!

Upon completing this step you should notice that your smoke gets a little bit
fainter. That’s because you’re actually feeding the same density information to the
Principled Volume node twice. Don’t worry, though, you’ll fix that in the next step.

8. In the Principled Shader node find the text field next to the Density
Attribute socket and remove any text from it.

By default, the text here should read density. Because you’re populating this
with the Volume Info node, you no longer need to tell the Principled Volume
node the name of the Density Attribute.

9. Add a Math node (Add ➪  Converter ➪  Math) and wire it inline on the
noodle between the Volume Info node and the Principled Volume node.

Recall that you can quickly put a new node right inline on a noodle by dragging
that node until the noodle is highlighted. Your smoke simulation likely now fills
the whole box of your domain. That’s because you’re adding 0.500 to your
Density value. What you really want to do is multiply.

10. Change your new Math node to use Multiply rather than Add and
increase the bottom Value slider to something larger than 1.

In my example, I set the value to 2.500. Once you do that, you have a slider that
you can use to control how dense and thick your smoke simulation renders.

Figure 14-10 shows the same smoke simulation rendering in both Eevee and
Cycles.

FIGURE 14-10:
On the left, a

smoke simulation
rendered in

Eevee. On the
right is the

same simulation
and material

setup in Cycles.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 461

Chapter 15

Making 2D and 2.5D
Animation with
Grease Pencil

B
eing an animator at heart, it’s been exciting over the years to see Blender’s
Grease Pencil feature mature from being a simple means of annotating
scenes to blossoming as a full-blown hand-drawn animation tool on ster-

oids. That’s right. You can do hand-drawn animation right in Blender! And even
if you’re not an animator, you can actually draw in Blender. There are so many
talented 3D artists whose drawing skills atrophy over years because most 3D tools
don’t provide the facilities for a good drawing workflow. And at the same time,
there are heaps of amazing 2D artists who never get into working in 3D because
dealing with vertices and edges and polygons doesn’t jive with their sensibilities.

Well, not any more. Blender gives you the best of both worlds with Grease Pencil.
You can draw and paint in Blender just like in so many other digital painting pro-
grams. But because you’re doing it in Blender, you also have the full power of an
infinite 3D canvas and all of Blender’s modeling and animation tools. This isn’t a
2D painting application with some basic 3D capabilities bolted on. It’s the closest
I’ve ever felt to seeing my drawings come to life in three dimensions. Hopefully,
after playing with the features and tools described in this chapter, you’ll be as
excited about Grease Pencil as I am.

IN THIS CHAPTER

 » Setting up a .blend file for 2D
animation

 » Working with Grease Pencil objects to
make 2D images and animations in

3D space

 » Getting your 2D work to play nice
with the rest of a 3D scene in Blender

462 PART 3 Get Animated!

Getting Started with the 2D Animation
Workspace

It’s absolutely possible to work with Grease Pencil objects in any of Blender’s
workspaces that have a 3D Viewport. However, if you want the absolute best
Grease Pencil experience, I recommend using the 2D Animation start file that
ships with Blender. To get started, choose File ➪ New ➪ 2D Animation and your
Blender window should look something like the one in Figure 15-1.

In contrast to seeing the dark 3D Viewport that you’re used to seeing when you
typically work in Blender, the 2D Animation workspace presents you with a fully
white 3D Viewport that’s more akin to what you’d expect when drawing on a blank
canvas or sheet of paper. Furthermore, the default behavior also has you looking
through the scene camera object which is oriented in space to look down the Y-axis
of the world. This way, when you render your scene, what you draw is what you get.

In addition to the 2D Animation workspace, there are also three other workspace
tabs across the top of your Blender window: 2D Full Canvas, Compositing, and
Rendering. I describe the purpose of each of these workspaces in Chapter 2. For
the most part, though, I recommend doing most of your work in the default
2D Animation workspace. The Compositing and Rendering workspaces are basi-
cally the same workspaces you have available when working on a traditional
3D project, and the 2D Full Canvas workspace is best when you’ve got all your base
drawing done and your primary focus is on animation.

FIGURE 15-1:
Blender’s 2D

Animation start

file gives you
a super-

comfortable

environment to
start drawing

with Grease

Pencil.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 463

Another default that you get with the 2D Animation start file is that your scene is
pre-populated with Grease Pencil Stroke object, and you’re already in Draw mode
for that object. This fact brings to light two important things to keep in mind:

 » Grease Pencil objects have a special Draw mode in addition to some of the
other standard Blender modes.

 » Unlike other Blender objects, the only Add menu for Grease Pencil is when
you’re in Object mode.

Because you typically add to a Grease Pencil object by drawing, primitives like the
ones you have for mesh objects aren’t as helpful. In fact, there are only three
Grease Pencil primitives that ship with Blender. If you’re in Object mode and
choose Add ➪ Grease Pencil, you see the following choices:

 » Blank: In most situations, the Blank Grease Pencil object is what you want to
start with. There’s nothing already in there. It’s just an empty container on
which you can switch to Draw mode and get right to drawing.

Of course, if you’re going to add a Blank object to your scene, I strongly
recommend that you immediately name it something sensible in the Outliner,
especially if you don’t begin drawing in it immediately. Otherwise, your scene
will be littered with blank objects named GPencil and GPencil.001 that you
can only find and select in the Outliner.

 » Stroke: The Stroke Grease Pencil object is a simple curved stroke. You could
use this as a starting point for a Grease Pencil drawing, but unless you’re
testing Grease Pencil features like modifiers (described later in this chapter),
your first move will likely be deleting or erasing that base stroke.

That said, one of the things about the Stroke object that makes it attractive as
a starting point is the fact that it comes prepopulated with layers and materi-
als so you can get to work immediately without needing to set all that up. In
fact, the default object that you get in the 2D Animation start file is a Stroke
object with that first stroke removed.

 » Monkey: If mesh objects can have a Suzanne for doing tests and examples,
why shouldn’t there be one for Grease Pencil objects? Of course, although the
Grease Pencil Suzanne retains a lot of the same base attributes of the mesh
Suzanne in terms of shape, it’s not a mere conversion. The Grease Pencil
Suzanne is her own monkey, and she’s great for testing out all of Grease
Pencil’s features.

Figure 15-2 shows both the Stroke and Monkey primitives for Grease Pencil.

464 PART 3 Get Animated!

One key thing to keep in mind as you work in Draw mode is that the 2D Animation
workspace is designed to feel comfortable to artists with a background in 2D digital
painting programs. The expectation is that you take much more advantage of the
Topbar region in the 3D Viewport for changing brushes, adjusting brush settings,
and changing the layer that you’re working on. Of course, if you don’t like working
that way, you always have access to adjusting brush and tool settings from the
Tool tab of the 3D Viewport’s Sidebar or the Active Tool tab of the Properties editor.
However, since it’s likely that you’ll want to be able to quickly adjust tool settings
as well as layers or materials, it makes sense to keep the Properties editor on the
Material tab or the Object Data tab and manage your tool settings from the Top bar.

Working with Grease Pencil tools
At this point Grease Pencil objects are nearly as powerful and flexible as mesh
objects in Blender. They’re truly first-class citizens, with dedicated modes for
drawing, editing, sculpting, and even modifiers. Short of creating hyper-realistic
images, you can make (and animate!) just about anything you want with Grease
Pencil objects.

Blender provides a wide array of modes for working with Grease Pencil objects.
When you work with Grease Pencil objects, the general workflow goes something
like this:

1. Draw.

Using Draw mode, you flesh out your Grease Pencil object, setting up layers
and colors, as well as roughing in your general drawn image.

2. Sculpt.

Grease Pencil objects have a Sculpt mode, similar to mesh objects. You can use
the tools in Sculpt mode to massage the line work of your Grease Pencil
drawings and tune their shapes after you’ve already drawn them. Sculpt mode
also comes in handy when animating because you can take existing art and
nudge it around to give that art movement.

FIGURE 15-2:
The only

primitives for
Grease Pencil:

Blank, Stroke, and

Monkey (of
course!)

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 465

3. Edit.

In a lot of ways, Grease Pencil objects are just like any other object. They have
an Edit mode, too! Blender’s Edit mode tools are great for really adding that
last bit of polish to your drawn artwork. With the tools in Edit mode, you can
select the individual control points of your drawing and place elements exactly
where you want them in 3D space.

4. Modify.

Like working with mesh objects, Grease Pencil objects can have modifiers to
help automate some effects or generally make your life easier as an artist. You
can even use modifiers to build animation rigs so you can animate Grease
Pencil objects more like 3D objects instead of redrawing on every frame.

5. Animate.

Some people use Grease Pencil just to make really cool 2D images. In fact, I
know of at least two different web comics that are produced with the help of
Grease Pencil objects in Blender. However, where Grease Pencil objects really
shine is in animation. Animating is what they’re made for, and that’s where you
can really experience everything these little objects have to offer.

Of that workflow, this section covers the tools used in the first three steps.

Drawing with Grease Pencil
Unless you’re starting with the Suzanne primitive, everything with Grease Pencil
objects starts with drawing; the 2D Animation workspace defaults to putting you
in Draw mode on your selected Grease Pencil object. The fundamental unit of a
Grease Pencil object is a drawn stroke. The tools in Draw mode are what you use
to create those strokes. Aside from the 3D Cursor tool, Draw mode for Grease Pen-
cil objects features nine different tools you can use:

Working with brushes for the Draw tool
As you may guess, the Draw tool is what you spend the bulk of your time using
while in Draw mode. In a lot of ways, the Draw tool for Grease Pencil objects is like
any of the Sculpt mode tools for mesh objects (see Chapter 6 for more on sculpting
meshes). The Draw tool has some basic settings, but it serves as a container for a
variety of brushes. Unlike the mesh-sculpting tools that default with having only
one brush datablock per tool, the Draw tool for Grease Pencil ships with seven
basic brushes:

 » Airbrush: This brush gives the feeling of working with an airbrush or spray
paint on your canvas, with soft edges and accumulated buildup of color.

466 PART 3 Get Animated!

You may want to use it for blocking in your drawing, but I tend to prefer it for
soft coloring, subtle shading, diffuse highlights.

 » Ink Pen: In cartoon animation and comic book art, the inking process was
what you did after you’d gotten the basic sketch of your drawing complete. In
the Draw tool, the Ink Pen brush serves the same purpose. One of the nice
things about this brush is that it doesn’t stop abruptly when you stop drawing;
the stroke nicely tapers at each end of your stroke.

 » Ink Pen Rough: One of the nice things about hand-drawn animation in
traditional media is the life that your linework can have, due to unexpected and
sometimes imperceptible variations in the surface you’re drawing on or the
pen tip itself. That variation can give your linework a vibrant, organic feel, and
the Ink Pen Rough brush tries to replicate that in your Grease Pencil strokes.

 » Marker Bold: I’ve personally never been skilled at drawing or coloring with
markers in meatspace, but I stand in awe at the people who can. The Marker
Bold brush datablock gives the Draw tool a feel similar to that of drawing and
coloring with a thick-tipped marker.

 » Marker Chisel: Think of this brush as if you’re drawing with a highlighter or, if
you go way back in traditional media, a blue pencil. The Marker Chisel brush is
ideal for roughing in the general shape of your drawing, including construc-
tion lines and other scribble aids to get your silhouette and proportions right.
I like to use this as a kind of sketching brush.

 » Pen: The Pen brush behaves similarly to the Ink Pen brush, but with much less
line variation. Think of the Ink Pen tool as drawing with a physical brush or
calligraphy pen, whereas the Pen brush is more like a ballpoint or rapido-
graph pen.

 » Pencil: The Pencil brush is what Blender defaults to when you first choose the
Draw tool. Like the Marker Chisel brush, the Pencil brush is great for sketching
and getting the rough form of your drawing in place. At larger brush radii, the
Pencil brush is also quite nice for shading.

 » Pencil Soft: Speaking of shading, the Pencil Soft brush is the champion of
shading when using the Draw tool. You can certainly use fills on your objects,
but it depends on the final effect you want to see. If you want a more sketchy
or painterly look, the Pencil Soft brush is a huge help.

As for using the Draw tool, if you’ve used Blender’s sculpting (see Chapter 6) or
painting tools (see Chapters 8 and 9), then the interface should be pretty familiar
to you. Left-click and drag in the 3D Viewport to add strokes. Press F to visually
adjust the radius of your brush cursor. Press Shift+F to visually adjust the brush’s
strength. And if you’re working with a pressure-sensitive drawing tablet, Blender
recognizes and takes advantage of that pressure sensitivity for both brush radius
and strength. You can toggle pressure sensitivity with the Use Pressure button in
your brush’s tool settings.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 467

Customizing your Draw tool brushes
As handy and useful as the default brush datablocks are for drawing and creating
shapes, as you use Grease Pencil objects more and more, you’ll likely find that you
want to customize your brushes to achieve different effects with them. It’s a bit
beyond the scope of this book to go through all the various brush settings and
show how to tweak them. However, I can say that the basic steps are the same
ones you take to make custom sculpt brushes or painting brushes:

1. Choose the brush that’s the most similar to the one you want to create.

2. In Active Tool Properties, go to the Brush datablock in the Brush panel
and click the Add Drawing Brush button.

The Add Drawing Brush button looks like two pieces of paper stacked upon
one another. Clicking this button duplicates your current brush and gives you a
starting point for making your custom brush.

3. Within the Brush datablock, rename your brush to something that makes
sense to you.

To further customize your brush, you can go down to the Display panel and
give your brush a custom icon. It can be any image you want, but smaller
square images tend to work best.

4. Customize your brush settings to taste.

As you customize your brushes, you may find yourself wondering how to make
textured brushes for Grease Pencil, much like how you would for sculpt or paint-
ing brushes. You may also find yourself disappointed that there isn’t a Texture
panel at all in your brush datablock’s tool properties like you might expect.

But worry not, dear Blenderhead! The feature is indeed available! The reason why
you can’t find the way to add textures to your brushes in your brush settings is
because they’re actually controlled by Grease Pencil materials. This organization
may seem odd at first, but it starts to make sense as you come to understand how
Grease Pencil materials work. I cover that later in this chapter in the section
appropriately entitled, “Understanding Grease Pencil Materials.” In the mean-
time, though, you can switch to the Material tab of the Properties editor and have
at the Stroke sub-panel (it’s within the Surface panel). In that sub-panel, there’s
a drop-down menu, labeled Style. By default, this property is set to Solid, but if
you click it, you can change it to Texture. Once you change the Style property to
Texture, Blender provides you with an Image datablock that you can use to load an
image from your hard drive as a brush texture. Figure 15-3 shows a few examples
of customized Grease Pencil brushes that can be made.

468 PART 3 Get Animated!

There are quite a few artists that are loving Blender’s Grease Pencil objects more
and more. Even better, they’re creating and sharing custom brushes that you can
use and further customize on your own. One of the best places to start looking for
custom brushes is over on the Blender Cloud (cloud.blender.org). The site is a
subscription-based resource service set up by the folks at the Blender Foundation,
but they also provide quite a few free assets (like brushes!) that anyone can down-
load and use.

Understanding the other tools in Draw mode
Even though you spend a large amount of time in a Draw mode using the Draw
tool, you shouldn’t forget that there are a bunch of other useful tools available for
you to work with. Working down the Toolbar, these are the other tools you can use
on Grease Pencil objects while in Draw mode:

 » Fill: The Fill tool takes a bit of getting used to. The reason it may feel strange
at first is because it depends on the active material slot you have selected in
Material Properties. There’s more on Grease Pencil material later in this

chapter, but the main thing to remember is that the Fill tool only really works
if you’re using a material that has filling enabled. Once you know that, the Fill
tool starts to behave as expected. Left-click anywhere within an enclosed
stroke and the Fill tool fills it with your selected material.

If you want to fill an area that isn’t fully enclosed, you can Alt+left-click and
drag to draw a boundary line so you have an enclosed area to fill. You can
remove boundary lines later in Edit mode by choosing Grease Pencil ➪  Clean
Up ➪  Boundary Strokes.

 » Eraser: As you might expect, the Eraser tool does the opposite of what the
Draw tool does. Depending on the specific brush datablock that you choose,
the Eraser tool removes strokes, in part or in whole, from your drawing.
Blender ships with four eraser brush datablocks:

FIGURE 15-3:
Blender’s default

Grease Pencil

brushes are
great, but it’s

even better to
make your own

custom ones!

http://cloud.blender.org/

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 469

• Hard: The difference between the Hard Eraser brush and the Soft Eraser is
pretty subtle. They both have soft edges where you erase using your brush
cursor. The main difference is that the Hard Eraser brush is slightly more
aggressive and more likely to remove parts of your stroke and not leave
semitransparent bits dangling about.

• Point: The Point Eraser brush works on the actual geometry of your stroke.
Each Grease Pencil stroke is similar to Blender’s curve objects. It consists of
a number of control points connected by segments. When you use the
Point Eraser, if your brush cursor has a control point within its radius when
you click and drag in the 3D Viewport, that whole control point is com-
pletely deleted and the stroke comes to an abrupt end right there.

• Soft: The Soft Erase brush is the default datablock that’s active when you
first choose the Erase tool. As its name implies, think of using it like a soft
white eraser when working with traditional media.

• Stroke: By far the most aggressive brush in the set that comes with the
Eraser tool, the Stroke Erase brush flat-out deletes any stroke it comes into
contact with. It has the power to obliterate your whole drawing with just a
few sweeps of your brush cursor, but used judiciously, the Stroke Erase
brush is fantastic for cleaning up construction lines and rough sketches.

 » Cutter: The best way of thinking about the Cutter tool is to imagine that
you’ve combined the Lasso Select tool with the Point Eraser brush. When
you select this tool, you can draw a selection area with your mouse cursor.
Blender deletes any control points on your stroke that fall within the area
that you draw.

The preceding list of tools give you controls that feel a lot like painting or drawing.
Blender also offers the ability to create shapes more akin to what you could do in
a vector drawing program like Inkscape or Adobe Illustrator. Freeform drawing is
fantastic fun, but sometimes you need to get a bit more precise in your drawings.
It’s useful to have some base shapes with additional controls so you can do more
precision work, like for blueprints, technical drawing, or logo design. Fortunately,
Blender offers five specific tools in Draw mode to help you.

Generally speaking, after you select the tool, you need to left-click and drag in the
3D Viewport to start drawing the shape you want. Once you release your mouse
button, you have the general shape of your stroke with some additional controls.
Use those controls to customize the shape, and then press Enter to convert that
shape to a finalized Grease Pencil stroke using the brush datablock you pick from
your tool settings. You can press Esc to cancel drawing with any of these tools.

470 PART 3 Get Animated!

The following are the shape tools available:

 » Line: Draw straight lines with this tool. When you left-click and drag in the 3D
Viewport, you get a line with two yellow dots at each end. You can left-click
and drag these dots to position the line to taste before confirming with Enter.

 » Arc: Similar to the Line tool, the Arc tool gives you a line with two yellow
controls at each end, but it also provides a cyan dot that you can use to
control the shape of your arc before confirming with Enter.

 » Curve: Continuing the theme of adding a line with additional controls, the
Curve tool gives you a line with two cyan control dots. With those controls you
can tweak the shape of your curve much like you would tweak the shape of a
NURBS curve object.

 » Box: Using the Box tool, you can draw squares and rectangles in your scene.
When you left-click and drag in the 3D Viewport, you get two yellow controls
for adjusting the size of your box. The red dot in the center serves as a frame
of reference so you can tell where the center is. If you want to draw a square
with the Box tool, you need to hold Shift when you do your initial left-click and
drag. Likewise, you can have your box grow around the center point by
holding Alt as you draw the square. As of this writing, when you tweak the
shape of the square, the Alt and Shift keys don’t have an effect.

 » Circle: The Circle tool operates with the exact same controls as the Box tool.
If you want a perfect circle growing around the center point, hold Shift and Alt
as you draw.

Sculpting Grease Pencil objects
After you have your drawing created in a Grease Pencil object, may want to go in
and do some custom tweaks. Perhaps you want thicker or thinner lines in some
places. Or maybe you drew the whole thing with your mouse and the linework is
all shaky and uneven so you need to smooth it out. Or it could be that your
proportions are slightly off and you need to push the parts of your drawing around
to fix it. Perhaps you did your original Grease Pencil without the benefit of a
pressure-sensitive tablet and you want to add variation to line thickness and
opacity after the fact. For those kinds of situations, Blender’s Sculpt mode for
Grease Pencil objects is perfect.

You can quickly switch between modes by pressing Ctrl+Tab and using the mode
switching pie menu.

When you enter Sculpt mode on a Grease Pencil object, you have the following
tools at your disposal:

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 471

 » Smooth: Choose this tool and you can use it to take the jitter out of any
strokes you made while drawing. One thing to note about the Smooth tool is
that it affects the control points of your stroke, not really the stroke itself. That
means if you created a stroke using the Ink Pen Rough brush in Draw mode,
the Smooth tool isn’t going to reduce the noisiness of the stroke, just the
smoothness of the segments from one control point to the next.

Like the Smooth tool when mesh sculpting, you can quickly access this tool
from any other tool by holding down Shift as you left-click and drag in the 3D
Viewport.

 » Thickness: If you find that you’re not satisfied with the line width of the
strokes in your drawing, you can use the Thickness tool to adjust it. Left-click
and drag over a stroke and it gets wider. If you hold Ctrl while sculpting with
the Thickness tool, it reduces the width of the strokes your brush cursor
touches.

 » Strength: Think of this as a kind of opacity tool for sculpting. Using this tool
you can make semitransparent strokes more opaque and, if you hold down
Ctrl, you can soften strokes that are already dark.

 » Randomize: The Randomize tool is kind of like the evil doppelganger of the
Smooth tool. Rather than reduce variation along the length of a stroke, the
Randomize brush increases variability, ultimately making your linework more
shaky and uneven. Used with animation, this sculpt tool could be used to add
a bit of “line boil” to your lines so they undulate over time.

 » Grab: Much like the corresponding tool in mesh sculpting, the Grease Pencil
sculpting Grab tool moves the control points of your strokes around, as if
you’d selected them in Edit mode and moved them with Proportional Editing
enabled.

 » Push: I tend to think of the Push tool as a kind of cousin of the Grab tool.
Functionally, they’re similar in that they move around the control points that
are within the area of your brush cursor. However, the Push tool relies more
on the direction you move that brush cursor. If you’ve worked with a “liquefy”
effect in 2D graphics application, the Push tool feels very much like that.

 » Twist: You might think that the Twist tool is like the Rotate tool when mesh
sculpting or even the regular Rotate tool. If you did, you’d only be partially
correct. Although this tool does rotate control points that are under your
brush cursor, it’s more of a cumulative effect; you don’t have to move your
brush cursor at all. Just hold down the left mouse button and anything within
the area of the brush cursor spins around its center. By default, the Twist tool
spins things counterclockwise. Hold down Ctrl to twist in the clockwise
direction.

472 PART 3 Get Animated!

 » Pinch: When you sculpt with the Pinch tool, any control points within the area
of your brush cursor are pulled to its center. By sculpting with this tool, you
can pull control points closer to each other. Hold down Ctrl to repel control
points from the center of your brush cursor, effectively spreading them apart.

 » Clone: The Clone tool allows you to paste copies of a stroke in other parts of
the scene. This tool is not at all like the Clone tool when in Texture Paint
mode. The only similarity is that you need to select a reference to actually
clone. In the case of the Clone tool in Grease Pencil’s Sculpt mode, you make
that reference by selecting all or part of a stroke in Edit mode and copying it
(Grease Pencil ➪  Copy or Ctrl+C). With a stroke copied, Ctrl+Tab back over to
Sculpt mode and you can use the Clone tool to paste as many copies of that
stroke as you’d like.

Editing Grease Pencil objects
Grease Pencil objects are proper 3D objects just like any other in Blender. As such,
it makes sense that they should also have an Edit mode where you can manually
add, remove, and generally modify the components of those objects. For the most
part, the tools in Edit mode should be familiar to you if you’ve worked with other
object types in Blender. The usual transform tools (Move, Rotate, Scale, Trans-
form) are at the top of the Toolbar. The next set of tools are very much like their
counterparts in Edit mode for meshes and curves:

 » Extrude: With the Extrude tool you have the same extrude widget that’s also
available for mesh and curve objects. Select one or more control points and
then activate this tool. From there you can left-click the yellow plus symbol on
the Extrude tool’s widget and extrude more control points from your stroke. If
you’re more comfortable using hotkeys to extrude, you should be happy to
know that the E hotkey also works for Grease Pencil objects, regardless of
what the active tool is.

 » Radius: The Radius tool is Edit mode’s corresponding version of the Thickness
tool in Sculpt mode. The primary difference in this case is that the Radius tool
affects only the selected control points in your stroke. Though you can use
various forms of masking to limit the influence of the Thickness tool in Sculpt
mode, the Radius tool in Edit mode is much nicer for adjusting the width of
your line with more accuracy.

 » Bend: The Bend tool is useful for performing very simple deformation
adjustments to selected parts of your stroke. The thing to remember about
the Bend tool is that it always works relative to the location of the 3D cursor;
so if you plan on using the Bend tool, you should make the 3D cursor visible
from the Overlays rollout in the 3D Viewport’s header.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 473

 » Shear: The Shear tool does a shear operation on your selected control points.
That is, if your stroke is the shape of a rectangle and you want to change it to
a parallelogram, the Shear tool is the right tool for the job. There are two
things to remember about the Shear tool:

• It always shears relative to the horizontal or vertical axis that you’re viewing
your selection from.

• Vertical shearing is the default behavior. You can change between horizon-
tal and vertical shearing by pressing and releasing the middle mouse
button while in the middle of shearing.

 » To Sphere: To access the To Sphere tool, you need to long-press on the Shear
tool’s button in the Toolbar. Once activated, you just need to left-click and
drag in the 3D Viewport and your selected control points will adjust position to
assume a more sphere-like shape relative to the center of that selection.

One thing to remember as you edit and sculpt your Grease Pencil drawings is that
even though you’re drawing in just two dimensions, these objects exist in all
three. You can move control points or even whole strokes closer or farther away
from the camera, giving your drawn objects real dimensionality.

Understanding Grease Pencil Materials
One thing to keep in mind as you work with Grease Pencil objects is that despite
the amount of flexibility and the generally pleasant drawing experience that they
provide, drawing in Grease Pencil is a lot more like working in 2D vector drawing
programs like Inkscape or Illustrator than raster-based digital painting programs
like Krita or Photoshop. You may be able to have organic brush strokes with a tex-
tured appearance and smooth tonal changes, but at the core, you’re still working
with curve-based strokes. The upside of this approach is that it’s generally non-
destructive, meaning that you have a lot of freedom to go back and make changes
to your drawings with the incredible tools described in the preceding sections. The
downside is that choosing colors and mixing strokes can be a bit more
complicated.

Being 3D objects, Blender’s Grease Pencil objects get their color and texture prop-
erties not from the brush you use when drawing, but from material properties you
define in the Material tab of the Properties editor. If you’re coming from a 2D
painting application, this approach might feel a little bit alien, but if you’re famil-
iar with how materials work on other 3D objects in Blender, you should feel right
at home. Likewise, if you’re coming from a 2D animation tool like OpenToonz or
ToonBoom, Blender’s material-based approach should feel pretty familiar.

474 PART 3 Get Animated!

To get an understanding of how everything works, it’s best to start from scratch.
Start a new 2D Animation file (File ➪ New ➪ 2D Animation) and follow these steps:

1. Ctrl+Tab to Object mode and delete the default Stroke object that
Blender starts you with.

Generally speaking, the default object you get in the 2D Animation start file is
great, but for this example, it’s best to get it out of the way and start fresh.

2. Add a Blank Grease Pencil Object to your scene (Add  ➪   Grease Pencil  ➪  
Blank).

The Blank object is truly a bare-minimum starting point. It’s just a container for
you to start filling with Grease Pencilly goodness.

3. Ctrl+Tab into Draw mode and with the Draw tool, choose the Marker
Chisel brush.

It could be any brush datablock really, but the Marker Chisel brush gives a nice
wide stroke that will make it easier to see changes that you make.

4. Draw any kind of line you want.

It doesn’t have to be extravagant or pretty. The idea is that you’re going to use
this to play with Grease Pencil materials. If you’re at a loss of what to draw, just
write your name.

5. In Material Properties, add a new material to the material slots list box.

Because you started with a Blank Grease Pencil object, this list box isn’t
pre-populated with any materials at all. Just like with materials for any other
object, you need to left-click the New button in the Material datablock beneath
the list box. When you add your new material, you should notice that your
stroke in the 3D Viewport gets darker, and your Material Properties should
look something like Figure 15-4.

The main working area for a Grease Pencil material is in the Surface panel.
Within that panel there are two sub-panels, Stroke and Fill. By default the
Stroke sub-panel is enabled and the Fill sub-panel is disabled. If you disable the
check box at the top of the Stroke sub-panel, your stroke in the 3D Viewport
disappears. Likewise, toggling the Fill check box results in Blender trying to fill
the stroke you drew (if your stroke isn’t an enclosed shape, the result will
probably be quite ugly). For the next step, make sure that the Stroke sub-panel
is enabled and the Fill sub-panel is disabled.

6. In the Stroke sub-panel, change the settings for your stroke.

As you make changes, you can see your stroke update at the same time in the
3D Viewport. Within the Stroke sub-panel, you have two primary properties:

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 475

• Mode Type: From this drop-down menu you can dramatically change the
look of your stroke. The default type of Line is great for smooth continuous
lines. However, if you plan on using image-based textures for your strokes,
you may prefer to use the Dots or Boxes mode types.

• Style: There are only two options for this property: Solid and Texture. With
the Solid style, you get a Color swatch that you can use to change the color
of your material. That color material fills the whole space of your stroke,
depending on the mode type you chose. If you choose the Texture style,
however, you can choose any image file on your hard drive and use that as
the texture for your stroke material. From there, you can adjust the
spacing of that image along your stroke with the UV Factor value, or mix it
with a solid color by enabling the Mix Color check box.

For the sake of simplicity, just change your mode type to Dots and change your
stroke color to something fun. Maybe orange. Upon making those changes,
your Blender session may look like Figure 15-5.

7. Back in the 3D Viewport, use the Draw tool to make an enclosed stroke.

Just drawing a circle should be fine.

8. In Material Properties, use the Plus button to the right of the material
slots list box to add a new material slot.

You have a new material slot, but you still need to create a material to fill
that slot.

FIGURE 15-4:
Material

Properties with a

single Grease
Pencil material

added to your
object.

476 PART 3 Get Animated!

9. Left click the New button in the Material datablock to create a new
material.

At this point, you may have expected your last stroke to adopt the properties
of the new material you created. That’s not what happened, though. You just
created a material. You haven’t assigned it to any strokes in your drawing.
There’s no way to assign materials on strokes you’ve already created while in
Draw mode. To do that, you need to switch to Edit mode.

10. In the 3D Viewport, Ctrl+Tab to Edit mode and select at least one control
point on your enclosed stroke.

It’s not possible to partially assign materials on a stroke. Each stroke is only one
material.

11. In Material Properties, assign your new material to your selected stroke.

Select the material slot you want to use in the material slots list box and
left-click the Assign button beneath the Material datablock. If you selected the
control points in your second stroke (the enclosed one), it should immediately
switch to using the material in the second material slot.

12. Still in Material Properties, enable the check box at the top of the Fill
sub-panel.

You drew an enclosed shape; you may as well take advantage of it. Looking at
the Style property in the Fill sub-panel, you actually have four different choices
for fill styles:

FIGURE 15-5:
Changing the

Stroke properties

of your Grease
Pencil material

gives you a lot of
control over how
it looks, and you
can watch those

changes happen
in real-time in the

3D Viewport.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 477

• Solid: Plain but reliable, this fill style does as you expect. You fill the
enclosed space with a solid color.

• Gradient: When you choose the Gradient fill style, you get an array of
properties that you can use to control the color, size, and position of your
gradient, be it linear or radial. If you choose the Gradient fill pattern, I
suggest you change the Mix Factor value from 0.000 to 0.500 so you can
see what you’re doing.

• Checker Board: It’s not likely that you’re going to choose the Checker
Board fill pattern for finished work, but it’s extremely helpful when trying
to get a sense of where things are located in 3D space and how they’re
oriented.

• Texture: Like the Texture style for strokes, the Texture fill style for fills
gives you the ability to choose any image on your hard drive as a fill
pattern. Choosing this option expands the Fill sub-panel with controls for
the size, placement, and orientation of your fill texture.

13. In the 3D Viewport, Ctrl+Tab back to Draw mode.

Your Blender session should look something like what’s shown in Figure 15-6.

At this point, you’ve got a single Grease Pencil object with two different
materials. The really cool thing now is that each material is completely available
to you when drawing new strokes.

FIGURE 15-6:
A single Grease

Pencil object with

two materials on

it, one a dotted

stroke and the

other a solid

enclosed stroke

filled with a
checker board

pattern.

478 PART 3 Get Animated!

14. Choose the first material in the material slots list box and draw a new
stroke in the 3D Viewport.

Blender draws with that material.

15. Switch over to your second material and draw another stroke in the
3D Viewport.

Now you’re drawing with the second of your materials!

If you want to create another material for new strokes, it’s as easy as adding a new
material slot, populating it with a new material, and using that for your next
stroke. I like to think of this process like I’m building a palette of stroke types that
I can use when drawing in the 3D Viewport. It may seem a bit limiting in the fact
that the only looks you can have for your strokes are the ones you define in Mate-
rial Properties, but the trade-off is that you get an enormous amount of flexibility
by using Blender’s material system. Have a look at Figure 15-7. With just a few
minutes of adjusting just the materials that come with Suzanne, you can get some
rather dramatic changes to her appearance.

Mastering Grease Pencil Layers
In addition to being able to work with multiple materials and independently
assigning strokes to them, Grease Pencil objects also have built-in layers, similar
to the way that Armature objects have built-in layers. The difference, however, is
that layers for Grease Pencil objects behave a lot more like layers in digital draw-
ing and painting applications. That is to say, instead of just being mere collections
of strokes, the order of layers in Grease Pencil objects actually matters. They’re
arranged in a stack, with the layers at the top occluding the layers beneath them.

FIGURE 15-7:
With just a little

bit of playing
around with
materials on

Suzanne.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 479

You manage all the layers in a Grease Pencil object from the Object Data tab of the
Properties editor. It’s the first panel at the top of that tab and in the Layers rollout
in the Topbar, as shown in Figure 15-8.

You can organize your layers however you see fit. That said, I like to start off with
three layers on my Grease Pencil objects when I start working:

 » Lines/Ink: This layer is the topmost layer and hides everything underneath. If
I’m creating art in a cartoon or comic book style, this is the layer where I put all
my inked linework. Pretty much every stroke on this layer uses only materials
with Stroke enabled and Fill disabled.

 » Fills/Colors: On this layer is where my drawings get color. Most of the strokes
on this layer have materials that have Fill enabled. Workflow-wise, this is the
layer that I typically fill in last.

 » Sketch: This is the bottom layer and the layer that I actually start working on.
Typically strokes on this layer are made with the Marker Chisel or Pencil
brush. When I get to final render, this layer is generally hidden.

When you start a 2D Animation project, I suggest that you go ahead and get all
your layers set up like this as a starting point. Then as you work in Draw mode, all
you have to do is left-click the layer you want to work on and move right along
with drawing. Of course, the difficulty is that while you draw, you may want to
also switch through different materials as you go. It can get pretty tedious to

FIGURE 15-8:
Use the Layers

rollout in the 3D
Viewport’s Topbar
to quickly change

layers so you
can keep the

Properties editor

available for
tweaking

materials as

you draw.

480 PART 3 Get Animated!

constantly switch between the Material tab of the Properties editor and the Object
Data tab.

