
THE EXPERT’S VOICE® IN OPEN SOURCE

for Absolute Beginners

Tim Hall and J-P Stacey

All you will ever need

to start programming Python

Python 3

Python 3 for Absolute

Beginners

■ ■ ■

Tim Hall and J-P Stacey

Python 3 for Absolute Beginners

Copyright © 2009 by Tim Hall and J-P Stacey

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1632-2

ISBN-13 (electronic): 978-1-4302-1633-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie
Technical Reviewer: Duncan Parkes
Additional material: Dr. J. Burton Browning
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Beth Christmas and Debra Kelly
Copy Editor: Heather Lang
Compositor: LaurelTech
Indexer: BIM Indexing and e-Services
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

iii

Contents at a Glance

■Contents .. v

■About the Author .. xi

■About the Technical Reviewer... xii

■Chapter 1: Introducing Python ..1

■Chapter 2: Designing Software..9

■Chapter 3: Variables and Data Types...27

■Chapter 4: Making Choices..49

■Chapter 5: Using Lists..75

■Chapter 6: Functions ...101

■Chapter 7: Working with Text..125

■Chapter 8: Executable Files, Organization, and Python on the Web........................161

■Chapter 9: Classes...181

■Chapter 10: Exceptions..221

■Chapter 11: Reusing Code with Modules and Packages ...241

■Chapter 12: Simple Windowed Applications..261

■Index..283

v

Contents

■About the Author .. xi

■About the Technical Reviewer... xii

■Chapter 1: Introducing Python ..1

Running Python on Various Systems ...1

Learning While Having Fun ..4

Introducing the Interactive Shell..4

Choosing to Code with a Text Editor ..5

Choosing to Code with an Integrated Development Environment......................................5

Getting Started with Programming ..5

Creating Your Own Help Files ..6

Jargon Busting...6

Summary ...7

■Chapter 2: Designing Software..9

Designing Your Own Software (Why Bother?)..9

Identifying the Problem..10

Creating Your Wish List..12

Devising a Solution ..13

Breaking Down the Solution into Steps ...15

Jargon Busting...24

Summary ...25

■Chapter 3: Variables and Data Types...27

Choosing Good Identifiers..27

Creating Variables and Assigning Values...28

Recognizing Different Types of Variables ..29

Jargon Busting...45

■ CONTENTS

vi

Summary ...47

■Chapter 4: Making Choices..49

Comparing Things..49

Taking Control of the Process..55

Dealing with Logical Errors..57

Using Conditional Code in the Application ...61

Now Repeat That ...65

Jargon Busting...73

Summary ...74

■Chapter 5: Using Lists..75

Working with Python Data Structures..75

Tuples ..79

Lists ...80

Sets..85

Dictionaries..86

A Simple Role-Playing Combat Game..89

Jargon Busting...99

Summary ...100

■Chapter 6: Functions ...101

Accessing Privileged Information ..101

Working with Variable Scope...105

Refactoring rpcombat.py to Reduce Repetition ...108

Jargon Busting...123

Summary ...124

■Chapter 7: Working with Text..125

Strings and Things...125

Matching Patterns Using Regular Expressions ..135

Using Files ...141

Applications ...145

Jargon Busting...159

Summary ...160

■ CONTENTS

vii

■Chapter 8: Executable Files, Organization, and Python on the Web........................161

Making Programs Executable as Stand-Alone Applications ..161

Organizing Your Project ...164

Writing Stylish Code...165

Importing Modules...170

Using exec() and eval()...172

Putting Python on the Web ..173

Jargon Busting...179

Summary ...179

■Chapter 9: Classes...181

Empowering objects ..182

When Should Classes Be Used? ..185

Customizing Classes..191

Application ...200

Jargon Busting...219

Summary ...220

■Chapter 10: Exceptions..221

When Something Goes Wrong ...221

Classes of Exceptions ..224

A Final Note on Pythonic Exception Handling ..238

Jargon Busting...239

Summary ...240

■Chapter 11: Reusing Code with Modules and Packages ...241

Understanding Python Modules ...241

Everyday Module Usage...244

Advanced Module Behavior ...249

Combining Modules into Packages..252

The Universe of Python packages..254

Jargon Busting...259

Summary ...260

■ CONTENTS

viii

■Chapter 12: Simple Windowed Applications..261

Using Tkinter..261

Saying “Hello” with PyGTK ..265

Using Glade and tepache to Build Interfaces...279

Jargon Busting...282

Summary ...282

■Index..283

ix

About the Author

■Tim Hall currently provides front—line support for 64 Studio. He has also written
newbie tutorials for Linux User and Developer magazine in between more
mundane system admin and web authoring jobs.

Tim has released albums and performed as a musician and songwriter, both
solo and in collaboration with other artists. He has been further honored as the
holder of the Bardic chair of Glastonbury between 2005 and 2007. Tim uses
Python as his main programming language, primarily as a means for creative
ends, because it is easy to read and fun to learn.

J-P Stacey has been a senior developer at Torchbox Ltd since 2005, building and maintaining
(among other things) Python, Django, and Drupal applications.

He organizes the Oxford Geek Nights and gets involved in tuition and seminars at Torchbox. In his
spare time he reads and writes fiction and blogs, buys too much music, and tries not to startle Cotswold
lions on his bicycle.

xi

About the Technical Reviewer

■Duncan Parkes has been coding in Python, both for work and for fun, for roughly
a decade. He drifted into programming largely by accident after initially taking a
doctorate in Combinatorial Group Theory, a branch of Pure Mathematics. As an
ex-mathematician, he loves the clarity and simplicity of Python and needs a bit of
persuading to code in anything else. After completing a technical review of this
book, he joined Apress as an editor in the Open Source group. He currently splits
his time between editing books and coding for mySociety, a charitable
organization that runs most of the UK's best-known democracy web sites.

Duncan lives in Oxford, England, with his wife, Ruth. When away from his
computer, Duncan enjoys playing the guitar very badly, cycling long distances on a
Brompton folding bicycle, and fiddling with old cars.

His friends and colleagues have been known to run sweepstakes on how far these vehicles can get
without the assistance of a breakdown service.

C H A P T E R 1

■ ■ ■

1

Introducing Python

So, you want to learn programming. Welcome to one of the great adventures of the twenty-first century.
Programming requires little in the way of specialized equipment; the software tools can all be
downloaded for free off the Internet, and it can be practiced in the safety and comfort of your own home,
without having to ask anyone’s permission. This chapter will ease you in gently by introducing you to the
software you will need to create your programs: a command-line interface, which allows you to use
Python in interactive mode, and a text editor for writing scripts—nothing more complicated than that. I
will also show you where to go to find help and documentation, so you can decode the sometimes-
impenetrable jargon that seems to surround this, the geekiest of all technical disciplines. To begin with,
you will need to make sure that you have a decently recent version of Python installed on your machine
or follow the steps later in this chapter to install it (see “Choosing the Right Python Version” for a
definition of decently recent). This chapter explains how to make sure that you have everything set up
correctly and that you have suitable references at hand before you start your journey.

Python is an excellent language with which to learn programming. There are many reasons for this,
but the simple explanation is that it’s easy to read and fast to write; it doesn’t take long to come up with
working code that does something meaningful. Python has a very human-friendly syntax, which makes
writing elegant code easy. The basic language is fairly simple and therefore easy to remember, and then
it has an extensive library of predefined functions that you can use to facilitate most common computer
tasks. Writing effective applications in Python can be as simple as playing with conceptual building
blocks. It works really well for writing a little two-line application to perform some routine system
administration task or to provide interactive functions on a web page, but it has enough power and
flexibility to comfortably create much larger and more complex applications with graphic interfaces
indistinguishable from the programs you are used to running from your computer’s main menu. If you
follow the suggestions laid out in this book about writing self-explanatory code, in several months, even
years, you will be able to come back to your programs and see immediately what they were supposed to
do and what your original intentions were; this makes maintaining programs much simpler too.

OK, let’s make sure your system is ready for you to start running Python programs.

Running Python on Various Systems
Python can be installed and run on most operating systems including Windows, Mac OS X, or OS/2,
Linux, and Unix. If you are running Mac OS X or a GNU/Linux system, you will probably have it installed
by default. I would recommend using a system of this kind, which already has Python set up as an
integral part. The book was written using a Debian GNU/Linux system, and therefore, the examples will

CHAPTER 1 ■ INTRODUCING PYTHON

2

work exactly the same on any Debian-based system, such as Ubuntu. In fact, the differences between
Linux variants are few, so you’ll be equally at home with other distributions.

Installing on Windows

If you are using Windows, you will probably have to install Python and configure certain settings
correctly before you can get to grips with the examples in this book. For that, you will need to refer to the
specific instructions for your operating system on the following Python web pages:

• http://wiki.python.org/moin/BeginnersGuide/Download

• http://www.python.org/doc/faq/windows/

• http://docs.python.org/dev/3.0/using/windows.html

First, you need to download the official installer; alternative versions for Itanium and AMD
machines are available from http://www.python.org/download/. You should save this file, which will
have a .msi extension, somewhere you’ll be able to find again easily. You can then double-click this file
to start the Python installation wizard, which will take you through the installation. It’s fine to accept the
default settings if you’re not sure of any answer.

Installing on Other Systems

You may choose to install Python on other systems, particularly if you want to take advantage of newer
versions. For Linux and other Unix-like systems, the installation instructions are here:

• http://docs.python.org/dev/3.0/using/unix.html

If you’re using OS X, your instructions are here:

• http://www.python.org/download/mac/

• http://docs.python.org/dev/3.0/using/mac.html

Choosing the Right Python Version

You will find the different installers include a number after the word Python. This is the version number.
When I started writing this book, those numbers ranged from 2.3.7 (old but still usable) through 2.5.2
(the previous stable version) to 3.0 (the new version about to be released). At the same time as version
3.0 was released, the Python team also put out version 2.6, which is an upgraded version of Python
version 2 for people who want (or need) to stick with the old way of doing things but still want to benefit
from general fixes and some of the new features introduced in version 3.0.

The Python language is continuously evolving; version 3.0 has become the norm and has evolved
into version 3.1.1. The new version, which I’ll refer to as version 3.0 because all 3.x versions are simply
refinements on the original plan of 3.0, includes several changes to the programming language that are
incompatible with version 2.x (x is any number you like), which I will refer to in the rest of this book as
the old version. Most of the language is the same, however, so the differences between the versions of
Python will be noted in the text as those subjects are covered. Examples in this book are for Python 3.0
except where noted.

CHAPTER 1 ■ INTRODUCING PYTHON

3

Further information about the latest version of Python 3.0 (also known as Py3k or Python 3000) is
available at http://www.python.org/download/releases/.

There may be some differences running Python on other operating systems, which I will do my best
to point out where relevant. Otherwise, the examples of code will work the same way. This is one of the
many good points of Python. For the most part, this book will concentrate on the fun part—learning how
to write programs using Python. The official Python documentation is plentiful, free, and well written,
and you should read it alongside this book. It is available on at http://www.python.org/doc/.

Understanding the Jargon

Throughout this book, I will be doing my best to demystify, clarify and explain the various bits of technical
terminology that you will frequently encounter during the process of learning the art of programming.

Technical terms and jargon words that need further explanation will be highlighted in bold the first time

you encounter them. Any terms not immediately explained in the chapter will be covered in the “Jargon

Busting” section at the end of each chapter. You may also wish to study one of the most famous resources

on the Internet, the Jargon File, which is part of the New Hacker’s Dictionary (available at
http://catb.org/~esr/jargon/).

As an example, here’s the definition of the noun “code” from the Jargon File:

“The stuff that software writers write, either in source form or after translation by a compiler or assembler.
Often used in opposition to ‘data,’ which is the stuff that code operates on. Among hackers this is a mass

noun, as in ‘How much code does it take to do a “bubble sort”?’ or ‘The code is loaded at the high end of

RAM.’ Among scientific programmers, it is sometimes a count noun equivalent to ‘program;’ thus they may
speak of ‘codes’ in the plural. Anyone referring to software as ‘the software codes’ is probably a ‘newbie’

or a ‘suit’.”

For comparison’s sake, here’s the definition of the verb “code”:

“To write code. In this sense, always refers to source code rather than compiled. ‘I coded an Emacs clone
in two hours!’ This verb is a bit of a cultural marker associated with the Unix and minicomputer traditions

(and lately Linux); people within that culture prefer v. ‘code’ to v. ‘program,’ whereas outside it, the reverse

is normally true.”

The noun “program” is defined as being:

• “A magic spell cast over a computer allowing it to turn one’s input into error

messages”

• “An exercise in experimental epistemology”

• “A form of art, ostensibly intended for the instruction of computers, which is

nevertheless almost inevitably a failure if other programmers can’t understand it”

As the information contained in the Jargon File is more entertaining than strictly informative, I will be

providing some simpler definitions at the end of each chapter.

CHAPTER 1 ■ INTRODUCING PYTHON

4

Learning While Having Fun
Having fun is often underestimated in the realm of technical disciplines. We learn best and are most
productive when we’re having fun. Developing software using Python is often an engrossing and
enjoyable experience, partly because you can test out your changes as soon as you have made them
without having to perform any intermediary steps.

Python also deals with many background tasks, the household chores of programming, so you don’t
have to bother with them as you might in languages like C. This kind of immediate gratification makes it
easier to stay in the creative flow and keep being inspired.

Python is also easy to read, being closer to natural language than many other programming
languages, so you spend less time trying to decode what you have just written, which in turn means
more time to think about how you could improve and expand your work.

The other great thing is that you can use Python for pretty much any task you can think of, be it large
or small, simple text-driven script or major graphical application. It does have its limitations, but by the
time you come up against them, you will already have become a competent programmer and will be
able to make an informed choice about where to go next.

Introducing the Interactive Shell
Although this book is primarily aimed at showing you how to write stand-alone scripts and
applications—that is, fully fledged programs that don’t require anything other than having Python
installed for them to work—Python also works in interactive mode, which allows you to enter Python
commands using a command-line interface. This is a great resource for immediate Python gratification.
You need to locate and start up your computer’s command-line interface, sometimes known as the
terminal or terminal emulator, or on machines running Windows, the DOS prompt. This will provide
you with a command line at which you can start typing commands. Interactive mode can be started up
by typing python at the command line. If Python is properly installed, you should see something like this:

$ python
Python 3.1.1 (r311:74483, Aug 17 2009, 17:02:12)
[GCC 4.2.3 (Debian 4.2.3-5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The details may be different according to your operating system. The first line shows the Python

version number and the compilation date of the version you have installed. The last line (>>>) is your
Python prompt. This indicates that the Python interpreter is running and waiting for your input. The
Python interpreter is the program that reads Python programs and carries out their instructions.
Interactive mode can be useful for testing out individual commands line by line, experimenting with
new ideas, and getting help (try typing help(), and don’t forget the parentheses; they are important). To
get out of the interactive Python interpreter on a Linux system, you can use the quit() or exit()
functions, or else you must hold down the Ctrl key and the D key at the same time (in Windows, you
need to use Ctrl+Z and then press Enter).

CHAPTER 1 ■ INTRODUCING PYTHON

5

Choosing to Code with a Text Editor
My preferred method of creating Python scripts is to use a plain text editor, with a few basic
programming features. Programs like notepad (especially notepad2/++), BBedit, gedit, NEdit and Kate
are ideal for this task. A variety of editors are available that offer specific enhancements for
programmers, such as syntax highlighting, which is useful for showing coding errors immediately as you
type. Old-school hackers may prefer to use Vi or Emacs. Python does not dictate what software you use
to create the code; the choice is up to you. Do not attempt to use word-processing software, such as
Word or OpenOffice for this task; it will mess you up badly. Be warned!

Choosing to Code with an Integrated Development

Environment
An integrated development environment (IDE) is a graphical interface with lots of useful features
designed to make programming with Python even easier. You still have to type the code in the same way,
but you can do all your coding using a single application, and these programming environments can
provide some useful shortcuts and reminders. There are now several Python-specific IDEs. Popular
applications include IDLE (which is bundled with Python itself), Eric (you may notice a theme here,
nudge nudge, wink wink, say no more...), Geany, DrPython, and SPE. Python is also supported by more
general programming environments like Bluefish and a whole host of others. This book doesn’t cover
the use of IDEs or any of the alternative distributions of Python, because each of these approaches
would require a chapter unto themselves, at the very least. However, the examples contained in this
book will still work if you do choose to explore these options. This book will take the simplest approach,
using tools that come as standard with most operating systems; that is, a text editor and the Python
Interactive Shell.

Getting Started with Programming
The process of writing a new program usually starts with a problem. Before you can code anything, you
need to have an idea of what you want to create, the problem you wish to solve, and a fairly good idea of
how to solve it. Chapter 2 will take you through the process of designing software, known as the software
development cycle. Usually, this is something that you have to learn separately, as most programming
manuals go straight into the details of the language, assuming you will have studied program design at
college or in the process of learning some other programming language. This can lead you to create code
that is difficult to read and understand and makes fixing problems later a nightmare. Understanding the
principles of software design can dramatically speed up the process of creating new software and help
ensure that important details are not missed out.

In Chapter 3, you start coding those designs in Python. You will learn about constructing the basic
units of data, words and numbers, and how to combine and manipulate them. In Chapter 4, I will show
you how to compare values, make choices, and deal with errors. The subsequent chapters go through
the process of refining those designs, breaking them down into manageable chunks, and expanding your
understanding of the Python programming language so you can turn your ideas into fully fledged,
functional computer programs.

CHAPTER 1 ■ INTRODUCING PYTHON

6

Creating Your Own Help Files
Python is described as self-documenting. This doesn’t mean that it will write your user manual for you,
but you can add blocks of text, known as documentation strings, to your own code, and these strings
will then show up in an online help utility. This information can easily be turned into web pages to
provide a useful reference. I will show you how to do this in Chapter 2; it is one of the unique features of
Python and is worth learning how to use early on.

Jargon Busting
This chapter introduced several technical terms with which you may not be familiar, these are defined as
follows:

• Command-line interface (CLI): This mechanism is for interacting with a computer
by typing in commands to a text-based interface such as the terminal or DOS prompt.

• Compile: This process turns a sequence of instructions in programming language,
which is readable by humans (in theory) into machine code, which can be directly
executed by the computer. Python does this automatically in the background
when you run your script. In some other languages, this has to be done as a
separate step before you can execute the program.

• Documentation strings: This block of text on the first line of a function, module, class,
or method definition is also called a “docstring.” Docstrings are used by Python’s built-
in tools for automated testing and to provide help documentation. See Chapter 2.

• Interpreter: This program turns a sequence of instructions in a script into
something that a computer can execute on the fly, effectively compiling the code
as the program is running rather than as a separate step.

• Natural language: This is language that humans speak, as opposed to a
programming language.

• Operating system: This is the software component of a computer system that is
responsible for the management and coordination of activities and the sharing of
the resources of the computer. The operating system communicates between the
applications that are run on the machine and the machine’s hardware
components.

• Prompt: This visual cue tells the user to input something.

• Script and application: The terms “script,” “application,” and “program” are used
somewhat interchangeably in this book, though there are some subtle differences
in meaning:

• Script: This short but complete piece of code is intended to be run using an
interpreter. A script will exist as a text file that you can read.

• Application: This refers to any applied use of a programming language. It
usually means a complete, packaged-up, and usable piece of software. It is
the preferred term among Linux/Unix users.

CHAPTER 1 ■ INTRODUCING PYTHON

7

• Program: This refers to the sequence of instructions involved in a script or
application; it is also used as a general term to describe an executable
computer file.

• Software development cycle: In this structured approach to developing software,
each stage can be fed back into previous stages. See Chapter 2.

• Version number: This number corresponds to a new development in a piece of
software. These numbers may refer to major or minor changes and are generally
assigned in increasing order. The method used for assigning these numbers is
referred to as a versioning system.

Summary
This chapter has explained some of the technical terms that you will encounter as you study the art of
programming and has introduced you to some sources of further information to help you as you grow in
understanding.

So far, you have made sure that the right version of Python is installed on your system and you know
how to get to the Python command prompt. You should have selected a text editor to use for writing and
saving your scripts, but you haven’t written any code yet. In the next chapter I will show you how to start
designing programs from the initial seed of a problem that you wish to solve.

C H A P T E R 2

■ ■ ■

9

Designing Software

If you are anything like me, you impatiently started reading this book at Chapter 3, became really
confused about halfway through, and decided to start at the beginning and read it all properly this time.
This chapter explains the bit that most manuals leave out: how to actually turn your problem into a
working program. The first stage of the software development cycle is the creation of a program design.
In this chapter, I’ll demonstrate how to break down your ideas into manageable chunks, understand
each problem that you are trying to solve, build up a sequence of actions, keep track of what you’ve
done, and above all, how to go about the constant refinement and simplification of your ideas that will
lead to an effective solution that is easy to understand. I’ll be introducing you to pseudocode, the
software design language, and showing you how to turn it into Python documentation strings to create a
framework around which you can grow an effective and maintainable piece of software.

Your first challenge, which I’ll be using as an example for this chapter, is to get the computer to
respond to a command and print out some kind of response—fairly basic stuff, which you could probably
guess at a solution for. However, it’s always good to start as we mean to go on, so I’m going to break this
down in terms of the software development cycle. In order to get off the starting blocks, it is necessary to
identify the problem through a process of asking the right questions and then begin developing a solution,
initially by creating a wish list of the things you want your new program to do and getting feedback from
potential users. You will use all this information to create your initial program design.

In the next part of this chapter, you will be able to start turning that design into working code. As
soon as the design is coded, you will want to begin refining and testing it, starting with defining the
results you expect to get and then figuring out how to detect and correct errors.

In the final stage of the software development cycle, you will discover how to use docstrings to
document the solution and see how this then feeds back into the next round of the development cycle.

Designing Your Own Software (Why Bother?)
There are many reasons that you might want to write your own software, the chief one being that the
applications you have available don’t do what you want in the way that you want. You may already have
an idea of something you wish to achieve, which led you to pick up this book in the first place. Perhaps
you need a solution for work; maybe you have a killer game idea that you’d like to realize; you might
want to organize some data in a web page or perform some system administration task. You might want
to control a gadget you just built or automate any number of repetitive jobs. Possibly, you already have
the program you need, if only it would do this one extra thing, or maybe you just enjoy the idea that
writing your own software is possible. I’m not going to try to tell you why you should want to get
involved in this peculiar sport; I’ll assume you have worked that out for yourself already.

CHAPTER 2 ■ DESIGNING SOFTWARE

10

Let’s start by asking some questions. Never be afraid to ask questions. Why bother doing all this?
Why not just go straight ahead and start writing code? Coming up with a clear design first, along with a
clear idea of what answers you expect to see, cuts down on a lot of wasted effort and makes your
programs easier to document, troubleshoot, and maintain. It is important to remember that you are
trying to make life easier—not more complicated—for yourself and others.

Asking the Right Questions

 “Why bother?” is an important programming question that should be applied to every project, module,
function, or line of code before you begin. There is a strong possibility that someone, somewhere has
already written the software you need, or at least something very similar, that you could convert to your
needs with the addition of a couple of lines of code.

Close on its heels comes the next question, “Isn’t there a simpler way to do this?” Laziness is the
programmers’ ally; you probably won’t have to write very much from scratch, and you won’t need to
learn everything by heart before you begin. Generally speaking, you can look up most things as you go
along. The art of programming has much more to do with figuring out a logical procedure to get
something done than memorizing lines of code; indeed, one of the most common practices involved in
coding is simplification. Your first task is about as simple as it gets, but as the book progresses, you will
be facing much more complex problems as well as coming up with ideas of your own.

Using Python to Solve Problems

Python is similar in style to pseudocode, the language programmers use to design software, with the
difference that you can run it on your computer and actually get results. It’s easy to read (being close to
English), fun to learn, and doesn’t require compiling, that is, you can run your script as soon as you have
saved it without having to perform any intermediate steps. Python is also a useful language in that it can be
used to deal with a wide range of problems with relative ease, and it has a good selection of preconstructed
modules to deal with many of the more common computer tasks. I find it similar to playing with
conceptual building blocks: the elements of the language are fairly simple to grasp, but they can be
combined in pretty much any way you can think of to create apparently complex and graceful structures.

One of the other great features of Python is that it is self-documenting. You still have to write the
documentation yourself, but you can include blocks of help text, known as documentation strings or
docstrings, within the structure of the program itself. I will be using this particular feature to keep all the
design ideas together in one file at the outset and allow us to think on paper. Subsequently, you will be
able to look back over old code and know what you were trying to achieve long after you have forgotten
why you wrote it in the first place. Eventually, these docstrings will be used to communicate how your
program works to other programmers.

Identifying the Problem
Before you start coding anything, you need to have an idea or a problem that you wish to solve. It is quite
useful to start with a familiar repetitive task that you suspect could be performed more efficiently using a
simple script. Your first problem is to find out how to communicate with your computer using Python
and how to get your computer to communicate back. Using this as an example, I will briefly explain the
stages of the software development cycle that most programs will go through in course of their
development. You don’t have to slavishly follow all the suggestions in this chapter, but you may find that
they provide a useful structure for developing more complex applications and to get you back on track if

CHAPTER 2 ■ DESIGNING SOFTWARE

11

you find yourself getting lost. It is also useful to be able to design your program before having to think
about the details of coding it in a formal computer language.

The first stage of writing any new program is to grow a design out of the initial problem, a sequence
of actions that will calculate the correct result and create the required output. Once the idea has passed
the “Why bother?” test, it is necessary to create a simple framework on which to hang the various bits of
code that you come up with. Without such a framework, it is often difficult to know where to begin and
virtually impossible to construct anything but the simplest of scripts without it getting messy very
quickly. The great news is that no specialized knowledge is required at this stage. The process can be
started off by answering a few simple questions:

• What do you want the software to do?

• Who will be using it?

• What system will users be running it on?

What Do You Want the Software to Do?

Open a text editor, and write out what the problem is that you want to solve and, very briefly, what you
actually want the software to do. A simple text editor will do for this task (see Chapter 1). It’s best to start
with some simple jobs that you already know computers can do, like printing out a daft message, adding
up some numbers, or updating the prices of items in a catalog. Classically, half the battle is identifying
the problem, and once you have done so, the solution will begin to become clear. Save the file as plain
text (with the .txt extension) and give it the title of your program-to-be. The first program you’re going
to write later in this chapter will be called Hello World! It will be designed to solve the problem of getting
your computer to print out a friendly, affirmative or daft message when you ask it to, so you may as well
save this as hello world.txt.

■ Tip You might want to create a new directory to store all your Python experiments.

Who Will Be Using It?

Next, you need to specify who will be using the application, even if you’re just doing it for your own
personal gratification and no one is ever going to see the output. Write this down.

What other people will be using the program?

• Friends

• Relatives

• Work mates

• Registered users

• Anonymous clients that you’re never likely to meet

CHAPTER 2 ■ DESIGNING SOFTWARE

12

How much interaction do you expect them to have with the application?

• Clicking a single button

• Using a text interface

• Answering a complex form

How computer-literate do you expect them to be?

• Will they need to learn the ropes?

• Should the application be self-explanatory?

What System Will Users Be Running It On?

It may make a difference whether your program will be running on a Windows, OS X, GNU/Linux, or
some other operating system. It may be running on one kind of operating system and be accessed by
clients using a variety of other systems, like with most Internet applications. It may use a standard
computer keyboard and mouse for input or have some custom-designed interface. What other software
will users need to have installed in order to be able to use your script?

All these questions may have a bearing on choices you make later on in the development process.
Answer them now, and you will be better prepared for the challenges to come. At this stage, keep your
answers simple and to the point; you want to produce a concise overview that neatly summarizes what
the software is intended for to begin with. If you can’t answer some of the questions yet, that’s fine too.
Later in this chapter, you will break this down into detailed steps, but before getting on to that, it’s your
turn to start asking questions.

Creating Your Wish List
In this first stage of defining what you want the software to do, it can be useful to create a wish-list of the
specific things you want this software to achieve. This requires analyzing the procedure that might be
required to perform the job in hand a little more deeply. Initially, it is quite useful to examine a task that
you know how to do. It could be something that is currently not automated or computerized. The
following sections outline some suggestions of things you could do to generate your wish list.

Talking to Potential Users

Interview potential users of your application to find out how they currently perform the task you have in
mind. Ask them which parts of the procedure could be usefully automated and which factors they want
to be able to control. Find out which aspects are confusing and how they overcome existing difficulties.

Some people find it useful to create a short questionnaire, even if only you will be answering the
questions; sometimes, this can help to gain some perspective on the problem at hand. In the
questionnaire, you can ask more detailed questions of what your potential users expect the application
to look like and how they expect it to behave, what file formats they expect to use to read in information
from and save it out to, particularly covering any unique or special considerations that you can imagine.
File formats could include plain text, XML, and HTML for text documents, or your users might have
images saved as JPEGs or PNGs or WAV audio files that they want to convert to MP3s. A file’s extension

CHAPTER 2 ■ DESIGNING SOFTWARE

13

(the letters after the last dot in the filename) usually provides a clue as to what format a file is in, though
there are other ways of finding out this information.

The purpose of this exercise is to find out how this job is usually done and what information is
needed before you begin. An example calculation with realistic examples of the type and range of
information you are likely to be dealing with is invaluable at this stage. A written procedure could also be
useful.

Watching Users Perform the Task at Hand

If possible, watch users carry out the task, and note down any points of interest. Again, you don’t need to
go into a huge amount of detail at this stage, and you need to cover only the information that is relevant
to your software project and your potential users. It can be useful to put yourself in the user’s position
and walk through the process yourself. Another technique is to collect up all the pieces of paper that go
into or come out of the process and use them to create a storyboard. This stage of the design process
becomes much more relevant in larger projects, but it’s worth getting into the habit of doing it now.

Compiling User Stories

A user story consists of one or two lines in everyday language that specifies something that the user
wants from the software. The idea is that stories should be brief enough to fit on an index card, on a
sticky note, or into one cell of a spreadsheet. A user story should indicate the role of the user, what that
user wants the software to do, and what benefit might be gained from it. User stories are prioritized by
the user to indicate which features are most important and are then used to work out an estimate of the
time it will take to develop those features by the developer. The developer may then create use cases out
of these stories and tests to determine whether the requirements have been fulfilled. Use cases are
longer, more detailed descriptions of features that are required by specific users in specific situations.
You just need enough information to work out the basic functionality that will be required from the
program you are about to write. Try to keep it concise.

Devising a Solution
Armed with all this information, let’s return to the text file to complete the first stage of the software
design. The design stage can often be the most time-consuming part of the programming process. It
consists of several stages in which the output from one stage becomes the input to the next. Often, the
output from one or more stages is fed back through the same process several times. This is known as
recursion when it happens inside a program. The whole process of software design has a similarly
recursive nature. To celebrate this fact, let’s go back to the initial problem.

Understanding the Problem

This time around, you’re going to fill in a little more detail and turn your text file into a very simple user
requirements document. In a professional situation, this would become the agreement between the
programmer and the client who is paying for the software to be written. For now, you’re just going to use
it as a means to keep a record of the original purpose of this software. Make sure that the problem is
stated clearly and that you have identified the issue you wish to resolve correctly. Often, there can be
hidden subtleties in the problem that look straightforward when written down in your natural language

CHAPTER 2 ■ DESIGNING SOFTWARE

14

but require additional clarification when you come to turn them into programming language, or code. If
the problem is not defined well enough to make a decision at that point, you will need to return to this
stage and clear up the details before you can make any further progress.

Knowing What the Software Needs to Do

The things you want the software to do are known as functional requirements in the trade. Simple
examples include printing a message, adding up some numbers up, or sending an e-mail form. You
might have additional details to add; for example, maybe the user must be able to input some text,
numbers larger than 200 cannot be entered, or the update must be performed over the Internet.
Functional requirements specify how a system should behave. For your first exercise, Hello World!, you
will be asking the software to print out a simple message, so your first functional requirement is that the
computer should print out a message.

Considering Other Needs or Limitations

You may also want to include other needs or limitations of the software, which are called nonfunctional
requirements. Nonfunctional requirements define other constraints and qualities required of the
software, such as accessibility, usability by the intended users, cost-effectiveness, compatibility with
other systems, security, and performance. You probably won’t need to worry too much about such
things if you are just programming for your own amusement.

Defining Acceptable Results

You need to give some thought as to how the software will be tested. Early on, it will be enough to simply
run the program and see if it works, but as your scripts grow in complexity, you will find it useful to
formalize the methods used for testing. It may be worth finding or creating some data to use as an
example for testing purposes, and you may find it useful to create a table of values that you expect to find
at various points in the process. In Chapter 11, I’ll be showing you how to create built-in test suites,
which can make a large part of the process automatic. It’s generally considered good practice to write
your tests before you do any coding, but it often happens that the tests and code actually get written at
the same time. For now, a note of the expected output will do fine.

Considering Maintenance

Any piece of software that is going to be used more than once will require some degree of maintenance.
Issues that are worth thinking about early on are how the software might need to change in future and
how to keep track of issues. You might also consider how the application is going to be kept in working
condition while you’re integrating new possibilities and responding to new challenges. In many cases,
the application will be maintained by the person who wrote it, but it is good practice to organize your
project and write your code in a way that makes it easy for someone else to understand what you’ve
done and contribute fixes and new features. One day, you might want to pass on the responsibility of
keeping it up to date to someone else.

To facilitate maintenance, the software should include some means of contact, such as the author’s
e-mail address so that users can get in touch if there are any problems. For now, just note your e-mail
address. Later on, I’ll show you how you can integrate this information into your code, so you don’t have

CHAPTER 2 ■ DESIGNING SOFTWARE

15

to retype this information every time you want to use it. Don’t Repeat Yourself is a very sensible principle
of programming that states that every piece of knowledge must have a single, unambiguous, authoritative
representation within a system. No piece of information should ever have to be typed in twice—if you
find yourself doing this, it’s a sure sign that some part of your script needs redesigning.

Great! You should now have a little text file that looks something like Listing 2-1.

Listing 2-1. hello_world.txt

Problem: Get the computer to output a message.

Target Users: Me

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out a message.

 User must be able to input some text.

Testing: Simple run test - expecting a message to appear.

Maintainer: maintainer@website.com

Breaking Down the Solution into Steps
Next, you start the process of turning your wish list into a program. In this stage, you will design a logical
flow of actions, which will hopefully produce the desired outcome. First, you need to turn the text file
into something the Python interpreter can understand by saving it as a Python (.py) file. Use the Save As
function in your text editor to save the file with the same name, but this time with a .py extension. This
example will become hello world.py.

Now, the interpreter needs to know what this text is; otherwise, it will attempt to interpret the first
thing it finds as a command. There are a variety of ways of marking out blocks of text as comments or
text strings so that the interpreter doesn’t attempt to execute them.

Comments: The hash symbol, #, is used to mark comments. Comments are completely ignored by
the Python interpreter. All text between the # sign and the end of the line is ignored. This
formatting is a convenience so you, the programmer, can write little notes to yourself to remind
yourself what this part of the code is supposed to do or to flag parts of the code that need
attention. These comments will only ever be seen by people who are actually reading the code. If
you are writing software as part of a team, comments are a great way of communicating your
thoughts and intentions to the other programmers. Good code can often contain more
comments than actual lines of code—don’t be tempted to remove them once you’ve coded the
design. In a month’s time, you are likely to have completely forgotten what this script was
intended to do, and you will be thankful for these little reminders.

Text strings: Text strings are delimited by quotation marks. Delimited means that the text is
enclosed between a matching pair of the specified characters. Python uses a variety of forms of
quotation marks, principally 'single' and "double" quotation marks. There is a subtle difference
between the two forms, which I’ll cover in detail in the section on text strings in Chapter 3. The
main reason for the different forms is to allow nesting of quotes. Nesting means putting one
inside the other like this: “What on earth does ‘nested delimiters’ mean?” she asked.

Like comments, quotation marks only work if the text is all on one line. Fortunately, there are a
variety of ways to get the interpreter to ignore line breaks. In this example, I shall use the

CHAPTER 2 ■ DESIGNING SOFTWARE

16

technique of triple quoting. Triple quotes can be either '''single''' or """double""", and they
allow us to mark out an entire block of text along with all the line breaks. I’m going to use triple
quotes in a specialized way to create a documentation string

The block of text in Listing 2-1 is going to form the basis of your documentation, so let’s enclose it in
triple quotes. A text string that occurs as the first statement of any module, function or class becomes a
Python docstring, which makes the text available as part of the built-in documentation for this
application. It won’t do anything yet, but Listing 2-2 is now a legal Python file; the interpreter won’t
complain if you try to run it.

Listing 2-2. Creating a Framework for hello_world.py

"""

Problem: Get the computer to output a message.

Target Users: Me

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out a message.

 User must be able to input some text.

Testing: Simple run test - expecting a message to appear.

Maintainer: maintainer@website.com

"""

This is just a comment

Organizing the Tasks into Steps

Now, you are prepared to start designing your program. The program design is initially sketched out in
pseudocode, which is the design language that can be used as an intermediary step to turn the user
requirements document into a piece of Python code. There is nothing special about the form of this
language; your own natural way of expressing ideas is exactly what is needed in this situation.
Pseudocode is simply a series of logical statements in your own words that describe the actions that the
program needs to take in order to produce the desired result.

If you are working as part of a team, your company may have a standard way of writing pseudocode,
but you don’t need to worry about such considerations while you are learning. Over time, you are likely
to find that your pseudocode naturally adopts a Python-like syntax. Initially, the important thing is that
you can express your ideas clearly without having to worry about the rules of the language yet. The
pseudocode is presented in comments # in the order you want it to happen, as shown in Listing 2-3.

Listing 2-3. Pseudocode Example

Do the first thing

Do the next thing

Do the last thing

CHAPTER 2 ■ DESIGNING SOFTWARE

17

Each line is commented out so that the interpreter knows not to execute any of these statements.
This is your top-level design, which is a general description of how you are going to solve this problem.
Each statement is referred to as a step. When a step is performed, it is said to be executed.

Using Indentation and Subgroups

Python is very strict about indentation. Python regards any space or tab at the start of a line as an
indentation. Every indentation means something. Without going into too much detail at this stage, pay
careful attention to how indentation is used in the examples. The most important thing to remember is
not to mix tabs with spaces, as the interpreter thinks these are two different things (even if they look the
same to you).

In your text editor’s Preferences window, set it to insert four spaces instead of using tabs, and you’ll
avoid so much future grief by doing this. It is always best to keep your designs clear and readable: use
blank lines to separate the different sections of your pseudocode, and use indentation to show how
statements are grouped together. As long as each line is a comment preceded by a #, you are free to
format it how you like.

■ Caution The use of indentation in your actual code follows very specific rules. This is one aspect of Python that

takes a little bit of getting used to. I will explain the rules fully in the chapters on control flow statements and

functions.

Refining Each Line of Your Pseudocode Until a Solution Is Reached

Each line is then further refined by breaking it down into steps in the same way, until each step
comprises a single action and you have a complete design. Subsections should be indented by four
spaces, as shown in Listing 2-4.

While you are working in pseudocode, your groupings and indentation can be quite arbitrary; all
you are doing is providing a framework for your code to live in. As you learn more about Python, your
pseudocode will naturally adopt more Pythonic structures. The process of refining your designs will be
covered in greater detail from Chapter 4 onward.

Listing 2-4. Indentation of Subsections

Do the first thing.

 # Set the first value.

 # Check whether the first value is some text or not.

 # Print the first value

Save it! Every time you sit back from the screen and wonder “What next?” you should save your

work. Get into this habit if you haven’t already; it will save so much brain-ache and frustration. You may
also wish to copy your top-level design along with the finished design back into the original text file, so
that you can refer to it when you have finished the coding stage.

CHAPTER 2 ■ DESIGNING SOFTWARE

18

Coding the Design

Now, you are ready to start turning your design into proper Python code. Great!
The data your software will be manipulating will take various forms; these values are assigned to

things called variables, which you can think of as a box or a bucket that contains a single piece of
information, often a word or a number. Some people find it useful to think of them as slates that can be
written on with chalk. The important thing is that the information in the container can be changed by
putting a new value into it; this automatically wipes out the old value and replaces it with a new one. The
fact that these values can be changed gives rise to the term variable.

There are two stages to creating a variable, the first is to create the container and stick an identifying
label on it: this is called initialization. The second is to put a value into it: this is called assignment. In
Python, both these things happen in the same statement. Assignment (and therefore initialization) is
performed using the = sign like this: variable = value. One of the specific features of Python is that,
once a value has been assigned to a variable, the interpreter will then decide what sort of value it is (i.e., a
number, some text, or some other relevant piece of information).

Each variable is referred to by a name, known as an identifier, which is rather like a name tag that
identifies the variable to the rest of the program. It’s a good idea to choose names that give an idea of
what sort of values they represent. Python will regard any word that has not been commented out,
delimited, or escaped in some other way as either a command or an identifier; for this reason, you need
to be careful to avoid choosing words that are already being used as part of the Python language to
identify your new variables. Details of which words you cannot use will be covered in the next chapter.

Turning the Design into Executable Code

Now, you have to come up with a strategy for solving the problems you have agreed to tackle.
First, you want to print out a message, and you want the user to be able to input some text. OK, so

you’re expecting your message and users’ text to be strings of text. It would be a very good idea to add
this information to the Testing section of your docstring at the start of the file. Text strings are
represented by enclosing the text in quotes.

Now, you just need to know the function that prints things out to the screen, which is called print()
in Python. So your first problem translates fairly easily into executable code as you can see in Listing 2-5.
You can print any text you like; “Hello World!” is the default.

Listing 2-5. First Steps for hello_world.py

"""

Problem: Get the computer to output a message.

Target Users: Me

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out a message.

 User must be able to input some text.

Testing: Simple run test - expecting a message to appear.

 - expecting: message == input text

Maintainer: maintainer@website.com

"""

CHAPTER 2 ■ DESIGNING SOFTWARE

19

1. Print out a friendly message
print("Hello World!")

2. Input some text

3. Print out the text we just entered

This script can be run by typing

$ python hello world.py

on the command line. You did remember to save it, didn’t you?
The only line in this script that is actually executed by the interpreter is print("Hello World!").

Everything else is either ignored as a comment or assumed to be a docstring, in the case of the block of
text at the beginning. If you change the text between the quotes in the call to the print() function, the
Python interpreter will print out whatever you tell it to.

Well done! You just wrote your first Python program. It’s about as basic as can be, but you can now
bask in the satisfaction of having got Python to do something.

Further Refining the Design

Constantly editing the script to get it to say something different quickly becomes rather tedious. Wouldn’t it
be great if the program were interactive? In that case, you would need to find a way to get some user input.

The quick-and-dirty method for doing this is to use the built-in input() function. This function
takes one argument, a text string that is printed to the screen to prompt the user for input. The function
then returns the user’s input. All requests for input need a message to tell the user that input is required;
this is known as a prompt. I assign this input to a variable called some text. Then, I can use the print()
function to print out the user’s input. Notice that this time some text isn’t in quotes, because I want the
value contained in the variable called some text rather than the literal text string "some text". Variable
names aren’t allowed to contain spaces, so you’ll notice that I’ve replaced the space with an underscore.
It’s worth remembering that variable names can’t contain dashes either, because Python will assume
that the dash is a minus sign. Details of how to name your variables will be covered fully in Chapter 3.

Using functions

Most of the actual work in programs is performed by functions. You can spot functions quite easily, as they

usually have parentheses, (), immediately following the function name. Any information that the function

needs to work on is placed inside the parentheses; these pieces of information, called arguments, have to
be separated by commas if there is more than one of them.

Again, text strings have to be enclosed in quotes or else the interpreter will treat the string as if it is a

variable. Functions often return a value of some kind, so it is usual to catch this value by assigning it to a
variable like this: variable = function().

Don’t forget the brackets after the function name.

Functions are covered in much greater detail in Chapter 6.

CHAPTER 2 ■ DESIGNING SOFTWARE

20

Your final script should look something like Listing 2-6.

Listing 2-6. A Refined hello_world.py

"""

Problem: Get the computer to output a message.

Target Users: Me

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out a message.

 User must be able to input some text.

Testing: Simple run test - expecting a message to appear.

 - expecting: message == input text

Maintainer: maintainer@website.com

"""

1. Print out a friendly message

print("Hello World!")

2. Input some text

some text = input('Type in some words: ')

3. Print out the text we just entered

print(some text)

■ Note The behavior of the input() function has changed in Python 3 . You need to use the raw input()

function to get the same effect in older versions.

Testing the Design

Now, it’s time to save the file again and test it by running the script with the Python interpreter as before.
If you get any error messages at this stage, you probably made a mistake typing the script. Common
errors include missing quotation marks or spaces in the wrong places. In this case, you will need to go
back to the coding stage and correct these errors before you test the code again.

The testing stage involves making sure that the design does what it is supposed to and that it
matches the specification that you started with. Compare the actual output from running the program to
the output you said you were expecting in your original specification. Are they the same? If not, why not?
What could be done better?

Apart from the initial design stage, you will probably spend most of your time cycling around this
testing stage. Don’t be tempted to view error messages as annoyances or irritations: pay great attention
to what they tell you, as they can be one of the most useful aids on the path of learning Python. On some

CHAPTER 2 ■ DESIGNING SOFTWARE

21

occasions, you will want to deliberately produce error messages to prove that something is working. Try
it now. Find out what you have to mess up to get an error message. Take note of what sort of message
you get, and fix your script so that it runs cleanly again.

Detecting and correcting coding errors

Let’s take a brief tour of a few common errors you’re likely to see. For example, the following error

indicates that you’ve left off the quotation marks:

$ python hello world.py
 File "hello world.py", line 16
 print("Hello World!)
 ^
SyntaxError: EOL while scanning string literal

Turning on the line numbers in the preferences of your text editor will help locate the relevant line. Many

editors also allow you to search for the specific line number. The fix for this is easy: go back and add the
matching pair of quotation marks. The little arrowhead shows you the place where the interpreter realized

all was not well. That won’t always be exactly the same place as you made the error, but it will probably

have some logical relationship.

The following error means you misspelled some text the first time you mentioned it:

$ python hello world.py
Hello World!
Type in some words: Some Text
Traceback (most recent call last):
 File "hello world.py", line 22, in <module>
 print(some text)
NameError: name 'some text' is not defined

The program runs fine up to that point, but the misspelled word is considered to be an error in your logic.
Go back to the Python file, and make sure your logic is sane and that you have spelled the names of your

variables consistently.

In the following script, you forgot to put quotes around the argument to input(), your prompt string:

$ python hello world.py
 File "hello world.py", line 19
 some text = input(Type in some words:)
 ^
SyntaxError: invalid syntax

Notice that the interpreter doesn’t mind the space between the function name and the parentheses, but it

does mind the spaces in between the words in the argument because you didn’t enclose them with quotes.
Syntax errors mean that you got the punctuation or grammar wrong. The fix for this is usually to go and

look up the correct form for this function in the official documentation. It might have been acceptable to

have a one-word argument if that word was the name of a variable containing a text string. If no variable of
that name existed you would be accused of calling an undefined identifier.

CHAPTER 2 ■ DESIGNING SOFTWARE

22

The final example is slightly more obscure. This error was actually caused by leaving off the comment

marker # at the beginning of the line and leaving a space:

$ python hello world.py
 File "hello world.py", line 18
 2. Input some text
 ^
IndentationError: unexpected indent

The interpreter wasn’t expecting to hit an indented line here; it was expecting another statement at the

same level of indentation. I told you Python was fussy about indentation. If the space hadn’t been left, you

would simply receive a syntax error because 2. isn’t a command that Python recognizes.

Noting Modifications, Extensions, and Enhancements

As you read through your code, make notes of any improvements that could be made. I like to use
comments in the script for this. It is a useful convention to include the word TODO or FIXME in the line, so
you can search the source file later for things that you have decided need doing. You could create a
separate TODO file in the same directory if you want to keep track of multiple files.

Documenting the Solution

Documentation is the last good habit I’d like to introduce you to, before I move on to discussing the
Python language in depth. As mentioned earlier in this chapter, Python is self-documenting to a certain
extent. Modules, classes, and functions may be documented by placing a text string as their first
statement, just as I have done with the specification details in this example. The simplest way to test this
is to start Python in interactive mode from the same directory as the hello world.py script:

$ python

Python 3.1.1 (r311:74483, Aug 17 2009, 17:02:12)

[GCC 4.2.3 (Debian 4.2.3-5)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

The three chevrons are the Python prompt, which means the interpreter is ready to receive your first

command. Next, you need to import the script you have just written as a module using the import
statement:

>>> import hello world

Hello World!

Type in some words: Some Text

Some Text

You will see that the program runs in exactly the same way. However, this method allows us to easily

access the documentation you have created. help() is a built-in function that takes one argument—the
name of the module, class, function, keyword or topic that you want to find out about. Notice that I
didn’t use the .py extension or enclose the name of the module in quotes; this is because it became a

CHAPTER 2 ■ DESIGNING SOFTWARE

23

Python object when I imported it, so I need to refer to the script as a module, the way Python sees it,
rather than using the operating system’s filename. I will cover modules, classes and objects in Chapters 9
and 10.

>>> help(hello world)

This should give us a result that looks like this:

Help on module hello world:

NAME
 hello world

FILE
 /home/me/lib/python3.0/hello world.py

DESCRIPTION
 Problem: Get the computer to output a message.
 Target Users: Me
 Target System: GNU/Linux
 Interface: Command-line
 Functional Requirements: Print out a message.
 User must be able to input some text.
 Testing: Simple run test - expecting a message to appear.
 - expecting: message == input text
 Maintainer: maintainer@website.com

DATA
 some text = 'Some Text'

If you need more assistance you can use the

>>> help()

function to get a basic explanation of most aspects of the Python language.

The output from the help() function provides us with a minimal sort of programmers’
documentation, which is probably more than adequate for this example. Larger software projects would
produce additional documentation at this stage such as a design document and a user manual. The
design document is for the benefit of people who will be maintaining the software; it should minimally
consist of a statement of the problem, a top-level design, the final design (possibly with an explanation
of how it was arrived at), and a data table. A data table for the hello world.py script from Listing 2-6
would be very simple as illustrated in Table 2-1.

Table 2-1. An Example Data Table

Identifier Description Type

some text User input text Text string

CHAPTER 2 ■ DESIGNING SOFTWARE

24

This information could be copied into the original .txt file (hello world.txt, in this instance) if all
you need is to provide yourself with a reference for future modifications. Complex applications often
come with several text files and extensive user documentation (I’ll come back to these later).

The form and content of the user manual is really up to you. The important point to keep in mind is
that the software design cycle does not end until all the documentation has been brought up to date.

Jargon Busting
Here are the terms introduced in this chapter:

• Argument: This is a value you pass to a function or to a procedure, so it has some

data to work with.

• Assignment: This is the operation of setting a variable to a value.

• Delimiter: This punctuation mark is typically used to separate a text string or other

piece of data from surrounding characters.

• Escape: This is a method of indicating that the next character in a text string

should be processed in a different way.

• Function: A function is a block of code that performs a calculation, accepts zero or

more arguments, and returns a value to the calling procedure when it is complete.

• Indentation: This refers to the use of spaces and tabs at the start of a line of code or

text; except you want to use spaces rather than tabs, remember?

• Identifier: This is a user-defined name; both function names and variable names

are identifiers. Identifiers must not conflict with keywords.

• Initialization: This process sets the initial value of a variable. Initialization is done

only once for each variable, when that variable is created.

• Module: A module is a Python program that can be imported by another program.

Modules are often used to define additional functions and classes.

• Nesting: Put one piece of code inside another similar construct.

• Nonfunctional requirements: These are needs or limitations of the software that

are not specifically about what the software will do.

• Program implementation: This is the actual realization of the program, as opposed

to the design.

• Prompt: This string of text or punctuation marks indicates that the user needs to

input some information or commands.

CHAPTER 2 ■ DESIGNING SOFTWARE

25

• Pseudocode: This program design language is intended to be read by humans, not

performed by a computer.

• Return: This refers to the process of transferring execution from a function back to

the place from which that function was called in the main program. The return

statement can also pass a value back to the main program for use in further

calculation.

• Statement: This instruction to do something in a programming language

manipulates a piece of data, performs a calculation, or produces some output.

• String: This refers to a line of text or other characters intended to be displayed or

processed as a single item.

• Top-level design: This is the first stage of a design, and it provides a summary or

general description of the actions that the software is intended to perform.

• User story: A user story consists of one or two lines in the everyday language of the

user that specifies something desired from the software.

• Validation: This process tests whether a value is what the programmer expects it

to be.

• Variables: Use variables as a means of referring to a specific item of data that you

wish to keep track of in a program. It points to a memory location, which can

contain numbers, text, or more complicated types of data.

Summary
Congratulations! You have completed your first turn around the software design cycle and produced
your first Python program. In the process, you have discovered how to identify and analyze problems
and have created a simple framework by breaking the problem down into simple steps. You wrote your
first lines of Python code and learned how to assign values to variables. You also obtained user input
using your first function and then tested it out, and you learned how to use error messages to help detect
and correct coding errors. Finally, you learned about the importance of documenting your intentions,
expectations, and results. This chapter has concentrated mainly on preparing ideas in order to turn
them into effective applications. In the rest of this book, I will focus on the specifics of the Python
programming language, and you will learn how to construct more complex applications.

C H A P T E R 3

■ ■ ■

27

Variables and Data Types

In the previous chapter, you learned that a variable is a unit of data with an identifier, which is held in
your computer's memory; it can be changed by putting a new value into it or modifying the value that is
already there. In this chapter, I will be introducing some of the different types of variable that are
available for you to use in your programs, and I’ll be showing you how to build them into the expressions
and statements of Python that will allow you to turn your designs into working code. This is where you
start to do some real programming. You will be creating two programs from scratch in this chapter: one
to manipulate and format simple text strings and a script that performs a mathematical calculation. All
this is made possible by using variables.

Using variables allows you to specify a calculation or method for getting a result without having to
know what values those variables will refer to beforehand. Any information that is put into the system
must be turned into a variable before you can do anything to it, and it will be the contents of a variable
that finally get sent back to the user that called the program.

Choosing Good Identifiers
Identifiers are the names used to identify things in your code. Python will regard any word that has not
been commented out, delimited by quotation marks, or escaped in some other way as an identifier of
some kind.

An identifier is just a name label, so it could refer to more or less anything including commands, so
it helps to keep things readable and understandable if you choose sensible names. You need to be
careful to avoid choosing names that are already being used in your current Python session to identify
your new variables. Choosing the same name as something else can make the original item with that
name inaccessible.

This could be particularly bad if the name you choose is an essential part of the Python language,
but luckily Python does not allow you to name variables after any essential parts of the language.
Therefore, the next section contains an overview of the most important words used in Python, so you
can avoid this problem; this is the territory that you will be exploring and learning to work with over the
course of this book.

Python Keywords

The following words are the keywords, which form the basis of the Python language. You are not allowed
to use these words to name your variables, because these are the core commands of Python. They must

CHAPTER 3 ■ VARIABLES AND DATA TYPES

28

be spelled exactly as written here for the interpreter to recognize them as keywords. The words True,
False and None have a special meaning, which will be covered later.

• False

• None

• True

• and

• as

• assert

• break

• class

• continue

• def

• del

• elif

• else

• except

• finally

• for

• from

• global

• if

• import

• in

• is

• lambda

• nonlocal

• not

• or

• pass

• raise

• return

• try

• while

• with

• yield

Following the Naming Rules

So, let’s talk about what you are allowed to call your variables. Variable names must begin with either a
letter or an underscore. Although they can contain numbers, they must not start with one. If the
interpreter encounters a bunch of characters starting with a numeral, rather than a letter or a quotation
mark, it will assume that it is a number.

You should not use anything other than letters, numbers, or underscores to identify your variables.
Also, you should be aware that Python is generally case-sensitive, which means that lowercase and
uppercase letters are treated as being different characters; therefore, true and True are interpreted as
completely different entities, as are myvariable, MYVARIABLE, and MyVariable.

It is also a good idea to keep your own record of names you have already used. I recommend
keeping a table of variables at the start of the program file, so you can easily find your list when you want
to look something up.

Creating Variables and Assigning Values
In many programming languages, there are two stages to creating a variable: The first is to create the
container and stick an identifying label on it; this is called initialization. The second is to put a value into
it; this is called assignment. Initialization and assignment are performed with a single command in
Python, using the = sign. So, you would assign a value to a variable by typing the following:

variable = value

CHAPTER 3 ■ VARIABLES AND DATA TYPES

29

■ Note Every variable has a value; there's no such thing as an empty variable in Python.

A section of code that does something, such as an assignment, is known as a statement. The part of
the code that can be evaluated to produce a value is known as an expression. The right-hand side of an
assignment can be an expression, like the assignment to total price in the following list of simple
assignment statements:

number = 0

roll width = 1.4

price per metre = 5

filename = 'data.txt'

trace = False

sentence = "this is a whole lot of nothing"

total price = roll width * price per metre

Each statement should have its own line. If this looks like a shopping list to you, or a list of materials

or ingredients, then you’re on the right track. A recipe usually begins with a list of ingredients:

eggs = 2

butter = 0.5oz

salt = pinch

pepper = pinch

The recipe might specify a list of tools that you will need—knife, fork, bowl, frying pan—and then

follow on with the method, often in numbered steps. The same happens in a Python program; you
define your variables and then carry out tasks on them.

Recognizing Different Types of Variables
Python recognizes several different types of variables: string literals (words), numbers, sequences (lists),
mappings (dictionaries), and Booleans (true or false values). These are the staple ingredients of all Python
programs. The value None has a type all of its own, NoneType. The rest of this chapter will introduce you to
words and numbers. However, first we need to talk about Python’s dynamic typing features.

Working with Dynamic Typing

In Python, once a value has been assigned to a variable, the interpreter will then decide what sort of
value it is (i.e., a number, some text, or some other relevant quality). This is known as dynamic typing (it
has nothing to do with how many words per minute you can input from the keyboard). Unlike some
other languages, it is not necessary to declare what your variables are before you use them. This is both a
blessing and a curse. The main advantage is that you don’t really have to worry exactly what type an item
of data is, so long as it behaves the way you want it to.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

30

Dynamic typing makes it much easier to handle different types of unpredictable user input. The
interpreter can accept user input in many different forms, to which it assigns a type dynamically. This
means that a single piece of code can be used to deal with words, numbers, or any other data type, and
that the programmer doesn’t need to decide what type the data will be in order to assign it to a variable.

Not needing to declare variables before you use them makes it tempting to introduce variables at
random places in your scripts. Beware: Python won’t complain unless you try to use a variable before
you have actually assigned it a value, but it’s really easy to lose track of what variables you are using and
where you set up their values in the script.

There are two really sensible practices that will help keep you sane when you start to create large
numbers of different variables. One is to set up a bunch of default values at the start of each section
where you will be needing them, keeping all the variables you are going to use together in one part of the
text like an ingredients list. The other is to keep track of the expected types and values of your variables,
keeping a data table in your design document for each program that you are writing.

Python needs to keep track of the type of a variable for two main reasons. Chiefly, the machine
needs to set aside enough memory to store the data, and different types of data take up different
amounts of space, some more predictably than others. The second reason is that keeping track of types
helps to avoid and troubleshoot errors. Once Python has decided what type a variable is, it will flag up a
TypeError if you try to perform an inappropriate operation on that data. Although this might at first
seem to be an unnecessary irritation, you will discover that this can be an incredibly useful feature of the
language; as the following command-line example shows:

>>> b = 3

>>> c = 'word'

>>> trace = False

>>> b + c

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> c - trace

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'bool'

Here, I attempted to perform operations on incompatible types. You’re not allowed to add a

number to a word or take a yes/no answer away from it. It is necessary to convert the data to a
compatible type before trying to process it. You can add words together or take numbers away from each
other, just like you can in real life, but you can’t do arithmetic on a line of text. The tracebacks are
Python’s way of alerting you to a potential error in your logic, in this case a TypeError. This tells me that I
need to rewrite the code to make it clear what type of information I want to put in and get out of the
equation.

The purpose of data types is to allow us to represent information that exists in the real world, that is,
the world that exists outside your computer, as opposed to the virtual world inside. We can have the
existential conversation about what is real and what is not some other time. The previous example uses
variables of type int (whole numbers) and type str (text). It will quickly become apparent that these
basic data types can only represent the simplest units of information; you may need to use quite a
complicated set of words, numbers, and relationships to describe even the simplest real-world entity in
virtual-world terms.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

31

Python provides a variety of ways of combining these simple data types to create more complex data
types, which I’ll come to later in this book. First, you need to know about the fundamental building
blocks that are used to define your data and the basic set of actions you can use to manipulate the
different types of values.

In the Beginning Was the Void

Python has a special predefined value called None, which represents nothing, zilch, nada. The value None
has its own type and is useful where you want to create a variable but don’t want to specify its value (and
therefore its type) just yet. Assigning values such as 0 or "" to a variable will create an int or str type
variable. You can assign the value None like this, which produces a NoneType variable. Don’t forget it starts
with a capital N.

information = None

For the next few examples, the real world information that I’ll be attempting to model in virtual

form will be fantasy characters for a role-playing game. To create some continuity in my fantasy world, I
need to be able to keep track of the characters’ names, plus some descriptive information, such as what
kind of fantasy creature each is. I also need to create some statistics to represent strength, speed, and so
on, to provide some data for the combat system to use, and I need to be able to keep a record of how
much money each character has. I’m sure you’ll be itching to learn how to automate your accounts and
database your stock records, but please try to temper your enthusiasm while I take a brief excursion in
order to introduce you to the inhabitants of Cloud-Cuckoo Land.

Joining Up Text Fragments

In hello world.py, you learned how to get some basic output by using the print() function. You can use
it to print out a literal string of characters or the value of a variable. Normally, each print statement starts
on a new line, but it is possible to print several values on a single line by separating them with commas;
print() will then concatenate them into a single line, separated by spaces.

>>> Race = "Elf"

>>> Gender = "Female"

>>> print(Gender, Race)

Female Elf

There are many ways to combine separate pieces of information into a single line, some more

efficient than others. Two adjacent strings (not separated by commas) will automatically be
concatenated, but this doesn’t work for variables.

