


Praise for Effective Python

“I have been recommending this book enthusiastically since the first edition 
appeared in 2015. This new edition, updated and expanded for Python 3, is a 
treasure trove of practical Python programming wisdom that can benefit pro-
grammers of all experience levels.”

—Wes McKinney, Creator of Python Pandas project, Director of Ursa Labs

“If you’re coming from another language, this is your definitive guide to taking 
full advantage of the unique features Python has to offer. I’ve been working with 
Python for nearly twenty years and I still learned a bunch of useful tricks, espe-
cially around newer features introduced by Python 3. Effective Python is crammed 
with actionable advice, and really helps define what our community means when 
they talk about Pythonic code.”

—Simon Willison, Co-creator of Django

“I’ve been programming in Python for years and thought I knew it pretty well. 
Thanks to this treasure trove of tips and techniques, I’ve discovered many ways 
to improve my Python code to make it faster (e.g., using bisect to search sorted 
lists), easier to read (e.g., enforcing keyword-only arguments), less prone to error 
(e.g., unpacking with starred expressions), and more Pythonic (e.g., using zip to 
iterate over lists in parallel). Plus, the second edition is a great way to quickly get 
up to speed on Python 3 features, such as the walrus operator, f-strings, and the 
typing module.”

—Pamela Fox, Creator of Khan Academy programming courses

“Now that Python 3 has finally become the standard version of Python, it’s 
already gone through eight minor releases and a lot of new features have been 
added throughout. Brett Slatkin returns with a second edition of Effective Python 
with a huge new list of Python idioms and straightforward recommendations, 
catching up with everything that’s introduced in version 3 all the way through 
3.8 that we’ll all want to use as we finally leave Python 2 behind. Early sections 
lay out an enormous list of tips regarding new Python 3 syntaxes and concepts 
like string and byte objects, f-strings, assignment expressions (and their special 
nickname you might not know), and catch-all unpacking of tuples. Later sec-
tions take on bigger subjects, all of which are packed with things I either didn’t 
know or which I’m always trying to teach to others, including ‘Metaclasses and 
Attributes’ (good advice includes ‘Prefer Class Decorators over Metaclasses’ and 
also introduces a new magic method ‘__init_subclass__()’ I wasn’t familiar with), 
‘Concurrency’ (favorite advice: ‘Use Threads for Blocking I/O, but not Parallel-
ism,’ but it also covers asyncio and coroutines correctly) and ‘Robustness and 
Performance’ (advice given: ‘Profile before Optimizing’). It’s a joy to go through 
each section as everything I read is terrific best practice information smartly 
stated, and I’m considering quoting from this book in the future as it has such 
great advice all throughout. This is the definite winner for the ‘if you only read 
one Python book this year...’ contest.

—Mike Bayer, Creator of SQLAlchemy



“This is a great book for both novice and experienced programmers. The code 
examples and explanations are well thought out and explained concisely and 
thoroughly. The second edition updates the advice for Python 3, and it’s fantastic! 
I’ve been using Python for almost 20 years, and I learned something new every 
few pages. The advice given in this book will serve anyone well.”

—Titus Brown, Associate Professor at UC Davis

“Once again, Brett Slatkin has managed to condense a wide range of solid prac-
tices from the community into a single volume. From exotic topics like metaclasses 
and concurrency to crucial basics like robustness, testing, and collaboration, the 
updated Effective Python makes a consensus view of what’s ‘Pythonic’ available to 
a wide audience.”

—Brandon Rhodes, Author of python-patterns.guide
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Preface

The Python programming language has unique strengths and charms 
that can be hard to grasp. Many programmers familiar with other 
languages often approach Python from a limited mindset instead of 
embracing its full expressivity. Some programmers go too far in the 
other direction, overusing Python features that can cause big prob-
lems later.

This book provides insight into the Pythonic way of writing programs: 
the best way to use Python. It builds on a fundamental understanding 
of the language that I assume you already have. Novice programmers 
will learn the best practices of Python’s capabilities. Experienced pro-
grammers will learn how to embrace the strangeness of a new tool 
with confidence.

My goal is to prepare you to make a big impact with Python.

What This Book Covers

Each chapter in this book contains a broad but related set of items. 
Feel free to jump between items and follow your interest. Each item 
contains concise and specific guidance explaining how you can write 
Python programs more effectively. Items include advice on what to 
do, what to avoid, how to strike the right balance, and why this is the 
best choice. Items reference each other to make it easier to fill in the 
gaps as you read.

This second edition of this book is focused exclusively on Python 3 
(see Item 1: “Know Which Version of Python You’re Using”), up to and 
including version 3.8. Most of the original items from the first edi-
tion have been revised and included, but many have undergone sub-
stantial updates. For some items, my advice has completely changed 
between the two editions of the book due to best practices evolving as 
Python has matured. If you’re still primarily using Python 2, despite 
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its end-of-life on January 1st, 2020, the previous edition of the book 
may be more useful to you.

Python takes a “batteries included” approach to its standard library, 
in comparison to many other languages that ship with a small 
 number of common packages and require you to look elsewhere 
for important functionality. Many of these built-in packages are so 
closely intertwined with idiomatic Python that they may as well be 
part of the language specification. The full set of standard modules 
is too large to cover in this book, but I’ve included the ones that I feel 
are critical to be aware of and use.

Chapter 1: Pythonic Thinking

The Python community has come to use the adjective Pythonic to 
describe code that follows a particular style. The idioms of Python 
have emerged over time through experience using the language and 
working with others. This chapter covers the best way to do the most 
common things in Python.

Chapter 2: Lists and Dictionaries

In Python, the most common way to organize information is in a 
sequence of values stored in a list. A list’s natural complement is the 
dict that stores lookup keys mapped to corresponding values. This 
chapter covers how to build programs with these versatile building 
blocks.

Chapter 3: Functions

Functions in Python have a variety of extra features that make a 
 programmer’s life easier. Some are similar to capabilities in other pro-
gramming languages, but many are unique to Python. This chapter 
covers how to use functions to clarify intention, promote reuse, and 
reduce bugs.

Chapter 4: Comprehensions and Generators

Python has special syntax for quickly iterating through lists, dictio-
naries, and sets to generate derivative data structures. It also allows 
for a stream of iterable values to be incrementally returned by a 
function. This chapter covers how these features can provide better 
 performance, reduced memory usage, and improved readability.

Chapter 5: Classes and Interfaces

Python is an object-oriented language. Getting things done in Python 
often requires writing new classes and defining how they interact 



 Preface xix

through their interfaces and hierarchies. This chapter covers how to 
use classes to express your intended behaviors with objects.

Chapter 6: Metaclasses and Attributes

Metaclasses and dynamic attributes are powerful Python features. 
However, they also enable you to implement extremely bizarre and 
unexpected behaviors. This chapter covers the common idioms for 
using these mechanisms to ensure that you follow the rule of least 

surprise.

Chapter 7: Concurrency and Parallelism

Python makes it easy to write concurrent programs that do many 
different things seemingly at the same time. Python can also be used 
to do parallel work through system calls, subprocesses, and C exten-
sions. This chapter covers how to best utilize Python in these subtly 
different situations.

Chapter 8: Robustness and Performance

Python has built-in features and modules that aid in hardening your 
programs so they are dependable. Python also includes tools to help 
you achieve higher performance with minimal effort. This chapter 
covers how to use Python to optimize your programs to maximize 
their reliability and efficiency in production.

Chapter 9: Testing and Debugging

You should always test your code, regardless of what language it’s 
written in. However, Python’s dynamic features can increase the risk 
of runtime errors in unique ways. Luckily, they also make it easier to 
write tests and diagnose malfunctioning programs. This chapter cov-
ers Python’s built-in tools for testing and debugging.

Chapter 10: Collaboration

Collaborating on Python programs requires you to be deliberate about 
how you write your code. Even if you’re working alone, you’ll want to 
understand how to use modules written by others. This chapter cov-
ers the standard tools and best practices that enable people to work 
together on Python programs.

Conventions Used in This Book

Python code snippets in this book are in monospace font and have 
syntax highlighting. When lines are long, I use ➥ characters to show 
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when they wrap. I truncate some snippets with ellipses (...) to indi-
cate regions where code exists that isn’t essential for expressing the 
point. You’ll need to download the full example code (see below on 
where to get it) to get these truncated snippets to run correctly on 
your computer.

I take some artistic license with the Python style guide in order to 
make the code examples better fit the format of a book, or to highlight 
the most important parts. I’ve also left out embedded documentation 
to reduce the size of code examples. I strongly suggest that you don’t 
emulate this in your projects; instead, you should follow the style 
guide (see Item 2: “Follow the PEP 8 Style Guide”) and write documen-
tation (see Item 84: “Write Docstrings for Every Function, Class, and 
Module”).

Most code snippets in this book are accompanied by the correspond-
ing output from running the code. When I say “output,” I mean console 
or terminal output: what you see when running the Python program 
in an interactive interpreter. Output sections are in monospace font 
and are preceded by a >>> line (the Python interactive prompt). The 
idea is that you could type the code snippets into a Python shell and 
reproduce the expected output.

Finally, there are some other sections in monospace font that are not 
preceded by a >>> line. These represent the output of running pro-
grams besides the normal Python interpreter. These examples often 
begin with $ characters to indicate that I’m running programs from a 
 command-line shell like Bash. If you’re running these commands on 
Windows or another type of system, you may need to adjust the pro-
gram names and arguments accordingly.

Where to Get the Code and Errata

It’s useful to view some of the examples in this book as whole 
 programs without interleaved prose. This also gives you a chance to 
tinker with the code yourself and understand why the program works 
as described. You can find the source code for all code snippets in 
this book on the book’s website at https://effectivepython.com. The 
 website also includes any corrections to the book, as well as how to 
report errors.
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1 Pythonic Thinking

The idioms of a programming language are defined by its users. 
Over the years, the Python community has come to use the adjective 
Pythonic to describe code that follows a particular style. The Pythonic 
style isn’t regimented or enforced by the compiler. It has emerged 
over time through experience using the language and working with 
 others. Python programmers prefer to be explicit, to choose simple 
over  complex, and to maximize readability. (Type import this into 
your interpreter to read The Zen of Python.)

Programmers familiar with other languages may try to write Python 
as if it’s C++, Java, or whatever they know best. New programmers 
may still be getting comfortable with the vast range of concepts 
that can be expressed in Python. It’s important for you to know the 
best—the Pythonic—way to do the most common things in Python. 
These patterns will affect every program you write.

Item 1: Know Which Version of Python You’re Using

Throughout this book, the majority of example code is in the syntax 
of Python 3.7 (released in June 2018). This book also provides some 
examples in the syntax of Python 3.8 (released in October 2019) to 
highlight new features that will be more widely available soon. This 
book does not cover Python 2.

Many computers come with multiple versions of the standard CPython 
runtime preinstalled. However, the default meaning of python on the 
command line may not be clear. python is usually an alias for python2.7, 
but it can sometimes be an alias for even older versions, like python2.6 
or python2.5. To find out exactly which version of Python you’re using, 
you can use the --version flag:

$ python --version

Python 2.7.10
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Python 3 is usually available under the name python3:

$ python3 --version

Python 3.8.0

You can also figure out the version of Python you’re using at runtime 
by inspecting values in the sys built-in module:

import sys

print(sys.version_info)

print(sys.version)

>>>

sys.version_info(major=3, minor=8, micro=0, 

➥releaselevel='final', serial=0)

3.8.0 (default, Oct 21 2019, 12:51:32) 

[Clang 6.0 (clang-600.0.57)]

Python 3 is actively maintained by the Python core developers and 
community, and it is constantly being improved. Python 3 includes 
a variety of powerful new features that are covered in this book. The 
majority of Python’s most common open source libraries are compat-
ible with and focused on Python 3. I strongly encourage you to use 
Python 3 for all your Python projects.

Python 2 is scheduled for end of life after January 1, 2020, at which 
point all forms of bug fixes, security patches, and backports of fea-
tures will cease. Using Python 2 after that date is a liability because it 
will no longer be officially maintained. If you’re still stuck working in 
a Python 2 codebase, you should consider using helpful tools like 2to3 
(preinstalled with Python) and six (available as a community pack-
age; see Item 82: “Know Where to Find Community-Built  Modules”) to 
help you make the transition to Python 3.

Things to Remember

✦ Python 3 is the most up-to-date and well-supported version of 
Python, and you should use it for your projects.

✦ Be sure that the command-line executable for running Python on 
your system is the version you expect it to be.

✦ Avoid Python 2 because it will no longer be maintained after January 1, 
2020.

Item 2: Follow the PEP 8 Style Guide

Python Enhancement Proposal #8, otherwise known as PEP 8, is 
the style guide for how to format Python code. You are welcome to 
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write Python code any way you want, as long as it has valid syntax. 
 However, using a consistent style makes your code more approach-
able and easier to read. Sharing a common style with other Python 
 programmers in the larger community facilitates collaboration on 
projects. But even if you are the only one who will ever read your 
code, following the style guide will make it easier for you to change 
things later, and can help you avoid many common errors.

PEP 8 provides a wealth of details about how to write clear Python 
code. It continues to be updated as the Python language evolves. 
It’s worth reading the whole guide online (https://www.python.org/
dev/peps/pep-0008/). Here are a few rules you should be sure to 
follow.

Whitespace

In Python, whitespace is syntactically significant. Python program-
mers are especially sensitive to the effects of whitespace on code 
 clarity. Follow these guidelines related to whitespace:

 ■ Use spaces instead of tabs for indentation.

 ■ Use four spaces for each level of syntactically significant indenting.

 ■ Lines should be 79 characters in length or less.

 ■ Continuations of long expressions onto additional lines should 
be indented by four extra spaces from their normal indentation 
level.

 ■ In a file, functions and classes should be separated by two blank 
lines.

 ■ In a class, methods should be separated by one blank line.

 ■ In a dictionary, put no whitespace between each key and colon, 
and put a single space before the corresponding value if it fits on 
the same line.

 ■ Put one—and only one—space before and after the = operator in a 
variable assignment.

 ■ For type annotations, ensure that there is no separation between 
the variable name and the colon, and use a space before the type 
information.

Naming

PEP 8 suggests unique styles of naming for different parts in the 
language. These conventions make it easy to distinguish which type 
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corresponds to each name when reading code. Follow these guidelines 
related to naming:

 ■ Functions, variables, and attributes should be in lowercase_
underscore format.

 ■ Protected instance attributes should be in _leading_underscore 
format.

 ■ Private instance attributes should be in __double_leading_

underscore format.

 ■ Classes (including exceptions) should be in CapitalizedWord 
format.

 ■ Module-level constants should be in ALL_CAPS format.

 ■ Instance methods in classes should use self, which refers to the 
object, as the name of the first parameter.

 ■ Class methods should use cls, which refers to the class, as the 
name of the first parameter.

Expressions and Statements

The Zen of Python states: “There should be one—and preferably only 
one—obvious way to do it.” PEP 8 attempts to codify this style in its 
guidance for expressions and statements:

 ■ Use inline negation (if a is not b) instead of negation of positive 
expressions (if not a is b).

 ■ Don’t check for empty containers or sequences (like [] or '') 
by comparing the length to zero (if len(somelist) == 0). Use 
if not somelist and assume that empty values will implicitly 
evaluate to False.

 ■ The same thing goes for non-empty containers or sequences (like 
[1] or 'hi'). The statement if somelist is implicitly True for non-
empty values.

 ■ Avoid single-line if statements, for and while loops, and except 
compound statements. Spread these over multiple lines for 
clarity.

 ■ If you can’t fit an expression on one line, surround it with paren-
theses and add line breaks and indentation to make it easier to 
read.

 ■ Prefer surrounding multiline expressions with parentheses over 
using the \ line continuation character.
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Imports

PEP 8 suggests some guidelines for how to import modules and use 
them in your code:

 ■ Always put import statements (including from x import y) at the 
top of a file.

 ■ Always use absolute names for modules when importing them, not 
names relative to the current module’s own path. For example, to 
import the foo module from within the bar package, you should 
use from bar import foo, not just import foo.

 ■ If you must do relative imports, use the explicit syntax 
from . import foo.

 ■ Imports should be in sections in the following order: standard 
library modules, third-party modules, your own modules. Each 
subsection should have imports in alphabetical order.

Note

The Pylint tool (https://www.pylint.org) is a popular static analyzer for Python 
source code. Pylint provides automated enforcement of the PEP 8 style guide and 
detects many other types of common errors in Python programs. Many IDEs and 
editors also include linting tools or support similar plug-ins.

Things to Remember

✦ Always follow the Python Enhancement Proposal #8 (PEP 8) style 
guide when writing Python code.

✦ Sharing a common style with the larger Python community facili-
tates collaboration with others.

✦ Using a consistent style makes it easier to modify your own code later.

Item 3: Know the Differences Between bytes and str

In Python, there are two types that represent sequences of character 
data: bytes and str. Instances of bytes contain raw, unsigned 8-bit 
values (often displayed in the ASCII encoding):

a = b'h\x65llo'

print(list(a))

print(a)

>>>

[104, 101, 108, 108, 111]

b'hello'
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Instances of str contain Unicode code points that represent textual 
characters from human languages:

a = 'a\u0300 propos'

print(list(a))

print(a)

>>>

['a', '`', ' ', 'p', 'r', 'o', 'p', 'o', 's']

à  propos

Importantly, str instances do not have an associated binary encod-
ing, and bytes instances do not have an associated text encoding. To 
convert Unicode data to binary data, you must call the encode method 
of str. To convert binary data to Unicode data, you must call the 
decode method of bytes. You can explicitly specify the encoding you 
want to use for these methods, or accept the system default, which is 
commonly UTF-8 (but not always—see more on that below).

When you’re writing Python programs, it’s important to do encoding 
and decoding of Unicode data at the furthest boundary of your inter-
faces; this approach is often called the Unicode sandwich. The core 
of your program should use the str type containing Unicode data 
and should not assume anything about character encodings. This 
approach allows you to be very accepting of alternative text encodings 
(such as Latin-1, Shift JIS, and Big5) while being strict about your 
 output text encoding (ideally, UTF-8).

The split between character types leads to two common situations in 
Python code:

 ■ You want to operate on raw 8-bit sequences that contain 
UTF-8-encoded strings (or some other encoding).

 ■ You want to operate on Unicode strings that have no specific 
encoding.

You’ll often need two helper functions to convert between these cases 
and to ensure that the type of input values matches your code’s 
expectations.

The first function takes a bytes or str instance and always returns 
a str:

def to_str(bytes_or_str):

    if isinstance(bytes_or_str, bytes):

        value = bytes_or_str.decode('utf-8')

    else:

        value = bytes_or_str

    return value  # Instance of str
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print(repr(to_str(b'foo')))

print(repr(to_str('bar')))

>>>

'foo'

'bar'

The second function takes a bytes or str instance and always returns 
a bytes:

def to_bytes(bytes_or_str):

    if isinstance(bytes_or_str, str):

        value = bytes_or_str.encode('utf-8')

    else:

        value = bytes_or_str

    return value  # Instance of bytes

print(repr(to_bytes(b'foo')))

print(repr(to_bytes('bar')))

There are two big gotchas when dealing with raw 8-bit values and 
Unicode strings in Python.

The first issue is that bytes and str seem to work the same way, but 
their instances are not compatible with each other, so you must be 
deliberate about the types of character sequences that you’re passing 
around.

By using the + operator, you can add bytes to bytes and str to str, 
respectively:

print(b'one' + b'two')

print('one' + 'two')

>>>

b'onetwo'

onetwo

But you can’t add str instances to bytes instances:

b'one' + 'two'

>>>

Traceback ...

TypeError: can't concat str to bytes

Nor can you add bytes instances to str instances:

'one' + b'two'

>>>

Traceback ...

TypeError: can only concatenate str (not "bytes") to str
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By using binary operators, you can compare bytes to bytes and str to 
str, respectively:

assert b'red' > b'blue'

assert 'red' > 'blue'

But you can’t compare a str instance to a bytes instance:

assert 'red' > b'blue'

>>>

Traceback ...

TypeError: '>' not supported between instances of 'str' and 

➥'bytes'

Nor can you compare a bytes instance to a str instance:

assert b'blue' < 'red'

>>>

Traceback ...

TypeError: '<' not supported between instances of 'bytes' 

➥and 'str'

Comparing bytes and str instances for equality will always evaluate 
to False, even when they contain exactly the same characters (in this 
case, ASCII-encoded “foo”):

print(b'foo' == 'foo')

>>>

False

The % operator works with format strings for each type, respectively:

print(b'red %s' % b'blue')

print('red %s' % 'blue')

>>>

b'red blue'

red blue

But you can’t pass a str instance to a bytes format string because 
Python doesn’t know what binary text encoding to use:

print(b'red %s' % 'blue')

>>>

Traceback ...

TypeError: %b requires a bytes-like object, or an object that 

➥implements __bytes__, not 'str'
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You can pass a bytes instance to a str format string using the 
%  operator, but it doesn’t do what you’d expect:

print('red %s' % b'blue')

>>>

red b'blue'

This code actually invokes the __repr__ method (see Item 75: “Use 
repr Strings for Debugging Output”) on the bytes instance and sub-
stitutes that in place of the %s, which is why b'blue' remains escaped 
in the output.

The second issue is that operations involving file handles (returned by 
the open built-in function) default to requiring Unicode strings instead 
of raw bytes. This can cause surprising failures, especially for pro-
grammers accustomed to Python 2. For example, say that I want to 
write some binary data to a file. This seemingly simple code breaks:

with open('data.bin', 'w') as f:

    f.write(b'\xf1\xf2\xf3\xf4\xf5')

>>>

Traceback ...

TypeError: write() argument must be str, not bytes

The cause of the exception is that the file was opened in write text 
mode ('w') instead of write binary mode ('wb'). When a file is in text 
mode, write operations expect str instances containing Unicode data 
instead of bytes instances containing binary data. Here, I fix this by 
changing the open mode to 'wb':

with open('data.bin', 'wb') as f:

    f.write(b'\xf1\xf2\xf3\xf4\xf5')

A similar problem also exists for reading data from files. For example, 
here I try to read the binary file that was written above:

with open('data.bin', 'r') as f:

    data = f.read()

>>>

Traceback ...

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf1 in 

➥position 0: invalid continuation byte

This fails because the file was opened in read text mode ('r') 
instead of read binary mode ('rb'). When a handle is in text mode, 
it uses the system’s default text encoding to interpret binary data 
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using the bytes.encode (for writing) and str.decode (for reading) 
 methods. On most systems, the default encoding is UTF-8, which 
can’t accept the binary data b'\xf1\xf2\xf3\xf4\xf5', thus causing 
the error above. Here, I solve this problem by changing the open 
mode to 'rb':

with open('data.bin', 'rb') as f:

    data = f.read()

assert data == b'\xf1\xf2\xf3\xf4\xf5'

Alternatively, I can explicitly specify the encoding parameter to 
the open function to make sure that I’m not surprised by any 
 platform-specific behavior. For example, here I assume that the 
binary data in the file was actually meant to be a string encoded as 
'cp1252' (a legacy  Windows encoding):

with open('data.bin', 'r', encoding='cp1252') as f:

    data = f.read()

assert data == 'ñòóôõ'

The exception is gone, and the string interpretation of the file’s con-
tents is very different from what was returned when reading raw 
bytes. The lesson here is that you should check the default encod-
ing on your system (using python3 -c 'import locale; print(locale.
getpreferredencoding())') to understand how it differs from your 
expectations. When in doubt, you should explicitly pass the encoding 
parameter to open.

Things to Remember

✦ bytes contains sequences of 8-bit values, and str contains 
sequences of Unicode code points.

✦ Use helper functions to ensure that the inputs you operate on 
are the type of character sequence that you expect (8-bit values, 
UTF-8-encoded strings, Unicode code points, etc).

✦ bytes and str instances can’t be used together with operators (like 
>, ==, +, and %).

✦ If you want to read or write binary data to/from a file, always open 
the file using a binary mode (like 'rb' or 'wb').

✦ If you want to read or write Unicode data to/from a file, be care-
ful about your system’s default text encoding. Explicitly pass the 
encoding parameter to open if you want to avoid surprises.
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Item 4:  Prefer Interpolated F-Strings Over C-style 
Format Strings and str.format

Strings are present throughout Python codebases. They’re used for 
rendering messages in user interfaces and command-line utilities. 
They’re used for writing data to files and sockets. They’re used for 
specifying what’s gone wrong in Exception details (see Item 27: “Use 
Comprehensions Instead of map and filter”). They’re used in debug-
ging (see Item 80: “Consider Interactive Debugging with pdb” and Item 
75: “Use repr Strings for Debugging Output”).

Formatting is the process of combining predefined text with data val-
ues into a single human-readable message that’s stored as a string. 
Python has four different ways of formatting strings that are built 
into the language and standard library. All but one of them, which is 
covered last in this item, have serious shortcomings that you should 
understand and avoid.

The most common way to format a string in Python is by using the 
% formatting operator. The predefined text template is provided on the 
left side of the operator in a format string. The values to insert into 
the template are provided as a single value or tuple of multiple values 
on the right side of the format operator. For example, here I use the 
% operator to convert difficult-to-read binary and hexadecimal values 
to integer strings:

a = 0b10111011

b = 0xc5f

print('Binary is %d, hex is %d' % (a, b))

>>>

Binary is 187, hex is 3167

The format string uses format specifiers (like %d) as placeholders that 
will be replaced by values from the right side of the formatting expres-
sion. The syntax for format specifiers comes from C’s printf function, 
which has been inherited by Python (as well as by other programming 
languages). Python supports all the usual options you’d expect from 
printf, such as %s, %x, and %f format specifiers, as well as control over 
decimal places, padding, fill, and alignment. Many programmers who 
are new to Python start with C-style format strings because they’re 
familiar and simple to use.

There are four problems with C-style format strings in Python.

The first problem is that if you change the type or order of data val-
ues in the tuple on the right side of a formatting expression, you can 
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get errors due to type conversion incompatibility. For example, this 
 simple formatting expression works:

key = 'my_var'

value = 1.234

formatted = '%-10s = %.2f' % (key, value)

print(formatted)

>>>

my_var     = 1.23

But if you swap key and value, you get an exception at runtime:

reordered_tuple = '%-10s = %.2f' % (value, key)

>>>

Traceback ...

TypeError: must be real number, not str

Similarly, leaving the right side parameters in the original order but 
changing the format string results in the same error:

reordered_string = '%.2f = %-10s' % (key, value)

>>>

Traceback ...

TypeError: must be real number, not str

To avoid this gotcha, you need to constantly check that the two sides 
of the % operator are in sync; this process is error prone because it 
must be done manually for every change.

The second problem with C-style formatting expressions is that they 
become difficult to read when you need to make small modifications to 
values before formatting them into a string—and this is an extremely 
common need. Here, I list the contents of my kitchen pantry without 
making inline changes:

pantry = [

    ('avocados', 1.25),

    ('bananas', 2.5),

    ('cherries', 15),

]

for i, (item, count) in enumerate(pantry):

    print('#%d: %-10s = %.2f' % (i, item, count))

>>>

#0: avocados   = 1.25

#1: bananas    = 2.50

#2: cherries   = 15.00
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Now, I make a few modifications to the values that I’m formatting 
to make the printed message more useful. This causes the tuple in 
the formatting expression to become so long that it needs to be split 
across multiple lines, which hurts readability:

for i, (item, count) in enumerate(pantry):

    print('#%d: %-10s = %d' % (

        i + 1,

        item.title(),

        round(count)))

>>>

#1: Avocados   = 1

#2: Bananas    = 2

#3: Cherries   = 15

The third problem with formatting expressions is that if you want 
to use the same value in a format string multiple times, you have to 
repeat it in the right side tuple:

template = '%s loves food. See %s cook.'

name = 'Max'

formatted = template % (name, name)

print(formatted)

>>>

Max loves food. See Max cook.

This is especially annoying and error prone if you have to repeat 
small modifications to the values being formatted. For example, here 
I remembered to call the title() method multiple times, but I could 
have easily added the method call to one reference to name and not the 
other, which would cause mismatched output:

name = 'brad'

formatted = template % (name.title(), name.title())

print(formatted)

>>>

Brad loves food. See Brad cook.

To help solve some of these problems, the % operator in Python has 
the ability to also do formatting with a dictionary instead of a tuple. The 
keys from the dictionary are matched with format specifiers with the 
corresponding name, such as %(key)s. Here, I use this functionality to 
change the order of values on the right side of the formatting expres-
sion with no effect on the output, thus solving problem #1 from above:

key = 'my_var'

value = 1.234
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old_way = '%-10s = %.2f' % (key, value)

new_way = '%(key)-10s = %(value).2f' % {

    'key': key, 'value': value}  # Original

reordered = '%(key)-10s = %(value).2f' % {

    'value': value, 'key': key}  # Swapped

assert old_way == new_way == reordered

Using dictionaries in formatting expressions also solves problem #3 
from above by allowing multiple format specifiers to reference the same 
value, thus making it unnecessary to supply that value more than once:

name = 'Max'

template = '%s loves food. See %s cook.'

before = template % (name, name)   # Tuple

template = '%(name)s loves food. See %(name)s cook.'

after = template % {'name': name}  # Dictionary

assert before == after

However, dictionary format strings introduce and exacerbate other 
issues. For problem #2 above, regarding small modifications to values 
before formatting them, formatting expressions become longer and 
more visually noisy because of the presence of the dictionary key and 
colon operator on the right side. Here, I render the same string with 
and without dictionaries to show this problem:

for i, (item, count) in enumerate(pantry):

    before = '#%d: %-10s = %d' % (

        i + 1,

        item.title(),

        round(count))

    after = '#%(loop)d: %(item)-10s = %(count)d' % {

        'loop': i + 1,

        'item': item.title(),

        'count': round(count),

    }

    assert before == after
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Using dictionaries in formatting expressions also increases verbosity, 
which is problem #4 with C-style formatting expressions in Python. 
Each key must be specified at least twice—once in the format speci-
fier, once in the dictionary as a key, and potentially once more for the 
variable name that contains the dictionary value:

soup = 'lentil'

formatted = 'Today\'s soup is %(soup)s.' % {'soup': soup}

print(formatted)

>>>

Today's soup is lentil.

Besides the duplicative characters, this redundancy causes format-
ting expressions that use dictionaries to be long. These expressions 
often must span multiple lines, with the format strings being concat-
enated across multiple lines and the dictionary assignments having 
one line per value to use in formatting:

menu = {

    'soup': 'lentil',

    'oyster': 'kumamoto',

    'special': 'schnitzel',

}

template = ('Today\'s soup is %(soup)s, '

            'buy one get two %(oyster)s oysters, '

            'and our special entrée is %(special)s.')

formatted = template % menu

print(formatted)

>>>

Today's soup is lentil, buy one get two kumamoto oysters, and 

➥our special entrée is schnitzel.

To understand what this formatting expression is going to produce, 
your eyes have to keep going back and forth between the lines of the 
format string and the lines of the dictionary. This disconnect makes 
it hard to spot bugs, and readability gets even worse if you need to 
make small modifications to any of the values before formatting.

There must be a better way.

The format Built-in and str.format

Python 3 added support for advanced string formatting that is more 
expressive than the old C-style format strings that use the % operator. 
For individual Python values, this new functionality can be accessed 
through the format built-in function. For example, here I use some of 
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the new options (, for thousands separators and ^ for centering) to 
format values:

a = 1234.5678

formatted = format(a, ',.2f')

print(formatted)

b = 'my string'

formatted = format(b, '^20s')

print('*', formatted, '*')

>>>

1,234.57

*      my string       *

You can use this functionality to format multiple values together 
by calling the new format method of the str type. Instead of using 
C-style format specifiers like %d, you can specify placeholders with {}. 
By default the placeholders in the format string are replaced by the 
corresponding positional arguments passed to the format method in 
the order in which they appear:

key = 'my_var'

value = 1.234

formatted = '{} = {}'.format(key, value)

print(formatted)

>>>

my_var = 1.234

Within each placeholder you can optionally provide a colon char-
acter followed by format specifiers to customize how values will be 
converted into strings (see help('FORMATTING') for the full range of 
options):

formatted = '{:<10} = {:.2f}'.format(key, value)

print(formatted)

>>>

my_var     = 1.23

The way to think about how this works is that the format specifiers 
will be passed to the format built-in function along with the value 
(format(value, '.2f') in the example above). The result of that func-
tion call is what replaces the placeholder in the overall formatted 
string. The formatting behavior can be customized per class using 
the __format__ special method.
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With C-style format strings, you need to escape the % character (by 
doubling it) so it’s not interpreted as a placeholder accidentally. With 
the str.format method you need to similarly escape braces:

print('%.2f%%' % 12.5)

print('{} replaces {{}}'.format(1.23))

>>>

12.50%

1.23 replaces {}

Within the braces you may also specify the positional index of an 
argument passed to the format method to use for replacing the place-
holder. This allows the format string to be updated to reorder the 
output without requiring you to also change the right side of the for-
matting expression, thus addressing problem #1 from above:

formatted = '{1} = {0}'.format(key, value)

print(formatted)

>>>

1.234 = my_var

The same positional index may also be referenced multiple times in 
the format string without the need to pass the value to the format 
method more than once, which solves problem #3 from above:

formatted = '{0} loves food. See {0} cook.'.format(name)

print(formatted)

>>>

Max loves food. See Max cook.