You could split your Properties editor horizontally so you have two of them, with
one dedicated to layers and the other dedicated to materials, but that eats away at
your screen space. Because you’ve already set up your layers and you typically
don’t need to manage them further until you’re at the polishing stage of your
project, a nicer approach is to leave the Properties editor on the Material tab and
switch layers using the Topbar of the 3D Viewport. At the top right of the Topbar
is a roll-out panel labeled Layers (refer to Figure 15-8).

From that Layers rollout you have all the basic controls available in the Layers
panel of Object Data Properties. And as you work, the active layer that you’re
working on has its name displayed in the Topbar so you always know where
you are.

Moving strokes to layers
“I like this layer setup you’re recommending, but I got excited and started draw-
ing before reading this part of the chapter. Now I’m doomed and have to start all
over!” Hold on a second there. Don’t go deleting all your hard work just yet. Any
stroke you draw can be moved to any layer whenever you like. The process is
pretty easy:

1. Tab into Edit mode on your Grease Pencil object.

2. Select at least one control point in the stroke you want to move.

Like with materials, strokes can’t be partially on a layer. It’s an all or nothing
kind of thing.

3. Move your stroke to the desired layer (Stroke ➪  Move to Layer, or press
the M hotkey).

The Move to Layer menu lists the layers in your Grease Pencil object that
already exist. Click on one to choose it. If you want to create a new layer for
your selected stroke, that option is available to you as well. The layer that has
the pencil icon next to it is your current active layer.

4. Ctrl+Tab back to Draw mode and get back to work.

See? Easy!

Tweaking your drawings with layer adjustments
The Layers panel in Object Data Properties has a few sub-panels in it that you can
use to do more wide-sweeping changes to your drawing on a per-layer basis.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 481

Whereas Grease Pencil materials give you the ability to change the look of individ-
ual strokes, Grease Pencil layers give you the ability to make more global changes
to groups of strokes.

You can get a certain level of control with the Blend property to change how the
strokes on one layer interact with the strokes on layers beneath it. And the Opacity
slider is pretty handy, too, especially when you need to animate the visibility of a
Grease Pencil layer. However, the real power for having a heavy influence over the
look of strokes on a layer resides in the Adjustments sub-panel, as shown in
Figure 15-9.

It doesn’t look like much, but the Adjustments sub-panel gives you a gateway to
massive ways to affect your layer. Working through the properties in this
sub-panel:

 » Tint Color: Using the color swatch in this property, you can give a general
color overlay to every stroke on the selected layer. Of course, when you first
set this color, it may not look like anything is happening. That’s because you
need to adjust the next property.

FIGURE 15-9:
The Adjustments

sub-panel for
Layers lets you

modify all the
strokes on a

single layer at the
same time.

482 PART 3 Get Animated!

 » Factor: The Factor property tells Blender how much your chosen Tint color
should influence and ultimately override the color of every stroke on your
layer.

 » Stroke Thickness: The Stroke Thickness control may seem like something
that’s only useful if you somehow messed up and made your drawing with
strokes that were too thick or thin and you need to have a quick fix. However,
there’s more to it than that. If you’re animating a character that’s moving from
far away to close up, you may want to animate the thickness of your strokes
so they look more natural. For animating, this is an extremely handy feature.

 » Pass Index: This property is where you can start to get a sense of how you
can really supercharge the customization of your layers. Pass Indices get used
in compositing to isolate specific parts of the render based on material or
object. In this case, it’s an isolation by Grease Pencil layer. They also get used
in some Grease Pencil modifiers (described later in this chapter) so you can
apply a modifier to only certain layers of your drawing.

 » View Layer: This is the property that can really facilitate massive modifications
to your Grease Pencil layer. View layers are used by Blender’s Compositor to
do all manner of totally sweet image processing to rendered output. By
assigning a Grease Pencil layer to a view layer, you instantly have the ability to
use any of the compositing tricks covered in Chapter 18 on your Grease Pencil
layer. Kaboom. Suddenly, anything is possible.

 » Disallow Locked Materials Editing: This check box is somewhat confusingly
worded. Basically, if you look in Material Properties (refer to Figure 15-4), you
should be able to see that each of your materials has a lock icon next to it. If
you click that lock icon, it not only prevents you from modifying the material,
it also prevents you from actually editing strokes with that material in both
Sculpt and Edit mode. If you disable this check box, you’re able to edit the
control points on your strokes, regardless of whether their materials are
locked.

Automating Your Drawings with
Grease Pencil Modifiers

Like mesh objects (and to a lesser degree, curve objects), Grease Pencil objects
have modifiers applied to them in the Modifiers tab of the Properties editor. In
terms of granularity and things they control, modifiers have some of the broadest
controls over your Grease Pencil objects, and the finest control happens in Edit
mode. To visualize the structure a bit, it goes something like what is shown in
Figure 15-10.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 483

That said, with modifiers you can have a lot of control over various parts of your
drawing all the way throughout that structure. You can add control points to brush
strokes or simplify them. You can adjust the thickness of all the strokes on a single
layer or material or the overall object. You can color-adjust fills and stroke colors.
And even better, because you’re making those changes with modifiers, it’s all
nondestructive and easy to animate. Grease Pencil modifiers represent the same
amount of timesaving power that you get with mesh modifiers.

When you go to Modifier Properties and click the Add Grease Pencil Modifier but-
ton, you get a menu of modifiers, broken down into three separate categories:

 » Generate: Similar to the Generate modifiers for meshes described in
Chapter 5, these modifiers are used to change the strokes of your Grease
Pencil objects at a fundamental level. Usually it’s by adding control points, but
in at least one modifier, control points are removed.

 » Deform: The Deform modifiers are the “meat and potatoes” modifiers of
animation. With these modifiers you can distort your drawing in a controlled,
repeatable way and, therefore, build complex animation rigs for your drawings.

 » Color: Yes, you can use the Compositor to do image processing and color
correction adjustments to you drawings. However, if you’re just tweaking
color, you can get much better performance by doing it in real time and
rendering directly with Eevee. Those kinds of color adjustments are what the
Color modifiers are for.

Figure 15-11 shows what you see when you click the Add Grease Pencil Modifier
button in the Modifiers tab of the Properties editor.

FIGURE 15-10:
A visualization of

the levels of
control Blender

gives you of
Grease Pencil

objects.

484 PART 3 Get Animated!

With the exception of the Armature modifier and the Time Offset modifier, there
are controls at the bottom of each modifier that allow you to specify a particular
material or layer. That means that when you add a modifier to your Grease Pencil
object, it doesn’t have to affect every stroke in your drawing. With clever use of
materials and layers, you can have modifiers affect only portions of your drawing,
giving you ultimate flexibility over their look and behavior.

Generate modifiers
The basic thing to remember with modifiers in the Generate column is that they
change the actual geometry of the strokes in your drawing. Generally speaking,
these modifiers add control points in one way or another, but they don’t necessar-
ily have to. Some of them generate new strokes (sometimes called derivative

strokes) with fewer control points than the original that you drew.

Breaking down the modifiers in this column, you have the following choices:

 » Array: Similar to the Array modifier for meshes, this modifier creates copies
of your whole drawing based on the number you set in the Count value and
allows you to offset those copies with the controls below that. The Object
offset is particularly cool because it lets you use any arbitrary 3D object as the
basis for offsetting the location, rotation, and size of each copy.

One difference between this modifier and the mesh Array modifier is that
there’s not a relative offset value that works based on the overall size of your
Grease Pencil object. All of the offset values for the Grease Pencil Array are in
absolute units.

 » Build: The Build modifier is a really fun one because with it you can basically
replay the process of drawing your Grease Pencil object over a specified
number of frames. The Fade transition type for this modifier is particularly
nice for slowly making your Grease Pencil object “undraw” itself over time.

FIGURE 15-11:
Blender gives you

almost as many
Grease Pencil

modifiers as
there are mesh

modifiers.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 485

When you first add the Build modifier, you may be startled to see your whole
Grease Pencil object disappear. Don’t let that frighten you too much. Just
scrub the Dope Sheet at the bottom of your Blender window (see Chapter 13
for more on working with Blender’s animation editors) and you get to see your
drawing show up over time.

 » Mirror: This modifier can create a single copy of your drawing along each of
its local axes. The biggest thing to remember is that all mirroring is relative to
your Grease Pencil object’s origin. So if you want your drawing to be mirrored
across the X-axis, most of your strokes should be on either the left or right
side of the origin.

 » Simplify: The Simplify modifier is the Grease Pencil equivalent of the mesh
object’s Decimate modifier. Increase the Iterations value and your Grease
Pencil object gets made with fewer and fewer control points. This modifier is a
nice, nondestructive analog to the Simplify operator in Edit mode
(Stroke ➪  Simplify).

 » Subdivide: On the opposite side of the spectrum from the Simplify modifier is
the Subdivide modifier. It’s useful to mix this modifier with any of the Deform
modifiers (covered in the next section) to help provide enough control points
to get smooth deformations when you animate.

Deform modifiers
In contrast with the Generate modifiers, the Deform modifiers don’t substantively
change the control points that make up your Grease Pencil drawing. Instead, these
modifiers give you control over the results of those strokes. You can move them
around, change their thickness, or give them procedural jitter that changes over time.

Here’s a quick rundown of what each modifier can do:

 » Armature: Just like the Armature modifier for mesh objects, you can use this
modifier to point your Grease Pencil object at the bones of an armature object
in your scene and use those bones to deform and animate your drawing. You
can even use vertex groups and Weight Paint mode (yes, Grease Pencil objects
have vertex groups and weight painting) to refine just exactly how the
armature object deforms your drawing. The process is exactly like what’s
described for mesh objects in Chapter 12. With this modifier, you have the
ability to do everything from simple cutout-style animation to fully rigged
deformation of your Grease Pencil drawings.

 » Hook: The Hook modifier is analogous to its counterpart in mesh objects.
However, the workflow for using this modifier is a bit different. There’s no
convenient shortcut for creating a hook and binding your selected control
points to that hook in Edit mode. You’re going to need to set up vertex groups
to take advantage of that. And if you’re going to go through the process of

486 PART 3 Get Animated!

setting up vertex groups, my recommendation would be that you just use an
Armature object and the Armature modifier. Or if you’re looking to get more
general deformations, I’d suggest you use the Lattice modifier (described next).
The only real advantage the Hook modifier has over the Armature modifier is
that you can isolate whether the hook affects specific layers or materials. But
with vertex groups, you pretty much get the same basic functionality.

 » Lattice: Happily, the Lattice modifier for Grease Pencil objects retains the
straightforwardness and simplicity of the one used for mesh objects. Simply
add a Lattice to your scene in Object mode (Add ➪  Lattice), add this modifier
to your Grease Pencil object, and select the name of your Lattice from the
Object menu. From there, you can edit the vertices of the Lattice to squash
and stretch your drawing to your heart’s content.

 » Noise: On its own, the Noise modifier doesn’t appear to do much for your
drawing other than kind of mess it up a bit. However, if you have a layer
structure like the one I describe earlier in this chapter, you can apply this
modifier to just the ink layer of your Grease Pencil object and get a nice bit of
line boil for your object, so it more closely resembles hand-drawn animation
in traditional media.

 » Offset: The Offset modifier is a wily one. When you apply it to your Grease
Pencil object, all it does is adjust the transforms of your drawing as if you’re
using the Transform tools. That in itself isn’t particularly useful. However,
when you start using this modifier on just specific materials or layers in your
object, things start to get a lot more interesting.

As an example, if you load the Suzanne Grease Pencil object in your scene
(Add ➪  Grease Pencil ➪  Monkey), you may notice that her pupils have their
own material. If you add an Offset modifier to her and choose just the Pupils
material to be affected by this modifier, you have a quick and dirty way of
animating which way she looks without the need of hooks or armatures. Like I
said, interesting!

 » Smooth: Sometimes the deformations of other modifiers can cause the
strokes in your Grease Pencil object to distort in awkward ways. Or sometimes
the strokes that you draw just aren’t clean enough and you don’t want to
go through the work of using Sculpt mode to smooth them all out. For both
those situations, the Smooth modifier can come to the rescue.

 » Thickness: When it comes to the drawn line, I’m a huge proponent of varying
your line thickness to give the overall drawing more life and energy. Not every
drawing should look like a sterile technical blueprint. That said, sometimes
that’s just the kind of work we end up drawing. With the aid of the Thickness
modifier, you can adjust the thickness of each stroke along its length. If you
worked with curve objects, as described in Chapter 7, this modifier is akin to
giving your Grease Pencil strokes a custom taper object. The only difference
is that you don’t have to add a new curve to your scene; you can enable the

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 487

Custom Curve check box and modify the curve profile right from within
the modifier.

 » Time Offset: The Time Offset modifier is more of an animation modifier than
it is a deformation modifier. You use it to tweak the timing on animations so
you don’t end up with robotic synchronization, particularly when you’re using
looped animation. You can’t specify control of this modifier down to the
material level, but you can isolate specific layers for it. Furthermore, because
you can stack multiple modifiers on a single object, you could use a combina-
tion of the Time Offset modifier and the Offset modifier to add variety on a
simple crowd animation.

Color modifiers
At first blush, the Grease Pencil Color modifiers may seem out of place. After all,
if you want to tweak colors, why wouldn’t you do that with layers or materials, or
even the Compositor? Why have that kind of thing controlled by a modifier? One
answer: linked assets. Because Grease Pencil objects are proper datablocks like
any other object in Blender, you can make linked duplicates (Object ➪ Duplicate
Linked, or Alt+D) of as many of them as you’d like. And then when you edit your
strokes in Edit mode or Sculpt mode, those modifications propagate to all your
linked versions.

But what if you want each of those linked objects to have different color proper-
ties? You spent a lot of time getting your layers and materials set up for each
object. It would be a pain to unlink each duplicate and then make different varia-
tions of each one’s materials. Fortunately, you have Color modifiers. With just a
few clicks you can change the color properties of one linked duplicate without
affecting any of the others.

The following is a quick description of each Color modifier:

 » Hue/Saturation: I like to treat the Hue/Saturation modifier like a quick-and-
dirty color adjustment tool because, well, that’s what it is. Add this modifier to
your Grease Pencil object and you can use the HSV (hue, saturation, value)
sliders to override the colors on all or part of your object.

 » Opacity: The Opacity modifier is really handy for doing motion graphics work
with Grease Pencil objects. If you need to fade all or some of the strokes in
your object in and out of view, this is the modifier that can help with that task.

 » Tint: Sometimes you just need to make it look like a color layer was laid over
the top of your Grease Pencil object. This modifier is exactly the right tool
for the job. Over in Chapter 8, I describe how to make a 3D Suzanne look like
she’s gotten a red face from anger. If you want to do something similar to that
with the Grease Pencil Suzanne, you can do it with the Tint modifier.

488 PART 3 Get Animated!

Animating with Grease Pencil
At its heart, Grease Pencil objects are built for animating. They are meant to be easy
for you to change over time and generate moving pictures. When it comes to actu-
ally animating with Grease Pencil objects, there are two basic approaches that you
can take: a traditional hand-drawn workflow and a more 3D-like rigged animation
workflow. Neither approach is more correct than the other. It really just depends
on the aesthetic you want to have when you finally hit render on your work.

This section outlines the general way you come at each of these workflows in
Blender. I recommend that you read through both ways and decide afterward
which one feels more appropriate to the way you like to work.

Using a hand-drawn animation workflow
with Grease Pencil objects
The hand-drawn approach to animating in Blender is simultaneously easy to
describe and difficult to do well. Part of the reason is because the process involves
repetitively drawing, re-drawing, editing, re-drawing, editing, drawing, and re-
drawing. Did I mention drawing? Blender does provide some handy shortcuts and
helpers, but animating in a hand-drawn style is exactly what it sounds like: draw-
ing by hand . . . a lot.

I’m going to assume that you’ve already done all of your preproduction planning
and storyboarding for what you’re animating, and now you’re on the task of actu-
ally sitting down to animate (see Chapters 11 and 13 for more detail on the overall
animation process). The process of doing hand-drawn animation in Grease Pencil
breaks down into the following steps:

1. Create a new 2D Animation session in Blender (File ➪  New ➪  2D Animation).

I suggest that you go ahead and Ctrl+Tab to Object mode and delete the
default stroke object. Technically, you don’t really have to delete the default
stroke. It has a few nice things included in it, such as some base materials and
layers. However, if you’re using a slightly different workflow, it can be a hassle
to go in and replace those defaults with your own. Furthermore, if you’re
starting your Grease Pencil animation outside of the 2D Animation start
template or you add other Grease Pencil objects to your scene, they don’t have
the benefit of those preset materials. So it’s worth it to understand how to
work from a truly blank slate.

2. Add a new Blank Grease Pencil object (Add ➪  Grease Pencil ➪  
Blank).

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 489

3. Create a new layer in your Grease Pencil object.

You can perform this step in Object Data Properties or from the Layer rollout
in the 3D Viewport’s Topbar. Either way, name your new layer Pencil Test.

4. On your Pencil Test layer, left-click the Onion Skinning icon to enable
onion skinning for that layer.

When disabled, the Onion Skinning icon looks like a single circle at the far right
of the layers list box. When you left-click it to enable onion skinning, the icon
appears to have shadow circles radiating from it. This step is critical for giving
you a reference when you draw subsequent frames of your animation.

5. Ctrl+Tab into Draw mode and draw your first frame.

You’re ready to start drawing your first frame. My suggestion would be to use
the Draw tool with the Pencil and Marker Chisel brushes to get the rough
shape of whatever you’re animating. In this case you want to pay the most
attention to the pose and the silhouette of the thing you’re animating. Don’t
get caught up in details at this point. It’s the pose that matters the most.

6. Move forward in time a few frames.

I like going forward 10 frames; it’s a nice round number for roughing things in.
You can move forward in time by either scrubbing in the Dope Sheet at the
bottom of the Blender window or by pressing → ten times.

At this point nothing much has changed about your drawing. You’ve just
moved forward in time.

7. Start drawing the next major pose in your animated sequence.

Immediately when you start drawing, the linework of what you drew in Step 5
turns green to indicate that it’s an onion skin of the previous frame, and the
linework in your current frame has the correct color for your brushes.

8. Repeat Steps 6 and 7 for all the keyframes in your animated sequence.

As you work, you may want to take advantage of the fact that you can move
Grease Pencil strokes in Edit mode rather than try to redraw the same shapes
over again. The Edit mode and Sculpt mode tools do wonders as timesavers
when animating. Just Ctrl+Tab over to either of those modes and when you
make a modification to your Grease Pencil object, Blender automatically
inserts a keyframe for you. When you finish working through all your key
poses, you basically have a rough animated pencil test. You can play the
sequence in the 3D Viewport by pressing Spacebar to get a sense of the timing.

9. Using the Dope Sheet at the bottom of the 2D Animation workspace,
adjust the timing of your key poses.

See Chapter 13 for more on working with the Dope Sheet. Once you’re happy
with the timing, you’re ready to work on your secondary poses. If you’re doing

490 PART 3 Get Animated!

a classic “bouncing ball” animation using this technique, then at this point in
the process your Blender window may look like what’s in Figure 15-12.

10. Set your time cursor between two of your key poses and draw an
in-between pose.

Again, you may want to take advantage of Edit mode and Sculpt mode to work
with stroke geometry that’s already in your scene and give yourself a decent
starting place before adding new strokes.

11. Move your time cursor between the next set of key poses and draw
another in-between pose.

As you continue fleshing out your animation, you may want to tweak the
properties within the Onion Skinning panel of Object Data Properties. Those
controls allow you to see more or fewer of the onion skinned keyframes
around your current frame to help you get a better sense of timing and
movement.

12. Repeat Steps 10 and 11 until all your secondary poses are complete.

At this point, it depends on how detailed (and how long) your animated
sequence is. Either you’re happy with where you are, or you’re going to
continue adding more and more in-between poses and adjusting timing until
you actually are happy with the sequence. Assuming you’re at a happy stage,
the next steps get you to start polishing. Continuing with the example of the
bouncing ball, your screen may look like Figure 15-13.

FIGURE 15-12:
The first stages of
a classic bouncing

ball animation

with Grease

Pencil.

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 491

13. Create a new layer for your Grease Pencil object.

Name this new layer Ink. Whether you enable onion skinning for this layer is
up to you. If your Pencil Test layer is detailed enough, you won’t have to.

14. Using an Ink brush, go through each of your frames and redraw them
with clean lines.

This step is time consuming, but it’s the step where your animation really starts
to come to life. With your line ink complete, the next step is color.

15. Create a new layer for your Grease Pencil object and put it between your

Pencil Test layer and your Ink layer.

This is the layer that you use to paint the color fills for your animated
sequence, so it makes sense to name this layer Fills or Paint. Depending on
how comfortable you are with the animated sequence, you may also want to
hide your Pencil Test layer.

16. Using Grease Pencil materials with Fill enabled, begin the process of
adding the color fill for your animation.

As in Step 14, this step can be extremely time consuming. However, when you
complete this step, you’ll have a fantastic-looking, hand-drawn animation
created entirely with Blender’s Grease Pencil objects. Figure 15-14 shows what
your Blender session might look like with a completed bouncing ball animation
using this technique.

FIGURE 15-13:
Bouncing ball

pencil test,

complete!

492 PART 3 Get Animated!

Of course, as you grow and mature as an animator, you’ll find ways to cut corners
on some of these steps and speed up your workflow. Some people even prefer to
have a fully fleshed-out drawing with all the necessary colors and layers for the
first frame before they start animating. Then their focus become more about going
through each drawing and less about trying to build materials and layers on the
fly. Either way, that’s the process of hand-drawn animation: Draw, edit, redraw,
edit, draw, and redraw again.

Rigging Grease Pencil objects for animation
Perhaps drawing isn’t your thing, or maybe you’re a long-time veteran of a fully
rigged 3D animation workflow, or perhaps you’re really into the cut-out anima-
tion style of 2D animation. Whatever the reason, you may be looking for an
approach to animating that doesn’t follow the hand-drawn way of doing things.
Fortunately, Blender’s Grease Pencil objects also support being rigged for anima-
tion just like mesh objects.

The workflow for a rigged approach to animation requires fewer steps, but each
step tends to require a bit more technical understanding. The process goes some-
thing like this:

1. Create a new 2D Animation session in Blender (File ➪  New ➪  2D Animation).

Just like with the hand-drawn approach, I suggest that you go ahead and
Ctrl+Tab to Object mode and delete the default stroke object.

FIGURE 15-14:
One bouncing

ball animation,

ready for render!

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 493

2. Add a new Blank Grease Pencil object (Add ➪  Grease Pencil ➪  Blank).

3. Draw the thing that you’re going to animate with your Grease Pencil
object.

In this step, you should create all the materials and layers that you need for the
final polished version of your animated object. Think of it like sculpting and
modeling in Grease Pencil. Continuing the theme of animating a bouncing ball,
when you finish this step, your Blender session may look like what’s shown in
Figure 15-15.

4. Rig your object for animation.

The full arsenal of Blender objects and tools is at your disposal. In the case of
the bouncing ball example, you may have a simple setup where the ball Grease
Pencil object is parented to a spherical Empty. Or maybe you have something
more complex using an armature with multiple bones for controlling and
deforming your Grease Pencil object. For the sake of this example, the rig
shown in Figure 15-16 is a fairly simple thing using a couple bones to take
advantage of the Armature modifier.

5. Using the same processes described in Chapter 13 for animating a rigged
character, animate your Grease Pencil object using the rig you created in
Step 4.

There’s an awful lot baked into this one step, but if you’ve animated in 3D
before, it should be familiar to you. Move the controls on your rig, insert

FIGURE 15-15:
One Grease

Pencil rubber
ball, ready to be

bounced.

494 PART 3 Get Animated!

keyframes for the attributes you want to animate, scrub forward in time, wash,
rinse, repeat. When this step is complete, though, you have a fully animated
scene and you only really had to draw once to get your initial setup estab-
lished. Figure 15-17 shows what your Blender window may look like as you
complete this step.

FIGURE 15-16:
It hasn’t been

animated yet, but
this ball now has

a rig and can be
animated like any
other 3D object in

Blender.

FIGURE 15-17:
A hand-drawn

ball, drawn once

and bounced with
technology from

the future!

CHAPTER 15 Making 2D and 2.5D Animation with Grease Pencil 495

Integrating Grease Pencil with a 3D Scene
I know that the pages of this chapter are dense and cover a lot of ground with
Grease Pencil objects, but in reality, they just scratch the surface of what you’re
capable of doing. A whole book could be written about doing 2D animation in
Blender. I’m awfully tempted to write it. I’ve said it repeatedly throughout this
chapter: Blender’s Grease Pencil objects are full-fledged 3D objects. That means
you’re not limited to using them in the 2D Animation workspace. You can use
Grease Pencil objects to enhance any 3D scene you’re working on.

Say, for example, that you have a 3D scene that’s set at a haunted house and you
need a thick knee-level mist around everything. Sure, you could use some of the
techniques covered in Chapter 14 to work with Blender’s smoke simulator and
particle system to provide you with that effect. But as great as the results can be,
simulation is computationally intensive, time consuming, and difficult to render.
Why not make a textured Grease Pencil material and draw the fog into your scene?
You can even use Grease Pencil modifiers to animate your fog strokes to give you
that living volumetric feel.

Or maybe you need to have a bunch of wires look like they’re running across the
surface of an object. You can go to the header of the 3D Viewport while in Draw
mode and change the Stroke Placement rollout to use Surface rather than the
default Origin behavior. Then when you draw, all your strokes run along the sur-
face of the 3D geometry in your scene. If you absolutely need those strokes to be
3D geometry, you can easily convert them to curves (Object ➪ Convert to).

And, of course, Grease Pencil objects can be invaluable when compositing, as cov-
ered in Chapter 18. You can certainly use them to make detailed animated masks,
but Grease Pencil objects also can be enormously beneficial when creating motion
graphics.

The other really cool thing you can do is swing the pendulum in the other direction.
Using Eevee as your render engine, you have a high-powered, non-photorealistic
rendering engine right at your fingertips. Using the Shader to RGB node, as
described in Chapter 8, you can give 3D objects materials that hand-painted look.
By combining cartoony Eevee materials with Freestyle edge rendering
(unfortunately, there’s not quite enough space in this book to cover Freestyle
edges in sufficient detail), you can have full 3D scenes that look hand-drawn and
seamlessly integrate them with your Grease Pencil drawings. This is exactly the
kind of thing that was done for the Hero animated short film that was produced
with Grease Pencil (I briefly talk about Hero in Chapter 1).

With a bit of work and cleverness, it really is possible to make just about anything
you can imagine.

4Sharing Your
Work with the
World

IN THIS PART . . .

Exporting to external formats

Rendering to images and animation

Editing video

Compositing images and video

Getting started with visual effects and motion tracking

CHAPTER 16 Exporting and Rendering Scenes 499

Chapter 16

Exporting and Rendering
Scenes

W
orking in Blender is great, but eventually, you’ll want to make the

things you create viewable in places other than Blender’s 3D Viewport.

You may want to have a printable still image of a scene, or a movie of

your character falling down a flight of stairs, or you may want to export the geom-

etry and textures of a model for use in a video game. In these situations, you want
to export or render.

Exporting to External Formats

Exporting takes your 3D data from Blender and restructures it so that other 3D

programs can understand it. There are two primary reasons why you’d want to

export to a 3D file format other than Blender’s .blend format. The most common

reason is to do additional editing in another program. For example, if you’re
working as a modeler on a large project, chances are good that (unfortunately)

Blender is not the only tool in their pipeline, so you’ll probably need to save it in

a format that fits into their workflow and that their tools understand.

Another reason for exporting is for video games. Many games have a public spec-

ification of the format they use for loading 3D data. Blender can export in many of
these formats, allowing you to create custom characters and sets.

IN THIS CHAPTER

 » Exporting to other programs

 » Comparing renderers

 » Rendering still images and

animations

500 PART 4 Sharing Your Work with the World

BLENDER’S RENDER ENGINES

Since the last edition of Blender For Dummies was released, a whole bunch of changes

have occurred with Blender with respect to renderers. The biggest change is that the old

“Blender Internal” render engine has been retired. As of version 2.80, Blender Internal is

no longer available. It’s been replaced by a powerful real-time rendering engine called

Eevee. Of course, we still have the very powerful Cycles engine as well. Cycles has a lot

more in common with Eevee than it did with Blender Internal. For one, a goal of Eevee is

to have as much parity as possible in its materials with those of Cycles. The idea is that

you should be able to treat Eevee as a kind of fast preview engine for Cycles. Of course,

that doesn’t prevent you from just using Eevee exclusively. There are still differences
between the two renderers, mostly in how they work internally. Whatever the technical

differences, the important difference boils down to tradeoffs between artist time and
computer time.

Both Eevee and Cycles are considered modern renderers. Ironically, their core technolo-

gies are still based on “classic” rendering techniques. Cycles is based on ray tracing, an

older rendering method that has become more popular as computers have gotten fast

enough to use this technique without taking days to output a single frame. A ray tracer

works by shooting imaginary lines, called rays, from the camera to the scene. Those rays

intersect or bounce off of materials or lights in the scene. Based on where those rays
connect, the renderer calculates the correct color and brightness of materials in the

scene. Ray tracing can more accurately depict the behavior of light in a scene than the

methods used in render engines like Eevee (often called rasterizing renderers). That

said, even though Eevee isn’t as accurate as a ray tracer, it (like Cycles) is designed to be

a physically based rendering (PBR) engine. That is, regardless of whether it’s using rays

like Cycles or “cheats” in screen space like Eevee, both engines try to model light and

materials in such a way that they’re as accurate as possible to how they work in meat-

space. The PBR approach makes it easier for artists to set up lights and materials

because you can apply your understanding of the physical world to digital space.

Both render engines can take advantage of the graphics processing unit (GPU) on video

cards to accelerate the rendering process, just in different ways. Eevee is the driving
force behind everything you see in the 3D Viewport, using a lot of the same technology

that video game engines use to show their 3D graphics. If you’ve modeled or animated

in Blender, you’ve already used Eevee. In contrast, Cycles can take advantage of some of

GPUs’ ability to do ray tracing calculations (sometimes referred to as GPGPU — general
purpose GPU — or GPU compute) much faster than your computer’s main CPU. Cycles
is still generally slower than Eevee, but it doesn’t necessarily have to be.

Technically, Blender also has a third render engine, named Workbench. You can choose

it from Render Properties just like Eevee and Cycles. However, as its name implies, it’s

meant as an engine for the 3D Viewport that’s exclusively for working with your 3D

geometry, separate from any material or lighting considerations. Although you can do

CHAPTER 16 Exporting and Rendering Scenes 501

If you’ve created a model in Blender that you want to use on a 3D printer, then
that’s another reason you’d be interested in exporting your model to a file format
other than .blend. Specific to 3D printing, Blender doesn’t do slicing, or generat-

ing print instructions a 3D printer can understand. You need to export to an inter-

mediary format (typically STL or OBJ) and pull that file into dedicated 3D printing
software, like Ultimaker Cura, for preparing and slicing.

With only a few exceptions, all Blender’s exporters are scripts written in the
Python programming language. Although all the export scripts that ship with
Blender support the basic specifications in their respective formats, they may not
support all the features. For example, many of the exporters have difficulty get-
ting armature or animation information out of Blender. So keep this limitation in

mind, do a lot of testing with your exported files, and, as many open source pro-

grammers like to say, “Your mileage may vary.”

To export to a different format, choose File ➪ Export and select the format you
want. A File Browser then appears so you can tell Blender where to save your new

file. The left region of the File Browser contains options specific to the exporter
you choose.

some really cool (and useful!) things with it in the 3D Viewport, the Workbench engine

isn’t meant as an output render engine.

So when do you choose to use one render engine or the other? In an ideal world, you’ll

use both, actually. If you’re just starting out, my recommendation is to focus on the aes-

thetic. What kind of look are you trying to achieve with your 3D image or animation?

• Are you aiming for the kind of realism you see in a photograph? Cycles usually is a

better choice for absolute realism. You could get close with Eevee, but Cycles has

the tools to take your image to the next level.

• You don’t care about realism, and you’re interested in taking more artistic license

with the way things look (leaning toward the cartoony or the abstract)? Eevee may

be a better fit for your project because there are a few situations where it’s easier
to break it out of the PBR mold.

The typical scenario has you using both. Do all your preliminary setup using Eevee,

treating it as lookdev (look development) for your final output in Cycles. Ultimately, you’ll
have to decide case by case. In fact, I’ve used both renderers on a project, then compos-

ited the results (using the tools covered in Chapter 18) to get the best of both worlds.

Whatever you decide, Chapters 8, 9, and 10 cover how to set up materials, lights, and
environments in both Eevee and Cycles.

502 PART 4 Sharing Your Work with the World

Most exporters in Blender are implemented as add-ons, the bulk of which are dis-

abled by default. If you’re looking for a specific exporter and you don’t see it in the
File ➪ Export menu, go to the Add-ons section of Preferences (Edit ➪ Preferences)

and find the add-on that provides the exporter you need. If the add-on is there,
enable it, and the exporter should immediately be available in File ➪ Export. By
default, Preferences are automatically saved, so the next time you launch Blender,
that add-on will be available without the need of going through Preferences and

re-enabling it.

Rendering a Scene

More often than exporting, you probably want to render your scenes. Rendering is

the process of taking your 3D data and creating one or more 2D pictures from the

perspective of a camera. The 2D result can then be seen by nearly anyone using

image viewers or movie players.

Rendering is very much like taking a photograph or a movie in meatspace. If you
don’t have a camera, you can’t take a picture. Likewise in Blender, if there’s no

camera in your scene, Blender doesn’t know what to render, so make sure that you

have a camera in there. If there is no camera, you can add a camera (Add ➪ Cam-

era) and set it as the active camera in the scene (View ➪ Cameras ➪ Set Active

Object as Camera).

If your scene is complex, the Outliner is a fantastic place to find and select your
camera object. Assuming you haven’t renamed your camera object, you can use

the Search field in the Outliner’s header. Type in Camera; if that object exists in
your .blend file, it appears.

Creating a still image

Rendering single images, or stills, in Blender is remarkably easy, regardless of the

render engine you choose. Blender actually offers two different ways to do it. The
fastest way is to simply press the F12 hotkey. Alternatively, you can choose Ren-

der ➪ Render Image from the top menu. For details on setting up your materials
and lighting for each of Blender’s renderers, look at Chapters 8, 9, and 10.

Viewing your rendered images in Blender

Any way you decide to do it, Blender uses its integrated Image Editor to display the
rendered output. By default, Blender pops up a new window with a dedicated

Image Editor at the side of your finished image to display your render as it
progresses. Of course, some people would prefer a different behavior for displaying

CHAPTER 16 Exporting and Rendering Scenes 503

renders, especially if they’re using the Render workspace that comes with

Blender’s General workflow template. The default certainly isn’t my preferred
approach. Fortunately, available options allow you to change that behavior. The

control is within the Interface section of Preferences (Edit ➪ Preferences). Within

the Editors panel, there’s a Temporary Windows sub-panel. Look for a drop-down

menu there labeled “Render in.” By default, it’s set to New Window.

Figure 16-1 shows the Render in menu and the four different options you have for
where to send your renders. I like to use the Image Editor setting or Full Screen.
The following is a quick description of what each option does:

 » Keep User Interface: Blender doesn’t display your render at all if you don’t

already have an Image Editor available. This option can reduce the resources

Blender consumes while rendering, but you don’t get to see your render as it

progresses.

 » Full Screen: This option does the same thing as the Image Editor option,

except it also maximizes the Image Editor to the entire Blender window.

 » Image Editor: Blender changes the largest area on your screen to an Image

Editor and displays your rendered image there.

 » New Window: The default. Blender creates a completely new window,

populated only with an Image Editor that displays your image.

FIGURE 16-1:
To view your

renders, choose

Full Screen,

Image Editor, or

New Window. If

you don’t want to

view your render,

choose Keep User

Interface.

504 PART 4 Sharing Your Work with the World

For any of these render options, you can quickly toggle between your regular

Blender screen and the render screen by pressing F11.