>>> print("Male" "Gnome")

will give the output

MaleGnome

CHAPTER 3 ■ VARIABLES AND DATA TYPES

32

The following line

>>> print("Male" Race)

results in this

 File "<stdin>", line 1
 print("Male" Race)
 ^
SyntaxError: invalid syntax

This approach doesn’t work for variables because writing two adjacent strings is just a different way
of writing a single string. In other words, you can’t write a string using a string and a variable together
like this.

■ Note It is possible to join strings together using the + sign. In the context of strings, this is called the

concatenation operator; an operator is a command that often consists of a symbol or combination of symbols,

placed between two variables, known as operands, just like you would write a mathematical equation. The

situation is further complicated because the + sign is also used to add numbers together, as you will see in the

next section (this is called overloading). Using the + sign to concatenate words can slow down the execution of

your program to an alarming degree. For this reason, I recommend that you don't use this method if you need to

join lots of strings; some more efficient ways of joining strings together will be covered in Chapter 7.

Using Quotes

Character is the term used to describe a single letter, number, or punctuation mark. Strings of
characters intended to be displayed as text are known as string literals or just strings. If you want to tell
the interpreter that a block of text is meant to be displayed literally as text, you have to enclose the text in
quotation marks; these can take several different forms:

"A text string enclosed by double quotes and all on one line."

'A text string enclosed by single quotes, all on one line again.'

'''A text string including multiple lines of text

 line breaks

 and other formatting

can be enclosed in triple quotes.

'''

"""or even:

 triple double quotes.

"""

'Single and double-quoted lines can be continued on to the next line by placing a \

(backslash) at the end of the line.'

CHAPTER 3 ■ VARIABLES AND DATA TYPES

33

■ Note The backslash \ escapes the new-line character, which means it tells the interpreter to ignore any special

meaning that the next character might have. All the unescaped characters after that are treated normally.

A value created using text in quotes will be given the type str (string).

Nesting Quotes

Sometimes, you will want to include literal quotation marks within your text. It is possible to nest quotes.
That is, have one set of quotation marks inside another, so long as you use a different sort of quotation
mark, like this:

>>> text = "She quoted 'the rules' at him"

In this instance, the interpreter will assume that it has reached the end of the text when it hits the

second double quote ", so the substring 'the rules' is considered to be part of the main string including
the single quotes. This way, you can only have one level of nested quotes. Inside triple quotes, """ or ''',
it is possible to use both normal single and double quotes without confusing things; the interpreter will
wait until the second set of triple quotes before it decides that the string has come to an end. The best
way to understand how they work is to experiment with assigning and printing out lots of different sorts
of strings.

>>> boilerplate = """

... #===(")===#===(*)===#===(")===#

... Egregious Response Generator

... Version '0.1'

... "FiliBuster" technologies inc.

... #===(")===#===(*)===#===(")===#

... """

>>> print(boilerplate)

#===(")===#===(*)===#===(")===#

Egregious Response Generator

Version '0.1'

"FiliBuster" technologies inc.

#===(")===#===(*)===#===(")===#

This can be very useful if you want to format a whole page or block of text. In Chapter 7, I’ll be

looking at more sophisticated methods of string formatting.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

34

Escaping Sequences

There will be times when nesting different types of quotes will not be sufficient; in those cases, you can
include further literal quotation marks by escaping them, so \' or \". If you need to print a literal
backslash, you have to escape the backslash itself, like this: \\.

The input() function, which I used to get user input in hello word.py, stores the string with extra
escapes where necessary, so the string will print out exactly the way it was typed.

>>> variable = input('Type something in: ')

Type something in: String, with lot\'s of \bad\ punct-uation (in it);

>>> variable

"String, with lot\\'s of \\bad\\ punct-uation (in it);"

>>> print(variable)

String, with lot\'s of \bad\ punct-uation (in it);

Using Special Whitespace Characters

It is also possible to specify whitespace characters using a character sequence that begins with a
backslash, as shown in Table 3-1. \n produces a linefeed (LF) character; this is subtly different from the
\r carriage return (CR): On a mechanical typewriter, the linefeed would just give you a new line, while
the carriage return would properly start a new paragraph. One of the instances where you might need to
know the difference is translating text files from one operating system to another: OS X uses the CR
character at the end of lines, whereas Unix and Linux use the LF character, and Windows uses both.

The meaning and usage of some of these sequences is somewhat lost in the mists of time. Mostly,
you’ll want to use the \n escape. The other most useful one is \t, which produces a tab character that
can be useful for quick-and-dirty indentation of text. Most of the other whitespace characters are only
likely to be useful in very specialized situations (see Table 3-1).

Table 3-1. Escape Sequences

Sequence Meaning

\n Newline (LF)

\r Carriage return (CR)

\t Tab

\v Vertical tab (VT)

\e Escape character (ESC)

\f Formfeed (FF)

\b Backspace

\a Bell (BEL)

CHAPTER 3 ■ VARIABLES AND DATA TYPES

35

The following example allows you to nicely format your output for the screen:

>>> print("Example Heading\n\nFollowed by a line\nor two of text\n \

... \tName\n\tRace\n\tGender\nDon\'t forget to escape \'\\\'."

)

Example Heading

Followed by a line

or two of text

 Name

 Race

 Gender

Don't forget to escape '\'.

The More Strings Change the More They Stay the Same

The other thing you need to know about strings is that they are immutable; this means they can’t be
changed. In practice, it is possible to use some fairly simple functions to create a new string with an
edited value.

Creating a Text Application

It’s time to put all this information into practice on our role-playing game example. Strings are quite
simple to use; for the most part, you just need to make sure that you enclose your strings in matching
quotes properly. The top-level design for an RPG character-description generator script is
correspondingly simple.

Prompt user for user-defined information

Output the character sheet

The minimum information I need is a name for each character. I’d also like to keep a note of each

person’s gender and fantasy race, and I’d like some space for a short description, so I have created
variables named Name, Desc, Gender, and Race to hold each of those values as a string. I can then print out
those values in a pretty format using the print() function, as shown in Listing 3-1.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

36

Listing 3-1. chargen.py

"""

chargen.py

Problem: Generate a description for a fantasy role-playing character.

Target Users: Me and my friends

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out the character sheet

 User must be able to input the character's

 name, description, gender and race

Testing: Simple run test

Maintainer: maintainer@website.com

"""

version = 0.1

Name = ""

Desc = ""

Gender = ""

Race = ""

Prompt user for user-defined information

Name = input('What is your Name? ')

Desc = input('Describe yourself: ')

Gender = input('What Gender are you? (male / female / unsure): ')

Race = input('What fantasy Race are you? - (Pixie / Vulcan / Gelfling / Troll): ')

Output the character sheet

fancy line = "<~~==|#|==~~++**\@/**++~~==|#|==~~>"

print("\n", fancy line)

print("\t", Name)

print("\t", Race, Gender)

print("\t", Desc)

print(fancy line, "\n")

Listing 3-1 is just a fancy version of hello world, but the output looks a bit more exciting. You can

run this from the command line in the same way; you will see all the values you enter displayed as a
character sheet and formatted by the escape sequences.

$ python chargen.py

CHAPTER 3 ■ VARIABLES AND DATA TYPES

37

■ Note If you are in a different directory to your script, you will have to supply the full path to its location.

The one new thing I’ve added is the line version = 0.1 at the beginning. This is a magic
variable: the name version (with two underscores on either side) is a predefined variable with a
special meaning to Python’s documentation tools. For now, I’m just going to use this to record the
version number of this program; as I edit and refine the design, I will increment this number.

Next, I need to generate some vital statistics to represent the different attributes that the characters
will need to interact with the game world. This involves tackling the realm of numerical information.

Working with Numbers

First, assigning numbers to variables is fairly straightforward:

muscle = 10

brainz = 4

As I mentioned earlier, if the interpreter encounters a bunch of characters starting with a numeral,

rather than a letter or a quotation mark, it will assume that it is a number. This is why you can’t start
variable names with a number. So far, so good. There are a few things that you need to know before you
start trying to do math with computers.

Using Binary: Computers Can Only Count to One

All information is stored inside the computer as a series of ones and zeros, that is, in binary or base 2.
Your computer stores and processes data using a huge collection of tiny little switches, and these
switches can be either off (0) or on (1). This has led to the old programmers’ joke that “there are only 10
sorts of people in the world—those who understand binary and those who don’t” (10 in binary notation
represents two rather than ten).

Using Python, you don’t really need to know much more than this.

Bits and Bytes

You will frequently encounter the terms bits and bytes in computer literature. Bit is short for “binary digit”

and refers to one of these tiny switches that can only hold a “yes” or “no” answer. It is the smallest

possible unit of computer information. A byte is theoretically the amount of memory needed to store a
single character; this became standardized as 8 bits during the late twentieth century, even though

modern computers often use more than 8 bits to store characters.

Using Booleans: Truth or Dare

It follows from the preceding discussion that the simplest type of numerical value that exists on a
computer is one that has only two possible values: True (equal to 1) or False (equal to 0). These

CHAPTER 3 ■ VARIABLES AND DATA TYPES

38

true/false values are known as Booleans, named after a system devised by English mathematician and
philosopher, George Boole. They can be manipulated using logical operators such as AND, OR, and NOT. I’ll
explain the meaning and use of these operators in Chapter 4. You can assign Boolean values by using the
True and False keywords:

beauty = True

illusion = False

■ Note True and False are always spelled with capital first letters.

Using Whole Numbers (Integers)

Whole numbers are known as integers in programming terms. Integers don’t have decimal points but
can be positive, negative, or zero. These are used to refer to numbers of things in much the way you’d
expect, like the eggs in the recipe example at the start of the chapter. It may be reassuring to know that
most of the time you can use numbers like these.

Performing Basic Mathematical Operations

You have learned how to store data inside variables, so let’s start manipulating that data. Integers can be
added, subtracted, and multiplied, the same as in the real world using the +, -, and * operators (the * is
the multiply sign). This creates an expression. An expression is a piece of code that has to be evaluated
(i.e., worked out) before you can discover its value. You can assign expressions to variables using
statements like this:

>>> muscle = 2 + 3

>>> brainz = 7 - 3

>>> speed = 5 * -4

>>> strangeness = muscle + brainz * speed

>>> strangeness

-75

■ Note When you are using Python in interactive mode, you don’t need to use the print() function to see the

value of a variable. You will need print() if you want to get output from a script.

All this works much as expected until the last line, where strangeness equals –75. How did that
happen? Surely 5 + 4 = 9, multiplied by –20 would give –180? But no, what happens here is this:

(2+3) + ((7-3) * (-4*5))

CHAPTER 3 ■ VARIABLES AND DATA TYPES

39

How does Python decide that the arguments to the + are muscle and brainz*speed rather than just
muscle and brainz? What happens here is that Python works out the arguments to * before it works out the
arguments to +, and it picks as these arguments the smallest bits of the expression that make sense, in this
case, brainz and speed. The multiplication operator * is said to bind tighter than +, the addition operator.

Understanding Operator Precedence

What you have just seen is an example of something much more general: given an expression to
evaluate, how does the Python interpreter decide which parts go with what, and how can you know what
its decision is going to be? The answer is that there is a predefined order called operator precedence,
which tells the interpreter which operators bind tightest. To see this order, you can look in the python
documentation at http://docs.python.org/3.0/reference/expressions.html#evaluation-order, or if
you’re unsure for a particular pair of operators, have a go in the interpreter with some values that will let
you distinguish the precedence: you can see from the output of 5 + 4 * –20 previously that * binds tighter
than +.

If you want the arguments to be grouped in a different way from Python’s default, you can get this to
happen using brackets, so in this example, you would type the following:

>>> charm = (muscle + brainz) * speed

>>> charm

-180

Dividing Numbers

Division is performed using the / operator.

>>> print(13 / 5)

2.6

>>> print(13.75 / 4.25)

3.23529411765

If you want to do integer division, where the fractional part of the answer is dropped (also known as

floor division), you can use the // operator instead of /. The remainder is obtainable by using the
modulo % operator.

>>> print(13 // 5)
2
>>> print(13 % 5)
3

You may encounter results you don’t expect when doing integer division with negative numbers:

>>> print(-13 // 5)

-3

>>> print(-13 % 5)

2

CHAPTER 3 ■ VARIABLES AND DATA TYPES

40

This is because floor division returns the largest whole number that is less than the result of the
fractional division. So, –13/5 is –2.6 and the largest whole number less than –2.6 is –3. Now consider the
remainder: the result of // multiplied by the divisor gives us the figure to work from to calculate the
remainder, as it would in all other remainder calculations:

-13 = -3 * 5 + remainder

Consider another example:

>>> print(-13 // -5)

2

>>> print(-13 % -5)

-3

Here, 2 is the largest whole number less than 2.6, and –3 is calculated as follows:

-13 = 2 * -5 + remainder

Alternatively, you could avoid using this operator with negative numbers.

Working with Fractions and Floats

Fractional numbers are expressed using numbers before and after a decimal point using the float type.
Like integers, these numbers can be positive or negative. You don’t have to do anything particularly
special to assign a float to a variable; if you use a decimal point in the number, Python will assume that
it’s a float.

muscle = 2.9

brainz = -13.678

speed = 0.0

Even if the part after the decimal point is zero, the number is considered to be a float. Floats can be

manipulated using the same operators as integers, returning any fractional part as well.

Converting One Type into Another

Python has several convenient built-in functions that allow you to convert values from one type to
another. These are the most useful ones to start with:

• int(x) converts number x to an integer.

• float(x) converts number x to a float.

• str(object) converts more or less anything into a printable string.

Functions have a very different syntax from operators: the value to be acted upon goes inside the
brackets after the function name:

CHAPTER 3 ■ VARIABLES AND DATA TYPES

41

>>> float(23)

23.0

>>> int(23.5)

23

>>> float(int(23.5))

23

There are a few gotchas when it comes to converting types; notice that float(int(x)) in the

preceding example loses its fractional part. Not all conversions are reversible, and the result of the
conversion may not be equal to the input value any more.

Working with Base 8 (Octal) and Base 16 (Hexadecimal)

It is possible to input and display integers in other formats such as base 16 (hexadecimal) or base 8 (octal).
Integers can be entered in octal form by putting a 0o in front of the octal number (that’s the number zero
followed by the letter o) and in hexadecimal by putting 0x (zero followed by x) in front of the hexadecimal
number. In hexadecimal, you use the letters A to F to represent the decimal numbers 10 to 15.

>>> octal number = 0o12

>>> hexadecimal number = 0xFC6

>>> print(octal number)

10

>>> print(hexadecimal number)

4038

Let’s break things down to see what’s going on here. In a decimal number, the positions of the digits

represent: units, tens, hundreds, thousands and so on—in reverse order. In hexadecimal and octal
numbers, the positions represent exponents of the numerical base. In octal, these positions would
represent units, 8s and 64s, for example, because 8 is the numerical base of octal.

You can work out the decimal value by multiplying the digits according to the value of their position
and adding the results together, as shown in Tables 3-2, 3-3, and 3-4. The first row in these tables is the
value of the position in the number, the second the multiplication sign to show that the value of the
position is multiplied by the digit in that position, the third the number in question, and the fourth the
results of the multiplication. Table 3-2 shows a decimal to give you the idea.

Table 3-2. Decimal 2037

1000 100 10 1

* *

2 0 3 7

2000 + 0 + 30 + 7 = 2037 (decimal)

CHAPTER 3 ■ VARIABLES AND DATA TYPES

42

Table 3-3. Octal 0o3765

512 64 8 1

* *

3 7 6 5

1536 + 448 + 48 + 5 = 2037 (decimal)

Table 3-4. Hexadecimal 0x7F5

256 16 1

* *

7 F (15) 5

1792 + 240 + 5 = 2037 (decimal)

All three representations give 2037 as the resultant decimal value. Octals are encountered in

situations such as specifying file permissions and hexadecimals are used to specify colors, so it’s worth
familiarizing yourself with this notation if you have not encountered it before.

>>> permissions = 0o755
>>> gold = 0xFFCC00

The octal number assigned to permissions is an array of information where each bit has a distinct
meaning: each octal digit sets read, write, and execute permissions for the user, group, and others
respectively. The color value set for gold represents a mix of three values, red, green, and blue, which can
range from 0x00 to 0xFF according to intensity.

It’s important to note that there is only one integer type here: what you get when you enter 0x10,
0o20, or 16 is exactly the same integer. If you want to get back the hexadecimal or octal string
representation of an integer, you can use the following functions.

• hex(x) displays integer x in hexadecimal format.

• oct(x) displays integer x in octal format.

>>> x = 0xaa + 0x33

>>> hex(x)

'0xdd'

>>> o = 0o77 + 0o33

>>> oct(o)

'0o132'

CHAPTER 3 ■ VARIABLES AND DATA TYPES

43

Creating a Number Application

In order to take the character generation script any further, you will need to be able to compare values
and store the results. This will require knowledge of conditional statements (which I will move on to in
Chapter 4) and the use of more complex data types (see Chapter 5), so I will return to Cloud-Cuckoo
Land once you have had time to study these more advanced incantations. To demonstrate the use of
mathematical data types right now, let’s consider a simpler problem: calculating how much fabric you
would need to buy to make a pair of curtains.

To start, you need to define the problem again: calculate how much material to buy, given the size
of the windows. The functional requirements are that the user must be able to input the measurements
of the window and get back the required length of fabric in meters and the total price of the fabric to be
bought. To get a proper idea of how you might go about making a pair of curtains, you might want to talk
to real curtain makers, watch them in action, or at least get them to show you how they calculate the
amount of material they need. It might also be worth investigating your local fabric shop.

Following some research, my top-level design looked like this:

Prompt the user to input the window measurements in cm

Add a bit for the hems

Work out how many widths of cloth will be needed

and figure out the total length of material for each curtain (in cm still)

Actually there are two curtains, so we must double the amount of material

and then divide by 10 to get the number of meters

Finally, work out how much it will cost

And print out the result

Before any calculation is possible, you will need to know how wide the roll of material is and how

much it costs per meter. I have assumed a width of 140 cm and a price of 5 units of currency per meter
for this example. I can use the input() function to get the window height and window width from the user.
The input() function returns a string, so I need to convert that into something Python recognizes as a
number using float(). Once I have assigned the four starting values as suitable types, the calculation
that follows is fairly straightforward as explained in the comments of Listing 3-2.

Listing 3-2. curtains.py

"""

curtains.py

Problem: Calculate how much material to buy, given the size of the windows.

Target Users: My friend who wants to make some curtains

Target System: GNU/Linux

Interface: Command-line

Functional Requirements: Print out the required length of fabric in meters

 Print out the total price of the fabric

 User must be able to input the measurements of the window

Testing: Simple run test

Maintainer: maintainer@website.com

"""

CHAPTER 3 ■ VARIABLES AND DATA TYPES

44

version = 0.1

To start with, all the measurements will be in cm

Assume that the roll of material is going to be 140cm wide

and that the price per meter will be 5 units of currency

roll width = 140

price per metre = 5

Prompt the user to input the window measurements in cm

window height = input('Enter the height of the window (cm): ')

window width = input('Enter the width of the window (cm): ')

Add a bit for the hems

First we must convert the string into a number

otherwise we will get an error if we try to perform arithmetic on a text string

curtain width = float(window width) * 0.75 + 20

curtain length = float(window height) + 15

Work out how many widths of cloth will be needed

and figure out the total length of material for each curtain (in cm still)

widths = curtain width / roll width

total length = curtain length * widths

Actually there are two curtains, so we must double the amount of material

and then divide by 10 to get the number of meters

total length = (total length * 2) / 10

Finally, work out how much it will cost

price = total length * price per metre

And print out the result

print("You need", total length, "meters of cloth for ", price)

Any of you who have actually set about making curtains will know that this is a gross

oversimplification of the process. Those of you who can add numbers better than I can will realize that I
have made a couple of dumb mathematical errors, so this script will return some crazy values, which
won’t be of much use. Clearly, this is going to need some work, so let’s examine the problems.

Unless the width of each curtain is less than the roll width, you will end up buying much more
fabric than you need. However, there is no way of working this out until you know what the initial
window measurements are. If the length of the curtains is less than the roll width, you could turn the
whole thing on its side and just use one width of fabric (I’m assuming you’re using unpatterned fabric).
But if the curtains need to be both longer and wider than the roll width, there is a problem: if the extra
material required is less than half the roll width, you would need to buy an additional width of material
at the same length; if it is more than half, you would need to buy two additional widths, taking into
account the extra material needed for the joins. Still with me? Good. The script needs to take into

CHAPTER 3 ■ VARIABLES AND DATA TYPES

45

account that fabric is sold by the meter (or half-meters) in whole widths, so I will need to round up the
widths to the nearest whole number and the final length to the nearest meter.

To deal with this using Python, it will be necessary to compare values and then execute different
calculations based on those conditions. This, incidentally, is what the next chapter is all about.

Jargon Busting
You encountered a lot of new terms in this chapter, so here are some more useful definitions:

• Binary (base 2): Binary arithmetic uses the digits 0 and 1. This corresponds to the

electric current in a wire, which can only be on (value 1) or off (value 0)

• Bit: A bit is a digit in the binary number system. It can have two values, 0 or 1. The

word is derived from binary digit.

• Boolean: Variables of this type can take only one of two values, True and False.

These correspond to 1 and 0. This is the most appropriate return type for a

function that uses its return value to report whether some condition holds or not.

• Built-in: Anything built-in is innate part of the programming language, as

opposed to something that has to be imported from a module. A built-in element

is part of Python’s standard library.

• Byte: A byte is the smallest unit of storage that can be accessed in a computer’s

memory. It holds exactly 8 bits.

• Case-sensitive: In case-sensitive text, uppercase letters are treated as completely

different characters from their lowercase counterparts. Treating uppercase and

lowercase variants as the same character is known as case-insensitive.

• Characters: These are letters, digits, punctuation marks, and spaces—basically

anything that can be typed in using a single key on the keyboard, even if it doesn't

cause anything to be printed on the screen.

• Concatenate: When you create a string by joining together copies of two or more

text strings without any spaces in between, you concatenate the string.

• Decimal (base 10): Decimal numbers are what you probably think of as normal

numbers.

• Dynamic typing: Python determines the type and checks the correct usage of

variables of different types during execution of a program rather than during

compilation. Some other programming languages, like C, are statically typed: the

compiler will not allow the use of a variable or function unless that function or

variable has already been initialized and declared to be of a certain type. You don’t

need to bother with declaring the type of your variables in Python.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

46

• Expression: This refers to a section of code that can be worked out to produce a

value.

• Flag: A flag is a Boolean variable used to record whether or not something has

happened.

• Float: Float is short for “floating point” and is a fundamental type used to define

numbers with fractional parts.

• Hexadecimal (base 16): Hexadecimal is base 16 arithmetic where each digit is a

value from 0 to 15, rather than the 0 to 9 of base 10. The decimal numbers from 10

to 15 are represented by the letters A to F. Hexadecimal is a very convenient way of

showing binary numbers, as every four binary digits can be shown as one

hexadecimal digit.

• Integer: An integer is a fundamental (i.e., built-in) type used to define numeric

variables holding whole numbers.

• Immutable: An immutable value cannot be modified.

• Logical operator: These commands perform basic manipulations on Boolean

values.

• Mapping: In Python, a mapping is a data type that relates a set of keys to a set of

values. It has nothing to do with planning your car journey.

• Octal (base 8): In octal arithmetic, each digit has a value of 0 to 7.

• Operator: These are commands, often represented by mathematical symbols, that

perform simple manipulations on data, known as operands. Expressions take the

following form: operand1 operation operand2.

• Operator precedence: This is the order in which operators are assigned their

arguments when Python evaluates an expression. Where there is ambiguity, the

operator with the higher precedence is assigned as arguments the smallest

expressions on either side of it that make sense.

• Sequence: In Python, a sequence is an instance of a data type that consists of more

than a single item. It does not refer to a series of statements to be executed one

after another as in some other languages.

• Statement: This refers to a section of code that does something such as manipulate

a piece of data, perform a calculation, or produce some output.

CHAPTER 3 ■ VARIABLES AND DATA TYPES

47

• String literal: This refers to words and sentences, and text composed of these, that

is, any form of literal text.

• Truth testing: Evaluate whether a condition is True or False.

Summary
In this chapter, you have learned how to assign different types of values to variables, how to manipulate
simple text strings and perform basic mathematical operations using expressions and statements. Now,
you know how to construct and run a simple Python script that can perform a useful calculation. In the
next chapter, I will show you how to make decisions that can alter the way the program runs based on
those calculations.

C H A P T E R 4

■ ■ ■

49

Making Choices

So far, you have learned how to enter commands and information and get some output returned, using
fundamental data types: text strings, numbers, and Booleans. You have learned how to use Python as a
pocket calculator, but most importantly, you have learned how to start designing your own software.
Now, it is time to begin the process of refining your designs. As you learn more about Python and
practice your logic juggling skills, you are likely to find simpler and more effective ways of coding your
designs, and you will want to update your old scripts. This is a normal and natural part of the process of
program design and a good discipline to develop early on.

Following this train of thought, in this chapter we’re going to see some techniques to improve our
previous work. I’ll explain how to compare values in your code so that you can make decisions and take
appropriate actions based on the comparison. This approach to controlling the flow of your application
will allow your applications to be more flexible and able to deal with changing input. With this flexibility,
however, comes complexity, so I’ll go over how to manage increasingly complex code.

The final part of the chapter covers loops, which are another way to alter the flow of your
application. With loops, you can iterate over a large set of data and perform the same operations on each
member of the set.

Comparing Things
The curtain-making exercise at the end of the previous chapter needs some refining. It is too simplistic
to provide accurate answers and contains some logical errors that need fixing. In order to generate more
accurate answers, you need to know how to compare values and specify different courses of action
based on the results. The code construction that allows us to do this is called a conditional statement.
Conditional statements transform the script from being just a list of instructions to something that can
make decisions on the fly based on the information that it receives. It would be useful to be able to tell
the program to perform different actions according to whether certain conditions are satisfied. You
could write this out in pseudocode like this:

if one condition is true:
 then perform one set of actions;
if another condition is true:
 then perform another set of actions.

Each if-then pair is a conditional statement. Before we get into that, let’s look at how to specify
conditions.

CHAPTER 4 ■ MAKING CHOICES

50

Values can be compared using the following comparison operators:

• <: Less than

• <=: Less than or equal

• >: Greater than

• >=: Greater than or equal

• ==: Equal

• !=: Not equal

These affect the fundamental data types in different ways, each time giving us an answer of True or False.
Operands are the bits of data on the left and right of the operator in an expression. The operands on

either side of the comparison operator must be of types that can be compared. The operands and the
comparison operator together are a conditional expression.

Python might not throw an error if you compare illogical types, so it is a good idea to test your
conditional expressions thoroughly and check the data that goes into them. The results obtained from
comparing numbers using conditional expressions in interactive mode are fairly self-explanatory.

>>> -2 < 5
True
>>> 49 > 37
True
>>> 7.65 != 6.0
True
>>> -5 <= -2
True
>>> 7 < -7
False
>>> 23.5 > 37.75
False
>>> -5 >= 5
False
>>> 3.2 != 3.2
False

You can also create conditional expressions using variables.

>>> variable = 3.0
>>> variable == 3
True

■ Caution The single equals sign (=) assigns a value, whereas the double equals sign (==) compares two values

and returns True if they are equal in value. These two operations are commonly confused in the early stages of

learning programming. If you use the assignment operator when you mean to compare two values, you will

probably get a syntax error. If you use a comparison operator when you intended to assign a value, the statement

CHAPTER 4 ■ MAKING CHOICES

51

may well silently fail, and you won’t find out about it until you get some weird value occurring later on in the

execution of your script.

Also, strings can be compared alphabetically using the same comparison operators:

>>> "alpha" < "omega"
True
>>> "case" == "Case"
False
>>> "net" < "network"
True
>>> "Same" != "Same"
False

Notice that uppercase characters don’t count the same as their lowercase counterparts. All of the

uppercase letters come before any of the lowercase. If you are not familiar with this method of sorting,
the order is laid out in Figure 4-1.

Figure 4-1. Case-sensitive alphabetical ordering

If you want to compare strings according to their lengths, you would need to use the built-in len()
function.

CHAPTER 4 ■ MAKING CHOICES

52

>>> len("alpha") < len("omega")
False
>>> len("case") == len("Case")
True
>>> len("net") < len("network")
True
>>> len("Same") != len("Same")
False

Manipulating Boolean Values

Before moving on to conditional structures, no discussion of fundamental data types would be complete
without covering the manipulation of True and False values (recall from Chapter 3 that these are called
Boolean values). This used to be the subject with which computer students began their education, and
as it is essential to understanding the way computers work, I won’t skip the details.

While I’m sorting things, I may as well organize my audio and video collection. I started off by
creating a bunch of Boolean values to represent various bits of information about my collection. Here I
set the values of a particular CD:

>>> is emo = True

>>> is country = False

>>> is techno = False

>>> is CD = True

>>> is DVD = False

This is a task in which I may need to make several comparisons at once. I might want to be notified

if the album is a particular genre, such as emo or country.

>>> is emo or is country

True

The or operator will return True if either variable is true. If I wanted to narrow my search to find out

if an item is a techno CD, I would use and.

>>> is techno and is CD

False

Both conditions have to be true for and to return True. If you want to be totally contrary and test

whether the opposite of a condition holds true, use not. This will return True if the value you are testing
is false; otherwise, it will return False.

>>> not is techno

CHAPTER 4 ■ MAKING CHOICES

53

True

>>> not is techno and not is DVD

True

All these comparisons boil down to a single True or False answer, which can then be used to tell the

program in which direction to go next. Boolean operators have a lower precedence than all the other
mathematical operations: not first, then and, and or last. This means that in the preceding example, the
expression is actually evaluated as if it is bracketed like this:

(not is techno) and (not is DVD)

Comparisons can be used to set flag variables. A flag is used to record whether an event happened or

a test was passed, so that information can be used later on in the program.

>>> is cool = not is techno and not is country and not is emo

Combining Conditional Expressions

Conditional expressions can be combined to produce relatively complex conditions using the logical
operators, and and or. For example, we can check if two conditions are true:

(var1 < 6) and (var2 > 7)

This will return True only if var1 is less than 6 and var2 is greater than 7. We can also use or:

(var1 < 6) or (var2 > 7)

This returns True if either of the conditions are satisfied.

Using Assignment Operators

You are already familiar with the basic assignment operator (=), which you use when you want to put a
value into a variable. Python allows you to use some neat typing and time-saving tricks with
assignments. The humble equals sign can unpack sequences, which will be covered fully in the next
chapter. The simplest form of this can unpack a string into its constituent characters.

>>> char1, char2, char3 = 'cat'
>>> char1
'c'
>>> char2
'a'
>>> char3
't'

In addition, you can swap the values of two variables using the following technique:

CHAPTER 4 ■ MAKING CHOICES

54

height, length = length, height

You can also assign the same value to several different variables.

x = y = z = 1

The assignment operator can be used in conjunction with most arithmetic operators to modify a

variable in place. For example, you could type

counter += 1

which is the same as counter = counter + 1. Some other possible combinations are -=, *=, /=, which
decrease the value of the variable by the specified amount, multiply the value of the variable by the
specified amount, and divide the value of the variable by the specified amount.

Understanding Operator Precedence

As discussed in the previous chapter, the order in which you use operators does matter. The best way to
avoid confusion or unwanted results in your scripts is to use parentheses to dictate which order the
subexpressions should be evaluated.

>>> 2 + 3 * 6 + 4 / 2 + 3

25.0

>>> (2 + 3) * (6 + 4) / (2 + 3)

10.0

>>> 2 + (3 * (6 + 4) / 2) + 3

20.0

The interpreter will evaluate the expression in the innermost set of brackets first. Otherwise,

operators will be evaluated in the order shown in Table 4-1, which includes some additional operators
that will be discussed later in this book. The important thing to note here is that arithmetical operators
have a higher precedence than comparison operators, so the sums are done first, before they are
compared, and only then are the effects of not, and, and or evaluated. Expressions that are equal in
precedence are evaluated from left to right, except for comparisons, which are chained: 2 + 3 + 4
evaluates as (2 + 3) + 4, but 2 < 3 < 4 evaluates as (2 < 3) and (3 < 4).

CHAPTER 4 ■ MAKING CHOICES

55

Table 4-1. Operator Precedence

Operator Description

,, [...], {...}, and `...` Creates a tuple, list, and dictionary and converts a string

s[i], s[i:j], s.attr, and f(...) Indexes and slices, assigns attributes, and calls functions

x**y Elevates to the power of

+x, -x, and ~x Performs unary operations

x*y, x/y, and x%y Performs multiplication, division, and modulo operations

x+y and x-y Performs addition and subtraction

x<y, x<=y, x>y, x>=y, x==y, and x!=y Makes comparisons

x is y and x is not y Ascertains identity

x in s and x not in s Ascertains membership

not x Performs Boolean negation

x and y Returns True if both x and y are True. Returns False otherwise.

x or y Returns True if either x or y are True. Returns False if both x and y
are False.

Taking Control of the Process
Sometimes, you need to make a choice about what happens next during the execution of the program
using what is known as a control flow statement. In your scripts, you can now use the results of
comparisons to create conditional statements. They are a form of control flow statement that allow
different actions to be performed based on whether certain conditions hold true. In Python, conditional
statements are constructed using the if, elif, and else keywords. If you are used to other languages,
you will notice that Python doesn’t use the keyword then. The syntax for conditional statements is very
specific, so pay close attention to the punctuation and layout:

if condition:
 # Perform some actions
 print "Condition is True"
elif condition != True:
 # Perform some other actions
 print "Condition is not True"
else:
 # Perform default or fall-through actions
 print "Anomaly: Condition is neither True nor False"

CHAPTER 4 ■ MAKING CHOICES

56

Here, the first line begins with the keyword if, which must be followed with a conditional expression
that gives a True or False answer and a colon (:). The colon could be considered to mean then.

It is not usually considered good style to explicitly state condition == True; if whatever condition is
gives a value of True or False, you can simply write if condition: or elif not condition:. This advice
particularly applies to Boolean variables, but don’t forget you can perform comparisons on anything
because anything in Python evaluates to either True or False.

■ Note Variables assigned values such as "", 0, or None will return False if you test them as shown previously.

Any number is True.

The statements that follow must start on a new line and be indented. The number of spaces doesn’t
strictly matter so long as all the instructions after the colon are indented by the same amount, though it’s
good practice to use the same number of spaces to indicate control flow throughout your code. The
statements following after the colon are known as a suite.

You can include further conditional sections using the elif keyword (an abbreviation of else-if,
which is not a Python keyword); statements following elif will be evaluated only if the previous test fails
(i.e., the conditional expression is False).

You can also include a final else: statement, which will catch any value that did not satisfy any of
the conditions; it doesn’t take any conditional expression at all. This can be used to specify a default set
of actions to perform. In our previous example, things would have to go very wrong for us to ever see the
final anomaly warning, as the preceding if and elif statements would have caught either of the two
possible results. It is possible to nest if statements to allow for more possibilities, and you can leave out
the elif or else statements if you don’t want anything to happen unless the condition is satisfied. In
other words, sometimes you want to do something if a condition is satisfied but do nothing if it is not
satisfied.

After the final statement, the indentation must go back to its original level: this will indicate to the
interpreter that the conditional block has come to an end. Python marks out blocks of code using
indentation alone; it doesn’t use punctuation marks like the curly braces you may see in other
languages. This unique feature of Python means you have to be extra careful about indentation. If you
do get it wrong, you’ll find out soon enough, as the interpreter will complain loudly.

>>> if c:
... print(c)
... c += 1
... indent = "bad"
 File "<stdin>", line 4
 indent = "bad"
 ^
IndentationError: unindent does not match any outer indentation level

Conditional statements provide a powerful way of checking that your data is what you expect it to

be; this is called validation. Validation is usually performed when the data is first fed into the computer
and also when that information is written out to a file or database record. Checks could include making
sure that all boxes have been ticked and all questions answered, that the input contains the correct
number of characters of the correct type and format, that numbers are within a specified range, and that
the information is consistent with other records.

CHAPTER 4 ■ MAKING CHOICES

57

Testing and validation are such important parts of programming that I’ll be presenting several ways
of doing it at various levels of sophistication over the course of this book.

Dealing with Logical Errors
As your applications become more complex, you will need more formal methods of testing your designs.
One of the ways of doing this is to construct a trace table, like the one shown in Table 4-2. I’m going to
use this method to get some clues as to what is wrong with curtains.py.

To find out what is up with the script, I am going to trace the values of all the variables and
conditional expressions over the course of the program’s execution. The variable names and test
conditions form the headers of the table columns and each step is given a new line.

Table 4-2. Trace Table Template

 var1 var2 condition1 condition2

step2 x

step4 x

A trace should be performed with as many different sets of data as is necessary to make sure that all

the possible alternatives get tested. Most errors in programming don’t occur if the values lie within some
expected range, but they often occur for unusual values (also called critical values). Critical values are
values that lie outside the tolerances of the program, such a number that the application is not equipped
to deal with.

Critical values should be worked out early on in the design process, so that the program can be
properly tested against them. In my curtain calculation, the value that most needs taking into account is
that of the roll width, which has been set at 140 cm. Allowing 20 cm for hems means that the maximum
width of curtain I can make out of a single length is 120 cm before I have to start thinking about sewing
widths together. Each curtain has to be three-fourths of the width of the window, so the maximum width
of window I can cover with two single widths of material (one for each curtain) is 160 cm. If the window
is 320 cm wide, I will need four widths to cover the window, and if I were really clever, I could probably
do a 240-cm-wide window with three widths.

If the window is much wider than it is deep, it might be possible to turn the cloth the other way.
Allowing for a 15-cm hem, it would be possible to do this if the window height was less than 125 cm. To
represent these different conditions, I could use a set of arbitrary values for the window size, such as

100×100, 100×200, 200×100, 200×200, 200×300, and 300×200.
I also need to work out some expected results for these values by hand, so I can find out whether

they tally up with the script’s output:

CHAPTER 4 ■ MAKING CHOICES

58

• The first case (100×100 cm) could be measured either way against the material

width; each curtain needs a piece of material 1.15×0.95 m, due to the allowance
needed for hemming. I would need 2.3 m of material if I measured it lengthways,
but I would use less material if I measured it along the width, which would give 1.9
m. I know the roll of material is 1.4 m wide (I will probably want to round the
length up to the nearest half-meter when I go to buy it).

• In the second case (100×200 cm), each curtain needs to be 150 cm wide (0.75×200).
However, because that is greater than the material width, I will have to allow an
extra 20 cm for the join as well as 20 cm for the hems, making 190 cm, so each

curtain has to be 1.15×1.9 m. If I measure the material lengthways, I would need
4.6 m. But I could get away with measuring it along the width, so 3.8 m would be
the minimum length required.

• If the window is twice as deep as it is wide (200×100 cm), it would only make sense
to measure it lengthways, giving an answer of 4.3 m.

• The fourth case (200×200 cm) is interesting, because either way round, it requires
two widths of material. Measuring it along with width would seem more efficient
(requiring only 6.8 m of material), except that I will end up with a very funny
looking pair of curtains with a horizontal seam in the middle. By measuring
lengthways, I could get away with only buying three lengths of cloth, which would
give a measurement of 6.45 m.

• I can’t use this material to make curtains in the fifth case (200×300 cm): each

curtain has to be 2.15×2.25 m, so I would need 8.6 m of cloth to make a pair of

curtains to fit a window measuring 2×3 m.

• However, if the measurements were reversed (300×200 cm), I could get away with
only 9.45 m using the same method as the fourth case for the last case. It would
make the logic much simpler, however, to decide that horizontal seams are going
to look ugly and go and buy 12.6 m of material to do this window.

This analysis brings up a couple of issues, which I want to bear in mind as I refine the design. First, it
doesn’t look like measuring material along the width is going to provide many advantage unless the
window is wider than it is deep and less than 1.25 m deep and unless the material has no pattern. One of
the programming decisions I now need to make is whether to bother pursuing an option to measure
material along its width at all. Second, there is a minor issue of accuracy; I actually need an answer
rounded up to the nearest half-meter. This only really applies to the final output, as the figures used in
the calculations need to keep their fractional parts to maintain accuracy.

Now, let’s see how this compares to the trace produced by the existing calculations. The simplest way
to create a trace table is to insert a bunch of print statements into your code, as you can see in Listing 4-1.

Listing 4-1. Tracing Variables

print headers for the basic trace table
print()
print('\twidth\theight\twidths\ttotal\tprice')

I need to add a bit for the hems.
First, I must convert the string into a number.
Otherwise, I will get an error if I try to perform arithmetic on a text string.
curtain width = (float(window width) * 0.75) + 20

CHAPTER 4 ■ MAKING CHOICES

59

print('\t', curtain width)
curtain length = float(window height) + 15
print('\t\t', curtain length)

Now, I need to work out how many widths of cloth will be needed
and figure out the total length of material for each curtain (in cm still).
widths = curtain width / roll width
print('\t\t\t', widths)
total length = curtain length * widths
print('\t\t\t\t', total length)

Actually, I have two curtains, so I must double the amount of material
and then divide by 10 to get the number of meters.
total length = (total length * 2) / 10
print('\t\t\t\t', total length)

Finally, I need to work out how much it will cost.
price = total length * price per metre
print('\t\t\t\t\t', price)

Each different variable is preceded by a different number of tab stops '\t', so the information goes

into a separate column. Now, I can properly test the design. Here are the results of the first test I ran:

Enter the height of the window (cm): 100
Enter the width of the window (cm): 100

 width height widths total price
 95.0
 115
 0.678571428571
 78.0357142857
 15.6071428571
 78.0357142857
You need 15.6071428571 metres of cloth for 78.0357142857

Immediately, several things become apparent. I was expecting an answer of something more like 1.9
m. What happened? The conversion from centimeters to meters is off by a factor of ten, as shown in the
fourth column, total, which is fairly easy to fix. I also have far more numbers after the decimal point
than I really need. This can be fixed using the built-in round() function, which takes two arguments inside
the brackets: the number I want to remove the excess digits from and the number of decimal places I want
to run to. Two will probably do us fine right now. The edited portion of the code looks like Listing 4-2.

■ Caution Notice that we only round numbers when displaying them. If you round the numbers you are actually

calculating with, that change will affect the results of your calculations, and depending on the calculation, the error

introduced could be bigger than you expect.

CHAPTER 4 ■ MAKING CHOICES

60

Listing 4-2. Rounding the Tesults to Two Decimal Figures

Actually, I have two curtains, so I must double the amount of material
and then divide by 100 to get the number of meters.
total length = (total length * 2) / 100
print('\t\t\t\t', round(total length, 2))

Finally, I need to work out how much it will cost
price = total length * price per metre
print('\t\t\t\t\t', round(price, 2))

And print out the result
print("You need", round(total length, 2), "meters of cloth for ", round(price, 2))

Now the design needs to be tested again with the same values. Here is a different sample of the

results:

Enter the height of the window (cm): 100
Enter the width of the window (cm): 200

 width height widths total price

 170.0

 115

 1.21428571429

 139.642857143

 2.79

 13.96

You need 2.79 metres of cloth for 13.96

And here are the results of another test:

Enter the height of the window (cm): 200
Enter the width of the window (cm): 100

 width height widths total price
 95.0
 215
 0.678571428571
 145.892857143
 2.92
 14.59
You need 2.92 metres of cloth for 14.59

And these are the results of our final test:

CHAPTER 4 ■ MAKING CHOICES

61

Enter the height of the window (cm): 200
Enter the width of the window (cm): 300

 width height widths total price
 245.0
 215
 1.75
 376.25
 7.52
 37.62
You need 7.52 metres of cloth for 37.62

From this sample of test data, I can tell that I am getting closer to the right sort of results, but if I
went out and bought some material on the basis of these results, I would find that I didn’t have quite
enough. Somehow, I’ve managed to consistently calculate results that are too small.

Knowing what results to expect is the only way of really telling whether our program is working or
not. The difference between our expectations and the actual output can often help in finding the point
where the calculation went wrong. Before reading any further, try to figure out why this version of the
program is still returning the wrong length and, most importantly, where it is going wrong. In order to
refine this design further, I will need to know about the relationship of the curtain height and
curtain width to the roll width.

Using Conditional Code in the Application
Now you can apply your knowledge of conditional statements to allow for different ways of measuring
up the material. If the length of the curtains is less than the roll width, it is possible to turn the whole
thing on its side and just use one width of fabric. However, if the curtains need to be both longer and
wider than the roll width, there is a further problem: If the extra material required is less than half the
roll width, I would need to buy an additional width of material at the same length. If it is more than
half, I would need to buy two additional widths.

Somehow, I need to come up with some code that reflects these conditions. The first step is to
translate the preceding statements into pseudocode:

if curtain width < roll width:
 total length = curtain width
else:
 total length = curtain length
if (curtain width > roll width) and (curtain length > roll width):
 if extra material < (roll width / 2):
 width +=1
 if extra material > (roll width / 2):
 width +=2

I will need to work out how many whole widths there are in the curtain width and how much extra
material will be needed to make up the whole width.

widths = int(curtain width/roll width)
extra material = curtain width%roll width

CHAPTER 4 ■ MAKING CHOICES

62

I have used the built-in int() function to drop the fractional part of the calculation and used the
modulo operator to calculate how much would be left over. The final script is shown in Listing 4-3.

Listing 4-3. curtains-0.2.py

#! /usr/bin/env python

"""
Calculate how much material to buy, given the size of the windows.

Target Users: My friend who wants to make some curtains
Target System: GNU/Linux
Interface: Command-line
Functional Requirements:
 Print out the required length of fabric in metres
 Print out the total price of the fabric
 User must be able to input the measurements of the window
Testing: Trace table
Test values: 100x100, 100x200, 200x100, 200x200, 200x300 and 300x200
Expected results: 1.9, 3.4, 4.3, 6.45, 9.8, 9.45
"""
version = 0.2
maintainer = "maintainer@website.com"
status = "Prototype"

To start with, all the measurements will be in cm.
I will assume that the roll of material is going to be 140cm
and that the price per metre will be 5 units of currency.
roll width = 140
price per metre = 5

Prompt the user to input the window measurements in cm.
window height = input('Enter the height of the window (cm): ')
window width = input('Enter the width of the window (cm): ')

Print headers for the rather basic trace table.
print()
print('\twidth\theight\twidths\ttotal\tprice\tshorter?\twider?')

I need to add a bit for the hems.
First, I must convert the string into a number.
Otherwise, I will get an error if I try to perform arithmetic on a
text string.
curtain width = (float(window width) * 0.75) + 20
print('\t', round(curtain width, 2))
curtain length = float(window height) + 15
print('\t\t', round(curtain length, 2))

Now. I need to work out how many widths of cloth will be needed
and figure out the total length of material for each curtain (in cm still).

CHAPTER 4 ■ MAKING CHOICES

63

If the length of the curtains is less than the roll width, I can turn the
whole thing on its side and just use one width of fabric, but if the curtains
need to be both longer and wider than the roll width, then I have a further
problem: If the extra material required is less than half the roll width, I
would need to buy an additional width of material at the same length. If it
is more than half, then I would need to buy two additional widths.
print('\t\t\t\t\t\t', curtain length < roll width)
print('\t\t\t\t\t\t\t', curtain width > roll width)
if curtain length < roll width:
 total length = (curtain width * 2) / 100
elif curtain width > roll width:
 widths = int(curtain width/roll width)
 extra material = curtain width%roll width
 if extra material < (roll width / 2):
 widths +=1
 if extra material > (roll width / 2):
 widths +=2
 print('\t\t\t', widths)
 total length = (curtain length * widths) / 100
else:
 total length = (curtain length * 2) / 100

print('\t\t\t\t', round(total length, 2))

Finally I need to work out how much it will cost
Rounded to two decimal places using the built-in round() function
price = total length * price per metre
print('\t\t\t\t\t', round(price, 2))

And print out the result
print("You need", round(total length, 2), "meters of cloth, costing: ",
 round(price, 2))

The following results represent three tests of the new script:

Enter the height of the window (cm): 200
Enter the width of the window (cm): 200

 width height widths total price shorter? wider?
 170.0
 215.0
 False
 True
 2
 4.3
 21.5
You need 4.3 metres of cloth, costing: 21.5

CHAPTER 4 ■ MAKING CHOICES

64

Enter the height of the window (cm): 200
Enter the width of the window (cm): 300

 width height widths total price shorter? wider?
 245.0
 215.0
 False
 True
 3
 6.45
 32.25
You need 6.45 metres of cloth, costing: 32.25

Enter the height of the window (cm): 300
Enter the width of the window (cm): 200

 width height widths total price shorter? wider?
 170.0
 315.0
 False
 True
 2
 6.3
 31.5
You need 6.3 metres of cloth, costing: 31.5

This new version of the program almost gets there. The tests on 200×200 cm and 200×300 cm

produce expected results, which shows that I’m on the right track. But the last test, for 300×300 cm, still
underestimates the amount of material I’d need. This is probably because I haven’t properly accounted
for the additional material required for joins. If you are familiar with the process of curtain-making or
even good at algebra, you could refine the process further to produce an even more accurate result. It
may be necessary to redesign all or part of the program from scratch; for this, you have to go back to the
drawing board: start again with the top-level design, sketching the process out in pseudocode again,
translating that into Python code, rerunning the script, and testing it against the same set of values as
before, until there are no longer any discrepancies.

Notice that I have bumped up the version number to 0.2; every time you refine your design, you will
be creating a new minor revision of your application, so you should increment the number after the
decimal point to reflect this. The number before the decimal point is the actual version number. The
standard practice is to increment this number to 1 once the program is ready to release into the world at
large. Some larger projects use three numbers separated by points, so version 1.3.2 would be the second
minor revision of the third major revision of version 1 and so on.

Now that you’ve seen conditional statements and used them in our application, let’s consider
another type of control flow statement: loops.

CHAPTER 4 ■ MAKING CHOICES

65

Now Repeat That
Often, you will want to repeat the same process over a range of different values. Writing this out
longhand is not only tedious but contrary to the principles of good programming. Ideally, you should
have to write out a set of instructions or piece of information only once. This can be achieved using a
loop, which means that certain statements are executed repeatedly.

There are two main methods of creating a loop in Python: the while and for statements. Let’s look at
the while statement first.

Looping with the while Statement

Listing 4-4 uses the while keyword, which will execute the indented statements that follow after the
colon while the given condition is True. The indented statements after the colon are referred to as the
loop body. They are indented in the same way as the if statements covered previously in this chapter.

Listing 4-4. Looping Using a while Statement

result = 1
while result < 1000:
 result *= 2
 print result

Recall that result *= 2 is the same as result = result*2, so the number printed is doubled during

each iteration. This is the same as starting with 21 and raising the power by one during each iteration
(i.e., 22, 23, 24, and so on).

■ Note An iteration is one repetition of a series of statements such as those found in a loop body.

To control the number of times the loop is processed, it is necessary to specify a conditional
expression; as long as this conditional expression is True at the beginning of an iteration, the loop
continues. In the preceding example, our conditional expression is result < 1000. So, as long as the
value of result is less than 1,000, the loop will continue processing. Once result reaches 1,024 (210), the
program will stop processing the loop body.

The variables used in the conditional expression are often expendable entities, which are only
required for as long as the loop is active. Rather than keep thinking up different names, this kind of
integer counter is usually named i or j by convention.

■ Caution Be very careful about reusing variable names. It is often better to come up with a unique and more

explanatory name.

CHAPTER 4 ■ MAKING CHOICES

66

Here is what this simple program prints:

2
4
8
16
32
64
128
256
512

Two things are important to remember in this sort of construction: Any variable used in the
conditional expression must be initialized before the execution of the loop. Also, there must be some
way of updating this variable within the loop; otherwise, the loop will just go round and round forever,
which is called an infinite loop.

■ Caution Python won’t warn you if you have created an infinite loop, and you will have to find some way of

killing the running program if you make this mistake. In text mode, this is as simple as pressing Ctrl+C (or Ctrl+Z),

but killing the program might not always be so simple. You have been warned.

It is possible to use different sorts of variables in the conditional expression. Let’s consider the
problem of calculating the average of several numbers input by the user. The main problem here is that I
don’t know how many numbers will be input. The solution is to use what is called a sentinel value to
control the loop. Rather than using the counter in this instance, the script checks the value of the user
input number. While it is positive (i.e., >= 0) the loop processes as normal, but as soon as a negative
number is entered, the loop is broken, and the script goes on to calculate the average. An example is
shown in Listing 4-5.

Listing 4-5. averages.py

counter = 0
total = 0
number = 0
while number >= 0:
 number = int(input("Enter a positive number\nor a negative to exit: "))
 total += number
 counter += 1
average = total / counter
print(average)

CHAPTER 4 ■ MAKING CHOICES

67

Because I don’t know what sort of value the user is going to input, the value returned by input() is
immediately converted to an integer. If you try to enter text here, the result will be a value error, and the
program will abort. I will show you how to catch and use errors in Chapter 10.

Listing 4-5 has a serious flaw in that the negative number, which has to be input last, gets included
in the calculation and, therefore, messes up the final result. See if you can figure out how to avoid this
problem before moving on to the next section. There are usually many ways of arriving at a good design,
but sometimes, messing around with the details can lead to greater complication and create more
problems. In these cases, it may be better to go back to the top-level design and start again. Fortunately,
there are still a few more weapons in our armory.

Now Get Out of That

There are several methods of getting out of loops cleanly, the chief ones being the use of the break and
continue keywords: If you want to get out of a loop without executing any more statements in the loop body,
use break. If you just want to get out of this particular iteration of the loop, continue immediately takes you
to the next iteration of the loop. The difference between the two is shown clearly in the flowchart in Figure 4-2.

Figure 4-2. Flowchart for a while loop

At times, you will want the interpreter to recognize a condition but do nothing. In this case, the pass
keyword can be useful; it creates a null statement, which simply tells the interpreter to move on to the
next instruction.

while True:

 this input = int(raw input("#? :-> "))

CHAPTER 4 ■ MAKING CHOICES

68

 if this input > 0:

 pass

 else:

 print("Input is negative")

#? :-> -1

Input is negative

#? :-> 17

#? :->

Like the if statement, while can also be followed with an else suite. In this case, the else suite is
only executed after the loop has finished, as long as you didn’t break out of it. An example of break and
continue is shown in Listing 4-6.

Listing 4-6. Using break and continue

counter = 0

sum = 0

while True:

 this input = float(input('#? :~> '))

 if this input < 0:

 if counter == 0:

 print("You haven't entered any numbers yet!")

 continue

 break

 sum += this input

 counter += 1

 print(counter, ':', sum)

#? :~> -3
You haven't entered any numbers yet!
#? :~> 5
1 : 5.0
#? :~> 7
2 : 12.0
#? :~> 3
3 : 15.0

CHAPTER 4 ■ MAKING CHOICES

69

#? :~> 8
4 : 23.0
#? :~> -1
>>>

Nesting Conditional Statements

You are allowed to nest loops and other conditional statements in Python, probably infinitely, but it is
best to keep the number of levels of nesting to a minimum. For one thing, it’s very easy to get confused
about which option the program is taking at any particular point. Also, having lots of indented blocks
within other indented blocks makes your code difficult to read, can slow down the program’s execution,
and is generally considered bad style. If you have come up with a design that involves two or three layers
of looping, you should probably start thinking about redesigning it to avoid the excessive depth of
nesting.

Using the for Statement

The other control flow statement I want to introduce is the for statement, which is constructed in a
similar manner to the if and while statements. Its construction is for element in sequence: followed by
an indented suite of instructions. During the first iteration of the loop, the variable element contains the
first element in the sequence and is available to the indented suite. During the second iteration, it
contains the second element in the sequence, and so on.

To understand how this statement works, you need to know about sequences. The simplest
sequence in Python is a string, which is a sequence of individual characters including spaces and
punctuation. Other forms of sequence are tuples and lists. Tuples and lists are sequences of data items,
the chief difference between them being that lists are editable in place, whereas tuples are not (the
distinction will be fully explained in Chapter 5). It’s possible to use either in a for statement. They are
constructed as follows:

tuple
sequence1 = (1, 2, 3)
list
sequence2 = [1, 2, 3]

I’ll show you how to use and construct lists and tuples fully in the next chapter. The for statement,

then, makes it possible to process several pieces of data in only a couple of lines of code. So in the
example below, the variable banana contains each element in the splits sequence in turn, as the for
loop goes through each iteration.
>>> splits = ['Fleagle', 'Beagle', 'Drooper', 'Snorky']

>>> for banana in splits:

... print(banana)

...

Fleagle

CHAPTER 4 ■ MAKING CHOICES

70

Beagle

Drooper

Snorky

Using a for statement allows us to dispense with variables in loop conditions and means we can

simply go through a sequence and do the same actions on each member of the sequence in turn. This
turns out to be incredibly useful; for example, we can go through a line of text and print each character
out on a separate line of its own.

text = input("Type in some words: ")
for character in text:
 print(character)

Or we can iterate through a list of items of data and process each one separately.

sequence = ['Just','a','list','of','words']
for word in sequence:
 print(word)Application

■ Note Like while, for can take an else statement, which is executed at the end unless the loop is exited with a

break statement.

For the final example in this chapter, I want to take the problem of removing all the punctuation
from a line of text input by the user. This is going to be a simple command-line application again. The
top-level design, sketched out in pseudocode, might look like this:

Enter a text string
Loop through characters in text string
 if character not one of #()*+,-/:;<=>?@\^ `{|}~[]
 write out character
 elif character == '.'
 new line

To test out this example, I will need to come up with a suitable text string that contains all the

available punctuation. Something along the lines of the following will probably do the job nicely:

"(One long string)*+with various punctuation - like this / this: and a list; of
< arithmetic = and comparison symbols> including, dubious? email@addresses and
[Stuff \ that] might be ^ Python code, which `evaluates` as {something|other}~
 you don't want. Another sentence. Blah97635o98q6v4ib5uq."

The first problem with our design is that if the character is a period, it will get written out rather than
translated into a new line, so I need to reverse the order of the if and elif statements. Second, it would
be much neater if I could replace all the punctuation with spaces; there is an easy way to do this, but I

CHAPTER 4 ■ MAKING CHOICES

71

would end up with strange numbers of spaces in between words, and I want only one. I have to come up
with some method of checking whether the last character was a space. For this example, I have chosen to
set a flag as True if a space is written out and as False if any other character is written. I then check whether
this flag is set or not before writing out a space character. The refined design turns out as follows:

Enter a text string
Loop through characters in text string
 if character == '.':
 new line
 elif character == ' ':
 if space flag:
 do nothing
 else:
 add character to output string
 space flag = True
 elif character not one of #()*+,-/:;<=>?@\^ `{|}~[]:
 write out character
 space flag = False
 else:
 if space flag = False
 add space to output string
 space flag = True

The else section should catch all the characters in the set of punctuation marks, so I want to check

whether the last character was a space, if not I can add a space to the output. In fact, the design is slightly
repetitious, with a little ingenuity it may be possible to merge the elif character == ' ': and else: suites.

Enter a text string
Loop through characters in text string
 if character == '.':
 new line
 elif character not one of #()*+,-/:;<=>?@\^ `{|}~[]:
 write out character
 space flag = False
 else:
 if not space flag:
 add space to output string
 space flag = True

That’s neater, so now it’s time to code the design (see Listing 4-8).

Listing 4-8. stringclean.py

#! /usr/bin/env python

"""

Clean up text string, replacing punctuation with spaces.

CHAPTER 4 ■ MAKING CHOICES

72

Target System: GNU/Linux
Interface: Command-line
Functional Requirements:
 Loop through the characters in a string
 Removing all non-alpha-numeric characters
 Lines break at full stops
 It would be great to have a single space between each word.
Testing: Run test
Test values:
(One long string)*+with various punctuation - like this / this: and a list; of <
arithmetic = and comparison symbols> including, dubious? email@addresses and
[Stuff \ that] might be ^ Python code, which `evaluates` as {something|other}~
you don't want. Another sentence. Blah97635o98q6v4ib5uq. test
Expected results:
 One long string with various punctuation like this this and a list of
 arithmetic and comparison symbols including dubious email addresses and
 Stuff that might be Python code which evaluates as something other you
 don't want
 Another sentence
 Blah97635o98q6v4ib5uq
"""

version = "0.1"
maintainer = "maintainer@website.com"
status = "Prototype"

punctuation = "#()*+,-/:;<=>? \\@^ `{|}~[]"
print()
print("***")
print()

input string = input("Enter a text string: ")

output string = ' '
space flagged = False

for char in input string:
 if char == '.':
 print(output string)
 output string = ' '
 elif char not in punctuation:
 output string += char
 space flagged = False
 else:
 if not space flagged:
 output string += ' '
 space flagged = True

print(output string)
print()
print("***")
print()

CHAPTER 4 ■ MAKING CHOICES

73

The variable punctuation is a string containing all the punctuation marks that I want to remove
including spaces. I will use this to contain all the values that I want to be replaced by spaces. I need to
initialize output string and space flagged at the start, so the interpreter knows what they are when it
gets to them. Next, the program prompts the user for input and loops through the string checking for
punctuation and spaces. The heavy lifting here is done by the conditional construction char not in
punctuation. This conditional expression checks to see if the character char matches up with any of the
individual contents of the punctuation string, printing out a space if it does or adding the string to the
output string if it doesn’t.

This is a rather long-winded way of analyzing a sentence. Python has various methods of making
this sort of task a lot simpler. In the next chapter, I’ll show you how to refine this script to make use of
Python’s list manipulation facilities. Even using the limited commands that you have learned so far, it
would be possible to refine the design in Listing 4-7 further or customize it to deal with other special
punctuation cases in different ways.

Jargon Busting
The terms presented in this chapter follow:

• Assignment operator: The single equals sign (=) is the assignment operator. It can
be combined with other operators to perform more complex assignment
operations.

• Built-in: A built-in element is an innate part of the programming language, as
opposed to something that has to be imported from a module. Built-in elements
are part of Python’s standard library.

• Comparison operators: These operators compare two values:

 • <: Less than

 • <=: Less than or equal

 • >: Greater than

 • >=: Greater than or equal

 • ==: Equal

 • !=: Not equal

 • is: Tests object identity

 • is not: Tests object identity

• Conditional statement: This section of code is performed if a certain condition
evaluates as True. A conditional statement is a form of control flow statement.

• Critical values: These values exist at the edges of the permissible ranges set for an
application. In particular, these are values that would cause changes or
unexpected results from the normal running of the program.