Unfortunately, the new format method does nothing to address prob-
lem #2 from above, leaving your code difficult to read when you need 
to make small modifications to values before formatting them. There’s 
little difference in readability between the old and new options, which 
are similarly noisy:

for i, (item, count) in enumerate(pantry):

    old_style = '#%d: %-10s = %d' % (

        i + 1,

        item.title(),

        round(count))

    new_style = '#{}: {:<10s} = {}'.format(

        i + 1,

        item.title(),

        round(count))

    assert old_style == new_style
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There are even more advanced options for the specifiers used with 
the str.format method, such as using combinations of dictionary keys 
and list indexes in placeholders, and coercing values to Unicode and 
repr strings:

formatted = 'First letter is {menu[oyster][0]!r}'.format(

    menu=menu)

print(formatted)

>>>

First letter is 'k'

But these features don’t help reduce the redundancy of repeated keys 
from problem #4 above. For example, here I compare the verbosity of 
using dictionaries in C-style formatting expressions to the new style 
of passing keyword arguments to the format method:

old_template = (

    'Today\'s soup is %(soup)s, '

    'buy one get two %(oyster)s oysters, '

    'and our special entrée is %(special)s.')

old_formatted = template % {

    'soup': 'lentil',

    'oyster': 'kumamoto',

    'special': 'schnitzel',

}

new_template = (

    'Today\'s soup is {soup}, '

    'buy one get two {oyster} oysters, '

    'and our special entrée is {special}.')

new_formatted = new_template.format(

    soup='lentil',

    oyster='kumamoto',

    special='schnitzel',

)

assert old_formatted == new_formatted

This style is slightly less noisy because it eliminates some quotes in 
the dictionary and a few characters in the format specifiers, but it’s 
hardly compelling. Further, the advanced features of using dictionary 
keys and indexes within placeholders only provides a tiny subset of 
Python’s expression functionality. This lack of expressiveness is so 
limiting that it undermines the value of the format method from str 
overall.
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Given these shortcomings and the problems from C-style formatting 
expressions that remain (problems #2 and #4 from above), I suggest 
that you avoid the str.format method in general. It’s important to 
know about the new mini language used in format specifiers (every-
thing after the colon) and how to use the format built-in function. But 
the rest of the str.format method should be treated as a historical 
artifact to help you understand how Python’s new f-strings work and 
why they’re so great.

Interpolated Format Strings

Python 3.6 added interpolated format strings—f-strings for short—to 
solve these issues once and for all. This new language syntax requires 
you to prefix format strings with an f character, which is similar to 
how byte strings are prefixed with a b character and raw (unescaped) 
strings are prefixed with an r character.

F-strings take the expressiveness of format strings to the extreme, 
solving problem #4 from above by completely eliminating the redun-
dancy of providing keys and values to be formatted. They achieve 
this pithiness by allowing you to reference all names in the current 
Python scope as part of a formatting expression:

key = 'my_var'

value = 1.234

formatted = f'{key} = {value}'

print(formatted)

>>>

my_var = 1.234

All of the same options from the new format built-in mini language 
are available after the colon in the placeholders within an f-string, as 
is the ability to coerce values to Unicode and repr strings similar to 
the str.format method:

formatted = f'{key!r:<10} = {value:.2f}'

print(formatted)

>>>

'my_var'   = 1.23

Formatting with f-strings is shorter than using C-style format strings 
with the % operator and the str.format method in all cases. Here, 
I show all these options together in order of shortest to longest, and 
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line up the left side of the assignment so you can easily compare 
them:

f_string = f'{key:<10} = {value:.2f}'

c_tuple  = '%-10s = %.2f' % (key, value)

str_args = '{:<10} = {:.2f}'.format(key, value)

str_kw   = '{key:<10} = {value:.2f}'.format(key=key,

           value=value)

c_dict   = '%(key)-10s = %(value).2f' % {'key': key,

       'value': value}

assert c_tuple == c_dict == f_string

assert str_args == str_kw == f_string

F-strings also enable you to put a full Python expression within the 
placeholder braces, solving problem #2 from above by allowing small 
modifications to the values being formatted with concise syntax. 
What took multiple lines with C-style formatting and the str.format 
method now easily fits on a single line:

for i, (item, count) in enumerate(pantry):

    old_style = '#%d: %-10s = %d' % (

        i + 1,

        item.title(),

        round(count))

    new_style = '#{}: {:<10s} = {}'.format(

        i + 1,

        item.title(),

        round(count))

    f_string = f'#{i+1}: {item.title():<10s} = {round(count)}'

    assert old_style == new_style == f_string

Or, if it’s clearer, you can split an f-string over multiple lines by rely-
ing on adjacent-string concatenation (similar to C). Even though this 
is longer than the single-line version, it’s still much clearer than any 
of the other multiline approaches:

for i, (item, count) in enumerate(pantry):

    print(f'#{i+1}: '
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          f'{item.title():<10s} = '

          f'{round(count)}')

>>>

#1: Avocados   = 1

#2: Bananas    = 2

#3: Cherries   = 15

Python expressions may also appear within the format specifier 
options. For example, here I parameterize the number of digits to print 
by using a variable instead of hard-coding it in the format string:

places = 3

number = 1.23456

print(f'My number is {number:.{places}f}')

>>>

My number is 1.235

The combination of expressiveness, terseness, and clarity provided 
by f-strings makes them the best built-in option for Python pro-
grammers. Any time you find yourself needing to format values into 
strings, choose f-strings over the alternatives.

Things to Remember

✦ C-style format strings that use the % operator suffer from a variety 
of gotchas and verbosity problems.

✦ The str.format method introduces some useful concepts in its for-
matting specifiers mini language, but it otherwise repeats the mis-
takes of C-style format strings and should be avoided.

✦ F-strings are a new syntax for formatting values into strings that 
solves the biggest problems with C-style format strings.

✦ F-strings are succinct yet powerful because they allow for arbi-
trary Python expressions to be directly embedded within format 
specifiers.

Item 5:  Write Helper Functions Instead of Complex 
Expressions

Python’s pithy syntax makes it easy to write single-line expressions 
that implement a lot of logic. For example, say that I want to decode 
the query string from a URL. Here, each query string parameter rep-
resents an integer value:

from urllib.parse import parse_qs



22 Chapter 1 Pythonic Thinking

my_values = parse_qs('red=5&blue=0&green=',

                     keep_blank_values=True)

print(repr(my_values))

>>>

{'red': ['5'], 'blue': ['0'], 'green': ['']}

Some query string parameters may have multiple values, some may 
have single values, some may be present but have blank values, and 
some may be missing entirely. Using the get method on the result dic-
tionary will return different values in each circumstance:

print('Red:     ', my_values.get('red'))

print('Green:   ', my_values.get('green'))

print('Opacity: ', my_values.get('opacity'))

>>>

Red:      ['5']

Green:    ['']

Opacity:  None

It’d be nice if a default value of 0 were assigned when a parameter isn’t 
supplied or is blank. I might choose to do this with Boolean expres-
sions because it feels like this logic doesn’t merit a whole if statement 
or helper function quite yet.

Python’s syntax makes this choice all too easy. The trick here is that 
the empty string, the empty list, and zero all evaluate to False implic-
itly. Thus, the expressions below will evaluate to the subexpression 
after the or operator when the first subexpression is False:

# For query string 'red=5&blue=0&green='

red = my_values.get('red', [''])[0] or 0

green = my_values.get('green', [''])[0] or 0

opacity = my_values.get('opacity', [''])[0] or 0

print(f'Red:     {red!r}')

print(f'Green:   {green!r}')

print(f'Opacity: {opacity!r}')

>>>

Red:     '5'

Green:   0

Opacity: 0

The red case works because the key is present in the my_values dictio-
nary. The value is a list with one member: the string '5'. This string 
implicitly evaluates to True, so red is assigned to the first part of the 
or expression.
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The green case works because the value in the my_values dictionary is 
a list with one member: an empty string. The empty string implicitly 
evaluates to False, causing the or expression to evaluate to 0.

The opacity case works because the value in the my_values dictionary 
is missing altogether. The behavior of the get method is to return its 
second argument if the key doesn’t exist in the dictionary (see Item 16: 
“Prefer get Over in and KeyError to Handle Missing Dictionary Keys”). 
The default value in this case is a list with one member: an empty 
string. When opacity isn’t found in the dictionary, this code does 
exactly the same thing as the green case.

However, this expression is difficult to read, and it still doesn’t do 
everything I need. I’d also want to ensure that all the parameter val-
ues are converted to integers so I can immediately use them in math-
ematical expressions. To do that, I’d wrap each expression with the 
int built-in function to parse the string as an integer:

red = int(my_values.get('red', [''])[0] or 0)

This is now extremely hard to read. There’s so much visual noise. The 
code isn’t approachable. A new reader of the code would have to spend 
too much time picking apart the expression to figure out what it actu-
ally does. Even though it’s nice to keep things short, it’s not worth 
trying to fit this all on one line.

Python has if/else conditional—or ternary—expressions to make 
cases like this clearer while keeping the code short:

red_str = my_values.get('red', [''])

red = int(red_str[0]) if red_str[0] else 0

This is better. For less complicated situations, if/else conditional 
expressions can make things very clear. But the example above is 
still not as clear as the alternative of a full if/else statement over 
multiple lines. Seeing all of the logic spread out like this makes the 
dense version seem even more complex:

green_str = my_values.get('green', [''])

if green_str[0]:

    green = int(green_str[0])

else:

    green = 0

If you need to reuse this logic repeatedly—even just two or three times, 
as in this example—then writing a helper function is the way to go:

def get_first_int(values, key, default=0):

    found = values.get(key, [''])
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    if found[0]:

        return int(found[0])

    return default

The calling code is much clearer than the complex expression using 
or and the two-line version using the if/else expression:

green = get_first_int(my_values, 'green')

As soon as expressions get complicated, it’s time to consider split-
ting them into smaller pieces and moving logic into helper functions. 
What you gain in readability always outweighs what brevity may have 
afforded you. Avoid letting Python’s pithy syntax for complex expres-
sions from getting you into a mess like this. Follow the DRY principle: 
Don’t repeat yourself.

Things to Remember

✦ Python’s syntax makes it easy to write single-line expressions that 
are overly complicated and difficult to read.

✦ Move complex expressions into helper functions, especially if you 
need to use the same logic repeatedly.

✦ An if/else expression provides a more readable alternative to using 
the Boolean operators or and and in expressions.

Item 6:  Prefer Multiple Assignment Unpacking Over 
Indexing

Python has a built-in tuple type that can be used to create immutable, 
ordered sequences of values. In the simplest case, a tuple is a pair of 
two values, such as keys and values from a dictionary:

snack_calories = {

    'chips': 140,

    'popcorn': 80,

    'nuts': 190,

}

items = tuple(snack_calories.items())

print(items)

>>>

(('chips', 140), ('popcorn', 80), ('nuts', 190))

The values in tuples can be accessed through numerical indexes:

item = ('Peanut butter', 'Jelly')

first = item[0]

second = item[1]

print(first, 'and', second)
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>>>

Peanut butter and Jelly

Once a tuple is created, you can’t modify it by assigning a new value 
to an index:

pair = ('Chocolate', 'Peanut butter')

pair[0] = 'Honey'

>>>

Traceback ...

TypeError: 'tuple' object does not support item assignment

Python also has syntax for unpacking, which allows for assigning 
multiple values in a single statement. The patterns that you specify in 
unpacking assignments look a lot like trying to mutate tuples—which 
isn’t allowed—but they actually work quite differently. For example, if 
you know that a tuple is a pair, instead of using indexes to access its 
values, you can assign it to a tuple of two variable names:

item = ('Peanut butter', 'Jelly')

first, second = item  # Unpacking

print(first, 'and', second)

>>>

Peanut butter and Jelly

Unpacking has less visual noise than accessing the tuple’s indexes, 
and it often requires fewer lines. The same pattern matching syntax 
of unpacking works when assigning to lists, sequences, and multiple 
levels of arbitrary iterables within iterables. I don’t recommend doing 
the following in your code, but it’s important to know that it’s possible 
and how it works:

favorite_snacks = {

    'salty': ('pretzels', 100),

    'sweet': ('cookies', 180),

    'veggie': ('carrots', 20),

}

((type1, (name1, cals1)),

 (type2, (name2, cals2)),

 (type3, (name3, cals3))) = favorite_snacks.items()
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print(f'Favorite {type1} is {name1} with {cals1} calories')

print(f'Favorite {type2} is {name2} with {cals2} calories')

print(f'Favorite {type3} is {name3} with {cals3} calories')

>>>

Favorite salty is pretzels with 100 calories

Favorite sweet is cookies with 180 calories

Favorite veggie is carrots with 20 calories

Newcomers to Python may be surprised to learn that unpacking can 
even be used to swap values in place without the need to create tem-
porary variables. Here, I use typical syntax with indexes to swap the 
values between two positions in a list as part of an ascending order 
sorting algorithm:

def bubble_sort(a):

    for _ in range(len(a)):

        for i in range(1, len(a)):

            if a[i] < a[i-1]:

                temp = a[i]

                a[i] = a[i-1]

                a[i-1] = temp

names = ['pretzels', 'carrots', 'arugula', 'bacon']

bubble_sort(names)

print(names)

>>>

['arugula', 'bacon', 'carrots', 'pretzels']

However, with unpacking syntax, it’s possible to swap indexes in a 
single line:

def bubble_sort(a):

    for _ in range(len(a)):

        for i in range(1, len(a)):

            if a[i] < a[i-1]:

                a[i-1], a[i] = a[i], a[i-1]  # Swap

names = ['pretzels', 'carrots', 'arugula', 'bacon']

bubble_sort(names)

print(names)

>>>

['arugula', 'bacon', 'carrots', 'pretzels']

The way this swap works is that the right side of the assignment 
(a[i], a[i-1]) is evaluated first, and its values are put into a new tem-
porary, unnamed tuple (such as ('carrots', 'pretzels') on the first 
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iteration of the loops). Then, the unpacking pattern from the left side 
of the assignment (a[i-1], a[i]) is used to receive that tuple value 
and assign it to the variable names a[i-1] and a[i], respectively. 
This replaces 'pretzels' with 'carrots' at index 0 and 'carrots' with 
'pretzels' at index 1. Finally, the temporary unnamed tuple silently 
goes away.

Another valuable application of unpacking is in the target list of for 
loops and similar constructs, such as comprehensions and generator 
expressions (see Item 27: “Use Comprehensions Instead of map and 
filter” for those). As an example for contrast, here I iterate over a 
list of snacks without using unpacking:

snacks = [('bacon', 350), ('donut', 240), ('muffin', 190)]

for i in range(len(snacks)):

    item = snacks[i]

    name = item[0]

    calories = item[1]

    print(f'#{i+1}: {name} has {calories} calories')

>>>

#1: bacon has 350 calories

#2: donut has 240 calories

#3: muffin has 190 calories

This works, but it’s noisy. There are a lot of extra characters required 
in order to index into the various levels of the snacks structure. 
Here, I achieve the same output by using unpacking along with the 
enumerate built-in function (see Item 7: “Prefer enumerate Over range”):

for rank, (name, calories) in enumerate(snacks, 1):

    print(f'#{rank}: {name} has {calories} calories')

>>>

#1: bacon has 350 calories

#2: donut has 240 calories

#3: muffin has 190 calories

This is the Pythonic way to write this type of loop; it’s short and easy to 
understand. There’s usually no need to access anything using indexes.

Python provides additional unpacking functionality for list con-
struction (see Item 13: “Prefer Catch-All Unpacking Over Slicing”), 
function arguments (see Item 22: “Reduce Visual Noise with Variable 
Positional Arguments”), keyword arguments (see Item 23: “Provide 
Optional Behavior with Keyword Arguments”), multiple return val-
ues (see Item 19: “Never Unpack More Than Three Variables When 
 Functions Return Multiple Values”), and more.

Using unpacking wisely will enable you to avoid indexing when possi-
ble, resulting in clearer and more Pythonic code.
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Things to Remember

✦ Python has special syntax called unpacking for assigning multiple 
values in a single statement.

✦ Unpacking is generalized in Python and can be applied to any 
 iterable, including many levels of iterables within iterables.

✦ Reduce visual noise and increase code clarity by using unpacking 
to avoid explicitly indexing into sequences.

Item 7: Prefer enumerate Over range

The range built-in function is useful for loops that iterate over a set of 
integers:

from random import randint

random_bits = 0

for i in range(32):

    if randint(0, 1):

        random_bits |= 1 << i

print(bin(random_bits))

>>>

0b11101000100100000111000010000001

When you have a data structure to iterate over, like a list of strings, 
you can loop directly over the sequence:

flavor_list = ['vanilla', 'chocolate', 'pecan', 'strawberry']

for flavor in flavor_list:

    print(f'{flavor} is delicious')

>>>

vanilla is delicious

chocolate is delicious

pecan is delicious

strawberry is delicious

Often, you’ll want to iterate over a list and also know the index of 
the current item in the list. For example, say that I want to print the 
ranking of my favorite ice cream flavors. One way to do it is by using 
range:

for i in range(len(flavor_list)):

    flavor = flavor_list[i]

    print(f'{i + 1}: {flavor}')
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>>>

1: vanilla

2: chocolate

3: pecan

4: strawberry

This looks clumsy compared with the other examples of iterating over 
flavor_list or range. I have to get the length of the list. I have to 
index into the array. The multiple steps make it harder to read.

Python provides the enumerate built-in function to address this situa-
tion. enumerate wraps any iterator with a lazy generator (see Item 30: 
“Consider Generators Instead of Returning Lists”). enumerate yields 
pairs of the loop index and the next value from the given iterator. 
Here, I manually advance the returned iterator with the next built-in 
function to demonstrate what it does:

it = enumerate(flavor_list)

print(next(it))

print(next(it))

>>>

(0, 'vanilla')

(1, 'chocolate')

Each pair yielded by enumerate can be succinctly unpacked in a for 
statement (see Item 6: “Prefer Multiple Assignment Unpacking Over 
Indexing” for how that works). The resulting code is much clearer:

for i, flavor in enumerate(flavor_list):

    print(f'{i + 1}: {flavor}')

>>>

1: vanilla

2: chocolate

3: pecan

4: strawberry

I can make this even shorter by specifying the number from which 
enumerate should begin counting (1 in this case) as the second 
parameter:

for i, flavor in enumerate(flavor_list, 1):

    print(f'{i}: {flavor}')

Things to Remember

✦ enumerate provides concise syntax for looping over an iterator and 
getting the index of each item from the iterator as you go.
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✦ Prefer enumerate instead of looping over a range and indexing into a 
sequence.

✦ You can supply a second parameter to enumerate to specify the 
number from which to begin counting (zero is the default).

Item 8: Use zip to Process Iterators in Parallel

Often in Python you find yourself with many lists of related objects. 
List comprehensions make it easy to take a source list and get a 
derived list by applying an expression (see Item 27: “Use Comprehen-
sions Instead of map and filter”):

names = ['Cecilia', 'Lise', 'Marie']

counts = [len(n) for n in names]

print(counts)

>>>

[7, 4, 5]

The items in the derived list are related to the items in the source 
list by their indexes. To iterate over both lists in parallel, I can iterate 
over the length of the names source list:

longest_name = None

max_count = 0

for i in range(len(names)):

    count = counts[i]

    if count > max_count:

        longest_name = names[i]

        max_count = count

print(longest_name)

>>>

Cecilia

The problem is that this whole loop statement is visually noisy. The 
indexes into names and counts make the code hard to read. Indexing 
into the arrays by the loop index i happens twice. Using enumerate 
(see Item 7: “Prefer enumerate Over range”) improves this slightly, but 
it’s still not ideal:

for i, name in enumerate(names):

    count = counts[i]

    if count > max_count:

        longest_name = name

        max_count = count
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To make this code clearer, Python provides the zip built-in function. 
zip wraps two or more iterators with a lazy generator. The zip gener-
ator yields tuples containing the next value from each iterator. These 
tuples can be unpacked directly within a for statement (see Item 6: 
“Prefer Multiple Assignment Unpacking Over Indexing”). The resulting 
code is much cleaner than the code for indexing into multiple lists:

for name, count in zip(names, counts):

    if count > max_count:

        longest_name = name

        max_count = count

zip consumes the iterators it wraps one item at a time, which means 
it can be used with infinitely long inputs without risk of a program 
using too much memory and crashing.

However, beware of zip’s behavior when the input iterators are of 
different lengths. For example, say that I add another item to names 
above but forget to update counts. Running zip on the two input lists 
will have an unexpected result:

names.append('Rosalind')

for name, count in zip(names, counts):

    print(name)

>>>

Cecilia

Lise

Marie

The new item for 'Rosalind' isn’t there. Why not? This is just how 
zip works. It keeps yielding tuples until any one of the wrapped iter-
ators is exhausted. Its output is as long as its shortest input. This 
approach works fine when you know that the iterators are of the 
same length, which is often the case for derived lists created by list 
comprehensions.

But in many other cases, the truncating behavior of zip is surprising 
and bad. If you don’t expect the lengths of the lists passed to zip to 
be equal, consider using the zip_longest function from the itertools 
built-in module instead:

import itertools

for name, count in itertools.zip_longest(names, counts):

    print(f'{name}: {count}')



32 Chapter 1 Pythonic Thinking

>>>

Cecilia: 7

Lise: 4

Marie: 5

Rosalind: None

zip_longest replaces missing values—the length of the string 
'Rosalind' in this case—with whatever fillvalue is passed to it, which 
defaults to None.

Things to Remember

✦ The zip built-in function can be used to iterate over multiple itera-
tors in parallel.

✦ zip creates a lazy generator that produces tuples, so it can be used 
on infinitely long inputs.

✦ zip truncates its output silently to the shortest iterator if you supply 
it with iterators of different lengths.

✦ Use the zip_longest function from the itertools built-in mod-
ule if you want to use zip on iterators of unequal lengths without 
truncation.

Item 9: Avoid else Blocks After for and while Loops

Python loops have an extra feature that is not available in most other 
programming languages: You can put an else block immediately after 
a loop’s repeated interior block:

for i in range(3):

    print('Loop', i)

else:

    print('Else block!')

>>>

Loop 0

Loop 1

Loop 2

Else block!

Surprisingly, the else block runs immediately after the loop finishes. 
Why is the clause called “else”? Why not “and”? In an if/else state-
ment, else means “Do this if the block before this doesn’t happen.” In 
a try/except statement, except has the same definition: “Do this if 
trying the block before this failed.”



 Item 9: Avoid else Blocks After for and while Loops 33

Similarly, else from try/except/else follows this pattern (see Item 65: 
“Take Advantage of Each Block in try/except/else/finally”) because it 
means “Do this if there was no exception to handle.” try/finally is also 
intuitive because it means “Always do this after trying the block before.”

Given all the uses of else, except, and finally in Python, a new pro-
grammer might assume that the else part of for/else means “Do this 
if the loop wasn’t completed.” In reality, it does exactly the opposite. 
Using a break statement in a loop actually skips the else block:

for i in range(3):

    print('Loop', i)

    if i == 1:

        break

else:

    print('Else block!')

>>>

Loop 0

Loop 1

Another surprise is that the else block runs immediately if you loop 
over an empty sequence:

for x in []:

    print('Never runs')

else:

    print('For Else block!')

>>>

For Else block!

The else block also runs when while loops are initially False:

while False:

    print('Never runs')

else:

    print('While Else block!')

>>>

While Else block!

The rationale for these behaviors is that else blocks after loops are 
useful when using loops to search for something. For example, say 
that I want to determine whether two numbers are coprime (that is, 
their only common divisor is 1). Here, I iterate through every pos-
sible common divisor and test the numbers. After every option has 
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been tried, the loop ends. The else block runs when the numbers are 
coprime because the loop doesn’t encounter a break:

a = 4

b = 9

for i in range(2, min(a, b) + 1):

    print('Testing', i)

    if a % i == 0 and b % i == 0:

        print('Not coprime')

        break

else:

    print('Coprime')

>>>

Testing 2

Testing 3

Testing 4

Coprime

In practice, I wouldn’t write the code this way. Instead, I’d write a 
helper function to do the calculation. Such a helper function is writ-
ten in two common styles.

The first approach is to return early when I find the condition I’m look-
ing for. I return the default outcome if I fall through the loop:

def coprime(a, b):

    for i in range(2, min(a, b) + 1):

        if a % i == 0 and b % i == 0:

            return False

    return True

assert coprime(4, 9)

assert not coprime(3, 6)

The second way is to have a result variable that indicates whether I’ve 
found what I’m looking for in the loop. I break out of the loop as soon 
as I find something:

def coprime_alternate(a, b):

    is_coprime = True

    for i in range(2, min(a, b) + 1):

        if a % i == 0 and b % i == 0:

            is_coprime = False

            break

    return is_coprime
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assert coprime_alternate(4, 9)

assert not coprime_alternate(3, 6)

Both approaches are much clearer to readers of unfamiliar code. 
Depending on the situation, either may be a good choice. However, the 
expressivity you gain from the else block doesn’t outweigh the burden 
you put on people (including yourself) who want to understand your 
code in the future. Simple constructs like loops should be self-evident 
in Python. You should avoid using else blocks after loops entirely.

Things to Remember

✦ Python has special syntax that allows else blocks to immediately 
follow for and while loop interior blocks.

✦ The else block after a loop runs only if the loop body did not encoun-
ter a break statement.

✦ Avoid using else blocks after loops because their behavior isn’t 
 intuitive and can be confusing.

Item 10:  Prevent Repetition with Assignment 
Expressions

An assignment expression—also known as the walrus operator—is a 
new syntax introduced in Python 3.8 to solve a long-standing problem 
with the language that can cause code duplication. Whereas normal 
assignment statements are written a = b and pronounced “a equals b,” 
these assignments are written a := b and pronounced “a walrus b” 
(because := looks like a pair of eyeballs and tusks).

Assignment expressions are useful because they enable you to assign 
variables in places where assignment statements are disallowed, such 
as in the conditional expression of an if statement. An assignment 
expression’s value evaluates to whatever was assigned to the identi-
fier on the left side of the walrus operator.

For example, say that I have a basket of fresh fruit that I’m trying to 
manage for a juice bar. Here, I define the contents of the basket:

fresh_fruit = {

    'apple': 10,

    'banana': 8,

    'lemon': 5,

}
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When a customer comes to the counter to order some lemonade, 
I need to make sure there is at least one lemon in the basket to 
squeeze. Here, I do this by retrieving the count of lemons and then 
using an if statement to check for a non-zero value:

def make_lemonade(count):

    ...

def out_of_stock():

    ...

count = fresh_fruit.get('lemon', 0)

if count:

    make_lemonade(count)

else:

    out_of_stock()

The problem with this seemingly simple code is that it’s noisier than 
it needs to be. The count variable is used only within the first block 
of the if statement. Defining count above the if statement causes it 
to appear to be more important than it really is, as if all code that fol-
lows, including the else block, will need to access the count variable, 
when in fact that is not the case.

This pattern of fetching a value, checking to see if it’s non-zero, and 
then using it is extremely common in Python. Many programmers 
try to work around the multiple references to count with a variety 
of tricks that hurt readability (see Item 5: “Write Helper Functions 
Instead of Complex Expressions” for an example). Luckily, assign-
ment expressions were added to the language to streamline exactly 
this type of code. Here, I rewrite this example using the walrus 
operator:

if count := fresh_fruit.get('lemon', 0):

    make_lemonade(count)

else:

    out_of_stock()

Though this is only one line shorter, it’s a lot more readable because 
it’s now clear that count is only relevant to the first block of the if 
statement. The assignment expression is first assigning a value to the 
count variable, and then evaluating that value in the context of the if 
statement to determine how to proceed with flow control. This two-
step behavior—assign and then evaluate—is the fundamental nature 
of the walrus operator.

Lemons are quite potent, so only one is needed for my lemonade rec-
ipe, which means a non-zero check is good enough. If a customer 
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orders a cider, though, I need to make sure that I have at least four 
apples. Here, I do this by fetching the count from the fruit_basket 
dictionary, and then using a comparison in the if statement condi-
tional expression:

def make_cider(count):

    ...

count = fresh_fruit.get('apple', 0)

if count >= 4:

    make_cider(count)

else:

    out_of_stock()

This has the same problem as the lemonade example, where the 
assignment of count puts distracting emphasis on that variable. 
Here, I improve the clarity of this code by also using the walrus 
operator:

if (count := fresh_fruit.get('apple', 0)) >= 4:

    make_cider(count)

else:

    out_of_stock()

This works as expected and makes the code one line shorter. It’s 
important to note how I needed to surround the assignment expres-
sion with parentheses to compare it with 4 in the if statement. In 
the lemonade example, no surrounding parentheses were required 
because the assignment expression stood on its own as a non-zero 
check; it wasn’t a subexpression of a larger expression. As with other 
expressions, you should avoid surrounding assignment expressions 
with parentheses when possible.

Another common variation of this repetitive pattern occurs when I 
need to assign a variable in the enclosing scope depending on some 
condition, and then reference that variable shortly afterward in a 
function call. For example, say that a customer orders some banana 
smoothies. In order to make them, I need to have at least two bananas’ 
worth of slices, or else an OutOfBananas exception will be raised. Here, 
I implement this logic in a typical way:

def slice_bananas(count):

    ...

class OutOfBananas(Exception):

    pass
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def make_smoothies(count):

    ...

pieces = 0

count = fresh_fruit.get('banana', 0)

if count >= 2:

    pieces = slice_bananas(count)

try:

    smoothies = make_smoothies(pieces)

except OutOfBananas:

    out_of_stock()

The other common way to do this is to put the pieces = 0 assignment 
in the else block:

count = fresh_fruit.get('banana', 0)

if count >= 2:

    pieces = slice_bananas(count)

else:

    pieces = 0

try:

    smoothies = make_smoothies(pieces)

except OutOfBananas:

    out_of_stock()

This second approach can feel odd because it means that the 
pieces variable has two different locations—in each block of the if 
statement—where it can be initially defined. This split definition tech-
nically works because of Python’s scoping rules (see Item 21: “Know 
How Closures Interact with Variable Scope”), but it isn’t easy to read 
or discover, which is why many people prefer the construct above, 
where the pieces = 0 assignment is first.

The walrus operator can again be used to shorten this example by 
one line of code. This small change removes any emphasis on the 
count variable. Now, it’s clearer that pieces will be important beyond 
the if statement:

pieces = 0

if (count := fresh_fruit.get('banana', 0)) >= 2:

    pieces = slice_bananas(count)

try:

    smoothies = make_smoothies(pieces)

except OutOfBananas:

    out_of_stock()
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Using the walrus operator also improves the readability of splitting 
the definition of pieces across both parts of the if statement. It’s eas-
ier to trace the pieces variable when the count definition no longer 
precedes the if statement:

if (count := fresh_fruit.get('banana', 0)) >= 2:

    pieces = slice_bananas(count)

else:

    pieces = 0

try:

    smoothies = make_smoothies(pieces)

except OutOfBananas:

    out_of_stock()

One frustration that programmers who are new to Python often have 
is the lack of a flexible switch/case statement. The general style for 
approximating this type of functionality is to have a deep nesting of 
multiple if, elif, and else statements.

For example, imagine that I want to implement a system of precedence 
so that each customer automatically gets the best juice available and 
doesn’t have to order. Here, I define logic to make it so banana smooth-
ies are served first, followed by apple cider, and then finally lemonade:

count = fresh_fruit.get('banana', 0)

if count >= 2:

    pieces = slice_bananas(count)

    to_enjoy = make_smoothies(pieces)

else:

    count = fresh_fruit.get('apple', 0)

    if count >= 4:

        to_enjoy = make_cider(count)

    else:

        count = fresh_fruit.get('lemon', 0)

        if count:

            to_enjoy = make_lemonade(count)

        else:

            to_enjoy‘= 'Nothing'

Ugly constructs like this are surprisingly common in Python code. 
Luckily, the walrus operator provides an elegant solution that can feel 
nearly as versatile as dedicated syntax for switch/case statements:

if (count := fresh_fruit.get('banana', 0)) >= 2:

    pieces = slice_bananas(count)

    to_enjoy = make_smoothies(pieces)
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elif (count := fresh_fruit.get('apple', 0)) >= 4:

    to_enjoy = make_cider(count)

elif count := fresh_fruit.get('lemon', 0):

    to_enjoy = make_lemonade(count)

else:

    to_enjoy = 'Nothing'

The version that uses assignment expressions is only five lines shorter 
than the original, but the improvement in readability is vast due to 
the reduction in nesting and indentation. If you ever see such ugly 
constructs emerge in your code, I suggest that you move them over to 
using the walrus operator if possible.

Another common frustration of new Python programmers is the lack 
of a do/while loop construct. For example, say that I want to bottle 
juice as new fruit is delivered until there’s no fruit remaining. Here, 
I implement this logic with a while loop:

def pick_fruit():

    ...

def make_juice(fruit, count):

    ...

bottles = []

fresh_fruit = pick_fruit()

while fresh_fruit:

    for fruit, count in fresh_fruit.items():

        batch = make_juice(fruit, count)

        bottles.extend(batch)

    fresh_fruit = pick_fruit()

This is repetitive because it requires two separate fresh_fruit = 

pick_fruit() calls: one before the loop to set initial conditions, and 
another at the end of the loop to replenish the list of delivered fruit.

A strategy for improving code reuse in this situation is to use the 
loop-and-a-half idiom. This eliminates the redundant lines, but it 
also undermines the while loop’s contribution by making it a dumb 
infinite loop. Now, all of the flow control of the loop depends on the 
conditional break statement:

bottles = []

while True:                     # Loop

    fresh_fruit = pick_fruit()

    if not fresh_fruit:         # And a half

        break
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    for fruit, count in fresh_fruit.items():

        batch = make_juice(fruit, count)

        bottles.extend(batch)

The walrus operator obviates the need for the loop-and-a-half idiom 
by allowing the fresh_fruit variable to be reassigned and then con-
ditionally evaluated each time through the while loop. This solution 
is short and easy to read, and it should be the preferred approach in 
your code:

bottles = []

while fresh_fruit := pick_fruit():

    for fruit, count in fresh_fruit.items():

        batch = make_juice(fruit, count)

        bottles.extend(batch)

There are many other situations where assignment expressions can 
be used to eliminate redundancy (see Item 29: “Avoid Repeated Work 
in Comprehensions by Using Assignment Expressions” for another). 
In general, when you find yourself repeating the same expression or 
assignment multiple times within a grouping of lines, it’s time to con-
sider using assignment expressions in order to improve readability.

