SpringerBriefs in Complexity

Santo Banerjee - A. Gowrisankar -
Komandla Mahipal Reddy

Fractal Patterns
with MATLAB

@ Springer

SpringerBriefs in Complexity

Series Editors

Henry D. I. Abarbanel, Institute for Nonlinear Science, University of California, La Jolla, CA,
USA

Dan Braha, New England Complex Systems Institute, University of Massachusetts, North
Dartmouth, MA, USA

Péter Frdi, Center for Complex Systems Studies, Department of Physics, Kalamazoo
College, Kalamazoo, MI, USA

Karl J. Friston, Institute of Cognitive Neuroscience, University College London, London,
UK

Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo,
Tokyo, Japan

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University,
Boca Raton, FL, USA

Jiirgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Brandenburg,
Germany

Ronaldo Menezes, Department of Computer Science, University of Exeter, Exeter, UK
Andrzej Nowak, Department of Psychology, Warsaw University, Warszawa, Poland
Hassan Qudrat-Ullah, School of Administrative Studies, York University, Toronto, Canada
Peter Schuster, University of Vienna, Vienna, Austria

Frank Schweitzer, System Design, ETH Zurich, Ziirich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Ziirich, Switzerland

Stefan Thurner, Section for Science of Complex System, Medical University of Vienna,
Vienna, Austria

SpringerBriefs in Complexity are a series of slim high-quality publications

encompassing the entire spectrum of complex systems science and technology.

Featuring compact volumes of 50 to 125 pages (approximately 20,000—45,000),

Briefs are shorter than a conventional book but longer than a journal article. Thus

Briefs serve as timely, concise tools for students, researchers, and professionals.
Typical texts for publication might include:

A snapshot review of the current state of a hot or emerging field
A concise introduction to core concepts that students must understand in order
to make independent contributions

e An extended research report giving more details and discussion than is possible
in a conventional journal article,

e A manual describing underlying principles and best practices for an experi-
mental or computational technique

® An essay exploring new ideas broader topics such as science and society

Briefs allow authors to present their ideas and readers to absorb them with
minimal time investment. Briefs are published as part of Springer’s eBook
collection, with millions of users worldwide. In addition, Briefs are available, just
like books, for individual print and electronic purchase. Briefs are characterized by
fast, global electronic dissemination, straightforward publishing agreements,
easy-to-use manuscript preparation and formatting guidelines, and expedited
production schedules. We aim for publication 8—12 weeks after acceptance.

SpringerBriefs in Complexity are an integral part of the Springer Complexity
publishing program. Proposals should be sent to the responsible Springer editors or
to a member of the Springer Complexity editorial and program advisory board
(springer.com/complexity).

Santo Banerjee - A. Gowrisankar -
Komandla Mahipal Reddy

Fractal Patterns
with MATLAB

@ Springer

Santo Banerjee A. Gowrisankar

Dipartimento di Scienze Matematiche Department of Mathematics, School

Politecnico di Torino of Advanced Sciences

Turin, Italy Vellore Institute of Technology
Vellore, Tamil Nadu, India

Komandla Mahipal Reddy

Department of Mathematics

VIT-AP University

Amaravati, Andhra Pradesh, India

ISSN 2191-5326 ISSN 2191-5334 (electronic)
SpringerBriefs in Complexity
ISBN 978-3-031-48101-7 ISBN 978-3-031-48102-4 (eBook)

https://doi.org/10.1007/978-3-031-48102-4
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-48102-4

Preface

Nature exhibits “formless” patterns with different levels of complexity, for instance,
imagine clouds, coastlines and mountains which are not spheres, circles and cones
as Mandelbrot quoted in the book The Fractal Geometry of Nature. He coined the
word fractal to describe challenging irregular and fragmented patterns. As fractal
portrays natural phenomena, its elegance lies in its colorful graphics and intricate
patterns. When fractals are browsed on the internet, we get colorful illustrations of
never-ending patterns preserving self-similarity across any small scale. Beginning
with mobile wallpapers, fractals can be seen in every turn of nature including medical
images, human anatomy and river networks. The field of Fractal Geometry benefits
the readers with fascinating visuals of fractal sets and fractal functions rather than
providing rigorous theoretical background.

This book is a visual treat for fractalists as well as for non-fractalists with elemen-
tary MATLAB coding. Patterns of deterministic fractals, fractal functions and fractal
surfaces are illustrated using MATLAB. Chapter 1 briefly discusses the construction
of a deterministic fractal and its iteration algorithm. The examples of deterministic
fractals such as Sierpinski triangle, von Koch curve and so on are described mathe-
matically and their patterns are exemplified with MATLAB code. Further, MATLAB
code for estimating fractal dimensions is presented for box counting, Higuchi and
Katz fractal dimensions.

Chapter 2 presents graphical illustrations of univariate fractal interpolation func-
tions with constant and variable scaling factors. The MATLAB code is provided for
generating fractal curves at different levels of iterations with the given data set and
scaling parameters. Chapter 3 benefits the readers with appealing fractal graphs of
differentiable fractal interpolation functions. For the prescribed shape parameters
and derivative values, MATLAB code is prescribed for achieving different fractal
splines.

Chapter 4 precisely recalls the construction of fractal surfaces. MATLAB code
is presented for generating a variety of fractal surfaces along X-axis and Y-axis
depending on the shape and scaling parameters. Chapter 5 explores the application of

vi Preface

fractal functions. Graphs of mountains and clouds are approximated using MATLAB
code with different sets of scalings. In addition, the first and second waves of Omicron
are reconstructed using affine fractal interpolation functions.

Torino, Italy Santo Banerjee
Vellore, India A. Gowrisankar
Amaravati, India Komandla Mahipal Reddy

Contents

1 Fractalsand Dimensions L. 1
L1 IntroduCtioneiueiimunena 1

1.2 Deterministic Iteration Algorithm 2
1.2.1 Sierpinski Triangle i 3

1.22 vonKoch Curve i 5

1.23 Dragon Curveiiiiiiiiniiiiiiiniia... 7

1.24 FernLeaf ... 9

1.2.5 Sierpinski Carpet ...t 10

1.3 Fractal DIMensionseuuuuiiiumuunnnnnnnnnnnnn. 14
1.3.1 Box Counting Algorithm 14

1.3.2 Higuchi Algorithm i, 15

1.3.3 Katz Algorithm 16
Referencesuuuuu 18

2 Univariate Fractal Functions 19
2.1 Affine Fractal Interpolation i 19
2.1.1 Vertical Scaling Factors, 23

2.1.2 Affine Fractal Function with Variable Scaling 24

2.1.3 Numerical Simulation, 27

2.2 w-Fractal Interpolation, 27
2.2.1 «-Fractal Function with Variable Scaling 31

2.2.2 Numerical Simulation, 33

2.3 Hidden Variable Fractal Interpolation 34
2.3.1 Numerical Simulationo, 36
Referencesuuuu 37

3 Differentiable Fractal Functions 39
3.1 Hermite Cubic Fractal Splineo, 39
3.1.1 Numerical Computation, 44

3.2 Cubic Fractal Spline Using Moments 44
3.2.1 Numerical Computationccoiiiiieeeenn... 48

vii

viii

Contents

3.3 Rational Fractal Spline i, 49
3.3.1 Numerical Computation 53
References 54
Fractal Interpolation Surfaces 55
4.1 Construction of Fractal Surfaces 55
4.1.1 RCFIFs Along X-direction and Y-direction 55
4.1.2 Fractal Surfaces by Coon’s Technique 56
4.1.3 Numerical Computationcouiiuiieeeeen... 63

4.2 Fractal Surfaces with Variable Scaling 64
4.2.1 Numerical Computationc.uiieeeiirunnnennn. 75
Referencesuuu e 78
Applications 79
5.1 Patterns of Mountains and Clouds, 79
5.1.1 MATLAB Simulationc.ouuiuiiiinnnnn.. 80

5.2 Reconstruction of Omicron Data, 82
5.2.1 MATLAB Simulationcuuiiiiinnnnnnn. 84

References 85

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1.1
1.2
1.3
1.4
1.5
2.1
22
2.3
24
2.5
3.1
3.2
33

4.1
4.2
4.3
5.1
52

53

Sierpinski triangle with 6 iterations
von Koch curve with 5 iterations
Dragon curve with 20 iterationsc.covvineen....
Fernleaf
Sierpinski carpet with 5 iterations
Affine fractal interpolation function with constant scaling
Affine fractal interpolation function with variable scaling
a-fractal interpolation function with constant scaling
a-fractal interpolation function with variable scaling
Hidden variable fractal interpolation function
Hermite cubic fractal interpolation function
Cubic fractal interpolation function with moments
Rational cubic fractal interpolation function with linear
denominator
Continuity domaint
Fractal interpolation surfaces with constant scaling
Fractal interpolation surfaces with variable scaling
Geometric models of mountains and clouds
Fractal transformation of COVID data for first wave: a India,

b South Africa, c USA,d UK andeltaly
Fractal transformation of COVID data for second wave:

a India, b South Africa, ¢ USA,d UK andeltaly

List of Tables

Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5

Table 5.1
Table 5.2

Scaling parameters and derivatives associated with Hermite

cubic FIF
Scaling parameters and moments associated with the C2-cubic
spline FIF
Scaling parameters and shape parameters associated
withtherational FIF
Hermite interpolation data in the construction of blending
rational cubic FISs il
IFSs in the construction of blending rational cubic fractal
interpolation surfaces i
Hermite interpolation data in the construction of blending
rational cubic FISs o i
Shape parameters in the construction of RCFIFs
Scaling factors in the construction of RCFIFs
Scaling parameters associated with mountains and clouds
Duration of first and second waves of Omicron for five
COUNEIICS ot vttt ettt et e e ettt

xi

Chapter 1 ®)
Fractals and Dimensions Check for

1.1 Introduction

In Euclidean geometry, any smooth curve is one-dimensional and any smooth sur-
face is two-dimensional. It is not the case when we encounter with natural objects,
nature is completely spread with its own randomness everywhere. There are curves
and surfaces with high irregularities that cannot be investigated using the Euclidean
geometry. The birth of fractal geometry is a boon to analyze such non-smooth natural
curves and surfaces. Mandelbrot, who introduced the word fractal has mathemati-
cally defined it as a set with the Hausdorff dimension strictly exceeds its topological
dimension, refer [1].

An iterated function system (IFS) is the fundamental concept behind the construc-
tion of fractals, it generates the deterministic fractal as its unique attractor. An IFS
is a family of finite number of continuous maps on a complete metric space and it
is hyperbolic if all the continuous maps are contractive. Let (X, d) be a complete
metric space. The map w : X — X is said to be a contraction map if it satisfies

dwu), w(v)) <cd(u,v), forallu,v € X,

where c is called the contraction ratio or contractivity factor such that ¢ € [0, 1). A
pointa € X is called the fixed point of w if w(a) = a. In general, a contraction map
may possesses any number of fixed points and it need not be unique. However, the
Banach fixed point theorem guarantees the existence of a unique fixed point when
contractions are defined on a complete metric space. Consider a complete metric
space X with respect to the metric d. Let H(X) be the set of all non-empty compact
subsets of X. The Hausdorff metric 2 on H(X) is defined by

h(A, B) = max{sup ingd(u, v), sup ingd(u, v)},

ueA Ve veB U<

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
S. Banerjee et al., Fractal Patterns with MATLAB,

SpringerBriefs in Complexity,

https://doi.org/10.1007/978-3-031-48102-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48102-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1
https://doi.org/10.1007/978-3-031-48102-4_1

2 1 Fractals and Dimensions
for A, B € H(X). The hyperspace (H(X), h) is a complete metric space, provided
that (X, d) is complete. For k = 1,2, ..., N, defining the continuous maps wy as
self-maps on H(X), the system

{(X;we :k=1,2,..., N} (1.1)
constitutes an IFS. Combining all the contraction maps wy defined on (H(X), k),

a new contraction map is produced, namely Hutchinson-Barnsley operator W :
H(X) - H(X). It is defined by

N
W(B) = Ju(B),
k=1

where B € H(X) and wi(B) = {wi (1) : u € B}. If the continuous maps wy obey
d(wi(u), wy(v)) < rid(u, v), forallu, v € X,

where ry are contractivity factors such that 0 < r; < 1, then the IFS (1.1) is referred

as the hyperbolic IFS in [2]. It follows that W is also a contraction mapping with

respect to the Hausdorff metric satisfying

h(W(A), W(B)) <rh(A, B), forall A, B € H(X),

where r = max{ry : k = 1,2, ..., N} is the contractivity factor. Then W possess a
unique fixed point G such that

N
G=wG) =|Juw(G).
k=1

In addition, the unique fixed point G € H(X) obeys

G = lim W (A), foreach A € H(X),
n—0oQ

and it is called as the attractor or deterministic fractal, where W = Wo Wo---o
W (n times) is the n-fold auto-composition of the map W. For more details on the
construction of deterministic fractal, refer [2, 3].

1.2 Deterministic Iteration Algorithm

Barnsley has proposed two algorithms namely the deterministic algorithm and the
random iteration algorithm for computing fractals in [2]. In this section, deterministic
iteration algorithm is briefly recalled. Consider the IFS {X; w; : k=1,2,..., N}

1.2 Deterministic Iteration Algorithm 3

with the Hutchinson-Barnsley operator W on H(X). Choose an initial non-empty
compact set of X, say G such that the sets are iteratively computed as follows

N

G =W (Go) = | Jwi(Go)
k=1
N

G2 =W(Gy) = Juw(Gy)
k=1

N

Gy =W (Gn1) = Jwi (G0
k=1

It is well-known that the sequence of sets Gy, Gy, ..., G,, ... converges to a non-
empty compact set G (attractor of the IFS) by the Banach fixed point theorem.

For any choice of initial non-empty compact set in X, the algorithm yields the
attractor G. However, if G is completely unrelated to the attractor, the number of
iterations will be larger for the convergence.

1.2.1 Sierpinski Triangle

The exact self-similarity of the Sierpinski triangle at any small scale makes it an
interesting and simple example of classic deterministic fractals on two-dimensional
space. Using the iterative approach, the Sierpinski triangle is constructed as follows.
Consider the larger equilateral triangle of side length /, joining the midpoints of each
side, one can obtain four new equilateral triangles with side length being equal to
1/2, delete the centre triangle leaving the boundary. As a result of first iteration, three
equilateral triangles are obtained. In the second iteration, the midpoints of three sides
of each small triangle are joined to remove the centre triangle from each of the three,
thus nine equilateral triangles are obtained, each of side length / /4. The same process
is applied recursively with the remaining smaller triangles and at the nth iteration,
3" number of triangles are obtained with side length (//2)". The infinite intersection
of all the equilateral triangles obtained in each iteration constitutes the Sierpinski
triangle. The entire length of the Sierpinski triangle is found to be infinite since its
total length (3/2)" is calculated as a series diverging to infinity i.e., lim,_, (3/2)".
For detailed description, refer the books [4, 5].

To construct a Sierpinski triangle through the concept of IFS, consider the contrac-
tive mappings w;, w, and w3 with contractivity factor 1/2 defined on [0, 1] x [0, 1]
as given below,

1 Fractals and Dimensions

w(3) = (5 05))+ (%)
» ()= (505) () (03):

(1.2)

Hence, {[0, 1] x [0, 1]; w; : i = 1, 2, 3} constitutes the IF'S whose attractor is the

required Sierpinski triangle. The following is the MATLAB code for generating the

Sierpinski triangle using contraction maps (1.2) in the aforementioned deterministic
iteration algorithm (Fig. 1.1).

%

The

IW=AX+B

J%where A=[0.5 0;0 0.5];X=[x;y];B=[0 0.5 0;0 0 0.5];
X is [0 1 0;0 0 1];

%

initial

clc;clear

X=[0 1 0;0 0

Sierpinski triangle (or Sierpinski gasket)

all ;close all;
11;A=[0.5 0;0 0.5];B=[0 0.5 0;0 0 0.51;%

Termination =6;

for

end

iter=1: Termination

if iter==1

w=A*xX+B;

X=w;

XX=[X X(:,1)1;
x=XX(1,:);y=XX(2,:);
PlOt(X,y)

fill (x,y, 'b")

else

end

%

wl=
Tl=
w2=
T2=
w3=
T3=

more than one iteration figure
AxX+B(:,1) ;%First tranformation
wl ;

AxX+B (:,2) ;%Second transformation
w2 ;

AxX+B (:,3) ;%Third transformation
w3;

X=[Tl T2 T31;

[m
for

end

n]=size (X);

i=1:n/3

D=[X(:, 3*(i—1D+1:3%xi) X(:,3%x(i—-1D+1)];
x=D(1,:);y=D(2,:);

plot(x,y)

fill (x,y, b")

hold on

1.2 Deterministic Iteration Algorithm 5

1

0.9

0.8

0.7

0.6

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 o1 0.2 0.3 0.4 0.5 0.6 o7 0.8 0.9 1

Fig. 1.1 Sierpinski triangle with 6 iterations

1.2.2 von Koch Curve

Let the unit interval [0, 1] be denoted by J and a line segment of unit length by
Jo. The construction of von Koch curve begins with the removal of middle third
segment of J and replacing it by other two sides of the equilateral triangle based
on the removed segment. Set J; is obtained. Next, set J, is generated by applying
the similar procedure to each segment of J; and so on. The limiting set is called
von Koch curve. We can model this construction using an iterated function system
consisting of contractions {w;, wy, w3, wa} on the the square [0, 1] x [0, 1], where
transformations are given by

6 1 Fractals and Dimensions

wi(x,y) =()

w2(x, y) :(2+x_fy fx6+y> 1.3
3+x+x/_y —3x+y++/3 (-

ws(x, y) = (3),

o= (52

The von Koch curve is the attractor of the IFS {[0, 1] x [0, 1]; w; :i = 1,2, 3,4}.
The “trema” and “dragon” type construction of Koch curves can be found in [4]. The
following is the MATLAB code for generating the von Koch curve corresponding to
the contractions in Eq. (1.3) (Fig. 1.2).

1 03
0.8
0.25
0.6
0.4
0.2
0.2
015
0.2
0.1
0.4
0.6
0.05
0.8
-1 L
o 0. 04 0.6 0.8 1 o [0.4 0.6 08 1
0.3 0.3
0.25 0.25
02F 0.2
0.15 015
L) (80 4
0.05F /\ /\ 0.05 F
y LA j i A A } i: A
o 0.2 04 0.6 0.8 1 o 0.2 0.4 0.6 038 1
0.3 03
0.25 0.25
ozp 0.2
.15 015
[) 8
0.05 F 005 F
ﬁg .E,f“u . n"hg. E{{J”h I S"LLE .E.nm . nmi E,J"{
o 0.2 04 0.6 0.8 1 o 02 0.4 0.6 08 1

Fig. 1.2 von Koch curve with 5 iterations

1.2 Deterministic Iteration Algorithm 7

%Koch curve
%We are taking transformations w_i=A_i x+B_i for i=
%A1=[1/3 0;0 1/3];A2=[1/6 —sqrt(3)/6;sqrt(3)/6 1/6];
D%A3=[1/6 sqrt(3)/6;—sqrt(3)/6 1/6];A4=[1/3 0;0 1/3];
9%B=[0 1/3 1/2 2/3;0 0 sqrt(3)/6 0];B_i=B(:,1i);
clc;clear all;close all;
Al=[1/3 0;0 1/3];
A2=[1/6 —sqrt(3)/6;sqrt(3)/6 1/61;
A3=[1/6 sqrt(3)/6;—sqrt(3)/6 1/61;
A4=[1/3 0;0 1/3];
B=[0 1/3 1/2 2/3;0 0 sqrt(3)/6 O0];
X=[0 1;0 0];% input
x=X(1,:);y=X(2,:);
PIOI(X’}U‘**’);
figure
Termination =5;
for iter=1:Termination
if iter==1
wl=A1%X+B(:,1); w2=A2xX+B(:,2);
w3=A3xX+B(:,3); w4=A4xX+B(:,4);
X=[wl w2 w3 w4];
X=unique (X', 'rows ') ;
x=X(:,1); y=X(:,2);
plot(x,y, *=");

1,2,3.,4

X=X";
else % more than one iteration

figure

wl=Al1«X+B(:,1) ;%First tranformation
Tl=wl;

w2=A2%X+B (:,2) ;%Second transformation
T2=w2;

w3=A3%X+B (:,3) ;%Third transformation
T3=w3;

wd=A4xX+B (: ,4) ;%Fourth transformation
T4=w4,

X=[Tl T2 T3 T4];
x=X(1,:);y=X(2,:);
plot(x,y);
end
end

1.2.3 Dragon Curve

The construction of dragon curve via the line segments is discussed here. For the
first iteration, replace the line segment with two segments, each scaled by a ratio
r = 1/+/2 such that the original segment would have been the hypotenuse of an
isosceles right triangle. Following along the original segment, two new segments are
placed to the left. For the second iteration, each of the segments are replaced with two
new segments at right angles, each scaled by the ratio r. The new segments are placed
to the left then to the right along the segments of the first iteration. Continuing the

8 1 Fractals and Dimensions

similar construction, always alternating new segments between left and right along
the segments of the previous iteration generates the “dragon curve”. The fundamental
theorem for generating the dragon curve can be seen in [6]. Let X be the line segment
joining two points (0,0),(1,0) and consider the IFS on X consistingn following two
contractions,

(1.4)

The IFS {X; w; : i = 1, 2} generates the dragon curve, where w; and w, are pro-
vided in Eq. (1.4), which is displayed in Fig. 1.3. The associated MATLAB code for
generating Fig. 1.3 is provided below.

%Dragon curve

%We are taking transformations w_i=A_i x+B_i for i=1,2
DA1=[1/2 —1/2;1/2 1/2];A2=[—-1/2 —1/2;1/2 —1/2];
%B=[0 1;1 0];B_i=B(:,1);

clc;clear all;close all;
Al=[1/2 —1/2;1/2 1/2];A2=[—-1/2 —1/2;1/2 —1/2];
B=[0 1;1 O0];
X=[0 1;0 0];% input
x=X(1,:);y=X(2,:);
PlOt(X’y,‘**ﬁ);
figure
Termination =20;
for iter=1:Termination
if iter==1
wl=A1%X+B(:,1); w2=A2%«X+B(:,2);
X=[wl w2];
X=unique (X', "rows ") ;
x=X(:,1); y=X(:,2);
plot(x,y, =)
X=X";
else % more than one iteration
figure
wl=A1*X+B(:,1);%First tranformation
Tl=wl;
w2=A2xX+B (: ,2) ;%Second transformation
T2=w2;
X=[Tl T2];
x=X(1,:);y=X(2,:);
PlOt(X,y);
end
end

1.2 Deterministic Iteration Algorithm 9

0sp

06F

o4t

02F

02F

0.5

04l

o6t

s

2 NES -1 05 o 05 1 1.5 2 “a 1.5 -1 0.5 L] 05 1 15 2

Fig. 1.3 Dragon curve with 20 iterations

1.2.4 Fern Leaf

A fern leaf is a perfect example for both random fractal and deterministic fractal.
Though it comes under the classification of random fractals, it can be constructed
as a deterministic fractal to a specific IFS containing the following two contraction
mappings.