• Flowchart: This is a graphical method of designing and analyzing the control flow
of a program.

CHAPTER 4 ■ MAKING CHOICES

74

• Iteration: An iteration is single run through a loop.

• Loop: A loop is code construction that repeats.

• Loop body: The body is the suite of instructions to be repeated in a loop.

• Null statement: The pass keyword creates a null statement, which tells the
interpreter to move on to the next statement.

• Operands: These are the expressions on either side of an operator.

• Refining: This refers to the process of improving and simplifying a program
design.

• Sentinel: This loop condition control variable has a value that is the result of the
process needing to be controlled, such as user input.

• Suite: A suite is a group of commands executed in a conditional statement and are
all indented the same amount.

• Trace: This refers to the process of checking the state of the internal values and
conditions of a program over the course of its execution.

• Trace table: This data table is output by performing a trace.

• Validation: This refers to the process of checking that your data is what you
expect.

Summary
You now know how to get your programs to actually do something. Much of the fundamental action of a
program is controlled by the use of comparison operators, logical operators, assignment operators
combined with the arithmetical operators that were covered in the previous chapter, and in accordance
with the rules of operator precedence.

You have learned about the fundamental control structures used for decision making (if, elif,
else) and looping (while, else, and for...in...else) as well as how to get out of loops cleanly using
break and continue. You have also started to learn how to refine the design and deal with logical errors
using trace tables and flowcharting.
In the next chapter, I will introduce the first of several more complex data types—the list—and show you
how you can manipulate entire sequences of data at once.

C H A P T E R 5

■ ■ ■

75

Using Lists

In this chapter, you will learn how to deal with multiple items of data by processing them in sequence.
First, I’ll give you an overview of the data structures that Python provides that can contain more than
one item. These include Strings, tuples, lists and dictionaries. There are a few actions that you can
perform on all of these data types, so I’ll cover those before going into the details of creating and
manipulating each type separately. In the second half of this chapter, you’ll be making a simple role-
playing combat game. You will use these data structures to contain your player’s statistics and inventory
and to translate the numerical results of the combat calculations into descriptive phrases. You’ll be using
what you learned about loops in the previous chapter to work with the individual items in those data
structures. In the process, I’ll cover some of the design and development issues you may have to face
when creating more complex applications, and you’ll see how Python can be used to make repetitive
number-crunching and text manipulation not only fast and painless but also entertaining!

Working with Python Data Structures
So far, you have learned to work with individual pieces of data to produce some simple results. Real-
world data is usually in lumps or groups, and it would be useful to work with such groups without having
to make lots of repetitive statements in our code. Fortunately, Python provides a variety of data types
that can make handling groups of data much simpler.

The data types that are most used in Python are strings, tuples, lists and dictionaries. These are
collectively called data structures.

Strings are just pieces of text. Tuples and lists are ordered groups of individual data items.
Dictionaries are groups of key-value pairs.

Strings, tuples, and lists are examples of a particular data model called sequences. The methods
used for accessing the data in a sequence are same, which you will see later in this chapter.

There is another way of looking at these data types—according to whether they can be modified or
not, which is called mutability. Strings and tuples are immutable, which means that we cannot modify
an existing string or tuple, although we can use them to create new strings and tuples, respectively. Lists
are mutable, which means we can add or remove items from a list.

Accessing the items in a sequence

We can fetch an individual item from a sequence using an index, which is the position of the element.
The index is specified as an integer (a whole number) in square brackets immediately following the

CHAPTER 5 ■ USING LISTS

76

variable name. So s[i] will retrieve the item at position i of sequence s. This allows you to access a
single character in a string:

>>> fruit = 'apple'
>>> fruit[0]
'a'

or an item in a list or tuple:

>>> fruits = ['avocados', 'bananas', 'oranges', 'grapes', 'mangos']
>>> fruits[2]
'oranges'

The first thing you will notice is that indexing is zero-based; that means you start counting at 0. An

index of [2] accesses the third item in the list, the first item would be referenced with [0]. So you can use
integers 0 through to the number of elements in the sequence minus one (0 to n – 1) as indices.
Negative indices count backward from the end:

>>> fruits[-1]
'mangos'

You can grab sections of a sequence using slices. Slicing is used to fetch multiple items from a

sequence. Slices are written using the same notation as an index, but this time with two or three integers
separated by colons. The first value is the inclusive starting point and the second number is the exclusive
end point of the slice. So s[0:2] means that the slice will start from index 0 and stop just before index 2,
(i.e., fetch items at positions 0 and 1).

The third value is optional and specifies an additional step value, which may be negative, so instead
of picking out a sequential list, you can retrieve every other, or every nth item, and you can also retrieve
them backward if you need to. So s[i:j:step] will retrieve a slice of s starting from i and up to, but not
including j, and taking the specified step.

>>> fruits = ['avocados', 'bananas', 'oranges', 'grapes', 'mangos']
>>> fruits[2:-2]
['oranges']
>>> fruits[2:4]
['oranges', 'grapes']
>>> fruits[1:4:2]
['bananas', 'grapes']

If the starting point, i, is equal to or greater than end point, j, the slice you get back will be empty.

>>> fruits[4:4:2]
[]

If you leave out the starting point, the slice will start at the beginning of the original sequence, and if

you leave out the end point, the slice will run to the end of the original sequence.
Indexing and slicing do not modify the original sequence; they make a new sequence from the

original. However, the actual individual data items are the same. So if you modify an individual item in a
sequence, you will see the item change in a slice from the sequence as well.

CHAPTER 5 ■ USING LISTS

77

■ Note list alias = sequence does not make a copy of the list. Instead, list alias and sequence are the

same (i.e., they are two names—references—pointing to the same list). So, if you perform any operation on

list alias, you will see the change in sequence as well. If you do new sequence = sequence[:], then

operations on new sequence won’t affect sequence. Beware of this difference!

If You’re Not on the List, You Can’t Come In

Often, you will want to find out whether a particular piece of data is in a sequence or not. This is
achieved in Python using the keyword in, which is a Boolean operator that tests for membership in a
sequence. The test x in s will return True if x is in sequence s; otherwise, it will return False.

>>> 'apple' in fruits
False

It is possible to use not in conjunction with in to produce the opposite answer.

>>> 'apple' not in fruits
True

You can also use this operator on strings to find out whether x is contained in (i.e., is a substring of)

string s.

>>> 'ana' in 'banana'
True

You can use the + operator to combine sequences to make a new sequence.

>>> 'pine' + 'apple'
'pineapple'

You can also use the * operator on sequences to create multiple copies glued together.

>>> 'heart'*5
'heartheartheartheartheart'

The best method for joining strings in a sequence is separator.join(seq). It uses an apparently

bizarre notation, which deserves a little further explanation. You will have gathered by now that the
different data types all have a different set of operations that can be used with them. These operations
can be carried out by operators or methods.

Operators are commands written as a symbol (+, -, etc.) or keyword (in, and, or, etc.) between two
operands. Methods are accessed using a command that follows the variable name immediately after a
period (dot) and terminates in parentheses, which may or may not contain further arguments. In
separator.join(seq), join() is the method. Methods are like functions that are specific to an object,
such as a data type in this instance (objects are covered in Chapters 9 and 10). For now, objects are
specific instances of data types.

CHAPTER 5 ■ USING LISTS

78

The string type has the method join(), which takes a sequence as an argument and returns a single
string made up of the elements of the sequence joined together with copies of the original string
between them. It might seem more logical to write sequence.join(separator), but that would be a
method belonging to the separator type. Try reading the statement backward if you have trouble making
sense of this:

>>> ", ".join(fruit)
'avocados, bananas, oranges, grapes, mangos'

You could pretty this up by assigning sep = ", " first and then calling sep.join(fruit) if you prefer;

this could be useful if you are using the same separator elsewhere and you want to make sure that you
are splitting and joining all your lists with the same separator. Readability of code is an important
consideration. The assignment in the following example could be to vegetables.split(sep) in this case.

Splitting up a string to form a list can be done with stringToSplit.split(separator,max), which is
much more logical to write. This is a string method, so it works on a string variable. This method takes an
additional argument that specifies the maximum number of splits allowed.

>>> vegetables = "carrots, potatoes, onions, leeks, celery"
>>> vegetables = vegetables.split(", ")
>>> vegetables
['carrots', 'potatoes', 'onions', 'leeks', 'celery']

The preceding code allows to you process each word in a sentence separately, which can prove to be

a useful technique.
There are a few useful built-in ways to convert sequences into different types of sequences. First,

list(seq) turns any sequence into a list; if you do this with a string, you’ll get a list of the individual
characters:

>>> list('banana')
['b', 'a', 'n', 'a', 'n', 'a']
>>> list(vegetables)
['carrots', 'potatoes', 'onions', 'leeks', 'celery']

If you want to turn a sequence into a tuple, the same rules apply to tuple(seq).

>>> tuple(vegetables)
('carrots', 'potatoes', 'onions', 'leeks', 'celery')

Converting a list into a string will make a readable text representation of the list.

>>> str(vegetables)
"['carrots', 'potatoes', 'onions', 'leeks', 'celery']"

If you want to know how many elements a sequence has, use len(seq).

>>> len(vegetables)
5

The number of items in a sequence that are equal to x can be counted up with sequence.count(x).

In other words, it counts each item where x == item is true.

CHAPTER 5 ■ USING LISTS

79

>>> vegetables.count('carrot')
1

If you want to retrieve the greatest item in a sequence, use max(seq).

>>> max(vegetables)
'potatoes'

The least item can be accessed similarly with min(seq).

>>> min(vegetables)
'carrots'

It may be worth taking a moment to consider the results of the last two examples. Were they what

you expected? The results came out based on alphabetical order. It seems that sequences have some
kind of implicit sort order, even if they haven’t been sorted yet. It turns out that it is possible to use this
implied order to compare sequences using the same comparison operators that are used to compare the
fundamental data types.

>>> fruits > vegetables
False
>>> vegetables > fruits
True
>>> vegetables == fruits
False

The sequences fruits and vegetables both contain five members. Nevertheless, the Python

interpreter is able to determine that the two sequences are not the same and decide that one is greater,
as a whole, than the other.

Note that empty sequences will always return False in when tested in Boolean expressions.
This is where the similarities between strings, tuples, and lists end.

Tuples
A tuple is an immutable ordered group of items or elements. Think of tuples as useful little sealed
packets of information.

A tuple is specified as a comma-separated list of values, which may be enclosed in parentheses. On
certain occasions, the parentheses are required, so when in doubt, use parentheses. The values need not
all be of the same type. A value can also be another tuple.

Creating a Tuple

You can create a tuple with zero items using an empty pair of round brackets ().

>>> blank tuple = ()

If you want to make a tuple that only contains one item, you must follow the item with a single

comma (item,).

CHAPTER 5 ■ USING LISTS

80

>>> single tuple = ('item',)

Tuples are normally created by assigning a sequence of comma-separated values to a variable,

which is known as sequence packing. Notice that we don’t need parentheses in this example, because it
is unambiguous that it is a tuple:

>>> t = 'blah1', 'blah2', 'blah3'

The sequence can be unpacked by doing the reverse:

>>> blah1, blah2, blah3 = t

Changing the Values in a Tuple

You can’t. That’s not what they’re meant for. Remember when we said they are useful little sealed
packets of information? They are used mostly in situations where a set of values has to be passed on to
another place without worry of having them messed about. You can also use them to provide dictionary
keys. If you want a sequence of data that you can change, then you need a list.

Lists
A list is an ordered, comma-separated list of items enclosed in square brackets. Items need not all be of
the same type. An item can also be another list.

Lists can be sliced, concatenated, and indexed the same as any other type of sequence. It is possible
to change individual items in a list, as opposed to immutable strings and tuples. Where a tuple is rather
like a fixed menu, lists are more flexible. It is possible to assign data to slices, which can change the size
of the list or clear it completely.

Creating a List

Lists are easy to create:

>>> inventory = ['pole', ['another', 'list'], 'silver mirror', '10 gold coins',
 'potion']

Modifying a List

New values can be assigned to list items using the assignment operator sequence[i] = x.

>>> inventory[1] = 'wax'
>>> inventory
['pole', 'wax', 'silver mirror', '10 gold coins', 'potion']

You can replace a slice of your list with another sequence using list[i:j:step] = sequence.

>>> inventory[::2] = ['shield', 'scroll', 'oil']

CHAPTER 5 ■ USING LISTS

81

>>> inventory
['shield', 'wax', 'scroll', '10 gold coins', 'oil']

Here, I have specified a slice with no start or end point and a step size of two, so every other item in

the whole list is affected by this change.
You can add elements to a list by using the append() or extend() methods, the append() method

adds individual items; the extend() method is used to add items from another list:

>>> inventory.append('skull')
>>> inventory
['shield', 'wax', 'scroll', '10 gold coins', 'oil', 'skull']
>>> inventory.extend(['sword', 'oil'])
>>> inventory
['shield', 'wax', 'scroll', '10 gold coins', 'oil', 'skull', 'sword', 'oil']

The keyword del can be used to remove entire variables or slices of a list. Remember that this only

removes references from the list; the actual item itself is not affected if they are still being used in other
data structures.

>>> del inventory[4:]
>>> inventory
['shield', 'wax', 'scroll', '10 gold coins']

You can get the index position of the first item that corresponds to x using list.index(x).

>>> inventory.index('scroll')
2

You can insert an item x at position i with list.insert(i,x).

>>> inventory.insert(2,'wand')
>>> inventory
['shield', 'wax', 'wand', 'scroll', '10 gold coins', 'emerald', 'pole', 'potion']

You can also remove the first item that is equal to x in list s using list.remove(x).

>>> inventory.remove('wax')
>>> inventory
['shield', 'wand', 'scroll', '10 gold coins', 'emerald', 'pole', 'potion']

Sometimes, you may want to remove and return a value from the list at the same time. This can be

done using list.pop(i). This method takes an index position as an argument. If the index is not
specified, it defaults to the last item in the list.

>>> inventory.pop(-2)
'pole'
>>> inventory
['shield', 'wand', 'scroll', '10 gold coins', 'emerald', 'potion']

CHAPTER 5 ■ USING LISTS

82

Stacks and Queues

Because lists are an ordered type of data, it is possible to use them to store and retrieve data items in a
particular order. The two main models for doing this are described in traditional programming-speak as
“stacks” and “queues.”

A stack is a last in, first out (LIFO) structure, used rather like the discard pile in a card game. You put
cards on the top of the pile and take them back off the top. You can push items onto the stack with
list.append() and pop them back off with pop(). Note that there is no additional index argument, so it
will be the last item of the list that is popped.

>>> inventory.append('ring')
>>> inventory.pop()
'ring'
>>> inventory
['shield', 'wand', 'scroll', '10 gold coins', 'emerald', 'potion']

The other approach involves creating a first in, first out (FIFO) structure called a queue. This works
more like a pipe, where you push items in at one end and the first thing you put in the pipe pops out of
the other end. Again, we can push items into the pipe using append() and retrieve them using pop(0)—
this time with an index of 0 to indicate that the data items should be popped from the start of the list.

>>> inventory.append('ring')
>>> inventory.pop(0)
'shield'
>>> inventory
['wand', 'scroll', '10 gold coins', 'emerald', 'potion', 'ring']

■ Note There is also another data type known as a deque (pronounced “deck”), which works very similarly to a

list but has been designed with extra features to facilitate double-ended stacking and queuing operations.

Sorting Lists

You can sort lists either using a list method list.sort(), which directly modifies the original list, or
using sorted(list) which returns a new sorted list and thus doesn’t modify the original.

>>> sorted(inventory)
['10 gold coins', 'emerald', 'potion', 'ring', 'scroll', 'wand']
>>> inventory.sort()

Reversing the order of your list can be done using the list.reverse() method, which reverses the
original list.

>>> reversed(inventory)
<listreverseiterator object at 0x81abf0c>
>>> inventory.reverse()
>>> inventory
['wand', 'scroll', 'ring', 'potion', 'emerald', '10 gold coins']

CHAPTER 5 ■ USING LISTS

83

Many sequence manipulation functions, rather than returning another sequence, return another
object, in the above example, an iterator object is returned. This object can be used in a for loop just the
same as a sequence. The reversed() function returns a new reversed list iterator object.

>>> for item in reversed(inventory):
... print item
...
wand
scroll
ring
potion
emerald
10 gold coins

Multidimensional Lists

Lists can be multidimensional, that is to say, nested inside other lists. Lists containing other lists can be

used as a way of storing a matrix, or table of information. A 3×3 matrix could be created by assigning a
list of lists to a variable.

>>> matrix = [[11,12,13],[21,22,23],[31,32,33]]

Processing Large Amounts of Data Easily

It is common practice to iterate through a list using a for loop. This construction for var in list is
known as a list traversal. It is appropriate to use a for loop because even if you don’t know how long
your list is, your computer sure does—using the built-in len() function. A matrix like the one in the
preceding example, incidentally, would require two nested for loops, one for each dimension of
the matrix.

The positional index and value can be both retrieved at once using enumerate(), another built-in
function.

>>> for i, value in enumerate(fruits):
... print i, value
...
0 avocados
1 bananas
2 oranges
3 grapes
4 mangos

Let’s do the same for our matrix example:

>>> for row in matrix:
... for i, value in enumerate(row):
... print i, value,
... print
...
0 11 1 21 2 31

CHAPTER 5 ■ USING LISTS

84

0 21 1 22 2 32
0 31 1 32 2 33

To loop through two or more sequences at a time, entries can be paired with zip().

>>> for fru, veg in zip(fruits, vegetables):
... if fru < veg:
... print fru, "are better than", veg
... else:
... print veg, "are better than", fru
...
avocados are better than carrots
bananas are better than potatoes
onions are better than oranges
grapes are better than leeks
celery are better than mangos

List Comprehensions

The last nifty tricks to cover in this list of things you can do with lists are list comprehensions. List
comprehensions evaluate an expression for each item in a list and return a list of the results. Think of
this as a shortcut to apply an operation to every element in a list and get back a new list, without the pain
of creating a temporary list.

List comprehensions usually result in clearer code than using built-in functions like map() or
filter() but can also lead to the construction of unwieldy one-liners if you include too many additional
for loops and if statements.

The most basic construction is [expression for var in list[for...|if...]]. This means that you
can have multiple for and if statements after the initial construction. If the expression part is a tuple,
this is one occasion where it must be in parentheses.

>>> [fruit.upper() for fruit in fruits]
['AVOCADOS', 'BANANAS', 'ORANGES', 'GRAPES', 'MANGOS']

Let’s look at two for statements. Here, we extract each integer and pair it with each letter:

>>> int list = [0, 1]
>>> char list = ['a', 'b', 'c']
>>> [(an int, a char) for an int in int list for a char in char list]
[(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')]

Note that (an int, a char) is the pairing expression that operates on the results of the two for

expressions.
List comprehensions are cool and very powerful. The expression part can be any expression you can

code, and you can also make the evaluation of that expression conditional. If the matrix were modified
to include different values, it would be possible to retrieve only the changed values using a list
comprehension. Note the way data is assigned to the cells of a nested list.

CHAPTER 5 ■ USING LISTS

85

>>> matrix = [['data', 'data', 'data'], ['data', 'data', 'data'],
 ['data', 'data', 'data']]
>>> matrix[0][0] = 'one'
>>> matrix[1][1] = 'two'
>>> matrix[2][2] = 'three'
>>> matrix
[['one', 'data', 'data'], ['data', 'two', 'data'], ['data', 'data', 'three']]
>>> [value for row in matrix for value in row if value is not 'data']
['one', 'two', 'three']

The for statements within the list comprehension have to come in the same order you would put

them if you were using nested loops. So for row in matrix comes before for value in row, which gives
a rather counter-intuitive reading. It is the resultant value of the left-hand expression that becomes the
item of data in the new list, the for and if statements that follow it should run in the order they are to be
processed. If you get confused, try to find ways you can reduce the level of nesting required.

Sets
Sometimes, you may need to use a data structure to test for membership. For example, we are
processing a group of names, how do we know if we’ve already come across the same name? This is
where we can use sets, using the if item in set statement. Notice that creating a set automatically
removes any duplicate entries.

Similarly, it is also useful to find out what is common or different between two sets of items.

>>> a = set(['apples', 'oranges', 'bananas', 'apples', 'oranges'])
>>> b = set(['avocados', 'mangos', 'apples', 'grapes', 'mangos'])
>>> a
set(['apples', 'oranges', 'bananas'])
>>> b
set(['avocados', 'apples', 'grapes', 'mangos'])
>>> a-b # what is in 'a' that is not in 'b'?
set(['bananas', 'oranges'])
>>> b-a # what is in 'a' and not in 'b'?
set(['avocados', 'grapes', 'mangos'])
>>> a|b # what is in either 'a' or 'b'?
set(['apples', 'grapes', 'mangos', 'avocados', 'oranges', 'bananas'])
>>> a&b # what is common between 'a' and 'b'?
set(['apples'])
>>> a[1]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'set' object is unindexable

As the members of a set are not in any particular order, you can’t reference them with an index.

CHAPTER 5 ■ USING LISTS

86

■ Note You can also create sets using curly braces. So you could type b = {'avocados', 'mangos',

'apples', 'grapes', 'mangos'}. You still have to use set() to create an empty list because {} makes a new

dictionary (see the “Dictionaries” section).

Dictionaries
Dictionaries are like address books: if you know the name of the person, you can get all of that person’s
details. The name is technically referred to as a key, and any corresponding detail is referred to as the
value.

The key must be of an immutable type, that is, a string, number or tuple; the value can be more or
less anything you like. The dictionary itself is a mutable data type, which means you can add, remove,
and modify key-value pairs. The keys are said to be mapped to objects, hence dictionaries are referred to
as “mappings” to remind us that their behavior is somewhat different to sequences.

■ Note Dictionary-like structures are referred to in some other languages as associative arrays or hashes,

because the values used to define the keys must be hashable values. Hashed keys are small values calculated

from the actual key and are an efficient way of storing potentially large keys. This makes value lookup much

quicker. Python organizes the information in the dictionary according to these hashes rather than an alphabetical

list. It follows that if you change the contents of a hashable value, the resultant hash would also change, and the

computer would no longer be able to locate the value it contains. Now you know why keys have to be of an

immutable data type.

Defining Dictionaries

Dictionaries are created by specifying key-value pairs (separated by colons) inside curly braces ({}).

>>> profile = {'Name':"",'Desc':"", 'Race':"",
 'Gender':"",'Muscle':0,'Brainz':0,'Speed':0,'Charm':0}
>>> profile['Name'] = "Adam"
>>> print profile['Name'], "has", profile['Brainz'], "Brainz"
Adam has 0 Brainz

You can refer to items in a dictionary using the familiar square bracket notation. Remember we

accessed items in a list as item[i], where i is the position of the item. In dictionaries, there are no
positions, because all we have are keys and their respective values. Hence, we just use the key itself to
access its corresponding value in the dictionary: dictionary[key] = value. Don’t forget to enclose the
key name in quotes or the interpreter will treat it as if it is a variable.

Dictionaries can also be traversed using a for loop, but the loop will iterate only through the keys.

CHAPTER 5 ■ USING LISTS

87

>>> for key in profile:
... print key,
...
Brainz Name Gender Race Charm Muscle Speed Desc

If you want the value, use profile[key] as you have seen before. However, if you need to ensure that

the key exists in the dictionary, you can check using key in profile, which returns True or False.
Otherwise, Python will throw an error.

If you do not know whether the key exists already, the best approach is to use the get(key,default)
method. This method takes two arguments, the key that you’re looking for and a default value if that key
is not found.

>>> profile.get('Name')
'Adam'
>>> profile.get('Gender','not known')
''
>>> profile.get('Life','not present')
'not present'

Note that if the key is present, but only contains an empty string, you’ll get the empty value returned

rather than the default message.

>>> for item in profile:
... profile.get(item,'not present')
...
0
'Adam'
''
''
0
0
0
''

We can access the dictionary’s contents as a whole using the keys(), values(), and items()

methods, which return the keys, the values, and the key-value pairs respectively. You’ll notice that the
items are presented in an apparently random yet consistent order (see the note on hashes).

>>> profile.keys()
['Brainz', 'Name', 'Gender', 'Race', 'Charm', 'Muscle', 'Speed', 'Desc']
>>> profile.values()
[0, 'Adam', '', '', 0, 0, 0, '']
>>> profile.items()
[('Brainz', 0), ('Name', 'Adam'), ('Gender', ''), ('Race', ''), ('Charm', 0),
 ('Muscle', 0), ('Speed', 0), ('Desc', '')]

CHAPTER 5 ■ USING LISTS

88

■ Note These three methods return views instead of lists. Views can be iterated over and support membership

tests in much the same way as lists.

Dictionaries can also be created using the built-in dict() function. Without arguments, the function
will create an empty dictionary. Also, the function will accept arguments to create dictionaries out of
other iterable entities, such as lists, keyword arguments, or other dictionaries. It is also possible to create
a blank copy of a dictionary using the dict.fromkeys(iterable, value=None) method.

>>> new profile = profile.fromkeys(profile)
>>> new profile
{'Brainz': None, 'Name': None, 'Gender': None, 'Race': None, 'Charm': None,
 'Muscle': None, 'Speed': None, 'Desc': None}
>>> profile
{'Brainz': 0, 'Name': 'Adam', 'Gender': '', 'Race': '', 'Charm': 0, 'Muscle': 0,
 'Speed': 0, 'Desc': ''}

Dictionaries also respond to the built-in functions len(), max() and min().

>>> max(profile)
'Speed'
>>> min(profile)
'Brainz'
>>> len(profile)
8

Deleting Items

To remove an individual item from a dictionary, use del:

>>> profile
{'Name': 'Adam', 'Gender': '', 'Race': '', 'Charm': 0, 'Muscle': 0,
 'Speed': 0, 'Desc': ''}
>>> del profile['Gender']
>>> profile
{'Name': 'Adam', 'Race': '', 'Charm': 0, 'Muscle': 0, 'Speed': 0, 'Desc': ''}

If you want to fetch the value and remove it from the dictionary, you can use dict.pop(key[,

default]).
Alternatively dict.popitem() will remove a random item from the dictionary and returns the key-

value pair as a tuple.

>>> profile.popitem()
('Brainz', 0)
>>> profile
{'Name': 'Adam', 'Gender': '', 'Race': '', 'Charm': 0, 'Muscle': 0, 'Speed': 0,
 'Desc': ''}

CHAPTER 5 ■ USING LISTS

89

If you want a clean slate, dict.clear() removes all items from the dictionary.

>>> profile.clear()
>>> profile
{}

Sorting Dictionaries

You can sort the output from any of the dictionary methods using the built-in sorted() function.

>>> sorted(profile.items())
[('Brainz', 82), ('Charm', 64), ('Desc', 'Tall'), ('Gender', 'female'),
 ('Muscle', 43), ('Name', 'Ez'), ('Race', 'Pixie'), ('Speed', 76), ('gold', 109),
 ('life', 45), ('magic', 73), ('prot', 63)]

Using Dictionaries

Dictionaries are used anywhere we want to store attributes and values that describe some concept or
entity. For example, we can use a dictionary to count instances of particular objects or states. Because
each key has to have a unique identifier, there cannot be duplicate values for the same key. Therefore,
we can use the key to store the items of input data, leaving the value part to store the results of our
calculations. For example, suppose I wanted to find out how many times each letter turns up in a
sentence like “The quick brown fox jumps over the lazy dog.” I could iterate through the characters of
the sentence and assign each one to a key in a dictionary.

>>> sentence = "The quick brown fox jumps over the lazy dog."
>>> characters = {}
>>> for character in sentence:
... characters[character] = characters.get(character,0) + 1
...
>>> characters
{' ': 8, '.': 1, 'T': 1, 'a': 1, 'c': 1, 'b': 1, 'e': 3, 'd': 1, 'g': 1, 'f': 1,
 'i': 1, 'h': 2, 'k': 1, 'j': 1, 'm': 1, 'l': 1, 'o': 4, 'n': 1, 'q': 1, 'p': 1,
 's': 1, 'r': 2, 'u': 2, 't': 1, 'w': 1, 'v': 1, 'y': 1, 'x': 1, 'z': 1}

A Simple Role-Playing Combat Game
For this chapter’s special guest application, I will introduce a really simple role-playing combat game to
demonstrate dictionaries and sequences in action. This is an expansion of chargen.py, the role-playing
character generation script that I started to design in Chapter 3. Starting with the top-level design, there
will be three main sections to this program.

• Generate character statistics.

• Buy some equipment.

• Fight.

Each step needs to be refined separately:

CHAPTER 5 ■ USING LISTS

90

1. We need a container for our character statistics; a dictionary would be perfect
for this. We want the user to define the 'Name', 'Desc', 'Gender', and 'Race'
fields. The main statistics 'Muscle', 'Brainz', 'Speed', 'Charm', and 'gold'
need to be randomly generated. The combat statistics 'life', 'magic', and
'prot' (protection) need to be derived from the main statistics. For generating
random numbers, I will have to use the random module. As I don’t cover
modules until Chapter 9, I should explain that modules are collections of extra
functions that you can call on to do specific jobs. They need to be imported at
the start of the script, and then the contained functions can be used, with a
similar syntax to the object methods we have been using to manipulate strings
and lists so far.

2. Next, I want the characters to be able to buy some equipment with their gold.
This means I’ll have to set up shop. I can do this by creating a dictionary called
stock, where the names of the stock items are keys and the corresponding
values are the prices.

3. Finally, we get to the combat phase. Each character must choose a weapon
and take turns attacking opponents. Rather than having some boring
numerical score, I want to translate the damage results into descriptive text.
For this, I’m going to create some more tuples containing suitable phrases. I
need to work out how to calculate whether each blow meets its mark and, if so,
how much damage it does. To help this calculation, I want to add two more
items of data to my already existing stock list to represent weapon damage and
weapon speed. In order to do this, each value in the stock dictionary will be
represented by a tuple of three values (price, damage, and speed). These
calculations can all be set up at the start of the script, because I don’t want
these values to change. Finally, I want the combat section to loop until one or
other combatant is defeated.

Next, I sketched the whole thing out in pseudocode as you can see in Listing 5-1.

Listing 5-1. The Role-Play Game’s Pseudocode

rpcombat.py
Purpose: Simple Role-Playing Combat Game.
Target System: GNU/Linux
Interface: Command-line
Functional Requirements: The user must be able to generate more than one
 character profile, equip those characters with suitable weapons,
 and model hand-to-hand combat between characters.
Test values: (Ez, Tall, Pixie, female), (Inkon, Small, Troll, male)
Expected results: All statistics should be integers in the (1-99) range.
Limitations: Too many to mention.

set up constant data.
Set up shop = {}

CHAPTER 5 ■ USING LISTS

91

#1 loop while players < 2
 #1.1 Create profile dictionary
 #1.2 Prompt user for user-defined information
 # (Name', 'Desc', 'Gender', 'Race')
 #1.3 Validate user input
 #1.4 Generate stats ('Muscle', 'Brainz', 'Speed', 'Charm')
 #1.5 Work out combat stats ('life', 'magic', 'prot', 'gold')
 ## And modify according to user-defined info
 #1.6 Validate stats
 #1.7 Output the character sheet

 #1.8 Prompt user to buy some equipment.
 #1.9 loop while purchase not 'no'.
 #1.9.1 Display shop stock list with prices.
 #1.9.2 Prompt user to make a purchase.
 #1.9.3 If the item is in stock and the player has enough gold, buy it.
 #1.10 Add new player to list of players

Combat
Set up descriptive lists
hits = (), misses = (), damage report = (), life changing = ()

#2 Prompt user to enter into combat
Prompt user to choose a weapon
The weapon must be in player's inventory.
Default to fist if weapon not available.

#3 Loop while attacker[health] > 0 and target[health] > 0:
 #3.1 for player in players:
 #3.1.1 Calculate velocity of blow
 #3.1.2 Calculate damage inflicted by blow
 #3.1.3 Print damage report
 #3.1.4 if attacker[health] > 0 and target[health] > 0: break
 #3.2 Print progress report

#4 Print winner

This translates fairly easily into Python, as shown in Listing 5-2. Immediately after the docstring and

the magic variables at the beginning of Listing 5-2 is the import random statement. We can now use
random methods, just the same as any built-in object. The following block are the constants: all the
salable items in a dictionary called stock; each item containing a (price, damage, speed) tuple; a set
containing the items, which are some sort of armor; and four tuples containing verb phrases for the hits
and misses and noun phrases for the damage report and life changing output. It’s important to have
the form of the final output in mind when designing these phrases. Each phrase in the set needs to be of
a compatible grammatical structure, mood, and tense; otherwise, the final output won’t sound right.

The preferences section is minimal; most important is the trace variable, which controls output of
the trace table during execution. Set this variable to True, and you will get the workings out printed to the
screen as you run the script. I needed to set up an empty list to contain the character profiles; it is called
players. The character profile is held in a temporary dictionary called profile.

CHAPTER 5 ■ USING LISTS

92

The first four fields are input by the user. I have provided a very basic form of validation: in cases of
choices from a fixed list, the script guesses the correct answer on the basis of the first letter, and the
other fields are capitalized.

The next four statistics are generated using the random module; the method random.randint(start,
end) will return a pseudorandom integer between the start and end of the specified range, much like
rolling polyhedral dice. The combat stats are worked out from the random values returned and are
checked to be within the range 1 to 100; if not, the value is rerolled. Finally, this section prints out the
completed character profile.

I moved the shopping section into the character-generation loop for simplicity, and the stock list is
displayed using a for loop. Notice how the price is extracted from the tuple values using an additional
index stock[item][0]. The user is prompted to make a choice; the choice is added to the current player’s
inventory; and the price is deducted from the player’s gold supply. Finally, the user is prompted to
choose a weapon, and if that weapon is not in the player’s inventory, a fist is provided instead. Actually,
what happens is the player gets the relevant tuple from the stock dictionary loaded into the weapon
stat. The inventory is checked against the armour types set, and the resulting tuple gets loaded into the
player’s armour stat. The complete profile is then written out to the player’s list.

The combat takes place continuously inside a while statement that checks both players’ statistics to
make sure neither player is dead. Nested within that is a for loop that toggles between the players giving
each a chance to play by setting one as the attacker and the other as target. It does so by getting the
player’s index from players, using the enumerate() function, and then turning that into a Boolean value.
When the player’s turn ends, the Boolean is reversed with the not operator and assigned to target.

Now, I can use the target and attacker indices to refer to both members of the players list. In some
places, I have to refer to values nested three deep in players, whether dictionaries, lists, or tuples. The
syntax is fairly straightforward so long as you can remember which structure is nested inside which—so
making some notes is probably worth your time.

Next, the velocity is calculated. If the value is positive, the attack counts as a hit; a negative value is
a miss. The value is set with a rather arbitrary calculation designed to produce a value somewhere
between 0 and 7 and then deliberately constrained if it is greater than 7 to prevent unnecessary errors.
This value is then looked up in the hits or misses tuple, and a message is printed about the success or
failure of the blow.

This result is fed into the equation to calculate the amount of damage, which works in a similar
manner to produce a weighted random value, which is then constrained. These underlying values are
required merely to produce some plausible output, which is hopefully fun to play.

Finally, the damage score is subtracted from the target’s life, and the target’s life score is checked.
If it is less than or equal to 0, the game ends with a break statement and a declaration of the winner. This
momentarily ejects the program’s execution into the while loop, which checks both players life stats. As
you already know, one of them does not have a life score above 0, so the while loop terminates too, and
the program should exit cleanly.

Listing 5-2. rpcombat.py

#! /usr/bin/env python

"""
rpcombat.py
Purpose: Simple Role-Playing Combat Game.
Target System: GNU/Linux
Interface: Command-line
Functional Requirements: The user must be able to generate more than one
 character profile, equip those characters with suitable weapons,

CHAPTER 5 ■ USING LISTS

93

 and model hand-to-hand combat between characters.
Testing methods: trace table and play testing.
Test values: (Ez, Tall, Pixie, female), (Inkon, Small, Troll, male)
Expected results: All statistics should be integers in the (1-99) range.
 Apart from that, this script needs play-testing.
Limitations: Too many to mention.
"""
version = 0.1
maintainer = "maintainer@website.com"
status = "Prototype"

Import modules

import random

set up constant data.

stock = {'shield':(15,20,50),
 'sword':(60,60,40),
 'dagger':(25,30,50),
 'halberd':(80,80,30),
 'club':(15,30,30),
 'flail':(50,70,45),
 'hammer':(99,100,20),
 'cuirass':(30,45,20),
 'armour':(101,100,0),
 'lantern':(10,5,30),
 'pole':(10,5,50),
 'rope':(10,5,70)}
armour types = set(['shield','cuirass','armour'])
hits = ('hits','bashes','smites','whacks',
 'shreds','mutilates','lacerates','annihilates')
misses = ('misses', 'nearly hits', 'fails to connect with',
 'swipes wildly at', 'flails ineffectually at',
 'gets nowhere near', 'nearly decapitates self instead of',
 'hits self on the foot, to the amusement of')
damage report = ('small insult','flesh wound','deep slash','ragged gash',
 'savage laceration','fractured rib-cage',
 'smashed-up face','split skull')
life changing = ('a scar.','bruising.','serious blood-loss.',
 'total debilitation.', 'chronic concussion.','a severed limb.',
 'multiple fractures.','an amputated head.')

Preferences
Set to 'True' to trace variables.
trace = False
max players = 2

This is a global variable.
players = []

CHAPTER 5 ■ USING LISTS

94

Generate characters
while len(players) < max players:
 print()
 print("New Character")
 print()
 # Create empty profile dictionary
 profile = {'Name':"", 'Desc':"", 'Gender':"", 'Race':"", 'Muscle':0,
 'Brainz':0, 'Speed':0, 'Charm':0, 'life':0, 'magic':0,
 'prot':0, 'gold':0, 'inventory':[]}

 # Prompt user for user-defined information (Name, Desc, Gender, Race)
 name = input('What is your name? ')
 desc = input('Describe yourself: ')
 gender = input('What Gender are you? (male/female/unsure): ')
 race = input('What Race are you? - (Pixie/Vulcan/Gelfling/Troll): ')

 # Validate user input
 profile['Name'] = name.capitalize()
 profile['Desc'] = desc.capitalize()
 gender = gender.lower()
 if gender.startswith('f'):
 profile['Gender'] = 'female'
 elif gender.startswith('m'):
 profile['Gender'] = 'male'
 else:
 profile['Gender'] = 'neuter'
 race = race.capitalize()
 if race.startswith('P'):
 profile['Race'] = 'Pixie'
 elif race.startswith('V'):
 profile['Race'] = 'Vulcan'
 elif race.startswith('G'):
 profile['Race'] = 'Gelfling'
 elif race.startswith('T'):
 profile['Race'] = 'Troll'
 else:
 profile['Race'] = 'Goblin'

 # Generate stats ('Muscle', 'Brainz', 'Speed', 'Charm')
 profile['Muscle'] = random.randint(3,33) + random.randint(3,33) \
 + random.randint(3,33)
 profile['Brainz'] = random.randint(3,33) + random.randint(3,33) \
 + random.randint(3,33)
 profile['Speed'] = random.randint(3,33) + random.randint(3,33) \
 + random.randint(3,33)
 profile['Charm'] = random.randint(3,33) + random.randint(3,33) \
 + random.randint(3,33)

 # Work out combat stats (life, magic, prot, gold)
 life = (profile['Muscle'] + (profile['Speed']/2) + random.randint(9,49))/2
 magic = (profile['Brainz'] + (profile['Charm']/2) + random.randint(9,49))/2

CHAPTER 5 ■ USING LISTS

95

 prot = (profile['Speed'] + (profile['Brainz']/2) + random.randint(9,49))/2
 gold = random.randint(9,49) + random.randint(9,49) + random.randint(9,49)

 # Validate stats
 if life > 0 and life < 100:
 profile['life'] = life
 else:
 life = random.randint(9,99)
 if magic > 0 and magic < 100:
 profile['magic'] = magic
 else:
 magic = random.randint(9,99)
 if prot > 0 and prot < 100:
 profile['prot'] = prot
 else:
 prot = random.randint(9,99)
 if gold > 0:
 profile['gold'] = gold
 else:
 gold = random.randint(9,99)

 # Output the character sheet
 fancy line = "<~~==|#|==~~++**\@/**++~~==|#|==~~>"
 print()
 print(fancy line)
 print("\t", profile['Name'])
 print("\t", profile['Race'], profile['Gender'])
 print("\t", profile['Desc'])
 print(fancy line)
 print()
 print("\tMuscle: ", profile['Muscle'], "\tlife: ", profile['life'])
 print("\tBrainz: ", profile['Brainz'], "\tmagic: ", profile['magic'])
 print("\tSpeed: ", profile['Speed'], "\tprotection: ", profile['prot'])
 print("\tCharm: ", profile['Charm'], "\tgold: ", profile['gold'])
 print()

 # Prompt user to buy some equipment.
 purchase = input('Would you like to buy some equipment? ')
 while purchase != 'done':
 # Display shop stock list with prices.
 print()
 print("<==|#|==\SHOP/==|#|==>")
 for item in stock:
 print("\t", item, stock[item][0])
 print("<==|#|==\@@@@/==|#|==>")
 print()
 print("You have", profile['gold'], "gold.")
 # Prompt user to make a purchase.
 purchase = input('Please choose an item or type "done" to quit. ')
 # If the item is in stock and the player has enough gold, buy it.
 if purchase in stock:

CHAPTER 5 ■ USING LISTS

96

 if stock[purchase][0] <= profile['gold']:
 print("You buy a", purchase, "for",stock[purchase][0], \
 "gold pieces.")
 profile['gold'] -= stock[purchase][0]
 profile['inventory'].append(purchase)
 print("You have a", " ".join(profile['inventory']), \
 "in your bag.")
 print("You have", profile['gold'], "left.")
 elif purchase == 'done':
 break
 else:
 print("You don't have enough gold to buy that.")
 else:
 print("We don't have", purchase, "in stock.")
 print("You own a", " ".join(profile['inventory']))

 # Prompt user to enter into combat and choose a weapon
 print(profile['Name'], "Are you ready for mortal combat?")
 weapon = input("Then choose your weapon: ")
 # The weapon must be in player's inventory.
 # Default to fist if weapon not available.
 weapon = weapon.lower()
 if weapon in profile['inventory']:
 profile['weapon'] = stock[weapon]
 else:
 profile['weapon'] = (0,20,50)
 # See if player has any armour
 profile['armour'] = (0,0,50)
 for armour type in armour types:
 if armour type in profile['inventory']:
 profile['armour'] = stock[armour type]

 print(profile['Name'], "is now ready for battle.")
 # Add new player to list of players
 players.append(profile)

Combat

print()
print("Then let the combat begin!")
print()

vel max = 23
vel min = 1
dam max = 23
Loop while both players are still alive
while players[0]['life'] > 0 and players[1]['life'] > 0:
 for attacker, player in enumerate(players):
 target = int(not bool(attacker))
 life left = players[target]['life']
 # Calculate velocity of blow

CHAPTER 5 ■ USING LISTS

97

 attack speed = players[attacker]['Speed']
 weapon speed = players[attacker]['weapon'][2]
 attack chance = random.randint(1,players[attacker]['Brainz'])
 attack velocity = attack speed + weapon speed + attack chance
 target prot = players[target]['prot']
 armour speed = players[target]['armour'][2]
 target velocity = target prot + armour speed
 velocity = (attack velocity - target velocity) / 2
 if trace:
 print("\t", velocity)
 if velocity > 0:
 if velocity > vel max:
 vel max = velocity
 hit type = int(7 * velocity / vel max)
 if hit type > 7:
 hit type = 7
 if trace:
 print("\t\tHit#", hit type)
 print(players[attacker]['Name'], hits[hit type], \
 players[target]['Name']),

 else:
 if velocity < vel min:
 vel min = velocity
 miss type = int(velocity / vel max)
 if miss type > 7:
 miss type = 7
 if trace:
 print("\t\tMiss#", miss type)
 print(players[attacker]['Name'], misses[miss type], \
 players[target]['Name'])
 continue

 # Calculate damage inflicted by blow
 attack strength = players[attacker]['Muscle']
 weapon damage = players[attacker]['weapon'][1]
 attack damage = attack strength + weapon damage + velocity
 target strength = players[target]['Muscle']
 armour strength = players[target]['armour'][1]
 target chance = random.randint(9,players[target]['Brainz'])
 target defence = target strength + armour strength + target chance
 potential damage = (attack damage - target defence)
 if potential damage < 1:
 potential damage = 2
 damage = random.randint(1,potential damage)
 if trace:
 print()
 print("\t\tDamage:", damage)
 if damage > dam max:
 dam max = damage
 # Print damage report

CHAPTER 5 ■ USING LISTS

98

 damage type = int(7 * damage/dam max)
 if damage type > 7:
 damage type = 7
 if trace:
 print("\t\t\tDamage#", damage type)
 change type = int(5 * damage/life left)
 if change type > 7:
 change type = 7
 if trace:
 print("\t\t\t\tChange#", change type)
 print("inflicting a", damage report[damage type], \
 "and", life changing[change type])

 # Inflict damage on target.
 players[target]['life'] -= damage
 # Check whether target is still alive or not.
 if players[target]['life'] <= 0:
 # Print winner
 print()
 print(players[target]['Name'], "collapses in a pool of blood")
 print(players[attacker]['Name'], "wins the fight.")
 print()
 break

if trace:
 print()
 print("\t\tmax", dam max, vel max, ":: min", vel min)
 print()

There are several things to be said about Listing 5-2. It is very long and repetitious, and by far the

longest script you have encountered so far in this book. The first thing that needs to be done is to get rid
of all unnecessary repetitions. This is always true in situations where removing repetition makes the code
easier to read.

Also, some of its methods are rather brutal and rely on receiving the right data in the first place. How
could the error checking and validation be improved to make sure the internal values stay within useful
ranges? The output is rather gruesome and not particularly grammatical, so how could the output be
improved? Perhaps it could describe a magical battle, a war of rhetoric and wit, or something silly and
fun. I’m sure you could improve it.

Development on this version (0.1) of the script stopped as soon as it fulfilled the test requirements
that I had set. Any improvements, new features, or fixes mean going back to the pseudocode stage and
sketching out the changes, as well as setting new tests to check whether the new code works—before you
do any further coding. When you do get that far you need to bump up the version number, because you
are now working on version 0.2.

If you feel adventurous, you could adapt the script to allow more player characters to fight, by
upping the max players count. The toggling of attacker and target is rather ungraceful too. Perhaps
something could be done to reorder the players list, so each character gets to fight all the others. The
methods of hit and damage calculation could also be improved; currently, the game gives too much
weight to the weapon statistics for example.

One of the ways we could simplify things would be to have containers for commands, like the data
containers we have explored in this chapter. Fortunately, we can create these; and in the next chapter,
I’ll be introducing you to building your own functions.

CHAPTER 5 ■ USING LISTS

99

Jargon Busting
As usual, here is the roundup of new words in this chapter:

• Arbitrary: In this instance, anything defined by the programmer is arbitrary.

• Complex data types: These are structured or compound types constructed from a
sequence of other types of data.

• Constant: A constant value does not change during the execution of the program.

• Constrain: Ensure that the results of a calculation fall between a specified range.

• Hash: A hash is number calculated from a dictionary key to help with storage. This
number is designed to be smaller than the key to aid efficiency.

• Immutable: An immutable value that cannot be edited in place.

• Index: An index is a token of an immutable type in square brackets immediately
following the variable name, used to point to a specific item in the sequence.

• Iterable: This refers to a code object that can be iterated.

• Iterate: When you loop through items in a sequence one item at a time, you iterate
it.

• Iterator: This construct is designed to allow looping.

• Mapping: This refers to a sequence that maps hashable values to arbitrary objects.

• Matrix: A matrix is a multidimensional sequence.

• Method: A method is a function specifically attached to an object or class of
objects.

• Mutable: A mutable value can be changed.

• Operation: This action is performed on two variables (operands), usually of a
mathematical or logical nature.

• Queue: A queue is a first in, first out (FIFO) structure. You push things in at one
end and pop values out of the other.

• Resultant: This value is returned as the result of a process.

• Separator: This text string is used to distinguish between items of data.

• Sequence: A sequence is the simplest sort of complex data type in Python. Lists,
strings, and tuples are the types of sequences.

• Sequence packing: Sequence packing is the action of assigning a sequence of
comma-separated values to a variable.

• Slice: This refers to a smaller segment of a sequence.

CHAPTER 5 ■ USING LISTS

100

• Stack: This is a last in, first out (LIFO) structure, used rather like the discard pile in
a card game.

• Traverse: When you go through the items in a sequence in order, you traverse
them.

Summary
You have taken on a lot of new information in this chapter, culminating in developing the ideas from
previous chapters to create a much more complex program that processes several related pieces of
information and returns a rather verbose human readable response. This level of sophistication was
made possible using Python’s data structures—strings, tuples, and lists (which are all kinds of sequence)
and dictionaries (a mapping).

You have also learned that some of these structures (i.e., strings and tuples) are immutable, whereas
others like dictionaries and lists are mutable, which means they can be modified. You know how to
access items of a sequence using indexes and slices; you can test for membership of a structure using the
in keyword or iterate through an entire sequence using the for keyword or a list comprehension. You
have encountered several different uses of lists as stacks, queues and matrices of information and you
know how to create dictionaries out of key-value pairs.
You also now have at your disposal a number of methods you can use to manipulate your data to
produce useful output. Combined with looping techniques, these data structures provide the logical
building blocks with which you can process your data. In fact, using what you have already learned, you
could probably write a program that will do most things you can think of. However that code will be very
long-winded, possibly difficult to read, and not really reusable. So, in the next chapter, I will introduce
the next stage of program development, known as abstraction, which means you get to create your own
functions.

C H A P T E R 6

■ ■ ■

101

Functions

In the previous chapters, you have learned how to assign variables, do sums, perform comparisons, set
conditions, and make choices. In the preceding chapter, I showed you how to store, process, and
retrieve greater amounts of information by grouping the data into lists and dictionaries. You have
learned enough vocabulary to enable you to design programs that can solve a wide variety of problems.
Now, it’s time to up the game to a new level.

The skills you have acquired so far are more than enough for writing top-down scripts like the
examples in the previous chapters. No matter how long the scripts become, execution still starts at the
top of the page and stops at the bottom. The only problem is that if you want to do something more than
once, the section has to be repeated verbatim. This also means that modifying the code will become
difficult, as you can often find yourself having to rewrite the whole script to change one small thing. It
would be great to be able to break down the program into manageable pieces of functionality, and
luckily, Python gives us a way to do this, using functions.

In this chapter, I’ll cover how to write functions and segment your code into manageable pieces. In
the process, I’ll explain how to refactor one of our example applications.

Accessing Privileged Information
The first design considerations in making a new function are what kind of input it needs and what
information the function will return. Of close importance are the type and structure of the data that will
be fed in and retrieved. Data supplied to a function are called parameters, and the final information that
is returned is known as results, or output. Our initial specification for the function design should also
include a general description of the function’s specific purpose.

■ Note An important effect of using functions is that their internal working can be changed without affecting the

other parts of the program.

Defining Functions

Functions are defined using a def statement. The word def is followed by the name of the function with
an optional list of parameters in parentheses, and the line ends with a colon, which indicates that the next
lines must be indented as a block or suite of instructions. Let’s start with a function that takes no parameters:

CHAPTER 6 ■ FUNCTIONS

102

>>> def generate rpc():
... """Role-Playing Character generator

 """
... profile = {}
... print "New Character"
... return profile

This block of instructions proceeds in exactly the same way as a complete script. So, in essence, we
give a name to each piece of functionality, and they are called functions.

If you want to provide some notes on what the function does, you can do so in the docstring, which
must be the first thing in the function. The docstring is then followed by a series of statements that are
the core functionality.

The function can also return some data using a return statement. The function’s last line specifies
which variables get returned to the main program. If there is nothing to return, you do not have to use a
return statement, and Python will assume None as the default return value.

■ Note The convention is to name functions in a similar way to variables: using lowercase letters with underscores.

The main difference is that functions should have names that suggest actions (verbs) rather than things (nouns).

Up to this point, the block of code in our function has not yet been run; it has simply been assigned
to the function definition. To get the code to run, you need to call the function from the main body of
the program. (This is called a function call.) Since we have given names to functions, we can call those
functions any number of times:

>>> generate rpc()
New Character
{}

We haven’t specified any parameters in this example, hence the empty parentheses after the

function name.

Sending Out Invitations

Most functions work on some data that they have been given by the main program. In order for the
function to receive data, it needs to set up some empty containers to hold the data. These become
variables unique to the function and are known as formal parameters, and it’s best if they don’t use the
same names as in the main program. These formal parameters have to be specified in the parentheses
after the function name on the first line of the function definition.

import random
def roll(sides, dice):
 result = 0
 for rolls in range(0,dice):
 result += random.randint(1,sides)
 return result

CHAPTER 6 ■ FUNCTIONS

103

This function might be called from the main program in the following way:

muscle = roll(33,3)

The values in parentheses in the function call are known as arguments; they correspond to the

formal parameters in the function definition. In this case, the first argument, 33, is bound to the parameter
sides, and the second argument, 3, is bound to the parameter dice. This effectively creates two variables,
sides and dice, to be used inside the function. If you just send the function values like this, there must be
the same number of arguments as parameters, and they have to be in the right order, so these are known
as positional arguments. You could substitute the actual values in the function call with variables if you
prefer. Just remember that the function is going to refer to that value by the name of the parameter that
receives it, and the original variable will remain unaffected; only the value gets passed on.

■ Note The variables sides and dice only exist inside the function roll(). If you try to use them outside the

function, you’ll get a name error. See the “Understanding Scope” section later in this chapter.

You can set default values for your parameters in the function definition:

def roll(sides = 6, dice = 1):

This would allow you to call roll() with no arguments, which would return a random number

between 1 and 6, as if you had called roll(6,1).
Another option is to call the function using keyword arguments, where we can specify which

parameter gets which value. Although this involves a little more typing, the benefit is that the order no
longer matters, and it the function call is easier to understand.

>>> roll(dice = 3, sides = 33)
35

Passing an Unknown Number of Values into the Function

Sometimes, you may want your function to accept an unknown number of arguments. To do this, you
precede the name of the parameter with an asterisk (*). This syntax collects all the remaining positional
arguments into a tuple that it assigns to the parameter name following the asterisk.

>>> def collect args(*args):
... print args
...
>>> collect args('one', 'two', 'three')
('one', 'two', 'three')

You can also collect keyword arguments using a double asterisk, and you will get a dictionary.

>>> def collect kwargs(**kwargs):
... print kwargs
...

CHAPTER 6 ■ FUNCTIONS

104

>>> collect kwargs(one = 1, two = 2, three = 3)
{'three': 3, 'two': 2, 'one': 1}

You can use these two concepts together in a single function, but you must be careful to specify

positional parameters before keyword arguments.
Also, parameters that are to gather up any remaining arguments go at the end in the same order:

positional first and then keywords. In big applications, it’s best to avoid mixing keyword and positional
arguments.

>>> def collect args(b, e, a = 432, c = 512, *args, **kwargs):
... print a, b, c, e
... print args
... print kwargs
>>> collect args(486, 648, 432, 512, 576, 682, 768, first = 729, second = 546, third
= 819)
432 486 512 648
(576, 682, 768)
{'second': 546, 'third': 819, 'first': 729}

Note that you can use any name you like after the asterisks (* or **), but the convention is to call

them *args and **kwargs.
You can also use the argument-gathering asterisks in the function call, which basically expands the

tuple or dictionary in line, so that the function sees the tuple or dictionary's contents as normal
positional arguments and keyword arguments.

>>> args = (486, 648, 432, 512, 576, 682, 768)
>>> kwargs = {'first': 729, 'second':546, 'third':819}
>>> collect args(*args, **kwargs)
432 486 512 648
(576, 682, 768)
{'second': 546, 'third': 819, 'first': 729}

Notice that args in the function call does not contain the same values as args in the function. You can use

this technique to pass arguments through one function into another, which can sometimes be useful.

Using docstrings to Document Your Function

Once a function is fully coded and passes the tests you have set for it, it is a good time to edit its
docstring to fit with the expectations of Python’s documentation tools.

Docstrings are expected to follow convention: The first line of a docstring should be a short
description of the function that makes sense by itself and fits on only one line (usually a maximum of 79
characters, including any indentation). The next line should be left blank. After that, the body of the
docstring should contain a description of the function’s parameters, a longer description of the function,
notes about the algorithm used, and an example of how to use the function that includes details of
optional arguments, keyword arguments, and its return values. You might also want to include
information about possible side-effects, exceptions, and restrictions on when the function can be called
(these matters will be covered later in this book). In short, all the information that another programmer
would need to be able to use the function. It is very important to update your docstrings and comments
every time the code changes.

CHAPTER 6 ■ FUNCTIONS

105

Working with Variable Scope
One way of conceptualizing functions is to think of them as black boxes that take in source data, process
it, and pass it back. The code in the main program that sends the source data and receives the result is
known as the calling procedure. It doesn’t need to know what is inside the black box, so long as the
source data and results are clearly identified.

Understanding Scope

When you write a function, you should not have to worry about using names that will clash with names
used in the other parts of the program. This is why we have the concept of scopes.

When any program is run, the interpreter keeps track of all the names that are created and used in
the program. These names are tracked in a table referred to as a symbol table and can be viewed as a
dictionary using the built-in vars() function. The variables created in the main program’s symbol table
are known as global variables, because any part of the program can access these variables. These can be
viewed with the built-in globals() function. You will notice that the result of running vars() with no
arguments inside the main program is the same as running globals(). So far, the script examples in this
book have only used global data.

■ Caution Do not attempt to modify the dictionary returned by vars(), locals(), or globals(). Doing so may

not have the effect you want.

Any variable that is created in a function is stored in a symbol table unique to that function; this
data is known as local data and can be accessed within that function using the locals() function. The
main body of the program (global scope) cannot access the variables set inside the function (local
scope). The function, however, is still able to access names in the main body, that is, globals. Hence, you
have two ways to get at a function to process some data: The correct way is to take that data as a
parameter for the function; the function will process it and then return the result, which will be collected
by the main program. The other way is to let the function directly access and process the global data, but
this second way is discouraged because the function works with only particular variable names and
cannot be reused anywhere else.

Listing 6-1 shows a simple example of this behavior.

Listing 6-1. dave.py

#! /usr/bin/env python

"""Dave the cardboard box.

A simple scope example.
"""
fred = 1
pete = 2
def cardboard box():
 dave = fred + pete
 return vars()

CHAPTER 6 ■ FUNCTIONS

106

print("Outside the box:")
print(vars())
print("Inside the box")
print(cardboard box())

This program gives the following output:

Outside the box:

{'pete': 2, ' builtins ': <module ' builtin ' (built-in)>, ' file ':

'test.py', 'fred': 1, 'cardboard box': <function cardboard box at 0xb7ddf224>,

' name ': ' main ', ' doc ': 'Dave the cardboard box\n\nA simple scope

example.\n'}

Inside the box

{'dave': 3}

You can see that, although fred and pete are global citizens, and dave can borrow freely from them,
dave is the only local and does not exist in the global scope. If I try to access dave outside the
cardboard box function, I get NameError: name 'dave' is not defined.

If dave was defined alongside fred and pete in the outer scope, the opposite problem could occur. If
I tried to access dave from inside the cardboard box(), I would only be able to access the value set inside
the cardboard box(). The global dave value would remain inaccessible. Variables in this situation are
known as shadowed globals and are demonstrated in Listing 6-2. If this is ever a problem, you can
usually get round it by passing the global value to the function under a different name.

Listing 6-2. Dave’s Shadow Side

print "dave\tfred\tpete"
dave = 0
fred = 1
pete = 2
def cardboard box():
 global fred, pete
 dave = fred + pete
 print("Inside the box:")
 print(dave, '\t', fred, '\t', pete)
cardboard box()
print("Outside the box:")
print(dave, '\t', fred, '\t', pete)

dave fred pete

Inside the box:

(3, '\t', 1, '\t', 2)

Outside the box:

(0, '\t', 1, '\t', 2)

CHAPTER 6 ■ FUNCTIONS

107

■ Tip The vars() function can also return a symbol table, for which you need to provide the name of the object

as an argument.

Using the global Statement

Although you can access global variables from inside functions, it is always recommended to declare
that you are using these variables using the global statement (see Listing 6-3). If you ever need to change
a global variable from inside a function, using the global statement is a must.

Listing 6-3. Dave Goes Global

#! /usr/bin/env python

"""Dave the cardboard box

A simple scope example.
"""

fred = 1
pete = 2

def cardboard box():
 global dave
 dave = fred + pete
 return vars()

print("Inside the box")
print(cardboard box())
fred = dave
print("Outside the box:")
print(vars())

And here’s the output:

Inside the box

{}

Outside the box:

{'pete': 2, ' builtins ': <module 'builtins' (built-in)>, ' file ': 'test.py',

'fred': 3, 'dave': 3, 'cardboard box': <function cardboard box at 0xb7c4d86c>,

' name ': ' main ', ' package ': None, ' doc ': 'Dave the cardboard box\n\nA

simple scope example.\n'}

CHAPTER 6 ■ FUNCTIONS

108

Manipulating Lists and Dictionaries

Parameters to a function are passed by value. However, in the case of objects (unlike simple types such
as integers and strings), if you modify the parts of an object, including items in a list or a dictionary, the
changes are reflected outside the function as well. This means that a function can be used to modify a
mutable data type such as a dictionary or list. Technically, such a modification procedure is not a pure
function, as it neither needs a return value or indeed, any input parameters.

In order to avoid strange side-effects, a good general policy is to send and return immutable values from
functions and keep any modification procedures for your mutable types separate. If you send a list or dictionary
to a function, all you are doing is sending it a pointer to the same global instance of that object, just as if
you had written local list = global list. Please review Chapter 5 if you’ve forgotten how this works.

>>> global list = []
>>> def modify list(local list):
... local list.extend(['dave', 'pete', 'fred'])
...
>>> result = modify list(global list)
>>> print(global list)
['dave', 'pete', 'fred']
>>> print(result)
None

Here, the local symbol table for modify list() will contain only local list, as the function doesn’t

create any variables itself and doesn’t return any either.