Things to Remember

✦ Assignment expressions use the walrus operator (:=) to both assign 
and evaluate variable names in a single expression, thus reducing 
repetition.

✦ When an assignment expression is a subexpression of a larger 
expression, it must be surrounded with parentheses.

✦ Although switch/case statements and do/while loops are not avail-
able in Python, their functionality can be emulated much more 
clearly by using assignment expressions.





2
Lists and 

Dictionaries

Many programs are written to automate repetitive tasks that are 
 better suited to machines than to humans. In Python, the most 
 common way to organize this kind of work is by using a sequence of 
values stored in a list type. Lists are extremely versatile and can be 
used to solve a variety of problems.

A natural complement to lists is the dict type, which stores lookup 
keys mapped to corresponding values (in what is often called an 
associative array or a hash table). Dictionaries provide constant time 
(amortized) performance for assignments and accesses, which means 
they are ideal for bookkeeping dynamic information.

Python has special syntax and built-in modules that enhance read-
ability and extend the capabilities of lists and dictionaries beyond 
what you might expect from simple array, vector, and hash table types 
in other languages.

Item 11: Know How to Slice Sequences

Python includes syntax for slicing sequences into pieces. Slicing 
allows you to access a subset of a sequence’s items with minimal 
effort. The simplest uses for slicing are the built-in types list, str, and 
bytes. Slicing can be extended to any Python class that implements 
the __getitem__ and __setitem__ special methods (see Item 43: 
“Inherit from collections.abc for Custom Container Types”).

The basic form of the slicing syntax is somelist[start:end], where 
start is inclusive and end is exclusive:

a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

print('Middle two:  ', a[3:5])

print('All but ends:', a[1:7])

>>>

Middle two:   ['d', 'e']

All but ends: ['b', 'c', 'd', 'e', 'f', 'g']
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When slicing from the start of a list, you should leave out the zero 
index to reduce visual noise:

assert a[:5] == a[0:5]

When slicing to the end of a list, you should leave out the final index 
because it’s redundant:

assert a[5:] == a[5:len(a)]

Using negative numbers for slicing is helpful for doing offsets relative 
to the end of a list. All of these forms of slicing would be clear to 
a new reader of your code:

a[:]      # ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

a[:5]     # ['a', 'b', 'c', 'd', 'e']

a[:-1]    # ['a', 'b', 'c', 'd', 'e', 'f', 'g']

a[4:]     #                     ['e', 'f', 'g', 'h']

a[-3:]    #                          ['f', 'g', 'h']

a[2:5]    #           ['c', 'd', 'e']

a[2:-1]   #           ['c', 'd', 'e', 'f', 'g']

a[-3:-1]  #                          ['f', 'g']

There are no surprises here, and I encourage you to use these 
variations.

Slicing deals properly with start and end indexes that are beyond the 
boundaries of a list by silently omitting missing items. This behav-
ior makes it easy for your code to establish a maximum length to 
 consider for an input sequence:

first_twenty_items = a[:20]

last_twenty_items = a[-20:]

In contrast, accessing the same index directly causes an exception:

a[20]

>>>

Traceback ...

IndexError: list index out of range

Note

Beware that indexing a list by a negated variable is one of the few situ-
ations in which you can get surprising results from slicing. For example, 
the expression somelist[-n:] will work fine when n is greater than one 
(e.g., somelist[-3:]). However, when n is zero, the expression somelist[-0:] 
is equivalent to somelist[:] and will result in a copy of the original list.
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The result of slicing a list is a whole new list. References to the 
objects from the original list are maintained. Modifying the result of 
slicing won’t affect the original list:

b = a[3:]

print('Before:   ', b)

b[1] = 99

print('After:    ', b)

print('No change:', a)

>>>

Before:    ['d', 'e', 'f', 'g', 'h']

After:     ['d', 99, 'f', 'g', 'h']

No change: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

When used in assignments, slices replace the specified range 
in the original list. Unlike unpacking assignments (such as 
a, b = c[:2]; see Item 6: “Prefer Multiple Assignment Unpacking 
Over Indexing”), the lengths of slice assignments don’t need to be the 
same. The values before and after the assigned slice will be preserved. 
Here, the list shrinks because the replacement list is shorter than 
the specified slice:

print('Before ', a)

a[2:7] = [99, 22, 14]

print('After  ', a)

>>>

Before  ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

After   ['a', 'b', 99, 22, 14, 'h']

And here the list grows because the assigned list is longer than the 
specific slice:

print('Before ', a)

a[2:3] = [47, 11]

print('After  ', a)

>>>

Before  ['a', 'b', 99, 22, 14, 'h']

After   ['a', 'b', 47, 11, 22, 14, 'h']

If you leave out both the start and the end indexes when slicing, you 
end up with a copy of the original list:

b = a[:]

assert b == a and b is not a
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If you assign to a slice with no start or end indexes, you replace the 
entire contents of the list with a copy of what’s referenced (instead of 
allocating a new list):

b = a

print('Before a', a)

print('Before b', b)

a[:] = [101, 102, 103]

assert a is b             # Still the same list object

print('After a ', a)      # Now has different contents

print('After b ', b)      # Same list, so same contents as a

>>>

Before a ['a', 'b', 47, 11, 22, 14, 'h']

Before b ['a', 'b', 47, 11, 22, 14, 'h']

After a  [101, 102, 103]

After b  [101, 102, 103]

Things to Remember

✦ Avoid being verbose when slicing: Don’t supply 0 for the start index 
or the length of the sequence for the end index.

✦ Slicing is forgiving of start or end indexes that are out of bounds, 
which means it’s easy to express slices on the front or back bound-
aries of a sequence (like a[:20] or a[-20:]).

✦ Assigning to a list slice replaces that range in the original sequence 
with what’s referenced even if the lengths are different.

Item 12:  Avoid Striding and Slicing in 
a Single Expression

In addition to basic slicing (see Item 11: “Know How to Slice 
Sequences”), Python has special syntax for the stride of a slice in 
the form somelist[start:end:stride]. This lets you take every nth item 
when slicing a sequence. For example, the stride makes it easy to 
group by even and odd indexes in a list:

x = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']

odds = x[::2]

evens = x[1::2]

print(odds)

print(evens)

>>>

['red', 'yellow', 'blue']

['orange', 'green', 'purple']
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The problem is that the stride syntax often causes unexpected behav-
ior that can introduce bugs. For example, a common Python trick for 
reversing a byte string is to slice the string with a stride of -1:

x = b'mongoose'

y = x[::-1]

print(y)

>>>

b'esoognom'

This also works correctly for Unicode strings (see Item 3: “Know the 
Differences Between bytes and str”):

x = ' '

y = x[::-1]

print(y)

>>>

But it will break when Unicode data is encoded as a UTF-8 byte string:

w = ' '

x = w.encode('utf-8')

y = x[::-1]

z = y.decode('utf-8')

>>>

Traceback ...

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb8 in 

position 0: invalid start byte

Are negative strides besides -1 useful? Consider the following 
examples:

x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

x[::2]   # ['a', 'c', 'e', 'g']

x[::-2]  # ['h', 'f', 'd', 'b']

Here, ::2 means “Select every second item starting at the beginning.” 
Trickier, ::-2 means “Select every second item starting at the end and 
moving backward.”

What do you think 2::2 means? What about -2::-2 vs. -2:2:-2 vs. 
2:2:-2?

x[2::2]     # ['c', 'e', 'g']

x[-2::-2]   # ['g', 'e', 'c', 'a']

x[-2:2:-2]  # ['g', 'e']

x[2:2:-2]   # []
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The point is that the stride part of the slicing syntax can be extremely 
confusing. Having three numbers within the brackets is hard enough 
to read because of its density. Then, it’s not obvious when the start 
and end indexes come into effect relative to the stride value, espe-
cially when the stride is negative.

To prevent problems, I suggest you avoid using a stride along with 
start and end indexes. If you must use a stride, prefer making it a 
positive value and omit start and end indexes. If you must use a stride 
with start or end indexes, consider using one assignment for striding 
and another for slicing:

y = x[::2]   # ['a', 'c', 'e', 'g']

z = y[1:-1]  # ['c', 'e']

Striding and then slicing creates an extra shallow copy of the data. 
The first operation should try to reduce the size of the resulting slice 
by as much as possible. If your program can’t afford the time or mem-
ory required for two steps, consider using the itertools built-in mod-
ule’s islice method (see Item 36: “Consider itertools for Working with 
Iterators and Generators”), which is clearer to read and doesn’t permit 
negative values for start, end, or stride.

Things to Remember

✦ Specifying start, end, and stride in a slice can be extremely 
confusing.

✦ Prefer using positive stride values in slices without start or end 
indexes. Avoid negative stride values if possible.

✦ Avoid using start, end, and stride together in a single slice. If you 
need all three parameters, consider doing two assignments (one 
to stride and another to slice) or using islice from the itertools 
built-in module.

Item 13: Prefer Catch-All Unpacking Over Slicing

One limitation of basic unpacking (see Item 6: “Prefer Multiple Assign-
ment Unpacking Over Indexing”) is that you must know the length of 
the sequences you’re unpacking in advance. For example, here I have 
a list of the ages of cars that are being traded in at a dealership. 
When I try to take the first two items of the list with basic unpack-
ing, an exception is raised at runtime:

car_ages = [0, 9, 4, 8, 7, 20, 19, 1, 6, 15]

car_ages_descending = sorted(car_ages, reverse=True)

oldest, second_oldest = car_ages_descending
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>>>

Traceback ...

ValueError: too many values to unpack (expected 2)

Newcomers to Python often rely on indexing and slicing (see Item 11: 
“Know How to Slice Sequences”) for this situation. For example, here 
I extract the oldest, second oldest, and other car ages from a list of at 
least two items:

oldest = car_ages_descending[0]

second_oldest = car_ages_descending[1]

others = car_ages_descending[2:]

print(oldest, second_oldest, others)

>>>

20 19 [15, 9, 8, 7, 6, 4, 1, 0]

This works, but all of the indexing and slicing is visually noisy. In 
practice, it’s also error prone to divide the members of a sequence into 
various subsets this way because you’re much more likely to make 
off-by-one errors; for example, you might change boundaries on one 
line and forget to update the others.

To better handle this situation, Python also supports catch-all 
unpacking through a starred expression. This syntax allows one part 
of the unpacking assignment to receive all values that didn’t match 
any other part of the unpacking pattern. Here, I use a starred expres-
sion to achieve the same result as above without indexing or slicing:

oldest, second_oldest, *others = car_ages_descending

print(oldest, second_oldest, others)

>>>

20 19 [15, 9, 8, 7, 6, 4, 1, 0]

This code is shorter, easier to read, and no longer has the error-prone 
brittleness of boundary indexes that must be kept in sync between 
lines.

A starred expression may appear in any position, so you can get the 
benefits of catch-all unpacking anytime you need to extract one slice:

oldest, *others, youngest = car_ages_descending

print(oldest, youngest, others)

*others, second_youngest, youngest = car_ages_descending

print(youngest, second_youngest, others)

>>>

20 0 [19, 15, 9, 8, 7, 6, 4, 1]

0 1 [20, 19, 15, 9, 8, 7, 6, 4]
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However, to unpack assignments that contain a starred expres-
sion, you must have at least one required part, or else you’ll get a 
SyntaxError. You can’t use a catch-all expression on its own:

*others = car_ages_descending

>>>

Traceback ...

SyntaxError: starred assignment target must be in a list or 

➥tuple

You also can’t use multiple catch-all expressions in a single-level 
unpacking pattern:

first, *middle, *second_middle, last = [1, 2, 3, 4]

>>>

Traceback ...

SyntaxError: two starred expressions in assignment

But it is possible to use multiple starred expressions in an unpacking 
assignment statement, as long as they’re catch-alls for different parts 
of the multilevel structure being unpacked. I don’t recommend doing 
the following (see Item 19: “Never Unpack More Than Three Variables 
When Functions Return Multiple Values” for related guidance), but 
understanding it should help you develop an intuition for how starred 
expressions can be used in unpacking assignments:

car_inventory = {

    'Downtown': ('Silver Shadow', 'Pinto', 'DMC'),

    'Airport': ('Skyline', 'Viper', 'Gremlin', 'Nova'),

}

((loc1, (best1, *rest1)),

 (loc2, (best2, *rest2))) = car_inventory.items()

print(f'Best at {loc1} is {best1}, {len(rest1)} others')

print(f'Best at {loc2} is {best2}, {len(rest2)} others')

>>>

Best at Downtown is Silver Shadow, 2 others

Best at Airport is Skyline, 3 others

Starred expressions become list instances in all cases. If there are 
no leftover items from the sequence being unpacked, the catch-all 
part will be an empty list. This is especially useful when you’re pro-
cessing a sequence that you know in advance has at least N elements:

short_list = [1, 2]

first, second, *rest = short_list

print(first, second, rest)
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>>>

1 2 []

You can also unpack arbitrary iterators with the unpacking  syntax. 
This isn’t worth much with a basic multiple-assignment statement. 
For example, here I unpack the values from iterating over a range 
of length 2. This doesn’t seem useful because it would be easier 
to just assign to a static list that matches the unpacking pattern 
(e.g., [1, 2]):

it = iter(range(1, 3))

first, second = it

print(f'{first} and {second}')

>>>

1 and 2

But with the addition of starred expressions, the value of unpack-
ing iterators becomes clear. For example, here I have a generator 
that yields the rows of a CSV file containing all car orders from the 
 dealership this week:

def generate_csv():

    yield ('Date', 'Make' , 'Model', 'Year', 'Price')

    ...

Processing the results of this generator using indexes and slices is 
fine, but it requires multiple lines and is visually noisy:

all_csv_rows = list(generate_csv())

header = all_csv_rows[0]

rows = all_csv_rows[1:]

print('CSV Header:', header)

print('Row count: ', len(rows))

>>>

CSV Header: ('Date', 'Make', 'Model', 'Year', 'Price')

Row count:  200

Unpacking with a starred expression makes it easy to process the first 
row—the header—separately from the rest of the iterator’s  contents. 
This is much clearer:

it = generate_csv()

header, *rows = it

print('CSV Header:', header)

print('Row count: ', len(rows))

>>>

CSV Header: ('Date', 'Make', 'Model', 'Year', 'Price')

Row count:  200
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Keep in mind, however, that because a starred expression is always 
turned into a list, unpacking an iterator also risks the potential of 
using up all of the memory on your computer and causing your pro-
gram to crash. So you should only use catch-all unpacking on itera-
tors when you have good reason to believe that the result data will all 
fit in memory (see Item 31: “Be Defensive When Iterating Over Argu-
ments” for another approach).

Things to Remember

✦ Unpacking assignments may use a starred expression to catch all 
values that weren’t assigned to the other parts of the unpacking 
pattern into a list.

✦ Starred expressions may appear in any position, and they will 
always become a list containing the zero or more values they 
receive.

✦ When dividing a list into non-overlapping pieces, catch-all unpack-
ing is much less error prone than slicing and indexing.

Item 14:  Sort by Complex Criteria Using the key 
Parameter

The list built-in type provides a sort method for ordering the items 
in a list instance based on a variety of criteria. By default, sort will 
order a list’s contents by the natural ascending order of the items. 
For example, here I sort a list of integers from smallest to largest:

numbers = [93, 86, 11, 68, 70]

numbers.sort()

print(numbers)

>>>

[11, 68, 70, 86, 93]

The sort method works for nearly all built-in types (strings, floats, 
etc.) that have a natural ordering to them. What does sort do with 
objects? For example, here I define a class—including a __repr__ 
method so instances are printable; see Item 75: “Use repr Strings for 
Debugging Output”—to represent various tools you may need to use 
on a construction site:

class Tool:

    def __init__(self, name, weight):

        self.name = name

        self.weight = weight

    def __repr__(self):

        return f'Tool({self.name!r}, {self.weight})'
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tools = [

    Tool('level', 3.5),

    Tool('hammer', 1.25),

    Tool('screwdriver', 0.5),

    Tool('chisel', 0.25),

]

Sorting objects of this type doesn’t work because the sort method 
tries to call comparison special methods that aren’t defined by the 
class:

tools.sort()

>>>

Traceback ...

TypeError: '<' not supported between instances of 'Tool' and 

'Tool'

If your class should have a natural ordering like integers do, then you 
can define the necessary special methods (see Item 73: “Know How 
to Use heapq for Priority Queues” for an example) to make sort work 
without extra parameters. But the more common case is that your 
objects may need to support multiple orderings, in which case defin-
ing a natural ordering really doesn’t make sense.

Often there’s an attribute on the object that you’d like to use for sort-
ing. To support this use case, the sort method accepts a key param-
eter that’s expected to be a function. The key function is passed a 
single argument, which is an item from the list that is being sorted. 
The return value of the key function should be a comparable value 
(i.e., with a natural ordering) to use in place of an item for sorting 
purposes.

Here, I use the lambda keyword to define a function for the key param-
eter that enables me to sort the list of Tool objects alphabetically by 
their name:

print('Unsorted:', repr(tools))

tools.sort(key=lambda x: x.name)

print('\nSorted:  ', tools)

>>>

Unsorted: [Tool('level',       3.5),

           Tool('hammer',      1.25),

           Tool('screwdriver', 0.5),

           Tool('chisel',      0.25)]
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Sorted:   [Tool('chisel',      0.25),

           Tool('hammer',      1.25),

           Tool('level',       3.5),

           Tool('screwdriver', 0.5)]

I can just as easily define another lambda function to sort by weight 
and pass it as the key parameter to the sort method:

tools.sort(key=lambda x: x.weight)

print('By weight:', tools)

>>>

By weight: [Tool('chisel',      0.25),

            Tool('screwdriver', 0.5),

            Tool('hammer',      1.25),

            Tool('level',       3.5)]

Within the lambda function passed as the key parameter you can 
access attributes of items as I’ve done here, index into items (for 
sequences, tuples, and dictionaries), or use any other valid expression.

For basic types like strings, you may even want to use the key func-
tion to do transformations on the values before sorting. For example, 
here I apply the lower method to each item in a list of place names to 
ensure that they’re in alphabetical order, ignoring any capitalization 
(since in the natural lexical ordering of strings, capital letters come 
before lowercase letters):

places = ['home', 'work', 'New York', 'Paris']

places.sort()

print('Case sensitive:  ', places)

places.sort(key=lambda x: x.lower())

print('Case insensitive:', places)

>>>

Case sensitive:   ['New York', 'Paris',    'home',  'work']

Case insensitive: ['home',     'New York', 'Paris', 'work']

Sometimes you may need to use multiple criteria for sorting. For 
example, say that I have a list of power tools and I want to sort them 
first by weight and then by name. How can I accomplish this?

power_tools = [

    Tool('drill', 4),

    Tool('circular saw', 5),

    Tool('jackhammer', 40),

    Tool('sander', 4),

]
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The simplest solution in Python is to use the tuple type. Tuples are 
immutable sequences of arbitrary Python values. Tuples are compara-
ble by default and have a natural ordering, meaning that they imple-
ment all of the special methods, such as __lt__, that are required by 
the sort method. Tuples implement these special method comparators 
by iterating over each position in the tuple and comparing the cor-
responding values one index at a time. Here, I show how this works 
when one tool is heavier than another:

saw = (5, 'circular saw')

jackhammer = (40, 'jackhammer')

assert not (jackhammer < saw)  # Matches expectations

If the first position in the tuples being compared are equal—weight 
in this case—then the tuple comparison will move on to the second 
position, and so on:

drill = (4, 'drill')

sander = (4, 'sander')

assert drill[0] == sander[0]  # Same weight

assert drill[1] < sander[1]   # Alphabetically less

assert drill < sander         # Thus, drill comes first

You can take advantage of this tuple comparison behavior in order 
to sort the list of power tools first by weight and then by name. Here, 
I define a key function that returns a tuple containing the two attri-
butes that I want to sort on in order of priority:

power_tools.sort(key=lambda x: (x.weight, x.name))

print(power_tools)

>>>

[Tool('drill',        4),

 Tool('sander',       4),

 Tool('circular saw', 5),

 Tool('jackhammer',   40)]

One limitation of having the key function return a tuple is that the 
direction of sorting for all criteria must be the same (either all in 
ascending order, or all in descending order). If I provide the reverse 
parameter to the sort method, it will affect both criteria in the tuple 
the same way (note how 'sander' now comes before 'drill' instead of 
after):

power_tools.sort(key=lambda x: (x.weight, x.name),

                 reverse=True)  # Makes all criteria descending

print(power_tools)
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>>>

[Tool('jackhammer',   40),

 Tool('circular saw', 5),

 Tool('sander',       4),

 Tool('drill',        4)]

For numerical values it’s possible to mix sorting directions by using 
the unary minus operator in the key function. This negates one of 
the values in the returned tuple, effectively reversing its sort order 
while leaving the others intact. Here, I use this approach to sort by 
weight descending, and then by name ascending (note how 'sander' 
now comes after 'drill' instead of before):

power_tools.sort(key=lambda x: (-x.weight, x.name))

print(power_tools)

>>>

[Tool('jackhammer',   40),

 Tool('circular saw', 5),

 Tool('drill',        4),

 Tool('sander',       4)]

Unfortunately, unary negation isn’t possible for all types. Here, I try 
to achieve the same outcome by using the reverse argument to sort 
by weight descending and then negating name to put it in ascending 
order:

power_tools.sort(key=lambda x: (x.weight, -x.name),

                 reverse=True)

>>>

Traceback ...

TypeError: bad operand type for unary -: 'str'

For situations like this, Python provides a stable sorting algorithm. 
The sort method of the list type will preserve the order of the input 
list when the key function returns values that are equal to each 
other. This means that I can call sort multiple times on the same 
list to combine different criteria together. Here, I produce the same 
sort ordering of weight descending and name ascending as I did above 
but by using two separate calls to sort:

power_tools.sort(key=lambda x: x.name)   # Name ascending

power_tools.sort(key=lambda x: x.weight, # Weight descending

                 reverse=True)

print(power_tools)
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>>>

[Tool('jackhammer',   40),

 Tool('circular saw', 5),

 Tool('drill',        4),

 Tool('sander',       4)]

To understand why this works, note how the first call to sort puts the 
names in alphabetical order:

power_tools.sort(key=lambda x: x.name)

print(power_tools)

>>>

[Tool('circular saw', 5),

 Tool('drill',        4),

 Tool('jackhammer',   40),

 Tool('sander',       4)]

When the second sort call by weight descending is made, it sees that 
both 'sander' and 'drill' have a weight of 4. This causes the sort 
method to put both items into the final result list in the same order 
that they appeared in the original list, thus preserving their relative 
ordering by name ascending:

power_tools.sort(key=lambda x: x.weight,

                 reverse=True)

print(power_tools)

>>>

[Tool('jackhammer',   40),

 Tool('circular saw', 5),

 Tool('drill',        4),

 Tool('sander',       4)]

This same approach can be used to combine as many different types 
of sorting criteria as you’d like in any direction, respectively. You just 
need to make sure that you execute the sorts in the opposite sequence 
of what you want the final list to contain. In this example, I wanted 
the sort order to be by weight descending and then by name ascend-
ing, so I had to do the name sort first, followed by the weight sort.

That said, the approach of having the key function return a tuple, 
and using unary negation to mix sort orders, is simpler to read and 
requires less code. I recommend only using multiple calls to sort if 
it’s absolutely necessary.
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Things to Remember

✦ The sort method of the list type can be used to rearrange a list’s 
contents by the natural ordering of built-in types like strings, inte-
gers, tuples, and so on.

✦ The sort method doesn’t work for objects unless they define a natu-
ral ordering using special methods, which is uncommon.

✦ The key parameter of the sort method can be used to supply a 
helper function that returns the value to use for sorting in place of 
each item from the list.

✦ Returning a tuple from the key function allows you to combine mul-
tiple sorting criteria together. The unary minus operator can be 
used to reverse individual sort orders for types that allow it.

✦ For types that can’t be negated, you can combine many sorting cri-
teria together by calling the sort method multiple times using dif-
ferent key functions and reverse values, in the order of lowest rank 
sort call to highest rank sort call.

Item 15:  Be Cautious When Relying on dict Insertion 
Ordering

In Python 3.5 and before, iterating over a dict would return keys in 
arbitrary order. The order of iteration would not match the order in 
which the items were inserted. For example, here I create a dictionary 
mapping animal names to their corresponding baby names and then 
print it out (see Item 75: “Use repr Strings for Debugging Output” for 
how this works):

# Python 3.5

baby_names = {

    'cat': 'kitten',

    'dog': 'puppy',

}

print(baby_names)

>>>

{'dog': 'puppy', 'cat': 'kitten'}

When I created the dictionary the keys were in the order 'cat', 'dog', 
but when I printed it the keys were in the reverse order 'dog', 'cat'. 
This behavior is surprising, makes it harder to reproduce test cases, 
increases the difficulty of debugging, and is especially confusing to 
newcomers to Python.
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This happened because the dictionary type previously implemented 
its hash table algorithm with a combination of the hash built-in func-
tion and a random seed that was assigned when the Python inter-
preter started. Together, these behaviors caused dictionary orderings 
to not match insertion order and to randomly shuffle between pro-
gram executions.

Starting with Python 3.6, and officially part of the Python specifica-
tion in version 3.7, dictionaries will preserve insertion order. Now, this 
code will always print the dictionary in the same way it was originally 
created by the programmer:

baby_names = {

    'cat': 'kitten',

    'dog': 'puppy',

}

print(baby_names)

>>>

{'cat': 'kitten', 'dog': 'puppy'}

With Python 3.5 and earlier, all methods provided by dict that relied 
on iteration order, including keys, values, items, and popitem, would 
similarly demonstrate this random-looking behavior:

# Python 3.5

print(list(baby_names.keys()))

print(list(baby_names.values()))

print(list(baby_names.items()))

print(baby_names.popitem())  # Randomly chooses an item

>>>

['dog', 'cat']

['puppy', 'kitten']

[('dog', 'puppy'), ('cat', 'kitten')]

('dog', 'puppy')

These methods now provide consistent insertion ordering that you 
can rely on when you write your programs:

print(list(baby_names.keys()))

print(list(baby_names.values()))

print(list(baby_names.items()))

print(baby_names.popitem())  # Last item inserted

>>>

['cat', 'dog']

['kitten', 'puppy']

[('cat', 'kitten'), ('dog', 'puppy')]

('dog', 'puppy')
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There are many repercussions of this change on other Python features 
that are dependent on the dict type and its specific implementation.

Keyword arguments to functions—including the **kwargs catch-all 
parameter; see Item 23: “Provide Optional Behavior with Keyword 
Arguments”—previously would come through in seemingly random 
order, which can make it harder to debug function calls:

# Python 3.5

def my_func(**kwargs):

    for key, value in kwargs.items():

        print('%s = %s' % (key, value))

my_func(goose='gosling', kangaroo='joey')

>>>

kangaroo = joey

goose = gosling

Now, the order of keyword arguments is always preserved to match 
how the programmer originally called the function:

def my_func(**kwargs):

    for key, value in kwargs.items():

        print(f'{key} = {value}')

my_func(goose='gosling', kangaroo='joey')

>>>

goose = gosling

kangaroo = joey

Classes also use the dict type for their instance dictionaries. In pre-
vious versions of Python, object fields would show the randomizing 
behavior:

# Python 3.5

class MyClass:

    def __init__(self):

        self.alligator = 'hatchling'

        self.elephant = 'calf'

a = MyClass()

for key, value in a.__dict__.items():

    print('%s = %s' % (key, value))

>>>

elephant = calf

alligator = hatchling
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Again, you can now assume that the order of assignment for these 
instance fields will be reflected in __dict__:

class MyClass:

    def __init__(self):

        self.alligator = 'hatchling'

        self.elephant = 'calf'

a = MyClass()

for key, value in a.__dict__.items():

    print(f'{key} = {value}')

>>>

alligator = hatchling

elephant = calf

The way that dictionaries preserve insertion ordering is now part of 
the Python language specification. For the language features above, 
you can rely on this behavior and even make it part of the APIs you 
design for your classes and functions.

Note

For a long time the collections built-in module has had an OrderedDict 
class that preserves insertion ordering. Although this class’s behavior is similar 
to that of the standard dict type (since Python 3.7), the performance charac-
teristics of OrderedDict are quite different. If you need to handle a high rate 
of key insertions and popitem calls (e.g., to implement a least-recently-used 
cache), OrderedDict may be a better fit than the standard Python dict type 
(see Item 70: “Profile Before Optimizing” on how to make sure you need this).

However, you shouldn’t always assume that insertion ordering behav-
ior will be present when you’re handling dictionaries. Python makes 
it easy for programmers to define their own custom container types 
that emulate the standard protocols matching list, dict, and other 
types (see Item 43: “Inherit from collections.abc for Custom Con-
tainer Types”). Python is not statically typed, so most code relies on 
duck typing—where an object’s behavior is its de facto type—instead 
of rigid class hierarchies. This can result in surprising gotchas.

For example, say that I’m writing a program to show the results of a 
contest for the cutest baby animal. Here, I start with a dictionary con-
taining the total vote count for each one:

votes = {

    'otter': 1281,

    'polar bear': 587,

    'fox': 863,

}
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I define a function to process this voting data and save the rank of 
each animal name into a provided empty dictionary. In this case, the 
dictionary could be the data model that powers a UI element:

def populate_ranks(votes, ranks):

    names = list(votes.keys())

    names.sort(key=votes.get, reverse=True)

    for i, name in enumerate(names, 1):

        ranks[name] = i

I also need a function that will tell me which animal won the contest. 
This function works by assuming that populate_ranks will assign the 
contents of the ranks dictionary in ascending order, meaning that the 
first key must be the winner:

def get_winner(ranks):

    return next(iter(ranks))

Here, I can confirm that these functions work as designed and deliver 
the result that I expected:

ranks = {}

populate_ranks(votes, ranks)

print(ranks)

winner = get_winner(ranks)

print(winner)

>>>

{'otter': 1, 'fox': 2, 'polar bear': 3}

otter

Now, imagine that the requirements of this program have changed. 
The UI element that shows the results should be in alphabet-
ical order instead of rank order. To accomplish this, I can use the 
collections.abc built-in module to define a new dictionary-like class 
that iterates its contents in alphabetical order:

from collections.abc import MutableMapping

class SortedDict(MutableMapping):

    def __init__(self):

        self.data = {}

    def __getitem__(self, key):

        return self.data[key]

    def __setitem__(self, key, value):

        self.data[key] = value
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    def __delitem__(self, key):

        del self.data[key]

    def __iter__(self):

        keys = list(self.data.keys())

        keys.sort()

        for key in keys:

            yield key

    def __len__(self):

        return len(self.data)

I can use a SortedDict instance in place of a standard dict with the 
functions from before and no errors will be raised since this class 
conforms to the protocol of a standard dictionary. However, the result 
is incorrect:

sorted_ranks = SortedDict()

populate_ranks(votes, sorted_ranks)

print(sorted_ranks.data)

winner = get_winner(sorted_ranks)

print(winner)

>>>

{'otter': 1, 'fox': 2, 'polar bear': 3}

fox

The problem here is that the implementation of get_winner assumes 
that the dictionary’s iteration is in insertion order to match 
populate_ranks. This code is using SortedDict instead of dict, so that 
assumption is no longer true. Thus, the value returned for the winner 
is 'fox', which is alphabetically first.

There are three ways to mitigate this problem. First, I can reimple-
ment the get_winner function to no longer assume that the ranks dic-
tionary has a specific iteration order. This is the most conservative 
and robust solution:

def get_winner(ranks):

    for name, rank in ranks.items():

        if rank == 1:

            return name

winner = get_winner(sorted_ranks)

print(winner)

>>>

otter



64 Chapter 2 Lists and Dictionaries

The second approach is to add an explicit check to the top of the func-
tion to ensure that the type of ranks matches my expectations, and 
to raise an exception if not. This solution likely has better runtime 
performance than the more conservative approach:

def get_winner(ranks):

    if not isinstance(ranks, dict):

        raise TypeError('must provide a dict instance')

    return next(iter(ranks))

get_winner(sorted_ranks)

>>>

Traceback ...

TypeError: must provide a dict instance

The third alternative is to use type annotations to enforce that the 
value passed to get_winner is a dict instance and not a MutableMapping 
with dictionary-like behavior (see Item 90: “Consider Static Analysis 
via typing to Obviate Bugs”). Here, I run the mypy tool in strict mode 
on an annotated version of the code above:

from typing import Dict, MutableMapping

def populate_ranks(votes: Dict[str, int],

                   ranks: Dict[str, int]) -> None:

    names = list(votes.keys())

    names.sort(key=votes.get, reverse=True)

    for i, name in enumerate(names, 1):

        ranks[name] = i

def get_winner(ranks: Dict[str, int]) -> str:

    return next(iter(ranks))

class SortedDict(MutableMapping[str, int]):

    ...

votes = {

    'otter': 1281,

    'polar bear': 587,

    'fox': 863,

}

sorted_ranks = SortedDict()

populate_ranks(votes, sorted_ranks)

print(sorted_ranks.data)

winner = get_winner(sorted_ranks)

print(winner)
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$ python3 -m mypy --strict example.py

.../example.py:48: error: Argument 2 to "populate_ranks" has 

➥incompatible type "SortedDict"; expected "Dict[str, int]"

.../example.py:50: error: Argument 1 to "get_winner" has 

➥incompatible type "SortedDict"; expected "Dict[str, int]"

This correctly detects the mismatch between the dict and 
MutableMapping types and flags the incorrect usage as an error. This 
solution provides the best mix of static type safety and runtime 
performance.