Another cool feature that works regardless of which way you like to see your ren-

ders are the render slots (sometimes called render buffers). Render slots are useful

for comparing how incremental changes you make in your scene affect your final
render output. Imagine that you’re trying to decide what color works best for a car
model, or you’re choosing between a few different lighting setups. In those kinds
of situations, it’s often helpful to quickly toggle between two or more renders so

you can get a sense of the change (and whether you like it). You can manually

change between render slots using the Slot drop-down menu in the Image Edi-
tor’s header, as shown in Figure 16-2. Blender offers you the ability to swap
between up to eight render slots.

The drop-down menu is nice, but the render slots are most useful when using

hotkeys. You can swap back and forth between render slots using the J hotkey. The

following scenario is something that I do frequently when rendering my work:

1. Render once (Render ➪  Render Image or press the F12 hotkey).

2. When you have your render output onscreen in the Image Editor, hover

your mouse cursor in that editor and press J.

Upon doing so, Blender switches to a different image buffer. The first time, it
may seem odd because you just see a blank Image Editor. That’s OK, the next

step should handle that.

3. Bounce back to your scene (F11) and make a small change.

4. Render again (F12).

5. Press J on your render output.

It pops back to your previous render.

FIGURE 16-2:
Use render slots

to compare

renders between

changes.

CHAPTER 16 Exporting and Rendering Scenes 505

6. Press J again, and you’re back at your current render.

The default behavior is to use J to toggle between two slots, but if you’re using

more render slots, you can cycle forward and backward by using J and Alt+J,

respectively.

Picking an image format

Now, you have your image rendered, but you still haven’t saved it anywhere on

your hard drive. That image is just in a buffer in Blender; it’s not quite available
for sharing with other people yet. This, too, is easily remedied, but before you

save, you may want to change the file type for your image. Go to the Output tab of
the Properties editor and look to the Output panel within it, as shown in

Figure 16-3.

When you save with Blender’s File Browser, you also can choose the file type for
your image from a drop-down menu in the region on the right side.

The file type selector in the File Browser works great if you need to save to a file
format that you don’t typically save to (sometimes a customer may need a JPEG

and a PNG, for example). It’s also handy if you’re in a rush and forget to choose
your image format ahead of time. In fact, you don’t even need to re-render if you
change your image format. Internally, Blender stores your renders in the highest
possible quality and only compresses when you save to a specific format (see
“Saving your still image” in this chapter).

That said, the Output panel in Output Properties is the preferred way because it

gives you a few more options for controlling your saved file. The primary control
for choosing the format of your file in the Output panel is a file type drop-down

FIGURE 16-3:
The Output panel

in the Output

Properties.

506 PART 4 Sharing Your Work with the World

menu. By default, Blender saves renders as PNG (pronounced “ping”) images. If
you want to render to a different image format, such as JPEG, Targa, TIFF, or
OpenEXR, left-click this drop-down menu and choose your desired file type.
Depending on the file type you choose, the options at the bottom of the Output
panel change. For example, with the PNG file type, the Compression slider is
available for controlling the level of compression in the image.

The BW/RGB/RGBA buttons below the file type dropdown are always visible, and
they’re pretty important for both animations and stills. They control whether

Blender, after rendering, saves a black and white (grayscale) image, a full color

image, or a color image with an alpha channel for transparency. Typically, you use

one of the latter two. RGB is the most common and is supported by all formats,

creating a full color image.

On some occasions, however, you’ll want to render with transparency. As an

example, say that you’ve made a really cool building model, and you want to add
your building to a photo of some city skyline using a separate program such as

GIMP or Photoshop. (You can do it in Blender, too; see Chapter 18.) You need
everything that’s not your building, including the background of your image, to be

rendered as transparent. An alpha channel defines that transparency. The alpha

channel is basically a grayscale image that defines what is and is not transparent.
Totally white pixels are opaque, and totally black pixels are transparent. Gray
pixels are semitransparent.

Not all image formats support an alpha channel, such as the JPEG and BMP for-

mats. If you choose one of these file types and have RGBA set, Blender just omits
the alpha information when saving. If you want to make sure that your alpha
channel is preserved, though, choose one of the following formats: PNG, Targa,

TIFF, or OpenEXR.

Setting dimensions for your renders

The Dimensions panel close to the top of Output Properties gives you control over

the size of your final render. The X and Y values by the Resolution label set the
width and height of your image in pixels. The X and Y values by the Aspect Ratio
label are for determining the horizontal and vertical aspect ratio of your image.

The ability to adjust aspect ratio is for certain circumstances where you want to

render your image with rectangular pixels rather than square ones. Typically,
rectangular pixels are necessary only for older television formats, so unless you
know exactly what you’re doing or if you’re using a preset, I recommend setting
these to the same value. I use 1.000 most of the time.

CHAPTER 16 Exporting and Rendering Scenes 507

Speaking of presets, Blender offers a number of rendering presets for you to use.
These presets are available from a drop-down menu at the top of the Dimensions

panel. Click the icon that looks like a menu (shown to the left on this page) to see

the presets available. Choosing any one of them affects only settings in the
Dimensions panel, but they’re really handy if you know what your final output
should be. You can even add your own preset based on your current settings by

clicking the New Preset button at the bottom of the presets menu. Using presets is

a great timesaver when you know, for example, that you have to render to high-
definition video specifications, but you can’t remember the right resolution,
aspect ratio, and frame-rate values.

Whenever you change the resolution or aspect ratio values in the Dimensions

panel, you need to render your scene again (F12) to get it to appear (and eventually

save) at the right size. If you’re just changing your output file type, you don’t need
to re-render.

Saving your still image

After you’ve adjusted all your settings, rendered, and chosen your output file for-

mat, you have just one thing left to do: Save your still. Saving is quick and pain-

less. From the Image Editor, choose Image ➪ Save As, and Blender opens a File

Browser. Here, you can dictate where on your computer you want to save your

render. That’s it!

Remember, if you’re rendering a still image, it’s not saved anywhere on your hard

drive unless you explicitly save it by navigating to Image ➪ Save As in the Image
Editor. I can’t tell you how much time I spent re-rendering images that I forgot to
save when I first started using Blender. Hopefully, you can learn from my mistake.

If you find that you keep forgetting to save your renders or (like me) you just can’t
be bothered to remember, you can work around it by taking advantage of Blender’s

Compositor. Chapter 18 has a lot more detail on what the Compositor is and the fun
things you can do with it, but for the time being, the main thing you need to know

is that the Compositor is used to do automatic modifications to your rendered
result. In this case, the “modification” that you’re doing is automatically saving, by
routing your render result to a File Output node. Follow these steps to set up auto-

matic saving (have a look at Chapter 18 if any of the terms here seem alien to you):

1. Switch to the Compositing workspace using the tabs at the top of the

Blender window.

Your main focus is the large Compositor area in the middle of the window.

2. Enable the Use Nodes check box in the Compositor’s header.

Two nodes will appear in the Compositor: a Render Layers node and a

Composite node.

508 PART 4 Sharing Your Work with the World

3. Add a File Output node (Add ➪  Output ➪  File Output).

The node will be added under your mouse cursor. Left-click to place the node

somewhere to the right of your Render Layers node.

4. Wire the yellow Image socket of the Render Layers node to the yellow

Image socket on the File Output node.

You’re almost there. All that remains is a little configuration.

5. Select your File Output node and click the Item tab in the Compositor’s

Sidebar.

6. In the Item tab, expand the Properties panel and edit the File Output

node’s settings to taste.

The most important settings are at the top of the panel, and they should look

pretty familiar. They’re almost exactly like the Output panel in Output

Properties. The key settings you want to adjust are the base path (where your

file will be saved on your hard drive) and the image format.

Now, when you render, Blender automatically saves an image to the location on

your hard drive that you specified with the base path field. The file will be named
something like Image0001.png, assuming you rendered using the PNG format and

your scene is at frame 1 (that’s what the 0001 is there for; if you rendered a JPEG

from frame 57, the file would be Image0057.jpg). If you don’t want the file name
to start with Image, you can change that. In the Item tab where you set the base
path for the File Output node, there’s a list box with only one item in it, named
Image. That item corresponds to the Image socket on the File Output node.
Double-click that item to rename it something more descriptive and you’ll see the

socket on the File Output node update as well. Now when you render

(Render ➪ Render Image), Blender automatically makes a file on your hard drive
that starts with whatever you renamed that socket to be. Figure 16-4 shows an
example of what this simple node network looks like.

The cool thing is that you only have to set up this node network once in your

.blend file. After that, any time you reopen this project file, it’s already set to save
whenever you render.

If you ever want to disable this automatic saving behavior, you can mute the File
Output node by selecting it and pressing M. See Chapter 18 for even more infor-

mation on using the Compositor.

CHAPTER 16 Exporting and Rendering Scenes 509

Creating a sequence of still images
for editing or compositing
The majority of your controls for rendering animations are in Output Properties.

In particular, your main focus should be the Output panel within that tab. Gener-

ally speaking, the steps are similar to rendering stills (see preceding section); all

the actual file saving happens automatically. The largest consideration is where
on your hard drive you intend to store those files. Enter this information in the
first field of the Output panel. By default, Blender saves your animations to the
/tmp directory on your computer. However, you may not have a /tmp directory, or

you explicitly may want to save the animation to a different folder on your hard
drive. Left-click the file folder icon to the right of this text field and use the File
Browser to navigate where you want to save your animation.

When you save a sequence of still images, you should create a specific folder just
for these render files. You’re going to create a lot of files. If the animation is
250 frames long and you render to still images, you’re going to get 250 individual
images saved to your hard drive. You really don’t want to mix all those files with
your other project files and assets. For simplicity, I typically make a folder in the
same place as my .blend file and prefix that folder’s name with the word “ren-

der”. So if I have an animation of a jumping mongoose, my render path might look
like //render-jumping_mongoose/. (The // is Blender shorthand for a relative

path, or a location on your hard drive relative to your .blend file).

FIGURE 16-4:
Use the File

Output node in

Blender’s

Compositor to

automatically

save still images

when you render.

510 PART 4 Sharing Your Work with the World

RENDERING A SEQUENCE OF IMAGES
VERSUS RENDERING VIDEO

In most situations, rendering out a sequence of still images rather than a single movie

file makes a lot of sense. One of the biggest reasons for rendering a sequence of stills is
for compositing, or combining multiple images together. When you do compositing, you

often rely on having an alpha channel that makes everything transparent except for

your rendered subject. Most video formats simply don’t support an alpha channel, so to

accommodate this shortcoming, you render out a sequence of still images in a format

that does support alpha, such as PNG.

Another reason that you may want to have a still image sequence rather than a movie

file is for editing, or sequencing multiple video and animation clips. To get smaller file
sizes, many video codecs throw away large chunks of image data from one frame to the

next. The result is a small file that plays well, but is pretty difficult to edit because in edit-
ing, you may want to cut on a frame that doesn’t have very much image data at all.

Using a sequence of still images guarantees that all image data for each and every

frame is completely there for smooth editing. Chapter 17 covers editing in more detail
and Chapter 18 focuses on compositing.

The third reason you may want to render a sequence of still images is largely practical.

When rendering to a movie format, what happens if you decide to stop the render and

change a small part of it? Or what happens if Blender crashes in the middle of render-

ing? Or if an army of angry squirrels invade your office and shut down your computer
mid-render? Well, you have to restart the whole render process from the start frame.

Starting over, of course, is painful, especially if you have to wait multiple minutes for

each frame in your sequence to render. If you render by using a sequence of still

images, those images are saved the second that they’re created. If your render process

gets stopped for any reason, you don’t have to start rendering again from the begin-

ning. You can adjust the Start value in the Dimensions panel of Output Properties (or in

the Timeline) to pick up where you left off and resume the render process.

As an example, imagine that you’ve got an animation that’s 1000 frames long. Your

computer has been rendering for three days and it’s at frame 999 when the power goes
out. If you rendered directly to a movie file, then POOF . . . you just lost everything and
you’ve got to spend another three days of rendering. But if you rendered a sequence of

images, then all you have to do is render the last frame and you’re all done!

That said, there are times when it does make sense to render to a movie file. Usually,
the recommended time to render to a single movie file is in post-production, the time

after you’ve completed your animation and rendered to a sequence of stills. The general

workflow is something like this:

CHAPTER 16 Exporting and Rendering Scenes 511

The other consideration to make when saving an animation deals with the file
type you choose. If, for example, you choose a still image format like JPEG, PNG,
or OpenEXR, Blender creates an individual image for each frame in your anima-

tion. However, if you insist on choosing any of the movie options like AVI, Quick-

Time, or MPEG, Blender creates a single movie file that contains all the frames in
the animation, as well as any sound you use for the animation. See Chapter 17 for
more on rendering to video.

So, to render animation, the steps are pretty similar to rendering a still:

1. From Output Properties, set up your render resolution from the

Dimensions panel and your file type from the Output panel.

If you’ve been working on your animation, hopefully you’ve set it all up already.

Although changing the output resolution (the width and height) of the image

after you animate isn’t too bad, changing to other frame rates after the fact can

ruin the timing of an animation, and that can get to be a pain to fix. Set the
frame rate from the Frame Rate value in the second block of buttons of the

Dimensions panel.

2. Confirm the start and end frames from the Frame Range values in the
Dimensions panel.

You probably already made this setting while animating, but double-check

these start and end frames to make sure that they’re correct. These values also

can be set from the Timeline’s header.

3. Verify where you want to save your file in the Output panel.

4. Animate by choosing Render ➪  Render Animation (or use the Ctrl+F12
hotkey).

Your animation starts the creation process immediately. Now go get a cup of

coffee; rendering an animation can take quite some time.

1. Work on your animation.

2. Render your animation to a sequence of still images.

3. Post-process those images (video editing to mix with audio, and compositing to mix

with other image sequences; see Chapters 17 and 18).

4. Render your post-processed output to a video file.

Of course, there are always variations to that workflow. Blender allows you to do com-

positing tasks before your first render, for example. But the general process of animat-
ing to render stills and post-processing to render video is the key thing to remember.

512 PART 4 Sharing Your Work with the World

Unlike rendering a still image, which does not save anything to your hard drive

until you explicitly save it, rendering an animation automatically saves your
renders wherever you stipulate in the Output panel. Those files will end up in your
folder, named sequentially. So using our jumping mongoose example, if you use
your operating system’s file browser to navigate to the render-jumping_mongoose

folder and you’re rendering a sequence of PNG images, that folder will be populated

with 0001.png, 0002.png, 0003.png, and so on.

You can add a prefix to each of your render files by typing it at the end of your
output path in the Output panel of Output Properties (whew . . . that’s a lot of
output). For example, if your output path is //render-jumping_mongoose/ and

you change it to //render-jumping_mongoose/frame, then when you look in that

folder after you’re done rendering, you’ll have file names that look like frame0001.
png, frame0002.png, frame0002.png, and so on.

CHAPTER 17 Editing Video and Animation 513

Chapter 17

Editing Video and
Animation

I
n live-action film and video, the term post-production usually includes nearly
anything associated with animation; basically anything that doesn’t get directly
captured by the camera when they’re shooting. Nearly every animator or visual

effects specialist has groaned upon hearing a director or producer say the line,
“We’ll fix it in post.” Fortunately, in animation, post-production is more specific,
focusing on editing and compositing.

This chapter is a quick guide to editing, using Blender’s Video Sequencer. Com-

positing is covered in the next chapter. Understand that these topics are large
enough for a book of their own, so the content of this chapter isn’t comprehen-

sive. That said, you can find enough solid information here and in Blender’s online
documentation (https://docs.blender.org/manual) to figure it out. I explain
Blender’s interface for these tools, as well as some fundamental concepts. With
this understanding, these tools can help turn your work from “Hey, that’s cool”
to “Whoa!”

IN THIS CHAPTER

 » Taking a look at editing and

compositing

 » Editing video and animations with

Blender’s Video Sequencer

 » Getting your final video output from
Blender

https://docs.blender.org/manual

514 PART 4 Sharing Your Work with the World

Comparing Editing to Compositing

Editing is the process of taking rendered footage — animation, film, or video —
and adjusting how various shots appear in sequence. You typically edit using a
nonlinear editor (NLE). An NLE, like Apple’s Final Cut Pro or Adobe Premiere, dif-
fers from older linear tape-to-tape editing systems that required editors to work
sequentially. Footage was captured on tape and editors would play through the
footage to find where they wanted to cut, mark that spot (or physically cut it, in
the case of film), find the start of the next scene they want, and then splice the
two scenes together.

Working that way was okay in the day, but this approach was problematic if you
wanted to go back and refine your edits or tweak your timing. Every change
affected all the others later in the sequence. Fortunately, with a modern NLE, you
can easily edit the beginning of a sequence without worrying too much about it
messing up the timing at the end. Blender has basic NLE functionality with its
Video Sequencer.

In earlier versions of Blender, the Video Sequencer was called the Video Sequence
Editor, or VSE. A lot of long-time Blender users still use this shortened form, so if
you go on the web to look for additional help with using the Video Sequencer, I
would suggest that you include “VSE” as one of your search terms. You’ll get a
much larger number of hits with relevant information.

Compositing is the process of mixing animations, videos, and still images into a
single image or video. It’s the way that credits show up over footage at the begin-

ning of a movie, or how an animated character is made to appear like she is inter-

acting with a real-world environment. Blender has an integrated compositor that
you can use to achieve these sorts of effects, as well as simply enhance your scene
with effects such as blur, glow, and color correction.

If you were comparing editing and compositing, it may be best to think of editing
as putting a sequence of images in order, whereas compositing is more like stack-

ing those images on top of each other. Most post-production consists of doing a
little bit of both. Compositing tasks tends to focus on one specific shot in a
sequence, whereas editing tasks chains a series of shots together.

Working with the Video Sequencer

If you’re used to previous versions of Blender, you might find yourself wondering
where the old Video Editing screen layout went. It’s not one of the default work-

spaces that’s visible in the tabs at the top of the Blender window. Now, you could

CHAPTER 17 Editing Video and Animation 515

add a new Video Editing workspace by clicking the plus button on the far right of
the workspace tabs. However, in the default template, there are already a ton of
tabs up there. It’s a lot to look at if all you want to do is edit video. The better way
to go is to use the Video Editing template that comes with Blender. From a fresh
Blender session, choose File ➪ New ➪ Video Editing and you’ll load the base tem-

plate for working with Blender as an NLE. Figure 17-1 shows the Video Editing
workspace that you get when you fire up this template.

The large editor across the middle of the layout is a Video Sequencer in Sequencer
view. As a Blender editor, the Video Sequencer actually has three view modes,
changeable from a drop-down menu in the header:

 » Sequencer view: In this view, you can add and modify sequences, called

strips, in time. The numbers across the top of the Sequencer correspond to

time in the Video Sequencer in seconds. The numbers to the left are labels for

each of the tracks, or channels, that the strips live in.

 » Preview view: The Preview view of the Video Sequencer shows the footage

under the time cursor while you’re editing. In the default Video Editing

workspace, there’s a larger Video Sequencer in Preview view at top center.

 » Sequencer/Preview view: This view splits the editor area into two parts

stacked atop one another to show both the Preview view and the Sequencer

view at the same time. You might use this if you’re creating your own custom

video-editing workspace on a small screen and you don’t want as many editor

areas in your workspace layout.

FIGURE 17-1:
The default Video

Editing workspace

for when you

start a project.

516 PART 4 Sharing Your Work with the World

If you’re working on a computer with a small screen, the default Video Editing
workspace can feel pretty crowded. You can get around this by maximizing
Sequencer area (Ctrl+Spacebar or choose View ➪ Area ➪ Toggle Maximize Area
from the Sequencer’s header) and switching it to Sequencer/Preview view. That’s
an improvement, but the preview section is still taking up half your screen space.
There’s another thing you can do instead: With the Sequencer maximized, keep it
in Sequencer view. But now, choose View ➪ Preview as Backdrop from the header.
When you do this, the preview of your edit shows up right in the Sequencer as a
backdrop. Your various strips are simply overlaid above the preview so you can
edit and see your video all in the same space. Figure 17-2 shows a maximized
Sequencer with the preview set as a backdrop.

The upper left area of the Video Editing workspace is a File Browser. Treat the File
Browser as a kind of asset bin for your video footage. This way, you can easily drag
and drop footage from the File Browser directly into the Sequencer. The upper
right of the workspace is a Properties editor. It’s useful to have the Properties edi-
tor available when you’re doing your initial setup of screen resolution and frame
rate, as well as when you’re rendering your finished edit. At the bottom is a Time-

line, which, at first, may seem odd. However, when editing, as with animating,
the benefit of having the Timeline around all the time is that you can use the
Sequencer to edit a specific portion of your production, while still having the abil-
ity to move the time cursor over the full piece (called scrubbing a timeline). The
playback controls are also handy to have onscreen.

The Timeline at the bottom of the screen controls how Blender plays your
sequence. However, when it comes to editing video, the most relevant button in

FIGURE 17-2:
You can edit

video and

preview it all in

the same space

using Preview as

Backdrop.

CHAPTER 17 Editing Video and Animation 517

the Timeline is the Playback roll-out menu. In particular, you’ll want to check the
Sync drop-down in this menu. By default, it should be set to AV-sync for synchro-

nized audio and video. Having Sync set to this value ensures that your audio plays
back in sync with your video while editing. You could also set this to Frame Drop-

ping, but I tend to get better results when I choose AV-sync. Nothing is worse
than doing a ton of work to get something edited only to find out that none of the
audio lines up with the visuals after you render. Figure 17-3 shows the options in
the Playback roll-out menu of the Timeline.

The settings in the Dimensions panel amid the Output Properties are important
for editing in Blender because that’s where you set the frame rate, measured in
frames per second (fps), and resolution for the project. If you’re editing footage
that runs at a different frame rate or resolution than the one that is set here, that
footage is adjusted to fit. So if your project is at standard HD settings (24 fps and
1920 x 1080 pixels in size), but you import an animation rendered at 50 fps and at
a size of 640 x 480 pixels, the footage appears stretched and in slow motion.

Besides your Output Properties, the Sequencer’s Sidebar (visible by default on the
right side of the Sequencer view; press N to toggle its visibility while the mouse
cursor is in the Sequencer) is relevant to your editing process. Because the default
layout doesn’t have any strips loaded, the Sidebar appears as a blank region on the
right side of the Sequencer. However, if you have a strip in the Sequencer and you
have it selected, this region is populated with a variety of panels. (The exact pan-

els in the Sidebar change depending on the type of strip you have selected and the
view type you’re using for the Sequencer.)

FIGURE 17-3:
Choose AV-sync

to ensure that

your audio plays

back in sync with

your video.

518 PART 4 Sharing Your Work with the World

As you may guess, the Sequencer’s Sidebar has the most relevant options for
working in the Video Sequencer. The Sidebar has three tabs: Strip, Modifiers, and
Proxy & Cache. For the most part, you’ll be spending your time with the panels in
the Strip tab.

Following are descriptions for the most commonly used panels in the Strip tab:

 » Adjust: The buttons in this panel pertain to where a selected strip appears in

the Video Sequencer and how it interacts with other strips. You can name

individual strips, control how a strip blends with lower channels, mute or lock

a strip, set the strip’s start frame, and change the strip’s channel. When you

have an audio strip selected, only the Sound sub-panel appears in the

Adjust panel.

 » Time: The buttons in this panel allow you to crop and move the strip around

the frame, as well as control which portion of the strip shows up in the

Sequencer.

 » Effect Strip: This panel appears only for certain effect strips that have
editable attributes. I give more detail on some effects that use this panel in
the section “Adding effects and transitions,” later in this chapter.

Before I get heavily into using the Video Sequencer, let me first say that Blender’s
Video Sequencer is not a complete replacement for a traditional NLE. Although a
very powerful tool, the Video Sequencer is best suited for animators who want to
create a quick edit of their work or when planning larger animation projects using
Blender scene strips. Professional video editors may have trouble because the
Video Sequencer is missing a number of expected features, such as a listing of
available footage, sometimes called a clip library or bin. You can use the File
Browser in thumbnail view to partially emulate the behavior of a bin, but it’s still
not quite the same. That said, all the open movie projects (from Elephants Dream,
all the way to the most recently released Spring) were successfully edited using
Blender’s Video Sequencer. I find the Video Sequencer more than sufficient for
quite a few of my own projects, so you ultimately have to decide for yourself.

Adding and editing strips

If you want to use the Video Sequencer to edit footage, you have to bring that foot-
age into Blender. If you’re using the default Video Editing workspace I describe in
the preceding section of this chapter, you can use the File Browser and navigate to
where your footage is. Then you can just drag and drop that file from the File
Browser directly into the Sequencer. The ability to drag and drop from the File
Browser is an extremely handy feature that even many veteran Blender users
don’t know about. In fact, you can even drop media files from your operating sys-

tem’s file manager, too. Alternatively, you can add a strip by using the Add menu

CHAPTER 17 Editing Video and Animation 519

in the Sequencer’s header. If you’re not the type that likes to use header menus,
you can hover your mouse cursor in the Sequencer and press Shift+A (just like
adding objects in the 3D Viewport) to have the Add menu pop up right by your
mouse cursor. Figure 17-4 shows the menu of options that appears.

You can import a variety of strips: scenes, clips, masks, movies, still images,
audio, and effects. These strips are represented by the following options in the
menu:

 » Scene: Scene strips are an extremely cool feature unique to Blender. When

you select this option, a secondary menu pops up that allows you to select a

scene from the .blend file you’re working in. If you use a single .blend file
with multiple scenes in it, you can edit those scenes together to a final output
sequence without ever having to first render out those scenes. This handy
feature allows you to create a complete and complex animation entirely

within a single file. (This feature also works with scenes linked from external
.blend files, but that’s an advanced use.) Scene strips are also a great way to
use Blender for overlaying graphics, like titles, on video.

When expanding the Scene menu, you might notice it just says “No Items

Available.” That’s because you have only one scene in your file and it’s not
possible to add the scene that you’re using to edit video as a strip. That would

be a pretty nasty feedback loop. It’s always been best practice to use separate

scenes for animating and editing video. Blender 2.80 re-enforces that practice.

 » Clip: Clips relate to Blender’s built-in motion-tracking feature. Read more about

motion tracking in Chapter 18. A Clip is similar to a Movie strip (covered two
bullets down), except that it’s already loaded in Blender in the Movie Clip editor
and has its own datablock. In contrast, Movie strips by themselves don’t have
any associated datablocks; they exist only on the Video Sequencer’s timeline.

FIGURE 17-4:
The Add menu in

the Video

Sequencer.

520 PART 4 Sharing Your Work with the World

 » Mask: To add a Mask strip, you must first create a Mask datablock in the
Image Editor. To create a mask, left-click the Editing Context drop-down menu

in the Image Editor’s header and choose Mask. Masks are pretty heavily used
in advanced motion tracking and compositing.

 » Movie: When you select this option, the File Browser that opens allows you to

select a video file in one of the many formats Blender supports. On files with
both audio and video, Blender loads the audio along with the video file as
separate strips in the sequencer.

 » Sound: This option gives you a File Browser for loading an audio file into the
Video Sequencer. When importing audio, you definitely want to import sound
files in WAV or FLAC (Free Lossless Audio Codec) formats, which gives you the
best quality sound. Although Blender supports other audio formats like MP3,
they’re often compressed and sometimes sound bad when played.

 » Image/Sequence: Selecting this option opens a File Browser from which you

can select one or more images in any of the formats that Blender recognizes.

If you select just one image, the Video Sequencer displays a strip for that one
image that you can arbitrarily resize in time. If you select multiple images, the

Video Sequencer interprets them as a sequence and places them all in the same

strip with a fixed length that matches the number of images you selected.

 » Color: Color strips create an infinitely sized color strip. You can use this handy
little type of strip to do fades or set a solid background color for scenes.

 » Text: Text strips are a relatively new type of strip to Blender’s Video

Sequencer. They’re a very quick way to add text to the screen, such as for

adding subtitles or simple text overlays.

 » Adjustment Layer: Adjustment Layer strips are a bit unique. The cool thing is
that Adjustment Layer strips can make simple modifications (adjustments) to
the look of all strips below them on the Video Sequencer’s timeline. If you add

an Adjustment Layer strip and look at the mostly empty Sidebar in the
Sequencer, you may wonder exactly how you add those adjustments. This is

where you can apply Video Sequencer modifiers. In the Modifiers tab of the
Sidebar, you can left-click the Add Strip Modifier drop-down menu. Video
Sequencer modifiers are relatively simple adjustments, but they’re immensely
useful in getting your edits to look good. Most of them are used for adjusting
the color values in your video:

• Color Balance: This modifier provides the lift, gamma, and gain controls
(basically color controls for dark values, midtones, and highlights, respec-

tively) that an experienced color correction artist can use.

• Curves: If you’re familiar with adjustment curves in image editing pro-

grams such as GIMP or Photoshop, the Curves modifier should look pretty
familiar to you. You can use it to not only control how much of each color

CHAPTER 17 Editing Video and Animation 521

or value is present in your footage, but also the rate of change in that

color’s influence on the image.

• Hue Correct: Sometimes you need to adjust the color on some piece of

footage to match another shot. Perhaps the lighting or time of day was

slightly different between shots, causing them to be noticeably different.
With the Hue Correct modifier, you can adjust the hue, saturation, and
value of each pixel using a curve.

• Bright/Contrast: The Bright/Contrast modifier gives you very simple
controls for adjusting the brightness of your image and its overall contrast.

It can be a quick and dirty way of making footage shot in dark lighting look

a little bit clearer.

• Mask: When working with modifiers, you may sometimes have a whole
stack of modifiers working together (just like the modifiers you use when
working in 3D). When you do this, you may want to have one modifier
affecting part of your image, and another modifier affecting the rest — for
example, if you have footage of a bright red ball and you want everything

else in the picture to be grayscale. With the Mask modifier, you use a mask
as created in the Image Editor or the transparency of another strip to

control the influence of modifiers above and below it in the stack.

• White Balance: When professionals shoot video footage, it’s a pretty

common practice to spend some time white-balancing their cameras

before they shoot. White balancing is the process of calibrating the video

image so everything is relative to a common white tone. They’ll often shoot

a few seconds of footage with a white piece of paper or board to make sure

everything is calibrated correctly. Of course, even professionals sometimes
forget to do this and you sometimes end up with footage shot in the same

light, but with cameras that have different calibrations. Using the White
Balance modifier, you can “fix it in post” and make those different shots look
like they were taken by cameras with the same calibration.

• Tone Map: Modern cameras can shoot incredibly high-quality video. In
fact, many of them can capture color and brightness ranges greater than

most monitors, televisions, or printers can display. These are called high

dynamic range (HDR) images. This is especially true in 3D renders, because
you’re not limited to the abilities of a camera sensor. Of course, it would be
nice if you could show all of those beautiful images on regular screens

without them looking overly dark or blown-out white. This is where tone

mapping and the Tone Map modifier comes in. With this modifier, you can
adjust the range of brightness and color in your image (remapping the
tones) so everything is clearly visible on screens that don’t have HDR
capabilities.

522 PART 4 Sharing Your Work with the World

Modifiers don’t just have to be used with Adjustment Layer strips. They can be
applied to any strip. The difference is that a modifier on an Adjustment Layer
strip affects all the other strips below it in the Sequencer, whereas a modifier
on any other strip affects only that strip you added it to.

 » Effect Strip: This option pops out a secondary, somewhat lengthy, menu of

options. These strips are used mostly for effects. I cover them in more depth
in the next section.

 » Transition: When editing video, you’re going to have multiple shots that you

must cut between. Most of the time, it’s going to look best if you have straight

cuts with nothing fancy transitioning between them. However, on occasion,

you may want to fade to black or show the passage of time with a dissolve. In

those cases, Transition strips are a big help. Like Effects Strips, I’ll cover these
types of strips in more detail in the next section.

 » Fade: Fades aren’t strips that you add to the Sequencer. Instead, the items in

this submenu are a convenient shortcut to adding opacity keyframes to your

selected strip. There’s a bit more on this in the next section.

When you load a strip, it’s brought into the Sequencer under your mouse cursor.
Table 17-1 shows helpful mouse actions for working efficiently in the Sequencer.

TABLE 17-1	 Helpful Mouse Actions in the Sequencer
Mouse Action Description

Left-click Select strip to modify. Left-clicking the arrow at either end of the strip selects that
end of the strip and allows you to trim or extend the strip from that point. If you
left-click and drag on the work area rather than a strip, you can border-select
multiple strips.

Left-click+drag a strip If you left-click and drag on a strip, you’ll automatically start moving it around the
timeline. If you left-click and drag one of the arrows at the head or tail of the strip,
you can extend or shorten the clip from that side.

Left-click time value at
the top of the
Sequencer

Move the time cursor in the Sequencer. Left-clicking and dragging scrubs the
time cursor, allowing you to view and hear the contents of the Sequencer as fast
or slow as you move your mouse.

Shift+left-click Select multiple strips.

Middle-click Pan the Sequencer work area.

Ctrl+middle-click Zoom height and width of the Sequencer work area simultaneously.

Scroll wheel Zoom the width in and out of the Sequencer work area.

Ctrl+scroll wheel Scroll the Sequencer work area left and right.

Shift+scroll wheel Scroll the Sequencer work area up and down.

CHAPTER 17 Editing Video and Animation 523

One thing you may notice is that quite a few of the controls are very similar to
those present in other parts of Blender, such as the 3D View and Graph Editor. This
similarity is also true when it comes to the hotkeys that the Video Sequencer rec-

ognizes, although a few differences are worth mentioning. Table 17-2 lists some
the most common hotkeys used for editing.

Editing in the Sequencer is pretty straightforward. If you have two strips stacked
in two channels, one above the other, when the timeline cursor gets to them, the
strip that’s in the higher channel takes priority, just like stacking plates. In most
video footage, the top strip simply overrides any of the strips below. You can,
however, change this behavior in the Compositing panel of the Sequencer’s

TABLE 17-2	 Common Features/Hotkeys in the Sequencer

Hotkey Menu Access Description

G Grabs/Moves your selected strips. This is particularly useful if you
have multiple strips selected at the same time.

E Strip ➪ Grab/Extend
from frame

Grabs a selection and extends one (or both, if it’s to one side of the
time cursor completely) end of it relative to the position of the time
cursor.

Shift+D Strip ➪ Duplicate Strips Duplicates the selected strip(s).

X Strip ➪ Delete. . . Deletes the selected strip(s).

K Strip ➪ Cut (soft) at
Playhead

Splits a strip at the location of the time cursor. Similar to the razor
tool in other NLEs.

Ctrl+G Strip ➪ Make Meta Strip Combines selected strips into a single meta strip, a collection of
strips.

Ctrl+Alt+G Strip ➪ UnMeta Strip Splits a selected meta strip back into its original individual strips.

Tab Strip ➪ Toggle Meta Tabs into a meta strip to allow modification of the strips within it.

H Strip ➪ Lock/
Mute ➪ Mute Strips

Hides a strip from being played.

Alt+H Strip ➪ Lock/Mute ➪

Un-Mute Strips
Unhides a strip.

Shift+L Strip ➪ Lock/
Mute ➪ Lock Strips

Prevents selected strips from being moved or edited.

Shift+Alt+L Strip ➪ Lock/
Mute ➪ Unlock Strips

Allows editing on selected strips.

Spacebar Plays the animation starting from the location of the time cursor (or
pauses if it is already playing).

524 PART 4 Sharing Your Work with the World

Sidebar (make sure you’re on the Strip tab). The drop-down menu labeled Blend
controls the blend mode of the selected strip. You can see that the default setting is
Alpha Over, meaning that if the footage in the strip has any transparency (called
the alpha channel, the strips below will show in that transparent area. However, if
you left-click the Blend drop-down, you get a short list of modes similar to the
layer-blending options you see in a program such as Photoshop or GIMP. Besides
Alpha Over, the ones I use the most are Replace and Add.