Refactoring rpcombat.py to Reduce Repetition
Now that you understand global and local scopes, you are ready to start refactoring. Refactoring is the
process of rewriting your application to make it easier to maintain or more efficient, but keeping the
same behavior.

Let’s go back to rpcombat.py and examine the refactoring possibilities. The first bits of code that
stand out are the repeated calls to random.randint(). This particular function gets called several times in
different ways with different values. The trick here is to come up with a function that will work in all
these instances and be flexible enough to work with future changes. As these future changes are as yet
unknown, the only way we can cater for them is to make write a generic piece of functionality that can
replace these individual pieces of code with calls to that function. This is called generalization.

It may be useful to look at the original design to recall what the original intention of the code that
needs refactoring. In this case, I was trying to model the rolling of some dice. The interesting part of the
problem is that the number of dice and the number of sides that the dice have will need to vary
according to the range of values that need to be returned. This gives me a clue what the input
parameters should be, and I decided to call them sides and dice. In return, I want to get a random
integer back that falls within the specified range. Now, I can construct my new function.

def roll(sides, dice = 1):
 """Dice rolling simulator

 sides: Number of sides the die has

 dice: number of dice to be rolled (defaults to 1)

CHAPTER 6 ■ FUNCTIONS

109

 Returns a random number between dice and dice * sides
 weighted towards the average.
 """
 result = 0
 for rolls in range(1,dice):
 result += random.randint(1,sides)
 return result

Remember that this code will not get executed by the program yet, so the next thing to do is to go

through the script and replace all the calls to random.randint() with calls to the new roll() function.

■ Tip The Find or “Search and Replace” functions in your text editor can be very useful in helping to make sure

you don’t miss any lines and keeping your changes consistent.

Once you have made the changes, they need to be tested before anything else happens. In fact, it’s a
good idea to test each case before you move on to the next. Otherwise, you could give yourself headaches
trying to trace any problems that arise from the changes. In order for the new function to pass, the output
must be exactly the same as before. Whatever the new function does should be invisible to the user.

Cutting Out the Waffle

This round of testing may bring new issues to light. In order to help you keep track of what’s going on
with your code, do the minimum necessary to get the new code to pass its tests. If the new code fails, you
should roll back the changes to the point where the code passes again. Also, if using the function doesn’t
work, don’t sweat it: reverse the changes and move on. There is no rule that says you have to abstract
everything into a function.

The processes of placing code into functions (abstraction) and turning code that deals with
specifics into general-purpose code (generalization) can also be applied to your testing procedures, and
this is a good thing to do. All these test procedures will eventually get moved outside the program into a
separate module, so abstraction and generalization are also good preparation. The rule to remember is
to write your tests first and then make sure your existing code still passes before attempting to refactor it.
Although this might seem like a laborious approach, in fact, it speeds up the development of new code
and provides a mechanism for flagging up which part of the code needs fixing next, rather than having to
keep all the details in your head. This has to be a good thing.

Next, I decided to abstract some of the larger repetitive sections of the program. Moving the
character-generation code into its own function was straightforward. This section doesn’t require any
information to work on as it generates it all from scratch, so I could copy the whole section as it stood
and added return profile to the end:

def generate rpc():
 """Role-Playing Character generator

 Takes no arguments
 Returns a new character profile dictionary
 """
 print()
 print("New Character")
 print()

CHAPTER 6 ■ FUNCTIONS

110

 # Create empty profile dictionary
 profile = {'Name':"", 'Desc':"", 'Gender':"", 'Race':"", 'Muscle':0,
 'Brainz':0, 'Speed':0, 'Charm':0, 'life':0,
 'magic':0, 'prot':0, 'gold':0, 'inventory':[]}
 ...
 return profile

I then replaced the copied section of code from the main section with profile = generate rpc().

The main body of the program starts here,
So this is where the flow of execution begins.
Generate characters
while len(players) < max players:
 # Call character generation function.
 profile = generate_rpc()
 ...

The equipment buying section was trickier. Because I’d put a break statement inside the original

while loop, the interpreter complained once I had moved it into a separate function, because the break
statement was now outside the loop. Oops. The fix for this was to turn the break statement into a return
statement that returns the value False. It could just as well return any value that evaluates to False, so
None would also work. This forces the flow of execution to break out of the while loop that contains the
call for this function. The return at the end of the function has to return something; it doesn’t really
matter what it returns, so long as it evaluates to True. I’m only using the return values to control the loop
as the buy equipment() function is actually a dictionary modification procedure, so it doesn’t need to
receive or return any values for any other reason.

Then, I had a small stroke of inspiration: over the course of testing, I had started to get annoyed by
the unnecessary 'Would you like to buy some equipment? ' prompt. So I replaced it with
profile['inventory'] == [], which would evaluate to True if the inventory was empty and False if it
contained anything. The while loop wrapping the function call now looked like this:

 shopping = profile['inventory'] == []
 while shopping:
 shopping = buy equipment()
 print "You own a", " ".join(profile['inventory'])

This change had the desired effect, except that it made it possible to exit the loop without having
bought anything. I replaced the return False statement in the buy equipment() function to return
profile['inventory'] == [], which did the trick.

Next, I started to wonder what would happen if the generated character didn’t have enough money
to buy anything. I made one further alteration to the breakout return: profile['inventory'] == [] and
profile['gold'] > 10. This answers the (theoretical) question of whether to continue shopping with
True if the inventory is empty and enough money is left to buy something; otherwise, it returns False.

def buy equipment():
 """Purchase an item of equipment

 ...

 # Prompt user to make a purchase.
 purchase = input('Please choose an item or type "done" to quit. ')

CHAPTER 6 ■ FUNCTIONS

111

 # If the item is in stock and the player has enough gold, buy it.
 if purchase in stock:
 ...
 elif purchase == 'done' or purchase == "":
 return profile['inventory'] == [] and profile['gold'] > 10
 else:
 print("We don't have", purchase, "in stock.")
 return purchase

That passed its initial testing, so I decided to move on immediately.
I was also getting fed up with having to choose a weapon when the character obviously had only one

weapon in inventory. First, I needed to retrieve a list of what weapons the character has obtained. This
was relatively easy to work out because everything in the inventory apart from the armor can be used as
a weapon, so I constructed a list comprehension to return the members of profile['inventory'] not in
the armour types set. I made the following actions conditional on the length of the list. If the resultant
list only contained one entry, that item is automatically chosen. If there are fewer, the character wields a
fist by default. Otherwise, the user is prompted to choose a weapon as before.

I wondered whether I could use the same list comprehension technique to set up the armor
statistics. So I replaced the following code

 for armour type in armour types:
 if armour type in profile['inventory']:
 profile['armour'] = stock[armour type]

with this

 armour stats = [stock[item] for item in profile['inventory']
 if item in armour types]
 if armour stats:
 profile['armour'] = armour stats[0]
 else:
 profile['armour'] = (0,0,50)

This worked fine, but I don’t know if it really constitutes much of an improvement. It doesn’t fix any

particular problem, but it does reduce one level of indentation. Sections that have lots of nested
indented blocks are always likely to be good candidates for refactoring, and one of the aims of this
exercise is to reduce the levels of indentation in the code. This must, however, be balanced with an
attitude of “if it ain’t broke, don’t fix it.” You can make the coding process much more fun if you stay
focused on making the changes that give the most gratifying results and then move on as soon as those
changes satisfy the design requirements. So again, I won’t dwell on this section.

Keeping Your Code Readable

I also wanted to improve a couple of output messages. I wanted the inventory list to have an and separating
the last two entries rather than a comma, and I wanted to be gender specific when reporting self inflicted actions.

I started by creating an empty structure:

def join with and(sequence):
 """Join up a list with commas and 'and' between last two items
 """

CHAPTER 6 ■ FUNCTIONS

112

 print "join with and(sequence) was called"
 return

Next, I inserted a dummy call in the main body:

handbag = join with and(profile['inventory'])

Having an empty structure in place allows me to test that the basic call works first and then proceed

to design the new function. The design for this one is fairly simple:

1. Pop off the last item of the list.

2. Join the rest of the list with commas.

3. Add the word and followed by the popped-off item.

I don’t want to use list.pop() here for two reasons: if the function was sent a list, this method
would modify it in place and I would lose the last entry as a side-effect of this function. Also, I want this
function to be generalized enough that I could send it a tuple instead, so I used slice notation:

 last item = sequence[-1]
 sentence = ", ".join(sequence[:-1])
 sentence = sentence + " and " + last item

This solution worked fine with lists that had more than one item, but it still added and to single item

lists. So I added an if...else clause so that single item lists would pass through.
Implementing the gender fix looked slightly more complex. Again, I began with an empty function

definition:

def fix gender(gender, phrase):
 """Replace the word 'them' with gender-specific pronoun
 """
 print("fix gender() called with arguments:", gender, phrase)
 return

As the chances of the actual phrase coming up naturally were rather small, I inserted a dummy call

into the buy equipment() function to test my new function:

 test phrase = profile['Name'] + " buys themself some equipment"
 print(fix gender(profile['Gender'],test phrase))

Having worked out the details of how to call the function, filling in the actual code became really

straightforward:

 if gender == 'female':
 sentence = phrase.replace('themself','herself')
 elif gender == 'male':
 sentence = phrase.replace('themself','himself')
 else:
 sentence = phrase.replace('themself','itself')
 return sentence

CHAPTER 6 ■ FUNCTIONS

113

Having ascertained that the function call worked as expected, it was now time to put a call in place
to fix the bothersome output of the missed-shot handler, which follows the velocity calculation in the combat
section. I simply needed to wrap a reference to misses[miss type] up in a call to the new function:

fix gender(players[attacker]['Gender'],misses[miss type])

The best way to test this function was to choose a weak weapon, like a club for both combatants, to

increase the chance of a miss. The results were satisfactory. It would be easy enough to expand the range
of replacements if I needed to at any point in the future, but it wouldn’t tick any boxes to spend any
more time on it at this stage.

The Matrix Refactored

The last issue I wanted to look at was how to make it possible to have more than two combatants. I
wanted to be able to create a list of matches and iterate through that for the combat section. Before
making the big change in functionality, I made a couple of abstractions in the hope of increasing
readability and ease of future development.

Again, I started with a couple of empty declarations.

def calc velocity(attacker, target):
 """Calculate velocity of hit (or miss)
 """
 return velocity

def calc damage(attacker, target, velocity):
 """Calculate the damage of the hit
 """
 return damage

Next, I moved the code into the functions, replacing each of the empty declarations with a call to the

function and testing them one at a time. Once the program ran without errors again, I moved on to deal
with the final alteration of adding more combatants.

For this slightly more complex change, the idea I had was to multiply the list of players by itself to
produce a matrix of attacker and target matches, where the attacker and target are not the same character.

I started by creating a general function to create a tuple of matches out of more or less any sequence.
Notice how I have used empty slice notation in order to copy the given sequence to opponents, this is to
prevent the side-effect of accidentally modifying a global list, if one is sent to the function.

def ziply(sides=None):
 opponents = list(sides[:])
 opponents.reverse()
 matches = [(actor, target) for actor in sides
 for target in opponents
 if target != actor]
 return tuple(matches)

Again, the main work is done using a comprehensive list, and I made the function return the data in

an immutable form, just to be sure the data can’t be accidentally modified by any other process.
Next comes the implementation of my new function. I can replace this messy old code

CHAPTER 6 ■ FUNCTIONS

114

 for attacker, player in enumerate(players):
 target = int(not bool(attacker))

with

 matches = ziply(range(0,len(players)))
 for attacker, target in matches:

This retrieves a matrix of list indices from the ziply() function, which is then iterated through for

each round of combat. Once this change has been tested and passed with the two-contestant setup, then
and only then is it time to find out what happens if I increase the max players count. In theory, that is all
I should have to do now. I shouldn’t have to go searching through the code to replace random variables,
because I sensibly put this declaration clearly in the preferences section at the beginning of the code
page. Of course, it may not be quite that simple. I have already been staring at one line that is clearly
expecting only two players. I increased the value to three and continued with the testing.

The new method worked surprisingly well, but there was an issue with the conflict resolution, as I
expected. The combat ends when the first character dies, with that character’s attacker declared as the
winner. I now need to rewrite the code so that the combat continues until there is only one player left
standing.

The most logical and robust way of doing this seemed to be to remove the dead character from the
player list using del players[target] and make the while loop dependent on that list having more than
one entry using while len(players) > 1:. This is much cleaner.

The program isn’t perfect by any means, but all I am going to do to finish off this stage of
development is add a prompt right at the start to set the number of players. The program satisfies the
design requirements and runs cleanly, without errors, so I’m going to push version 0.2 out of the door.

Before releasing version 0.2 into the wild, some matters of administration must be attended to.
Quite a few of changes have been made since the last version, so I need to go through all the docstrings
and comments and make sure they reflect the current state of affairs. I could also create a CHANGELOG file
to contain a brief explanation of the changes along with a note of the version number that the changes
apply to and a date for the changes (a date stamp). Once the programming project starts generating
additional files, it may be sensible to put them all in a separate directory named after the program, or
you may find it useful to group all your projects together in a common Projects directory in your home
folder.

The full code for rpcombat-0.2.py now is shown in Listing 6-4.

Listing 6-4. rpcombat.py Refactored

#! /usr/bin/env python

"""
rpcombat.py
Purpose: Simple Role-Playing Combat Game.
Target System: GNU/Linux
Interface: Command-line
Functional Requirements: The user must be able to generate more than one
 character profile, equip those characters with suitable weapons,
 and model hand-to-hand combat between characters.
Testing methods: trace table and play testing.
Test values: (Ez, Tall, Pixie, female), (Inkon, Small, Troll, male)
Expected results: All statistics should be integers in the (1-99) range.

CHAPTER 6 ■ FUNCTIONS

115

 Apart from that, this script needs play-testing.
Limitations: Too many to mention.
"""
version = 0.2
maintainer = "maintainer@website.com"
status = "Prototype"

Import modules

import random

set up constant data.

stock = {'shield':(15,25,50),
 'sword':(60,60,50),
 'dagger':(25,40,60),
 'halberd':(80,75,40),
 'club':(15,40,40),
 'flail':(50,60,55),
 'hammer':(99,100,40),
 'cuirass':(30,50,20),
 'armour':(101,100,0),
 'lantern':(10,5,30),
 'pole':(10,5,50),
 'rope':(10,5,70)}
armour types = set(['shield','cuirass','armour'])
hits = ('hits','bashes','smites','whacks',
 'shreds','mutilates','lacerates','annihilates')
misses = ('misses', 'nearly hits', 'fails to connect with',
 'swipes wildly at', 'flails ineffectually at',
 'gets nowhere near', 'nearly decapitates themself instead of',
 'hits themself on the foot, to the amusement of')
damage report = ('small insult','flesh wound','deep slash','ragged gash',
 'savage laceration','fractured rib-cage',
 'smashed-up face','split skull')
life changing = ('a scar.','bruising.','serious blood-loss.',
 'total debilitation.', 'chronic concussion.','a severed limb.',
 'multiple fractures.','an amputated head.')

Preferences
Set to 'True' to trace variables.
trace = False
reply = input('How many players?: ') or 2
max players = int(reply)

This is a global variable.
players = []

def roll(sides, dice = 1):
 """Dice rolling simulator

 sides: Number of sides the die has

CHAPTER 6 ■ FUNCTIONS

116

 dice: number of dice to be rolled (defaults to 1)
 Returns a random number between dice and dice * sides
 weighted towards the average.
 """
 result = 0
 for rolls in range(1,dice):
 result += random.randint(1,sides)
 return result

def ziply(seq=None):
 """Create a matrix of matches from a sequence

 Takes one argument seq, which should be a sequence of length > 1
 Returns a tuple of tuples - matches.
 """
 opponents = list(seq[:])
 opponents.reverse()
 matches = [(actor, target) for actor in seq
 for target in opponents
 if target != actor]
 return tuple(matches)
def join with and(sequence):
 """Join up a list with commas and 'and' between last two items

 Takes a sequence and returns a sentence.
 """
 if len(sequence) > 1:
 last item = sequence[-1]
 sentence = ", ".join(sequence[:-1])
 sentence = sentence + " and " + last item
 elif sequence < 1:
 sentence = "whole lot of nothing"
 else:
 sentence = sequence[0]
 return sentence

def fix gender(gender, phrase):
 """Replace the word 'them' with gender-specific pronoun

 Takes two arguments:
 gender - a string which can be 'male', 'female' or something else.
 phrase - the string to be modified.
 Returns a string with non-gender specific pronouns replaced by
 gender specific ones.
 """
 if gender == 'female':
 sentence = phrase.replace('themself','herself')
 elif gender == 'male':
 sentence = phrase.replace('themself','himself')
 else:
 sentence = phrase.replace('themself','itself')

CHAPTER 6 ■ FUNCTIONS

117

 return sentence

def generate rpc():
 """Role-Playing Character generator

 Takes no arguments
 Returns a new character profile dictionary
 """
 print()
 print("New Character")
 print()
 # Create empty profile dictionary
 profile = {'Name':"", 'Desc':"", 'Gender':"", 'Race':"", 'Muscle':0,
 'Brainz':0, 'Speed':0, 'Charm':0, 'life':0,
 'magic':0, 'prot':0, 'gold':0, 'inventory':[]}

 # Prompt user for user-defined information (Name, Desc, Gender, Race)
 name = input('What is your name? ')
 desc = input('Describe yourself: ')
 gender = input('What Gender are you? (male/female/unsure): ')
 race = input('What Race are you? - (Pixie/Vulcan/Gelfling/Troll): ')
 # Validate user input
 profile['Name'] = name.capitalize()
 profile['Desc'] = desc.capitalize()
 gender = gender.lower()
 if gender.startswith('f'):
 profile['Gender'] = 'female'
 elif gender.startswith('m'):
 profile['Gender'] = 'male'
 else:
 profile['Gender'] = 'neuter'
 race = race.capitalize()
 if race.startswith('P'):
 profile['Race'] = 'Pixie'
 elif race.startswith('V'):
 profile['Race'] = 'Vulcan'
 elif race.startswith('G'):
 profile['Race'] = 'Gelfling'
 elif race.startswith('T'):
 profile['Race'] = 'Troll'
 else:
 profile['Race'] = 'Goblin'

 # Generate stats ('Muscle', 'Brainz', 'Speed', 'Charm')
 profile['Muscle'] = roll(33,3)
 profile['Brainz'] = roll(33,3)
 profile['Speed'] = roll(33,3)
 profile['Charm'] = roll(33,3)

 # Work out combat stats (life, magic, prot, gold)
 life = (profile['Muscle'] + (profile['Speed']/2) + roll(49,1))/2
 magic = (profile['Brainz'] + (profile['Charm']/2) + roll(49,1))/2

CHAPTER 6 ■ FUNCTIONS

118

 prot = (profile['Speed'] + (profile['Brainz']/2) + roll(49,1))/2
 gold = roll(40,4)

 # Validate stats
 if 0 < life < 100:
 profile['life'] = life
 else:
 profile['life'] = roll(33,3)
 if 0 < magic < 100:
 profile['magic'] = magic
 else:
 profile['magic'] = roll(33,3)
 if 0 < prot < 100:
 profile['prot'] = prot
 else:
 profile['prot'] = roll(33,3)
 profile['gold'] = gold

 # Output the character sheet
 fancy line = "<~~==|#|==~~++**\@/**++~~==|#|==~~>"
 print()
 print(fancy line)
 print("\t", profile['Name'])
 print("\t", profile['Race'], profile['Gender'])
 print("\t", profile['Desc'])
 print(fancy line)
 print()
 print("\tMuscle: ", profile['Muscle'], "\tlife: ", profile['life'])
 print("\tBrainz: ", profile['Brainz'], "\tmagic: ", profile['magic'])
 print("\tSpeed: ", profile['Speed'], "\tprotection: ", profile['prot'])
 print("\tCharm: ", profile['Charm'], "\tgold: ", profile['gold'])
 print()
 return profile

def buy equipment():
 """Purchase an item of equipment

 Takes no arguments.
 This function modifies the current character profile dictionary in place.
 It returns a value which evaluates as either True or False
 intended to control the shopping loop.
 """
 # Display shop stock list with prices.
 print()
 print("<==|#|==\SHOP/==|#|==>")
 for item in stock:
 print("\t", item, stock[item][0])
 print("<==|#|==\@@@@/==|#|==>")
 print()
 print("You have", profile['gold'], "gold.")

CHAPTER 6 ■ FUNCTIONS

119

 # Prompt user to make a purchase.
 purchase = input('Please choose an item or type "done" to quit. ')
 # If the item is in stock and the player has enough gold, buy it.
 if purchase in stock:
 if stock[purchase][0] <= profile['gold']:
 test phrase = profile['Name'] + " buys themself some equipment"
 print(fix gender(profile['Gender'],test phrase))
 print("You buy a", purchase, "for",stock[purchase][0], \
 "gold pieces.")
 profile['gold'] -= stock[purchase][0]
 profile['inventory'].append(purchase)
 print("You have a", join with and(profile['inventory']), \
 "in your bag.")
 print("You have", profile['gold'], "left.")
 else:
 print("You don't have enough gold to buy that.")
 elif purchase == 'done' or purchase == "":
 return profile['inventory'] == [] and profile['gold'] > 10
 else:
 print("We don't have", purchase, "in stock.")
 return purchase

def calc velocity(attacker, target):
 """Calculate velocity of hit (or miss)

 Takes two arguments:
 attacker and target are integer pointers to the players list
 This function looks up values from the players list
 and returns a weighted semi-random integer
 representing the velocity of the strike.
 """
 attack speed = players[attacker]['Speed']
 weapon speed = players[attacker]['weapon'][2]
 attack chance = roll(players[attacker]['Brainz'])
 attack velocity = attack speed + weapon speed + attack chance
 target prot = players[target]['prot']
 armour speed = players[target]['armour'][2]
 target velocity = target prot + armour speed
 velocity = (attack velocity - target velocity) / 2
 return velocity

def calc damage(attacker, target, velocity):
 """Calculate the damage of the hit

 Takes three arguments:
 attacker and target are integer pointers to the players list
 velocity is an integer representing the velocity of the strike.
 Returns a tuple of two integers - damage and potential damage
 """
 attack strength = players[attacker]['Muscle']
 weapon damage = players[attacker]['weapon'][1]
 attack damage = attack strength + weapon damage + velocity

CHAPTER 6 ■ FUNCTIONS

120

 target strength = players[target]['Muscle']
 armour strength = players[target]['armour'][1]
 target chance = roll(players[target]['Brainz'])
 target defence = target strength + armour strength + target chance
 potential damage = (attack damage - target defence)
 if potential damage < 1:
 potential damage = 2
 damage = random.randint(1,potential damage)
 return damage, potential damage

The main body of the program starts here,
So this is where the flow of execution begins.
Generate characters
while len(players) < max players:
 # Call character generation function.
 profile = generate rpc()
 # Go shopping if the inventory is empty
 shopping = profile['inventory'] == []
 while shopping:
 shopping = buy equipment()
 handbag = join with and(profile['inventory'])
 print("You own a", handbag)

 # Choose a weapon
 print(profile['Name'] + ", prepare for mortal combat!!!")
 # See if player has any weapons
 weapon stats = [stock[item] for item in profile['inventory']
 if item not in armour types]
 if len(weapon stats) == 1:
 profile['weapon'] = weapon stats[0]
 elif len(weapon stats) < 1:
 profile['weapon'] = (0,20,50)
 else:
 weapon = input("And choose your weapon: ")
 # The weapon must be in player's inventory.
 # Default to fist if weapon not available.
 weapon = weapon.lower()
 if weapon in profile['inventory']:
 profile['weapon'] = stock[weapon]
 else:
 profile['weapon'] = (0,20,50)
 # See if player has any armor
 armour stats = [stock[item] for item in profile['inventory']
 if item in armour types]
 if armour stats:
 profile['armour'] = armour stats[0]
 else:
 profile['armour'] = (0,0,50)

CHAPTER 6 ■ FUNCTIONS

121

 print(profile['Name'], "is now ready for battle. ")
 # Add new player to list of players
 players.append(profile)

Combat

print()
print("Then let the combat begin!")
print()

vel max = 23
vel min = 1
dam max = 23

Loop while more than one player is still alive
while len(players) > 1:
 # create list of matches using ziply function
 matches = ziply(range(0,len(players)))
 if trace:
 print(matches)
 for attacker, target in matches:
 life left = players[target]['life']

 # Calculate velocity of blow
 velocity = calc velocity(attacker, target)
 if trace:
 print("\tvel\thit\tdam\tchange")
 print("\t", velocity)
 if velocity > 0:
 # Print sutable Hit message
 if velocity > vel max:
 vel max = velocity
 hit type = int(7 * velocity / vel max)
 if hit type > 7:
 hit type = 7
 if trace:
 print("\t\tHit#", hit type)
 print(players[attacker]['Name'], hits[hit type], \
 players[target]['Name'], end="")
 else:
 # Print suitable Miss message
 if velocity < vel min:
 vel min = velocity
 miss type = int(velocity / vel max)
 if miss type > 7:
 miss type = 7
 if trace:
 print("\t\tMiss#", miss type)
 print(players[attacker]['Name'], \
 fix gender(players[attacker]['Gender'],misses[miss type]), \
 players[target]['Name'])
 # End player turn
 continue

CHAPTER 6 ■ FUNCTIONS

122

 # Calculate damage inflicted by blow
 damage, potential damage = calc damage(attacker, target, velocity)
 if trace:
 print()
 print("\t\tDamage:", damage, potential damage)
 if damage > dam max:
 dam max = damage
 # Print damage report
 damage type = int(7 * damage/dam max)
 if damage type > 7:
 damage type = 7
 if trace:
 print("\t\t\tDamage#", damage type)
 change type = int(5 * damage/life left)
 if change type > 7:
 change type = 7
 if trace:
 print("\t\t\t\tChange#", change type)
 print("inflicting a", damage report[damage type], \
 "and", life changing[change type])

 # Inflict damage on target.
 players[target]['life'] -= damage
 # Check whether target is still alive or not.
 if players[target]['life'] <= 0:
 # Print loser
 print()
 print(players[target]['Name'], "collapses in a pool of blood")
 # Remove loser from players list
 del players[target]
 print()
 # End this round of combat immediately.
 break

if trace:
 print()
 print("\t\tmax damage | velocity", dam max, vel max, ":: min", vel min)
 print()

Print winner
print(players[0]['Name'], "wins the fight.")

Any further changes that I can think of right now get noted in a new TODO file in the Projects
subdirectory. It’s really sensible to keep sane hours and know when to stop.

It will probably be obvious from here that you could continue the process of abstraction until the only
line left in the main body is something like game() and everything else is contained within a function.

There are some valid reasons why you might want to do reduce your code to only one line, and it
could be said that the next level of evolution in programming style—object-oriented programming—
takes it even further. Before expanding into those dizzy horizons, further refinements that can be made
at this level. Function-oriented programming is a major change in approach, and there are many tips,
tricks, and potential pitfalls to be aware of.

CHAPTER 6 ■ FUNCTIONS

123

In the next chapter, I will pull together the threads of your existing knowledge with such diverse topics
as formatting strings and pattern-matching, debugging, project organization, style guides, and dealing with
version changes. I will also be showing you how to make your programs executable as stand-alone applications.

If you want to examine your code further, remember you can start Python in interactive mode from
the project directory and import the program as a module:

>>> import rpcombat

You will have to play through the game once. Then you can use the following command

>>> help(rpcombat)

to check out what happens to all those docstrings. You could also use this command for a
comprehensive overview of the program:

>>> vars(rpcombat)

Jargon Busting
This chapter’s jargon is defined here:

• Abstraction: When you introduce abstraction, you move a number of program
statements into a function, thereby reducing the level of detail and making the
main program easier to read.

• Calling procedure: A block of code containing a function call is a calling procedure.

• Class: A class is a user-defined compound type.

• Date stamp: This string of numbers and digits represents the date of an action or
the present moment.

• Exceptions: An exception is an error that occurs when a program is run.

• Formal parameters: These are the names used inside a function to refer to the
values passed as arguments.

• Function call: This statement executes (calls) a function. (Recall from Chapter 2
that a function is a named block of code that performs a task; accepts zero, one, or
more arguments; and returns a value to the calling procedure when it is
complete.) A function call consists of the name of the function followed by a list of
arguments enclosed in parentheses.

• Function definition: This statement creates a new function, specifying its name, its
parameters, and the statements it executes.

• Generalization: When you generalize code, you replace a piece of code that is only
useful in specific circumstances with something that can be used more generally.

• Global: These are the variables defined in the main program.

• Keyword arguments: These values are passed to a function by name.

CHAPTER 6 ■ FUNCTIONS

124

• Lambda expression: A lambda expression is a disposable, one-line function
without a name.

• Local: This variable is defined inside a function and can be used only inside its function.

• Modification procedure: This function changes its arguments inside the function
body. Only mutable types can be changed by modifiers.

• Modularization: To modularize a program, you split it into several files or
subprograms.

• Object: An object is a bundle of attributes (variables) and related methods
(functions). Software objects are often used to model real-world objects you find
in everyday life. Almost all entities in Python are objects or parts of objects, but the
term usually refers specifically to an instance of a class.

• Pointer: This variable name doesn’t hold any information itself but points to
another variable.

• Positional arguments: These are values passed to a function in order.

• Pure function: A pure function has no side-effects and can make changes to the
calling program only through its return values.

• Refactoring: When you refactor, you break a process down into smaller
procedures.

• Result: This is the value that comes back after a function has run.

• Scope: A scope is the area where a variable is available to your code, such as global
scope where a variable is available to all your code or function scope, where a
variable is available to just the function.

• Side-effects: A side-effect is a change to a value caused during the execution of a
function that isn’t caused by reading the return value of the function.

• Source data: A function performs its operations on source data.

• Symbol table: The symbol table is a container for all the names created during the
course of a procedure’s execution.

• Token: This part of a program is treated as a separate unit by the compiler. It’s
analogous to a word in a human language, such as English.

Summary
In this chapter, I covered how to abstract and generalize your code into functions. Functions allow you
to make your code more readable, maintainable, and efficient. And it’s not just for your main
application; your test code can also benefit from this.

During our discussion, we covered passing data to functions and working with variable scope.
Variable scope allows us to keep information where it belongs, whether it belongs in the global scope of
an application or in a function only.

All this means you can now refactor your early Python programs to make them easier to work with
and more elegant. To prove this, we refactored one of our sample applications.

C H A P T E R 7

■ ■ ■

125

Working with Text

It’s likely that you’ll be working with text an awful lot in your Python programs, because that’s mainly
how your program will interact with its users, and a lot of the data it will work with will be in the form of
text. There are numerous features of Python that help you work with text, and I’ll cover many of them in
this chapter.

Specifically, I’ll cover splitting and joining strings, which are the most basic string operations you’ll
carry out. That’ll lead me onto formatting, editing, and searching for strings—all vital for a lot of Python
programs. Finding strings is often linked to regular expressions, and Python provides us with a wide
array of regular expression functionality, much of which I’ll cover. Finally, I’ll explain how to work with
the files on your file system, another common programming task.

Strings and Things
Most commands in Python 3 will work in exactly the same way as in Python 2. There are, however,
some important changes. Probably the most fundamental change is the rationalization of the string
data type. In previous versions of Python, strings were coded as a sequence of single bytes, using
the limited American Standard Code for Information Interchange (ASCII) character set to represent
text, this 7-bit encoding allows for up to 128 characters including uppercase and lowercase letters,
numbers, punctuation, and 33 invisible control characters. While ASCII is OK for representing languages
that use Latin script, such as English and most European languages, it is completely useless when it
comes to representing the 2,000 basic ideograms of the Chinese language. To deal with these sorts of
problems, the Unicode standard was created to cover all written languages, so Python 3 has brought
itself up-to-date by switching to Unicode as its default text encoding. The str type is what used to be the
unicode type, and a new type, byte, has been introduced to represent raw text strings and binary data.
Previous versions of Python went through all sorts of contortions in order to deal with text encoding;
fortunately, all you really need to know is that the str type in Python 3 supports international characters
by default, so you don’t have to do anything special if you want to write a string like this:

>>> s = "«a¹» Zøë, «a²» Déjà Vù, «a³» ½µ"

CHAPTER 7 ■ WORKING WITH TEXT

126

■ Tip You can use international characters in Python 2, but you would have to write this as u"«a¹» Zøë, «a²»

Déjà Vù, «a³» ½µ", prefacing the string with u to indicate that you wanted to force Unicode encoding. The main

difference is in Python’s internal representation of the string. In Python 3, the string stays the way you typed it;

Python 2 has to turn everything into 7-bit ASCII representation to store it, which involves lots of backslashes:

'\xc2\xaba\xc2\xb9\xc2\xbb Z\xc3\xb8\xc3\xab, \xc2\xaba\xc2\xb2\xc2\xbb D\xc3\xa9j\xc3\xa0

V\xc3\xb9, \xc2\xaba\xc2\xb3\xc2\xbb \xc2\xbd\xc2\xb5'. The unicode version looks like this:

u'\xaba\xb9\xbb Z\xf8\xeb, \xaba\xb2\xbb D\xe9j\xe0 V\xf9, \xaba\xb3\xbb \xbd\xb5'. Fortunately,

both strings print correctly as "«a¹» Zøë, «a²» Déjà Vù, «a³» ½µ".

To go along with the string type changes, the Python 2.x print statement has been replaced with a
built-in print() function, which takes keyword arguments to replace most of the special syntax of the
former print statement. To balance this, the old raw input() is replaced by input(), and you have to use
eval(input()) to get the old functionality of input(). I’ll explain how eval() works in Chapter 8.

Splitting Strings

As strings are immutable, you will often want to split them up into lists in order to manipulate their
contents; my string.split([sep[, maxsplit]]) returns a list of the words in string, using sep as the
separator or delimiter string. Quick reminder—a delimiter is a character or string of characters that are
used to separate words or units of data. The list will be split up to maxsplit times, so you’ll end up with a
list that’s maxsplit + 1 items long. If no separator is specified, the string will be split up by whitespace
characters as if they are words.

>>> sent4 = "A much, much longer sentence"
>>> sent4.rstrip('sentence').split()
['A', 'much,', 'much', 'longer']

You can do this from the end of the string too using string.rsplit([sep[, maxsplit]]).

>>> sent4.rsplit(' ',2)
['A much, much', 'longer', 'sentence']

Python has an alternative string splitting method, string.partition(sep), which returns a tuple:

(head, sep, tail). The method searches for the separator (sep) inside the string and returns the part
before it, the separator itself, and the part after it as separate items. If the separator is not found, the
method will return the original string and two empty strings.

>>> sent3 = "eXamPLe tEXt"
>>> sent3.partition(' ')
('eXamPLe', ' ', 'tEXt')
>>> sent3.partition('-')
('eXamPLe tEXt', '', '')

CHAPTER 7 ■ WORKING WITH TEXT

127

You can do the same thing starting from the end of the string with string.rpartition(sep).

>>> s.rpartition("«a")
('«a¹» Zøë, «a²» Déjà Vù, ', '«a', '³» ½µ')

Joining Strings, or Avoiding Concatenation

As I mentioned when I first introduced the string data type, using the + operator to join strings together
is very inefficient; combined with lots of calls to the print() function (or statement in Python 2), using
the + operator can potentially slow your program’s execution to a crawl. Python isn’t that slow. Often, it
works out better to manipulate a list of words and then use string.join(sequence) to return a string that
is a concatenation of the strings in the sequence. This method is the opposite of string.split(): the
data you want to manipulate is in the sequence of the argument, and the string that you call the method
on is just the string of characters you want to use to separate the items. This could be a space or an
empty string.

>>> s0 = "example"

>>> s1 = "text"

>>> sep = " "

>>> sep.join([s0, s1])

'example text'

Remember that string.join() is expecting a sequence of strings as an argument.

>>> sep = " - "

>>> sep.join('potrzebie')

'p - o - t - r - z - e - b - i - e'

You may need to convert other data types into strings and join up any sublists first, so that you

present the outermost join() with a list of strings.

>>> a = 1

>>> b = 2.37

>>> sep.join(('skidoo',['a','b']))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: sequence item 1: expected str instance, list found

This problem is easily fixable with a little ingenuity.

>>> sep.join(('skidoo', sep.join([str(a),str(b)])))

'skidoo - 1 - 2.37'

This is where you need to start keeping an eye out for nested parentheses. The preceding code has

an awful lot of brackets in it. You could always evaluate each nested expression separately to make the
code easier to read. Readable code is a good thing.

CHAPTER 7 ■ WORKING WITH TEXT

128

>>> ab = sep.join([str(a),str(b)])

>>> sep.join(['skidoo', ab])

'skidoo - 1 - 2.37'

You still need to make sure that each opening bracket is matched by a closing bracket and that the

closing brackets for the inner nested expressions come before the outermost closing brackets. Leaving
out closing brackets can lead to a syntax error being reported on the next line, because the interpreter is
still waiting for closure of the previous statement.

Changing Case

User input often contains unexpected capital letters. Python has a variety of ways that you can neaten up
the use of capital letters: string.capitalize() returns a string with the first character capitalized and all
the rest in lower case.

>>> s3 = "eXamPLe tEXt"

>>> s3.capitalize()

'Example text'

If you want to capitalize every single word in the string, leaving everything else as lowercase, use

string.title().

>>> s3.title()

'Example Text'

The one little gotcha with this is that every letter following some space or punctuation gets

capitalized.

>>> s5 = "it's thirteen o'clock"

>>> s5.title()

"It'S Thirteen O'Clock"

You can convert the whole string to uppercase using string.upper().

>>> s3.upper()

'EXAMPLE TEXT'

Or lowercase using string.lower().

>>> s3.lower()

'example text'

It is very useful to convert strings to lowercase for many internal operations like storing and

searching. I’d recommend lowercasing most user input as soon as it is received, unless the use of capital
letters conveys important information. You can always put the capitals back using string.capitalize()
or string.title() when you want to print out the string.

You can also get funky with string.swapcase(). This returns a copy of string with the uppercase
characters converted to lowercase and vice versa.

CHAPTER 7 ■ WORKING WITH TEXT

129

>>> s3.swapcase()

'ExAMplE TexT'

I’m not quite sure why you’d want to do this, but it sure is great to know you have the power should

you choose to wield it!

Simple Methods of Formatting

You have various choices for controlling the way strings are printed out. Basic formatting is provided
through methods such as mystring.center(width[, fillchar]), which returns a string centered in a
string of width characters long. Padding is done using the specified fill character (the default is a space).
So, the following returns a 37-character string, with mystring in the middle and * as padding:

>>> x = s3.lower()
>>> x.center(37,'*')
'*************example text************'

There are related methods to align text within a string. To align text on the left, use

string.ljust(width[, fillchar]).

>>> x.ljust(37, '=')
'example text========================='

And to align text on the right, use string.rjust(width[, fillchar]).

>>> x.rjust(37, '+')
'+++++++++++++++++++++++++example text'

Or you can pad the string out with zeros to the left to fill a field of the specified width using

string.zfill(width).

>>> s3.zfill(37)

'0000000000000000000000000eXamPLe tEXt'

Finally, string.expandtabs([tabsize]) can be used to expand all the tab characters in a string using

spaces. If tabsize is not given, a tab size of 8 characters will be used by default.

>>> s2 = "one\ttwo\tthree"
>>> s2.expandtabs()
'one two three'

Advanced Formatting

One of the nice new features of Python 3 is that strings have a new method string.format(*args, **kwargs)
that allows you to drop the variables given as an argument into a specially prepared string, rather than
having to go through the complicated process of joining lots of individual strings up. The string is prepared
by putting references to the format arguments in curly braces at the point they are to be inserted in the

CHAPTER 7 ■ WORKING WITH TEXT

130

string. These replacement field names can be numbers (positional arguments, i.e., *args) or names (keyword
arguments, i.e., **kwargs). The format is similar to the one you would use to pass variables into a function.

>>> mystring = "value {0} equals {1}: {message}"

>>> mystring.format('x','23', message = '[ok]')

'value x equals 23: [ok]'

The replacement field names inside the curly braces can also include attributes and element

indexes such as {someClass.data} or {some list[i]}. This field name may be followed by an optional
conversion field, which is preceded by an exclamation point (!) and can be modified using format
specifiers, which are preceded with a colon (:).

The conversion field is used to force an item to be represented as a particular type, regardless of its
own type’s formatting rules. This can either be !s, which forces a string representation through str() or
!r, which calls repr() on the value.

>>> mystring = "value {0!s} equals {1!r}: {message!s}"

>>> mystring.format('z','37',message = '[well, you know ...]')

"value z equals '37': [well, you know ...]"

Format Specification

Format specification is done using its own built-in minilanguage. The format specification string is a
sequence of characters, each with its own special meaning.

The format specifier field contains a specification of how the value should be presented, that is,
padding, alignment, sign, field width, decimal precision, and type. All these items are optional and
follow the colon.

The first two characters after the colon work together. The first character may be any character to be
used as a fill character, so long as it is followed by one of the alignment operators shown in Table 7-1.

Table 7-1. Alignment Format Specifiers

Option Description

< Align left (default).

> Align right.

^ Center.

= Place the padding after the sign (if any) but before the digits. This alignment option is only
valid for numeric types.

Here’s an example that formats three strings. The first string (0!s) is aligned to the center (^), given a

minimum field width of 3, and padded with *, which fill any whitespace. The second string (1!s) is
aligned to the right (>), given a minimum field width of 4, and padded with 0. The third string (message!s)
is aligned to the left (<), given a minimum field width of 42, and padded with !.

CHAPTER 7 ■ WORKING WITH TEXT

131

>>> astring = "Value {0!s:*^3} equals {1!s:0>4}: {message!s:!<42}"

>>> astring.format('y', 42, message = "[not bad ...]")

'Value *y* equals 0042: [not bad ...]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'

■ Note Unless a minimum field width is defined, the field width will always be the same size as the data to fill it,

so the alignment option has no meaning in this case.

Next, the sign option is only valid for number types and can be one of the values in Table 7-2.

Table 7-2. Sign Format Specifiers

Option Description

+ A sign should be used for both positive as well as negative numbers.

- A sign should be used only for negative numbers (default).

Space A leading space should be used on positive numbers and a minus sign on negative
numbers.

Here’s an example that formats a number and uses precision as well. The part we are interested in is

{1:0>+4.3}. This right-aligns the second input with 0 as padding and states that we want to use a sign for
all numbers. The field is to be a minimum of 4 wide, and we want to have three decimal places (.3):

>>> msgs = ['[soso ...]', '[ok]', '[you know ...]', '[terrible]',

'[do I know you?]']

>>> numbers = ['23.5', 42, '37', '-1.234567', -98754.320999999996]

>>> letters = ['v', 'w', 'x', 'y', 'z']

>>> string = "Value *{0!s: ^3}* equals {1:0>+4.3}\t{message!s::<20}"

>>> for i in range(0,5):

... print(string.format(letters[i],float(numbers[i]),message = msgs[i]))

...

Value * v * equals +23.5 [ok]::::::::::::::::

Value * w * equals +42.0 [well, you know ...]

Value * x * equals +37.0 [not bad ...]:::::::

Value * y * equals -1.23[actually, terrible]

Value * z * equals -9.88e+04 [do I know you?]::::

The next optional character, which you have already seen in use in the preceding example, is a

decimal integer to specify the minimum field width in characters. If this is not specified, the field width
will be determined by the content. Zero padding can be enabled by starting the width value with a 0.

CHAPTER 7 ■ WORKING WITH TEXT

132

This number may be followed by another decimal integer after a period (.). This is the number of
decimal places to which a floating point number should be rounded.

The final character determines how numerical data should be presented. These characters will work
on integers. You should not specify a precision value if you expect an integer.

Table 7-3. Integer Format Specifiers

Option Description

b The binary option outputs the number in base 2.

c The character option converts the integer to the corresponding Unicode character before
printing.

d The decimal integer option outputs the number in base 10.

o The octal format option outputs the number in base 8.

x This hexadecimal format option outputs the number in base 16 using lowercase letters for
the digits above 9.

X This hexadecimal format option outputs the number in base 16, using uppercase letters for
the digits above 9.

n The number option is the same as d, except that it uses the current locale setting to insert
the appropriate number separator characters.

None This option is the same as d.

Here’s an example that formats the same number in different ways:

>>> "{0:>8b}".format(numbers[1])

' 101010'

>>> "{0:>8c}".format(numbers[1])

' *'

>>> "{0:>8d}".format(numbers[1])

' 42'

There are some additional type characters to represent floating point numbers and exponents.

CHAPTER 7 ■ WORKING WITH TEXT

133

Table 7-4. Float Format Specifiers

Option Description

e This exponent notation specifier prints the number in scientific notation using the letter e
to indicate the exponent.

E This exponent notation specifier is the same as e except it uses an uppercase E as the
separator character.

f This fixed point specifier displays the number as a fixed-point number.

F This specifier is the same as f.

g This general format specifier prints the number as a fixed-point number unless the
number is too large, in which case it switches to e exponent notation.

G This general format specifier is the same as g, except it switches to E if the number gets too
large.

n The number specifier works the same as g, except that it uses the current locale setting to
insert the appropriate number separator characters.

% The percentage specifier multiplies the number by 100 and displays in fixed f format,
followed by a percent sign.

None This specifier is the same as g.

Here’s an example that formats the same number as an exponent, a floating point, and a

percentage:

>>> "{0:>8E}".format(numbers[4])

'-9.875432E+04'

>>> "{0:>8f}".format(numbers[4])

'-98754.321000'

>>> "{0:>8%}".format(numbers[4])

'-9875432.100000%'

A format specifier field can also include nested replacement fields within it. Each nested

replacement field can contain only a field name; conversion flags and format specifications are not
allowed. The replacement fields within the format specifier are substituted before the format specifier
string is interpreted. This allows the formatting of a value to be dynamically specified.

CHAPTER 7 ■ WORKING WITH TEXT

134

Editing Strings

Strings, as you have probably gathered by now, can’t be edited in place, but they do have some useful
methods that will return a new edited version of the string.

You often need to clean up the beginning and end of the string to remove extraneous whitespace or
punctuation, especially if you’re trying to compare some user input with a stored value. This is done
with the string.strip([chars]) method. This returns a copy of the string with chars removed from the
beginning and the end if the sequence is found. If no arguments are given, string.strip() will remove
whitespace characters by default.

>>> sent4 = "A much, much longer sentence"

>>> sent4.strip('A')

' much, much longer sentence'

You can choose to only strip characters from the start of the string using string.lstrip([chars]):

>>> sent3.lstrip('e')

'XamPLe tEXt'

or from the end of the string with string.rstrip([chars]).

>>> sent4.rstrip('sentence')

'A much, much longer '

You can replace all occurrences of one substring with another using string.replace(old, new[,

count]). The optional argument count determines how many occurrences of the substring are replaced.

>>> sent3.replace('EX', 'wis')

'eXamPLe twist'

This last method is extremely useful.

Finding Strings

Sometimes, you might want to know whether a string contains a word or sequence of characters within
it, this is called a substring. You can test for simple membership using the in operator.

>>> "bop" in "bopshoowopshoowop"

True

However, it may be important to know where in the string this substring occurs. For this, you need

string.find(sub[, start[, end]]). This returns an index number, which is the number of characters
into the string where the substring is found (starting at zero, of course). Note that find() returns the
position of the first substring it finds or -1 if it doesn’t find anything. You can include further arguments
to specify the start and end of the search; these arguments work the same way as slice notation,
including start and up to but not including end.

CHAPTER 7 ■ WORKING WITH TEXT

135

>>> s.find("«a",8,16)

10

If you want to find the position of the last occurrence of sub, you could use string.rfind(sub[,

start[, end]]) instead, which searches from the end of the string backward.

>>> s.rfind("«a")

24

If you specifically want an error to be raised if the string is not found (see Chapter 11), use

string.index(sub[, start[, end]]) instead of find(). This returns an integer index just like
string.find() but raises a ValueError if the substring is not found.

>>> s.index("a",12)

25

>>> s.index("a",26)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: substring not found

You can search for strings from the end of the string as well using string.rindex(sub[, start[,

end]]).

>>> s.rindex("«a", 0, 23)

10

You can also count the number of times a substring occurs in a string using string.count(sub[,

start[, end]]). Start and end values work like slice notation again.

>>> s.count('a')

3

Strings have an enormous number of methods; this section provides just a selection of the most

immediately useful ones. Using string methods alone, it is possible to pretty up the output of your programs
considerably, be more flexible, and possibly even improve the grammar of your application’s printout.

Matching Patterns Using Regular Expressions
Sometimes, the basic string methods just aren’t enough. For example, you may need to retrieve values
that appear within a regular pattern in a piece of text, but you don’t know what those values are going to
be or just have a rough idea of what they should not be. This is where regular expressions come in. A
regular expression (regex, for short) is a pattern that can match a piece of text. In its simplest form, a
regular expression could just be a plain string of ordinary characters that matches itself. Regular
expression syntax uses additional special characters to recognize a range of possibilities that can be
matched. These expressions can be used in search and replace operations and to split up text in different
way than string.split().

CHAPTER 7 ■ WORKING WITH TEXT

136

Regular expressions are complex, powerful, and difficult to read. Most of the time, you can manage
without them, but they are particularly useful when dealing with complex, structured pieces of text. It’s
best to take regular expressions slowly, learning a bit at a time. Trying to learn the whole regular
expression syntax all in one go could be quite overwhelming.

Regular expression matching operations are provided by the re module. As re is not built in by
default, it is necessary to import the module first before it is possible to use it.

>>> import re

The module supports both 8-bit and Unicode strings, so it should be possible to recognize any

characters that you can type in from the keyboard or read from a file.
Next, you need to construct a regular expression string to represent the pattern you want to catch.

Let’s use the rather colorful string from earlier in the chapter again.

>>> string = "«a¹» Zøë, «a²» Déjà Vù, «a³» ½µ"

>>> pattern = "«a.»"

>>> re.split(pattern, string)

['', ' Zøë, ', ' Déjà Vù, ', ' ½µ']

Here, I have used the re.split() method instead of string.split() to isolate the data from its

strange labels. This method takes a regular expression and a string as arguments. The string is split
according to the substrings that match the pattern; these substrings are discarded, returning the strings
that remain as a list. Obviously, you could make use of string.strip() to clean up the results, but you
could also construct a smarter regular expression. The pattern string consists of the characters that I’m
looking for plus a special character, the period. This period matches any single character except for
newlines, no more and no less. Because it matches any character, the period is known as a wildcard
character. The asterisk * matches 0 or more characters of the preceding expression. The plus sign (+)
matches one or more characters, and the question mark (?) matches one or zero characters of the
preceding expression.

>>> pattern = "«.+» "

>>> re.split(pattern, string)

['', '½µ']

The preceding greedy version of the pattern gobbles up everything up to the last chevrons, which is

not the sort of behavior I want to see.
We can mark an expression as nongreedy and match as few as possible; this is indicated with an

additional question mark: *?, +?, and ??.

>>> pattern = "«.+?» "

>>> re.split(pattern, string)

['', 'Zøë, ', 'Déjà Vù, ', '½µ']

Adding in the question mark makes a better match. It would also be possible to specify the number

of repetitions to be matched following the pattern with a pair of numbers in curly braces {m,n}, which
matches the pattern repeated between m and n times.

CHAPTER 7 ■ WORKING WITH TEXT

137

>>> pattern = "«.{2,2}» "

>>> re.split(pattern, string)

['', 'Zøë, ', 'Déjà Vù, ', '½µ']

This example is still not perfect. Somehow, I’d like the pattern to match potential commas and

spaces, if they exist, before the opening chevron.

Matching Subpatterns

I don’t want to match just any old character here; I’m looking for a specific pattern ", ", but the problem
is that it may or may not be present. The solution is to enclose the subpattern in parentheses, followed
by a question mark, which makes the subpattern optional.

>>> pattern = "(,)?«.+?» "

>>> re.split(pattern, string)

['', None, 'Zøë', ', ', 'Déjà Vù', ', ', '½µ']

This kind of works, but we’ve collected a lot of extraneous items. Putting ?: inside the parentheses at

the beginning stops the subpattern from being returned, but it is still counted as part of the match.

>>> pattern = "(?:,)?«.+?» "

>>> re.split(pattern, string)

['', 'Zøë', 'Déjà Vù', '½µ']

Regular expressions are not easy on the eyes. As you can see, we’ve already built up a pattern that

looks like a sentence in some alien language. I have to be honest; I’m afraid it gets worse. If you want to
match an actual punctuation mark or special character (e.g., ., ^, $, *, +, or ?) or brackets, you’ll have to
escape each character with a backslash. For example, \. would match an actual period. Some ordinary
characters also have a special meaning if preceded by a backslash. Table 7-5 shows these special
characters.

Table 7-5. Escaped Characters with Special Meaning in Regular Expressions

Character Meaning

\<number> Match the contents of the group of the same number.

\A Match only at the start of a string.

\Z Match only at the end of a string.

\b Match an empty string but only at the start or end of a word.

\B Match an empty string but not at the start or end of a word.

CHAPTER 7 ■ WORKING WITH TEXT

138

Table 7-5. Escaped Characters with Special Meaning in Regular Expressions (continued)

Character Meaning

\d Match any decimal digit.

\D Match any nondigit character.

\s Match any whitespace character.

\S Match any nonwhitespace character.

\w Match any alphanumeric character.

\W Match anything that isn’t an alphanumeric character.

\\ Match a literal backslash.

The good news is that the application of backslashes can be automated, to a certain extent, using

the re.escape(pattern) method. See the “Letting the Characters Escape” section.

Matching Character Sets and Alternatives

If you want to match a specific range of characters, you can put them in square brackets; [abc] will
match any one of the characters (a, b, or c) but not all of them together. You can also specify ranges such
as [a-zA-Z0-9], which would include all uppercase and lowercase letters and digits. Inserting a caret (^)
as the first character negates the set, so [^a-zA-Z0-9] would match any single nonalphanumeric
character. The characters in square brackets don’t have to be escaped in the same way as other
characters in a regular expression, unless you need to catch square brackets or dashes.

You can specify alternative patterns after the choice operator, which is also known as the pipe
symbol (|).

>>> pattern = "\W?«a\S»\w|(?:,)?«.+?» "

>>> re.split(pattern, string)

['', 'Zøë', 'Déjà Vù', '½µ']

Finding Patterns at the Beginning or End of a String

Sometimes, you will be looking for a pattern to occur specifically at the beginning or end of a sequence
of characters. The caret (^) can be used to specify the start of a sequence, and the dollar sign ($) can be
used to indicate the end. Note that the caret ^ works as a negation operator inside square bracketed
character sets, so it can’t be used to indicate the start of a sequence.

>>> pattern = "^«a"

>>> re.split(pattern, string)

['', '¹» Zøë, «a²» Déjà Vù, «a³» ½µ']

CHAPTER 7 ■ WORKING WITH TEXT

139

>>> pattern = "µ$"

>>> re.split(pattern, string)

['«a¹» Zøë, «a²» Déjà Vù, «a³» ½', '']

Creating a Regular Expression Object

You can compile a regular expression pattern into a regular expression object using
re.compile(pattern[, flags]). This returns a pattern object on which you can call all the previous
methods, but you no longer need to provide the pattern as an argument. You might want to do this if you
need to use this pattern to perform lots of matches all at once; compiling the pattern into an object
speeds up the pattern comparison process, because the pattern does not have to then be compiled each
time it is used. You might also need to use this approach where a function specifically requires a regular
expression object to be passed to it rather than just a pattern string.

>>> pattern = "\W?«a\S»\w|(?:,)?«.+?» "

>>> regex object = re.compile(pattern)

>>> regex object.split(string)

['', 'Zøë', 'Déjà Vù', '½µ']

Doing this creates a chance to save and name your patterns for later use and may also help to make

your code more readable if you name your patterns appropriately.

■ Note The options for the flags argument are covered in the official Python documentation. They apply to more

advanced uses of re, which I shall let you explore at your leisure. This chapter provides just a brief introduction.

Letting the Characters Escape

If your users are particularly grammatically expressive, you may have to deal with sentences containing
all kinds of random punctuation. There will be circumstances when you couldn’t possibly edit the
strings yourself to put backslashes in front of all the characters that are not ordinary letters or numbers.
Fortunately, re.escape(pattern) will escape all the nonalphanumeric characters in pattern for you.

>>> re.escape(string)

'\\«a\\¹\\»\\ Z\\ø\\ë\\,\\ \\«a\\²\\»\\ D\\éj\\à\\ V\\ù\\,\\ \\«a\\³\\»\\ \\½\\µ'

Manipulating Strings Using Regular Expressions

As you have already seen, it is possible to split up a string according to the occurrences of a pattern using
re.split(pattern, string[, maxsplit]). This method returns a list containing the matching substrings.
There is an optional argument maxsplit that allows you to specify the maximum number of splits
allowed.

The re module can also perform replacement operations with the re.sub(pattern, repl, string[,
count]) method. This will return the string obtained by substituting the leftmost nonoverlapping

CHAPTER 7 ■ WORKING WITH TEXT

140

occurrences of the pattern in string with the replacement repl. You can limit the number of
substitutions made by setting the optional argument count. The replacement, repl, can be either a string
or a callable (i.e., a method or function); if it’s a callable, it must accept the match object as the only
argument and must return a string.

>>> re.sub("«a.»", "data:", string)

'data: Zøë, data: Déjà Vù, data: ½µ'

>>> re.sub("«a.»", "data:", string, 2)

'data: Zøë, data: Déjà Vù, «a³» ½µ'

There is an alternative method re.subn(pattern, repl, string[, count]) that does the same thing

as re.sub() but also returns the number of substitutions made in a tuple (new string, number), where
number is the number of substitutions that were made.

>>> re.subn("«a.»", "data:", string)

('data: Zøë, data: Déjà Vù, data: ½µ', 3)

The re module is primarily used for matching patterns, and this can be done in several ways. If you

want to find all occurrences of a pattern in a string, re.findall(pattern, string[, flags]) will return a
list of all nonoverlapping matches including empty matches.

>>> re.findall("«a.»", string)

['«a¹»', '«a²»', '«a³»']

Regular expressions have other useful methods available, which allow more fine-grained control

over groups of matches. They have a powerful language all of their own, as shown in Table 7-6, which
needs its own book to fully explain. The methods I have described here will get you started and offer you
a lot of power to manipulate text.

Table 7-6. Characters with Special Meaning in Regular Expressions

Character Meaning

. Match any character except a newline.

^ Match the start of a string.

$ Match the character at the end of a string or the one just before the newline at the end
of a string.

* Match zero or more repetitions of the preceding regular expression. This character
creates a greedy expression.

+ Match one or more repetitions of the preceding regular expression. This character
creates a greedy expression.

? Match zero or one of the characters in the preceding regular expression. This character
creates a greedy expression.

CHAPTER 7 ■ WORKING WITH TEXT

141

Table 7-6. Characters with Special Meaning in Regular Expressions (continued)

Character Meaning

*?, +?, and ?? Nongreedy versions of the previous three special characters.

{m,n} Matches from m to n repetitions of the preceding regular expression.

{m,n}? This is the nongreedy version of {m,n}.

\\ Use this to either escape special characters or signal a special sequence.

[] Use this to indicate a set of characters. A caret as the first character indicates a
complementing set.

| This denotes “or”. For example, A|B creates a regular expression that will match either
A or B.

(. . .) Match the regular expression inside the parentheses. The contents can be retrieved or
matched later in the string, using the \<number>escape.

(?:. . .) Ignore this group.

Using Files
So far, data has either been written into the program itself or received via the input() function and
printed out using the print() function. Once the program has finished its execution, the data is lost. In
order for an application to have any practical value, it is necessary to be able to store that information
and retrieve it the next time the program is run. The vast majority of computer information is stored in
files on a hard drive or similar storage medium or can be transmitted via some file-like object. File-like
objects share some similar properties with files and can often be treated with the same methods;
streams are an important kind of file-like object, which I will come to a little later.

Opening Files

File objects can be created with the built-in open(filename[, mode[, buffering]]) function. File objects
are also returned by some other built-in functions and methods. I’ll start by opening a plain text file in
the same directory as I started the interpreter.

>>> open('story.txt')

<io.TextIOWrapper object at 0xb7ba990c>

Oh look—another Python object! This one says it’s an io.TextIOWrapper; in plain language, that’s a

file object. If the file doesn’t exist, you’ll get an IOError. IO stands for input/output, in other words,
reading and writing to files. The file object now holds the contents of story.txt, but in order to do
anything with it, you need to learn some file methods.

CHAPTER 7 ■ WORKING WITH TEXT

142

I hope you’re getting used to the concept that everything in Python is some type of object and that
any type of object will usually have several methods that you can use to access its values or edit it. Before
you can make use of the different file methods, it is important to understand the different ways that
Python can open a file to create a file object.

Modes and Buffers

Opening the file by just passing the filename to open() creates a read-only file object. If you want to be
able to write to that file as well, it is necessary to set the optional mode argument. This argument can be
a single character: r (read), w (write), or a (append), any of which may be followed by b (binary) or +
(read/write). If you don’t provide a mode argument, Python will assume your file is a text file, and mode
r will be assumed.

>>> open('story.txt', 'rb')

<io.BufferedReader object at 0xb7ba990c>

The b mode returns a different kind of object to the default file object—one that contains the same

information in byte format. You might want to use this if you wanted to handle image or audio data.
Write mode (w) lets you change the contents of the file completely. Append mode (a) only lets you add
information to the end. This last option is useful for creating log files.

The buffering argument, used with w or a, can either be 0 or 1. If it’s 0, your data is written straight to
your hard-drive. If it’s 1, Python creates a temporary file to store the text in before it gets written out. The
data is not written to disk unless you explicitly call file.flush() or file.close(). You probably won’t
need this option immediately.

Reading from and Writing to Files

The most basic method you can use to access the file’s contents is file.read([size]). This reads up to
size bytes from the file (less if the read hits the end of the file before it gets to size bytes). If the size
argument is negative or not given, the whole file will be read in as a single string. The bytes are returned
as a string object, unless you opened the file as a binary object, in which case you’ll get the raw bytes. If
you are reading a plain text file containing ordinary characters, you might not notice a great deal of
difference.