Things to Remember

✦ Since Python 3.7, you can rely on the fact that iterating a dict 
instance’s contents will occur in the same order in which the keys 
were initially added.

✦ Python makes it easy to define objects that act like dictionaries but 
that aren’t dict instances. For these types, you can’t assume that 
insertion ordering will be preserved.

✦ There are three ways to be careful about dictionary-like classes: 
Write code that doesn’t rely on insertion ordering, explicitly check 
for the dict type at runtime, or require dict values using type anno-
tations and static analysis.

Item 16:  Prefer get Over in and KeyError to Handle 
Missing Dictionary Keys

The three fundamental operations for interacting with dictionar-
ies are accessing, assigning, and deleting keys and their associated 
values. The contents of dictionaries are dynamic, and thus it’s entirely 
possible—even likely—that when you try to access or delete a key, 
it won’t already be present.

For example, say that I’m trying to determine people’s favorite type of 
bread to devise the menu for a sandwich shop. Here, I define a dictio-
nary of counters with the current votes for each style:

counters = {

    'pumpernickel': 2,

    'sourdough': 1,

}

To increment the counter for a new vote, I need to see if the key exists, 
insert the key with a default counter value of zero if it’s missing, and 
then increment the counter’s value. This requires accessing the key 
two times and assigning it once. Here, I accomplish this task using 
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an if statement with an in expression that returns True when the key 
is present:

key = 'wheat'

if key in counters:

    count = counters[key]

else:

    count = 0

counters[key] = count + 1

Another way to accomplish the same behavior is by relying on how 
dictionaries raise a KeyError exception when you try to get the value 
for a key that doesn’t exist. This approach is more efficient because it 
requires only one access and one assignment:

try:

    count = counters[key]

except KeyError:

    count = 0

counters[key] = count + 1

This flow of fetching a key that exists or returning a default value 
is so common that the dict built-in type provides the get method to 
accomplish this task. The second parameter to get is the default value 
to return in the case that the key—the first parameter—isn’t present. 
This also requires only one access and one assignment, but it’s much 
shorter than the KeyError example:

count = counters.get(key, 0)

counters[key] = count + 1

It’s possible to shorten the in expression and KeyError approaches in 
various ways, but all of these alternatives suffer from requiring code 
duplication for the assignments, which makes them less readable and 
worth avoiding:

if key not in counters:

    counters[key] = 0

counters[key] += 1

if key in counters:

    counters[key] += 1

else:

    counters[key] = 1
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try:

    counters[key] += 1

except KeyError:

    counters[key] = 1

Thus, for a dictionary with simple types, using the get method is the 
shortest and clearest option.

Note

If you’re maintaining dictionaries of counters like this, it’s worth considering 
the Counter class from the collections built-in module, which provides 
most of the facilities you are likely to need.

What if the values of the dictionary are a more complex type, like a 
list? For example, say that instead of only counting votes, I also want 
to know who voted for each type of bread. Here, I do this by associat-
ing a list of names with each key:

votes = {

    'baguette': ['Bob', 'Alice'],

    'ciabatta': ['Coco', 'Deb'],

}

key = 'brioche'

who = 'Elmer'

if key in votes:

    names = votes[key]

else:

    votes[key] = names = []

names.append(who)

print(votes)

>>>

{'baguette': ['Bob', 'Alice'],

 'ciabatta': ['Coco', 'Deb'],

 'brioche': ['Elmer']}

Relying on the in expression requires two accesses if the key is pres-
ent, or one access and one assignment if the key is missing. This 
example is different from the counters example above because the 
value for each key can be assigned blindly to the default value of an 
empty list if the key doesn’t already exist. The triple assignment 
statement (votes[key] = names = []) populates the key in one line 
instead of two. Once the default value has been inserted into the dic-
tionary, I don’t need to assign it again because the list is modified by 
reference in the later call to append.
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It’s also possible to rely on the KeyError exception being raised when 
the dictionary value is a list. This approach requires one key access 
if the key is present, or one key access and one assignment if it’s 
missing, which makes it more efficient than the in condition:

try:

    names = votes[key]

except KeyError:

    votes[key] = names = []

names.append(who)

Similarly, you can use the get method to fetch a list value when the 
key is present, or do one fetch and one assignment if the key isn’t 
present:

names = votes.get(key)

if names is None:

    votes[key] = names = []

names.append(who)

The approach that involves using get to fetch list values can 
 further be shortened by one line if you use an assignment expres-
sion ( introduced in Python 3.8; see Item 10: “Prevent Repetition 
with Assignment Expressions”) in the if statement, which improves 
readability:

if (names := votes.get(key)) is None:

    votes[key] = names = []

names.append(who)

The dict type also provides the setdefault method to help shorten 
this pattern even further. setdefault tries to fetch the value of a key 
in the dictionary. If the key isn’t present, the method assigns that key 
to the default value provided. And then the method returns the value 
for that key: either the originally present value or the newly inserted 
default value. Here, I use setdefault to implement the same logic as in 
the get example above:

names = votes.setdefault(key, [])

names.append(who)

This works as expected, and it is shorter than using get with an 
assignment expression. However, the readability of this approach 
isn’t ideal. The method name setdefault doesn’t make its purpose 
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immediately obvious. Why is it set when what it’s doing is getting 
a value? Why not call it get_or_set? I’m arguing about the color of 
the bike shed here, but the point is that if you were a new reader of 
the code and not completely familiar with Python, you might have 
trouble understanding what this code is trying to accomplish because 
setdefault isn’t self-explanatory.

There’s also one important gotcha: The default value passed to 
setdefault is assigned directly into the dictionary when the key is 
missing instead of being copied. Here, I demonstrate the effect of this 
when the value is a list:

data = {}

key = 'foo'

value = []

data.setdefault(key, value)

print('Before:', data)

value.append('hello')

print('After: ', data)

>>>

Before: {'foo': []}

After:  {'foo': ['hello']}

This means that I need to make sure that I’m always construct-
ing a new default value for each key I access with setdefault. This 
leads to a significant performance overhead in this example because 
I have to allocate a list instance for each call. If I reuse an object 
for the default value—which I might try to do to increase efficiency 
or  readability—I might introduce strange behavior and bugs (see 
Item 24: “Use None and Docstrings to Specify Dynamic Default 
 Arguments” for another example of this problem).

Going back to the earlier example that used counters for dictionary 
values instead of lists of who voted: Why not also use the setdefault 
method in that case? Here, I reimplement the same example using 
this approach:

count = counters.setdefault(key, 0)

counters[key] = count + 1

The problem here is that the call to setdefault is superfluous. You 
always need to assign the key in the dictionary to a new value 
after you increment the counter, so the extra assignment done by 
setdefault is unnecessary. The earlier approach of using get for 
counter updates requires only one access and one assignment, 
whereas using setdefault requires one access and two assignments.
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There are only a few circumstances in which using setdefault is the 
shortest way to handle missing dictionary keys, such as when the 
default values are cheap to construct, mutable, and there’s no poten-
tial for raising exceptions (e.g., list instances). In these very spe-
cific cases, it may seem worth accepting the confusing method name 
setdefault instead of having to write more characters and lines to 
use get. However, often what you really should do in these situations 
is to use defaultdict instead (see Item 17: “Prefer defaultdict Over 
setdefault to Handle Missing Items in Internal State”).

Things to Remember

✦ There are four common ways to detect and handle missing keys 
in dictionaries: using in expressions, KeyError exceptions, the get 
method, and the setdefault method.

✦ The get method is best for dictionaries that contain basic types 
like counters, and it is preferable along with assignment expres-
sions when creating dictionary values has a high cost or may raise 
exceptions.

✦ When the setdefault method of dict seems like the best fit for your 
problem, you should consider using defaultdict instead.

Item 17:  Prefer defaultdict Over setdefault to 
Handle Missing Items in Internal State

When working with a dictionary that you didn’t create, there are a 
variety of ways to handle missing keys (see Item 16: “Prefer get Over 
in and KeyError to Handle Missing Dictionary Keys”). Although using 
the get method is a better approach than using in expressions and 
KeyError exceptions, for some use cases setdefault appears to be the 
shortest option.

For example, say that I want to keep track of the cities I’ve visited in 
countries around the world. Here, I do this by using a dictionary that 
maps country names to a set instance containing corresponding city 
names:

visits = {

    'Mexico': {'Tulum', 'Puerto Vallarta'},

    'Japan': {'Hakone'},

}

I can use the setdefault method to add new cities to the sets, whether 
the country name is already present in the dictionary or not. This 
approach is much shorter than achieving the same behavior with the 
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get method and an assignment expression (which is available as of 
Python 3.8):

visits.setdefault('France', set()).add('Arles')  # Short

if (japan := visits.get('Japan')) is None:       # Long

    visits['Japan'] = japan = set()

japan.add('Kyoto')

print(visits)

>>>

{'Mexico': {'Tulum', 'Puerto Vallarta'},

 'Japan': {'Kyoto', 'Hakone'},

 'France': {'Arles'}}

What about the situation when you do control creation of the dictio-
nary being accessed? This is generally the case when you’re using a 
dictionary instance to keep track of the internal state of a class, for 
example. Here, I wrap the example above in a class with helper meth-
ods to access the dynamic inner state stored in a dictionary:

class Visits:

    def __init__(self):

        self.data = {}

    def add(self, country, city):

        city_set = self.data.setdefault(country, set())

        city_set.add(city)

This new class hides the complexity of calling setdefault correctly, 
and it provides a nicer interface for the programmer:

visits = Visits()

visits.add('Russia', 'Yekaterinburg')

visits.add('Tanzania', 'Zanzibar')

print(visits.data)

>>>

{'Russia': {'Yekaterinburg'}, 'Tanzania': {'Zanzibar'}}

However, the implementation of the Visits.add method still isn’t ideal. 
The setdefault method is still confusingly named, which makes it 
more difficult for a new reader of the code to immediately understand 
what’s happening. And the implementation isn’t efficient because it 
constructs a new set instance on every call, regardless of whether the 
given country was already present in the data dictionary.
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Luckily, the defaultdict class from the collections built-in module 
simplifies this common use case by automatically storing a default 
value when a key doesn’t exist. All you have to do is provide a  function 
that will return the default value to use each time a key is missing 
(an example of Item 38: “Accept Functions Instead of Classes for Sim-
ple Interfaces”). Here, I rewrite the Visits class to use defaultdict:

from collections import defaultdict

class Visits:

    def __init__(self):

        self.data = defaultdict(set)

    def add(self, country, city):

        self.data[country].add(city)

visits = Visits()

visits.add('England', 'Bath')

visits.add('England', 'London')

print(visits.data)

>>>

defaultdict(<class 'set'>, {'England': {'London', 'Bath'}})

Now, the implementation of add is short and simple. The code can 
assume that accessing any key in the data dictionary will always 
result in an existing set instance. No superfluous set instances will 
be allocated, which could be costly if the add method is called a large 
number of times.

Using defaultdict is much better than using setdefault for this type 
of situation (see Item 37: “Compose Classes Instead of Nesting Many 
Levels of Built-in Types” for another example). There are still cases in 
which defaultdict will fall short of solving your problems, but there 
are even more tools available in Python to work around those limita-
tions (see Item 18: “Know How to Construct Key-Dependent Default 
Values with __missing__,” Item 43: “Inherit from collections.abc for 
Custom Container Types,” and the collections.Counter built-in class).

Things to Remember

✦ If you’re creating a dictionary to manage an arbitrary set of poten-
tial keys, then you should prefer using a defaultdict instance from 
the collections built-in module if it suits your problem. 

✦ If a dictionary of arbitrary keys is passed to you, and you don’t con-
trol its creation, then you should prefer the get method to access its 
items. However, it’s worth considering using the setdefault method 
for the few situations in which it leads to shorter code.
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Item 18:  Know How to Construct Key-Dependent 
Default Values with __missing__

The built-in dict type’s setdefault method results in shorter code 
when handling missing keys in some specific circumstances (see Item 
16: “Prefer get Over in and KeyError to Handle Missing Dictionary 
Keys” for examples). For many of those situations, the better tool for 
the job is the defaultdict type from the collections built-in module 
(see Item 17: “Prefer defaultdict Over setdefault to Handle Missing 
Items in Internal State” for why). However, there are times when nei-
ther setdefault nor defaultdict is the right fit.

For example, say that I’m writing a program to manage social network 
profile pictures on the filesystem. I need a dictionary to map profile 
picture pathnames to open file handles so I can read and write those 
images as needed. Here, I do this by using a normal dict instance 
and checking for the presence of keys using the get method and an 
assignment expression (introduced in Python 3.8; see Item 10: “Pre-
vent Repetition with Assignment Expressions”):

pictures = {}

path = 'profile_1234.png'

if (handle := pictures.get(path)) is None:

    try:

        handle = open(path, 'a+b')

    except OSError:

        print(f'Failed to open path {path}')

        raise

    else:

        pictures[path] = handle

handle.seek(0)

image_data = handle.read()

When the file handle already exists in the dictionary, this code makes 
only a single dictionary access. In the case that the file handle doesn’t 
exist, the dictionary is accessed once by get, and then it is assigned 
in the else clause of the try/except block. (This approach also 
works with finally; see Item 65: “Take Advantage of Each Block in 
try/except/else/finally.”) The call to the read method stands clearly 
separate from the code that calls open and handles exceptions.

Although it’s possible to use the in expression or KeyError approaches 
to implement this same logic, those options require more dictionary 
accesses and levels of nesting. Given that these other options work, 
you might also assume that the setdefault method would work, too:
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try:

    handle = pictures.setdefault(path, open(path, 'a+b'))

except OSError:

    print(f'Failed to open path {path}')

    raise

else:

    handle.seek(0)

    image_data = handle.read()

This code has many problems. The open built-in function to create 
the file handle is always called, even when the path is already pres-
ent in the dictionary. This results in an additional file handle that 
may conflict with existing open handles in the same program. Excep-
tions may be raised by the open call and need to be handled, but it 
may not be possible to differentiate them from exceptions that may 
be raised by the setdefault call on the same line (which is possible 
for other  dictionary-like implementations; see Item 43: “Inherit from 
collections.abc for Custom Container Types”).

If you’re trying to manage internal state, another assumption you 
might make is that a defaultdict could be used for keeping track of 
these profile pictures. Here, I attempt to implement the same logic as 
before but now using a helper function and the defaultdict class:

from collections import defaultdict

def open_picture(profile_path):

    try:

        return open(profile_path, 'a+b')

    except OSError:

        print(f'Failed to open path {profile_path}')

        raise

pictures = defaultdict(open_picture)

handle = pictures[path]

handle.seek(0)

image_data = handle.read()

>>>

Traceback ...

TypeError: open_picture() missing 1 required positional 

argument: 'profile_path'

The problem is that defaultdict expects that the function passed to 
its constructor doesn’t require any arguments. This means that the 
helper function that defaultdict calls doesn’t know which specific key 
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is being accessed, which eliminates my ability to call open. In this 
situation, both setdefault and defaultdict fall short of what I need.

Fortunately, this situation is common enough that Python has 
another built-in solution. You can subclass the dict type and imple-
ment the __missing__ special method to add custom logic for han-
dling missing keys. Here, I do this by defining a new class that takes 
advantage of the same open_picture helper method defined above:

class Pictures(dict):

    def __missing__(self, key):

        value = open_picture(key)

        self[key] = value

        return value

pictures = Pictures()

handle = pictures[path]

handle.seek(0)

image_data = handle.read()

When the pictures[path] dictionary access finds that the path key 
isn’t present in the dictionary, the __missing__ method is called. This 
method must create the new default value for the key, insert it into 
the dictionary, and return it to the caller. Subsequent accesses of 
the same path will not call __missing__ since the corresponding item 
is already present (similar to the behavior of __getattr__; see Item 
47: “Use __getattr__, __getattribute__, and __setattr__ for Lazy 
Attributes”).

Things to Remember

✦ The setdefault method of dict is a bad fit when creating the default 
value has high computational cost or may raise exceptions.

✦ The function passed to defaultdict must not require any argu-
ments, which makes it impossible to have the default value depend 
on the key being accessed.

✦ You can define your own dict subclass with a __missing__ method 
in order to construct default values that must know which key was 
being accessed.





3 Functions

The first organizational tool programmers use in Python is the 
 function. As in other programming languages, functions enable you 
to break large programs into smaller, simpler pieces with names to 
represent their intent. They improve readability and make code more 
approachable. They allow for reuse and refactoring.

Functions in Python have a variety of extra features that make a 
programmer’s life easier. Some are similar to capabilities in other 
programming languages, but many are unique to Python. These 
extras can make a function’s purpose more obvious. They can elimi-
nate noise and clarify the intention of callers. They can significantly 
reduce subtle bugs that are difficult to find.

Item 19:  Never Unpack More Than Three Variables 
When Functions Return Multiple Values

One effect of the unpacking syntax (see Item 6: “Prefer Multiple 
Assignment Unpacking Over Indexing”) is that it allows Python func-
tions to seemingly return more than one value. For example, say 
that I’m trying to determine various statistics for a population of 
alligators. Given a list of lengths, I need to calculate the minimum 
and  maximum lengths in the population. Here, I do this in a single 
 function that appears to return two values:

def get_stats(numbers):

    minimum = min(numbers)

    maximum = max(numbers)

    return minimum, maximum

 

lengths = [63, 73, 72, 60, 67, 66, 71, 61, 72, 70]

 

minimum, maximum = get_stats(lengths)  # Two return values

 

print(f'Min: {minimum}, Max: {maximum}')
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>>>

Min: 60, Max: 73

The way this works is that multiple values are returned together in a 
two-item tuple. The calling code then unpacks the returned tuple by 
assigning two variables. Here, I use an even simpler example to show 
how an unpacking statement and multiple-return function work the 
same way:

first, second = 1, 2

assert first == 1

assert second == 2

 

def my_function():

    return 1, 2

 

first, second = my_function()

assert first == 1

assert second == 2

Multiple return values can also be received by starred expressions for 
catch-all unpacking (see Item 13: “Prefer Catch-All Unpacking Over 
Slicing”). For example, say I need another function that calculates 
how big each alligator is relative to the population average. This func-
tion returns a list of ratios, but I can receive the longest and shortest 
items individually by using a starred expression for the middle por-
tion of the list:

def get_avg_ratio(numbers):

    average = sum(numbers) / len(numbers)

    scaled = [x / average for x in numbers]

    scaled.sort(reverse=True)

    return scaled

 

longest, *middle, shortest = get_avg_ratio(lengths)

 

print(f'Longest:  {longest:>4.0%}')

print(f'Shortest: {shortest:>4.0%}')

>>>

Longest:  108%

Shortest:  89%

Now, imagine that the program’s requirements change, and I need to 
also determine the average length, median length, and total popula-
tion size of the alligators. I can do this by expanding the get_stats 
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function to also calculate these statistics and return them in the 
result tuple that is unpacked by the caller:

def get_stats(numbers):

    minimum = min(numbers)

    maximum = max(numbers)

    count = len(numbers)

    average = sum(numbers) / count

 

    sorted_numbers = sorted(numbers)

    middle = count // 2

    if count % 2 == 0:

        lower = sorted_numbers[middle - 1]

        upper = sorted_numbers[middle]

        median = (lower + upper) / 2

    else:

        median = sorted_numbers[middle]

 

    return minimum, maximum, average, median, count

 

minimum, maximum, average, median, count = get_stats(lengths)

 

print(f'Min: {minimum}, Max: {maximum}')

print(f'Average: {average}, Median: {median}, Count {count}')

>>>

Min: 60, Max: 73

Average: 67.5, Median: 68.5, Count 10

There are two problems with this code. First, all the return values 
are numeric, so it is all too easy to reorder them accidentally (e.g., 
swapping average and median), which can cause bugs that are hard 
to spot later. Using a large number of return values is extremely error 
prone:

# Correct:

minimum, maximum, average, median, count = get_stats(lengths)

 

# Oops! Median and average swapped:

minimum, maximum, median, average, count = get_stats(lengths)

Second, the line that calls the function and unpacks the values is 
long, and it likely will need to be wrapped in one of a variety of ways 
(due to PEP8 style; see Item 2: “Follow the PEP 8 Style Guide”), which 
hurts readability:

minimum, maximum, average, median, count = get_stats(

    lengths)
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minimum, maximum, average, median, count = \

    get_stats(lengths)

 

(minimum, maximum, average,

 median, count) = get_stats(lengths)

 

(minimum, maximum, average, median, count

    ) = get_stats(lengths)

To avoid these problems, you should never use more than three vari-
ables when unpacking the multiple return values from a function. 
These could be individual values from a three-tuple, two variables 
and one catch-all starred expression, or anything shorter. If you 
need to unpack more return values than that, you’re better off defin-
ing a lightweight class or namedtuple (see Item 37: “Compose Classes 
Instead of Nesting Many Levels of Built-in Types”) and having your 
function return an instance of that instead.

Things to Remember

✦ You can have functions return multiple values by putting them in a 
tuple and having the caller take advantage of Python’s unpacking 
syntax.

✦ Multiple return values from a function can also be unpacked by 
catch-all starred expressions.

✦ Unpacking into four or more variables is error prone and should be 
avoided; instead, return a small class or namedtuple instance.

Item 20: Prefer Raising Exceptions to Returning None

When writing utility functions, there’s a draw for Python program-
mers to give special meaning to the return value of None. It seems to 
make sense in some cases. For example, say I want a helper function 
that divides one number by another. In the case of dividing by zero, 
returning None seems natural because the result is undefined:

def careful_divide(a, b):

    try:

        return a / b

    except ZeroDivisionError:

        return None

Code using this function can interpret the return value accordingly:

x, y = 1, 0

result = careful_divide(x, y)

if result is None:

    print('Invalid inputs')
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What happens with the careful_divide function when the numerator 
is zero? If the denominator is not zero, the function returns zero. The 
problem is that a zero return value can cause issues when you evalu-
ate the result in a condition like an if statement. You might acciden-
tally look for any False-equivalent value to indicate errors instead of 
only looking for None (see Item 5: “Write Helper Functions Instead of 
Complex Expressions” for a similar situation):

x, y = 0, 5

result = careful_divide(x, y)

if not result:

    print('Invalid inputs')  # This runs! But shouldn't

>>>

Invalid inputs

This misinterpretation of a False-equivalent return value is a common 
mistake in Python code when None has special meaning. This is why 
returning None from a function like careful_divide is error prone. 
There are two ways to reduce the chance of such errors.

The first way is to split the return value into a two-tuple (see Item 19: 
“Never Unpack More Than Three Variables When Functions Return 
Multiple Values” for background). The first part of the tuple indicates 
that the operation was a success or failure. The second part is the 
actual result that was computed:

def careful_divide(a, b):

    try:

        return True, a / b

    except ZeroDivisionError:

        return False, None

Callers of this function have to unpack the tuple. That forces them 
to consider the status part of the tuple instead of just looking at the 
result of division:

success, result = careful_divide(x, y)

if not success:

    print('Invalid inputs')

The problem is that callers can easily ignore the first part of the tuple 
(using the underscore variable name, a Python convention for unused 
variables). The resulting code doesn’t look wrong at first glance, but 
this can be just as error prone as returning None:

_, result = careful_divide(x, y)

if not result:

    print('Invalid inputs')
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The second, better way to reduce these errors is to never return 
None for special cases. Instead, raise an Exception up to the caller 
and have the caller deal with it. Here, I turn a ZeroDivisionError into 
a ValueError to indicate to the caller that the input values are bad 
(see Item 87: “Define a Root Exception to Insulate Callers from APIs” 
on when you should use Exception subclasses):

def careful_divide(a, b):

    try:

        return a / b

    except ZeroDivisionError as e:

        raise ValueError('Invalid inputs')

The caller no longer requires a condition on the return value of the 
function. Instead, it can assume that the return value is always 
valid and use the results immediately in the else block after try 
(see Item 65: “Take Advantage of Each Block in try/except/else/
finally” for details):

x, y = 5, 2

try:

    result = careful_divide(x, y)

except ValueError:

    print('Invalid inputs')

else:

    print('Result is %.1f' % result)

>>>

Result is 2.5

This approach can be extended to code using type annotations 
(see Item 90: “Consider Static Analysis via typing to Obviate Bugs” 
for background). You can specify that a function’s return value will 
always be a float and thus will never be None. However, Python’s 
gradual typing purposefully doesn’t provide a way to indicate when 
exceptions are part of a function’s interface (also known as checked 

exceptions). Instead, you have to document the exception-raising 
behavior and expect callers to rely on that in order to know which 
Exceptions they should plan to catch (see Item 84: “Write Docstrings 
for Every Function, Class, and Module”).

Pulling it all together, here’s what this function should look like when 
using type annotations and docstrings:
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def careful_divide(a: float, b: float) -> float:

    """Divides a by b.

 

    Raises:

        ValueError: When the inputs cannot be divided.

    """

    try:

        return a / b

    except ZeroDivisionError as e:

        raise ValueError('Invalid inputs')

Now the inputs, outputs, and exceptional behavior is clear, and the 
chance of a caller doing the wrong thing is extremely low.

Things to Remember

✦ Functions that return None to indicate special meaning are error 
prone because None and other values (e.g., zero, the empty string) 
all evaluate to False in conditional expressions.

✦ Raise exceptions to indicate special situations instead of returning 
None. Expect the calling code to handle exceptions properly when 
they’re documented.

✦ Type annotations can be used to make it clear that a function will 
never return the value None, even in special situations.

Item 21:  Know How Closures Interact with 
Variable Scope

Say that I want to sort a list of numbers but prioritize one group of 
numbers to come first. This pattern is useful when you’re rendering a 
user interface and want important messages or exceptional events to 
be displayed before everything else.

A common way to do this is to pass a helper function as the key argu-
ment to a list’s sort method (see Item 14: “Sort by Complex Criteria 
Using the key Parameter” for details). The helper’s return value will 
be used as the value for sorting each item in the list. The helper can 
check whether the given item is in the important group and can vary 
the sorting value accordingly:

def sort_priority(values, group):

    def helper(x):

        if x in group:

            return (0, x)

        return (1, x)

    values.sort(key=helper)
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This function works for simple inputs:

numbers = [8, 3, 1, 2, 5, 4, 7, 6]

group = {2, 3, 5, 7}

sort_priority(numbers, group)

print(numbers)

>>>

[2, 3, 5, 7, 1, 4, 6, 8]

There are three reasons this function operates as expected:

 ■ Python supports closures—that is, functions that refer to variables 
from the scope in which they were defined. This is why the helper 
function is able to access the group argument for sort_priority.

 ■ Functions are first-class objects in Python, which means you can 
refer to them directly, assign them to variables, pass them as 
arguments to other functions, compare them in expressions and 
if statements, and so on. This is how the sort method can accept 
a closure function as the key argument.

 ■ Python has specific rules for comparing sequences (including 
tuples). It first compares items at index zero; then, if those are 
equal, it compares items at index one; if they are still equal, it 
compares items at index two, and so on. This is why the return 
value from the helper closure causes the sort order to have two 
distinct groups.

It’d be nice if this function returned whether higher-priority items 
were seen at all so the user interface code can act accordingly. Add-
ing such behavior seems straightforward. There’s already a closure 
function for deciding which group each number is in. Why not also 
use the closure to flip a flag when high-priority items are seen? Then, 
the function can return the flag value after it’s been modified by the 
closure.

Here, I try to do that in a seemingly obvious way:

def sort_priority2(numbers, group):

    found = False

    def helper(x):

        if x in group:

            found = True  # Seems simple

            return (0, x)

        return (1, x)

    numbers.sort(key=helper)

    return found
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I can run the function on the same inputs as before:

found = sort_priority2(numbers, group)

print('Found:', found)

print(numbers)

>>>

Found: False

[2, 3, 5, 7, 1, 4, 6, 8]

The sorted results are correct, which means items from group were 
definitely found in numbers. Yet the found result returned by the func-
tion is False when it should be True. How could this happen?

When you reference a variable in an expression, the Python  interpreter 
traverses the scope to resolve the reference in this order:

 1. The current function’s scope.

 2. Any enclosing scopes (such as other containing functions).

 3. The scope of the module that contains the code (also called the 
global scope).

 4. The built-in scope (that contains functions like len and str).

If none of these places has defined a variable with the referenced 
name, then a NameError exception is raised:

foo = does_not_exist * 5

>>>

Traceback ...

NameError: name 'does_not_exist' is not defined

Assigning a value to a variable works differently. If the variable is 
already defined in the current scope, it will just take on the new 
value. If the variable doesn’t exist in the current scope, Python treats 
the assignment as a variable definition. Critically, the scope of the 
newly defined variable is the function that contains the assignment.

This assignment behavior explains the wrong return value of the 
sort_priority2 function. The found variable is assigned to True in the 
helper closure. The closure’s assignment is treated as a new variable 
definition within helper, not as an assignment within sort_priority2:

def sort_priority2(numbers, group):

    found = False         # Scope: 'sort_priority2'

    def helper(x):

        if x in group:

            found = True  # Scope: 'helper' -- Bad!

            return (0, x)

        return (1, x)
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    numbers.sort(key=helper)

    return found

This problem is sometimes called the scoping bug because it can be 
so surprising to newbies. But this behavior is the intended result: It 
prevents local variables in a function from polluting the containing 
module. Otherwise, every assignment within a function would put 
garbage into the global module scope. Not only would that be noise, 
but the interplay of the resulting global variables could cause obscure 
bugs.

In Python, there is special syntax for getting data out of a closure. 
The nonlocal statement is used to indicate that scope traversal should 
happen upon assignment for a specific variable name. The only limit 
is that nonlocal won’t traverse up to the module-level scope (to avoid 
polluting globals).

Here, I define the same function again, now using nonlocal:

def sort_priority3(numbers, group):

    found = False

    def helper(x):

        nonlocal found  # Added

        if x in group:

            found = True

            return (0, x)

        return (1, x)

    numbers.sort(key=helper)

    return found

The nonlocal statement makes it clear when data is being assigned 
out of a closure and into another scope. It’s complementary to the 
global statement, which indicates that a variable’s assignment should 
go directly into the module scope.

However, much as with the anti-pattern of global variables, I’d cau-
tion against using nonlocal for anything beyond simple functions. 
The side effects of nonlocal can be hard to follow. It’s especially hard 
to understand in long functions where the nonlocal statements and 
assignments to associated variables are far apart.

When your usage of nonlocal starts getting complicated, it’s better to 
wrap your state in a helper class. Here, I define a class that achieves 
the same result as the nonlocal approach; it’s a little longer but much 
easier to read (see Item 38: “Accept Functions Instead of Classes for 
Simple Interfaces” for details on the __call__ special method):

class Sorter:

    def __init__(self, group):
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        self.group = group

        self.found = False

 

    def __call__(self, x):

        if x in self.group:

            self.found = True

            return (0, x)

        return (1, x)

 

sorter = Sorter(group)

numbers.sort(key=sorter)

assert sorter.found is True

Things to Remember

✦ Closure functions can refer to variables from any of the scopes in 
which they were defined.

✦ By default, closures can’t affect enclosing scopes by assigning 
variables.

✦ Use the nonlocal statement to indicate when a closure can modify a 
variable in its enclosing scopes.

✦ Avoid using nonlocal statements for anything beyond simple 
functions.

Item 22:  Reduce Visual Noise with Variable Positional 
Arguments

Accepting a variable number of positional arguments can make a 
function call clearer and reduce visual noise. (These positional argu-
ments are often called varargs for short, or star args, in reference to 
the conventional name for the parameter *args.) For example, say 
that I want to log some debugging information. With a fixed number 
of arguments, I would need a function that takes a message and a 
list of values:

def log(message, values):

    if not values:

        print(message)

    else:

        values_str = ', '.join(str(x) for x in values)

        print(f'{message}: {values_str}')

 

log('My numbers are', [1, 2])

log('Hi there', [])
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>>>

My numbers are: 1, 2

Hi there

Having to pass an empty list when I have no values to log is cum-
bersome and noisy. It’d be better to leave out the second argument 
entirely. I can do this in Python by prefixing the last positional 
parameter name with *. The first parameter for the log message is 
required, whereas any number of subsequent positional arguments 
are optional. The function body doesn’t need to change; only the call-
ers do:

def log(message, *values):  # The only difference

    if not values:

        print(message)

    else:

        values_str = ', '.join(str(x) for x in values)

        print(f'{message}: {values_str}')

 

log('My numbers are', 1, 2)

log('Hi there')  # Much better

>>>

My numbers are: 1, 2

Hi there

You might notice that this syntax works very similarly to the starred 
expressions used in unpacking assignment statements (see Item 13: 
“Prefer Catch-All Unpacking Over Slicing”).

If I already have a sequence (like a list) and want to call a variadic 
function like log, I can do this by using the * operator. This instructs 
Python to pass items from the sequence as positional arguments to 
the function:

favorites = [7, 33, 99]

log('Favorite colors', *favorites)

>>>

Favorite colors: 7, 33, 99

There are two problems with accepting a variable number of posi-
tional arguments.

The first issue is that these optional positional arguments are always 
turned into a tuple before they are passed to a function. This means 
that if the caller of a function uses the * operator on a generator, it 
will be iterated until it’s exhausted (see Item 30: “Consider Genera-
tors Instead of Returning Lists” for background). The resulting tuple 
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includes every value from the generator, which could consume a lot of 
memory and cause the program to crash:

def my_generator():

    for i in range(10):

        yield i

 

def my_func(*args):

    print(args)

 

it = my_generator()

my_func(*it)

>>>

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Functions that accept *args are best for situations where you know 
the number of inputs in the argument list will be reasonably small. 
*args is ideal for function calls that pass many literals or variable 
names together. It’s primarily for the convenience of the programmer 
and the readability of the code.

