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Preface 

Nature exhibits “formless” patterns with different levels of complexity, for instance, 
imagine clouds, coastlines and mountains which are not spheres, circles and cones 
as Mandelbrot quoted in the book The Fractal Geometry of Nature. He coined the 
word fractal to describe challenging irregular and fragmented patterns. As fractal 
portrays natural phenomena, its elegance lies in its colorful graphics and intricate 
patterns. When fractals are browsed on the internet, we get colorful illustrations of 
never-ending patterns preserving self-similarity across any small scale. Beginning 
with mobile wallpapers, fractals can be seen in every turn of nature including medical 
images, human anatomy and river networks. The field of Fractal Geometry benefits 
the readers with fascinating visuals of fractal sets and fractal functions rather than 
providing rigorous theoretical background. 

This book is a visual treat for fractalists as well as for non-fractalists with elemen-
tary MATLAB coding. Patterns of deterministic fractals, fractal functions and fractal 
surfaces are illustrated using MATLAB. Chapter 1 briefly discusses the construction 
of a deterministic fractal and its iteration algorithm. The examples of deterministic 
fractals such as Sierpinski triangle, von Koch curve and so on are described mathe-
matically and their patterns are exemplified with MATLAB code. Further, MATLAB 
code for estimating fractal dimensions is presented for box counting, Higuchi and 
Katz fractal dimensions. 

Chapter 2 presents graphical illustrations of univariate fractal interpolation func-
tions with constant and variable scaling factors. The MATLAB code is provided for 
generating fractal curves at different levels of iterations with the given data set and 
scaling parameters. Chapter 3 benefits the readers with appealing fractal graphs of 
differentiable fractal interpolation functions. For the prescribed shape parameters 
and derivative values, MATLAB code is prescribed for achieving different fractal 
splines. 

Chapter 4 precisely recalls the construction of fractal surfaces. MATLAB code 
is presented for generating a variety of fractal surfaces along X-axis and Y-axis 
depending on the shape and scaling parameters. Chapter 5 explores the application of

v



vi Preface

fractal functions. Graphs of mountains and clouds are approximated using MATLAB 
code with different sets of scalings. In addition, the first and second waves of Omicron 
are reconstructed using affine fractal interpolation functions. 

Torino, Italy 
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Chapter 1 
Fractals and Dimensions 

1.1 Introduction 

In Euclidean geometry, any smooth curve is one-dimensional and any smooth sur-
face is two-dimensional. It is not the case when we encounter with natural objects, 
nature is completely spread with its own randomness everywhere. There are curves 
and surfaces with high irregularities that cannot be investigated using the Euclidean 
geometry. The birth of fractal geometry is a boon to analyze such non-smooth natural 
curves and surfaces. Mandelbrot, who introduced the word fractal has mathemati-
cally defined it as a set with the Hausdorff dimension strictly exceeds its topological 
dimension, refer [ 1]. 

An iterated function system (IFS) is the fundamental concept behind the construc-
tion of fractals, it generates the deterministic fractal as its unique attractor. An IFS 
is a family of finite number of continuous maps on a complete metric space and it 
is hyperbolic if all the continuous maps are contractive. Let .(X, d) be a complete 
metric space. The map .w : X → X is said to be a contraction map if it satisfies 

. d(w(u), w(v)) ≤ cd(u, v), for all u, v ∈ X,

where . c is called the contraction ratio or contractivity factor such that .c ∈ [0, 1). A  
point.a ∈ X is called the fixed point of. w if .w(a) = a. In general, a contraction map 
may possesses any number of fixed points and it need not be unique. However, the 
Banach fixed point theorem guarantees the existence of a unique fixed point when 
contractions are defined on a complete metric space. Consider a complete metric 
space.X with respect to the metric . d. Let .H(X) be the set of all non-empty compact 
subsets of . X . The Hausdorff metric . h on .H(X) is defined by 

. h(A, B) = max{sup
u∈A

inf
v∈B d(u, v), sup

v∈B
inf
u∈A

d(u, v)},

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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2 1 Fractals and Dimensions

for .A, B ∈ H(X). The hyperspace .(H(X), h) is a complete metric space, provided 
that .(X, d) is complete. For .k = 1, 2, . . . , N , defining the continuous maps .wk as 
self-maps on .H(X), the system 

.{X;wk : k = 1, 2, . . . , N } (1.1) 

constitutes an IFS. Combining all the contraction maps .wk defined on .(H(X), h), 
a new contraction map is produced, namely Hutchinson-Barnsley operator . W :
H(X) → H(X). It is defined by 

. W (B) =
N⊔

k=1

wk(B),

where .B ∈ H(X) and .wk(B) = {wk(u) : u ∈ B}. If the continuous maps .wk obey 

. d(wk(u), wk(v)) ≤ rkd(u, v), for all u, v ∈ X,

where.rk are contractivity factors such that .0 ≤ rk < 1, then the IFS (1.1) is referred 
as the hyperbolic IFS in [ 2]. It follows that .W is also a contraction mapping with 
respect to the Hausdorff metric satisfying 

. h(W (A),W (B)) ≤ rh(A, B), for all A, B ∈ H(X),

where .r = max{rk : k = 1, 2, . . . , N } is the contractivity factor. Then .W possess a 
unique fixed point .G such that 

. G = W (G) =
N⊔

k=1

wk(G).

In addition, the unique fixed point .G ∈ H(X) obeys 

. G = lim
n→∞ W ◦n(A), for each A ∈ H(X),

and it is called as the attractor or deterministic fractal, where. W ◦n = W ◦ W ◦ · · · ◦
W (n times) is the n-fold auto-composition of the map . W . For more details on the 
construction of deterministic fractal, refer [ 2, 3]. 

1.2 Deterministic Iteration Algorithm 

Barnsley has proposed two algorithms namely the deterministic algorithm and the 
random iteration algorithm for computing fractals in [ 2]. In this section, deterministic 
iteration algorithm is briefly recalled. Consider the IFS .{X;wk : k = 1, 2, . . . , N }
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with the Hutchinson-Barnsley operator .W on .H(X). Choose an initial non-empty 
compact set of . X , say .G0 such that the sets are iteratively computed as follows 

. G1 =W (G0) =
N⊔

k=1

wk(G0)

G2 =W (G1) =
N⊔

k=1

wk(G1)

...

Gn =W (Gn−1) =
N⊔

k=1

wk(Gn−1).

It is well-known that the sequence of sets .G0,G1, . . . ,Gn, . . . converges to a non-
empty compact set .G (attractor of the IFS) by the Banach fixed point theorem. 

For any choice of initial non-empty compact set in . X , the algorithm yields the 
attractor . G. However, if .G0 is completely unrelated to the attractor, the number of 
iterations will be larger for the convergence. 

1.2.1 Sierpinski Triangle 

The exact self-similarity of the Sierpinski triangle at any small scale makes it an 
interesting and simple example of classic deterministic fractals on two-dimensional 
space. Using the iterative approach, the Sierpinski triangle is constructed as follows. 
Consider the larger equilateral triangle of side length. l, joining the midpoints of each 
side, one can obtain four new equilateral triangles with side length being equal to 
.l/2, delete the centre triangle leaving the boundary. As a result of first iteration, three 
equilateral triangles are obtained. In the second iteration, the midpoints of three sides 
of each small triangle are joined to remove the centre triangle from each of the three, 
thus nine equilateral triangles are obtained, each of side length.l/4. The same process 
is applied recursively with the remaining smaller triangles and at the .nth iteration, 
.3n number of triangles are obtained with side length.(l/2)n . The infinite intersection 
of all the equilateral triangles obtained in each iteration constitutes the Sierpinski 
triangle. The entire length of the Sierpinski triangle is found to be infinite since its 
total length .(3/2)n is calculated as a series diverging to infinity i.e., . limn→∞(3/2)n.
For detailed description, refer the books [ 4, 5]. 

To construct a Sierpinski triangle through the concept of IFS, consider the contrac-
tive mappings.w1, w2 and.w3 with contractivity factor.1/2 defined on. [0, 1] × [0, 1]
as given below,
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.

w1

(
x
y

)
=

(
0.5 0
0 0.5

) (
x
y

)
+

(
0
0

)
,

w2

(
x
y

)
=

(
0.5 0
0 0.5

) (
x
y

)
+

(
0.5
0

)
,

w3

(
x
y

)
=

(
0.5 0
0 0.5

) (
x
y

)
+

(
0
0.5

)
.

(1.2) 

Hence,.{[0, 1] × [0, 1];wi : i = 1, 2, 3} constitutes the IFS whose attractor is the 
required Sierpinski triangle. The following is the MATLAB code for generating the 
Sierpinski triangle using contraction maps (1.2) in the aforementioned deterministic 
iteration algorithm (Fig. 1.1). 

%  The  S i e r p i n s k i t  r  i  a  n  g  l  e (  o  r S i e r p i n s k i g  a  s  k  e  t  )  
%W=AX+B 
%w  h  e  r  e  A  =  [  0  .  5 0  ;  0 0  . 5 ] ;  X=  [  x  ;  y  ] ;  B  =  [  0  0  .  5 0  ;  0  0  0  . 5 ] ;  
%  i  n i t i a l  X  i  s [  0  1  0  ;  0  0  1  ]  ;  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
X=  [ 0  1  0  ;  0  0  1  ]  ;  A  =  [  0  .  5 0  ;  0 0  .  5  ]  ;  B = [ 0  0  .  5 0  ;  0  0  0  .  5  ]  ;  %  i  n p u t  
T e r m i n a t i o n  =  6  ;  
f o r i  t  e  r  =  1  :  T  e r m i n a t i o n  

i f i  t  e  r  ==1  
w=A∗X+B ; 
X=w ; 
XX= [X X ( : , 1 ) ] ; 
x =XX  (  1  ,  :  )  ;  y =XX  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  )  
f i l l  ( x  ,  y  ,  ’ b  ’  ) 

e l s e  %  m  o  r  e  t  h  a  n  o  n  e i t e r a t i o n f  i  g  u  r  e  
w1=A∗X+B ( : , 1 ) ;%  F  i  r  s  t t r a n f o r m a t i o n  
T1  =w1 ;  
w2=A∗X+B ( : , 2 ) ;%S  e  c  o  n  d t r a n s f o r m a t i o n  
T2  =w2 ;  
w3=A∗X+B ( : , 3 ) ;%T  h  i  r  d t r a n s f o r m a t i o n  
T3  =w3 ;  
X=  [  T1 T2 T3  ]  ;  
[m  n  ]  =  s i z e  (X )  ;  
f o r i =  1  :  n  /  3  

D=  [X  (  :  , 3  ∗ ( i  −1)  +  1  :  3  ∗ i )  X  (  :  ,  3  ∗ ( i  −1)  +  1  )  ]  ;  
x =D  (  1  ,  :  )  ;  y  =D  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  )  
f i l l  ( x  ,  y  ,  ’ b  ’  ) 
h o l d  on  

e nd  
e nd  

e nd
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Fig. 1.1 Sierpinski triangle with 6 iterations 

1.2.2 von Koch Curve 

Let the unit interval [0, 1] be denoted by J and a line segment of unit length by 
. J0. The construction of von Koch curve begins with the removal of middle third 
segment of . J and replacing it by other two sides of the equilateral triangle based 
on the removed segment. Set .J1 is obtained. Next, set .J2 is generated by applying 
the similar procedure to each segment of .J1 and so on. The limiting set is called 
von Koch curve. We can model this construction using an iterated function system 
consisting of contractions .{w1, w2, w3, w4} on the the square .[0, 1] × [0, 1], where 
transformations are given by
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.

w1(x, y) =
( x
3
,
y

3

)
,

w2(x, y) =
(2 + x − √

3y

6
,

√
3x + y

6

)
,

w3(x, y) =
(3 + x + √

3y

6
,
−√

3x + y + √
3

6

)
,

w4(x, y) =
( x + 2

3
,
y

3

)
.

(1.3) 

The von Koch curve is the attractor of the IFS . {[0, 1] × [0, 1];wi : i = 1, 2, 3, 4}.
The “trema” and “dragon” type construction of Koch curves can be found in [ 4]. The 
following is the MATLAB code for generating the von Koch curve corresponding to 
the contractions in Eq. (1.3) (Fig. 1.2). 

Fig. 1.2 von Koch curve with 5 iterations
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%Koch  c  u r v e  
%We  a  r  e t  a  k  i  n  g t  r  a  n  s  f  o  r  m  a  t  i  o  n  s w  _  i  =  A  _  i  x  +  B  _  i  f  o  r i  = 1  , 2  , 3  , 4  
%A1 = [ 1 / 3 0 ; 0 1 / 3 ] ; A2 = [ 1 / 6 − s q r t  (  3  )  /  6 ;  s q r t  (  3  )  /  6 1  /  6  ]  ;  
%A3 = [ 1 / 6 s q r t ( 3 ) / 6 ; − s  q  r  t  (  3  )  /  6 1  / 6 ] ;  A4  =  [  1  /  3 0  ;  0 1 / 3 ] ;  
%B  =  [  0  1  /  3 1  /  2 2  / 3 ; 0  0  s  q  r  t  (  3 )  /  6 0  ]  ;  B  _  i  =B  (  :  ,  i  )  ;  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
A1  =  [  1  /  3 0  ;  0 1 / 3 ] ;  
A2 = [ 1 /  6 − s q r t  ( 3 )  /  6  ;  s q r t  ( 3 )  /  6 1  /  6  ]  ;  
A3 = [ 1 /  6 s q r t  ( 3 )  /  6  ;  − s q r t  ( 3 )  /  6 1  /  6  ]  ;  
A4  =  [  1  /  3 0  ;  0 1 / 3 ] ;  
B  =  [  0  1  /  3 1  /  2 2 / 3 ; 0  0  s q r t  ( 3 )  /  6 0  ]  ;  
X=  [  0  1  ;  0 0  ]  ;  %  i  n p u t  
x=X  (  1  ,  :  )  ;  y  =X  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  ,  ’∗− ’ ) ;  
f i g u r e  
T e r m i n a t i o n  =  5  ;  
f o r i  t  e  r  =  1  :  T  e r m i n a t i o n  

i f i  t  e  r  ==1  
w1=A1∗X+B ( : , 1 ) ; w2=A2∗X+B ( : , 2 ) ; 
w3=A3∗X+B ( : , 3 ) ; w4=A4∗X+B ( : , 4 ) ; 
X=  [  w1 w2 w3 w4  ]  ;  
X=  u n i q u e  (  X  ’  ,  ’ r  o  w  s  ’  ) ;  
x=X  (  :  ,  1  )  ; y  =X  (  :  ,  2  )  ;  
p l o t  ( x  ,  y  ,  ’∗− ’ ) ;  
X=X ’ ; 

e l s e  %  m  o  r  e  t  h  a  n  o  n  e i t e r a t i o n  
f i g u r e  
w1=A1∗X+B ( : , 1 ) ;%  F  i  r  s  t t r a n f o r m a t i o n  
T1  =w1 ;  
w2=A2∗X+B ( : , 2 ) ;%S  e  c  o  n  d t r a n s f o r m a t i o n  
T2  =w2 ;  
w3=A3∗X+B ( : , 3 ) ;%T  h  i  r  d t r a n s f o r m a t i o n  
T3  =w3 ;  
w4=A4∗X+B ( : , 4 ) ;%F  o  u  r  t  h t  r a n s f o r m a t i o n  
T4  =w4 ;  
X=  [  T1 T2 T3 T4  ]  ;  
x=X  (  1  ,  :  )  ;  y  =X  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  )  ;  

e n d  
e nd  

1.2.3 Dragon Curve 

The construction of dragon curve via the line segments is discussed here. For the 
first iteration, replace the line segment with two segments, each scaled by a ratio 
.r = 1/

√
2 such that the original segment would have been the hypotenuse of an 

isosceles right triangle. Following along the original segment, two new segments are 
placed to the left. For the second iteration, each of the segments are replaced with two 
new segments at right angles, each scaled by the ratio. r . The new segments are placed 
to the left then to the right along the segments of the first iteration. Continuing the
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similar construction, always alternating new segments between left and right along 
the segments of the previous iteration generates the “dragon curve”. The fundamental 
theorem for generating the dragon curve can be seen in [ 6]. Let. X be the line segment 
joining two points (0,0),(1,0) and consider the IFS on .X consistingn following two 
contractions, 

.

w1(x, y) =
( x
2

− y

2
,
x

2
+ y

2

)
,

w2(x, y) =
(

− x

2
− y

2
+ 1,

x

2
− y

2

)
.

(1.4) 

The IFS .{X;wi : i = 1, 2} generates the dragon curve, where .w1 and .w2 are pro-
vided in Eq. (1.4), which is displayed in Fig. 1.3. The associated MATLAB code for 
generating Fig. 1.3 is provided below. 

%D  r a gon  c  u  r  v  e  
%We  a  r  e t  a  k  i  n  g t r a n s f o r m a t i o n s w  _  i  =  A  _  i  x  +  B  _  i  f  o  r i  =  1  ,  2  
%A1 = [ 1 / 2 − 1 / 2 ; 1 / 2 1  /  2  ]  ;  A2  =  [  −1 /2 − 1 / 2 ; 1 / 2 − 1 / 2 ] ;  
%B = [ 0 1 ; 1 0 ] ; B _ i =B ( : , i ) ; 
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
A1 = [ 1 /  2 − 1 / 2 ; 1 / 2 1  /  2  ]  ;  A2  =  [  − 1 /2 − 1 / 2 ; 1 / 2 − 1 / 2 ] ;  
B= [ 0  1  ;  1 0  ]  ;  
X=  [  0  1  ;  0 0  ]  ;  %  i  n p u t  
x=X  (  1  ,  :  )  ;  y  =X  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  ,  ’∗− ’ ) ;  
f i g u r e  
T e r m i n a t i o n  =  2  0  ;  
f o r i  t  e  r  =  1  :  T  e r m i n a t i o n  

i f i  t  e  r  ==1  
w1=A1∗X+B ( : , 1 ) ; w2=A2∗X+B ( : , 2 ) ; 
X=  [  w1  w2  ]  ;  
X=  u n i q u e  (  X  ’  ,  ’ r  o  w  s  ’  ) ;  
x=X  (  :  ,  1  )  ; y  =X  (  :  ,  2  )  ;  
p l o t  ( x  ,  y  ,  ’∗− ’ ) ;  
X=X ’ ; 

e l s e  %  m  o  r  e  t  h  a  n  o  n  e i t e r a t i o n  
f i g u r e  
w1=A1∗X+B ( : , 1 ) ;%  F  i  r  s  t t r a n f o r m a t i o n  
T1  =w1 ;  
w2=A2∗X+B ( : , 2 ) ;%S  e  c  o  n  d t r a n s f o r m a t i o n  
T2  =w2 ;  
X=  [  T1  T2  ]  ;  
x =X  (  1  ,  :  )  ;  y  =X  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  )  ;  

e n d  
e nd
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Fig. 1.3 Dragon curve with 20 iterations 

1.2.4 Fern Leaf 

A fern leaf is a perfect example for both random fractal and deterministic fractal. 
Though it comes under the classification of random fractals, it can be constructed 
as a deterministic fractal to a specific IFS containing the following two contraction 
mappings.
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.

w1(x, y) =
(
0,

4y

25

)
,

w2(x, y) =
(17x
20

+ y

25
,− x

25
+ 17y

20
+ 4

25

)
,

w3(x, y) =
( x
5

− 13y

50
,−23x

100
+ 11y

50
+ 4

25

)
,

w4(x, y) =
(

− 3x

20
+ 7y

25
,
13x

50
+ 6y

25
+ 11

25

)
.

(1.5) 

Barnsley has discussed the algorithms for constructing fern leaf in [ 2]. The MATLAB 
code is provided below to generate a fern leaf utilising contraction maps in Eq. (1.5) 
(Fig. 1.4). 

f u n c t i o n f e r n  
%  B  a  r  n  s  l  e  y F  e  r  n F  r a c t a l g  e  n  e  r  a  t  o  r  
%(  h  t  t  p  s  :  /  /  s t a c k o v e r f l o w  .  com  /  q  u  e  s  t  i  o  n  s  /  3 9 6 2 8 6 0 1 /  g  e  n  e  r  a  t  i  n  g  − 

b a r n s l e y  − f e r n  
− f r a c t a l  −i n  −ma t l a b  )  
n  =  1 0 ^ 5 ;  
x =  z e r o s  ( n  ,  1  )  ;  
y =  z e r o s  ( n  ,  1  )  ;  
f o r i =  2  :  n  

r =  r a n d  ; 
i f (  0  <=  r )  &&  ( r  <  0  .  0  1  )  %  F  i  r  s  t t r a n s f o r m a t i o n  

x (  i  )  =  0  ;  
y (  i  )  =  0  .  1  6  ∗ y (  i  −1)  ;  

e l s e i f ( 0 . 0 1  <=  r  )  &&  (  r  <  0 . 8 6 )  %  S  e  c  o  n  d t r a n s f o r m a t i o n  
x (  i  )  =  0  .  8  5  ∗ x (  i  −1)  +  0  .  0  4  ∗ y (  i  −1)  ;  
y (  i  )  =  −0.04  ∗ x (  i  −1)  +  0  .  8  5  ∗ y (  i  −1)  +  1  .  6  ;  

e l s e i f ( 0 . 8 6  <=  r  )  &&  (  r  <  0 . 9 3 )  %  T  h  i  r  d t r a n s f o r m a t i o n  
x (  i  )  =  0  .  2  ∗ x (  i  −1)  − 0 . 2 6  ∗ y (  i  −1)  ;  
y (  i  )  =  0  .  2  3  ∗ x (  i  −1)  +  0  .  2  2  ∗ y (  i  −1)  +  1  .  6  ;  

e l s e %F  o  u  r  t  h t r a n s f o r m a t i o n  
x (  i  )  =  −0.15  ∗ x (  i  −1)  +  0  .  2  8  ∗ y (  i  −1)  ;  
y (  i  )  = 0  .  2  6  ∗ x (  i  −1)  +  0  .  2  4  ∗ y (  i  −1)  +  0  . 4 4 ;  

e nd  
e nd  
p l o t  ( x  ,  y  ,  ’ .  ’  , ’ C  o  l  o  r  ’  ,  [  8  5  ,  1  2  5  ,  6 5 ] / 2 5 6  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 0  .  1  )  
e n d  

1.2.5 Sierpinski Carpet 

The construction commences with a filled solid square denoted by .C0. Divide  . C0

into 9 smaller congruent squares and remove the center square leaving its boundary 
to get.C1. Next each of eight remaining solid squares are subdivided into 9 congruent 
squares and the center squares are removed from each to get.C2. Continuing the pro-
cess, a decreasing sequence of sets .C0 ⊃ C1 ⊃ C2 · · · is obtained. The intersection
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Fig. 1.4 Fern leaf 

of all the sets in this sequence is the Sierpinski carpet. Let .X be a unit square on . R2

with the vertices .A = (0, 0), B = (1, 0),C = (0, 1) and .D = (1, 1) and the IFS on 
.X consists of the following eight contractions,
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.

w1(x, y) =
( x
3
,
y

3

)
,

w2(x, y) =
( x
3
,
y

3
+ 1

3

)
,

w3(x, y) =
( x
3
,
y

3
+ 2

3

)
,

w4(x, y) =
( x
3

+ 1

3
,
y

3

)
,

w5(x, y) =
( x
3

+ 1

3
,
y

3
+ 2

3

)
,

w6(x, y) =
( x
3

+ 2

3
,
y

3

)
,

w7(x, y) =
( x
3

+ 2

3
,
y

3
+ 1

3

)
,

w8(x, y) =
( x
3

+ 2

3
,
y

3
+ 2

3

)
.

(1.6) 

The IFS .{X;wi : i = 1, 2, . . . , 8} with maps .wi in Eq. (1.6) generates Sierpinski 
carpet as its attractor. The MATLAB code to generate the carpet employing the 
above contractions is provided as follows (Fig. 1.5). 

%  S  i e r p i n s k i C  a  r  p  e  t  
%We  a  r  e t  a  k  i  n  g t  r  a  n  s  f  o  r  m  a  t  i  o  n  s w  _  i  =A  x  +  B  _  i  f  o  r i  = 1  , 2  , 3  , 4  
%A  =  [  1  /  3 0  ;  0 1 / 3 ] ;  
%B  =  [  0  0  0 1  /  3 1  /  3 2  /  3 2  /  3 2  /  3  ;  0 1  /  3 2  /  3 0 2  /  3 0 1  /  3 2  /  3  ]  ;  B  _  i  =B  (  :  ,  

i ) ;  
%A  =  (  0 ,  0  )  ,  B  =  (  1 ,  0  )  ,  C  =  (  0 ,  1  )  a  n  d  D  =  (  1 ,  1  )  ;  x  =  (  0  1  0  1  ;  0  0  1  1  )  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
A =  [  1  /  3 0  ;  0 1  /  3  ]  ;  
B  =  [  0  0  0  1 / 3 1  / 3 2 / 3 2  / 3 2  /  3  ;  0 1  / 3 2 / 3  0  2  / 3  0  1  / 3 2  /  3  ]  ;  
X=  [  0  1  1  0  ;  0  0  1  1  ]  ;  %  i  n p u t  
X1 = [X X ( :  ,  1 ) ] ;  
x =X1  (  1  ,  :  )  ;  y =X1  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  ,  ’∗− ’ ) ;  
f i g u r e  
T e r m i n a t i o n  =  5  ;  
f o r i  t  e  r  =  1  :  T  e r m i n a t i o n  

i f i  t  e  r  ==1  
w1=A∗X+B ( : , 1 ) ; w2=A∗X+B ( : , 2 ) ; w3=A∗X+B ( : , 3 ) ; w4=A∗X+B ( : , 4 ) ; 
w5=A∗X+B ( : , 5 ) ; w6=A∗X+B ( : , 6 ) ; w7=A∗X+B ( : , 7 ) ; w8=A∗X+B ( : , 8 ) ; 
X=  [  w1 w2 w3 w4 w5 w6 w7 w8  ]  ;  
[m  n  ]  =  s i z e  (X )  ;  
f o r i =  1  :  n  /  4  

i v a l u e  =  i  ;  
D=  [X  (  :  , 4  ∗ ( i  −1)  +  1  :  4  ∗ i )  X  (  :  ,  4  ∗ ( i  −1)  +  1  )  ]  ;  
x =D  (  1  ,  :  )  ;  y  =D  (  2  ,  :  )  ;  
p l o t  ( x  ,  y  )  
f i l l  ( x  ,  y  ,  ’ b  ’  ) 
h o l d  on  

e nd  
e l s e  %  m  o  r  e  t  h  a  n  o  n  e i t e r a t i o n
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Fig. 1.5 Sierpinski carpet with 5 iterations 

f i g u r e  
w1=A∗X+B ( : , 1 ) ;%  F  i  r  s  t t r a n f o r m a t i o n  
T1  =w1 ;  
w2=A∗X+B ( : , 2 ) ;%S  e  c  o  n  d t r a n s f o r m a t i o n  
T2  =w2 ;  
w3=A∗X+B ( : , 3 ) ;%T  h  i  r  d t r a n s f o r m a t i o n  
T3  =w3 ;  
w4=A∗X+B ( : , 4 ) ;%F  o  u  r  t  h t  r a n s f o r m a t i o n  
T4  =w4 ;  
w5=A∗X+B ( : , 5 ) ;%  F  i  v  e  t  h t  r a n f o r m a t i o n  
T5  =w5 ;  
w6=A∗X+B ( : , 6 ) ;%S i x t h t  r  a  n  s  f  o  r  m  a  t  i  o  n  
T6  =w6 ;  
w7=A∗X+B ( : , 7 ) ;%S  e  v  e  n  t  h t r a n s f o r m a t i o n  
T7  =w7 ;
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w8=A∗X+B ( : , 8 ) ;%E  i  g  h  t  h t  r a n s f o r m a t i o n  
T8  =w8 ;  
X=  [  T1 T2 T3 T4 T5 T6 T7 T8  ]  ;  
[m  n  ]  =  s i z e  (X )  ;  
f o r i =  1  :  n  /  4  

D=  [X  (  :  , 4  ∗ ( i  −1)  +  1  :  4  ∗ i )  X  (  :  ,  4  ∗ ( i  −1)  +  1  )  ]  ;  
x =D  (  1  ,  :  )  ;  y  =D  (  2  ,  :  )  ;  
f i l l  ( x  ,  y  ,  ’ b  ’  ) 
h o l d  on  

e nd  
e nd  

e nd  

1.3 Fractal Dimensions 

Hausdorff dimension can be defined for any set and it is mathematically convenient to 
manipulate, since it is based on measures. It involves taking the infimum over covers 
of a given set, say . K , consisting of balls of radius less than or equal to .∈ > 0 and 
this makes its explicit computation difficult. A slight simplification is obtained by 
considering only covers containing balls of radius equal to .∈ > 0. This gives rise to 
the concept of box dimension. For interesting results on fractal dimension of fractals 
and fractal functions, refer the book [ 7, 8]. The algorithm for box counting method 
is provided in the following subsection. 

1.3.1 Box Counting Algorithm 

Box counting is a method of gathering data for analyzing complex patterns by break-
ing a data set, object, image, etc. into smaller and smaller pieces, typically “box”-
shaped, and analyzing the pieces at each smaller scale. 

Using the box counting method, fractal dimension is the slope of the line when 
we plot the value of .log(N ) on .Y -axis against the value of .log(r) on .X -axis. The 
same equation is used to define the fractal dimension, . D. The MATLAB code for 
box counting algorithm is given as follows. 

c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
c =  i  m  r  e  a  d  (  ’ k  o  c  h  _  i  t  e  r  5  .  j  p  g  ’  ) ;  
im ag e  ( c )  
a x i s i  m  a  g  e  
[  n  ,  r  ]  =  b o x c o u n t  (  c  ,  ’ s  l  o  p  e  ’  ) 
d f  =  − d i f f  ( l o g  ( n )  )  .  /  d i f f  ( l o g  ( r ) )  ;  
d i s p  ( [  ’  F  r  a  c  t  a  l d im e n s i o n  ,  Df  =  ’  n um 2 s t r  ( mean  (  d  f  (  4 : 8 )  )  ) ’ +/  − ’ 

n um 2 s t r  
( s t d  (  d  f  (  4 : 8 )  )  )  ]  )  ;
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Output: N = Columns 1 through 8 
16664999 4167500 1042500 260625 65417 16485 4187 1080 
Columns 9 through 14 
280 70 20 6 2 1 
r = Columns 1 through 8 
1 2 4 8 16 32 64 128  
Columns 9 through 14 
256 512 1024 2048 4096 8192 
Fractal dimension, Df = 1.26 +/- 0.02052 

1.3.2 Higuchi Algorithm 

Higuchi developed a technique to measure the fractal dimension of the data. (x, f (x))
forming the graph of a function . f on the unit interval. The Higuchi method takes a 
signal, discretized into the form of a time series,.x0, x1, x2, . . . , xN . From given time 
series, we construct a new time series, .Xm

k , defined as: 

. Xm
k : f (m), f (m + k), f (m + 2k), . . . , f (m + [N − m

k
].k),

where .[ N−m
k ] is the integer part of . N−m

k , .k ∈ [1, 2, . . . , kmax ] indicate the interval 
time and.m ∈ [1, 2, . . . , k] is the initial time. We define the length of the curve , . Xm

k ,

as follows, 

. Lm(K ) =
[ N−m

k ]∑

i=1

N − 1

[ N−m
k ].k2

{(
| f (m + ik) − f (m + (i − 1).k)|

)}
.