10 1 Fractals and Dimensions

wi(x,y) = (0, %)
17x y X 17y 4
m) = (55 + 55 -5+ 20+ 5) s
. y) (x 13y 23x n 11y n 4) ’
w3 (X, = = T T eA Y 1A~ = ~=
WV =5750" 7100 " 50 ' 25
3x Ty 13x 6y 11
w“(x’y)_(20 725" 50 25+25)'

Barnsley has discussed the algorithms for constructing fern leafin [2]. The MATLAB
code is provided below to generate a fern leaf utilising contraction maps in Eq. (1.5)
(Fig.1.4).

function fern

% Barnsley Fern Fractal generator

%(https :// stackoverflow .com/ questions /39628601/ generating —
barnsley —fern

—fractal —in—matlab)

n = 107°5;
Xx = zeros(n,l);
y = zeros(n,l);
for i = 2:n
r = rand;
if (0 <= 1) && (r < 0.01) %First transformation
x(i) = 0;

y(i) = 0.16%y(i—1);
elseif (0.01 <= 1) && (r < 0.86)% Second transformation
x(i) = 0.85 *x x(i—1) + 0.04 * y(i—1);
y(i) = —0.04 % x(i—1) + 0.85 * y(i—1) + 1.6;
elseif (0.86 <= r) && (r < 0.93) % Third transformation
x(i) 0.2 % x(i—1) — 0.26 % y(i—1);
y(i) = 0.23 % x(i—1) + 0.22 % y(i—1) + 1.6;
else %Fourth transformation

x(i) = —0.15 % x(i—1) + 0.28 * y(i—1);
y(i) = 0.26 % x(i—1) + 0.24 % y(i—1) + 0.44;
end
end
plot(x,y, . , "Color’, [85, 125, 65]/256, 'markersize’ , 0.1)
end

1.2.5 Sierpinski Carpet

The construction commences with a filled solid square denoted by Cy. Divide Cy
into 9 smaller congruent squares and remove the center square leaving its boundary
to get C. Next each of eight remaining solid squares are subdivided into 9 congruent
squares and the center squares are removed from each to get C,. Continuing the pro-
cess, a decreasing sequence of sets Co O C; D C; - - - is obtained. The intersection

1.2 Deterministic Iteration Algorithm 11

Fig. 1.4 Fern leaf 10

of all the sets in this sequence is the Sierpinski carpet. Let X be a unit square on R?
with the vertices A = (0,0), B = (1,0), C = (0, 1) and D = (1, 1) and the IFS on
X consists of the following eight contractions,

12 1 Fractals and Dimensions

o= (5.

- (143,

(123,

(21D
RS '
o= (3 2.3).

wieen = (3+2.243)

ws(x, y) = (%C + % % + %)

The IFS {X; w; :i =1,2,..., 8} with maps w; in Eq. (1.6) generates Sierpinski
carpet as its attractor. The MATLAB code to generate the carpet employing the
above contractions is provided as follows (Fig. 1.5).

%Sierpinski Carpet
%We are taking transformations w_i=A x+B_i for i=1,2,3,4
JDA=[1/3 0;0 1/3];
%B=[0 0 O 1/3 1/3 2/3 2/3 2/3;0 1/3 2/3 0 2/3 0 1/3 2/3];B_i=B(:,
1)
%A=(0,0) ,B=(1,0),C=(0,1) and D=(1,1);x=(0 1 0 1;0 0 1 1)
clc;clear all;close all;
A=[1/3 0;0 1/37;
B=[0 0 O 1/3 1/3 2/3 2/3 2/3;0 1/3 2/3 0 2/3 0 1/3 2/3];
X=[0 1 1 0;0 01 1];% input
X1=[X X(:,1)1;
x=X1(1,:);y=X1(2,:);
plot(x,y, *=");
figure
Termination =5;
for iter=1:Termination
if iter==
wl=A*X+B (:,1) ;w2=AxX+B (:,2) ;w3=A*X+B (: ,3) ; wd=AxX+B (: ,4) ;
w5=AxX+B (:,5) ;w6=AxX+B (: ,6) ; W7=AxX+B (: ,7) ; w8=AxX+B(: ,8) ;
X=[wl w2 w3 w4 w5 w6 w7 w8];
[m n]=size (X);
for i=1:n/4
ivalue=i;
D=[X(:, 4x(i—1)+1:4%i) X(:,4%x(i—1)+1)1];
x=D(1,:);y=D(2,:);
plot(x,y)
fill(x,y,’b")
hold on
end
else % more than one iteration

1.2 Deterministic Iteration Algorithm

- ' - v . 1
09 - 0.9
0B F 4 0.8
07 - - o
06 - 1 06
0sF 4 o5
04 - 4 04
oar 4 o3
0z - - 02
o1k 4 ol

% oz 04 08 o8 1 2

! T T T T 1
09 e 09
[X]3 £ 08
L] 1 o7
o6f 1 06
osf g 05
(XY 3 1 04
03 R 03
0z2F E 0.2
ol ol

o L . . . o

o 02 0.4 06 08 1

13

0.2 0.4 0.6 0.8 1
| ol a1

i
11 11 P
11 1 i
11, o o 1

0.2 0.4 0.6 0.8 1

Fig. 1.5 Sierpinski carpet with 5 iterations

figure
wl=A*X+B (
Tl=wl;
w2=A*xX+B (
T2=w2;
w3=A*xX+B (
T3=w3;
wad=A*xX+B (
T4=w4;
w5=A*xX+B (
T5=w5;
w6=AxX+B (
T6=w6;
w7=A*X+B (
T7=w7;

:,1);%First tranformation

:,2);3;%Second transformation

:,3);%Third transformation

:,4) ;%Fourth transformation

:,5);%Fiveth tranformation

:,6);%Sixth transformation

:,7);%Seventh transformation

14 1 Fractals and Dimensions

w8=AxX+B (:,8) ;%Eighth transformation

T8=wS§;

X=[Tl T2 T3 T4 T5 T6 T7 T8];

[m n]l=size (X);

for i=1:n/4
D=[X(:, 4x(i—1)+1:4%xi) X(:,4%x(i—1)+1)];
x=D(1,:):;y=D(2,:);
fill (x,y,’b")
hold on

end

end
end

1.3 Fractal Dimensions

Hausdorff dimension can be defined for any set and it is mathematically convenient to
manipulate, since it is based on measures. It involves taking the infimum over covers
of a given set, say K, consisting of balls of radius less than or equal to € > 0 and
this makes its explicit computation difficult. A slight simplification is obtained by
considering only covers containing balls of radius equal to € > 0. This gives rise to
the concept of box dimension. For interesting results on fractal dimension of fractals
and fractal functions, refer the book [7, 8]. The algorithm for box counting method
is provided in the following subsection.

1.3.1 Box Counting Algorithm

Box counting is a method of gathering data for analyzing complex patterns by break-
ing a data set, object, image, etc. into smaller and smaller pieces, typically “box”-
shaped, and analyzing the pieces at each smaller scale.

Using the box counting method, fractal dimension is the slope of the line when
we plot the value of log(N) on Y-axis against the value of log(r) on X-axis. The
same equation is used to define the fractal dimension, D. The MATLAB code for
box counting algorithm is given as follows.

clc;clear all;close all;

c=imread (koch_iter5 . jpg’);

image (c)

axis image

[n,r] = boxcount(c, slope’)

df = —diff(log(n)) ./ diff (log(r));

disp ([*Fractal dimension, Df = ° num2str(mean(df(4:8))) ~ +/—
num2str

(std (df(4:8))) 1)

1.3 Fractal Dimensions 15

Output: N = Columns 1 through 8
16664999 4167500 1042500 260625 65417 16485 4187 1080
Columns 9 through 14
2807020621
r = Columns 1 through 8
1248163264128
Columns 9 through 14
256 512 1024 2048 4096 8192
Fractal dimension, Df = 1.26 +/- 0.02052

1.3.2 Higuchi Algorithm

Higuchi developed a technique to measure the fractal dimension of the data (x, f(x))
forming the graph of a function f on the unit interval. The Higuchi method takes a
signal, discretized into the form of a time series, xg, X1, X2, . . ., Xy. From given time
series, we construct a new time series, X', defined as:

N—m

Xi¢ o fm), fm+ k), f(m+2k),..., f(m+| X

1.k,

where |22 | is the integer part of 2, k € [1,2, ..., kuay] indicate the interval
timeandm € [1, 2, ..., k] is the initial time. We define the length of the curve , X},
as follows,

=y

LK) =Y LNN;T_JIICZ{(If(m—Hk)—f(m—i—(i—1).k)|)}.
=)

i=1

The length of the curve for the time interval k is then defined as the sum over the k
sets of L,,(k),

k
L(k) =) Ly(k).
m=1

Fractal dimension is the slop of the data {(log %, log L(k))}. The MATLAB code for
estimating Higuchi fractal dimension is provided below.

16 1 Fractals and Dimensions

%Higuchi Fractal Dimension
clc;clear all;close all;
format ’short’
x=[1 5 7 8 9 15 16 12 18 20];
N=length (x);
k_max=5;%Interval time
M=0;
for k=1:k_max
for m=1:k
H(k,m)=km(x,k,m,N);
end
D(k)=sum(H(k,:));
end
LD=10ogl10 (D) ;
k=1:k_max;
Lk=logl0(k);
scatter (Lk,LD, 'b ", %),
P=polyfit (Lk,LD,1)
slope = P(1)
intercept = P(2);
yfit = P(1)*Lk+P(2);
% P(1) is the slope and P(2) is the intercept
hold on;
plot (Lk, yfit , r—.")
9% %o
function [H]=km(x,k,m,N)
AA=floor ((N-m)/k);
for j=1:AA+1
aa (j)=m+(j —1)xk;
HI(j)=x(aa(j));
end
aa;
HI ;
for i=1:length (HI)-1
L(i)=abs(HI(i+1)—HI(i));
end
u=(N—-1)/(AAxk"2);
H=(1/u)*sum (L) ;
end

Output: Higuchi Fractal Dimension is 1.0578 for K, = 5.

1.3.3 Katz Algorithm

The Katz algorithm is used to compute fractal dimension for signals and it is expressed
as

(1.7)

1.3 Fractal Dimensions 17

here L is the total length of the curve, d is the diameter (planar extent) of the curve
and a is the average distance between two successive points. Length of the curve L
can be interpreted as accumulated change of speech signal values and is calculated
using simple Euclidean distance formula:

L=l =Y V(i —x)+ iy —)% (1.8)

i=1 i=1

Planar extent d is equal to the maximum distance between the first point and any
other point of the curve:

d=max{l;;}, 2<i<n+1. (1.9)
With this description, the MATLAB code for Katz fractal dimension is given as
follows.
% Katz fractal dimension for given signal values

clc;clear all;close all;
Y%Akima data {(0, 10), (2, 10), (3, 10), (5, 10),

%(6, 10), (8, 10), (9, 10.5), (11, 15), (12, 50), (14, 60), (15,
85)}

M=[0 10;2 10;3 10;5 10;6 10;8 10;9 10.5;11 15;12 50;14 60;15
851;

[m n]=size (M)
% Length of the two succesive points
for i=1:m-1
LL(i)=sqrt ((M(i+1,1)-M(i,1))"2+M(i+1,2)-M(i,2))"2);
end
L=sum (LL)%Total length of the curve
for i=1:m
dd(i)=sqrt (M(1,1)-M(i,1))" 2+M(1,2)-M(i,2))"2);
end
d=max (dd)% Diameter of the curve
a=L/m % a is the average distanc
D=log(L/a)/log(d/a)%Katz fractal dimension
% Output is m = 11;n =2
% L 84.2748; d = 76.4853; a = 7.6613
% D = 1.0422

Input Data: Akima data is

{(0, 10), (2, 10), (3, 10), (5, 10), (6, 10), (8, 10), (9, 10.5), (11, 15), (12, 50),
(14, 60), (15, 85)}

Outputism =11;n =2,

L =84.2748; d =76.4853; a = 7.6613. Fractal dimension, D = 1.0422.

18 1 Fractals and Dimensions

References

B.B. Mandelbrot, The Fractal Geometry of Nature, vol. 1 (WH Freeman, New York, 1982)
M.FE. Barnsley, Fractals Everywhere (Academic Press Inc, Boston, MA, 1988)

M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2, 303-329 (1986)

G.A. Edgar, Measure, Topology, and Fractal Geometry, vol. 2 (Springer, 2008)

PR. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets (Academic Press, 2014)

S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynam-
ics and Applications (CRC Press, 2020)

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, 2004)

8. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions Signal Anal-
ysis (Springer, 2021)

AW =

~

Chapter 2 ®)
Univariate Fractal Functions Check for

The method of fractal interpolation is developed with an ultimate aim of approxi-
mating the naturally existing complicated functions which share non-smoothness in
their patterns. This method provides a satisfactory generalization of classical inter-
polation techniques since classical approaches are emerged only to approximate the
smooth functions however, most of the real world experimental functions are highly
irregular. Like classical interpolation technique, a finite data set is taken in the fractal
interpolation scheme and a continuous function is determined such that whose graph
passes through all the given finite set of data points. In the case of fractal interpolation,
the required continuous function (i.e., fractal function) does not posses any explicit
form and its graph is generated as an attractor of a special kind of iterated function
system. Yet, Barnsley has utilized the Read-Bajraktarevi¢ operator in order to pro-
vide a functional equation for the fractal interpolation function in [1]. Since from the
emergence of fractal interpolation functions in late 1980s, several types of fractal
interpolation functions have been discovered including univariate [2-5], bivariate
[6-9] and fractal functions on higher dimensional spaces [10—13]. The following is
the description of the construction of univariate fractal interpolation function.

2.1 Affine Fractal Interpolation

Let N € N.Considerthedataset{(x;, y;)) e RxR:i=1,2,..., N + 1} withx; <
Xy < --- < xy+1 and x;’s are not required to be equidistant. Consider the closed
sub-intervals of real-line I = [x;, xy41] and I; = [x;, x;+1], Vi = 1,2,..., N. The
graph of continuous function f interpolating the provided data set such that f(x;) =
vi, Yi=1,2,..., N+ 1 is determined as an attractor of the following iterated
function system,

{(X;w;, :i=1,2,...,N}. 2.1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 19
S. Banerjee et al., Fractal Patterns with MATLAB,

SpringerBriefs in Complexity,

https://doi.org/10.1007/978-3-031-48102-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48102-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2
https://doi.org/10.1007/978-3-031-48102-4_2

20 2 Univariate Fractal Functions

Where X := I x R is a complete metric space with respect to the metric equivalent
to Euclidean metric and w; : X — I; x R,i =1,2,..., N are contraction maps
defined by

wi(x, y) = (Li(x), Fi(x,y)), x,y € X. (22)

The maps involved in the definition of contraction maps w; are given by L; : [—
I and F; : I x R — R. Maps L; are N homeomorphisms and F; are continuous
mappings satisfying

ILi(x) = Li(x")] < cilx — x|,
|F;(x, y) — F;(x, y)| < rily — 'l
forall x,x € I, u,y € R, ¢;,r; € (0, 1). It is to be noted that F; is a contraction

with respect to second variable. The maps L; and F; obey the following join-up
conditions

L;(x1) = x;,
Li(xnt+1) = Xig1, 23)
Fi(x1, y1) = yi,)

F;(Xn41, YN41) = Yit1,

as prescribed in [1]. Considering the IFS (2.1), a set-valued map }V defined on the
non-empty compact subsets of X, say H(X), is expressed by

N
W) = Jwi(0),
i=1

for any C € H(X). Since X is a complete metric space, the Hausdorff metric
completes H(X). Note that the map W is a finite union of contraction maps
w; and defined on the complete metric space H(X). Then, by the Banach con-
traction principle, YW possess a unique invariant compact set, say G, satisfying
Gy = W(Gy) and it is the graph of a required continuous function f : I — R such
that G, := {(x, f(x)) : x € I}. The graph of the function f obtained as an attractor
of the IFS (2.1) is referred as a Fractal Interpolation Function (FIF), in short fractal
function.

Now, let us overview the generation of functional equation (also called as fixed
point equation) for the above described fractal interpolation function by means of
defining the Read-Bajraktarevi¢ (RB) operator. In this generation, the fractal function
is shown as a fixed point of the RB operator 7. Consider the Banach space of
continuous functions, C, such that

C=1{h:I1— R|hiscontinuouson I, h(x;) = yi, h(xny+1) = yn+1}

2.1 Affine Fractal Interpolation 21

with the sup norm ||/].c = max{|A(x)|: x € I}. A contraction map is induced on
this complete metric space C, defined by

T(h(x)) = F; (L;'(x),hoL7'(x)), x € L, i =1,2,..., N,
The contraction map 7 admits a unique fixed point, which is the above defined fractal
interpolation function f such that f(x) = T(f(x)). In addition, it obeys the below
given functional equation

f) =F (L7'), foL7'(), xel, i=1,2,...,N. (2.4)

The general IFS employed to study various kinds of fractal interpolation functions
is given below,

Ll' X) =ajx + bi,

) . (2.5)
Fi(x,y)=a;y+qi(x), i=1,2,...,N.

Where{wo; :i = 1,2, ..., N}are the free parameters called as vertical scaling factors

(alsoreferred as contraction factors) of the contraction maps w; satisfying —1 < o; <
1 and g; : I — R are continuous functions obeying the conditions

qi(x1) =y; —a;y1,
qi(XN+1) =Yig1 —iYN41, YVi=1,2,..., N.

Among the univariate fractal interpolation function, types of fractal functions can be
generated including linear fractal function, quadratic fractal function, alpha fractal
function and so on. The continuous function ¢; has a prominent role in differentiating
and constructing new kinds of fractal functions. For instance, if g; is taken as a linear
function of the form c;x + d;, then the corresponding IFS generated is as follows

Li(x) =a;x + b,‘,
. (2.6)
Fx,y)=ay+cx)+d,i=1,2,...,N,

thus the IFS (2.6) invokes a linear fractal interpolation function. In the similar manner,
for each unique ¢;, a special kind of fractal interpolation function is generated.
Moreover fractal interpolation functions can be classified as affine and non-affine
functions by correspondingly choosing the the continuous functions g; as affine and
non-affine. Suppose g; is of the form,

qi = c¢ix +d;,

one can get the affine transformations as follows,

22 2 Univariate Fractal Functions

()= (2a) 0)+ ()

w; = +)

y Ci y d;

where a;, b;, ¢;, d; are the real parameters. By predefining the scaling factors «;

and employing the join-up conditions, the following can be determined, for i =
1,2....,N,

Xitl — Xi
ai = 47
XN41 = X
ANH1Xi — X1Xi41
bi = B
N+ — X1
@7
o = Wit = yi) — i1 — 1)
[’
XN+1 — X1
d— (en41Yi = X1Yit1) — & (Xn41Y1 — X1YN+1)
;= .

XN+1 — X1

The fractal function associated with the above defined affine transformation is called
as the affine fractal interpolation function.

Following is the MATLAB code for generating affine fractal graphs with constant
scaling parameters.

9%% Affine Fractal Interpolation Function
9% L_i (x)=a_i x+b_i
9% F_i(x,y)=alpha_i (x) =y +Q_i(x),
% where Q_i(x) is the affine function
clc;clear all;close all;
format ’short’
x=[0 1/3 1/2 2/3 1];y=[1 3 5/2 3.5 3/2];% Data
iter=input(’ Enter the number of iterations:=");
Ix=length (x);
Joalpha=[0 0 O]
alpha=[0.3 0.2 0.1 0.6];
N=1x ;
for i=1:1x—1
diff_x (i)=x(i+l)—x(i);length_x=x(N)—x(1);
a(i)=diff_x(i)/length_x;
b(i)=(x(N)*x(i)—x(1)*x(i+1))/length_x;
¢(i)=[y(i+D)—y(i)—alpha(i)*(y(N)—y(1))]/length_x:
d(i)=[x(N)#y (i)=x (1)*y(i+D—alpha (i)*(x(N)xy (1)=x (1) %y (N)) 1/
length_x;
end
abcd_values=[a’ b’ ¢’ d’]
Voolalatladledletledledledledledledledledledledledledledlenledledledledlede
L=[1:L1=[1;XI=[1; YI=[1;X=[1;Y=[];
p=N;
for k=1:iter
for i=1:N-—-1
for tl=1:p
if (k==1)% First iteration
% Input data is (x,y) or given data
L(i,tl)=a(i)*x(tl)+b(i);

2.1 Affine Fractal Interpolation 23

Li(i,tl)=alpha(i)*y(tl)+c(i)*xx(tl)+d(i);
else % More than one iteration
% Input data is (XI1,Yl) or output after the first
iterration
L(i,tl)=a(i)*«X1(tl)+b(i);
Li(i,tl)=alpha(i)*Y1(tl)+c(i)*X1(tl)+d(i);
end
end
X=[X L(i,:)];
Y=[Y LI1(i,:)];

end
X1=X; YIi=Y; X=[1; Y=[]; g=[X1" YI’];
g=str2num (num2str(g,10));g=unique (g, 'rows’);
Xl=g(:,1):;Yl=g(:,2); [X1 Y1]; p=length (X1);
9%

end

plot (x,y, .k’ , markersize ,20);hold on

plot (X1,Yl, r—");title (" AffineFIF_First Iteration)

Yo T17 7T T TS TTTS T T T T TS TSI TSIV T T T TSI T T
%

2.1.1 Vertical Scaling Factors

The scale vector « = (ay, oz, . . ., ay) associated with the IFS (2.6) has a significant
dominance in determining fractal behaviours of the fractal function, which includes
fractal dimension, shape preserving as well as shape modifying properties. Further,
the scaling factors govern the closeness of fit corresponding to the provided data set.
In general, vertical scaling factors are utilized to modify the shape and size of the
curves along the vertical direction. While dealing fractal interpolation functions, the
absolute value of vertical scaling factors is constrained to be less than 1 and thus they
contracts the fractal curves according to given values of the scale vector . Hence,
they are also called as contractivity factors for the contractions w;.