The second issue with *args is that you can’t add new positional 
arguments to a function in the future without migrating every caller. 
If you try to add a positional argument in the front of the argument 
list, existing callers will subtly break if they aren’t updated:

def log(sequence, message, *values):

    if not values:

        print(f'{sequence} - {message}')

    else:

        values_str = ', '.join(str(x) for x in values)

        print(f'{sequence} - {message}: {values_str}')

 

log(1, 'Favorites', 7, 33)      # New with *args OK

log(1, 'Hi there')              # New message only OK

log('Favorite numbers', 7, 33)  # Old usage breaks

>>>

1 - Favorites: 7, 33

1 - Hi there

Favorite numbers - 7: 33

The problem here is that the third call to log used 7 as the message 
parameter because a sequence argument wasn’t given. Bugs like 
this are hard to track down because the code still runs without 
raising exceptions. To avoid this possibility entirely, you should use 
 keyword-only arguments when you want to extend functions that 
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accept *args (see Item 25: “Enforce Clarity with Keyword-Only and 
Positional-Only Arguments”). To be even more defensive, you could 
also consider using type annotations (see Item 90: “Consider Static 
Analysis via typing to Obviate Bugs”).

Things to Remember

✦ Functions can accept a variable number of positional arguments by 
using *args in the def statement.

✦ You can use the items from a sequence as the positional arguments 
for a function with the * operator.

✦ Using the * operator with a generator may cause a program to run 
out of memory and crash.

✦ Adding new positional parameters to functions that accept *args 
can introduce hard-to-detect bugs.

Item 23:  Provide Optional Behavior with 
Keyword Arguments

As in most other programming languages, in Python you may pass 
arguments by position when calling a function:

def remainder(number, divisor):

    return number % divisor

 

assert remainder(20, 7) == 6

All normal arguments to Python functions can also be passed by 
keyword, where the name of the argument is used in an assignment 
within the parentheses of a function call. The keyword arguments 
can be passed in any order as long as all of the required positional 
arguments are specified. You can mix and match keyword and posi-
tional arguments. These calls are equivalent:

remainder(20, 7)

remainder(20, divisor=7)

remainder(number=20, divisor=7)

remainder(divisor=7, number=20)

Positional arguments must be specified before keyword arguments:

remainder(number=20, 7)

>>>

Traceback ...

SyntaxError: positional argument follows keyword argument
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Each argument can be specified only once:

remainder(20, number=7)

>>>

Traceback ...

TypeError: remainder() got multiple values for argument 

➥'number'

If you already have a dictionary, and you want to use its contents to 
call a function like remainder, you can do this by using the ** opera-
tor. This instructs Python to pass the values from the dictionary as 
the corresponding keyword arguments of the function:

my_kwargs = {

    'number': 20,

    'divisor': 7,

}

assert remainder(**my_kwargs) == 6

You can mix the ** operator with positional arguments or keyword 
arguments in the function call, as long as no argument is repeated:

my_kwargs = {

    'divisor': 7,

}

assert remainder(number=20, **my_kwargs) == 6

You can also use the ** operator multiple times if you know that the 
dictionaries don’t contain overlapping keys:

my_kwargs = {

    'number': 20,

}

other_kwargs = {

    'divisor': 7,

}

assert remainder(**my_kwargs, **other_kwargs) == 6

And if you’d like for a function to receive any named keyword argu-
ment, you can use the **kwargs catch-all parameter to collect those 
arguments into a dict that you can then process (see Item 26: “Define 
Function Decorators with functools.wraps” for when this is especially 
useful):

def print_parameters(**kwargs):

    for key, value in kwargs.items():

        print(f'{key} = {value}')

 

print_parameters(alpha=1.5, beta=9, gamma=4)
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>>>

alpha = 1.5

beta = 9

gamma = 4

The flexibility of keyword arguments provides three significant 
benefits.

The first benefit is that keyword arguments make the function call 
clearer to new readers of the code. With the call remainder(20, 7), it’s 
not evident which argument is number and which is divisor unless 
you look at the implementation of the remainder method. In the call 
with keyword arguments, number=20 and divisor=7 make it immedi-
ately obvious which parameter is being used for each purpose.

The second benefit of keyword arguments is that they can have 
default values specified in the function definition. This allows a func-
tion to provide additional capabilities when you need them, but you 
can accept the default behavior most of the time. This eliminates 
repetitive code and reduces noise.

For example, say that I want to compute the rate of fluid flowing into 
a vat. If the vat is also on a scale, then I could use the difference 
between two weight measurements at two different times to deter-
mine the flow rate:

def flow_rate(weight_diff, time_diff):

    return weight_diff / time_diff

 

weight_diff = 0.5

time_diff = 3

flow = flow_rate(weight_diff, time_diff)

print(f'{flow:.3} kg per second')

>>>

0.167 kg per second

In the typical case, it’s useful to know the flow rate in kilograms per 
second. Other times, it’d be helpful to use the last sensor measure-
ments to approximate larger time scales, like hours or days. I can 
provide this behavior in the same function by adding an argument for 
the time period scaling factor:

def flow_rate(weight_diff, time_diff, period):

    return (weight_diff / time_diff) * period

The problem is that now I need to specify the period argument every 
time I call the function, even in the common case of flow rate per sec-
ond (where the period is 1):

flow_per_second = flow_rate(weight_diff, time_diff, 1)
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To make this less noisy, I can give the period argument a default 
value:

def flow_rate(weight_diff, time_diff, period=1):

    return (weight_diff / time_diff) * period

The period argument is now optional:

flow_per_second = flow_rate(weight_diff, time_diff)

flow_per_hour = flow_rate(weight_diff, time_diff, period=3600)

This works well for simple default values; it gets tricky for complex 
default values (see Item 24: “Use None and Docstrings to Specify 
Dynamic Default Arguments” for details).

The third reason to use keyword arguments is that they provide a 
powerful way to extend a function’s parameters while remaining 
backward compatible with existing callers. This means you can pro-
vide additional functionality without having to migrate a lot of exist-
ing code, which reduces the chance of introducing bugs.

For example, say that I want to extend the flow_rate function above 
to calculate flow rates in weight units besides kilograms. I can do this 
by adding a new optional parameter that provides a conversion rate to 
alternative measurement units:

def flow_rate(weight_diff, time_diff,

              period=1, units_per_kg=1):

    return ((weight_diff * units_per_kg) / time_diff) * period

The default argument value for units_per_kg is 1, which makes the 
returned weight units remain kilograms. This means that all existing 
callers will see no change in behavior. New callers to flow_rate can 
specify the new keyword argument to see the new behavior:

pounds_per_hour = flow_rate(weight_diff, time_diff,

                            period=3600, units_per_kg=2.2)

Providing backward compatibility using optional keyword arguments 
like this is also crucial for functions that accept *args (see Item 22: 
“Reduce Visual Noise with Variable Positional Arguments”).

The only problem with this approach is that optional keyword argu-
ments like period and units_per_kg may still be specified as posi-
tional arguments:

pounds_per_hour = flow_rate(weight_diff, time_diff, 3600, 2.2)

Supplying optional arguments positionally can be confusing because 
it isn’t clear what the values 3600 and 2.2 correspond to. The best 
practice is to always specify optional arguments using the keyword 
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names and never pass them as positional arguments. As a function 
author, you can also require that all callers use this more explicit 
keyword style to minimize potential errors (see Item 25: “Enforce 
Clarity with Keyword-Only and Positional-Only Arguments”).

Things to Remember

✦ Function arguments can be specified by position or by keyword.

✦ Keywords make it clear what the purpose of each argument is when 
it would be confusing with only positional arguments.

✦ Keyword arguments with default values make it easy to add new 
behaviors to a function without needing to migrate all existing 
callers.

✦ Optional keyword arguments should always be passed by keyword 
instead of by position.

Item 24:  Use None and Docstrings to Specify Dynamic 
Default Arguments

Sometimes you need to use a non-static type as a keyword  argument’s 
default value. For example, say I want to print logging messages that 
are marked with the time of the logged event. In the default case, 
I want the message to include the time when the function was 
called. I might try the following approach, assuming that the default 
 arguments are reevaluated each time the function is called:

from time import sleep

from datetime import datetime

 

def log(message, when=datetime.now()):

    print(f'{when}: {message}')

 

log('Hi there!')

sleep(0.1)

log('Hello again!')

>>>

2019-07-06 14:06:15.120124: Hi there!

2019-07-06 14:06:15.120124: Hello again!

This doesn’t work as expected. The timestamps are the same because 
datetime.now is executed only a single time: when the function is 
defined. A default argument value is evaluated only once per module 
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load, which usually happens when a program starts up. After the 
module containing this code is loaded, the datetime.now() default 
argument will never be evaluated again.

The convention for achieving the desired result in Python is to provide 
a default value of None and to document the actual behavior in the 
docstring (see Item 84: “Write Docstrings for Every Function, Class, 
and Module” for background). When your code sees the argument 
value None, you allocate the default value accordingly:

def log(message, when=None):

    """Log a message with a timestamp.

 

    Args:

        message: Message to print.

        when: datetime of when the message occurred.

            Defaults to the present time.

    """

    if when is None:

        when = datetime.now()

    print(f'{when}: {message}')

Now the timestamps will be different:

log('Hi there!')

sleep(0.1)

log('Hello again!')

>>>

2019-07-06 14:06:15.222419: Hi there!

2019-07-06 14:06:15.322555: Hello again!

Using None for default argument values is especially important when 
the arguments are mutable. For example, say that I want to load a 
value encoded as JSON data; if decoding the data fails, I want an 
empty dictionary to be returned by default:

import json

 

def decode(data, default={}):

    try:

        return json.loads(data)

    except ValueError:

        return default

The problem here is the same as in the datetime.now example above. 
The dictionary specified for default will be shared by all calls to 
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decode because default argument values are evaluated only once (at 
module load time). This can cause extremely surprising behavior:

foo = decode('bad data')

foo['stuff'] = 5

bar = decode('also bad')

bar['meep'] = 1

print('Foo:', foo)

print('Bar:', bar)

>>>

Foo: {'stuff': 5, 'meep': 1}

Bar: {'stuff': 5, 'meep': 1}

You might expect two different dictionaries, each with a single key 
and value. But modifying one seems to also modify the other. The cul-
prit is that foo and bar are both equal to the default parameter. They 
are the same dictionary object:

assert foo is bar

The fix is to set the keyword argument default value to None and then 
document the behavior in the function’s docstring:

def decode(data, default=None):

    """Load JSON data from a string.

 

    Args:

        data: JSON data to decode.

        default: Value to return if decoding fails.

            Defaults to an empty dictionary.

    """

    try:

        return json.loads(data)

    except ValueError:

        if default is None:

            default = {}

        return default

Now, running the same test code as before produces the expected 
result:

foo = decode('bad data')

foo['stuff'] = 5

bar = decode('also bad')

bar['meep'] = 1

print('Foo:', foo)

print('Bar:', bar)

assert foo is not bar
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>>>

Foo: {'stuff': 5}

Bar: {'meep': 1}

This approach also works with type annotations (see Item 90: “Con-
sider Static Analysis via typing to Obviate Bugs”). Here, the when 
argument is marked as having an Optional value that is a datetime. 
Thus, the only two valid choices for when are None or a datetime object:

from typing import Optional

 

def log_typed(message: str,

              when: Optional[datetime]=None) -> None:

    """Log a message with a timestamp.

 

    Args:

        message: Message to print.

        when: datetime of when the message occurred.

            Defaults to the present time.

    """

    if when is None:

        when = datetime.now()

    print(f'{when}: {message}')

Things to Remember

✦ A default argument value is evaluated only once: during function 
definition at module load time. This can cause odd behaviors for 
dynamic values (like {}, [], or datetime.now()).

✦ Use None as the default value for any keyword argument that has a 
dynamic value. Document the actual default behavior in the func-
tion’s docstring.

✦ Using None to represent keyword argument default values also 
works correctly with type annotations.

Item 25:  Enforce Clarity with Keyword-Only and 
Positional-Only Arguments

Passing arguments by keyword is a powerful feature of Python func-
tions (see Item 23: “Provide Optional Behavior with Keyword Argu-
ments”). The flexibility of keyword arguments enables you to write 
functions that will be clear to new readers of your code for many use 
cases.

For example, say I want to divide one number by another but know 
that I need to be very careful about special cases. Sometimes, I want 
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to ignore ZeroDivisionError exceptions and return infinity instead. 
Other times, I want to ignore OverflowError exceptions and return 
zero instead:

def safe_division(number, divisor,

                  ignore_overflow,

                  ignore_zero_division):

    try:

        return number / divisor

    except OverflowError:

        if ignore_overflow:

            return 0

        else:

            raise

    except ZeroDivisionError:

        if ignore_zero_division:

            return float('inf')

        else:

            raise

Using this function is straightforward. This call ignores the float 
overflow from division and returns zero:

result = safe_division(1.0, 10**500, True, False)

print(result)

>>>

0

This call ignores the error from dividing by zero and returns infinity:

result = safe_division(1.0, 0, False, True)

print(result)

>>>

inf

The problem is that it’s easy to confuse the position of the two Bool-
ean arguments that control the exception-ignoring behavior. This can 
easily cause bugs that are hard to track down. One way to improve the 
readability of this code is to use keyword arguments. By default, the 
function can be overly cautious and can always re-raise exceptions:

def safe_division_b(number, divisor,

                    ignore_overflow=False,        # Changed

                    ignore_zero_division=False):  # Changed

    ...



Then, callers can use keyword arguments to specify which of the 
ignore flags they want to set for specific operations, overriding the 
default behavior:

result = safe_division_b(1.0, 10**500, ignore_overflow=True)

print(result)

 

result = safe_division_b(1.0, 0, ignore_zero_division=True)

print(result)

>>>

0

inf

The problem is, since these keyword arguments are optional behavior, 
there’s nothing forcing callers to use keyword arguments for clarity. 
Even with the new definition of safe_division_b, you can still call it 
the old way with positional arguments:

assert safe_division_b(1.0, 10**500, True, False) == 0

With complex functions like this, it’s better to require that callers are 
clear about their intentions by defining functions with  keyword-only 

arguments. These arguments can only be supplied by keyword, never 
by position.

Here, I redefine the safe_division function to accept keyword-only 
arguments. The * symbol in the argument list indicates the end 
of positional arguments and the beginning of keyword-only 
arguments:

def safe_division_c(number, divisor, *,  # Changed

                    ignore_overflow=False,

                    ignore_zero_division=False):

    ...

Now, calling the function with positional arguments for the keyword 
arguments won’t work:

safe_division_c(1.0, 10**500, True, False)

>>>

Traceback ...

TypeError: safe_division_c() takes 2 positional arguments but 4 

➥were given

But keyword arguments and their default values will work as expected 
(ignoring an exception in one case and raising it in another):

result = safe_division_c(1.0, 0, ignore_zero_division=True)

assert result == float('inf')
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try:

    result = safe_division_c(1.0, 0)

except ZeroDivisionError:

    pass  # Expected

However, a problem still remains with the safe_division_c version of 
this function: Callers may specify the first two required arguments 
(number and divisor) with a mix of positions and keywords:

assert safe_division_c(number=2, divisor=5) == 0.4

assert safe_division_c(divisor=5, number=2) == 0.4

assert safe_division_c(2, divisor=5) == 0.4

Later, I may decide to change the names of these first two arguments 
because of expanding needs or even just because my style preferences 
change:

def safe_division_c(numerator, denominator, *,  # Changed

                    ignore_overflow=False,

                    ignore_zero_division=False):

    ...

Unfortunately, this seemingly superficial change breaks all the exist-
ing callers that specified the number or divisor arguments using 
keywords:

safe_division_c(number=2, divisor=5)

>>>

Traceback ...

TypeError: safe_division_c() got an unexpected keyword argument 

➥'number'

This is especially problematic because I never intended for number and 
divisor to be part of an explicit interface for this function. These were 
just convenient parameter names that I chose for the implementation, 
and I didn’t expect anyone to rely on them explicitly.

Python 3.8 introduces a solution to this problem, called positional-only 

arguments. These arguments can be supplied only by position and 
never by keyword (the opposite of the keyword-only arguments 
demonstrated above).

Here, I redefine the safe_division function to use positional-only 
arguments for the first two required parameters. The / symbol in the 
argument list indicates where positional-only arguments end:

def safe_division_d(numerator, denominator, /, *,  # Changed

                    ignore_overflow=False,

                    ignore_zero_division=False):

    ...



I can verify that this function works when the required arguments 
are provided positionally:

assert safe_division_d(2, 5) == 0.4

But an exception is raised if keywords are used for the positional-only 
parameters:

safe_division_d(numerator=2, denominator=5)

>>>

Traceback ...

TypeError: safe_division_d() got some positional-only arguments 

➥passed as keyword arguments: 'numerator, denominator'

Now, I can be sure that the first two required positional arguments 
in the definition of the safe_division_d function are decoupled from 
callers. I won’t break anyone if I change the parameters’ names again.

One notable consequence of keyword- and positional-only arguments 
is that any parameter name between the / and * symbols in the argu-
ment list may be passed either by position or by keyword (which is 
the default for all function arguments in Python). Depending on your 
API’s style and needs, allowing both argument passing styles can 
increase readability and reduce noise. For example, here I’ve added 
another optional parameter to safe_division that allows callers to 
specify how many digits to use in rounding the result:

def safe_division_e(numerator, denominator, /,

                    ndigits=10, *,                # Changed

                    ignore_overflow=False,

                    ignore_zero_division=False):

    try:

        fraction = numerator / denominator        # Changed

        return round(fraction, ndigits)           # Changed

    except OverflowError:

        if ignore_overflow:

            return 0

        else:

            raise

    except ZeroDivisionError:

        if ignore_zero_division:

            return float('inf')

        else:

            raise
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Now, I can call this new version of the function in all these differ-
ent ways, since ndigits is an optional parameter that may be passed 
either by position or by keyword:

result = safe_division_e(22, 7)

print(result)

result = safe_division_e(22, 7, 5)

print(result)

result = safe_division_e(22, 7, ndigits=2)

print(result)

>>>

3.1428571429

3.14286

3.14

Things to Remember

✦ Keyword-only arguments force callers to supply certain arguments 
by keyword (instead of by position), which makes the intention of a 
function call clearer. Keyword-only arguments are defined after a 
single * in the argument list.

✦ Positional-only arguments ensure that callers can’t supply 
 certain parameters using keywords, which helps reduce coupling. 
 Positional-only arguments are defined before a single / in the argu-
ment list.

✦ Parameters between the / and * characters in the argument list 
may be supplied by position or keyword, which is the default for 
Python parameters.

Item 26:  Define Function Decorators with 
functools.wraps

Python has special syntax for decorators that can be applied to 
functions. A decorator has the ability to run additional code before 
and after each call to a function it wraps. This means decorators 
can access and modify input arguments, return values, and raised 
exceptions. This functionality can be useful for enforcing semantics, 
debugging, registering functions, and more.

For example, say that I want to print the arguments and return value 
of a function call. This can be especially helpful when debugging 
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the stack of nested function calls from a recursive function. Here, 
I define such a decorator by using *args and **kwargs (see Item 22: 
“Reduce Visual Noise with Variable Positional Arguments” and Item 
23:  “Provide Optional Behavior with Keyword Arguments”) to pass 
through all parameters to the wrapped function:

def trace(func):

    def wrapper(*args, **kwargs):

        result = func(*args, **kwargs)

        print(f'{func.__name__}({args!r}, {kwargs!r}) '

              f'-> {result!r}')

        return result

    return wrapper

I can apply this decorator to a function by using the @ symbol:

@trace

def fibonacci(n):

    """Return the n-th Fibonacci number"""

    if n in (0, 1):

        return n

    return (fibonacci(n - 2) + fibonacci(n - 1))

Using the @ symbol is equivalent to calling the decorator on the func-
tion it wraps and assigning the return value to the original name in 
the same scope:

fibonacci = trace(fibonacci)

The decorated function runs the wrapper code before and after 
fibonacci runs. It prints the arguments and return value at each 
level in the recursive stack:

fibonacci(4)

>>>

fibonacci((0,), {}) -> 0

fibonacci((1,), {}) -> 1

fibonacci((2,), {}) -> 1

fibonacci((1,), {}) -> 1

fibonacci((0,), {}) -> 0

fibonacci((1,), {}) -> 1

fibonacci((2,), {}) -> 1

fibonacci((3,), {}) -> 2

fibonacci((4,), {}) -> 3
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This works well, but it has an unintended side effect. The value 
returned by the decorator—the function that’s called above—doesn’t 
think it’s named fibonacci:

print(fibonacci)

>>>

<function trace.<locals>.wrapper at 0x108955dc0>

The cause of this isn’t hard to see. The trace function returns the 
wrapper defined within its body. The wrapper function is what’s 
assigned to the fibonacci name in the containing module because 
of the decorator. This behavior is problematic because it undermines 
tools that do introspection, such as debuggers (see Item 80: “Consider 
Interactive Debugging with pdb”).

For example, the help built-in function is useless when called on the 
decorated fibonacci function. It should instead print out the doc-
string defined above ('Return the n-th Fibonacci number'):

help(fibonacci)

>>>

Help on function wrapper in module __main__:

 

wrapper(*args, **kwargs)

Object serializers (see Item 68: “Make pickle Reliable with copyreg”) 
break because they can’t determine the location of the original func-
tion that was decorated:

import pickle

 

pickle.dumps(fibonacci)

>>>

Traceback ...

AttributeError: Can't pickle local object 'trace.<locals>.

➥wrapper'

The solution is to use the wraps helper function from the functools 
built-in module. This is a decorator that helps you write decorators. 
When you apply it to the wrapper function, it copies all of the import-
ant metadata about the inner function to the outer function:

from functools import wraps

 



 Item 26: Define Function Decorators with functools.wraps 105

def trace(func):

    @wraps(func)

    def wrapper(*args, **kwargs):

        ...

    return wrapper

 

@trace

def fibonacci(n):

    ...

Now, running the help function produces the expected result, even 
though the function is decorated:

help(fibonacci)

>>>

Help on function fibonacci in module __main__:

 

fibonacci(n)

    Return the n-th Fibonacci number

The pickle object serializer also works:

print(pickle.dumps(fibonacci))

>>>

b'\x80\x04\x95\x1a\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\

➥x94\x8c\tfibonacci\x94\x93\x94.'

Beyond these examples, Python functions have many other standard 
attributes (e.g., __name__, __module__, __annotations__) that must 
be preserved to maintain the interface of functions in the language. 
Using wraps ensures that you’ll always get the correct behavior.

Things to Remember

✦ Decorators in Python are syntax to allow one function to modify 
another function at runtime.

✦ Using decorators can cause strange behaviors in tools that do intro-
spection, such as debuggers.

✦ Use the wraps decorator from the functools built-in module when 
you define your own decorators to avoid issues.





4
Comprehensions 
and Generators

Many programs are built around processing lists, dictionary 
key/value pairs, and sets. Python provides a special syntax, called 
comprehensions, for succinctly iterating through these types and cre-
ating derivative data structures. Comprehensions can significantly 
increase the readability of code performing these common tasks and 
provide a number of other benefits.

This style of processing is extended to functions with generators, 
which enable a stream of values to be incrementally returned by a 
function. The result of a call to a generator function can be used any-
where an iterator is appropriate (e.g., for loops, starred expressions). 
Generators can improve performance, reduce memory usage, and 
increase readability.

Item 27:  Use Comprehensions Instead of map 
and filter

Python provides compact syntax for deriving a new list from another 
sequence or iterable. These expressions are called list comprehensions. 
For example, say that I want to compute the square of each number 
in a list. Here, I do this by using a simple for loop:

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

squares = []

for x in a:

    squares.append(x**2)

print(squares)

>>>

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]



108 Chapter 4 Comprehensions and Generators

With a list comprehension, I can achieve the same outcome by specify-
ing the expression for my computation along with the input sequence 
to loop over:

squares = [x**2 for x in a]  # List comprehension

print(squares)

>>>

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unless you’re applying a single-argument function, list comprehen-
sions are also clearer than the map built-in function for simple cases. 
map requires the creation of a lambda function for the computation, 
which is visually noisy:

alt = map(lambda x: x ** 2, a)

Unlike map, list comprehensions let you easily filter items from the 
input list, removing corresponding outputs from the result. For 
example, say I want to compute the squares of the numbers that are 
divisible by 2. Here, I do this by adding a conditional expression to 
the list comprehension after the loop:

even_squares = [x**2 for x in a if x % 2 == 0]

print(even_squares)

>>>

[4, 16, 36, 64, 100]

The filter built-in function can be used along with map to achieve the 
same outcome, but it is much harder to read:

alt = map(lambda x: x**2, filter(lambda x: x % 2 == 0, a))

assert even_squares == list(alt)

Dictionaries and sets have their own equivalents of list comprehen-
sions (called dictionary comprehensions and set comprehensions, 
respectively). These make it easy to create other types of derivative 
data structures when writing algorithms:

even_squares_dict = {x: x**2 for x in a if x % 2 == 0}

threes_cubed_set = {x**3 for x in a if x % 3 == 0}

print(even_squares_dict)

print(threes_cubed_set)

>>>

{2: 4, 4: 16, 6: 36, 8: 64, 10: 100}

{216, 729, 27}

Achieving the same outcome is possible with map and filter if you 
wrap each call with a corresponding constructor. These statements 
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get so long that you have to break them up across multiple lines, 
which is even noisier and should be avoided:

alt_dict = dict(map(lambda x: (x, x**2),

                filter(lambda x: x % 2 == 0, a)))

alt_set = set(map(lambda x: x**3,

              filter(lambda x: x % 3 == 0, a)))

Things to Remember

✦ List comprehensions are clearer than the map and filter built-in 
functions because they don’t require lambda expressions.

✦ List comprehensions allow you to easily skip items from the input 
list, a behavior that map doesn’t support without help from filter.

✦ Dictionaries and sets may also be created using comprehensions.

Item 28:  Avoid More Than Two Control 
Subexpressions in Comprehensions

Beyond basic usage (see Item 27: “Use Comprehensions Instead of map 
and filter”), comprehensions support multiple levels of looping. For 
example, say that I want to simplify a matrix (a list containing other 
list instances) into one flat list of all cells. Here, I do this with a list 
comprehension by including two for subexpressions. These subex-
pressions run in the order provided, from left to right:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

flat = [x for row in matrix for x in row]

print(flat)

>>>

[1, 2, 3, 4, 5, 6, 7, 8, 9]

This example is simple, readable, and a reasonable usage of multiple 
loops in a comprehension. Another reasonable usage of multiple loops 
involves replicating the two-level-deep layout of the input list. For 
example, say that I want to square the value in each cell of a two- 
dimensional matrix. This comprehension is noisier because of the 
extra [] characters, but it’s still relatively easy to read:

squared = [[x**2 for x in row] for row in matrix]

print(squared)

>>>

[[1, 4, 9], [16, 25, 36], [49, 64, 81]]
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If this comprehension included another loop, it would get so long that 
I’d have to split it over multiple lines:

my_lists = [

    [[1, 2, 3], [4, 5, 6]],

    ...

]

flat = [x for sublist1 in my_lists

        for sublist2 in sublist1

        for x in sublist2]

At this point, the multiline comprehension isn’t much shorter than 
the alternative. Here, I produce the same result using normal loop 
statements. The indentation of this version makes the looping clearer 
than the three-level-list comprehension:

flat = []

for sublist1 in my_lists:

    for sublist2 in sublist1:

        flat.extend(sublist2)

Comprehensions support multiple if conditions. Multiple conditions 
at the same loop level have an implicit and expression. For example, 
say that I want to filter a list of numbers to only even values greater 
than 4. These two list comprehensions are equivalent:

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

b = [x for x in a if x > 4 if x % 2 == 0]

c = [x for x in a if x > 4 and x % 2 == 0]

Conditions can be specified at each level of looping after the for sub-
expression. For example, say I want to filter a matrix so the only cells 
remaining are those divisible by 3 in rows that sum to 10 or higher. 
Expressing this with a list comprehension does not require a lot of 
code, but it is extremely difficult to read:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

filtered = [[x for x in row if x % 3 == 0]

            for row in matrix if sum(row) >= 10]

print(filtered)

>>>

[[6], [9]]

Although this example is a bit convoluted, in practice you’ll see 
 situations arise where such comprehensions seem like a good fit. 
I strongly encourage you to avoid using list, dict, or set comprehen-
sions that look like this. The resulting code is very difficult for new 
readers to understand. The potential for confusion is even worse for 
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dict comprehensions since they already need an extra parameter to 
represent both the key and the value for each item.

The rule of thumb is to avoid using more than two control subexpres-
sions in a comprehension. This could be two conditions, two loops, 
or one condition and one loop. As soon as it gets more complicated 
than that, you should use normal if and for statements and write a 
helper function (see Item 30: “Consider Generators Instead of Return-
ing Lists”).

Things to Remember

✦ Comprehensions support multiple levels of loops and multiple con-
ditions per loop level.

✦ Comprehensions with more than two control subexpressions are 
very difficult to read and should be avoided.

Item 29:  Avoid Repeated Work in Comprehensions by 
Using Assignment Expressions

A common pattern with comprehensions—including list, dict, and 
set variants—is the need to reference the same computation in mul-
tiple places. For example, say that I’m writing a program to manage 
orders for a fastener company. As new orders come in from customers, 
I need to be able to tell them whether I can fulfill their orders. I need 
to verify that a request is sufficiently in stock and above the mini-
mum threshold for shipping (in batches of 8):

stock = {

    'nails': 125,

    'screws': 35,

    'wingnuts': 8,

    'washers': 24,

}

 

order = ['screws', 'wingnuts', 'clips']

def get_batches(count, size):

    return count // size

result = {}

for name in order:

  count = stock.get(name, 0)

  batches = get_batches(count, 8)
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  if batches:

    result[name] = batches

print(result)

>>>

{'screws': 4, 'wingnuts': 1}

Here, I implement this looping logic more succinctly using a dictio-
nary comprehension (see Item 27: “Use Comprehensions Instead of 
map and filter” for best practices):

found = {name: get_batches(stock.get(name, 0), 8)

         for name in order

         if get_batches(stock.get(name, 0), 8)}

print(found)

>>>

{'screws': 4, 'wingnuts': 1}

Although this code is more compact, the problem with it is that the 
get_batches(stock.get(name, 0), 8) expression is repeated. This 
hurts readability by adding visual noise that’s technically unneces-
sary. It also increases the likelihood of introducing a bug if the two 
expressions aren’t kept in sync. For example, here I’ve changed the 
first get_batches call to have 4 as its second parameter instead of 8, 
which causes the results to be different:

has_bug = {name: get_batches(stock.get(name, 0), 4)

           for name in order

           if get_batches(stock.get(name, 0), 8)}

print('Expected:', found)

print('Found:   ', has_bug)

>>>

Expected: {'screws': 4, 'wingnuts': 1}

Found:    {'screws': 8, 'wingnuts': 2}

An easy solution to these problems is to use the walrus operator (:=), 
which was introduced in Python 3.8, to form an assignment expres-
sion as part of the comprehension (see Item 10: “Prevent Repetition 
with Assignment Expressions” for background):

found = {name: batches for name in order

         if (batches := get_batches(stock.get(name, 0), 8))}

The assignment expression (batches := get_batches(...)) allows me 
to look up the value for each order key in the stock dictionary a single 



time, call get_batches once, and then store its corresponding value in 
the batches variable. I can then reference that variable elsewhere in 
the comprehension to construct the dict’s contents instead of having 
to call get_batches a second time. Eliminating the redundant calls 
to get and get_batches may also improve performance by avoiding 
unnecessary computations for each item in the order list.

It’s valid syntax to define an assignment expression in the value 
expression for a comprehension. But if you try to reference the vari-
able it defines in other parts of the comprehension, you might get an 
exception at runtime because of the order in which comprehensions 
are evaluated:

result = {name: (tenth := count // 10)

          for name, count in stock.items() if tenth > 0}

>>>

Traceback ...

NameError: name 'tenth' is not defined

I can fix this example by moving the assignment expression into the 
condition and then referencing the variable name it defined in the 
comprehension’s value expression:

result = {name: tenth for name, count in stock.items()

          if (tenth := count // 10) > 0}

print(result)

>>>

{'nails': 12, 'screws': 3, 'washers': 2}

If a comprehension uses the walrus operator in the value part of the 
comprehension and doesn’t have a condition, it’ll leak the loop vari-
able into the containing scope (see Item 21: “Know How Closures 
Interact with Variable Scope” for background):

half = [(last := count // 2) for count in stock.values()]

print(f'Last item of {half} is {last}')

>>>

Last item of [62, 17, 4, 12] is 12

This leakage of the loop variable is similar to what happens with a 
normal for loop:

for count in stock.values():  # Leaks loop variable

    pass

print(f'Last item of {list(stock.values())} is {count}')
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>>>

Last item of [125, 35, 8, 24] is 24

However, similar leakage doesn’t happen for the loop variables from 
comprehensions:

half = [count // 2 for count in stock.values()]

print(half)   # Works

print(count)  # Exception because loop variable didn't leak

>>>

[62, 17, 4, 12]

Traceback ...

NameError: name 'count' is not defined

It’s better not to leak loop variables, so I recommend using assign-
ment expressions only in the condition part of a comprehension.

Using an assignment expression also works the same way in gener-
ator expressions (see Item 32: “Consider Generator Expressions for 
Large List Comprehensions”). Here, I create an iterator of pairs con-
taining the item name and the current count in stock instead of a 
dict instance:

found = ((name, batches) for name in order

         if (batches := get_batches(stock.get(name, 0), 8)))

print(next(found))

print(next(found))

>>>

('screws', 4)

('wingnuts', 1)

Things to Remember

✦ Assignment expressions make it possible for comprehensions and 
generator expressions to reuse the value from one condition else-
where in the same comprehension, which can improve readability 
and performance.

✦ Although it’s possible to use an assignment expression outside of 
a comprehension or generator expression’s condition, you should 
avoid doing so.