The length of the curve for the time interval k is then defined as the sum over the k 
sets of . Lm(k),

. L(k) =
k∑

m=1

Lm(k).

Fractal dimension is the slop of the data.{(log 1
k , log L(k))}. The MATLAB code for 

estimating Higuchi fractal dimension is provided below.
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%H  i g u c h i F  r  a  c  t  a  l D  i  m  e  n  s  i  o  n  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
x  =  [  1  5 7 8 9  15  16  12  18  2  0  ]  ;  
N= l e n g t h  ( x )  ;  
k_max  =  5  ;%  I  n t e r v a l t  i  m  e  
M= 0 ;  
f o r  k  =  1  :  k_max  

f o r  m=  1  :  k  
H  (  k ,  m)  =km  (  x ,  k ,  m  ,  N  )  ;  

e n d  
D (  k  )  =  sum (H (  k  ,  :  )  )  ;  

e n d  
LD= l o g 1 0  (D )  ;  
k  =  1  :  k_max  ;  
Lk  =  l o g 1 0  ( k )  ;  
s c a t t e r  (  Lk  ,  LD  ,  ’ b  ’  , ’ ∗ ’ ) ;  
P=  p o l y f i t  ( Lk  ,  LD  ,  1  )  
s l o p e  =  P  (  1  )  
i n t e r c e p t  =  P  (  2  )  ;  
y f i t  =  P  (  1  )  ∗Lk +P (  2  )  ;  
%  P  (  1  ) i  s t  h  e s  l  o  p  e  a  n  d  P  (  2  ) i  s t  h  e i  n t e r c e p t  
h o l d  on  ;  
p l o t  ( Lk  ,  y  f  i  t  ,  ’ r  − . ’  ) 
%%%% 
f u n c t i o n [H]  =  km  (  x  ,  k  ,  m  ,  N  )  
AA= f l o o r  ( (  N−m)  /  k  )  ;  
f o r j =  1  :  AA+1  

a a  (  j  )  =m+  (  j  −1)  ∗ k ;  
HI  (  j  )  =  x  (  a  a  (  j  )  )  ;  

e n d  
a a  ;  
HI  ;  
f o r i =  1  :  l e n g t h  ( HI )  −1 

L (  i  )  =  a b s  ( HI (  i  +  1  )−HI  (  i  )  )  ;  
e n d  
u =  (  N−1)  /  (  AA∗ k ^  2  )  ;  
H =  (  1  /  u  )  ∗ sum ( L )  ;  
e n d  

Output: Higuchi Fractal Dimension is 1.0578 for . Kmax = 5.

1.3.3 Katz Algorithm 

The Katz algorithm is used to compute fractal dimension for signals and it is expressed 
as 

.D = log L
a

log d
a

, (1.7)
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here . L is the total length of the curve, . d is the diameter (planar extent) of the curve 
and . a is the average distance between two successive points. Length of the curve L 
can be interpreted as accumulated change of speech signal values and is calculated 
using simple Euclidean distance formula: 

.L =
n∑

i=1

li,i+1 =
n∑

i=1

√
(xi+1 − xi )2 + (yi+1 − yi )2. (1.8) 

Planar extent d is equal to the maximum distance between the first point and any 
other point of the curve: 

.d = max{l1,i }, 2 ≤ i ≤ n + 1. (1.9) 

With this description, the MATLAB code for Katz fractal dimension is given as 
follows. 

%  K  a  t  z f  r a c t a l d  i  m  e  n  s  i  o  n f  o  r g  i  v  e  n s  i  g  n  a  l v  a  l  u  e  s  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
%Akima  d  a  t  a {  (  0  , 1 0 )  ,  (  2  ,  1 0 )  ,  (  3  , 1 0 )  ,  (  5  , 1 0 )  ,  
%(  6  , 1 0 )  ,  (  8  , 1 0 )  ,  (  9  , 1  0  .  5  )  ,  (  1  1  ,  1 5 )  ,  (  1  2  ,  5 0 )  ,  (  1  4  ,  6 0 )  ,  (  1  5  ,  

8 5 )  }  
M=  [  0 1 0 ; 2 1 0 ; 3 1 0 ; 5 1 0 ; 6 1 0 ; 8 1 0 ; 9 1  0  .  5  ;  1  1 1 5 ; 1 2 5  0 ; 1 4 6 0 ; 1 5  

8 5 ] ;  
[m  n  ]  =  s i z e  (M) 
%  L  e  n  g  t  h  o  f t  h  e  t  w  o  s  u  c  c  e  s  i  v  e p o i n t s  
f o r i =  1  :  m−1 

LL ( i  )  = s q r t  ( (M(  i  +  1  ,  1  )−M( i  ,  1  )  )  ^  2  + (M( i  + 1  ,  2  )−M( i  ,  2  )  )  ^  2  )  ;  
e n d  

L=  sum ( LL )%T  o  t  a  l l e n g t h o  f t  h  e c  u  r  v  e  
f o r i =  1  :m  

dd  (  i  )  =  s q r t  ( (M(  1  ,  1  )  −M( i  ,  1  )  )  ^  2  + (M( 1 ,  2  )  −M( i  ,  2  )  )  ^  2  )  ;  
e n d  
d=max ( dd )%  D  i a m e t e r o  f t  h  e c  u  r  v  e  

a =L  /  m  %  a  i  s t h e a  v e r a g e d  i  s  t  a  n  c  
D= l o g  ( L  /  a  )  /  l o g  ( d  /  a  )%K  a  t  z f r a c t a l d  i  m  e  n  s  i  o  n  
%  O  u t p u t i  s  m  =  1  1  ;  n  =2  
%  L  = 8  4 . 2 7 4 8 ;  d  =  7 6 . 4 8 5 3 ;  a  =  7  .  6  6  1  3  
%  D  = 1  . 0 4 2 2  

Input Data: Akima data is 
. {(0, 10), (2, 10), (3, 10), (5, 10), (6, 10), (8, 10), (9, 10.5), (11, 15), (12, 50),
(14, 60), (15, 85)}
Output is .m = 11;. n =2, 
. L = 84.2748; . d = 76.4853; . a = 7.6613. Fractal dimension, D = 1.0422.
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Chapter 2 
Univariate Fractal Functions 

The method of fractal interpolation is developed with an ultimate aim of approxi-
mating the naturally existing complicated functions which share non-smoothness in 
their patterns. This method provides a satisfactory generalization of classical inter-
polation techniques since classical approaches are emerged only to approximate the 
smooth functions however, most of the real world experimental functions are highly 
irregular. Like classical interpolation technique, a finite data set is taken in the fractal 
interpolation scheme and a continuous function is determined such that whose graph 
passes through all the given finite set of data points. In the case of fractal interpolation, 
the required continuous function (i.e., fractal function) does not posses any explicit 
form and its graph is generated as an attractor of a special kind of iterated function 
system. Yet, Barnsley has utilized the Read-Bajraktarević operator in order to pro-
vide a functional equation for the fractal interpolation function in [ 1]. Since from the 
emergence of fractal interpolation functions in late 1980s, several types of fractal 
interpolation functions have been discovered including univariate [ 2– 5], bivariate 
[ 6– 9] and fractal functions on higher dimensional spaces [ 10– 13]. The following is 
the description of the construction of univariate fractal interpolation function. 

2.1 Affine Fractal Interpolation 

Let.N ∈ N. Consider the data set.{(xi , yi ) ∈ R × R : i = 1, 2, . . . , N + 1}with. x1 <

x2 < · · · < xN+1 and . xi ’s are not required to be equidistant. Consider the closed 
sub-intervals of real-line .I = [x1, xN+1] and .Ii = [xi , xi+1], .∀i = 1, 2, . . . , N . The  
graph of continuous function. f interpolating the provided data set such that. f (xi ) =
yi , ∀ i = 1, 2, . . . , N + 1 is determined as an attractor of the following iterated 
function system, 

.{X;wi : i = 1, 2, . . . , N }. (2.1) 
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Where .X := I × R is a complete metric space with respect to the metric equivalent 
to Euclidean metric and .wi : X → Ii × R, i = 1, 2, . . . , N are contraction maps 
defined by 

.wi (x, y) = (Li (x), Fi (x, y)), x, y ∈ X. (2.2) 

The maps involved in the definition of contraction maps .wi are given by . Li : I →
Ii and .Fi : I × R → R. Maps .Li are .N homeomorphisms and .Fi are continuous 
mappings satisfying 

. |Li (x) − Li (x
')| ≤ ci |x − x '|,

|Fi (x, y) − Fi (x, y
')| ≤ ri |y − y'|.

for all .x, x ' ∈ I , .u, y' ∈ R, .ci , ri ∈ (0, 1). It is to be noted that .Fi is a contraction 
with respect to second variable. The maps .Li and .Fi obey the following join-up 
conditions 

.

Li (x1) = xi ,

Li (xN+1) = xi+1,

Fi (x1, y1) = yi ,

Fi (xN+1, yN+1) = yi+1,

(2.3) 

as prescribed in [ 1]. Considering the IFS (2.1), a set-valued map .W defined on the 
non-empty compact subsets of . X , say .H(X), is expressed by 

W(C) = 
N∏

i=1 

wi (C), 

for any .C ∈ H(X). Since .X is a complete metric space, the Hausdorff metric 
completes .H(X). Note that the map .W is a finite union of contraction maps 
.wi and defined on the complete metric space .H(X). Then, by the Banach con-
traction principle, .W possess a unique invariant compact set, say .G f satisfying 
.G f = W(G f ) and it is the graph of a required continuous function . f : I → R such 
that .G f := {(x, f (x)) : x ∈ I }. The graph of the function . f obtained as an attractor 
of the IFS (2.1) is referred as a Fractal Interpolation Function (FIF), in short fractal 
function. 

Now, let us overview the generation of functional equation (also called as fixed 
point equation) for the above described fractal interpolation function by means of 
defining the Read-Bajraktarević (RB) operator. In this generation, the fractal function 
is shown as a fixed point of the RB operator . T . Consider the Banach space of 
continuous functions, . C, such that 

C = {h : I → R | h is continuous on I, h(x1) = y1, h(xN+1) = yN+1},
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with the sup norm .||h||∞ = max{|h(x)| : x ∈ I }. A contraction map is induced on 
this complete metric space . C, defined by 

. T (h(x)) = Fi
(
L−1
i (x), h ◦ L−1

i (x)
)
, x ∈ Ii , i = 1, 2, . . . , N ,

The contraction map. T admits a unique fixed point, which is the above defined fractal 
interpolation function . f such that . f (x) = T ( f (x)). In addition, it obeys the below 
given functional equation 

. f (x) = Fi
(
L−1
i (x), f ◦ L−1

i (x)
)
, x ∈ Ii , i = 1, 2, . . . , N . (2.4) 

The general IFS employed to study various kinds of fractal interpolation functions 
is given below, 

.
Li (x) = ai x + bi ,

Fi (x, y) = αi y + qi (x), i = 1, 2, . . . , N .
(2.5) 

Where.{αi : i = 1, 2, . . . , N } are the free parameters called as vertical scaling factors 
(also referred as contraction factors) of the contraction maps.wi satisfying. −1 < αi <

1 and .qi : I → R are continuous functions obeying the conditions 

. qi (x1) = yi − αi y1,

qi (xN+1) = yi+1 − αi yN+1, ∀i = 1, 2, . . . , N .

Among the univariate fractal interpolation function, types of fractal functions can be 
generated including linear fractal function, quadratic fractal function, alpha fractal 
function and so on. The continuous function. qi has a prominent role in differentiating 
and constructing new kinds of fractal functions. For instance, if.qi is taken as a linear 
function of the form.ci x + di , then the corresponding IFS generated is as follows 

.
Li (x) = ai x + bi ,

Fi (x, y) = αi y + ci (x) + di , i = 1, 2, . . . , N ,
(2.6) 

thus the IFS (2.6) invokes a linear fractal interpolation function. In the similar manner, 
for each unique . qi , a special kind of fractal interpolation function is generated. 
Moreover fractal interpolation functions can be classified as affine and non-affine 
functions by correspondingly choosing the the continuous functions.qi as affine and 
non-affine. Suppose .qi is of the form, 

qi = ci x + di , 

one can get the affine transformations as follows,
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. wi

(
x
y

)
=

(
ai 0
ci αi

) (
x
y

)
+

(
bi
di

)
,

where .ai , bi , ci , di are the real parameters. By predefining the scaling factors . αi

and employing the join-up conditions, the following can be determined, for . i =
1, 2. . . . , N , 

.

ai = xi+1 − xi
xN+1 − x1

,

bi = xN+1xi − x1xi+1

xN+1 − x1
,

ci = (yi+1 − yi ) − αi (yN+1 − y1)

xN+1 − x1
,

di = (xN+1yi − x1yi+1) − αi (xN+1y1 − x1yN+1)

xN+1 − x1
.

(2.7) 

The fractal function associated with the above defined affine transformation is called 
as the affine fractal interpolation function. 

Following is the MATLAB code for generating affine fractal graphs with constant 
scaling parameters. 

%%  A  f  f  i  n  e F r a c t a l I  n  t  e  r  p  o  l  a  t  i  o  n F  u  n  c  t  i  o  n  
%%  L  _  i  (  x  )  =  a  _  i  x  +  b _ i  
%%  F  _  i  (  x  ,  y  )  =  a  l p h a _ i (  x  )  ∗ y +  Q  _  i  (  x  )  ,  
%  w  h  e  r  e  Q  _  i  (  x  ) i s t  h  e a  f  f  i  n  e f u n c t i o n  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
x =  [  0 1  /  3 1  /  2 2  /  3 1  ]  ;  y =  [  1 3  5  /  2 3  .  5 3  /  2  ]  ;  % D  a  t  a  
i t e r  =  i n p u t  ( ’  E  n  t  e  r t  h  e  n umbe r  o  f i  t  e  r  a  t  i  o  n  s  :  =  ’  ) ;  
l x  =  l e n g t h  ( x )  ;  
%a  l  p  h  a  =  [  0  0  0  ]  
a  l  p  h  a  =  [  0  .  3 0  .  2 0  .  1 0 . 6 ] ;  
N= l x ; 
f o r i =  1  :  l  x  −1 

d i f f _ x  (  i  ) =  x  (  i  +  1  )−x (  i  )  ;  l  e  n  g  t  h  _  x =  x (  N  )−x (  1  )  ;  
a  (  i  )  =  d  i  f  f  _  x  (  i  )  /  l  e n g t h _ x  ;  
b (  i  )  =  (  x (  N  )  ∗ x (  i  )−x (  1  )  ∗ x  (  i  +  1  )  )  /  l e n g t h _ x  ;  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  )  ∗ ( y  (  N  )−y  (  1 )  )  ]  /  l  e n g t h _ x  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  )  ∗ ( x  (  N  )  ∗ y (  1  )−x (  1  )  ∗ y (  N  )  )  ]  /  

l e n g t h _ x  ;  
e n d  
a b c d _ v a l u e s  =  [  a  ’  b  ’  c  ’  d  ’  ]  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=N  ;  
f o r  k  =  1  :  i t e r  

f o r i =  1  :  N−1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )%  F  i  r  s  t i t e r a t i o n  
%  I  n p u t d a t a i  s (  x  ,  y  )  o  r g  i  v  e  n d a t a  
L (  i  ,  t  1  )  =  a  (  i  )  ∗ x (  t  1  )  +  b (  i  )  ;
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L1 (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗ y (  t  1  )  +  c  (  i  )  ∗ x (  t  1  )  +  d (  i  )  ;  
e l s e  %  More  t  h  a  n  o  n  e i t e r a t i o n  

%  I  n p u t d  a  t  a i  s (  X1  ,  Y1  )  o  r o  u t p u t a  f  t  e  r t  h  e f  i  r  s  t  
i t e r r a t i o n  

L (  i  ,  t  1  )  =  a  (  i  )  ∗X1  (  t  1  )  +  b  ( i ) ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗Y1 ( t  1 ) + c ( i  )  ∗X1  (  t  1  )  +  d  ( i ) ;  

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X  ; Y1=Y  ; X  =  [ ] ; Y  =  [ ] ; g  =  [  X1  ’  Y1  ’  ]  ;  
g =  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ; [ X1 Y1 ] ;  p = l e n g t h  ( X1 )  ;  
%%% 

end  
p l o t ( x  ,  y  ,  ’ .  k  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  h o l d  on  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ ) ;  t i t l e  ( ’  A  f f i n e F I F _ F i r s t I  t  e  r  a  t  i  o  n ’  ) 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

2.1.1 Vertical Scaling Factors 

The scale vector.α = (α1, α2, . . . , αN ) associated with the IFS (2.6) has a significant 
dominance in determining fractal behaviours of the fractal function, which includes 
fractal dimension, shape preserving as well as shape modifying properties. Further, 
the scaling factors govern the closeness of fit corresponding to the provided data set. 
In general, vertical scaling factors are utilized to modify the shape and size of the 
curves along the vertical direction. While dealing fractal interpolation functions, the 
absolute value of vertical scaling factors is constrained to be less than. 1 and thus they 
contracts the fractal curves according to given values of the scale vector . α. Hence, 
they are also called as contractivity factors for the contractions .wi . 

For the choice of vertical scaling factors as constants, the naturally existing self-
similar functions are better approximated, since if the curves are strictly self-similar, 
the constant vertical parameters easily makes the same ratio of compression in each 
sub-interval to yield closer fit. On the contrary, if the curves show less self-similarity, 
the constant scalings may lead to loss of flexibility and cause more approximation 
errors. To address this issue, fractal interpolation function with function (variable) 
scaling factors have been introduced to fit the non-stationary data set. In [ 14], the 
vertical scaling parameters .αi are chosen as continuous functions on the closed 
interval . I (i.e.,) 

. αi : I → [0, 1), ∀ i = 1, 2, . . . , N ,

satisfying 
.||α||∞ = sup{||αi||∞ : i = 1, 2, . . . , N } < 1
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and the following IFS is obtained 

. Li (x) = ai x + bi ,

Fi (x, y) = αi (x)y + qi (x), i = 1, 2, . . . , N . (2.8) 

The fractal function generated using the IFS (2.8) is referred as the fractal interpo-
lation function with variable scaling factors. 

2.1.2 Affine Fractal Function with Variable Scaling 

Consider the IFS (2.8) with the following continuous function, 

.qi (x) = ci x + di , ∀ i = 1, 2, . . . , N . (2.9) 

Thus, the IFS for generating the affine fractal interpolation function with variable 
scaling is obtained as 

. Li (x) = ai x + bi , Fi (x, y) = αi (x)y + ci x + di , ∀ i = 1, 2, . . . , N .

The MATLAB code for generating affine fractal interpolation function with variable 
scaling is provided below. 

%A  f  f  i  n  e F  r  a  c  t  a  l I n t e r p o l a t i o n F  u  n  c  t  i  o  n w  i  t  h v  a  r  i  a  b  l  e s  c  a  l  i  n  g  
%  L  _  i  (  x  )  =  a  _  i  x  +  b _ i  
%  F  _  i  (  x  ,  y  ) =  a l p h a _ i (  x  )  ∗ y +  Q  _  i  (  x  )  ,  
%  w  h  e  r  e  Q  (  x  ) i  s t  h  e a  f f i n e f  u  n  c  t  i  o  n  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
x =  [  0  1  /  4 1  /  2 3  /  4 1  ]  ;  y =  [  1 3 5  /  2 3  .  5 3  /  2  ]  ;  % D  a  t  a  
i t e r a t i o n  =  1  ;  
[  X1  ,  Y1  ]  =  VAR_ a f f i n e  (  x  ,  y  ,  i  t  e  r  a  t  i  o  n  )  ;  
s u b p l o t  ( 2  , 2  , 1 )  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;%  P l o t t i n g o  r  i  g  i  n  a  l d  a  t  a  
h o l d  on  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;%  P l o t t i n g o  r  i  g  i  n  a  l a  n  d  new  d  a  t  a  
x l a b e l  ( ’ V  a  r  @  A  f  f  i  n  e  F  I  F  :  1  s  t i  t e r a t i o n  ’  ) 
i t e r a t i o n  =  3  ;  
s u b p l o t  ( 2  , 2  , 2 )  
[  X2  ,  Y2  ]  =  VAR_ a f f i n e  (  x  ,  y  ,  i  t  e  r  a  t  i  o  n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X2  ,  Y2  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’ V  a  r  @  A  f  f  i  n  e  F  I  F  :  3  r  d i  t e r a t i o n  ’  ) 
i t e r a t i o n  =  8  ;  
s u b p l o t  ( 2  , 2  , 3 )  
[  X3  ,  Y3  ]  =  VAR_ a f f i n e  (  x  ,  y  ,  i  t  e  r  a  t  i  o  n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on
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p l o t  ( X3  ,  Y3  ,  ’ r− ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’ V  a  r  @  A  f  f  i  n  e  F  I  F  :  8 t  h i  t e r a t i o n  ’  ) 
i t e r  =  8  ;  a  l  p  h  a  =  [  0  0  0  0  ]  ;  
s u b p l o t  ( 2  , 2  , 4 )  
[ X4  ,  Y4  ]  =  A f f i n e F I F  (  x  ,  y  ,  a  l  p  h  a  ,  i  t  e  r  a  t  i  o  n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X4  ,  Y4  ,  ’ r− ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  C  l  a  s  s  i  c  a  l A  f  f  i  n  e  F  I  F  :  8 t  h i  t e r a t i o n  ’  ) 
f u n c t i o n [  X1  Y1  ]  =  VAR_ a f f i n e  (  x  ,  y  ,  i  t  e  r  a  t  i  o  n  )  
N= l e n g t h  ( x )  ;  l  x  =N  ;  
a =  z e r o s  ( l  x  −1)  ;  b  =  z e r o s  ( l  x  −1)  ;  
f o r i =  1  :  l  x  −1 

a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  

e n d  
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=N  ;  
f o r  k  =  1  :  i t e r a t i o n  

f o r i =  1  :  l  x  −1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )  
L (  i  ,  t  1  )  =  (  a  (  i  )  ∗ x  (  t  1  )  )  +  b  ( i ) ;  
i f  (  i  = =1 )  

a  l  p  h  a  (  i  ,  t 1  )  =  x  (  t 1  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
e l s e i f  (  i  = =2 )  

a l p h a  (  i  ,  t  1  )  =  a b s  ( l o g  ( 1 / (  x (  t  1  )  +  2  )  )  )  /  x  (  l  x  )  ;  
e l s e i f  (  i  = =3 )  

a l p h a  (  i  ,  t  1  )  =  c o s  (1  − x (  t  1  )  )  ;  
e l s e i f  (  i  = =4 )  

a l p h a  (  i  ,  t  1  )  =  (  s i n  ( x (  t  1  )  )  /  (  2  ∗ ( x  (  l  x  )−x  (  1  )  ) ) )  ;  
e n d  
% co− e f f i c i e n t s  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  ,  t  1  )  ∗ ( y  (  N  )−y (  1  )  )  ]  /  (  x  (  l  x  )  

−x (  1  )  )  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  ,  t  1  )  ∗ ( x  (  N  )  ∗ y 

( 1 )  −x (  1  )  ∗ y (  N  )  )  ]  /  (  x (  l  x  )−x (  1  )  )  ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  ,  t  1  )  ∗ y (  t  1  )  )  +  c  (  i  )  ∗ x (  t  1  )  +  d (  i  )  ;  

e l s e  
L (  i  ,  t  1  )  =  (  a  (  i  )  ∗X1 ( t  1 ) ) + b ( i  )  ;  
i f  (  i  = =1 )  

a l  p h a ( i  ,  t  1 ) =X1 ( t  1 ) /  (  X1 ( p )−X1 ( 1 ) ) ;  
e l s e i f  (  i  = =2 )  

a l p h a  (  i  ,  t  1  )  =  a b s  ( l o g  ( 1 /  (  X1 ( t  1 ) + 2 ) ) ) /  X1 ( p ) ;  
e l s e i f  (  i  = =3 )  

a l p h a  (  i  ,  t  1  )  =  c o s  ( 1  − (  X1  (  t  1  ) ) )  ;  
e l s e i f  (  i  = =4 )  

a l p h a  (  i  ,  t  1  )  =  s i n  ( X1 (  t  1  )  −1)  /  (  2  ∗ ( x  (  l  x  )−x (  1  )  )  )  ;  
e n d  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  ,  t  1  )  ∗ ( y  (  N  )−y (  1  )  )  ]  /  (  x  (  l  x  )  

−x (  1  )  )  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  ,  t  1  )  ∗ ( x  (  N  )  ∗ y 

( 1 )  −x (  1  )  ∗ y (  N  )  )  ]  /  (  x (  l  x  )−x (  1  )  )  ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  ,  t  1  )  ∗Y1 ( t  1 ) ) + c ( i  )  ∗X1  (  t  1  )  +  d  ( i ) ;  

e n d
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end  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X ; Y1=Y ; 
X  =  [ ] ; Y  =  [ ] ;  
p=  l e n g t h  ( X1 )  ;  

e n d  
e nd  
%A  f  f  i  n  e  F  I  F  w  i  t  h c o n s t a n t s  c  a  l  i  n  g  
f u n c t i o n [ X1  ,  Y1  ]  =  A f f i n e F I F  (  x  ,  y  ,  a  l  p  h  a  ,  i  t  e  r  a  t  i  o  n  )  
l x  =  l e n g t h  ( x )  ;  
N= l x ; 
f o r i =  1  :  l  x  −1 

d i f f _ x  (  i  ) =  x  (  i  +  1  )−x (  i  )  ;  l  e  n  g  t  h  _  x =  x (  N  )−x (  1  )  ;  
a  (  i  )  =  d  i  f  f  _  x  (  i  )  /  l  e n g t h _ x  ;  
b (  i  )  =  (  x (  N  )  ∗ x (  i  )−x (  1  )  ∗ x  (  i  +  1  )  )  /  l e n g t h _ x  ;  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  )  ∗ ( y  (  N  )−y  (  1 )  )  ]  /  l  e n g t h _ x  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  )  ∗ ( x  (  N  )  ∗ y (  1  )−x (  1  )  ∗ y (  N  )  )  ]  /  

l e n g t h _ x  ;  
e n d  
a b c d _ v a l u e s  =  [  a  ’  b  ’  c  ’  d  ’  ]  ;  
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=N  ;  
f o r  k  =  1  :  i t e r a t i o n  

f o r i =  1  :  N−1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )%  F  i  r  s  t i t e r a t i o n  
%  I  n p u t d a t a i  s (  x  ,  y  )  o  r g  i  v  e  n d a t a  
L (  i  ,  t  1  )  =  a  (  i  )  ∗ x (  t  1  )  +  b (  i  )  ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗ y (  t  1  )  +  c  (  i  )  ∗ x (  t  1  )  +  d (  i  )  ;  

e l s e  %  More  t  h  a  n  o  n  e i t e r a t i o n  
%  I  n p u t d a t a i  s (  X1  ,  Y1  )  a  n  d  o u t p u t a  f  t  e  r t  h  e  

f i r s t i  t  e  r  a  t  i  o  n  
L (  i  ,  t  1  )  =  a  (  i  )  ∗X1  (  t  1  )  +  b  ( i ) ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗Y1 ( t  1 ) + c ( i  )  ∗X1  (  t  1  )  +  d  ( i ) ;  

e n d  
e nd  
%C  o n c a t e n a t i o n  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X  ; Y1=Y  ; X  =  [ ] ; Y  =  [ ] ; g  =  [  X1  ’  Y1  ’  ]  ;  
%R  emov ing d  u  p  l  i  c  a  t  e  s  
g=  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ; [ X1 Y1 ] ;  p = l e n g t h  ( X1 )  ;  

e n d  
e nd
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2.1.3 Numerical Simulation 

Let .{(0, 1), (0.33, 3), (0.5, 2.5)(0.6, 3.5), (1, 0.752)} be the given set of interpo-
lation data with vertical scaling factors .α = (0.3, 0.2, 0.1, 0.6). The affine FIF cor-
responding to the given data set for first iteration is graphically shown in Fig. 2.1a. 
Figure 2.1b is generated by increasing the iteration to three. Figure 2.1c illustrates 
the affine FIF for eighth iteration. The classical affine FIF is graphically represented 
in Fig. 2.1d for the choice of zero scaling vector. Consider the variable scaling factor 

. α(x) =
(

x

xN − x1
,

||||
x + 2

20xN

||||, cos(1 − x),
sin(x)

2(xN − x1)

)

for the same data set. The graph of affine fractal interpolation function with the 
provided variable scaling factor is generated using the MATLAB code in Sect. 2.1.2. 
Its graphical illustration is given in Fig. 2.2a. Figure 2.2b and c respectively represents 
the graph of affine FIF with variable scalings for the third and eighth iteration. With 
the choice.αi = [0]1×4, classical affine fractal interpolation function is generated and 
its graph is provided in Fig. 2.2d. 

2.2 .α-Fractal Interpolation 

The .α-fractal function is an example of univariate non-affine fractal interpolation 
function. Unlike the linear fractal interpolation function, a given continuous function 
. g is approximated using .α-fractal function .gα . The given continuous function . g is 
generally referred as seed function or germ function and.gα yields a family of fractal 
functions to each given . g and it is referred as the fractal perturbation of . g in [ 15]. 

Navascués has discovered the.α-fractal function which is introduced by Barnsley 
[ 1] to provide a fractal analogue for any continuous function. Suppose . g ∈ C(I ),
consider the below defined special type of continuous function 

.qi (x) = g ◦ Li (x) − αi b(x), (2.10)
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(a) First iteration (b) Third iteration 

(c) Eighth iteration (d) Classical FIF: Eighth iteration 

Fig. 2.1 Affine fractal interpolation function with constant scaling 

where . b is a base function usually it is a real-valued continuous map equivalent to 
the germ function. g at the end points and.b /= g. The IFS corresponding to .qi in Eq. 
(2.10) is given below 

. Li (x) = ai x + bi ,

Fi (x, y) = αi y + g ◦ Li (x) − αi b(x), i = 1, 2, . . . , N , (2.11) 

The fractal function associated with the IFS (2.11) is called as the .α-fractal interpo-
lation function (in short, .α-fractal function) with respect to base function . b and the 
partition .D = x1 < x2 < · · · < xN+1 of . I . Then the .α-fractal function satisfies the 
following functional equation, 

.gα(x) = g(x) + αi [(gα − b) ◦ L−1
i (x)], ∀x ∈ Ii , i = 1, 2, . . . , N . (2.12) 

For the proper choice of scaling factors, the .α-fractal function .gα coincides with 
the germ function . g. If each of the vertical scaling factors .αi are taken as zero,
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Fig. 2.2 Affine fractal interpolation function with variable scaling 

then .gα = g. If the scaling factors are taken as continuous functions .αi (x) then the 
functional equation of the .α-fractal function becomes 

. gα(x) = g(x) + αi (L
−1
i (x))[(gα − b) ◦ L−1

i (x)], ∀x ∈ Ii , i = 1, 2, . . . , N .

(2.13) 
The.gα present in the Eq. (2.13) is called the.α-fractal function with function scaling 
factors. The Matlab code for generating.α-fractal interpolation function with constant 
scalings is given below. 