For the choice of vertical scaling factors as constants, the naturally existing self-
similar functions are better approximated, since if the curves are strictly self-similar,
the constant vertical parameters easily makes the same ratio of compression in each
sub-interval to yield closer fit. On the contrary, if the curves show less self-similarity,
the constant scalings may lead to loss of flexibility and cause more approximation
errors. To address this issue, fractal interpolation function with function (variable)
scaling factors have been introduced to fit the non-stationary data set. In [14], the
vertical scaling parameters «; are chosen as continuous functions on the closed
interval I (i.e.,)

a1 —-1[0,1),Vi=1,2,...,N,

satisfying
lalloo = sup{lletifloo : i =1,2,..., N} < 1

24 2 Univariate Fractal Functions
and the following IFS is obtained

L;(x) = a;x + b;,
Fix,y)=0;(x)y +qi(x), i=1,2,...,N. (2.8)

The fractal function generated using the IFS (2.8) is referred as the fractal interpo-
lation function with variable scaling factors.

2.1.2 Affine Fractal Function with Variable Scaling

Consider the IFS (2.8) with the following continuous function,
qg(x)=cx+d;,Vi=1,2,...,N. 2.9)

Thus, the IFS for generating the affine fractal interpolation function with variable
scaling is obtained as

Li(x) =aix +b;, Fi(x,y) =0;(x)y +c¢ix+d;, Vi=1,2,...,N.

The MATLAB code for generating affine fractal interpolation function with variable
scaling is provided below.

% Affine Fractal Interpolation Function with variable scaling
% L_i (x)=a_i x+b_i

% F_i(x,y)=alpha_i (x) xy +Q_i(x),

% where Q(x) is the affine function

clc;clear all;close all;

format ’short’

x=[0 1/4 1/2 3/4 1];y=[1 3 5/2 3.5 3/2];% Data
iteration=1;

[X1,Y1]=VAR_affine(x,y, iteration);

subplot (2,2,1)

plot (x,y, .b’, " markersize ,20);%Plotting original data
hold on

plot (X1,Y1l, r—", LineWidth’ ,1);%Plotting original and new data
xlabel (" Var@AffineFIF:1 st iteration’)

iteration =3;

subplot (2,2,2)

[X2,Y2]=VAR_affine(x,y, iteration);

plot (x,y,’ .b’, markersize’ ,20);

hold on

plot(X2,Y2, r—", LineWidth ,1);

xlabel (’Var@AffineFIF:3rd iteration’)

iteration =8;

subplot (2,2,3)

[X3,Y3]=VAR_affine(x,y, iteration);

plot (x,y,’ .b’, markersize’ ,20);

hold on

2.1 Affine Fractal Interpolation 25

plot(X3,Y3, r—", LineWidth ,1);
xlabel (’Var@AffineFIF: 8th iteration’)
iter =8;alpha=[0 0 0 O];
subplot (2,2 .,4)
[X4,Y4]=AffineFIF (x,y,alpha ,iteration);
plot (x,y, .b’, markersize’ ,20);
hold on
plot(X4,Y4, r—", LineWidth ,1);
xlabel (" Classical AffineFIF: 8th iteration’)
function [X1 Y1]=VAR_affine(x,y,iteration)
N=length (x);1x=N;
a=zeros (1x —1);b=zeros (1x —1);
for i=1:1x—1
a(i)=(x(i+1)—x(i))/(x(Ix)=x(1));
b(i)=((x(i)*x(1x))—=(x(i+1)*x(1)))/(x(Ix)=x(1));
end
L=[1:L1=[1:XI=[]:YI=[1:X=[]:Y=[]:
p=N:
for k=1:iteration
for i=1:1x—1
for tl=1:p
if (k==1)
L(i,tl)=(a(i)*xx(tl))+b(i);
if(i==1)
alpha (i, tl)=x(tl)/(x(Ix)—x(1));
elseif (i==2)
alpha(i,tl)=abs(log (1/(x(tl)+2)))/x(1x);
elseif (i==3)
alpha(i,tl)=cos(l—x(tl));
elseif (i==4)
alpha(i,tl)=(sin(x(tl))/(2x(x(1x)=x(1))));
end
% co—efficients
¢(i)=[y(i+1)—y(i)—alpha (i, t1)*(y(N)=y (1))]/(x(Ix)
—-x(1));
d(i)=[x(N)*y(i)—x(1)*xy(i+1)—alpha(i,tl)*(x(N)xy
(D) =x(1)*y(N)) J/(x(lx)=x(1));
Li(i,tl)=(Calpha(i,tl)xy(tl))+c(i)*x(tl)+d(i);
else
L(i,tl)=(a(i)*X1(tl))+b(i);
if(i==1)
alpha (i,t1)=X1(tl)/(X1(p)—-X1(1));
elseif (i==2)
alpha (i, tl)=abs(log (1/(X1(t1)+2)))/X1(p);
elseif (i==3)
alpha(i,tl)=cos(l—(X1(tl)));
elseif (i==4)
alpha (i, tl)=sin(X1(tl)—-1)/(2x(x(1x)—x(1)));
end
c(i)=ly(i+D)—y(i)—alpha (i, t1)*(y(N)=y (1)) 1/(x(Ix)
-x(1));
d(i)=[x(N)xy(i)—x(1)*xy(i+l)—alpha(i,tl)*(x(N)xy
(D) =x (1) *y(N)) 1/(x(1x)=x(1));
Li(i,tl)=(alpha(i,tl)xYI(tl))+c(i)*«XI(tl)+d(i);
end

26 2 Univariate Fractal Functions

end
X=[X L(i,:)];
Y=[Y LI1(i,:)];
end
X1=X; Yl=Y;
X=[1; Y=I[1;
p=length (X1);
end
end
%Affine FIF with constant scaling
function [X1,Y1]=AffineFIF (x,y,alpha,h iteration)
Ix=length (x);
N=1Ix;
for i=1:1x—1
diff_x (i)=x(i+1)—x(i);length_x=x(N)—x(1);
a(i)=diff_x(i)/length_x;
b(i)=(x(N)*x(i)—x(1)*xx(i+1))/length_x;
c(i)=[y(i+D)—y(i)—alpha (i)#(y(N)—y(1))]/length_x:
d(i)=[x(N)*y(i)=x(1)*y(i+l)—alpha (i)*(x(N)xy(1)—x(1)*y(N))]/
length_x;
end
abcd_values=[a’ b’ ¢’ d’];
L=[];L1=[1:XI=[];YI=[1:X=[]:Y=[];
p=N;
for k=1:iteration
for i=1:N-1
for tl=1:p
if (k==1)% First iteration
% Input data is (x,y) or given data
L(i,tl)=a(i)*x(tl)+b(i);
Li(i,tl)=alpha(i)*y(tl)+c(i)*xx(tl)+d(i);
else % More than one iteration
% Input data is (XI1,Y1l) and output after the
first iteration
L(i,tl)=a(i)*«X1(tl)+b(i);
Li(i,tl)=alpha(i)*xYI(tl)+c(i)*X1(tl)+d(i);
end
end
%Concatenation
X=[X L(i,:)];
Y=[Y L1(i,:)];
end
X1=X3 YI=Y; X=[1]; Y=I[1; g=[X1" Y1’];
%Removing duplicates
g=str2num (num2str(g,10));g=unique (g, 'rows);
Xl=g(:,1);Yl=g(:,2); [X1 Y1]; p=length (X1);
end
end

2.2 «-Fractal Interpolation 27

2.1.3 Numerical Simulation

Let {(0, 1), (0.33, 3), (0.5, 2.5)(0.6, 3.5), (1, 0.752)} be the given set of interpo-
lation data with vertical scaling factors o = (0.3, 0.2, 0.1, 0.6). The affine FIF cor-
responding to the given data set for first iteration is graphically shown in Fig.2.1a.
Figure?2.1b is generated by increasing the iteration to three. Figure?2.1c illustrates
the affine FIF for eighth iteration. The classical affine FIF is graphically represented
in Fig.2.1d for the choice of zero scaling vector. Consider the variable scaling factor

a(x):(al , cos(1 —x), ﬂ)

Xy —xi 2(xy — x1)

x+2
2OXN

for the same data set. The graph of affine fractal interpolation function with the
provided variable scaling factor is generated using the MATLAB code in Sect. 2.1.2.
Its graphical illustration is given in Fig. 2.2a. Figure 2.2b and c respectively represents
the graph of affine FIF with variable scalings for the third and eighth iteration. With
the choice «; = [0];x4, classical affine fractal interpolation function is generated and
its graph is provided in Fig.2.2d.

2.2 «-Fractal Interpolation

The «-fractal function is an example of univariate non-affine fractal interpolation
function. Unlike the linear fractal interpolation function, a given continuous function
g is approximated using «-fractal function g*. The given continuous function g is
generally referred as seed function or germ function and g¢ yields a family of fractal
functions to each given g and it is referred as the fractal perturbation of g in [15].

Navascués has discovered the a-fractal function which is introduced by Barnsley
[1] to provide a fractal analogue for any continuous function. Suppose g € C(I),
consider the below defined special type of continuous function

qi(x) = g o Li(x) — a;b(x), (2.10)

28 2 Univariate Fractal Functions

(a) First iteration (b) Third iteration

(c) Eighth iteration (d) Classical FIF: Eighth iteration

Fig. 2.1 Affine fractal interpolation function with constant scaling

where b is a base function usually it is a real-valued continuous map equivalent to
the germ function g at the end points and b # g. The IFS corresponding to ¢; in Eq.
(2.10) is given below

Li(x) =aix + b,
Fi(x,y)=a;y+goLi(x) —abx), i=1,2,...,N, (2.11)
The fractal function associated with the IFS (2.11) is called as the «-fractal interpo-
lation function (in short, o-fractal function) with respect to base function b and the

partition D = x; < x5 < --- < xy4 of I. Then the o-fractal function satisfies the
following functional equation,

g%(x) = g(x) + ;[(g¥ — b) oLi_l(x)], Vxel,i=1,2,...,N. (2.12)

For the proper choice of scaling factors, the a-fractal function g% coincides with
the germ function g. If each of the vertical scaling factors ¢; are taken as zero,

2.2 «a-Fractal Interpolation 29

6 10
4
2
p
4
0 . 0 .
0 0.5 1 0 0.5 1
First iteration Third iteration
4
3 L
2 4
4
1
0 0.5 1 0 0.5 1
Eighth iteration Classical FIF: Eighth iteration

Fig. 2.2 Affine fractal interpolation function with variable scaling

then g% = g. If the scaling factors are taken as continuous functions ¢; (x) then the
functional equation of the «-fractal function becomes

g%(x) = g(x) +oz,-(Ll-_1(x))[(g°‘ —b)o Li_l(x)], Vxel;, i=1,2,...,N.
(2.13)
The g“ present in the Eq. (2.13) is called the «-fractal function with function scaling
factors. The Matlab code for generating a-fractal interpolation function with constant
scalings is given below.

% α —fractal interpolation function
% Base function b(x)=x7"3;

clc;clear all;close all;

format ’short’;
Fx=inline ("x.”"3 ") ;%Base function

x1=[0 1/4 1/2 3/4 1];yl=Fx(x1l);
Data=[x1" yl’];%Data

iteration=1;

alpha=[0.2 0.3 0.2 0.1];

subplot (2,2,1);

[X1 Yl]=Alphafractall (iteration ,alpha);
plot (x1,yl,’ .b", " markersize’ ,20);

30

hold on

plot (X1,Yl, r—", LineWidth’ ,1);

xlabel (’\alpha—FIF: First iteration’)
iteration =3;

[X2 Y2]=Alphafractall (iteration ,alpha);
subplot (2,2,2);

plot (x1,yl,’.b", " markersize’ ,20);

hold on

plot(X2,Y2, r—", LineWidth’ ,1);

xlabel (’\alpha—FIF: Third iteration)
subplot (2,2,3);

iteration =8;

[X3 Y3]=Alphafractall (iteration ,alpha);

plot (x1,yl,’ .b", markersize ,20);%Plotting

hold on

plot(X3,Y3, r—", LineWidth’ ,1);%Plotting

xlabel ("\alpha—FIF: Eighth iteration)
%Classical case

subplot (2,2,4);

iteration =8;alpha=[0 0 0 O] ;

[X4 Y4]=Alphafractall (iteration ,alpha);
plot (x1,yl,’.b", markersize’ ,20);
hold on

plot(X4,Y4, r—", LineWidth’ ,1);

2 Univariate Fractal Functions

original data

original and new data

xlabel (" Classical \alpha—FIF: Eighth iteration)
function [X1 Yl]=Alphafractall (iteration ,alpha)

Fx=inline ("x.”3 ") ;%Base function
x1=[0 1/4 1/2 3/4 1];yl=Fx(x1);
Data=[x1" yl ’];%Data

Ix=length (x1);
base=inline ("x);

a=zeros (1,Ix —1);b=zeros (1,Ix —1);
for i=1:1x -1

delta (i)=(yl(i+1)—yl(i))/(yl(lx)=yl(1l));
a(i)=(x1(i+1)=x1(i))/(x1(lx)=x1(1));

b(i)=((x1(i)*x1(Ix))—=(x1(i+1)*x1(1)))/(x1(1x)=x1(1));

end
L=[];L1=[1:X1=[];YI=[1:X=[]:Y=[];
p=1x;
for k=1: iteration
for i=1:1x-1
for t=1:p
if (k==1)%First iteration

L(i,t)=(a(i)*xI1(t))+b(i);

L1(i,t)=Fx(L(i,t))+alpha(i)=x(yl(t)—base(x1(t)));

else % Morethan one iteration

L(i,t)=(a(i)*X1(t))+b(i);

L1(i,t)=Fx(L(i,t))+(alpha(i))*(YI(t)—base(X1(t)))

end
end
X=[X L(i,:)];
Y=[Y L1(i,:)1;
end
X1=X; Yi=Y;

2.2 «a-Fractal Interpolation 31

X=[1; Y=[1;
%Removing duplicates
g=[X1" Y1’];g=str2num (num2str(g,10));g=unique (g, "rows);
Xl=g(:,1):;Yl=g(:,2);
p=length (X1);
end
end

2.2.1 «-Fractal Function with Variable Scaling

The IFS for generating «-fractal interpolation function with variable vertical scaling
factors is provided as

Li(x) =a;x + b,
Fi(x,y) =a;(x)y +goLi(x) —a;(x)b(x), i =1,2,..., N,

here «; : I — (0, 1). The MATLAB code for generating «-fractal function with
variable scalings is provided below.

%$\ alpha$ —fractal function with variable scaling
% Base function b(x)=x"3;

clc;clear all;close all;

format “short’;

x=[0 1/4 1/2 3/4 1];

Fx=inline ("x.7"37);%Base function

y=Fx(x);

iteration=1;

subplot (2,2,1);

[X1 Y1]=Var_alphaFIF(x,iteration);

plot (x,y, .b’, markersize’ ,20);

hold on

plot (X1,Y1l, r—", LineWidth ,1);

xlabel ("\alpha —FIF: First iteration ')
iteration =2;

[X2 Y2]=Var_alphaFIF (x,iteration);

subplot (2,2,2);

plot (x,y, .b’, markersize’ ,20);

hold on

plot(X2,Y2, ' r—", LineWidth’ ,1);

xlabel ("\alpha—FIF: Second iteration)

subplot (2,2,3);

iteration =3;

[X3 Y3]=Var_alphaFIF (x,iteration);

plot (x,y,’.b’, markersize’ ,20);%Plotting original data
hold on

plot(X3,Y3, ' r—’", LineWidth’ ,1);%Plotting original and new data
xlabel ("\alpha—FIF: Third iteration)

subplot (2,2,4);

32 2 Univariate Fractal Functions

iteration =4;
[X4 Y4]=Var_alphaFIF (x,iteration);
plot (x,y, .b’, markersize’ ,20);
hold on
plot(X4,Y4, r—", LineWidth ,1);
xlabel ("\alpha—FIF: Fourth iteration)
function [X1 Yl]=Var_alphaFIF(x,iteration)
Fx=inline ("x .73 ") ;%Base function
y=Fx(x);
base=inline ('x");
Ix=length (x);
a=zeros (1 ,Ix —1);
b=zeros (1,1x —1);
A=zeros (1,1x —1);
for i=1:1x -1
delta (i)=(y(i+D)=y(i))/(y(1x)=y(1)):
a(i)=(x(i+D)—x(1))/(x(1x)=x(1));
b(i)=((x(i)*x(Ix))—=(x(i+1)xx(1)))/(x(lx)=x(1));
end
L=[L:Ll=[1:XI=[1:Yl=[]:;X=[]:Y=[];
p=1x;
for k=1: iteration
for i=1:1x -1

for t=1:p
if (k==1)
L(i,0)=(a(i)*x(t))+b(i);
if (i==1)

alpha (i, t)=0.24+4x(t)/(3x(x(1lx)—x(1)));
elseif (i==2)
alpha(i,t)=(1/100)xabs(log (1/(x(t)+4)));
elseif (i==3)
alpha(i,t)=(1/2)*cos(l1—=2%x(t));
elseif (i==4)
alpha(i,t)=0.4+(sin(x(t))/(3x(x(lx)—=x(1))));
end
L1(i,t)=Fx(L(i,t))+alpha(i)=*(y(t)—base(x(t)));
else
L(i,t)=(a(i)*X1(t))+b(i);
if(i==1)
alpha (i,t)=0.2+X1(t)/(3x(X1(1x)=-X1(1)));
elseif (i==2)
alpha(i,t)=(1/100)*xabs(log (1/(X1(t)+4)))/X1(1lx);
elseif (i==3)
alpha(i,t)=(1/2)*cos(1—=2%xX1(t));
elseif (i==4)
alpha (i,t)=0.4+(sin(XI1(t))/(3%x(X1(1x)=X1(1))));
end

L1(i,t)=Fx(L(i,t))+(alpha(i))=*(Yl(t)—base(X1(t)));
end

end

X=[X L(i,:)];

Y=[Y LI(i,:)];
end
X1=X;
Y1i=Y;
X=[1;

2.2 «a-Fractal Interpolation 33

Y=[1;
p=length (X1);
end
end
%

2.2.2 Numerical Simulation

Let g(x) = x> and b(x) = x. Consider the interpolation data {0, 0.25, 0.5, 0.75, 1}
with the scaling factor ¢ = (0.2, 0.3, 0.2, 0.1) satisfying the constraint ;| < 1. An
a-fractal interpolation function g* is constructed corresponding to g and b. The
graphs of g* are generated by changing the iteration (first, third and eighth iteration)
and portrayed in Fig.2.3a, b and c. If « = (0, 0, 0, 0), one can obtain the classical
alpha fractal function as demonstrated in Fig.2.3d.

1 1
0.8} 08}
0.6} 0.6}
0.4} 0.4}
0.2} 0.2t
o N . N A
0 0.5 1 0 0.5 1
a-FIF: First iteration a-FIF: Third iteration
1 - 1
0.8} 0.8}
0.6} 06t
0.4} 04l
0.2rp gal
A .
0 0.5 1 0 0.5 1
a-FIF: Eighth iteration Classical a-FIF: Eighth iteration

Fig. 2.3 «-fractal interpolation function with constant scaling

34 2 Univariate Fractal Functions

1 1
0.8} 1 0.8}
06f 1 0.6}
0.4} ! 0.4t
02F 1 0.2¢
] N .]) .
0 0.5 1 0 0.5 1
a-FIF: First iteration a-FIF: Second iteration
1 1
0.8
0.6} 0.5} 1
0.4
0¢)
0.2}
()1_\
5 0.5 i
0 0.5 1 0 0.5 1
a-FIF: Third iteration a-FIF: Fourth iteration

Fig. 2.4 «-fractal interpolation function with variable scaling

If the scaling factors are taken as variables instead of constants,

) 0.2+x 1
ax)=—, —
3(xy —x1) 100

1
log1x+4’, 5 cos(1 = 2x), 0.4+ sin (ﬁ))

Then the corresponding «-fractal interpolation functions are demonstrated in
Fig.2.4a—d.

2.3 Hidden Variable Fractal Interpolation

The given data set {(x;,y;): 1 =1,2,..., N+ 1} is extended from R? to R?
with the inclusion of hidden variables {z; : i = 1,2, ..., N + 1}. The new data set
{(xi, yivzi):i=1,2,..., N+ 1}in R3is interpolated using the attractor associated
with an IFS {R%; w; : i = 1,2, ..., N} consisting of the following maps:

2.3 Hidden Variable Fractal Interpolation 35

X a; 00 X kl‘
wi|y|=[biciBi||y]+]|
Z Ci 0 Vi Z m;
. Li(x)
S \Fix,y,0))°

where,

Li(x) =a;x + b;,
Fi(x,y,2) =(ajy + Biz + pi(x), viz+qi(x)), Vi=1,2,...,N + 1,

satisfying the endpoint conditions

w; (X1, y1, 21) = (Xi, ¥ir, i) and w; (Xn41, YN+1, IN+1) = (Kig1, Yigts Zit1). (2.14)

0 v
eters «;, B;, y; satisfying the constraint ||A;|| < 1. The remaining parameters of
the map w; can be determined using the Eq. (2.14), for more information see
[16]. Now the attractor of the IFS in R?® is projected onto R? and it is the graph
of f:[x1,xny+1] = R? such that f(x;)) = (yi,z), Yi=12...,N+1. The
hidden variable fractal interpolation function for {(x;,y;):i =1,2,..., N + 1}
is the first component of f = (fi, f>) and is defined as the continuous function
f1: [x1, xy+1] = R. The second component f is known as the fractal function inter-
polating {(x;,z;) :i =1,2,..., N 4+ 1}. The MATLAB code for generating hidden
variable FIFs is provided as follows.