Like most everything else in Blender, just about all the strip controls can be
animated in the Sequencer. One of the primary animated values for strips is the
Opacity slider in the Compositing panel. This slider controls the influence factor
that the strip has on the rest of the sequence. For example, on an image strip —
say, of a solid black image — you can animate the overall opacity of that strip.
Values less than 1.0 make the image more transparent, thereby giving you a nice
way to create a controlled fade to black. The Fade items in the Add menu of the
Sequencer are shortcuts to quickly adding these keyframes. The same principle
works for sound strips, using the Volume slider in the Sound panel of the
Sequencer’s Sidebar. A value of 1.0 is the sound clip’s original loudness, and it
gradually fades away the lower you get. Values greater than 1.0 amplify the sound
to a level greater than the original volume.

Just like animating elsewhere in Blender, all the keyframes you add will show up
in the Graph Editor and the Dope Sheet. If you’re at the point where you’re adding
these keyframes, it may make sense to temporarily change the File Browser in the
Video Editing workspace to a Graph Editor while you’re animating. You’ll also
see your keyframes show up in the Timeline at the bottom of the workspace.
Figure 17-5 shows what this workspace layout could look like.

By animating values for your strips, you can create some very cool results. Say
that you have a logo graphic with an alpha channel defining the background as
transparent, and you want to make the logo flicker as if it’s being seen through
poor television reception. To make the logo flicker, follow these steps:

1. Add a logo image to the Sequencer (Add ➪  Image).

2. Make sure that the logo’s strip is selected and, in the Compositing panel,

insert a keyframe for the strip’s opacity (left-click the keyframe icon to
the right of the Opacity field in the Compositing panel, or press I with
your mouse hovered over the Opacity value field).

3. In the Graph Editor (again, you may want to temporarily change your File

Browser area to show the Graph Editor instead), tweak the Opacity
f-curve so that it randomly bounces many times between 1.0 and 0.0
(Ctrl+right-click).

After tweaking the curve to your taste (see Chapter 12 for more on working in
the Graph Editor), you should now have your flickering logo effect.

CHAPTER 17 Editing Video and Animation 525

Adding effects and transitions
The Add menu in the Sequencer provides you with quite a few options other than
importing audio and video elements. A large portion of these options are effects
and transitions, and many typically require that you select two strips that are at
least partially stacked on top of each other in the Sequencer. When necessary, I
point out which effects these are.

Pay close attention to the order in which you select your strips because it often has
a dramatic influence on how the effect is applied. The second strip you select is the
active strip and the primary controller of the effect.

Here’s a list of the available options:

 » Add/Subtract/Multiply: These effects are the same as the blend mode
settings in the Compositing panel of the Sidebar. The main reason you would

use these effects is if you want something to happen only between two
specific strips and nowhere else. Most of the time you can get away with using
blend modes instead of adding these as effects sequences. It works just as
well and keeps your Sequencer timeline from getting too cluttered. Using
these effects requires that you select two strips before adding any of them.
The following steps give a quick example of how to use them:

1. Select the strip you want to start with.

2. Shift+left-click the strip you want to mix with.

3. Choose Add ➪  Effect Strip ➪  Add.

FIGURE 17-5:
You can swap the

File Browser with

a Graph Editor in

the Video Editing

Layout to give
yourself more

control over

animated strip

values.

526 PART 4 Sharing Your Work with the World

A new red strip is created that’s the length of the overlap between your two

selected strips. On playback (Spacebar), the bright parts of the upper strip
amplify the overlaying bright parts of the lower strip.

 » Over Drop/Alpha Over/Alpha Under: These effect strips control how one
strip’s alpha channel relates to another. They’re also available as Blending

modes, and in most cases the blending modes are sufficient. Just like with
Add, Subtract, and Multiply, you use these effects when you need to just apply
them between two specific strips and no others.

 » Color Mix: The previous six effects are set on their own because they can get
used pretty frequently. But what if you want to use one of the other blend

modes and it’s not enough to just use the blend mode that’s built into the

strip? For example, what if you want to use the Difference blend mode, but
only between two strips and not with the whole stack of channels below one

strip? This is where the Color Mix effect comes in handy. You can use it to set
a blending mode between any two selected strips.

 » Multicam Selector: If you’re using Scene strips in the Sequencer and you

have multiple cameras in your scene, you can use this effect strip to dictate
which camera you’re using from that scene. As with most things in Blender,

you can animate that camera choice, allowing you to easily do camera-

switching in your scene.

 » Transform: This effect provides very basic controls for the location, scale, and
rotation of a strip. The effect works on a single strip, and you can find its
controls on the Effect Strip panel of the Sidebar in the Strip tab. You can use
f-curves on this effect strip to animate the transform values.

 » Speed Control: With the Speed Control effect, you can adjust the playback
speed of individual strips. In the Effect Strip panel of the Sidebar, you can
choose to influence the Global Speed (1.0 is regular speed; setting it to 0.50
makes the strip play half as fast; setting it to 2.0 makes it play twice as fast).
You can also have more custom control using the Graph Editor.

 » Glow: The Glow effect works on a single strip. It takes a given image and
makes the bright points in it glow a bit brighter. Ever wonder how some 3D
renders get that glowing, almost ethereal quality? Glow is one way to do it.

The Effect Strip panel in the Sidebar lets you adjust the amount of glow you
have and the quality of that glow.

 » Gaussian Blur: This effect works like a simplified version of the Blur mode in
the Compositor (covered in the next chapter). Using the Size X and Size Y
values in the Effect Strip panel of the Sidebar, the Gaussian Blur effect gives
you the ability to make the images or video in a strip blurry.

CHAPTER 17 Editing Video and Animation 527

Besides adding effects between strips, you can also animate the transition between
effects. Sure, it’s certainly possible to animate opacity or volume on an individual
strip using Fades and tweak the timing with the Graph Editor, but sometimes it’s
more convenient to use a pre-baked transition effect. That way, you can focus on
editing and you don’t have to think as much about animating transitions. The
Video Sequencer gives you a few of these preset transitions when you choose
Add ➪ Transitions:

 » Sound Crossfade: The Sound Crossfade transition can be used only with

audio strips. Where two strips overlap, the Sound Crossfade transition

reduces the volume of your one strip to zero while increasing the volume

from your other strip up from zero to one.

When you add a Sound Crossfade transition, there doesn’t seem to be any

obvious change in the Sequencer work area. Unlike with other transitions, no
new strips are added. Instead, if you look in the Timeline, you should notice

some new keyframes have been added. The Sound Crossfade menu option is

more like a shortcut for automatically adding animation keyframes for the

Volume control in the Sound panel of the Sequencer’s Sidebar.

 » Cross/Gamma Cross: These transitions are crossfades or dissolves between

overlapping strips. Like with effects strips, the Cross and Gamma Cross
transitions add short red strips that give you some additional controls over

the transition. For images and video, Gamma Cross works the same as Cross,

but takes the additional step of correcting the color in the transition for a

smoother dissolve.

 » Wipe: Wipe is a transition effect like Cross and Gamma Cross. It transitions
from one strip to another like a sliding door, à la the Star Wars movies. This

effect also uses the Effect Strip panel in the Sidebar to let you choose the type
of wipe you want, including single, double, iris, and clock wipe. Also, you can

adjust the blurriness of the wiping edge and the direction the wipe moves.

Rendering from the Video Sequencer
To render your complete edited sequence from the Video Sequencer, the steps are
largely identical to the ones outlined for creating a finished animation in
Chapter 16. There are a few minor differences, though. In contrast to what I wrote
at the end of Chapter 16, the output from an editing session should almost always
be a video file rather than a sequence of images. Blender has some presets that

528 PART 4 Sharing Your Work with the World

make this pretty easy for you. When you’re done editing, follow these steps to
render out a video file that you can share with others:

1. In Output Properties, find the Output panel and choose FFmpeg video
from the File Format drop-down.

There are two other video choices in the File Format menu (AVI JPEG and AVI
Raw). I don’t recommend using them because the output file sizes are typically
very large and your audio doesn’t get bundled in the file. Using FFmpeg video is
a much better choice. Upon making this selection, an Encoding sub-panel will
appear. This sub-panel is where you make a few additional choices.

What is FFmpeg? Why not just say “Video”? FFmpeg is actually a separate open
source program for video encoding that Blender is using as a library when

generating video files. It’s incredibly powerful. In fact, only a fraction of what it
can do is actually exposed in Blender’s interface. You can do much, much more

with FFmpeg from its command line interface. In the past, Blender used to

have the option of using other programs as encoding libraries (like Apple’s
QuickTime). In those cases, it was useful to have a descriptor in front of the
word “video” so you’d know which encoder you were using. Unfortunately, the
Blender developers needed to remove QuickTime support because it wasn’t

compatible with Blender’s license. Now all that remains is FFmpeg.

2. Select your container type from the Container drop-down menu.

Video files are wacky beasts. All the frames of your video and the audio are
bundled into a single file, called a container. It’s the file type that serves as the
bucket that holds all your audio and video data. The default is set to Matroska,
an extremely full-featured open source container format. That’s fine in a lot of
cases, but not everyone has video players that recognize that container format.

More common choices for containers are MPEG-4, AVI, and QuickTime. If you
can’t use Matroska, I’d suggest you choose MPEG-4.

3. Choose a video codec from the Video Codec drop-down menu.

You can find this drop-down menu in the Video panel that appears below the
Encoding panel. Codec is an abbreviation for coder-decoder. It’s the algorithm

that defines how your video footage is compressed (like JPEG and PNG for still
images). A dizzying variety of choices are available to you here. This is where
things can get a bit tricky. Even though you can technically use any codec you

want, some video players, such as Windows Media Player, don’t know how to
play all codecs in all the containers they support. There are whole web pages

out there dedicated to figuring out which version of which video player
supports what combination of container and codec. Unless you’re doing
something very specific, I’d suggest you choose H.264 or WEBM/VP9 from this
drop-down menu. Those are the options most commonly paired with MPEG-4
and Matroska containers. And in most cases, all the other settings in the Video
panel can remain at their defaults.

CHAPTER 17 Editing Video and Animation 529

4. Choose an audio codec from the Audio Codec drop-down menu.

The Audio Codec drop-down menu is in the Audio panel at the bottom of the

Encoding sub-panel. Like with choosing a video codec, there are quite a few
choices here and not all video players support all combinations of containers

and video and audio codecs. The safest choice here is PCM, but that’s fully
uncompressed audio. For compatibility reasons, you’re next best choices are

probably AAC or AC3.

Figure 17-6 shows the Encode sub-panel in Output properties with commonly
chosen settings.

Although it’s handy to know all the ins and outs of each and every video format out
there, most folks just want to get the work done. To help a bit with this, Blender
does offer some presets to help you choose some encoding settings quickly. If you
look to the top right of the Encoding sub-panel, you should notice an icon there
that resembles a little bulleted list. This is how you access the encoding presets.
When you click this icon, you can choose h.264 in MP4 to get settings for a video
that should work in most players. You may still need to manually choose your
audio codec, but these presets can help you take a four- to six-step process and do
it in two.

FIGURE 17-6:
Common FFmpeg

settings for

container, video,

and audio.

530 PART 4 Sharing Your Work with the World

Before you render, make sure your other Output Properties are set the way you
want. In particular, double-check the Dimensions panel and ensure you have the
correct image size and frame rate, and that your start and end frames are where
you want them. It’s really annoying to be halfway through rendering your video
and suddenly realize you’ve forgotten to include the first 15 seconds of your edit
session.

Once you’ve set all your output settings for your video file, you should be ready to
render out your editing session. Just like with rendering animations, you do this
by navigating to the Render menu at the top of your Blender window and choosing
Render ➪ Render Animation.

One additional thing you should check is in Output Properties, in the Post Pro-

cessing panel. Make sure that the Sequencer check box is enabled. Activating this
check box lets Blender know that you want to use the strips in the Video Sequencer
for your final output rather than anything that’s in front of the 3D camera. If you
don’t enable this check box, Blender just renders whatever the camera sees, which
may be just the default cube that starts with Blender, or whatever else you might
place in front of the 3D camera.

CHAPTER 18 Compositing Images and Video 531

Chapter 18

Compositing Images
and Video

W
hether you’re doing 3D animation, visual effects for film and video, or
just making a really cool render of a 3D model you’ve sculpted, it’s nat-
ural to start adjusting your output images and mixing them with other

graphics. That’s the essence of compositing. The art of compositing can happen in
many forms. It could be as simple as putting a logo in the corner of a photo or as
complex as replacing a live action actor with a fully rigged and animated 3D char-

acter. In the simplest form, you’re working on a single image, and a lot of com-

positing work can be done in your photo-editing software of choice. However,
when you start working on sequences of images, like video footage or an animated
character, that’s where a compositor like the one in Blender really shines.

Understanding Nodes

Compositing is the process of mixing multiple visual assets to create a single image
or sequence of images. By this definition, you may notice that technically Blender’s
Video Sequencer qualifies as a sort of compositor because you can stack strips over
each other in channels and blend them together with effects and transitions. After
all, as covered in the previous chapter, the Sequencer contains a panel labeled
Compositing that’s used for mixing strips. Although this statement is true, the

IN THIS CHAPTER

 » Working with nodes

 » Rendering in layers and passes

 » Understanding useful nodes for

compositing

532 PART 4 Sharing Your Work with the World

Video Sequencer is nowhere near as powerful as Blender’s Compositor for mixing
videos, images, and other graphics together.

As designed, the Video Sequencer is intended for working with multiple shots,
scenes, images, or clips of video. It’s also meant to play back in real time (or as
near to that as possible). In contrast, the Compositor is intended for working with
a single shot, and it’s most certainly not meant for working in real time. There is
a little bit of overlap in the functionality of these two parts of Blender, but depend-

ing on the task at hand, one is more suitable than the other.

What makes the Compositor so powerful? In a single word, it’s nodes. One of the
best ways to understand the power of nodes is to imagine an assembly line. In an
assembly line, each step in the process depends on the step immediately preced-

ing it and feeds directly into the following step. This methodology is similar to the
layer-based approach used in many image-manipulation programs such as Pho-

toshop and GIMP. Each layer has exactly one input from the previous layer and
one output to the following one. Figure 18-1 illustrates this idea.

That approach works well, but you can enhance the assembly line a bit. Say that
some steps produce parts that can go to more than one subsequent step, and that
other steps can take parts from two or more earlier steps and make something
new. And take it a bit farther by saying that you can duplicate groups of these
steps and integrate them easily to other parts of the line. You then have an assem-

bly network like that depicted in Figure 18-2. This network-like approach is what
you can do with nodes.

In the end, what does this all mean? Why is it so great to work with nodes when
doing compositing tasks? For me, it comes down to the following points:

 » Nodes are non-destructive. A non-destructive edit is one where the original

source material doesn’t get changed over the course of working on it. If you

draw a moustache in marker on a photograph of your boss, that’s a destructive
change. If that photo is in a frame and you just draw on the cover glass, that’s
non-destructive (at least for the photo; I can’t say what it means for the frame, or
your job if your boss doesn’t have a good sense of humor). Because a node-based
workflow is non-destructive, you can freely make changes to your composite, and
you’re not reliant on using Undo to take those changes away. You can make a

series of iterative changes, or you can toss out all your changes to try a completely
different approach. Either way, your source material remains pristine.

FIGURE 18-1:
An assembly line
approach, similar
to layers in GIMP

or Photoshop.

CHAPTER 18 Compositing Images and Video 533

 » Node networks are easy to reuse. Unlike photo editing, most compositing
work happens with moving images. When working with video and animation

material, you need to be able to apply the modifications you make to every
frame in the shot that you’re working on. In that way, a node network is really
like a set of instructions or a recipe that shows how to make the same

changes on any image. With that in mind, that also means you can easily take
a portion of your node network (or all of it) and reapply it on a completely
different sequence of images. This way of working is especially important
when you’re working on several compositing sessions and you need similar

results on all of them.

 » Working with nodes is fun! Because nodes are non-destructive and easy to
reuse, you as the artist have a lot of freedom to play with your composite. You
can easily swap nodes or change connections to get the results you’re looking

for (or just randomly connect nodes to see what happens). And you can do it
all without worrying about damaging your source material.

FIGURE 18-2:
Turning a simple

assembly line into
a complex

assembly
network.

534 PART 4 Sharing Your Work with the World

Getting Started with the Compositor

The preferred way to do compositing in Blender is from the Compositing
workspace. From a new general Blender session (File ➪ New ➪ General), it’s the
second-to-last workspace tab at the top of the Blender window. The same
workspace is also available when you launch a new VFX session (File ➪ New ➪ VFX).
If you have your own custom set of workspaces in your .blend file, you can add a
Compositing workspace by clicking the plus (+) button at the end of the workspaces’
tabs and choosing Compositing from the General or VFX submenus.

The majority of your compositing work will take place in the large Compositor
area. The rest of the workspace takes its cues from the Animation workspace. The
Outliner and Properties editor are located along the right side of the window. At
the bottom you have a Dope Sheet and a collapsed Timeline. The reason the Time-

line is collapsed is because you can scrub time easily from the Dope Sheet. The
Timeline is mostly there to give you playback controls.

By itself, the Compositor looks pretty stark and boring, like a lame 2D version of
the 3D Viewport. However, toggle the Use Nodes check box in the header and
Blender adds some starting nodes to the Compositor: a Render Layers node and a
Composite node. The section “Discovering the Nodes Available to You” has more
detailed information about these nodes and others available in the Compositor.
Figure 18-3 shows what you’re greeted with when you choose the Compositing
workspace and enable the Use Nodes check box.

FIGURE 18-3:
The Compositing

workspace that

ships with

Blender is the
preferred starting

point for

compositing

work, whether
you’re starting

with 3D assets or

compositing a

sequence of
images.

CHAPTER 18 Compositing Images and Video 535

Rendering in Passes and Layers

Before taking full advantage of nodes, it’s worthwhile to take a quick moment and
understand what it means to render in layers. Assume for a moment that you ani-
mated a character walking into a room and falling down. The room is pretty
detailed, so it takes a fairly long time for your computer to render each frame.
However, because the camera doesn’t move, you need to render the room only
once. Then, if you render your character with a transparent background, you can
superimpose the character on that still image of the room, effectively cutting your
final render time to a fraction of what it would be.

That’s the basics of rendering in layers. The preceding example had two layers,
one for the room and one for the character. In addition to rendering in layers, each
layer can contain multiple passes, isolated components of that layer that you can
use in your composite. For example, if you want to, you can have a render pass
that consists of just the shadows in the layer. You can take that pass and adjust it
to make all the shadows slightly blue. Or you can isolate a character while she’s
walking through a gray, blurry scene.

Another thing to understand for compositing 3D scenes is the concept of Z-depth.
Basically, Z-depth is the representation of the distance between an object and the
camera, along the camera’s local Z-axis. The compositor can use this Z-depth to
make an object look like it fits in a scene even though it was never rendered with it.

In Blender, all this functionality starts with view layers and collections. The same
collections that you use for organizing your scenes when animating can be used to
control what objects show up in specific view layers. Basically, you can decide
arbitrarily which collections you’d like to include or exclude from any of the view
layers you create. In the default General work template of Blender, the majority of
your controls for collections and view layers are on the right side of the screen, as
shown in Figure 18-4.

You know you’re looking at something relevant to view layers when you see the
View Layer icon. It looks like a stack of photographs.

At the upper right is a View Layer datablock where you control the active View
layer that you’re working on. If you click the datablock’s icon, it reveals a drop-
down list of all the view layers in your scene. Click the view layer you want to
make it active. By default, there’s only one view layer, creatively named View
Layer. Like any other datablock in Blender, you can rename it by clicking in the
text area of the datablock. I strongly encourage you to rename your view layers to
things that make sense to you, especially when you have more than one in your
scene. View layers can be added and removed from your scene using the add and
remove buttons on the right side of the datablock.

536 PART 4 Sharing Your Work with the World

The View Layer display mode of the Outliner (which is the default display mode)
houses the controls for how your collections relate to your active view layer. The
Outliner is where you tell Blender which collections should be included in your
active view layer. Click the check box to the left of each collection to toggle its
inclusion in your active view layer. For more on collections and how they work,
have a look at Chapter 3.

You control the passes in your view layer from the View Layer tab in the Properties
editor. This tab is where the real magic and power of view layers lies. What’s vis-

ible in this tab varies a bit, depending on whether you’ve chosen Eevee or Cycles
as your renderer in the Render tab. As shown in Figure 18-5, you have fewer
options and panels if you’re rendering with Eevee.

Discovering Passes Available in Eevee
and Cycles
Regardless of the render engine you’ve chosen, there’s always a View Layer panel
at the top of the View Layer tab in the Properties editor. In this panel, you have
two options:

FIGURE 18-4:
Controls for your

view layers are all

along the right

side of the screen

when using the

Compositing

workspace.

CHAPTER 18 Compositing Images and Video 537

 » Use for Rendering: Enabled by default, this property toggles whether your
active view layer is rendered. You might find yourself wondering why you
would ever have a view layer that isn’t used for rendering. After all, it’s not
called a “don’t view” layer. Typically speaking, you wouldn’t disable a view
render. However, if you’re working on a large project that has a lot of view
layers and you just make a change to one, it’s very useful to be able to toggle
off all the view layers you don’t need. Interestingly enough, you can animate
this property.

 » Render Single Layer: When doing test renders on your scene, render times
can sometimes get pretty long if you have a lot of view layers. Blender
basically has to re-render your scene each time you add a view layer. Those
additional render times can add up. So when you’re just working on one of
those view layers, it’s sometimes helpful to render only the one you’re in and
disregard all the other ones.

The content of the next panel, Passes, will vary based on whether you’ve chosen
to use Eevee or Cycles (it’s not available at all if you’re using the Workbench
engine). The Passes panel contains a series of check boxes that toggle whether
that particular pass is used by the view layer.

FIGURE 18-5:
View Layer

properties with

Eevee as your

render engine

(left) versus that
same tab with
Cycles as your

chosen renderer.

538 PART 4 Sharing Your Work with the World

Passes are really what make compositing so interesting and fun. The following
passes are available in both Eevee and Cycles:

 » Combined: The Combined pass is the fully mixed, rendered image as it comes
from the renderer before getting any processing. It’s enabled by default and
there’s usually no reason to disable it.

 » Z: This pass is a mapping of the Z-depth information for each object in front of
the camera. It is useful for masking as well as faking camera effects like depth

of field, where a short range of the viewable range is in focus and everything
else is blurry. This pass is also enabled by default for all view layers.

 » Mist: In a way, the Mist pass is similar to the Z pass because it’s based on
Z-depth information. There are three big differences:

• Values in the Mist pass already are normalized between 0 and 1.

• The Mist pass takes the transparency of your materials into account; the

Z pass doesn’t.

• Unlike the Z pass, the Mist pass is nicely anti-aliased and doesn’t have
some of the nasty star-stepped jaggies you may see in the Z pass.

 » Normal: The information in this pass relates to the angle that the geometry in

the scene has, relative to the camera. If you were to look at an image gener-

ated by the Normal pass, it looks pretty funky. In an RGB image of a Normal
pass, the red channel indicates how much a face of geometry is aimed left or
right. The blue channel indicates how much that face is tilted up or down, and
the green channel indicates how much that face is pointing at the camera.

There are a lot of creative uses for the Normal pass; most commonly it can be
used for additional bump mapping as well as completely altering the lighting
in the scene without re-rendering.

 » Ambient Occlusion: In Eevee, this pass is pretty easy to find in the Passes
panel. If you’re rendering with Cycles, you need to look a little further down in
the Light sub-panel to find it. The Ambient Occlusion pass includes any
ambient occlusion (AO) data generated by the renderer, if you have AO
enabled. See Chapter 10 for more on how to enable AO in each render
engine.

 » Subsurface Direct/Subsurface Color: These two passes are only really useful

if any materials in your scene have subsurface scattering in them. Subsurface

scattering is the effect you see when shining a flashlight through webbing of
your hand. I cover this material property a bit more in Chapter 8. The main
use for these passes is to give you more control over how much this material

property has an influence on your final output image. Most algorithms for
rendering subsurface scattering are computationally intensive, so these
passes are often used as a means of increasing or decreasing the effect

CHAPTER 18 Compositing Images and Video 539

without going through another time-consuming render. Like the Ambient
Occlusion pass, these two passes are pretty easy to find in the Passes panel if
you’re rendering with Eevee. If you’re rendering with Cycles, they’re in the
Light sub-panel, enabled as button toggles rather than check boxes.

For each pass that you enable in the View Layer tab, you should notice that the
corresponding Render Layers node in the Compositor expands with an output
socket that matches the pass you enable. Figure 18-6 shows a Render Layers node
with a variety of additional passes enabled.

FIGURE 18-6:
Enabling passes

adds correspond-

ing output

sockets on your

view layer’s node

in the

Compositor.

VIEW LAYERS AND RENDER LAYERS
You may notice Blender’s interface has parts that refer to View Layers and Render
Layers. For the most part, you can use these terms interchangeably. Render Layers are
basically what View Layers were in older versions of Blender. Blender’s interface has
been updated with the release of version 2.80 to refer to View Layers throughout most
of it. The one notable exception is the Compositor. There’s an input node (typically the
main input node in your node network) called Render Layers. You choose that node to
specify a view layer from your scene that you want to route into your compositing node

network. It’s a bit confusing, but hopefully in future versions of Blender the developers
update the naming and make things a bit more consistent.

540 PART 4 Sharing Your Work with the World

Understanding Cycles-only Light Passes

A few other passes are (as of writing this book) only available when rendering
with Cycles. However, they’re so handy when compositing your 3D work that
they’re worth mentioning on their own. I expect that as Eevee matures as a render
engine, we’re likely to see these passes supported there as well:

 » Vector: This pass includes speed information for objects moving in front of
the camera (meaning that either the objects or the camera is animated). This
data is particularly useful for the Vector Blur node, which gives a decent
motion blur effect in the cases where Cycles’ built-in motion blur does
not yet work.

 » UV: The UV pass is pretty clever because it sends the UV mapping data from
the 3D objects to the Compositor, similar to how the Normal pass works, but
with more control. Basically, this pass gives you the ability to completely
change the textures on an object or character without the need to re-render
any part of the scene. Often, you want to use this pass along with the Object
Index pass to specify on which object you want to change the texture.

 » Object Index: This pass carries index numbers for individual objects, if you
set them in the Relations panel of the Object tab in the Properties editor. The
Object Index pass allows very fine control over which nodes get applied to
which objects. This pass is similar to plain masking, but somewhat more
powerful because it makes isolating a single object or group of objects so
much easier. To use it, you need to go to Object Properties and expand the
Relations panel. At the bottom of that panel is a field labeled Pass Index. By
default, it’s set to zero, meaning that the pass index is basically unset. Change
the Pass Index value to something else. Then remember that value, because
you’ll need to use it with the ID Mask node in the compositor (more on specific
nodes in the “Discovering the Nodes Available to You” section). You can give
multiple objects the same Pass Index value or make them share.

 » Material Index: Like with objects, you can assign index numbers to each of
your materials (look in the Settings panel of Material Properties). It gives you
the same kind of masking control you get with the Object Index pass, but at
the material level. Using this pass, you can make quick masks of a character’s
hair, for example. To give an individual material its own Pass Index, go to
Material Properties and look at the bottom of the Settings panel. The Pass
Index field here works the same as the one for objects. In general, pass
indices are great for isolating objects, but when you have a complex scene,
setting (and remembering) individual index values can be tedious and
annoying. There’s a fix for that that I’ll go into in the next section.

Aside from the main passes available at the top of the Passes panel when you have
Cycles as your chosen render engine, there are two more sub-panels with even

CHAPTER 18 Compositing Images and Video 541

more passes you can make available to the Compositor. The first is the Light sub-
panel. These passes specifically relate to how light in your scene interacts with
materials on objects in that scene. I already mentioned it a bit in reference to the
Subsurface and Ambient Occlusion passes, but with Cycles as your renderer, it
doesn’t stop there. You get a whole block of material passes that vary based on
how light bounces from the object to your scene camera. You should note that
these passes very closely mirror the kinds of shaders described in Chapter 8:

 » Diffuse: Think of diffuse color as the “solid” color of an object. If light doesn’t
go through the object or reflect the environment, the Diffuse passes give you
their color.

 » Glossy: As its name indicates, the Glossy pass gives you image data for
anything in your scene that’s reflective.

 » Transmission: Transmission is render-engine speak for see-through. If light

goes through an object in your scene, that image data gets captured in a
Transmission pass.

 » Subsurface: I mentioned subsurface scattering earlier in this section. These
passes relate to any materials in your scene that make use of subsurface
scattering properties.

 » Volume: Volumes are shapes without a surface, like clouds or fire. If you have
any volumetric materials in your scene, these passes can be used to tweak
how they look in the compositor.

With the exception of the Volume pass, all of the aforementioned passes have
three possible types that you can enable:

 » Direct: As it relates to ray traced light (see Chapters 8 and 16), a Direct pass is
the color that your 3D camera sees on a ray directly between the object and
the camera. It doesn’t bounce anywhere else in the scene. The Direct passes
give the color and shading of your object, absent any additional influence.

 » Indirect: In a ray traced render engine like Cycles, light rays bounce all over
your scene. Color from green grass is going to reflect a bit off a nearby white
wall. These bounced colors are what’s captured in Indirect passes.

 » Color: Occasionally, you just want the color of your object with no considera-

tion whatsoever for its lighting or any bounced light off of it. That’s what you
get with the Color pass. For anyone familiar with the old Blender Internal
renderer in previous releases of Blender, Color passes are similar to what
you’d get with a shadeless material. The Volume passes don’t have a color

option because volumes don’t have a surface and, therefore, don’t have an
implicit color.

542 PART 4 Sharing Your Work with the World

There’s one more pass in the Light sub-panel that’s worth mentioning: the
Shadow pass. This pass contains all the cast shadows in the render. In my example
from near the start of this section about taking the shadows from the render and
adjusting them (such as giving them a bluish hue), you’d use this pass.

Meet Cryptomatte

One of the new features added to Cycles with the release of Blender 2.80 is support
for something called cryptomatte. Cryptomatte is an open source standard for
mattes (masks) that the visual effects community has settled upon for composit-
ing. The best way to think of cryptomatte is to consider it like the Object Index and
Material Index passes “turned up to eleven.” Not only do you have the ability to
isolate individual objects and materials in a render, but that masking is done
automatically; you don’t have to go to the Object or Material tab to give each object
its own pass index. And even better, cryptomatte has much better support for
camera features like motion blur, depth of field, and transparency.

“That’s great,” you say, “but how do I use the thing?” The first thing you need to
do is double-check Render Properties and ensure that you’re using Cycles as your
render engine. Cryptomatte support may be added to Eevee in the future, but as of
this writing, it’s only available when you render using Cycles.

Once you’ve set Cycles as your renderer, go to the View Layers tab. As shown back
in Figure 18-5, there’s a Cryptomatte sub-panel at the bottom of the Passes panel.
The only controls you really need to worry about at this point are the three buttons
at the top of the sub-panel:

 » Object: This option is cryptomatte’s version of Object Index passes. The
difference here is that you don’t have to manually assign any pass indices
yourself. Cryptomatte takes care of that for you. Enable this button if you
want to make mattes specific to certain objects.

 » Material: Enable the Material button if you want mattes specific to materials
in your scene. This option is like the Material Index pass, but with the indices
all automatically set up for you.

 » Asset: There’s no real equivalent to Asset mattes elsewhere in the Passes
panel. If you have a group of objects sharing the same parent, you can treat
them all as a single unit for making a mask by enabling this option.

Once you enable the type (or types) of cryptomatte you want to use in your com-

positing session, the Render Layers node in the Compositor for your view layer
expands with cryptomatte sockets, three for each type that you’ve enabled. For
example, if you enable Object cryptomattes, you should see three new sockets on

CHAPTER 18 Compositing Images and Video 543

your Render Layers node: CryptObject00, CryptObject02, and CryptObject04.
Attaching a Viewer node to any of these sockets won’t display anything useful. To
make use of these sockets, follow these steps (review the next section on working
with nodes if any of the terms in these steps don’t yet make sense to you):

1. Add a Cryptomatte node (Add ➪  Matte ➪  Cryptomatte) in the Compositor.

You’ll need a different Cryptomatte node for each of the cryptomatte types
(object, material, and asset) that you enable.

2. Connect your Render Layers sockets to their corresponding sockets on

the Cryptomatte node.

Image goes to Image and each of the CryptoObject (in this example) sockets
goes to the Crypto 00, Crypto 01, and Crypto 02 sockets.

3. Add a Viewer node (Add ➪  Output ➪  Viewer) and connect it to the Pick
output socket on the Cryptomatte node.

If you haven’t rendered yet, you’re not going to have any feedback after
connecting your Viewer node. Do a quick Render (Render ➪  Render Image) and
your Compositor should look somewhat like what’s shown in Figure 18-7.

There’s a backdrop image in the Compositor much like the backdrop in the
Video Sequencer described in Chapter 17. The backdrop in the Compositor,
however, isn’t tied to your final output. Instead, it’s bound to your active Viewer
node. In this case, the backdrop image should show a kind of wacky multicolor

FIGURE 18-7:
Setting up the

Cryptomatte

node for picking

your mattes.

544 PART 4 Sharing Your Work with the World

version of your render. That’s the output of the Pick socket. It’s a fun-looking

image, but it’s not yet doing much for you. If you connect your Viewer node to
the Cryptomatte’s Matte socket, the backdrop image should be solid black,
meaning that you don’t have any mattes. That’s where the next step comes in.

Reconnect your Viewer to the Pick socket before proceeding.

4. Pick the objects you want to have mattes of.

In the Cryptomatte node, there’s an Add and Remove button under the label of
Matte Objects. When you click the Add button, your mouse cursor changes to
an eyedropper. Use the eyedropper to click on the Pick image in the backdrop
to choose which objects you want to have mattes of. Likewise, clicking the
Remove button gives you an eyedropper that you can use to exclude objects
from your matte. You can verify that you’ve picked correctly by connecting the
Matte output to your Viewer node. In this example, I’ve chosen to make a
matte of the monkey head and the cone in my scene. Figure 18-8 shows the
resultant matte.

By working using your cryptomattes with the rest of your compositing network,
you can ensure that specific effects and adjustments affect only specific parts of
your scene. This is how you can change the color of just one leaf on a tree or hide
a character that was re-rendered later on. Masks and mattes are absolutely fun-

damental tools in a professional compositor’s toolbox.

Working with Nodes

After you set up your view layers the way you want, you’re ready to work in
the Compositor. The Compositor is a node editor, like the Shader Editor and the
Texture Node Editor, so it operates by the same basic rules as those editors.

FIGURE 18-8:
Just some objects

I picked for

making a matte

to use elsewhere

in a composite

session.

CHAPTER 18 Compositing Images and Video 545

By connecting nodes together from one or more inputs to one or more outputs, you
provide Blender with a set of instructions on how to get a particular result. In the
case of compositing, that result is a processed image or sequence of images.
See Chapters 8, 9, and 10 for details on Blender’s other node editors.

As shown back in Figure 18-3, Blender’s Compositor starts by presenting you with
two nodes, one input and one output. You can quickly tell which is which by look-

ing at the location of the connection points, or sockets, on each node. The left node,
labeled Render Layers, has connection points on the right side of it. The location
of these connection points means that it can serve only as an input to other nodes
and can’t receive any additional data, so the Render Layers node is an input node.
It adds information to the node network.

In contrast, the node on the right, labeled Composite, is an output node because it
has no connection points on its right edge, meaning it can’t feed information to
other nodes. Essentially, it’s the end of the line, the result. In fact, when you ren-

der by using the Compositor, the Composite node is the final output that appears
when Blender renders.

The line connecting the Render Layers node to the Composite node is sometimes
called a wire or noodle. The noodle indicates that data is traveling from the socket
on one node to one on another node. In the default case, it’s showing that the
Render Layers’ image data is being sent to the Composite node. If you discon-

nected this noodle by clicking the yellow Image socket on the Composite node and
moving your mouse cursor away from it, the output render would just be an image
filled with black. You can re-connect the nodes by clicking the Render Layers’
Image socket and dragging your mouse cursor to the corresponding socket on the
Composite node.