>>> text = open('story.txt')

>>> text.read()

'Once upon a time, it wasn\'t your time nor my time

[... pages more text here ...]

and if they live happy, so may you and me.\n'

If you are dealing with a large body of text like the following example, you may wish to deal with it in

smaller pieces. file.readline([size]) reads a single line from the file (up to the next newline character,
\n). The size argument is the maximum number of bytes to read (including the trailing newline), and an
incomplete line may be returned. An empty string is returned only when the end of the file is
encountered immediately.

>>>text = open('story.txt')

CHAPTER 7 ■ WORKING WITH TEXT

143

>>> text.readline()

"Once upon a time, it wasn't your time nor my time, but a very long time ago, there

lived a gentleman and a lady in a very beautiful part of the country. They had only

one daughter, who was very pretty and good, and both her parents were very fond

of her. When the girl was about five years old, her mother died. The father was

heartbroken over the loss of his wife and left the little girl pretty much to

herself. She cried endlessly, because she did not understand where her mother had

gone or why she did not come to her.\n"

Files are their own iterators, so you can also iterate through lines in a file using a for loop. Each

iteration returns the same result as file.readline(), and the loop ends when the readline() method
returns an empty string.

>>> for line in text:

... print(line)

I’ll let you try this one out yourself, as the output would fill up the rest of this chapter. Alternatively,

you can read the lines of a file into a list for later consumption, using file.readlines([sizehint]). If the
optional sizehint argument is present, instead of reading up to the end of the file, whole lines totaling
approximately sizehint bytes are read. Some file-like objects may not implement file.readlines().

Writing to the file is simple. As long as you opened the file in w or a mode, file.write(str) writes a
string to the file.

>>> out file = open('story.html', 'w')

>>> out file.write(content)

522

>>> out file.close()

If you opened the file in write mode, the first write will overwrite the entire file, and any successive

writes will follow on from where the last write left off. If you opened the file in append mode, the writes
will begin at the end of the file.

>>> out file = open('story.html', 'a')

>>> out file.write(content)

522

>>> out file.close()

You can also write a list of strings to the file using file.writelines(sequence). The sequence can be

any iterable object producing strings, though typically it’s a list of strings; writelines() does not add line
separators, so you’ll have to remember to put in the extra \n characters yourself.

Finding Your Way Around Files

The place in the file that the interpreter has read up to is represented by the number of bytes
(characters) into the file it is. This will be referred to as the file’s current position. It’s equivalent to

CHAPTER 7 ■ WORKING WITH TEXT

144

having your finger on the text or to keeping track of the position of the cursor in a text editor. The
file.tell() method returns the file’s current position.

>>> out file = open('story.html', 'a')

>>> out file.tell()

0

>>> out file.write(content)

522

>>> out file.tell()

1566

■ Caution On Windows, tell() can return illegal values when reading files with Unix-style line endings. Use

binary mode 'rb' to circumvent this problem.

It is also possible to set the file’s current position using file.seek(offset[, whence]).

>>> out file.seek(223, 0)

223

The whence argument is optional and can be 0, 1, or 2: 0 gives a position relative to the start of the

file; 1 gives a position relative to the current position; and 2 gives a position relative to the end of the file.
The offset is in bytes again, just like the value returned by file.tell() For whence values of 1 and 2, the
offset must be 0, so you can’t perform seeks relative to the end or current position.

>>> out file.seek(0, 2)

1566

■ Note Seeks can’t be performed on all file objects.

Closing Files

It is a good idea to use file.close() to close a file after you are finished with it. Python will probably
notice that you’re not using the file anymore and free up the memory space eventually, but explicitly
closing it is cleaner. Often, the data in a file.write() operation is stored in a buffer until the file is
closed. You can make sure the data gets written out to the file without closing it by using file.flush(). A
closed file cannot be read or written any more. Calling close() more than once is allowed.

CHAPTER 7 ■ WORKING WITH TEXT

145

Applications
One of the most common uses of string manipulation is to convert text into different formats. You may
have a plain text file, for example that you want to display as a web page. Web pages often use Hypertext
Markup Language (HTML), which encloses text between pairs of tags in angle brackets. These tags can
indicate paragraphs, headings, bold and italic text, and so on.

Converting Text

The pseudocode for a script to convert a text file into a basic HTML page would be very simple, as shown
in Listing 7-1.

Listing 7-1. Pseudocode for a Text Conversion Script

Get filename from user input.

Open file.

Manipulate text.

Write out web page.

I have used the string.replace(), string.split(), and string.rstrip() methods to create a

suitable output filename and title for the page using the input filename and stripping the .txt ending.
The manipulations in the body of the script are performed by re.sub(). The challenge here is to find
suitable patterns in the source text that can be matched precisely enough to avoid unwanted parts of the
text being matched but also general enough to match all instances of the text we do want. Listing 7-2
shows a particularly ungraceful way of doing it. With a little ingenuity, I’m sure you could improve the
regular expressions I’ve used in Listing 7-2. The results are shown in Figure 7-1.

Listing 7-2. txt2html.py

"""

Convert text file to HTML page

"""

import re

input filename = eval(input('Enter a filename:-> '))

output filename = input filename.replace('.txt', '.html')

title = input filename.split('/')

title = title[-1].rstrip('.txt').title()

header = """<html>

<head>

<title>{0!s}</title>

</head>

<body>

<h1>{0!s}</h1>

<p>

CHAPTER 7 ■ WORKING WITH TEXT

146

""".format(title)

footer = """

</p>

</body>

</html>

"""

Open file

input file = open(input filename)

text = input file.read()

input file.close()

Manipulate text

Change anything like 'Ashpetal' or 'Ashey Petl' to 'Cinderella'.

text = re.sub('[Aa]sh.*?[Pp](etl|etal)', 'Cinderella', text)

Add <p> tags to newlines after periods etc.

text = re.sub('([\]\".:?!-])\n', '\\1</p>\n<p>', text)

Add
 tags to newlines after letters and commas.

text = re.sub('([a-z,;])\n', '\\1
\n', text)

Italicise everything between quotes.

text = re.sub('(".+?")', '<i>\\1</i>', text)

Make everything bold between asterisks.

text = re.sub('(\W)*([a-z A-Z]+?)*(\W)', '\\1\\2\\3', text)

Underline words between underscores.

text = re.sub('(\w+?)', '<u>\\1</u>', text)

Join up Header, text and footer

text = ''.join([header, text, footer])

Write out web page

output file = open(output filename, 'w')

output file.write(text)

output file.close()

print((output filename, "written out."))

CHAPTER 7 ■ WORKING WITH TEXT

147

Figure 7-1. HTML output from my original text file displayed in a browser

Checking and Correcting Styles

In order to help upgrade my existing programs to Python 3, I wanted to be able to go through my Python
scripts and pull out any comments that contained the words TODO or FIXME and the magic variables set at
the beginning of the script, the version and maintainer variables. I wanted to be able to check
that they were formatted consistently and then update or create the appropriate text documentation.

Identifying these items is to help me stick to the coding style I have set for myself; you might want to
do things differently.

The initial pseudocode design in Listing 7-3 made this task look pretty simple.

Listing 7-3. Pseudocode for a Style Checker Script

"""

Purpose:

 Python script style & version checker

Target System:

CHAPTER 7 ■ WORKING WITH TEXT

148

 GNU/Linux

Interface:

 Command-line

Functional Requirements:

 Automatically go through all lines in a Python file

 pulling out TODO comments and appending TODO file

 check & update AUTHORS file

 check for existence of README, [NEWS and ChangeLog]

 So all documentation can be auto-created from main python files.

 Print warnings and prompt before any changes are made.

"""

Input: get Python filename from user.

Open the file for reading.

Test if file is valid python 3.0; if not, suggest running 2to3 on file.

Iterate through lines in script.

 # Check that the script calls the correct version of the interpreter.

 # Check that the script declares Unicode encoding.

 # Turn comments into proper docstrings.

 # Check magic variables are correctly formatted if present.

 # Check for TODO & FIXME lines.

Print out results.

Check for existence of AUTHORS, ChangeLog, NEWS, README and TODO files in the

same directory as file.

If no AUTHORS file, write out author s to AUTHORS.

Check TODOs and Warnings: If fixed append Changelog, else append TODO.

■ Note As well as importing the re module, I imported the time module, using time.strftime(), to give me a

timestamp. I passed it time-formatting code and no time, so it will use the current time by default. The time

module is further discussed in Chapter 10.

The script (see Listing 7-4) sets up a bunch of regular expressions, so I can check the content of the
script against them later. I have also set up a dictionary called spellbook to hold all the magic variables
set in the script.

I used a while loop that will loop around if the filename given does not have a .py extension. The
script iterates through the lines in the script being examined and compares the lines against the regular
expression objects I set up at the start. Finally, another function format info() gathers all the
information from spellbook and formats it nicely for output.

CHAPTER 7 ■ WORKING WITH TEXT

149

Listing 7-4. fix_style.py

"""

fix style.py

Purpose:

 Python script style & version checker

Target System:

 GNU/Linux

Interface:

 Command-line

Functional Requirements:

 Automatically go through all lines in a Python file

 pulling out TODO comments and appending TODO file

 check & update AUTHORS file

 check for existence of README, [NEWS and ChangeLog]

 So all documentation can be auto-created from main python files.

 Print warnings and prompt before any changes are made.

"""

version = 0.1

status = "Prototype"

date = "16-10-2008"

maintainer = "maintainer@website.com"

credits = "Inspired by Duncan Parkes' remark about inline TODO comments."

import re

import time

Datestamp

Now = time.strftime("%d-%m-%Y")

Set up some regular expressions for later use

Putting them all in one place makes editing and troubleshooting much easier.

filename format = re.compile(".+?\.py")

version format = re.compile("[\"']?(?:[0-9]+?\.)?[0-9]+?\.[0-9]+?[\"']?")

status format = re.compile("[\"'](Prototype|Alpha|Beta|RC|Stable)[\"']")

date format = re.compile("[\"'][0-3][0-9]-[01][0-9]-[0-9]{4}[\"']")

email format = re.compile("[\"'].+?@.+\..+?[\"']")

todo format = re.compile("^\s*?#\s*?(TODO|todo|FIXME|fixme):?\s*?(.+)")

Dictionary to hold namespace variables of file

spellbook = {'version':0.0,

 'status':"",

 'date':"33-13-2023",

CHAPTER 7 ■ WORKING WITH TEXT

150

 'maintainer':"",

 'author':"",

 'credits':""}

def get file():

 filename = input('Python script to be checked:-> ')

 if filename format.match(filename):

 print("Looks like a Python file. [OK]")

 else:

 print("This file does not have a .py extension.")

 filename = ''

 return filename

def format info(app):

 author s = """

 Author: {0!s}

 Maintainer: {1!s}

 Credits: {2!s}

 """.format(app['author'], app['maintainer'], app['credits'])

 app s = """

 File: {0!s}

 Version: {1!s} - {2!s}

 Last Modified: {3!s}

 """.format(app['file'], app['version'], app['status'], app['date'])

 out str = """

#===(*)===# Application Details #===(*)===#

{0}

#===(*)===# AUTHORS #===(*)===#

{1}

#===(*)===#===(*)===#===(*)===#

 """.format(app s, author s)

 return out str

Main

Input: get Python filename from user.

filename = ''

while not filename:

 filename = get file()

Store filename in spellbook.

spellbook['file'] = filename

CHAPTER 7 ■ WORKING WITH TEXT

151

Open the file for reading.

script = open(filename)

TODO: Test if file is valid python 3.0; if not, run 2to3 on file.

print("\n#===(*)===# TODO #===(*)===#\n")

Iterate through lines in script.

for line no, line in enumerate(script):

 # Check that the script calls the correct version of the interpreter.

 if line no == 0 and line != "#! /usr/bin/env python\n":

 print("Warning: wrong interpreter invoked")

 # Check that the script declares Unicode encoding.

 if line no == 1 and line != "# -*- coding: UTF8 -*-\n":

 print("Warning: no text encoding declaration")

 # Next should be a docstring

 # TODO: Turn comments into proper docstring.

 # Check for magic variables.

 if line.startswith(' '):

 label, value = line.split(' = ')

 # store magic variables in spellbook

 spellbook[label.strip(' ')] = value.strip().strip('"')

 # Check magic vars are correctly formatted if present.

 # version = "(?:[0-9]+?\.)[0-9]+?\.[0-9]+?"

 if label == ' version ' and not version format.match(value):

 print("Warning: dodgy", label)

 # status = "Prototype|Alpha|Beta|Release Candidate|Stable"

 if label == ' status ' and not status format.match(value):

 print("Warning: dodgy", label)

 # date = "[0-3][0-9]-[01][0-9]-[0-9]{4}"

 if label == ' date ' and not date format.match(value):

 print("Warning: dodgy", label)

 # maintainer = "\W+?@\W+\.\W+?"

 if label == ' maintainer ' and not email format.match(value):

 print("Warning: dodgy", label)

 # Check rest of lines for "#\s*?TODO|todo|FIXME|fixme(.*)"

 # This should be a 'try' statement

 # ... but they aren't covered until Chapter 11.

 if todo format.match(line):

 #

CHAPTER 7 ■ WORKING WITH TEXT

152

 task = todo format.match(line)
 label, desc = task.groups(1)
 todo text = """
{4!s} {2!s}: {0!s} line {1!s}
 *** {3} ***
 """.format(filename, line no, label, desc, Now)
 print(todo text)

We won't be needing this anymore.
script.close()

Fill in some empty variables.
if not date format.match(spellbook['date']):
 spellbook['date'] = Now
if spellbook['author'] == '':
 spellbook['author'] = spellbook['maintainer']

Print out results.
print(format info(spellbook))

TODO: Check for existence of AUTHORS, ChangeLog, NEWS,
README and TODO files in the same directory as file.
TODO: if no AUTHORS file, write out author s to AUTHORS.
TODO: Check TODOs and Warnings: If fixed append Changelog, else append TODO.

This is what happened when I ran the script on itself:

$./fix style.py

Python script to be checked:-> fix style.py
Looks like a Python file. [OK]

#===(*)===# TODO #===(*)===#

16-10-2008 TODO: fix style.py line 90
 *** Test if file is valid python 3.0; if not, run 2to3 on file. ***

16-10-2008 TODO: fix style.py line 103
 *** Turn comments into proper docstring. ***

16-10-2008 TODO: fix style.py line 148
 *** Check for existence of AUTHORS, ChangeLog, NEWS, README and
TODO files in the same directory as file. ***

CHAPTER 7 ■ WORKING WITH TEXT

153

16-10-2008 TODO: fix style.py line 149
 *** if no AUTHORS file, write out author s to AUTHORS. ***

16-10-2008 TODO: fix style.py line 150
 *** Check TODOs and Warnings: If fixed append Changelog, else append TODO. ***

#===(*)===# Application Details #===(*)===#

 File: fix style.py
 Version: 0.1 - Prototype
 Last Modified: 16-10-2008

#===(*)===# AUTHORS #===(*)===#

 Author: maintainer@website.com
 Maintainer: maintainer@website.com
 Credits: Inspired by Duncan Parkes' remark about inline TODO comments.

#===(*)===#===(*)===#===(*)===#

And to compare, I ran it on another script, which I had prepared with a few little TODOs of its own:

$./fix style.py

Python script to be checked:-> rpcombat.py
Looks like a Python file. [OK]

#===(*)===# TODO #===(*)===#

Warning: wrong interpreter invoked
Warning: no text encoding declaration

16-10-2008 TODO: rpcombat.py line 17
 *** Fix up interpreter call and file encoding ***

16-10-2008 TODO: rpcombat.py line 192
 *** rewrite the character sheet output using string.format() ***

16-10-2008 TODO: rpcombat.py line 217
 *** shop stock list .format() ***

16-10-2008 TODO: rpcombat.py line 291
 *** Alternate option to read characters from file. ***

CHAPTER 7 ■ WORKING WITH TEXT

154

16-10-2008 TODO: rpcombat.py line 332
 *** save rpcharacters to file ***

#===(*)===# Application Details #===(*)===#

 File: rpcombat.py
 Version: 0.2 - Prototype
 Last Modified: 16-10-2008

#===(*)===# AUTHORS #===(*)===#

 Author: maintainer@website.com
 Maintainer: maintainer@website.com
 Credits:

#===(*)===#===(*)===#===(*)===#

Having a list of TODOs like this is rather useful; I can now work through my TODO list item by item. This
saves constantly trawling through the file to remind myself of what I intended to fix next. I’m going to
ignore the first item for now, as that involves explaining how to make scripts executable on their own,
which I’ll get into in the next chapter, but we could take care of some other items now.

Formatting Data

On line 192 of rpcombat.py, I have a note that says "rewrite the character sheet output using
string.format()". This task is fairly straightforward, except this time, I have a lot of values to pass to the
method, which are all contained in the profile dictionary. What I’d like to do is pass the entire
dictionary to string.format() and reference its keys by name. No problem—Listing 7-5 shows the code
to do just that.

Listing 7-5. Character Sheet Formatter

 # Output the character sheet

 ### Deleted section

 # TODO: rewrite the character sheet output using string.format()

 #fancy line = "<~~==|#|==~~++**\@/**++~~==|#|==~~>"

 #print()

 #print(fancy line)

 #print("\t", profile['Name'])

 #print("\t", profile['Race'], profile['Gender'])

 #print("\t", profile['Desc'])

 #print(fancy line)

 #print()

 #print("\tMuscle: ", profile['Muscle'], "\tlife: ", profile['life'])

 #print("\tBrainz: ", profile['Brainz'], "\tmagic: ", profile['magic'])

CHAPTER 7 ■ WORKING WITH TEXT

155

 #print("\tSpeed: ", profile['Speed'], "\tprotection: ", profile['prot'])

 #print("\tCharm: ", profile['Charm'], "\tgold: ", profile['gold'])

 #print()

 ###

 rpcharacter sheet = """

<~~==|#|==~~++**\@/**++~~==|#|==~~>

 {Name!s}

 {Race!s}, {Gender!s}

 {Desc!s}

<~~==|#|==~~++**\@/**++~~==|#|==~~>

 Muscle: {Muscle: <2} life: {life: <3}

 Brainz: {Brainz: <2} magic: {magic: <3}

 Speed: {Speed: <2} protection: {prot: <3}

 Charm: {Charm: <2} gold: {gold: >7}

 """.format(**profile)

 print(rpcharacter sheet)

 return profile

The profile dictionary is unpacked into string.format() using the keyword argument gathering

operator (**), and the items are referenced by their respective keywords rather than positional indexes. I
have reduced twelve calls to the print() function down to one, and now, I only have to deal with a single
format string to edit it further. As you can see, this code is much easier to read and understand. Once I’d
tested it out, I then removed the old code that is marked out in comments in Listing 7-5.

I want to do something similar to the code block starting at line 217, as shown in Listing 7-6.

Listing 7-6. Stock List Formatter

 # Display shop stock list with prices.

 ### Deleted code

 # TODO: shop stock list .format()

 #print()

 #print("<==|#|==\SHOP/==|#|==>")

 #for item in stock:

 # print("\t", item, stock[item][0])

 #print("<==|#|==\@@@@/==|#|==>")

 #print()

 #print("You have", profile['gold'], "gold.")

 ###

 stock list = [" {0!s:10}{1: >3}".format(item, stock[item][0])

 for item in stock]

 shop = """

<==|#|==\SHOP/==|#|==>

{0}

<==|#|==\@@@@/==|#|==>

CHAPTER 7 ■ WORKING WITH TEXT

156

You have {1} gold

""".format('\n'.join(stock list), profile['gold'])

 print(shop)

I made this in two parts: First the stock list is formatted separately using a list comprehension.

Second, I drop this comprehension into a shop format. Now, I can be much more precise about how
everything lines up, as shown in the following printout of the character sheet and shop listing:

<~~==|#|==~~++**\@/**++~~==|#|==~~>
 Ez
 Pixie, female
 Tall and wild
<~~==|#|==~~++**\@/**++~~==|#|==~~>
 Muscle: 46 life: 30
 Brainz: 37 magic: 30
 Speed: 28 protection: 23
 Charm: 46 gold: 67

<==|#|==\SHOP/==|#|==>
 dagger 25
 shield 15
 club 15
 armour 101
 pole 10
 halberd 80
 hammer 99
 cuirass 30
 flail 50
 rope 10
 sword 60
 lantern 10
<==|#|==\@@@@/==|#|==>

You have 67 gold

Storing Data

The last two TODOs, on lines 291 and 332, go together. I want an "Alternate option to read characters
from file." and to "save rpcharacters to file". “How hard can that be?” I wondered.

I’ll spare you the statistics of how many brain cells I fried over the years trying to figure out
these tasks and cut to the chase. There is a major gotcha involved in retrieving data from text files:
whatever format your data was originally in, as soon as you write it to a text file, it becomes a text string.
Got that? I’ll run it by you again.

In this example, I want to save the list of player profile dictionaries to a file. The dictionaries contain
a variety of data types: two tuples, a list, several strings, and lots of integers. Once saved to a text file,
these all become string values with no special meaning to the Python interpreter. In fact, all this data
becomes one big string. I could write a really complicated function that isolates the different types of

CHAPTER 7 ■ WORKING WITH TEXT

157

data, performs int(), list(), and tuple() conversions on some of the data types, and assigns them all to
their correct variable names individually. But life would be much simpler if I could just load the entire
dictionary back into place. That would also cut down on potential errors, as I would know that my data is
exactly the same as the data the program used last time it was run.

The simplest answer to this conundrum is to use two built-in functions: repr() and eval(). In some
ways, repr() is to eval() what str() is to print(). In other words, repr() outputs variables in the format
that eval() expects to find, and eval() then turns those strings back into a legal Python expression and
evaluates them. It is not a perfect solution, but it is simple, workable, and fixes this TODO item.

I created two new functions in rpcombat.py: write out() and read in(). The first function,
write out(players), is shown in Listing 7-7. It opens data file in write mode and iterates through the
players list, writing out the repr() form of each dictionary to a separate line in the file rpcharacters.rpg.
I could have given it a .txt extension, but there is nothing to stop you creating your own file extensions
if you want to. The file will still be a plain text file, but it is a way of indicating that the data contained
within it is of a specific format.

Listing 7-7. Function to Write Data Out to File

def write out(players):

 print("Saving character sheets")

 data file = open('rpcharacters.rpg', 'w')

 lines = []

 for player in players:

 lines.append(repr(player) + '\n')

 data file.writelines(lines)

 data file.close

 return

And here’s the data file itself (rpcharacters.rpg):

{'life': 30, 'Name': 'Ez', 'gold': 7, 'Gender': 'female', 'armour': (0, 0, 50),
 'Race': 'Pixie', 'Muscle': 46, 'Brainz': 37, 'magic': 30, 'weapon':
(60, 60, 50), 'prot': 23, 'Charm': 46, 'inventory': ['sword'], 'Speed': 28,
'Desc': 'Tall and wild'}
{'life': 20, 'Name': 'Inkon', 'gold': 9, 'Gender': 'male', 'armour': (0, 0, 50),
'Race': 'Troll', 'Muscle': 35, 'Brainz': 45, 'magic': 31, 'weapon': (50, 60, 55),
'prot': 16, 'Charm': 34, 'inventory': ['flail'], 'Speed': 11, 'Desc': 'Small and
 clever'}

The second function I created, read in() is shown in Listing 7-8. It simply has to iterate through the
lines in the file (which is opened in read-only mode) and assign the evaluated line to player, which is
then packed back into the players list. Don’t forget to close() the file each time to prevent accidental
corruption of the data.

CHAPTER 7 ■ WORKING WITH TEXT

158

Listing 7-8. Function to Read in Data from a File

def read in():

 print("Reading in data")

 data file = open('rpcharacters.rpg')

 for line in data file:

 player = eval(line)

 players.append(player)

 data file.close()

 print(players)

 return

Just to complete things for this chapter, I’ll run fix style.py on rpcombat.py again to check I got rid

of all those TODO comments.

$ python fix style.py

Python script to be checked:-> rpcombat.py
Looks like a Python file. [OK]

#===(*)===# TODO #===(*)===#

17-10-2008 TODO: rpcombat.py line 18
 *** Fix up interpreter call and file encoding ***

#===(*)===# Application Details #===(*)===#

 File: rpcombat.py
 Version: 0.3 - Prototype
 Last Modified: 17-10-2008

#===(*)===# AUTHORS #===(*)===#

 Author: maintainer@website.com
 Maintainer: maintainer@website.com
 Credits:

#===(*)===#===(*)===#===(*)===#

In fact, there is still one TODO left, which I will deal with in the next chapter.

CHAPTER 7 ■ WORKING WITH TEXT

159

Jargon Busting
Let's look at the new terms introduced in this chapter:

• Alphanumeric: This refers to letter or number character and is equivalent to the regular
expression [a-zA-Z0-9].

• American Standard Code for Information Interchange (ASCII): This method of encoding
characters on computers uses just 7 bits of information. There are 128 values ranging from 0
to 127, of which 95 are printable characters and 33 are invisible control characters. ASCII
encoding only covers the characters usually found in the English language and a few others
that are specifically used by computers.

• Conversion field: This is the part of a replacement field after the exclamation point (!) used to
force an item to be represented as a particular type, regardless of its own type’s formatting
rules.

• Field names: A replacement field is a placeholder for a variable value in a formatted piece of
text. The field name is replaced by the value of the variable it refers to.

• Format specifier: The format specifier field contains a specification of how a value in a
replacement field should be presented.

• Greedy: This type of regular expression will match as many characters as possible.

• Nongreedy: This type of regular expression will match as few characters as possible.

• Regular expression: This refers to a pattern that can match a piece of text.

• Tags: These additional marks are added to a text file to specify the manner of formatting.
Tags are used by markup languages to indicate paragraphs, headings, bold and italic text,
and so on.

• Tarball: This refers to an archived group of one or more files. The files need not be
compressed however. An archived and compressed file might end in .tar.gz.

• Unicode: This method of defining characters is suitable for languages throughout the world.
It allows for the representation of the many different characters required to make up
international character sets (i.e., alphabets).

• Whitespace: This refers to any character that prints out as space in text, including tabs (\t),
newlines (\n), and so on, as well as the actual space character. This is equivalent to the
regular expression [\t\n\r\f\v].

• Wildcard: The * character can match any other character in a pattern match.

CHAPTER 7 ■ WORKING WITH TEXT

160

Summary
As you’ve seen, text is integral to most Python programs, and you saw how often of our examples use it.
We take text input from users, manipulate that text, and display messages in response. This is why
Python comes with so many text-related features.
In this chapter, you learned how to split and join strings; format, edit, and search for strings; use regular
expressions to search for patterns within strings; and work with the files on your file system. We then
applied much of this in our example application.

C H A P T E R 8

■ ■ ■

161

Executable Files, Organization,
and Python on the Web

Up to this point, you’ve been running your scripts via the python interpreter.
This is all well and good, but it would be nice if we could get the scripts to run by themselves, just

like real programs, so that’s just what we'll look at first. I’ll then cover how to organize and spruce up
your code, because clean, organized code makes you more efficient and gives you time to write even
more lovely Python code.

This leads us onto some of the dynamic features of Python: modules and the exec() and eval()
functions. These features give you more flexibility and choice when writing Python applications.

The final topic in this chapter, and another whole world of choice, is Python on the Web. I’ll go over
a simple CGI form to show you how to process data on a web form.

Making Programs Executable as Stand-Alone Applications
Assuming you are using a Unix-compatible computer, a couple of things need to be added to your script to
be able to run it directly (you will still need to have the correct version of Python installed in order for it to work).
If you wish to create a stand-alone Python application for a Windows-compatible computer, you will need to
obtain the py2exe compiler. The instructions in this section apply to Unix-compatible computers only.

First, you need to add either of the following two lines to the very beginning of your script, if you
haven’t already (choose the one where your Python distribution is located):

#! /usr/bin/env python

or

#! /usr/bin/python

This tells the operating system where to look for the Python executable. The first version leaves it up

to your operating system to decide which Python version to use; the others directly point to the Python
executable you want. You can check the location of the executable with which. For these examples, I will
assume you have access to a Bash prompt via the terminal. There are some important variations in the
way different operating systems (or platforms) are set up to run Python programs, so you will probably
need to read up on the specific details for your system.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

162

$ which python
/usr/bin/python

If you have an alternative version of Python installed, you might want to use the following instead:

#! /usr/bin/python3.0

This way, you can keep scripts around on your system that use different versions of Python without
having to keep checking which version of the interpreter you are using when you want to run them.

-*- coding: UTF8 -*-

This tells the interpreter what encoding you are using. UTF8 is Unicode, and you want to use this for
Python 3 scripts. In fact, Python 3 defaults to UTF8, so adding this line is just extra insurance.

Next, you must set the file permissions on the script. This allows you to execute it by itself without
having to call it as an argument to python:

$ chmod 751 myscript.py

or

$ chmod u+x myscript.py

In the first version of this command, chmod is given a numeric mode. This is made up of up to four
octal integers (any omitted digits are assumed to be leading zeros, so I have omitted the first digit in this
example). The second digit sets permissions for the user who owns the file; the third sets permissions for
users in the file’s group; and the fourth sets permissions for all other users. The octal permissions value
can be calculated by adding up the following values:

read += 4

write += 2

execute += 1

The 7 in the first place of chmod’s argument means that you, the owner of the file, can run and edit
the file. The 5 in the next place allows members of the same group as the file to read and run the
program, and the final 1 allows other users of the system to run the file but not read or write.

The alternative version of the command simply gives executable privileges to the owner of the file.
You may be able to set the executable bit using your file browser—look for an option to set the
permissions or properties of the file.

■ Caution Some tutorials may suggest setting the permissions to 777 or a+rwx; this is a bad habit to get into,

because it allows other users to edit and execute your files and, therefore, creates a potential security problem.

You may find it useful to open up the permissions of a file in this way to troubleshoot permissions-related

problems during development, but it is wise to close permissions down to a minimum before the application goes

live in any public situation. You should read your system’s documentation to find out how it controls permissions.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

163

Now, you can run your program from the command line like this:

$./myscript.py

This works so long as you are in the same directory as the script. You can also run the script by

clicking or double-clicking its icon in your file browser (depending on your operating system).
If you want this script to be accessible to anyone, anywhere on the system, you need to create a link

to the script in one of the directories in the system’s PATH. To find out which directories are in your PATH.

$ echo $PATH

You can add directories to your PATH if you need to create a location that you have permission to

write to.

$ PATH=$HOME/bin:$PATH

$ export PATH

$ echo $PATH

/home/tim/bin:/usr/local/bin:/usr/bin:/bin:/usr/games

This adds a directory called bin to the PATH that is searched for executable files by the system.

■ Note Other users will also need to add this directory to their PATH, and the appropriate permissions need to be

set in order for them to be able to make use of programs located in custom directories. Also, note that altering the

PATH is temporary, for the current session only! You will need to edit the .bash profile file to make changes

reappear after logging in again. If you’re not familiar with Linux or Unix, you should refer to an introductory text on

this and related subjects. You might want to take a look at Beginning Ubuntu Linux, Fourth Edition by Keir Thomas,

Andy Channelle, and Jaime Sicam (Apress, 2009).

The next step is to create a link to the script from the bin directory.

$ ln -s /full/path/to/myscript.py bin/myscript

Now, I can call my new script from anywhere without giving an explicit path.

$ myscript

Nice. Rather than making a link, you could write a short Bash script that calls the Python file and

save that in ~/bin. The beauty of calling myscript.py indirectly like this, though, is that it gives a lot more
room if you want to rename or reorganize your code. It doesn’t make any difference to your users if
myscript points to ~/bin/myscript.py or /usr/local/lib/python3.0/myscript 1.0 stable.py, so long as
the program still accepts the same arguments.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

164

Sooner or later, you will encounter the major gotcha, which is that any references to files using
relative path names won’t work. Now is a great chance to test whether any parts of your code were
dependent on being called from a specific directory. The most likely fix will be to replace any relative
paths with full paths that go right back to the root directory of your filesystem or that are relative to a
path stored as a variable.

Organizing Your Project
At the start of this book, I suggested creating a separate folder for your programs. It’s up to you to
organize your code how you want it, but having some kind of plan is a really sensible idea. I like to keep
the programs that I am developing in a folder called ~/Projects/. Once the application is stable and I
want to make it available for use, I copy a cleaned-up version of the folder and its contents into
~/lib/python3.0/ following my system’s conventions:

 ${prefix}/bin/python: This is the recommended location of the interpreter.

 ${prefix}/lib/python<version>: This is the recommended location of the directories
containing the standard modules. Note that these modules are reusable; individual
application code might be in other directories.

 ${prefix}/include/python<version>: This is the recommended location of the directories
containing the include files needed for developing Python extensions and embedding the
interpreter.

I have replaced ${prefix} with my home directory (shown in Figure 8-1). If I want to make an

application available to the whole system, I prefer to make a link in ~/bin/, as I did in the myscript.py
example. Also, I could add ~/lib/python3.0/ to my PYTHONPATH, which is a list of directories that are
searched for modules to be imported by the import statement.

$ PYTHONPATH=$HOME/lib/python3.0:$PYTHONPATH

$ export PYTHONPATH

Putting my private directory first means it will be searched before the others.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

165

Figure 8-1. My home directory

Writing Stylish Code
Python was designed to be readable, on the grounds that code is read more often than it is written.
Python does not dictate how you should name things or use comments and docstrings. These matters
are considered to be part of your coding style, so it is worth putting some thought towards the style you
use. You can create your own unique style if you want, but it does pay to be consistent. Consistency
prevents you from getting confused yourself, and when you want to share your work with other coders,
you will either need to be able to explain the conventions you have used or adopt a common style.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

166

Becoming More Pythonic

Every so often, you will come across the word Pythonic in discussions about coding. It refers to a
combination of approaches to programming that are considered idiomatic to Python, as opposed to the
way you might approach programming in other languages; there are a growing number of conventions
involving methods and code constructions that are generally agreed to be more efficient or mutually
understandable by the Python community. These approaches are not dictated by Python; you won’t get
an error message if you don’t follow these guidelines, so it is up to you how much of this you want to
take on board. However, I would recommend following the generally accepted Pythonic style to start
with and adjusting it to your taste when you have more coding experience.

Listing 8-1 shows a somewhat formal way of laying out code. It is a legal Python script, although the
program itself doesn’t actually do very much. Up till now, I have been using docstrings in a slightly
haphazard way to keep a record of the initial specification of requirements for the program. Once you
have decided that the application is ready to release into the wild, the docstrings will need to be updated
to provide some information that is more appropriate for your users. The docstrings should all be self-
explanatory.

Also, in the example script in Listing 8-1, each statement should be on a separate line with
consistent indentation. The first line tells the system where to find Python; the second tells it to use
Unicode encoding.

■ Tip Older versions of Python don’t require the encoding to be declared. You should use ASCII or Latin-1 instead

of UTF-8 if you include this line.

The first line of Python code following these declarations should be the docstring. This is followed
by the version information for this application. I am using magic variables with double underscores
before and after the name to record this information, so that it can be used by helper applications like
pydoc. The pydoc module imports a Python module and uses the contents to generate help text at
runtime; pydoc outputs docstrings for any objects that have them. Additionally, all of the documentable
contents of the module are output.

Next, any modules you might need are imported. Each import should be on a separate line, and
modules should be grouped according to where they come from. Only then does the real coding begin.

One of the reasons for this ordering is that some items need to be set up before other parts of the
program can use them: modules have to be imported before they are called on to perform their duties;
variables need to be assigned before they can be referenced; and functions must be declared before they
are called. Additionally, before you use anything, it must be in scope. An import, an assignment of a
variable, and a function definition are all just ways of getting a variable in the current namespace.

It follows that the next things to be set are constants and global variables, that is, data that won’t
change its value or need to be available to several different parts of the program. This is followed by the
definition of any classes or functions that you are going to need. The main body of the program comes
last of all and in this example is very short and slightly cryptic.

Listing 8-1. style_guide.py

#! /usr/bin/env python

-*- coding: UTF8 -*-

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

167

"""Docstring: Short title and summary on first line followed by a new line

style guide.py

A Docstring should be usable as a 'Usage:' message. It should contain:

A description of the script's function;

command-line syntax and parameters;

notes about the algorithm used

and a decent usage example.

This script takes no arguments and prints out a useless message.

The closing triple quote should be on a line by itself.

"""

Version information goes immediately after the docstring

with a blank line before and after.

These variables with double leading and trailing underscores

are 'magic' objects, which should only be used as documented.

version = 0.1

status = "Prototype"

date = "31-10-2008"

maintainer = "maintainer@website.com"

credits = "Thanks to everyone."

Import any modules we might need.

Standard library imports

import os

import re

Related third party imports

local application / library specific imports

Globals and constants

Set variables whose values won't change before any others.

Global = ""

private global = "This variable is only used inside the program"

Class declarations would normally happen about here

Classes are covered in the next chapter.

def code layout():

 """Indentation

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

168

 Use 4 spaces per indentation level

 Never mix tabs and spaces

 In fact, just use spaces.

 """

 line length = "Limit all lines to a maximum of 79 characters, for \

 big blocks of text 72 chars is recommended. You can use the \

 implied line continuation inside () [] and {} or a backslash \

 to wrap long lines of text."

 # Always keep comments up to date when the code changes,

 # delete old and irrelevant comments.

 # Comments should be complete grammatical statements.

 ###

 ## Stub of code or development note

 ## to be removed before the program is released.

 ## This function doesn't do anything. (note:…there may be a def function here one day.

 ###

 return

def naming conventions(functions = "lower case with underscores"):

 """Variable naming

 Choose names that people might be likely to guess, whole words are

 good, but don't make it too long. Use singular names to describe

 individual things, use plurals for collections. Single letters are

 only useful for throw-away variables.

 """

 variable names = "lower case with underscores"

 a, b, c = 0, 1, 2

 int variables = [a, b, c]

 x, y ,z = 0.5, 1.65, 2.42

 float variables = [x, y, z]

 result = [i + j for i in int variables for j in float variables]

 if result is not None:

 return result

def main func():

 """Docstring: The title should make sense by itself.

 A function's docstring should:

 Summarize the function's behaviour;

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

169

 Document its arguments;

 Return values;

 Side-effects;

 Exceptions raised;

 and restrictions on when the function can & cannot be called.

 Optional arguments and keywords should also be explained if they are

 part of the interface.

 """

 result = naming conventions()

 return result

if name == ' main ':

 results = main func()

 print("\nPoints awarded for style: ")

 for result in reversed(sorted(results)):

 print('\t', result)

 print()

You may guess from the use of double underscores that there is magic afoot. If the program has

been run directly, rather than being imported as a module, the magic variable name will contain the
value ' main '. In this case, the main func() is called, and results are output. If the script was
imported as a module, none of the code would actually be directly available, but the functions would all
be available, if declared public, to the calling procedure.

>>> import style guide

>>> help(style guide)

If you actually want the program’s output, you would have to explicitly call the style guide’s

main func().

>>> style guide.main func()

[0.5, 1.6499999999999999, 2.4199999999999999, 1.5, 2.6499999999999999, 3.4199999999999999,

 2.5, 3.6499999999999999, 4.4199999999999999]

You will have noticed that it is standard practice to separate function definitions with blank lines,

the same is true for classes and their methods, as you will see in the next chapter. It is acceptable to use
extra blank lines to group related functions and logical sections of code together.

You should avoid putting extra whitespace characters immediately inside parentheses; before
commas, colons, and semicolons; and inside expressions—the main exception being that you should put
a space either side of operators. You should also try to avoid double and triple nested loops; try to
refactor the nested blocks as functions to reduce the amount of indentation.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

170

Importing Modules
Modules are imported using the import statement either via the interactive command line or at the start
of a script. An example would be import foo module.

>>> import sys

This will import everything from the module named sys. The sys module contains some very useful

dynamic objects:

• sys.argv: A list of command line arguments, argv[0] contains the path to the script itself

• sys.stdin: The standard input file object as used by input()
• sys.stdout: The standard output file object as used by print()
• sys.stderr: The standard error object that is used for error messages

These objects allow you to pass data in and out of the program via command-line arguments, as in
sys.argv, or piped in via sys.stdin. I’ll show you how to do this in a moment.

The objects, function and attributes of a module are usually accessed using dot notation, so you
would write module.object to use the object from module in your script, for example. If you wanted to
read in data from stdin, you would write sys.stdin.read(), which calls the read() method on the stdin
file-like object in module sys.

The import statement can take a couple of other forms. The first is this:

>>> from sys import argv

This will only import the argv object, so it can now be accessed without putting the module name
and dot in front of it, like so:

>>> argv
['']

The list is empty, because I’m looking at it from the command line.
As I mentioned, the import statement provides an alternative version in case importing something

like this would cause a clash with a name that you are already using in the script.

>>> from sys import argv as arguments
>>> arguments
['']

This gives you a lot of choice in the way you import functions and objects into your programs.

Python has a lot of specialized and extended functionality that can be imported from modules, which
have been prewritten and tested by other programmers. You have already seen the re and time modules
in action and have imported your own scripts to view their help() output. In Chapter 11, I’ll give you an
overview of some of the most commonly used modules. Listing 8-2 shows a simple example of how to
use command-line arguments and how to read information from stdin and write it to stdout.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

171

Listing 8-2. sysargs.py

#! /usr/bin/env python

-*- coding: UTF8 -*-

"""Using command-line arguments

This script can receive command line arguments

and data from stdin.

The output of any command can be fed into the script via | the pipe command.

$ echo "Foo" | ./sysargs.py bar baz

Datestamp:

2008-11-12

Command-line arguments:

0 ./sysargs.py

1 bar

2 baz

Stdin:

Foo

"""

import sys

import time

now = time.strftime("%Y-%m-%d") # the time function yields system time, date, etc.

def get args():

 result = ['\t'.join([str(i), str(arg)]) for i, arg in enumerate(sys.argv)]

 return result

def get input():

 result = sys.stdin.read()

 return result

def output(args, data):

 arguments = "\n".join(args)

 output string = '\n'.join(["Datestamp: ", now,

 "\nCommand-line arguments: ", arguments, "\nStdin: ",data])

 sys.stdout.write(output string)

 return

if name == ' main ':

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

172

 arguments = get args()

 data = get input()

 output(arguments, data)

In Listing 8-2, the first function, get args(), performs a list comprehension on sys.argv. The second

function, get input(), reads data in from stdin. Their results are bundled together and printed prettily
by the output() function. Listing 8-2 does much the same job as the original hello world.py, but this
time using the sys module to perform input and output instead of the built-in input() and print()
functions.

■ Tip Some modules are better documented than others. You can get a very brief overview of the available

methods and attributes of any Python object using dir(object) or help(object).

Using exec() and eval()
While we’re on the subject of dynamic applications, I’d like to look at two rather useful, but dangerous,
built-in functions: exec(string) and eval(string).

The exec() function was a keyword and statement in Python 2.x but is now a function. It allows you
to execute arbitrary strings as if they were Python statements. Similar to print, the exec statement has
been replaced in Python 3 with an exec() function.

>>> list numbers=[1,2,3,4]

>>>exec("for number in list numbers: print(number)")

If you type the preceding code into an interactive prompt, you can see that are actually executing a

command string from within the exec() function: you made a list and then merely iterated over the
items in the list with a for loop. The exec() function is a powerful feature, as you can imagine, but
should be used with care.

One of the things you should never do is apply exec() to the results of the input() function, or
indeed allow your user any direct access to this function or the main namespace of the program. The
exec() function allows you to build code strings on the fly, so you can never be entirely sure what the
final string will contain; that will depend on where the code string gets its constituent parts from. For
example, if the input string was built by the user at runtime, issues could arise if the user entered code
that wouldn’t run or violated security measures. A variation of the previous code is shown here:

>>>
>>> list numbers=[1,2,3,4]
>>>mycode="for number in list numbers: print(number)"
>>>exec(mycode)

In this case, all we did was create a text string to execute. Certainly, it could have been created on

the fly via an input statement—just consider the security issue first!
Using eval() is just as easy and allows you to evaluate a statement. Examine the following:

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

173

>>>t=3

>>>result=eval("t > 5") # 3 is not greater than 5

>>>print (result)

Note that we are evaluating a code string, in this case "t > 5", which, of course, results in False.
Both of these functions provide the possibility of an alternative method of making choices and

controlling the flow of program execution. This approach is an interesting avenue to explore briefly and
may be of some use before you come to building your own classes in the next chapter.

■ Caution Using exec() and eval() opens up whole new areas of security risks. Take care to strictly control the

content of any strings you send to either of these functions.

Putting Python on the Web
If you run your own web site or have access to a server, you may be interested in using Python to run
web-based services. You will need FTP access to try this example.

■ Tip If you’re running Linux and have root privileges (or you’re running another operating system that supports

Apache), you could install Apache and configure it to run as your own private local server to use as a web testing

zone. Refer to the official Apache documentation for information on how to set things up to run Python Common

Gateway Interface (CGI) scripts.

The simplest way to find out if your server supports Python is to upload a Python script to your cgi
directory and see if it works. In the top-level directory of your web site (shown in Figure 8-2), you will
probably have an html folder, where the pages of your web site reside along with a cgi folder, which may
well still be empty. If the directory isn’t this easy to spot, you will need to ask your hosting provider for
the location of your cgi directory.

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

174

Figure 8-2. Web site top-level folder

Copy Listing 8-3 into a text file, and save it as hello.cgi. Upload this file to your web site’s cgi
directory. Make sure the web site copy of hello.cgi has the correct permissions set, as I showed you in
the myscript.py example. All users probably need to be able to read and execute the file, but only you
should be able to write to it. It may be possible to limit permissions further, as often the web-server has a
dummy user set up who is used to run programs. You will need to check all these details independently,
as they will vary from situation to situation.

Listing 8-3. hello.cgi

#! /usr/bin/env python

-*- coding: UTF8 -*-

"""Simple CGI script

"""

import time

now = time.strftime("%A %d %B %Y")

def print content():

 print("Content-type: text/html")

 print()

def print header():

 print("""<html>

 <head>

 <title>Simple CGI script</title>

 </head>

 <body>""")

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

175

def print footer():

 print("</body></html>")

print content()

print header()

print("""<h1>It's {0!s}!</h1>

<p>Your server is correctly set up to run Python programs.</p>""".format(now))

print footer()

Once the file is uploaded, you should be able to test it out by pointing your browser to an address

like http://www.mywebsite.com/cgi-bin/hello.cgi. If your server has already been set up correctly to
run Python scripts, you will see a rather plain web page bearing today’s date and a positive message, like
the one shown in Figure 8-3.

Figure 8-3. Confirmation that we can run Python on our web server

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

176

If you see some other message displayed, you may not have been so lucky as to have a correctly
configured web server. You will probably need to ask your Internet service provider (ISP) or your system
administrator or consult log files to decide what to do next in order to get Python to run properly on your
web server.

You will notice that the error messages you receive from the web server really aren’t that
informative. The situation can be improved by using the cgitb module, which will display some familiar-
looking traceback information in the browser window if an error is encountered. This can be enabled by
adding the following two lines to the start of your script:

import cgitb

cgitb.enable()

If this provides you with a useful Python error message (see Figure 8-4), you’re in luck—the error

was with your code, which means you can do something about it.

Figure 8-4. A useful Python error message

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

177

Creating a Quick CGI Form

Once you’ve got your web server working correctly, you can move on to getting user input, as shown in
Listing 8-4. Input is supplied to the CGI script by an HTML form. You can retrieve the data from the
form’s fields using the FieldStorage class from the cgi module. I’ll explain how classes work fully in the
next chapter. For now, all you need to know is that cgi.FieldStorage returns a dictionary-like interface,
which allows you to access the form fields by name. The items in the FieldStorage dictionary contain
more than just the value, so you have to explicitly ask for the value. There are several ways you could do
this: the best is to use the getvalue(key, default value) method, which is provided by the FieldStorage
object.

Listing 8-4. form.cgi

#! /usr/bin/env python
-*- coding: UTF8 -*-

"""CGI form example

"""

import cgi
import cgitb
import time

Enable CGI traceback
cgitb.enable()

Create datestamp
now = time.strftime("%A %d %B %Y")

Get the contents of the form
form = cgi.FieldStorage()
name = form.getvalue('name', 'new user')

def print content():
 print("Content-type: text/html")
 print()

def print header():
 print("""<html>
 <head>
 <title>Simple CGI form</title>
 </head>
 <body>""")

def print form():
 print("""
 <form action='form.cgi'>

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

178

 Enter your name: <input type='text' name='name' />
 <input type='submit' />
 </form>
 """)

def print footer():
 print("</body></html>")

print content()
print header()
print("""<h1>It's {0!s}!</h1>
<p>Hello {1!s}, your server is correctly set up to run Python programs.</p>""".format(now,
name))
print form()
print footer()

Figure 8-5 shows the first run of this script.

Figure 8-5. The results of running this script for the first time

CHAPTER 8 ■ EXECUTABLE FILES, ORGANIZATION, AND PYTHON ON THE WEB

179

Jargon Busting
These are the new terms from this chapter:

• Bourne-Again Shell (Bash): Bash is a layer on top of Unix and Linux operating systems that
interprets commands for the operating system and allows you to run commands at the
command line.

• Common Gateway Interface (CGI): This is a technique for processing data and generating
dynamic content on the Web.

• Executable: An executable file contains a stand-alone application executed by an operating
system. All applications, such as Microsoft Word and Emacs, are run using an executable.

• Home directory: On a multiuser operating system, this is the directory where an individual
user's personal files are kept. This keeps them separate from operating system files and the
files of other users.

Summary
A lot of information has been covered in the short space of this chapter. You have learned how to create
stand-alone applications, organize your projects, lay out your code, use modules to accept command-
line arguments and input from stdin, execute and evaluate arbitrary strings, and create a custom
namespace. Finally, you have learned how to write a simple CGI script that can receive input from a
web-based form.

You can now create proper programs that will work in the same way as any other application you
have installed on your system. Your end users don’t need to know anything about what language you
wrote it in or the details of the code; they only need to know what commands are available via the
interface you have created for them. It’s up to you whether the program is self-explanatory or in what
form you provide help files. If in doubt, there is nothing wrong with plain text.

■ Caution You now have the power to mess up really badly. Of course, you will probably get away with many

minor errors and indiscretions, but now is a really good time to start considering security issues during the testing

phase.

You are now ready for the next coding paradigm shift—full object-oriented programming. Nearly
everything in Python is an object of some type or another, and in the next chapter, you will learn about
classes and see how to create and implement your own.

C H A P T E R 9

■ ■ ■

181

Classes

Python is an object-oriented language. You have already seen what can be achieved using the methods
provided by the basic data types. Central to the concept of object orientation is the class—a template for
creating your own data types. A data type may be a person, for example, each of whom has unique
aspects that might be specified by data such as LastName, FirstName, Age, Sex, and EyeColor. You might
think of a class as a noun, representing objects that are described by unique aspects. These aspects are
technically referred to in OOP as attributes.

Class definitions are sometimes referred to as templates, as their entire purpose is to serve as a
blueprint or model of class objects for you to use in your programs. Classes form the basis of a whole
new style of programming. You have already moved the focus of your programs from simple top-down
scripts to function-driven applications. Classes enable you to move the action into custom-built objects,
which can contain both data (attributes) and commands (methods). Creating objects involves a further
stage of abstraction from function-driven programming and provides a means of modeling real-world
constructs as single entities in your code.

Object orientation can help to reduce complexity, particularly in long programs. It also encourages
programmers to re-use existing, tested code because it is possible to create objects that inherit the
majority of their attributes and methods from an existing class, leaving the programmer to add or
override the pieces that specifically need to be different. Using the principle known as inheritance,
specific objects can be created out of general ones, producing a family tree of objects similar to the
classification of natural species.

Imagine you have three base classes, Animal, Vegetable, and Mineral; these classes would contain
general attributes that could be applied to any object of the same class. You could then derive further
subclasses from these base classes, so Animal could become the parent to several child classes, such as
Mammal, Reptile, Fish, Bird, Insect, and so on. Each of these children would contain new attributes
specific to their type, but they’d also inherit the general attributes of an Animal. You could further
subclass Mammals into Dog, Cat, Pig, and so forth. When you want to use an Animal in your program, you
could, for example, create an instance of Dog called rover, which inherits the bark() method that all Dogs
have. In your code, issuing the command rover.bark() could then result in something like "Woof!"
being printed to the screen.

■ Note This is just an example. I don't recommend creating such a large family of subclasses in actual practice;

you should create only the classes you need to use.

CHAPTER 9 ■ CLASSES

182

As in the real world, you don't need to know all the details about Animals and Mammals to get your Dog
to bark(), you just need to know what commands your Dog understands. Organizing your data into self-
contained units makes it easier to figure out problems using the same sort of logic that you are used to
using in real-world situations. Many programmers find that object orientation allows their code to grow
in a more natural way than constantly having to create new functions from scratch.

Empowering objects
Objects are the primary means of representing data in Python. All data in a Python program is represented by
some type of object or by the relationship between objects. A class is a template for an object that bundles up
several related pieces of data and defines a bunch of functions for accessing and manipulating that data. A
class definition is similar to a function definition in that nothing happens until you tell Python to make an
object based on the class template; this is called creating an instance of that class. Even then, any methods
that are part of the class won't do anything until they are specifically called, just like functions.

Defining Classes
The simplest way to understand how classes work is to create one. Based on the first definition, here is a
simple version of a class in Python:

class Person:
 def setName(self, name):
 self.name = name.title()

 def getName(self):
 return self.name
end of class definition

#start of program
person1 = Person() #create instance of class
person1.setName('Mr. Smith') #set name
print(person1.getName()) # get name

Now, that program doesn’t do too much, but it does explain, via program code, what we outlined at
the start of the chapter. To move along, try the next example of a Player class, which does a bit more. (If
you are curious about “self,” hang on as that will be explained shortly.)

class Player:

 def setName(self, name):
 self.name = name.title()

 def getName(self):
 return self.name

 def setDesc(self, desc):
 self.desc = desc.capitalize()

 def getDesc(self):
 return self.desc

CHAPTER 9 ■ CLASSES

183

This code just creates the possibility of a type of object called Player. You need to create a Player
object and assign some values to it in order to use it.

player1 = Player()
player1.setName('inkon')
player1.setDesc('short, stocky and mean')
character sheet = """
Name: {0!s}
Desc: {1!s}
""".format(player1.getName(), player1.getDesc())
print(character sheet)

■ Tip I recommend using short, singular, capitalized nouns to name your classes.

This code produces the following results:

Name: Inkon
Desc: Short, stocky and mean

First, player1 is created as an instance of Player. Notice the empty parentheses following the word
Player. This causes the class definition to produce an object that you can use. I have given player1 a
name using the setName() method I defined earlier, and created a description string using the setDesc()
method. The values can be retrieved using the accessor methods getName() and getDesc(). Accessor
methods are a means of accessing attributes and are named after the attribute, by convention, with
get, set, or del prepended to the method name. So far, my Player type seems to work a bit like a
dictionary, except that the values become automatically capitalized when they are created. Later on in
this chapter, I'll show you how you can make your new type behave exactly like a dictionary if you so
wish.

Who Is self?

The main difference between methods and functions is this additional parameter called self; self refers
back to the object upon which the operation is taking place, so in this instance self refers to player1.
The name of the object is passed to any methods called on it, along with any additional arguments. It is
also used in the class definition where values are assigned to attributes. Attributes are like variables
contained within the object, such as self.name. These attributes can be accessed from outside the object
as (in this instance) player1.name. In most cases, however, you don't want to access them like this
because you will usually want to process or format the data using a class method like setName() or
getDesc(). It is good practice to always use methods to access attributes (see the Properties section later
in this chapter). The idea is that an object should be like a black box—you don't need to know what the
box contains, as long as you know (or can find out) what methods it supports. This black box approach is
known as encapsulation.

CHAPTER 9 ■ CLASSES

184

■ Tip You can get an idea of what methods and attributes an instance of an object supports using the built-in

function dir(). In this instance dir(player1) will return a list of names available within the namespace of that

object.

Identity

An object's identity never changes once it has been created; you can find out an object's identity using
the built-in id() function and compare the identity of two objects using the is operator.

>>> player1 = Player()
>>> player2 = Player()
>>> player1 is player2
False
>>> id(player1)
136928972
>>> id(player2)
136930284

The id() function returns an integer representing its identity, which you can think of as its location

in memory. Every object has a different id().

Determining an Object’s Type

An object's type determines the operations and methods the object supports and can be discovered
using the built-in type() function.

>>> type(player1)
<class 'Player'>

The type() and id() functions should really be used only for investigation and debugging. Inside a

program, the recommended approach is to try the method you want and see if it works. This is known as
duck typing. The premise is that if it looks like a duck and quacks like a duck, you can assume it is a duck
for programming purposes. This approach makes working with objects mercifully simple; you really
need to consider only the methods you want the object to support. When using your own custom
classes, you can create the necessary methods as you need them.

It is also possible to create special magic methods, which allow you to use standard operators like +,
/, < and == with your custom classes, and you can replicate the behavior of other existing types, such as
lists and dictionaries, allowing slice notation, indexing and iteration. So, it is possible to get your custom
objects to behave in similar ways to the built-in objects you have already encountered. This overloading
of operators to work with many different forms of objects is known as polymorphism.

CHAPTER 9 ■ CLASSES

185

■ Note Obviously, if the method you want to use is not present, you will get an error. In Chapter 10 I will show

you how to catch and handle exceptions while the program is running.

Namespaces and Why We Need Them

Each object has its own namespace, which is implemented by a dictionary object. This is important to
prevent name collisions. You may already have variables called name and desc in the body of the
program, for example, but they won't conflict with player1.name or player1.desc. Methods and
attributes can be accessed by following the name of the object with a dot followed by the name of the
item you wish to access.

Each name refers to an object. Names are added to the namespace by an operation called name
binding. This is what happens when you first assign a value to a variable using the = operator, or when
you import a module. The value is said to be bound to a particular name and each name can only refer
to one object, although it is perfectly legal to bind several different names to an object.

Scope defines the visibility of a name within a code block. Each block has its own namespace.
Namespaces are organized like a family tree or directory structure; a name will be valid in any code blocks
contained within the defining one, but not in any outer ones. Like rooms within a room, when you enter
into a space, you can see everything inside it but you are no longer aware of anything outside.

The outermost scope is therefore global; names defined in the outermost scope will be recognized
anywhere in the program's world, as long as those names don't become masked by being assigned to
different values within any of the subroutines. The exception to this rule is that names defined inside a
class definition don't extend to any of the methods contained in the class; you have to refer to them via
self inside the class definition. The set of all scopes visible to a code block is called the block's
environment.

Class attribute references are first looked up within the immediate scope of the class. When the
attribute name is not found there, the attribute search continues in the base classes. If a name is not
found at all, a NameError exception is raised. If the name refers to a local variable that has not been
bound, an UnboundLocalError exception is raised.

When Should Classes Be Used?
You may frequently find yourself writing several functions to manipulate similar sets of global variables.
If the function is not used for any other data structures and the variables could be grouped together as
aspects of a single object, then creating a class is probably the way to go. In the original version of
rpcombat.py (first shown in Chapter 5), most of the action involved manipulating a dictionary containing
a set of variables specific to each character. It might simplify things to create a new type of object called
Player, which manages its own state: that is, it manipulates its own attributes and provides means for
other objects to interact with its attributes as well.

The combination of attributes and methods that are available for use are known as the object's
interface. Many of the functions in rpcombat.py could be further abstracted so they are encapsulated
within the Player class. This means the rest of the program only needs to worry about the methods
available in the object's interface while the inner workings of the Player object remain invisible.

Another way of working out what classes you need is to read through the original statement of
requirements for your application. The nouns may suggest potential classes; the verbs may suggest
methods; and the adjectives in the specification may suggest attributes. The original specification for

CHAPTER 9 ■ CLASSES

186

rpcombat.py was "The user must be able to generate more than one character profile, equip those
characters with suitable weapons, and model hand-to-hand combat between characters." Table 9-1
breaks down the rpcombat.py specification, though note there are no pertinent adjectives in this case.

Table 9-1. Breakdown of rpcombat.py Specification

Nouns Verbs Adjectives

User generate

Character profile

 equip

 combat

Weapon

This analysis makes it very clear what needs to be done. I'm going to merge User and Character into

Player, so each Player needs a generate() method and an equip() method, plus it needs to be able to
fight (see Listing 9-1). In the specification, combat occurs between players, so each player will need
something like attack() and defend() methods. Our original profile from Chapter 5 was a dictionary
containing: {'Name':"", 'Desc':"", 'Gender':"", 'Race':"", 'Muscle':0, 'Brainz':0, 'Speed':0,
'Charm':0, 'life':0, 'magic':0, 'prot':0, 'gold':0, 'inventory':[]} so these will become the
Player attributes. User stories or use cases can also be helpful for refining your design. Go through each
case step by step and make sure all the requirements are covered in your new class specification.