. Q; . .
The matrix A; = < ! ’3') contracts the fractal function on choosing each param-

9%% Hidden variable fractal interpolation function

9% L_i (x)=a_i x+b_i

9% F_i(x,y,z)=(alpha_iy+beta_iz+p_i(x),gamma_iz+q_i(x)),
% where p_i(x) and q_i(x) are linear polynomials
clc;clear all;close all;

format ’short’

x=[0 1/3 1/2 17;

y=[0 1/3 1/3 1];

z=[0 2/3 1/6 1];% Data

xl=x;

yl=y;

zl=z;

Ix=length (x);

n=1x;

alpha=[0.4 0.4 0.4]; beta=[0.3 0.3 0.3]; gamma=[0.4 0.4 0.4];
iteration=10;

for i=1:1x—1

36 2 Univariate Fractal Functions

a(i)=(x(i+1)—x(i))/(x(n)=x(1));
b(i)=((x(i)*x(n))—(x(i+1)*x(1)))/(x(n)=x(1));
c(i)=((y(i+1)—y(i))—(alpha(i)=*(y(n)—y(1)))—(beta(i)*(z(n)—z
(1))))/(x(n)—x(1));
e(i)=((z(i+1)—z(i))—(gamma(i)*(z(n)=z(1))))/(x(n)—x(1));
d(i)=y(i)—c(i)*x(l)—alpha(i)xy(l)—beta(i)*xz(1);
f(i)=z(i)—e(i)*x(l)—gamma(i)*xz(1l);
cl(i)=((y(i+l)—y(i))—(alpha(i)*(y(n)—y(1))))/(x(n)—x(1));
end
m=n;
for i=1l:iteration
for j=1:1x-1
for k=1:m
1(j.k)y=(a(j)*x(k)+b(j));
fl1(j.k)=alpha(j)*xy(k)+beta(j)*xz(k)+c(j)*x(k)+d(j);
f2 (j,k)=gamma(j)*z(k)+e(j)*x(k)+f(j);

end
end
x=reshape (1.’ ,1,numel(1));
y=reshape (fl.’,1 ,numel(fl));
z=reshape (f2.’,1 ,numel (f2));
m=length (x);

end
figure , plot(x,y, r’,xl,yl, ’b. ", " markersize ,20)
figure , plot(x,z,’ r’,x1,z1,’b." , " markersize ,20)

2.3.1 Numerical Simulation

Let a dataset {(0,0,0), (1/3,1/3,2/3),(1/2,1/3,1/6), (1,1,1)} be given. The
scaling parameters are chosen as o = (0.4,0.4,04),8 = (0.3,0.3,0.3),
y = (0.4,0.4,0.4) such that |¢;| < 1 and |B;| + |y;] < 1 The graphical represen-
tations of non-self-affine fractal function f; and self-affine FIF f, are depicted in
Fig.2.5. The graphs for generated for third iteration and illustrated in Fig.2.5a and
b, whereas Fig. 2.5c and d represent the graphs at tenth iteration.

References 37

08

06

04

0.2

-0.2

(A 02 03 04 05 06 07 08 08 1 o 0.2 0.4 0.6 0.8 1
(a) f1: Third iteration (b) f2: Third iteration
1
09
08PF
(%3 2
o6
05F
0.4
0.3
02
0.1
0..2 UT" U..Cl 0.'!‘ 1 o U.‘2 O..-i Ol.h DTE 1
(¢) f1: Tenth iteration (d) f2: Tenth iteration

Fig. 2.5 Hidden variable fractal interpolation function

References

—

M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2, 303—329 (1986)

M.A. Navascués, A fractal approximation to periodicity. Fractals 14(4), 315-325 (2006)

N. Vijender, Bernstein fractal trigonometric approximation. Acta Appl. Math. 159(1), 11-27
(2019)

R. Pasupathi, A.K.B. Chand, M.A. Navascués, Cyclic Meir-Keeler contraction and its fractals.
Numer. Funct. Anal. Optim. 42(9), 1053-1072 (2021)

. D.-C. Luor, Reproducing kernel Hilbert spaces of fractal interpolation functions for curve fitting

problems. Fractals 30(03), 1-10 (2022)

L. Dalla, Bivariate fractal interpolation functions on grids. Fractals 10(01), 53-58 (2002)
A.K.B. Chand, G.P. Kapoor, Hidden variable bivariate fractal interpolation surfaces. Fractals
11(03), 277-288 (2003)

Ri. Song-Il, A new nonlinear bivariate fractal interpolation function. Fractals 26(04), 1850054
(2018)

P. Bouboulis, L. Dalla, V. Drakopoulos, Construction of recurrent bivariate fractal interpolation
surfaces and computation of their box-counting dimension. J. Approx. Theory 141(2), 99-117
(2006)

38

10.

11.

12.

13.

14.

2 Univariate Fractal Functions

M.F. Barnsley, J. Elton, D. Hardin, P. Massopust, Hidden variable fractal interpolation functions.
SIAM J. Math. Anal. 20(5), 1218-1242 (1989)

P.R. Massopust, Vector-valued fractal interpolation functions and their box dimension. Aequa-
tiones Mathematicae 42, 1-22 (1991)

H.-Y. Wang, Sensitivity analysis for hidden variable fractal interpolation functions and their
moments. Fractals 17(02), 161-170 (2009)

C.-H. Yun, Hidden variable recurrent fractal interpolation functions with function contractivity
factors. Fractals 27(07), 1950113 (2019)

H.-Y. Wang, J.-S. Yu, Fractal interpolation functions with variable parameters and their ana-
lytical properties. J. Approx. Theory 175, 1-18 (2013)

. M.A. Navascués, Fractal polynomial interpolation. Z. Anal. Anwendungen 24(2), 401418

(2005)

. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal

Analysis (Springer, Berlin, 2021)

Chapter 3 ®)
Differentiable Fractal Functions G

This chapter presents the fractal patterns for types of fractal splines together with
numerical simulations. In [1], Barnsley has discussed the general construction of
fractal splines as follows. Consider L;(x) = a;x + b; and F;(x,y) = a;y + ¢q;(x)
fori=1,2,..., N with x| < x; < --- < xy4 satisfying Eq. (2.3). If |o;| < a{‘,
k>0, g; € C[x1, xy41] and

_aix+4" ()
el By

Fir(x,y) 3.1)
yi, = D) M, forr=1,2,.... k. (3.2)
aj — o ay — oy

Suppose
FiyOnvgts yn+1,0) = Fipr,(x, 310), 1 =2,3,...,N, r=1,2,...,k,

then the IFS {(L;(x), F;(x,y) :i =1,2,..., N} determines f € Ck[xl,xN+1] and
f© is the FIF associated with {(L;(x), F;,(x,y):i=1,2,...,N, r=1,
2,...,k}.

3.1 Hermite Cubic Fractal Spline

Let {(x;, yi,d;):i =1,2..., N+ 1} be the data set with x; <x, < --- < xXy41,
where y; denote the function values and d; represent the derivatives, at the points x;.
In [2], a C'-cubic Hermite FIF f is constructed with the constraint |o;| < sa; < 1
for0 < s < 1 employing the above-described theory of fractal splines. LetG = {g €
C' (I, R)|g(x1) = y1, g(ens1) = yng1, 8V (x1)=d1, gV (xy41) = dy1}. The met-
ric induced by the C! norm, given by | gllct = max{||glleo. lIg" [loc}, is denoted

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 39
S. Banerjee et al., Fractal Patterns with MATLAB,

SpringerBriefs in Complexity,

https://doi.org/10.1007/978-3-031-48102-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48102-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3
https://doi.org/10.1007/978-3-031-48102-4_3

40 3 Differentiable Fractal Functions

by p. Then the metric space (G, p) is complete. The Read-Bajraktarevi¢ (RB) oper-
ator 7 is defined on (G, p) as

(T)(x) = aig(L; () + qi(L7' (x)),

where g; is a suitable cubic polynomial satisfying g; (x1) = y; — «; y1 and g; (xny+1) =
yi+1 — o;yn+1. The contractivity of T on the complete metric space (C, p), yields
a unique fixed point (say) f. Furthermore, to obtain the functional equation of
the derivative f’, define a complete metric space (G*, p*), where G* = {g* €
CI,R)|g*(x1) =dy, g*(xyy1) = dyy1} and p* is the uniform metric. Now the RB
operator 7* on (G*, p*) is defined by

@i g* (L7 (%)) + g/ (L7 (x))
a;

(T7g")(x) =

The unique fixed point of 7* is the required derivative f” satisfying
ai f'(Li(x)) = a; f'(x) + q; (x).

Here, the choice of cubic polynomial ¢; should satisfy f(x;) =y, f(xy41) =
yn+t1, f(x1) =dy, f'(xy+1) = dys1. As the function f is defined piecewisely via
the maps L;, the cubic polynomial g; is simply taken as,

3 2
gi(x) = A; (i) +B, (l) +C (ﬁ) +Di, (33)
XN+1 — X1 AN+1 — X1 XN+1 — X1

where the unknowns A;, B;, C;, D; are determined as follows

Ai =hi(dip1 +di) —ai(dn+1 +dD) N+ — x1) = 2041 — ¥i) + 20N+ — Y1),

Bi = —hi2d; +di41) +30i+1 — i) —ai[—(en41 —x1)(2dy +dn) +3(yn+1 — YD,
Ci =hid; — ojdi(xN+1 — x1),

Di =yi —aiy1,

X—X|
AN+1—X1

here h; = x;4+; — x;. Taking 6 =
that

and substituting the unknowns, it is seen

FLi(x) =a; f (x) 4+ {hi(dis1 + di) — i (dni1 +d)(Xys — x1) — 21 — Yi)
+2(yv4+1 — Y0} + { — hiQd; + di1) + 3(i1 — yi)
— oi[—(xn41 — x1)2d1 +dys1) + 3w — y1)1}6°

+ {hidi — a;di(xy41 — x)}0 + yi — iy,
(3.4)

3.1 Hermite Cubic Fractal Spline 41

the function f satisfying Eq. (3.4) is called as the C'-cubic Hermite fractal interpola-
tion function. The MATLAB code for generating Hermite fractal splines is provided
as follows.

%A constructive approach to cubic Hermite fractal interpolation
function
clc;clear all;close all;
x=[0 0.2 0.5 0.7 0.9];
y=[1 0.5 1.5 -1 27;
Data=[x" y’]
Py=[5 4 8 6 T];
iter =8;
Ix=length (x);
for i=1:1x—1
h(i)=x(i+1)—x(i);hn=(x(1x)—x(1));%Length of interval of first (
n—1) values
a(i)=h(i)/hn;
b(i)=((x(i)*x(lx))—(x(i+1)*x(1)))/hn;
end
%d=Arithmetic_meansvalue (x,y)
alpha=[0.2 0.3 0.2 0.1]
Jalpha=[0.1 0.3 0.1 0.2]
Yalpha=[0 0 0 0]
d=cubicFIF_derivative (x,y, alpha)
[X Y]=Const_HermiteCubicFIF (x,y, alpha ,d,iter);
plot(X,Y, 'b—");hold on
plot (x,y,’ .k’ , markersize’ ,20);
9%%Generating new data points
function [X1 Y1]=Const_HermiteCubicFIF(x,y,alpha ,d, iter)
Ix=length (x);
for i=1:1x—1
h(i)=x(i+1)=x(i);hn=(x(Ilx)—x(1));%Length of interval of first (
n—1) values.
a(i)=h(i)/hn;
b(i)=((x(i)*x(Ilx))—(x(i+1)*xx(1)))/hn;
end
abvalue=[a’ b’]
N=length (x);
for i=1:1x—1
YDofprintf("———1i value =%d",i)
third=alpha (i)*[—hnx(d(1)+d(N)) —2%(y(N)=y (1))];
AA(i)=h(i)*(d(i)+d(i+1)) —2x(y(i+1)—y(i))—alpha(i)*[hn*(d(1)+d(N
)) —2%(y (N)=y (1)) 1:%
first term
BB(i)=—h(i)*[2xd(i)+d(i+1)]+3x[y(i+1)—y(i)]—alpha(i)*[—hn=*(2xd
(1)+d(N)) +3x(y (N)—
y(1))];%second term
CC(i)=h(i)xd(i)—alpha(i)*xd(1l)xhn; % third term
DD(i)=y(i)—alpha(i)*y(l);
end
ABCD=[AA’ BB’ CC’ DD’];
L=[1LI=[]:X1=[];YI=[];X=[];Y=[];
p=Ix;
for k=1:iter
for i=1:1x—1

42 3 Differentiable Fractal Functions

for tl=1:p
if (k==1)
L(i,tl)=(a(i)*x(tl))+b(i);
theta (t1)=(x(tl)—x(1))/(x(p)—x(1));
Q=(AA(i))*(theta (tl))"3+BB(i)*(theta(tl))"2+CC(i)x*(theta (
t1))+DD(1i);
Li(i,tl)=Calpha(i)*y(tl))+Q;
else
YDofprintf(C————[i,tl ,pl=(%d,%d,%d) ,i,tl ,p)
L(i,tl)=(a(i)*«X1(tl))+b(i);
theta (t1)=(X1(tl)=X1(1))/(X1(p)=X1(1));
Q=(AA(i))=*(theta(tl))"3+BB(i)=*(theta(tl))"2+CC(i)=*(theta(
t1))+DD(i);
L1(i,tl)=(Calpha(i)*xY1(tl))+Q;
end
end
X=[X L(i,:)];
Y=[Y L1(i,:)];

end

X1=X; Yi=Y;

X=[1; Y=I[1;

p=length (X1);
end

XX=[X1" Y1’7];
XXX=unique (XX, "rows ") ;
X1=XXX(:,1);Y1=XXX(:,2);
end

L0107 OO 070707 O O O OO O OO L OO OO0
07070707070 707d7070 70 70 7070707070 70 10707070 70

%% Finding the derivative values
function d_new=cubicFIF_derivative (x,y,alpha)
ul=5.4523; u2=5.4523;
N=length (x);
for n=1:N-1
a(n)=(x(n+1)—x(n)) /(x(N)=x(1));
h(n)=x(n+1)—x(n);
end
% Computing co—efficient matrix
A(l)=((a(1l)x a(l))—alpha (1))*xh(1);%Al Value
Al(1)=4xa(1l)*a(l)*(l —(Calpha (1)/h(1))*(x(N)=x(1))));%Al* Value.
mu(l)= 2xa(l)*xa(l);
Bl(1)= —2xa(l)=xa(1l)=*(alpha(l)/h(1))*(x(N)—x(1));
beta (1)=(6xa(l)*a(l)*(((y(2)—y(l))—(alpha (1) *(y(N)-y(1))))/h(1)))
—(A(1)*ul);
B(N)= —((a(N—=1)xa(N—1))—alpha(N—1))xh(N—1);
BI(N)= 4xa(N—1)xa(N—1)%(1 —((alpha (N—1)/h(N—1)) *(x(N)—x(1))));
Al (N)=—=2% (alpha(N—=1)/h(N—-1))*xa(N—1)xa(N—=1)*(x(N)—x(1));
lam (N)=2xa(N—1)xa(N—-1);
beta (N)=(6*xa(N-1)*xa(N-1) «(((y (N)—y(N—1)) —(alpha (N=1)*(y(N)—y (1)))
)/h(N-1)))—
(B(N)* u2);

% Computing the remaining values of co—efficient matrix
for n=2:N-1

mu(n)= h(n—1)/(h(n—1)+h(n));

lam(n)= 1—-mu(n);

3.1 Hermite Cubic Fractal Spline

A(n) = —(alpha(n)*h(n)xh(n—1))/(2xa(n)*a(n)*(h(n)+h(n—1)));

43

B(n)= (alpha(n—1)*h(n)xh(n—1))/(2xa(n—1)*xa(n—1)*x(h(n)+h(n—-1)));
Al(n)= —(1/(h(n)+h(n—=1)))*(x(N)=x(1))=*(2*alpha(n)*(h(n—1)/h(n))

+ alpha(n—1)x(h(n)/
h(n-1)));

Bl(n)= —(1/(h(n)+h(n—=1)))*(x(N)=x(1))=*(alpha(n)*(h(n—1)/h(n))+

2xalpha(n—1)*(h(n)/
h(n-1)));

beta(n)=(3%«(h(n—1)/(h(n)+h(n—=1)))*% (((y(n+1)—=y(n))— (alpha(n)x*

(y(N)=y (1))))/

h(n)))+ (3*(h(n)/(h(n)+h(n—-1)))* (((y(n)-y(n-1))— (alpha(n—-1)x

(y(N)=y (1))))/
h(n—1)))—(A(n)*ul)—(B(n)*u2);
end
% Assign zero to the co—efficient matrix
C=zeros (N,N);
%The value of first column of The co—efficient matrix
for n=1:N

if n ==
C(n,l)= Al(n) + lam(n);
else
C(n,1)= Al(n);
end
end

% The value of last column of the co—efficient matrix
for n=1:N
if n ==N-1
C(n,N) = Bl(n) + mu(n);
else
C(n,N) = Bl(n);
end
end
%The value of the intermediate columns

for n =2:N-—1
C(n—1,n)=mu(n—1);

C(n,n)=2;
C(n+1,n)=lam (n+1);
end

Cinv=inv (C);

% Take RHS in column vector
betat=beta ’;

d = Cinvxbetat;
deriv_value=d’;
d_new=deriv_value ;

end

(AR olvivavavavavRvlvdvivavavRvR vl vavavav Ry Ry RvavAvA YAy,
07070707070 707d707070 7070 707070707070 70 710707070 70 707070707

function [d]=Arithmetic_meansvalue (x,y)
N=length (x);
for n=1: N—1

h(n)=x(n+1) — x(n);

del(n) = (y(n+1)— y(n))/h(n);

end
ad (1) = del (1) + (h(l)=x(del(1)—del(2)))/(h(1)+h(2));
ad(N) = del(N—=1) + (h(N—1)*(del (N—=1)—del (N—=2)))/(h(N—=1)+h(N-=2));

44 3 Differentiable Fractal Functions

gd(1) = del(l).~(C 1+ (h(1)/h(2)))*((h(2)*xdel(2) + h(l)xdel(1))/(h
(1)+h(2))).~(—=h(1)/
h(2));
gd(N) = del(N—=1).A(1+(h(N=1)/h(N=2))) *((h(N=2)xdel (N=2) + h(N—-1)x*
del (N=1))/(h(N=1)+
h(N=2))) A(—h(N=1)/h(N=2));
for n=2:N-1
ad(n)= (h(n)*xdel(n—1)+ h(n—1)*xdel(n))/(h(n)+h(n—-1));
gd(n) = del(n—=1).~(C h(n)/(h(n—=1)+h(n))) *x del(n).” (h(n—=1)/(h(n
—1)+h(n)));
end
d=ad;
end

3.1.1 Numerical Computation

Let {(0, 1), (0.2, 0.5), (0.5, 1.5)(0.7, —1), (0.9, 2)} be the given set of interpolation
data. For the construction of Hermite cubic FIF, the derivatives are computed using
the reference [2]. To observe the effect of scaling parameters, different choice of
scaling constants are chosen as given in Table 3.1. The different Hermite cubic FIFs
are shown in Fig.3.1a, b and ¢ by modifying «; and derivative values with the help
of arithmetic mean method. The classical Hermite cubic FIF is constructed with the
zero scaling vector and its graph is shown in Fig.3.1d.

3.2 Cubic Fractal Spline Using Moments

In [3], moments are used to construct the fractal splines. The moments M; are defined
by
Mi=f(x),i=12,...,N+1

Suppose the function f € C*[x;, xy] and whose graph is the fixed point of the iter-

ated function system {(L; (x), F;(x, y)),i = 1,2,..., N — 1} satisfying f(x;) = y;,
where

Table 3.1 Scaling parameters and derivatives associated with Hermite cubic FIF

Scaling parameters Derivatives

[0.2, 0.3, 0.2, 0.2] [36.8326, 69.8087, 45.9254, 54.3726, 95.5692]
[0.1, 0.3, 0.1, 0.2] [—0.2222,45.7367, 34.8190, 16.1667, 119.8519]
[0.2, 0.3, 0.2, 0.1] [—2.6762, 18.7817,0.15568.6348, 30.0928]

[0, 0, 0] [—5.6932, 3.3412, —9.4163, —1.6732, 23.6092]

3.2 Cubic Fractal Spline Using Moments 45

(c) (d)

Fig. 3.1 Hermite cubic fractal interpolation function

Li(x) = aix + b;,
Fi(x,y) = aja;y + a}q;(x),

with 0 < |o;] < 1 and ¢; being a cubic polynomial, then f is said to be cubic spline
fractal interpolation function. From the narration of spline FIF in the above sections,

it follows that ()
FLiG) =a f 0+ =220 4 g 3.5)
XN — X1

From Egs. (2.3), (3.5) and the assumption M; = f "(x;), the parameters ¢; and d; are
determined as

Cci = Ml'+1 — M,' —Oli(MN - M1)1
di = Mi —(X,‘Ml.

46 3 Differentiable Fractal Functions
Then, fori =1,2,..., N,

(Miy1 —aiMyy1)(x — x1) n (M; — a; M) (xn41 — X)
XN+1 — X1 XN+1 — X1 .

FLix) =ai f (x)+

On integrating the function f twice,

(Mip1 — i My (x —x1)3 (M; —a; My)(xy41 — x)°
6(xN4+1 — X1) 6(xN+1 — X1)
+cf (i —x)+df (x —xl)},

F(Li(x) = a?{a; f(x) +

(3.6)

With L;(x1) = x;, Li(xy+1) = x;4+1 and the interpolation conditions, the constants
¢} and d; are obtained as

o 1 (ﬁ Cay) - (M; — o; M) (xy11 — X1)

(v —x) \@f o 6 ’
o 1 Vit ~ (Miy1 —aiMyi 1) (N1 — X1)
(xn41—x1) \ a? PN 6 '

On substituting ¢} and d;* in the Eq. (3.6), the functional equation of f can be obtained
in terms of moments. The following is the MATLAB code corresponding to the above
discussed theory for developing fractal functions using moments.