%  $  \  a  l p h a $  − f r a c t a l i  n  t  e  r  p  o  l  a  t  i  o  n f  u  n  c  t  i  o  n  
%  B  a  s  e f  u n c t i o n  b  (  x  )  =  x  ^  3  ;  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  ; 
Fx  =  i  n l i n e  (  ’ x  . ^ 3  ’  ) ;%B a s  e f  u  n  c  t  i  o  n  
x1  =  [  0  1  /  4 1  /  2 3  /  4 1  ]  ;  y1  =  Fx  (  x1  )  ;  
D a t a  =  [  x1  ’  y1  ’  ]  ;  %D a  t  a  
i t e r a t i o n  =  1  ;  
a  l  p  h  a  =  [  0  .  2 0  .  3 0  .  2 0 . 1 ] ;  
s u b p l o t  ( 2  , 2  , 1 )  ;  
[  X1  Y1  ]  =  A  l  p  h  a  f  r  a  c  t  a  l  1  (  i t e r a t i o n  ,  a  l  p  h  a  )  ;  
p l o t ( x1  ,  y1  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;
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h o l d  on  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : F  i  r  s  t i  t e r a t i o n  ’  ) 
i t e r a t i o n  =  3  ;  
[  X2  Y2  ]  =  A  l  p  h  a  f  r  a  c  t  a  l  1  (  i t e r a t i o n  ,  a  l  p  h  a  )  ;  
s u b p l o t  ( 2  , 2  , 2 )  ;  
p l o t ( x1  ,  y1  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X2  ,  Y2  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : T  h  i  r  d i  t e r a t i o n  ’  ) 
s u b p l o t  ( 2  , 2  , 3 )  ;  
i t e r a t i o n  =  8  ;  
[  X3  Y3  ]  =  A  l  p  h  a  f  r  a  c  t  a  l  1  (  i t e r a t i o n  ,  a  l  p  h  a  )  ;  
p l o t ( x1  ,  y1  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;%  P  l o t t i n g o  r  i  g  i  n  a  l d  a  t  a  
h o l d  on  
p l o t  ( X3  ,  Y3  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;%  P l o t t i n g o  r  i  g  i  n  a  l a  n  d  new  d  a  t  a  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : E i g h t h i  t  e  r  a  t  i  o  n  ’  ) 
%  C  l a s s i c a l c  a  s  e  
s u b p l o t  ( 2  , 2  , 4 )  ;  
i t e r a t i o n  =  8  ;  a  l  p  h  a  =  [  0  0  0  0  ] ;  
[  X4  Y4  ]  =  A  l  p  h  a  f  r  a  c  t  a  l  1  (  i t e r a t i o n  ,  a  l  p  h  a  )  ;  
p l o t ( x1  ,  y1  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X4  ,  Y4  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  C  l a s s i c a l \  a  l  p  h  a  −F  I  F  : E  i  g  h  t  h i  t e r a t i o n  ’  ) 
f u n c t i o n [  X1  Y1  ]  =  A  l p h a f r a c t a l 1  (  i  t  e  r  a  t  i  o  n  ,  a  l  p  h  a  )  
Fx  =  i  n l i n e  (  ’ x  . ^ 3  ’  ) ;%B a s  e f  u  n  c  t  i  o  n  
x1  =  [  0  1  /  4 1  /  2 3  /  4 1  ]  ;  y1  =  Fx  (  x1  )  ;  
D a t a  =  [  x1  ’  y1  ’  ]  ;  %D a  t  a  
l x  =  l e n g t h  ( x1 )  ;  
b  a  s  e  =  i  n l i n e  (  ’ x  ’  ) ;  
a =  z e r o s  ( 1  ,  l  x  −1)  ;  b  =  z e r o s  ( 1  ,  l  x  −1)  ;  
f o r i =  1  :  l  x  −1 

d e l t a  (  i  )  =  (  y1  (  i  +  1  )−y1  (  i  )  )  /  (  y1  (  l  x  )−y1  (  1  )  )  ;  
a (  i  )  =  (  x1  (  i  +  1  )−x1  (  i  )  )  /  (  x1  (  l  x  )−x1  (  1  )  )  ;  
b (  i  )  =  (  (  x1  (  i  )  ∗ x1  (  l  x  )  )  −( x1  (  i  +  1  )  ∗ x1  (  1  )  )  )  /  (  x1  (  l  x  )−x1  (  1  )  )  ;  

e n d  
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=  l  x  ;  
f o r  k =  1  : i  t  e  r  a  t  i  o  n  

f o r i =  1  :  l  x  −1 
f o r t =  1  :  p  

i f (  k  ==1 )%  F  i  r  s  t i t e r a t i o n  
L  (  i  ,  t )  =  (  a  (  i )  ∗ x1  ( t )  )  +  b  ( i ) ;  
L1  (  i  ,  t  )  =  Fx  (  L  (  i  ,  t )  )  +  a  l  p  h  a ( i )  ∗ ( y1  (  t  )− b a s e  (  x1  (  t  )  )  )  ;  

e l s e  %  M  o r e t h a n  o  n  e i  t  e  r  a  t  i  o  n  
L  (  i  ,  t )  =  (  a  (  i )  ∗X1  ( t )  )  +  b  ( i ) ;  
L1  (  i  ,  t  )  =  Fx  ( L (  i  ,  t  )  )  +  (  a  l p h a  (  i  )  )  ∗ ( Y1  (  t  )−b a s e  (  X1  (  t  )  )  )  

; 
e n d  

e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X ; Y1=Y ;
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X  =  [ ] ; Y  =  [ ] ;  
%R  emov ing d  u  p  l  i  c  a  t  e  s  
g =  [  X1  ’  Y1  ’  ]  ;  g  =  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ;  
p =  l e n g t h  ( X1 )  ;  

e n d  
e nd  

2.2.1 .α-Fractal Function with Variable Scaling 

The IFS for generating.α-fractal interpolation function with variable vertical scaling 
factors is provided as 

. Li (x) = ai x + bi ,

Fi (x, y) = αi (x)y + g ◦ Li (x) − αi (x)b(x), i = 1, 2, . . . , N ,

here .αi : I → (0, 1). The MATLAB code for generating .α-fractal function with 
variable scalings is provided below. 

%$  \  a  l p h a $  − f  r  a  c  t  a  l f  u  n  c  t  i  o  n w  i  t  h v a r i a b l e s  c  a  l  i  n  g  
%  B  a  s  e f  u  n  c  t  i  o  n  b ( x )  =  x  ^  3  ;  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  ; 
x  =  [  0  1 / 4 1  / 2 3 / 4 1  ]  ;  
Fx  =  i  n l i n e  (  ’ x  . ^ 3  ’  ) ;%B  a  s  e f  u n c t i o n  
y=  Fx  (  x  )  ;  
i t e r a t i o n  =  1  ;  
s u b p l o t  ( 2  , 2  , 1 )  ;  
[  X1  Y1  ]  =  V  a  r  _  a  l  p  h  a  F  I  F  (  x  ,  i t e r a t i o n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : F  i  r  s  t i  t e r a t i o n  ’  ) 
i t e r a t i o n  =  2  ;  
[  X2  Y2  ]  =  V  a  r  _  a  l  p  h  a  F  I  F  (  x  ,  i t e r a t i o n  )  ;  
s u b p l o t  ( 2  , 2  , 2 )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X2  ,  Y2  ,  ’ r− ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  \  a l p h a  −F  I  F  :  S  e  c  o  n  d i t e r a t i o n  ’  ) 
s u b p l o t  ( 2  , 2  , 3 )  ;  
i t e r a t i o n  =  3  ;  
[  X3  Y3  ]  =  V  a  r  _  a  l  p  h  a  F  I  F  (  x  ,  i t e r a t i o n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;%  P  l  o  t  t  i  n  g o r i g i n a l d  a  t  a  
h o l d  on  
p l o t  ( X3  ,  Y3  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;%  P  l o t t i n g o  r  i  g  i  n  a  l a  n  d  new  d  a  t  a  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : T  h  i  r  d i  t e r a t i o n  ’  ) 
s u b p l o t  ( 2  , 2  , 4 )  ;
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i t e r a t i o n  =  4  ;  
[  X4  Y4  ]  =  V  a  r  _  a  l  p  h  a  F  I  F  (  x  ,  i t e r a t i o n  )  ;  
p l o t ( x  ,  y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
h o l d  on  
p l o t  ( X4  ,  Y4  ,  ’ r  − ’ , ’  L  i n eW i d t h  ’  , 1 )  ;  
x l a b e l  ( ’  \  a l p h a  −F  I  F  : F  o  u  r  t  h i t e r a t i o n  ’  ) 
f u n c t i o n [  X1  Y1 ]  =  V  a r _ a l p h a F I F  (  x  ,  i  t  e  r  a  t  i  o  n  )  
Fx  =  i  n l i n e  (  ’ x  . ^ 3  ’  ) ;%B  a  s  e f  u n c t i o n  
y=  Fx  (  x  )  ;  
b  a  s  e  =  i  n l i n e  (  ’ x  ’  ) ;  
l x  =  l e n g t h  ( x )  ;  
a =  z e r o s  ( 1  ,  l  x  −1)  ;  
b=  z e r o s  ( 1  ,  l  x  −1)  ;  
A= z e r o s  ( 1  ,  l  x  −1)  ;  
f o r i =  1  :  l  x  −1 

d e l t a  (  i  )  =  (  y  (  i  +  1  )−y (  i  )  )  /  (  y  (  l  x  )−y (  1  )  )  ;  
a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  

e n d  
L  =  [ ] ;  L1  =  [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=  l  x  ;  
f o r  k  =  1  : i t e r a t i o n  

f o r i =  1  :  l  x  −1 
f o r t =  1  :  p  

i f (  k  ==1 )  
L (  i  ,  t  )  =  (  a  (  i  )  ∗ x (  t  )  )  +  b (  i  )  ;  
i f  (  i  = =1 )  

a  l  p  h  a  (  i  ,  t  )  =  0 . 2 +  x  (  t  )  /  (  3  ∗ ( x  (  l  x  )−x (  1  )  )  )  ;  
e l s e i f  (  i  = =2 )  

a l p h a  (  i  ,  t  )  =  (  1  /  1  0  0  )  ∗ a b s  ( l o g  ( 1 / (  x  (  t  )  +  4  )  )  )  ;  
e l s e i f  (  i  = =3 )  

a l p h a  (  i  ,  t  )  =  (  1  /  2  )  ∗ c o s  (1  −2∗ x (  t  )  )  ;  
e l s e i f  (  i  = =4 )  

a l p h a  (  i  ,  t  )  =  0  .  4  +  (  s i n  ( x (  t  )  )  /  (  3  ∗ ( x  (  l  x  )−x  (  1  )  ) ) )  ;  
e n d  
L1  ( i  ,  t  )  =  Fx  (  L  ( i  ,  t  )  )  +  a  l  p  h  a  (  i  )  ∗ ( y  (  t  )− b a s e  (  x  (  t  )  )  )  ;  

e l s e  
L (  i  ,  t  )  =  (  a  (  i  )  ∗X1  ( t )  )  +  b  ( i ) ;  
i f  (  i  = =1 )  

a  l  p  h  a  (  i  ,  t  )  =  0 . 2 +  X1  (  t  )  /  (  3  ∗ ( X1  (  l  x  )−X1 ( 1 ) ) ) ;  
e l s e i f  (  i  = =2 )  

a l p h a  (  i  ,  t  )  =  (  1  /  1  0  0  )  ∗ a b s  ( l o g  ( 1 / (  X1  (  t  )  +  4  )  )  )  /  X1  (  l  x  )  ;  
e l s e i f  (  i  = =3 )  

a l p h a  (  i  ,  t  )  =  (  1  /  2  )  ∗ c o s  (1  −2∗X1 ( t  ) ) ;  
e l s e i f  (  i  = =4 )  

a l p h a  (  i  ,  t  )  =  0  .  4  +  (  s i n  ( X1 (  t  )  )  /  (  3  ∗ ( X1  (  l  x  )−X1  (  1  )  ) ) )  ;  
e n d  

L1  ( i  ,  t  )  =  Fx  (  L  ( i  ,  t  )  )  +  (  a  l  p  h  a  (  i  )  )  ∗ ( Y1  (  t  )−b a s e  (  X1  (  t  )  )  )  ;  
e n d  

e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X ; 
Y1=Y ; 
X =  [  ]  ;



2.2 α-Fractal Interpolation 33

Y =  [  ]  ;  
p=  l e n g t h  ( X1 )  ;  

e n d  
e nd  
% 

2.2.2 Numerical Simulation 

Let .g(x) = x3 and .b(x) = x . Consider the interpolation data . {0, 0.25, 0.5, 0.75, 1}
with the scaling factor.α = (0.2, 0.3, 0.2, 0.1) satisfying the constraint.|αi | < 1. An  
.α-fractal interpolation function .gα is constructed corresponding to . g and . b. The  
graphs of.gα are generated by changing the iteration (first, third and eighth iteration) 
and portrayed in Fig. 2.3a, b and c. If .α = (0, 0, 0, 0), one can obtain the classical 
alpha fractal function as demonstrated in Fig. 2.3d. 

Fig. 2.3 .α-fractal interpolation function with constant scaling
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Fig. 2.4 .α-fractal interpolation function with variable scaling 

If the scaling factors are taken as variables instead of constants, 

. α(x) =
(

0.2 + x

3(xN − x1)
,

1

100

|||| log 1x + 4

||||,
1

2
cos(1 − 2x), 0.4 + sin

(
x

3(xN − x1)

))
.

Then the corresponding .α-fractal interpolation functions are demonstrated in 
Fig. 2.4a–d. 

2.3 Hidden Variable Fractal Interpolation 

The given data set .{(xi , yi ) : 1 = 1, 2, . . . , N + 1} is extended from .R2 to . R3

with the inclusion of hidden variables .{zi : i = 1, 2, . . . , N + 1}. The new data set 
.{(xi , yi , zi ) : i = 1, 2, . . . , N + 1} in.R

3 is interpolated using the attractor associated 
with an IFS .{R3;wi : i = 1, 2, . . . , N } consisting of the following maps:
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. wi

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
ai 0 0
bi αi βi

ci 0 γi

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ +
⎛

⎝
ki
li
mi

⎞

⎠

=
(

Li (x)
Fi (x, y, z)

)
,

where, 

. Li (x) = ai x + bi ,

Fi (x, y, z) = (αi y + βi z + pi (x), γi z + qi (x)), ∀ i = 1, 2, . . . , N + 1,

satisfying the endpoint conditions 

.wi (x1, y1, z1) = (xi , yi , zi ) andwi (xN+1, yN+1, zN+1) = (xi+1, yi+1, zi+1). (2.14) 

The matrix .Ai =
(

αi βi

0 γi

)
contracts the fractal function on choosing each param-

eters .αi , βi , γi satisfying the constraint .||Ai|| < 1. The remaining parameters of 
the map .wi can be determined using the Eq. (2.14), for more information see 
[ 16]. Now the attractor of the IFS in .R3 is projected onto .R2 and it is the graph 
of . f : [x1, xN+1] → R

2 such that . f (xi ) = (yi , zi ), ∀ i = 1, 2, . . . , N + 1. The 
hidden variable fractal interpolation function for . {(xi , yi ) : i = 1, 2, . . . , N + 1}
is the first component of . f = ( f1, f2) and is defined as the continuous function 
. f1 : [x1, xN+1] → R. The second component. f2 is known as the fractal function inter-
polating.{(xi , zi ) : i = 1, 2, . . . , N + 1}. The MATLAB code for generating hidden 
variable FIFs is provided as follows. 

%%  H  i  d  d  e  n v  a  r  i  a  b  l  e f r a c t a l i  n  t  e  r  p  o  l  a  t  i  o  n f  u  n  c  t  i  o  n  
%%  L  _  i  (  x  )  =  a  _  i  x  +  b _ i  
%%  F  _  i  (  x  ,  y  ,  z  )  =  (  a  l  p  h  a  _  i  y  +  b  e  t  a  _  i  z  +  p _ i  (  x  )  ,  g  a  m  m  a  _  i  z +  q _ i  (  x  )  )  ,  
%  w  h  e  r  e  p  _  i  (  x  )  a  n  d  q  _  i  (  x  ) a  r e l  i  n  e  a  r p o l y n o m i a l s  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
x =  [  0  1  /  3 1  /  2 1  ]  ;  
y =  [  0  1  /  3 1  /  3 1  ]  ;  
z =  [  0  2  /  3 1  /  6 1  ]  ;  % D  a  t  a  
x1  =  x  ;  
y1  =  y  ;  
z 1  =  z  ;  
l x  =  l e n g t h  ( x )  ;  
n=  l  x  ;  
a l p h a  =  [ 0 . 4 0  .  4 0  .  4  ]  ; b e t a  =  [  0  .  3 0  .  3 0 . 3 ] ;  gamma =  [  0  .  4 0  .  4 0 . 4 ] ;  
i t e r a t i o n  =  1  0  ;  
f o r i =  1  :  l  x  −1
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a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  ( n )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x ( n )  )  −( x  (  i  +  1  )  ∗ x  (  1  )  )  )  /  (  x ( n )−x (  1  )  )  ;  
c (  i  )  =  (  ( y  (  i  +  1  )−y (  i  )  )  −( a  l  p  h  a  (  i  )  ∗ ( y  (  n  )−y (  1  )  )  )  −( b e t a  ( i )  ∗ ( z  (  n  )−z 

(  1  )  )  )  )  /  (  x ( n )−x (  1  )  )  ;  
e (  i  )  =  (  (  z  (  i  +  1  )−z (  i  )  )  −(gamma ( i )  ∗ ( z  (  n  )−z  (  1  )  )  )  )  /  (  x ( n )−x (  1  )  )  ;  
d (  i  )  =  y  (  i  )−c (  i  )  ∗ x (  1  )  − a l p h a  (  i  )  ∗ y (  1  )  − b e t a  ( i )  ∗ z (  1  )  ;  
f (  i  )  =  z  (  i  )−e (  i  )  ∗ x (  1  )  −gamma ( i )  ∗ z (  1  )  ;  
c 1  (  i  )  =  (  (  y  (  i  +  1  )−y (  i  )  )  −( a  l  p  h  a  (  i  )  ∗ ( y  (  n  )−y  (  1  )  )  )  )  /  (  x ( n )−x (  1  )  )  ;  

e n d  
m= n ; 
f o r i =  1  :  i  t  e  r  a  t  i  o  n  

f o r j =  1  :  l  x  −1 
f o r  k =  1  :m  

l (  j  ,  k  )  =  (  a  (  j )  ∗ x ( k )  +  b  (  j  )  )  ;  
f 1  (  j  ,  k  )  =  a  l  p  h  a  (  j  )  ∗ y ( k )  +  b e t a  ( j )  ∗ z (  k  )  +  c  (  j  )  ∗ x ( k )  +  d  (  j  )  ;  
f 2  (  j  ,  k  )  =gamma ( j )  ∗ z (  k  )  +  e  (  j  )  ∗ x ( k )  +  f  (  j  )  ;  

e n d  
e nd  
x=  r e s h a p e  ( l  .  ’  ,  1  ,  n  u  m  e  l  ( l )  )  ;  
y =  r e s h a p e  (  f  1  .  ’  ,  1  ,  n ume l  (  f  1  )  )  ;  
z =  r e s h a p e  (  f  2  .  ’  ,  1  ,  n ume l  (  f  2  )  )  ;  
m= l e n g t h  ( x )  ;  

e n d  
f i g u r e  , p l o t  ( x  ,  y  ,  ’ r  ’  , x1  ,  y1  ,  ’ b  .  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  
f i g u r e  , p l o t  ( x  ,  z  ,  ’ r  ’  , x1  ,  z1  ,  ’ b  .  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  

2.3.1 Numerical Simulation 

Let a dataset .{(0, 0, 0), (1/3, 1/3, 2/3), (1/2, 1/3, 1/6), (1, 1, 1)} be given. The 
scaling parameters are chosen as . α = (0.4, 0.4, 0.4), β = (0.3, 0.3, 0.3),
γ = (0.4, 0.4, 0.4) such that .|αi | < 1 and .|βi | + |γi | < 1 The graphical represen-
tations of non-self-affine fractal function . f1 and self-affine FIF . f2 are depicted in 
Fig. 2.5. The graphs for generated for third iteration and illustrated in Fig. 2.5a and 
b, whereas Fig. 2.5c and d represent the graphs at tenth iteration.
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Fig. 2.5 Hidden variable fractal interpolation function 
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Chapter 3 
Differentiable Fractal Functions 

This chapter presents the fractal patterns for types of fractal splines together with 
numerical simulations. In [ 1], Barnsley has discussed the general construction of 
fractal splines as follows. Consider .Li (x) = ai x + bi and . Fi (x, y) = αi y + qi (x)
for .i = 1, 2, . . . , N with .x1 < x2 < · · · < xN+1 satisfying Eq. (2.3). If .|αi | < aki , 
.k > 0, .qi ∈ Ck[x1, xN+1] and 

.Fi,r (x, y) =αi x + q(r)
i (x)

ari
, (3.1) 

.y1,r = qr1(x1)

ar1 − α1
, yN ,r = qrN (xN+1)

arN − αN
, for r = 1, 2, . . . , k. (3.2) 

Suppose 

Fi,r (xN+1, yN+1,r ) = Fi+1,r (x1, y1,r ), i = 2, 3, . . . ,  N , r = 1, 2, . . . ,  k, 

then the IFS .{(Li (x), Fi (x, y) : i = 1, 2, . . . , N } determines . f ∈ Ck[x1, xN+1] and 
. f (r) is the FIF associated with . {(Li (x), Fi,r (x, y) : i = 1, 2, . . . , N , r = 1,
2, . . . , k}.

3.1 Hermite Cubic Fractal Spline 

Let .{(xi , yi , di ) : i = 1, 2 . . . , N + 1} be the data set with .x1 < x2 < · · · < xN+1, 
where.yi denote the function values and.di represent the derivatives, at the points. xi . 
In [ 2], a .C1-cubic Hermite FIF . f is constructed with the constraint . |αi | < sai < 1
for.0 < s < 1 employing the above-described theory of fractal splines. Let. G = {g ∈
C1(I,R)|g(x1) = y1, g(xN+1) = yN+1, g(1)(x1)=d1, g(1)(xN+1) = dN+1}. The  met-
ric induced by the .C1 norm, given by .||g||C1 = max{||g||∞, ||g(1)||∞}, is denoted 
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by. ρ. Then the metric space .(G, ρ) is complete. The Read-Bajraktarević (RB) oper-
ator .T is defined on .(G, ρ) as 

(T g)(x) = αi g(L
−1 
i (x)) + qi (L−1 

i (x)), 

where. qi is a suitable cubic polynomial satisfying.qi (x1) = yi − αi y1 and. qi (xN+1) =
yi+1 − αi yN+1. The contractivity of . T on the complete metric space .(C1, ρ), yields 
a unique fixed point (say) . f . Furthermore, to obtain the functional equation of 
the derivative . f ', define a complete metric space .(G∗, ρ∗), where . G∗ = {g∗ ∈
C(I,R)|g∗(x1) = d1, g∗(xN+1) = dN+1} and .ρ∗ is the uniform metric. Now the RB 
operator .T ∗ on .(G∗, ρ∗) is defined by 

(T ∗g∗)(x) = 
αi g∗(L−1 

i (x)) + q '
i (L

−1 
i (x)) 

ai 
. 

The unique fixed point of .T ∗ is the required derivative . f ' satisfying 

ai f
'(Li (x)) = αi f

'(x) + q '
i (x). 

Here, the choice of cubic polynomial .qi should satisfy . f (x1) = y1, f (xN+1) =
yN+1, f '(x1) = d1, f '(xN+1) = dN+1. As the function . f is defined piecewisely via 
the maps . Li , the cubic polynomial .qi is simply taken as, 

.qi (x) = Ai

(
x − x1

xN+1 − x1

)3

+ Bi

(
x − x1

xN+1 − x1

)2

+ Ci

(
x − x1

xN+1 − x1

)
+ Di , (3.3) 

where the unknowns .Ai , Bi ,Ci , Di are determined as follows 

. Ai = hi (di+1 + di ) − αi (dN+1 + d1)(xN+1 − x1) − 2(yi+1 − yi ) + 2(yN+1 − y1),

Bi = − hi (2di + di+1) + 3(yi+1 − yi ) − αi [−(xN+1 − x1)(2d1 + dN ) + 3(yN+1 − y1)],
Ci = hi di − αi d1(xN+1 − x1),

Di = yi − αi y1,

here .hi = xi+1 − xi . Taking .θ = x−x1
xN+1−x1

and substituting the unknowns, it is seen 
that 

. 

f (Li (x)) = αi f (x) + {
hi (di+1 + di ) − αi (dN+1 + d1)(xN+1 − x1) − 2(yi+1 − yi )

+ 2(yN+1 − y1)
}
θ3 + { − hi (2di + di+1) + 3(yi+1 − yi )

− αi [−(xN+1 − x1)(2d1 + dN+1) + 3(yN − y1)]
}
θ2

+ {hidi − αi d1(xN+1 − x1)}θ + yi − αi y1,
(3.4)



3.1 Hermite Cubic Fractal Spline 41

the function. f satisfying Eq. (3.4) is called as the.C1-cubic Hermite fractal interpola-
tion function. The MATLAB code for generating Hermite fractal splines is provided 
as follows. 

%A  c  o  n  s  t  r  u  c  t  i  v  e a  p  p  r  o  a  c  h t  o c  u  b  i  c H  e  r  m  i  t  e f  r  a  c  t  a  l i  n t e r p o l a t i o n  
f u n c t i o n  

c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
x =  [  0  0  .  2 0  .  5 0  .  7 0  .  9  ]  ;  
y =  [  1  0  .  5 1  .  5  −1 2  ]  ;  
D a t a  =  [  x  ’  y  ’  ]  
%y  =  [  5 4 8 6  7  ]  ;  
i t e r  =  8  ;  
l x  =  l e n g t h  ( x )  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  hn =  (  x  (  l  x  )−x (  1  )  )  ;%L  e  n  g  t  h  o  f i  n t e r v a l o  f f  i  r  s  t (  
n −1)  v  a  l  u  e  s  

a  (  i )  =  h  ( i ) /  hn  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  hn  ;  

e n d  
%d  =  A  r i t h m e t i c _ m e a n s v a l u e  (  x  ,  y  )  
a  l  p  h  a  =  [  0  .  2 0  .  3 0  .  2 0 . 1 ]  
%a  l  p  h  a  =  [  0  .  1 0  .  3 0  .  1 0  .  2  ]  
%a  l  p  h  a  =  [  0  0  0  0  ]  
d  =  c u b i c F I F _ d e r i v a t i v e  (  x  ,  y  ,  a  l  p  h  a  )  
[  X  Y]  =  C  o n s t _ H e rm i t e C u b i c F I F  (  x  ,  y  ,  a  l  p  h  a  ,  d  ,  i  t  e  r  )  ;  
p l o t  (X  ,  Y  ,  ’ b− ’ ) ;  h o l d  on  
p l o t ( x  ,  y  ,  ’ .  k  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
%%G  e  n  e  r  a  t  i  n  g  new  d  a  t  a p o i n t s  
f u n c t i o n [  X1  Y1 ]  =  C  o n s t _ H e rm i t e C u b i c F I F  (  x  ,  y  ,  a  l  p  h  a  ,  d  ,  i  t  e  r  )  
l x  =  l e n g t h  ( x )  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  hn =  (  x  (  l  x  )−x (  1  )  )  ;%L  e  n  g  t  h  o  f i  n t e r v a l o  f f  i  r  s  t (  
n −1)  v  a  l  u  e  s  .  

a  (  i )  =  h  ( i ) /  hn  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  hn  ;  

e n d  
a b v a l u e  =  [  a  ’  b  ’  ]  
N= l e n g t h  ( x )  ;  
f o r i =  1  :  l  x  −1 

%  f  p r i n t f  ("−−− i v  a  l  u  e  =%d  "  ,  i  )  
t h i r d  =  a  l  p  h  a  (  i  )  ∗[ − hn  ∗ ( d  (  1  )  +  d  (  N  )  )  −2∗( y  (  N  )−y (  1  )  )  ]  ;  
AA ( i ) = h ( i ) ∗ ( d  (  i  )  +  d  (  i  +  1  )  )  −2∗( y  (  i  +  1  )−y (  i  )  )− a l p h a  (  i  )  ∗ [ hn  ∗ ( d  (  1  )  +  d  (  N  

) )  −2∗( y  (  N  )−y (  1  )  )  ]  ;  % 
f i r s t t  e  r  m  

BB ( i ) =−h (  i  )  ∗ [ 2  ∗ d (  i  )  +  d  (  i  +  1  )  ]  +  3  ∗ [ y  (  i  +  1  )−y (  i  )  ]− a l p h a  (  i  )  ∗[ − hn  ∗ ( 2  ∗ d 
( 1 )  +  d  (  N  )  )  +  3  ∗ ( y  (  N  )− 

y (  1  )  )  ]  ;  %s  e c o n d  t  e  r  m  
CC ( i ) = h ( i ) ∗ d (  i  )− a l p h a  (  i  )  ∗ d (  1  )  ∗ hn  ;  % t  h  i  r  d t  e  r  m  
DD ( i ) = y ( i )− a l p h a  (  i  )  ∗ y (  1  )  ;  

e n d  
ABCD= [AA’ BB ’ CC ’ DD ’ ] ; 
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=  l  x  ;  
f o r  k  =  1  :  i t e r  

f o r i =  1  :  l  x  −1
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f o r t 1  =  1  :  p  
i f (  k  ==1 )  

L (  i  ,  t  1  )  =  (  a  (  i  )  ∗ x  (  t  1  )  )  +  b  ( i ) ;  
t h e t a  (  t  1  )  =  ( x  (  t  1  )−x (  1  )  )  /  (  x  (  p  )−x (  1  )  )  ;  
Q=  (AA  (  i  )  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂ 3+BB  (  i  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂ 2+CC  (  i  )  ∗ ( t  h  e  t  a  (  

t 1  )  )  +DD  (  i  )  ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  )  ∗ y (  t  1  )  )  +Q  ;  

e l s e  
%  f  p r i n t f  (’−−−−[ i  ,  t  1  ,  p  ]  =  (  % d  ,%  d  ,% d  )  ’  ,  i  ,  t  1  ,  p  )  
L (  i  ,  t  1  )  =  (  a  (  i  )  ∗X1 ( t  1 ) ) + b ( i  )  ;  
t  h  e  t  a  (  t 1  )  =  (  X1  (  t 1  )−X1 ( 1 ) ) /  (  X1 ( p )−X1 ( 1 ) ) ;  
Q=  (AA  (  i  )  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂ 3+BB  (  i  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂ 2+CC  (  i  )  ∗ ( t  h  e  t  a  (  

t 1  )  )  +DD  (  i  )  ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  )  ∗Y1 ( t  1 ) ) +Q ; 