Item 30:  Consider Generators Instead of Returning 
Lists

The simplest choice for a function that produces a sequence of results 
is to return a list of items. For example, say that I want to find the 
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index of every word in a string. Here, I accumulate results in a list 
using the append method and return it at the end of the function:

def index_words(text):

    result = []

    if text:

        result.append(0)

    for index, letter in enumerate(text):

        if letter == ' ':

            result.append(index + 1)

    return result

This works as expected for some sample input:

address = 'Four score and seven years ago...'

result = index_words(address)

print(result[:10])

>>>

[0, 5, 11, 15, 21, 27, 31, 35, 43, 51]

There are two problems with the index_words function.

The first problem is that the code is a bit dense and noisy. Each time 
a new result is found, I call the append method. The method call’s 
bulk (result.append) deemphasizes the value being added to the list 
(index + 1). There is one line for creating the result list and another 
for returning it. While the function body contains ~130 characters 
(without whitespace), only ~75 characters are important.

A better way to write this function is by using a generator. Generators 
are produced by functions that use yield expressions. Here, I define a 
generator function that produces the same results as before:

def index_words_iter(text):

    if text:

        yield 0

    for index, letter in enumerate(text):

        if letter == ' ':

            yield index + 1

When called, a generator function does not actually run but instead 
immediately returns an iterator. With each call to the next built-in 
function, the iterator advances the generator to its next yield expres-
sion. Each value passed to yield by the generator is returned by the 
iterator to the caller:

it = index_words_iter(address)

print(next(it))

print(next(it))
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>>>

0

5

The index_words_iter function is significantly easier to read because 
all interactions with the result list have been eliminated. Results are 
passed to yield expressions instead. You can easily convert the itera-
tor returned by the generator to a list by passing it to the list built-in 
function if necessary (see Item 32: “Consider Generator Expressions 
for Large List Comprehensions” for how this works):

result = list(index_words_iter(address))

print(result[:10])

>>>

[0, 5, 11, 15, 21, 27, 31, 35, 43, 51]

The second problem with index_words is that it requires all results to 
be stored in the list before being returned. For huge inputs, this can 
cause a program to run out of memory and crash.

In contrast, a generator version of this function can easily be adapted 
to take inputs of arbitrary length due to its bounded memory require-
ments. For example, here I define a generator that streams input from 
a file one line at a time and yields outputs one word at a time:

def index_file(handle):

    offset = 0

    for line in handle:

        if line:

            yield offset

        for letter in line:

            offset += 1

            if letter == ' ':

                yield offset

The working memory for this function is limited to the maximum 
length of one line of input. Running the generator produces the same 
results (see Item 36: “Consider itertools for Working with Iterators 
and Generators” for more about the islice function):

with open('address.txt', 'r') as f:

    it = index_file(f)

    results = itertools.islice(it, 0, 10)

    print(list(results))

>>>

[0, 5, 11, 15, 21, 27, 31, 35, 43, 51]
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The only gotcha with defining generators like this is that the callers 
must be aware that the iterators returned are stateful and can’t be 
reused (see Item 31: “Be Defensive When Iterating Over Arguments”).

Things to Remember

✦ Using generators can be clearer than the alternative of having a 
function return a list of accumulated results.

✦ The iterator returned by a generator produces the set of values 
passed to yield expressions within the generator function’s body.

✦ Generators can produce a sequence of outputs for arbitrarily large 
inputs because their working memory doesn’t include all inputs and 
outputs.

Item 31: Be Defensive When Iterating Over Arguments

When a function takes a list of objects as a parameter, it’s often 
important to iterate over that list multiple times. For example, say 
that I want to analyze tourism numbers for the U.S. state of Texas. 
Imagine that the data set is the number of visitors to each city (in mil-
lions per year). I’d like to figure out what percentage of overall tourism 
each city receives.

To do this, I need a normalization function that sums the inputs to 
determine the total number of tourists per year and then divides each 
city’s individual visitor count by the total to find that city’s contribu-
tion to the whole:

def normalize(numbers):

    total = sum(numbers)

    result = []

    for value in numbers:

        percent = 100 * value / total

        result.append(percent)

    return result

This function works as expected when given a list of visits:

visits = [15, 35, 80]

percentages = normalize(visits)

print(percentages)

assert sum(percentages) == 100.0

>>>

[11.538461538461538, 26.923076923076923, 61.53846153846154]
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To scale this up, I need to read the data from a file that contains every 
city in all of Texas. I define a generator to do this because then I can 
reuse the same function later, when I want to compute tourism num-
bers for the whole world—a much larger data set with higher memory 
requirements (see Item 30: “Consider Generators Instead of Returning 
Lists” for background):

def read_visits(data_path):

    with open(data_path) as f:

        for line in f:

            yield int(line)

Surprisingly, calling normalize on the read_visits generator’s return 
value produces no results:

it = read_visits('my_numbers.txt')

percentages = normalize(it)

print(percentages)

>>>

[]

This behavior occurs because an iterator produces its results only 
a single time. If you iterate over an iterator or a generator that has 
already raised a StopIteration exception, you won’t get any results 
the second time around:

it = read_visits('my_numbers.txt')

print(list(it))

print(list(it))  # Already exhausted

>>>

[15, 35, 80]

[]

Confusingly, you also won’t get errors when you iterate over an 
already exhausted iterator. for loops, the list constructor, and many 
other functions throughout the Python standard library expect the 
StopIteration exception to be raised during normal operation. These 
functions can’t tell the difference between an iterator that has no out-
put and an iterator that had output and is now exhausted.

To solve this problem, you can explicitly exhaust an input iterator and 
keep a copy of its entire contents in a list. You can then iterate over 
the list version of the data as many times as you need to. Here’s the 
same function as before, but it defensively copies the input iterator:

def normalize_copy(numbers):

    numbers_copy = list(numbers)  # Copy the iterator
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    total = sum(numbers_copy)

    result = []

    for value in numbers_copy:

        percent = 100 * value / total

        result.append(percent)

    return result

Now the function works correctly on the read_visits generator’s 
return value:

it = read_visits('my_numbers.txt')

percentages = normalize_copy(it)

print(percentages)

assert sum(percentages) == 100.0

>>>

[11.538461538461538, 26.923076923076923, 61.53846153846154]

The problem with this approach is that the copy of the input iterator’s 
contents could be extremely large. Copying the iterator could cause 
the program to run out of memory and crash. This potential for scal-
ability issues undermines the reason that I wrote read_visits as a 
generator in the first place. One way around this is to accept a func-
tion that returns a new iterator each time it’s called:

def normalize_func(get_iter):

    total = sum(get_iter())   # New iterator

    result = []

    for value in get_iter():  # New iterator

        percent = 100 * value / total

        result.append(percent)

    return result

To use normalize_func, I can pass in a lambda expression that calls 
the generator and produces a new iterator each time:

path = 'my_numbers.txt'

percentages = normalize_func(lambda: read_visits(path))

print(percentages)

assert sum(percentages) == 100.0

>>>

[11.538461538461538, 26.923076923076923, 61.53846153846154]

Although this works, having to pass a lambda function like this is 
clumsy. A better way to achieve the same result is to provide a new 
container class that implements the iterator protocol.
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The iterator protocol is how Python for loops and related expressions 
traverse the contents of a container type. When Python sees a state-
ment like for x in foo, it actually calls iter(foo). The iter built-in 
function calls the foo.__iter__ special method in turn. The __iter__ 
method must return an iterator object (which itself implements the 
__next__ special method). Then, the for loop repeatedly calls the 
next built-in function on the iterator object until it’s exhausted (indi-
cated by raising a StopIteration exception).

It sounds complicated, but practically speaking, you can achieve all of 
this behavior for your classes by implementing the __iter__ method 
as a generator. Here, I define an iterable container class that reads 
the file containing tourism data:

class ReadVisits:

    def __init__(self, data_path):

        self.data_path = data_path

 

    def __iter__(self):

        with open(self.data_path) as f:

            for line in f:

                yield int(line)

This new container type works correctly when passed to the original 
function without modifications:

visits = ReadVisits(path)

percentages = normalize(visits)

print(percentages)

assert sum(percentages) == 100.0

>>>

[11.538461538461538, 26.923076923076923, 61.53846153846154]

This works because the sum method in normalize calls 
ReadVisits.__iter__ to allocate a new iterator object. The for loop to 
normalize the numbers also calls __iter__ to allocate a second iter-
ator object. Each of those iterators will be advanced and exhausted 
independently, ensuring that each unique iteration sees all of the 
input data values. The only downside of this approach is that it reads 
the input data multiple times.

Now that you know how containers like ReadVisits work, you can 
write your functions and methods to ensure that parameters aren’t 
just iterators. The protocol states that when an iterator is passed 
to the iter built-in function, iter returns the iterator itself. In con-
trast, when a container type is passed to iter, a new iterator object is 
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returned each time. Thus, you can test an input value for this behav-
ior and raise a TypeError to reject arguments that can’t be repeatedly 
iterated over:

def normalize_defensive(numbers):

    if iter(numbers) is numbers:  # An iterator -- bad!

        raise TypeError('Must supply a container')

    total = sum(numbers)

    result = []

    for value in numbers:

        percent = 100 * value / total

        result.append(percent)

    return result

Alternatively, the collections.abc built-in module defines an Iterator 
class that can be used in an isinstance test to recognize the potential 
problem (see Item 43: “Inherit from collections.abc for Custom Con-
tainer Types”):

from collections.abc import Iterator

def normalize_defensive(numbers):

    if isinstance(numbers, Iterator):  # Another way to check

        raise TypeError('Must supply a container')

    total = sum(numbers)

    result = []

    for value in numbers:

        percent = 100 * value / total

        result.append(percent)

    return result

The approach of using a container is ideal if you don’t want to copy 
the full input iterator, as with the normalize_copy function above, but 
you also need to iterate over the input data multiple times. This func-
tion works as expected for list and ReadVisits inputs because they 
are iterable containers that follow the iterator protocol:

visits = [15, 35, 80]

percentages = normalize_defensive(visits)

assert sum(percentages) == 100.0

visits = ReadVisits(path)

percentages = normalize_defensive(visits)

assert sum(percentages) == 100.0
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The function raises an exception if the input is an iterator rather than 
a container:

visits = [15, 35, 80]

it = iter(visits)

normalize_defensive(it)

>>>

Traceback ...

TypeError: Must supply a container

The same approach can also be used for asynchronous iterators (see 
Item 61: “Know How to Port Threaded I/O to asyncio” for an example).

Things to Remember

✦ Beware of functions and methods that iterate over input argu-
ments multiple times. If these arguments are iterators, you may see 
strange behavior and missing values.

✦ Python’s iterator protocol defines how containers and iterators inter-
act with the iter and next built-in functions, for loops, and related 
expressions.

✦ You can easily define your own iterable container type by imple-
menting the __iter__ method as a generator.

✦ You can detect that a value is an iterator (instead of a container) 
if calling iter on it produces the same value as what you passed 
in. Alternatively, you can use the isinstance built-in function along 
with the collections.abc.Iterator class.

Item 32:  Consider Generator Expressions for Large 
List Comprehensions

The problem with list comprehensions (see Item 27: “Use Comprehen-
sions Instead of map and filter”) is that they may create new list 
instances containing one item for each value in input sequences. This 
is fine for small inputs, but for large inputs, this behavior could con-
sume significant amounts of memory and cause a program to crash.

For example, say that I want to read a file and return the number of 
characters on each line. Doing this with a list comprehension would 
require holding the length of every line of the file in memory. If the 
file is enormous or perhaps a never-ending network socket, using list 
comprehensions would be problematic. Here, I use a list comprehen-
sion in a way that can only handle small input values:

value = [len(x) for x in open('my_file.txt')]

print(value)
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>>>

[100, 57, 15, 1, 12, 75, 5, 86, 89, 11]

To solve this issue, Python provides generator expressions, which are 
a generalization of list comprehensions and generators. Generator 
expressions don’t materialize the whole output sequence when they’re 
run. Instead, generator expressions evaluate to an iterator that yields 
one item at a time from the expression.

You create a generator expression by putting list-comprehension-like 
syntax between () characters. Here, I use a generator expression 
that is equivalent to the code above. However, the generator expres-
sion immediately evaluates to an iterator and doesn’t make forward 
progress:

it = (len(x) for x in open('my_file.txt'))

print(it)

>>>

<generator object <genexpr> at 0x108993dd0>

The returned iterator can be advanced one step at a time to produce 
the next output from the generator expression, as needed (using 
the next built-in function). I can consume as much of the generator 
expression as I want without risking a blowup in memory usage:

print(next(it))

print(next(it))

>>>

100

57

Another powerful outcome of generator expressions is that they can 
be composed together. Here, I take the iterator returned by the gen-
erator expression above and use it as the input for another generator 
expression:

roots = ((x, x**0.5) for x in it)

Each time I advance this iterator, it also advances the interior itera-
tor, creating a domino effect of looping, evaluating conditional expres-
sions, and passing around inputs and outputs, all while being as 
memory efficient as possible:

print(next(roots))

>>>

(15, 3.872983346207417)
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Chaining generators together like this executes very quickly in 
Python. When you’re looking for a way to compose functionality that’s 
operating on a large stream of input, generator expressions are a 
great choice. The only gotcha is that the iterators returned by gener-
ator expressions are stateful, so you must be careful not to use these 
iterators more than once (see Item 31: “Be Defensive When Iterating 
Over Arguments”).

Things to Remember

✦ List comprehensions can cause problems for large inputs by using 
too much memory.

✦ Generator expressions avoid memory issues by producing outputs 
one at a time as iterators.

✦ Generator expressions can be composed by passing the iterator from 
one generator expression into the for subexpression of another.

✦ Generator expressions execute very quickly when chained together 
and are memory efficient.

Item 33: Compose Multiple Generators with yield from

Generators provide a variety of benefits (see Item 30: “Consider Gen-
erators Instead of Returning Lists”) and solutions to common prob-
lems (see Item 31: “Be Defensive When Iterating Over Arguments”). 
Generators are so useful that many programs start to look like layers 
of generators strung together.

For example, say that I have a graphical program that’s using gener-
ators to animate the movement of images onscreen. To get the visual 
effect I’m looking for, I need the images to move quickly at first, pause 
temporarily, and then continue moving at a slower pace. Here, I define 
two generators that yield the expected onscreen deltas for each part of 
this animation:

def move(period, speed):

    for _ in range(period):

        yield speed

 

def pause(delay):

    for _ in range(delay):

        yield 0

To create the final animation, I need to combine move and pause 
together to produce a single sequence of onscreen deltas. Here, I do 
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this by calling a generator for each step of the animation, iterating 
over each generator in turn, and then yielding the deltas from all of 
them in sequence:

def animate():

    for delta in move(4, 5.0):

        yield delta

    for delta in pause(3):

        yield delta

    for delta in move(2, 3.0):

        yield delta

Now, I can render those deltas onscreen as they’re produced by the 
single animation generator:

def render(delta):

    print(f'Delta: {delta:.1f}')

    # Move the images onscreen

    ...

def run(func):

    for delta in func():

        render(delta)

run(animate)

>>>

Delta: 5.0

Delta: 5.0

Delta: 5.0

Delta: 5.0

Delta: 0.0

Delta: 0.0

Delta: 0.0

Delta: 3.0

Delta: 3.0

The problem with this code is the repetitive nature of the animate 
function. The redundancy of the for statements and yield expres-
sions for each generator adds noise and reduces readability. This 
example includes only three nested generators and it’s already hurt-
ing clarity; a complex animation with a dozen phases or more would 
be extremely difficult to follow.

The solution to this problem is to use the yield from expression. 
This advanced generator feature allows you to yield all values from 
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a nested generator before returning control to the parent generator. 
Here, I reimplement the animation function by using yield from:

def animate_composed():

    yield from move(4, 5.0)

    yield from pause(3)

    yield from move(2, 3.0)

 

run(animate_composed)

>>>

Delta: 5.0

Delta: 5.0

Delta: 5.0

Delta: 5.0

Delta: 0.0

Delta: 0.0

Delta: 0.0

Delta: 3.0

Delta: 3.0

The result is the same as before, but now the code is clearer and more 
intuitive. yield from essentially causes the Python interpreter to han-
dle the nested for loop and yield expression boilerplate for you, which 
results in better performance. Here, I verify the speedup by using the 
timeit built-in module to run a micro-benchmark:

import timeit

 

def child():

    for i in range(1_000_000):

        yield i

 

def slow():

    for i in child():

        yield i

 

def fast():

    yield from child()

 

baseline = timeit.timeit(

    stmt='for _ in slow(): pass',

    globals=globals(),

    number=50)

print(f'Manual nesting {baseline:.2f}s')
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comparison = timeit.timeit(

    stmt='for _ in fast(): pass',

    globals=globals(),

    number=50)

print(f'Composed nesting {comparison:.2f}s')

 

reduction = -(comparison - baseline) / baseline

print(f'{reduction:.1%} less time')

>>>

Manual nesting 4.02s

Composed nesting 3.47s

13.5% less time

If you find yourself composing generators, I strongly encourage you to 
use yield from when possible.

Things to Remember

✦ The yield from expression allows you to compose multiple nested 
generators together into a single combined generator.

✦ yield from provides better performance than manually iterating 
nested generators and yielding their outputs.

Item 34:  Avoid Injecting Data into Generators 
with send

yield expressions provide generator functions with a simple way to 
produce an iterable series of output values (see Item 30: “Consider 
Generators Instead of Returning Lists”). However, this channel 
appears to be unidirectional: There’s no immediately obvious way to 
simultaneously stream data in and out of a generator as it runs. Hav-
ing such bidirectional communication could be valuable for a variety 
of use cases.

For example, say that I’m writing a program to transmit signals using 
a software-defined radio. Here, I use a function to generate an approx-
imation of a sine wave with a given number of points:

import math

 

def wave(amplitude, steps):

    step_size = 2 * math.pi / steps

    for step in range(steps):

        radians = step * step_size

        fraction = math.sin(radians)
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        output = amplitude * fraction

        yield output

Now, I can transmit the wave signal at a single specified amplitude by 
iterating over the wave generator:

def transmit(output):

    if output is None:

        print(f'Output is None')

    else:

        print(f'Output: {output:>5.1f}')

 

def run(it):

    for output in it:

        transmit(output)

 

run(wave(3.0, 8))

>>>

Output:   0.0

Output:   2.1

Output:   3.0

Output:   2.1

Output:   0.0

Output:  -2.1

Output:  -3.0

Output:  -2.1

This works fine for producing basic waveforms, but it can’t be used to 
constantly vary the amplitude of the wave based on a separate input 
(i.e., as required to broadcast AM radio signals). I need a way to mod-
ulate the amplitude on each iteration of the generator.

Python generators support the send method, which upgrades yield 
expressions into a two-way channel. The send method can be used to 
provide streaming inputs to a generator at the same time it’s yielding 
outputs. Normally, when iterating a generator, the value of the yield 
expression is None:

def my_generator():

    received = yield 1

    print(f'received = {received}')

 

it = iter(my_generator())

output = next(it)       # Get first generator output

print(f'output = {output}')
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try:

    next(it)            # Run generator until it exits

except StopIteration:

    pass

>>>

output = 1

received = None

When I call the send method instead of iterating the generator with a 
for loop or the next built-in function, the supplied parameter becomes 
the value of the yield expression when the generator is resumed. How-
ever, when the generator first starts, a yield expression has not been 
encountered yet, so the only valid value for calling send initially is 
None (any other argument would raise an exception at runtime):

it = iter(my_generator())

output = it.send(None)  # Get first generator output

print(f'output = {output}')

 

try:

    it.send('hello!')   # Send value into the generator

except StopIteration:

    pass

>>>

output = 1

received = hello!

I can take advantage of this behavior in order to modulate the ampli-
tude of the sine wave based on an input signal. First, I need to change 
the wave generator to save the amplitude returned by the yield expres-
sion and use it to calculate the next generated output:

def wave_modulating(steps):

    step_size = 2 * math.pi / steps

    amplitude = yield             # Receive initial amplitude

    for step in range(steps):

        radians = step * step_size

        fraction = math.sin(radians)

        output = amplitude * fraction

        amplitude = yield output  # Receive next amplitude

Then, I need to update the run function to stream the modulating 
amplitude into the wave_modulating generator on each iteration. The 
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first input to send must be None, since a yield expression would not 
have occurred within the generator yet:

def run_modulating(it):

    amplitudes = [

        None, 7, 7, 7, 2, 2, 2, 2, 10, 10, 10, 10, 10]

    for amplitude in amplitudes:

        output = it.send(amplitude)

        transmit(output)

 

run_modulating(wave_modulating(12))

>>>

Output is None

Output:   0.0

Output:   3.5

Output:   6.1

Output:   2.0

Output:   1.7

Output:   1.0

Output:   0.0

Output:  -5.0

Output:  -8.7

Output: -10.0

Output:  -8.7

Output:  -5.0

This works; it properly varies the output amplitude based on the input 
signal. The first output is None, as expected, because a value for the 
amplitude wasn’t received by the generator until after the initial yield 
expression.

One problem with this code is that it’s difficult for new readers to 
understand: Using yield on the right side of an assignment statement 
isn’t intuitive, and it’s hard to see the connection between yield and 
send without already knowing the details of this advanced generator 
feature.

Now, imagine that the program’s requirements get more complicated. 
Instead of using a simple sine wave as my carrier, I need to use a 
complex waveform consisting of multiple signals in sequence. One 
way to implement this behavior is by composing multiple generators 
together by using the yield from expression (see Item 33: “Compose 
Multiple Generators with yield from”). Here, I confirm that this works 
as expected in the simpler case where the amplitude is fixed:

def complex_wave():

    yield from wave(7.0, 3)
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    yield from wave(2.0, 4)

    yield from wave(10.0, 5)

 

run(complex_wave())

>>>

Output:   0.0

Output:   6.1

Output:  -6.1

Output:   0.0

Output:   2.0

Output:   0.0

Output:  -2.0

Output:   0.0

Output:   9.5

Output:   5.9

Output:  -5.9

Output:  -9.5

Given that the yield from expression handles the simpler case, you 
may expect it to also work properly along with the generator send 
method. Here, I try to use it this way by composing multiple calls to 
the wave_modulating generator together:

def complex_wave_modulating():

    yield from wave_modulating(3)

    yield from wave_modulating(4)

    yield from wave_modulating(5)

 

run_modulating(complex_wave_modulating())

>>>

Output is None

Output:   0.0

Output:   6.1

Output:  -6.1

Output is None

Output:   0.0

Output:   2.0

Output:   0.0

Output: -10.0

Output is None

Output:   0.0

Output:   9.5

Output:   5.9
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This works to some extent, but the result contains a big surprise: 
There are many None values in the output! Why does this happen? 
When each yield from expression finishes iterating over a nested gen-
erator, it moves on to the next one. Each nested generator starts with 
a bare yield expression—one without a value—in order to receive the 
initial amplitude from a generator send method call. This causes the 
parent generator to output a None value when it transitions between 
child generators.

This means that assumptions about how the yield from and send 
features behave individually will be broken if you try to use them 
together. Although it’s possible to work around this None problem 
by increasing the complexity of the run_modulating function, it’s not 
worth the trouble. It’s already difficult for new readers of the code to 
understand how send works. This surprising gotcha with yield from 
makes it even worse. My advice is to avoid the send method entirely 
and go with a simpler approach.

The easiest solution is to pass an iterator into the wave function. The 
iterator should return an input amplitude each time the next built-in 
function is called on it. This arrangement ensures that each genera-
tor is progressed in a cascade as inputs and outputs are processed 
(see Item 32: “Consider Generator Expressions for Large List Compre-
hensions” for another example):

def wave_cascading(amplitude_it, steps):

    step_size = 2 * math.pi / steps

    for step in range(steps):

        radians = step * step_size

        fraction = math.sin(radians)

        amplitude = next(amplitude_it)  # Get next input

        output = amplitude * fraction

        yield output

I can pass the same iterator into each of the generator functions that 
I’m trying to compose together. Iterators are stateful (see Item 31: “Be 
Defensive When Iterating Over Arguments”), and thus each of the 
nested generators picks up where the previous generator left off:

def complex_wave_cascading(amplitude_it):

    yield from wave_cascading(amplitude_it, 3)

    yield from wave_cascading(amplitude_it, 4)

    yield from wave_cascading(amplitude_it, 5)

Now, I can run the composed generator by simply passing in an itera-
tor from the amplitudes list:

def run_cascading():

    amplitudes = [7, 7, 7, 2, 2, 2, 2, 10, 10, 10, 10, 10]
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    it = complex_wave_cascading(iter(amplitudes))

    for amplitude in amplitudes:

        output = next(it)

        transmit(output)

 

run_cascading()

>>>

Output:   0.0

Output:   6.1

Output:  -6.1

Output:   0.0

Output:   2.0

Output:   0.0

Output:  -2.0

Output:   0.0

Output:   9.5

Output:   5.9

Output:  -5.9

Output:  -9.5

The best part about this approach is that the iterator can come from 
anywhere and could be completely dynamic (e.g., implemented using 
a generator function). The only downside is that this code assumes 
that the input generator is completely thread safe, which may not be 
the case. If you need to cross thread boundaries, async functions may 
be a better fit (see Item 62: “Mix Threads and Coroutines to Ease the 
Transition to asyncio”).

Things to Remember

✦ The send method can be used to inject data into a generator by giv-
ing the yield expression a value that can be assigned to a variable.

✦ Using send with yield from expressions may cause surprising 
behavior, such as None values appearing at unexpected times in the 
generator output.

✦ Providing an input iterator to a set of composed generators is a bet-
ter approach than using the send method, which should be avoided.

Item 35:  Avoid Causing State Transitions in 
Generators with throw

In addition to yield from expressions (see Item 33: “Compose Multi-
ple Generators with yield from”) and the send method (see Item 34: 
“Avoid Injecting Data into Generators with send”), another advanced 



134 Chapter 4 Comprehensions and Generators

generator feature is the throw method for re-raising Exception 
instances within generator functions. The way throw works is simple: 
When the method is called, the next occurrence of a yield expression 
re-raises the provided Exception instance after its output is received 
instead of continuing normally. Here, I show a simple example of this 
behavior in action:

class MyError(Exception):

    pass

 

def my_generator():

    yield 1

    yield 2

    yield 3

 

it = my_generator()

print(next(it))  # Yield 1

print(next(it))  # Yield 2

print(it.throw(MyError('test error')))

>>>

1

2

Traceback ...

MyError: test error

When you call throw, the generator function may catch the injected 
exception with a standard try/except compound statement that sur-
rounds the last yield expression that was executed (see Item 65: 
“Take Advantage of Each Block in try/except/else/finally” for more 
about exception handling):

def my_generator():

    yield 1

 

    try:

        yield 2

    except MyError:

        print('Got MyError!')

    else:

        yield 3

 

    yield 4

 

it = my_generator()

print(next(it))  # Yield 1
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print(next(it))  # Yield 2

print(it.throw(MyError('test error')))

>>>

1

2

Got MyError!

4

This functionality provides a two-way communication channel 
between a generator and its caller that can be useful in certain situ-
ations (see Item 34: “Avoid Injecting Data into Generators with send” 
for another one). For example, imagine that I’m trying to write a pro-
gram with a timer that supports sporadic resets. Here, I implement 
this behavior by defining a generator that relies on the throw method:

class Reset(Exception):

    pass

 

def timer(period):

    current = period

    while current:

        current -= 1

        try:

            yield current

        except Reset:

            current = period

In this code, whenever the Reset exception is raised by the yield 
expression, the counter resets itself to its original period.

I can connect this counter reset event to an external input that’s 
polled every second. Then, I can define a run function to drive the 
timer generator, which injects exceptions with throw to cause resets, 
or calls announce for each generator output:

def check_for_reset():

    # Poll for external event

    ...

 

def announce(remaining):

    print(f'{remaining} ticks remaining')

 

def run():

    it = timer(4)

    while True:
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        try:

            if check_for_reset():

                current = it.throw(Reset())

            else:

                current = next(it)

        except StopIteration:

            break

        else:

            announce(current)

 

run()

>>>

3 ticks remaining

2 ticks remaining

1 ticks remaining

3 ticks remaining

2 ticks remaining

3 ticks remaining

2 ticks remaining

1 ticks remaining

0 ticks remaining

This code works as expected, but it’s much harder to read than nec-
essary. The various levels of nesting required to catch StopIteration 
exceptions or decide to throw, call next, or announce make the code 
noisy.

A simpler approach to implementing this functionality is to define a 
stateful closure (see Item 38: “Accept Functions Instead of Classes for 
Simple Interfaces”) using an iterable container object (see Item 31: “Be 
Defensive When Iterating Over Arguments”). Here, I redefine the timer 
generator by using such a class:

class Timer:

    def __init__(self, period):

        self.current = period

        self.period = period

 

    def reset(self):

        self.current = self.period

 

    def __iter__(self):

        while self.current:

            self.current -= 1

            yield self.current
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Now, the run method can do a much simpler iteration by using a for 
statement, and the code is much easier to follow because of the reduc-
tion in the levels of nesting:

def run():

    timer = Timer(4)

    for current in timer:

        if check_for_reset():

            timer.reset()

        announce(current)

 

run()

>>>

3 ticks remaining

2 ticks remaining

1 ticks remaining

3 ticks remaining

2 ticks remaining

3 ticks remaining

2 ticks remaining

1 ticks remaining

0 ticks remaining

The output matches the earlier version using throw, but this imple-
mentation is much easier to understand, especially for new readers 
of the code. Often, what you’re trying to accomplish by mixing gen-
erators and exceptions is better achieved with asynchronous fea-
tures (see Item 60: “Achieve Highly Concurrent I/O with Coroutines”). 
Thus, I suggest that you avoid using throw entirely and instead use 
an iterable class if you need this type of exceptional behavior.

Things to Remember

✦ The throw method can be used to re-raise exceptions within 
 generators at the position of the most recently executed yield 
expression.

✦ Using throw harms readability because it requires additional nest-
ing and boilerplate in order to raise and catch exceptions.

✦ A better way to provide exceptional behavior in generators is to use 
a class that implements the __iter__ method along with methods to 
cause exceptional state transitions. 
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Item 36:  Consider itertools for Working with Iterators 
and Generators

The itertools built-in module contains a large number of functions 
that are useful for organizing and interacting with iterators (see Item 
30: “Consider Generators Instead of Returning Lists” and Item 31: “Be 
Defensive When Iterating Over Arguments” for background):

import itertools

Whenever you find yourself dealing with tricky iteration code, it’s 
worth looking at the itertools documentation again to see if there’s 
anything in there for you to use (see help(itertools)). The following 
sections describe the most important functions that you should know 
in three primary categories.

Linking Iterators Together

The itertools built-in module includes a number of functions for 
linking iterators together.

chain

Use chain to combine multiple iterators into a single sequential 
iterator:

it = itertools.chain([1, 2, 3], [4, 5, 6])

print(list(it))

>>>

[1, 2, 3, 4, 5, 6]

repeat

Use repeat to output a single value forever, or use the second param-
eter to specify a maximum number of times:

it = itertools.repeat('hello', 3)

print(list(it))

>>>

['hello', 'hello', 'hello']

cycle

Use cycle to repeat an iterator’s items forever:

it = itertools.cycle([1, 2])

result = [next(it) for _ in range (10)]

print(result)
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>>>

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

tee

Use tee to split a single iterator into the number of parallel iterators 
specified by the second parameter. The memory usage of this func-
tion will grow if the iterators don’t progress at the same speed since 
buffering will be required to enqueue the pending items:

it1, it2, it3 = itertools.tee(['first', 'second'], 3)

print(list(it1))

print(list(it2))

print(list(it3))

>>>

['first', 'second']

['first', 'second']

['first', 'second']

zip_longest

This variant of the zip built-in function (see Item 8: “Use zip to 
 Process Iterators in Parallel”) returns a placeholder value when an 
iterator is exhausted, which may happen if iterators have different 
lengths:

keys = ['one', 'two', 'three']

values = [1, 2]

 

normal = list(zip(keys, values))

print('zip:        ', normal)

 

it = itertools.zip_longest(keys, values, fillvalue='nope')

longest = list(it)

print('zip_longest:', longest)

>>>

zip:         [('one', 1), ('two', 2)]

zip_longest: [('one', 1), ('two', 2), ('three', 'nope')]

Filtering Items from an Iterator

The itertools built-in module includes a number of functions for fil-
tering items from an iterator.
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islice

Use islice to slice an iterator by numerical indexes without copying. 
You can specify the end, start and end, or start, end, and step sizes, 
and the behavior is similar to that of standard sequence slicing and 
striding (see Item 11: “Know How to Slice Sequences” and Item 12: 
“Avoid Striding and Slicing in a Single Expression”):

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 

first_five = itertools.islice(values, 5)

print('First five: ', list(first_five))

 

middle_odds = itertools.islice(values, 2, 8, 2)

print('Middle odds:', list(middle_odds))

>>>

First five:  [1, 2, 3, 4, 5]

Middle odds: [3, 5, 7]

takewhile

takewhile returns items from an iterator until a predicate function 
returns False for an item:

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

less_than_seven = lambda x: x < 7

it = itertools.takewhile(less_than_seven, values)

print(list(it))

>>>

[1, 2, 3, 4, 5, 6]

dropwhile

dropwhile, which is the opposite of takewhile, skips items from an 
iterator until the predicate function returns True for the first time:

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

less_than_seven = lambda x: x < 7

it = itertools.dropwhile(less_than_seven, values)

print(list(it))

>>>

[7, 8, 9, 10]
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filterfalse

filterfalse, which is the opposite of the filter built-in function, 
returns all items from an iterator where a predicate function returns 
False:

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

evens = lambda x: x % 2 == 0

 

filter_result = filter(evens, values)

print('Filter:      ', list(filter_result))

 

filter_false_result = itertools.filterfalse(evens, values)

print('Filter false:', list(filter_false_result))

>>>

Filter:       [2, 4, 6, 8, 10]

Filter false: [1, 3, 5, 7, 9]

Producing Combinations of Items from Iterators

The itertools built-in module includes a number of functions for 
 producing combinations of items from iterators.

accumulate

accumulate folds an item from the iterator into a running value by 
applying a function that takes two parameters. It outputs the current 
accumulated result for each input value:

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sum_reduce = itertools.accumulate(values)

print('Sum:   ', list(sum_reduce))

 

def sum_modulo_20(first, second):

    output = first + second

    return output % 20

 

modulo_reduce = itertools.accumulate(values, sum_modulo_20)

print('Modulo:', list(modulo_reduce))

>>>

Sum:    [1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

Modulo: [1, 3, 6, 10, 15, 1, 8, 16, 5, 15]

This is essentially the same as the reduce function from the functools 
built-in module, but with outputs yielded one step at a time. By default 
it sums the inputs if no binary function is specified.
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product

product returns the Cartesian product of items from one or more iter-
ators, which is a nice alternative to using deeply nested list compre-
hensions (see Item 28: “Avoid More Than Two Control Subexpressions 
in Comprehensions” for why to avoid those):

single = itertools.product([1, 2], repeat=2)

print('Single:  ', list(single))

 

multiple = itertools.product([1, 2], ['a', 'b'])

print('Multiple:', list(multiple))

>>>

Single:   [(1, 1), (1, 2), (2, 1), (2, 2)]

Multiple: [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]

permutations

permutations returns the unique ordered permutations of length N 
with items from an iterator:

it = itertools.permutations([1, 2, 3, 4], 2)

print(list(it))

>>>

[(1, 2),

 (1, 3),

 (1, 4),

 (2, 1),

 (2, 3),

 (2, 4),

 (3, 1),

 (3, 2),

 (3, 4),

 (4, 1),

 (4, 2),

 (4, 3)]

combinations

combinations returns the unordered combinations of length N with 
unrepeated items from an iterator:

it = itertools.combinations([1, 2, 3, 4], 2)

print(list(it))

>>>

[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
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combinations_with_replacement

combinations_with_replacement is the same as combinations, but 
repeated values are allowed:

it = itertools.combinations_with_replacement([1, 2, 3, 4], 2)

print(list(it))

>>>

[(1, 1),

 (1, 2),

 (1, 3),

 (1, 4),

 (2, 2),

 (2, 3),

 (2, 4),

 (3, 3),

 (3, 4),

 (4, 4)]

Things to Remember

✦ The itertools functions fall into three main categories for work-
ing with iterators and generators: linking iterators together, filtering 
items they output, and producing combinations of items.