To make connections, click and drag from sockets on the right side of nodes. To
break or disconnect noodles, click and drag from sockets on the left side of nodes.

Configuring the backdrop
As covered in the previous section on cryptomatte, the Compositor has a backdrop
feature, much like the Video Sequencer. It’s enabled by default and it displays
whatever noodle is currently connected to an active Viewer node.

You might notice that there isn’t a Viewer node available at first when you enable
nodes in the Compositor. It’s easy enough to fix that by adding a Viewer node from
the menu (Add ➪ Output ➪ Viewer), but there’s actually an even faster way. If you
Shift+Ctrl+left-click on any node with sockets along its right edge, Blender

546 PART 4 Sharing Your Work with the World

automatically connects a Viewer node to one of those sockets. If you don’t cur-

rently have a Viewer node in your Compositor, Blender will automatically add one
for you. Then, each time you Shift+Ctrl+left-click that node, Blender cycles
through connecting each socket to your Viewer node. This fast-click access to the
Viewer node and the Compositor’s backdrop feature make previewing different
parts of your composite network very speedy.

This setup is the way I typically like to work when compositing. In fact, I often
take it one step further and press Ctrl+Spacebar to maximize the Compositor to
the full window size. This way, you can take full advantage of your entire screen
while compositing.

The downside, however, is that if you’re rendering at full size, then even with the
Compositor maximized, the output image is often too big to be seen completely as
a backdrop. Fortunately, there are some features to help with that problem as well.
Like the 3D Viewport and most other editors in Blender, the Compositor has its
own Sidebar, typically along the right side of the editor. The Compositor’s Sidebar
contains a series of tabs, and the View tab is of particular interest in this context.
The View tab has a panel labeled Backdrop that you can use to control the size and
position of the backdrop image. When your backdrop image is larger than the
viewing area in your Compositor, adjust the Zoom value. Values less than one
make it appear smaller than its original size, whereas values larger than one make
it appear larger.

Of course, once the backdrop image is at a manageable scale within your Compos-

itor, there are some easier onscreen controls for the size and position of the back-

drop. Click your Viewer node to make it your active node and you should notice
that the backdrop image has a white line around it and a little rectangle at every
corner. By clicking and dragging any corner box or white edge line on your back-

drop image, you can quickly adjust the Zoom value. And if you click and drag the
X at the center of the backdrop image, you can re-position it in the Compositor.

Of course, if you find that the backdrop gets in your way, you can disable it by
clicking the Backdrop check box in the View panel or, if that panel is hidden, you
can use the Backdrop toggle button in the Compositor’s header.

Also, you can get more space by middle-clicking in the Compositor and dragging
the entire node network around, or by using your scroll wheel to zoom in and out
on the nodes. Table 18-1 shows most of the frequently used mouse actions in the
Node Editor.

CHAPTER 18 Compositing Images and Video 547

Identifying Parts of a Node

At the top of each node is a pair of icons: the triangle on the left and a circular
icon on the right. Following is a description of what each button (shown in
Figure 18-9) does:

 » Triangle: Expands and collapses the node, essentially hiding the information
in it from view. If the node is your current active node, you can still see its
contents in the Item tab of the Compositor’s Sidebar. It’s in the panel that’s
appropriately named Properties. Figure 18-9 is showing this for an RGB
Curves node.

 » Sphere: View window expand/collapse. This icon is available only on nodes
that have an image window, such as a Render Layers node, any image node,
or a texture node.

TABLE 18-1	 Commonly Used Mouse Actions in the Compositor

Mouse Action Description

Left-click Select a node. Click and drag to move the node around.

Shift+left-click Select multiple nodes.

Left-click and drag in
empty space

Box-select nodes.

Left-click (on a socket) Attach or detach a noodle to/from the socket you click on. Click and drag to the
socket you want to connect to.

Left-click+drag the left or
right side of a node

Resize the node.

Alt+left-click and drag a
node

Disconnect a node from the network.

Shift+Ctrl+left-click a
node

Connect the active Viewer node to the output of the clicked node. If there is no
Viewer node, one is automatically created. Continuous Shift+Ctrl+left-clicks iter-
ate through the multiple outputs of the node.

Middle-click Pan compositor work area.

Scroll wheel Zoom compositor work area.

548 PART 4 Sharing Your Work with the World

Navigating the Compositor

For the most part, editing nodes in Blender conforms to the same user interface
behavior that’s in the rest of the program. You select nodes by left-clicking, you
can get a context menu by right-clicking, and you can delete selected multiple
nodes by pressing X or Delete. Of course, a few differences pertain specifically to
the Compositor, and Table 18-2 shows the most common ones.

FIGURE 18-9:
Each node has

icons at the top

that control how

you see it in the

Compositor. Even

when collapsed,
the contents of a

node can still be
seen and

modified from
the Compositor’s

Sidebar.

TABLE 18-2	 Commonly Used Hotkeys in the Compositor

Hotkey Menu Access Description

Shift+A Add Opens toolbox menu.

G Node ➪ Move Grabs a node and moves it.

B Select ➪ Box Select Box-select.

X Node ➪ Delete Deletes node(s).

Shift+D Node ➪ Duplicate Duplicates node(s).

Ctrl+G Node ➪ Make Group Creates a group out of the selected nodes. (See the next section.)

Alt+G Node ➪ Ungroup Ungroups the selected group. (See the next section.)

Tab Node ➪ Edit Group Expands the node group so you can edit individual nodes within it.
(See the next section.)

M Node ➪ Toggle Node Mute Toggles the selected nodes between being bypassed (muted) within
the node network, or enabled.

H Node ➪ Hide Toggles the selected nodes between expanded and collapsed views.

Ctrl+H Node ➪ Toggle Hidden
Node Sockets

Toggles the visibility of unconnected sockets on a node. Handy for
cleaning up your node network so it’s easier to read.

CHAPTER 18 Compositing Images and Video 549

When connecting nodes, pay attention to the colors of the sockets. The sockets on
each node come in one of three different colors, and each one has a specific mean-

ing for the type of information either sent or expected from the node. The colors
and their meanings are as follows:

 » Yellow: Color information. Specifically, this socket relates to color in the
output image, across the entire red/green/blue/alpha (RGBA) scale. Color
information is the primary type of data that should go to output nodes.

 » Gray: Numeric values. Whereas the yellow sockets technically get four values
for each pixel in the image — one for each red, green, blue, and alpha — this
socket gets or receives a single value for each pixel. You can visualize these

values as a grayscale image. These sockets are used mostly for masks. For

example, the level of transparency in an image, or its alpha channel, can be
represented by a grayscale image, with white for opaque and black for
transparent (and gray for semi-transparent).

 » Blue: Vector data. These sockets are pretty special. They send and receive

information that pertains to the 3D data in the scene, such as speed, UV
coordinates, and normals. Visualizing these values in a two-dimensional image
is pretty difficult; it usually ends up looking like something seen through the
eyes of the alien in Predator.

Adding nodes to your compositing network

Earlier in this section, you saw that you could click and drag a node’s sockets to
connect and disconnect the noodles between them. What if you wanted to add a
node along the noodle between two nodes that are already connected? Sure, you
could take the time to disconnect and reconnect the noodles as you place them,
but there’s a faster way! If you have a node that has sockets along both its left and
right sides, you can add it to your node network in just one step.

Left-click and drag your node so you’re moving it around. Notice that when you
get it near a noodle, that noodle becomes highlighted and turns bright white. If
you let go of the node over one of those noodles, the node automatically gets con-

nected on both the left and right side. Not only that, but if your nodes are all
crowded together, Blender also automatically shuffles your node network around
to make space for your freshly added node, and nothing overlaps anything else.

When working with nodes, it’s a good idea to have the network flow from the left
to the right. Wherever possible, you want to avoid creating situations where you
feed a node’s output back to one of the nodes that gives it input. This feedback
loop is called a cyclic connection. If you’ve ever heard the painfully loud feedback
noise that happens when you place a microphone too close to a speaker, you have
an idea of why a cyclic connection is a bad idea.

550 PART 4 Sharing Your Work with the World

Grouping nodes together

As Table 18-2 shows, you can also group nodes together. Think of it like Collections,
but for nodes. The ability to make a group of nodes is actually one of the really pow-

erful features of all Blender’s node editors, regardless of whether you’re using the
Compositor, Shader Editor, or Texture Editor. You can box-select a complex section
of your node network and choose Node ➪ Make Group (or press Ctrl+G) to quickly
make a group out of that section. Grouping nodes has a few really nice benefits.
First of all, grouping can simplify the look of your node network so that it’s not a
huge mess of noodles (spaghetti!). More than simplification, though, node groups
are a great organizational tool. Because you can name groups like any other node,
you can group sections of your network that serve a specific purpose. For example,
you can have a blurry background group and a color-corrected character group.

But wait, there’s more! (Do I sound like a car salesman yet?) When you create a
group, it’s added automatically to the Group menu when you go to add a new node
(Add ➪ Group). To understand the benefit of being able to add groups, imagine
that you created a really cool network that gives foreground elements a totally
sweet glow effect. If you make a group out of that network, you can now instantly
apply that glow to other parts of your scene or scenes in other .blend files. Go
ahead: Try it and tell me that’s not cool — you can’t do it!

Discovering the Nodes Available to You

Blender has quite an extensive list of nodes that you can add to your compositing
network. In fact, it seems like with every release of Blender, more and more
incredible node types are added to the compositor. Many nodes have a Fac, or fac-

tor, value that you can usually either set with a value from another node or explic-

itly set by typing. Values less than one make the node have less influence, whereas
values greater than one make the node have more influence than usual over the
image. The following list describes each of the node categories available to you in
the Compositor (for a more detailed description of each node, see this book’s sup-

plemental website, blenderbasics.com):

 » Input: The input nodes are one of the two most important node types in the

Compositor. If your node network doesn’t have any inputs, you don’t have
anything to composite. The types of inputs include images, masks, colors,
textures, and control values.

 » Output: I mentioned that Input nodes are one of the two most important

node types in Blender. As you may have guessed, the Output nodes are the
other important node types, for a similar reason. If you don’t have an output
node, Blender doesn’t know what to save when it renders. The two most-used

http://www.blenderbasics.com

CHAPTER 18 Compositing Images and Video 551

output nodes are the Composite node and the Viewer node, but the File
Output node is also quite handy (see Chapter 16).

 » Color: The color nodes have an enormous influence over the look of the final
output. These nodes directly affect how colors appear, mix, and balance in an
image. And because an image is basically just a bunch of colors arranged in a
specific pattern, you can understand why these nodes have so much control.

 » Converter: These handy little utility nodes have a variety of purposes,
including converting one set of data to another and ripping apart or recom-

bining elements from a rendered image. The ColorRamp and ID Mask nodes
in particular get used quite a bit. The ColorRamp node is great for helping
visualize or re-visualize numerical values on a scale.

 » Filter: Filter nodes can drastically change the look of an image and are

probably the Number One way to fake any effect in an image. These nodes
actually process the pixels in an image and can do things like put thick black
lines around an object, give the image a variety of customized blurs, or make
bright parts of the image glow.

 » Vector: Vector nodes use 3D data from your scene to influence the look of
your final 2D image. The usage of these nodes tends to be a bit advanced, but
they allow you to do things like change the lighting in a scene or even change

the speed that objects move through the scene . . . all without re-rendering! If
you render to an image format that understands render passes, like the very
cool OpenEXR format (more on this topic in the next section), and you include
vector and normal passes, these nodes can be a huge timesaver.

 » Matte: The matte nodes are specifically tailored for using color information
from an image as a way of isolating certain parts of it. Matting is referred to as

keying because you pick the main color, or key color, to represent transpar-

ency. Keying is the fundamental basis for those cool bluescreen or greenscreen

effects used in movies. The filmmaker shoots the action over a blue or green
screen (blue is used for analog film, whereas green is typically used for digital
footage), and a compositor removes the blue or green and replaces it with
other footage or something built in 3D. This submenu is also where you find
the Cryptomatte node as well as a few other nodes that are specific to
masking, rather than keying.

 » Distort: The distort nodes typically do general-purpose image manipulation

operations like Translate, Rotate, Scale, Flip, or Crop.

 » Group: When you create a node group (Node ➪  Make Group), that group is
placed in this menu. When you group a set of nodes, you instantly have the
ability to reuse that group in other parts of your compositing node network.
Also, grouping gives you the ability to share node networks between .blend

files. When you append or link a node group from another file, it shows up in
this menu. There’s more on grouping earlier in this chapter in the section

“Grouping nodes together.”

552 PART 4 Sharing Your Work with the World

 » Layout: The choices available in the Layout submenu are difficult to classify as
nodes in the traditional sense. It’s really best to think of them as tools for
organizing your node network and making it easy to understand what’s going

on in a complex set of noodles — especially if you’re coming back to a file you
haven’t opened in a few days (or months).

Rendering from the Compositor

If you’re using the Compositor, you already know all the basic steps for getting a
rendered image out of it. Of course, if you skipped straight to this section, here’s
the quick version: Make sure that the Compositing check box in the Post Process-

ing panel of Output Properties is enabled.

That said, you need to know one other thing about rendering from the Composi-
tor. Say that you’re working on a larger production and want to save your render
passes to an external file format so that either you or another compositor can
work on it later without re-rendering the whole scene. You’d have to save your
renders to a file format that understands view layers and render passes. That for-

mat is the venerable open source OpenEXR file format, developed and gifted to the
world by the cool people at Industrial Light & Magic.

Now, I know what you’re thinking: “Using this format is as easy as setting up my
view layers and then choosing OpenEXR from the menu in the Output panel of
Output Properties.” You’re actually two-thirds correct. You do set up your view
layers and you do go to the Output panel of Output Properties. However, choosing
OpenEXR saves only the final composite output (not the layers or passes) in an
OpenEXR file (extension .exr). In order to get layers and passes, you should
instead choose OpenEXR MultiLayer. With this format, you get an OpenEXR file
that has all the layer and pass information stored with it.

Pay close attention to your hard drive space when you choose to render to OpenEXR
with all your layers and passes embedded. Keeping all your render layers and
passes is a great way to tweak and make adjustments after rendering. However, the
file size for each individual .exr file can be huge. Whereas a high definition (HD)
frame in PNG format may be only a couple hundred kilobytes, an OpenEXR file on
the same single frame with all the passes enabled may be well over 100 megabytes —
yes, megabytes. And that’s just for one HD image. If your animation has a length in
minutes, that 100 megabytes per frame starts taking up space quickly, even more
so if you’re rendering in higher resolution images like 4k. So make sure that you do
test saves to get a good benchmark for the file size and see that you have enough
hard drive space to store all those frames.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 553

Chapter 19

Mixing Video and 3D
with Motion Tracking

O
ne of the most exciting features in Blender is an integrated motion track-
ing system. In motion tracking, software analyzes video footage and tracks
various features in the footage in either two-dimensional or three-

dimensional space. With properly tracked footage, an artist can add all kinds of
exciting visual effects. Say that you have some video footage of a car driving away
from you. With a good motion track (that you can create from right within
Blender), you could do almost anything with that footage. It could be as simple as
blurring out that car’s license plate or as wild and complex as adding rocket boost-
ers to the car and having it cruise into the sunset through a dystopian wasteland
populated by ravenous man-eating cacti. Anything you can do in Blender can be
added to that footage!

So much of the visual effects process relies on good motion tracking. Chapter 18
covered a lot of the things you can do with Blender Compositor, but most of its
focus was using the Compositor on rendered frames that you generate right from
within Blender. If you’re interested in integrating your 3D work with live video
footage, then you’re going to want to do motion tracking on that video and use it
to correctly position and orient the camera in your 3D scene. With your camera
correctly set up in 3D space around a reference wall or ground of some sort, you
have enough information to start mixing your 3D assets with that video.

IN THIS CHAPTER

 » Understanding the best kind of video

to use for motion tracking

 » Familiarizing yourself with Blender’s

work environment for tracking

 » Creating a basic track and integrating

it with your 3D scene

554 PART 4 Sharing Your Work with the World

Making Your Life Easier by Starting
with Good Video

Before you jump into Blender, you should take a moment and consider your input.
Getting good tracking and an accurate camera solve relies heavily on the quality of
your source material. There are a few things in source footage that can give any
motion tracking software a hard time. Knowing these things in advance can help
you avoid them so you’re more likely to get a good tracking result. In the live film
and video world this is known as “shooting for the edit” or “shooting for post” (as
opposed to just fixing it in post). Post is short for post-production, the process of
modifying or enhancing footage after it’s been shot.

When you capture footage that you intend on using for motion tracking, these are
the things you’re looking for in good source material:

 » Knowledge of the camera

 » Good, stable lighting

 » “Clean” frames

 » Physical attributes of the scene

The next sections in this chapter go more in depth into each of these aspects of
good source material.

Knowing your camera

Conceptually speaking, a camera is a pretty simple machine. Light bounces off of
objects and enters through an aperture and strikes with some kind of photosensi-
tive material that captures that light. And unless you’re shooting with a pinhole
camera, there’s also some kind of lens in front of the aperture that’s used to focus
the light on the material used to capture it. In older film cameras, that material
would be an actual piece of light-sensitive film. In modern digital cameras, there’s
a sensor that collects that light. Figure 19-1 shows a simple illustration that helps
visualize the basics of how a camera works.

But why do you need to know this? Well, just like changing the settings on Blender’s
scene camera can affect the look of your renders, a physical camera works in a sim-
ilar way. Different lenses can distort your captured footage. Differently sized sen-
sors capture light with varying levels of quality and detail. Some even impart their
own little bits of distortion on the captured image. If you know this basic informa-
tion about the camera that’s used to shoot your footage, then your motion tracking
software can compensate for it and give you more accurate results. If you don’t
know this information, then it becomes much more difficult to get good results.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 555

In general, you want to shoot your video footage with the highest quality camera
that you have access to. The cameras on modern mobile phones are pretty good,
but many of them incorporate a lot of cheats to try and make the finished image
look better than it really may have been. If you can shoot with a dedicated video
camera or a high quality digital SLR (an abbreviation for single lens reflex) camera,
that’s ideal. However, if all you have is a mobile phone, you can still get decent
results if you know the specifications on that camera.

In particular, these are the specifications that matter most:

 » Sensor size: Without the photosensor, the camera doesn’t capture any images

at all. The size of that sensor has a direct correlation with the quality of those
images. Typically speaking, the larger the sensor, the better the captured

image. If you can get the exact dimensions of that sensor (typically measured

diagonally in millimeters or inches), then your motion tracking software will

have a better sense of any distortions that the sensor may have.

 » Pixel aspect: Not all pixels are square. Especially in older cameras, video footage

could be captured in rectangular pixels to save space in storage and the camera’s

internal memory. If you happen to shoot footage with one of these cameras, it’s

extremely helpful to know how much that camera stretches its pixels.

 » Lens focal length: Just about every camera used for shooting video has a lens.

Lenses, by definition, bend light. So even though cameras use them to focus
light on the sensor, each lens contributes a bit of distortion to the final captured
image. However, most lenses have a mathematically defined shape, so if you
know the dimensions of the lens (typically measured in millimeters), the

tracking software can compensate for that distortion.

FIGURE 19-1:
A camera

captures light

bouncing off the
environment with

a lens and

focuses that

light on a

photosensor.

556 PART 4 Sharing Your Work with the World

Now, unfortunately, it’s nearly impossible to know these specifications of a cam-
era by simply looking at it or the footage it captures. Sometimes, the information
is tagged to the footage as metadata that you can inspect, but you don’t always get
footage that has that. User manuals sometimes have these kinds of technical
specifications, but these days not all devices come with a printed manual (or, as is
frequently my case, those manuals get lost or accidentally thrown away).

Fortunately, we live in a future filled with people who are both inquisitive and
interested in sharing what they learn. If you know the model number of your cam-
era or phone, chances are good that someone has investigated that device and
found all that information for you. A simple Internet search or two can usually
find you a table with all the information you need on your camera. For example, if
you know the manufacturer of the sensor in your camera, then Wikipedia has
tables that give you all the technical specifications for that sensor. Get that infor-
mation and record it somewhere so you can use it when doing your motion track-
ing. If you have video that was shot with multiple different cameras, then you may
want to tag each bit of footage, so you know the kind of camera that captured it.

Keeping your lighting consistent

Images shot with a camera are just the light that was captured at that moment in
time. This means that the quality of your light is vitally important to the quality
of your image. Practically speaking, there are a few things you want to do when
shooting video for motion tracking:

 » Have good lighting. This guideline sounds a bit nebulous. What is “good

lighting” anyway? Fortunately, if you’ve worked through Chapter 10 of this
book, many of the rules for lighting a digital scene still hold true for lighting a

scene in meatspace. Above all, you want to be able to clearly see the subject

matter in your scene. Furthermore, it’s best to avoid dark scenes. Physical

cameras often have a hard time capturing images in low light scenarios, and

the resulting footage is often grainy and noisy. Often, if you’re shooting

footage that you know will be motion tracked and composited, your best

course of action is to shoot the scene well-lit and then make everything darker

when compositing. That’s how “fixing it in post” is supposed to work.

 » Avoid auto-aperture. To make shooting video easier for people, most

cameras have an auto-aperture feature that automatically resizes the

aperture of the camera to let in more or less light on the fly while shooting.
Though an auto-aperture feature helps to try and keep the captured image at

an “ideal” brightness, that same feature can wreak havoc on a motion tracker.

Motion trackers rely on pixels in captured images staying relatively consistent,

or at least only gradually changing over time. By having the camera constantly

adjusting its aperture, that consistency is lost and when you’re compositing,

CHAPTER 19 Mixing Video and 3D with Motion Tracking 557

it’s much more difficult to match the lighting of the scene. So if you’re shooting
video for motion tracking and compositing, it’s best to disable the auto-

aperture feature of your camera. If you can’t disable it, my recommendation

would be to find another camera where you can.

 » Have consistent lighting. This tip is kind of a combination of the two

preceding ones. Ideally, you want the lighting in your scene to be stable. If you

have a flickering light in the scene, that can cause a lot of problems for getting
a good track (and even worse if you happen to have auto-aperture enabled).

Of course, flickering lights are common in a lot of dramatic lighting scenarios,
so it may be unavoidable. But if you can, it’s best to try to add that flickering
when compositing and keep clean, consistent light when shooting.

Having images in good focus

Motion trackers work by marking groups of pixels in an image, called features, and
tracking where those features move from one frame of video to the next. If your
source footage is blurry, then those features are fuzzed out and much more diffi-
cult to track from one frame to another.

It’s more than just focus, though. Any blurring can be problematic for a motion
tracker. That includes interlacing, motion blur, and depth of field effects. For that
reason, you should follow these tips when shooting footage that you intend to
motion track:

 » Use progressive or deinterlaced video. Interlacing is an effect that’s most
frequently found in older video cameras. These cameras would capture lower

resolution images at faster frame rates and assemble individual frames by

interleaving alternating rows of pixels from each captured image. Although a

clever way for camera manufacturers to cut corners, interlacing makes it

difficult to do motion tracking. Figure 19-2 shows a close-up image of what
interlaced footage looks like. Ideally, you can shoot your footage with progres-

sive frames or full frames and avoid interlacing entirely. If not, then you should

run your video footage through a deinterlacer before trying to do motion

tracking on it.

 » Disable auto-focus. Just like the auto-aperture feature covered in the

preceding section, most cameras have an auto-focus feature to try and help

people shoot video that’s always in focus. Unfortunately, if you have a scene

focused long and a character walks in front of the camera in the foreground,

that person’s presence could trigger the auto-focus feature and totally blur

out any pixels you’re tracking elsewhere in the image (it also just looks bad).

As a rule, disable auto-focus on any camera that you’re using to shoot video

you intend on tracking.

558 PART 4 Sharing Your Work with the World

 » Avoid motion blur and depth of field. Motion blur and depth of field are
natural parts of good dramatic shots, and taking out these in-camera effects can
feel like building a doghouse with only a hammer. As cool as they are though,

they both add blurring to a shot and, therefore, make motion tracking that much

more difficult. So when you shoot for tracking, you want to reduce these effects
as much as possible. On the upside, when you get clean tracking data, you

automatically get both depth and movement information for your scene. With

some clever use of this tracking data and compositing, you can actually add depth

of field and motion blur to your captured footage. The best of both worlds!

Understanding the scene

Most of the time, when you’re motion tracking video you’re doing so with the
intent of adding 3D elements to that footage. You want to add something to the
scene that wasn’t there when it was shot. Because you’re adding something to
that world, it makes sense to know its physical attributes. If you have video foot-
age of a table and you want to put a digital wine glass on it, it’s helpful to know
the actual physical dimensions of that table. That way, if you need to make a digi-
tal proxy for that table, you can model it to its actual size and make your life as a
compositor easier.

In addition to the physical size relationships of objects in your captured footage,
you should also think about capturing the light in the scene. At the most basic,
take note of the locations of the major light sources. If the footage is shot out-
doors, where is the sun? If the footage is shot indoors, how many lights are in the
scene and where are they located? Understanding this will help you light your 3D
scene more accurately so shadows on your digital objects fall the same as they do
in the video.

FIGURE 19-2:
An interlaced

frame is

assembled by

interleaving

neighboring

frames in

captured footage.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 559

If you’re really ambitious, you can actually capture the light of the scene with a
high dynamic range image (HDRI). The process for capturing an HDRI reference
is beyond the scope of this book, but it typically involves taking a few racked
exposures of the scene either as a panorama or on a chrome ball and tone-mapping
those images. It takes some work to do, but the benefit of this approach is that you
capture the actual ambient light of the scene, and you can light your 3D stand-ins
with the most accurate lighting possible.

Your best course of action is to record everything you can about the scene. It’s very
common practice to have a “shot” journal where you log every detail you can,
including camera details, the physical distance between objects in the scene, time
of day, and so on. If you write it down, you have it available for use when you start
motion tracking the footage in Blender.

Getting Familiar with the Motion
Tracking Workspace

Just as with 2D animation and video editing (see Chapters 15 and 17, respectively),
Blender has a workspace specifically tailored for motion tracking; conveniently,
it’s called Motion Tracking, but it doesn’t show as one of the tabs you can access
when you start a new General Blender session with File ➪ New ➪ General. You could
add it by clicking on the Plus (+) tab at the end of the row of workspace tabs, but
there’s a better way. Also like with 2D animation and video editing, there’s a spe-
cific Blender session template that you can use. The VFX (short for visual effects)
Blender session template is your best choice for a starting point when doing
motion tracking. You can get to it by starting a new Blender session by choosing
File ➪ New ➪ VFX. When you start a Blender session in this way, your Blender win-
dow should look like what’s shown in Figure 19-3.

When you start a VFX session, Blender puts you in the Motion Tracking workspace
as your starting point. You also get three other workspace tabs along the top of
your Blender window. If you’ve worked in any of the other templates (particularly
the General or 2D Animation ones), then the Compositing and Rendering work-
spaces should be familiar to you. If you click on the Masking workspace, you get a
kind of modified variant of the Motion Tracking workspace that’s specifically
focused to building masks after you’ve already gone through the process of track-
ing. The bulk of this chapter is devoted to working in the Motion Tracking
workspace.

560 PART 4 Sharing Your Work with the World

In the Motion Tracking workspace (shown back in Figure 19-3), the right side of
your Blender window looks just about like most other workspaces: an Outliner and
a Properties editor. Everything to the left of those editors, however, is different
from most of the other workspaces. Sure, like the Animation workspace (covered
in Chapter 11), there’s a Timeline at the bottom that’s showing only its header.
There’s also an empty 3D Viewport in the upper right, but that editor is of limited
use to you until you’ve gotten to tracking.

The bulk of your Blender window is actually populated with different views of the
Movie Clip Editor. Kind of like Blender’s Sequencer (see Chapter 17), the Movie
Clip Editor has multiple possible viewing modes. The main difference between the
Sequencer and the Movie Clip Editor is in the kind of data they’re meant to work
on. Whereas the Sequencer is designed to work with and reorder multiple video
sequences on the same timeline, the Movie Clip Editor is meant to focus on just
one video file (or one portion of one video file) at a time.

The largest area in the Motion Tracking workspace is dominated by a Movie Clip
Editor in its Clip viewing mode. This area is where you do the bulk of your tracking
work (covered later in this chapter). The other two Movie Clip Editors are primar-
ily for visualizing your tracking data. The upper Movie Clip Editor uses the Dope-
sheet display type, whereas the bottom Movie Clip Editor shows the Graph display
type. When you become more advanced at tracking, you can use these editors to do
control tweaking of your track. For most situations, though, your focus is in the
big one in Clip viewing mode.

FIGURE 19-3:
Start your motion

tracking session

with the VFX

workspace

template.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 561

Tracking Movement in Blender

As with so many things, the best way to understand how to do motion tracking is
to actually go through the process yourself. Furthermore, it’s not really helpful to
study the Movie Clip Editor without first having some footage loaded in it. Other-
wise, it’s a stark and empty place that doesn’t seem all that useful.

Your first step, as already covered in the first section of this chapter, is to capture
some video that you intend to use for motion tracking. If you’re just starting out,
you can probably make do with the camera on a mobile phone. Of course, you’ll
get better results with a better camera.

If you don’t have access to a camera, don’t give up! There are abundant resources
on the web. If you need video footage to practice motion tracking, there are quite a
few great websites that offer free video footage under a Creative Commons license.
A number of these sites even include basic information about the camera and lens
that was used to capture the footage. In a pinch, you can even look on the Internet
Archive (archive.org) to find something to work with. Most of the time, though,
you can get high quality footage to work with if you do a search for “creative
commons video footage.”

Wherever you get your video footage, you typically use the following steps each
time you load a video file to get tracked:

1. In the main Movie Clip Editor of the Motion Tracking workspace, go to its

header menu and choose Clip ➪  Open Clip.

Blender provides you with a File Browser that you can use to load the video file
or image sequence you want for tracking. When you have your file loaded, the
Movie Clip Editor shows the first frame of your video, and the Toolbar region of
the Movie Clip Editor gets a lot more interesting. Figure 19-4 shows the Movie
Clip Editor with a video file loaded.

2. In the Track tab of the Movie Clip Editor’s Toolbar, click the Set Scene

Frames button.

Clicking this button sets your .blend file’s frame range to match the length of
your video sequence. Of course, if you’re interested only in tracking a specific
segment of that sequence, you can adjust your frame range to taste from the

Output tab of the Properties editor.

At this point it’s worth mentioning that you often get your best results if the

length of the sequence you’re tracking is relatively short. Although I’m sure it’s

possible to motion track all 30 minutes of your brother’s wedding, it will be
much better for your time and sanity if you just focus on the part of the video

that you actually want to add visual effects to. Typically, a single visual effects
shot doesn’t last more than a few seconds.

http://archive.org/

562 PART 4 Sharing Your Work with the World

3. From the Output tab of the Properties editor, set your scene’s frame rate
to match that of your video sequence.

This step isn’t critically necessary for tracking, but if you want Blender to play

back your footage at the same rate that it was captured, it’s best to perform

this step. Blender’s default frame rate is 24 fps (frames per second). Although
24 fps is a fairly common setting you can choose on consumer cameras, most
default to 25 or 30 fps.

4. Back in the Track tab of the Movie Clip Editor’s Toolbar, click the Prefetch

button in the Clip panel.

This step preloads into Blender as many frames of your video sequence as

your computer’s RAM will allow. You can see the amount of frames that

Blender preloads by looking at the bottom of the Movie Clip Editor. There

should be a semitransparent blue bar there after the Prefetch process

completes. If that bar goes all the way across the bottom of your image, then

the entirety of your frame range has been prefetched. If the bar goes only

halfway across, then you only have enough RAM to store half the length of

your frame range.

With the frames of your video sequence preloaded, they’re already in memory

and Blender has an easier time tracking data on those frames. Otherwise, each

frame has to be loaded on the fly and, depending on the speed of your hard
drive, that process could be quite a bit slower.

You’ve got your video sequence loaded into the Movie Clip Editor. Now you’re
ready to start the process of tracking that footage.

FIGURE 19-4:
With a video

sequence loaded,

the Movie Clip

Editor has a lot

more that you

can do.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 563

If you already know that the footage you’re loading is blurry or has fast movement
(and perhaps some motion blur), then you may want to consider adjusting the
values in the Tracking Settings panel within the Track tab of the Movie Clip Edi-
tor’s Toolbar. The details of this panel are a bit out of scope for this book, but
what’s really helpful is the fact that Blender ships with some handy presets for
specific kinds of footage. Click the presets button at the top of the Tracking Set-
tings panel and you have the following options:

 » Blurry Footage

 » Default

 » Fast Motion

 » Planar

Most of these settings are self-explanatory. The only one that requires a bit more
coverage is the Planar preset. Planar tracking is a specific kind of tracking where
the features that you’re tracking in your footage are all on the same plane. If you
know that this is the case, then the motion tracking can make a few assumptions
and get you accurate results faster. Typically speaking, though, I suggest you start
out with the Default preset and see how good your results are with that first.

Adding markers and tracking

The workflow for tracking your footage after it’s loaded in Blender is pretty
straightforward:

1. Add one or more tracking markers to a feature in a frame in your sequence.

A tracking marker is a little feature that you add to your sequence in the Movie

Clip Editor to tag or mark a handful of pixels as a feature in the image. A good,

trackable feature in your image is usually a set of pixels that are consistently

lighter or darker than their neighboring pixels. Corners also work relatively

well. One thing you should be sure of is that you’re tracking a physical feature

in the shot rather than the intersection of features with different depths.

2. Track that feature.

This step gets covered in detail later in the chapter (see the section titled

“Tracking your footage”).

3. Evaluate the results of the track and either refine the marker or remove
the track if it’s inaccurate.

Because tracking data is generated automatically, it isn’t always 100 percent
accurate. If your sequence gets blurry on a frame or two, a marker may lose

track of its feature, and you need to reorient that marker or get rid of it

altogether if you find that feature becomes difficult to follow.

564 PART 4 Sharing Your Work with the World

4. If the track is accurate, lock the track.

You tend to overlap multiple tracking sessions, so if you find a tracker you like,
it’s a good idea to lock that track so it doesn’t get modified on subsequent
sessions.

Those are the basic steps, but of course, each step has a bit more detail baked into
it. The next few sections cover the preceding steps in more detail.

Manually adding markers

Before manually adding tracking markers to your footage, you need to pick a
frame in your sequence as a starting point for tracking. Generally speaking, the
first and last frames of your sequence are smart choices. If you have a complicated
camera move in the sequence or it’s especially long, then you may also want to
choose a frame or two in the middle of your sequence.

Regardless of the frame you choose for adding features, here’s the thing to
remember: Always track your footage after you add your markers for a given frame.
Even a simple sequence can involve a large number of markers, and you’re likely
to do multiple tracks starting at different frames. So it’s in your best interest to
have them track before you change frames. Otherwise, you run the risk of not
remembering which markers have tracking data and which ones don’t.

Assume that you’ve chosen the first frame in your sequence to add tracking mark-
ers. The process for adding a tracking marker goes like this:

1. In the Track tab of the Movie Clip Editor’s Toolbar, click the Add button in

the Marker panel.

It won’t immediately be apparent that you’ve done anything. That’s because

Blender is expecting you to tell it where to add the tracking marker.

2. Left-click on a feature in your frame.

Remember that a good feature is a distinctive set of pixels in the frame you’re

working on. It could be that those pixels form a distinctive shape, but more

frequently, it’s a little grouping of pixels that are lighter or darker than their

neighbors.

When you left-click on your frame in the Movie Clip Editor, Blender adds a track-
ing marker that looks like the one shown in Figure 19-5. It’s a simple box with a
set of control points at its corners and an additional controller handle extending
from its center.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 565

With your marker added in the Movie Clip Editor, you can edit its position, rota-
tion, and shape to refine how it covers the feature in your footage. Left-click and
drag a corner of the marker box to move that corner around. Left-click and drag
the end of the controller handle to simultaneously modify the tracking marker’s
scale and rotation.