%Fitting the cubic spline FIF using derivative boundary
conditions y’(x_1)=fdl and y’ (x_N)=fd2.

function []=Cubic_itperpolation ()

clc;clear all;close all;

x=[50 60 72 100];y=[82 50 78 40];%Data set

n=length (x);

iter=input(Enter the no.of interations:=");

Size=n

Alpha=input(’ Enter the alpha wvalues(Size —1):=");

m=Moments (x,y, Alpha) ;%Finding the moments

[X,Y]=Cubic_simplification (x,y, Alpha,iter ,m);

XYvalues=[X Y];

9%% Ploting graph

plot (x,y,’ .k’ , markersize’ ,30);hold on;plot(X,Y, .b’, markersize
",4);hold on;plot(X,Y, r—");

end

9%% Generated data (Using Moments)

function [X1 Y1]=Cubic_simplification(x,y,alpha, iter ,m)

n=length (x);
p=n;
for i=1l:n—1
a(i)=(x(i+1)—x(i))/(x(n)=x(1));
b(i)=((x(n)*x(i))—=(x(1)*x(i+1)))/(x(n)—x(1));a2(i)=b(i);
end
abvalues=[a’ b’]

3.2 Cubic Fractal Spline Using Moments 47

for i=1:n—1
q=(x(n)=x(1));
ql=m(i+1)—alpha(i)*m(n);
q2=m(i)—alpha (i)xm(1);
a3=(y(i)/(a(i)r2))—alpha(i)*y(1);
q4=(y(i+1)/a(i)"2)—alpha(i)*y(n);
sl(i)=power(a(i) ,2)*(ql—q2)/(6xq);s2(i)=power(a(i) ,2)=(x(n)*xq2—
x(1)xql)/(2%xq);
s3(i)=power(a(i) ,2)*«(((3xqlxpower(x(1l) ,2))—(3xqg2*xpower(x(n) ,2))
)/ (6xq)+(q2—ql)*(q/6)+(q4—q3)/q);
s4 (i)=power(a(i) ,2)*x(((gq2xpower(x(n) ,3))—(qlsxpower(x(1l),3)))
/(6%xq)+(x(1)*xql—x(n)*q2)*(q/6)+(x(n)*xq3—x(1)*xqd4)/q);
s5(i)=power(a(i) ,2)xalpha(i);
end
9% %o
95%6%
X=[1:Y=[];
for k=1:iter
for i=1l:n—1
for t=1:p
if (k==1)
L(i,t)=(a(i)*x(t))+b(i);
L1(i,t)=s5(i)*xy(t)+sl(i)*power(x(t) ,3)+s2(i)*xpower(x(t)
,2)+s3 (i) xx(t)+s4(i);

else
L(i,t)=(a(i)*X1(t))+b(i);
L1(i,t)=s5(i)*xYl(t)+sl(i)*xpower(XI1(t) ,3)+s2(i)*xpower(XI(t
) ,2)+s3 (i)xX1(t)+s4(i);

end
end
X=[X L(i,:)];
Y=[Y L1(i,:)1;
end
g=[X" Y],
g=str2num (num2str(g,10));g=unique (g, 'rows ’);
Xl=g(:,1); Yl=g(:,2); p=length(X1);X=[1;Y=[];
end
end
9% Finding the moments
function [m]=Moments (x,y, alpha)
n=length (x);
for i=1:n—1% Here finding a,b,c,d values
a(i)=(x(i+1)—x(i))/(x(n)=x(1));
b(i)=((x(n)*x(i))—(x()*x(i+1)))/(x(n)—x(1));
end
for i=1:n-1
h(i)=x(i+1)—x(i);

end
for i=1:n
if i==1

as (i)=6x(l—a(i)*alpha(i));ca(i)=2%((l —alpha(i))xh(i));la(i)=h
(i);cb(i)=—alpha(i)xh(i);
d(i)=(y(i+1)—y(i)—(alpha(i)=(a(i)*2)*(y(n)=y(i))))*(6/h(i));

48 3 Differentiable Fractal Functions

elseif i==n
ca(i)=—alpha(i—1)xh(i—1); mu(i)=h(i—1);cb(i)=2%(1—alpha(i—1))
#*h(i—1);bs(i)=—6%(1—a(i—1)xalpha(i—1));
d(i)=—(y(i)=y(i—1)—(alpha (i —D#(a(i—1)"2)*(y(i)=y(1)))) *(6/h(
i—-1));
else
as(1)=—6x%((a(i)*xalpha(i))/(h(i—1)+h(i)));
ca(i)=—((alpha(i—1)xh(i—1)+2x(alpha(i)*h(i))))/(h(i)+h(i—-1));
la(i)=h(i)/(h(i—=1)+h(i));mu(i)=l—la(i);cb(i)=—(((2xalpha(i—1)
«h(i—1))+(alpha(i)*h(i)))/(h(i—1)+h(i)));
bs(i)=6x(a(i—1)xalpha(i—1)/(h(i—-1)+h(i)));
A1 (i) =(((y(i+D=y(i))/h(i)) —(((y(i)=y(i=1))/h(i=1)))):
d2(i)=((a(i)=*alpha(i))—(a(i—1)xalpha(i—1)))*(y(n)-y(l))/(x(n)

—x(1));
d(i)=6%(dl(i)—d2(i))/(h(i)+h(i—-1))
end
end
fdl=input(Enter the Initial Derivative value:=");
fd3=input(Enter the End Derivative value:=");

fdl =2;fd3=5;% Here using derivative boundary condition of type 1.

dd=[d(1)—as (1)xfdl d(2)—as(2)xfdl—bs(2)*fd3 d(3)—as(3)«xfdl—-bs(3)
*fd3 d(4)—bs(4)xfd3];

aa=[ca(l) la(l) O cb(l);ca(2)+mu(2) 2 la(2) cb(2);ca(3) mu(3) 2
la(3)+cb(3);ca(4) 0 mu(4) cb(4)];

m=inv (aa)x*dd ’;

m=m’ ;

Moments_values=m

end

3.2.1 Numerical Computation

Let {(50, 82), (51, 50), (52, 78), (53, 40)} be the given data set. With the assump-
tions f’(x;) = 100 and f’(xy) = 10, the C*>-cubic spline FIFs are computed. The
system of equations is solved using the reference [3]. Different set of scaling factors
and moments are provided in Table3.2. The effects of perturbation in the scaling
factor with respect to the IFS parameters are shown in Fig. 3.2. The graphs of gen-
erated C? continuity of the cubic FIF are shown in Fig. 3.2a and b with the modified
scalings. Figure 3.2c demonstrates the classical cubic FIF, which is retrieved (from
Fig.3.2a) by setting all the scaling factors to be zero.

Table 3.2 Scaling parameters and moments associated with the C2-cubic spline FIF

Scaling parameters Moments

[0.8,0.8,0.9] [—214.6452,433.1183, —100.7957, 657.0753]
[0.9,0.9,0] [—416.1359, 106.7961, —183.7087, 220.8544]
[0, 0, 0] [—2.3245, 1.5290, —0.9025, 1.1323]

3.3 Rational Fractal Spline 49

50 [70 40 %0 100 50 60 70

(a) (b)

(c)

Fig. 3.2 Cubic fractal interpolation function with moments

3.3 Rational Fractal Spline

The rational cubic fractal interpolation function with numerator as cubic polynomial
and denominator as linear function is defined in [4] by

P;(0)
L; =o fi + ——, 3.7
SLix) =a; f; + 0,0) 3.7

50 3 Differentiable Fractal Functions
where,

Pi(0) = ri(yi —eryD)(1 = 0) + 1;(yiy1 — e1yn)0 + {@ri + 1) y; + rihid;
—a;[r; + 1)y + 1oy — xD1} + { (i + 26)yip — tihidig
—a;[(ri + 1) yn — ti(xy — x1)]}

0:(0) = ri(1 —O)r; + ;6.

Consider the prescribed data set {(x;, y;) :i =1,2,..., N + 1}. The derivatives
at the knots x; are denoted by d;. For simplicity, take h; = x;+1 — x;, for i =
1,2,...,N — 1. Let r; and #; be the free shape parameters, in order to maintain
the positiveness of the denominator in rational fractal splines, the parameters are
restricted to be r; > 0 and #; > 0. Readers are recommended to see the articles [5, 6]
for the construction of rational cubic spline fractal functions. The following equation
provides the C! rational cubic spline with numerator as cubic polynomial and the
denominator as linear function,

(L= 0)riyi +0(1 = 0V; + 0>(L = OOWi + 0*tyi

Fa)) = (1= 0y + 01,

here,

Vi=Q@ri + 1)y + rihid;,
Wi = (ri +26)yiq1 — tihidiq,
X — X1
0= ——m.
XN+1 — X1
To construct the fractal perturbation f of the rational cubic spline , the scaling factor
is chosen so that |o;| < a; and the family of base functions are defined by

by = Bl = 0)* + By0(1 — 6)> + B3;6%(1 — 0) + By6>
S (I = O)ri + 01 ’

such that each function b; should agree the prescribed function f at the end points
of the interval of interpolation. The coefficients are given by

By = riy1,

By = 2ri + 1)) y1 + ridi(xy 41 — x1),

B3 = (ri + 2t;))yn+1 — tidyy1(xy41 — X1),
By = tiyn+1-

3.3 Rational Fractal Spline 51

Now the C! rational cubic fractal spline is expressed by

FULI) = f () +) (3.8)
e 0i(x)’ '

where,

Pi(x) = P*(0) = (yi —ajypDri(1 — 0)° + (i1 — aiyN+166° +{Qri +1)yi + rihid;
— i [@ri + 1)1 + ri(xy — x)DA DO — 0% + {7 + 21 yi11 — tihidy g1

— i [(r; + 21)yN 41 — (e 1 — xDdy 111167 (1 — 6),
0i(x)=0%O) =0 —-0)r; +0t;, i =1,2,...,N,
g _X—%
XN4+1 — X1

The MATLAB code is provided to produce the rational cubic fractal functions.

%Rational FIF with cubic as numerator and denominator as linear
clc;clear all;close all;
x=[0 2 3 6 7];y=[5 4 8 6 7],
iter =6;
Ix=length (x);
for i=1:1x—1
h(i)=x(i+1)=x(i);hn=(x(Ilx)—x(1));%Length of interval of first (
n—1) values.
a(i)=h(i)/hn;
b(i)=((x(i)*x(lx))—=(x(i+1l)xx(1l)))/hn;
end
[a b]
%r=1000«[3.1 1 1 1];t=[1 1 1 1];alpha=[0.24 0.1 0.35 0.11%%
Examplel
Jr=[3.1 1 1 1];t=[1 1 1 1];alpha=[0.24 0.1 0.35 0.1]%Example2
r=1000%[3.1 1 1 1];t=[1 1 1 1];alpha=[0.1 0.1 0.1 O.1]%Example3
%r=1000«[3.1 1 1 1];t=[1 1 1 1];alpha=[0 0O 0 0]% Classical
d=Arthemetic_meansvalue (x,y)
[X Y]=Const_CubicFIF(x,y,r,t,alpha ,d,iter);
plot(X,Y, b—");hold on
plot (x,y,’ .k’ , markersize’ ,20);
W otlatladlotledledledldledledledle
function [X1 Y1]=Const_CubicFIF(x,y,r,t,alpha ,d,iter)
Ix=length (x);
for i=1:1x—1
h(i)=x(i+1)=x(i);hn=(x(Ilx)—x(1));%Length of interval of first (
n—1) values.
a(i)=h(i)/hn;
b(i)=((x(i)*x(lx))—=(x(i+1l)xx(1l)))/hn;
end
avalue=a
for i=1:1x—1
cfl (i)=(y(i)—alpha(i)xy(l))*xr(i);%first term
cf2(i)=(y(i+1)—alpha(i)*xy(lx))*t(i); % secondterm
cf31(i)=2*r(i)+t(i))*xy(i)+r(i)*xh(i)*d(i);
cf32(i)=2*«r(i)+t(i))*xy(l)+r(i)*xhnxd(l);

52 3 Differentiable Fractal Functions

cf3(i)=cf3l(i)—alpha(i)*cf32(i);

cfdl (i)=(r(i)+2xt(i))xy(i+1)—t(i)*xh(i)*xd(i+1);
cfd2 (i)=(r(i)+2xt(i))*xy(lx)—t(i)*xhnxd(1lx);

cfd (i)=cfdl (i)—alpha(i)*cfd2(i);

Pla’ b’ cfl’ cf2’ cf3’ cfd]

—_ 1l —
—
Il
—_
—

r k=1:iter
for i=1:1x—1
for tl=1:p
if (k==1)
L(i,tl)=(a(i)*x(tl))+b(i);
theta (t1)=(x(tl)=x(1))/(x(p)—x(1));
Lil=(cfl(i))*(l—theta(tl))"3;
L12=(cf2(i))*(theta(tl))"3;
L13=cf3(i)=*(theta(tl)x(l—theta(tl))"2);
Lld4=cf4 (i) *((theta(tl))"2x(l—theta(tl)));
px=L11+L12+L13+L14;
pxx=(1—theta (tl))*xr(i)+theta(tl)*xt(i);
Li(i,tl)=(Calpha(i)*y(tl))+(px/pxx);
else
L(i,tl)=(a(i)*=X1(tl))+b(i);
theta (t1)=(X1(tl1)=X1(1))/(X1(p)—-X1(1));
Lil=(cfl(i))*(l—theta(tl))"3;
L12=(cf2(i))*(theta(tl))"3;
Li13=cf3(i)=*(theta(tl)x(l—theta(tl))"2);
Lld4=cf4 (i) *((theta(tl))"2x(l—theta(tl)));
px=L11+L12+L13+L14;
pxx=(1—theta (tl))*xr(i)+theta(tl)*xt(i);
Li(i,tl)=(Calpha(i)*YL(tl))+(px/pxx);
end
end
X=[X L(i,:)];
Y=[Y L1(i,:)];

oy =
—_
tal

end

X1=X; Y1=Y;

X=[1]; Y=[1];

p=length (X1);
end

XX=[X1" YI’];
XXX=unique (XX, "rows ") ;
X1=XXX(:,1);YI=XXX(:,2);
end

function [d]=Arithmetic_meansvalue (x,y)
N=length (x);
for n=1: N—-1
h(n)=x(n+1) — x(n);
del(n) = (y(n+1)— y(n))/h(n);
end
ad (1) = del (1) + (h(l)*x(del(1)—del(2)))/(h(1)+h(2));

3.3 Rational Fractal Spline 53

ad (N) del (N—1) + (h(N—=1)*(del(N—=1)—del (N=2)))/(h(N=1)+h(N-=2));
gd (1) del (1) .~(1+ (h(1)/h(2)))*((h(2)xdel(2) + h(l)xdel(1l))/(h
(1)+h(2))).~(=h(1)/
h(2));
gd(N) = del(N=1).A(1+(h(N=1)/h(N=2))) *((h(N—=2)xdel (N—2) + h(N—-1)x*
del (N—=1))/(h(N-1)+
h(N=2))) A —h(N-1)/h(N=2));
for n=2:N-1
ad(n)= (h(n)*xdel(n—1)+ h(n—1)*xdel(n))/(h(n)+h(n—1));
gd(n) = del(n—1).~(h(n)/(h(n—1)+h(n))) * del(n).” (h(n—1)/(h(n
—1)+h(n)));

end
d=ad;
end

3.3.1 Numerical Computation

Consider the data set {(0,5), (2,4), (3, 8), (6,6), (7,7)}. The derivative values
(d;, i =1,2,3,4,5) are estimated using the arithmetic mean method: d; = —3.5,
dy =2.5, dy =2.8333, dy =0.5833, ds = 1.4167. The rational cubic FIFs are
generated with the scaling parameters and shape parameters as given in Table 3.3.
The graphs of rational cubic FIFs are illustrated in Fig.3.3a, b and c. The classi-
cal version of rational cubic FIF is obtained with the choice a = (0, 0, 0, 0) and its
corresponding graph is demonstrated in Fig. 3.3d.

Table 3.3 Scaling parameters and shape parameters associated with the rational FIF

Scaling parameters Shape parameters Figure

[0.24,0.1,0.35,0.1] r=1000%[3.1,1,1,1], t =[1,1,1,1] Figure 3.3a
[0.24,0.1,0.35,0.1] r=[31,1,1,1], t=[1,1,1,1] Figure 3.3b
[0.1,0.1,0.1,0.1] r=1000=%[3.1,1,1,1], r=[1,1,1,1] Figure3.3¢c
[0,0,0,0] r=1000x[3.1,1,1,1], r=[1,1,1,1] Figure 3.3d

54 3 Differentiable Fractal Functions

(© (d)

Fig. 3.3 Rational cubic fractal interpolation function with linear denominator

References

1. MLE. Barnsley, A.N. Harrington, The calculus of fractal interpolation functions. J. Approx.
Theory 57(1), 14-34 (1989)

2. AK.B. Chand, P. Viswanathan, A constructive approach to cubic Hermite fractal interpolation
function and its constrained aspects. BIT 53(4), 841-865 (2013)

3. A.K.B. Chand, G.P. Kapoor, Generalized cubic spline fractal interpolation functions. SIAM J.
Numer. Anal. 44(2), 655-676 (2006)

4. AK.B. Chand, P. Viswanathan, K.M. Reddy, Towards a more general type of univariate con-
strained interpolation with fractal splines. Fractals 23(4), 1550040, 12 (2015)

5. S.K. Katiyar, A.K.B. Chand, G. Saravana Kumar, A new class of rational cubic spline fractal
interpolation function and its constrained aspects. Appl. Math. Comput. 346, 319-335 (2019)

6. N. Balasubramani, M. Guru Prem Prasad, S. Natesan, Shape preserving «-fractal rational cubic
splines. Calcolo 57(3), 21 (2020)

Chapter 4 ®)
Fractal Interpolation Surfaces oo

The most general form of data encountered in real life problems is three dimensional
data that can be visualized as surfaces. Surface interpolates play vital role in indus-
try, geology, diagnosis and CAD [1]. The usual solution to a problem of surface
interpolation is to determine a bivariate function z = f(x, y), which assumes finite
discrete values in a given domain. However, the construction of surface interpolation
function is not an easy process comparing to univariate classical interpolations. For
more details on the construction of fractal interpolation surfaces, visit [2-5].

4.1 Construction of Fractal Surfaces

First we will construct Rational Fractal Interpolation Function (RCFIFs) along the
grid lines in the domain of surface interpolation data in Sect.4.1.1. In Sect.4.1.2, a
partially blended RCFIF is constructed by using the univariate RCFIF and blending
functions.

4.1.1 RCFIFs Along X-direction and Y-direction

Consider a surface interpolation data set {(x;, y;, fi.j, f;» £7;) : i € Nu, j € Nu},
where N, denotes first n-natural numbers.

RCFIFs along X-direction: For each j € N, (along the j-th grid line parallel to
x-axis), the construction of univariate FIFs W (x, y;) and W (x, y;1) are presented.
Consider

1 b @) .
Wx, yj) =aij(L; (%), yj) + ———=, i € Ny, (4.1)
0;,;0)
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 55

S. Banerjee et al., Fractal Patterns with MATLAB,
SpringerBriefs in Complexity,
https://doi.org/10.1007/978-3-031-48102-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48102-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4
https://doi.org/10.1007/978-3-031-48102-4_4

56 4 Fractal Interpolation Surfaces

where,
PO = (fij—aijfi;(1 =07 +{ri;fi; +hi f; —ailrijfij
+ v — XD A= 0020 + {rij figrj — hi £ — eulrij fug
+ ey — x) [YA =007 + fij —eij fi;(1—6)°,
X — Xj
Qi,j = 1+ (ri,j —3)9(1 —9), 9 =

, x € I;.

i

RCFIFs along Y-direction: For each i € N, (along the i-th grid line parallel to y-
axis), rational cubic spline fractal interpolation functions W*(x;, y) and W*(x; 1, y)
are presented. Consider

*

P&
Wi, y) = of o, L (0)) + —2—, j € Ny, (4.2)

where,

P@) = (fij —of j fi(L— &) +rijfij + i fY —oflrijfij
+o = XD i3 = @) +{rij fivry — W5 f5 — &7 1ri fu
+Oom —x0) fy A = + fij —af fi; (1 —¢),

0@) =1+ (i, =3 —9). o= 2L y e,
J

4.1.2 Fractal Surfaces by Coon’s Technique

Let us consider a Hermite surface interpolation data set {(x;, y;, fi ;, fl"] fl‘J) S
Ny, j € N,}. The construction of univariate FIFs W(x, y;), ¥(x, y;j+1). And
U*(x;, ¥), ¥*(x;41, y) are discussed with cubic Hermite functions in the follow-

ing. Let
bh3(x) = (1= 0)*(1+26),
bl 1(x) = 6*(3 — 20),
b)) = (1 — $)*(1 +2¢),
bi5() = ¢*(3 - 2¢).

4.1 Construction of Fractal Surfaces 57

Fig. 4.1 Continuity domain (X, Yji2) (Xiss, Yie2) (Xis2, Yji2)
(X.J yji-l}
Di,j+1 Di+l,}+1
(x;, Vju} (Xist Vju) (an'yju}
Di,j Di+l,j
(i, vj) (Xir1 ¥j) (X2, ¥j)

On each individual patch D; ; = I; x J;,i € N,_1, j € N,_; (see Fig. 4.1), a
blending rational cubic spline FIS is defined using the blending coons technique as

‘ ‘ 0 W(x,y;) Wix, yjt+1) j_l
O(x,y) = — [_1 by 3(*) b’3’3(x):| U*(x;, y) fij Ji,j+1 bQ,a(y)
Vi1,) fir1 fitlj+ bé 3(»)

The function interpolation surface @ interpolate the given data at grid points. The
MATLAB code of rational cubic FIS [6, 7] is illustrated in the following.

Y%Fractal surface R(X)=P(X)/Q(X) from P(X) is cubic and Q(X) is
Quadratic .

%Here scaling factor is alpha and shape parameter is r.

J%Inputs are (x,y,z,alphax ,alphay ,rx ,ry, partial derivatives (dx,
dy)).