✦ There are more advanced functions, additional parameters, and 
useful recipes available in the documentation at help(itertools).





5
Classes and 

Interfaces

As an object-oriented programming language, Python supports a full 
range of features, such as inheritance, polymorphism, and encap-
sulation. Getting things done in Python often requires writing new 
classes and defining how they interact through their interfaces and 
hierarchies. 

Python’s classes and inheritance make it easy to express a program’s 
intended behaviors with objects. They allow you to improve and 
expand functionality over time. They provide flexibility in an envi-
ronment of changing requirements. Knowing how to use them well 
enables you to write maintainable code.

Item 37:  Compose Classes Instead of Nesting Many 
Levels of Built-in Types

Python’s built-in dictionary type is wonderful for maintaining 
dynamic internal state over the lifetime of an object. By dynamic, 
I mean situations in which you need to do bookkeeping for an unex-
pected set of identifiers. For example, say that I want to record the 
grades of a set of students whose names aren’t known in advance. 
I can define a class to store the names in a dictionary instead of using 
a predefined attribute for each student:

class SimpleGradebook:

    def __init__(self):

        self._grades = {}

 

    def add_student(self, name):

        self._grades[name] = []

 

    def report_grade(self, name, score):

        self._grades[name].append(score)
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    def average_grade(self, name):

        grades = self._grades[name]

        return sum(grades) / len(grades)

Using the class is simple:

book = SimpleGradebook()

book.add_student('Isaac Newton')

book.report_grade('Isaac Newton', 90)

book.report_grade('Isaac Newton', 95)

book.report_grade('Isaac Newton', 85)

 

print(book.average_grade('Isaac Newton'))

>>>

90.0

Dictionaries and their related built-in types are so easy to use that 
there’s a danger of overextending them to write brittle code. For 
example, say that I want to extend the SimpleGradebook class to keep 
a list of grades by subject, not just overall. I can do this by changing 
the _grades dictionary to map student names (its keys) to yet another 
dictionary (its values). The innermost dictionary will map subjects 
(its keys) to a list of grades (its values). Here, I do this by using a 
defaultdict instance for the inner dictionary to handle missing sub-
jects (see Item 17: “Prefer defaultdict Over setdefault to Handle Miss-
ing Items in Internal State” for background):

from collections import defaultdict

 

class BySubjectGradebook:

    def __init__(self):

        self._grades = {}                       # Outer dict

 

    def add_student(self, name):

        self._grades[name] = defaultdict(list)  # Inner dict

This seems straightforward enough. The report_grade and 
average_grade methods gain quite a bit of complexity to deal with the 
multilevel dictionary, but it’s seemingly manageable:

    def report_grade(self, name, subject, grade):

        by_subject = self._grades[name]

        grade_list = by_subject[subject]

        grade_list.append(grade)

 

    def average_grade(self, name):

        by_subject = self._grades[name]
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        total, count = 0, 0

        for grades in by_subject.values():

            total += sum(grades)

            count += len(grades)

        return total / count

Using the class remains simple:

book = BySubjectGradebook()

book.add_student('Albert Einstein')

book.report_grade('Albert Einstein', 'Math', 75)

book.report_grade('Albert Einstein', 'Math', 65)

book.report_grade('Albert Einstein', 'Gym', 90)

book.report_grade('Albert Einstein', 'Gym', 95)

print(book.average_grade('Albert Einstein'))

>>>

81.25

Now, imagine that the requirements change again. I also want to 
track the weight of each score toward the overall grade in the class 
so that midterm and final exams are more important than pop quiz-
zes. One way to implement this feature is to change the innermost 
 dictionary; instead of mapping subjects (its keys) to a list of grades 
 (its values), I can use the tuple of (score, weight) in the values list:

class WeightedGradebook:

    def __init__(self):

        self._grades = {}

 

    def add_student(self, name):

        self._grades[name] = defaultdict(list)

 

    def report_grade(self, name, subject, score, weight):

        by_subject = self._grades[name]

        grade_list = by_subject[subject]

        grade_list.append((score, weight))

Although the changes to report_grade seem simple—just make the 
grade list store tuple instances—the average_grade method now has a 
loop within a loop and is difficult to read:

    def average_grade(self, name):

        by_subject = self._grades[name]

 

        score_sum, score_count = 0, 0

        for subject, scores in by_subject.items():

            subject_avg, total_weight = 0, 0



148 Chapter 5 Classes and Interfaces

            for score, weight in scores:

                subject_avg += score * weight

                total_weight += weight

 

            score_sum += subject_avg / total_weight

            score_count += 1

 

        return score_sum / score_count

Using the class has also gotten more difficult. It’s unclear what all of 
the numbers in the positional arguments mean:

book = WeightedGradebook()

book.add_student('Albert Einstein')

book.report_grade('Albert Einstein', 'Math', 75, 0.05)

book.report_grade('Albert Einstein', 'Math', 65, 0.15)

book.report_grade('Albert Einstein', 'Math', 70, 0.80)

book.report_grade('Albert Einstein', 'Gym', 100, 0.40)

book.report_grade('Albert Einstein', 'Gym', 85, 0.60)

print(book.average_grade('Albert Einstein'))

>>>

80.25

When you see complexity like this, it’s time to make the leap from 
built-in types like dictionaries, tuples, sets, and lists to a hierarchy of 
classes.

In the grades example, at first I didn’t know I’d need to support 
weighted grades, so the complexity of creating classes seemed unwar-
ranted. Python’s built-in dictionary and tuple types made it easy to 
keep going, adding layer after layer to the internal bookkeeping. But 
you should avoid doing this for more than one level of nesting; using 
dictionaries that contain dictionaries makes your code hard to read 
by other programmers and sets you up for a maintenance nightmare.

As soon as you realize that your bookkeeping is getting complicated, 
break it all out into classes. You can then provide well-defined inter-
faces that better encapsulate your data. This approach also enables 
you to create a layer of abstraction between your interfaces and your 
concrete implementations.

Refactoring to Classes

There are many approaches to refactoring (see Item 89: “Consider 
warnings to Refactor and Migrate Usage” for another). In this case, 



I can start moving to classes at the bottom of the dependency tree: 
a single grade. A class seems too heavyweight for such simple infor-
mation. A tuple, though, seems appropriate because grades are 
immutable. Here, I use the tuple of (score, weight) to track grades in 
a list:

grades = []

grades.append((95, 0.45))

grades.append((85, 0.55))

total = sum(score * weight for score, weight in grades)

total_weight = sum(weight for _, weight in grades)

average_grade = total / total_weight

I used _ (the underscore variable name, a Python convention for 
unused variables) to capture the first entry in each grade’s tuple and 
ignore it when calculating the total_weight.

The problem with this code is that tuple instances are positional. For 
example, if I want to associate more information with a grade, such 
as a set of notes from the teacher, I need to rewrite every usage of the 
two-tuple to be aware that there are now three items present instead 
of two, which means I need to use _ further to ignore certain indexes:

grades = []

grades.append((95, 0.45, 'Great job'))

grades.append((85, 0.55, 'Better next time'))

total = sum(score * weight for score, weight, _ in grades)

total_weight = sum(weight for _, weight, _ in grades)

average_grade = total / total_weight

This pattern of extending tuples longer and longer is similar to deep-
ening layers of dictionaries. As soon as you find yourself going longer 
than a two-tuple, it’s time to consider another approach.

The namedtuple type in the collections built-in module does exactly 
what I need in this case: It lets me easily define tiny, immutable data 
classes:

from collections import namedtuple

 

Grade = namedtuple('Grade', ('score', 'weight'))

These classes can be constructed with positional or keyword argu-
ments. The fields are accessible with named attributes. Having named 
attributes makes it easy to move from a namedtuple to a class later if 
the requirements change again and I need to, say, support mutability 
or behaviors in the simple data containers.
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Limitations of namedtuple

Although namedtuple is useful in many circumstances, it’s import-
ant to understand when it can do more harm than good:

 ■ You can’t specify default argument values for namedtuple 
classes. This makes them unwieldy when your data may have 
many optional properties. If you find yourself using more than 
a handful of attributes, using the built-in dataclasses module 
may be a better choice.

 ■ The attribute values of namedtuple instances are still accessi-
ble using numerical indexes and iteration. Especially in exter-
nalized APIs, this can lead to unintentional usage that makes 
it harder to move to a real class later. If you’re not in control 
of all of the usage of your namedtuple instances, it’s better to 
explicitly define a new class.

Next, I can write a class to represent a single subject that contains a 
set of grades:

class Subject:

    def __init__(self):

        self._grades = []

 

    def report_grade(self, score, weight):

        self._grades.append(Grade(score, weight))

 

    def average_grade(self):

        total, total_weight = 0, 0

        for grade in self._grades:

            total += grade.score * grade.weight

            total_weight += grade.weight

        return total / total_weight

Then, I write a class to represent a set of subjects that are being stud-
ied by a single student:

class Student:

    def __init__(self):

        self._subjects = defaultdict(Subject)

 

    def get_subject(self, name):

        return self._subjects[name]
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    def average_grade(self):

        total, count = 0, 0

        for subject in self._subjects.values():

            total += subject.average_grade()

            count += 1

        return total / count

Finally, I’d write a container for all of the students, keyed dynamically 
by their names:

class Gradebook:

    def __init__(self):

        self._students = defaultdict(Student)

 

    def get_student(self, name):

        return self._students[name]

The line count of these classes is almost double the previous imple-
mentation’s size. But this code is much easier to read. The example 
driving the classes is also more clear and extensible:

book = Gradebook()

albert = book.get_student('Albert Einstein')

math = albert.get_subject('Math')

math.report_grade(75, 0.05)

math.report_grade(65, 0.15)

math.report_grade(70, 0.80)

gym = albert.get_subject('Gym')

gym.report_grade(100, 0.40)

gym.report_grade(85, 0.60)

print(albert.average_grade())

>>>

80.25

It would also be possible to write backward-compatible methods to 
help migrate usage of the old API style to the new hierarchy of objects.

Things to Remember

✦ Avoid making dictionaries with values that are dictionaries, long 
tuples, or complex nestings of other built-in types.

✦ Use namedtuple for lightweight, immutable data containers before 
you need the flexibility of a full class.

✦ Move your bookkeeping code to using multiple classes when your 
internal state dictionaries get complicated.
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Item 38:  Accept Functions Instead of Classes for 
Simple Interfaces

Many of Python’s built-in APIs allow you to customize behavior by 
passing in a function. These hooks are used by APIs to call back your 
code while they execute. For example, the list type’s sort method 
takes an optional key argument that’s used to determine each index’s 
value for sorting (see Item 14: “Sort by Complex Criteria Using the key 
Parameter” for details). Here, I sort a list of names based on their 
lengths by providing the len built-in function as the key hook:

names = ['Socrates', 'Archimedes', 'Plato', 'Aristotle']

names.sort(key=len)

print(names)

>>>

['Plato', 'Socrates', 'Aristotle', 'Archimedes']

In other languages, you might expect hooks to be defined by an 
abstract class. In Python, many hooks are just stateless functions 
with well-defined arguments and return values. Functions are ideal 
for hooks because they are easier to describe and simpler to define 
than classes. Functions work as hooks because Python has first-class 
functions: Functions and methods can be passed around and refer-
enced like any other value in the language.

For example, say that I want to customize the behavior of the 
defaultdict class (see Item 17: “Prefer defaultdict Over setdefault to 
Handle Missing Items in Internal State” for background). This data 
structure allows you to supply a function that will be called with no 
arguments each time a missing key is accessed. The function must 
return the default value that the missing key should have in the dic-
tionary. Here, I define a hook that logs each time a key is missing and 
returns 0 for the default value:

def log_missing():

    print('Key added')

    return 0

Given an initial dictionary and a set of desired increments, I can 
cause the log_missing function to run and print twice (for 'red' and 
'orange'):

from collections import defaultdict

current = {'green': 12, 'blue': 3}

increments = [
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    ('red', 5),

    ('blue', 17),

    ('orange', 9),

]

result = defaultdict(log_missing, current)

print('Before:', dict(result))

for key, amount in increments:

    result[key] += amount

print('After: ', dict(result))

>>>

Before: {'green': 12, 'blue': 3}

Key added

Key added

After:  {'green': 12, 'blue': 20, 'red': 5, 'orange': 9}

Supplying functions like log_missing makes APIs easy to build and 
test because it separates side effects from deterministic behavior. For 
example, say I now want the default value hook passed to defaultdict 
to count the total number of keys that were missing. One way to 
achieve this is by using a stateful closure (see Item 21: “Know How 
Closures Interact with Variable Scope” for details). Here, I define a 
helper function that uses such a closure as the default value hook:

def increment_with_report(current, increments):

    added_count = 0

 

    def missing():

        nonlocal added_count  # Stateful closure

        added_count += 1

        return 0

 

    result = defaultdict(missing, current)

    for key, amount in increments:

        result[key] += amount

 

    return result, added_count

Running this function produces the expected result (2), even though 
the defaultdict has no idea that the missing hook maintains state. 
Another benefit of accepting simple functions for interfaces is that it’s 
easy to add functionality later by hiding state in a closure:

result, count = increment_with_report(current, increments)

assert count == 2



154 Chapter 5 Classes and Interfaces

The problem with defining a closure for stateful hooks is that it’s 
harder to read than the stateless function example. Another approach 
is to define a small class that encapsulates the state you want to 
track:

class CountMissing:

    def __init__(self):

        self.added = 0

 

    def missing(self):

        self.added += 1

        return 0

In other languages, you might expect that now defaultdict would 
have to be modified to accommodate the interface of CountMissing. 
But in Python, thanks to first-class functions, you can reference 
the CountMissing.missing method directly on an object and pass it to 
defaultdict as the default value hook. It’s trivial to have an object 
instance’s method satisfy a function interface:

counter = CountMissing()

result = defaultdict(counter.missing, current)  # Method ref

for key, amount in increments:

    result[key] += amount

assert counter.added == 2

Using a helper class like this to provide the behavior of a stateful 
closure is clearer than using the increment_with_report function, as 
above. However, in isolation, it’s still not immediately obvious what the 
purpose of the CountMissing class is. Who constructs a CountMissing 
object? Who calls the missing method? Will the class need other pub-
lic methods to be added in the future? Until you see its usage with 
defaultdict, the class is a mystery.

To clarify this situation, Python allows classes to define the __call__ 
special method. __call__ allows an object to be called just like a func-
tion. It also causes the callable built-in function to return True for 
such an instance, just like a normal function or method. All objects 
that can be executed in this manner are referred to as callables:

class BetterCountMissing:

    def __init__(self):

        self.added = 0

 

    def __call__(self):

        self.added += 1

        return 0
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counter = BetterCountMissing()

assert counter() == 0

assert callable(counter)

Here, I use a BetterCountMissing instance as the default value hook for 
a defaultdict to track the number of missing keys that were added:

counter = BetterCountMissing()

result = defaultdict(counter, current)  # Relies on __call__

for key, amount in increments:

    result[key] += amount

assert counter.added == 2

This is much clearer than the CountMissing.missing example. The 
__call__ method indicates that a class’s instances will be used some-
where a function argument would also be suitable (like API hooks). It 
directs new readers of the code to the entry point that’s responsible 
for the class’s primary behavior. It provides a strong hint that the goal 
of the class is to act as a stateful closure.

Best of all, defaultdict still has no view into what’s going on when 
you use __call__. All that defaultdict requires is a function for the 
default value hook. Python provides many different ways to satisfy a 
simple function interface, and you can choose the one that works best 
for what you need to accomplish.

Things to Remember

✦ Instead of defining and instantiating classes, you can often simply 
use functions for simple interfaces between components in Python.

✦ References to functions and methods in Python are first class, 
meaning they can be used in expressions (like any other type).

✦ The __call__ special method enables instances of a class to be 
called like plain Python functions.

✦ When you need a function to maintain state, consider defining a 
class that provides the __call__ method instead of defining a state-
ful closure.

Item 39:  Use @classmethod Polymorphism to Construct 
Objects Generically

In Python, not only do objects support polymorphism, but classes do 
as well. What does that mean, and what is it good for?

Polymorphism enables multiple classes in a hierarchy to implement 
their own unique versions of a method. This means that many classes 
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can fulfill the same interface or abstract base class while providing 
different functionality (see Item 43: “Inherit from collections.abc for 
Custom Container Types”).

For example, say that I’m writing a MapReduce implementation, and 
I want a common class to represent the input data. Here, I define 
such a class with a read method that must be defined by subclasses:

class InputData:

    def read(self):

        raise NotImplementedError

I also have a concrete subclass of InputData that reads data from a 
file on disk:

class PathInputData(InputData):

    def __init__(self, path):

        super().__init__()

        self.path = path

 

    def read(self):

        with open(self.path) as f:

            return f.read()

I could have any number of InputData subclasses, like PathInputData, 
and each of them could implement the standard interface for read to 
return the data to process. Other InputData subclasses could read 
from the network, decompress data transparently, and so on.

I’d want a similar abstract interface for the MapReduce worker that 
consumes the input data in a standard way:

class Worker:

    def __init__(self, input_data):

        self.input_data = input_data

        self.result = None

 

    def map(self):

        raise NotImplementedError

 

    def reduce(self, other):

        raise NotImplementedError

Here, I define a concrete subclass of Worker to implement the specific 
MapReduce function I want to apply—a simple newline counter:

class LineCountWorker(Worker):

    def map(self):

        data = self.input_data.read()

        self.result = data.count('\n')
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    def reduce(self, other):

        self.result += other.result

It may look like this implementation is going great, but I’ve reached the 
biggest hurdle in all of this. What connects all of these pieces? I have 
a nice set of classes with reasonable interfaces and abstractions, but 
that’s only useful once the objects are constructed. What’s responsi-
ble for building the objects and orchestrating the MapReduce?

The simplest approach is to manually build and connect the objects 
with some helper functions. Here, I list the contents of a directory and 
construct a PathInputData instance for each file it contains:

import os

 

def generate_inputs(data_dir):

    for name in os.listdir(data_dir):

        yield PathInputData(os.path.join(data_dir, name))

Next, I create the LineCountWorker instances by using the InputData 
instances returned by generate_inputs:

def create_workers(input_list):

    workers = []

    for input_data in input_list:

        workers.append(LineCountWorker(input_data))

    return workers

I execute these Worker instances by fanning out the map step to multi-
ple threads (see Item 53: “Use Threads for Blocking I/O, Avoid for Par-
allelism” for background). Then, I call reduce repeatedly to combine 
the results into one final value:

from threading import Thread

 

def execute(workers):

    threads = [Thread(target=w.map) for w in workers]

    for thread in threads: thread.start()

    for thread in threads: thread.join()

 

    first, *rest = workers

    for worker in rest:

        first.reduce(worker)

    return first.result
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Finally, I connect all the pieces together in a function to run each 
step:

def mapreduce(data_dir):

    inputs = generate_inputs(data_dir)

    workers = create_workers(inputs)

    return execute(workers)

Running this function on a set of test input files works great:

import os

import random

 

def write_test_files(tmpdir):

    os.makedirs(tmpdir)

    for i in range(100):

        with open(os.path.join(tmpdir, str(i)), 'w') as f:

            f.write('\n' * random.randint(0, 100))

 

tmpdir = 'test_inputs'

write_test_files(tmpdir)

 

result = mapreduce(tmpdir)

print(f'There are {result} lines')

>>>

There are 4360 lines

What’s the problem? The huge issue is that the mapreduce func-
tion is not generic at all. If I wanted to write another InputData or 
Worker subclass, I would also have to rewrite the generate_inputs, 
create_workers, and mapreduce functions to match.

This problem boils down to needing a generic way to construct objects. 
In other languages, you’d solve this problem with constructor poly-
morphism, requiring that each InputData subclass provides a spe-
cial constructor that can be used generically by the helper methods 
that orchestrate the MapReduce (similar to the factory pattern). The 
trouble is that Python only allows for the single constructor method 
__init__. It’s unreasonable to require every InputData subclass to 
have a compatible constructor.

The best way to solve this problem is with class method polymor-
phism. This is exactly like the instance method polymorphism I used 
for InputData.read, except that it’s for whole classes instead of their 
constructed objects.
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Let me apply this idea to the MapReduce classes. Here, I extend the 
InputData class with a generic @classmethod that’s responsible for cre-
ating new InputData instances using a common interface:

class GenericInputData:

    def read(self):

        raise NotImplementedError

 

    @classmethod

    def generate_inputs(cls, config):

        raise NotImplementedError

I have generate_inputs take a dictionary with a set of configuration 
parameters that the GenericInputData concrete subclass needs to inter-
pret. Here, I use the config to find the directory to list for input files:

class PathInputData(GenericInputData):

    ...

 

    @classmethod

    def generate_inputs(cls, config):

        data_dir = config['data_dir']

        for name in os.listdir(data_dir):

            yield cls(os.path.join(data_dir, name))

Similarly, I can make the create_workers helper part of the 
GenericWorker class. Here, I use the input_class parameter, which 
must be a subclass of GenericInputData, to generate the necessary 
inputs. I construct instances of the GenericWorker concrete subclass 
by using cls() as a generic constructor:

class GenericWorker:

    def __init__(self, input_data):

        self.input_data = input_data

        self.result = None

 

    def map(self):

        raise NotImplementedError

 

    def reduce(self, other):

        raise NotImplementedError

 

    @classmethod

    def create_workers(cls, input_class, config):

        workers = []

        for input_data in input_class.generate_inputs(config):

            workers.append(cls(input_data))

        return workers
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Note that the call to input_class.generate_inputs above is the 
class polymorphism that I’m trying to show. You can also see how 
create_workers calling cls() provides an alternative way to construct 
GenericWorker objects besides using the __init__ method directly.

The effect on my concrete GenericWorker subclass is nothing more 
than changing its parent class:

class LineCountWorker(GenericWorker):

    ...

Finally, I can rewrite the mapreduce function to be completely generic 
by calling create_workers:

def mapreduce(worker_class, input_class, config):

    workers = worker_class.create_workers(input_class, config)

    return execute(workers)

Running the new worker on a set of test files produces the same 
result as the old implementation. The difference is that the mapreduce 
function requires more parameters so that it can operate generically:

config = {'data_dir': tmpdir}

result = mapreduce(LineCountWorker, PathInputData, config)

print(f'There are {result} lines')

>>>

There are 4360 lines

Now, I can write other GenericInputData and GenericWorker sub-
classes as I wish, without having to rewrite any of the glue code.

Things to Remember

✦ Python only supports a single constructor per class: the __init__ 
method.

✦ Use @classmethod to define alternative constructors for your classes.

✦ Use class method polymorphism to provide generic ways to build 
and connect many concrete subclasses.

Item 40: Initialize Parent Classes with super

The old, simple way to initialize a parent class from a child class 
is to directly call the parent class’s __init__ method with the child 
instance:

class MyBaseClass:

    def __init__(self, value):

        self.value = value
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class MyChildClass(MyBaseClass):

    def __init__(self):

        MyBaseClass.__init__(self, 5)

This approach works fine for basic class hierarchies but breaks in 
many cases.

If a class is affected by multiple inheritance (something to avoid in 
general; see Item 41: “Consider Composing Functionality with Mix-in 
Classes”), calling the superclasses’ __init__ methods directly can 
lead to unpredictable behavior.

One problem is that the __init__ call order isn’t specified across all 
subclasses. For example, here I define two parent classes that operate 
on the instance’s value field:

class TimesTwo:

    def __init__(self):

        self.value *= 2

 

class PlusFive:

    def __init__(self):

        self.value += 5

This class defines its parent classes in one ordering:

class OneWay(MyBaseClass, TimesTwo, PlusFive):

    def __init__(self, value):

        MyBaseClass.__init__(self, value)

        TimesTwo.__init__(self)

        PlusFive.__init__(self)

And constructing it produces a result that matches the parent class 
ordering:

foo = OneWay(5)

print('First ordering value is (5 * 2) + 5 =', foo.value)

>>>

First ordering value is (5 * 2) + 5 = 15

Here’s another class that defines the same parent classes but in a 
different ordering (PlusFive followed by TimesTwo instead of the other 
way around):

class AnotherWay(MyBaseClass, PlusFive, TimesTwo):

    def __init__(self, value):

        MyBaseClass.__init__(self, value)

        TimesTwo.__init__(self)

        PlusFive.__init__(self)
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However, I left the calls to the parent class constructors— 
PlusFive.__init__ and TimesTwo.__init__—in the same order as before, 
which means this class’s behavior doesn’t match the order of the par-
ent classes in its definition. The conflict here between the inheritance 
base classes and the __init__ calls is hard to spot, which makes this 
especially difficult for new readers of the code to understand:

bar = AnotherWay(5)

print('Second ordering value is', bar.value)

>>>

Second ordering value is 15

Another problem occurs with diamond inheritance. Diamond inher-
itance happens when a subclass inherits from two separate classes 
that have the same superclass somewhere in the hierarchy. Diamond 
inheritance causes the common superclass’s __init__ method to 
run multiple times, causing unexpected behavior. For example, here 
I define two child classes that inherit from MyBaseClass:

class TimesSeven(MyBaseClass):

    def __init__(self, value):

        MyBaseClass.__init__(self, value)

        self.value *= 7

 

class PlusNine(MyBaseClass):

    def __init__(self, value):

        MyBaseClass.__init__(self, value)

        self.value += 9

Then, I define a child class that inherits from both of these classes, 
making MyBaseClass the top of the diamond:

class ThisWay(TimesSeven, PlusNine):

    def __init__(self, value):

        TimesSeven.__init__(self, value)

        PlusNine.__init__(self, value)

 

foo = ThisWay(5)

print('Should be (5 * 7) + 9 = 44 but is', foo.value)

>>>

Should be (5 * 7) + 9 = 44 but is 14

The call to the second parent class’s constructor, PlusNine.__init__, 
causes self.value to be reset back to 5 when MyBaseClass.__init__ gets 
called a second time. That results in the calculation of self.value to be 
5 + 9 = 14, completely ignoring the effect of the TimesSeven.__init__ 
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constructor. This behavior is surprising and can be very difficult to 
debug in more complex cases.

To solve these problems, Python has the super built-in function and 
standard method resolution order (MRO). super ensures that common 
superclasses in diamond hierarchies are run only once (for another 
example, see Item 48: “Validate Subclasses with __init_subclass__”). 
The MRO defines the ordering in which superclasses are initialized, 
following an algorithm called C3 linearization.

Here, I create a diamond-shaped class hierarchy again, but this time 
I use super to initialize the parent class:

class TimesSevenCorrect(MyBaseClass):

    def __init__(self, value):

        super().__init__(value)

        self.value *= 7

 

class PlusNineCorrect(MyBaseClass):

    def __init__(self, value):

        super().__init__(value)

        self.value += 9

Now, the top part of the diamond, MyBaseClass.__init__, is run only a 
single time. The other parent classes are run in the order specified in 
the class statement:

class GoodWay(TimesSevenCorrect, PlusNineCorrect):

    def __init__(self, value):

        super().__init__(value)

 

foo = GoodWay(5)

print('Should be 7 * (5 + 9) = 98 and is', foo.value)

>>>

Should be 7 * (5 + 9) = 98 and is 98

This order may seem backward at first. Shouldn’t 
TimesSevenCorrect.__init__ have run first? Shouldn’t the result be 
(5 * 7) + 9 = 44? The answer is no. This ordering matches what the 
MRO defines for this class. The MRO ordering is available on a class 
method called mro:

mro_str = '\n'.join(repr(cls) for cls in GoodWay.mro())

print(mro_str)

>>>

<class '__main__.GoodWay'>

<class '__main__.TimesSevenCorrect'>
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<class '__main__.PlusNineCorrect'>

<class '__main__.MyBaseClass'>

<class 'object'>

When I call GoodWay(5), it in turn calls TimesSevenCorrect.__init__, 
which calls PlusNineCorrect.__init__, which calls MyBaseClass.__
init__. Once this reaches the top of the diamond, all of the initializa-
tion methods actually do their work in the opposite order from how 
their __init__ functions were called. MyBaseClass.__init__ assigns 
value to 5. PlusNineCorrect.__init__ adds 9 to make value equal 14. 
TimesSevenCorrect.__init__ multiplies it by 7 to make value equal 98.

Besides making multiple inheritance robust, the call to super().
__init__ is also much more maintainable than calling 
MyBaseClass.__init__ directly from within the subclasses. I could 
later rename MyBaseClass to something else or have TimesSevenCorrect 
and PlusNineCorrect inherit from another superclass without having 
to update their __init__ methods to match.

The super function can also be called with two parameters: first the 
type of the class whose MRO parent view you’re trying to access, and 
then the instance on which to access that view. Using these optional 
parameters within the constructor looks like this:

class ExplicitTrisect(MyBaseClass):

    def __init__(self, value):

        super(ExplicitTrisect, self).__init__(value)

        self.value /= 3

However, these parameters are not required for object instance ini-
tialization. Python’s compiler automatically provides the correct 
parameters (__class__ and self) for you when super is called with 
zero arguments within a class definition. This means all three of 
these usages are equivalent:

class AutomaticTrisect(MyBaseClass):

    def __init__(self, value):

        super(__class__, self).__init__(value)

        self.value /= 3

 

class ImplicitTrisect(MyBaseClass):

    def __init__(self, value):

        super().__init__(value)

        self.value /= 3

 

assert ExplicitTrisect(9).value == 3

assert AutomaticTrisect(9).value == 3

assert ImplicitTrisect(9).value == 3
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The only time you should provide parameters to super is in situa-
tions where you need to access the specific functionality of a super-
class’s implementation from a child class (e.g., to wrap or reuse 
functionality).

Things to Remember

✦ Python’s standard method resolution order (MRO) solves the prob-
lems of superclass initialization order and diamond inheritance.

✦ Use the super built-in function with zero arguments to initialize 
parent classes.

Item 41:  Consider Composing Functionality with 
Mix-in Classes

Python is an object-oriented language with built-in facilities for mak-
ing multiple inheritance tractable (see Item 40: “Initialize Parent 
Classes with super”). However, it’s better to avoid multiple inheritance 
altogether.

If you find yourself desiring the convenience and encapsulation that 
come with multiple inheritance, but want to avoid the potential head-
aches, consider writing a mix-in instead. A mix-in is a class that 
defines only a small set of additional methods for its child classes to 
provide. Mix-in classes don’t define their own instance attributes nor 
require their __init__ constructor to be called.

Writing mix-ins is easy because Python makes it trivial to inspect the 
current state of any object, regardless of its type. Dynamic inspection 
means you can write generic functionality just once, in a mix-in, and 
it can then be applied to many other classes. Mix-ins can be com-
posed and layered to minimize repetitive code and maximize reuse.

For example, say I want the ability to convert a Python object from its 
in-memory representation to a dictionary that’s ready for serializa-
tion. Why not write this functionality generically so I can use it with 
all my classes?