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X ; Y1=Y ; 
X  =  [ ] ; Y  =  [ ] ;  
p=  l e n g t h  ( X1 )  ;  

e n d  
XX= [ X1 ’ Y1 ’ ] ; 
XXX=  u n i q u e  (  XX  ,  ’ r  o  w  s  ’  ) ;  
X1=XXX ( : , 1 ) ; Y1=XXX ( : , 2 ) ; 
e n d  
%%%%%%%%%%%%%%%%%%%%%%% 
%%  F i n d i n g t h e d  e  r  i  v  a  t  i  v  e v  a  l  u  e  s  
f u n c t i o n  d_new  =  c  u  b  i  c  F  I  F  _  d  e  r  i  v  a  t  i  v  e  (  x  ,  y  ,  a  l  p  h  a  )  
u1  = 5 . 4 5 2 3 ;  u2  = 5 . 4 5 2 3 ;  
N= l e n g t h  ( x )  ;  
f o r  n =  1  :  N−1 

a  (  n )  =  (  x ( n  +  1  )−x ( n )  )  /  (  x  (  N  )−x (  1  )  )  ;  
h ( n )  =  x  ( n  +  1  )−x ( n )  ;  

e n d  
%  C  ompu t i n g  co  − e f f i c i e n t m  a  t  r  i  x  
A (  1  )  =  (  (  a  (  1  )  ∗ a (  1  )  )− a l p h a  (  1  )  )  ∗ h (  1  )  ;%A1  V a l u e  
A1 ( 1 ) =4∗ a (  1  )  ∗ a (  1  )  ∗ ( 1  − ( (  a  l  p  h  a  (  1  )  /  h  (  1  )  )  ∗ ( x  (  N  )−x  (  1  )  ) ) )  ;%A1∗ Va l u e  .  
mu ( 1 ) = 2∗ a (  1  )  ∗ a (  1  )  ;  
B1 (  1  )  =  −2∗ a (  1  )  ∗ a (  1  )  ∗ ( a  l  p  h  a  (  1  )  /  h  (  1  )  )  ∗ ( x  (  N  )−x (  1  )  )  ;  
b e t a  ( 1 )  =  (  6∗ a (  1  )  ∗ a (  1  )  ∗ ( ( (  y  (  2  )  −y (  1  )  )  −( a  l  p  h  a  (  1  )  ∗ ( y  (  N  )−y  (  1  )  ) ) )  /  h  (  1  )  )  )  

−(A ( 1 ) ∗ u1  )  ;  
B (  N  )  =  − ( (  a  (  N−1)  ∗ a (  N−1)  )− a l p h a  (  N−1)  )  ∗ h (  N−1)  ;  
B1 (  N )  = 4∗ a (  N−1) ∗ a (  N−1)  ∗ ( 1  − ( (  a  l  p  h  a  (  N−1)  /  h  (  N−1)  )  ∗ ( x  (  N  )−x  (  1  )  ) ) )  ;  
A1 ( N ) =−2∗ ( a  l  p  h  a  (  N−1)  /  h  (  N−1)  )  ∗ a (  N−1)  ∗ a (  N−1)  ∗ ( x  (  N  )−x (  1  )  )  ;  
l am  (  N  )  =2∗ a (  N−1) ∗ a (  N−1)  ;  
b e t a  (N )  =  (  6  ∗ a (  N−1)  ∗ a (  N−1)  ∗ ( ( (  y  (  N  )−y (  N−1)  )  −( a  l  p  h  a  (  N−1)  ∗ ( y  (  N  )−y (  1  )  )  )  

) /  h  (  N−1)  )  )− 
( B (  N  )  ∗ u2  )  ;  

%  C  ompu t i n g  t  h  e r  e  m  a  i  n  i  n  g v  a  l  u  e  s o  f  co  − e f f i c i e n t m  a  t  r  i  x  
f o r  n =  2  :  N−1 

mu ( n ) = h ( n −1)  /  (  h  (  n  −1)  +  h  (  n  )  )  ;  
l am  (  n  )  =  1−mu ( n ) ;
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A(  n  )  =  −( a  l  p  h  a  ( n )  ∗ h ( n )  ∗ h (  n  −1)  )  /  (  2  ∗ a (  n  )  ∗ a (  n  )  ∗ ( h  (  n  )  +  h  (  n  −1)  )  )  ;  
B (  n  )  =  (  a  l  p  h  a  (  n  −1)  ∗ h ( n )  ∗ h (  n  −1)  )  /  (  2  ∗ a (  n  −1)  ∗ a (  n  −1)  ∗ ( h  (  n  )  +  h  (  n  −1)  )  )  ;  
A1 ( n ) = − (  1  /  (  h ( n )  +  h  (  n  −1)  )  )  ∗ ( x  (  N  )−x (  1  )  )  ∗ ( 2  ∗ a l p h a  (  n  )  ∗ ( h  (  n  −1)  /  h  (  n  )  )  

+ a  l  p  h  a  (  n  −1)  ∗ ( h  (  n  )  /  
h (  n  −1)  )  )  ;  
B1 (  n  )  = − (  1  /  (  h ( n )  +  h  (  n  −1)  )  )  ∗ ( x  (  N  )−x (  1  )  )  ∗ ( a  l  p  h  a  (  n  )  ∗ ( h  (  n  −1)  /  h  (  n  )  )  +  

2∗ a l p h a  (  n  −1)  ∗ ( h  (  n  )  /  
h (  n  −1)  )  )  ;  
b e t a  ( n )  =  (  3  ∗ ( h  (  n  −1)  /  (  h ( n )  +  h  (  n  −1)  )  )  ∗ ( ( (  y ( n  +  1  )−y ( n )  )− ( a  l  p  h  a  (  n  )  ∗ 

( y (  N  )−y  (  1  )  ) ) )  /  
h ( n )  )  )  +  (  3  ∗ (  h  ( n )  /  (  h  ( n )  +  h (  n  −1)  )  )  ∗ ( ( (  y ( n )−y (  n  −1)  )− ( a  l  p  h  a  (  n  −1)  ∗ 

( y (  N  )−y  (  1  )  ) ) )  /  
h (  n  −1)  )  )  −(A ( n ) ∗ u1  )  −(B (  n  )  ∗ u2  )  ;  

e n d  
%  A  s  s  i  g  n z e r o t  o t  h  e  co  − e f f i c i e n t m  a  t  r  i  x  
C= z e r o s  (N  ,  N  )  ;  
%The v a l u e o f f i r s t c o l u m n o f The co − e f f i c i e n t m  a  t  r  i  x  
f o r  n =  1  :  N  

i f  n  ==2  
C (  n  ,  1  )  =  A1  (  n  )  +  l  a  m  (  n  )  ;  

e l s e  
C (  n  ,  1  )  =  A1  (  n  )  ;  

e n d  
e nd  
%  The  v  a  l  u  e o  f l  a  s  t c  o l umn  o  f t  h  e  co  − e f f i c i e n t m  a  t  r  i  x  
f o r  n =  1  :  N  

i f n ==N−1 
C  (  n  ,  N  )  =  B1  (  n )  +  mu  (  n )  ;  

e l s e  
C (  n  ,  N  )  =  B1  (  n  )  ;  

e n d  
e nd  
%The  v  a  l  u  e o  f t  h  e i n t e r m e d i a t e c  o  l  u  m  n  s  

f o r  n =  2  :  N−1 
C (  n  −1 ,  n  )  =mu (  n  −1)  ;  
C (  n  ,  n  )  = 2 ;  
C (  n  +  1  ,  n  )  =  l  a  m  (  n  +  1  )  ;  

e n d  
C i n v  =  i n v  ( C )  ;  
% T  a  k  e  RHS  i  n  c  o  l  u  m  n v  e  c  t  o  r  
b e t a t  =  b e t a  ’ ;  
d =  C  i  n  v  ∗ b e t a t  ;  
d e r i v _ v a l u e  =d  ’  ;  
d_new  =  d  e  r  i  v  _  v  a  l  u  e  ;  
e n d  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
f u n c t i o n [  d  ]  =  A r i t h m e t i c _ m e a n s v a l u e  (  x  ,  y  )  
N= l e n g t h  ( x )  ;  
f o r  n =  1  :  N−1 

h ( n )  =  x  ( n  +  1  )  − x ( n )  ;  
d  e  l  (  n )  =  (  y ( n  +  1  )− y ( n )  )  /  h ( n )  ;  

e n d  
a  d  ( 1 )  =  d  e  l  (  1 )  +  (  h  (  1 )  ∗ ( d  e  l  (  1  )  − d e l  (  2  )  )  )  /  (  h  (  1  )  +  h  (  2  )  )  ;  
a d  (  N  )  =  d  e  l  (  N−1)  +  (  h  (  N−1)  ∗ ( d  e  l  (  N−1)−d e l  (  N−2)  )  )  /  (  h  (  N−1)  +  h  (  N−2)  )  ;
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gd  ( 1 )  =  d  e  l  (  1 )  .  ^  (  1+  (  h  (  1 )  /  h  ( 2 )  )  )  ∗ ( (  h  (  2 )  ∗ d e l  (  2  )  +  h  (  1  )  ∗ d e l  (  1  )  )  /  (  h  
( 1 )  +  h  (  2 )  )  )  .  ̂  (  − h (  1  )  /  

h (  2  )  )  ;  
gd  (  N  )  =  d  e  l  (  N−1)  .  ^  (  1  +  (  h  (  N−1)  /  h  (  N−2)  )  )  ∗ ( (  h  (  N−2)  ∗ d e l  (  N−2)  +  h  (  N−1)  ∗ 

d e l  (  N−1)  )  /  (  h  (  N−1)  +  
h (  N−2)  )  )  .  ^  (  − h (  N−1)  /  h  (  N−2)  )  ;  
f o r  n =  2  :  N−1 

a  d  ( n )  =  ( h ( n )  ∗ d e l  (  n  −1)  +  h  (  n  −1)  ∗ d  e  l  (  n )  )  /  (  h  ( n )  +  h (  n  −1)  )  ;  
gd  (  n  )  =  d  e  l  (  n  −1)  .  ^  (  h  (  n  )  /  (  h  (  n  −1)  +  h  (  n  ) ) )  ∗ d e l  (  n  )  .  ^ (  h  (  n  −1)  /  (  h  (  n  

−1)  +  h  (  n  ) ) )  ;  
e n d  
d=  a d  ;  
e n d  

3.1.1 Numerical Computation 

Let .{(0, 1), (0.2, 0.5), (0.5, 1.5)(0.7,−1), (0.9, 2)} be the given set of interpolation 
data. For the construction of Hermite cubic FIF, the derivatives are computed using 
the reference [ 2]. To observe the effect of scaling parameters, different choice of 
scaling constants are chosen as given in Table 3.1. The different Hermite cubic FIFs 
are shown in Fig. 3.1a, b and c by modifying .αi and derivative values with the help 
of arithmetic mean method. The classical Hermite cubic FIF is constructed with the 
zero scaling vector and its graph is shown in Fig. 3.1d. 

3.2 Cubic Fractal Spline Using Moments 

In [ 3], moments are used to construct the fractal splines. The moments.Mi are defined 
by 

Mi = f ''
(xi ), i = 1, 2, . . . ,  N + 1. 

Suppose the function . f ∈ C2[x1, xN ] and whose graph is the fixed point of the iter-
ated function system.{(Li (x), Fi (x, y)), i = 1, 2, . . . , N − 1} satisfying. f (xi ) = yi , 
where 

Table 3.1 Scaling parameters and derivatives associated with Hermite cubic FIF 

Scaling parameters Derivatives 

.[0.2, 0.3, 0.2, 0.2] . [36.8326, 69.8087, 45.9254, 54.3726, 95.5692]

.[0.1, 0.3, 0.1, 0.2] . [−0.2222, 45.7367, 34.8190, 16.1667, 119.8519]

.[0.2, 0.3, 0.2, 0.1] . [−2.6762, 18.7817, 0.15568.6348, 30.0928]

.[0, 0, 0] .[−5.6932, 3.3412, −9.4163, −1.6732, 23.6092]
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Fig. 3.1 Hermite cubic fractal interpolation function 

. Li (x) = ai x + bi ,

Fi (x, y) = a2i αi y + a2i qi (x),

with.0 < |αi | < 1 and.qi being a cubic polynomial, then. f is said to be cubic spline 
fractal interpolation function. From the narration of spline FIF in the above sections, 
it follows that 

. f
''
(Li (x)) = αi f

''
(x) + ci (x − x1)

xN − x1
+ di . (3.5) 

From Eqs. (2.3), (3.5) and the assumption.Mi = f
''
(xi ), the parameters. ci and.di are 

determined as 

.ci = Mi+1 − Mi − αi (MN − M1),

di = Mi − αi M1.
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Then, for .i = 1, 2, . . . , N , 

. f
''
(Li (x)) = αi f

''
(x) + (Mi+1 − αi MN+1)(x − x1)

xN+1 − x1
+ (Mi − αi M1)(xN+1 − x)

xN+1 − x1
.

On integrating the function . f
''
twice, 

. 
f (Li (x)) = a2i

{
αi f (x) + (Mi+1 − αi MN+1)(x − x1)

3

6(xN+1 − x1)
+ (Mi − αi M1)(xN+1 − x)3

6(xN+1 − x1)

+ c∗i (xi − x) + d∗
i (x − x1)

}
,

(3.6) 

With .Li (x1) = xi , Li (xN+1) = xi+1 and the interpolation conditions, the constants 
.c∗
i and .d∗

i are obtained as 

. c∗
i = 1

(xN+1 − x1)

(
yi
a2i

− αi y1

)
− (Mi − αi M1)(xN+1 − x1)

6
,

d∗
i = 1

(xN+1 − x1)

(
yi+1

a2i
− αi yN+1

)
− (Mi+1 − αi MN+1)(xN+1 − x1)

6
.

On substituting.c∗
i and.d∗

i in the Eq. (3.6), the functional equation of. f can be obtained 
in terms of moments. The following is the MATLAB code corresponding to the above 
discussed theory for developing fractal functions using moments. 

%  F  i  t  t  i  n  g t  h  e c  u  b  i  c s  p  l  i  n  e F  I  F  u  s  i  n  g d  e  r  i  v  a  t  i  v  e b  o u n d a r y  
c o n d i t i o n s  y  ’ (  x  _  1  )  =  f  d  1  a  n  d  y  ’  (  x_N  )  =  f  d  2  .  

f u n c t i o n [  ]  =  C  u b i c _ i t p e r p o l a t i o n  (  )  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
x  =  [  5  0  60  72  1  0  0  ]  ;  y  =  [  8  2  50  78  40 ]  ;  %D a  t  a s  e  t  
n=  l e n g t h  ( x )  ;  
i t e r  =  i n p u t  ( ’  E  n  t  e  r t  h  e  no  .  o  f i n t e r a t i o n s  :  =  ’  ) ;  
S i z e  =  n  
A l p h a  =  i n p u t  ( ’ E  n  t  e  r t  h  e a  l  p  h  a v  a  l  u  e  s  (  S  i  z  e  −1)  :  =  ’  ) ;  
m=  Moments  (  x ,  y ,  A  l  p  h  a  )  ;%F  i n d i n g t h e  m  o  m  e  n  t  s  
[  X  ,  Y]  =  C u b i c _ s i m p l i f i c a t i o n  (  x  ,  y  ,  A  l  p  h  a  ,  i  t  e  r  ,  m)  ;  
XYva l u e s  =  [X  Y  ]  ;  
%%  P l o t i n g g  r  a  p  h  
p l o t ( x  ,  y  ,  ’ .  k  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 3 0 )  ;  h o l d  on  ;  p l o t  (X  ,  Y  ,  ’ .  b  ’  , ’ m  a  r  k  e  r  s  i  z  e  

’ , 4 )  ;  h o l d  on  ;  p l o t  (X  ,  Y  ,  ’ r  − ’ ) ;  
e n d  
%%  G  e  n  e  r  a  t  e  d d  a  t  a (  U  s  i  n  g  Moments  )  
f u n c t i o n [  X1  Y1  ]  =  C  u b i c _ s i m p l i f i c a t i o n  (  x  ,  y  ,  a  l  p  h  a  , i  t  e  r  ,  m)  

n=  l e n g t h  ( x )  ;  
p=n  ;  
f o r i =  1  :  n  −1 

a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  ( n )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  ( n )  ∗ x (  i  )  )  −( x  (  1  )  ∗ x (  i  +  1  )  )  )  /  (  x ( n )−x  (  1  )  ) ;  a  2  ( i )  =  b  (  i ) ;  

e n d  
a b v a l u e s  =  [  a  ’  b  ’  ]
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f o r i =  1  :  n  −1 
q =  ( x  (  n  )−x (  1  )  )  ;  
q1  =m(  i  +  1  )− a l p h a  (  i  )  ∗m(  n  )  ;  
q2  =m(  i  )− a l p h a  (  i  )  ∗m(  1  )  ;  
q3  =  (  y  (  i )  /  (  a  (  i )  ̂  2  )  )− a l p h a  (  i  )  ∗ y (  1  )  ;  
q4  =  (  y  (  i  +  1  )  /  a  (  i  )  ^  2  )− a l p h a  (  i  )  ∗ y ( n )  ;  
s  1  (  i  )  =  p owe r  (  a  (  i  )  ,  2  )  ∗ ( q1−q2  )  /  (  6  ∗ q  )  ;  s  2  (  i  )  =  p owe r  (  a  (  i  )  ,  2  )  ∗ ( x  (  n  )  ∗ q2− 

x (  1  )  ∗ q1  )  /  (  2  ∗ q )  ;  
s  3  (  i  )  =  p owe r  (  a  (  i  )  ,  2  )  ∗ ( ( ( 3  ∗ q1  ∗ powe r  (  x  (  1  )  ,  2  )  )  −(3∗ q2  ∗ p  o  w  e  r  ( x ( n )  ,  2  )  )  

) /  (  6  ∗ q )  +  (  q2−q1  )  ∗ ( q  /  6  )  +  (  q4−q3  )  /  q  )  ;  
s  4  (  i  )  =  p owe r  (  a  (  i  )  ,  2  )  ∗ ( ( (  q2  ∗ p  o  w  e  r  ( x ( n )  ,  3  )  )  −( q1  ∗ powe r  (  x  (  1  )  ,  3  )  )  )  

/ ( 6  ∗ q )  +  (  x  (  1  )  ∗ q1−x ( n )  ∗ q2  )  ∗ ( q  /  6  )  +  (  x  (  n  )  ∗ q3−x (  1  )  ∗ q4  )  /  q  )  ;  
s  5  (  i  )  =  p owe r  (  a  (  i  )  ,  2  )  ∗ a l p h a  (  i  )  ;  

e n d  
%%%%% 
%%% 
X  =  [ ] ;  Y  =  [ ] ;  
f o r  k  =  1  :  i t e r  

f o r i =  1  :  n  −1 
f o r t =  1  :  p  

i f (  k  ==1 )  
L  (  i  ,  t )  =  (  a  (  i )  ∗ x (  t  )  )  +  b (  i  )  ;  
L1  (  i  ,  t  )  =  s  5  (  i  )  ∗ y (  t  )  +  s  1  (  i  )  ∗ powe r  (  x  (  t  )  ,  3  )  +  s  2  (  i  )  ∗ powe r  (  x  (  t  )  

, 2 )  +  s  3  (  i  )  ∗ x  (  t )  +  s  4  (  i ) ;  

e l s e  
L  (  i  ,  t )  =  (  a  (  i )  ∗X1  ( t )  )  +  b  ( i ) ;  
L1  (  i  ,  t  )  =  s  5  (  i  )  ∗Y1 ( t  )  + s 1 ( i  )  ∗ powe r  (  X1  (  t  )  ,  3  )  +  s  2  (  i  )  ∗ powe r  (  X1  (  t  

) ,  2  )  +  s  3  (  i  )  ∗X1  ( t )  +  s  4  ( i ) ;  

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
g =  [  X  ’  Y  ’  ]  ;  
g =  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ;  p = l e n g t h  (  X1  )  ;  X  = [ ] ;  Y  =  [ ] ;  

e n d  
e nd  
%%F i n d i n g t h e  m  o  m  e  n  t  s  
f u n c t i o n [m]  =  Moments  (  x  ,  y  ,  a  l  p  h  a  )  
n=  l e n g t h  ( x )  ;  
f o r i =  1  :  n  −1%  H  e  r  e f  i n d i n g  a  ,  b  ,  c  ,  d  v  a  l  u  e  s  

a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  ( n )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  ( n )  ∗ x (  i  )  )  −( x  (  1  )  ∗ x (  i  +  1  )  )  )  /  (  x ( n )−x (  1  )  )  ;  

e n d  
f o r i =  1  :  n  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  
e n d  
f o r i =  1  :  n  

i f i  ==1  
a s  (  i  )  =6∗(1  − a (  i  )  ∗ a  l  p  h  a ( i )  ) ;  c  a  ( i )  =  2  ∗ ( (1  − a l p h a  (  i  )  )  ∗ h (  i  )  )  ;  l  a  (  i  )  =  h  

( i ) ;  c  b  ( i )  =− a l p h a  (  i  )  ∗ h (  i  )  ;  
d (  i  )  =  (  y (  i  +  1  )−y (  i  )  −( a  l  p  h  a  (  i  )  ∗ ( a  (  i  )  ^  2  )  ∗ ( y  (  n  )−y  (  i  ) ) ) )  ∗ ( 6 /  h  (  i  )  )  ;
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e l s e i f i ==  n  
c a  (  i  )  =− a l p h a  (  i  −1)  ∗ h (  i  −1)  ;  mu  (  i  )  =  h  (  i  −1)  ;  c  b  (  i  )  =2∗(1  − a l p h a  (  i  −1)  )  

∗ h (  i  −1)  ;  b  s  (  i  )  =−6∗(1  − a (  i  −1)  ∗ a l p h a  (  i  −1)  )  ;  
d (  i  )  =  −( y  (  i  )−y (  i  −1)  −( a  l  p  h  a  (  i  −1)  ∗ ( a  (  i  −1)  ^  2  )  ∗ ( y  (  i  )−y  (  1  )  ) ) )  ∗ ( 6 /  h  (  

i −1)  )  ;  
e l s e  

a s  (  i  )  =  − 6∗ ( (  a  (  i  )  ∗ a l p h a  (  i  )  )  /  (  h  (  i  −1)  +  h  (  i  ) ) )  ;  
c a  (  i  )  =  − ( (  a  l  p  h  a  (  i  −1)  ∗ h (  i  −1)  +  2  ∗ ( a  l  p  h  a  (  i  )  ∗ h  (  i  ) ) ) )  /  (  h  (  i  )  +  h  (  i  −1)  )  ;  
l  a  (  i  )  =  h (  i  )  /  (  h (  i  −1)  +  h  (  i  )  )  ;  mu  (  i  )  =1− l  a  ( i ) ;  c  b  ( i )  =  − ( ( ( 2  ∗ a l p h a  (  i  −1)  

∗ h (  i  −1)  )  +  (  a  l  p  h  a  (  i  )  ∗ h (  i  )  )  )  /  (  h (  i  −1)  +  h  (  i  ) ) )  ;  
b s  (  i  )  =  6  ∗ ( a  (  i  −1)  ∗ a l p h a  (  i  −1)  /  (  h  (  i  −1)  +  h  (  i  ) ) )  ;  
d1  (  i  )  =  (  (  (  y  (  i  +  1  )−y (  i  )  )  /  h (  i  )  )  − ( ( (  y  (  i  )−y (  i  −1)  )  /  h  (  i  −1)  ) ) )  ;  
d2  (  i  )  =  (  (  a  (  i  )  ∗ a l p h a  (  i  )  )  −( a  (  i  −1)  ∗ a l p h a  (  i  −1)  )  )  ∗ ( y  (  n  )−y (  1  )  )  /  (  x  (  n  )  

−x (  1  )  )  ;  
d (  i  )  =  6  ∗ ( d1  (  i  )−d2  (  i  )  )  /  (  h  (  i  )  +  h  (  i  −1)  ) ;  

e n d  
e nd  
f d 1  =  i n p u t  ( ’  E  n  t  e  r t  h  e I  n i t i a l D  e  r  i  v  a  t  i  v  e v  a  l  u  e  :  =  ’  ) ;  
f d 3  =  i n p u t  ( ’  E  n  t  e  r t  h  e  End  D e r i v a t i v e v  a  l  u  e  :  =  ’  ) ;  
f d 1  =  2 ;  f d 3  =  5 ;%  H  e  r  e  u  s  i  n  g d  e  r  i  v  a  t  i  v  e b o u n d a r y c  o  n  d  i  t  i  o  n o  f t  y  p  e 1  .  
dd  =  [  d  (  1  )  −a s  (  1  )  ∗ f d 1 d  (  2  )−a s  (  2  )  ∗ f d1  −b s  (  2  )  ∗ f d 3  d  (  3  )  −a s  (  3  )  ∗ f d1  −b s  (  3  )  

∗ f d 3  d  (  4  )  −b s  (  4  )  ∗ f d 3  ]  ;  
a  a  =  [  c  a  ( 1 ) l  a  (  1 )  0  c  b  (  1 )  ;  c  a  (  2 )  +mu  (  2 )  2  l  a  (  2 )  c  b  ( 2 )  ;  c  a  ( 3 )  mu  (  3 )  2  

l  a  ( 3 )  +  c  b  ( 3 )  ;  c  a  ( 4 )  0  mu  ( 4 )  c  b  (  4 )  ]  ;  
m= i n v  ( a  a )  ∗ dd  ’  ;  
m=m ’ ; 
M ome n t s _ v a l u e s  =m  
e nd  

3.2.1 Numerical Computation 

Let .{(50, 82), (51, 50), (52, 78), (53, 40)} be the given data set. With the assump-
tions . f '(x1) = 100 and . f '(xN ) = 10, the  .C2-cubic spline FIFs are computed. The 
system of equations is solved using the reference [ 3]. Different set of scaling factors 
and moments are provided in Table 3.2. The effects of perturbation in the scaling 
factor. α with respect to the IFS parameters are shown in Fig. 3.2. The graphs of gen-
erated .C2 continuity of the cubic FIF are shown in Fig. 3.2a and b with the modified 
scalings. Figure 3.2c demonstrates the classical cubic FIF, which is retrieved (from 
Fig. 3.2a) by setting all the scaling factors to be zero. 

Table 3.2 Scaling parameters and moments associated with the.C2-cubic spline FIF 
Scaling parameters Moments 

.[0.8, 0.8, 0.9] . [−214.6452, 433.1183, −100.7957, 657.0753]

.[0.9, 0.9, 0] . [−416.1359, 106.7961,−183.7087, 220.8544]

.[0, 0, 0] .[−2.3245, 1.5290,−0.9025, 1.1323]
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Fig. 3.2 Cubic fractal interpolation function with moments 

3.3 Rational Fractal Spline 

The rational cubic fractal interpolation function with numerator as cubic polynomial 
and denominator as linear function is defined in [ 4] by  

. f (Li (x)) = αi fi + Pi (θ)

Qi (θ)
, (3.7)
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where, 

. Pi (θ) = ri (yi − α1y1)(1 − θ)3 + ti (yi+1 − α1yN )θ3 + {
(2ri + ti )yi + ri hidi

−αi [(2ri + ti )y1 + ri (xN − x1)]
} + {

(ri + 2ti )yi+1 − ti hidi+1

−αi [(ri + ti )yN − ti (xN − x1)]
}

Qi (θ) = ri (1 − θ)ri + tiθ.

Consider the prescribed data set .{(xi , yi ) : i = 1, 2, . . . , N + 1}. The derivatives 
at the knots .xi are denoted by . di . For simplicity, take .hi = xi+1 − xi , for  . i =
1, 2, . . . , N − 1. Let  .ri and . ti be the free shape parameters, in order to maintain 
the positiveness of the denominator in rational fractal splines, the parameters are 
restricted to be.ri > 0 and.ti > 0. Readers are recommended to see the articles [ 5, 6] 
for the construction of rational cubic spline fractal functions. The following equation 
provides the .C1 rational cubic spline with numerator as cubic polynomial and the 
denominator as linear function, 

(1  3θ) ri y  2
i  θ 1  Wi  θ 3θ(1 2θ) Vi   ( θ) ti yi 1 

f (Li (x))  
− + − + − += +

, 
(1  θ)ri  θ ti − +

here, 

. Vi = (2ri + ti )yi + ri hidi ,

Wi = (ri + 2ti )yi+1 − ti hidi+1,

θ = x − x1
xN+1 − x1

.

To construct the fractal perturbation. f α of the rational cubic spline , the scaling factor 
is chosen so that .|αi | < ai and the family of base functions are defined by 

B1i (1  3 θ)  B  22i θ(1  2 θ)  B3i θ (1  θ)   B4i θ 3 
bi (x) 

+ − + − += 
−

, 
(1  θ)ri  θ ti − +

such that each function .bi should agree the prescribed function . f at the end points 
of the interval of interpolation. The coefficients are given by 

.B1i = ri y1,

B2i = (2ri + ti )y1 + rid1(xN+1 − x1),

B3i = (ri + 2ti )yN+1 − ti dN+1(xN+1 − x1),

B4i = ti yN+1.
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Now the .C1 rational cubic fractal spline is expressed by 

. f α(Li (x)) = αi f
α(x) + Pi (x)

Qi (x)
, (3.8) 

where, 

. Pi (x) = P∗
i (θ) = (yi − αi y1)ri (1 − θ)3 + (yi+1 − αi yN+1)ti θ

3 + {(2ri + ti )yi + ri hi di

− αi [(2ri + ti )y1 + ri (xN − x1)d1]}θ(1 − θ)2 + {(ri + 2ti )yi+1 − ti hi di+1

− αi [(ri + 2ti )yN+1 − ti (xN+1 − x1)dN+1]}θ2(1 − θ),

Qi (x) = Q∗(θ) = (1 − θ)ri + θ ti , i = 1, 2, . . . , N ,

θ = x − x1
xN+1 − x1

.

The MATLAB code is provided to produce the rational cubic fractal functions. 