As you refine the position of your tracking marker, it’s helpful to have the Movie
Clip Editor’s Sidebar (on the right side of the Movie Clip Editor) on its Track tab.
The Track panel in that tab shows an up-close view of your active tracking marker
with a little yellow crosshairs at the center so you can place your marker with the
utmost accuracy. Figure 19-6 shows the Track tab of the Movie Clip Editor’s
Sidebar.

As you work on a frame of footage to track, you want to find multiple features in
that frame to add markers to. And if you’re doing a 3D track, it’s important to
place markers at varying depths from the camera. It’s also especially important to
try to add markers to features that are visible for your entire video sequence. If
you mark a feature close to the edge of the frame, there’s a good chance of that
marker losing the feature when it goes off-camera. That doesn’t mean you
shouldn’t track those features. It just means that you should also track features
that have more persistence throughout your sequence.

When adding a lot of markers to a frame, it can be tedious to continually return to
the Toolbar so you can click the Add button there. Fortunately, there’s a faster
way. Blender automatically places a marker anywhere you Ctrl+left-click on your
frame. Then you can go about refining your new marker as you please.

FIGURE 19-5:
A single tracking

marker in

Blender’s Movie

Clip Editor.

566 PART 4 Sharing Your Work with the World

Automatically placing markers

Even though you know how to manually place a tracking marker in your scene,
you may not have to, if you’re lucky. Blender can analyze a frame of your footage
and find suitable features for you.

Say you’ve put your time cursor on the first frame of your sequence, and you want
Blender to find a feature in that frame for motion tracking. In the Track tab of the
Movie Clip Editor’s Toolbar is a panel labeled Marker. The bottom button in that
panel is labeled Detect Features. Left-click that button and Blender searches the
current frame of your sequence and finds what it thinks would be good candidates
for features to track. For any of those features, Blender automatically places a
tracking marker. Of course, how well this automatic detection works can vary a bit
depending on your source footage. On one shot you may have good results,
whereas on another the detected features may be horrible choices. It requires a bit
of experimentation to test and find what works. After you click the Detect Features
button, your Movie Clip Editor may look like what’s shown in Figure 19-7.

A small word of warning. Although having more markers in your shot means
Blender’s tracker has more data to work with, not all tracked shots need an abun-
dance of markers. Sometimes all you need is five to ten markers to get the job
done. There’s no sense in having your computer work harder than it needs to.

FIGURE 19-6:
From the Track

tab of the Movie

Clip Editor’s

Sidebar you can
get a close-up

view of the area

that your active

marker covers.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 567

Tracking your footage

With markers set on the frame you want to work with, you now get to the actual
step that this chapter is named after: tracking motion in your video sequence. Fol-
low these steps:

1. Select your markers.

You can press the A hotkey to select all unlocked markers in the Movie Clip

Editor.

2. From the header menu of the Movie Clip Editor, choose Track ➪  Track
Forwards.

This step assumes that your markers are on the first frame of your video
sequence, and you want to track the features in the sequence through to the

end. You actually have four options for tracking:

• Track Frame Backwards: Choose this option to track features within your

selected markers a single frame backwards on the Timeline.

• Track Backwards: This operation tracks features in your selected markers

through your footage in reverse. It’s a handy feature if the frame you’re

tracking from is at the end of your sequence.

• Track Forwards: As already covered, this uses the markers to track

features in your footage forward in time until the feature is lost or Blender

reaches the end of your frame range.

• Track Frame Forwards: Choose this option and Blender tracks the

features in your selected markers a single frame forward in time.

FIGURE 19-7:
Have Blender

automatically

detect features in

your footage, and

your frame could

be instantly

covered in

markers.

568 PART 4 Sharing Your Work with the World

For convenience, you have quick access to each of the tracking options from a set
of buttons in the header of either the Graph or Dopesheet display views of the
Movie Clip Editor. I find that because the Movie Clip Editor with the Graph display
view is right below the main Movie Clip Editor in the Motion Tracking workspace,
the buttons are most easily accessed there.

When Blender completes tracking the features under your markers, you should
notice two things. First, the Graph view of the Movie Clip Editor at the bottom of
your Blender window should be populated with a bunch of red and green curves.
These curves are plots of the X- and Y-axis locations of each selected marker.
Even though these curves are not directly editable, the can give you really helpful
information about each marker. If the majority of the markers are showing a sim-
ilar curve profile, and the curves for one marker appear to stray from that stan-
dard, chances are good that marker doesn’t have a good track and it should be
removed from the set.

Likewise, in the main Movie Clip Editor at the center of your Blender window, you
should notice that each marker has what looks like a squiggly red-and-blue worm
growing from it. This “worm” is the tracking path for that marker. The red part
are the upcoming frames, whereas the blue part are the frames that have already
been passed. Just as with the curves in the Graph view of the Movie Clip Editor, if
any of the track paths in main Movie Clip Editor don’t seem to match the same
general movement and shape of the other paths, then it probably has a bad track
and you should remove it from the set.

Another thing to notice is that at the bottom of the Movie Clip Editor, the semi-
transparent blue bar is now two-toned. The bottom half of that bar region is now
yellow, indicating how much of your video sequence has been tracked. Ultimately,
you want the whole bottom bar to be yellow to indicate that every frame in the
sequence has tracking data.

As I’ve mentioned a couple times already, you get the best results when you track
your footage with multiple markers starting in multiple places of your video
sequence. For a quick-and-dirty track that gets you good results on a simple
scene, try this workflow (assuming your video sequence is already loaded in the
Movie Clip Editor):

1. Go to the first frame of your sequence.

2. Use the Detect Feature function on this first frame.

3. Track Forward.

4. Lock your selected tracks (Ctrl+L).

CHAPTER 19 Mixing Video and 3D with Motion Tracking 569

5. Go to the last frame of your sequence.

6. Use the Detect Feature function on this last frame.

7. Track Backwards.

8. Lock your selected tracks (Ctrl+L).

You may need to scrub through your video sequence and check for any bad tracks,
but once you do, you should end up with a Blender window that looks like what’s
shown in Figure 19-8.

Solving camera motion from tracker data

Blender is tracking a bunch of features in your video sequence, but what can you
actually do with that tracking data? How do you translate a bunch of pixels mov-
ing in a sequence of images to locations in a 3D environment? Though we do that
kind of thing all the time with our eyes and our brains, it’s a pretty computation-
ally intense problem. And it’s for that exact reason the next step in the process is
called solving. What you want Blender to do is take all your tracking data and make
a guess at where in space the camera was when shooting that footage. Then, with
that guess, Blender takes the camera in the 3D Viewport and animates it to match.

FIGURE 19-8:
With good

tracking data on

your video

sequence, you

may have all

kinds of “marker

worms” all over

your Movie Clip

Editor.

570 PART 4 Sharing Your Work with the World

It’s worth noting that getting a camera solve is just one example of what you can
do with tracking data. There’s a bunch of other cool things you can do with track-
ing data in the Movie Clip Editor and the Compositor. That said, a solve is a good
way to get tracking data into the 3D Viewport where some of the tools may be
more familiar to you.

In the simplest case, this process is a one-button press in the Movie Clip Editor.
Switch to the Solve tab of the Movie Clip Editor’s Toolbar and you should see
something like Figure 19-9.

Although it’s incredibly tempting to just go off and click the big Solve Camera
Motion button in the Solve tab, don’t do it just yet. There’s a little bit of setup that
you should work through first.

Configuring your camera
Recall that at the beginning of this chapter I say that it’s really valuable to know
the specifications of the camera that was used to capture your motion tracking
shot. This step is where that information gets put to use.

FIGURE 19-9:
The Solve tab of

the Movie Clip

Editor’s Toolbar is

where your 2D
footage meets

your 3D scene.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 571

In the Track tab of the Movie Clip Editor’s Sidebar, expand the Camera and Lens
panels. You should see something like what’s in Figure 19-10. In the Camera tab,
there’s a whole mess of presets available for commonly used cameras. If your
camera is one of these, then all you have to do is select that preset and you’re good
to go. Of course, if you’re camera isn’t on the preset list, you need to manually
enter the correct values for Sensor Width and Pixel Aspect. The Optical Center
values you can typically keep at their defaults if you’re working with HD video
(typical resolution of 1920 x 1080).

Likewise, in the Lens panel, set the correct Focal Length value for the lens that
was used on the camera that shot your footage. If you don’t have this information,
you can keep it at the default values, but know that the resulting camera solve that
Blender produces in the 3D Viewport may not be accurate.

Solving (and re-solving)

Generating, or solving, the camera motion in your 3D Viewport from your tracking
data in the Movie Clip Editor is as simple as clicking the big Solve Camera Motion
button in the Movie Clip Editor’s Sidebar. Left-click that button and the 3D View-
port in the upper right of the Motion Tracking workspace gets filled with Empty
objects, each one corresponding to a tracking marker in the Movie Clip Editor.
Furthermore, if you scrub the Timeline, you can see that the Camera object in the
scene is animated with Blender’s best guess at its location and orientation in
space. The result should appear like what’s in Figure 19-11.

FIGURE 19-10:
Use the Camera

and Lens panels

in the Track tab

of the Movie Clip

Editor’s Sidebar
to set values that

match the device

used to capture

your video

footage.

572 PART 4 Sharing Your Work with the World

Defining scene orientation
You’ve got a camera solve, but often Blender orients the camera in some weird
way relative to the global coordinate system. You need to tell Blender which way
is up. Back on the other side of the Movie Clip Editor, in the Solve tab of its Tool-
bar, have a look at the Orientation panel. To correctly guess which way is up in
your scene, it’s helpful to let Blender’s solver know where the floor is or, if your
shot doesn’t have a convenient floor, maybe where a wall is. With a planar refer-
ence like that, Blender’s solver will be able to more accurately orient the scene
camera so it matches your footage.

Unfortunately, it’s not quite as easy as pointing to a part of your footage and say-
ing, “This is a floor.” I mean, that’s basically what you’re doing, but there are
specific rules regarding what you used to define that floor. It basically comes
down to this:

 » You need to have a successful camera solve already complete.

 » You must pick three (only three, no more and no less) markers that are on the

floor (or wall) in your shot.

 » The markers you pick need to have bundles.

Bundles are tracking data that exist at both Keyframe A and Keyframe B in the
Solve panel. Those keyframes are set to 1 and 30 by default, and they’re indicated
by two green vertical lines at the bottom of the Movie Clip Editor. Basically, you

FIGURE 19-11:
Solving camera

motion puts a lot

of information in

the 3D scene, but

who knows if it’s

right?

CHAPTER 19 Mixing Video and 3D with Motion Tracking 573

need to select three markers on the floor (or a wall) in your shot whose yellow
stripes at the bottom of the Movie Clip Editor cross both of those green lines.

Once you have your three markers chosen, left-click the Floor (or Wall) button in
the Orientation panel of the Solve tab in the Movie Clip Editor’s Toolbar. Now
you’ve given your camera a reference for orientation.

The difficulty, however, is that after you generate a solve and define a floor or
wall, it’s kind of difficult to tell if the results are any good. Frequently, they’re not.
Most often, the floor or wall you define doesn’t quite match up. But how can you
tell? And then, how can you fix it? The answers are in the next section.

Setting up your scene for integrating with
your video footage

You’ve got your video sequence tracked and you’ve been able to successfully gen-
erate camera movement based on that tracking data. But you haven’t visually
verified that the solve that Blender generated was worthwhile. You need a better
frame of reference in the 3D Viewport so you can better see what’s going on. For-
tunately, at the bottom of the Solve tab in the Movie Clip Editor’s Sidebar, there’s
a panel that can help you out.

The Scene Setup panel has two relatively unimposing buttons that can make your
life much more pleasant when motion tracking. In particular, the Setup Tracking
Scene button is the most useful. That button is disabled until you click the Solve
Camera Motion button. But once you’ve generated that camera movement and
populated your 3D scene with Empties corresponding to your tracking markers,
the functionality of this button becomes available.

Click the Setup Tracking Scene button and Blender does a whole bunch of handy
things simultaneously for you:

 » The scene camera gets your footage in the Movie Clip Editor as a background.

 » A couple scene primitives (specifically a plane for a floor and a reference cube)
are added at the origin in the 3D Viewport.

 » A simple node network is added in the Compositor to help you mix the

rendered results from your 3D scene with your video footage.

Of these additions, the most immediately valuable are the first two. By looking at
the reference primitives in relation to your footage as a background for the scene
camera, you can immediately see whether the solve you created is accurate. If it
isn’t, you could try reorienting the cube and plane to try and match, but the better

574 PART 4 Sharing Your Work with the World

approach is to try different markers to get a better reference for a floor or wall in
the scene. Sometimes it takes a few tries, but eventually you end up with those
reference objects matching the orientation of objects in your video sequence. As
shown in Figure 19-12, you might even put in additional 3D objects (like maybe a
certain monkey) to get a better sense of the scene orientation as you scrub the
Timeline.

It’s worth mentioning that the camera background image is a different kind of
reference than the reference and background images covered in Chapter 6. Instead
of being an actual object in your 3D scene, a camera background image is visible
only when you’re looking at your scene through the scene camera. You can set it
manually by selecting your camera and going to Object Data Properties and
expanding the Background Images panel. If you click the Add Image button in that
panel, you get a sub-panel much like the one you get with Image Empties. Just
select the image (or in this case, video) that you want to use and then enable the
Background Images check box. Of course, if you use the Setup Tracking Scene
feature from the Movie Clip Editor, Blender does all this for you.

Once you’ve gotten yourself an acceptable solve from your tracking data, you’re
off to the races! Anything you can make in Blender can now be mixed with your
video sequence. Model your dream car and add it to some video footage of your
house. Build and animate a robotic prehensile tail for your best friend (or for
me . . . I’d love to have a robotic prehensile tail). The skills you pick up from just
about every other chapter in this book can be applied to your motion tracked foot-
age, and you really can create just about anything you can imagine!

FIGURE 19-12:
A simple shot,

tracked and

solved, with

Suzanne added
for good

measure.

CHAPTER 19 Mixing Video and 3D with Motion Tracking 575

Where to Go from Here
Complete books could be written on the topic of the Movie Clip Editor and motion
tracking, so this chapter isn’t a comprehensive guide to everything that can be
done with Blender’s motion tracker, but hopefully it’s given you a fair taste of
what’s possible. There is an incredible video tutorial series produced by Sebastian
Koenig called “Track, Match, Blend” available on the Blender Cloud (http://
cloud.blender.org), the Blender Foundation’s resource for Blender assets and
training. At this point, that specific tutorial is a little dated and it uses an older
version of Blender, but it’s still one of the best resources available. I highly rec-
ommend these tutorials from Sebastian; there’s really no better place to discover
how to take full advantage of Blender’s motion tracking features.

http://cloud.blender.org/
http://cloud.blender.org/

5The Part of Tens

IN THIS PART . . .

Tips for working more effectively

Resources for Blender users

CHAPTER 20 Ten Tips for Working More Effectively in Blender 579

Chapter 20

Ten Tips for Working
More Effectively in
Blender

W
orking in Blender is a ton of fun, but you can adopt a few good work

habits to make the experience even more enjoyable. These good habits

let you work faster without sacrificing the quality of your work. In this
chapter, I detail ten of my best suggestions for working more efficiently and
effectively in Blender.

Use Tooltips and Integrated Search
Blender is a dense program, and users often forget what a button does or they

discover a new menu. If you don’t know what a button in Blender does, hover your
mouse pointer over it. More often than not, a helpful tooltip pops up to concisely

describe what the button does. And even if the tooltip isn’t completely clear, you
have a better idea of what to search for to get help.

And speaking of searching, one of the best features of Blender is the fully inte-

grated search functionality. Using the search hotkey (F3) in a particular editor,

IN THIS CHAPTER

 » Saving time with good work habits

 » Planning and having fun

580 PART 5 The Part of Tens

you can type the name of the feature or tool you’re looking for, and Blender shows
you a list of operations that may match within the context of the editor that you’re
working in. Furthermore, if that operator has a hotkey, that hotkey also shows up

in the search results. As of this writing, you can’t add an operator from the search
results to the Quick Favorites menu, but I’m sure that will be supported in future
releases of Blender.

Take Advantage of the Quick
Favorites Menu

Speaking of the Quick Favorites menu (Q), you should definitely make as much
use of it as possible. If you’re using the default keymap that ships with Blender
2.80, there are a lot fewer keys assigned to operators compared to the default key-

map in previous Blender releases. The Blender developers know that there’s an
extremely broad set of uses for Blender. It would be ridiculous to think that they
could design a keymap to meet everyone’s needs. They expect that you’re going to
custom-tailor Blender to fit your particular uses and workflow.

Even if you’re like me and you default to using the older Blender 2.7x keymap, the
Quick Favorites menu is really handy. After all, the older keymap has an operator

assigned to nearly every key combination available. There’s simply not much
more room for adding more hotkeys. So you can use the Quick Favorites menu to

fill in the gaps and give yourself those extra hotkeys.

See the last section of Chapter 2 for more on setting up your Quick Favorites menu.

That all said, do make an effort to keep your Quick Favorites menu tidy. It shouldn’t
become a dumping ground for every little operator that you think does something

cool or as an excuse to avoid actually learning a hotkey if it already exists.

Remember, it’s the Quick Favorites menu. If you’ve loaded it up with 20 or 30
different operators that you only use every now and again, it’s probably not doing
much to help you work faster.

Look at Models from Different Views
If you work in an environment modeling and animating by using just one 3D
Viewport, you should definitely make it a point to periodically orbit around your
scene and look at it from a bunch of different angles. Double-checking is

CHAPTER 20 Ten Tips for Working More Effectively in Blender 581

particularly important when modeling because it’s very easy to get a model that
looks perfect from the front, but really distorted and goofy-shaped from one side.

Split off another 3D Viewport if you need it or use the numeric keypad hotkeys or
navigation gizmos to quickly do spot checks from different angles. If you’re com-

ing from a background in 3DStudio Max or a CAD application, you may want to use
the Quad View in the 3D window to see multiple views at the same time by choos-

ing View ➪ Area ➪ Toggle Quad View or using the Ctrl+Alt+Q hotkey. If you like pie
menus, the Tilde (~) hotkey opens a fantastic menu for changing the view. The pie

menu approach is especially useful if you’re working on a laptop because in those
cases you might turn off the navigation gizmos to save screen space, and many
laptops don’t have a numeric keypad at the ready. Used at speed, pie menu navi-
gation feels as if you’re flinging the scene in the 3D Viewport around in front
of you.

Referring back to Quad View for a moment: If you’re used to other applications
you might find yourself a bit frustrated with Blender’s Quad View, because each of
the views are either too independent or not independent enough from each other

to suit your tastes. They all share the same draw mode and overlays, but don’t
always focus on the same part or model in your scene. If you want this kind of
behavior, I strongly recommend that you build your own customized “pseudo-
Quad View” workspace that has four separate 3D Viewports arranged how you like.
I even have a simple add-on to lock your 3D Viewports like you get in Quad View.
You can find it on the companion website for this book, www.blenderbasics.com.

Figure 20-1 shows what a custom pseudo-Quad View workspace might look like.

FIGURE 20-1:
A customized

workspace to give

yourself a more

flexible Quad
View than the one

that’s built-in to
the 3D Viewport.

http://www.blenderbasics.com/

582 PART 5 The Part of Tens

Don’t Forget about Add-ons
One of the neat things that’s grown in Blender over the years is a thriving ecosys-

tem of add-ons. Add-ons are a set of trusted Python scripts written to extend

Blender’s capabilities. They can be as small as a little script like the one I men-

tioned in the previous section, or as large as a wizard that generates a landscape

for you. Although many of these scripts ship with Blender, most are disabled by

default because they’re meant to serve a specific purpose that not all Blender
users need. It’s worth your time to go through the Add-ons section of Preferences
(Edit ➪ Preferences) to see what’s available. (Shameless plug: one or two of them
might be ones that I wrote and maintain.)

If you’re just testing out add-ons, you may want to disable the Auto-Save Prefer-

ences option in Preferences. Click on the button in the lower left-hand corner

showing three horizontal lines (sometimes called a “hamburger menu”) and dis-

able the Auto-Save Preferences check box. That way, you don’t find yourself inun-

dated with a whole mess of add-ons you don’t really want to use the next time you
launch Blender. Of course, if you find an add-on that you like, you can click the
now-visible Save Preferences button next to the hamburger menu to ensure it’s
there when you restart.

Lock a Camera to an Animated Character
When animating a character, you frequently can run into a case where you’re try-

ing to animate a secondary detail on the character as he’s moving. For these situ-

ations, Blender has a handy Lock to Object feature. In the Sidebar of the 3D
Viewport, look in the View tab. In the View Lock sub-panel, there’s an object data-

block field labeled Lock to Object. Type the name of an object (or use the object
eyedropper) and the 3D Viewport moves wherever that object goes.

For a somewhat more permanent solution, I sometimes like to create a new cam-

era and parent it to the character. This way, the camera goes anywhere the char-

acter does. I find this approach helpful for facial animation on a moving character.
To lock a camera to your animated character, follow these steps:

1. Add a new camera (Add ➪  Camera) and put it in front of your character’s
face.

Ideally, the camera is aimed at her face.

2. Name the camera something sensible.

For example, if your character is Suzanne and the camera is focused on her
face, you might call it Camera.Suzanne_face.

CHAPTER 20 Ten Tips for Working More Effectively in Blender 583

3. With the camera still selected, add the head bone of your character to
the selection.

If your armature is in Object mode, you might have trouble selecting an
individual bone. Fortunately, because your armature is your last-selected
object, it’s also your active object. You can Ctrl+Tab into Pose mode to select
the bone you want and you won’t lose the camera selection.

4. Parent the camera to the bone (Object ➪  Parent ➪  Bone).

Now, wherever the head goes and whichever direction it turns, the camera is

always looking at your character’s face.

5. Whenever you want to work on the facial animation for your character,
select this camera and switch to its view (View ➪  Cameras ➪  Set Active
Object as Camera).

Name Everything
Every time you add something to your scene in Blender, give it a name that makes

sense. It’s a very disorienting feeling when you open a .blend file that you have
not worked on in a while and you see that your characters are Cube.001, Cube.012,

and Sphere.007, and that really cool skin material you made is called

Material.015.

On small, one-shot projects, ambiguous names may not be so bad, but properly

naming a material makes finding it later that much easier. Proper naming also
makes Blender’s select menu feature (hold Alt and click in your 3D Viewport where
a lot of objects overlap) much more useful.

And on larger projects, good organization is even more valuable. Not only is it

smart to name everything in your .blend file, but it’s also a good idea to have a
good structure for your projects. For most of my projects, I have a separate folder
for the project. Within that folder, I create sub-folders for my libraries of models,
materials, textures, and finished renders. For animations, my renders folder is
broken down even further into each shot.

Do Low-Resolution Test Renders
When you’re finalizing the look of a model, you often have to make a quick change
to the model and render it, or quickly switch your viewport shading to Render
Preview in the 3D Viewport to see what it looks like. If you’re not careful, you

584 PART 5 The Part of Tens

could spend more time waiting for those little test renders than you do actually

working on your model. The Render Preview viewport shading mode helps miti-

gate this, but some projects may require you to use different rendering engines
that don’t have built-in Blender support. And even still, on complex scenes,
people who use a real-time renderer like Eevee could benefit from small test
renders.

When you’re just doing test previews, these tips can reduce the render time:

 » Render at reduced size. Most of the time, when you’re doing a test, you don’t

really have to see what the full-size final image will look like. This generaliza-
tion is especially true if the final render is for print or film, where the final
resolution can be greater than 4,000 pixels wide. Of course, you could
manually enter a smaller size in the Dimensions panel of Output Properties,

but Blender offers a faster way. If you look in Output Properties, you see a
slider under the X and Y resolution values labeled with the percent (%) sign.
Adjust this slider to make Blender render your image at that percentage of the
final size, thereby reducing the render time for your test preview. (Bonus tip: If
you want to render at larger than the render resolution, you can manually

enter a percentage that’s larger than 100%.)

If you’re using the Render Preview viewport shading mode of the 3D Viewport,

you can achieve a similar speed-up by making a specific 3D Viewport for
previewing. You can make that small 3D Viewport either by splitting areas or
by making a new Blender window that just has a 3D Viewport (Shift+click and

drag from any corner of an area). The point is to make that preview 3D
Viewport pretty small. The smaller it is, the faster you’ll get your preview.

 » Render with fewer samples. Whether you’re rendering with Eevee or Cycles,

both renderers are dependent on sampling, or guessing at the final state of
the overall image by taking full samples of different parts of the image.
Collecting those samples takes up computational time, so the fewer samples

that the render engine takes, the faster it comes up with a result. Of course,

there’s a trade-off: Fewer samples also means that the result is less accurate,
so it’s important to strike a good balance. I can’t tell you the absolute best
numbers to use because it can vary a lot from one image to another, and
from one renderer to another. So you’ll have to play with the sampling values
while you work. I’d suggest starting at a value of 10 and tweak it from there.

It’s especially important to play with the sampling values if you’re working in

Cycles. Higher sampling values can dramatically increase your render times.

When rendering in both Cycles and Eevee, you can adjust how the render
engine handles samples from the Sampling panel in Render Properties. Take
advantage of using different values for the Render and Viewport sampling.
That way, your quick tests in the 3D Viewport don’t take as long as your final
renders.

CHAPTER 20 Ten Tips for Working More Effectively in Blender 585

 » Turn off computationally intensive features if you don’t need them.
Features like hair rendering, caustics, and motion blur look great in a final
render, but if you’re just looking at the form of a model, they aren’t necessarily
needed for a test. Just about all the features you want to turn off can be
configured in Render Properties.

 » Take advantage of the Simplify panel. In Render Properties, there’s a little

panel labeled Simplify. When you enable the check box at the top of this
panel, Blender gives you the ability to simplify your scene. The Simplify panel
gives you a quick way to reduce the subdivision levels of all objects in your
scene that have a Subdivision Surface modifier. You also have the ability to
render fewer particles and disable high-resolution smoke if you have a smoke
simulation in your scene. If you’re rendering with Eevee, there are even

controls for simplifying any Grease Pencil strokes you have, if you’re doing 2D

or 2.5D animation with Grease Pencil.

 » Render just the collections you need. If you’re working on just one model in a
scene and only want to do a test render for that model, disable the collections
for other objects in the scene. As long as you have the object and lights in the
scene, your test render will be helpful, accurate, and most important, speedy.

 » Use the Render Region feature. If you’re only interested in doing a test

render on a particular part of your scene, switch to the camera view and use

Render Region by choosing View ➪  View Regions ➪  Render Region (or press
Ctrl+B). Your mouse cursor changes to a large crosshairs and allows you to
draw a box around the part of the shot you’re interested in. When you finish
doing tests, you can take this border off by toggling the Render Region check
box in the Dimensions panel of Render Properties, or you can use the Render
Region operator again (View ➪  View Regions ➪  Render Region, or Ctrl+B) and
draw a box anywhere outside of the camera’s view area.

 » If you’re animating, use preview renders from Eevee or Workbench. With

all its bells and whistles enabled, Cycles is undoubtedly a computationally
expensive render engine. Even with many features disabled, it can take a
while to get all the frames of your animation back. Fortunately, Eevee was
made for accommodating this need. Because most Cycles materials have
Eevee equivalents (and vice versa), you can easily switch your render engine to
Eevee so you can get a sense of your animation’s timing much faster than

rendering with Cycles. In fact, in simple scenes, you might be able to see that
timing without rendering at all. Just switch to Eevee and set your 3D Viewport

to Rendered viewport shading mode. You may be able to play back your
animation right there in real time. If you need even more speed, you can

render your animation with the Workbench engine by putting your 3D
Viewport in Solid viewport shading and choosing View ➪  Viewport Render
Animation. It won’t have the same lighting and materials as your final Cycles
render, but if your focus is on your animated character’s movement and
timing, then proper materials is less of a concern.

586 PART 5 The Part of Tens

As an additional bonus, if you’re testing your animation in real time in the 3D
Viewport, I recommend disabling all overlays in the 3D Viewport before
creating your test render. Click the overlays icon to toggle the visibility of the
extra, non-rendered objects (such as rigs, lights, and the grid plane) in your
scene so that you can get a clear render without bothersome obstructions.

Use Annotations to Plan
Blender’s Annotations feature allows you to write or draw simple lines in 3D
space. It’s actually what Grease Pencil objects started out as. Although this feature
may seem a bit strange at first (especially because you already have Grease Pencil
objects), it’s actually incredibly useful while working. As an individual, you can
use Annotations to quickly sketch out ideas prior to modeling them in Blender. If
you’re working with a group of people, Annotations allow you to include notes in
the 3D Viewport to facilitate collaboration. You can sketch a pose that a character
should go into, or draw an arc that the surface of a model should follow. Then you

can pass those notes back to the original artist. You can even keyframe your anno-

tations along the course of an animated scene (the keys can be controlled from the

Grease Pencil context of the Dope Sheet).

To use Annotations, you can use the Annotate tool from the Toolbar of any editor

that supports it. The default color for Annotation strokes is light blue, but you can

adjust it, as well as other attributes, from the Annotations panel in the View tab of

the 3D Viewport’s Sidebar.

And don’t forget, Annotations aren’t just for the 3D Viewport. They’re available in
quite a few of the other editors in Blender as well.

Ask for Help
Blender is a big program. Huge, in fact. There are people who have dedicated

themselves to just one part of Blender and have never even come close to touching

all the things this wonderful tool can do. So it’s natural if you find yourself getting
overwhelmed. More importantly, having so many specialists in our community

means you will most likely find someone to help with your problem. The Blender
community has always been one of Blender’s most valuable assets, and it remains
one of the best places to go for help.

CHAPTER 20 Ten Tips for Working More Effectively in Blender 587

From the countless video tutorials available on YouTube to user forums and chat

rooms, there’s bound to be someone out there who’s able to help you work through
whatever your current challenge is. Have a look at Chapter 21 for a list of really
helpful resources in the Blender community.

Have Fun, but Take Breaks
Don’t be afraid to just play with Blender. If you ever find yourself wondering
“What does this button do?” just press it and find out. Now, if you’re working on
something important, you should probably save first, but definitely make it a
point to experiment and try things out. By doing so, not only can you figure out
how to use new parts of Blender, you can also find cool ways of using existing
features that might not ever have been intended.

Working in 3D can be incredibly serious fun, but it can also be addictive. Too much
computer time can ultimately hurt the quality of your work. Try to step away from
the computer for a bit to rest your eyes, get some food, stretch your legs, or even

talk to another human being.

CHAPTER 21 Ten Excellent Community Resources 589

Chapter 21

Ten Excellent
Community Resources

T
he true strength of Blender is in its community. It’s strong, organized, pas-

sionate, and perhaps even a little bit crazy. People use Blender for a variety

of reasons, from producing animated films and video games to creating
scientific and architectural visualizations to even wackier things (such as control-
ling unmanned drones and 3D printed interactive art installations). The following
community resources give you a good idea of just how diverse and motivated our
group is and, more importantly, they give you ways to get involved yourself.

Blender.org

The official Blender website, blender.org, is the place to go for nearly anything

Blender related. Most obviously, this website is the one to visit when you want to
download the latest stable version of Blender. Not only that, you can also track
new developments in the Blender Foundation and Blender Institute, including
new features being coded into Blender.

As with any large website, this one has a number of really useful subsections that
you may want to visit depending on what interests you in any given moment.
Here’s a quick rundown of the most relevant ones.

IN THIS CHAPTER

 » Discovering websites that are

valuable sources of information and

help in Blender

 » Finding a place for real-time

communication with other

Blenderheads

http://www.blender.org/

590 PART 5 The Part of Tens

Blender ID

A lot of the community websites listed in this chapter require having an account
for logging in. To make things easier for everyone in the community, the Blender
development team built the Blender ID system. The system consists of one user-

name and password that enables you to access any community website that uses
it. Even Blender-related websites that are not officially maintained by the Blender
Foundation or Blender Institute can make use of the Blender ID. It’s not required
for doing anything with Blender, but it is a convenient way to get on various com-

munity websites.

You can get your Blender ID by going to id.blender.org.

Blender manual

One of the most important and useful parts of the Blender website is the official
Blender User Manual. This “live” manual is located at https://docs.blender.

org/manual. Like Blender itself, the manual is constantly being updated as
changes are made to Blender. And as your experience with Blender grows, this is
one of the places where non-programmers can contribute to Blender develop-

ment. If you find out-of-date or inadequate parts of the manual, you can send in
fixes and updates.

Developer blog

If you want to know what’s coming next with future versions of Blender, then the
blog at code.blender.org is what you should read. Periodically, one of the coders
on the Blender development team will post an in-depth article that talks about what
they’re working on in Blender. These articles can sometimes be general develop-

mental roadmaps, or they can be deep dives into the underlying architecture for the

animation system or experiments with sculpting tools. There’s a lot of great infor-
mation here that can give you insight into the “why” of how Blender works.

Bug reporting and developer discussions

One of the huge benefits of Blender being open source is the sheer amount of
access you have to developers and, by extension, development versions of Blender.

As with most open source software packages, Blender doesn’t really have a sepa-

rate, dedicated team focused on testing and quality control. In fact, as users of

Blender, we are the quality control and testing team. The Blender developers are

quite good at fixing bugs when they get discovered, but it’s on us to report those

bugs so the developers can be made aware of them. Get familiar with the

https://id.blender.org/
https://docs.blender.org/manual
https://docs.blender.org/manual
https://code.blender.org/

CHAPTER 21 Ten Excellent Community Resources 591

developer.blender.org website, which is where we let Blender developers know
that something isn’t working as expected. This is the same website that opens
when you choose Help ➪ Report a Bug in Blender’s menu.

Now, when reporting a bug, you want to make sure that you’re saying more than
“it’s broke, please fix.” Bugs can only get fixed if developers can reproduce them
on their machines. So you need to provide the steps — kind of a mini-tutorial —
on how to make the problematic behavior happen. Even better, providing a .blend
file that has most of the steps already done is extremely helpful. I’d also recom-

mend that before you report a bug, you use the site’s search feature to see if

someone else has already reported it. Then you can add your voice to that report

and confirm that you’re experiencing the same behavior. Remember, some devel-
oper (often a volunteer) has to take time and effort to fix this issue for you. The
least you can do is put in some time and effort to make it easier for them to make
that fix.

While on the topic of interacting with developers, you may also want to visit the
forums at devtalk.blender.org. These forums differ a bit from artist forums in
that they’re mostly there for developers to discuss Blender development, rather

than support idle discussion or showing off artwork. Join here if you’re interested
in helping guide the direction of future versions of Blender. You don’t have to be

a programmer to be part of the conversation. Artists have insights about workflow
that developers find really helpful.

builder.blender.org

If all this interacting with developers gets you excited about trying the latest and
greatest new features in Blender before they’re officially released, then you want
to visit builder.blender.org. It’s a website set up by the core Blender developers
to provide everyone with daily builds from the development source tree. An auto-

mated system creates an executable build for each of the major platforms Blender

supports, which are uploaded to the site each evening. This way, regular users can
play with new features while they’re being developed and, hopefully, contribute to
the process by creating bug reports and providing feedback to developers. This
level of access is unheard of for regular users of any of the proprietary 3D pack-

ages, and it’s one of those things that you get with Blender precisely because it’s
open source.

Of course, these are development versions of Blender, and though they’re gener-

ally pretty stable, they can still sometimes crash or behave unexpectedly. So be

sure to proceed with caution.

https://developer.blender.org/
https://devtalk.blender.org/
https://builder.blender.org/

592 PART 5 The Part of Tens

Blender Cloud

You can also subscribe to the Blender Cloud service, which gives you full access to
in-depth training material and assets from the open movie projects, as well as the
ability to create collaborative projects with other Blenderheads.