Listing 9-1. Creating the Player Class

class Player:

 def setName(self, name):
 self.name = name.title()

 def getName(self):
 return self.name

 def setDesc(self, desc):
 self.desc = desc.capitalize()

 def getDesc(self):
 return self.desc

 def setGender(self, gender):
 gender = gender.lower()
 if gender.startswith('f'):
 self.gender = 'female'
 elif gender.startswith('m'):

CHAPTER 9 ■ CLASSES

187

 self.gender = 'male'
 else:
 self.gender = 'neuter'

 def getGender(self):
 return self.gender

 def setRace(self, race):
 race = race.capitalize()
 if race.startswith('P'):
 self.race = 'Pixie'
 elif race.startswith('V'):
 self.race = 'Vulcan'
 elif race.startswith('G'):
 self.race = 'Gelfling'
 elif race.startswith('T'):
 self.race = 'Troll'
 else:
 self.race = 'Goblin'

 def getRace(self):
 return self.race

 def setMuscle(self):
 self.muscle = roll(33,3)

 def getMuscle(self):
 return self.muscle

 def setBrainz(self):
 self.brainz = roll(33,3)

 def getBrainz(self):
 return self.brainz

 def setSpeed(self):
 self.speed = roll(33,3)

 def getSpeed(self):
 return self.speed

 def setCharm(self):
 self.charm = roll(33,3)

 def getCharm(self):
 return self.charm

 def setLife(self):
 self.life = int((self.getMuscle() + (self.getSpeed()/2) + roll(49,1))/2)
 if 0 < self.life < 100:
 pass
 else:
 self.life = int(roll(33,3))

CHAPTER 9 ■ CLASSES

188

 def getLife(self):
 return self.life

 def setMagic(self):
 self.magic = int((self.getBrainz() + (self.getCharm()/2) + roll(49,1))/2)
 if 0 < self.magic < 100:
 pass
 else:
 self.magic = int(roll(33,3))

 def getMagic(self):
 return self.magic

 def setProt(self):
 self.prot = int((self.getSpeed() + (self.getBrainz()/2) + roll(49,1))/2)
 if 0 < self.prot < 100:
 pass
 else:
 self.prot = int(roll(33,3))

 def getProt(self):
 return self.prot

 def setGold(self):
 self.gold = int(roll(40,4))

 def getGold(self):
 return self.gold

 def setInv(self):
 self.inv = []

 def getInv(self):
 return ", ".join(self.inv)

 def generate(self):
 """Role-Playing Character generator

 Takes no arguments
 Returns a new Player object
 """
 print()
 print("New [Test] Character")
 print()

 # Prompt user for user-defined information (Name, Desc, Gender, Race)
 name = input('What is your name? ')
 desc = input('Describe yourself: ')
 gender = input('What Gender are you? (male/female/unsure): ')
 race = input('What Race are you? - (Pixie/Vulcan/Gelfling/Troll): ')

CHAPTER 9 ■ CLASSES

189

 self.setName(name)
 self.setDesc(desc)
 self.setGender(gender)
 self.setRace(race)
 self.setMuscle()
 self.setBrainz()
 self.setSpeed()
 self.setCharm()
 self.setLife()
 self.setMagic()
 self.setProt()
 self.setGold()

This may look complex, but consider that I have moved the functionality of the old generate rpc()

function entirely into the Player type. Now new players can be generated in just two lines in the main
body.

player1 = Player()
player1.generate()

Parents and Children—Inheritance

In a simple sense, children inherit features from their parents. So, in a similar sense, you might have a
class object that inherits attributes from the parent class it is based on. Using the preceding examples,
let’s take a look at how this unfolds.

I need to create a Weapon class and, come to think of it, I’ll probably need an Armour class as well. And
there are some other things that the Player can interact with that don't fall into the category of either
Weapon or Armour. I could create three separate classes of Weapon, Armour, and general Things, but now that
I think about it, Weapons and Armour are specific instances of Things, so I will create a base class called
Thing. Each Thing needs three basic attributes: price, strength, and speed. These attributes need to be
assigned (possibly from a table of predefined values) when the object is created. For now I will give them
default values.

>>> class Thing:
... price = 0
... strength = 0
... speed = 0
...
>>> box = Thing()
>>> box.price
0
>>> box.lid
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Thing' object has no attribute 'lid'

I have created a box, which is an instance of Thing. It has a price, strength, and speed, but no lid.

Now I can create a subclass of Weapon like so:

CHAPTER 9 ■ CLASSES

190

>>> class Weapon(Thing):
... print("Weapon made.")
...
Weapon made.
>>> axe = Weapon()
>>> axe.price
0

I could assign values to the Weapon laboriously one by one.

>>> axe.price = 75
>>> axe.strength = 60
>>> axe.speed = 50

But in practice I'd like to be able to assign them all in one go.

Using Methods

The way to do this is to create a method that will take the three values as arguments and assign them to
the correct attributes for you. Here is a good example of encapsulation. In the original version, these
values were expressed rather cryptically as a tuple, with no explanation of what the values meant. A
suitable method could deal with this tuple automatically.

>>> class Thing:
... def setValues(self, price, strength, speed):
... self.price = price
... self.strength = strength
... self.speed = speed
... def printValues(self):
... print("""Price: {0!s}
... Strength: {1!s}
... Speed: {2!s}
... """.format(self.price, self.strength, self.speed))
...
>>> class Weapon(Thing):
... print("new weapon made")
...
new weapon made
>>> axe = Weapon()
>>> axe.setValues(75, 60, 50)
>>> axe.printValues()
Price: 75
Strength: 60
Speed: 50

The subclass Weapon inherits its methods and attributes from the superclass Thing. If you want your

Weapon class to behave differently from an ordinary Thing, it is possible to override the methods of Thing
by defining the methods within the Weapon class definition.

CHAPTER 9 ■ CLASSES

191

>>> class Weapon(Thing):
... def setValues(self, price, strength, speed):
... self.price = price
... self.strength = strength
... self.damage = strength
... self.speed = speed
... def printValues(self):
... print("""Price: {0!s}
... Damage: {1!s}
... Speed: {2!s}
... """.format(self.price, self.damage, self.speed))
...
>>> axe = Weapon()
>>> axe.setValues(75, 60, 50)
>>> axe.printValues()
Price: 75
Damage: 60
Speed: 50

>>> box = Thing()
>>> box.setValues(0, 0, 0)
>>> box.printValues()
Price: 0
Strength: 0
Speed: 0

This is a very rough example. The principle is that all Things have setValues() and printValues()

methods. It doesn't matter what subclass of Thing it is, but if we want to know if a Thing is some kind of
weapon, we have a simple test—does it have a damage attribute?

>>> box.damage
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Thing' object has no attribute 'damage'
>>> axe.damage
60

Clearly the axe can be used as a weapon and the box cannot. This is similar to the way strings, lists,

and dictionaries share some common methods, but not others. If you want to know if you're dealing
with a list or not, for example, try to append() something to it. I could subclass Player in a similar way to
allow for different professions, such as Warrior, Magician, Priest, or Hoodie; they might share some
methods but vary in their methods of combat and the weapons they can use.

Customizing Classes
Classes also support some special methods known as magic methods, which are similar to the magic
variables you encountered throughout the book. These are predefined names that allow you to override
your custom type's behavior in respect to the various standard code constructions in Python. The names
used for these special methods are part of the programming language, so you can't use arbitrary names.

CHAPTER 9 ■ CLASSES

192

Magic methods are easy to recognize, having double underscores before and after the name. Each magic
method has a specific purpose and needs to be defined in an object's class definition in order for it to
work. For example, you could manipulate your type with mathematical and comparison operators or
make it imitate the behavior of an integer or list. This is Python's approach to a technique called
operator overloading, which plays a major role in polymorphism.

If you want to emulate the methods of a built-in type, it is important that the methods make sense
for the object being modeled. For example, some sequences might work well with retrieval of individual
elements, but extracting a slice might be meaningless.

Constructors

The first special method to be used in most class definitions will be the object. init (self[, ...])
method. This method is called immediately after the object has been created. The one special constraint
on constructors is that no value may be returned; doing so will result in a TypeError. The entire function
of a constructor is to set up the new object, so a return value would be meaningless anyway. My base
class Thing has a method called setValues(), which sets up a bunch of internal attributes and returns no
value. This process is known as initialization, and it can be easily converted into a constructor method.

class Thing:
 def init (self, price, strength, speed):
 self.price = price
 self.strength = strength
 self.speed = speed

Now, new objects of type Thing can be created with a single instruction that passes it the three

required arguments.

box = Thing(0, 0, 0)

How cool is that?
Now, I want my Weapon subclass to be set up slightly differently so I need to create an init ()

method for that as well. In the previous example, Weapon had its own setValues() method that overrides
the method set on its parent object, but this involves rather a lot of repetitive code. It would be much
better if I could call the init () method of the superclass Thing and then add the one line that needs
to be different.

class Weapon(Thing):
 def init (self, price, strength, speed):
 Thing. init (self, price, strength, speed)
 self.damage = strength

Notice that I need to pass the same arguments to Thing. init (). Calling a special method like

this, directly referencing its name with double underscores, is called referencing an unbound method.
There is an alternative method super(), which is preferred. The super() function is smarter than calling
an unbound method and usually does the right thing when dealing with unusual situations such as
inheritance from multiple superclasses. Note that self is not included in the arguments to init ().

CHAPTER 9 ■ CLASSES

193

class Weapon(Thing):
 def init (self, price, strength, speed):
 super(). init (price, strength, speed)
 self.damage = strength

Now I can make Weapons with a single instruction too.

axe = Weapon(75, 60, 50)

Customizing Output

In a similar way, it is possible to automate a class's output format. The str(object) and print(object)
functions both look for a special method called object. str (self) to compute the informal string
representation of an object. This method must return a string object. Thing.printValues(self) could
easily be converted for this purpose.

 def str (self):
 stats = """\tPrice\tDamage\tSpeed
 {price!s}\t{damage!s}\t{speed!s}\t""".format(**vars(self))
 return stats

I am using the vars() function to send the Thing object's internal dictionary of values to the

string.format() method.
The official string representation of an object is created by object. repr (self), which is called

by the built-in repr() function. This should look like a valid Python expression that could be used to re-
create an object with the same value; if this is not possible a string containing some useful value should
be returned. The return value in either case must be a string object. If no str () method is provided
by the class, repr () may also be used for the informal representation.

 def repr (self):
 stats = 'Weapon({price!s}, {strength!s}\
, {speed!s})'.format(**vars(self))
 return stats

Once I have the Thing class set up nicely, the code in the body of the program becomes very simple.

I can create instances of the objects I need at the same time as I create an inventory dictionary.

inventory = {"box":Thing(0, 1, 0),
 "axe":Weapon(75, 60, 50),
 "shield":Armour(60, 50, 23)}

Then I can print out the entire inventory using only a few lines.

print("\n::Inventory::\n-------------")
for key, item in inventory.items():
 print(key, item, repr(item))
print()

Which gives this nicely formatted result:

CHAPTER 9 ■ CLASSES

194

::Inventory::

box Price Str Speed
 0 1 0 Thing(0, 1, 0)
shield Price Str Speed
 60 50 23 Armour(60, 50, 23)
axe Price Damage Speed
 75 60 50 Weapon(75, 60, 50)

Now we're cooking with gas!

Emulating Existing Types

Python provides a whole host of other magic methods that allow you to emulate existing types. In
rpcombat.py, I had originally implemented the Player type as a dictionary; in order to facilitate the
changeover, I wanted my new Player class to refer to its attributes via index notation, like dictionaries
do, so I wouldn't need to rewrite the whole program in order to get it to work with this new class.

In order to emulate a container type such as a list or dictionary, you need to include certain
recognizable methods, depending on how closely you want to emulate the type.

■ Tip If you want to create a type that differs only slightly from one of the standard types, it is better to subclass

that type and override the methods that you need to work differently.

In order to implement basic container-like behavior, you need to include two specific methods.

• object. len (self): This method should return the length of the object, that is the
number of items contained within the object expressed as an integer >= 0. This integer is
returned by the built-in len() function. If you don't define a bool () method or
nonzero () method, the object will return False in a Boolean context.

• object. getitem (self, key): This method should return the value corresponding to the
given key as in self[key]. For sequence types, the accepted keys should be integers and slice
objects. For a mapping you can use any type of key.

■ Note The special interpretation of negative indexes is up to the getitem () method.

I implemented both of these methods for my Thing type, as I want to be able to access items as if
using a dictionary. However, I need my Things to be immutable; once set, the values can't be changed.
My Weapon and Armour types will also inherit this behavior but it only needs to be specified once in the
parent (Thing) class.

CHAPTER 9 ■ CLASSES

195

 def len (self):
 return len(vars(self))

 def getitem (self, key):
 names = vars(self)
 try:
 item = names[key]
 except:
 item = 0
 return item

If I wanted to make a mutable type, I would need to implement another two methods:

• object. setitem (self, key, value): This method allows assignment to self[key], so
that the value can be retrieved by object. getitem ().

• object. delitem (self, key): This method allows deletion of self[key]. This is brought
into play when the del statement is used on part of an object and should delete the element
associated with that key.

Obviously, you only need to include these methods if it is appropriate to allow values to be modified
using index notation. It may be more appropriate to use accessor methods—get*() and set*()—or use
the properties() function (I'll come to that later).

My Player type needs to allow the setting of values using indexes, so I implemented setitem ()
like this.

 def setitem (self, key, value):
 self. dict [key] = value
 return

There are a few additional methods that are recommended for types that are supposed to emulate

containers. Both mappings and sequences should implement the object. iter (self) method to
allow efficient iteration through the container. This method is called when an iterator is required for a
container. It should return a new iterator object that can iterate over all the objects in the container. For
mappings, it should iterate over the keys of the container, and should also be made available as the
method keys(); for sequences, it should iterate through the values.

You should also include the object. reversed (self) method to complement it. This is called by
the built-in function reversed() to implement reverse iteration. It should return a new iterator object
that iterates over all the objects in the container in reverse order.

The membership test operators (in and not in) are normally implemented as an iteration through a
sequence. However, container objects can supply the following special method with a more efficient
implementation, which also does not require the object be a sequence.

The object. contains (self, item) method is called to implement membership test operators. It
should return True if the item is in self, False otherwise. For mapping objects, it should consider the keys of
the mapping rather than the values or the key-item pairs; for sequences, it should search through the values.

If you want to create a fully dictionary-like object, you also need to include the standard mapping
methods: keys(), values(), items(), get(), clear(), setdefault(), pop(), popitem(), copy(), and
update(). These methods should behave in a similar manner to the methods included in Python's
standard dictionary objects. Mutable sequences should provide methods append(), count(), index(),
extend(), insert(), pop(), remove(), reverse() and sort(), like Python's standard list objects.

CHAPTER 9 ■ CLASSES

196

Finally, sequence types should implement concatenation (using the addition operator +) and
repetition (using the multiplication operator *) by defining the methods add (), radd (),

iadd (), mul (), rmul () and imul (); they should not define other numerical operators. I
will explain these special numerical methods later in the chapter.

Properties

There are several different ways of accessing an object's attributes; you have already seen accessor
methods get*() and set*() being used. It is often the case that you will want to make sure additional
actions are taken, such as validation, when getting and setting values rather than assigning and
retrieving arbitrary raw data. However, the code that uses this object shouldn't need to know about the
details. This is where the property([fget][, fset][, fdel][, doc]) function comes in.

■ Note Actually it's not a function but a class, but let's not split hairs at this stage.

class Player:

 def setName(self, name):
 self. name = name.capitalize() #double underscores in front

 def getName(self):
 return self. name # double underscores in front

 name = property(getName, setName)

This allows you to use the name property as follows:
>>> player1 = Player()
>>> player1.name = 'inkon'
>>> player1.name
Inkon

The property() function automatically wraps the attribute access, so you can be sure the additional

actions (in this case capitalization) take place every time. The property function takes four optional
arguments. You can include none of these, which will make the attribute inaccessible. If you want the
attribute to be read-only, use just one argument—the get method. If you want read/write access, you
must define two arguments—get and set. The third argument is used to delete the attribute and the
fourth argument (also optional) is used to provide a docstring for the property. You can provide these as
keyword arguments if, say, you want to include a docstring in a read-only property.

CHAPTER 9 ■ CLASSES

197

Customizing Attribute Access

There may be times when it is not appropriate to use properties (if you are using old-style classes, for
instance). In such cases, the following methods can be defined to customize the meaning of attribute
access:

• object. getattr (self, name): This method is called when an attribute lookup has not
found the attribute in the usual places, where name is the attribute name. This method should
return the (computed) attribute value or raise an AttributeError exception.

• object. getattribute (self, name): This method is automatically called when the
attribute name is accessed. It does not work with older version of Python.

• object. setattr (self, name, value): This method is called when an attribute
assignment is attempted, where name is the attribute name and value is the value to be
assigned to it.

• object. delattr (self, name): This method is called when an attempt is made to delete
the attribute name.

Emulating Numeric Types

The methods listed in Table 9-2 can be defined to emulate numeric objects. I'll just give you a brief
overview here because it's a lot of information to take in all in one go. There are many more methods
available, but this is enough to get you started. Methods corresponding to operations that are not
supported by the particular kind of number implemented should be left undefined.

Table 9-2. Overloading Rich Comparison Operators

Magic Method Operation

object. lt (self, other) self < other

object. le (self, other) self <= other

object. eq (self, other) self == other

object. ne (self, other) self != other

object. gt (self, other) self > other

object. ge (self, other) self >= other

These are called rich comparison methods, and are called for comparison operators in preference to

cmp (). A rich comparison method may return the singleton NotImplemented if the method does not
implement the operation for a given pair of arguments. By convention, False and True are returned for a
successful comparison. However, these methods can return any value, so if the comparison operator is
used in a Boolean context (for example, in the condition of an if statement), Python will call bool() on
the value to determine if the result is true or false.

CHAPTER 9 ■ CLASSES

198

■ Note There are no implied relationships among the comparison operators. The truth of x==y does not imply that

x!=y is False. Therefore, you need to define all of these methods so that all forms of comparison work correctly.

• object. cmp (self, other): This method is called by comparison operations if rich
comparison is not defined. It should return a negative integer if self < other, zero if self ==
other, and a positive integer if self > other.

• object. bool (self): This is called to implement truth value testing and the built-in
operation bool(); it should return False or True. When this method is not defined, len ()
is called if it is defined, and True is returned when the length is not zero. If a class doesn't
define either len () or bool (), all its instances are considered true.

Table 9-3 shows methods that implement numerical operators.

Table 9-3. Methods Implementing Numerical Operators

Magic Method Operation

object. add (self, other) self + other

object. sub (self, other) self other

object. mul (self, other) self * other

object. div (self, other) self / other

object. floordiv (self, other) self // other

object. mod (self, other) self % other

object. divmod (self, other) self other divmod(self, other)

object. pow (self, other[, modulo]) self **
other

pow(self, other[, modulo])

object. lshift (self, other) self << other

object. rshift (self, other) self >> other

object. and (self, other) self & other

object. xor (self, other) self ^ other

object. or (self, other) self | other

CHAPTER 9 ■ CLASSES

199

If one of those methods does not support the operation with the supplied arguments, it should
return NotImplemented.

Table 9-4 shows methods that overload inclusive numerical operators.

Table 9-4. Overloading Inclusive Numerical Operators

Magic Method Operation

object. iadd (self, other) self += other

object. isub (self, other) self -= other

object. imul (self, other) self *= other

object. idiv (self, other) self /= other

object. itruediv (self, other) self /= other

object. ifloordiv (self, other) self //= other

object. imod (self, other) self %= other

object. ipow (self, other[, modulo]) self **= other

object. ilshift (self, other) self <<= other

object. irshift (self, other) self >>= other

object. iand (self, other) self &= other

object. ixor (self, other) self ^= other

object. ior (self, other) self |= other

These methods should attempt to do the operation in place (modifying self) and return the result

(which could be, but does not have to be, self). If a specific method is not defined, the augmented
operation falls back to the normal methods. Table 9-5 shows methods that overload some built-in
functions.

CHAPTER 9 ■ CLASSES

200

Table 9-5. Overloading Some Built-in Functions

Magic Method Operation

object. neg (self) -self

object. pos (self) +self

object. abs (self) abs(self)

object. invert (self) ~self

object. complex (self) complex(self)

object. int (self) int(self)

object. float (self) float(self)

object. index (self) operator.index() Must return an integer.

Application
As I started looking through the code of my little role-playing program to see what else needed
abstracting, I noticed some interesting anomalies. I had to set up the stock dictionary after the class
definitions, because it contained objects of some of those classes. It struck me that a shop could be a
kind of object, one that the players could inhabit rather than something they’d pick up and use. Taking
this thought process to its logical extreme, I figured that all my custom objects could benefit from
sharing a few attributes, so I set about designing “one class to rule them all.” I called this class
GameObject and used it to set up all the properties that a game object might need. Next, I subclassed
GameObject into Player, Thing, and Location types. Most of the code that was previously in a function
was moved. For example, generate rpc() was moved into Player. init (), allowing me to either
generate a Player from scratch or load stored details by providing a dictionary of suitable values as an
argument. The old buy equipment() function was largely moved into the Player object as
Player.buy(item), with some of the functionality moved into the Shop object. Similarly,
calc velocity() became Player.strike(target). This final stage of abstraction moves as much of the
action into self-contained objects as is practical. Where an outcome is the result of the interaction of two
objects, you must decide which object runs the code, which object will be the actor, and which will be
the recipient. If you have designed your objects well, the flow of events may be obvious. In this instance,
the Player must be able to buy, but the Shop must also be willing to sell.

Suddenly the whole dynamic of the program changes. If you study Listing 9-2, it will be apparent
that the code on the page merely sets up lots of objects and prepares them for action. The game itself
doesn't start until four lines from the end.

I standardized the Thing object to fit in with the names used on other GameObjects. Now the only
difference between Things, Weapons and Armour is that they are technically of a different type—a feature
that I made use of to filter inventory lists using the built-in issubclass() function.

Next, I filled in the details of the Location object. A game location only really needs a name, a
description, and, importantly, an inventory, which I am using to represent the location's physical

CHAPTER 9 ■ CLASSES

201

contents. In order to be able to use the in operator with my new object, I defined
Location. contains (item) so that it looks in Location.inventory to find matches; the inventory will
be treated as the object's contents for all intents and purposes. It has one additional attribute—
Location.commands, which is a dictionary of command words mapped to executable strings. I have also
included a mechanism for retrieving Locations from stored values, in case I need it in the future.

I decided that most of the in-game commands should be a function of the Location. In order to
facilitate this, I defined a few methods for the Location type. First, the Player must be able to get into the
object, so Location.enter(player) adds the Player to Location.inventory and starts up a mini
command-line. The command-line is dealt with by Location.interpret(command, player), which finds
the relevant command in Location.commands, formats it with any additional arguments, and the sends
the whole thing to exec(). (The try: ... except: statement wrapping will be covered in Chapter 10.)

It follows that all the combat commands should go in the Location too, so I moved most of the
combat section in the main body into Location.combat(), which controls the main loop, and into
Location.resolve conflict(attacker, target), which deals with the individual strokes. The
calc damage() function became Location.damage(attacker, target, velocity). Using properties
considerably simplifies item access, what was players[target]['Name'] in the previous version becomes
target.life in this one. Finally Location.exit(player) removes the Player from Location.inventory.

I created a subclass called Shop to implement some different game commands and provide a
contents list with prices. In most of its details, a shop is just like any other Location, with the sole
difference that trading may take place (and combat cannot).

The program now has only seven global functions, some of which could be further abstracted. I
added the trace(text) function as a wrapper to the print() function to provide verbose debugging
output when trace on is set to True.

The main body of the program is now wrapped up in a if name == ' main ': condition to
prevent the main body being executed when rpcombat is imported as a module. The main body only
deals with an overview of events. First, the user is prompted for a number of players and then the
locations are set up by creating two Location objects, arena and shop, which are then stocked with
values. Next the role-playing characters are generated and last of all the game begins with
arena.enter(players[0]). At this point all the code loaded into memory comes into play, and because
you are no longer limited by the order statements come in the script, the action of the game can proceed
in any order (well, in theory at least). The limitation now is simply the commands that are recognized by
the game Location's mini command-line.

Listing 9-2. rpcombat-0.6.py

#! /usr/bin/env python
-*- coding: UTF8 -*-

"""RPCombat: Simple Role-Playing Combat Game.

Usage: rpcombat.py
First you are prompted to enter the number of players you want and then you
are taken through character generation where you get the chance to equip your
character with a suitable weapon at our fabulous Emporium.
Available commands: *look*, *buy <item>*
The characters then engage in hand-to-hand combat in the arena until one is
victorious!
Available commands: *look*, *attack*, *say*
Target System: GNU/Linux
Interface: Command-line

CHAPTER 9 ■ CLASSES

202

Functional Requirements: The user must be able to generate more than one
 character profile, equip those characters with suitable weapons,
 and model hand-to-hand combat between characters.
Testing methods: trace table and play testing.
Expected results: All statistics should be integers in the (1-99) range.
 Apart from that, this script needs play-testing.
Limitations: Too many to mention.
"""

version = 0.6
maintainer = "maintainer@website.com"
status = "Prototype"
date = "16-12-2008"

Import modules

import random
import time

Preferences

Boilerplate = """
<==|#|==\@@@@/==|#|==>
 Cloud Cuckoo Land
 A simple role-playing game
 version: {0!s}
<==|#|==\@@@@/==|#|==>
""".format(version)

Set to 'True' to trace variables.
trace on = False

Set amount of delay between combat strikes
Higher numbers make combat slower
drag = 23

Create players list
players = []

Constants
armour types = set(['shield','cuirass','armour'])
hits = ('hits','bashes','smites','whacks',
 'shreds','stabs','mutilates','lunges at','slashes', 'lacerates',
 'carves up','wipes the floor using')
misses = ('misses', 'nearly hits', 'tickles', 'fumbles', 'fails to connect with',
 'swipes wildly at', 'flails ineffectually at', 'gets nowhere near',
 'hurts themself badly as a result of gross stupidity',
 'nearly decapitates themself instead of',
 'hits themself on the foot, to the amusement of')
damage report = ('a small insult', 'a flesh wound', 'a deep gouge',
 'ragged tearing of skin', 'blood to spurt everywhere',

CHAPTER 9 ■ CLASSES

203

 'massive head injuries','savage laceration',
 'a fractured rib-cage','facial mutilation','the skull to split in two')
life changing = ('a scar.','internal bruising.','serious blood-loss.',
 'other debilitating injuries.', 'chronic concussion.',
 'leaving a severed limb dangling at a horrible angle.',
 'multiple fractures.','a broken neck.',
 'the rupturing of internal organs.','a decisive mortal blow.')

class GameObject:
 """Generic Game Object

 One class to rule them all.
 The class sets up the properties which are available to all GameObject
 sub-classes. It has no methods of its own. The idea is that the other
 game objects, Players, Things and Locations are all sub-classes of
 GameObject; features shared by all GameObjects should go here.
 Text properties: name, desc, gender and race.
 Base stats: strength, brainz, speed and charm.
 Derived stats: life, magic, prot and gold.
 Plus an inventory list.
 """

 def setName(self, name):
 self. name = name.title()

 def getName(self):
 return self. name

 name = property(getName, setName)

 def setDesc(self, desc):
 self. desc = desc.capitalize()

 def getDesc(self):
 return self. desc

 desc = property(getDesc, setDesc)

 def setGender(self, gender):
 gender = gender.lower()
 if gender.startswith('f'):
 self. gender = 'female'
 elif gender.startswith('m'):
 self. gender = 'male'
 else:
 self. gender = 'neuter'

 def getGender(self):
 return self. gender

 gender = property(getGender, setGender)

CHAPTER 9 ■ CLASSES

204

 def setRace(self, race):
 race = race.capitalize()
 if race.startswith('P'):
 self. race = 'Pixie'
 elif race.startswith('V'):
 self. race = 'Vulcan'
 elif race.startswith('G'):
 self. race = 'Gelfling'
 elif race.startswith('T'):
 self. race = 'Troll'
 else:
 self. race = 'Goblin'

 def getRace(self):
 return self. race

 race = property(getRace, setRace)

 def setStrength(self):
 self. strength = roll(33,3)

 def getStrength(self):
 return self. strength

 strength = property(getStrength)

 def setBrainz(self):
 self. brainz = roll(33,3)

 def getBrainz(self):
 return self. brainz

 brainz = property(getBrainz)

 def setSpeed(self):
 self. speed = roll(33,3)

 def getSpeed(self):
 return self. speed

 speed = property(getSpeed)

 def setCharm(self):
 self. charm = roll(33,3)

 def getCharm(self):
 return self. charm

 charm = property(getCharm)

 def setLife(self, value):

CHAPTER 9 ■ CLASSES

205

 self. life = int(value)

 def getLife(self):
 return self. life

 life = property(getLife, setLife)

 def setMagic(self, value):
 self. magic = int(value)

 def getMagic(self):
 return self. magic

 magic = property(getMagic, setMagic)

 def setProt(self, value):
 self. prot = int(value)

 def getProt(self):
 return self. prot

 prot = property(getProt, setProt)

 def setGold(self, value):
 self. gold = int(value)

 def getGold(self):
 return self. gold

 gold = property(getGold, setGold)

 def setInv(self, contents):
 self.inv = contents

 def getInv(self):
 return self.inv

 def strInv(self):
 flatlist = [str(item) for item in self.inv]
 text = join with and(flatlist)
 return text

 inventory = property(getInv, setInv)

class Player(GameObject):
 """Role-Playing Character

CHAPTER 9 ■ CLASSES

206

 Takes an optional dictionary as an argument.
 The dictionary must contain the output of repr(Player)
 Player([dict]), if dict is not provided, the Player will self-generate,
 prompting for name, desc, gender and race.
 Player has two methods:
 Player.buy(purchase)
 Player.strike(target)
 """

 def init (self, store = {}):
 if store == {}:
 print("\nNew Character\n")

 # Prompt user for user-defined information (Name, Desc,
 # Gender, Race)
 name = input('What is your name? ')
 desc = input('Describe yourself: ')
 gender = input('What Gender are you? (male/female/unsure): ')
 race = input('Race? (Pixie/Vulcan/Gelfling/Troll): ')

 # Set game statistics
 self.setName(name)
 self.setDesc(desc)
 self.setGender(gender)
 self.setRace(race)
 self.setStrength()
 self.setBrainz()
 self.setSpeed()
 self.setCharm()

 # Calculate derived statistics
 self. life = int((self.strength + (self.speed / 2) + \
 roll(49,1))/2)
 if 0 < self. life < 100:
 pass
 else:
 self. life = int(roll(33,3))
 self. magic = int((self.brainz + (self.charm / 2) + roll(49,1))/2)
 if 0 < self. magic < 100:
 pass
 else:
 self. magic = int(roll(33,3))
 self. prot = int((self.speed + (self.brainz / 2) + roll(49,1))/2)
 if 0 < self. prot < 100:
 pass
 else:
 self. prot = int(roll(33,3))
 self. gold = int(roll(40,4))
 self.setInv([])

CHAPTER 9 ■ CLASSES

207

 # Equip player if the inventory is empty
 shopping = self.inventory == [] if shopping:
 # Display shop stock list with prices in gold.
 print("You have", self.gold, "gold.")
 shop.enter(self)
 handbag = join with and(self.inventory)
 print("You own a", handbag)

 # Choose a weapon
 print(self.name + ", prepare for mortal combat!!!")
 # See if player has any weapons
 available weapons = [item for item in self.inventory
 if \
 issubclass(type(item), Weapon)]
 available weapons.append(Weapon('Fist', 0, 20, 50))
 self.weapon = available weapons[0]

 # See if player has any armor
 available armour = [item for item in self.inventory
 if \
 issubclass(type(item), Armour)]
 available armour.append(Armour('None', 0, 0, 50))
 self.armour = available armour[0]

 else:
 # Load character from stored value.
 self. dict = store

 print(self.name, "is now ready for battle. ")

 def repr (self):
 # Output class constructor string.
 stats = 'Player({0!s})'.format(vars(self))
 return stats

 def str (self):
 # Output the character sheet.
 rpcharacter sheet = """
 <~~==|#|==~~++**\@/**++~~==|#|==~~>
 { name!s}
 { race!s}, { gender!s}
 { desc!s}
 <~~==|#|==~~++**\@/**++~~==|#|==~~>
 Strength: { strength: <2} life: { life: <3}
 Brainz: { brainz: <2} magic: { magic: <3}
 Speed: { speed: <2} protection: { prot: <3}
 Charm: { charm: <2} gold: { gold: >7}
 <~~==|#|==~~++**\@/**++~~==|#|==~~>
 ::Equipment::
 {0!s}
 """.format(self.strInv(), **vars(self))
 return rpcharacter sheet

CHAPTER 9 ■ CLASSES

208

 def len (self):
 # Return the number of attributes
 return len(vars(self))

 def getitem (self, key):
 # Retrieve values by index
 names = vars(self)
 item = names[key]
 return item

 def setitem (self, key, value):
 # Set values by index
 self. dict [key] = value
 return

 def buy(self, purchase):
 """ Buy item

 If the item is in the shop and the player has enough gold, buy it.
 Takes one argument, purchase, which is the name of the item you want
 to buy.
 """
 items = [item for item in shop.inventory
 if issubclass(type(item), Thing) and \
 item.name == purchase.capitalize()]
 if items == []:
 print("We don't have a", purchase, "for sale.")
 elif 0 < items[0].gold <= self.gold:
 item = items[0]
 msg = fix gender(self.gender, self.name + " buys themself \
 some equipment")
 print(msg)
 print("You buy a", purchase, "for",item.gold, "gold pieces.")
 self.gold -= item.gold
 self.inventory.append(item)
 print("You have a", self.strInv(), "in your bag.")
 print("You have", self.gold, "gold left.")
 else:
 print("You don't have enough gold to buy that.")
 return purchase

 def strike(self, target):
 """Calculate velocity of hit (or miss)

 Takes one argument:
 target is another Player object
 This method looks up values from the players
 and returns a weighted semi-random integer
 representing the velocity of the strike.
 """
 weapon = self.weapon

CHAPTER 9 ■ CLASSES

209

 armour = target.armour
 attack chance = roll(99)
 attack velocity = self.speed + weapon.speed + attack chance
 target velocity = target.prot + armour.speed + roll(target.brainz)
 velocity = (attack velocity - target velocity)
 return int(velocity)

class Thing(GameObject):
 """Tools and Treasure

 Takes four mandatory arguments:
 Thing(name, gold, strength, speed)
 where name is a string and gold, strength speed are integers between 0-99.
 Things are largely immutable and have no public methods.
 Attributes may be retrieved using index notation.
 """

 def setStrength(self, value):
 self. strength = value

 def getStrength(self):
 return self. strength

 strength = property(getStrength)

 def setSpeed(self, value):
 self. speed = value

 def getSpeed(self):
 return self. speed

 speed = property(getSpeed)

 def init (self, name, gold, strength, speed):
 self.setGold(gold)
 self.setStrength(strength)
 self.setSpeed(speed)
 self.setName(name)
 self.setDesc('')

 def str (self):
 return str(self.name)

 def repr (self):
 stats = 'Thing({ name!r}, { gold!s}, { strength!s} \
 , { speed!s})'.format(**vars(self))
 return stats

 def len (self):
 return len(vars(self))

CHAPTER 9 ■ CLASSES

210

 def getitem (self, key):
 names = vars(self)
 try:
 item = names[key]
 except:
 item = 0
 return item

class Weapon(Thing):
 """Weapon - subclass of Thing"""

 def repr (self):
 stats = 'Weapon({ name!r}, { gold!s}, { strength!s} \
 , { speed!s})'.format(**vars(self))
 return stats

class Armour(Thing):
 """Armour - subclass of Thing"""

 def repr (self):
 stats = 'Armour({ name!r}, { gold!s}, { strength!s} \
 , { speed!s})'.format(**vars(self))
 return stats

class Location(GameObject):
 """Game Location

 Takes two optional arguments, either:
 Location([name]) - which creates a new location called *name*.
 Location([dict]) - which loads a stored location from a dictionary
 Locations provide the environment in which game-play can occur.
 Locations have several public methods:
 Location.enter(player) - adds player to location and provides prommpt.
 Location.interpret(command, player) - executes in-game commands.
 Location.combat() - initializes comabt sequence.
 Location.resolve conflict(attacker, target) - resolves comabt rounds.
 Location.exit(player) - removes player from location.
 """

 def init (self, name = 'Somewhere', store = {}):
 if store == {}:
 self. name = name.capitalize()
 self. desc = "It looks like a building site, nothing to see."
 self.setInv([])
 self.commands = {'look':'print({0!s})',
 'attack':'self.combat()',
 'say':'print(me.name, \
 "says", {0!r})'}
 else:
 self. dict = store

CHAPTER 9 ■ CLASSES

211

 def str (self):
 rpcs = [item.name for item in self.inv if issubclass(type(item), \
 Player)]
 stuff = [str(item) for item in self.inv if issubclass(type(item), Thing)]
 view = """
<==|#|==\{ name!s}/==|#|==>
 { desc!s}
 Contents:
 {0!s}
 Players:
 {1!s}
<==|#|==\@@@@/==|#|==>
 """.format(join with and(stuff), join with and(rpcs), **vars(self))
 return view

 def repr (self):
 # Output class constructor string.
 stats = 'Location({0!s})'.format(vars(self))
 return stats

 def contains (self, item):
 # *in* checks contents of inventory
 # Can match against strings or Things (ie. GameObjects)
 objects = [str(i) for i in self.inv]
 if item in self.inv:
 return True
 elif item in objects:
 return True
 else:
 return False

 def interpret(self, command, player):
 """Game Command interpreter

 Takes two arguments:
 command - the command string
 player - a player object
 Executes the command string by retrieving string from
 self.commands, formatting it and sending to exec().
 It returns no value.
 Note: There are probably more secure ways of doing this. ;-)
 """
 here = self
 me = player
 command list = command.split()
 if command != '' and command list[0] in self.commands:
 command = self.commands[command list[0]]
 if len(command list) > 1:
 command = command.format(' '.\
 join(command list[1:]),target = player)
 else:

CHAPTER 9 ■ CLASSES

212

 command = command.format('self', \
 target = player)
 trace("Command:", command)
 try:
 exec(command)
 except:
 print("No can do.")
 return

 def enter(self, player):
 """Commands run when the player enters a location

 Takes a player object as an argument.
 Adds Player to the location's inventory
 Provides a command-line prompt until 'exit' is called.
 No return value.
 """
 command = 'enter'
 self.inventory.append(player.name)
 print(self)
 print("You enter the", self.name)
 while command != 'exit':
 command = input(":-> ")
 self.interpret(command, player)
 self.exit(player)
 return

 def damage(self, attacker, target, velocity):
 """Calculate the damage of the hit

 Takes three arguments:
 attacker and target are Player objects
 velocity is an integer representing the velocity of the strike.
 Returns a tuple of two integers - damage and potential damage
 """
 attack strength = int(attacker.strength)
 weapon damage = int(attacker['weapon'].strength)
 attack damage = attack strength + weapon damage + int(velocity) - roll(172)
 target strength = int(target.strength)
 armour strength = int(target['armour'].strength)
 target chance = roll(int(target.brainz) * 3)
 target defence = target strength + armour strength + target chance
 potential damage = int((attack damage - target defence) * 0.3)
 if potential damage < 1:
 potential damage = 2
 damage = random.randint(1,potential damage)
 return int(damage), int(potential damage)

 def resolve conflict(self, attacker, target):
 """Conflict Resolution

CHAPTER 9 ■ CLASSES

213

 Takes two Player objects as arguments, relating to the *attacker* and *target*.
 Calculates velocity, hit or miss, calculates and inflicts appropriate damage.
 Prints out a commentary on the action to the world.
 Returns True if the blow resulted in fatality, False if the blow misses.
 """
 life left = target.life
 # Calculate velocity of blow
 velocity = attacker.strike(target)

 if velocity > 0:
 size = len(hits) - 1
 # Print sutable Hit message
 if velocity > self. vel max:
 self. vel max = velocity
 hit type = int(size * velocity / self. vel max)
 if hit type > size:
 hit type = size
 strike msg = ''.join(['#', str(hit type)])
 print(attacker.name, hits[hit type], \
 target.name, end=' ')
 else:
 size = len(misses) - 1
 # Print suitable Miss message
 if velocity < self. vel min:
 self. vel min = velocity
 miss type = int(size * velocity / self. vel max)
 if miss type > size:
 miss type = roll(7)
 if miss type < 0:
 miss type = roll(7) - 1
 strike msg = ''.join(['@', str(miss type)])
 print(attacker.name, \
 fix gender(attacker.gender,\
 misses[miss type]), \
 target.name)
 # End player turn
 return False

 # Calculate damage inflicted by blow
 damage, potential damage = self.damage(attacker, target, velocity)

 if damage > self. dam max:
 self. dam max = damage
 elif damage < self. dam min:
 self. dam min = damage
 # Print damage report
 size = len(damage report) - 1
 damage type = int(size * damage / self. dam max)
 if damage type > size:
 damage type = size
 elif damage type < 0:

CHAPTER 9 ■ CLASSES

214

 damage type = 0

 size = len(life changing) - 1
 change type = int(size * damage / life left)
 if change type > size:
 change type = size
 elif change type < 0:
 change type = 0
 outstring = ' '.join(["with their", attacker['weapon'].name.lower(), \
 "causing", \
 damage report[damage type], \
 "and", \
 life changing[change type]])
 output = fix gender(attacker.gender, outstring)
 print(output)
 trace("""vel[{0}] :: hit[{1}] :: dam[{2}/{3}] :: type[#{4}] :: change[#{5}]
 """.format(velocity, strike msg, damage, potential damage, damage type, \
 change type))

 # Inflict damage on target.
 target.life -= damage
 # Pause slightly to stop this all scrolling past too fast.
 gap = +(drag / velocity)
 time.sleep(gap)
 # Check whether target is still alive or not.
 if target.life <= 0:
 # Print loser
 print('\n', target.name, "collapses in a pool of blood", '\n')
 # End this round of combat immediately.
 return True

 def combat(self):
 """Initialize combat sequence

 Takes no arguments. Creates a list of matches, iterating through them
 until one Player is victorious. Returns False if no victory is achieved.
 """
 print('\n', "Let the combat begin!", '\n')
 self. vel max = self. dam max = 23
 self. vel min = self. dam min = 1
 # Loop while more than one player is still alive
 players = [item for item in self.inventory
 if issubclass(type(item), \
 Player)]
 miss counter = 0
 while len(players) > 1:
 # Seed random generator
 random.seed()
 random.shuffle(players)
 # create list of matches using ziply function
 matches = ziply(list(range(0,len(players))))

CHAPTER 9 ■ CLASSES

215

 trace("Matches:", matches)
 for attack, targ in matches:
 winner = self.resolve conflict(players[attack],\
 players[targ])
 if winner == False:
 miss counter += 1
 if miss counter > 6:
 print("\n",\
 players[attack].name, "and", players[targ].name, "declare
a truce.\n")
 return False
 elif winner:
 # Remove loser from players list
 del players[targ]
 self.inventory = players
 break
 else:
 miss counter = 0
 # Print winner
 trace("Winner:", players[0])
 print(players[0].name, "is victorious!")
 trace("""max damage | velocity
 {0} | {1}
 {2} | {3}
 """.format(self. dam max, self. vel max, self. dam min, self. vel min))
 return

 def exit(self, player):
 """Commands run when a player exits a Location

 Takes one argument - a Player object.
 Removes Player from Location's inventory.
 If the player in question is Dead, gives 'Game Over' message.
 Doesn't return anything either.
 """
 if player.name in self.inventory:
 self.inventory.remove(player.name)
 print("You leave the", self.name)
 else:
 print("Game Over")
 return

class Shop(Location):
 """Sub-class of Location, which allows trading.

 Same as Location but Shop.commands allows different game commands.
 The str() output is different to allow a price-list to be displayed.
 """

 def init (self, name = 'Somewhere', store = {}):
 super(). init (name, store)

CHAPTER 9 ■ CLASSES

216

 self.commands = {'look':'print({0!s})',
 'buy':'player.buy("{0}")'}

 def str (self):
 stock list = [" {0!s:10}{1: >3}".format(item, item.gold)
 for item in self.inventory
 if issubclass(type(item),\
 Thing)]
 view = """
<==|#|==\{ name!s}/==|#|==>
 { desc!s}
 Stock List:
{0!s}
<==|#|==\@@@@/==|#|==>
 """.format('\n'.join(stock list), **vars(self))
 return view

def trace(*text):
 """Verbose output for trouble-shooting purposes

 Takes same arguments as print()
 """
 if trace on:
 print(" <<-::", *text)
 return

def join with and(sequence):
 """Join up a list with commas and 'and' between last two items

 Takes a sequence and returns a sentence.
 """
 # Make sure all the list items are in string format.
 sequence = [str(item) for item in sequence]
 if len(sequence) > 1:
 last item = sequence[-1]
 sentence = ", ".join(sequence[:-1])
 sentence = sentence + " and " + last item
 elif len(sequence) < 1:
 sentence = "whole lot of nothing"
 else:
 sentence = sequence[0]
 return sentence

def roll(sides, dice = 1):
 """Dice rolling simulator

 sides: Number of sides the die has
 dice: number of dice to be rolled (defaults to 1)
 Returns a random number between dice and dice * sides
 weighted towards the average.
 """

CHAPTER 9 ■ CLASSES

217

 result = 0
 for rolls in range(1,dice):
 result += random.randint(1,sides)
 return result

def ziply(seq=None):
 """Create a matrix of matches from a sequence

 Takes one argument seq, which should be a sequence of length > 1
 Returns a tuple of tuples - matches.
 """
 opponents = list(seq[:])
 opponents.reverse()
 matches = [(actor, target) for target in opponents
 for actor in seq
 if target != actor]
 random.shuffle(matches)
 return tuple(matches)

def fix gender(gender, phrase):
 """Replace the word 'them' with gender-specific pronoun

 Takes two arguments:
 gender - a string which can be 'male', 'female' or something else.
 phrase - the string to be modified.
 Returns a string with non-gender specific pronouns replaced by
 gender specific ones.
 """
 if gender == 'female':
 phrase = phrase.replace('them','her')
 phrase = phrase.replace('their','her')
 phrase = phrase.replace('themself','herself')
 elif gender == 'male':
 phrase = phrase.replace('them','him')
 phrase = phrase.replace('their','his')
 phrase = phrase.replace('themself','himself')
 else:
 phrase = phrase.replace('them','it')
 phrase = phrase.replace('their','its')
 phrase = phrase.replace('themself','itself')
 return phrase

def write out(players):
 """Save Players

 Write Player stats out to file."""
 print("Saving character sheets")
 data file = open('rpcharacters.rpg', 'w')
 lines = []
 for player in players:
 lines.append(repr(player) + '\n')

CHAPTER 9 ■ CLASSES

218

 data file.writelines(lines)
 data file.close
 return

def read in():
 """Open Players

 Read in Player stats from file."""
 print("Reading in data")
 data file = open('rpcharacters.rpg')
 for line in data file:
 player = eval(line)
 players.append(player)
 data file.close()
 trace("Data:", players)
 return

The main body of the program starts here,

if name == ' main ':
 print(Boilerplate)

 # Prompt to set number of players
 reply = input('How many players?: ') or 2
 max players = int(reply)

 # Set up locations
 arena = Location('Main Arena')
 arena.desc = """Welcome to Cloud Cuckoo Land,
 this is where all the action takes place. You can type
 look here if you want to look around;
 say stuff if you want or just type
 attack if you want to fight and
 exit when you want to quit.
"""
 arena.inventory = []
 shop = Shop('The Emporium')
 shop.desc = """Welcome to your friendly local equipment store!
 You can *buy* something if you want or type
 look to see the Stock List or
 look me to check your stats and
 exit when you want to quit.
"""
 shop.inventory = [Armour('shield',15,25,50),
 Weapon('sword',60,60,50),
 Weapon('dagger',25,40,60),
 Weapon('halberd',80,75,40),
 Weapon('club',15,40,40),
 Weapon('flail',50,60,55),

CHAPTER 9 ■ CLASSES

219

 Weapon('hammer',99,100,40),
 Armour('cuirass',30,50,20),
 Armour('armour',101,100,0),
 Thing('lantern',10,5,30),
 Thing('pole',10,5,50),
 Thing('rope',10,5,70),
 Thing('box',5,1,90)]

 # Set up players
 read in()
 if len(players) > max players:
 players = players[:max players]
 while len(players) < max players:
 profile = Player()
 # Add new player to list of players
 players.append(profile)
 write out(players)

 # Start the game
 # by placing the players in the combat arena
 arena.inventory = players
 arena.enter(players[0])
 del reply

 # That's all folks!!!

You may notice that the mini command-line has a few quirks. The way I have done it allows the

execution of arbitrary strings, which is not good. The structure of the code means that you can easily add
new Locations, Things, and Players, creating your own adventures. In fact, you could short-circuit the
entire setup by putting import rpcombat at the beginning of a new file and designing your adventure
from scratch. You'll find out more about modules in Chapter 11. Obviously, there is still room for
improvement and plenty of scope for designing your own games. This has been a very condensed taste
of what is possible using classes.

Jargon Busting
Here is some further explanation of the terms presented in this chapter:

• accessor: A method that allows the getting or setting of an attribute.

• attribute: A value associated with an object that is referenced by name using
dotted expressions.

• block: A block is a section of the text of a Python program that is executed as a
unit. Modules, function bodies, and class definitions are all considered to be
blocks, as is each command you type in the interactive interpreter.

• class: A template for creating your own data types, which bundles up several
related pieces of data and defines a bunch of methods for accessing and
manipulating that data. An instance of a class is called an object.

CHAPTER 9 ■ CLASSES

220

• encapsulation: The grouping together of data and functionality, which allows the
implementation details to be hidden behind an interface.

• inheritance: A way to form new classes using classes that have already been
defined.

• initialization: The process of setting the initial value of an object. Initialization is
done only once for each object when that object is created.

• instance: An object created from a (class) definition.

• interface: A set of instructions that an object provides to allow outside control of
its contents.

• method: A function that is defined inside a class body. If called as an attribute of
an instance of that class, the method will get the instance object as its first
argument (which is usually called self).

• namespace: A container that provides a context for names, allowing the same
name to be used in different subprocedures without causing confusion. In Python,
modules, classes, functions, and methods all form namespaces.

• parent: A class (or node of a tree data structure) that passes on its attributes and
methods to one or more child classes.

• polymorphism: A feature that allows values of different data types to be handled
using a uniform interface.

• state: A unique configuration of information in an object.

Summary
You have covered most of Python's main coding constructs now and have started on the path of object-
oriented programming. You have learned about concepts with brash new names like polymorphism,
inheritance, and encapsulation. You have grasped the basic usage of attributes, methods, and their
related properties. Now you are happily creating subclasses and overloading operators using magic
methods. If I have done my work well, you will also understand the meanings of all these terms. The last
remaining constructions you really need to know are the ones involved in handling Errors and
Exceptions. You saw an example of a try: ... except: construction already in Listing 9-2. Chapter 10
will fill in the details.

Beyond that, the power of Python lies in its sprawling standard library. The remaining chapters of
this book will give you insight into the functions and classes contained in some of the more commonly
used modules.

C H A P T E R 10

■ ■ ■

221

Exceptions

Things rarely go quite as expected, particularly in the realm of programming. An exception is what
happens when Python encounters an error that would make it impossible or dangerous to continue
executing the code. As you have already seen, dealing with errors is an integral part of the discipline of
programming. In this chapter, you will be learning how to handle exceptions as and when they happen
using try...except statements. I will introduce you to the different exception objects and the way they
are organized and created and show you how to access the properties of the raised exception and then
log the output. You will discover how to make proper use of tracebacks and how to create your own
exception classes to cover the specific needs of your programs. Later in this chapter, you’ll find out how
to handle more complex errors and grok the art of exception chaining. Finally, I’ll deal with cleaning up
after the error, so the program can continue to run smoothly.

When Something Goes Wrong
Only the simplest programs are guaranteed to always behave exactly as expected. The hello world.py
script in Chapter 2, when run, will always echo the text that the user types in, and the programmer can
tell just by looking at the script that, if it runs successfully once, it will do so every time.

As programs get bigger and more complex, their behavior becomes harder to predict. For example, a
program might have a configuration file: what happens if that file contains settings that are unsuitable or
if the file doesn’t exist at all? Almost certainly, programs will use input data that will change over time:
what if the data is corrupted or somehow unusable? And what if another system resource, for example, a
network connection needed to contact a remote web service to obtain additional data, is unavailable?
Worse, what if any number of these abnormal events occur in some method that you use many times
throughout your code? Sometimes, you simply don’t care about the error but other times you do: how
can your program handle errors intelligently in this scenario?

While any specific abnormal or exceptional event can be catered for by tedious extra coding by the
programmer, the ideas of exceptions and exception handling are implemented in many languages to
make such procedures convenient, safe, and maintainable across all the programs you might care to
write. Python’s exception handling, which we explore in this chapter, is intended to be sufficiently
simple, and fast, that you should rarely if ever need to handle errors in any other way.

CHAPTER 10 ■ EXCEPTIONS

222

Handling Simple Exceptions

Let’s begin with one of the most basic errors that a program can encounter: trying to divide a number by
zero. You’ll see how Python’s own exception handling deals with the problem and how it can be used in
quite subtle ways to turn a simple error into intelligent reporting and management.

In interactive mode, type the following, and press Enter to see the result:

>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: int division or modulo by zero

You’ve seen this sort of error report before while experimenting with Python. In fact, the report

you’re reading is the final stage in a procedure that Python has already gone through to try to handle the
underlying problem. Let’s look at that procedure in more detail.

As in written arithmetic, the division operator takes two arguments, a dividend to the left and a
divisor to the right. The operation is quite simple, but the operator has a number of checks built into it;
for example, both of its arguments must be numeric, and the divisor must be nonzero. Usually, these
conditions are expected to be satisfied. However, the operator itself has no way of recovering when one
of these checks fails. The operator instead falls back on Python’s standard method of dealing with
exceptional circumstances, exceptions.

If the divisor is zero, the operator causes an exception object of class ZeroDivisionError to be
created. We then say that this exception is raised by the operator (or by the attempted operation). This
can be taken to mean “raising” in the sense of discussing a problem at work with your boss and, more
widely, in the sense of a problem passing up through a chain of command. When function A calls
function B, and function B includes a division by zero, the division operator raises the exception within
function B. And if function B doesn’t know how to handle the exception, it raises the exception with
function A.

Ultimately in our example, the exception is raised with the interactive mode, which doesn’t know
how to handle the circumstances and must therefore raise the exception with you, the programmer. This
needs to be done in a human-readable way, which results in the error report. This is usually called a
traceback, which we’ll discuss in more detail later.

Some programming languages talk of throwing and catching exceptions rather than raising them:
the division operator throws an exception up to function B; if function B doesn’t catch that exception, it
carries on to function A. This is just another metaphor for the same underlying process. In this book,
we’ll use Python’s terminology instead.

Using the try Statement with an except Clause in Python

If the exception is created deep in a program (e.g., within a method), it can be caught and dealt with in
between the original error and the program’s output. Python’s try statement is used to deal with
exceptions, and in its most basic form, it can be used as shown in Listing 10-1.

Listing 10-1. The Basic Structure of the try Statement

try:
 # Something that might cause an exception!
 r = dangerous method(a, b, c)

CHAPTER 10 ■ EXCEPTIONS

223

except SomeSpecificTypeOfError as e:
 # A particular class of errors we might expect
 r = something else(a, b, c)

except:
 # Catch all other errors, regardless of their classes
 r = something else again(a, b, c)

To demonstrate this in action, let’s create two methods to do division for us: one of these will be

able to handle a ZeroDivisionError; the other will not. Run the code in Listing 10-2; you can paste it
straight into the interactive prompt, or save it to a file called basic handling.py and run it.

Listing 10-2. Testing Division Methods with Basic Exception Handling

Method without exception handling
def divide by(x, y):
 return x / y

Method with exception handling
def divide by safe inaccurate(x, y):
 try:
 return divide by(x, y)
 except ZeroDivisionError:
 return 10000000000000000

print("Safe 3 / 2 = {0:g}".format(divide by safe inaccurate(3, 2)))
print("Unsafe 3 / 2 = {0:g}".format(divide by(3, 2)))
print("Safe 3 / 0 = {0:g}".format(divide by safe inaccurate(3, 0)))

print("Unsafe 3 / 0 = {0:g}".format(divide by(3, 0)))

Listing 10-2 will produce the following output:

Safe 3 / 2 = 1.5
Unsafe 3 / 2 = 1.5
Safe 3 / 0 = 1e16
Traceback (most recent call last):
 File "basic handling.py", line 15, in <module>
 print("Unsafe 3 / 0 = {0:g}".format(divide by(3, 0)))
 File "basic handling.py", line 3, in divide by
 return x / y
ZeroDivisionError: int division or modulo by zero

In Listing 10-2, we cause the unsafe method to raise an exception only at the very end: the program
terminates at the first uncaught exception. If there were any code after the exception is raised, it
wouldn't be run. It’s important to remember that exceptions are created within both divide by() and
divide by safe(), when the division operator “notices” that its second argument is zero. But the

CHAPTER 10 ■ EXCEPTIONS

224

try...except in divide by safe inaccurate() tells the method how to handle the exception, so it is
raised no further. The error in divide by(), on the other hand, is raised by the division operator and
then by the divide by() method itself, rising into the main body of the program: then the program as a
whole finally gives up and reports to the user.

It’s also important to realize that discarding the exception and returning a result that doesn’t reflect
the inputs is not generally advisable: most programmers using your method would expect it not to return
a standard big number when the divisor is zero; in fact, they would expect an exception! So we’ll now
expand on this simple exception handling to show you how it can help you while still letting your
methods behave the way that they ought.

Classes of Exceptions
Python has many different built-in classes of exception. This means that when an exception is raised,
you can tell a lot about what has gone wrong from the exception’s class alone.

Exception objects and the hierarchy of classes
Although there are a lot of different exception classes, they’re actually all ultimately subclasses (or
subclasses of subclasses, etc.) of the BaseException class. In fact, all exceptions you might ever use in
Python must be based on this class.

Let’s raise some example exceptions and use the bases attribute of their class attribute to
investigate what classes they inherit from. In Listing 10-3, we raise a number of exceptions and handle
them by storing them in an array. We then look recursively at their superclasses until we reach the
object class, which has no superclasses. Run the code in this listing and examine the output.

Listing 10-3. Provoking and Handling Different Exceptions and Investigating Their Class Hierarchies

store = []

Create some exceptions and handle them
try: {}["foo"]
except KeyError as e: store.append(e)
try: 1 / 0
except ZeroDivisionError as e: store.append(e)
try: "".bar()
except AttributeError as e: store.append(e)

Loop over the store of errors and print out their class hierarchy
for exception object in store:
 ec = exception object. class
 print(ec. name)
 indent = " +-"
 while ec. bases :
 # Assign ec's superclass to itself and increase
 ec = ec. bases [0]
 print(indent + ec. name)
 indent = " " + indent

CHAPTER 10 ■ EXCEPTIONS

225

The script in Listing 10-3 will return results that look like this:

KeyError
 +-LookupError
 +-Exception
 +-BaseException
 +-object
ZeroDivisionError
 +-ArithmeticError
 +-Exception
 +-BaseException
 +-object
AttributeError
 +-Exception
 +-BaseException
 +-object

Here, we have traced each individual exception’s class hierarchy to the shared root of BaseException
(and object). The full hierarchy of all built-in exception classes is part of Python’s online documentation
at http://docs.python.org/3.0/library/exceptions.html, but typically, you won’t ever need this
exhaustive list of classes: either you will want to take care to catch a small number of classes, treating
each one differently, or you will want to play safe and catch all exceptions with a nonspecific except
clause.

All exception classes in Python must belong somewhere on this hierarchy. This includes any custom
exception classes that you create yourself, as explained in the next section: new exception classes must
inherit from an existing class. We’ll discuss the consequences of this hierarchy later, in the “Handling
Complex Errors” section.

Creating and Raising an Exception Object

Typically, you can rely on Python’s internal methods to raise exceptions whenever something goes
wrong in their own internals. But in order to make full use of exceptions, you will sometimes want to
raise them yourself in the depths of your program, so that the higher levels of the program will have
more detail about what has just gone wrong and will know how to deal with it.

For this, we use the raise statement. This keyword can be followed by either an exception class, for
example, TypeError, or an instance of that class, for example, TypeError('this is an error message').
It can also be invoked with no arguments inside an except clause, to reraise the exception currently
being handled. Examples of the three main syntaxes of the raise statement follow:

>>> raise KeyError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError
>>> raise KeyError('foo')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'foo'
>>> try: {}['foo']

CHAPTER 10 ■ EXCEPTIONS

226

... except KeyError as e: raise

...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'foo'

Imagine you’re thinking of placing bets on the chances of some events happening. But you’re a busy

person, so you want to write a program that takes all the bets for a given day, and a minimum likelihood
above which you’re happy to bet, and gives you your total expected winnings if you place all of those
bets. You already have two existing bits of code for keeping track of how likely it is that things might
happen: you might be controlling a complicated scientific experiment or predicting the behavior of
financial markets. However, one set uses percentages and the other uses probabilities, and you’d now
like to use them together.

You could either rewrite one or other set of the existing bits of code, or you could write two
conversion methods to go from percentage to fractional probability and back. But although generally
speaking percentages can be greater than 100 percent, fractional probabilities can’t be greater than 1. So
you might want to receive a warning if your combined program tries to convert a percentage over 100
percent into a probability.

Listing 10-4 shows a script that brings together your two lots of code and tells you how much you
will win by placing all of the odds-on bets. Save this to a file called expected gains.py—you will need to
edit it shortly—and run it.

Listing 10-4. Raising an Exception During Conversion, Where the Input Cannot Be Converted

Cut and pasted from a statistics program
def is odds on(percentage):
 """Determine whether a percentage probability is 'likely' or not"""
 return (percentage > 50)

Cut and pasted from a financial program
def expected gains(amount bet = 10, amount to win = 10, frac = 0.5):
 """For a given fractional chance of winning, and an amount bet, return
 the most likely gains"""
 return (amount to win * frac) - amount bet

Conversion methods - in both directions
def prob to perc(pr):
 """Convert a probability to a percentage"""
 return pr * 100
def perc to prob(pc):
 """Convert a percentage to a probability, but raise exception if too big"""
 if pc > 100:
 raise ValueError("Percentage {0:g}% does not give a valid
 probability".format(pc))
 return pc / 100

Execute this if the program is run directly - see Chapter 8
if name == " main ":
 # Some input data
 data = (

CHAPTER 10 ■ EXCEPTIONS

227

 # Percentage chance of winning, amount required to bet, amount you'll win
 (23,52,274,),
 (75,43,60,),
 (48,118,71,),
 (111,144,159,), # Misprint in the percentage data!
)

 # Work out how much we'd win if we only placed likely bets
 total = 0
 for bet in data:
 if is odds on(bet[0]):
 total += expected gains(bet[1], bet[2], perc to prob(bet[0]))

 print("Total gains: {0:g}".format(total))

You should find that the program raises a ValueError. This is caused by what looks like a misprint in

the data: a typographical error has added an extra one to the final percentage. Luckily, the program
spotted it, because otherwise, the program would overestimate the amount of gains to be made if you
betted on this data set.

Correct the error, and save and run the program again. You should find that, if you place just that
one odds-on bet, you’re likely to make a modest win, far less than if a 111 percent probability had been
able to sneak through!

Creating Your Own Exception Classes

You can create exception classes of your own to match the internal details of your application. This
might be because you want to subclass existing exceptions to provide your surrounding program with
more precise information. Alternatively, you might want exceptions that more closely match situations
in which your program will be used.