%  R  a  t  i  o  n  a  l F  I  F  w  i  t  h c u  b i  c a  s n  u m e r a t o r  a  n  d  d  e n o m i n a t o r a  s l  i  n  e  a  r  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
x  =  [  0  2 3 6  7  ]  ;  y  =  [  5 4 8 6  7  ]  ;  
i t e r  =  6  ;  
l x  =  l e n g t h  ( x )  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  hn =  (  x  (  l  x  )−x (  1  )  )  ;%L  e  n  g  t  h  o  f i  n t e r v a l o  f f  i  r  s  t (  
n −1)  v  a  l  u  e  s  .  

a  (  i )  =  h  ( i ) /  hn  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  hn  ;  

e n d  
[ a  b  ]  
%r  = 1 0 0 0  ∗ [ 3 . 1  1  1  1  ]  ;  t  =  [  1  1  1  1  ]  ;  a  l  p  h  a  =  [  0  .  2  4 0  . 1 0 . 3 5  0 .1]%%  

Examp l e1  
%r  =  [  3  .  1  1  1  1  ]  ;  t  =  [  1  1  1  1  ]  ;  a  l p h a  = [ 0 . 2 4 0 . 1 0  .  3  5  0  .  1  ]  %  E  x  a  m  p  l  e  2  
r  =  1 0 0 0  ∗ [  3  .  1  1  1  1  ]  ;  t  =  [  1  1  1  1  ]  ;  a  l  p  h  a  =  [  0  .  1 0  .  1 0  .  1 0 . 1 ]  %E  x amp l e3  
%r  = 1 0 0 0  ∗ [  3  .  1  1 1  1  ]  ;  t  =  [  1  1  1  1  ]  ;  a  l  p  h  a  =  [  0  0 0 0]%  C  l  a  s  s  i  c  a  l  
d  =  A r t h e m e t i c _ m e a n s v a l u e  (  x  ,  y  )  
[  X  Y]  =  C  o n s t _ C u b i c F I F  (  x  ,  y  ,  r  ,  t  ,  a  l  p  h  a  ,  d  ,  i  t  e  r  )  ;  
p l o t  (X  ,  Y  ,  ’ b− ’ ) ;  h o l d  on  
p l o t ( x  ,  y  ,  ’ .  k  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 2 0 )  ;  
%%%%%%%%%%%% 
f u n c t i o n [  X1  Y1 ]  =  C  o n s t _ C u b i c F I F  (  x  ,  y  ,  r  ,  t  ,  a  l  p  h  a  ,  d  ,  i  t  e  r  )  
l x  =  l e n g t h  ( x )  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  hn =  (  x  (  l  x  )−x (  1  )  )  ;%L  e  n  g  t  h  o  f i  n t e r v a l o  f f  i  r  s  t (  
n −1)  v  a  l  u  e  s  .  

a  (  i )  =  h  ( i ) /  hn  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  hn  ;  

e n d  
a v a l u e  =  a  
f o r i =  1  :  l  x  −1 

c f 1  (  i  )  =  (  y  (  i  )− a l p h a  (  i  )  ∗ y (  1  )  )  ∗ r (  i  )  ;% f  i  r  s  t t  e  r  m  
c f 2  (  i  )  =  (  y  (  i  +  1  )− a l p h a  (  i  )  ∗ y (  l  x  )  )  ∗ t ( i ) ;  %  s  e c o n d t e r m  
c f 3 1  (  i  )  =  (  2  ∗ r (  i  )  +  t  (  i  ) )  ∗ y (  i  )  +  r  (  i  )  ∗ h (  i  )  ∗ d (  i  )  ;  
c f 3 2  (  i  )  =  (  2  ∗ r (  i  )  +  t  (  i  ) )  ∗ y (  1  )  +  r  (  i  )  ∗ hn  ∗ d (  1  )  ;
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c f 3  (  i  )  =  c  f 3 1  (  i  )− a l p h a  (  i  )  ∗ c  f  3  2  ( i ) ;  
c  f  4  1  (  i  ) =  ( r  (  i  )  +2∗ t ( i )  )  ∗ y (  i  +  1  )− t ( i )  ∗ h (  i  )  ∗ d (  i  +  1  )  ;  
c  f  4  2  (  i  ) =  ( r  (  i  )  +2∗ t ( i )  )  ∗ y (  l  x  )− t ( i )  ∗ hn  ∗ d (  l  x  )  ;  
c f 4  (  i  )  =  c  f 4 1  (  i  )− a l p h a  (  i  )  ∗ c  f  4  2  ( i ) ;  

e n d  
%[  a  ’  b  ’  c f 1  ’  c f 2  ’  c f 3  ’  c f 4  ’  ]  

L  =  [ ] ;  L1  = [ ] ;  
X1  = [ ] ;  Y1  = [ ] ;  
X  =  [ ] ;  Y  =  [ ] ;  
p=  l  x  ;  
f o r  k  =  1  :  i t e r  

f o r i =  1  :  l  x  −1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )  
L (  i  ,  t  1  )  =  (  a  (  i  )  ∗ x  (  t  1  )  )  +  b  ( i ) ;  
t h e t a  (  t  1  )  =  ( x  (  t  1  )−x (  1  )  )  /  (  x  (  p  )−x (  1  )  )  ;  
L11  =  (  c  f  1  (  i  )  )  ∗(1  − t h e t a  (  t  1  )  )  ^  3  ;  
L12  =  (  c  f  2  (  i  )  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂  3  ;  
L13  =  c  f  3  (  i  )  ∗ ( t  h  e  t  a  (  t  1  )  ∗(1  − t h e t a  (  t  1  )  )  ^  2  )  ;  
L14  =  c  f  4  (  i  )  ∗ ( (  t  h  e  t  a  (  t  1  )  )  ^2∗ (1  − t  h  e  t  a  (  t  1  ) ) )  ;  
px  =L11  +L12  +L13  +L14  ;  
pxx  =(1  − t h e t a  (  t  1  )  )  ∗ r (  i  )  +  t  h  e  t  a  (  t  1  )  ∗ t ( i ) ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  )  ∗ y  (  t  1  )  )  +  (  px  /  pxx  )  ;  

e l s e  
L (  i  ,  t  1  )  =  (  a  (  i  )  ∗X1 ( t  1 ) ) + b ( i  )  ;  
t  h  e  t  a  (  t 1  )  =  (  X1  (  t 1  )−X1 ( 1 ) ) /  (  X1 ( p )−X1 ( 1 ) ) ;  
L11  =  (  c  f  1  (  i  )  )  ∗(1  − t h e t a  (  t  1  )  )  ^  3  ;  
L12  =  (  c  f  2  (  i  )  )  ∗ ( t  h  e  t  a  (  t  1  )  )  ̂  3  ;  
L13  =  c  f  3  (  i  )  ∗ ( t  h  e  t  a  (  t  1  )  ∗(1  − t h e t a  (  t  1  )  )  ^  2  )  ;  
L14  =  c  f  4  (  i  )  ∗ ( (  t  h  e  t  a  (  t  1  )  )  ^2∗ (1  − t  h  e  t  a  (  t  1  ) ) )  ;  
px  =L11  +L12  +L13  +L14  ;  
pxx  =(1− t h e t a  (  t  1  )  )  ∗ r (  i  )  +  t  h  e  t  a  (  t  1  )  ∗ t ( i ) ;  
L1  (  i  ,  t  1  )  =  (  a  l  p  h  a  (  i  )  ∗Y1  (  t  1  )  )  +  (  px  /  pxx  )  ;  

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X ; Y1=Y ; 
X  =  [ ] ; Y  =  [ ] ;  
p=  l e n g t h  ( X1 )  ;  

e n d  
XX= [ X1 ’ Y1 ’ ] ; 
XXX=  u n i q u e  (  XX  ,  ’ r  o  w  s  ’  ) ;  
X1=XXX ( : , 1 ) ; Y1=XXX ( : , 2 ) ; 
e n d  

f u n c t i o n [  d  ]  =  A r i t h m e t i c _ m e a n s v a l u e  (  x  ,  y  )  
N= l e n g t h  ( x )  ;  
f o r  n =  1  :  N−1 

h ( n )  =  x  ( n  +  1  )  − x ( n )  ;  
d  e  l  (  n )  =  (  y ( n  +  1  )− y ( n )  )  /  h ( n )  ;  

e n d  
a  d  ( 1 )  =  d  e  l  (  1 )  +  (  h  (  1 )  ∗ ( d  e  l  (  1  )  − d e l  (  2  )  )  )  /  (  h  (  1  )  +  h  (  2  )  )  ;
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ad  (  N  )  =  d  e  l  (  N−1)  +  (  h  (  N−1)  ∗ ( d  e  l  (  N−1)−d e l  (  N−2)  )  )  /  (  h  (  N−1)  +  h  (  N−2)  )  ;  
gd  ( 1 )  =  d  e  l  (  1 )  .  ^  (  1+  (  h  (  1 )  /  h  ( 2 )  )  )  ∗ ( (  h  (  2 )  ∗ d e l  (  2  )  +  h  (  1  )  ∗ d e l  (  1  )  )  /  (  h  

( 1 )  +  h  (  2 )  )  )  .  ̂  (  − h (  1  )  /  
h (  2  )  )  ;  
gd  (  N  )  =  d  e  l  (  N−1)  .  ^  (  1  +  (  h  (  N−1)  /  h  (  N−2)  )  )  ∗ ( (  h  (  N−2)  ∗ d e l  (  N−2)  +  h  (  N−1)  ∗ 

d e l  (  N−1)  )  /  (  h  (  N−1)  +  
h (  N−2)  )  )  .  ^  (  − h (  N−1)  /  h  (  N−2)  )  ;  
f o r  n =  2  :  N−1 

a  d  ( n )  =  ( h ( n )  ∗ d e l  (  n  −1)  +  h  (  n  −1)  ∗ d  e  l  (  n )  )  /  (  h  ( n )  +  h (  n  −1)  )  ;  
gd  (  n  )  =  d  e  l  (  n  −1)  .  ^  (  h  (  n  )  /  (  h  (  n  −1)  +  h  (  n  ) ) )  ∗ d e l  (  n  )  .  ^ (  h  (  n  −1)  /  (  h  (  n  

−1)  +  h  (  n  ) ) )  ;  
e n d  
d=  a d  ;  
e n d  

3.3.1 Numerical Computation 

Consider the data set .{(0, 5), (2, 4), (3, 8), (6, 6), (7, 7)}. The derivative values 
(.di , i = 1, 2, 3, 4, 5) are estimated using the arithmetic mean method: . d1 = −3.5,
d2 = 2.5, d3 = 2.8333, d4 = 0.5833, d5 = 1.4167. The rational cubic FIFs are 
generated with the scaling parameters and shape parameters as given in Table 3.3. 
The graphs of rational cubic FIFs are illustrated in Fig. 3.3a, b and c. The classi-
cal version of rational cubic FIF is obtained with the choice .α = (0, 0, 0, 0) and its 
corresponding graph is demonstrated in Fig. 3.3d. 

Table 3.3 Scaling parameters and shape parameters associated with the rational FIF 

Scaling parameters Shape parameters Figure 

.[0.24, 0.1, 0.35, 0.1] .r = 1000 ∗ [3.1, 1, 1, 1], .t = [1, 1, 1, 1] Figure 3.3a 

.[0.24, 0.1, 0.35, 0.1] .r = [3.1, 1, 1, 1], t = [1, 1, 1, 1] Figure 3.3b 

.[0.1, 0.1, 0.1, 0.1] .r = 1000 ∗ [3.1, 1, 1, 1], t = [1, 1, 1, 1] Figure 3.3c 

.[0, 0, 0, 0] .r = 1000 ∗ [3.1, 1, 1, 1], t = [1, 1, 1, 1] Figure 3.3d
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(a) (b) 

(c) (d) 

Fig. 3.3 Rational cubic fractal interpolation function with linear denominator 
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Chapter 4 
Fractal Interpolation Surfaces 

The most general form of data encountered in real life problems is three dimensional 
data that can be visualized as surfaces. Surface interpolates play vital role in indus-
try, geology, diagnosis and CAD [ 1]. The usual solution to a problem of surface 
interpolation is to determine a bivariate function .z = f (x, y), which assumes finite 
discrete values in a given domain. However, the construction of surface interpolation 
function is not an easy process comparing to univariate classical interpolations. For 
more details on the construction of fractal interpolation surfaces, visit [ 2– 5]. 

4.1 Construction of Fractal Surfaces 

First we will construct Rational Fractal Interpolation Function (RCFIFs) along the 
grid lines in the domain of surface interpolation data in Sect. 4.1.1. In Sect. 4.1.2, a  
partially blended RCFIF is constructed by using the univariate RCFIF and blending 
functions. 

4.1.1 RCFIFs Along X-direction and Y-direction 

Consider a surface interpolation data set.{(xi , y j , fi, j , f xi, j , f yi. j ) : i ∈ Nm, j ∈ Nn}, 
where .Nn denotes first .n-natural numbers. 

RCFIFs along X-direction: For each . j ∈ Nn (along the . j-th grid line parallel to 
.x-axis), the construction of univariate FIFs .ψ(x, y j ) and .ψ(x, y j+1) are presented. 
Consider 

.ψ(x, y j ) = αi, j (L
−1
i (x), y j ) + Pi, j (θ)

Qi, j (θ)
, i ∈ NM , (4.1) 
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where, 

. Pi, j (θ) = ( fi, j − αi, j f1, j (1 − θ)3 + {ri, j fi, j + hi f
x
i, j − αi [ri, j f1, j

+ (xM − x1) f
x
1, j }(1 − θ)2θ + {ri, j fi+1, j − hi f

x
i+1, j − αi [ri, j fM, j

+ (xM − x1) f
X
M, j }(1 − θ)θ2 + fi, j − αi, j f1, j (1 − θ)3,

Qi, j = 1 + (ri, j − 3)θ(1 − θ), θ = x − xi
hi

, x ∈ Ii .

RCFIFs along Y-direction: For each .i ∈ Nm (along the .i-th grid line parallel to .y-
axis), rational cubic spline fractal interpolation functions.ψ∗(xi , y) and. ψ∗(xi+1, y)
are presented. Consider 

.ψ∗(xi , y) = α∗
i, j (xi , L

∗−1(y)) + P∗
i, j (φ)

Q∗
i, j (φ)

, j ∈ NN , (4.2) 

where, 

. P∗
i, j (φ) = ( fi, j − α∗

i, j f1, j (1 − φ)3 + {ri, j fi, j + h∗
j f

x
i, j − α∗

i [ri, j f1, j
+(xM − x1) f

x
1, j }(1 − φ)2φ + {ri, j fi+1, j − h∗

j f
x
i+1, j − φ∗

i [ri, j fM, j

+(xM − x1) f
X
M, j }(1 − φ)φ2 + fi, j − α∗

i, j f1, j (1 − φ)3,

Q∗
i, j (φ) = 1 + (ri, j − 3)φ(1 − φ), φ = y − y j

h∗
j

, y ∈ Jj .

4.1.2 Fractal Surfaces by Coon’s Technique 

Let us consider a Hermite surface interpolation data set. {(xi , y j , fi, j , f xi, j , f yi. j ) : i ∈
Nm, j ∈ Nn}. The construction of univariate FIFs .ψ(x, y j ), .ψ(x, y j+1). And  
.ψ∗(xi , y), .ψ∗(xi+1, y) are discussed with cubic Hermite functions in the follow-
ing. Let 

.bi0,3(x) = (1 − θ)2(1 + 2θ),

bi3,3(x) = θ2(3 − 2θ),

b j
0,3(y) = (1 − φ)2(1 + 2φ),

b j
3,3(y) = φ2(3 − 2φ).
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Fig. 4.1 Continuity domain 

On each individual patch .Di, j = Ii × Jj , i ∈ Nm−1, j ∈ Nn−1 (see Fig. 4.1), a 
blending rational cubic spline FIS is defined using the blending coons technique as 

. Φ(x, y) = −
[
−1 bi0,3(x) b

i
3,3(x)

]
⎡
⎣

0 ψ(x, y j ) ψ(x, y j+1)

ψ∗(xi , y) fi, j fi, j+1
ψ∗(xi+1, y) fi+1, j fi+1, j+1

⎤
⎦

⎡
⎢⎣

−1

b j
0,3(y)

b j
3,3(y)

⎤
⎥⎦ .

The function interpolation surface .Φ interpolate the given data at grid points. The 
MATLAB code of rational cubic FIS [ 6, 7] is illustrated in the following. 

%  F  r  a  c  t  a  l s  u  r  f  a  c  e  R  (X )  =P  (  X )  /  Q  (X )  f  r  o  m P  (X ) i  s c  u  b  i  c  a nd Q  (X ) i  s  
Q u a d r a t i c  .  

%H  e  r  e s  c  a  l  i  n  g f  a  c  t  o  r i  s a  l  p  h  a  a  n  d s  h  a  p  e p  a r a m e t e r i  s r  .  
%  I  n p u t s a  r  e (  x  ,  y  ,  z  ,  a  l  p  h  a  x  ,  a  l  p  h  a  y  ,  r  x  ,  r  y  ,  p  a  r  t  i  a  l d  e  r  i  v  a  t  i  v  e  s  (  dx  ,  

dy  )  )  .  
%O  u  t  p  u  t  s a  r  e  "  f r a c t a l s  u  r  f  a  c  e  s  "  .  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t  ( ’ s  h  o  r  t  ’  ) 
x =  [  0  2  6  1  1  ]  ;  y =  [  0  3  7  8  ]  ;  %G i  v  e  n  D a  t  a  
i t e r  =  4  ;  
g r i d  on  
m= l e n g t h  ( x )  ;  n  =  l e n g t h  ( y )  ;  
z  =  [  1  10 8 11  ;  2  11 9  1  2  ;  3  12  10  1  4  ;  4  13  12  1  5  ]  ;  
l x  =  l e n g t h  ( x )  ;  l  y  =  l e n g t h  ( y )  ;  N=  l e n g t h  ( x )  ;M=  l e n g t h  ( y )  ;  
p1  =  l  x  ;  p2  =  l  y  ;  
dx  =  [  4  .  5 1  .  5 0  .  1  3 1 . 3 7 ; 4 . 5 1  .  5 0  .  1  2 1 . 3 7 ; 4 . 5 1  .  5 0  .  2  5 1  .  7  5  ;  4  .  4  5  

1 . 6 1 0 . 2 5 1  .  2  5  ]  ;  
%dx = dx ’ 
dy  =  [  5  2  . 5 0 . 4 2 0  .  1  ;  0  .  5 0  . 5 0 . 5 0  .  1  ;  0  .  5 0 . 5 0  . 5 0  .  5  ;  0  .  2  5 0 . 7 5 0 . 7 5  

0 . 2 5 ] ;
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%dy = dy ’ 
%  F  r  e  e  S  h a p e p  a  r  a  m  e  t  e  r  s  
r x  = 0 . 5  ∗ o n e s  (  l  x  −1 ,  l y  )  ;  
r  y  =100  ∗ o n e s  (  l  x  ,  l  y  −1)  ;  
a  l  p  h  a  x  =  [  0  .  2 0 . 2 5 0 . 2 5 0  .  2  ;  0  .  3  5 0 . 3 0  . 3 5 0  .  3  4  ;  0  .  3  5 0 . 3 5 0 . 3 5  

0 . 3 4 ] ;  
a  l  p  h  a  y  =  [  0  .  1  2  4 0  .  5  6  2 0  .  3  0  ;  0 .  1 2  5 0  .  5  6  2 0  .  3  0  ;  0  . 1  2 5 0  .  5  6  2 0 . 3 ; 0 . 1 2 5  

0 . 5 6 2 0  .  3  ]  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  
e n d  
f o r l =  1  :  l  y  −1 

hy  (  l  )  =  y  (  l  +  1  )−y (  l  )  ;  
e n d  
%∗∗∗∗∗  D e f i n i t i o n s o  f M  a  t  r  i  c  e  s  ∗∗∗∗∗  
a =  z e r o s  ( 1  ,  l  x  −1)  ;  b  =  z e r o s  ( 1  ,  l  x  −1)  ;  
Lx  = [ ] ;  Lx1  =  [ ] ;  Lx2  =  [ ] ;  
X_na  = [ ] ;  X1  = [ ] ;  Zx1  =  [ ] ;  
X  =  [ ] ;  Zx2  =  [ ] ;  
a =  z e r o s  ( 1  ,  l  y  −1)  ;  b  =  z e r o s  ( 1  ,  l  y  −1)  ;  
Lyy  =  [ ] ;  Ly1  =  [ ] ;  Ly2  =  [ ] ;  
Y1  = [ ] ;  Y  =  [ ] ;  
Zy1  =  [ ] ;  Zy2  =  [ ] ;  
L  =  [ ] ;  L1  = [ ] ;  L2  = [ ] ;  
L22  =  [ ] ;  L222  = [ ] ;  
X11  =  [ ] ;  Y11  =  [ ] ;  
Z11  =  [ ] ;  Z22  =  [ ] ;  
XX  = [ ] ;  YY  = [ ] ;  ZZ  = [ ] ;  
N1=N ; 
M1=M; 
%%F i n d i n g  co  − e f f i c i e n t s  
f o r  k  =  1  :  i t e r  

%∗∗∗∗∗X− d i r e c t i o n  (  Y  i  s f  i  x  e  d  )  ∗∗∗∗∗  
f o r j =  1  :  3  

f o r i =  1  :  l  x  −1 
%%−−−F i n d i n g  co  − e  f  f  i  c  i  e  n  t  s i  f F i x i n g f  (  x  ,  y  (  j  )  )  
a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
Ax  ( i  ,  j  )  =  (  z  ( i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗ z (  1  ,  j  )  )  ∗ r x  (  i  ,  j  )  ;  
Dx ( i  ,  j  )  = ( z ( i  + 1 ,  j  )  −(  a  l p h a x  (  i  ,  j  )  ∗ z  (  l  x  ,  j  ) ) )  ∗ r x  (  i  ,  j  )  ;  
Bx1  (  i ,  j  )  =  r  x  (  i ,  j  )  ∗ z (  i  ,  j  )  +  h  (  i  )  ∗ dx  (  i  ,  j  )  ;  
Bx2  (  i ,  j  )  =  r  x  (  i ,  j  )  ∗ z (  1  ,  j  )  +  (  x  (  l  x  )−x (  1  )  )  ∗ dx  (  1  ,  j  )  ;  
Bx (  i  ,  j  )  =  Bx1 (  i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗Bx2 (  i  ,  j  )  ;  
Cx1  (  i ,  j  )  =  r  x  (  i ,  j  )  ∗ z (  i  +  1 ,  j  )−h (  i  )  ∗ dx  (  i  +  1  ,  j  )  ;  
Cx2  (  i ,  j  )  =  r  x  (  i ,  j  )  ∗ z (  l  x  ,  j  )  −( x  (  l  x  )−x (  1  )  )  ∗ dx  (  l  x  ,  j  )  ;  
Cx (  i  ,  j  )  =  Cx1 (  i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗Cx2 (  i  ,  j  )  ;  
%%−−−F i n d i n g  co− e  f  f  i  c  i  e  n  t  s i  f F i x i n g f  (  x  ,  y  (  j  +  1  )  )  
Axx  (  i ,  j  )  =  (  z  (  i ,  j  +  1  )  −(  a  l p h a x  (  i  ,  j  +  1  )  ∗ z (  1  ,  j  +  1  )  )  )  ∗ r x  (  i  ,  j  +  1  )  ;  
Dxx (  i  ,  j  )  =  (  z  (  i  +  1  ,  j  +  1  )  −(  a  l p h a x  (  i  ,  j  +  1  )  ∗ z (  l  x  ,  j  +  1  )  )  )  ∗ r x  (  i  ,  j  +  1  )  ;  
Bxx1  ( i  ,  j  )  =  r  x  ( i  ,  j  +  1  )  ∗ z (  i  ,  j  +  1  )  +  h  (  i  )  ∗ dx  (  i  ,  j  +  1  )  ;  
Bxx2  ( i  ,  j  )  =  r  x  ( i  ,  j  +  1  )  ∗ z (  1  ,  j  +  1  )  +  (  x  (  l  x  )−x (  1  )  )  ∗ dx  (  1  ,  j  +  1  )  ;  
Bxx  (  i  ,  j  )  =  Bxx1  (  i  ,  j  )− a l p h a x  (  i  ,  j  +  1  )  ∗Bxx2  (  i  ,  j  )  ;  
Cxx1  ( i  ,  j  )  =  r  x  ( i  ,  j  +  1  )  ∗ z (  i  +  1 ,  j  +  1  )−h (  i  )  ∗ dx  (  i  +  1  ,  j  +  1  )  ;  
Cxx2  ( i  ,  j  )  =  r  x  ( i  ,  j  )  ∗ z (  l  x  ,  j  )  +  (  x  (  l  x  )−x (  1  )  )  ∗ dx  (  l  x  ,  j  +  1  )  ;  
Cxx  (  i  ,  j  )  =  Cxx1  (  i  ,  j  )− a l p h a x  (  i  ,  j  +  1  )  ∗ Cxx2  (  i  ,  j  )  ;
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end% e  n  d  f  o  r l  o  o  p i  
a b v a l u e s  =  [  a  ’  b  ’  ]  

t  h  e  t  a  =  i n l i n e  (  ’ (  x  −0)  /  1  1  ’  ) ;  
f o r i =  1  :  l  x  −1 

f o r t 1  =  1  :  p1  
i f (  k  ==1 )  

Lx  (  i  ,  t  1  )  =  (  a  (  1  ,  i  )  ∗ x (  1  ,  t  1  )  )  +  b  (  1  ,  i  )  ;  
L11  (  i  ,  t 1  )  =  t 1  +  (  i  −1) ∗ p1  ;  
%F  i x i n g f  (  x  ,  y  (  j  )  )  
Qx  = 1+ (  r  x  (  i  ,  j  )  −3)  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Lx1  (  i  ,  t 1  )  =  (  a  l p h a x  (  i  ,  j  )  ∗ z  (  t  1  , j  )  )  +  (  (  (  Ax  (  i  , j  )  ∗(1  − t h e t a  (  x  (  

t  1  ) ) )  ^  3  )  +  (  Bx  (  i  ,  j  )  ∗ t h e t a  (  x  (  t  1  )  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ^  2  )  
+ . . .  

( Cx (  i  ,  j  )  ∗ ( t  h  e  t  a  (  x  (  t  1  )  )  ̂  2  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) ) )  +  (  Dx  (  i  ,  j  )  
∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  )  /  Qx  )  ;  

%F  i x i n g f  (  x  ,  y  (  j  +  1  )  )  
Qxx =  1  +  (  r  x  (  i  ,  j  +  1  )  −3)  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Lx2  (  i  ,  t 1  )  =  (  a  l p h a x  (  i  ,  j  +  1  )  ∗ z (  t  1  ,  j  +  1  )  )  +  (  (  (  Axx  (  i  ,  j  )  ∗(1  − 

t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  +  (  Bxx  (  i  ,  j  )  ∗ t h e t a  (  x  (  t  1  )  )  ∗(1  − t h e t a  (  x  (  
t  1  ) ) )  ^  2  )  +  .  .  .  

( Cxx  (  i  ,  j  )  ∗ ( t  h  e  t  a  (  x  (  t  1  )  )  ̂  2  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) ) )  +  (  Dxx  (  i  ,  j  
) ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  )  /  Qxx  )  ;  

e l s e  
Lx  (  i  ,  t  1  )  =  (  a  (  i  )  ∗ xx  (  1  ,  t  1  )  )  +  b  (  i  )  ;  
L11  (  i  ,  t 1  )  =  t 1  +  (  i  −1)  ∗ p1  ;  
Qx  = 1+ (  r  x  (  i  ,  j  )  −3)  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ∗ t h e t a  (  xx  (  t  1  )  )  ;  
Lx1  (  i  ,  t 1  )  =  (  a  l p h a x  (  i  ,  j  )  ∗ qx1  (  t  1  ,  j  )  )  +  (  (  (  Ax  (  i  ,  j  )  ∗(1  − t h e t a  (  

xx  (  t  1  ) ) )  ^  3  )  +  (  Bx  (  i  ,  j  )  ∗ t h e t a  (  xx  (  t  1  )  )  ∗(1  − t h e t a  (  xx  (  t  1  )  )  
) ^  2  )  +  .  .  .  

( Cx (  i  ,  j  )  ∗ ( t  h  e  t  a  (  xx  (  t  1  )  )  ̂  2  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) ) )  +  (  Dx  (  i  ,  j  
) ∗ (  t  h  e  t  a  (  xx  (  t  1  )  )  )  ̂  3  )  ) /  Qx  ) ;  

Qxx =  1  +  (  r  x  (  i  ,  j  )  −3)  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ∗ t h e t a  (  xx  (  t  1  )  )  ;  
Lx2  (  i  ,  t 1  )  =  (  a  l p h a x  (  i  ,  j  +  1  )  ∗ qx2  (  t  1  ,  j  )  )  +  (  (  (  Axx  (  i  ,  j  )  ∗(1  − 

t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  3  )  +  (  Bxx  (  i  ,  j  )  ∗ t h e t a  (  xx  (  t  1  )  )  ∗(1  − t h e t a  (  
xx  (  t  1  ) ) )  ^  2  )  +  .  .  .  