BlenderArtists.org

If you have any questions about how active the Blender community is, you only
have to visit blenderartists.org once to quell those doubts. The primary com-

munity website for Blender artists, this site is the main place to go for English-
speaking Blender users.

BlenderArtists.org (or BA, as many affectionately refer to it) is a web forum for
Blender users. Here you can see artists of all skill levels sharing their work, learn-

ing new features, offering tips, participating in contests, and engaging in idle
chitchat. (Disclaimer: I’m a moderator on BA. I go by the username Fweeb.)

A particularly cool thing on the BA forums is the Weekend Challenge. Late Thurs-

day night (GMT), a theme is posted. Participants have until the same time Monday
evening to model and render a scene to fit that theme. At the end of the weekend,
the community votes on a winner, and that winner gets to pick the theme for the
next Weekend Challenge. This is a great way to find out just how good you really
are, and it’s a lot of fun, too!

BlenderNation

If any new developments with Blender occur or anything interesting happens
within the Blender community, BlenderNation, the main news site for anything
Blender-related, reports on it. BlenderNation (blendernation.com) covers events,

shares art from the community, reviews books, and presents tutorials.

In particular, this website is a great way to see what kind of professional work is
being done with Blender. (Many working professionals don’t always have time to
be active on the forums at BA.) BlenderNation also reports on topics that, although
perhaps not directly related to Blender, may be of interest to Blender users (such
as news on open source software or events in the larger computer graphics
industry).

https://blenderartists.org/
https://blendernation.com/

CHAPTER 21 Ten Excellent Community Resources 593

BlenderBasics.com

This is the Blender For Dummies website that I maintain for this book. Not only can
you find all the sample files available for this book, but I also have additional con-

tent, video tutorials, additional files, and errata updates. In addition, a few sections
in this book refer to helpful written tutorials that I have posted on this website.

blender.stackexchange.com

The Blender section on StackExchange (blender.stackexchange.com) is one of

the best places to go for support. If you have a question about using Blender,

chances are good that it’s been asked here. And if your question hasn’t been asked
yet, you can expect to get a very clear, well-researched, and extremely thorough
response from the Blender users and developers who populate that site.

CGCookie.com

A regularly updated and high-quality site loaded with education material for
Blender, CG Cookie is one of the go-to sites I send new users to for video tutorials.
For years, CG Cookie has continued to provide high-quality examples and tutorials
for anyone interested in advancing their CG skills with Blender. The vast majority
of materials on this website are freely available, although some tutorials offer the
ability to purchase supplementary files and source files for a small fee.

The fine folks at CG Cookie also manage the Blender Market (blendermarket.
com), a website designed to facilitate Blender users to sell their useful additions to
Blender. These include highly advanced add-ons, pre-modeled asset packs, and
refined materials and shaders for Cycles and Eevee. The site is a great place to find
supplemental tools to supercharge your workflow.

Blend Swap (blendswap.com)

At this online repository of a variety of 3D models created in Blender, models are

contributed by the community and organized by category. Associated with each
model is a license that clearly shows what you have permission to do with it.
Blend Swap played an instrumental part in some of the weekend modeling sprints
for the Sintel open movie project from the Blender Institute and is still a great

place to go for free assets in your own projects.

https://blender.stackexchange.com/
https://cgcookie.com/
https://blendermarket.com/
https://blendermarket.com/
https://www.blendswap.com/
https://www.blendswap.com/

594 PART 5 The Part of Tens

Blender.community

I would be profoundly negligent if I were to make a chapter on community
resources and failed to mention blender.community. This website is relatively
young as Blender sites go, but it has quickly become a fixture in the community.
In fact, blender.community isn’t just one site; it’s a portal to a whole assortment
of Blender-related sub-communities. Some are organized by the most spoken
language in the group, and some are organized around a specific feature of Blender
or facet of Blender development.

The list of sub-communities is continually growing, but here are a few that you
might find particularly interesting.

Blender Today

Think of Blender Today as a community-driven news board. Anyone in the com-

munity can post links to artwork they’ve created, add-ons they’ve written, or
interesting news announcements that they think would be of interest to other
Blenderheads. Members of the site (logged in using Blender ID) can upvote or
downvote these posts so the most interesting or relevant wants get the most
attention. You can get to the Blender Today sub-community from the sidebar of

blender.community, or you can use the direct URL, blender.today.

Right-Click Select

As you continue to use Blender, you’ll undoubtedly have ideas on things developers

could change in order to make your life as an artist easier. Of course, you’ll want
to share this great idea of yours with the rest of the community, both of other
artists and other developers. The place to do this is Right-Click Select. Named
after one of the most controversial (and, in my personal opinion, smartest) user
interface decisions in Blender history, Right-Click Select is a sub-community
with a specific focus on proposals for new features. Like all the sub-communities
on blender.community, you can get to Right-Click Select from the sidebar menu.
Alternatively, you can use the direct URL, rightclickselect.com. People post

their feature proposals, and other users (including developers) have the ability to
discuss and vote upon them.

One thing to remember when making your feature proposal is that it should be as
specific and actionable as possible. It’s not sufficient to just post a link to another
program and say, “Make it like this.” Likewise, “make it better” isn’t really a
helpful proposal. Think your idea through. How would you imagine other users
would access the feature in Blender’s interface? By a menu? With a hotkey? What

https://blender.community/
https://blender.today/
https://blender.community/
https://rightclickselect.com/

CHAPTER 21 Ten Excellent Community Resources 595

do the controls look like? Good proposals also tend to include mock-up images
that help show other people what your idea might look like.

Look at it this way: Just like when reporting a bug, when you’re requesting a new
feature, you’re asking another person to put in a lot of work to bring your idea to
life. If you put just as much time into your proposal, there’s a much better likeli-
hood that a developer is going to understand what you want and have the ability
to implement it in a way that most closely resembles your vision.

(Disclaimer: I started and continue to moderate the Right-Click Select
sub-community.)

Blender NPR

Not all 3D art is the kind of hyper-realistic images that are difficult to distinguish
from photographs or real life. There’s a whole branch of 3D computer graphics
devoted to non-photorealistic rendering, or NPR; we also have a community with
that focus on blender.community. This blender NPR sub-community is a great one

to visit to see unique approaches to 3D art that look like anything from a hand-
drawn cartoon to an oil painting, or even more abstract kinds of work. You can find
artwork, tutorials, and even support for creating your own art with this kind of work.

Social Media

As with most things today, the Blender community extends beyond its own eco-

system on the web and out to the various other social media platforms. Whether
you’re on Instagram, Twitter, Facebook, Reddit, Mastodon, or some other plat-
form, chances are good that you’re going to find fellow Blenderheads. For the
platforms that support hashtags, the one where you’re going to find the most
Blender folks is #b3d. People will occasionally post using #blender3d, but the
other one is far more frequently used.

Nearly all the websites mentioned in this chapter also have their own presence on
social media. At the very least, you’ll be able to find them on Twitter and
Instagram.

As for myself, I’m on Instagram, Twitter, Facebook, and Mastodon as @monster-

javaguns (or you can look me up by my name; it’s pretty distinctive). Feel free to
follow me to see an odd mix of art, campfires, funny signs, and (of course) Blender
stuff. And if you happen to have questions or need help, don’t hesitate to reach out
and send me a message. I can’t guarantee that I’ll have all the answers, but if I
don’t, I’m sure I can point you in the direction of someone who does.

https://blender.community/c/npr/

596 PART 5 The Part of Tens

Blender.chat

Technically speaking, blender.chat operates under the same umbrella as the

other sites on blender.community. However, I thought it was worth it to give this
resource a focus of its own. Sometimes you don’t have time to wait for someone to
see your post in a forum or cry for help on social media. Or perhaps you’re using

a development build of Blender and you’ve stumbled into a bug that you want to
confirm before posting on the official tracker. Other times, it’s just nice to talk
shop with other 3D artists and enthusiasts.

For real-time interactions like those listed, you really want to use a chat or real-
time messaging service. In the past (and still today, though to a lesser degree), the
majority of these real-time chats would happen on an old Internet protocol called
IRC (Internet Relay Chat). As the Internet has modernized to the web browser with
its support for rich media, a lot of people have migrated to services like Slack or
Discord. Of course, there are Blender communities floating about on these ser-

vices, but those platforms are based on proprietary software, and the infrastruc-

ture is managed by companies that don’t necessarily have Blender users’ best

interests at heart.

This is why we have blender.chat. Blender.chat is a community-run chat instance
based on Rocket.Chat, an open source web-based chat program that gives you a
full media experience, including images, links, screen sharing, and video.

Blender.chat requires you to have a Blender ID to join in, but once you do, you’ll

have access to a bunch of channels, each with a specific focus. Many of the chan-

nels mirror the structure of the sub-communities on blender.community, but

there are a few that you might find particularly interesting or helpful:

 » #today: This is probably the most chatty of all the channels. Like the blender.

today sub-community, this channel is focused on general Blender-related

news and discussion . . . along with a little bit of art sharing.

 » #support: For those times when you need help right now, I recommend you

visit the #support channel. There’s almost always someone there, and quite a

few are really knowledgeable with Blender. So feel free to let your questions

fly there.

 » #blender-coders: Have a question for a Blender developer or do you

suspect you’ve found a bug? Then this is the channel you want to visit. This is

also the channel that the Blender development team uses for their weekly

Monday meetings. They’re great for sitting in on as a “fly on the wall” to see
how Blender development is progressing.

https://blender.chat/
https://blender.community/
https://rocket.chat/
https://blender.chat/channel/today
https://blender.chat/channel/support
https://blender.chat/channel/blender-coders

Index 597

Numbers
2D Animation. See also Grease Pencil

Full Canvas workspace, 462

overview, 461

presets for, 53

rendering, 502

start file, 462–463, 474–478
vector drawing and, 469, 473

2D cursor, 283
2D Full Canvas workspace, 53

3D Animation. See also Grease Pencil

photography and, 298
professional film and, 298
video and, 298

3D Animation workspace, 52

3D cursor

hotkeys for, 42

orientating with, 66

overview, 40–44
3D sculpting and retopology, 114–115
3D space

coordinate systems and, 64–67
empties as reference in, 91

navigating in, 32–35
objects in, 64–67

3D Viewport. See also interface

adding constraints in, 365

adding lights in, 301–303
Animation workspace and, 339–340
annotations, 48–49, 585
Armature Properties editor, 383–386
cascaded shadow maps and, 311

Custom Distance and, 307
defining keyframes in, 342–344

Empties in, 357–360
enabling object gizmos in, 68
hotkeys, 27, 346
images in, 158–163
importing images to, 159

Last Operator panel in, 47–48
metaball objects in, 216

navigating in, 32–44
objects in, 105, 166

orbiting scene in, 580–581
overview, 45, 461

particle systems in, 442–445
Quad View, 44–45, 581
Quick Effects submenu in, 434
search function and, 49–50
Sidebar in, 45–46
Toolbar in, 46

View orientation and, 66

viewport shading type and, 40

Workbench render engine in, 500–501
on workspace, 17

27X keymap
enabling, 41

extruding and, 90

A
Absolute Offset checkbox, 200
Accumulate checkbox, 174
actions, 28, 99
actions library, 425–426. See also Dope Sheet

editor

Active Element panel, 214–215
Active Spline panel, 210–211
Active Tool context, 30, 42

Index

598 Blender For Dummies

Active Tool tab, 167, 173–176
Add menu, hotkey for, 90

Add Selected to Active Collection option, 107
additive tools, for sculpting, 167–168
add-ons, 24, 93, 184, 582
Adobe Illustrator, 469, 473
Adobe Photoshop, 506, 532

Adobe Premier, 514

aliasing, 190

Aligned handles, 208
alignment, 224

alpha channel

in Blender Compositor, 549

compositing and, 510–511, 524
Eevee and, 253

overview, 506

as property for Image Empties, 161

alpha modes, 244

Always option, 216

Ambient Occlusion (AO). See also global
illumination

in Blender Compositor, 538, 541
options in, 327–328
overview, 325–326

Angle Constraint, in Knife tool mini-mode, 124

angular diameter, 310–311
animation. See also character animation; object

animation

2D, presets for, 53

actions in, 28
animatics in digital, 339

Animation workspace, 338–340
appealing look in, 422

Blender Animation Studio and, 13

datablocks and, 96

editor types for, 28–29
Elephants Dream, 13

file location of, 509
hand-drawn, 461, 488–492
keying sets, 28
modifiers and, 139

post-production and, 513

rendering, 509–512
traditional vs. computer generated,

342, 356

animation curves. See f-curves

Animation Data option, in Make Links menu, 99

annotations, 48–49
Apple Final Cut Pro, 514

Apply button, 139

architectural visualization, 307, 317,
580–581

Area light setting, 302–303, 307, 313–314
areas, 17, 19–21
Armature modifier, 144
armature objects, 91

Armature Properties editor, 381–386. See also
Bendy Bones panel; Pose mode

armatures. See also Armature Properties editor;
Vertex Groups panel

adding new, 375
character animation and, 418–420
editing, 376–379, 385
hotkeys, 419

mirrored poses in, 424–425
overview, 375
parent-child bones in, 376–377
parenting bones in, 379–381
quaternions and, 423–424
symmetric rigs in, 378–379

Arrays modifier, 142, 153–156
artifacts, Bias value and, 308
At Center option, 121

At Cursor option, 121

At First option, 121

At Last option, 121

Auto Bake setting, 330

Autokey feature, 343

Automatic handles, 207
Auto-Save Preferences, 58
Average tool, 241

AVIs, 511

Index 599

B
back light, 300, 318
backface culling, 84
backfacing socket, 277
Background image object, 160

Bake Cubemap Only setting, 332

Bake Indirect Lighting setting, 331

baking, 330–332, 453–455
Ball primitive, 214

basic animation principles, 420–423
Bendy Bones panel, 382, 386–390
Bevel modifier, 142, 203
Bevel sub-panel, 203

beveling

Bevel tool, 127–128
curves, 202–206
hotkeys for, 129

overview, 126–127
Bézier curves

anatomy of, 196

editing, 207–209
in Graph Editor, 422

handles for, 389
interpolation of, 352

Bézier U checkbox, 210

Bias value, in Eevee render engine, 308
bisecting, 125–126
.blend files

annotations on, 48
datablocks and, 176, 426–427
fake user and, 238–239
fonts and, 220

keying sets and, 348–350
linked datablocks and, 96–97
materials on, 248
naming, 583
Nonlinear Animation editor and, 432

opening, 110

overview, 453

particle systems and, 439

reducing size of, 296

saving, 108–109
Scene Collection in, 104

scene strips and, 519

scenes in, 100

startup.blend file and, 56
stills and, 507–509
three-point lighting sample, 318

blend shape. See Shape Keys panel

Blend Swap, 593

Blend texture type, 293

Blender

basics of, 10

capabilities of, 1

community, 11–15
coordinate systems in, 64–67
cost of, 10

downloading, 10

exporting from, 499, 501–502
formulas in, 76
manual for, 1

modes in, 77
official documentation, 434, 590
origin of, 11–12
render engines and, 500–501
resources for, 4–5
shaders in, 251–252
StackExchange, 593

Workbench and, 500–501
Blender Animation Studio, 13

Blender Artists, 592

Blender Compositor

cryptomatte, 542–544
Cycles Passes in, 537–542
discussion, 531–532
Eevee Passes in, 537–539
hotkeys, 548
navigating, 548–549

600 Blender For Dummies

Blender Compositor (continued)

nodes in

adding, 549

advantages, 532–533
available categories, 550–552
common mouse actions, 546–547
configuring, 545–546
grouping, 550

identifying parts, 547
overview, 532, 544–545

rendering from, 552

View Layer display mode, 535–537
workspace, 534

Blender Conference, 14

Blender Foundation, 589
founder of, 11

Project Orange and, 13

Blender Institute, 13, 589
Blender Internal, 232

blenderbasics website, 3, 550, 581, 593
blender.chat, 596

blender.community, 594–595
BlenderNation, 592

Blob brush, 168
blocking, 339

blue category, 167
Blur tool, 241

Boids physics model, 438–439
Bone Constraints context, in Properties editor, 32

Bone context, in Properties editor, 31

Bone Groups panel, 408–410
Bone tab, 377, 381–382, 424
Boolean modifier, 94, 142
boundaries, 135

Box Hide tool, 172
Box Mask tool, 171–172
box modeling, 114

Box Select tool, 75, 82
Breakdown keyframe, 417–418
Brick texture, 270
Brush Detail option, 182
Brush panel, 167, 173–174, 242

brushes

adjusting radius of, 166

adjusting strength of, 166

cursor and, 166

datablocks and, 173
drawing tablets and, 166

panel for, 167
for sculpting, creating, 176
tools vs., 175
transparency of, 175

bug reporting, 590–591
Build modifier, 142
bundles, 572–573
buttons, on small monitors, 57
By Distance option, on Merge

operator, 122

C
cage, 150, 190

Call Menu, 119

camera objects, 92

camera output socket, 274
camera view toggle, 34

cameras. See also video

autofocus, 557
cell phone, 555

depth of field, 558
importance of, 554–556
motion blur, 558
overview, 554

single lens reflex (SLR), 555
snapping, 38
treating objects as, 37

Capsule primitive, 214

Cartesian grid, 64

cascaded shadow maps, 311

Cast modifier, 144
Cast Shadow property, 305

Catmull-Clark subdivision, 151,
178–179

caustic effects, 305–306

Index 601

channel. See also f-curves

animatable, 343–344
definition, 337
hotkeys, 355

muting, 354–355
character animation. See also object animation

armatures and, 418–420
basic principles of, 420–423
Dope Sheet editor and, 411–418
Lock to Object feature in, 582–583
natural movement in, 421–422
in Pose mode, 411–412
staging in, 421

story-based timing in, 422

Checker texture, 270
Child Of constraints, 361–363
children. See also parenting

bones in armatures, 376–381
collections vs., 104–107
establishing relationships between parent

and, 101–103
overview, 101

particles, 443–444
selecting objects with, 107–108

Children option, in Select Grouped menu, 107
Christensen-Burley subsurface scattering, 257
Circle Select tool, 82–83
Clay brush, 168
clay renders, 253

Clay Strips brush, 168
Clear and Keep Transformation option, 102–103
Clear Parent Inverse option, 103

Clear Parent option, 102

Clip Start value, 308
Clone tool, 290–291
closed edge loop, 132

closed mesh, 120

cloth simulation, 450–452
Clouds texture type, 293

collapse, defined, 181
Collapse option, on Merge operator, 122

collection instance objects, 92

Collection option, 99, 107

collections, 101, 104–108
Collections panel, in View tab, 105

collisions

hotkeys, 441

overview, 440

color inputs, 253–254
color modes, 243

Color option, in Select Grouped menu, 108
Color Palette panel, 245

color palettes, vertex colors and, 244–245
ColorRamp node, 269
colors

assigning to parts of mesh, 235–240
background, 320–325
bleeding, 305

for bone groups, 385, 409–410
diffuse colors, 233–235
keyframes and, 416–418
opacity, 253

overview, 233

picking, 304

setting hair, 445

stills and, 506

vertex colors, 240–247
in Weight Paint mode, 393–395

community

Blender Conference and, 14

Blender Internal and, 232

developers in, 12–15
overview, 11–12

components, 81
compositing. See also Blender Compositor;

Video Sequencer

alpha channel and, 510–511, 524
definition, 531
editing vs., 514

in layers, 535

masking and, 54

motion tracking and, 54

overview, 510–511, 513, 531
in passes, 535

rendering and, 54

Z-depth and, 535

602 Blender For Dummies

Compositing workspace, 52–53, 462
Compositor, 15, 27
computer generated (CG) animation.

See animation

Connect Vertex Path operator, 116

Constant Detail option, 182
Constant Offset check box, 154
constraints

adjusting influence of, 360
Child Of, 361–363
Empties in, 357–358
limiting, 363–364
options with Stickman, 400–403
overview, 356–357
tracking, 365–366, 402–403
For Transform check box and, 363–364
Vertex Groups in, 361

Contact Shadows sub-panel, 308
contexts, 30–32, 42, 49
control points, 91, 190, 196, 208
control vertices, 287
coordinates

mapping textures with, 273–278
systems for, 64–67, 273–276
UV coordinates, editing, 284–287

copying, 218
corner widgets, 19

Crease brush, 168
Create New Collection option, 106

Creative Commons Attribution license, 13

cross-platform software, OpenGL and, 18
crowd simulation, 436

cryptomatte, 542–544
Cube primitive, 214

Cubemap Size setting, 331

Cursor orientation, 66

Cursor tool, 42

cursors

2D cursor, 283
3D cursor, 40, 42–43, 66
brushes and, 166

color of, 175

corner widgets and, 19

extruding to, 90

Last Operator panel under, 47
Curve deform modifier, 228
Curve modifier, 144
curve normals, 201

Curve Stroke panel, 198–200
curves

3D, changing to 2D, 200–202
adjusting tilt of, 206–207
Bevel modifier and, 203
beveling, 202–206
Bézier, 196, 207–209
converting text to, 228
deforming text with, 227–228
drawing, 196–200
extruding, 202–206
functionality of, 190–192
gradients and, 325

hooks and, 375
keyframes and, 416–418
NURBS, 209–213
overview, 91

rendering, 202

shape keys and, 368
tapering, 202–206
tools for, 193–212
transforming, 200

types of, 192–193
Custom Distance sub-panel, 307
customizing

event system, 58
headers, 21

hotkeys, 58–59
interface, 50–60

Cut Edges, in Knife tool mini-mode, 123

Cut Through, in Knife tool mini-mode, 124

cutting

bisecting, 125–126
Knife tool, 123–125
overview, 122

Index 603

Cycles render engine. See also rendering

defined, 27
global illumination (GI) in, 326

hair, 445–446
light properties, 303–307
lighting in, 251

material system for, 246

mesh lights in, 301, 314–316
overview, 231, 500–501
Passes available in, 537–542
procedural textures in, 270
ray-tracing in, 309, 500

rendered viewport shading type and, 39

Shader Editor in, 315–317
smoke simulations in, 459–460

cyclic, 195

Cyclic U checkbox, 210

D
darken modes, 243

Data Transfer modifier, 141
datablocks

.blend files and, 96–97, 426–427
appending, 110

brushes and, 173
of color palettes, 246

Fake User button in, 427
for fonts, 219

between objects, linking, 95–100
objects with linked, 95

overview, 96

unlinking, 100–101
Decimate modifier, 142
deflectors, 440
Deform modifiers, 144–146
deformations, 227–228, 373, 375, 421
Delete operator, 116

deleting, hotkey for, 87–88
Delta keys, 342

Depth property, 161–162
deselecting vertices, 85

destructive operation, 128, 139
Detail Flood Fill option, 183
Detail Size option, 181
Detailing option, 181–182
Diffuse Bounces setting, 330
diffuse colors, 233–235
Diffuse Occlusion setting, 331
dirt shader/ dirty GI. See Ambient Occlusion

Displace modifier, 144
Display As property, 160

Display Orthographic/Perspective property, 162

Display panel, 149, 175
Distance value, 308–309
Distorted Noise texture type, 293

Distribution input, 255

Dope Sheet editor

Action Editor in, 426–432
Animation workspace and, 339

blocking in, 339–340
columns in, 413

hotkeys, 28, 413–415
keyframe indicators in, 416–418
markers in, 415–416
overview, 412

selecting keys in, 412–413
Snap Keys feature in, 414–415

doubles, 87
downloading, Blender, 10

Draw Sharp brush, 167
Draw tool

curves and, 193

sculpting with, 167
Texture Paint mode, 290

texturing with, 292–295
in Vertex Paint mode, 241

drawing curves, 196–200
drawing tablets

brushes and, 166, 173
curves and, 199

navigation controls for, 34

overview, 3

604 Blender For Dummies

Drivers, hotkey for, 28
duplicating

Duplicate operator, 116

in Edit mode, 95–101
interface to monitor, 20

Dynamic Topology (Dyntopo)

Grab tool and, 170
metaballs and, 217
panel for, 175
sculpting with, 180–184
Simplify tool and, 171
Snake Hook tool and, 170

E
Edge Center snapping, 71
edge flow, 136
edge loop, 132

Edge Loops option, 135

Edge Perpendicular snapping, 72
edge rings, selecting, 134–135
Edge Select, Bevel tool and, 127
Edge Slide operator, 135

Edge snapping, 71
Edge Split modifier, 142
edges

cutting, 123

defined, 79
selecting, 79–84
subdividing, 181

Edit mode. See also Object mode

adding objects in, 92

Extrude operator in, 85–90
Merge Vertices function in, 88
objects in, 85
overview, 77–90
selecting linked vertices in, 84–85
selecting vertices, edges, and faces in, 79–84
switching between Object mode and, 78–79
tools for meshes, 116–117

editing. See also Video Sequencer

Bézier curves, 207–209
compositing vs., 514

NURBS curves, 209–212
overview, 513

polygons, 78
stills vs. movies, 510–511
text, 218
UV coordinates, 284–287

editor types, 17, 26–29
Eevee render engine. See also Object

Data Properties; rendering

alpha channel and, 253

Ambient Occlusion (AO) in, 326

cascaded shadow maps in, 311

defined, 27
global illumination (GI) in, 326

hair in, 444–445
light probes in, 92, 328–330
light properties in, 303–304, 307–308, 311
lighting in, 251

material system for, 246

mesh lights in, 304, 317
overview, 230, 500–501
Passes available in, 537–539
physically based rendering (PBR) in, 307, 500
rendered viewport shading type and, 39

Shader to RGB node and, 265
shadows in, 308–309
smoke simulations in, 459–460
View Layer display mode, 535–537

effects. See visual effects
Elastic Deform tool, 170
Elephant’s Dream, 13, 518
Ellipsoid primitive, 214

Emission node, 307, 314–317
Emitter panel, 436–437
Empties

definition, 357
force fields and, 91, 440

Index 605

hooks and, 373
hotkeys, 359

overview, 91

turnaround render with, 358–360
types of, 358
uses for, 357–359

Encapsulated PostScript (EPS) files, 296
envelopes, 390, 392–393
environment

defining variables in, 433
importance of, 298
white void, 298

Environment texture, 270, 323
Euler angles, 66

Euler rotations, 423–424
event maps, 58–60
event system, 58
events, 58, 61
expanding Toolbar, 164

explosions, 434–435
Export button, 61

exporting

overview, 499, 501–502
Python script and, 501

UV Layouts, 295–296
.exr format, 552. See also OpenEXR format
Extra Objects add-on, 93

Extreme keyframe, 418
Extrude Along Normals tool, 88
Extrude Individual tool, 90

Extrude operator, 85–90, 115
Extrude Region tool, 88
Extrude to Cursor tool, 90

extruding

curves, 194, 202–206
hotkey for, 87
overview, 85–90

F
face dots, enabling, 81
face loop, 133

Face Select mode, 133

Face snapping, 71
faces, 79–84
facial animation, 373, 390
fake user, .blend files and, 238–239
Falloff panel, 174
Fast Editing checkbox, 227
Fast option, 216

f-curves. See also channel; Dope Sheet editor;
Graph Editor; Nonlinear Animation editor

animation and, 336–337
constraints on, 352

Graph Editor and, 340

grouping, 349–350
hotkeys, 336–337
keyframes and, 416–418

File Browser interface, 29, 108–109
files. See also .blend files; specific file

names

containing customized events, 61

EPS (Encapsulated PostScript), 296

General file in workspace, 16–17
importing text, 218
opening, in Object mode, 110

saving, 108–109
SVG (Scalable Vector Graphics), 296

fill light, 299–300, 318
Fill tool, 169, 291

film, 298, 513
fire simulation. See smoke simulation

fireflies, 314
Fit Curve option, 155

Fit Length option, 155

Fit Type menu, 155

Fixed Count option, 155

Flatten tool, 169

flocking/swarming behavior, 435
Fluid physics model, 438
fluid simulation, 433, 452–456
Font panel, 221–222
fonts, 219–223
Fonts option, in Make Links menu, 99

606 Blender For Dummies

force fields, 92
hotkeys, 441

overview, 440

formulas, 76
forward kinematics (FK) constraint, 403

fractional frames, 431

frames, 225

Free handles, 208
fur, 434, 436, 442

G
general editors, 26–28
General file, in workspace, 16–17
Generate modifiers, 142–144
generated output socket, 274
geometry, 117–122, 171
Geometry node, 276–277
Geometry option, 42

Geometry panel, 202

Geometry to Origin operation, 93

gestural interface, 22

GGX, 255
gimbal lock, 66, 423–424
Gimbal orientation, 66

GIMP, 506, 532

Gizmos menu, 69

global illumination (GI), 325–326. See also Ambient
Occlusion

Global orientation, 65

Global Undo, 177
GNU General Public License, 11

GPU acceleration, 231

Grab tool, 169–170, 286
grabbing

hotkey for, 73
objects, 64

Gradient texture, 270, 324–325
gradients, 324–325
Graph Editor

animation in, 336–338
Bézier curves in, 422

controls in, 338
editing motion curves in, 352–356
f-curves and, 340

final polish in, 340
hotkeys, 28, 351–352
markers in, 415

overview, 351–352
quaternions in, 423–424
timing in, 340

graphics processing unit (GPU), 500

Grease Pencil, 463

3D graphics and, 495

Draw mode, 464–470
Edit mode, 465

layers, 478–482
materials in, 473–478
objects in

editing, 472–473
hooks, 373–375
overview, 462–463
rigging, 492–494

overview, 339, 461, 488
primitives in, 464

Sculpt mode, 464, 470–472
Grease Pencil modifiers, 482–487
Group.L vertices, 149

Group.R vertices, 149

.gz files, 453

H
hair

in Cycles render engine, 445–446
in Eevee render engine, 444–445
via particle systems, 435–436, 442
via Quick Fur feature, 434

Half option, 216

hand drawings, 462, 488–492, 495
handles, 207–208, 389
Harden Normals, 128
headers, 21, 57

Index 607

helper tools, for sculpting, 167, 171–172
Hero, 495

hiding

headers, 21

objects, 105

Tool Settings, 21

high dynamic range images (HDRIs), 39, 322–323,
521, 559

Hook modifier, 144
Hook option, in Select Grouped menu, 107
hooks, 373–375

I
IES profiles, 306–307
IES texture, 270
Ignore Snap, in Knife tool mini-mode, 124

Illustrator, 469, 473
Image Editor, 27, 502–503
Image Empty image object, 159–162
image objects, 91, 159–163
Image or Movie texture type, 293

Image texture, 270
images, in 3D Viewport, 158–163
Immediate Children option, 107
Import button, 61

importing

images, 159

text files, 218
inbetweener, 341

incoming socket, 277
Increment snapping, 71
Indirect Lighting panel, 330–332
industrial visualization, 317
Inflate brush, 168
Info editor, 29

Inkscape, 469, 473
inputs

for color, 253–254
for reflection and refraction, 254–256
for subsurface scattering, 256–257

Inset Faces tool, 118–122
insetting, 117–122
Instance Collection option, in Make Links

menu, 99

Integrated Search, 579–580
interface. See also 3D Viewport

customizing, 50–60
gestural interface, 22

hotkeys for zooming onto parts of, 18
maximizing, 20–21
to new window, duplicating, 20

OpenGL rendering, 230

overview, 15–17
pie menus and, 22–24
resizing, 19

splitting and removing, 19–20
workspaces and, 17–18

Internet Archive, 561

interpolation

Bézier, 352, 417, 420
constant, 352

definition, 336
fixed, 417
linear, 353

overview, 341, 351

intraframes, 431

inverse kinematics (IK) constraint,
403–407

inverse-square law, 307
inversion modes, 243

IOR input, 256
Irradiance Volume, 328–330, 332
Item tab, 46

J
Jitter keyframe, 418
joining

Boolean modifier vs., 94
objects, 93–94

JPEGs, 505–506, 511

608 Blender For Dummies

K
kerning, 224

key light, 299, 318
Keyed physics model, 438
keyframes. See also Dope Sheet editor

3D Viewport and, 342

Autokey feature and, 343

curves and, 416–418
hotkeys, 344, 416

indicators in, 416–418
inserting, 342

keying sets for, 343

overview, 341–342
properties and, 343–344

Keying Set option, in Select Grouped
menu, 108

keying sets, 28
Autokey feature and, 343

B-Bone Shape, 389
.blend files and, 348–350
custom, 346–350
hotkeys, 346

keyframes and, 343

overview, 345

using, 345–346
Keymaps section, enabling 27X keymap via, 41
Knife tool, 123–125
knots, 210–211
Koenig, Sebastian, 575

L
Laplacian Deform modifier, 145
Lasso Mask tool, 172
Lasso Select tool, 83
Last Operator panel, 47–48, 131
lathe, 129

Lattice modifier, 145
lattice objects, 91

lattices, 368
Layer brush, 168
layout changes, 19

Layout workspace, 52

leading, 225

left-clicking, 19, 40, 49, 165

light cache, 330, 332

light leaking, 309

Light panel, 302–303
light probes, 328–332. See also mesh lights; specific

light probes

Light Type option, in Select Grouped menu, 108
lighten modes, 243

lighting. See also Light panel

adding new, 301–302
for architectural visualization, 307
bluish, 298
in Cycles render engine, 305–306
high-angle, 297–298
IES texture and, 270
importance of, 297–298
for interviews, 298
inverse-square law and, 307
low-angle, 297
objects for, 92

preferences for, 39

reflection and, 251
render engines and, 251, 303–304
for sculpting, 165–166
three-point lighting, 298–301
universal options for, 303–304
video quality and, 556–557
visual effects with, 299, 301

Link menu, 239

Link to Collection option, 106

linked datablocks, 95

linked vertices, 84–85
linking, 95–101
Live Unwrap, 286–287
Local orientation, 65

Local View, 38
lofting, 210

Look Dev viewport, 39, 318–319, 322–323
Loop Cut tool, 135–136
loops, 132–137

Index 609

M
Magic texture type, 270, 293
Make Links menu, 97–98
Make Single User operator, 100

Manual Detail option, 182
mapping textures

with coordinates, 273–278
overview, 272
with Texture Mapping panel,

272–273
UV Project modifier, 278–281

Marble texture type, 293

markers, 414–416
Mask modifier, 143
Mask tool, 171, 291–292
masking, 54, 183
matcaps, 165–166
Material context, in Properties editor, 32

material slot, 235

Material tab, in Properties editor,
246–248

materials

on .blend files, 248
matcaps and, 165–166
overview, 229

to parts of mesh, assigning, 235–240
render engines and, 230–233

Materials option, 99–100
mattes, 542, 551. See also cryptomatte

Max Bounces property, 305

maximizing areas, 20–21
menus. See also options

clicking on, 22

hiding, 21

hotkeys vs., 3

pie menus, 22–24, 78
scrolling through, 21

on small monitors, 57
for viewing, 35

Merge operator, 121

Merge Vertices function, 88

merging

cleaning up geometry by, 120–122
meshes, 168

Mesh Cache modifier, 141
Mesh Deform modifier, 145
Mesh Edit Mode, 81
Mesh Filter tool, 172
mesh lights, 301, 304, 314–317. See also light

probes

Mesh Sequence Cache modifier, 141
meshes. See also vertices

assigning materials to, 235–240
beveling, 126–129
binding vertices of, 390

closed, 120

collisions and, 440

computers and, 113

converting text to, 228
cutting, 122–126
defined, 114
Edit mode tools and, 116–117
editing, 78
fluid simulation and, 453
insetting, 117–122
loops and rings, 132–137
merging, 168
methodologies for modeling, 114–116
mirroring, 147–149
modifiers and

Arrays, 153–156
Deform, 144–146
Generate, 142–144
Mirror, 147–149
Modify, 140–142
overview, 137–140
Simulate, 146

Subdivision Surface, 149–153
overview, 91

seams on, 282–283
shape keys and, 368
Spin tool, 130–131

610 Blender For Dummies

metaball objects, 91, 213–217
Metaball panel, 215–216
Metallic input, 255

middle-clicking

to constrain to axes, 75
on header area, 57
for orbiting, 32–33
for panning, 33

scrolling through menus with, 21

for zooming, 33

Midpoint Snap, in Knife tool mini-mode, 124

Mirror modifier, 143, 147–149
mirroring meshes, 147–149
miter, 128
Mix Shader node, combining shaders with,