%Outputs are "fractal surfaces"

clc;clear all;close all;

format(’ short)

x=[0 2 6 11];y=[0 3 7 8];%Given Data

iter =4;

grid on

m=length (x);n=length(y);

z=[1 10 8 11 ;2 11 9 12;3 12 10 14;4 13 12 15];

Ix=length(x);ly=length(y):;N=length (x);M=length(y);

pl=1x;p2=1ly;

dx=[4.5 1.5 0.13 1.37;4.5 1.5 0.12 1.37;4.5 1.5 0.25 1.75;4.45
1.61 0.25 1.25];

Jodx=dx’

dy=[5 2.5 0.42 0.1;0.5 0.5 0.5 0.1;0.5 0.5 0.5 0.5;0.25 0.75 0.75
0.257;

58 4 Fractal Interpolation Surfaces

Y%dy=dy’
% Free Shape parameters
rx=0.5%xones (1x —1,1y);
ry=100%ones (1x ,1ly —1);
alphax=[0.2 0.25 0.25 0.2;0.35 0.3 0.35 0.34;0.35 0.35 0.35
0.34];
alphay =[0.124 0.562 0.30;0.125 0.562 0.30;0.125 0.562 0.3;0.125
0.562 0.37;
for i=1:1x—1
h(i)=x(i+1)—x(i);
end
for 1=1:1y -1
hy (1)=y (1+1)—y (1)
end
Joxxxxx Definitions of Matrices skkkx
a=zeros (1,lx —1);b=zeros (1,1x —1);
Lx=[];Lx1=[];Lx2=[];
X na=[];X1=[];Zx1=[];
X=[]:Zx2=[1;
a=zeros (1,ly —1);b=zeros (1,ly —1);
Lyy=[];Lyl=[];Ly2=[];
Yi=[];Y=[];
Zyl=[1;Zy2=[1;
L=[];L1=[];L2=[];
L22=[];L222=[];
X11=[];Y1l1=[];
Z11=[]1;7Z22=[];
XX=[1:YY=[]:ZZ=[];
N1=N;
Mi1=M;
9%%Finding co—efficients
for k=1:iter
Yok xxxxX—direction (Y is fixed) sskkx
for j=1:3
for i=1:1x—1
9%%———Finding co—efficients if Fixing f(x,y(j))
a(i)=(x(i+1)—x(i))/(x(1x)=x(1));
b(i)=((x(1)*x(1x))—(x(i+1)*x(1)))/(x(1x)=x(1));
Ax(i.j)=(z(i.j)—alphax (i.j)*z(1.j))*rx (i, j);
Dx(i,j)=(z(i+1,j)—(alphax(i,j)*xz(lx,j)))*rx(i,j);
Bx1(i,j)=rx(i,j)*z(i,j)+h(i)*xdx(i,j);
Bx2(i,j)=rx(i,j)*z(l,j)+(x(1x)—x(1))*dx(1l,j);
Bx(i,j)=Bx1(i,j)—alphax(i,j)*Bx2(i,j);
Cx1(i,j)=rx(i,j)*z(i+1,j)—h(i)*dx(i+1,j);
Cx2(i,j)=rx(i,j)*z(lx,j)—(x(Ix)—x(1))*dx(1x,j);
Cx(i,j)=Cxl(i,j)—alphax(i,j)*Cx2(i,j);
9%%———Finding co—efficients if Fixing f(x, y(j+1))
Axx(i,j)=(z(i,j+1)—(alphax (i,j+1)*xz(l,j+1)))*rx(i,j+1);
Dxx(i,j)=(z(i+1,j+1)—(alphax(i,j+1)xz(lx,j+1)))*rx(i,j+1);
Bxx1(i,j)=rx(i,j+D)*xz(i,j+1)+h(i)*xdx(i,j+1);
Bxx2(i,j)=rx(i,j+1)*z(1l,j+1)+(x(1x)—x(1))*dx(l,j+1);
Bxx(i,j)=Bxx1(i,j)—alphax(i,j+1)*Bxx2(i,j);
Cxx1(i,j)=rx(i,j+D)*xz(i+1,j+1)-h(i)*xdx(i+1,j+1);
Cxx2(i,j)=rx(i,j)*z(lx,j)+(x(Ix)—=x(1))*dx(lx,j+1);
Cxx(i,]j)=Cxx1(i,j)—alphax(i,j+1)*xCxx2(i,j);

4.1

Construction of Fractal Surfaces

59

end% end for loop i
abvalues=[a’ b’]

theta=inline (" (x—0)/11");
for i=1:1x -1

for

tl=1:pl

if (k==1)

Lx(i,tl)=(a(l,i)*x(l,tl))+b(1,i);
LII(i,tl)=tl+(i—1)*pl;
P%Fixing f(x, y(j))
Qx=1+(rx(i,j)—=3)x(l—theta(x(tl)))=*(theta(x(tl)));
LxI(i,tl)=(alphax(i,j)*z(tl,j))+(((Ax(i,j)*(l—theta (x(
t1)))"3)+(Bx(i,j)*theta(x(tl))x(l—theta(x(tl)))"2)
+...
(Cx(i,j)=*(theta(x(tl))*2)x(1—theta(x(tl))))+(Dx(i,j)
#*(theta(x(tl)))"3))/Qx);
%Fixing f(x, y(j+1))
Qxx=1+(rx(i,j+1)—-3)x(1—theta(x(tl)))*(theta(x(tl)));
Lx2(i,tl)=(alphax(i,j+1)*xz(tl ,j+1))+(((Axx(i,j)=*(1—
theta (x(tl)))”"3)+(Bxx(i,j)*theta(x(tl))*x(l—theta (x(
tl)))"2) +...
(Cxx(i,j)*x(theta(x(tl))"2)x(l—theta(x(tl))))+(Dxx(i,j
)x(theta (x(tl)))"3))/Qxx);

else

Lx(i,tl)=(a(i)*xx(1l,tl))+b(i);
L11(i,tl)=tl+(i—1)xpl;
Qx=1+4+(rx(i,j)—3)*x(l—theta(xx(tl)))xtheta(xx(tl));
Lx1(i,tl)=(alphax(i,j)*qxl(tl,j))+(((Ax(i,j)*(1—theta(
xx(t1)))"3)+(Bx(i,j)*theta(xx(tl))*x(l—theta(xx(tl))
YA2) 4.
(Cx(i,j)=*(theta(xx(tl))"2)x(l—theta(xx(tl))))+(Dx(i,]
Y*(theta (xx(t1)))”"3))/Qx);
Qxx=1+(rx(i,j)—3)x(l—theta(xx(tl)))*xtheta(xx(tl));
Lx2(i,tl)=(alphax (i,j+1)xqx2(tl ,j))+(((Axx(i,j)*(1—
theta (xx(tl)))"3)+(Bxx(i,j)*theta(xx(tl))*(1—theta(
xx(tl)))"2) +...
(Cxx(i,j)*x(theta(xx(tl))"2)x(1—theta (xx(tl))))+(Dxx(i
,j)*x(theta (xx(t1)))"3))/Qxx);

end % end for loop if condition

end

% end for loop tl

X=[X Lx(i,:)];
X_na=[X_na LI1(i,:)];
Zx1=[Zx1 Lx1(i,:)]; Zx2=[Zx2 Lx2(i,:)];

end %
X1=X;

end for loop i

X_nal=X_na;
Sx1(:,j)=Zx1";
Sx2(:,j)=2x2";

X=[1;

Zx1=[1]; Zx2=[];

end % end for loop j

xx=X1;
qx1=Sx1

;qx2=Sx2;

Sxl=zeros (length (x)*3"(k+1) ,3);
Sx2=zeros (length (x)*37(k+1) ,3);
pl=length (X1);

qx=[qxl1

ax2 (:,3)]

60 4 Fractal Interpolation Surfaces

JoxxxxxY—direction sk
% for k=1l:iter
for ii=1:3
for jj=1:1y -1
%New generation interpolation points if Fixing f(x(ii), y)
aa(jj)=(y(jj+D=-y(jj))/(y(ly)=y (1))
bb(jj)=((y(jj*y(ly))=(y(jj+1*xy(1)))/(y(ly)=y(1));
Ay(ii, jj)=z(ii,jj)—alphay (ii,jj)=z(ii ,1);
Dy(ii ,jj)=z(ii,jj+1)—C(alphay (ii,jj)*z(ii,ly));
Byl (ii,jj)=C(ry(ii,jj)*z(ii,jj))+hy(jj)=dy(ii.jj);
By2(ii, jj)=(ry(ii,jj)=*z(ii ,1)+(y(ly)=y(1))*dy(ii ,1));
By(ii, jj)=Byl(ii,jj)—alphay(ii,jj)*By2(ii,jj);
Cyl(ii,jj)=Cry(ii,jj)*z(ii,jj+1))—Chy(jj)=dy(ii,jj+1));
Cy2(ii, jj)=Cry(ii,jj)*z(ii,ly))—=(dy(ii,ly)=*(y(ly)=y(1)));
Cy(ii, jj)=Cyl(ii,jj)—alphay(i,j)*Cy2(ii,jj);
9%7%New generation interpolation points if Fixing f(x(ii+1),
y)
Ayy(ii ,jj)=(z(ii+l,jj)—alphay (ii+1l,jj)*z(ii+1,1));
Dyy(ii,jj)=(z(ii+1,jj+1)—(alphay (ii+1,jj)*z(ii+1,1y)));
Byyl(ii,jj)=(ry (ii+1,jj)*z(ii+1,jj))+hy(jj)*dyCii+l,jj);
Byy2 (ii, jj)=(ry (ii+1,jj)=*z(ii ,1)+(y(ly)—=y(1))*dy(ii ,1));
Byy(ii, jj)=Byyl(ii,jj)—alphay (ii+1,jj)«Byy2(ii,jj);
Cyyl (i, jj)=(ry (ii+1,jj)*z(ii+1,jj+1))—(hy(jj)=dy(ii+1,]]
+1))3
Cyy2(ii ., jj)=(ry (ii+1,jj)*z(ii+1,1y))=dy(ii+1.1y)*(y(ly)—y
(1))
Cyy(ii, jj)=Cyyl(ii,jj)—alphay (ii+1,jj)=*Cyy2(ii,jj);
end % End for “jj~
y_abvalues=[aa’ bb’]
phi=inline (" (t—0)/8");
for jj=1:1y—1
for t2=1:p2

if (k==1)
9%New generation interpolation points if Fixing f(x(ii)
)

LY(tZ,jj)=(aa(jj)*Y(t2))+bb(jj);

Lss(jj,t2)=t2+(jj —1)*p2;

Qy=1+(ry (ii ,jj)=3)*«(1—phi(y(t2)))*phi(y(t2));

Lyl (2, jj)=Calphay (ii,jj)*z(ii,t2))+(((Ay(ii,jj)=*(1—phi
(y(t2)))*3) +(By(ii , jj)*phi(y(t2))*(1—-phi(y(t2)))"2)
+...

(Cy(ii, jj)#*(phi(y(12))A2)%(1—phi(y(t2))))+(Dy(ii ,jj)
«(phi (y(12)))73))/Qy);

9%%New generation interpolation points if Fixing f(x(ii
+1), y)

Qyy=1+(ry (ii+1,jj)=3)*(1—phi(y(t2)))*phi(y(t2));

Ly2(t2,jj)=(alphay (ii+1,jj)*z(ii+1,t2))+(((Ayy(ii,jj)
#(1—phi(y(t2)))*3)+(Byy(ii,jj)*phi(y(t2))=*(1—phi(y(
t2)))"2) +...

(Cyy (ii ,jj)*(phi(y(t2))"2)*(1—phi(y(t2))))+(Dyy(ii,jj
)*(phi(y(t2)))"3))/Qyy);
else

Ly(t2.jj)=Caa(jj)*yy(l,t2))+bb(jj);:

Lss(jj,t2)=t2+(jj —1)*p2;

Qy=1+(ry (ii,jj)=3)*(1—phi(yy(t2)))*phi(yy(t2));

4.1

Construction of Fractal Surfaces 61

Lyl (12, jj)=Calphay (ii.jj)*ayl(ii.t2))+(((Ay(ii . jj)*(1-
phi(yy(t2)))"*3)+(Byy(ii, jj)*phi(yy(t2))*(1—phi(yy(
t2)))"2) +...

(Cy(ii,jj)*(phi(yy(t2))72)*(1—phi(yy(t2))))+(Dy(ii,jj
) *(phi (yy (12)))"3))/Qy);

Qyy=1+(ry (ii+1,jj)=3)*(1—phi(yy(t2)))*phi(yy(t2));

Ly2 (12, jj)=(alphay (ii+1,jj)*qy2(ii.t2))+(((Ayy(ii.jj)
*(1—phi(yy (t2)))"3)+(Byy(ii,jj)*phi(yy(t2))*(1—phi(
yy(t2)))"2) +...

(Cyy (ii,jj)=*(phi(yy(t2))*2)*(1—phi(yy(t2))))+(Dyy(ii,
§i)*(phi(yy(12)))"3))/Qyy):
end % End with for if condition k==
end % End with for loop ’“t2°
Lyyl=Lyl’;
Lyy2=Ly2’;
Lyy=Ly’;
Y=[Y Lyy(jj ,:) 1;
Zyl=[Zyl Lyyl(jj .:)1s
Zy2=[Zy2 Lyy2(jj ,:) 1
end % End with for loop ’jj’
YI=Y;
S1(ii ,:)=2Zyl;
S2(ii ,:)=2Zy2;
Y=I[1;
Zyl=[];
Zy2=[];
end % End with ’ii> (No of iteration)
yy=Yl;
qyl=S1;
qy2=S82;
Sl=zeros (3,length (y)*3~(k+1));
S2=zeros (3 ,length (y)*32(k+1));
p2=length (Y1);
Yend
qy=[qyl ; qy2(3.,9)1;
%% *x*xxx Surface Evualuation s
a=zeros (1 ,N—1);
b=zeros (1 ,N—1);
c=zeros (1 ,M—-1);
d=zeros (1 ,M—1);

for n=1:N-1
a(n) = (x(n+1)=x(n)) /(x(N)=x(1));
b(n) = ((x(n)*x(N))—=(x(n+1)*x(1)))/(x(N)=x(1));
end
for m=1:M-1
c(m) = (y(m+D)—y(m))/(yM—y(1));
d(m)= ((y(m)xy(M))—(y(m+1)xy (1)) /(y(M)—y(1)):
end
theta=inline (" (x—0)/11");
phi=inline (" (y—0)/8");
for ix=1:N-1
for il =1:NI1
if (k==1)
Li(ix,il)=a(ix)*x(il)+b(ix);

62

else

4 Fractal Interpolation Surfaces

Li(ix,il)=a(ix)*XX(il)+b(ix);

end %

End with if condition

end % end with for ’il’
for jy=1:M-1

if (ix==1)
for jl=1:Ml
if (k==1)

L2(jy . jl)=c(jy)*y(jl)+d(jy);

else

L2(jy ,j1)=c(jy)*YY(jl)+d(jy);

end % End with if condition

end

% End with ’jl1°~°

YI1=[Y1l L2(jy ,:) 1;

end % End with ’ix==
9%% Blending functions
for i1 =1:NI
for jl=1:Ml
if (k==1)

gx_1(il)=((1—theta(x(il)))"2)*(1+2*theta(x(il))):%
(1—theta)”2(1+2«theta)——"po’

gx_2(il)=((theta(x(il)))"2)*x(3—2«theta(x(il))); ;%theta
A3%(3 —2xtheta)——"pl°~°

gy_1 (1) =((1—phi(y(j1)))"2)*(1+2% phi (y(j1))):%(1—phi)
A2(1+2%phi)——="qo”’

gy_2(j1)=((phi(y(j1)))"2)*(3—2%phi(y(j1))):%phi
A3%(3 —2xphi)——"ql"’

RICil,j1)=gx_1(il)xgy_1(jl)*z(ix,jy):

R2(il ,jl)=gx_1(il)*gy_2(jl)*z(ix ,jy+1);

R3(il ,jl)=gx_2(il)*xgy_1(jl)*z(ix+1,jy);

R4(il ,jl)=gx_2(il)*xgy_2(jl)*z(ix+1,jy+1);

R(il ,jl1)=RI(il ,jl1)+R2(il ,j1)+R3(il ,jl)+R4(il ,jl);

L(il,jl)=(gy_1(j1))*qx(L11(ix ,il) . jy)+(gy_2(j1))*qx(
L11(ix ,il),jy+1)+...

(gx_1(il))#*qy(ix . Lss(jy .j1))+((gx_2(il))*qy(ix+1,
Lss(jy ,j1)))-R(il,jl);

else

gx_1(il)=((1—theta (XX(il)))"2)x(1+2xtheta (XX(il)));

gx_2(il)=((theta (XX(il)))"2)*(3—2xtheta (XX(il)));

gy_1(j1)=((1=phi (YY(j1)))A2)*(1+2% phi (YY(j1))):

gy_2(j1)=((phi (YY(j1))) 2)*(3=2#phi (YY(j1)));

RICi1,j1)=gx_1(il)*gy_1(jl)*z(ix .jy):

R2(il ,jl)=gx_1(il)*xgy_2(jl)*z(ix ,jy+1);

R3(il ,jl)=gx_2(il)*xgy_1(jl)*z(ix+1,jy);

R4(il ,jl)=gx_2(il)*xgy_2(jl)*z(ix+1,jy+1);

R(il ,jl)=RI(il ,jl1)+R2(il ,j1)+R3(il ,jl)+R4(il ,jl);

L(il,j1)=(gy_1(j1))#qx (LI1(ix,il).jy)+(gy_2(j1))*qx(
L11(ix ,il),jy+1)+(gx_1(il))*qy(ix,Lss(jy,jl))+((
gx_2(il1))*qy (ix+1,Lss(jy .j1)))=R(il ,j1):

end

end
end

Z11=[Z11 L1;

L=[1;
end

4.1 Construction of Fractal Surfaces 63

X11=[XI1 LI(ix ,:)]1;
722=[722;7Z111];
Z11=[];
end
XX=X11;YY=Y11,Z2Z=2722;
X11=[];Y11=[];Z222=[];
Nl=length (XX) ;Ml=1length (YY) ;
end
a;c;
axis square ;
surf (XX,YY,ZZ’) ;

Dtitle (> Surface *); xlabel (X values ’); ylabel(’Y values ’); zlabel
(’Z values ’);
hold off

4.1.3 Numerical Computation

Let f7*; and fly ; denote the first partial derivatives of f with respect to x and y respec-
tively. Consider the bivariate Hermite data {x;, y;, fi ;, l.fj, g i ieNy,je
Ny} as given in Table 4.1. By choosing the vertical scaling factors and shape param-
eters (as given in Table 4.2), the graphs of fractal rational cubic FISs are generated
and illustrated in Fig. 4.2a. For generating Fig. 4.2a, shape parameters are chosen as
ry = [1]3x4 in x-direction and r, = [1]4x3 in y-direction. Figure 4.2b represents the
bi-cubic partially blended rational FIS for perturbed scaling factors in x-direction and
y-direction (given in Table 4.2). Changing the shape parameters r in both directions
(x-direction and y-direction), Fig. 4.2¢c is generated. With the set of scaling factors
oy = [0]3x4 and oy, = [0]43, the classical rational cubic surface is developed and it
is shown in Fig. 4.2d.

Table 4.1 Hermite interpolation data in the construction of blending rational cubic FISs

00 110 8 11
23 2 9 12
7 ; 4 = =
{(xi, yz)},:1 6 7 f 31210 14
11 8 413 15
45 1.5 0.13 1.37 5 25042 0.1
Fr o 45 1.5 0.12 1.37 = 05 05 0.5 0.1
45 15 0. 1.75 0.5 0.5 05 05
4.45 1.61 0.25 1.25 0.25 0.75 0.75 0.25

64 4 Fractal Interpolation Surfaces

Table 4.2 IFSs in the construction of blending rational cubic fractal interpolation surfaces

Scaling parameters Shape parameters Figures
0.2 0.250.25 0.2
a=1]0.35 0.3 0.350.34 ry = 0.5%ones(3,4)
0.35 0.35 0.35 0.34
0.124 0.562 0.30
of = 0.125 0.562 0.30 ry = 100*ones(4,3) Figure 4.2a
0.125 0.562 0.3 ;
0.125 0.562 0.3
0.15 0.15 0.15 0.15
a=1]03 03 03 0.3 ry = 0.5*%ones(3,4)
0.45 0.45 0.45 0.45
0.3040.12
a* = 0.3 0.4 0.12 ry = 100*ones(4,3) Figure 4.2b
0.3 04 0.12
0.3 04 0.12
0.2 0.250.25 0.2
a=1]0.35 0.3 0.350.34 ry = ones(3,4)
0.35 0.35 0.35 0.34
0.124 0.562 0.30
a* = 0.125 0.562 0.30 ry = ones(4,3) Figure 4.2¢
0.125 0.562 0.3
0.125 0.562 0.3
o = zeros(3,4) ry = 0.5*%ones(3,4)
o* = zeros(4,3) ry = 100*ones(4,3) Figure 4.2d

4.2 Fractal Surfaces with Variable Scaling

Consider bivariate interpolation data {x;, y;, fi ;, flxj f,Z y i i € Ny, j e Ny} with
increaing x and y values, where f;* ;and fl‘ ; are the x-partial and y- partial derivatives
of the original function at (x;, y;) respectively. Let I = [x, xy 1, J = [y1, ynl, i =
xi, xiv1l, Jj=1yj,yjsrilbhi=xiy1—xi, hj=yj1—y;,D=1xJ,D;; =
[i X Jj.

Along the j-th grid line parallel to x-axis

For j e Ny, R;j € {x;, fi.j, fl"j :1 € Ny} is the interpolation data along the
j-th grid line parallel to x-axis. Consider affine maps L;(x) = a;x + b; defined
by L; : I — I; satisfying L;(x) = x;, L;(xp;) = x;41. The rational fractal interpo-
lation function (RCFIF) [6, 8] is given by

Y(x,y) =0« -(x)\IJ(L_l(x))+Pl]—(9) i eN 4.3)
» Vi) = Qi i > Vi Qi,j(e)’ M, .

4.2 Fractal Surfaces with Variable Scaling 65

Fig. 4.2 Fractal interpolation surfaces with constant scaling

where «(x) is a Lipschitz function,

Pj(0) =rij(fij — ;) L)1 =00 + (fisrj — i (x) fur.)07
HQ@rij+ i) fij trijhi £ — i [Crij + 1)) fi
+rij Geur = x0) [00— 0)* 4+ {(rij 4 28)) firny — tijhi i
—a; j (O(ri j + 28i.) fur.j +7ij G — x1) £y 1107 (1 = 6),

01,0 = (1 =0, +01;,;, 0=" ;x"
i

, X EI,'.

Along the i-th grid line parallel to y-axis

For i € Ny, R; € {x;, fij, f{'; 1 J € Ny} is the interpolation data along the i-th
grid line parallel to y-axis. Consider affine maps L% (y) = ¢,y + d; defined by L7 :
J — Jjsatisfying L7 (y1) = y;, L7(yn) = yj41. Here | ;| < ¢; < 1. We construct
RCFIF,

PY;(9)

Wi) = e (0 (s LT O00) + 07;@)

Jj € Ny, 4.4)

66 4 Fractal Interpolation Surfaces
where «*(y) is a Lipschitz function,
PE@) = rij(fiy —al ;00)0 =) + (fijo1 — af ;) fin)d®
HQ@rij 1) fij+rijh i — @ [@rij+ 1)) fin
+rijn = YD ST NS — &) 4+ (i + 26.) fijor — tijhi £l
—a} ;i j + 28) fin +rij (v — YD) [y 1197 (1 — @),

Qij@)=U0=-rij+ o1, ¢= YV

J

,yEJj.