( Cxx  (  i  ,  j  )  ∗ ( t  h  e  t  a  (  xx  (  t  1  )  )  ̂  2  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) ) )  +  (  Dxx  (  i  
, j  )  ∗ ( t  h  e  t  a  (  xx  (  t  1  )  )  )  ̂  3  )  )  /  Qxx  )  ;  

e n d  %  e  n  d  f  o  r l  o  o  p i  f c o n d i t i o n  
e nd  % e  n  d  f  o  r l  o  o  p t  1  
X=  [X  Lx  (  i  ,  :  )  ]  ;  
X_na  =  [  X_na  L11  (  i  ,  :  )  ]  ;  
Zx1  =  [  Zx1  Lx1  (  i  ,  :  )  ]  ;  Zx2  =  [  Zx2  Lx2  (  i  ,  :  )  ]  ;  

e n d  % e  n  d  f  o  r l  o  o  p i  
X1=X ; 
X_na1  =  X_na  ;  
Sx1  (  :  ,  j  )  =  Zx1  ’  ;  
Sx2  (  :  ,  j  )  =  Zx2  ’  ;  
X  =  [ ] ;  Zx1  =  [ ] ;  Zx2  =  [ ] ;  

e n d  % e  n  d  f  o  r l  o  o  p j  
xx  =X1  ;  
qx1  =  Sx1  ;  qx2  =  Sx2  ;  
Sx1  =  z e r o s  ( l e n g t h  ( x )  ∗ 3 ^ (  k  +  1  )  ,  3  )  ;  
Sx2  =  z e r o s  ( l e n g t h  ( x )  ∗ 3 ^ (  k  +  1  )  ,  3  )  ;  
p1  =  l e n g t h  ( X1 )  ;  
qx  =  [  qx1  qx2  (  :  ,  3  )  ]  ;
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%∗∗∗∗∗Y− d i r e c t i o n  ∗∗∗∗∗  
%  f  o  r  k  =  1  :  i t e r  
f o r i i  =  1  :  3  

f o r j j  =  1  :  l  y  −1 
%New  g e n e r a t i o n i  n  t  e  r  p  o  l  a  t  i  o  n p o i n t s i  f F  i  x  i  n  g f  (  x  (  i  i  )  ,  y  )  
a a  (  j  j  )  = (  y  (  j  j  + 1 )−y (  j  j  )  )  /  (  y (  l  y  )−y (  1  )  )  ;  
bb  ( j  j )  =  (  (  y  ( j  j )  ∗ y (  l  y  )  )  −( y  (  j  j  +  1  )  ∗ y (  1  )  )  )  /  (  y  (  l  y  )−y (  1  )  )  ;  
Ay ( i  i  ,  j  j  )  = z ( i  i  ,  j  j  )− a l p h a y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  1  )  ;  
Dy ( i  i  ,  j  j  )  = z ( i  i  ,  j  j  + 1 ) −(  a  l p h a y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  l  y  )  )  ;  
By1  (  i  i  ,  j  j  )  =  (  r  y  (  i  i  ,  j  j  )  ∗ z  (  i  i  ,  j  j )  )  +  hy  ( j  j )  ∗ dy  ( i  i  ,  j  j  ) ;  
By2  (  i  i  ,  j  j  )  =  (  r  y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  1  )  +  (  y  (  l  y  )−y (  1  )  )  ∗ dy  ( i  i  ,  1  )  ) ;  
By (  i  i  ,  j  j  )  =  By1 (  i  i  ,  j  j  )− a l p h a y  (  i  i  ,  j  j  )  ∗By2 (  i  i  ,  j  j  )  ;  
Cy1  (  i  i  ,  j  j  )  =  (  r  y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  j  j  +  1  )  )  −( hy  (  j  j  )  ∗ dy  (  i  i  ,  j  j  +  1  )  )  ;  
Cy2  (  i  i  ,  j  j  )  =  (  r  y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  l  y  )  )  −( dy  (  i  i  ,  l  y  )  ∗ ( y  (  l  y  )−y (  1  )  )  )  ;  
Cy (  i  i  ,  j  j  )  =  Cy1 (  i  i  ,  j  j  )− a l p h a y  (  i  ,  j  )  ∗Cy2 (  i  i  ,  j  j  )  ;  
%%New  g  e n e r a t i o n i  n  t  e  r  p  o  l  a  t  i  o  n p o i n t s i  f F  i  x  i  n  g f  (  x  (  i  i  +  1  )  ,  

y )  
Ayy  (  i  i  ,  j  j )  =  (  z  (  i  i  +  1  ,  j  j )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗ z (  i  i  +  1  ,  1  )  )  ;  
Dyy (  i  i  ,  j  j  )  =  (  z  (  i  i  +  1  ,  j  j  +  1  )  −(  a  l p h a y  (  i  i  +  1  ,  j  j  )  ∗ z  (  i  i  +  1  ,  l  y  ) ) )  ;  
Byy1  (  i  i  ,  j j  )  =  (  r  y  (  i i  +  1  ,  j  j  )  ∗ z  (  i  i  +  1  ,  j  j )  )  +  hy  ( j  j )  ∗ dy  (  i  i  +  1  ,  j  j  )  ;  
Byy2  (  i  i  ,  j j  )  =  (  r  y  (  i i  +  1  ,  j  j  )  ∗ z (  i  i  ,  1  )  +  (  y  (  l  y  )−y (  1  )  )  ∗ dy  ( i  i  ,  1  )  ) ;  
Byy  (  i  i  ,  j  j  )  =  Byy1  (  i  i  ,  j  j  )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗ Byy2  ( i  i  ,  j  j  ) ;  
Cyy1  (  i  i  ,  j j  )  =  (  r  y  (  i i  +  1  ,  j  j  )  ∗ z (  i  i  +  1  ,  j  j  +  1  )  )  −( hy  (  j  j  )  ∗ dy  (  i  i  +  1  ,  j  j  

+ 1 )  )  ;  
Cyy2  (  i  i  ,  j j  )  =  (  r  y  (  i i  +  1  ,  j  j  )  ∗ z (  i  i  +  1  ,  l  y  )  )−dy  (  i  i  +  1  ,  l  y  )  ∗ ( y  (  l  y  )−y 

( 1 )  )  ;  
Cyy  (  i  i  ,  j  j  )  =  Cyy1  (  i  i  ,  j  j  )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗Cyy2  ( i  i  ,  j  j  ) ;  

e n d  % End  f  o  r ’  j  j  ’  
y _ a b v a l u e s  =  [  aa  ’  bb  ’  ]  
p  h  i  =  i n l i n e  (  ’ (  t  −0)  /  8  ’  ) ;  
f o r j j  =  1  :  l  y  −1 

f o r t 2  =  1  :  p2  
i f (  k  ==1 )  

%%New  g  e n e r a t i o n i  n  t  e  r  p  o  l  a  t  i  o  n p  o i n t s i  f F  i  x  i  n  g f  (  x  (  i  i  )  
, y  )  

Ly  (  t  2  ,  j j  )  =  (  a  a  (  j j  )  ∗ y (  t  2  )  )  +  bb  (  j  j  )  ;  
L s s  (  j  j  ,  t  2  )  =  t  2  +  (  j  j  −1)  ∗ p2  ;  
Qy  = 1+ (  r  y  (  i  i  ,  j  j  )  −3)  ∗(1  − p h i  (  y  (  t  2  )  )  )  ∗ p h i  (  y  (  t  2  )  )  ;  
Ly1  (  t  2  ,  j  j )  =  (  a  l  p  h  a  y  (  i  i  ,  j  j )  ∗ z (  i  i  ,  t  2  )  )  +  (  (  (  Ay  (  i  i  ,  j  j  )  ∗(1  − p h i  

(  y  (  t  2  ) ) )  ^  3  )  +  (  By  (  i  i  ,  j  j  )  ∗ p h i  (  y  (  t  2  )  )  ∗(1  − p  h  i  (  y  (  t  2  ) ) )  ^  2  )  
+ . . .  

( Cy (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  ^  2  )  ∗(1  − p  h  i  (  y  (  t  2  ) ) ) )  +  (  Dy  (  i  i  ,  j  j  )  
∗ (  p  h  i  (  y  (  t  2  ) ) )  ^  3  )  )  /  Qy  )  ;  

%%New  g  e n e r a t i o n i  n  t  e  r  p  o  l  a  t  i  o  n p  o i n t s i  f F  i  x  i  n  g f  (  x  (  i  i  
+ 1 )  ,  y  )  

Qyy =  1  +  (  r  y  (  i  i  +  1  ,  j  j  )  −3) ∗(1  − p h i  (  y  (  t  2  )  )  )  ∗ p h i  (  y  (  t 2  )  )  ;  
Ly2  (  t  2  ,  j  j )  =  (  a  l  p  h  a  y  (  i  i  +  1  ,  j  j )  ∗ z  (  i  i  +  1  ,  t  2  )  )  +  ( ( (  Ayy  (  i  i  ,  j  j  )  

∗(1  − p  h  i  (  y  (  t  2  ) ) )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  (  y  (  t  2  )  )  ∗(1  − p h i  (  y  (  
t  2  ) ) )  ^  2  )  +  .  .  .  

( Cyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  ^  2  )  ∗(1  − p  h  i  (  y  (  t  2  ) ) ) )  +  (  Dyy  (  i  i  ,  j  j  
) ∗ (  p h i  (  y  (  t  2  )  )  )  ^  3  )  )  /  Qyy  )  ;  

e l s e  
Ly  (  t  2  ,  j j  )  =  (  a  a  (  j j  )  ∗ yy  (  1  ,  t  2  )  )  +  bb  (  j  j  )  ;  
L s s  (  j  j  ,  t  2  )  =  t  2  +  (  j  j  −1)  ∗ p2  ;  
Qy  = 1+ (  r  y  (  i  i  ,  j  j  )  −3)  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ∗ p h i  (  yy  (  t  2  )  )  ;
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Ly1  (  t  2  ,  j  j )  =  (  a  l  p  h  a  y  (  i  i  ,  j  j )  ∗ qy1  (  i  i  ,  t  2  )  )  +  (  (  (  Ay  (  i  i  ,  j  j  )  ∗(1  − 
p  h  i  (  yy  (  t  2  ) ) )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  (  yy  (  t 2  )  )  ∗(1  − p h i  (  yy  (  
t  2  ) ) )  ^  2  )  +  .  .  .  

( Cy (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  ^  2  )  ∗(1  − p  h  i  (  yy  (  t  2  ) ) ) )  +  (  Dy  (  i  i  ,  j  j  
) ∗ (  p h i  (  yy  (  t 2  )  )  )  ^  3  )  )  /  Qy  )  ;  

Qyy =  1  +  (  r  y  (  i  i  +  1  ,  j  j  )  −3)  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ∗ p h i  (  yy  (  t  2  )  )  ;  
Ly2  (  t  2  ,  j  j )  =  (  a  l  p  h  a  y  (  i  i  +  1  ,  j  j )  ∗ qy2  (  i  i  ,  t  2  )  )  +  (  (  (  Ayy  (  i  i  ,  j  j  )  

∗(1  − p  h  i  (  yy  (  t  2  ) ) )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  (  yy  (  t 2  )  )  ∗(1  − p h i  (  
yy  (  t  2  ) ) )  ^  2  )  +  .  .  .  

( Cyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  ^  2  )  ∗(1  − p  h  i  (  yy  (  t  2  ) ) ) )  +  (  Dyy  (  i  i  ,  
j j  )  ∗ (  p h i  (  yy  (  t 2  )  )  )  ^  3  )  )  /  Qyy  )  ;  

e n d  %  End  w  i  t  h f  o  r i  f c  o n d i t i o n  k  ==1  ’  
e n d  %  End  w i t h f  o  r l  o o p ’  t  2  ’  
Lyy1  =  Ly1  ’  ;  
Lyy2  =  Ly2  ’  ;  
Lyy  =Ly  ’  ;  
Y=  [Y  Lyy  (  j  j  ,  :  )  ]  ;  
Zy1  =  [  Zy1  Lyy1  (  j  j  ,  :  )  ]  ;  
Zy2  =  [  Zy2  Lyy2  (  j  j  ,  :  )  ]  ;  

e n d  %  End  w i t h f  o  r l  o o p ’  j  j  ’  
Y1=Y ; 
S1  (  i  i  ,  :  )  =  Zy1  ;  
S2  (  i  i  ,  :  )  =  Zy2  ;  
Y  =  [ ] ;  
Zy1  =  [ ] ;  
Zy2  =  [ ] ;  

e n d  %  End  w i t h ’  i  i  ’  (  No  o  f i  t  e  r  a  t  i  o  n  )  
yy  =Y1  ;  
qy1  =  S1  ;  
qy2  =  S2  ;  
S1  =  z e r o s  ( 3  ,  l e n g t h  ( y )  ∗ 3 ^ (  k  +  1  )  )  ;  
S2  =  z e r o s  ( 3  ,  l e n g t h  ( y )  ∗ 3 ^ (  k  +  1  )  )  ;  
p2  =  l e n g t h  ( Y1 )  ;  
%e n d 
qy  =  [  qy1  ;  qy2  (  3  ,  :  )  ]  ;  
%%∗∗∗∗∗ S  u  r  f  a  c  e E v u a l u a t i o n  ∗∗∗∗∗  
a =  z e r o s  ( 1  ,  N−1)  ;  
b=  z e r o s  ( 1  ,  N−1)  ;  
c =  z e r o s  ( 1  ,M−1)  ;  
d=  z e r o s  ( 1  ,M−1)  ;  

f o r n =  1  :  N−1 
a  (  n )  =  (  x ( n  +  1  )−x ( n )  )  /  (  x  (  N  )−x (  1  )  )  ;  
b ( n )  =  (  (  x  ( n )  ∗ x (  N  )  )  −( x  (  n  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  N  )−x (  1  )  )  ;  

e n d  
f o r m=  1  :M−1 

c (m)  =  (  y  (m+  1  )−y (m)  )  /  (  y  (M)−y (  1  )  )  ;  
d (m)  =  (  (  y  (m)  ∗ y (M)  )  −( y  (m+  1  )  ∗ y (  1  )  )  )  /  (  y  (M)−y (  1  )  )  ;  

e n d  
t  h  e  t  a  =  i n l i n e  (  ’ (  x  −0)  /  1  1  ’  ) ;  
p  h  i  =  i n l i n e  (  ’ (  y  −0)  /  8  ’  ) ;  
f o r i x  =  1  :  N−1 

f o r i 1  =  1  :  N1  
i f  (  k  ==1 )  

L1  (  i  x  ,  i 1  )  =  a  (  i x  )  ∗ x (  i  1  )  +  b (  i  x  )  ;
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e l s e  
L1  (  i  x  ,  i 1  )  =  a  (  i x  )  ∗XX  ( i  1 )  +  b  ( i  x )  ;  

e n d  %  End  w  i  t  h i  f c o n d i t i o n  
e nd  %  e  n  d  w i t h f  o  r ’  i  1  ’  
f o r j y  =  1  :M−1 

i f  (  i  x  ==1 )  
f o r j 1  =  1  :  M1  

i f  (  k  ==1 )  
L2  (  j  y  ,  j 1  )  =  c  (  j y  )  ∗ y (  j  1  )  +  d (  j  y  )  ;  

e l s e  
L2  (  j  y  ,  j 1  )  =  c  (  j y  )  ∗YY  ( j  1 )  +  d  ( j  y )  ;  

e n d  %  End  w  i  t  h i  f c o n d i t i o n  
e nd  %  End  w i t h ’  j  1  ’  
Y11 =  [  Y11 L2 (  j  y  ,  :  )  ]  ;  

e n d  %  End  w i t h ’  i  x  ==1  ’  
%%  B  l  e  n  d  i  n  g f u n c t i o n s  
f o r i 1  =  1  :  N1  

f o r j 1  =  1  :  M1  
i f  (  k  ==1 )  

g x_1  (  i  1  )  = ( (1  − t  h  e  t  a  (  x  (  i  1  ) ) )  ^  2  )  ∗ ( 1 +2∗ t  h  e  t  a  (  x  (  i  1  ) ) )  ;% 
(1  − t h e t a  )  ^  2  (  1  +  2∗ t h e t a  )  −−’po  ’  

g x_2  (  i  1  )  =  (  (  t  h  e  t  a  (  x  (  i  1  )  )  )  ^  2  )  ∗ (3  −2∗ t  h  e  t  a  (  x  (  i  1  ) ) )  ;% t  h  e  t  a  
^3∗ (3  − 2∗ t h e t a  )  −−’p1  ’  

g y_1  (  j  1  )  = ( (1  − p h i  (  y  (  j  1  )  )  )  ^  2  )  ∗ ( 1 +2  ∗ p  h  i  (  y  (  j  1  ) ) )  ;%(1− p h i  )  
^ 2 ( 1 + 2  ∗ p h i  )  −−’qo  ’  

g y_2  (  j  1  )  =  (  (  p  h  i  (  y  (  j  1  )  )  )  ^  2  )  ∗ (3  −2∗ p  h  i  (  y  (  j  1  ) ) )  ;%p h i  
^3∗ (3  −2∗ p h i  )  −−’q1  ’  

R1  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  ,  j  y  )  ;  
R2  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  ,  j  y  +  1  )  ;  
R3  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  )  ;  
R4  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  +  1  )  ;  
R  (  i 1  ,  j  1  )  =R1  (  i 1  ,  j  1  )  +R2  (  i 1  ,  j  1  )  +R3  (  i 1  ,  j  1  )  +R4  (  i 1  ,  j  1  )  ;  
L  (  i  1  ,  j  1  )  =  (  g y_1  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i  1  )  ,  j  y  )  +  (  g y_2  (  j  1  )  )  ∗ qx  (  

L11  (  i  x  ,  i  1  )  ,  j  y  +  1  )  + . . .  
(  g x_1  (  i  1  )  )  ∗ qy  (  i  x  ,  L  s  s  (  j  y  ,  j  1  )  )  +  (  (  g x_2  (  i  1  )  )  ∗ qy  (  i  x  +  1  ,  

L  s  s  (  j  y  ,  j  1  ) ) )−R (  i  1  ,  j  1  )  ;  
e l s e  

g x_1  (  i  1  )  = ( (1  − t  h  e  t  a  (  XX  (  i  1  ) ) )  ^  2  )  ∗ ( 1 +2  ∗ t  h  e  t  a  (  XX  (  i  1  ) ) )  ;  
g x_2  (  i  1  )  =  (  (  t  h  e  t  a  (XX(  i  1  )  )  )  ^  2  )  ∗ (3  −2∗ t  h  e  t  a  (  XX  (  i  1  ) ) )  ;  
g y_1  (  j  1  )  = ( (1  − p h i  (  YY  (  j 1  )  )  )  ^  2  )  ∗ ( 1 +2  ∗ p  h  i  (  YY  (  j  1  ) ) )  ;  
g y_2  (  j  1  )  =  (  (  p  h  i  (YY(  j  1  )  )  )  ^  2  )  ∗ (3  −2∗ p  h  i  (  YY  (  j  1  ) ) )  ;  
R1  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  ,  j  y  )  ;  
R2  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  ,  j  y  +  1  )  ;  
R3  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  )  ;  
R4  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  +  1  )  ;  
R  (  i 1  ,  j  1  )  =R1  (  i 1  ,  j  1  )  +R2  (  i 1  ,  j  1  )  +R3  (  i 1  ,  j  1  )  +R4  (  i 1  ,  j  1  )  ;  
L  (  i  1  ,  j  1  )  =  (  g y_1  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i  1  )  ,  j  y  )  +  (  g y_2  (  j  1  )  )  ∗ qx  (  

L11  (  i  x  ,  i  1  )  ,  j  y  +  1  )  +  (  g x_1  (  i  1  )  )  ∗ qy  (  i  x  ,  L  s  s  (  j  y  ,  j  1  )  )  +  (  (  
g x_2  (  i  1  )  )  ∗ qy  (  i  x  +  1  ,  L  s  s  (  j  y  ,  j  1  ) ) )−R (  i  1  ,  j  1  )  ;  

e n d  
e nd  

e nd  
Z11  =  [  Z11  L  ]  ;  
L  =  [ ] ;  

e n d
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X11 =  [  X11 L1 (  i  x  ,  :  )  ]  ;  
Z22  =  [  Z22  ;  Z11  ]  ;  
Z11  =  [ ] ;  

e n d  
XX=X11 ; YY=Y11 ; ZZ= Z22 ; 
X11  =  [ ] ;  Y11  =  [ ] ;  Z22  =  [ ] ;  
N1= l e n g t h  (XX)  ;  M1=  l e n g t h  (YY)  ;  

e n d  
a ; c ;  
a x i s s q u a r e  ;  
s u r f  (XX  ,  YY  ,  ZZ  ’  )  ;  
%  t i t l e  (  ’  S  u  r  f  a  c  e  ’  )  ;  x  l  a  b  e  l  (  ’  X  v  a  l  u  e  s  ’  )  ; y  l  a  b  e  l  (  ’  Y  v  a  l  u  e  s  ’  )  ; z  l  a  b  e  l  

( ’  Z  v  a  l  u  e  s  ’  )  ;  
h o l d o f f  

4.1.3 Numerical Computation 

Let. f xi, j and. f yi, j denote the first partial derivatives of. f with respect to x and y respec-
tively. Consider the bivariate Hermite data . {xi , y j , fi, j , f xi, j , f yi, j : i ∈ NM , j ∈
NN } as given in Table 4.1. By choosing the vertical scaling factors and shape param-
eters (as given in Table 4.2), the graphs of fractal rational cubic FISs are generated 
and illustrated in Fig. 4.2a. For generating Fig. 4.2a, shape parameters are chosen as 
.rx = [1]3×4 in x-direction and .ry = [1]4×3 in y-direction. Figure 4.2b represents the 
bi-cubic partially blended rational FIS for perturbed scaling factors in x-direction and 
y-direction (given in Table 4.2). Changing the shape parameters . r in both directions 
(x-direction and y-direction), Fig. 4.2c is generated. With the set of scaling factors 
.αx = [0]3×4 and.αy = [0]4×3, the classical rational cubic surface is developed and it 
is shown in Fig. 4.2d. 

Table 4.1 Hermite interpolation data in the construction of blending rational cubic FISs 

.{(xi , yi )}4i=1 .= .

⎛
⎜⎜⎜⎝

0 0

2 3

6 7

11 8

⎞
⎟⎟⎟⎠ . f .= . 

⎛
⎜⎜⎜⎝

1 10 8 11

2 9 12

3 12 10 14

4 13 15

⎞
⎟⎟⎟⎠

. f x .= .

⎛
⎜⎜⎜⎝

4.5 1.5 0.13 1.37

4.5 1.5 0.12 1.37

4.5 1.5 0. 1.75

4.45 1.61 0.25 1.25

⎞
⎟⎟⎟⎠ . f y .= .

⎛
⎜⎜⎜⎝

5 2.5 0.42 0.1

0.5 0.5 0.5 0.1

0.5 0.5 0.5 0.5

0.25 0.75 0.75 0.25

⎞
⎟⎟⎟⎠
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Table 4.2 IFSs in the construction of blending rational cubic fractal interpolation surfaces 

Scaling parameters Shape parameters Figures 

. α .= .

⎛
⎜⎝

0.2 0.25 0.25 0.2

0.35 0.3 0.35 0.34

0.35 0.35 0.35 0.34

⎞
⎟⎠ .rx .= 0.5*ones(3,4) 

.α∗ .= .

⎛
⎜⎜⎜⎝

0.124 0.562 0.30

0.125 0.562 0.30

0.125 0.562 0.3

0.125 0.562 0.3

⎞
⎟⎟⎟⎠ .ry .= 100*ones(4,3) Figure 4.2a 

. α .= .

⎛
⎜⎝
0.15 0.15 0.15 0.15

0.3 0.3 0.3 0.3

0.45 0.45 0.45 0.45

⎞
⎟⎠ .rx .= 0.5*ones(3,4) 

.α∗ .= .

⎛
⎜⎜⎜⎝

0.3 0.4 0.12

0.3 0.4 0.12

0.3 0.4 0.12

0.3 0.4 0.12

⎞
⎟⎟⎟⎠ .ry .= 100*ones(4,3) Figure 4.2b 

. α .= .

⎛
⎜⎝

0.2 0.25 0.25 0.2

0.35 0.3 0.35 0.34

0.35 0.35 0.35 0.34

⎞
⎟⎠ .rx .= ones(3,4) 

.α∗ .= .

⎛
⎜⎜⎜⎝

0.124 0.562 0.30

0.125 0.562 0.30

0.125 0.562 0.3

0.125 0.562 0.3

⎞
⎟⎟⎟⎠ .ry .= ones(4,3) Figure 4.2c 

. α .= zeros(3,4) .rx .= 0.5*ones(3,4) 

.α∗ .= zeros(4,3) .ry .= 100*ones(4,3) Figure 4.2d 

4.2 Fractal Surfaces with Variable Scaling 

Consider bivariate interpolation data .{xi , y j , fi, j , f xi, j , f yx,y : i ∈ NM , j ∈ NN } with 
increaing. x and. y values, where. f xi, j and. f yi, j are the.x-partial and.y- partial derivatives 
of the original function at.(xi , y j ) respectively. Let. I = [x1, xM ], J = [y1, yN ], Ii =
[xi , xi+1], Jj = [y j , y j+1], hi = xi+1 − xi , h j = y j+1 − y j , D = I × J, Di. j =
Ii × Jj . 

Along the . j-th grid line parallel to .x-axis 
For . j ∈ NN , R j ∈ {xi , fi, j , f xi, j : i ∈ NM} is the interpolation data along the 
. j-th grid line parallel to .x-axis. Consider affine maps .Li (x) = ai x + bi defined 
by .Li : I → Ii satisfying .Li (x1) = xi , Li (xM) = xi+1. The rational fractal interpo-
lation function (RCFIF) [ 6, 8] is given  by  

.ψ(x, y j ) = αi, j (x)ψ(L−1
i (x), y j ) + Pi, j (θ)

Qi, j (θ)
, i ∈ NM , (4.3)
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Fig. 4.2 Fractal interpolation surfaces with constant scaling 

where .α(x) is a Lipschitz function, 

. Pi. j (θ) = ri, j ( fi, j − αi, j (x) f1, j )(1 − θ)3 + ( fi+1, j − αi, j (x) fM, j )θ
3

+{(2ri, j + ti, j ) fi, j + ri, j hi f
x
i, j − αi, j x [(2ri, j + ti, j ) f1, j

+ri, j (xM − x1) f
x
1, j ]}θ(1 − θ)2 + {(ri, j + 2ti, j ) fi+1, j − ti, j hi f

x
i+1, j

−αi, j (x)[(ri, j + 2ti, j ) fM, j + ri, j (xM − x1) f
x
M, j ]}θ2(1 − θ),

Qi, j (θ) = (1 − θ)ri, j + θ ti, j , θ = x − xi
hi

, x ∈ Ii .

Along the .i-th grid line parallel to .y-axis 
For .i ∈ NM , R j ∈ {xi , fi, j , f xi, j : j ∈ NN } is the interpolation data along the .i-th 
grid line parallel to .y-axis. Consider affine maps .L∗

j (y) = c j y + d j defined by . L∗
j :

J → Jj satisfying.L∗
j (y1) = y j , L∗

j (yN ) = y j+1.Here.|α∗
i, j | < c j < 1. We construct 

RCFIF, 

.ψ∗(xi , y) = α∗
i, j (x)ψ

∗(xi , L∗−1
i (y)) + P∗

i, j (φ)

Q∗
i, j (φ)

, j ∈ NN , (4.4)
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where .α∗(y) is a Lipschitz function, 

. P∗
i. j (φ) = ri, j ( fi, j − α∗

i, j (y) fi,1)(1 − φ)3 + ( fi, j+1 − α∗
i, j (y) fi,N )φ3

+{(2ri, j + ti, j ) fi, j + ri, j h j f
y
i, j − α∗

i, j y
[(2ri, j + ti, j ) fi,1

+ri, j (yN − y1) f
y
1, j ]}φ(1 − φ)2 + {(ri, j + 2ti, j ) fi, j+1 − ti, j h j f

y
i, j+1

−α∗
i, j (y)[(ri, j + 2ti, j ) fi,N + ri, j (yN − y1) f

y
i,N ]}φ2(1 − φ),

Qi, j (φ) = (1 − φ)ri, j + φti, j , φ = y − y j
h j

, y ∈ Jj .

The construction of univariate FIFs.ψ(x, y j ),.ψ(x, y j+1) and.ψ∗(xi , y),. ψ∗(xi+1, y)
are discussed with cubic Hermite functions in the following. Let 

. bi0,3(x) = (1 − θ)2(1 + 2θ),

bi3,3(x) = θ2(3 − 2θ),

b j
0,3(y) = (1 − φ)2(1 + 2φ),

b j
3,3(y) = φ2(3 − 2φ).

On each individual patch .Di, j = Ii × Jj , i ∈ Nm−1, j ∈ Nn−1 (see Fig. 4.1), a 
blending rational cubic spline FIS is defined using the blending coons technique as 

. Φ(x, y) = −
[
−1 bi0,3(x) b

i
3,3(x)

]⎡
⎣

0 ψ(x, y j ) ψ(x, y j+1)

ψ∗(xi , y) fi, j fi, j+1
ψ∗(xi+1, y) fi+1, j fi+1, j+1

⎤
⎦

⎡
⎢⎣

−1

b j
0,3(y)

b j
3,3(y)

⎤
⎥⎦ .

The function interpolation surface .Φ interpolate the given data at grid points. The 
MATLAB code of rational cubic FIS with variable scalings is illustrated in the 
following. 

%  F  r  a  c  t  a  l S  u  r  f  a  c  e  q  (  X )  =P  (X )  /  Q (X )  ,  w  h  e  r  e  P  (  X ) i  s c  u  b  i  c  a  n d  Q (X ) i  s  
l i n e a r  .  

%H  e  r  e s  c  a  l  i  n  g f  a  c  t  o  r i  s a  l  p  h  a  a  n  d  t  w  o  s  h  a  p  e p a r a m e t e r s  a  r  w  mu  ,  nu  .  
%  I  n p u t s a  r  e (  x  ,  y  ,  z  ,  a  l  p  h  a  x  ,  a  l  p  h  a  y  ,  mu  ,  nu  ,  p  a  r  t  i  a  l d  e  r  i  v  a  t  i  v  e  r  s  (  dx  ,  

dy  )  )  .  
%O  u  t  p  u  t  s w  i  l  l b  e  "  f r a c t a l s  u  r  f  a  c  e  "  .  
c l c  ; c l e a r a  l  l  ; 
c l o s e a  l  l  ; f o r m a t  ( ’  s  h o r t  ’  ) 
%∗∗∗∗∗  Giv en  D  a  t  a  ∗∗∗∗∗∗  
x =  [  0  4  8  1  0  ]  ;  y =  [  0  3  5  9  ]  ;  
i t e r  =  3  ;  
g r i d  on  
m= l e n g t h  ( x )  ;  
n=  l e n g t h  ( y )  ;  
%z  =  [  0  .  4  9  5  1  0 ; 1  10  6  1 1 ; 2  11  7  1 2 ; 3  12  8  1  3  ]  ;
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z  =  [  3  11  9  8  ;  4  8  10  7  ;  1  10  12  4  ;  4  12  14  1  7  ]  ;  
%z = z ’ ; 
%z  =  [  4  9  1  0  0  1  1  0  ;  2  7 20  2  1  0  ;  1  5  0  3  0  0  30  1  1  3  5  ;  2  8  5  3  1  5  3  5  0  1 410  

] ;  
l x  =  l e n g t h  ( x )  ;  
l y  =  l e n g t h  ( y )  ;  
N= l e n g t h  ( x )  ;  
M= l e n g t h  ( y )  ;  
p1  =  l  x  ;  
p2  =  l  y  ;  
dx  =  [  4  .  5 1  .  5 0  .  1  2  5 1  . 3 7 5 ; 4 . 5 1  .  5 0  .  1  2  5 1  . 3 7 5 ; 4 . 5 1  .  5 0  .  2  5  

1 . 7 5 ; 4 . 3 9 2 9 1  .  6  0  7  1 0  .  2  5 1  .  2  5  ]  ;  
%dx = dx ’ 
dy  =  [  0  .  5 0  .  5 0 . 4 1 6 7 0  .  0  8  3  3  ;  0  .  5 0  .  5 0 . 4 1 6 7 0  .  0  8  3  3  ;  0  .  5 0  .  5 0  .  5  

0 . 5 ; 0 . 2 5 0  .  7  5 0  .  7  5 − 0 . 2 5 ] ;  
%dy = dy ’ 
%% 
% F r e e S h a p e p a r a m e t e r s%%%%%%%%%%%%%% 
r  _  x  =  [  1  1 1  1  ;  1 1 1  1  ;  1 1 1  1  ]  ;  mux=  r  _  x  ;  
t  _  x  =  [  1  1  1  1  ;  1 1  1 1  ;  1  1  1  1  ]  ;  n  u  x  =  t  _  x  ;  
%r  _  x  =  1  0  ∗ [  1  1 1  1  ;  1 1 1  1  ;  1 1 1  1  ]  ;  mux=  r  _  x  ;  
%r  _  x  = 1 0 0  ∗ [  1  1 1  1  ;  1 1 1  1  ;  1 1 1  1  ]  ;  mux=  r  _  x  ;  
%t  _  x  =  [  1  0  0  100  100  1  0  0  ;  1  1  1  1  ;  1  0  0  100  100  1  0  0  ]  ;  n ux  =  t  _  x  ;  
r  _  y  =  [  1  1 1  ;  1 1 1  ;  1 1 1  ;  1  1  1  ]  ;  muy=  r  _  y  ;  
%  r  _  y  = 1 0 0  ∗ [  1  1 1  ;  1 1 1  ;  1  1 1  ;  1  1  1  ]  ;  muy=  r  _  y  ;  
%r  _  y  =  [  1  8 4  ;  1  1  1 ; 1 0 0  1  1  ;  1  1  1  ]  ;  muy=  r  _  y  ;  
t  _  y  =  [  1  1 1  ; 1  1 1  ; 1  1 1  ; 1  1  1  ]  ;  n  u  y  =  t  _  y  ;  