For an example of using very specific exceptions for a particular task, look at Listing 10-5. This
program checks your house’s security: not literally, of course, but you can inform it whether or not
you’ve left the door open and it will judge your home security accordingly, as you’ll see.

Save this to a file called home security.py: you can run it right away, but you should see a
SecurityError if you do so.

Listing 10-5. Defining and Raising Your Own Exception Classes

We need to parse a report file, so import a module to help us
import re

Our custom exceptions
class SecurityError(Exception):
 """Standard error for house security"""
 pass
class SecurityNotCertain(SecurityError):
 """Exception raised when security can't be guaranteed"""
 pass
class BuildingIntegrityError(SecurityError):
 """Exception raised when a door is open"""

CHAPTER 10 ■ EXCEPTIONS

228

 pass
class MotionDetectedError(SecurityError):
 """Exception raised when motion detected"""
 pass

def get report(file = 'report.txt'):
 """Get a report on the security status of the house"""
 # Attempt to open the report file and read in the lines
 try:
 f = open(file)
 lines = f.readlines()
 f.close()
 except IOError:
 raise SecurityError("Cannot open status file {0}".format(file))
 # For each line, trim whitespace, split it at the colon and make a dict
 return dict([re.split(":\s*", l.strip(), 1) for l in lines])

def check report(report):
 """Check a house report dict, that everything is secure"""

 to check = ("door open front", "door open rear",
 "motion in living room", "motion in kitchen", "motion in attic")

 for check in to check:
 # See if the value is what we expect for security
 try:
 if report[check] != "no":
 if check[0:9] == "door open":
 raise BuildingIntegrityError("Door open: {0}".format(check))
 elif check[0:9] == "motion in":
 raise MotionDetectedError("Motion detected: {0}".format(check))
 # If we can't find the item to check, security isn't certain!
 except (KeyError, SecurityNotCertain):
 raise SecurityNotCertain("Can't check security for {0}".format(check))

Main program - in real life this would be scheduled to run e.g. every minute
report = get report()
check report(report)

The program begins by checking for a security report in the file report.txt, and when it can’t find

this file, it raises the SecurityError you may have already seen. This file is where you can tell the
program whether or not the front or back door is open, and whether there’s any movement in any of the
rooms. Listing 10-6 is a complete report.txt, indicating a secure house: save it to the current directory
and run the program.

Listing 10-6. A Complete Security Report for Listing 10-5 to Parse

door open front: no
door open rear: no

CHAPTER 10 ■ EXCEPTIONS

229

motion in living room: no
motion in kitchen: no
motion in attic: no

With this report in place, the program should run and quit silently:

% python home security.py
%

This is what you want a burglar alarm to do if everything is OK!
In the top of Listing 10-5, we define a SecurityError exception as a subclass of Exception. However,

we then go on to define even more specific exceptions and use these to deal with different security
problems that arise. Try changing a no to a yes and running the program again, or try removing a line
from the report file altogether. You should see different classes of exception being raised depending on
what you do in the report file.

The different classes of custom exceptions are useful, because later on, you might decide that some
security problems are more important than others. For example, if you bought a cat and kept it in the
kitchen while you were out, you wouldn’t want motion detection in the kitchen to raise an exception,
and motion anywhere else in the house might just mean that your cat has got out of the kitchen! At that
point, because you’ve already used different exception classes, you can quickly rewrite your code to
handle some security problems differently from others.

Accessing Properties of the Raised Exception

Sometimes, you will want to access the details of the original exception object and not just handle them
based on their class. The object will contain, at a minimum, the readable message you see when an
exception reaches the interactive prompt, but it may also contain extra information depending on how it
was first raised. Even with the minimum, you might find it useful, if you’re doing a lot of (otherwise
silent) discarding of exceptions, to log those messages somewhere. That way, you can check your log
files if something is going wrong with your program, and perhaps notice patterns in the exceptions that
are occurring.

The script in Listing 10-7 accesses the original exception’s human-readable message. Either save it
to a file or run it from an interactive prompt to see how this works in practice.

Listing 10-7. Handling an Exception by Logging Its Message Harmlessly to the Screen

def log error(err):
 """Simple logging method: writes error's details to standard output"""
 print("LOG:: {0}: {1}".format(err. class . name , err))

KeyError: accessing a dictionary key that does not exist
try:
 d = {"foo": "bar"}
 d["quux"]
except KeyError as e:
 log error(e)

CHAPTER 10 ■ EXCEPTIONS

230

TypeError: trying to perform an operation on incompatible operands
try:
 str = "" + 5
except TypeError as ex:
 log error(ex)

NameError: referring to a variable that does not exist
(Note that neither e nor ex exist outside their "except" clauses above)
try:
 print(ex)
except NameError as exc:
 log error(exc)

Listing 10-7 prints the following message to the screen:

LOG:: KeyError: 'quux'
LOG:: TypeError: Can't convert 'int' object to str implicitly
LOG:: NameError: name 'ex' is not defined

We have been able in the preceding code to interrogate each exception object and then log its
type—its class name—and the message associated with it.

But what if we want to raise more information alongside the exception? You will see later that
Python attaches a lot of diagnostic messages to exceptions, so that they can be traced through the code
by the programmer. But there might be extra information in the exception’s original environment that,
for example, helps us clean up after it or otherwise recover from it, helps us track down the precise
problem in a configuration file, or helps us decide whether or not to ignore the error.

Along with the message, you can store extra parameters in the exception object by including them
as arguments to the Exception() constructor. The parameters are stored in the args attribute of the
object. In Listing 10-8, we store an extra parameter on the exception and access it later on during
exception handling.

Listing 10-8. Storing Extra State Information in an Exception

for ignore in (True, False):
 try:
 # Pass a second parameter into the exception constructor
 raise Exception("Ignore is {0}".format(ignore), ignore)
 except Exception as e:
 # Based on that second parameter,
 # work out if the error can be ignored or not
 if(e.args[1]):
 print("I can ignore this error!")
 else:
 print("I canNOT ignore this error!")

The preceding script produces the following results:

CHAPTER 10 ■ EXCEPTIONS

231

I can ignore this error!
I canNOT ignore this error!

Implementing Complex Error Handling

As you saw in the previous section, Python’s exception classes form a hierarchy, where the
BaseException class is the superclass of every other exception class. All Python’s core exceptions are then
created as subclasses of Exception or Warning or are nonerror-like conditions like KeyboardInterrupt.
These primitive exception classes are, in turn, all subclasses themselves of BaseException.

Why is this relevant? Well, an except clause that claims to handle an exception class will also handle
any of its subclasses. The first except that matches either the class or any of the superclasses gets to
handle the exception. So if we imagine Python’s many exception classes as giving us information to
distinguish between different errors, then the class hierarchy lets us ignore the differences between what
we might think of as similar classes of error.

Listing 10-9 gives examples of this. You should see no output from this code!

Listing 10-9. Handling Exceptions by Referring to Their Superclasses

dict = {}
try: dict['foo']
except KeyError: pass # dictionary-specific lookup problem

try: dict['bar']
except LookupError: pass # lookup problems in dictionaries, tuples and lists

try: dict['quux']
except Exception: pass # any problem, of any sort
except KeyError: raise Exception("Should have been handled by the first match")

Almost all exceptions you encounter could be handled by explicitly handling the Exception class;

similarly, any dictionary or sequence lookups can be handled with LookupError rather than explicitly
handling both KeyError and IndexError. Note again in the last example in Listing 10-9 that they are
handled by the first matching except clause found, not the closest match.

Using finally to Clean Up After a Problem

If you don’t handle an exception locally, that’s generally a signal to the rest of your program that there
might be some cleaning up to do. However, sometimes an exception can interrupt your program at such
a point that there are other unfinished tasks that are far more easily cleaned up locally, even if the
primary exception needs to be handled at a higher level.

An example is closing a file that you’ve opened in the current method. Your current method might
want to write a log to a file. If an exception is raised while the file is still open, only that method has
direct access to the file object in order to close it. Leaving the file open could cause problems much later
in your program should it try to access that potentially locked file. It’s best to be certain that the file
object will be closed, whether or not an exception is raised and whether or not it is handled.

CHAPTER 10 ■ EXCEPTIONS

232

To ensure that such operations are always carried out, you can use the finally clause. If an
exception is raised but not handled, and a finally clause exists in the try statement, the exception is put
to one side temporarily, the finally clause is executed, and the exception is raised by Python as usual. If
there’s no exception, or the exception is handled, the finally clause is still executed. You can see an
example of this in Listing 10-10. Run this code in the interactive prompt or from a file.

Listing 10-10. Doing Basic Clean Up with finally, Without Handling the Error Locally

def log data(x, y):
 """Logs some incoming data, plus their division"""
 # Try logging some data to an open file
 try:
 f = open('finally log.txt', 'a')
 f.write("{0:g} / {1:g} = {2:g}\n".format(x,y, (x/y)))
 # If there's a problem, log it, but then re-raise the error
 # Don't handle it locally
 except ZeroDivisionError:
 f.write("Error: tried to divide by zero\n")
 raise
 # Whatever happens, close the file
 finally:
 f.close()

log data(12.5,29.1)
log data(23.0,84.3)
log data(66.4,55.9)
log data(58.2,0)

You will notice that the ZeroDivisionError is not entirely handled: the logging method partially

handles it with a matching except, but then it reraises it with raise. That means the method can write a
warning message to the log and then let the surrounding program decide what needs to be done with the
exception. Nonetheless, the file is always closed, even when the exception occurs: the finally clause is
always run.

Putting Everything Together with else

So far, we’ve used exception handling to try out some code, handle a number of exception classes, and
tidy up after both handled and unhandled exceptions. But what about handling the situation where
there is no exception? In that case, the program executes all of the try clause and then goes straight to
finally, with no special treatment for the no-exception scenario!

At first sight, this scenario presents no real problem. After all, if there’s no exception, our program
should just carry on, so we could append our code to the try clause. Consider the pseudocode in Listing
10-11, which demonstrates this idea.

Listing 10-11. An Example of Handling a No-Exception Situation

try:
 # This method could raise a SomeError
 perilous()

CHAPTER 10 ■ EXCEPTIONS

233

 # If it doesn't, then this handler method is called
 handle no problem()
except SomeError:
 # If it does, then this handler method is called
 handle some error()
finally:
 # Whatever happens, this clean-up method is called
 clean up()

On closer inspection, the code in Listing 10-11 won’t suffice. If we execute handle no problem() in

the try clause, depending on its internals, it could raise a SomeError exception, which would then
prompt the exception handling to call handle some error() before clean up(). The two handle
methods might, between them, perform some action twice, so they would have to be coded in a way to
make sure that never happened.

In essence, by just putting that line at the end of the try clause, we’ve actually complicated our code
at the next layer down, because these lower-level methods now have to take into account how each
other behaves to recover from an internal exception. Although you might generally be able to work
around this in your own coding, when you’re using other people’s code, doing so might be quite
difficult.

If we liken our try...except statement to an if statement, then we are able to execute code if an
exception is raised, but we also need a way of executing code if no exception is raised: we want to have
the equivalent of if...else functionality. So, to complete our error-handling functionality, we add one
last clause: an else clause. This is executed after the try clause but before the finally clause, only if no
exception is raised.

Confused? That’s understandable. Let’s take a step back and look at a listing that should illustrate as
simply as possible everything that you can do with Python exception handling. Examine and run Listing
10-12, and look at its output:

Listing 10-12. Python’s Complete Exception Handling Using try, except, else, and finally

def divide by complex(x, y):
 """Division of two numbers with complex exception handling"""
 try:
 print("TRYING : beginning division of {0} / {1}".format(x,y))
 result = x / y
 except ZeroDivisionError:
 print("HANDLED: division by zero!")
 else:
 print("SUCCESS: result is {0:g}".format(result))
 finally:
 print("FINALLY: cleaning up")

This surrounding try/except block helps clarify when exceptions "escape"
unhandled from the divide by complex method
try:
 # Normal behaviour
 divide by complex(2,1)
 print()
 # Internally handled exception
 divide by complex(2,0)

CHAPTER 10 ■ EXCEPTIONS

234

 print()
 # Raised exception
 divide by complex(2,None)
except Exception as e:
 print("RAISING: exception {0} not handled;
rising up".format(e. class . name))

TRYING : beginning division of 2 / 1
SUCCESS: result is 2
FINALLY: cleaning up

TRYING : beginning division of 2 / 0
HANDLED: division by zero!
FINALLY: cleaning up

TRYING : beginning division of 2 / None
FINALLY: cleaning up
RAISING: exception TypeError not handled; rising up

Here’s a summary of the full try statements behavior, in more or less plain English:

1. Try some potentially dangerous code.

2. If an exception has been raised, look for an except clause that matches

a. The exception’s class

b. Some superclass of the exception

3. If no exception is raised, run the code in the else clause.

4. Finally, always run any clean-up code.

5. If no except clauses have handled the exception, raise it even further in the
program until it’s handled or it reaches the user.

The fifth step is core Python behavior for unhandled exceptions, inside or outside a try clause:
that’s why it’s in italics. It corresponds to the very last line of the output for Listing 10-12.

With these four clauses—try, except, else, and finally—plus the concept of unhandled exceptions
rising up through the program, Python’s exception handling provides complex, flexible, and above all
useful methods of flow control. Along with handling errors, the try statement is also similar to the
standard if...else flow control. This means you can use exception handling in Python with as much
confidence as any other flow control methods: in fact, you are actively encouraged to do so, for reasons
which we’ll discuss at the end of this chapter.

Using the Traceback If All Else Fails

As you’ve already seen, unhandled exceptions generate a report when they reach you or another user.
This report is called a traceback, and it gives details of the files and the locations within them, where an
exception—even if it’s been partially handled—has in some way led to the program coming to a halt.

CHAPTER 10 ■ EXCEPTIONS

235

Look back at our very first code example in this chapter, involving a simple division by zero at the
interactive prompt. This is a single-stage traceback. It begins by announcing itself as a traceback and
then gives a location in line 1 of "<stdin>" (i.e., your typing, or standard input). It also specifies any
method that the exception is raised in: in this case, it was raised outside of any method and so is
considered to have been raised in <module>. For now, treat this as a special signifier for not being inside
any method.

Let’s generate a more complicated traceback. Save the code in Listing 10-13 to a file called
traceback.py, and run it.

Listing 10-13. Demonstrating a Complicated Traceback

def f1(): f2()
def f2(): f3()
def f3(): foo

This will raise a NameError, deep in f3
f1()

Calling this simple function will produce the following traceback:

Traceback (most recent call last):
 File "./traceback.py", line 6, in <module>
 f1()
 File "./traceback.py", line 1, in f1
 def f1(): f2()
 File "./traceback.py", line 2, in f2
 def f2(): f3()
 File "./traceback.py", line 3, in f3
 def f3(): foo
NameError: global name 'foo' is not defined

As you can see, the traceback provides you with a complete explanation of the stack of methods
calling methods, from the final point where the exception reached you, the programmer (in the
<module>), right back to the original source of the exception in f3(). A good rule of thumb if you’re also
using code from a module (see Chapter 11 for more information on how to do this) is to read a traceback
as far as the last thing you wrote yourself, and look there for any mistakes you might have made.
Programming errors can also occur in the standard library, of course, but they’re quite rare.

You can also use the traceback module to extract tracebacks from errors while you handle them, so
that, for example, you can log the full traceback somewhere and then continue with your program. We
won’t discuss that technique here, but modules are discussed in the next chapter, and Python’s standard
library of modules is documented in quite a lot of depth and with examples on the Python web site.

Exception Chaining and Tracebacks

Tracing an unhandled exception can get more difficult if one exception is handled, only for another to be
invoked in the very try statement that’s doing the handling. The biggest worry from the debugger’s
perspective is that the original exception, having been dealt with, might be inaccessible. However,

CHAPTER 10 ■ EXCEPTIONS

236

tracebacks provide a way of establishing from one exception if it was raised in the context of handling a
different exception: this is called exception chaining.

If one exception is being handled, and another is raised either by accident or through an
unconnected raise statement, the first is set as the context attribute of the second. If, however, you
want to raise a new exception directly as a result of the one being handled, you can use the raise...from
syntax to show the connection: the original exception is set as the cause attribute of the new.

The combination of cause and context lead to complex but useful tracebacks. Save Listing
10-14 as chaining.py, and run it.

Listing 10-14. Demonstrating Exception Chaining

def return explicit chain():
 try:
 # Catch a NameError, and raise a new error "from" it
 try: foo
 except Exception as e:
 raise Exception("Explicitly raised") from e
 # Re-catch the new exception
 except Exception as e2:
 return e2

def return implicit chain():
 try:
 # Catch a NameError, but accidentally raise a KeyError
 try: foo
 except Exception as e:
 {}['bar']
 # Re-catch the new exception
 except Exception as e2:
 return e2

The explicitly raised exception, and its "cause"
ex ch = return explicit chain()
print("Explicit chain:")
print(ex ch. repr ())
print(ex ch. cause)

The implicitly raised error, and its "context"
print("Implicit chain:")
im ch = return implicit chain()
print(im ch. repr ())
print(im ch. context)

Re-raise, to see the corresponding traceback
raise im ch # Uncomment this to see the implicit chain
raise ex ch

When you run the preceding code, you’ll get these results:

CHAPTER 10 ■ EXCEPTIONS

237

Explicit chain:
Exception('Explicitly raised',)
global name 'foo' is not defined
Implicit chain:
KeyError('bar',)
global name 'foo' is not defined
Traceback (most recent call last):
 File "./chaining.py", line 4, in return explicit chain
 try: foo
NameError: global name 'foo' is not defined

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "./chaining.py", line 35, in <module>
 raise ex ch
 File "./chaining.py", line 6, in return explicit chain
 raise Exception("Explicitly raised") from e
Exception: Explicitly raised

Now, comment out the next-to-last line to see the traceback from an implicit chain:

Explicit chain:
Exception('Explicitly raised',)
global name 'foo' is not defined
Implicit chain:
KeyError('bar',)
global name 'foo' is not defined
Traceback (most recent call last):
 File "./chaining.py", line 14, in return implicit chain
 try: foo
NameError: global name 'foo' is not defined

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "./chaining.py", line 34, in <module>
 raise im ch # Uncomment this to see the implicit chain
 File "./chaining.py", line 16, in return implicit chain
 {}['bar']
KeyError: 'bar'

As you can see, more complex tracebacks will distinguish between explicit and implicit chaining by
leaving a newline and then referring to the next exception that was raised en route to the eventual
traceback.

CHAPTER 10 ■ EXCEPTIONS

238

A Final Note on Pythonic Exception Handling
Some languages try to make exception handling a last resort—the syntax can often be cumbersome and
the functionality basic—and the performance of the language interpreter might suffer during its
equivalent of try statements. But as you have seen, Python actively encourages error handling, through
simple syntax with a fully developed flow control based on exception handling. Also, in most Python
distributions, exception handling is no slower than simple if...else flow control.

When a language tries to discourage you from using exception handling, it is following a philosophy
known as “look before you leap” (LBYL). This means that you should ensure that something is allowed
first and do it only if it’s allowed. In contrast, the Pythonic philosophy of trying something first and then
using exception handling to deal with unusual consequences, is often referred to as “easier to ask
forgiveness than permission” (EAFP).

In Python, you should always use the EAFP style, rather than LBYL, wherever possible. Listing 10-15
compares simple examples of the LBYL and EAFP programming styles.

Listing 10-15. LBYL Programming vs. EAFP Programming

LBYL: not Pythonic
if hasattr(some object, 'result'):
 return some object.result()
else:
 return None

EAFP: Pythonic
try:
 return some object.result()
except AttributeError:
 return None

To people used to looking before they leap, Python’s approach can feel dangerous: LBYL is a very

risk-averse strategy and implicitly perceives exceptions as risks. But exceptions in Python aren’t risks;
they’re just another part of the language, and so EAFP is entirely suitable in that context. Of course, you
have to be careful to keep your error handling tight: in the EAFP example in Listing 10-15, if
some object.result() were itself to raise an exception, then handling all exceptions of class Exception
would mean your program is ignorant to any problems occurring inside that method. As it is, an
AttributeError from deep within the result() method will be ignored in the example.

To program in a Pythonic way is to follow a number of different interlocking conventions. EAFP
itself isn’t an important one, but it embodies many of the other Pythonic conventions. These are
summarized online in the Pythonic Enhancement Proposal 8 (PEP 0008) and are a subject of much
discussion among the larger Python community.

Pythonic conventions are to be encouraged among Python programmers, and many of these have
reasons that go to the heart of Python’s core principles. So don’t be afraid to use exception raising and
handling at the heart of your Python programs: your code will only be the more Pythonic for it!

CHAPTER 10 ■ EXCEPTIONS

239

Jargon Busting
Here is some further explanation of the terms presented in this chapter:

• Chaining: To chain exceptions, you attach the exception currently being handled
by a try statement to any new exception which, whether deliberately or
accidentally, occurs during the execution of any of the clauses in the statement. If
the new exception is raised using the raise...from syntax, the chaining is said to
be explicit. Otherwise, if the exception is raised on its own or occurs because of a
programming error, then the chaining is said to be implicit.

• “Easier to ask for forgiveness than permission” (EAFP) philosophy: In this
programming style, the program always attempts to execute code that might raise
exceptions and then handles any of those exceptions afterward. This style
implicitly treats exception handling like any other type of flow control (e.g., for
loops or if...else statements) and as such is very much suited to languages like
Python.

• else clauses: This part of a try statement block is executed if there are no
exceptions raised by the code in the try clause but before the code in the finally
clause is run. The else clause is analogous to except clause but is run in the
situation where there is no exception.

• Exception: An exception is a Python object, of the BaseException class or any
subclass of BaseException, that Python's core exception framework creates when
some part of the program encounters an exceptional circumstance that can't be
dealt with there and then.

• Exception handling: This refers to manipulating exceptions in such a way as to
deal with the problems that originally caused them, using Python’s core handling
structures to turn exceptions and other problematic situations into
straightforward control flow.

• finally clauses: This part of a try statement block is executed regardless of
whether or not an error occurs. Even if the error is not handled by a relevant
except clause, the finally clause will still execute. After that, Python’s exception
framework raises any unhandled errors to the next method up, and so on. These
clauses are useful for any tidying up that must be performed locally, regardless of
the nature of the error.

• “Look before you leap” (LBYL) philosophy: In this cautious programming style,
situations that might raise exceptions are tested for in advance and only
attempted if they are possible. This philosophy is useful in languages other than
Python, where exception handling is either cumbersome or detrimental to
program performance.

• Pythonic: This term describes a program that is structured in a way that is most
amenable to both the ideas and principles that have informed Python’s internal
development and to the nature of the Python community’s established coding
conventions.

CHAPTER 10 ■ EXCEPTIONS

240

• Raise: When you raise an exception, you both create an exception object and
cause Python’s core exception framework to begin passing it up from the current
method, through the method that called it, and the method calling that one, and
so on until the exception is dealt with using exception handling.

• Traceback: A traceback is the human-readable report that an unhandled exception
creates when it is raised up to either the command prompt or the Python
interactive prompt.

• try statements, try clauses, and except clauses: These compound statements are
the core of Python's exception handling. A try statement consists of a try clause
and (usually) one or more except clauses. Execution of the contents of the try
clause is attempted, and if an exceptional circumstance causes an exception
object to be created, Python looks for an except clause that matches the class of
the exception object or one of its superclasses.

Summary
You can now include sophisticated error handling techniques in your Python repertoire. You have seen
how the try...except...else...finally statement is used to handle exceptions and you now know how
to create exception classes of your own based on the existing exception class. The next chapter looks at
some of the most useful modules in Python’s standard library.

C H A P T E R 11

■ ■ ■

241

Reusing Code

with Modules and Packages

The primary motivation for humans to offload work to computers is that, for a human, the work is
boring and repetitive. So it would be a shame if, every time you wanted a new program and you were
building to include functionality you’d built before, you had to cut and paste every method and class
definition from the earlier program into the new one by hand, or worse, rewrite them from scratch.

Python has a number of indispensible standard methods that your programs can always access.
However, you’re bound to end up encountering some problems a few times, and their solutions won’t be
part of Python’s core built-in functionality. For example, one of your programs might need a class to
interact with spreadsheet files, or another might make use of a method to calculate the distance between
two points on the earth’s surface.

It would be impractical for Python to have to hand every last bit of functionality you might need.
The Python distribution would be enormous, and it would grow over time. The Python interpreter would
take a long time to start, as it found all of the functionality and brought it into memory, and again, this
procedure would only get longer. And a running interpreter would take up huge amounts of memory.
This is clearly not satisfactory, given how rarely the average program would use most of this
functionality.

Luckily, Python has a solution for these problems. It provides a flexible, easy-to-use system for
modularizing your code: that is, for reusing your own code, for optionally including extra functionality
from the standard Python distribution, and for bringing in any other contributed code from other
Python developers. The structure of modules and packages lets you keep your projects organized,
smaller, and easier to understand.

In this chapter, we’ll cover Python’s module system so that you can apply it to your own programs.
We’ll start with a simple module before seeing typical module usage. This will lead us onto packages,
which are collections of modules, and some standard Python modules that you can make use of.

Understanding Python Modules
Before we begin, you should understand that any Python file can be a module. A module is just another
Python file. It can include methods, classes, references to other modules, and even executing code.
When you bring the module into your program, the methods, classes and modules are made available in
your current namespace.

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

242

Whether or not Python can find modules and packages depends on their relative location to your
current file, as you’ll see later. So let’s start this chapter’s tutorials by creating a separate directory for all
the content: call it my modules for now.

Creating Your First Module

Let’s create a fairly simple module with a number of straightforward methods. Often, one of
programmers’ first modules will contain utility methods that they find themselves writing again and
again to perform tasks like advanced string conversion, so we’ll build a module of string methods.

Imagine that you wanted to alter some text—the content of your outgoing e-mails, perhaps, or your
next blog post—so that it sounded like it was written by a pirate. This might sound odd, but Talk Like a
Pirate Day (September 19) has been an Internet phenomenon since the 1990s. On this day, many web
sites automatically turn their output text into pirate-speak, which can produce unusual effects
depending on the site.

Listing 11-1 details a skeleton module—no piratical pun intended—that you will be able to use in a
number of different ways to write like a pirate. You should save it in the my modules directory, and call it
strings.py.

Listing 11-1. A Module of String Conversion Methods

"""Module of methods to convert strings to pirate-speak"""

def strip punctuation(sentence):
 """Strips punctuation and all whitespace off the end of a sentence"""
 return sentence.strip().rstrip("!.")

def piratify(str):
 """Generic piratify of whole paragraphs, by exclaiming everything!"""
 return (str + " ").replace(". ", "! ").replace(".\n", "!\n").strip()

def me hearties(str):
 """Appends 'me hearties!' to the end of a stub sentence"""
 stub = strip punctuation(str)
 return stub.strip() + ", me hearties! "

def yarr(str):
 """Appends 'Yarr' to the start of a stub sentence and piratifies it"""
 stub = strip punctuation(str)
 return "Yarr, " + stub[0].lower() + stub[1:] + "! "

Make sure you are in the same directory as this file, and run the Python interactive prompt. At the
prompt, type the following: you should see the results as shown.

>>> import strings
>>> print(strings.piratify("Hello, world."))
Hello, world!
>>> print(strings.yarr("This is a test."))
Yarr, this is a test!
>>> print(strings.me hearties("It uses the strings module!"))
It uses the strings module, me hearties!

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

243

After you try this out, look in the my modules directory. You should now see a new file called
strings.pyc (we’ll discuss this later in the chapter, in the “Python‘s Internal Behavior” section).

You can now use this module to convert short sentences into pirate-speak at the Python prompt.
But there’s a limit to how much you would want to paste into print() statements in this way, and this
script will only ever convert one sentence at a time. In short, although the methods are useful in the
context of a program, they aren’t convenient for the end user. Let’s see how to overcome this
shortcoming.

Using Your Module in Another Program

Wouldn’t it be great if you could embed these low-level conversion methods in another, higher-level
method: one that could take a large block of text, decompose it into sentences, and randomly include
piratical interjections? Then, you could get it to rewrite your e-mail content before sending it to a friend
and celebrate Talk Like a Pirate Day in style. Let’s build this next, using the import statement to keep the
low-level methods in strings.py.

Look at the code in Listing 11-2, which uses a slightly different form of the import statement, to
avoid cluttering up the code. When we used the module in the previous section, the methods were still
attached to the strings module: that is, we run them by prefacing each method’s name with strings. In
Listing 11-2, all the methods are added to the current program’s scope, rather than only adding the
strings object to the scope and keeping the methods inside it.

Save this code as convert.py, in the same directory as strings.py.

Listing 11-2. Importing from the Module in Listing 11-1

"""Module to utilize existing string conversion functions on lots of text"""

Import the contents of our strings module from the local directory
from strings import *
Import the Python random module from the standard library
import random

Probability of calling yarr() and me hearties() functions
weightings = (0.2, 0.3)

def random pirate(stub):
 """Randomly turn a stub into a piratified sentence"""
 choice = random.random()
 if choice <= weightings[0]:
 return yarr(stub)
 elif choice <= weightings[0] + weightings[1]:
 return me hearties(stub)
 return stub + "! "

def to stubs(text):
 """Convert a string into stub sentences"""
 # Piratify first, to make every sentence an exclamation
 text = piratify(text)
 # Now split, discarding any empty strings
 return [s for s in (sen.strip() for sen in text.split("!")) if s != ""]

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

244

def convert string(content):
 """Convert a string to pirate-speak"""
 return "".join([random pirate(txt) for txt in to stubs(content)])

def convert file(filename):
 """Convert a file to pirate-speak"""

 return convert string(open(filename).read())

Next, save some text that you’d like to convert to pirate-speak. You can call the file whatever you

want, but for the purposes of the example output, I’ve called it example.txt. Still in the same directory as
all of these files, run the interactive prompt, and type the following commands:

>>> import convert
>>> convert.convert string("He sleeps all night and he works all day.")
'He sleeps all night and he works all day, me hearties! '
>>> open('example.txt').read()
"Mister Pudey, the very real problem is one of money. I'm afraid that the Ministry
of Silly Walks is no longer getting the kind of support it needs. You see, there's
Defence, Social Security, Health, Housing, Education, Silly Walks. They're all
supposed to get the same."
>>> convert.convert file('example.txt')
"Yarr, mister Pudey, the very real problem is one of money! I'm afraid that the
Ministry of Silly Walks is no longer getting the kind of support it needs, me
hearties! You see, there's Defence, Social Security, Health, Housing, Education,
Silly Walks! Yarr, they're all supposed to get the same! "

The convert module can now be used, in conjunction with the strings module, to convert large

blocks of text to pirate-speak. You can change the weightings variable in convert to make particular
piratical conversions more or less likely. It still needs to be used at the interactive prompt, but we’ll
expand on this module later to make it more useful.

Everyday Module Usage
When you use modules, you’ll commonly want some flexibility over how you import them into your
applications. Luckily, Python gives you a few options, which we’ll look at in the next section. You’ll also
need to organize your modules so they don’t get out of control, so we’ll look at that too.

Flexible Importing

Once you’ve put your code into a module, you have a number of flexible ways of using the import
keyword to access the contents of the module. That means you need import only what you require for a
particular project.

To automatically import everything from a module, you can use one of two Python constructs.
import modulename creates an object called modulename in the current scope, with all the module contents
as attributes of that object. Alternatively, from modulename import * puts all methods, classes, or
variables from the module into the current scope as separate variables (not quite all, as you will see
later).

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

245

>>> # Import the module 'convert', with methods referenced inside it
... import convert
>>> convert
<module 'convert' from 'convert.py'>
>>> convert.convert string
<function convert at 0xb7c1b82c>
>>> convert.weightings
(0.20000000000000001, 0.29999999999999999)
>>> # Now import each method from 'convert', into the current scope
... from convert import *
>>> convert string
<function convert at 0xb7c1b82c>
>>> weightings
(0.20000000000000001, 0.29999999999999999)

This is simple enough to use, but it’s untidy practice: all of the contents are imported from the

module, regardless of whether they are used or not, and in the second instance, some contents might
overwrite existing variables. Instead, you can specify each item you want to import, and even what name
you want to import it with, using variants on the above from syntax:

>>> # Single, basic import clause: one method
... from convert import piratify
>>> piratify
<function piratify at 0xb7c6b0ac>
>>> # Import clause, with 'as' sub-clause to rename the method
... # This avoids overwriting an existing 'convert string' in the scope... from
convert import convert string as convertiferize
>>> convertiferize
<function convert string at 0xb7c0f82c>
>>> # convert itself imports the random module into its own namespace
... # so you can in turn import the random module from convert!
... from convert import random
>>> random
<module 'random' from '...'>
>>> # Several clauses - including renaming - can be separated with commas
>>> from convert import yarr, weightings as weightables
>>> (yarr, weightables)
(<function yarr at 0xb7c6b12c>, (0.20000000000000001, 0.29999999999999999))

You can also import from a module at any point in your code. In fact, you can import within

conditional statements; that way, under certain conditions, the import never happens at all. However,
note that the wildcard version of the import syntax (i.e., from modulename import *) cannot be used
anywhere except in the main body of a program or module. If you try to use it in a method, Python will
raise a syntax error.

Finally, all of these invocations of the import keyword rely on the internal method import . For
example, these two statements are equivalent (i.e., their internal representations in Python are similar in
structure):

>>> import convert as foo
>>> foo = import ('convert')

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

246

More information about the arguments to import is available from the help() built-in method
for advanced users. You will almost never need to use import , but one useful application is to import
a module whose name is not known until the program is being run. The module name convert is
actually a string in the second example, so it could be set to another variable or even set based on user
input:

>>> my module name = 'convert'
>>> foo = import (my module name)

Structuring Your Modules

Broadly speaking, you don’t need to structure your code differently if you want to turn an already
functioning program into a module. That means, of course, that your module code must already be
syntactically correct! However, there are a number of conventions that you should follow in your
modules, if you want to make the full use of Python’s modular support.

From the perspective of legibility, it helps if you can put any import statements at the top of the
module, so that many of the dependencies of that module on other code are immediately obvious.
Conditional import statements must, of course, go within the control structures that optionally execute
them. Any important variables, either for exporting or internal use throughout the module, should go
next.

Most stylistic conventions for naming variables in Python are just that: stylistic. Python doesn’t
mind if you name your classes using camel case or lowercase with underscores. One exception, however,
is that Python treats any module variables named with a leading underscore slightly differently from
other module variables. Such variables are considered to be reserved for internal module use only and
will not be imported by from modulename import *. However, you can explicitly import the variable by
specifying its name: these variables are therefore called weakly internal.

Save the code in Listing 11-3 as internals.py, and run the interactive code after it.

Listing 11-3. Weak Internal Variables

An internal value
config = True

def return config():
 """Get an internal config value"""
 return config

def set config(val):
 """Set an internal config value"""
 # Global means "global to this module", not truly global
 global config
 config = val

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

247

Let’s try this out:

>>> from internals import *
>>> return config()
True
>>> set config({'foo': 'bar'})
>>> return config()
{'foo': 'bar'}
>>> # config hasn't been imported: try it!
... config
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name ' config' is not defined
>>> # Assigning to it locally won't change the module variable
... config = {'where': 'local'}
>>> return config()
{'foo': 'bar'}
>>> # And assigning in the module won't change it locally
... set config({'where': 'internal'})
>>> config
{'where': 'local'}
>>> # But if you now import it explicitly, the stored module variable appears
... from internals import config
>>> config
{'where': 'internal'}
>>> # It's the same object: modifying it locally modifies it in the module
... config['test'] = ['success']
>>> config
{'test': ['success'=, 'where': 'internal'}
>>> return config()
{'test': ['success'=, 'where': 'internal'}
>>> # Local assignment still doesn't change the module object
... config = {'new': True}
>>> return config()
{'test': ['success'], 'where': 'internal'}
>>> # Nor vice versa: the local object isn't changed by set config()
>>> set config({'even newer': True})
>>> config
{'new': True}

The interplay of scopes—separate collections of variables inside and outside the module—

demonstrated in Listing 11-3 is quite complex, but don’t worry: the important point is that here we can
see the config variable hiding inside the module until we explicitly imported it, and you can use this in
your own code to hide internal variables from the outside world.

Also, you might notice that Python remembered the module’s value of config, to such an extent
that when you eventually imported it, Python didn’t revisit the file and decide it was actually True but
used the remembered value. This means that, if you want to reload the content of a module whose text
has changed on disk, Python will ignore those changes unless you use the advanced technique described
later in this chapter.

Self-documenting code is even more important than usual if you’re writing something that other
people—or you, in many months’ time—will need to be able to understand at a glance, without reading

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

248

the whole file. If you include documentation strings (discussed in Chapter 6) in your modules, and in the
classes and methods contained in them, anyone importing your module into the interactive prompt will
have access to a wealth of detail about the module.

When we wrote strings.py and convert.py, we took care to add documentation strings wherever
possible. So either module will produce detailed documentation at the interactive prompt, as you can
see in the following example:

>>> import strings
>>> help(strings)

Help on module strings:

NAME
 strings - Module to convert strings to pirate-speak

FILE
 /home/jp/ch11/my modules/strings.py

FUNCTIONS
 me hearties(str)
 Appends 'me hearties!' to the end of a stub sentence

 piratify(str)
 Generic piratify of whole paragraphs, by exclaiming everything!

 yarr(str)
 Appends 'Yarr' to the start of a stub sentence and piratifies it

(END)

Finally, your module can contain a reference to the module variable name . This was first

discussed in Chapter 8, and its most common use is to put code into your module that only runs if the
module is executed on its own at the command prompt.

At the bottom of convert.py, add the code from Listing 11-4. Then, you can execute the whole file at
the command prompt in different ways, as suggested in the output block below the listing.

Listing 11-4. Executable Block to be Added at the End of convert.py

... appended at the bottom of convert.py
if name == " main ":
 import sys
 if len(sys.argv) > 1:
 # Convert file given on command line
 print(convert file(sys.argv[1]))
 else:
 # Convert any content piped into the program
 print(convert string(sys.stdin.read()))

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

249

Let’s run this:

% python convert.py "Hello, world."
Hello, world, me hearties!
% python convert.py example.txt
Mister Pudey, the very real problem is one of money, me hearties! Yarr, i'm afraid
that the Ministry of Silly Walks is no longer getting the kind of support it needs!
Yarr, you see, there's Defence, Social Security, Health, Housing, Education, Silly
Walks! They're all supposed to get the same!
% python convert.py < example.txt > example converted.txt

We’ll discuss how modules are run in Python, and how it therefore uses the name variables to

keep track of the context in which code is being executed later on, in the “Python Module Internals”
section.

Advanced Module Behavior
Now that you’ve got the basics of modules, let’s look at some slightly more advanced module topics. In
particular, we’ll cover how to reload modules so that you can test them effectively and will have a look at
how Python handles modules internally.

Reloading Module Changes Dynamically

When you’re in the middle of developing a module, and you want to keep testing changes to its
functionality at the interactive prompt, one of the most frequent problems you’ll encounter is that only
the first import statement visits the module; later import statements just take a copy of the module
stored (or cached) internally in Python’s memory allocation and provides you with that instead. It does
this to speed up handling import statements across a lot of interconnected modules.

However, the caching means that you’ll typically find yourself quitting the interactive prompt and
running it again, to clear Python’s internal cache of imported modules. Help is at hand, however, in
Python’s own imp module:

>>> import convert
>>> import imp
>>> convert.weightings
(0.20000000000000001, 0.29999999999999999)
>>> # Now edit the weightings in convert.py by hand
... # Save the file to disk and try importing again
... import convert
>>> convert.weightings
(0.20000000000000001, 0.29999999999999999)
>>> # The values haven't changed, so force reload with imp.reload()
... imp.reload(covert)
<module 'convert' from 'convert.py'>
>>> convert.weightings
(0.10000000000000001, 0.59999999999999998)

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

250

The imp module has other advanced functionality for finding, loading, and handling modules.
However, you should generally only need the variations on the import keyword discussed previously in
this chapter: the functionality exposed by imp is generally only useful when modules are being re-created
or recompiled during a program’s execution.

Note also that multiple module reloads are additive: changing a variable name in a module can
leave the old one lying around after a reload. For example, if you’ve imported the convert module, and
then you change the name of the convert() method to change() and use imp.reload(), you will see the
following behavior:

>>> import convert, imp
>>> convert.convert
<function convert at 0xb7c1a82c>
>>> # Rename the convert() method to change() and reload
... imp.reload(convert)
<module 'convert' from 'convert.py'>
>>> convert.change
<function change at 0xb7c6f62c>
>>> convert.convert
<function convert at 0xb7c1a82c>

If you also edited the method when renaming it, convert.convert() will still exhibit the old

functionality. The old definition is not stored anywhere permanently, though, so if you restart the
interactive prompt, the old method will be lost.

If you have renamed convert() to change(), you might want to change it back to avoid any
confusion when following the examples in this chapter!

Python Module Internals

When you ask Python to import a module, it performs three main tasks: First, it finds the module file on
disk by looking in a number of specific directories. Next, it pulls the module into memory, interpreting it
into an internal representation. Finally, it executes this representation. Each of these phases is worth a
bit of explanation, so you have more of an idea of what Python’s doing for you, should anything go
wrong.

Python will find any module in a directory on the PYTHONPATH. This has a different use from that of
the PATH discussed in Chapter 8, which tells your operating system where to find executable files. Also,
you might not have the PYTHONPATH environment variable set on your system: that doesn’t matter, as
Python adds its own default values to the path, so it can find files such as its own standard modules.

Try running the following experiments at the command line. Note that we run Python below with
the -c option. This tells Python to execute the following string as if it were a Python program. It’s a handy
shortcut for very short programs that you don’t want to either save to a file or run from the interactive
prompt.

% echo $PYTHONPATH # If it's not set, this just gives an empty newline

% python -c "import sys; print(sys.path)"
['', '/opt/python3.0/lib/python30.zip', '/opt/python3.0/lib/python3.0',
'/opt/python3.0/lib/python3.0/plat-linux2', '/opt/python3.0/lib/python3.0/lib-
dynload', '/opt/python3.0/lib/python3.0/site-packages']
% export PYTHONPATH=/home/jp:/home/jp/bin

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

251

% echo $PYTHONPATH
/home/jp:/home/jp/bin
% python -c "import sys; print(sys.path)"
['', '/home/jp', '/home/jp/bin', '/opt/python3.0/lib/python30.zip',
'/opt/python3.0/lib/python3.0', '/opt/python3.0/lib/python3.0/plat-linux2',
'/opt/python3.0/lib/python3.0/lib-dynload', '/opt/python3.0/lib/python3.0/site-
packages']

When Python encounters an import statement in the code, it checks each of the entries in sys.path

in list order: it will import from the first module, which matches the import statement. As you can see,
the list always begins with an empty string, so Python will always look in the current directory first. Next
in the list are the colon-delimited terms in the PYTHONPATH, if it has been set. Finally, if no match is found
in any of these locations, the standard library locations are always appended to the list, so those
libraries are always available to Python. However, any similarly named module in the current directory
or on the PYTHONPATH will override them.

When the module is found, the Python interpreter has to do some work to turn your text into
something that matches Python’s internal representation of code. This compilation happens before it
actually executes the contents of the module and exposes the functionality. As it only needs to be done
once—assuming a module is not changed during Python’s execution cycle—then it tries to save the
compiled version as a .pyc file (the c is for compiled).

You should have seen .pyc files while following the examples in this chapter. The compiled files are
in bytecode, which is platform-independent: this means that they don’t depend on your operating
system. That’s only really useful if your files are on a network share or are otherwise accessible by people
running Python under more than one operating system. Note that when Python saves a compiled file,
it’s just speeding up its future compilation phase, because it doesn’t have to recompile the file: Python’s
actual running speed doesn’t change. The converse of this is also true, so if you really have to reload a
module or recompile its bytecode version, as long as you don’t do it too often, you shouldn’t see too
much of a performance hit. Python also keeps track of the timestamp of the original text file (it records it
in the bytecode). That way, if you edit the text, Python notices the change in timestamp and recompiles
the bytecode.

Finally, Python actually executes your module. This might come as a surprise, because you’re
importing modular code into your program, and you don’t want it running itself as if it were a separate
process. But don’t worry: this is execution in a much broader sense. When Python interprets a def foo
statement or class bar statement, it’s actually executing that statement: it bundles up the method or
class definition in its internal representation and hangs that bundle off the current scope under the
name foo or bar respectively.

A consequence of this behavior is that all the code in your modules really is executed! Any control
flow, method calls, and so forth in your module (outside of class or method definitions) are also
executed at this time. Indeed, your module might need to run some setup tasks at the point of import, so
this is potentially useful behavior. This is why, if you want to run your module as a standalone file, you
have to put that code in an if-else statement, which checks to see if the module is being run with

name == " main ". Otherwise, the code in the if-else block would be run during module import
as well.

Since execution in Python can mean following some control flow and sending output to the user or
it can mean defining new classes: it’s all the same to the interpreter, it’s important to remember that no
magic is at work in modules: no magic in the name == " main " block, none in weak internal
variables; and none in class or method definitions. It’s not magic; it’s just Python.

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

252

Combining Modules into Packages
Before we can make a package out of our modules, we have to see what a package is, so let’s do that now.

Understanding Packages

One way of looking at a package is as a hierarchical directory structure containing potentially very many
.py files, with similar files found in the same place. Another is as a convenient way of preventing the
names of many different modules from conflicting both on disk and also when imported. The two are
equivalent.

For example, if you wanted to distribute your pirate-speak code, you would first of all want to put
strings.py and convert.py in the same directory purely for convenience; you would also want to avoid
subjecting users of your code to problems from two files sharing the same name. Someone might have a
string-formatting module called strings or might do a lot of automatic image processing and already
have a convert module. That user wouldn’t appreciate having to change all the references to those
modules, just to be able to use your pirate-speak code!

More precisely, for a collection of files to be a Python package, you need the following:

• A top-level directory, plus any arrangement of subdirectories

• Your .py files somewhere in that directory hierarchy

• A (potentially empty) file called init .py in each directory in the package

The init .py file tells Python that the directory is part of a package and can contain
configuration information and methods.

Building a Pirate-Speak Package

In my modules, create a subdirectory called pirate. Put strings.py and convert.py in there, and add an
empty init .py. Then, change your current directory to my modules, and run an interactive prompt
with the following:

>>> import pirate
>>> pirate
<module 'pirate' from 'pirate/ init .py'>
>>> # Now import a submodule explicitly
... from pirate import convert
>>> convert
<module 'pirate.convert' from 'pirate/convert.py'>
>>> # This submodule also gets added to pirate
... pirate.convert
<module 'pirate.convert' from 'pirate/convert.py'>
>>> # But the strings submodule isn't there yet
... dir(pirate)
[' builtins ', ' doc ', ' file ', ' name ', ' package ', ' path ',
'convert']
>>> # If we import that explicitly too, then it appears in pirate
... # Note we can use the dot notation to import it directly
... import pirate.strings

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

253

>>> dir(pirate)
[' builtins ', ' doc ', ' file ', ' name ', ' package ', ' path ',
'convert', 'strings']

Importing from packages already has a lot of flexibility. For example, using dot notation, you can

import pirate.strings and not worry about what’s in pirate.convert. But with an entirely empty
init .py, importing submodules is hard work: they won’t be imported implicitly, and from pirate

import * does nothing.
There are two main ways that you can make importing easier: by running import statements in your

init .py and by defining a list variable in init .py called all , which is interpreted as
matching the import * wildcard form. These are demonstrated by the sample content for init .py in
Listing 11-5, and the examples at the interactive prompt that follow it.

Listing 11-5. Sample __init__.py Content

"""Pirate-speak package"""

Import both modules when this package is imported
import convert, strings

Just import "convert" with the * wildcard form
all = ["convert"]

Let’s try it out:

>>> import pirate
>>> dir(pirate)
[' all ', ' builtins ', ' doc ', ' file ', ' name ', ' package ',
' path ', 'convert', 'strings']
>>> from pirate import *
>>> convert
<module 'convert' from 'convert.py'>
>>> strings
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'strings' is not defined

Note that, as with our discussion of Python execution and Python internals, any content in the

init .py script is executed by Python when it imports the package. You can see this in the example in
the propagation of the variable result of import statements from init .py into the resultant code. But
try adding print("foo") into your init .py, and consider the following output:

>>> from pirate import convert
foo
>>> # Importing the root of the package now does nothing
... import pirate
>>> # So let's reload it explicitly
... import imp
>>> imp.reload(pirate)
foo
<module 'pirate' from 'pirate/ init .py'>

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

254

>>> # Re-importing a sub-module does nothing
... from pirate import convert
>>> # Nor does reloading it
... imp.reload(convert)
<module 'convert' from 'convert.py'>
>>>

This is consistent with other package and module behavior: only on the first import, which needs to

consult init .py, is init .py actually executed; to execute it again, you have to reload pirate
explicitly. As with module files, there’s nothing special about init .py files: Python executes them
like ordinary code. So they can contain class or method definitions, or package-level variables, or even
control flow such as if . . . else statements or exception handling. It will all be executed the first time
anything is imported from the package.

The Universe of Python packages
As has been noted throughout this chapter, packages are a great way to offer reusable code and Python
itself comes with a number of packages that make your life easier. We’ll look at them in the next section
and then examine some third-party packages that have been contributed by the Python community.

Standard Modules

Python is distributed with a standard library of modules that provide useful, if basic, functionality. The
precise list of modules varies depending on what operating system you are using, primarily in the system
modules, for example: Unix and Linux Python distributions have support for POSIX system calls, Unix
users and groups, and terminal (command-prompt) functions, whereas Microsoft Windows Python has
modules to access the Windows registry and Windows installer files.

However, broadly speaking, the list of standard modules is the same across distributions, and is
quite long! This does mean that there’s a big toolkit of modules for you to play with. Always check the
functionality provided by standard modules before writing your own or downloading contributed code.

Importing from the standard library is as easy as importing from modules you’ve written yourself:
the standard library is on sys.path, so Python’s import statements will always be able to find the
modules in it. In fact, I snuck the random module from the standard library into Listing 11-2 .

To help you find the functionality you need in the standard library, a comprehensive and up-to-date
list of all the modules in it is available in Python’s own online documentation. There’s code in there to
support string formatting and regular expressions, as well as interprocess communication and the
operating system. There’s also a large library containing functions for date and time parsing and
formatting and for working with calendars. You can process audio and video using multimedia
functionality, and if you’re working with web sites, APIs, and similar mash-up technology, there’s a long
list of modules to interface with such technologies as HTTP, FTP, and e-mail.

Installing Contributed Packages

Eventually, you will decide that the core library doesn’t provide you with enough functionality and that
to write it yourself would take you some considerable time. Luckily, the thriving, distributed community
of Python developers is already likely solving the problems you experience. The majority of the code they
produce is freely available, and much of it is made so under open source licenses, so you’re free to

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

255

examine what the developers have done, and in some circumstances, edit it. Be warned, though: any
changes you make will probably not be supported by the community, certainly not unless you
contribute them back and they’re accepted. Support options will depend strongly on what license the
software is made available under.

The most simple contributed package is a single module file. When downloaded, it can be placed
anywhere on Python’s sys.path—even in your program’s own directory, if you don’t need to use it
anywhere else or don’t mind keeping multiple copies—and used immediately with import statements.
The accepted location for storing downloaded modules is in one of the site-packages directories on
sys.path.

Large, complex packages will often be distributed with installation instructions. The most basic
distribution is as some type of compressed file, like zip, GZip, or BZip. These will typically unpack to
provide a package directory hierarchy, with init .py files in each subdirectory. You can sometimes
just put the top-level directory somewhere on the sys.path and the package will be discovered by
import. Python packages also often use the .egg format, and these can usually just be dropped into a
directory on the sys.path as with unzipped packages.

Sometimes ZIP files will contain a setup.py file, or eggs will require special installation: check any
README file included with the package. In the first instance, the package has been prepared to the
Distutils Python standard, and you will generally want to run the setup.py file (ensuring you’re using
the right version of Python):

% cd unpacked zipfile directory
% python setup.py install

Eggs can be installed with the Easy Install Python package manager. This is a whole separate
infrastructure for installing Python packages, including the ability to search the online Python Package
Index (PyPI) by name. Here are a few examples of the Easy Install syntax:

% # Install a package in the PyPI, by just specifying a name
% easy install pylint
% # Install a package from a zipfile or egg on the web
% easy install http://example.com/NewPackage-1.2.3.tgz
% # Install an egg that you've already downloaded
% easy install Desktop/Documents/NewPackage.egg

Packages may also be distributed as installers for your specific operating system. The developers
might provide a Windows installer, RedHat Linux package or Debian/Ubuntu package. These are also
straightforward to install, but you should follow the instructions for your operating system.

Note that installing eggs and running any setup.py files may require you to have full administrator
access on your machine: you might have to discuss installing such packages with your system
administrator if you’re developing on shared web hosting, as they can have knock-on effects for all users
of Python on the server.

As always, you should only ever install software from sources that you trust. Check that your
downloaded software is coming from that source, and you’re not accidentally following a link to an
untrustworthy site. If in doubt, confirm with the software developers. Also, consider using checksum
software to ensure that your downloads are as the original developers expected. Many open source
projects publish the checksums of their packages, and their developer communities will have
documentation explaining how this works.

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

256

Three Examples from the Python Universe

To give you a flavor of the sort of solutions that already exist out there, we’ll discuss three
straightforward but particularly neat modules below. These were chosen not so much because they’re
the most impressive modules to be found, but because they’re freely available, easy to use, and solve
common (and to some extent quite dull) problems, which you might otherwise be tempted to spend a
lot of time fixing on your own!

csv

This module is built to handle the comma-separated variable (CSV) file format. Most spreadsheet data
can be exported to CSV, which produces text-only files. However, there’s no recognized standard for
CSV, so along with other operations this module lets you worry less about whether or not your Python
file is dealing with some particular variant.

A number of other modules do exist, which can deal with more complex types of spreadsheet files,
but the csv module is part of the core Python distribution. Given that it’ll be immediately available to
you, and that much of the data in a spreadsheet can be exported to CSV format, csv is a useful tool for
importing or exporting structured data from your program.

Listing 11-6 contains an example CSV spreadsheet, representing a number of purchases. The first
column is item name; the second column is the number of items, and the third column is the per-item
price. Save this to a file called purchases.csv.

Listing 11-6. Example CSV Spreadsheet for Parsing with Listing 11-7

Gromit,5,0.57
Widget,2,1.20
Splatchet,10,0.27
Snorklet,3,0.99

You can manipulate this CSV file using the code in Listing 11-7. Save this file to csv demo.py, and run
it from the command line: you should see the output shown following Listing 11-7.

Listing 11-7. The csv Module

import csv

Set up some store variables
total = 0
priciest = ('',0,0,0)

Loop over CSV rows
r = csv.reader(open('purchases.csv'))
for row in r:
 # Work out the total cost of this row and add it to running total
 cost = float(row[1]) * float(row[2])
 total += cost
 # If this is the priciest row so far, replace the priciest
 if cost > priciest[3]:
 priciest = row + [cost]

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

257

Report on the total and the priciest purchase
print("You spent {0}".format(total))
print("Your priciest purchase was: {0[1]} {0[0]}s, at a total cost of
{0[3]}".format(priciest))

Let’s try it out.

% python csv demo.py
You spent 10.92
Your priciest purchase was: 3 Snorklets, at a total cost of 2.97

The csv module can also be used to write CSV files, and you can use either the online
documentation or help(csv) in the interactive prompt to give you more information on how csv can
parse different variations of the CSV format.

datetime

Handling dates and times is always a difficult problem in any language, and it’s tempting for the new
programmer to develop all sorts of string-munging libraries to do quite specific tasks. datetime exists in
Python’s core libraries so that you can resist that temptation, should it ever arise.

The datetime module contains a lot of functionality that we won’t cover explicitly here. However,
Listing 11-8 demonstrates its core features: parsing, creating, and manipulating date and time objects.
Save this code to datetime.py, and run it from the command line.

Listing 11-8. The datetime Module

import datetime

Date parsing
Original data in a fairly human-readable format
guess = "19 Feb 2001, 08:23"
Parsing into a Python object
time obj = datetime.datetime.strptime(guess, "%d %b %Y, %H:%M")
Printing the object generates a slightly different readable format
print("Python thinks that '{0}' is '{1}'".format(guess,time obj))

Date manipulation
Define a time interval of five days
interval = datetime.timedelta(5)
day = datetime.date.today()
for i in range(1,10):
 # Count back in intervals of five days
 day -= interval
 print("{0} days ago was {1}".format(i*5,day))

In Listing 11-8, we have to give strptime() a format mask, which it uses to try to parse the guess
string into the relevant fields for day, month, year, and so on. If strptime() can’t parse the date using the
format specified, it raises a value error exception. Chapter 10 explained how to use exceptions to your
advantage: in this case, you could specify a different date format and try again!

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

258

The datetime module should do much of your heavy lifting if you need to work with time-related
input or output. Date and time objects can be created, manipulated, and time-shifted with timedelta
objects. Methods like strptime() can parse many different formats of timestamps. If you want even
more advanced date and time handling, you might want to look at the contributed mxDateTime module,
available on the Web (http://www.egenix.com/products/python/mxBase/mxDateTime/).

Beautiful Soup and urllib

Fetching and understanding HTML is a common problem for web-enabled programs. Sometimes, you’ll
be lucky and be able to retrieve data in a structured format like rich-document format (RDF), XML, or
from spreadsheets or even a database, but often, data will be spread over multiple web pages, some of
them with poor or invalid markup. Beautiful Soup is an intelligent HTML parser, which can take markup
of quite variable quality and turn it into an object-oriented Python interface.

When provided with some HTML—not necessarily completely valid HTML or even a full HTML
document—Beautiful Soup turns it into an internal Python representation and returns a single object
that gives you access to that representation. Exactly how the internals work isn’t important, but from
your perspective, the HTML has been turned into a hierarchy of objects, each corresponding to a plain-
text string or a HTML element within the original document. The hierarchy means that, once you’ve got
the Beautiful Soup object corresponding to the <body> tag, you can access tags like paragraphs <p>
within it. Similarly, a paragraph object lets you access such tags within the paragraph as or <a>.
Beautiful Soup also provides you with many simplifying methods: some of these slice through the
hierarchy, meaning you don’t have to always drill down explicitly into the depths of paragraphs to find
<a> tags (and maybe not find them if they’re in or <div> tags) but could instead grab all the <a> tags
in the document straight away.

Beautiful Soup is not part of Python core but is contributed software. The module is only a single
Python file: as discussed previously, single-file modules are easy to install. However, at the time of this
writing, the module is still not available in a separate Python 3 version from its maintainer. You can work
out how to convert the Python 2.x module using documentation included with the download, and it’s
very straightforward, certainly on Linux/Unix systems. But to make life easier for you in the meantime,
Apress has provided the Python-3–compatible module on the Source Code/Download page for this book
at www.apress.com.

Once you’ve downloaded the file from the Apress web site, you can extract the file BeautifulSoup.py
and store it anywhere on Python’s sys.path, and it will be available for use.

A quick example follows to show you how easy it is to start obtaining useful information from
HTML. Note, though, that the Python home page has quite probably changed since the time of this
writing, so this might no longer work as expected. But BeautifulSoup is a flexible and usable module, so
you should be able to easily adapt this code to your own requirements.

>>> import urllib.request, BeautifulSoup
>>> # Connect to the remote site and read the content
... r = urllib.request.urlopen('http://python.org/')
>>> text = r.read()
>>> # Parse into BeautifulSoup
... soup = BeautifulSoup.BeautifulSoup(text)
>>> # Stepping around the tree
... soup.contents[0]
'DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"'
>>> soup.contents[2].name

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

259

'html'
>>> soup.contents[2].contents[1].name
'head'
>>> # How many links does the document have?
... len(soup("a"))
91
>>> # Finding content by element name and class
... soup("h1", {'class': 'pageheading'})[0].renderContents()
b'Python Programming Language -- Official Website'
>>> # Going up and down the tree
... soup("div", {'id': 'search'})[0].fetchParents()[0].name
'form'

urllib in the preceding example fetches a remote web page. Automatically retrieving content over

the Web is another common task these days, and it’s worth having urllib up your sleeve. Think of it as a
bonus fourth example for you!

A Package for Everything—Eventually

Python 3 is still a relatively new dialect of the Python language. As such, it doesn’t necessarily have the
same breadth and depth of third-party package support as Python 2.x. At the time of this writing, many
of the more popular modules have been ported or are being ported to Python 3, thanks to the effort of
the core Python developers in providing tools to aid automatic migration to the new dialect of the
Python programming language.

Ultimately, it’s likely that the majority of 2.x-only code will gradually migrate to 3.x soon. In the long
term, only underused or legacy packages will remain in 2.x-only versions. That means that, eventually,
you should be able to find a Python package out there somewhere to solve most of your day-to-day
problems: PDF creation, integration with other proprietary file formats, image conversion, and more.

Here’s the trick: whatever you find yourself about to build, consider if other people might have been
in a similar situation in the past. If so, they may well have packaged up their code, and you should be
able to find it on the Web.

Python has an active and dedicated community of both core coders and end-use programmers, and
it makes sense for you to take as much advantage of that as you can. But once you’ve felt the benefit of
this community, you might wish to consider giving back wherever possible: through discussing, testing,
and providing feedback on other people’s projects and maybe even one day contributing code with your
own programming skills.

Jargon Busting
Here are the terms from this chapter:

• Bytecode: This compiled equivalent of a textual Python script is turned into an
internal computer-readable representation and, where possible, stored on disk in
a .pyc file so that Python can omit the compile process in future.

• Contributed: This term describes code that is available on the Web separately from
the Python installation. Contributed modules are maintained by the Python
developer community.

CHAPTER 11 ■ REUSING CODE WITH MODULES AND PACKAGES

260

• Distutils: This is the first of two standard methods of installing contributed Python
software.

• Easy Install: This is the second of two standard methods of installing contributed
Python software.

• Egg: This archived format for Python packages allows you to download and install
them as a single file for simplicity.

• Import: When you import, you put the objects from a module into the current
scope so they can be accessed by other objects in that scope, and you execute any
other contents of the module when doing so.