The construction of univariate FIFs W (x, y;), W(x, y;11) and W*(x;, y), ¥* (Xi41,)
are discussed with cubic Hermite functions in the following. Let

b () = (1 —6)*(1 +26),
b 5(x) = 6°(3 — 20),
b5 (») = (1 — $)*(1 +2¢),
bi5(y) = ¢°(3 —2¢).

On each individual patch D; ; = I; x J;,i € N,_1, j € N,_; (see Fig. 4.1), a
blending rational cubic spline FIS is defined using the blending coons technique as

| ' 0 W(x, y;) Wix, yjt1) j_l
Px,y) =— [—1 bo,3() b’3,3(x)] Vi, y) fig Jij (ERY
Vi1, Y) fivtj fitlj+1 béa(y)

The function interpolation surface @ interpolate the given data at grid points. The

MATLAB code of rational cubic FIS with variable scalings is illustrated in the

following.

%Fractal Surface q(X)=P(X)/Q(X), where P(X) is cubic and Q(X) is
linear .

%Here scaling factor is alpha and two shape parameters arw mu,nu.

%Inputs are (x,y,z,alphax ,alphay ,mu,nu, partial derivativers (dx,
dy)).
%Outputs will be "fractal surface"

clc;clear all;

close all;format(’ short”)

Joxxxx% Given Data sskxkxx

x=[0 4 8 10];y=[0 3 5 9];

iter =3;

grid on

m=length (x);

n=length (y);

%z=[0.4 9 5 10;1 10 6 11;2 11 7 12;3 12 8 13];

4.2 Fractal Surfaces with Variable Scaling

z=[3 11 9 8 ;4 8 10 7;1 10 12 4;4 12 14 17];

Yz.=7";

%z=[4 9 100 110 ; 2 7 20 210 ; 150 300 30 1135; 285
13

Ix=length (x);

ly=length(y);

N=length (x);

M=length (y);

pl=1x;

p2=ly;

dx=[4.5 1.5 0.125 1.375;4.5 1.5 0.125 1.375;4.5 1.5 0.25
1.75;4.3929 1.6071 0.25 1.25];

Yodx =dx ’

dy=[0.5 0.5 0.4167 0.0833;0.5 0.5 0.4167 0.0833;0.5 0.5 0.5
0.5;0.25 0.75 0.75 —=0.25];

Y%dy=dy’

9%

% Free Shape parameters%nmi%

r_x=[1 11 1; 1 1 1 1; 1 1 1 1];mux=r_x;

t_x=[1 1 1 1;1 1 1 1;1 1 1 1];nux=t_x;

Yor_x=10«[1 1 1 1; 1 1 1 1; 1 1 1 1];mux=r_x;

%r_x=100«[1 1 1 1; 1 1 1 1; I 1 1 1];mux=r_x;

%t_x=[100 100 100 100;1 1 1;100 100 100 100];nux=t_x;

ry=[1 1 1;1 1 1;1 1 1; 1 1];muy=r_y;

% r_y=100«[1 1 1;1 1 1 1 1;1 1 1];muy=r_y;

%r_y=[1 8 4;1 1 1;100 1;1 1 1];muy=r_y;

t_y=[1 1 1; 1 1 1; 1 1 ;011 1];nuy=t_y;

%t_y=[100 1 1; 100 1 1; 1 1; 1 1 1];nuy=t_y;

for i=1:1x—1
h(i)=x(i+l)—x(i);

W

15 350

0.0
070

0L 0L OO0
7070707070 707070

end
for 1=1:1y -1

hy (D)=y(l+D)—y(1);
end
Joxxxxxx Definitions of Matrices sk
a=zeros (1,Ix —1);
b=zeros (1,1x —1);
Lx=[1];
Lxl=[];Lx2=[];
X_na=[];
X1=[1;Zx1=[1];
X=[1;
Zx2=[1];
a=zeros (1,ly —1);
b=zeros (1,ly —1);
Lyy=[1;
Lyl =[];Ly2=[];
Yi=[1;
Y=[1]:
Zyl=[1;Zy2=[1;
L=[1;L1=[];L2=[];
L22=[];L222=[];
X1l1=[];Yll=[];
Z11=[]1;7Z22=[];
XX=[1:YY=[1;:2Z=[];

67

1410

68 4 Fractal Interpolation Surfaces
N1=N;

Mi1=M;

O07-07-07-0707-07-07-07-07-07-07-07-07-07-07-07-07-07-0707-07-07-07-07-07-07-07-07-0707-

I o

iter =2;

IIINT TSI NI T T T %% % (km) Finding coffients

for k=1:iter

YoxxxxxxX—direction (Y is fixed) sksksksksksk

for j=1:3

for

i=l:1x -1
9%———Finding coffients if Fixing f(x,y(j))
a()=(x(i+D)—x(i))/(x(1x)—x(1))
b(i)=((x(1)*x(1x))=(x(i+D)*xx(1)))/(x(1x)—x(1));
T56%
%————Variable Alpha———
9%% Finding alpha values Here all rows are same,
because all rows are approximatively same.
if (k==1)
for tl=1:pl
if i==
alphax (i,tl)=x(tl)/(x(pl)=x(1))*(1/260)
Joalphax (i,tl)=x(tl)/(3*«[x(pl)—x(1)]);
elseif i==
alphax (i,tl)=sin(x(tl)/(270xx(pl)—x(1)))
Yoalphax (i,tl)=2%cos(x(tl))/(x(pl)—x(1));
elseif i==3
alphax (i,tl)=abs(log(l+x(tl)/x(pl)—x(1)))

*(1/250)
Yoalphax (i,tl)=abs(log(l+x(tl))/x(pl)—x
(1))
end
end
else
if i==1

alphax (i,t1)=X1(tl)/(X1(pl)—-X1(1))=*(1/260);

JDoalphax (i,t1)=X1(tl)/(3%x[X1(pl)=X1(1)]1);
elseif i==2

alphax (i,tl)=sin(XI1(tl)/(270%(X1(pl)=X1(1))))

%alphax (i,tl)=2%cos(XI1(tl))/(X1(pl)=XI1(1));
else
alphax (i,tl)=abs(log(1+X1(tl)/(X1(pl)=XI1(1)))
)% (1/250);
Joalphax (i,tl)=abs(log (1+X1(tl))/(X1(pl)=XI1(1)
))
end

end
(¥

Ax(i,j)=(z(i,j)—alphax(i,j)*z(l,j))*mux(i,j);

Dx(i,j)=(z(i+l,j)—(alphax(i,j)*z(lx,j)))*nux(i,j);

%x valuxe

Bx1(i,j)=((2*mux(i,j)+nux(i,j))*z(i,j))+(mux(i,j)xh(i
Yxdx (1,]j));

Bx2(i,j)=(2«mux(i,j)+nux(i,j))*z(1l,j)+(mux(i,j)=*(x(lx
)=x (1)) *xdx(1,j));

4.2 Fractal Surfaces with Variable Scaling 69

Bx(i,j)=Bx1(i,j)—alphax(i,j)*Bx2(i,j);

% Dx Value

Cx1(i,j)=((2%nux(i,j)+mux(i,j))*z(i+1,j))—(nux(i,j)x*h
(i)xdx(i+1,j));

Cx2(i,j)=((2xnux(i,j)+mux(i,j))*z(Ilx,j))—(nux(i,j)=*dx
(Ix,) =(x(Ix)=x(1)));

Cx(i,j)=Cx1(i,j)—alphax(i,j)*Cx2(i,j);

% END DX valuxe

%====End finding coffients if Fixing f(x,y(j))

9%————Finding coffients if Fixing f(x, y(j+1))

Axx(i,j)=(z(i,j+1)—(alphax(i,j+1)*xz(1l,j+1)))*mux(i,]j
+1);

Dxx(i,j)=(z(i+1,j+1)—(alphax(i,j+1)*xz(lx,j+1)))*nux(i
s+

%Cx value
Bxx1(i,j)=(2«mux(i,j+1)+nux(i,j+1))*z(i,j+1))+(mux(i
,j+D)«h(i)xdx(i,j+1));
Bxx2(i,j)=2«mux(i,j+1)+nux(i,j+1))*z(l,j+1)+(mux(i,j
+1)#(x(1x)=x(1))*dx(1l,j+1));
Bxx(i,j)=Bxx1(i,j)—alphax(i,j+1)*Bxx2(i,j);
% Dx value
Cxx1(i,j)=(2%«nux(i,j+1)+mux(i,j+1))*z(i+1,j+1))—(nux
(i,j+1)*h(i)*xdx(i+1,j+1));
Cxx2(i,j)=(2%«nux(i,j+1)+mux(i,j+1))*z(Ilx,j+1))—(nux(
i, j+D)«dx(Ix,j+1)*(x(1x)—x(1)));
Cxx(i,j)=Cxx1(i,j)—alphax(i,j+1)*xCxx2(i,j);
% END DX value
9%%%===End finding coffients if Fixing f(x,y(j+1))
end% end for loop i
theta=inline (" (x—0)/11");
Jotheta=inline ("(x—=0)/6");
for i=1:1x—1
for tl=1:pl
if (k==1)
Lx(i,tl)=(a(l,i)*x(1,t1))+b(l,i);
LI1(i,tl)=tl+(i—1)*pl;
%Finding coffients if Fixing f(x, y(j))
% alphax value
Qxl=mux(i,j)*(l—theta(x(tl)));
Qx2=nux(i,j)*(theta(x(tl)));
Lx1(i,tl)=(Calphax(i,tl)*z(tl,j))+((Ax(i,j)
#(1—theta (x(tl)))"A3)+(Bx(i,j)*theta(x(tl)
)#(l—theta (x(tl)))"2) +...
(Cx(i,j)=*(theta(x(tl))"2)x(1—theta(x(tl))
))+(Dx(i,j)=*(theta(x(tl)))"3))/(Qxl+
Qx2);
%Finding coffients if Fixing f(x, y(j+1))
Qxxl=mux(i,j+1)*(1—theta(x(tl)));
Qxx2=nux (i, j+1)*(theta(x(tl)));
Lx2(i,tl)=(alphax (i,tl)*z(tl,j+1))+((Axx(i,]
)x(1—theta(x(tl)))"3)+(Bxx(i,j)xtheta (x(
tl))x(l—theta(x(tl)))"2) +...
(Cxx(i,j)=(theta(x(tl))"2)x(l—theta(x(tl)
)))+(Dxx(i,j)=*(theta(x(tl1)))"3))/(
Qxx1+Qxx2) ;

70

4 Fractal Interpolation Surfaces

else

Lx(i,tl)=(a(i)*xx(1,tl))+b(i);
L11(i,tl)=tl+(i—1)*%pl;
Qxl=mux(i,j)*(l—theta(xx(tl)));
Qx2=nux(i,j)*(theta(xx(tl)));

JDalphax (i,tl)=0;
9% alpha values
if i==1
alphax (i,t1)=X1(t1)/(X1(pl)-X1(1))
*(1/260) ;
elseif i==
alphax (i,t1)=sin(XI1(tl)/(270%(X1(pl)—X1
(1))
else
alphax (i,tl)=abs(log (1+X1(tl)/(XI(pl)—XlI
(1)))) *(1/250);
end
Veilatlatledledladledledle
Lx1(i,tl)=(Calphax (i,tl)*qxl(tl,j))+(((Ax(i,j)
#(1—theta (xx(tl1)))"3)+(Bx(i,j)xtheta (xx(
tl))x(l—theta (xx(tl)))"2) +...
(Cx(i,j)=(theta(xx(tl))"2)x(l—theta (xx(tl
))))+(Dx(i,j)=(theta (xx(tl)))"3))/(
Qx1+Qx2)) ;
Qxxl=mux(i,j+1)*(l—theta(xx(tl)));
Qxx2=nux (i, j+1)*(theta(xx(tl)));
Lx2(i,tl)=(Calphax (i,tl)*qx2(tl ,j))+(((Axx(i,]
)*%(1—theta (xx(tl)))"A3)+(Bxx(i,j)*theta (xx
(tl))x(l—theta (xx(tl)))"2) +...
(Cxx(i,j)*x(theta(xx(tl))"2)x(1—theta (xx(
t1))))+(Dxx(i,j)=*(theta(xx(tl)))"3))
/(Qxx1+Qxx2));
end % end for loop if condition
end % end for loop tl
X=[X Lx(i,:)];
X_na=[X_na LII(i,:)];
Zx1=[Zx1 LxI1(i,
7Zx2=[7Zx2 Lx2(i,
end % end for loop i
X1=X;
X_nal=X_na;
Sx1(:,j)=Zx1";
Sx2 (:,j)=Zx2";

13
].

5

)
)

X=[1;
Zx1=[1];
Zx2=[1];
end % end for loop k(iteration)
xx=X1;
qx1=Sx1;
qx2=Sx2;

Sxl=zeros (length (x)*3~(k+1) ,3);

Sx2=

zeros (length (x)*37(k+1) ,3);

4.2 Fractal Surfaces with Variable Scaling 71

pl=length (XI);
gx=[gx1 qx2(:,3)];
% End for fix 'y’ and change ’x’
Yok *kkxxxY—direction sk
Pfor k=1:iter
for ii=1:3
for jj=1:1y -1
% Finding coffients if Fixing f(x(ii), y)
aa (jj)=(y(ji+D=y(ji)N)/(y(ly)=y(1));
bb(jj)=0(y(jj)*xy(ly))=(y(jj+D*y(1)))/(y(ly)=y(1));

Il
if (k==1)
for t2=1:p2
it j==
alphay (12, jj)=sin(y(jj)/(y(p2)—y(1)))
+0.01;
elseif jj==2
alphay (12, jj)=abs (sec(y(jj)-y(1)))
*(1/120) ;
else
alphay (t2,jj)=exp(y(jj)/120)*(1/103);
end
end
else
for t2=1:p2
it jj==
alphay (12, jj)=sin (Y1(jj)/(Y1(p2)=YI(1)))
+0.01;
elseif jj==2
alphay (t2,jj)=abs(sec(YL(jj)-Y1(1)))
*(1/120) ;
else
alphay (t2,jj)=exp(Y1(jj)/120)%(1/103);
end
end
end

%
Ay(ii, jj)=(z(ii,jj)—alphay (ii,jj)*z(ii ,1))*muy(ii,jj)

Dy(ii ,jj)=(z(ii,jj+1)—(alphay (ii,jj)=*z(ii,ly)))s*nuy(
i, jjs

Yo————

Byl(ii,jj)=((2xmuy(ii,jj)+nuy(ii,jj))*z(ii,jj))+(muy(
i, jj)xhy (jj)=dy(ii,jj));

By2(ii,jj)=2«muy(ii,jj)+nuy(ii,jj))*z(ii ,1)+(muy(ii,
JiI)x(y(ly)—y (1)) xdy (ii ,1));

By(ii, jj)=Byl(ii,jj)—alphay(ii,jj)*By2(ii,jj);

Yo————

Cyl(ii,jj)=((2*nuy (ii,jj)+muy(ii,jj))*z(ii,jj+1))—(
nuy (ii, jj)*hy (jj)=dy(ii,jj+1));

Cy2(ii,jj)=(2xnuy(ii,jj)+muy(ii,jj))*z(ii,ly))—(nuy(
i, jj)xdy(ii, ly) x(y(ly)=y(1)));

Cy(ii, jj)=Cyl(ii,jj)—alphay (ii,jj)*Cy2(ii,jj);

J%————Finding coffients if Fixing f(x(ii+1), y)

72 4 Fractal Interpolation Surfaces

Ayy(ii ,jj)=(z(ii+1,jj)—alphay (ii+1,jj)*z(ii+1,1))*muy
(ii+1,jj);
Dyy(ii ,jj)=(z(ii+1,jj+1)—(alphay (ii+1,jj)*z(ii+1,1ly))
yxnuy (ii+1,jj);
Byyl(ii,jj)=((2«muy(ii+1,jj)+nuy(ii+1,jj))*xz(ii+1,jj)
)+(muy (ii+1,jj)*hy(jj)=dy(ii+1,jj));
Byy2(ii ,jj)=Q2«muy(ii+1,jj)+nuy(ii+1,jj))*xz(ii ,1)+(
muy (ii , jj)*(y(ly)—y (1)) =dy(ii ,1));
Byy(ii, jj)=Byyl(ii,jj)—alphay (ii+1,jj)*Byy2(ii,jj);
(7(%77
Cyyl(ii,jj)=((2%nuy(ii+1l,jj)+muy(ii+1,jj))*z(ii+1,jj
+1)) —(nuy (ii+1,jj)hy (jj)sdy (ii+1,jj+1)):
Cyy2(ii,jj)=((2%«nuy(ii+1,jj)+muy(ii+1,jj))*z(ii+1,ly)
)—(nuy (ii+1,jj)*dy(ii+1,1y)*(y(ly)=y(1)));
Cyy(ii, jj)=Cyyl(ii,jj)—alphay (ii+1,jj)*Cyy2(ii,jj);
J%checking complete Yo————
end % End for “jj~
phi=inline (" (t—-0)/8");
J%phi=inline ((t—0)/8");
for jj=1:1y -1
for t2=1:p2
if (k==1)
%Finding coffients if Fixing f(x(ii), y)
Ly(t2,jj)=Caa(jj)=y(t2))+bb(jj);
Lss(jj,t2)=t2+(jj —1)*p2;

Qyl=muy(ii,jj)*(1—phi(y(t2)));

Qy2=nuy (ii , jj)*(phi(y(t2)));

Lyl (t2,jj)=(alphay (t2,jj)*z(ii,t2))+((Ay(ii,
jj)*(1—phi(y(t2)))"3)+(By(ii,jj)*phi(y(t2
))*(1—phi(y(t2)))"2) +...
(Cy(ii,jj)*(phi(y(t2))*2)*(1—phi(y(t2))))

+(Dy(ii, jj)*(phi(y(t2)))"3))/(Qyl+Qy2
)

%Finding coffients if Fixing f(x(ii+1), y)
Qyyl=muy(ii+1,jj)*(1—-phi(y(t2)));
Qyy2=nuy (ii+1,jj)*(phi(y(t2)));
Ly2(t2,jj)=Calphay (t2,jj)*z(ii+1,t2))+((Ayy(
ii, jj)*(1—phi(y(t2)))"3)+(Byy(ii,jj)=*phi(
y(t2))*(1—phi(y(t2)))"2) +...
(Cyy(ii, jj)*(phi(y(t2))"2)*(1-phi(y(t2)))
)+(Dyy (ii, jj)*(phi(y(t2)))"3))/(Qyyl+
Qyy2);
%

else

Ly(t2,jj)=(aa(jj)*yy(1,t2))+bb(jj);
Lss(jj,t2)=t2+(jj —1)*p2;

Qyl=muy (ii,jj)*(1—phi(yy(t2)));
Qy2=nuy (ii , jj)*(phi(yy(t2)));

9% alpha is zero
% alphay (t2,jj)=0
BT T T T TT TR T T TT T TTT

07070707070 707070707070 7070 707070707070 70 70 7070707070 70 70 70 70707070 70 70 70 70

4.2 Fractal Surfaces with Variable Scaling 73

end

Lyl (t2,jj)=(alphay (t2,jj)*qyl(ii,t2))+(((Ay(
ii,jj)*(1—phi(yy(t2)))"3)+(Byy(ii,jj)*phi

(yy (t2))*(1—phi(yy(t2)))"2) +...

(Cy(ii,jj)*(phi(yy(t2))72)*(1—phi(yy(t2))
))+(Dy(ii,jj)*(phi(yy(t2)))"3))/(Qyl+
Qy2));

Qyyl=muy (ii+1,jj)*(1-phi(yy(t2)));
Qyy2=nuy (ii+1,jj)*(phi(yy(t2)));
Ly2(t2,jj)=(alphay (t2,jj)*qy2(ii,t2))+(((Ayy(

ii, jj)*(1—phi(yy(t2)))"3)+(Byy(ii,jj)*phi

(yy (t2))*(1=phi(yy(t2)))"2) +...