%t  _  y  =  [  1  0  0  1 1  ;  1  0  0  1 1  ; 1  1 1  ; 1  1  1  ]  ;  n  u  y  =  t  _  y  ;  
f o r i =  1  :  l  x  −1 

h (  i  )  =  x  (  i  +  1  )−x (  i  )  ;  
e n d  
f o r l =  1  :  l  y  −1 

hy  (  l  )  =  y  (  l  +  1  )−y (  l  )  ;  
e n d  
%∗∗∗∗∗∗  D e f i n i t i o n s o  f M  a  t  r  i  c  e  s  ∗∗∗∗∗∗  
a =  z e r o s  ( 1  ,  l  x  −1)  ;  
b=  z e r o s  ( 1  ,  l  x  −1)  ;  
Lx  = [ ] ;  
Lx1  =  [ ] ;  Lx2  =  [ ] ;  
X_na  =  [  ]  ;  
X1  = [ ] ;  Zx1  =  [ ] ;  
X  =  [ ] ;  
Zx2  =  [ ] ;  
a =  z e r o s  ( 1  ,  l  y  −1)  ;  
b=  z e r o s  ( 1  ,  l  y  −1)  ;  
Lyy  =  [ ] ;  
Ly1  =  [ ] ;  Ly2  =  [ ] ;  
Y1  = [ ] ;  
Y  =  [ ] ;  
Zy1  =  [ ] ;  Zy2  =  [ ] ;  
L  =  [ ] ;  L1  = [ ] ;  L2  = [ ] ;  
L22  =  [ ] ;  L222  = [ ] ;  
X11  =  [ ] ;  Y11  =  [ ] ;  
Z11  =  [ ] ;  Z22  =  [ ] ;  
XX  = [ ] ;  YY  = [ ] ;  ZZ  = [ ] ;
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N1=N ; 
M1=M; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
i t e r  =  2  ;  
%%%%%%%%%%%%%%%%%%% ( km ) F i n d i n g c o f f i e n t s 
f o r  k  =  1  :  i t e r  

%∗∗∗∗∗∗X− d i r e c t i o n  (  Y  i  s f  i  x  e  d  )  ∗∗∗∗∗∗  

f o r j =  1  :  3  
f o r i =  1  :  l  x  −1 

%%−−−−F i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  ,  y  (  j  )  )  
a (  i  )  =  (  x  (  i  +  1  )−x (  i  )  )  /  (  x  (  l  x  )−x (  1  )  )  
b (  i  )  =  (  (  x  (  i  )  ∗ x (  l  x  )  )  −( x  (  i  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  l  x  )−x (  1  )  )  ;  
%%% 
%−−−− V a r i a b l e  A  l  p  h  a  −−−− 
%%  F i n d i n g a l p h a v  a  l  u  e  s H  e  r  e a  l  l r  o  w  s  a r e  same  ,  

b  e  c  a  u  s  e a  l  l r  o  w  s  a  r  e a  p p r o x i m a t i v e l y  s  a  m  e  .  
i f  (  k  ==1 )  

f o r t 1  =  1  :  p1  
i f i  ==1  

a l p h a  x  (  i  ,  t 1  )  =  x  (  t 1  )  /  (  x  (  p1  )−x (  1  )  )  ∗ ( 1 / 2 6 0 )  
%a  l p h a  x  (  i  ,  t 1  )  =  x  (  t 1  )  /  (  3  ∗ [ x  (  p1  )−x (  1  )  ]  )  ;  

e l s e i f i  ==2  
a l p h a x  (  i  ,  t 1  )  =  s i n  (  x  (  t  1  )  / ( 2 7 0  ∗ x (  p1  )−x (  1  )  )  )  
%a  l p h a x  (  i  ,  t 1  )  =2∗ c  o  s  (  x (  t  1  )  )  /  (  x (  p1  )−x (  1  )  )  ;  

e l s e i f i  ==3  
a l p h a x  (  i  ,  t 1  )  =  a b s  ( l o g  ( 1 +  x  (  t  1  )  /  x  (  p1  )−x (  1  )  )  )  

∗ ( 1 / 2 5 0 )  
%a  l p h a  x  (  i  ,  t 1  )  =  a  b  s  (  l  o  g  (  1  +  x  (  t 1  )  )  /  x  (  p1  )−x 

( 1 )  )  
e n d  

e nd  
e l s e  

i f i  ==1  
a l p h a x ( i  ,  t  1 ) =X1 ( t  1 ) /  (  X1 ( p1 )−X1 ( 1 ) ) ∗ ( 1 / 2 6 0 )  ;  
%a  l p h a x  (  i  ,  t  1  )  =X1  (  t  1  )  /  (  3  ∗ [ X1  (  p1  )−X1 ( 1 ) ] ) ;  

e l s e i f i  ==2  
a l p h a x  (  i  ,  t  1  )  =  s i n  ( X1 (  t  1  )  /  (  2  7  0  ∗ ( X1  (  p1  )−X1  (  1  )  ) ) )  

; 
%a  l p h a x  (  i  ,  t  1  )  =2∗ c o s  (  X1  (  t  1  )  )  /  (  X1  (  p1  )−X1 ( 1 ) ) ;  

e l s e  
a l p h a x  (  i  ,  t  1  )  =  a b s  ( l o g  (  1  +  X1 (  t  1  )  /  (  X1 (  p1  )−X1 ( 1 ) ) ) 

) ∗ ( 1 / 2 5 0 )  ;  
%a  l p h a x  (  i  ,  t  1  )  =  a  b  s  (  l  o  g  (  1  +  X1  (  t  1  )  )  /  (  X1  (  p1  )−X1 ( 1 ) 

) )  
e n d  

e nd  
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Ax  ( i  ,  j  )  =  (  z  ( i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗ z (  1  ,  j  )  )  ∗mux (  i  ,  j  )  ;  
Dx ( i  ,  j  )  = ( z ( i  + 1 ,  j  )  −(  a  l p h a x  (  i  ,  j  )  ∗ z  (  l  x  ,  j  ) ) )  ∗ nux  (  i  ,  j  )  ;  
%x  v a l u x e  
Bx1  (  i  ,  j  )  = ( ( 2  ∗ mux  (  i  ,  j  )  +  nux  (  i  ,  j  )  )  ∗ z (  i  ,  j  )  )  +  (  mux  (  i  ,  j  )  ∗ h (  i  

) ∗ dx  (  i  ,  j  )  )  ;  
Bx2  (  i  ,  j  )  =  (  2  ∗ mux  (  i  ,  j  )  +  nux  (  i  ,  j  )  )  ∗ z  (  1  ,  j )  +  (  mux  (  i  ,  j )  ∗ ( x  (  l  x  

)−x (  1  )  )  ∗ dx  (  1  ,  j  )  )  ;
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Bx (  i  ,  j  )  =  Bx1 (  i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗Bx2 (  i  ,  j  )  ;  
%  Dx  V a l u e  
Cx1  (  i  ,  j  )  = ( ( 2  ∗ nux  (  i  ,  j  )  +mux  (  i  ,  j  )  )  ∗ z (  i  +  1 ,  j  )  )  −(  nux  (  i  ,  j  )  ∗ h 

( i )  ∗ dx  (  i  +  1  ,  j  )  )  ;  
Cx2  (  i  ,  j  )  = ( ( 2  ∗ nux  (  i  ,  j  )  +mux  (  i  ,  j  )  )  ∗ z (  l  x  ,  j  )  )  −(  nux  (  i  ,  j  )  ∗ dx  

( l  x  ,  j  )  ∗ ( x  (  l  x  )−x (  1  )  )  )  ;  
Cx (  i  ,  j  )  =  Cx1 (  i  ,  j  )− a l p h a x  (  i  ,  j  )  ∗Cx2 (  i  ,  j  )  ;  
%  END  DX  v a l u x e  
%==== End  f  i  n  d  i  n  g c  o  f  f  i  e  n  t  s i  f F  i  x  i  n  g f  (  x  ,  y  (  j  )  )  
%−−−−F i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  ,  y  (  j  +  1  )  )  
Axx  (  i ,  j  )  =  (  z  (  i ,  j  +  1  )  −(  a  l p h a x  (  i  ,  j  +  1  )  ∗ z (  1  ,  j  +  1  )  )  )  ∗ mux (  i  ,  j  

+ 1 )  ;  
Dxx (  i  ,  j  )  =  (  z  (  i  +  1  ,  j  +  1  )  −(  a  l p h a x  (  i  ,  j  +  1  )  ∗ z (  l  x  ,  j  +  1  )  )  )  ∗ nux  (  i  

, j  +  1  )  ;  
%Cx v a l u e 
Bxx1  (  i  ,  j  )  =  (  (  2  ∗ mux  (  i  ,  j  +  1  )  +  nux  (  i  ,  j  +  1  )  )  ∗ z (  i  ,  j  +  1  )  )  +  (  mux  (  i  

, j  +  1  )  ∗ h (  i  )  ∗ dx  (  i  ,  j  +  1  )  )  ;  
Bxx2  (  i  ,  j  )  =  (  2  ∗ mux  (  i  ,  j  +  1  )  +  nux  (  i  ,  j  +  1  )  )  ∗ z (  1  ,  j  +  1  )  +  (  mux  (  i  ,  j  

+ 1 )  ∗ ( x  (  l  x  )−x (  1  )  )  ∗ dx  (  1  ,  j  +  1  )  )  ;  
Bxx  (  i  ,  j  )  =  Bxx1  (  i  ,  j  )− a l p h a x  (  i  ,  j  +  1  )  ∗ Bxx2  (  i  ,  j  )  ;  
% Dx  v  a  l  u  e  
Cxx1  (  i  ,  j  )  =  (  (  2  ∗ nux  (  i  ,  j  +  1  )  +mux  (  i  ,  j  +  1  )  )  ∗ z (  i  +  1 ,  j  +  1  )  )  −(  nux  

( i  ,  j  +  1  )  ∗ h (  i  )  ∗ dx  (  i  +  1  ,  j  +  1  )  )  ;  
Cxx2  (  i  ,  j  )  =  (  (  2  ∗ nux  (  i  ,  j  +  1  )  +mux  (  i  ,  j  +  1  )  )  ∗ z (  l  x  ,  j  +  1  )  )  −(  nux  (  

i ,  j  +  1  )  ∗ dx  (  l  x  ,  j  +  1  )  ∗ ( x  (  l  x  )−x (  1  )  )  )  ;  
Cxx  (  i  ,  j  )  =  Cxx1  (  i  ,  j  )− a l p h a x  (  i  ,  j  +  1  )  ∗Cxx2  (  i  ,  j  )  ;  
% END  DX  v  a  l  u  e  
%%%===End  f  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i  x  i  n  g f  ( x  ,  y  (  j  +  1  )  )  

e n d%  e  n  d  f  o  r l  o o p i  
t  h  e  t  a  =  i n l i n e  (  ’ (  x  −0)  /  1  1  ’  ) ;  

%  t  h  e  t  a  =  i  n l i n e  (  ’  (  x  −0)  /  6  ’  )  ;  
f o r i =  1  :  l  x  −1 

f o r t 1  =  1  :  p1  
i f (  k  ==1 )  

Lx  (  i  ,  t  1  )  =  (  a  (  1  ,  i  )  ∗ x (  1  ,  t  1  )  )  +  b  (  1  ,  i  )  ;  
L11  (  i  ,  t  1  )  =  t  1  +  (  i  −1)  ∗ p1  ;  
%F  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  ,  y  (  j  )  )  
%  a  l p h a x v  a l u e  −−−−−−−−−−−−−−−− 
Qx1=mux (  i  ,  j  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Qx2=  nux  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Lx1  (  i  ,  t 1  )  =  (  a  l p h a  x  (  i  ,  t 1  )  ∗ z (  t  1  ,  j  )  )  +  (  (  Ax  (  i  ,  j  )  

∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  +  (  Bx  (  i  ,  j  )  ∗ t h e t a  (  x  (  t  1  )  
) ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ^  2  )  +  .  .  .  
( Cx (  i  ,  j  )  ∗ ( t  h  e  t  a  (  x  (  t  1  )  )  ̂  2  )  ∗(1  − t h e t a  (  x  (  t  1  )  )  

) )  +  (  Dx  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  )  /  (  Qx1+  
Qx2 )  ;  

%F  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  ,  y  (  j  +  1  )  )  
Qxx1  =mux  (  i  ,  j  +  1  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Qxx2  =  n  u  x  (  i  ,  j  +  1  )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ;  
Lx2  (  i  ,  t 1  )  =  (  a  l p h a  x  (  i  ,  t 1  )  ∗ z  (  t  1  , j  +  1  )  )  +  (  (  Axx  (  i  , j  

) ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  +  (  Bxx  (  i  ,  j  )  ∗ t h e t a  (  x  (  
t 1  )  )  ∗(1  − t  h  e  t  a  (  x  (  t  1  ) ) )  ^  2  )  +  .  .  .  

( Cxx  (  i  ,  j  )  ∗ ( t  h  e  t  a  (  x  (  t  1  )  )  ̂  2  )  ∗(1  − t h e t a  (  x  (  t  1  )  
) ) )  +  (  Dxx  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  x  (  t  1  ) ) )  ^  3  )  )  /  (  
Qxx1  +  Qxx2  )  ;
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e l s e  

Lx  (  i  ,  t  1  )  =  (  a  (  i  )  ∗ xx  (  1  ,  t  1  )  )  +  b  (  i  )  ;  
L11  (  i  ,  t  1  )  =  t  1  +  (  i  −1)  ∗ p1  ;  
Qx1=mux (  i  ,  j  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ;  
Qx2=  nux  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  xx  (  t  1  ) ) )  ;  

%a  l p h a x  (  i  ,  t  1  )  =  0  ;  
%%% a l p h a v a l u e s 
i f i  ==1  

a l p h a x  (  i  ,  t 1  )  =X1  (  t  1  )  /  (  X1  (  p1  )−X1 ( 1 ) ) 
∗ ( 1 / 2 6 0 )  ;  

e l s e i f i  ==2  
a l p h a x  (  i  ,  t 1  )  =  s i n  ( X1 (  t  1  )  /  (  2  7  0  ∗ ( X1  (  p1  )−X1 

( 1 )  )  )  )  ;  
e l s e  

a l p h a x  (  i  ,  t 1  )  =  a b s  ( l o g  (  1  +  X1 (  t  1  )  /  (  X1 (  p1  )−X1 
( 1 )  )  )  )  ∗ ( 1 / 2 5 0 )  ;  

e n d  
%%%%%%%%% 
Lx1  (  i  ,  t 1  )  =  (  a  l p h a  x  (  i  ,  t 1  )  ∗ qx1  (  t  1  ,  j  )  )  +  (  (  (  Ax  (  i  ,  j  )  

∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  3  )  +  (  Bx  (  i  ,  j  )  ∗ t h e t a  (  xx  (  
t 1  )  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  2  )  +  .  .  .  
( Cx (  i  ,  j  )  ∗ ( t  h  e  t  a  (  xx  (  t  1  )  )  ̂  2  )  ∗(1  − t h e t a  (  xx  (  t  1  

) ) ) )  +  (  Dx  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  3  )  )  /  (  
Qx1+Qx2 )  )  ;  

Qxx1  =mux  (  i  ,  j  +  1  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ;  
Qxx2  =  n  u  x  (  i  ,  j  +  1  )  ∗ (  t  h  e  t  a  (  xx  (  t  1  ) ) )  ;  
Lx2  (  i  ,  t 1  )  =  (  a  l p h a  x  (  i  ,  t 1  )  ∗ qx2  (  t  1  ,  j  )  )  +  (  (  (  Axx  (  i  ,  j  

) ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  3  )  +  (  Bxx  (  i  ,  j  )  ∗ t h e t a  (  xx  
( t  1 )  )  ∗(1  − t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  2  )  +  .  .  .  
( Cxx  (  i  ,  j  )  ∗ ( t  h  e  t  a  (  xx  (  t  1  )  )  ̂  2  )  ∗(1  − t h e t a  (  xx  (  

t  1  ) ) ) )  +  (  Dxx  (  i  ,  j  )  ∗ (  t  h  e  t  a  (  xx  (  t  1  ) ) )  ^  3  )  )  
/  (  Qxx1  +  Qxx2  )  )  ;  

e n d  %  e  n  d  f  o  r l  o  o  p i  f c o n d i t i o n  
e nd  %  e  n  d  f  o  r l  o o p t  1  
X=  [X  Lx  (  i  ,  :  )  ]  ;  
X_na  =  [  X_na  L11  (  i  ,  :  )  ]  ;  
Zx1  =  [  Zx1  Lx1  (  i  ,  :  )  ]  ;  
Zx2  =  [  Zx2  Lx2  (  i  ,  :  )  ]  ;  

e n d  %  e  n  d  f  o  r l  o o p i  
X1=X ; 
X_na1  =  X_na  ;  
Sx1  (  :  ,  j  )  =  Zx1  ’  ;  
Sx2  (  :  ,  j  )  =  Zx2  ’  ;  
X  =  [ ] ;  
Zx1  =  [ ] ;  
Zx2  =  [ ] ;  

e n d  % e  n  d  f  o  r l  o  o  p  k  (  i  t  e  r  a  t  i  o  n  )  

xx  =X1  ;  
qx1  =  Sx1  ;  
qx2  =  Sx2  ;  
Sx1  =  z e r o s  ( l e n g t h  ( x )  ∗ 3 ^ (  k  +  1  )  ,  3  )  ;  
Sx2  =  z e r o s  ( l e n g t h  ( x )  ∗ 3 ^ (  k  +  1  )  ,  3  )  ;
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p1  =  l e n g t h  ( X1 )  ;  
qx  =  [  qx1  qx2  (  :  ,  3  )  ]  ;  
%  End  f  o  r f  i  x ’ y  ’  a  n  d  c h a n g e ’ x  ’  .  
%∗∗∗∗∗∗Y− d i r e c t i o n  ∗∗∗∗∗∗  
%  f  o  r  k  =  1  :  i t e r  
f o r i i  =  1  :  3  

f o r j j  =  1  :  l  y  −1 
%  F  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  (  i  i  )  ,  y  )  
a a  (  j  j  )  = (  y  (  j  j  + 1 )−y (  j  j  )  )  /  (  y (  l  y  )−y (  1  )  )  ;  
bb  ( j  j )  =  (  (  y  ( j  j )  ∗ y (  l  y  )  )  −( y  (  j  j  +  1  )  ∗ y (  1  )  )  )  /  (  y  (  l  y  )−y (  1  )  )  ;  

%% 
i f  (  k  ==1 )  

f o r t 2  =  1  :  p2  
i f j  j  ==1  

a l p h a y  (  t  2  ,  j  j  )  =  s i n  ( y (  j  j  )  /  (  y (  p2  )−y (  1  )  )  )  
+ 0 . 0 1 ;  

e l s e i f j  j  ==2  
a l p h a y  (  t  2  ,  j  j  )  =  a b s  ( s e c  ( y (  j  j  )−y (  1  )  )  )  

∗ ( 1 / 1 2 0 )  ;  
e l s e  

a l p h a y  (  t  2  ,  j  j  )  =  e xp  (  y  (  j  j  )  / 1 2 0 )  ∗ ( 1 / 1 0 3 )  ;  
e n d  

e nd  
e l s e  

f o r t 2  =  1  :  p2  
i f j  j  ==1  

a l p h a y  (  t  2  ,  j  j  )  =  s i n  ( Y1 (  j  j  )  /  (  Y1 (  p2  )−Y1 ( 1 ) ) )  
+ 0 . 0 1 ;  

e l s e i f j  j  ==2  
a l p h a y  (  t  2  ,  j  j  )  =  a b s  ( s e c  ( Y1 (  j  j  )−Y1 ( 1 ) ) ) 

∗ ( 1 / 1 2 0 )  ;  
e l s e  

a l p h a y  (  t  2  ,  j  j  )  =  e xp  ( Y1 (  j  j  )  /  1 2 0 )  ∗ ( 1 / 1 0 3 )  ;  
e n d  

e nd  
e nd  

% 
Ay  ( i  i  ,  j  j  )  =  (  z  ( i  i  ,  j  j  )− a l p h a y  (  i  i  ,  j  j  )  ∗ z (  i  i  ,  1  )  )  ∗muy (  i  i  ,  j  j  )  

; 
Dy  ( i  i  ,  j  j  )  =  (  z  ( i  i  ,  j  j  +  1  )  −(  a  l p h a y  (  i  i  ,  j  j  )  ∗ z  (  i  i  ,  l  y  ) ) )  ∗ nuy  (  

i i  ,  j  j  )  ;  
%−−−− 
By1  (  i  i  ,  j  j  )  = ( ( 2  ∗ muy  (  i  i  ,  j  j  )  +  nuy  (  i  i  ,  j  j  )  )  ∗ z (  i  i  ,  j  j  )  )  +  (  muy  (  

i i  ,  j  j  )  ∗ hy  (  j  j  )  ∗ dy  (  i  i  ,  j  j  )  )  ;  
By2  (  i  i  ,  j  j  )  =  (  2∗ muy  (  i  i  ,  j  j  )  +  nuy  (  i  i  ,  j  j  )  )  ∗ z (  i  i  ,  1  )  +  (  muy  (  i  i  ,  

j j  )  ∗ ( y  (  l  y  )−y (  1  )  )  ∗ dy  ( i  i  ,  1  )  ) ;  
By (  i  i  ,  j  j  )  =  By1 (  i  i  ,  j  j  )− a l p h a y  (  i  i  ,  j  j  )  ∗By2 (  i  i  ,  j  j  )  ;  
%−−−− 
Cy1  (  i  i  ,  j  j  )  = ( ( 2  ∗ nuy  (  i  i  ,  j  j  )  +muy  (  i  i  ,  j  j  )  )  ∗ z (  i  i  ,  j  j  +  1  )  )  −( 

nuy  (  i  i  ,  j  j  )  ∗ hy  (  j  j  )  ∗ dy  (  i  i  ,  j  j  +  1  )  )  ;  
Cy2  (  i  i  ,  j  j  )  = ( ( 2  ∗ nuy  (  i  i  ,  j  j  )  +muy  (  i  i  ,  j  j  )  )  ∗ z (  i  i  ,  l  y  )  )  −(  nuy  (  

i i  ,  j  j  )  ∗ dy  (  i  i  ,  l  y  )  ∗ ( y  (  l  y  )−y (  1  )  )  )  ;  
Cy (  i  i  ,  j  j  )  =  Cy1 (  i  i  ,  j  j  )− a l p h a y  (  i  i  ,  j  j  )  ∗ Cy2 (  i  i  ,  j  j  )  ;  
%−−−−F i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  (  i  i  +  1  )  ,  y  )
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Ayy  (  i  i  ,  j  j )  =  (  z  (  i  i  +  1  ,  j  j )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗ z (  i  i  +  1  ,  1  )  )  ∗muy 
( i  i  +  1  ,  j  j  )  ;  

Dyy (  i  i  ,  j  j  )  =  (  z  (  i  i  +  1  ,  j  j  +  1  )  −(  a  l p h a y  (  i  i  +  1  ,  j  j  )  ∗ z (  i  i  +  1  ,  l  y  )  )  
) ∗ nuy  (  i  i  +  1  ,  j  j  )  ;  

Byy1  (  i  i  ,  j  j  )  =  (  (  2  ∗ muy  (  i i  +  1  ,  j  j  )  +  n  u  y  (  i  i  +  1  ,  j j  )  )  ∗ z (  i  i  +  1  ,  j  j  )  
) +  (  muy  (  i  i  +  1  ,  j  j  )  ∗ hy  (  j  j  )  ∗ dy  (  i  i  +  1  ,  j  j  )  )  ;  

Byy2  (  i  i  ,  j  j  )  =  (  2∗ muy  (  i i  +  1  ,  j  j  )  +  n  u  y  (  i  i  +  1  ,  j j  )  )  ∗ z (  i  i  ,  1  )  +  (  
muy (  i  i  ,  j  j  )  ∗ ( y  (  l  y  )−y (  1  )  )  ∗ dy  ( i  i  ,  1  )  ) ;  

Byy  (  i  i  ,  j  j  )  =  Byy1  (  i  i  ,  j  j  )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗Byy2  ( i  i  ,  j  j  ) ;  
%−−− 
Cyy1  (  i  i  ,  j  j  )  =  (  (  2  ∗ n  u  y  (  i  i  +  1  ,  j j  )  +muy  (  i i  +  1  ,  j  j  )  )  ∗ z (  i  i  +  1  ,  j  j  

+ 1 )  )  −(  nuy  (  i  i  +  1  ,  j  j  )  ∗ hy  (  j  j  )  ∗ dy  (  i  i  +  1  ,  j  j  +  1  )  )  ;  
Cyy2  (  i  i  ,  j  j  )  =  (  (  2  ∗ n  u  y  (  i  i  +  1  ,  j j  )  +muy  (  i i  +  1  ,  j  j  )  )  ∗ z (  i  i  +  1  ,  l  y  )  

) −(  nuy  (  i  i  +  1  ,  j  j  )  ∗ dy  (  i  i  +  1  ,  l  y  )  ∗ ( y  (  l  y  )−y (  1  )  )  )  ;  
Cyy  (  i  i  ,  j  j  )  =  Cyy1  (  i  i  ,  j  j  )− a l p h a y  (  i  i  +  1  ,  j  j  )  ∗ Cyy2  ( i  i  ,  j  j  ) ;  
%c  h  e  c  k  i  n  g c  o m p l e t e %−−−− 

end  % End  f  o  r ’  j  j  ’  
p h i  =  i  n  l  i  n  e  (  ’ (  t  −0)  /  8  ’  ) ;  

%p  h  i  =  i  n l i n e  (  ’  (  t  −0)  /  8  ’  )  ;  
f o r j j  =  1  :  l  y  −1 

f o r t 2  =  1  :  p2  
i f (  k  ==1 )  

%F  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  (  i  i  )  ,  y  )  
Ly  (  t  2  ,  j  j  )  =  (  a  a  (  j  j  )  ∗ y (  t  2  )  )  +  bb  (  j  j  )  ;  
L s s  (  j  j  ,  t  2  )  =  t  2  +  (  j  j  −1)  ∗ p2  ;  
%===== 
Qy1=muy (  i  i  ,  j  j  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  ;  
Qy2=  nuy  (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  )  ;  
Ly1  (  t 2  ,  j  j  )  =  (  a  l  p  h  a  y  (  t 2  ,  j  j  )  ∗ z (  i  i  ,  t  2  )  )  +  (  (  Ay  (  i  i  ,  

j j  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  ^  3  )  +  (  By  (  i  i  ,  j  j  )  ∗ p h i  (  y  (  t  2  
) )  ∗(1  − p h i  (  y  (  t  2  )  )  )  ^  2  )  +  .  .  .  
( Cy (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  ^  2  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  )  

+ (  Dy  (  i  i  ,  j  j  )  ∗ (  p  h  i  (  y  (  t  2  )  )  )  ^  3  )  )  /  (  Qy1+Qy2 
) ;  

%F  i n d i n g c  o  f  f  i  e  n  t  s i  f F  i x i n g f  (  x  (  i  i  +  1  )  ,  y  )  
Qyy1  =muy  (  i  i  +  1  ,  j  j  )  ∗(1  − p  h  i  (  y  (  t  2  ) ) )  ;  
Qyy2  =  n  u  y  (  i  i  +  1  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  )  ;  
Ly2  (  t 2  ,  j  j  )  =  (  a  l  p  h  a  y  (  t 2  ,  j  j  )  ∗ z (  i  i  +  1  ,  t  2  )  )  +  (  (  Ayy  (  

i i  ,  j  j  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  (  
y (  t  2  )  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  ^  2  )  +  .  .  .  
( Cyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  ^  2  )  ∗(1  − p h i  (  y  (  t  2  )  )  )  

) +  (  Dyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  y  (  t  2  )  )  )  ^  3  )  )  /  (  Qyy1  +  
Qyy2  )  ;  

%−−−−−−−−−−−−−− 

e l s e  

Ly  (  t  2  ,  j  j  )  =  (  a  a  (  j  j  )  ∗ yy  (  1  ,  t  2  )  )  +  bb  (  j  j  )  ;  
L s s  (  j  j  ,  t  2  )  =  t  2  +  (  j  j  −1)  ∗ p2  ;  
Qy1=muy (  i  i  ,  j  j  )  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ;  
Qy2=  nuy  (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  )  ;  
%%−−−−−−−−−−−−−−−−−−−−− a l p h a i  s z  e r  o  

%  a  l p h a y  (  t  2  ,  j  j  )  =0  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Ly1  (  t 2  ,  j  j  )  =  (  a  l  p  h  a  y  (  t 2  ,  j  j  )  ∗ qy1  (  i  i  ,  t  2  )  )  +  (  (  (  Ay  (  
i i  ,  j  j  )  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  
( yy (  t  2  )  )  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ^  2  )  +  .  .  .  
( Cy (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  ^  2  )  ∗(1  − p h i  (  yy  (  t 2  )  )  

) )  +  (  Dy  (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  )  ^  3  )  )  /  (  Qy1+  
Qy2 )  )  ;  

Qyy1  =muy  (  i  i  +  1  ,  j  j  )  ∗(1  − p  h  i  (  yy  (  t  2  ) ) )  ;  
Qyy2  =  n  u  y  (  i  i  +  1  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  )  ;  
Ly2  (  t 2  ,  j  j  )  =  (  a  l  p  h  a  y  (  t 2  ,  j  j  )  ∗ qy2  (  i  i  ,  t  2  )  )  +  (  (  (  Ayy  (  

i i  ,  j  j  )  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ^  3  )  +  (  Byy  (  i  i  ,  j  j  )  ∗ p h i  
( yy (  t  2  )  )  ∗(1  − p h i  (  yy  (  t 2  )  )  )  ^  2  )  +  .  .  .  
( Cyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  ^  2  )  ∗(1  − p h i  (  yy  (  t 2  )  

) ) )  +  (  Dyy  (  i  i  ,  j  j  )  ∗ (  p h i  (  yy  (  t 2  )  )  )  ^  3  )  )  /  (  
Qyy1  +  Qyy2  )  )  ;  

e n d  %  End  w  i  t  h f  o  r i  f c  o n d i t i o n  k  ==1  ’  
e n d  %  End  w i t h f  o  r l  o o p ’  t  2  ’  
Lyy1  =  Ly1  ’  ;  
Lyy2  =  Ly2  ’  ;  
Lyy  =Ly  ’  ;  
Y=  [Y  Lyy  (  j  j  ,  :  )  ]  ;  
Zy1  =  [  Zy1  Lyy1  (  j  j  ,  :  )  ]  ;  
Zy2  =  [  Zy2  Lyy2  (  j  j  ,  :  )  ]  ;  

e n d  %  End  w i t h f  o  r l  o o p ’  j  j  ’  
Y1=Y ; 
S1  (  i  i  ,  :  )  =  Zy1  ;  
S2  (  i  i  ,  :  )  =  Zy2  ;  
Y  =  [ ] ;  
Zy1  =  [ ] ;  
Zy2  =  [ ] ;  

e n d  %  End  w i t h ’  i  i  ’  (  No  o  f i  t  e  r  a  t  i  o  n  )  
yy  =Y1  ;  
qy1  =  S1  ;  
qy2  =  S2  ;  
S1  =  z e r o s  ( 3  ,  l e n g t h  ( y )  ∗ 3 ^ (  k  +  1  )  )  ;  
S2  =  z e r o s  ( 3  ,  l e n g t h  ( y )  ∗ 3 ^ (  k  +  1  )  )  ;  
p2  =  l e n g t h  ( Y1 )  ;  
%e n d 
qy  =  [  qy1  ;  qy2  (  3  ,  :  )  ]  ;  