• Module: This Python file contains methods, classes, or other variables that can be
reused.

• Package: This collection of Python modules is conveniently stored in a directory
hierarchy, so modules of similar function are stored in the same directories. Each
directory has an init .py, so Python knows it’s part of the package, and each

init .py can contain configuration code and variables for that particular
subpackage.

• PyPI: This is the abbreviation for the Python Package Index, an online searchable
repository for Python software. Easy Install can retrieve software from PyPI by
specifying the package name.

• PYTHONPATH: This environment variable, configured by your operating system but
modifiable at a command prompt, contains a list of directories. Python first
checks these directories when an import statement causes it to look for a suitable
candidate module, before checking in the contributed and standard libraries.

• Standard library: This is the set of packages with which Python is distributed; they
are always available to your programs.

• Weak internal use indicator: When a variable in a module is named with a leading
underscore, Python treats it as being for internal use only: this weak variable will
not be imported unless explicitly specified.

Summary
Python comes with a lot of useful functionality, but it can’t do everything. To make up for this, it gives
you the ability to add whatever functionality you want in the form of modules. This allows you to
organize and reuse your code and to use modular code provided by other Python developers.

We had a good look at Python’s module system and built modules of our own to see how easy it is.
This allowed us to talk about the different ways to import and use modules, another flexible aspect of
Python modules. We also covered some of the more advanced aspects of modules, such as reloading
them and how they work internally.
The power of Python modules can be seen when you consider the wealth of material provided by the
Python community. It’s fair to say that almost any piece of functionality is out there in the form of a
Python module (and if it’s not, then get to work on it and get it out there).

C H A P T E R 12

■ ■ ■

261

Simple Windowed Applications

Now that you have a working understanding of the whole Python language, you have the knowledge
required to start creating graphical applications. As you have seen, rather than trying to code everything
from scratch, many tasks are covered by modules in Python’s standard library, which provides a more-
or-less friendly programming interface for you to use in your own programs.

There are quite a few different tool kits available to help you create a graphical user interface (GUI)
interface that interacts with the program code behind the scenes. Therefore, this chapter serves as a
survey of some of the different kits and how to get started using them. Of course, there could be a whole
book on each of these kits, so this chapter is in no way an exhaustive treatise on the subject of GUI tool
kits.

Most of the programs you use on your computer have a GUI—when you click an icon, a new
window opens on your screen, which can display data in a graphic format and provide buttons and
menus for the various commands that you might want to run on that data. This relationship of data and
commands strongly suggests a class structure; what we need is some means of easily creating graphic
containers for displaying data and other graphic objects representing commands. Python has interfaces
available for several graphical toolkits, including: Tkinter, PyGTK, Glade, and tepache. GIMP, on which
PyGTK is based, is an open source image manipulation program similar to Photoshop.

We’ll mainly focus on PyGTK and Tkinter, with a little on Glade and tepache at the end of this
chapter. First, let’s look at Tkinter as it is the simpler of the two major toolkits. One of the more
interesting aspects of building a GUI interface for a Python program is that the resulting program would
be a cross-platform GUI application—a truly powerful aspect of Python.

■ Note The examples in this chapter use Python 2.5 rather than Python 3, because Python 3 support for graphical

interfaces wasn’t complete at the time of this writing. Some of the issues relating to Python 3 and GUI code can be

found in the discussion at http://mail.python.org/pipermail/tutor/2009-February/067443.html.

Using Tkinter
Before you can use Tkinter, you need to have the python-tk package installed. Once the tkinter module
has been imported, it provides all the necessary building blocks to make text areas, menus, buttons and
so on, and to hook them up to the commands you want to run. These graphical building blocks

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

262

connected to program functions are known as widgets (presumably because calling them
watchamacallits or dubreywotsis would have sounded silly). The most obvious example of a widget is a
button, but in fact, every part of what you see is some kind of widget or other. (Does this sound familiar?)
Even the containing box into which all the other widgets are packed—usually in a top-bottom and then
left-right fashion—is a widget. This approach to widgets is a little ungainly, but it makes for a fairly quick
way to get graphic applications up and running, as you can see in Listing 12-1.

Listing 12-1. hellotk.py

#! /usr/bin/env python

"""HelloTk: Example windowed application.

Usage: HelloTk.py
Target System: GNU/Linux
Interface: tkinter
Functional Requirements: Display a GUI window containing two buttons,
which write a message to stdout when pressed.
"""

version = 0.1
maintainer = "maintainer@website.com"
status = "Prototype"
date = "12-01-2009"

Import modules

import Tkinter

class HelloTk:

 def init (self, master):

 # First create a frame
 # This fills the main window of the application
 frame = Tkinter.Frame(master)
 # Everything has to be packed into place before it can be displayed.
 frame.pack()

 # Create the 'Hello' button.
 self.hello button = Tkinter.Button(frame, text="Hello",
 command=self.say hi)
 self.hello button.pack(side=Tkinter.LEFT)

 # Create the 'Quit' button.
 self.quit button = Tkinter.Button(frame, text="QUIT", fg="red",
 command=frame.quit)
 self.quit button.pack(side=Tkinter.LEFT)

 def say hi(self):
 print "hi there, everyone!"

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

263

root = Tkinter.Tk()
app = HelloTk(root)
root.mainloop()

Listing 12-1 will create a window with two buttons in it, as shown in Figure 12-1. In order to

understand how it works, you will need to run it from a terminal emulator screen. Basically, two class
objects are created: root, an instance of Tkinter.Tk(), and app, an instance of HelloTk() with root as its
only argument. The root object provides a method called mainloop(), which displays an instance of the
window defined in HelloTk() and waits for user input in the form of mouse clicks and key pressing.
Clicking the Hello button will cause a message to be printed on the terminal screen.

Figure 12-1. Hello World Tkinter style

To initialize Tkinter, you must first create a Tk root widget. This is an ordinary window, with a title
bar and other decorations provided by your window manager. You should create only one root widget
for each program, and it must be created before any other widgets.

The rest of the application has been gathered up into the HelloTk class. As the class is constructed,
the window becomes populated with widgets. The first item is a frame, which will contain the two
buttons. The first argument is the container this widget is to be packed inside; in this instance, it’s the
root window. The Tkinter.Frame instance is stored in a local variable called frame. Calling the pack()
method on frame tells it to size itself to fit the contents and then make itself visible. A similar process is
used to create the buttons, except that Tkinter.Button() takes more arguments: buttons need to have
some text or an image to use as a label to indicate their usage, and they also need a command to be run
when they are clicked. The first button runs the self.say hi() method, and the second runs the
frame.quit() method of the Tkinter.Frame object, which quits the application. You can specify the
direction of packing using the side option; here, the buttons are packed as far to the left as possible. If
this option is left out, side defaults to Tkinter.TOP. Having set all that up, we just need to launch the root
window, with all the widgets you just packed into it, and to enter into the Tkinter event loop, which
handles events from the user and those queued by Tkinter itself. The program will stay in the event loop
until you close the window, which you can do by clicking the Quit button.

Tkinter supports 15 core widgets, which are explained in Table 12-1.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

264

Table 12-1. Tkinter Widget Classes

Widget Description

Button A simple button used to execute a command or other operation.

Canvas This widget can be used to draw graphs and plots, create graphics editors, and to
implement custom widgets.

Checkbutton Represent a variable that can have two distinct values. Clicking the button toggles
between the values.

Entry A text entry field.

Frame A container widget. The frame can have a border and a background and is used to
group other widgets when creating an application or dialog layout.

Label Displays a text or an image.

Listbox Displays a list of alternatives. The list box can be configured to get radio button or
checklist behavior.

Menu A menu pane. Used to implement pull-down and pop-up menus.

Menubutton A menu button used to implement pull-down menus.

Message Displays text similar to the label widget but can automatically wrap text to a given width
or aspect ratio.

Radiobutton Represents one value of a variable that can have one of many values. Clicking the
button sets the variable to that value and clears all other radio buttons associated with
the same variable.

Scale Allows you to set a numerical value by dragging a slider.

Scrollbar Standard scrollbars for use with canvas, entry, list box, and text widgets.

Text Formatted text display. Allows you to display and edit text with various styles and
attributes and supports embedded images and windows.

Toplevel A container widget displayed as a separate, top-level window.

If you want to develop applications further using Tkinter, The full documentation can be found at

http://www.pythonware.com/library/tkinter/introduction/index.htm.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

265

Saying “Hello” with PyGTK
Tkinter can be used to make functional interfaces, but the presentation is rather basic. Python’s Gtk
bindings provide access to the themeable and potentially prettier PyGTK graphic toolkit. You need to
have python-gtk2 installed; from there, you’ll follow a process similar process to the one you used with
Tkinter: import the module into your program, and use the methods and widgets it provides. Again, the
main application is abstracted into the HelloGtk class (see Listing 12-2), and the object it creates is
represented by the main window, which is displayed on the screen.

Listing 12-2. hellogtk.py

#!/usr/bin/env python

"""HelloGtk: Example windowed app.

Usage: hellogtk.py
Target System: GNU/Linux
Interface: Gtk
Functional Requirements: Display a GUI window containing two buttons,
which write a message to stout when pressed.
"""

version = 0.1
maintainer = "maintainer@website.com"
status = "Prototype"
date = "12-01-2009"

Import modules

import gtk

class HelloGtk:

 # This is a callback. The data passed to this method is printed to stdout.
 def callback(self, widget, data):
 print "Hello again - %s was pressed" % data

 # This is another callback, which exits the application.
 def delete event(self, widget, event, data=None):
 gtk.main quit()
 print "Bye!"
 return False

 def init (self):
 # Create a new window
 self.window = gtk.Window(gtk.WINDOW TOPLEVEL)

 # Set the title of the window to "GUI"
 self.window.set title("GUI")

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

266

 # Create a handler for delete event that immediately quits GTK.
 self.window.connect("delete event", self.delete event)

 # Set the border width of the window.
 self.window.set border width(6)

 # Create a box to pack the widgets into. The box is an invisible
 # container, which is used to arrange the widgets inside it.
 self.box1 = gtk.HBox(False, 0)

 # Put the box into the main window.
 self.window.add(self.box1)

 # Create a new button with the label "Hello".
 self.button1 = gtk.Button("Hello")

 # Now when the button is clicked, the self.callback method is called
 # with a text string "the Hello button" as its argument.
 self.button1.connect("clicked", self.callback, "the Hello button")

 # Instead of add(), we pack this button into the invisible box,
 # which has been packed into the window.
 self.box1.pack start(self.button1, True, True, 0)

 # Always remember this step, this tells GTK to actually display the
 # button.
 self.button1.show()

 # Do these same steps again to create a second button
 self.button2 = gtk.Button("Quit")

 # This time, delete event is called and the window exits.
 self.button2.connect("clicked", self.delete event, "the Quit button")
 self.box1.pack start(self.button2, True, True, 0)

 # The order in which the buttons are shown is not really important,
 # but it is recommended to show the window last, so that everything
 # displays at once.
 self.button2.show()
 self.box1.show()
 self.window.show()

def main():
 gtk.main()

if name == " main ":
 hello = HelloGtk()
 main()

This script is longer than the equivalent using Tkinter, partly because Gtk provides more options.

Essentially, it does the same thing. When the HelloGtk class is instantiated a new Gtk window is created

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

267

with the argument gtk.WINDOW TOPLEVEL. This argument makes a window that is under the control of
your window manager with the usual decorations and buttons. You can set the title of the window using
the gtk.Window.set title() method and attach commands to the window using gtk.Window.connect().

The gtk.Hbox widget works similarly to Tkinter.Frame, in that it creates a container for widgets,
which are packed horizontally. To get more complex layouts, you can nest several gtk.Vbox widgets,
which pack their contents vertically, inside a gtk.Hbox widget, or vice versa. Then, you create the
buttons, connect them to the appropriate callback methods, and pack them into the box. You need to
call the show() method on each widget in order for it to be displayed, starting with the details, like the
buttons, and moving out to the main window last. Calling main() invokes the Gtk main event processing
loop, which handles mouse, keyboard, and window events. So finally a little Gtk window should open on
your desktop like the one shown in Figure 12-2.

Figure 12-2. A little Gtk window

Catching Signals

Gtk not only provides nice graphical building blocks, but it also monitors user input and other events.
Each widget can respond to different signals, such as mouse clicks and text input. Gtk provides a huge
number of widgets, which are detailed at http://www.pygtk.org/pygtk2reference/gtk-class-
reference.html. Get used to understanding the contents of this reference. Each page gives a brief
description, a list of the methods available to the widget object, a list of its properties with explanations,
and a list of signals that it can receive. The full syntax of each method is explained at the end of the page.

In order to understand the arguments given to the various gtk.Button methods used previously, you
need to go to the gtk.Button page. First, you should read the “Constructor” section. You should also
make a note of the signals it can receive (such as click and right-click). You will see that gtk.Button can
take three optional arguments: label, stock, and use underline. Mostly, you’ll just want to stick a label
on it, and a label is a plain text string. The stock argument is for using preformatted stock Gtk icons; the
list of available options is at http://www.pygtk.org/pygtk2reference/gtk-class-reference.html. The
use underline is a function that allows you to underline letters in the label as a mnemonic for key
combinations.

To find the syntax for some methods, you to trace the ancestry of some of these objects. For
example, the origin of the connect() method lies way back in the gobject.GObject class, which is the
parent of all graphic objects used in Gtk. gobject.GObject.connect(detailed signal, handler, . . .)
is the given syntax: detailed signal is a text string identifying the signal to be acted upon. The
gtk.Button widget can understand activate, clicked, enter, leave, pressed, or released in this context
(in Listing 11-2 the value "clicked" is used). The handler method that you have already specified is the
command to be run when the signal is received. The handler is the self.callback method in this
instance. All subsequent arguments are passed on to the method.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

268

The show() method is inherited from gtk.Widget and mercifully takes no arguments. Because of the
way the class hierarchy is organized, you can assume that all widgets have connect() and show()
methods, which work in exactly the same way.

The buttons are packed using the gtk.Box.pack start(child, expand, fill, padding) method
inherited by gtk.Hbox: child is the widget to be packed, and expand and fill are Booleans indicating
whether or not the child widget fills the available space in each direction according to the packing
direction of the container. And padding is the number of pixels between each widget.

This graphical Hello World example isn’t particularly big or clever, but it does provide a nice visual
representation of how an object oriented graphical application works. The principles scale well for small
to medium-sized applications, and the Gtk library provides the majority of the functionality you would
expect from a standard windowed application, so building bigger applications is simply a question of
adding more building blocks.

Building Complex Interfaces

Now, you know how to put a tiny window with a couple of buttons in it on the screen. The point of
creating graphic interfaces is to provide a reassuring user-friendly window that the user can point and
click within, instead of having to follow some arcane command-line procedure. For the final example in
this chapter, I’m going to show you how to wrap up some command-line instructions in a smart Gtk
interface.

My main functional requirement is that the application should display some system information in
a window. I also want to be able to save that information as a text file. I have a Bash script that I’ve been
using to provide diagnostics for my audio system. This script is all well and good for those who are
accustomed to the command line, but this audio information that could be useful to complete beginners
too, so I want to create a graphical point-and-click version.

I’m going to use the bits of Bash script as they are, by importing the commands module;
commands.getoutput() allows me to run Bash commands and pass the results back to Python. This
program will also use os.system() to launch external applications.

The pseudocode outline for such an application might look like this:

Assign BASH commands to strings named <option> func.
Create GUI.
 # Create Icons.
 # Create clipboard.
 # Create a new window.
 # Create menubar.
 # FILE menu.
 # Save -> Create save As dialog & specify file to open for writing.
 # Quit -> Quit the application.
 # EDIT menu.
 # Copy -> Copies selected information to the clipboard.
 # HELP menu.
 # About -> What it says on the box.
 # Help -> Launch browser with help page.
 # Create option list panel.
 # Create list of options.
 # get selection from option list.
 # Create command line according to option chosen.
 # Execute command line and display in text output panel.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

269

 # Create text output panel.
 # Create QUIT button.
Display GUI and wait for user signals

The immediate issue that needs facing here is that this design is going to require several additional

files to be available to the application: several icon images and an HTML help page. For want of a better
name, I’m going to call this program GtkInfo, so to organize the files, I have created a folder in
~/Projects called gtkinfo (see Figure 12-3).

Figure 12-3. The gtkinfo directory

The original Bash commands were taken from http://alsa.opensrc.org/index.php/Aadebug; all I
have done is turn the sequences of Bash instructions into Python strings.

Creating the GUI

As in the previous example, the entire graphic interface is defined as a single class, GtkInfo(). The
graphic interface is built by the constructor method GtkInfo. init (). The first thing I do is create
some icon images using gtk.gdk.pixbuf new from file(path), which creates Gtk picture buffers to hold
the images in a format that Gtk, and therefore Python, can use. These will come in handy later. I aliased
the method as image to save on typing and similarly defined path to be the full path to the gtkinfo
directory.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

270

Creating a clipboard is simple using gtk.Clipboard(). Once the clipboard’s created, I create a text
buffer, which will hold the output messages for the right-hand pane of the main window display using
gtk.TextBuffer(None). The text can be formatted by creating a text tag. This tag uses the pango library,
which also needs to be separately imported. Here, I am using it to create a simple headline format. The
next commands get the position of the cursor and place the output items at the cursor position to create
the formatted output.

With all that done, I can now start to construct the graphic components. First, the main window
needs creating; this is the outer box that provides the title bar and iconify, maximize, and quit buttons
for the application. I can set various properties of the main window here and connect any delete event
received by the window to my GtkInfo.delete event() method. The compiler will complain if I try to
reference a method that doesn’t exist yet, so I need to create a stub for this method, which will show me
whether the signal is being caught and allow me to fill in the details later.

 def delete event(self, widget, event, data=None):
 """Quits the application"""
 print "You called a", event, ": Bye!"
 return False

Now, I can begin to fill in the details on the canvas provided by the main window. Gtk organizes the

graphical components of the interface by packing them into boxes, which are aligned either vertically or
horizontally and can be packed from left to right, top to bottom, right to left, or bottom to top. This type
of organization means careful planning. I started by dividing the space vertically, inserting an invisible
vertical box in which the main areas of the interface can be stacked.

■ Note The vbox has to be added to the window, so that Gtk knows where to place it. Later in this stanza, it is

necessary to explicitly call self.vbox1.show() to tell Gtk to actually display the widget—even though it’s

invisible.

The first item in the window is the menubar, which is constructed in a fashion similar to stacking
Russian nested dolls. First, the headers for the three menus are constructed, and submenus are set for
each header. After that, the individual menu entries are constructed as separate widgets. As with the
delete event command, I constructed stubs for these methods, so I could get on with building the GUI
first and worry about the functionality later.

■ Note Each menu still has to be specifically appended to the menubar and its show() method run. The menubar

also has to be packed into place. The exact command varies from widget to widget, but the principle remains the

same.

Next, I made a container for the two main panels of the application: on the left is a list of options,
and the right-hand pane displays the retrieved information. The process of filling the space proceeds in a
similar manner to the menus. First, I created two scrolled windows to contain the views, setting the to

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

271

gtk.POLICY AUTOMATIC so that the scrollbars will disappear if the information fits inside the space. In
order to display the list of options, I will use the gtk.TreeView object, which provides a file-browser-like
display. Actually, I’m just going to use it to display a list rather than a tree, but that doesn’t matter
immediately. I can fill it with information later. Next, I connect the "cursor-changed" signal to a
self.on treeview1 cursor changed() method stub, so I can get a response when the user clicks a
different option. All this functionality is packed into place and then filled with relevant information by
self.create treelist().

The second scrolled window is filled with a gtk.TextView widget, which displays the text buffer that I
created earlier. Again, all the widgets are packed into place, and the horizontal box is displayed. The last
piece in the puzzle is a Quit button, which is packed into the bottom of the vertical box, and the
remaining items are displayed, with the main window coming up last.

Once the basic framework for the GUI has been constructed, it is necessary to fill it with some
information. GtkInfo.create treelist() creates a gtk.ListStore to structure the information that is to
be displayed in treeview1, the left-hand options panel, as shown in Figure 12-4. Again, a nest of items is
created started with the columns, and these are populated with individual cells. Next, the icons are put
in place by the make pixbuf() method and then packed into the columns. The liststore is associated
with treeview1 using the treeview1.set model(model=self.liststore) method.

Figure 12-4. The panel on the left is a treeview

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

272

Making the Commands Do Something Useful

The next step is to turn the stub methods into commands that actually do something. To remember
what these methods were supposed to do, I need to go back to the original pseudocode.

The resulting Python file is fairly substantial but not unmanageable, as shown in Listing 12-3. For
larger programs, you would probably want to split the program up into smaller files, possibly separating
the form from the functionality. I’ve omitted large chunks for brevity and clarity, so you can see the
important bits of the program; the complete example can be found in the code download.

Listing 12-3. gtkinfo.py

#! /usr/bin/env python

"""Example windowed app.

Usage: gtkinfo.py
Target System: GNU/Linux
Interface: Gtk
Functional Requirements: Display some system information in a window.
"""

version = 0.1
maintainer = "maintainer@website.com"
status = "Prototype"
date = "12-01-2009"

Import modules

import gtk
import pango
import os, commands

class GtkInfo:
 # Code removed for clarity. See the download for full listing.

 # Create a new window
 self.window = gtk.Window(gtk.WINDOW TOPLEVEL)
 self.window.set title("Gtk Info")
 self.window.set border width(6)
 self.window.set default size(600, 400)
 self.window.set resizable(True)
 self.window.connect("delete event", self.delete event)

 # Create a vertical box to pack the widgets into.
 self.vbox1 = gtk.VBox(False, 0)
 self.window.add(self.vbox1)

 # Create menubar
 self.menubar1 = gtk.MenuBar()
 self.menubar1.set pack direction(gtk.PACK DIRECTION LTR)
 self.menubar1.set child pack direction(gtk.PACK DIRECTION LTR)

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

273

Here is where we start creating the separate menus and wiring the application together. Note how
we connect each action to a method. Each method will be explained as we work our way through the rest
of this example’s code.

 # FILE menu
 self.file = gtk.MenuItem(label=" File", use underline=True)
 self.file menu = gtk.Menu()

 self.save as = gtk.ImageMenuItem(stock id="gtk-save")
 self.save as.connect("activate", self.on save as)
 self.file menu.append(self.save as)
 self.save as.show()

 self.quit = gtk.ImageMenuItem(stock id="gtk-quit")
 self.quit.connect("activate", self.on quit)
 self.file menu.append(self.quit)
 self.quit.show()

 self.file.set submenu(self.file menu)
 self.file menu.show()

 # EDIT menu
 self.edit = gtk.MenuItem(label=" Edit", use underline=True)
 self.edit menu = gtk.Menu()

 self.copy = gtk.ImageMenuItem(stock id="gtk-copy")
 self.copy.connect("activate", self.on copy)
 self.edit menu.append(self.copy)
 self.copy.show()

 self.edit.set submenu(self.edit menu)
 self.edit menu.show()

 # HELP menu
 self.help = gtk.MenuItem(label=" Help", use underline=True)
 self.help menu = gtk.Menu()

 self.about = gtk.ImageMenuItem(stock id="gtk-about")
 self.about.connect("activate", self.on about)
 self.help menu.append(self.about)
 self.about.show()

 self.hhelp = gtk.ImageMenuItem(stock id="gtk-help")
 self.hhelp.connect("activate", self.on help)
 self.help menu.append(self.hhelp)
 self.hhelp.show()

 self.help.set submenu(self.help menu)
 self.help menu.show()

 # Don't forget to add them to the menubar.

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

274

 self.menubar1.append(self.file)
 self.file.show()
 self.menubar1.append(self.edit)
 self.edit.show()
 self.menubar1.append(self.help)
 self.help.show()

 # Then pack the menubar into place.
 self.vbox1.pack start(self.menubar1, False, True, 0)
 self.menubar1.show()

 # Create the main panels
 self.hbox1 = gtk.HBox(False, 0)

 # Create option list panel
 self.scrolledwindow1 = gtk.ScrolledWindow()
 self.scrolledwindow1.set policy(gtk.POLICY AUTOMATIC,
 gtk.POLICY AUTOMATIC)
 self.treeview1 = gtk.TreeView()
 self.treeview1.connect("cursor-changed",
 self.on treeview1 cursor changed)
 self.scrolledwindow1.add with viewport(self.treeview1)
 self.treeview1.show()
 self.scrolledwindow1.show()
 self.hbox1.pack start(self.scrolledwindow1, True, True, 0)

 # Fill it with relevant info
 self.create treelist()

 #Create text output panel
 self.scrolledwindow2 = gtk.ScrolledWindow()
 self.scrolledwindow2.set policy(gtk.POLICY AUTOMATIC,
 gtk.POLICY AUTOMATIC)
 self.textview1 = gtk.TextView(self.textbuffer)
 self.textview1.set wrap mode(gtk.WRAP WORD)
 self.textview1.set editable(False)
 self.textview1.set left margin(6)
 self.textview1.set right margin(6)
 self.scrolledwindow2.add with viewport(self.textview1)
 self.textview1.show()
 self.scrolledwindow2.show()
 self.hbox1.pack start(self.scrolledwindow2, True, True, 0)
 self.hbox1.show()

 self.vbox1.pack start(self.hbox1, True, True, 0)

 # Create QUIT button
 self.button2 = gtk.Button("Quit")
 self.button2.connect("clicked", self.delete event, "the Quit button")
 self.vbox1.pack start(self.button2, False, False, 0)
 self.button2.show()

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

275

 self.vbox1.show()
 self.window.show()

 def create treelist(self):
 """create treelist

 Create list of options
 """
 # Add some messages to the window

 # Omitted for clarity
 return

 def make pixbuf(self, tvcolumn, cell, model, tier):
 """make pixbuf

 Create icons for TreeView menu.
 """

 # Omitted for clarity
 return

The get selection() method catches selections in the options list and displays the system

information that I was after; it is called by on treeview1 cursor changed(). The selection itself is
retrieved by treeview1.get selection(). This selection is then dropped into a command string, which is
evaluated using eval(). Finally, the output is prepared for sending to the textbuffer in much the same
way as before.

 def get selection(self):
 """get selection

 Creates text appropriate to choices
 """
 # get selection from listview
 self.choice = self.treeview1.get selection()
 self.choice.set mode(gtk.SELECTION SINGLE)
 self.model, self.row reference = self.choice.get selected()
 self.choice = self.liststore.get value(self.row reference, 0)

 # Create command line
 command ref = "self." + self.choice.replace(' ',' ') + " func"
 command = eval(command ref)

 # GUI output
 # Make clean textbuffer
 self.textbuffer = gtk.TextBuffer(None)
 # Create headline style
 self.headline = self.textbuffer.create tag('headline',
 weight=700, scale=pango.SCALE LARGE)
 # navigate to start of buffer
 place = self.textbuffer.get start iter()

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

276

 # Create pixbuf icon reference
 icon = eval("self." + self.choice.replace(' ',' ') + " image")
 # Insert icon at top of page
 self.textbuffer.insert pixbuf(place, icon)
 # Print appropriate text underneath
 text = " " + self.choice + ": \n\n" + commands.getoutput(command)
 self.textbuffer.insert at cursor(text)
 iter0 = self.textbuffer.get iter at line(0)
 iter1 = self.textbuffer.get iter at line(1)
 self.textbuffer.apply tag(self.headline,iter0,iter1)
 self.textview1.set buffer(self.textbuffer)
 return

The menu item File ➤ Save is connected to the on save as() method, which is supposed to create a
Save As dialog to specify file to open for writing. Fortunately, Gtk provides a handy
gtk.FileChooserDialog() method with which to perform this function; the dialog retrieves the filename
using the get filename() method. Running the dialog also returns a response, which needs to be
handled. If the dialog receives the OK signal from the user, it fetches the output from the Bash commands
for each of the headings and writes them out to a text file, displaying a helpful message in the GUI when
it’s done. If the dialog receives the 'Cancel' signal, nothing is done. Either way, dialog.destroy() is
called to get rid of the now-extraneous window.

 def on save as(self, widget):
 """Save

 Opens a dialog asking you where you want to save the information
 as a plain text file.
 """
 print "Exporting aadebug information"
 # Create save As dialog & specify file to open for writing
 dialog = gtk.FileChooserDialog(title='Save Multimedia Info to file',
 action=gtk.FILE CHOOSER ACTION SAVE,
 buttons=(gtk.STOCK CANCEL,
 gtk.RESPONSE CANCEL,
 gtk.STOCK OPEN,
 gtk.RESPONSE OK))
 dialog.set current name('aadebug.txt')
 response = dialog.run()
 outfile name = dialog.get filename()
 print "response: " + str(response)
 print "outfile: " + str(outfile name)

 if response == gtk.RESPONSE OK:
 # Write out items
 a out = """Multimedia System Information (%s)

""" % (version ,)
 headings = ['Kernel','CPU','RAM','Hardware','Modprobe',
 'Sound Modules','Sound Devices','Asound']
 a list = [a out]
 for heading in headings:

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

277

 command = eval("self." + heading + " func")
 a = """***** %s *****
%s

""" % (heading, commands.getoutput(command))
 a list.append(a)
 a out = ''.join(a list)
 # write out System info to file
 output file = open(outfile name,'w')
 output file.write(a out)
 output file.close()
 print "aadebug info written out"

 # Create GUI output
 # Make clean textbuffer
 self.textbuffer = gtk.TextBuffer(None)
 # Create headline style
 self.headline = self.textbuffer.create tag('headline',
 weight=700, scale=pango.SCALE LARGE)
 # navigate to start of buffer
 place = self.textbuffer.get start iter()
 # Create pixbuf icon reference
 icon = eval("self.save image")
 # Insert icon at top of page
 self.textbuffer.insert pixbuf(place, icon)
 # Print appropriate text underneath
 text = """Saving Information ...

To file:
%s""" % (outfile name,)
 self.textbuffer.insert at cursor(text)
 iter0 = self.textbuffer.get iter at line(0)
 iter1 = self.textbuffer.get iter at line(1)
 self.textbuffer.apply tag(self.headline,iter0,iter1)
 self.textview1.set buffer(self.textbuffer)
 elif response == gtk.RESPONSE CANCEL:
 print "Save As cancelled"
 dialog.destroy()
 return

The code for on quit() is easy. As I have already defined a delete event() method, this method can

be used by the File ➤ Quit menu entry as well.

 def on quit(self, widget):
 """Quit the application"""
 self.delete event("Quit", "Quit")
 return

Edit ➤ Copy turns out to be a one-liner also. The textbuffer has a built-in method to transfer its
contents to the clipboard, named sensibly enough textbuffer.copy clipboard(self.clipboard).

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

278

 def on copy(self, widget):
 """Copy

 Copies selected information to the clipboard
 """
 self.textbuffer.copy clipboard(self.clipboard)
 return

Gtk has another preformed dialog for the About dialog box, so I can fill in the on about() stub using

that. For the help pages, I used a different approach. The os.system() method allows external
applications to be launched in a fairly straightforward way; it just takes the command-line as an
argument. After all that trouble packing widgets into boxes, making them functional turned out to be
much easier.

 def on about(self, widget, *args):
 """About Dialog

 What it says on the box
 """
 print "About Gtk Info"
 logo = self.icon
 dialog = gtk.AboutDialog()
 dialog.set name('Gtk Info')
 dialog.set version(str(version))
 dialog.set authors([maintainer])
 dialog.set documenters([maintainer])
 dialog.set logo(logo)
 comment = 'A graphical interface for displaying system information'
 dialog.set comments(comment)
 response = dialog.run()
 if response == -6:
 dialog.destroy()
 return

 def on help(self, widget, *args):
 """Help

 Launches help page in a web browser.
 """
 os.system('/usr/bin/sensible-browser index.html')
 return

The on treeview1 cursor changed() method is called when a new selection is made, and it calls

get selection(), which you saw previously. The delete event() method is called when the Quit menu
option is clicked.

 def on treeview1 cursor changed(self, widget, *args):
 """Option panel

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

279

 Gets the icon that received the click
 and displays relevant information
 """
 self.get selection()

 def delete event(self, widget, event, data=None):
 """Quits the application"""
 gtk.main quit()
 print "You called a", event, ": Bye!"
 return False

Finally, we start the application.

def main():
 gtk.main()

if name == " main ":
 application = GtkInfo()
 main()

Using Glade and tepache to Build Interfaces
Only certain sorts of programmers find building GUIs from scratch exciting, and there is a kind of logic
in the idea that graphic interfaces should be made in a graphic interface. If you are using Linux, you can
create your GUI using Glade and use a utility called tepache to generate a Python framework from it. You
then just have to fill in the blanks, such as menu names and error messages.

$ tepache guixample.glade
written file guixample.py

The preceding code snippet will produce a page of code like the following, as well as a file called
SimpleGladeApp.py. The .py file builds the GUI according to the instructions in the corresponding .glade
file.

#!/usr/bin/env python
-*- coding: UTF8 -*-

Python module guixample.py
Autogenerated from guixample.glade
Generated on Thu Jan 22 17:30:21 2009

Warning: Do not modify any context comment such as #--
They are required to keep user's code

import os

import gtk

from SimpleGladeApp import SimpleGladeApp
from SimpleGladeApp import bindtextdomain

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

280

app name = "guixample"
app version = "0.0.1"

glade dir = ""
locale dir = ""

bindtextdomain(app name, locale dir)

class Window1(SimpleGladeApp):

 def init (self, path="guixample.glade",
 root="window1",
 domain=app name, **kwargs):
 path = os.path.join(glade dir, path)
 SimpleGladeApp. init (self, path, root, domain, **kwargs)

 #-- Window1.new {
 def new(self):
 print "A new %s has been created" % self. class . name
 #-- Window1.new }

 #-- Window1 custom methods {
 # Write your own methods here
 #-- Window1 custom methods }

 #-- Window1.on window1 delete event {
 def on window1 delete event(self, widget, *args):
 print "on window1 delete event called with self.%s" % widget.get name()
 #-- Window1.on window1 delete event }

 #-- Window1.on new1 activate {
 def on new1 activate(self, widget, *args):
 print "on new1 activate called with self.%s" % widget.get name()
 #-- Window1.on new1 activate }

 #-- Window1.on open1 activate {
 def on open1 activate(self, widget, *args):
 print "on open1 activate called with self.%s" % widget.get name()
 #-- Window1.on open1 activate }

 #-- Window1.on save1 activate {
 def on save1 activate(self, widget, *args):
 print "on save1 activate called with self.%s" % widget.get name()
 #-- Window1.on save1 activate }

 #-- Window1.on save as1 activate {
 def on save as1 activate(self, widget, *args):
 print "on save as1 activate called with self.%s" % widget.get name()
 #-- Window1.on save as1 activate }

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

281

 #-- Window1.on quit1 activate {
 def on quit1 activate(self, widget, *args):
 print "on quit1 activate called with self.%s" % widget.get name()
 #-- Window1.on quit1 activate }

 #-- Window1.on cut1 activate {
 def on cut1 activate(self, widget, *args):
 print "on cut1 activate called with self.%s" % widget.get name()
 #-- Window1.on cut1 activate }

 #-- Window1.on copy1 activate {
 def on copy1 activate(self, widget, *args):
 print "on copy1 activate called with self.%s" % widget.get name()
 #-- Window1.on copy1 activate }

 #-- Window1.on paste1 activate {
 def on paste1 activate(self, widget, *args):
 print "on paste1 activate called with self.%s" % widget.get name()
 #-- Window1.on paste1 activate }

 #-- Window1.on delete1 activate {
 def on delete1 activate(self, widget, *args):
 print "on delete1 activate called with self.%s" % widget.get name()
 #-- Window1.on delete1 activate }

 #-- Window1.on about1 activate {
 def on about1 activate(self, widget, *args):
 print "on about1 activate called with self.%s" % widget.get name()
 #-- Window1.on about1 activate }

 #-- Window1.on treeview1 cursor changed {
 def on treeview1 cursor changed(self, widget, *args):
 print "on treeview1 cursor changed called with self.%s" % widget.get name()
 #-- Window1.on treeview1 cursor changed }

 #-- Window1.on button1 clicked {
 def on button1 clicked(self, widget, *args):
 print "on button1 clicked called with self.%s" % widget.get name()
 #-- Window1.on button1 clicked }

#-- main {

def main():
 window1 = Window1()

 window1.run()

if name == " main ":
 main()

#-- main }

CHAPTER 12 ■ SIMPLE WINDOWED APPLICATIONS

282

This method makes developing new graphic interfaces remarkably quick, although you will still
need to get your hands dirty with the Gtk library to make the most of what it provides. Using Glade and
tepache like this, you can create sophisticated interfaces able to cope with most requirements you may
dream up.

Jargon Busting
Here are the terms from this chapter:

• Glade: This user interface designer for GTK is available at
http://glade.gnome.org/.

• GTK: This is a cross-platform GUI toolkit available at http://www.gtk.org/.

• Signal: An event, such as a mouse down or hover, triggers a signal to a widget to
call an appropriately assigned function for the event.

• tepeche: This utility generates a Python framework from a Glade design.

• Tkinter: This is GUI interface building toolkit available at
http://tkinter.unpythonic.net/wiki/FrontPage.

• Widget: This graphical user interface (GUI) element displays information or
provides controls to the user, such as a window, button or text box.

Summary
Award yourself the rest of the day off, or failing that, your favorite beverage and a light snack. You’ve just
finished the final chapter in the book. We covered a fair amount in this chapter too, including four major
tools for building GUIs in Python. It’s clear that Python 3 isn’t yet the best language to use for GUI
programming, but this chapter will give you enough to look into it when Python 3 is ready for GUIs.

As for the book as a whole, you know Python. You will probably be more aware of what you still
don’t know about programming than when you started reading this book. Good. Over the coming
months, you will want to familiarize yourself with the parts of Python’s standard library that look like
they might be useful. Just take one module at a time, and construct an application that does what you
want it to do. As we’ve done in this book’s examples, start with a pseudocode design or flowchart, and
improve the design until you have ticked all your user requirements boxes. Once you have done that,
move on to the next thing.

You now know how to go about designing applications with command-line, windowed, and web-
based interfaces from a basic set of requirements. As you progress, you will develop your own methods
through experience and come into contact with more sophisticated programming ideas, which you may
want to integrate. I hope this book provides a first step on the path of programming that you can always
come back to when you want to remind yourself of the basics.
Happy programming!

283

Index

■A
abstraction, 109

defined, 123
accessing privileged information

defining functions, 101—102
overview, 101
passing unknown number of values

into function, 103—104
sending invitations, 102—103
using docstrings to document function,

104
accessor methods, 183

defined, 219
alphanumeric, defined, 159
American Standard Code for Information

Interchange (ASCII), 125
defined, 159

append (a) mode, 142
append() method, 81
application(s), 145, 158

checking and correcting styles, 147, 154
converting text, 145, 147
defined, 4, 6
formatting data, 154, 156
storing data, 156, 158

arbitrary, defined, 99
arguments, 19, 24
assignment, 18, 24, 28
assignment operator, 53—54

defined, 73
associative arrays, 86
asterisk (*), functions and, 103
attribute, 181

access, 197
defined, 219

■B
backslash (/), 33
BaseException class, 231
base 16 (hexadecimal) numbers, 41—42
base 8 (octal) numbers, 41—42
Bash prompt, 161
Beautiful Soup, 258—259
binary (base 2), defined, 45
binary (b) mode, 142
binary numbers, 37
bin directory, 163
bits, 37

defined, 45
blocks, defined, 219
Boole, George, 38
Boolean, 29

defined, 45
Boolean values, 37—38

manipulating, 52—53
Bourne-Again Shell (Bash), defined, 179
break keyword, 67—68

exiting loops, 67
buffers, files, 141—142
built-in, defined, 45
built-in element, defined, 73
built-in functions, overloading, 200
Button widget, Tkinter, 264
bytecode, 251

defined, 259
bytes, 37

■ INDEX

284

defined, 45

■C
caching, 249
calling procedure, 105

defined, 123
Canvas widget, Tkinter, 264
carriage return (CR), 34
case changing, strings, 128—129
case-sensitive, 28

alphabetical ordering, 51
defined, 45

cgi directory, 173
cgitb module, 176
chaining, defined, 239
CHANGELOG file, 114
characters, 32

defined, 45
character sets, matching regular

expressions using, 138
char not in punctuation conditional

construction, 73
Checkbutton widget, Tkinter, 264
chmod command, 162
class(es), 219

application of, 200, 219
creating simple, 182—183
customizing

attribute access, 197
constructors, 192—193
emulating existing types, 194, 196
emulating numeric types, 197, 199
output, 193, 194
overview, 191—192
properties, 196

defined, 123, 182, 219
of exceptions

accessing properties of raised
exceptions, 229—230

creating, 225, 227, 229
hierarchy of, 224—225
raising, 225, 227

id() function, 184
namespaces, 185
overview, 181—182

self parameter, 183
terminology, 219—220
type() function, 184
when to use

inheritance, 189—190
methods, 190—191
overview, 185, 189

class definitions, 181
close() method, 144
code, defined, 3
command line, 4
command-line interface (CLI), defined, 6
commands module, 268
comments, 15
Common Gateway Interface (CGI)

defined, 179
scripts, 173

comparing values, 55
combining conditional expressions, 53
manipulating Boolean values, 52—53
operator precedence, 54—55
overview, 49, 51
using assignment operators, 53—54

comparison operators, 50
defined, 73

compiling, defined, 6
complex data types, defined, 99
concatenate, defined, 45
concatenation

avoiding, 127—128
operator, 32

conditional code, 61, 64
conditional expressions, combining, 53
conditional statement, 49, 55

defined, 73
nesting, 69

connect() method, 267
constants, 91

defined, 99
constrain, defined, 99
constraint on constructors, 192
constructors, 192—193
continue keyword, 67—68

exiting loops, 67
contributed modules, defined, 259

■ INDEX

285

control flow statement, 55, 57
conversion field, 130

defined, 159
converting numbers, 40—41
converting text, 145, 147
convert module, 244
critical values, defined, 73

■D
data

defined, 3
formatting, 154, 156
storing, 156, 158

date stamp, 114
defined, 123

decimal (base 10)
defined, 45

def statement, 101
del: method, 88
deleting items from dictionaries, 88—89
delimited text, 15
delimiters, 24, 126
del keyword, 81
deque, 82
design document, 23
designing software, 9, 25

devising solutions
coding design, 18
defining acceptable results, 14
documentation, 22, 24
executable code, 18—19
functional requirements, 14
indentation, 17
maintenance, 14—15
nonfunctional requirements, 14
notes of possible improvements, 22
organizing task into steps, 16—17
overview, 13
refining, 17, 19—20
subgroups, 17
testing, 20—21
user requirements documents, 13

goals
overview, 12
potential users, 12—13

identifying problems to solve
operating systems, 12
overview, 10—11
potential users, 11—12
purpose of proposed software, 11

overview, 9—10
reasons for

questions to ask, 10
using Python, 10

terminology, 24—25
dict.clear() method, 89
dict.fromkeys(iterable, value=None)

method, 88
dict() function, 88
dictionaries, 75, 85—86, 89

defining, 86, 88
deleting items from, 88—89
manipulating, 108
sorting, 89
using, 89

dict.popitem() method, 88
Distutils, defined, 260
Distutils Python standard, 255
dividing numbers, 39—40
docstrings, 104

using to document function, 104
documentation, 10, 22, 24

strings, 6
defined, 6

Don't Repeat Yourself principle, 15
double asterisk (**), 103
double equals sign (==), 50
double quotes, 33
double underscores, 169
duck typing, 184
dynamic typing, 29, 31

defined, 45

■E
“easier to ask for forgiveness than

permission” (EAFP), 238—239
style, 238

Easy Install, defined, 260
Easy Install Python package manager, 255
editing strings, 134

■ INDEX

286

Egg format, defined, 260
elif keyword, 55—56
else clause

defined, 239
handling exceptions, 232, 234

else keyword, 55
else suite, 68
emulating

existing types, 194, 196
numeric types, 197, 199

encapsulation, 183
defined, 220

Entry widget, Tkinter, 264
enumerate() function, 83, 92
environment

code block, 185
programming, 5

equals sign (=), 53
equip() method, 186
error correction, 21—22
Escaped Characters with special meaning

in regular expressions, 137—138
Escape Sequences, 34
escaping, 18, 24

sequences, 34
eval() function, 157, 172—173
except clause, 231

defined, 240
using try statement with, 222, 224

Exception() constructor, 230
exception handling, defined, 239
exceptions, 221, 240

chaining, 235, 237
classes of

accessing properties of raised
exceptions, 229—230

creating, 225, 227, 229
hierarchy of, 224—225
raising, 225, 227

defined, 123, 239
handling

complex, 231
EAFP style, 238
overview, 221
simple, 222

using else clause, 232, 234
using finally clause, 231—232
using tracebacks, 234—235, 237
using try statement with except

clause, 222, 224
overview, 221
terminology, 239, 240

exec() function, 172—173
executable files, defined, 179
execution, 17
existing types, emulating, 194, 196
exit() function, 4
expressions, 29, 38

defined, 46
extend() method, 81

■F
field names

defined, 159
replacement, 130

FieldStorage
class, 177
dictionary, 177

file.close() method, 142, 144
file extensions, 12
file.flush() method, 142, 144
file.readline() method, 143
file.readline([size]) method, 142
files, text

closing, 144
finding way around, 143—144
opening, 141, 142

modes and buffers, 141—142
reading from and writing to, 142—143

file.tell() method, 144
file.writelines(sequence) method, 143
file.write() method, 144
filter() function, 84
finally clause

defined, 239
handling exceptions, 231—232

Find function, 109
finding strings, 134—135
first in, first out (FIFO) structure, 82
flags, 53

■ INDEX

287

defined, 46
flags argument, 139
float, 40

defined, 46
Float Format Specifiers, 133
float(x) function, 40
floor division, 39
flowchart, defined, 73
for loop dictionaries, 86
formal parameters, 102

defined, 123
format_info() function, 148
format specifier, 130

defined, 159
formatting data, 154, 156
formatting strings, 129, 133
for statements, 69, 73, 85
fractions, 40
Frame widget, Tkinter, 264
functional requirements, 14
function call, 102

defined, 123
function definition, 102

defined, 123
functions, 19, 24, 101, 124

accessing privileged information
defining functions, 101—102
overview, 101
passing unknown number of values

into function, 103—104
sending invitations, 102—103
using docstrings to document

function, 104
refactoring rpcombat.py

matrix refactored, 113, 123
overview, 108—109
readable code, 113
testing, 109, 111

terminology, 123—124
variable scope, 105, 108

manipulating lists and dictionaries,
108

overview, 105, 107
using global statement, 107

■G
generalization, 108, 123

defined, 123
generate() method, 186
get_args() function, 172
get_input() function, 172
get(key,default) method, 87
get_selection() method, 275
getvalue(key, default_value) method, 177
Glade, 279, 282
globals() function, 105
global statement, variable scope and, 107
global variables, 105, 123
graphical user interface (GUI), 261
greedy expression, 136
greedy regular expressions, defined, 159
gtk.Clipboard(), 270
GtkInfo() class, 269

■H
hashes, 86, 99
hash symbol (#), 15
Hbox widget, PyGTK, 267
help files, creating, 6
help() function, 22—23
hexadecimal (base 16), defined, 46
hex(x) function, 42
home directory, defined, 179
html folder, 173

■I
identifiers, 18, 24

selecting
keywords, 27—28
naming conventions, 28
overview, 27

id() function, 184
if keyword, 55
immutability, 35
immutable, 35

defined, 46
immutable data type, 86
immutable value, defined, 99
implementation, 24

■ INDEX

288

imp module, 250
importing, 260
import method, 246
import statement, 170
inclusive numerical operators,

overloading, 199
indentation, 17, 24
index, 75

defined, 99
inheritance, 189—190

defined, 220
initialization, 18, 24, 28, 192

defined, 220
in len() function, 83
input() function, 20, 34, 43
installing Python

on miscellaneous systems, 2
on Windows, 2

instances, defined, 220
Integer Format Specifiers, 132
integers, 38

defined, 46
integrated development environment

(IDE), 5
coding with, 5

interactive mode, 4
interactive shell, 4
interface

defined, 220
object, 185

international characters, 126
interpreter, defined, 6
int() function, 62, 157
int(x) function, 40
invitations, sending, 102—103
IOError, 141
items() method, 87
iterable, defined, 99
iteration, defined, 74
iterator objects, 83
iterators, defined, 99

■J
joining strings, 127—128
join() method, 78

■K
keys() method, 87
keyword arguments, 103

defined, 123
keywords, 27—28

■L
Label widget, Tkinter, 264
lambda expression, defined, 124
last in, first out (LIFO) structure, 82
len() function, 51
len(seq), 78
linefeed (LF) character, 34
list.append() method, 82
Listbox widget, Tkinter, 264
list comprehensions, 84—85
list() function, 157
list.pop(i) method, 81
list.reverse() method, 82
lists, 75, 100

creating, 80
dictionaries, 85—86, 89

defining, 86, 88
deleting items, 88—89
sorting, 89
using, 89

list comprehensions, 84—85
manipulating, 108
modifying, 80—81
multidimensional, 83
overview, 75
processing large amounts of data, 83—

84
queues, 82
role-playing combat game, 89, 98
sequences

accessing items in, 75—76
determining if items are in, 77, 79

sets, 85
sorting, 82—83
stacks, 82
terminology, 99—100
tuples, 79—80

changing values in, 80

■ INDEX

289

creating, 79—80
list.sort() method, 82
list traversal, 83
local data, 105
locals() function, 105
local variables, defined, 124
logical errors, 57, 61
logical operator, defined, 46
“Look before you leap” (LBYL), 238

defined, 239
loop body, defined, 74
loops, 65, 73

defined, 74
overview, 65
for statement, 69, 73
while statement, 69

break keyword, 67—68
continue keyword, 67—68
nesting conditional statements, 69
overview, 65, 67

■M
magic methods, 184, 191
magic variable, 37
major revisions, 64
manipulating lists and dictionaries, 108
map() function, 84
mapping, 29

defined, 46, 99
methods, 195

matrix, 83
defined, 99

max(seq), 79
Menubutton widget, Tkinter, 264
Menu widget, Tkinter, 264
Message widget, Tkinter, 264
methods, 77, 181, 190—191

defined, 99, 220
minor revisions, 64
min(seq), 79
modes, files, 141—142
modification procedure, 108

defined, 124
modularization, defined, 124
modules, 24, 90, 241, 260

creating, 242—243
defined, 241—242, 260
examples of

CSV, 256, 257
datetime, 257—258
overview, 256
urllib, 258—259

flexible importing, 244, 246
importing, 170, 172
internals, 250—251
overview, 241
packages

creating, 252, 254
defined, 252
future, 259
installing contributed, 254—255

reloading dynamically, 249—250
standard, 254
structuring, 246, 249
terminology, 259, 260
using in other programs, 243—244

multidimensional lists, 83
mutable data type, 86
mutable lists, 75
mutable sequences, 195
mutable value, defined, 99
mystring.center(width[, fillchar]) method,

129
my_string.split([sep[, maxsplit]]), 126

■N
name binding operation, 185
namespace, 185

defined, 220
naming conventions functions, 102
natural language, defined, 6
nesting, 15, 24

conditional statements, 69
quotes, 33

NoneType variable, 31
None value, 31
nonfunctional requirements, 14, 24
nongreedy expression, 136
nongreedy regular expressions, defined,

159

■ INDEX

290

null statement, 67
defined, 74

number applications, creating, 43, 45
numbers

base 16 (hexadecimal), 41—42
base 8 (octal), 41—42
base 8 (octal) and base 16

(hexadecimal), 41—42
basic mathematical operations, 38—39
binary, 37
Booleans, 37—38
converting, 40—41
creating number applications, 43, 45
dividing, 39—40
fractions and flats, 40
integers, 38
operator precedence, 39
overview, 37

numerical operators, methods
implementing, 198

numeric types, emulating, 197, 199

■O
object.__contains__(self, item) method,

195
object.__delattr__(self, name) method, 197
object.__delitem__(self, key) method, 195
object.__getattribute__(self, name)

method, 197
object.__getattr__(self, name) method, 197
object.__getitem__(self, key), 194
object.__len__(self) method, 194
object orientation, 181
object.__repr__(self) function, 193
objects

defined, 124
manipulating lists and dictionaries, 108

object.__setattr__(self, name, value)
method, 197

object.__setitem__(self, key, value)
method, 195

octal (base 8)
defined, 46

oct(x) function, 42

open(filename[, mode[, buffering]])
function, 141

open() function, 142
operands, 32, 50

defined, 74
operating system, 6
operations, defined, 99
operator, 32, 38, 77

defined, 46
overloading, 192

operator precedence, 39, 54—55
defined, 46

organizing projects, 164
os.system(), 268

method, 278
overloading, 32

built-in functions, 200
inclusive numerical operators, 199
operator, 192
rich comparison operators, 197

■P
packages, defined, 260
parent, defined, 220
parentheses, tuples and, 79
plus sign (+), 136
pointer, 108

defined, 124
polymorphism, 184

defined, 220
pop() method, 82
positional arguments, 103

defined, 124
print() function, 18, 31, 38, 127, 155
privileged information, accessing

defining functions, 101—102
overview, 101
passing unknown number of values

into function, 103—104
sending invitations, 102—103
using docstrings to document function,

104
program, defined, 3, 7
programming environments, 5
prompt, 19, 24

■ INDEX

291

defined, 6
properties, 196

of raised exceptions, accessing, 229—230
pseudocode, 17, 25

defined, 10
style checker script, 147
text conversion script, 145

punctuation, 139
variable, 73

pure function, 108
defined, 124

pydoc module, 166
PyGTK, 282

commands, 272, 279
complex interfaces, 268—269
GUI, 269, 271
overview, 265, 267
signal response, 267—268

Python, 1, 7
coding

with IDEs, 5
with text editors, 5

help files, creating, 6
interactive shell, 4
interpreter, 4
learning while having fun, 4
overview, 1
running

on miscellaneous systems, 2
overview, 1—2
on Windows, 2

software development cycle, 5
terminology, 6—7
versions of, 2—3

pythonic, defined, 239
Python Package Index (PyPI), 255

defined, 260
PYTHONPATH, 250

environment, 260

■Q
question mark (?), 136
questionnaires, 12
queue, 82

defined, 99

quit() function, 4
quotation marks, 15
quotes

joining text fragments with, 32—33
nesting, 33

■R
Radiobutton widget, Tkinter, 264
raised exceptions, 222

defined, 240
random module, 92
random.randint() function, 108
random.randint(start, end) method, 92
raw_input() function, 20
readable code, 111, 113
read_ in() function, 157
reading from files, 142—143
readline() method, 143
read (r) mode, 142
re.compile(pattern[, flags]) mmethod, 139
recursion, 13
re.escape(pattern) method, 139
refactoring, defined, 124
refactoring rpcombat.py

to reduce repetition
matrix refactored, 113, 123
overview, 108—109
readable code, 111, 113
testing, 109, 111

re.findall(pattern, string[, flags]) method,
140

refining, 49
defined, 74

regular expressions
characters with special meaning in,

140—141
defined, 159
finding patterns at beginning or end of

string, 138—139
letting characters escape, 139
manipulating strings using, 139, 141
matching character sets and

alternatives, 138
matching subpatterns, 137—138
object, 139

■ INDEX

292

repetition
reducing by refactoring rpcombat.py

matrix refactored, 113, 123
overview, 108—109
readable code, 111, 113
testing, 109, 111

replacement field names, 130
repr() function, 157
re.split() method, 136
re.split(pattern, string[, maxsplit]) method,

139
re.sub() method, 145
re.subn(pattern, repl, string[, count])

method, 140
resultant, defined, 99
results (output), 101

defined, 124
returning, 25
return statement, 102
reversed() function, 83, 195
rich comparison methods, 197
rich-document format (RDF), 258
.rjust(width[, fillchar]) method, 129
role-playing combat game, 89, 98
roll() function, 103
round brackets (), tuples and, 79
round() function, 59
rpcombat.py

reducing repetition by refactoring
matrix refactored, 113, 123
overview, 108—109
readable code, 111, 113
testing, 109, 111

rpcombat.py:write_out(), 157

■S
Scale widget, Tkinter, 264
scope, 185

defined, 124
script, 6
Scrollbar widget, Tkinter, 264
“Search and Replace” function, 109
SecurityError exception, 228
self-documenting, 6, 10

code, 247

self parameter, 183
sentinel, defined, 74
sentinel value, 66
separator.join(seq), 77
separators, defined, 99
sequence packing, 80

defined, 99
sequences, 29

accessing items in, 75—76
defined, 46, 99
determining if items are in, 77, 79

sets, 85
show() method, 268
side-effects, defined, 124
signals, 267, 282
simplification, 10
single equals sign (=), 50
single-stage traceback, 235
slices, 76

defined, 99
software development cycle, 5

defined, 7
sorted() function, 89
sorted(list) method, 82
sorting

dictionaries, 89
lists, 82—83

source data, 105
defined, 124

splitting strings, 126—127
stack, 82

defined, 100
stand-alone applications, creating, 161,

164
standard library, 251

defined, 260
state, defined, 220
statement, 25, 29

defined, 46
statically typing, 45
storing data, 156, 158
string.capitalize() method, 128
string.count(sub[, start[, end]]) method,

135
string.expandtabs([tabsize]) method, 129

■ INDEX

293

string.format(*args, **kwargs), 129
string.format() method, 155
string.join() method, 127
string literals, 29, 32

defined, 47
string.ljust(width[, fillchar]) method, 129
string.partition(sep) method, 126
string.replace() method, 145
string.rindex(sub[, start[, end]]) method,

135
string.rsplit([sep[, maxsplit]]), 126
string.rstrip() method, 145
strings, 25, 75, 125, 135

advanced formatting, 129, 133
changing case, 128—129
editing, 134
finding, 134—135
finding patterns at beginning or end of,

138—139
formatting methods, 129
joining, 127—128
manipulating using regular

expressions, 139, 141
splitting, 126—127

string.split() method, 127, 145
string.strip([chars]) method, 134
string.strip() method, 136
string.swapcase() method, 128
stringToSplit.split(separator,max) method,

78
string.upper() method, 128
str(object) function, 40
strptime() method, 257
str type, 125
styles, text, checking and correcting, 147,

154
stylish code

overview, 165
pythonic approaches, 166, 169

subgroups, 17
subpatterns matching using regular

expressions, 137—138
suite, defined, 74
super() function, 192
symbol table, 105

defined, 124
sys.argv dynamic objects, 170
sys.stderr dynamic object, 170
sys.stdin dynamic objects, 170
sys.stdout dynamic objects, 170

■T
tags, defined, 159
tarball, defined, 159
templates, 181
tepache, 279, 282
tepeche, 282
testing software, 20—21
text, 125, 160

applications, 145, 158
checking and correcting styles, 147,

154
converting text, 145, 147
formatting data, 154, 156
storing data, 156, 158

files
closing, 144
finding way around, 143—144
opening, 141—142
reading from and writing to, 142—

143
overview, 125
regular expressions, 135, 141

finding patterns at beginning or end
of string, 138—139

manipulating strings using regular
expressions, 139, 141

matching character sets and
alternatives, 138

matching subpatterns, 137—138
punctuation, 139
regular expression object, 139

strings, 125, 135
advanced formatting, 129, 133
avoiding concatenation, 127—128
changing case, 128—129
editing, 134
finding, 134—135
formatting methods, 129
joining strings, 127—128

■ INDEX

294

splitting, 126—127
terminology, 159

text applications, creating, 35, 37
text editors, coding with, 5
text fragments, joining

creating text applications, 35, 37
escaping sequences, 34
immutability, 35
nesting quotes, 33
overview, 31—32
using quotes, 32—33
using special whitespace characters,

34—35
text strings, 15
TextView widget, PyGTK, 271
Text widget, Tkinter, 264
Tkinter, 261, 264, 282
token, defined, 124
top-level design, 17, 25
Toplevel widget, Tkinter, 264
trace, defined, 74
traceback, 30

defined, 240
handling exceptions, 234—235, 237
module, 235
single-stage, 235

trace table, 57
defined, 74

trace variable, 58, 91
traversing, defined, 100
triple quotes, 16, 33
truth testing, defined, 47
try clauses, defined, 240
try statement

defined, 240
using with except clause, 222, 224

tuple() function, 157
tuples, 75, 79—80

changing values in, 80
creating, 79—80

TypeError, 30
message, 225

type() function, 184

■U
unbound method, 192
unicode method, defined, 159
Unicode standard, 125
unusual values (critical values), 57
use cases, 13
use dict.pop(key[, default]) method, 88
user requirements documents, 13
users

potential
identifying, 11—12
observing, 13
talking to, 12—13
user stories, 13

user stories, 13, 25
UTF8 encoding, 162

■V
validation, 25, 56

defined, 74
values, passing unknown number into

function, 103—104
values() method, 87
variables, 18, 25, 27, 47

assigning values to, 28—29
creating, 28—29
identifiers, selecting

keywords, 27—28
naming conventions, 28
overview, 27

overview, 27
terminology, 45, 47
types of

dynamic typing, 29, 31
None value, 31
numbers, 37, 45
overview, 29
text fragments, joining, 31, 37

variable scope, 105, 108
manipulating lists and dictionaries, 108
overview, 105, 107
using global statement, 107

vars() function, 105, 107

■ INDEX

295

version number, 2
defined, 7

views, 88

■W, X, Y
weak internal use indicator, defined, 260
weakly internal variables, 246
web-based services

CGI forms, 177—178
overview, 173, 176

weightings variable, 244
whence argument, 144
while loop, flowchart for, 67
while statement, 69

break keyword, 67—68
continue keyword, 67—68
nesting conditional statements, 69
overview, 65, 67

whitespace characters, 34—35, 126
defined, 159

widgets, 262, 282
wildcard character, 136

defined, 159
windowed applications, 261, 282

Glade, 279, 282
overview, 261
PyGTK

commands, 272, 279
complex interfaces, 268, 269
GUI, 269, 271
overview, 265, 267
signal response, 267—268

tepache, 279, 282
terminology, 282
Tkinter, 261, 264

Windows, installing Python on, 2
write_ out(players), 157
write (w) mode, 142
writing to files, 142—143

Z
ZeroDivisionError, 232
zero padding, 131
ZIP files, 255
zip() function, 84
ziply() function, 11

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