258–263
mixing modes, 243

modeling. See also objects; sculpting

methodologies of, 114–115
poles in, 136

quads in, 136

render engine for, 230–231
tools for, 115–117

Modeling workspace

accessing Edit mode via, 78
overview, 52

modes, 77
hotkey, cycling through, 163

pie menus for accessing, 78
tools and, 46

modifiers
animation and, 139

Curve deform modifier, 228
defined, 99
functionality of, 139

Multiresolution modifier, 177–179
overview, 140–142
rendering and, 139

UV Project modifier, 278–281
vertices and, 140

Modifiers context, in Properties editor, 31
Modifiers option, in Make Links menu, 99
Modifiers tab, in Properties editor, 137
monitors

duplicating interface to, 20

hidden menus and buttons on, 57
morph target. See Shape Keys panel

motion, 335–336, 341, 421
motion curves, 352–356
motion tracking. See also Movie Clip Editor; video

of another object, 365–366
camera solving and, 569–572
compositing and, 54

defined, 28
final steps in, 567–569
loading video for, 561–563
markers in, 563–566
overview, 553

Scene Setup panel, 573–574
video quality and, 553–559
workspace, 559–560

mouse

cursor and, 19, 40, 43, 47, 66, 166, 283
left-clicking on, 19, 40, 49, 165

middle-clicking on, 21, 32–33, 57
overview, 3

right-clicking on, 19, 21, 40–41, 56–57
scrollwheel on, 33, 57

Move to Collection option, 106

Movie Clip Editor

blurry video and, 563

camera configuration in, 570–571
camera solving in, 569–570
defining scene orientation in, 572–573
free video footage for, 561

hotkey for, 28
loading video to, 561–563
markers in, 563–566
overview, 560

resources for, 575

Index 611

Scene Setup panel, 573–574
tracking motion with, 567–569

movie files, 510–511
movies

Blender Animation Studio and, 13

open movie, 13

moving

headers, 21

tools for, 68, 167, 169–171
MPEGs, 511

Multiple Importance Sampling, 305

Multiresolution modifier, 143, 177–179
Multiscatter GGX, 255
Musgrave texture type, 271, 293

N
naming projects, 55

natural light, 307
navigating

in 3D Viewport

3D cursor, 40–44
Knife tool mini-mode, 123

with numeric keypad, 35–38
orbiting, panning, and zooming, 32–35
overview, 32, 35

selecting objects, 40

View menu, 35

viewport shading, 39–40
with drawing tablets, 34

orbiting and, 32–33
pie menu for, 35–36

Navigation section, 33

NeoGeo, 11

nesting collections, via Outliner, 107
Never option, 216

New Edge/Face from Vertices operator, 115

Newtonian physics model, 437, 439
ngons, 79, 86
node materials, 247–251
Nodes panel, 303–304
Noise texture type, 271, 294
non-blocking, defined, 17–18

non-cyclic, 195

nondestructive operation, 137
None option, 42

Nonlinear Animation editor

.blend file samples for, 432
cautions with, 429

creating new action in, 426–427
cyclical animations in, 430–431
hotkey for, 29

indicating Fake User in, 427
markers in, 415

mixing actions in, 429–430
overview, 425–426
stashing, 427–428

nonlinear editors (NLEs), 514, 518. See also Video
Sequencer

nonmesh primitives. See curves; metaball
objects; text

non-modal, defined, 17–18
non-photorealistic rendering (NPR), 230
Normal Edit modifier, 141
Normal orientation, 66

normal socket, 274, 277
normals, 66, 128
Normals panel, 141

Not a Number (NaN), 11

Nudge tool, 170
numerical inputs, 35–38, 76
NURBS curves, 193, 209–213

O
Object & Data & Materials option, 100

Object & Data option, 100

object animation. See also character animation;
motion; rigging

basic passes in, 339–340
basic steps in, 336–337, 342–343
f-curves and, 336–337
overview, 335, 341

stop-motion, 375
traditional vs. computer generated, 342, 356

understanding timing in, 340

612 Blender For Dummies

Object Animation option, Make Single User
operator, 101

Object Constraints context, in Properties
editor, 31

Object Constraints tab, 357
Object context, in Properties editor, 31

Object Data context, in Properties editor, 31

Object Data option, in Make Links menu, 99

Object Data Properties

Light panel, 303–304
Normals panel of, 141

overview, 303

settings adjustments in, 303

Shadow check box in, 305

Sun light controls in, 310

in Vertex Groups panel, 392–393
Object Data tab, in Properties editor, 96, 159

Object eyedropper, 206

object gizmos, 68–72
Object mode. See also Edit mode

adding objects in, 90–93
creating duplicates and links in, 95–101
joining and separating objects in, 93–94
opening files in, 110
overview, 90

parents, children, and collections and, 101–108
saving, opening, and appending files in, 108–110
switching between Edit mode and, 78–79
transforming curves, 200

Object Offset check box, 154
Object option, Make Single User operator, 100

object origin, 65

object output socket, 274
object parenting, 392–393
Object tab, of Properties editor, 106

objects. See also modeling

in 3D space, 64–67
in 3D Viewport, 105, 166

adding, 90–93
adding materials to, 233

as cameras, treating, 37
in Edit mode, 85

grabbing, 64

hiding, 105

joining, 93–94
with linked datablocks, 95

linking data between, 95–100
organizing, 101–104
overview, 63

rotating, 64, 66, 73
scaling, 64

sculpting, 166–177
selecting, 40

separating, 93–94
surfacing, 39

transforming, 67–72
objects gizmos, 67–72
Objects to Scene option, in Make Links menu, 99

occlusion. See Ambient Occlusion (AO)

Offset X/Y property, 161
offsets, 154
omni light. See Point light

opacity, 253

open movie, 13

open source software, 1, 10–11
OpenEXR format, 506, 511, 552
OpenGL, 18, 230
opening files, in Object mode, 108–110
OpenToonz, 473
operations

canceling, 19, 73
confirming, 73
destructive operation, 128
nondestructive, 137

operators

defined, 47
search function and, 50

Optimize option, 182
Options panel, 175
orbiting, 32–35
order, 210

organizing objects, 101–104
orientations, 64–67

Index 613

Origin to Geometry operation, 93

orthographic projection, 35, 162

Outliner, 29, 103, 107
Output context, in Properties

editor, 30

outsetting, 119

overflow, 226
Overlays sub-panel, 149

P
painting. See also colors

creating mask for, 245–246
Draw tool and, 292–295
overview, 287
Texture Paint mode, 290–292
Texture Paint workspace, 288–289

palettes, 245–246
panels, 17–18
panning, 32–35
Paragraph panel, 224

paragraph styles, 224–225
parametric socket, 277
Parent option, in Select Grouped menu, 107
parenting

bones in armatures, 376–381
child particles and, 443–444
copying movement via, 361–363
hotkeys, 392, 402

options in object, 392–393
options with Stickman, 400–403

parents, 101–108
particle systems, 435–444
Particles context, 31

Particles tab, 435–439
Pass option, in Select Grouped menu, 108
pasting, 218
paths, 212

perspective orientation, checkbox for Image
Empties, 162

perspective projection toggle, 35

phonemes, 373

photography, 298
Photoshop, 506, 532

physically based rendering (PBR), 230, 307, 317,
500. See also Eevee render engine

Physics context, in Properties editor, 31

physics laws

accurate motion and, 421–422, 433
particle systems and, 436–437

pie menus

for accessing modes, 78
for navigation, 35–36
overview, 22–24
Pivot Point menu, 43

Transform Orientations menu, 64

for viewport shading type, 39

Pinch tool

overview, 169

UV Editing, 286
Pivot Point menu, 43

planar tracking, 563

Plane primitive, 214

PNGs, 505–506, 511
Point Density texture, 271
Point light, 302, 307
point-for-point modeling, 114

pointiness socket, 277–278
poles, 132, 136

Poly Build tool, 185
polygons, 79–80
Pose mode

armatures in, 383
Bone Constraints tab in, 381
Bone groups panel in, 408–410
Bone tab in, 381
character animation in, 411–413
complex moves with, 365, 402–407
mirror copying in, 424–425
moving rigs in, 390, 400

overview, 381, 390
renaming bones in, 377
Transform panel in, 382

614 Blender For Dummies

Pose tool, 170
position socket, 277
post-production, 510–511, 513–514, 554. See also

compositing

Power value, 304

Preferences editor, 29, 33, 41, 56–58
Premier, 514

presets, 51–55, 165
Pressure Radius setting, 199
previsualization, 294, 298, 318–319
Principled BSDF, 252–257, 444, 459
procedural textures, 268–272
professional film. See film
profile, 128
Project Orange, Blender Foundation and, 13

Projection Depth setting, 199–200
projects, naming, 55

properties, of image objects, 160–162
Properties editor

Active Tool tab in, 167, 174–176
contexts in, 30–32
hotkey for, 29

Material tab in, 246–248
Modifiers tab in, 137
Object Data tab in, 96, 159

Object tab in, 106

overview, 29

Scene tab in, 156

zooming on, 18
proportional editing, 89
proportions, 158
Python Console, 29

Python script, 61, 332, 415, 582

Q
Quad View, 44–45, 581
quads, 79, 136
Quick Effects submenu, 434
Quick Explode feature, 434

Quick Favorites menu, 61–62, 580
Quick Fluid feature, 434, 456

Quick Fur feature, 434

quick rendering. See rendering

Quick Smoke feature, 434

QuickTime, 511

R
Radius tool, 194
Rake checkbox, 176
ramp, 269

Random Walk algorithm, 257
Randomize tool, 195
raster-based programs, 469, 473
Ray Visibility sub-panel, 305
ray-traced render engines, 309, 500

red category, 167
Reference image object, 160
Refine Method option, 181
Reflection Cube Map, 328–332
reflections, 251, 254–256, 274
regions, 17, 45–48
Relative Detail option, 181
Relative Offset check box, 154
Relax tool, 286
Remesh modifier, 143
Remesh option, 182–183
Remesh panel, 176
Remove from All Unlinked Collections option, 106
Remove from Collection option, 106
Remove Selected from Active Collection

option, 107
removing areas, 19–20
renaming collections, 104

Render context, in Properties editor, 30
render engines. See also Cycles render engine;

Eevee render engine

rendered viewport shading type, 39

rendering. See also Cycles render engine; Eevee
render engine

2D Animation, 502

animations, 509–512
Blender interface, OpenGL, 230

Index 615

with camera objects, 92

compositing and, 54

curves, 202

empties, 91

engines for, 230–233, 246, 251, 500–501
in layers, 535

low-resolution test, 583–585
metaball objects, 216

modifiers and, 139
to movie file, 510–511
ngons, 86
NPR (non-photorealistic), 230
overview, 502

in passes, 535

PBR (physically based), 230
quick, tips for, 317–318, 332
stills, 502–509, 511–512
universal light properties and, 303–304
vertex colors, 246–247
video editing and, 55

from Video Sequencer, 527–530
Rendering workspace, 52–53, 462
Repetitive Stress Injury (RSI), 41
resizing areas, 19

resolution independent textures, 269

Restore button, 60
RetopoFlow, 184
retopology, 115, 136, 184–187
RGB images, 322
RGB node, 495
rigging. See also armatures; Bendy Bones panel;

character animation; Dope Sheet editor;
skinning; Stickman; Vertex Groups panel

armatures, 375–381
bendy bones and, 389–390
Bone groups panel and, 408–410
hooks in, 373–375
overview, 367
shape keys in, 368–373
symmetric, 378–379

right-clicking

on 3D Viewport, 21

on corner widgets, 19

on headers, 21, 57
in Knife tool mini-mode, 123

selecting with, 40–41
tabs, 56

rigid body dynamics, 449–450
rim light. See back light

roll angle, 382
Roosendaal, Ton, 11, 13
Rotate tool, 68, 171
Rotate View, Inset Faces tool and, 118
rotating objects, 64, 66, 73
Roughness input, 255

S
saving

automatically, 58
Blender workflows, 56–57
files, 108–109
in Object mode, 108–110
textures, 295–296

Scalable Vector Graphics (SVG) files, 296
Scale Cage tool, 68–69
Scale to Fit, 226

Scale tool, 68
scaling objects, 64

Scene Collection, in .blend files, 104
Scene context, in Properties editor, 30

Scene tab, in Properties editor, 156

Scenes display mode, 103

Scrape tool, 169

screen space effects, 328
Screen Space Reflections checkbox, 256
Screw modifier, 143
scripting, editor types for, 29

Scripting workspace, 52

scrollwheel, on mouse, 33, 57

616 Blender For Dummies

scrubbing, 338, 516
Sculpt mode, 143, 164

sculpting. See also modeling

creating brushes for, 176
with Dyntopo, 180–184
with Multiresolution modifier, 177–179
objects, 166–177
overview, 157–158
presets for, 54

retopology and, 184–187
setting up workspace for, 163–166
texturing and, 176–177
tools for, 166–176
zooming and, 181–182

Sculpting workspace, 52–53
seams, on mesh, 282–283
search function, 49–50
segment, 128
Select Boundary Loop option, 135

Select Grouped menu, 107–108
Select Loop Inner-Region option, 135
Select tool, 82, 118
selecting

edge rings, 134–135
edges in Edit mode, 79–84
faces in Edit mode, 79–84
loops, 133

objects, 40

tools for, 75
vertices in Edit mode, 79–84

selection modes, 80
self collisions, 450

separating objects, 93–94
Set Handle Type menu, 207
Settings panel, 256

Shader Editor

complex lighting with, 315–317
Environment Texture node in, 323

Gradient Texture node in, 324–325
hotkey for, 27
World color in, 320–322

Shader to RGB node, 263–266
shaders

combining, 258–263
defined, 250
node materials and, 250–251
overview, 251–252
Principled BSDF and, 252–257
Shader to RGB node and, 263–266

Shading workspace, 53

shadow maps, 309

shadows

Cast Shadow property and, 305

contact, 308
dramatic, 301

in Eevee render engine, 308
key light and, 299

natural, 299–300
panel in Eevee render engine, 308
soft-edged, 304

Shape Keys panel, 368–373
Shape panel, 201–202, 227
Shear, 223

shot journal, 559

Show Menus, 21

Shrinkwrap modifier, 145
Siblings option, in Select Grouped menu, 107
Side property, 162

Sidebar, 17, 45–46
Sidebar View tab, 42

Simple Deform modifier, 145
Simple subdivision, 151

Simplify tool, 171
Simulate modifiers, 146
simulation, 433–434. See also specific kinds of

simulation

single user, 100

Size property, 160–161
Skin modifier, 143
skinning, vertex groups in, 390–395. See also

rigging

Sky texture, 271

Index 617

Small Caps Scale, 223

Smear tool, 241, 290

smoke simulation, 433, 457–458
Smooth Corrective modifier, 145
Smooth Laplacian modifier, 146
Smooth modifier, 145
Smooth Shading option, 182
Smooth tool, 169

smoothing, with Subdivision Surface modifier,
149–153

Snake Hook tool, 170
snap targets, 70–72
snapping, 38, 43, 70–72
soft body dynamics, 446–448
Soften tool, 290

solid viewport shading type, 39

Solidify modifier, 143
source code, 10

Spacing sub-panel, 225

speaker objects, 92

Specular input, 255

specularity, 307
spin, 130–131, 212
splash screen, 16

splitting

3D Viewport, 44

areas, 19–20
Spot light, 302–303, 306–308, 312–313
Spring, 518
StackExchange, 593

staging, 421

startup.blend file, 56
stashing, 427–428
Steps value, in Last Operator panel, 131

Stickman

adding appendages to, 397–399
building centerline of, 396–397
constraint options with, 400–403
hotkeys, 397–399
kinematics in, 403–407
overview, 396

parenting options with, 400–403
tweaking, 407–410

stills, 502–509
stop-motion animation, 375
story-based timing, 422

storyboard, 339, 341

straight-ahead action, 421

Strength value, 304

Stretch To constraint, 366

Stroke panel, 174
Stucci texture type, 294

subdividing edges, 181
Subdivision Surface modifier

Multiresolution modifier and,
178–179

overview, 143

panel for, 152

smoothing with, 149–153
Subsurface menu, 257
subsurface scattering inputs, 256–257
Subsurface Translucency checkbox, 257
subtractive modeling, 114

subtractive tools, for sculpting,
167–169

Sun light

distance and, 309

inverse-square law and, 307
options specific to, 309–312
overview, 302–303
properties in Eevee render engine, 309

Strength values and, 304

Surface Deform modifier, 146
surfaces, 91, 191, 247, 368
Surfaces menu, 193

surfacing, 39

Suzanne primitive

backlight example with, 300

in Grease Pencil, 463–465
shapes with, 369–372, 375

Symmetrize option, 182–183
Symmetry panels, 175

618 Blender For Dummies

T
tabs, 17, 46, 55
tangent socket, 277
taper objects, 205

Taper Radius setting, 199
tapering curves, 202–206
Targa, 506

terminating edge loops, 132

tessellation, 113

test grid, adding, 283–284
testing

code, 29

material shaders, 29

text

adding, 218
appearance of, 219–225
boxes of, 225–227
converting to curves and meshes, 228
deforming with curves, 227–228
editing, 218
files of, 218
overview, 217–218

Text Boxes panel, 225–226
Text Editor, hotkey for, 29

Text on Curve, overview, 223

Texture context, in Properties editor, 32

Texture Coordinate node, 306

Texture Mapping panel, 272–273
Texture Node Editor, hotkey for, 28
Texture Paint mode, 290–292
Texture Paint workspace, 53, 288–289
Texture panel, 174, 176–177
Texture Slots panel, 289
textures

adding, 267–268
coordinate systems and, 273–276
defined, 267
influencing behavior of brush using, 176–177
mapping, 272–281
overview, 267

painting, 287–295
previewing, 294

procedural, 268–272
saving, 295–296
unwrapping, 281–287

Thickness value, 308
three-point lighting, 298–300, 305, 318
throw, 299, 303

Thumb tool, 170
TIFF, 506

Tile Area, 20

tiles, 280
Tilt tool, 194

Timeline

Animation workspace and, 339

controls in, 338
hotkey for, 28
keying sets in, 345–346
markers in, 414–416
Video Sequencer, 516–517

Toggle Free/Align handles, 208
Toggle Fullscreen Area, 21

toggling Sidebar, 45

Tool Settings, 21

Tool tab, 46

Toolbar

expanding, 164

object gizmos on, 68–69
Regions, 46
in Sculpt mode, 164

selection tools on, 81
Tooltips, 579
ToonBoom, 473
Topbar, 46

topology, 115, 136, 142–143, 171
tracking, 225

Transfer UV Maps option, in Make Links
menu, 100

Transform option, 42

Transform Orientations menu, 64

Transform panel, Item tab and, 46

Index 619

Transform tool, 68–69
transforming

curves, 200

numerical input and, 76
objects, 67–72

translation, defined, 64
Transmission input, 256

Transparency property, 161

Transparent BSDF node, 314–317
Triangulate modifier, 143
tris, 79
true normal socket, 277
Truncate, 226

turnaround render, 358–360
tweak mode, 75
tweening, 341

Type of Event field menu, 60
Type of Event Mapping menu,

58–59
Type option, in Select Grouped menu, 107

U
Underline Position, 223

Underline Thickness, 223

undo, 87
Unified Brush sub-panel, 175
Units panel, 156

universal light options, 303–304
unlinking datablocks, 100–101
unwrapping, 191, 281–287
Update on Edit menu, 216

USB drive, customized events on, 61

Use Alpha property, 161

user preferences, 57–58
UV coordinates, editing, 284–287
UV Editing workspace, 53

UV Editor, 27, 149
UV Layouts, 295–296
UV Maps panel, 280
UV output socket, 274

UV Project modifier, 141, 279–280
UV Warp modifier, 141

V
Vector handles, 207
vector programs, 469, 473
vertex colors, 240–247
Vertex Colors panel, 244

vertex groups, 485
Vertex Groups panel, 390–395
Vertex Paint mode, 240–247, 393
Vertex snapping, 71
Vertex Weight Edit/Mix/Proximity modifier,

141–142
vertices. See also meshes

beveling, 126–129
coloring with, 239

control points and, 91

cutting, 122–126
defined, 79
deselecting, 85
duplicating, 87
Group.L, 149

Group.R, 149

insetting, 117–122
merging, 88
meshes and, 114–117, 130–131
modifiers and, 140
pinning, 286–287
selecting, 79–84

VFX, presets for, 54
VFX Blender session template, 559
video. See also motion tracking

3D graphics and, 298
autofocus and, 557
deinterlaced, 557
post-production, 510–511, 554
progressive, 557
recording, 553–559
rendering to, 527, 529–530

620 Blender For Dummies

video editing

presets for, 55

rendering and, 55

in Video Sequencer, 28
video games

assets for, 309

exporting to, 499

light probes and, 330

Video Sequencer

bins and, 518
compositing and, 531–532
effects in, 525–527
hotkeys, 28, 523
markers in, 415

mouse actions in, 522–523
overview, 339, 513–515
rendering from, 527–530
Sidebar settings in, 517–518
Strip tabs in, 518–524
Timeline settings in, 516–517
transitions in, 527
view modes in, 515–516

View Layer context, in Properties editor, 30

View Layer display mode, 103

View menu, 35

View option, 42

View orientation, 66

View tab, 46, 48, 105
Viewport Overlays menu, 81
viewport shading, 39–40
visual effects

with bendy bones, 389–390
bulging, 375, 390
facial animation, 373, 390
good video and, 553

hand-drawn look, 495

with hooks, 375
lighting, 299, 301

with shape keys, 373
stretching, 366, 375
twisting, 390

Volume snapping, 71
volumetric effects, 458–460
Voroni texture, 271, 294, 306
voxels, 459

W
Warp modifier, 146
Watts, 304

Wave texture, 271
website for Blender, 10

Weight Paint mode, 393–395, 485
Weighted Normal modifier, 141
white category, 167
White Noise texture, 271
white void, 298
window output socket, 274
windows, non-blocking, 17–18
Wireframe modifier, 143
wireframe viewport shading type, 39

Wood texture type, 294

Workbench, 230–231
Workbench render engine, 500–501
workflows

creating, 56

overview, 55–56
saving, 56–57

workspace

for animation, 52–53
for compositing, 52–54
datablocks and, 96

defined, 17
General file in, 16–17
hotkeys for, 55

for layout, 52

for modeling, 52, 78
overview, 17–18
for rendering, 52–53, 55
for scripting, 52

for sculpting, 52–53, 163–166
for shading, 53

Texture Paint workspace, 288–289

Index 621

for texture painting, 53

for unwrapping, 280–281
for UV editing, 280–281
for UV mapping, 53

for video editing, 55

to work with node materials, adjusting, 248–249
World context, in Properties editor, 30

world origin, 43

World tab, 320–325

X
x-axis, defined, 64
X-Axis Mirror feature, 378

Y
y-axis, defined, 64
yellow category, 167

Z
z-axis, defined, 64
Z-depth, 535, 538
zooming, 18, 32–35, 181–182

About the Author
Jason van Gumster does a lot of things. Mostly he makes stuff up. He writes, ani-
mates, and occasionally teaches. With heavy entrepreneurial tendencies that run
nearly as deep as his creative ones, he has a constant fascination with producing
creative content with as much control and independence as possible. Naturally,
that makes him a big proponent of open source software; very nearly everything
that he produces is made using free and open source tools.

Using those open source tools, he ran his own small, independent animation
 studio for eight years. And in the course of that, he had the privilege of managing
large international production teams on ridiculously tight deadlines (4 to 7 min-

utes of CG animation in two days) . . . for fun. He’s transferred some of that expe-

rience in writing to two different books, Blender For Dummies and GIMP Bible. The

rest of that experience he continues to blurt out a bit at a time during his (mostly)
weekly podcast, the Open Source Creative Podcast.

Currently based just outside of Atlanta, Georgia, Jason spends the majority of his
time drinking coffee and trying to be awesome. The former he’s pretty much got-
ten down to a science. The latter . . . well, every now and again he succeeds at that
one and makes it look like it wasn’t an accident.

Dedication
To Ender and Zane. You’re the reason I do this. You’re the reason I do anything.

Author’s Acknowledgments
As with previous editions of this book, my first thanks must go to the ever-
growing team of driven and talented developers behind Blender, including our
“benevolent dictator,” Ton Roosendaal. Without the regular commitment of these
developers, both volunteer and paid, Blender would never exist in the state that it
does today. Of course, equally deserving gratitude is the overall Blender community,
without which Blender would never have been made open source and would’ve
had a difficult time growing to its current state of popularity.

Thanks, also, to everyone at Wiley. Ten years ago, they put an enormous amount
of faith in an unpublished writer for the first edition of Blender For Dummies and

they’ve continued to ask me to write each follow-up edition. In particular, I’d like
to thank Steve Hayes for asking me to be a part of this 4th edition and being
amazingly tolerant of all the ridiculous questions I’ve thrown at him. I’d also like
to specifically thank Scott Tullis for his work as the book’s Project Editor, and
Maureen Tullis for her work as the Project Manager. They’ve helped change my
garbled soup of words into text that actually makes sense. Furthermore, they’ve
been extremely patient with me through the crazy times of following Blender’s
high-paced and fast-changing development. I must also extend a giant bucket of
gratitude to Bassam Kurdali for sticking with me as this book’s technical editor for
all four editions. Bassam is still one of the most knowledgeable and talented
members of the Blender community. Thank you, Bassam, for helping me keep my
facts straight and taking the time to explain things I didn’t fully grok.

Continuing the tradition of the first three editions of this book, I maintain my
thanks for the brilliant human that first filtered water through ground coffee
beans. As for pastries, it’s been a rough road for us. You’re the most delicious kind
of horrible and I love you . . . but I’m starting think you may have it in for me.

And finally, I want to thank my wife and children. No, strike that. I need to thank
you. Because I don’t do that nearly enough. Thank you.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor/Copy Editor: Scott Tullis

Technical Editor: Bassam Kurdali

Editorial Assistant: Matthew Lowe

Production Editor: Magesh Elangovan

Project Manager: Maureen Tullis

Cover Image: Courtesy of Jason van Gumster

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Wrapping Your Brain Around Blender
	Chapter 1 Discovering Blender
	Getting to Know Blender
	Discovering Blender’s origins and the strength of the Blender community
	Making open movies and games

	Getting to Know the Interface
	Working with an interface that stays out of your way
	Resizing areas
	Maximizing an area
	The menu that is a pie

	Chapter 2 Understanding How Blender Thinks
	Looking at Editor Types
	General editors
	Animation editors
	Scripting editors
	Data editors

	Understanding the Properties editor
	Navigating in Three Dimensions
	Orbiting, panning, and zooming the 3D Viewport
	Changing views
	Selecting objects
	Taking advantage of the 3D cursor

	Extra Features in the 3D Viewport
	Quad View
	Regions
	Collaborating (with others and yourself) with annotations
	Don’t know how to do something? Hooray for fully integrated search!

	Customizing Blender to Fit You
	Using preset workspaces
	Blender workflows
	Setting user preferences
	Using custom event maps
	Speeding up your workflow with Quick Favorites

	Chapter 3 Getting Your Hands Dirty Working in Blender
	Grabbing, Scaling, and Rotating
	Differentiating Between Coordinate Systems
	Transforming an Object by Using Object Gizmos
	Activating object gizmos
	Using object gizmos

	Saving Time by Using Hotkeys
	Transforming with hotkeys
	Hotkeys and coordinate systems
	Numerical input
	The Sidebar

	Chapter 4 Working in Edit Mode and Object Mode
	Making Changes by Using Edit Mode
	Switching between Object mode and Edit mode
	Selecting vertices, edges, and faces
	Working with linked vertices
	Still Blender’s No. 1 modeling tool: Extrude

	Adding to a Scene
	Adding objects
	Meet Suzanne, the Blender monkey
	Joining and separating objects
	Creating duplicates and links
	Discovering parents, children, and collections
	Saving, opening, and appending

	Part 2 Creating Detailed 3D Scenes
	Chapter 5 Creating Anything You Can Imagine with Meshes
	Pushing Vertices
	Getting familiar with Edit mode tools
	Adding geometry by insetting
	Cutting edges with the Knife
	Rounding your corners by beveling
	Spiraling new geometry into existence with the Spin tool

	Working with Loops and Rings
	Understanding edge loops and face loops
	Selecting edge rings
	Creating new loops

	Simplifying Your Life as a Modeler with Modifiers
	Understanding modifier types
	Doing half the work (and still looking good!) with the Mirror modifier
	Smoothing things out with the Subdivision Surface modifier
	Using the power of Arrays

	Chapter 6 Sculpting in Virtual Space
	Adding Background Images in the 3D Viewport
	Mastering the types of image objects
	Changing image object properties
	Adjusting your image objects

	Setting Up Your Sculpting Workspace
	Sculpting a Mesh Object
	Understanding sculpt tool types
	Tweaking brush properties
	Refining control of your tools
	Creating custom brushes
	Using Blender’s texture system to tweak brushes

	Sculpting with the Multiresolution modifier
	Freeform Sculpting with Dynamic Topology (Dyntopo)
	Understanding the Basics of Retopology

	Chapter 7 Using Blender’s Non-Mesh Primitives
	Using Curves and Surfaces
	Understanding the different types of curves
	Working with curves
	Understanding the strengths and limitations of Blender’s surfaces

	Using Metaball Objects
	Meta-wha?
	What metaball objects are useful for

	Adding Text
	Adding and editing text
	Controlling text appearance
	Deforming text with a curve
	Converting to curves and meshes

	Chapter 8 Changing That Boring Gray Default Material
	Understanding Materials and Render Engines
	Quick ’n’ Dirty Coloring
	Setting diffuse colors
	Assigning multiple materials to different parts of a mesh
	Using vertex colors

	Setting Up Node Materials
	Adjusting your workspace to work with materials
	Working with nodes
	Understanding shaders

	Playing with Materials in Blender
	Demystifying the Principled BSDF
	Combining shaders with the Mix Shader node
	Playing with the Shader to RGB node

	Chapter 9 Giving Models Texture
	Adding Textures
	Using Procedural Textures
	Understanding Texture Mapping
	Making simple adjustments with the Texture Mapping panel
	Using texture coordinates
	Understanding Object coordinates and the UV Project modifier

	Unwrapping a Mesh
	Marking seams on a mesh
	Adding a test grid
	Generating and editing UV coordinates

	Painting Textures Directly on a Mesh
	Preparing to paint
	Working in Texture Paint mode
	Using textures on your Draw tool

	Saving Painted Textures and Exporting UV Layouts

	Chapter 10 Lighting and Environment
	Lighting a Scene
	Understanding a basic three-point lighting setup
	Knowing when to use which type of light

	Lighting for Speedy Renders
	Working with three-point lighting in Blender
	Using Look Dev to set up lighting

	Setting Up the World
	Changing the sky to something other than dull gray
	Understanding ambient occlusion

	Working with Light Probes in Eevee
	Baking from your light probes
	Understanding the limitations of light probes

	Part 3 Get Animated!
	Chapter 11 Animating Objects
	Working with Animation Curves
	Customizing your screen layout for animation
	Inserting keys
	Working with keying sets
	Working in the Graph Editor
	Editing motion curves

	Using Constraints Effectively
	The all-powerful Empty!
	Adjusting the influence of a constraint
	Using vertex groups in constraints
	Copying the movement of another object
	Putting limits on an object
	Tracking the motion of another object

	Chapter 12 Rigging: The Art of Building an Animatable Puppet
	Creating Shape Keys
	Creating new shapes
	Mixing shapes
	Knowing where shape keys are helpful

	Adding Hooks
	Creating new hooks
	Knowing where hooks are helpful

	Using Armatures: Skeletons in the Mesh
	Editing armatures
	Putting skin on your skeleton

	Bringing It All Together to Rig a Character
	Building Stickman’s centerline
	Adding Stickman’s appendages
	Taking advantage of parenting and constraints
	Comparing inverse kinematics and forward kinematics
	Making the rig more user friendly

	Chapter 13 Animating Object Deformations
	Working with the Dope Sheet
	Selecting keys in the Dope Sheet
	Working with markers
	Recognizing different kinds of keyframe indicators

	Animating with Armatures
	Principles of animation worth remembering
	Making sense of quaternions (or, “Why are there four rotation curves?!”)
	Copying mirrored poses

	Doing Nonlinear Animation
	Working with actions
	Mixing actions to create complex animation
	Taking advantage of looped animation

	Chapter 14 Letting Blender Do the Work for You
	Using Particles in Blender
	Knowing what particle systems are good for
	Using force fields and collisions
	Using particles for hair and fur

	Giving Objects Some Jiggle and Bounce
	Dropping Objects in a Scene with Rigid Body Dynamics
	Simulating Cloth
	Splashing Fluids in Your Scene
	Smoking without Hurting Your Lungs: Smoke Simulation in Blender
	Creating a smoke simulation
	Rendering smoke

	Chapter 15 Making 2D and 2.5D Animation with Grease Pencil
	Getting Started with the 2D Animation Workspace
	Working with Grease Pencil tools
	Drawing with Grease Pencil
	Sculpting Grease Pencil objects
	Editing Grease Pencil objects

	Understanding Grease Pencil Materials
	Mastering Grease Pencil Layers
	Automating Your Drawings with Grease Pencil Modifiers
	Animating with Grease Pencil
	Using a hand-drawn animation workflow with Grease Pencil objects
	Rigging Grease Pencil objects for animation

	Integrating Grease Pencil with a 3D Scene

	Part 4 Sharing Your Work with the World
	Chapter 16 Exporting and Rendering Scenes
	Exporting to External Formats
	Rendering a Scene
	Creating a still image
	Creating a sequence of still images for editing or compositing

	Chapter 17 Editing Video and Animation
	Comparing Editing to Compositing
	Working with the Video Sequencer
	Adding and editing strips
	Adding effects and transitions

	Rendering from the Video Sequencer

	Chapter 18 Compositing Images and Video
	Understanding Nodes
	Getting Started with the Compositor
	Rendering in Passes and Layers
	Discovering Passes Available in Eevee and Cycles
	Understanding Cycles-only Light Passes
	Meet Cryptomatte

	Working with Nodes
	Configuring the backdrop
	Identifying Parts of a Node
	Navigating the Compositor
	Adding nodes to your compositing network
	Grouping nodes together

	Discovering the Nodes Available to You
	Rendering from the Compositor

	Chapter 19 Mixing Video and 3D with Motion Tracking
	Making Your Life Easier by Starting with Good Video
	Knowing your camera
	Keeping your lighting consistent
	Having images in good focus
	Understanding the scene

	Getting Familiar with the Motion Tracking Workspace
	Tracking Movement in Blender
	Adding markers and tracking
	Solving camera motion from tracker data
	Setting up your scene for integrating with your video footage

	Where to Go from Here

	Part 5 The Part of Tens
	Chapter 20 Ten Tips for Working More Effectively in Blender
	Use Tooltips and Integrated Search
	Take Advantage of the Quick Favorites Menu
	Look at Models from Different Views
	Don’t Forget about Add-ons
	Lock a Camera to an Animated Character
	Name Everything
	Do Low-Resolution Test Renders
	Use Annotations to Plan
	Ask for Help
	Have Fun, but Take Breaks

	Chapter 21 Ten Excellent Community Resources
	Blender.org
	Blender ID
	Blender manual
	Developer blog
	Bug reporting and developer discussions
	builder.blender.org
	Blender Cloud

	BlenderArtists.org
	BlenderNation
	BlenderBasics.com
	blender.stackexchange.com
	CGCookie.com
	Blend Swap (blendswap.com)
	Blender.community
	Blender Today
	Right-Click Select
	Blender NPR

	Social Media
	Blender.chat

	Index
	EULA