%∗∗∗∗∗∗∗  S u r f a c e E  v  u  a  l  u  a  t  i  o  n  ∗∗∗∗∗∗  
a =  z e r o s  ( 1  ,  N−1)  ;  
b=  z e r o s  ( 1  ,  N−1)  ;  
c =  z e r o s  ( 1  ,M−1)  ;  
d=  z e r o s  ( 1  ,M−1)  ;  

f o r n =  1  :  N−1 
a  (  n )  =  (  x ( n  +  1  )−x ( n )  )  /  (  x  (  N  )−x (  1  )  )  ;  
b ( n )  =  (  (  x  ( n )  ∗ x (  N  )  )  −( x  (  n  +  1  )  ∗ x (  1  )  )  )  /  (  x  (  N  )−x (  1  )  )  ;  

e n d  
f o r m=  1  :M−1 

c (m)  =  (  y  (m+  1  )−y (m)  )  /  (  y  (M)−y (  1  )  )  ;  
d (m)  =  (  (  y  (m)  ∗ y (M)  )  −( y  (m+  1  )  ∗ y (  1  )  )  )  /  (  y  (M)−y (  1  )  )  ;  

e n d  
t  h  e  t  a  =  i n l i n e  (  ’ (  x  −0)  /  1  1  ’  ) ;  
p  h  i  =  i n l i n e  (  ’ (  y  −0)  /  8  ’  ) ;
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f o r i x  =  1  :  N−1 
f o r i 1  =  1  :  N1  

i f  (  k  ==1 )  
L1  (  i  x  ,  i 1  )  =  a  (  i x  )  ∗ x (  i  1  )  +  b (  i  x  )  ;  

e l s e  
L1  (  i  x  ,  i 1  )  =  a  (  i x  )  ∗XX  ( i  1 )  +  b  ( i  x )  ;  

e n d  %  End  w  i  t  h i  f c o n d i t i o n  
e nd  %  e  n  d  w i t h f  o  r ’  i  1  ’  
f o r j y  =  1  :M−1 

i f  (  i  x  ==1 )  
f o r j 1  =  1  :  M1  

i f  (  k  ==1 )  
L2  (  j  y  ,  j  1  )  =  c  (  j  y  )  ∗ y (  j  1  )  +  d (  j  y  )  ;  

e l s e  
L2  (  j  y  ,  j  1  )  =  c  (  j  y  )  ∗YY  ( j  1 )  +  d  ( j  y )  ;  

e n d  %  End  w  i  t  h i  f c o n d i t i o n  
e nd  %  End  w i t h ’  j  1  ’  
Y11 =  [  Y11 L2 (  j  y  ,  :  )  ]  ;  

e n d  %  End  w i t h ’  i  x  ==1  ’  
f o r i 1  =  1  :  N1  

f o r j 1  =  1  :  M1  
i f  (  k  ==1 )  

g x_1  (  i  1  )  = ( (1  − t  h  e  t  a  (  x  (  i  1  ) ) )  ^  2  )  ∗ ( 1 +2  ∗ t h e t a  (  
x (  i  1  )  )  )  ;% (1  − t h e t a  )  ^  2  (  1  +  2  ∗ t h e t a  )  −−’po  
’ 

g x_2  (  i  1  )  =  (  (  t  h  e  t  a  (  x  (  i  1  )  )  )  ^  2  )  ∗ (3  −2∗ t h e t a  (  x  (  
i 1  )  )  )  ;% t  h  e  t  a  ^  3∗ (3  −2∗ t h e t a  )  −−’p1  ’  

g y_1  (  j  1  )  = ( (1  − p h i  (  y  (  j  1  )  )  )  ^  2  )  ∗ ( 1 +2  ∗ p h i  (  y  (  j  1  
) ) )  ;%(1 − p  h  i  )  ^  2 ( 1 + 2∗ p h i  )  −−’qo  ’  

g y_2  (  j  1  )  =  (  (  p  h  i  (  y  (  j  1  )  )  )  ^  2  )  ∗ (3  −2∗ p h i  (  y  (  j  1  )  )  
) ;%p h i  ^  3∗ (3  −2∗ p h i  )  −−’q1  ’  

R1  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  ,  j  y  )  ;  
R2  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  ,  j  y  +  1  )  ;  
R3  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  )  ;  
R4  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  +  1  )  ;  
R  (  i 1  ,  j  1  )  =R1  (  i 1  ,  j  1  )  +R2  (  i 1  ,  j  1  )  +R3  (  i 1  ,  j  1  )  +R4  

( i  1  ,  j  1  )  ;  
L  (  i  1  ,  j  1  )  =  (  g y_1  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i 1  )  ,  j y  )  +  (  

g y_2  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i 1  )  ,  j y  +  1  )  +  .  .  .  
(  g x_1  (  i  1  )  )  ∗ qy  (  i  x  ,  L  s  s  (  j  y  ,  j  1  )  )  +  (  (  g x_2  (  

i 1  )  )  ∗ qy  (  i  x  +  1  ,  L  s  s  (  j  y  ,  j  1  ) ) )−R (  i  1  ,  j  1  
) ;  

e l s e  
g x_1  (  i  1  )  = ( (1  − t  h  e  t  a  (  XX  (  i  1  ) ) )  ^  2  )  ∗ ( 1 +2∗ t h e t a  

(XX(  i  1  )  )  )  ;  
g x_2  (  i  1  )  =  (  (  t  h  e  t  a  (XX(  i  1  )  )  )  ^  2  )  ∗ (3  −2∗ t h e t a  (  

XX ( i 1 ) ) ) ; 
g y_1  (  j  1  )  = ( (1  − p h i  (  YY  (  j 1  )  )  )  ^  2  )  ∗ ( 1 +2  ∗ p h i  (  YY  (  

j 1  )  )  )  ;  
g y_2  (  j  1  )  =  (  (  p  h  i  (YY(  j  1  )  )  )  ^  2  )  ∗ (3  −2∗ p h i  (  YY  (  j 1  

) ) )  ;  
R1  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  ,  j  y  )  ;  
R2  (  i  1  ,  j  1  )  =  g x_1  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  ,  j  y  +  1  )  ;  
R3  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_1  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  )  ;  
R4  (  i  1  ,  j  1  )  =  g x_2  (  i  1  )  ∗ gy_2  (  j  1  )  ∗ z (  i  x  +  1  ,  j  y  +  1  )  ;



4.2 Fractal Surfaces with Variable Scaling 75

R  (  i 1  ,  j  1  )  =R1  (  i 1  ,  j  1  )  +R2  (  i 1  ,  j  1  )  +R3  (  i 1  ,  j  1  )  +R4  
( i  1  ,  j  1  )  ;  

L  (  i  1  ,  j  1  )  =  (  g y_1  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i 1  )  ,  j y  )  +  (  
g y_2  (  j  1  )  )  ∗ qx  (  L11  (  i  x  ,  i  1  )  ,  j  y  +  1  )  +  (  g x_1  (  
i 1  )  )  ∗ qy  (  i  x  ,  L  s  s  (  j  y  ,  j  1  )  )  +  (  (  g x_2  (  i  1  )  )  ∗ qy  
(  i  x  +  1  ,  L  s  s  (  j  y  ,  j  1  ) ) )−R (  i  1  ,  j  1  )  ;  

e n d  
e nd  

e nd  
Z11  =  [  Z11  L  ]  ;  
L  =  [ ] ;  

e n d  
X11 =  [  X11 L1 (  i  x  ,  :  )  ]  ;  
Z22  =  [  Z22  ;  Z11  ]  ;  
Z11  =  [ ] ;  

e n d  
XX=X11 ; 
YY=Y11 ; 
ZZ= Z22 ; 
X11  =  [ ] ;  
Y11  =  [ ] ;  
Z22  =  [ ] ;  
N1= l e n g t h  (XX)  ;  
M1= l e n g t h  (YY)  ;  

e n d  
a x i s s q u a r e  ;  
s u r f  (XX  ,  YY  ,  ZZ  ’  )  ;  
%  t i t l e  (  ’  S  u  r  f  a  c  e  ’  )  ;  
%  x  l  a  b  e  l  (  ’  X  v a l u e s  ’  )  ;  y  l  a  b  e  l  (  ’  Y  v a l u e s  ’  )  ;  z  l  a  b  e  l  (  ’  Z  v a l u e s  ’  )  ;  
h o l d o f f  

4.2.1 Numerical Computation 

Let . f xi, j and . f
y
i, j denote the first partial derivatives of . f with respect to x and y 

respectively. Consider the bi-variate Hermite data . {xi , y j , fi, j , f xi, j , f yi, j : i ∈
NM , j ∈ NN } as given in Table 4.3. By choosing the vertical scaling functions (see 
Table 4.5) and shape parameters (as given in Table 4.4), the graphs of fractal rational 
cubic FISs are generated and illustrated in Fig. 4.3. For generating Fig. 4.3a, shape 
parameters are chosen as .rx = [1]3×4 in x-direction and .ry = [1]4×3 in y-direction. 
Figure 4.3b represents the bi-cubic partially blended rational FIS for perturbed shape 
parameters in x-direction (given in Table 4.4). Figure 4.3c represents the rational 
FIS by changing shape parameters in y-direction (given in Table 4.4). Changing both 
vertical scaling vectors and shape parameters, Fig. 4.3d is generated. Figure 4.3e 
represents the rational FIS by changing . α and .tx (as in Table 4.4). Changing the 
vertical scaling vectors (. α) and . ry ,. tx , Fig.  4.3f is generated.
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Table 4.3 Hermite interpolation data in the construction of blending rational cubic FISs 

.{(xi , yi )}4i=1 .= .

⎛
⎜⎜⎜⎝

0 0

4 3

8 5

10 9

⎞
⎟⎟⎟⎠ . f .= . 

⎛
⎜⎜⎜⎝

3 11 9 8

4 8 10 7

1 10 12 4

4 12 14 17

⎞
⎟⎟⎟⎠

. f x .= .

⎛
⎜⎜⎜⎜⎜⎝

4.5 1.5 0.125 1.375

4.5 1.5 0.125 1.375

4.5

1.5 0.25 1.75

4.3929 1.607 10.25 1.25

⎞
⎟⎟⎟⎟⎟⎠

. f y .= . 

⎛
⎜⎜⎜⎝

0.5 0.5 0.4167 0.0833

0.5 0.5 0.4167 0.0833

0.5 0.5 0.5 0.5

0.25 0.75 0.75 −0.25

⎞
⎟⎟⎟⎠

Table 4.4 Shape parameters in the construction of RCFIFs 

Shape parameters Figures 

.rx .= ones(3,4) Figure 4.3a, c, e, f 

.tx .= ones(3,4) Figure 4.3a, c, d 

.ry .= ones(4,3) Figure 4.3a–e 

.ty .= ones(4,3) Figure 4.3a–f 

.rx .= 10*ones(3,4) Figure 4.3b 

.rx .= 100*ones(3,4) Figure 4.3d 

.ry .= 100*ones(4,3) Figure 4.3f 

.tx .= .

⎛
⎜⎝
100 100 100 100

1 1 1 1

100 100 100 100

⎞
⎟⎠ Figure 4.3b, e, f 

.ry .= .

⎛
⎜⎜⎜⎝

1 8 4

1 1 1

100 1 1

1 1 1

⎞
⎟⎟⎟⎠ Figure 4.3c 

.ty .= .

⎛
⎜⎜⎜⎝

100 1 1

100 1 1

1 1 1

1 1 1

⎞
⎟⎟⎟⎠ Figure 4.3c 

Table 4.5 Scaling factors in the construction of RCFIFs 

Scaling factors Figures 

. α .= .

[
x

260(xn−x1)
,

sin(x)
270∗(xn−x1)

,
| log(1+x)|
250(xn−x1)

]
Figure 4.3a–c 

.α∗ .= .

[
sin(y)

y(n)−y(1) + 0.01, | sec(y)−y(1)|
120 , ey

120 ∗ 1
103

]
Figure 4.3a–f 

. α .= .

[
x

3∗(xn−x1)
,

2cos(x)
xn−x1

,
| log(1+x(t1)|

xn−x1

]
Figure 4.3d–f
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 4.3 Fractal interpolation surfaces with variable scaling
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Chapter 5 
Applications 

In this section, applications of fractal interpolation function are discussed, in partic-
ular, patterns of mountains and clouds are approximated and the positive cases of 
Omicron are reconstructed. 

5.1 Patterns of Mountains and Clouds 

Consider the following three sets of interpolation data 

• .
{
(0, 0), (2, 2), (4, 0), (6.5, 0.5), (10, 0.1)

}
, 

• . 
{
(3, 1.75), (3.5, 2.05), (4, 2.25), (5, 2.35), (5.45, 2.15), (5.85, 1.95), (5.5, 1.6),

(4.5, 1.53), (3.5, 1.45), (3, 1.75)
}
, 

• . 
{
(6.75, 2), (7.2.25), (7.75, 2.5), (8.75, 2.6), (9.15, 2.4), (9.75, 2.2),

(9.25, 1.75), (8.25, 1.65), (7, 1.8), (6.75, 2)
}
.

An example problem is considered to demonstrate the effect of scaling factors in 
visualizing mountains and clouds. Figure 5.1 illustrates geometric models of moun-
tains and clouds. The graphical data points marked are to be interpolated to give the 
picture of mountains and clouds. The conventional linear interpolation is used with 
varying scalings to obtain Fig. 5.1a–d. The varying scalings are provided in Table 5.1. 
A desirable effect is obtained by trial and error using scaling factor values for the 
data points generating the cloud and mountains, for more details refer [ 1]. 
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(a) (b) 

(c) (d) 

Fig. 5.1 Geometric models of mountains and clouds 

Table 5.1 Scaling parameters associated with mountains and clouds 

Figures Scalings.α1 Scalings . α2

Figure 5.1a 0.15 0.1 

Figure 5.1b 0.2 0.15 

Figure 5.1c 0.25 0.3 

Figure 5.1d 0.1 0.25 

5.1.1 MATLAB Simulation 

%%  C  o  n  s  t  r  u  c  t  i  n  g t  h  e g  e  o  m  e  t  r  i  c m o d e l s u  s  i  n  g t  h  r  e  e a  f  f  i  n  e  maps  
f u n c t i o n [  ]  =  G  e om e t r i c _m o d e l  (  )  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
%%Da t a 1  
x1  =  [  0  2  4  6  .  5 1  0  ]  ;  y1  =  [  0  2  0  0  .  5 −0 . 1 ]
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l x  =  l e n g t h  ( x1 )  ;  
%a  l  p  h  a  1  =  0 . 1 5  ∗ o n e s  (  1  ,  l  x  −1)  ;%  f i g u r e  
%a  l p h a 1  =  0  .  2  ∗ o n e s  (  1  ,  l  x  −1)  ;%  f i g u r e 1  
%a  l  p  h  a  1  =  0 . 2 5  ∗ o n e s  (  1  ,  l  x  −1)  ;%  f i g u r e 2  
a l p h a 1  =  0  .  1  ∗ o n e s  (  1  ,  l  x  −1)  ;%  f  i g u r e 3  
i t e r  =  6  ;  
[  X1  Y1  ]  =  A  f f i n e _ F I F  (  x1  ,  y1  ,  a  l  p  h  a  1  ,  i  t  e  r  )  ;  
p l o t ( x1  ,  y1  ,  ’ .  k  ’  , ’ m  a  r  k  e  r  s  i  z  e  ’  , 1 0 )  ;  h o l d  on  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ ) ;  h o l d  on  
%%Da t a 2  
xx  =  [  3  3  . 5  4 5 5 . 4 5 5 . 8 5 5 . 5 4  . 5 3 . 5 3  ]  ;  
yy  =  [  1  .  7  5 2 . 0 5 2 . 2 5 2 . 3 5 2 . 1 5 1 . 9 5 1 . 6 1  . 5 3 1  . 4 5 1  .  7  5  ]  
x  x  1  =  [  3  3  . 5  4 5 5 . 4 5 5  .  8  5  ]  ;  y  y  1  =  [  1  .  7  5 2 . 0 5 2 . 2 5 2 . 3 5 2 . 1 5 1  .  9  5  ]  
x  x  2  =  [  3  3  . 5 4 . 5 5  . 5 5  .  8  5  ]  ;  y  y  2  =  [  1  .  7  5 1 . 4 5 1 . 5 3 1 . 6 1  .  9  5  ]  ;  
l x 1  =  l e n g t h  (  xx1  )  
%a  l  p  h  a  2  =  0 . 1 5  ∗ o n e s  (  1  ,  l  x  1  −1)  ;%  f i g u r e  
%a  l p h a 2  =  0  .  3  ∗ o n e s  (  1  ,  l  x  1  −1)  ;%  f i g u r e 1  
%a  l  p  h  a  2  =  0 . 2 5  ∗ o n e s  (  1  ,  l  x  1  −1)  ;%  f i g u r e 2  
a l p h a 2  =  0  .  1  ∗ o n e s  (  1  ,  l  x  1  −1)  ;%  f  i g u r e 3  
[ XX1 YY1 ] = A f f i n e _ F I F ( xx1 , yy1 , a l p h a 2 , i t e r ) ; 
[ XX2 YY2 ] = A f f i n e _ F I F ( xx2 , yy2 , a l p h a 2 , i t e r ) ; 
p l o t ( xx  ,  yy  ,  ’ .  k  ’  ) ;  h o l d  on  
p l o t  ( XX1 , YY1 , ’ b− ’ ) ;  h o l d  on  
p l o t  ( XX2 , YY2 , ’ b− ’ ) 
%%Da t a 3  
xxx1  =  [  6  .  7  5  7  7  .  7  5 8  .  7  5 9  .  1  5 9  .  7  5  ]  ;  
y yy1  =  [  1  .  7  5  2  2  .  2  5 2  .  3  5 2  .  1  5 1  .  9  5 1  .  5 1  .  4 1  .  5  5 1  .  7  5  ]  
x xx1  =  [  6  .  7  5  7  7  .  7  5 8  .  7  5 9  .  1  5 9  .  7  5  ]  ;  y yy1  =  [  2 2  .  2  5 2  .  5 2  .  6 2  .  4  

2 . 2 ] ;  
x xx2  =  [  6  .  7  5  7  8  .  2  5 9  .  2  5 9  .  7  5  ]  ;  y yy2  =  [  2  1  .  8 1  .  6  5 1  .  7  5 2  .  2  ]  ;  
[ XXX1 YYY1 ] = A f f i n e _ F I F ( xxx1  ,  yyy1  ,  a  l  p  h  a  2  ,  i  t  e  r  )  ;  
[ XXX2 YYY2 ] = A f f i n e _ F I F ( xxx2  ,  yyy2  ,  a  l  p  h  a  2  ,  i  t  e  r  )  ;  
p l o t (  xxx  ,  yyy  ,  ’ .  k  ’  ) ;  h o l d  on  
p l o t  ( XXX1 , YYY1 , ’ b− ’ ) ;  h o l d  on  
p l o t  ( XXX2 , YYY2 , ’ b− ’ ) 
e n d  
f u n c t i o n [  X1  Y1  ]  =  A  f f i n e _ F I F  (  x  ,  y  ,  a  l  p  h  a  ,  i  t  e  r  )  
l x  =  l e n g t h  ( x )  ;  
N= l x ; 
f o r i =  1  :  l  x  −1 

d i f f _ x  (  i  ) =  x  (  i  +  1  )−x  (  i  )  ;  l  e n g t h _ x  =  x  (  N  )−x (  1  )  ;  
a  (  i  )  =  d  i  f  f  _  x  (  i  )  /  l  e n g t h _ x  ;  
b (  i  )  =  (  x (  N  )  ∗ x (  i  )−x (  1  )  ∗ x  (  i  +  1  )  )  /  l e n g t h _ x  ;  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  )  ∗ ( y  (  N  )−y  (  1 )  )  ]  /  l  e n g t h _ x  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  )  ∗ ( x  (  N  )  ∗ y (  1  )  −x (  1  )  ∗ y (  N  )  )  ]  /  

l e n g t h _ x  ;  
e n d  
a b c d _ v a l u e s  =  [  a  ’  b  ’  c  ’  d  ’  ]  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=N  ;  
f o r  k  =  1  :  i t e r  

f o r i =  1  :  N−1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )%  F  i  r  s  t i t e r a t i o n
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%  I  n p u t d a t a i  s (  x  ,  y  )  o  r g  i  v  e  n d a t a  
L (  i  ,  t  1  )  =  a  (  i  )  ∗ x (  t  1  )  +  b (  i  )  ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗ y (  t  1  )  +  c  (  i  )  ∗ x (  t  1  )  +  d (  i  )  ;  

e l s e  %  More  t  h  a  n  o  n  e i t e r a t i o n  
%  I  n p u t d a t a i  s (  X1  ,  Y1  )  o  r o  u t p u t a  f  t  e  r t  h  e f  i  r  s  t  

i t e r a t i o n  
L (  i  ,  t  1  )  =  a  (  i  )  ∗X1  (  t  1  )  +  b  ( i ) ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗Y1 ( t  1 ) + c ( i  )  ∗X1  (  t  1  )  +  d  ( i ) ;  

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X  ; Y1=Y  ; X  =  [ ] ; Y  =  [ ] ; g  =  [  X1  ’  Y1  ’  ]  ;  
g =  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ; [ X1 Y1 ] ;  p = l e n g t h  ( X1 )  ;  

e n d  
e nd  

This illustration shows that the effect of scaling factor on the shape of the inter-
polation is not very apparent and the designer has to exercise several iterations for 
fine tuning the parameters to obtain the desired effects. 

5.2 Reconstruction of Omicron Data 

The seven-days moving average of daily positive cases of Omicron for the five 
countries, namely India, Italy, South Africa, UK and USA are considered. The affine 
fractal interpolation function discussed in Chap. 2 is used to reconstruct the graphs of 
seven-days moving average of Omicron cases. Table 5.2 provides the time duration of 
the data associated with first and second waves of Omicron. The data points. {(xi , yi )}
represent the time (x-axis) and the value of seven-days moving average (y-axis). The 
data corresponding to the fractal graphs of Omicron in Figs. 5.2 and 5.3 are taken 
from [ 2]. Interested readers many consult [ 3], where the fractal graphs of Omicron 
are analysed and using a moving average model the successive waves of COVID-19 
are predicted. 

Table 5.2 Duration of first and second waves of Omicron for five countries 

Country First wave Second wave 

India 01.04.2020–31.01.2021 01.03.2021–31.07.2021 

South Africa 01.05.2020–31.10.2020 01.12.2020–31.03.20211 

USA 01.09.2020–28.02.2021 01.08.2021–31.03.2021 

UK 01.10.2020–31.03.2021 01.12.2021–30.04.2021 

Italy 01.10.2020–31.05.2021 01.11.2021–31.05.2022
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Fig. 5.2 Fractal transformation of COVID data for first wave: a India, b South Africa, c USA, d 
UK and e Italy 

Fig. 5.3 Fractal transformation of COVID data for second wave: a India, b South Africa, c USA, 
d UK and e Italy
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5.2.1 MATLAB Simulation 

The MATLAB code for the reconstruction of Omicron data using the affine fractal 
intepolation function is provided, here the scalings are chosen such that . |αi | < 1.

%%  A  f  f  i  n  e F r a c t a l I  n  t  e  r  p  o  l  a  t  i  o  n F  u  n  c  t  i  o  n  
%%  L  _  i  (  x  )  =  a  _  i  x  +  b _ i  
%%  F  _  i  (  x  ,  y  )  =  a  l p h a _ i (  x  )  ∗ y +  Q  _  i  (  x  )  ,  
%  w  h  e  r  e  Q  _  i  (  x  ) i s t  h  e a  f  f  i  n  e f u n c t i o n  
f u n c t i o n [ ] =  C  o n s t _ A f f i n e _ F I F  (  )  
c l c  ; c l e a r a  l  l  ; c l o s e a  l  l  ; 
f o r m a t ’ s  h  o  r  t  ’  
%x  =  [  0 1  / 3 1 / 2 2  / 3 1  ]  ;  y  =  [  1 3  5 / 2 3  .  5 3 / 2 ] ; %  D  a  t  a  
f i l e n a m e  =  ’  I  n d i a _ c o v i d _ w a v e 1  .  x  l  s  x  ’  ; 
D  a  t  a  =  x  l s r e a d  (  f  i  l  e  n  a  m  e  )  ;  
% s  i  z  e  (  D  a  t  a  )  
x=  D  a  t  a  (  :  ,  1  )  ;  y =  D  a  t  a  (  :  ,  2  )  ;  
x1  =  D  a  t  a  (  1 : 1 5 3  ,  3 )  ;  
y1  =  D  a  t  a  (  1 : 1 5 3  ,  4 )  ;  
%  i  t  e  r  =  i n p u t  (  ’  E  n  t  e  r t  h  e  n  u  m  b  e  r  o  f i  t  e  r  a  t  i  o  n  s  :  =  ’  )  ;  
i t e r  =  1  ;  
l x  =  l e n g t h  ( x )  ;  
l y  =  l e n g t h  ( y )  ;  
l x 1  =  l e n g t h  ( x1 )  
l y 1  =  l e n g t h  ( y1 )  
[  X1  Y1  ]  =  A  f f i n e _ F I F  (  x  ,  y  ,  i  t  e  r  )  ;  
[  X2  Y2  ]  =  A  f f i n e _ F I F  (  x1  ,  y1  ,  i  t  e  r  )  ;  
f i g u r e  
s u b p l o t  ( 1  , 2  , 1 )  
p l o t  ( X1  ,  Y1  ,  ’ r  − ’ ) ;  
x l a b e l  ( ’  A  p  r  i  l  2  0  2  0 t  o J  a  n  u  a  r  y  2 021  ’  ) ;  
y l a b e l  ( ’ I  n  f  e  c  t  e  d  ’  ) 
s u b p l o t  ( 1  , 2  , 2 )  
p l o t  ( X2  ,  Y2  ,  ’ r  − ’ ) ;  
x l a b e l  ( ’  M  a r ch2021  t  o J  u  l  y  2 021  ’  ) ;  
y l a b e l  ( ’ I  n  f  e  c  t  e  d  ’  ) 
e n d  
f u n c t i o n [  X1  Y1  ]  =  A  f f i n e _ F I F  (  x  ,  y  ,  i  t  e  r  )  
l x  =  l e n g t h  ( x )  ;  
a  l  p  h  a  =  0 . 0 0 3 3  ∗ o n e s  (  1  ,  l  x  −1)  ;  
N= l x ; 
f o r i =  1  :  l  x  −1 

d i f f _ x  (  i  ) =  x  (  i  +  1  )−x  (  i  )  ;  l  e n g t h _ x  =  x  (  N  )−x (  1  )  ;  
a  (  i  )  =  d  i  f  f  _  x  (  i  )  /  l  e n g t h _ x  ;  
b (  i  )  =  (  x (  N  )  ∗ x (  i  )−x (  1  )  ∗ x  (  i  +  1  )  )  /  l e n g t h _ x  ;  
c (  i  )  =  [  y  (  i  +  1  )−y (  i  )− a l p h a  (  i  )  ∗ ( y  (  N  )−y  (  1 )  )  ]  /  l  e n g t h _ x  ;  
d (  i  )  =  [  x (  N  )  ∗ y (  i  )−x (  1  )  ∗ y (  i  +  1  )− a l p h a  (  i  )  ∗ ( x  (  N  )  ∗ y (  1  )  −x (  1  )  ∗ y (  N  )  )  ]  /  

l e n g t h _ x  ;  
e n d  
a b c d _ v a l u e s  =  [  a  ’  b  ’  c  ’  d  ’  ]  ;  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
L  =  [ ] ;  L1  = [ ] ;  X1  = [ ] ;  Y1  = [ ] ;  X  =  [ ] ;  Y  =  [ ] ;  
p=N  ;  
f o r  k  =  1  :  i t e r
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f o r i =  1  :  N−1 
f o r t 1  =  1  :  p  

i f (  k  ==1 )%  F  i  r  s  t i t e r a t i o n  
L (  i  ,  t  1  )  =  a  (  i  )  ∗ x (  t  1  )  +  b (  i  )  ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗ y (  t  1  )  +  c  (  i  )  ∗ x (  t  1  )  +  d (  i  )  ;  

e l s e  %  More  t  h  a  n  o  n  e i t e r a t i o n  
%  I  n p u t d a t a i  s (  X1  ,  Y1  )  o  r o  u t p u t a  f  t  e  r t  h  e f  i  r  s  t  

i t e r a t i o n  
L (  i  ,  t  1  )  =  a  (  i  )  ∗X1  (  t  1  )  +  b  ( i ) ;  
L1  (  i  ,  t  1  )  =  a  l  p  h  a  (  i  )  ∗Y1 ( t  1 ) + c ( i  )  ∗X1  (  t  1  )  +  d  ( i ) ;  

e n d  
e nd  
X=  [X  L  (  i  ,  :  )  ]  ;  
Y=  [Y  L1  (  i  ,  :  )  ]  ;  

e n d  
X1=X  ; Y1=Y  ; X  =  [ ] ; Y  =  [ ] ; g  =  [  X1  ’  Y1  ’  ]  ;  
g =  s t r 2 n um  ( n um 2 s t r  (  g  ,  1  0  )  )  ;  g  =  u n i q u e  (  g  ,  ’ r  o  w  s  ’  ) ;  
X1= g ( :  ,  1 ) ;  Y1= g ( :  ,  2 ) ;  
[ X1  Y1  ]  ;  p  =  l e n g t h  ( X1 )  ;  

e n d  
e nd  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

References 

1. K.M. Reddy, N. Vijender, A fractal model for constrained curve and surface. Eur. Phys. J.: Spec. 
Top. 232, 1015–102518 (2023) 

2. E. Mathieu, H. Ritchie, L. Rod’s-Guirao, et al., Coronavirus pandemic (COVID-19). Our World 
in Data (2020). https://ourworldindata.org/covid-cases 

3. A. Gowrisankar, T.M.C. Priyanka, S. Banerjee, Omicron: a mysterious variant of concern. Eur. 
Phys. J. Plus 137(1), 1–8 (2022)

https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases

	Preface
	Contents
	List of Figures
	List of Tables
	1 Fractals and Dimensions
	1.1 Introduction
	1.2 Deterministic Iteration Algorithm
	1.2.1 Sierpinski Triangle
	1.2.2 von Koch Curve
	1.2.3 Dragon Curve
	1.2.4 Fern Leaf
	1.2.5 Sierpinski Carpet

	1.3 Fractal Dimensions
	1.3.1 Box Counting Algorithm
	1.3.2 Higuchi Algorithm
	1.3.3 Katz Algorithm

	References

	2 Univariate Fractal Functions
	2.1 Affine Fractal Interpolation
	2.1.1 Vertical Scaling Factors
	2.1.2 Affine Fractal Function with Variable Scaling
	2.1.3 Numerical Simulation

	2.2 alphaα-Fractal Interpolation
	2.2.1 alphaα-Fractal Function with Variable Scaling
	2.2.2 Numerical Simulation

	2.3 Hidden Variable Fractal Interpolation
	2.3.1 Numerical Simulation

	References

	3 Differentiable Fractal Functions 
	3.1 Hermite Cubic Fractal Spline
	3.1.1 Numerical Computation

	3.2 Cubic Fractal Spline Using Moments
	3.2.1 Numerical Computation

	3.3 Rational Fractal Spline
	3.3.1 Numerical Computation

	References

	4 Fractal Interpolation Surfaces 
	4.1 Construction of Fractal Surfaces
	4.1.1 RCFIFs Along X-direction and Y-direction
	4.1.2 Fractal Surfaces by Coon's Technique
	4.1.3 Numerical Computation

	4.2  Fractal Surfaces with Variable Scaling 
	4.2.1 Numerical Computation

	References

	5 Applications 
	5.1 Patterns of Mountains and Clouds
	5.1.1 MATLAB Simulation

	5.2 Reconstruction of Omicron Data
	5.2.1 MATLAB Simulation

	References