(Cyy(ii, jj)*(phi(yy(t2))"2)*(1—phi(yy(t2)
)))+(Dyy(ii, jj)*(phi(yy(t2)))”"3))/(
Qyy1+Qyy2));

end % End with for if condition k==1"

end % End with for loop ’t2°
Lyyl=Lyl’;
Lyy2=Ly2’;
Lyy=Ly’;
Y=[Y Lyy(jj ,:) 1;
Zyl=[Zyl Lyyl(jj .:)1;
Zy2=[Zy2 Lyy2(jj .:) 1s
end % End with for loop ’jj’

Y1=Y;

S1(ii ,:)=Zyl;

S2 (ii
Y=[1];

,1)=2y2;

Zyl=[];
Zy2=[];
% End with ’ii’ (No of iteration)
yy=Yl;

qyl=81;

qy2=S82;

Sl=zeros (3,length (y)*3~(k+1));
S2=zeros (3,length (y)*3"(k+1));
p2=length (Y1)

Joend

qy=[qyl ; qy2(3.,:)1;

Joxxx+%x*% Surface Evualuation sskskskksk
a=zeros (1 ,N—1);
b=zeros (1 ,N—1);
c=zeros (1 ,M—1);
d=zeros (1 ,M—1);

for n=1:N-—-1

a(n) = (x(n+D)=x(n)) /(x(N)=x(1));

b(n) = ((x(n)*xx(N))—=(x(n+1)*xx(1)))/(x(N)=x(1));
end

for m=1:M-1
c(m) = (y(m+D)—y(m)) /(y(M)—y(1));
d(m)= ((y(m)*xyM))—(y(m+1)*y(1)))/(yM)—-y(l));
end
theta=inline (" (x—0)/11");
phi=inline (" (y—0)/8");

74 4 Fractal Interpolation Surfaces

for ix=1:N-—1
for il =1:NI1
if (k==1)
Li(ix,il)=a(ix)*xx(il)+b(ix);
else
Li(ix,il)=a(ix)*«XX(il)+b(ix);
end % End with if condition
end % end with for ’il’
for jy=1:M-1

if (ix==1)
for jl=1:Ml
if (k==1)
L2(jy »j1)=c(jy)*y(jl)+d(jy);
else

L2(jy . j1)=c(jy)*YY(j1)+d(jy)
end % End with if condition
end % End with ’jl1°
YIl=[Y11l L2(jy ,:) 1;
end % End with Tix==1"
for il =1:NI1
for jl=1:Ml
if (k==1)
gx_1(il)=((1—theta(x(il)))"2)*x(1+2xtheta (
x(il)));% (1—theta)”2(1+2xtheta)——"po

gx_2(il)=((theta(x(il)))"2)*(3—2xtheta (x(
il)));%theta3x(3—2xtheta)——"pl"~
gy_1(j1)=((1=phi(y(j1)))"2)«(1+2*phi(y(jl
)));%(1—phi)~2(1+2%xphi)——"qo"’

gy_2(jl)=((phi(y(jl1)))"2)*(3—=2*xphi(y(jl))
);%phi"3%(3 —-2%xphi)——"ql"’

RICil ,jl)=gx_1(il)*gy_1(jl)*z(ix,jy);

R2(il ,jl)=gx_1(il)*gy_2(jl)*z(ix ,jy+1);

R3(il ,jl)=gx_2(il)*gy_1(jl)*z(ix+1,jy);

R4(il ,jl)=gx_2(il)*gy_2(jl)*z(ix+1,jy+1);

R(il ,jl)=RI1(il ,jl1)+R2(il ,jl1)+R3(il ,jl)+R4
(il ,j1);

L(il,jl)=(gy_1(jl))*qx(L1L(ix,il),jy)+(
gy_2(jl))xgx (L11(ix ,il),jy+1)+...
(gx_1(il))*qy(ix ,Lss(jy,jl))+((gx_2¢(

il))xqy(ix+1,Lss(jy,jl)))—R(il ,j1
)
else

gx_1(il)=((1—theta (XX(il)))"2)*(1+2*theta
(XX(il)))s

gx_2(il)=((theta (XX(il)))"2)*(3—-2xtheta (
XX(i1)));

gy_1(jl)=((1=phi(YY(j1)))"2)*(1+2*phi (YY(
i)

gy_2(jl)=((phi(YY(j1)))"2)*(3—-2+phi(YY(jl
))) s

RI(il ,jl)=gx_1(il)*gy_1(jl)*z(ix,jy);

R2(il ,jl)=gx_1(il)*gy_2(jl)*z(ix,jy+1);

R3(il ,jl)=gx_2(il)*gy_1(jl)*z(ix+1,jy);

R4(il ,jl)=gx_2(il)*gy_2(jl)*z(ix+1,jy+1);

4.2 Fractal Surfaces with Variable Scaling 75

R(il ,j1)=R1(il ,j1)+R2(il ,j1)+R3 (il ,j1)+R4
(il ,jl);

L(il,jl)=(gy_1(jl))*qx(L11(ix,il),jy)+(
gy_2(j1))#qx (L11(ix ,il),jy+1)+(gx_1(
il))*qy(ix,Lss(jy,jl))+((gx_2(il))=*qy
(ix+1,Lss(jy,jl)))-R(il ,jl);

end
end
end
Z11=[Z11 L1J;
L=(];

end
X11=[X11 L1(ix ,:)];
722=[722;7Z111];

Z11=[1;

end

XX=X11;
YY=Y11;
77=722;
X11=[];
Yil=[];
722 =[1];

Nl=length (XX) ;
Ml=length (YY) ;
end
axis square;
surf (XX,YY,ZZ’) ;
Ytitle (* Surface ’) ;
Joxlabel (’X values ’);ylabel (Y values ’); zlabel (’Z values ’);
hold off

4.2.1 Numerical Computation

Let f; and ﬁ] denote the first partial derivatives of f with respect to x and y
respectively. Consider the bi-variate Hermite data {x;, y;, fi, l.’fj, i’y IE i €
Ny, j € Ny} as given in Table 4.3. By choosing the vertical scaling functions (see
Table 4.5) and shape parameters (as given in Table 4.4), the graphs of fractal rational
cubic FISs are generated and illustrated in Fig. 4.3. For generating Fig. 4.3a, shape
parameters are chosen as r, = [1]3x4 in x-direction and r, = [1]43 in y-direction.
Figure 4.3b represents the bi-cubic partially blended rational FIS for perturbed shape
parameters in x-direction (given in Table 4.4). Figure 4.3c represents the rational
FIS by changing shape parameters in y-direction (given in Table 4.4). Changing both
vertical scaling vectors and shape parameters, Fig. 4.3d is generated. Figure4.3e
represents the rational FIS by changing « and #, (as in Table 4.4). Changing the
vertical scaling vectors () and r,t,, Fig. 4.3f is generated.

76 4 Fractal Interpolation Surfaces

Table 4.3 Hermite interpolation data in the construction of blending rational cubic FISs

00 3119 8
43 48107
o ydlici =1 ¢ 5 T=111012 4
109 4121417

45 1.5 0.125 1.375

45 1.5 0.125 1.375

ff=\| 45 =
1.5 0.25 1.75

4.3929 1.607 10.25 1.25

0.5 0.5 0.4167 0.0833
0.5 0.5 0.4167 0.0833
05 05 05 0.5

0.250.75 0.75 -0.25

Table 4.4 Shape parameters in the construction of RCFIFs

Shape parameters Figures
ry = ones(3,4) Figure 4.3a,c, e, f
t, = ones(3,4) Figure 4.3a, c, d
ry = ones(4,3) Figure 4.3a—¢
ty = ones(4,3) Figure 4.3a—f
ry = 10*ones(3,4) Figure 4.3b
ry = 100*ones(3,4) Figure 4.3d
ry = 100*ones(4,3) Figure 4.3f
100 100 100 100
ty = 1 1 1 1 Figure 4.3b, e, f
100 100 100 100
1 84
ry = 1(1)0 i : Figure 4.3c
1 11
100 11
ty = 1(1)0 1 i Figure 4.3c
1 11

Table 4.5 Scaling factors in the construction of RCFIFs

Scaling factors Figures
_ sin(x) |log(1+x)| .
“= [260<xi—x1>’ 270+Ce—x1) * 250()(,,—)(1)] Figure 4.3a—
_ [_sin» [sec)—y(D] e 1 :
oFf = I:y(n)*y(l) +0.01, 55 , IETO * W] Figure 4.3a—f

3k(xp—x1)" Xp—x1 ° Xn—X1

o= [x 2c0s(x) \log(ler(tl)\] Figure 4.3d—f

4.2 Fractal Surfaces with Variable Scaling

(e)

Fig. 4.3 Fractal interpolation surfaces with variable scaling

71

78 4 Fractal Interpolation Surfaces

References

1. K.M. Reddy, G. Saravana Kumar, A.K.B. Chand, Family of shape preserving fractal-like be’zier
curves. Fractals 28(06), 2050105 (2022)

2. H. Xie, H. Sun, The study on bivariate fractal interpolation functions and creation of fractal
interpolated surfaces. Fractals 5(04), 625-634 (1997)

3. P.Bouboulis, L. Dalla, Fractal interpolation surfaces derived from fractal interpolation functions.
J. Math. Anal. Appl. 336(2), 919-936 (2007)

4. ML.A. Navascués, R.N. Mohapatra, M.N. Akhtar, Construction of fractal surfaces. Fractals
28(02), 2050033 (2020)

5. M.G.P. Prasad, M.N. Akhtar, Fractal interpolation surfaces and perturbations on vertical scaling
factors. Int. J. Nonlinear Sci. 21(1), 3—12 (2016)

6. K.M. Reddy, A.K.B. Chand, Constrained univariate and bivariate rational fractal interpolation.
Int. J. Comput. Methods Eng. Sci. Mech. 20(5), 404-422 (2019)

7. A.K.B.Chand, P. Viswanathan, K.M. Reddy, A novel approach to surface interpolation: marriage
of coons technique and univariate fractal functions. Math. Anal. Appl. 143, 577-592 (2015)

8. A.K.B. Chand, K.M. Reddy, Constrained fractal interpolation functions with variable scaling.
Sib. Elektron. Mat. Izv 15, 60-73 (2018)

Chapter 5 ®)
Applications e

In this section, applications of fractal interpolation function are discussed, in partic-
ular, patterns of mountains and clouds are approximated and the positive cases of
Omicron are reconstructed.

5.1 Patterns of Mountains and Clouds

Consider the following three sets of interpolation data

e {(0,0),(2,2), (4,0), (6.5,0.5), (10,0.1)},

o 1(3,1.75), (3.5,2.05), (4,2.25), (5, 2.35), (5.45, 2.15), (5.85, 1.95), (5.5, 1.6),
(4.5,1.53), (3.5, 1.45), (3, 1.75)},

e {(6.75,2), (7.2.25), (1.75,2.5), (8.75, 2.6), (9.15, 2.4), (9.75,2.2),
(9.25, 1.75), (8.25,1.65), (7, 1.8), (6.75,2)}..

An example problem is considered to demonstrate the effect of scaling factors in
visualizing mountains and clouds. Figure 5.1 illustrates geometric models of moun-
tains and clouds. The graphical data points marked are to be interpolated to give the
picture of mountains and clouds. The conventional linear interpolation is used with
varying scalings to obtain Fig. 5.1a—d. The varying scalings are provided in Table 5.1.
A desirable effect is obtained by trial and error using scaling factor values for the
data points generating the cloud and mountains, for more details refer [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 79
S. Banerjee et al., Fractal Patterns with MATLAB,

SpringerBriefs in Complexity,

https://doi.org/10.1007/978-3-031-48102-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48102-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5
https://doi.org/10.1007/978-3-031-48102-4_5

80 5 Applications

(a) (b)

o
"
o
=
=]
o
"
o
=
=]

(0 (d)

Fig. 5.1 Geometric models of mountains and clouds

Table 5.1 Scaling parameters associated with mountains and clouds

Figures Scalings o Scalings a3
Figure5.1a 0.15 0.1
Figure5.1b 0.2 0.15
Figure5.1c 0.25 0.3
Figure5.1d 0.1 0.25

5.1.1 MATLAB Simulation

9%% Constructing the geometric models using three affine maps
function []=Geometric_model ()

clc;clear all;close all;

format “short’

9%Datal

x1=[0 2 4 6.5 10];y1=[0 2 0 0.5 —-0.1]

5.1 Patterns of Mountains and Clouds 81

Ix=length (x1);

Jalphal =0.15%xones (1 ,Ix —1);%figure
J%alphal =0.2%xones (1,Ix —1);%figurel
J%alphal =0.25%ones (1,1x —1);% figure?2
alphal=0.1%xones(1,lx —1);%figure3

iter =6;

[X1 Y1]=Affine_FIF (x1,yl,alphal ,iter);
plot (xl,yl,’ .k’ , markersize’ ,10);hold on
plot(X1,Yl, r—");hold on

9D ata2
xx=[3 3.5 4 5 5.45 5.85 5.5 4.5 3.5 3],

yy=[1.75 2.05 2.25 2.35 2.15 1.95 1.6 1.53 1.45 1.75]
xx1=[3 3.5 4 5 5.45 5.85];yyl=[1.75 2.05 2.25 2.35 2.15 1.95]
xx2=[3 3.5 4.5 5.5 5.85];yy2=[1.75 1.45 1.53 1.6 1.95];
IxI=length (xx1)

Jalpha2=0.15%xones (1,Ix1 —1);%figure

J%alpha2 =0.3xones (1,1x1 —1);%figurel
J%alpha2=0.25%xones (1,Ix1 —1);%figure?2
alpha2=0.1xones (1,Ix1 —1);%figure3

[XX1 YY1]=Affine_FIF (xx1,yyl ,alpha2 ,iter);

[XX2 YY2]=Affine_FIF (xx2,yy2,alpha2 ,iter);

plot (xx,yy, .k’);hold on

plot (XX1,YYl, 'b—");hold on

plot (XX2,YY2, 'b—")

9%oData3l

xxx1=[6.75 7 7.75 8.75 9.15 9.75];

yyyl=[1.75 2 2.25 2.35 2.15 1.95 1.5 1.4 1.55 1.75]

xxx1=[6.75 7 7.75 8.75 9.15 9.75];yyyl=[2 2.25 2.5 2.6 2.4
2.21];

xxx2=[6.75 7 8.25 9.25 9.75];yyy2=[2 1.8 1.65 1.75 2.217;

[XXX1 YYYl]=Affine _FIF (xxx1,yyyl,alpha2 ,iter);

[XXX2 YYY2]=Affine FIF (xxx2,yyy2,alpha2 ,iter);

plot (xxx,yyy. .k’);hold on

plot (XXX1,YYY!, 'b—");hold on

plot (XXX2,YYY2, 'b—")

end

function [X1 Y1]=Affine_ FIF (x,y,alpha,iter)

Ix=length (x);

N=Ix;

for i=1:1x—-1
diff_x(i)=x(i+1)—x(i);length_x=x(N)—x(1);
a(i)=diff_x(i)/length_x;
b(i)=(x(N)*x(i)—x(1)*xx(i+1))/length_x;
c(i)=[y(i+1)—y(i)—alpha (i)*(y(N)—y(1))]/length_x:
d(i)=[x(N)*y (i)=x (1)*y(i+D—alpha (i)*(x(N)xy (1)=x(1)*y(N)) 1/

length_x;
end
abcd_values=[a’ b’ ¢’ d’]

(/e AAv Ao RvRoRovdvdvdvavRo ol odvavavavRe vl vavavAvAY
0707070 707070707070 7070 1070707070 70 170707070 707670

L=[]sLI=[1:X1=[1;Y1=[1:X=[]:Y=[];
p=N;
for k=1:iter
for i=1:N—-1
for tl=1:p
if (k==1)% First iteration

82 5 Applications

% Input data is (x,y) or given data
L(i,tl)=a(i)*xx(tl)+b(i);
Li(i,tl)=alpha(i)*y(tl)+c(i)*x(tl)+d(i);
else % More than one iteration
% Input data is (X1,Yl) or output after the first
iteration
L(i,tl)=a(i)*«X1(tl)+b(i);
Li(i,tl)=alpha(i)*Y1(tl)+c(i)*X1(tl)+d(i);
end
end
X=[X L(i,:)];
Y=[Y LI(i,:)];
end
X1=X; YI=Y; X=[]; Y=[1; g=[X1" Y1’];
g=str2num (num2str(g,10));g=unique (g, 'rows)
Xl=g(:,1):;Yl=g(:,2); [X] Y1]; p=length (X1);
end
end

This illustration shows that the effect of scaling factor on the shape of the inter-
polation is not very apparent and the designer has to exercise several iterations for
fine tuning the parameters to obtain the desired effects.

5.2 Reconstruction of Omicron Data

The seven-days moving average of daily positive cases of Omicron for the five
countries, namely India, Italy, South Africa, UK and USA are considered. The affine
fractal interpolation function discussed in Chap. 2 is used to reconstruct the graphs of
seven-days moving average of Omicron cases. Table 5.2 provides the time duration of
the data associated with first and second waves of Omicron. The data points {(x;, y;)}
represent the time (x-axis) and the value of seven-days moving average (y-axis). The
data corresponding to the fractal graphs of Omicron in Figs.5.2 and 5.3 are taken
from [2]. Interested readers many consult [3], where the fractal graphs of Omicron
are analysed and using a moving average model the successive waves of COVID-19
are predicted.

Table 5.2 Duration of first and second waves of Omicron for five countries

Country First wave Second wave

India 01.04.2020-31.01.2021 01.03.2021-31.07.2021
South Africa 01.05.2020-31.10.2020 01.12.2020-31.03.20211
USA 01.09.2020-28.02.2021 01.08.2021-31.03.2021
UK 01.10.2020-31.03.2021 01.12.2021-30.04.2021
Italy 01.10.2020-31.05.2021 01.11.2021-31.05.2022

5.2 Reconstruction of Omicron Data

83

Infected

Infected

Infected

5000

0 % 10 (% M0 30 w0 350 o 50 100 150 200

October 2020 to May 2021

April 2020 to January 2021
(a) []]

0 100 150 00
May 2020 to October 2020
fch

Infected
Infected

[150 w00 L

October 2020 to March 2021
@

March 2021

100 150 200

to June 2021
(e}

Fig. 5.2 Fractal transformation of COVID data for first wave: a India, b South Africa, ¢ USA, d

UK and e Italy
,210% 10° 108
B L5 15
3 3 3
v 7] \
& & ! H
& 8 g
1 0.5 0.3
0 o .
(1] 50 100 150 0 50 100 150 200 250 0 0 100
March 2021 to July 2021 November 2021 to May 2022 December 2020 to March 2021
@ (b) (©)
5 08
25 10 1
2 8
L]
E 36
]]
H 2
& '
g1 g4
0.5 2
0
0 50 100 T 0 50 150 200 250
December 2021 to April 2022 August 2021 to March 2022
(d) (e)

Fig. 5.3 Fractal transformation of COVID data for second wave: a India, b South Africa, ¢ USA,

d UK and e Italy

84 5 Applications

5.2.1 MATLAB Simulation

The MATLAB code for the reconstruction of Omicron data using the affine fractal
intepolation function is provided, here the scalings are chosen such that |¢;| < 1.

9%% Affine Fractal Interpolation Function

9% L_i (x)=a_i x+b_i

%% F_i(x,y)=alpha_i (x) xy +Q_i(x),

% where Q_i(x) is the affine function

function []=Const_Affine_FIF ()

clc;clear all;close all;

format ’short’

%x =[0 1/3 1/2 2/3 1];y=[1 3 5/2 3.5 3/2];% Data

filename = ’"India_covid_wavel .xlsx "

Data=xlIsread (filename) ;

Y%size (Data)

x=Data (:,1);y=Data(:,2);

x1=Data(1:153,3);

yl=Data(1:153 .,4);

%iter=input(’Enter the number of iterations:=");

iter=1;

Ix=length (x);

ly=length(y);

IxI=length (x1)

lyl=length (yl)

[X1 Y1]=Affine _FIF(x,y,iter);

[X2 Y2]=Affine _FIF (x1,yl,iter);

figure

subplot (1,2,1)

plot (X1,Y1l, r—");

xlabel ("April2020 to January 20217);

ylabel (" Infected ")

subplot (1,2,2)

plot(X2,Y2, ' r—");

xlabel (*March2021 to July 2021°);

ylabel (" Infected ")

end

function [X1 Y1]=Affine_ FIF(x,y,iter)

Ix=length (x);

alpha=0.0033%ones (1,1x —1);

N=1x ;

for i=1:1x—1
diff_x (i)=x(i+1)—x(i);length_x=x(N)—x(1);
a(i)=diff_x(i)/length_x;
b(i)=(x(N)*x(i)—x(l)*xx(i+1))/length_x;
c(i)=[y(i+D)—y(i)—alpha(i)*(y(N)—y(1))1/length_x:
d(i)=[x(N)*y(i)—x(1)*y(i+1)—alpha (i) *(x(N)xy (1)—x(1)xy(N))]/

length_x;
end
abcd_values=[a’ b’ ¢’ d’];

L0707 070107070707 O 7 O 00707 O OO 0707 O- O O 07070
0707070 707070707070 7070707070 7070 70707070 7070 707070

L=[1;LI=[]:X1=[];YI=[]:X=[1;Y=[];
p=N;
for k=1:iter

References 85

for i=1:N—-1
for tl=1:p
if (k==1)% First iteration
L(i,tl)=a(i)*xx(tl)+b(i);
Li(i,tl)=alpha(i)*y(tl)+c(i)*xx(tl)+d(i);
else % More than one iteration
% Input data is (X1,Yl) or output after the first
iteration
L(i,tl)=a(i)*X1(tl)+b(i);
Li(i,tl)=alpha(i)*Y1(tl)+c(i)*xX1(tl)+d(i);
end
end
X=[X L(i,:)];
Y=[Y L1(i,:)];
end
X1=X; YI=Y; X=[1; Y=[1; g=[X1" YI’];
g=str2num (num2str(g,10));g=unique (g, 'rows);
Xl=g(:,1):;Yl=g(:,2);
[X1 Y1]; p=length(X1);
end
end

% TITT T TSI T T T T T T T T T TSI T T T
0 /07C

References

1. K.M. Reddy, N. Vijender, A fractal model for constrained curve and surface. Eur. Phys. J.: Spec.
Top. 232, 1015-102518 (2023)

2. E.Mathieu, H. Ritchie, L. Rod’s-Guirao, et al., Coronavirus pandemic (COVID-19). Our World
in Data (2020). https://ourworldindata.org/covid-cases

3. A. Gowrisankar, T.M.C. Priyanka, S. Banerjee, Omicron: a mysterious variant of concern. Eur.
Phys. J. Plus 137(1), 1-8 (2022)

https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases

	Preface
	Contents
	List of Figures
	List of Tables
	1 Fractals and Dimensions
	1.1 Introduction
	1.2 Deterministic Iteration Algorithm
	1.2.1 Sierpinski Triangle
	1.2.2 von Koch Curve
	1.2.3 Dragon Curve
	1.2.4 Fern Leaf
	1.2.5 Sierpinski Carpet

	1.3 Fractal Dimensions
	1.3.1 Box Counting Algorithm
	1.3.2 Higuchi Algorithm
	1.3.3 Katz Algorithm

	References

	2 Univariate Fractal Functions
	2.1 Affine Fractal Interpolation
	2.1.1 Vertical Scaling Factors
	2.1.2 Affine Fractal Function with Variable Scaling
	2.1.3 Numerical Simulation

	2.2 alphaα-Fractal Interpolation
	2.2.1 alphaα-Fractal Function with Variable Scaling
	2.2.2 Numerical Simulation

	2.3 Hidden Variable Fractal Interpolation
	2.3.1 Numerical Simulation

	References

	3 Differentiable Fractal Functions
	3.1 Hermite Cubic Fractal Spline
	3.1.1 Numerical Computation

	3.2 Cubic Fractal Spline Using Moments
	3.2.1 Numerical Computation

	3.3 Rational Fractal Spline
	3.3.1 Numerical Computation

	References

	4 Fractal Interpolation Surfaces
	4.1 Construction of Fractal Surfaces
	4.1.1 RCFIFs Along X-direction and Y-direction
	4.1.2 Fractal Surfaces by Coon's Technique
	4.1.3 Numerical Computation

	4.2 Fractal Surfaces with Variable Scaling
	4.2.1 Numerical Computation

	References

	5 Applications
	5.1 Patterns of Mountains and Clouds
	5.1.1 MATLAB Simulation

	5.2 Reconstruction of Omicron Data
	5.2.1 MATLAB Simulation

	References