Here, I define an example mix-in that accomplishes this with a new 
public method that’s added to any class that inherits from it:

class ToDictMixin:

    def to_dict(self):

        return self._traverse_dict(self.__dict__)
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The implementation details are straightforward and rely on dynamic 
attribute access using hasattr, dynamic type inspection with 
isinstance, and accessing the instance dictionary __dict__:

    def _traverse_dict(self, instance_dict):

        output = {}

        for key, value in instance_dict.items():

            output[key] = self._traverse(key, value)

        return output

 

    def _traverse(self, key, value):

        if isinstance(value, ToDictMixin):

            return value.to_dict()

        elif isinstance(value, dict):

            return self._traverse_dict(value)

        elif isinstance(value, list):

            return [self._traverse(key, i) for i in value]

        elif hasattr(value, '__dict__'):

            return self._traverse_dict(value.__dict__)

        else:

            return value

Here, I define an example class that uses the mix-in to make a dictio-
nary representation of a binary tree:

class BinaryTree(ToDictMixin):

    def __init__(self, value, left=None, right=None):

        self.value = value

        self.left = left

        self.right = right

Translating a large number of related Python objects into a dictionary 
becomes easy:

tree = BinaryTree(10,

    left=BinaryTree(7, right=BinaryTree(9)),

    right=BinaryTree(13, left=BinaryTree(11)))

print(tree.to_dict())

>>>

{'value': 10,

 'left': {'value': 7,

          'left': None,

          'right': {'value': 9, 'left': None, 'right': None}},

 'right': {'value': 13,

           'left': {'value': 11, 'left': None, 'right': None},

           'right': None}}
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The best part about mix-ins is that you can make their generic func-
tionality pluggable so behaviors can be overridden when required. For 
example, here I define a subclass of BinaryTree that holds a reference 
to its parent. This circular reference would cause the default imple-
mentation of ToDictMixin.to_dict to loop forever:

class BinaryTreeWithParent(BinaryTree):

    def __init__(self, value, left=None,

                 right=None, parent=None):

        super().__init__(value, left=left, right=right)

        self.parent = parent

The solution is to override the BinaryTreeWithParent._traverse method 
to only process values that matter, preventing cycles encountered by 
the mix-in. Here, the _traverse override inserts the parent’s numeri-
cal value and otherwise defers to the mix-in’s default implementation 
by using the super built-in function:

    def _traverse(self, key, value):

        if (isinstance(value, BinaryTreeWithParent) and

                key == 'parent'):

            return value.value  # Prevent cycles

        else:

            return super()._traverse(key, value)

Calling BinaryTreeWithParent.to_dict works without issue because 
the circular referencing properties aren’t followed:

root = BinaryTreeWithParent(10)

root.left = BinaryTreeWithParent(7, parent=root)

root.left.right = BinaryTreeWithParent(9, parent=root.left)

print(root.to_dict())

>>>

{'value': 10,

 'left': {'value': 7,

          'left': None,

          'right': {'value': 9,

                    'left': None,

                    'right': None,

                    'parent': 7},

          'parent': 10},

 'right': None,

 'parent': None}
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By defining BinaryTreeWithParent._traverse, I’ve also enabled any 
class that has an attribute of type BinaryTreeWithParent to automati-
cally work with the ToDictMixin:

class NamedSubTree(ToDictMixin):

    def __init__(self, name, tree_with_parent):

        self.name = name

        self.tree_with_parent = tree_with_parent

 

my_tree = NamedSubTree('foobar', root.left.right)

print(my_tree.to_dict())  # No infinite loop

>>>

{'name': 'foobar',

 'tree_with_parent': {'value': 9,

                      'left': None,

                      'right': None,

                      'parent': 7}}

Mix-ins can also be composed together. For example, say I want a 
mix-in that provides generic JSON serialization for any class. I can do 
this by assuming that a class provides a to_dict method (which may 
or may not be provided by the ToDictMixin class):

import json

 

class JsonMixin:

    @classmethod

    def from_json(cls, data):

        kwargs = json.loads(data)

        return cls(**kwargs)

 

    def to_json(self):

        return json.dumps(self.to_dict())

Note how the JsonMixin class defines both instance methods and class 
methods. Mix-ins let you add either kind of behavior to  subclasses. 
In this example, the only requirements of a JsonMixin subclass are 
providing a to_dict method and taking keyword arguments for 
the __init__ method (see Item 23: “Provide Optional Behavior with 
 Keyword Arguments” for background).

This mix-in makes it simple to create hierarchies of utility classes 
that can be serialized to and from JSON with little boilerplate. For 
example, here I have a hierarchy of data classes representing parts of 
a datacenter topology:
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class DatacenterRack(ToDictMixin, JsonMixin):

    def __init__(self, switch=None, machines=None):

        self.switch = Switch(**switch)

        self.machines = [

            Machine(**kwargs) for kwargs in machines]

 

class Switch(ToDictMixin, JsonMixin):

    def __init__(self, ports=None, speed=None):

        self.ports = ports

        self.speed = speed

 

class Machine(ToDictMixin, JsonMixin):

    def __init__(self, cores=None, ram=None, disk=None):

        self.cores = cores

        self.ram = ram

        self.disk = disk

Serializing these classes to and from JSON is simple. Here, I verify 
that the data is able to be sent round-trip through serializing and 
deserializing:

serialized = """{

    "switch": {"ports": 5, "speed": 1e9},

    "machines": [

        {"cores": 8, "ram": 32e9, "disk": 5e12},

        {"cores": 4, "ram": 16e9, "disk": 1e12},

        {"cores": 2, "ram": 4e9, "disk": 500e9}

    ]

}"""

 

deserialized = DatacenterRack.from_json(serialized)

roundtrip = deserialized.to_json()

assert json.loads(serialized) == json.loads(roundtrip)

When you use mix-ins like this, it’s fine if the class you apply 
JsonMixin to already inherits from JsonMixin higher up in the class 
hierarchy. The resulting class will behave the same way, thanks to 
the behavior of super.

Things to Remember

✦ Avoid using multiple inheritance with instance attributes and 
__init__ if mix-in classes can achieve the same outcome.

✦ Use pluggable behaviors at the instance level to provide per-class 
customization when mix-in classes may require it.
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✦ Mix-ins can include instance methods or class methods, depending 
on your needs.

✦ Compose mix-ins to create complex functionality from simple 
behaviors.

Item 42: Prefer Public Attributes Over Private Ones

In Python, there are only two types of visibility for a class’s attributes: 
public and private:

class MyObject:

    def __init__(self):

        self.public_field = 5

        self.__private_field = 10

 

    def get_private_field(self):

        return self.__private_field

Public attributes can be accessed by anyone using the dot operator on 
the object:

foo = MyObject()

assert foo.public_field == 5

Private fields are specified by prefixing an attribute’s name with a 
double underscore. They can be accessed directly by methods of the 
containing class:

assert foo.get_private_field() == 10

However, directly accessing private fields from outside the class raises 
an exception:

foo.__private_field

>>>

Traceback ...

AttributeError: 'MyObject' object has no attribute 

➥'__private_field'

Class methods also have access to private attributes because they are 
declared within the surrounding class block:

class MyOtherObject:

    def __init__(self):

        self.__private_field = 71

 

    @classmethod

    def get_private_field_of_instance(cls, instance):

        return instance.__private_field
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bar = MyOtherObject()

assert MyOtherObject.get_private_field_of_instance(bar) == 71

As you’d expect with private fields, a subclass can’t access its parent 
class’s private fields:

class MyParentObject:

    def __init__(self):

        self.__private_field = 71

 

class MyChildObject(MyParentObject):

    def get_private_field(self):

        return self.__private_field

 

baz = MyChildObject()

baz.get_private_field()

>>>

Traceback ...

AttributeError: 'MyChildObject' object has no attribute 

➥'_MyChildObject__private_field'

The private attribute behavior is implemented with a sim-
ple transformation of the attribute name. When the Python 
compiler sees private attribute access in methods like 
MyChildObject.get_private_field, it translates the __private_field 
attribute access to use the name _MyChildObject__private_field 
instead. In the example above, __private_field is only defined in 
MyParentObject.__init__, which means the private attribute’s real 
name is _MyParentObject__private_field. Accessing the parent’s pri-
vate attribute from the child class fails simply because the trans-
formed attribute name doesn’t exist (_MyChildObject__private_field 
instead of _MyParentObject__private_field).

Knowing this scheme, you can easily access the private attributes 
of any class—from a subclass or externally—without asking for 
permission:

assert baz._MyParentObject__private_field == 71

If you look in the object’s attribute dictionary, you can see that private 
attributes are actually stored with the names as they appear after the 
transformation:

print(baz.__dict__)

>>>

{'_MyParentObject__private_field': 71}
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Why doesn’t the syntax for private attributes actually enforce strict 
visibility? The simplest answer is one often-quoted motto of Python: 
“We are all consenting adults here.” What this means is that we don’t 
need the language to prevent us from doing what we want to do. It’s 
our individual choice to extend functionality as we wish and to take 
responsibility for the consequences of such a risk. Python program-
mers believe that the benefits of being open—permitting unplanned 
extension of classes by default—outweigh the downsides.

Beyond that, having the ability to hook language features like attri-
bute access (see Item 47: “Use __getattr__, __getattribute__, and 
__setattr__ for Lazy Attributes”) enables you to mess around with the 
internals of objects whenever you wish. If you can do that, what is the 
value of Python trying to prevent private attribute access otherwise?

To minimize damage from accessing internals unknowingly, Python 
programmers follow a naming convention defined in the style guide 
(see Item 2: “Follow the PEP 8 Style Guide”). Fields prefixed by a sin-
gle underscore (like _protected_field) are protected by convention, 
meaning external users of the class should proceed with caution.

However, many programmers who are new to Python use private fields 
to indicate an internal API that shouldn’t be accessed by subclasses 
or externally:

class MyStringClass:

    def __init__(self, value):

        self.__value = value

 

    def get_value(self):

        return str(self.__value)

 

foo = MyStringClass(5)

assert foo.get_value() == '5'

This is the wrong approach. Inevitably someone—maybe even 
you—will want to subclass your class to add new behavior or to 
work around deficiencies in existing methods (e.g., the way that 
MyStringClass.get_value always returns a string). By choosing pri-
vate attributes, you’re only making subclass overrides and extensions 
cumbersome and brittle. Your potential subclassers will still access 
the private fields when they absolutely need to do so:

class MyIntegerSubclass(MyStringClass):

    def get_value(self):

        return int(self._MyStringClass__value)
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foo = MyIntegerSubclass('5')

assert foo.get_value() == 5

But if the class hierarchy changes beneath you, these classes will 
break because the private attribute references are no longer valid. 
Here, the MyIntegerSubclass class’s immediate parent, MyStringClass, 
has had another parent class added, called MyBaseClass:

class MyBaseClass:

    def __init__(self, value):

        self.__value = value

 

    def get_value(self):

        return self.__value

 

class MyStringClass(MyBaseClass):

    def get_value(self):

        return str(super().get_value())         # Updated

 

class MyIntegerSubclass(MyStringClass):

    def get_value(self):

        return int(self._MyStringClass__value)  # Not updated

The __value attribute is now assigned in the MyBaseClass parent class, 
not the MyStringClass parent. This causes the private variable refer-
ence self._MyStringClass__value to break in MyIntegerSubclass:

foo = MyIntegerSubclass(5)

foo.get_value()

>>>

Traceback ...

AttributeError: 'MyIntegerSubclass' object has no attribute 

➥'_MyStringClass__value'

In general, it’s better to err on the side of allowing subclasses to do 
more by using protected attributes. Document each protected field 
and explain which fields are internal APIs available to subclasses and 
which should be left alone entirely. This is as much advice to other 
programmers as it is guidance for your future self on how to extend 
your own code safely:

class MyStringClass:

    def __init__(self, value):

        # This stores the user-supplied value for the object.

        # It should be coercible to a string. Once assigned in

        # the object it should be treated as immutable.
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        self._value = value

 

    ...

The only time to seriously consider using private attributes is when 
you’re worried about naming conflicts with subclasses. This problem 
occurs when a child class unwittingly defines an attribute that was 
already defined by its parent class:

class ApiClass:

    def __init__(self):

        self._value = 5

 

    def get(self):

        return self._value

 

class Child(ApiClass):

    def __init__(self):

        super().__init__()

        self._value = 'hello'  # Conflicts

 

a = Child()

print(f'{a.get()} and {a._value} should be different')

>>>

hello and hello should be different

This is primarily a concern with classes that are part of a public 
API; the subclasses are out of your control, so you can’t refactor to 
fix the problem. Such a conflict is especially possible with attribute 
names that are very common (like value). To reduce the risk of this 
issue occurring, you can use a private attribute in the parent class 
to ensure that there are no attribute names that overlap with child 
classes:

class ApiClass:

    def __init__(self):

        self.__value = 5       # Double underscore

 

    def get(self):

        return self.__value    # Double underscore

 

class Child(ApiClass):

    def __init__(self):

        super().__init__()

        self._value = 'hello'  # OK!

 



 Item 43: Inherit from collections.abc for Custom Container Types 175

a = Child()

print(f'{a.get()} and {a._value} are different')

>>>

5 and hello are different

Things to Remember

✦ Private attributes aren’t rigorously enforced by the Python compiler.

✦ Plan from the beginning to allow subclasses to do more with your 
internal APIs and attributes instead of choosing to lock them out.

✦ Use documentation of protected fields to guide subclasses instead of 
trying to force access control with private attributes.

✦ Only consider using private attributes to avoid naming conflicts 
with subclasses that are out of your control.

Item 43:  Inherit from collections.abc for Custom 
Container Types

Much of programming in Python is defining classes that contain data 
and describing how such objects relate to each other. Every Python 
class is a container of some kind, encapsulating attributes and func-
tionality together. Python also provides built-in container types for 
managing data: lists, tuples, sets, and dictionaries.

When you’re designing classes for simple use cases like sequences, 
it’s natural to want to subclass Python’s built-in list type directly. 
For example, say I want to create my own custom list type that has 
additional methods for counting the frequency of its members:

class FrequencyList(list):

    def __init__(self, members):

        super().__init__(members)

 

    def frequency(self):

        counts = {}

        for item in self:

            counts[item] = counts.get(item, 0) + 1

        return counts

By subclassing list, I get all of list’s standard functionality and pre-
serve the semantics familiar to all Python programmers. I can define 
additional methods to provide any custom behaviors that I need:

foo = FrequencyList(['a', 'b', 'a', 'c', 'b', 'a', 'd'])

print('Length is', len(foo))
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foo.pop()

print('After pop:', repr(foo))

print('Frequency:', foo.frequency())

>>>

Length is 7

After pop: ['a', 'b', 'a', 'c', 'b', 'a']

Frequency: {'a': 3, 'b': 2, 'c': 1}

Now, imagine that I want to provide an object that feels like a list 
and allows indexing but isn’t a list subclass. For example, say that 
I want to provide sequence semantics (like list or tuple) for a binary 
tree class:

class BinaryNode:

    def __init__(self, value, left=None, right=None):

        self.value = value

        self.left = left

        self.right = right

How do you make this class act like a sequence type? Python imple-
ments its container behaviors with instance methods that have spe-
cial names. When you access a sequence item by index:

bar = [1, 2, 3]

bar[0]

it will be interpreted as:

bar.__getitem__(0)

To make the BinaryNode class act like a sequence, you can provide 
a custom implementation of __getitem__ (often pronounced “dunder 
getitem” as an abbreviation for “double underscore getitem”) that tra-
verses the object tree depth first:

class IndexableNode(BinaryNode):

    def _traverse(self):

        if self.left is not None:

            yield from self.left._traverse()

        yield self

        if self.right is not None:

            yield from self.right._traverse()

 

    def __getitem__(self, index):

        for i, item in enumerate(self._traverse()):

            if i == index:

                return item.value

        raise IndexError(f'Index {index} is out of range')
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You can construct your binary tree as usual:

tree = IndexableNode(

    10,

    left=IndexableNode(

        5,

        left=IndexableNode(2),

        right=IndexableNode(

            6,

            right=IndexableNode(7))),

    right=IndexableNode(

        15,

        left=IndexableNode(11)))

But you can also access it like a list in addition to being able to tra-
verse the tree with the left and right attributes:

print('LRR is', tree.left.right.right.value)

print('Index 0 is', tree[0])

print('Index 1 is', tree[1])

print('11 in the tree?', 11 in tree)

print('17 in the tree?', 17 in tree)

print('Tree is', list(tree))

>>>

LRR is 7

Index 0 is 2

Index 1 is 5

11 in the tree? True

17 in the tree? False

Tree is [2, 5, 6, 7, 10, 11, 15]

The problem is that implementing __getitem__ isn’t enough to provide 
all of the sequence semantics you’d expect from a list instance:

len(tree)

>>>

Traceback ...

TypeError: object of type 'IndexableNode' has no len()

The len built-in function requires another special method, named 
__len__, that must have an implementation for a custom sequence 
type:

class SequenceNode(IndexableNode):

    def __len__(self):

        for count, _ in enumerate(self._traverse(), 1):

            pass

        return count
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tree = SequenceNode(

    10,

    left=SequenceNode(

        5,

        left=SequenceNode(2),

        right=SequenceNode(

            6,

            right=SequenceNode(7))),

    right=SequenceNode(

        15,

        left=SequenceNode(11))

)

 

print('Tree length is', len(tree))

>>>

Tree length is 7

Unfortunately, this still isn’t enough for the class to fully be a valid 
sequence. Also missing are the count and index methods that a 
Python programmer would expect to see on a sequence like list or 
tuple. It turns out that defining your own container types is much 
harder than it seems.

To avoid this difficulty throughout the Python universe, the built-in 
collections.abc module defines a set of abstract base classes that 
provide all of the typical methods for each container type. When you 
subclass from these abstract base classes and forget to implement 
required methods, the module tells you something is wrong:

from collections.abc import Sequence

 

class BadType(Sequence):

    pass

 

foo = BadType()

>>>

Traceback ...

TypeError: Can't instantiate abstract class BadType with 

➥abstract methods __getitem__, __len__

When you do implement all the methods required by an abstract base 
class from collections.abc, as I did above with SequenceNode, it pro-
vides all of the additional methods, like index and count, for free:

class BetterNode(SequenceNode, Sequence):

    pass
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tree = BetterNode(

    10,

    left=BetterNode(

        5,

        left=BetterNode(2),

        right=BetterNode(

            6,

            right=BetterNode(7))),

    right=BetterNode(

        15,

        left=BetterNode(11))

)

 

print('Index of 7 is', tree.index(7))

print('Count of 10 is', tree.count(10))

>>>

Index of 7 is 3

Count of 10 is 1

The benefit of using these abstract base classes is even greater for 
more complex container types such as Set and MutableMapping, which 
have a large number of special methods that need to be implemented 
to match Python conventions.

Beyond the collections.abc module, Python uses a variety of special 
methods for object comparisons and sorting, which may be provided 
by container classes and non-container classes alike (see Item 73: 
“Know How to Use heapq for Priority Queues” for an example).

Things to Remember

✦ Inherit directly from Python’s container types (like list or dict) for 
simple use cases.

✦ Beware of the large number of methods required to implement cus-
tom container types correctly.

✦ Have your custom container types inherit from the interfaces 
defined in collections.abc to ensure that your classes match 
required interfaces and behaviors.





6
Metaclasses and 

Attributes

Metaclasses are often mentioned in lists of Python’s features, but 
few understand what they accomplish in practice. The name meta-

class vaguely implies a concept above and beyond a class. Simply put, 
metaclasses let you intercept Python’s class statement and provide 
special behavior each time a class is defined.

Similarly mysterious and powerful are Python’s built-in features for 
dynamically customizing attribute accesses. Along with Python’s 
object-oriented constructs, these facilities provide wonderful tools to 
ease the transition from simple classes to complex ones.

However, with these powers come many pitfalls. Dynamic attributes 
enable you to override objects and cause unexpected side effects. 
Metaclasses can create extremely bizarre behaviors that are unap-
proachable to newcomers. It’s important that you follow the rule of 

least surprise and only use these mechanisms to implement well- 
understood idioms.

Item 44:  Use Plain Attributes Instead of Setter and 
Getter Methods

Programmers coming to Python from other languages may naturally 
try to implement explicit getter and setter methods in their classes:

class OldResistor:

    def __init__(self, ohms):

        self._ohms = ohms

 

    def get_ohms(self):

        return self._ohms

 

    def set_ohms(self, ohms):

        self._ohms = ohms
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Using these setters and getters is simple, but it’s not Pythonic:

r0 = OldResistor(50e3)

print('Before:', r0.get_ohms())

r0.set_ohms(10e3)

print('After: ', r0.get_ohms())

>>>

Before: 50000.0

After:  10000.0

Such methods are especially clumsy for operations like incrementing 
in place:

r0.set_ohms(r0.get_ohms() - 4e3)

assert r0.get_ohms() == 6e3

These utility methods do, however, help define the interface for 
a class, making it easier to encapsulate functionality, validate usage, 
and define boundaries. Those are important goals when designing a 
class to ensure that you don’t break callers as the class evolves over 
time.

In Python, however, you never need to implement explicit setter or 
getter methods. Instead, you should always start your implementa-
tions with simple public attributes, as I do here:

class Resistor:

    def __init__(self, ohms):

        self.ohms = ohms

        self.voltage = 0

        self.current = 0

 

r1 = Resistor(50e3)

r1.ohms = 10e3

These attributes make operations like incrementing in place natural 
and clear:

r1.ohms += 5e3

Later, if I decide I need special behavior when an attribute is set, I 
can migrate to the @property decorator (see Item 26: “Define Function 
Decorators with functools.wraps” for background) and its correspond-
ing setter attribute. Here, I define a new subclass of Resistor that 
lets me vary the current by assigning the voltage property. Note that 
in order for this code to work properly, the names of both the setter 
and the getter methods must match the intended property name:

class VoltageResistance(Resistor):

    def __init__(self, ohms):
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        super().__init__(ohms)

        self._voltage = 0

 

    @property

    def voltage(self):

        return self._voltage

 

    @voltage.setter

    def voltage(self, voltage):

        self._voltage = voltage

        self.current = self._voltage / self.ohms

Now, assigning the voltage property will run the voltage setter 
method, which in turn will update the current attribute of the object 
to match:

r2 = VoltageResistance(1e3)

print(f'Before: {r2.current:.2f} amps')

r2.voltage = 10

print(f'After:  {r2.current:.2f} amps')

>>>

Before: 0.00 amps

After:  0.01 amps

Specifying a setter on a property also enables me to perform type 
checking and validation on values passed to the class. Here, I define a 
class that ensures all resistance values are above zero ohms:

class BoundedResistance(Resistor):

    def __init__(self, ohms):

        super().__init__(ohms)

 

    @property

    def ohms(self):

        return self._ohms

 

    @ohms.setter

    def ohms(self, ohms):

        if ohms <= 0:

            raise ValueError(f'ohms must be > 0; got {ohms}')

        self._ohms = ohms

Assigning an invalid resistance to the attribute now raises an 
exception:

r3 = BoundedResistance(1e3)

r3.ohms = 0
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>>>

Traceback ...

ValueError: ohms must be > 0; got 0

An exception is also raised if I pass an invalid value to the constructor:

BoundedResistance(-5)

>>>

Traceback ...

ValueError: ohms must be > 0; got -5

This happens because BoundedResistance.__init__ calls 
Resistor.__init__, which assigns self.ohms = -5. That assignment 
causes the @ohms.setter method from BoundedResistance to be called, 
and it immediately runs the validation code before object construc-
tion has completed.

I can even use @property to make attributes from parent classes 
immutable:

class FixedResistance(Resistor):

    def __init__(self, ohms):

        super().__init__(ohms)

 

    @property

    def ohms(self):

        return self._ohms

 

    @ohms.setter

    def ohms(self, ohms):

        if hasattr(self, '_ohms'):

            raise AttributeError("Ohms is immutable")

        self._ohms = ohms

Trying to assign to the property after construction raises an exception:

r4 = FixedResistance(1e3)

r4.ohms = 2e3

>>>

Traceback ...

AttributeError: Ohms is immutable

When you use @property methods to implement setters and getters, 
be sure that the behavior you implement is not surprising. For exam-
ple, don’t set other attributes in getter property methods:

class MysteriousResistor(Resistor):

    @property

    def ohms(self):
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        self.voltage = self._ohms * self.current

        return self._ohms

 

    @ohms.setter

    def ohms(self, ohms):

        self._ohms = ohms

Setting other attributes in getter property methods leads to extremely 
bizarre behavior:

r7 = MysteriousResistor(10)

r7.current = 0.01

print(f'Before: {r7.voltage:.2f}')

r7.ohms

print(f'After:  {r7.voltage:.2f}')

>>>

Before: 0.00

After:  0.10

The best policy is to modify only related object state in @property.setter 
methods. Be sure to also avoid any other side effects that the caller 
may not expect beyond the object, such as importing modules dynam-
ically, running slow helper functions, doing I/O, or making expensive 
database queries. Users of a class will expect its attributes to be like 
any other Python object: quick and easy. Use normal methods to do 
anything more complex or slow.

The biggest shortcoming of @property is that the methods for an attri-
bute can only be shared by subclasses. Unrelated classes can’t share 
the same implementation. However, Python also supports descriptors 
(see Item 46: “Use Descriptors for Reusable @property Methods”) that 
enable reusable property logic and many other use cases.

Things to Remember

✦ Define new class interfaces using simple public attributes and avoid 
defining setter and getter methods.

✦ Use @property to define special behavior when attributes are 
accessed on your objects, if necessary.

✦ Follow the rule of least surprise and avoid odd side effects in your 
@property methods.

✦ Ensure that @property methods are fast; for slow or complex work—
especially involving I/O or causing side effects—use normal meth-
ods instead.
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Item 45:  Consider @property Instead of Refactoring 
Attributes

The built-in @property decorator makes it easy for simple accesses 
of an instance’s attributes to act smarter (see Item 44: “Use Plain 
Attributes Instead of Setter and Getter Methods”). One advanced but 
common use of @property is transitioning what was once a simple 
numerical attribute into an on-the-fly calculation. This is extremely 
helpful because it lets you migrate all existing usage of a class to have 
new behaviors without requiring any of the call sites to be rewritten 
(which is especially important if there’s calling code that you don’t 
control). @property also provides an important stopgap for improving 
interfaces over time.

For example, say that I want to implement a leaky bucket quota using 
plain Python objects. Here, the Bucket class represents how much 
quota remains and the duration for which the quota will be available:

from datetime import datetime, timedelta

 

class Bucket:

    def __init__(self, period):

        self.period_delta = timedelta(seconds=period)

        self.reset_time = datetime.now()

        self.quota = 0

 

    def __repr__(self):

        return f'Bucket(quota={self.quota})'

The leaky bucket algorithm works by ensuring that, whenever the 
bucket is filled, the amount of quota does not carry over from one 
period to the next:

def fill(bucket, amount):

    now = datetime.now()

    if (now - bucket.reset_time) > bucket.period_delta:

        bucket.quota = 0

        bucket.reset_time = now

    bucket.quota += amount

Each time a quota consumer wants to do something, it must first 
ensure that it can deduct the amount of quota it needs to use:

def deduct(bucket, amount):

    now = datetime.now()

    if (now - bucket.reset_time) > bucket.period_delta:

        return False  # Bucket hasn't been filled this period

    if bucket.quota - amount < 0:

        return False  # Bucket was filled, but not enough
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    bucket.quota -= amount

    return True       # Bucket had enough, quota consumed

To use this class, first I fill the bucket up:

bucket = Bucket(60)

fill(bucket, 100)

print(bucket)

>>>

Bucket(quota=100)

Then, I deduct the quota that I need:

if deduct(bucket, 99):

    print('Had 99 quota')

else:

    print('Not enough for 99 quota')

print(bucket)

>>>

Had 99 quota

Bucket(quota=1)

Eventually, I’m prevented from making progress because I try to 
deduct more quota than is available. In this case, the bucket’s quota 
level remains unchanged:

if deduct(bucket, 3):

    print('Had 3 quota')

else:

    print('Not enough for 3 quota')

print(bucket)

>>>

Not enough for 3 quota

Bucket(quota=1)

The problem with this implementation is that I never know what 
quota level the bucket started with. The quota is deducted over the 
course of the period until it reaches zero. At that point, deduct will 
always return False until the bucket is refilled. When that happens, it 
would be useful to know whether callers to deduct are being blocked 
because the Bucket ran out of quota or because the Bucket never had 
quota during this period in the first place.

To fix this, I can change the class to keep track of the max_quota 
issued in the period and the quota_consumed in the period:

class NewBucket:

    def __init__(self, period):

        self.period_delta = timedelta(seconds=period)
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        self.reset_time = datetime.now()

        self.max_quota = 0

        self.quota_consumed = 0

 

    def __repr__(self):

        return (f'NewBucket(max_quota={self.max_quota}, '

                f'quota_consumed={self.quota_consumed})')

To match the previous interface of the original Bucket class, I use a 
@property method to compute the current level of quota on-the-fly 
using these new attributes:

    @property

    def quota(self):

        return self.max_quota - self.quota_consumed

When the quota attribute is assigned, I take special action to be com-
patible with the current usage of the class by the fill and deduct 
functions:

    @quota.setter

    def quota(self, amount):

        delta = self.max_quota - amount

        if amount == 0:

            # Quota being reset for a new period

            self.quota_consumed = 0

            self.max_quota = 0

        elif delta < 0:

            # Quota being filled for the new period

            assert self.quota_consumed == 0

            self.max_quota = amount

        else:

            # Quota being consumed during the period

            assert self.max_quota >= self.quota_consumed

            self.quota_consumed += delta

Rerunning the demo code from above produces the same results:

bucket = NewBucket(60)

print('Initial', bucket)

fill(bucket, 100)

print('Filled', bucket)

 

if deduct(bucket, 99):

    print('Had 99 quota')

else:

    print('Not enough for 99 quota')
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print('Now', bucket)

 

if deduct(bucket, 3):

    print('Had 3 quota')

else:

    print('Not enough for 3 quota')

 

print('Still', bucket)

>>>

Initial NewBucket(max_quota=0, quota_consumed=0)

Filled NewBucket(max_quota=100, quota_consumed=0)

Had 99 quota

Now NewBucket(max_quota=100, quota_consumed=99)

Not enough for 3 quota

Still NewBucket(max_quota=100, quota_consumed=99)

The best part is that the code using Bucket.quota doesn’t have to 
change or know that the class has changed. New usage of Bucket can 
do the right thing and access max_quota and quota_consumed directly.

I especially like @property because it lets you make incremental prog-
ress toward a better data model over time. Reading the Bucket exam-
ple above, you may have thought that fill and deduct should have 
been implemented as instance methods in the first place. Although 
you’re probably right (see Item 37: “Compose Classes Instead of 
 Nesting Many Levels of Built-in Types”), in practice there are many 
situations in which objects start with poorly defined interfaces or act 
as dumb data containers. This happens when code grows over time, 
scope increases, multiple authors contribute without anyone consid-
ering long-term hygiene, and so on.

@property is a tool to help you address problems you’ll come across in 
real-world code. Don’t overuse it. When you find yourself repeatedly 
extending @property methods, it’s probably time to refactor your class 
instead of further paving over your code’s poor design.

Things to Remember

✦ Use @property to give existing instance attributes new functionality.

✦ Make incremental progress toward better data models by using 
@property.

✦ Consider refactoring a class and all call sites when you find yourself 
using @property too heavily.
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Item 46:  Use Descriptors for Reusable @property 
Methods

The big problem with the @property built-in (see Item 44: “Use 
Plain Attributes Instead of Setter and Getter Methods” and Item 45: 
 “Consider @property Instead of Refactoring Attributes”) is reuse. The 
methods it decorates can’t be reused for multiple attributes of the 
same class. They also can’t be reused by unrelated classes.

For example, say I want a class to validate that the grade received by 
a student on a homework assignment is a percentage:

class Homework:

    def __init__(self):

        self._grade = 0

 

    @property

    def grade(self):

        return self._grade

 

    @grade.setter

    def grade(self, value):

        if not (0 <= value <= 100):

            raise ValueError(

                'Grade must be between 0 and 100')

        self._grade = value

Using @property makes this class easy to use:

galileo = Homework()

galileo.grade = 95

Say that I also want to give the student a grade for an exam, where 
the exam has multiple subjects, each with a separate grade:

class Exam:

    def __init__(self):

        self._writing_grade = 0

        self._math_grade = 0

 

    @staticmethod

    def _check_grade(value):

        if not (0 <= value <= 100):

            raise ValueError(

                'Grade must be between 0 and 100')
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This quickly gets tedious. For each section of the exam I need to add a 
new @property and related validation:

    @property

    def writing_grade(self):

        return self._writing_grade

 

    @writing_grade.setter

    def writing_grade(self, value):

        self._check_grade(value)

        self._writing_grade = value

 

    @property

    def math_grade(self):

        return self._math_grade

 

    @math_grade.setter

    def math_grade(self, value):

        self._check_grade(value)

        self._math_grade = value

Also, this approach is not general. If I want to reuse this percentage 
validation in other classes beyond homework and exams, I’ll need to 
write the @property boilerplate and _check_grade method over and 
over again.

The better way to do this in Python is to use a descriptor. The descrip-

tor protocol defines how attribute access is interpreted by the lan-
guage. A descriptor class can provide __get__ and __set__ methods 
that let you reuse the grade validation behavior without boilerplate. 
For this purpose, descriptors are also better than mix-ins (see Item 
41: “Consider Composing Functionality with Mix-in Classes”) because 
they let you reuse the same logic for many different attributes in a 
single class.

Here, I define a new class called Exam with class attributes that are 
Grade instances. The Grade class implements the descriptor protocol:

class Grade:

    def __get__(self, instance, instance_type):

        ...

 

    def __set__(self, instance, value):

        ...
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class Exam:

    # Class attributes

    math_grade = Grade()

    writing_grade = Grade()

    science_grade = Grade()

Before I explain how the Grade class works, it’s important to under-
stand what Python will do when such descriptor attributes are 
accessed on an Exam instance. When I assign a property:

exam = Exam()

exam.writing_grade = 40

it is interpreted as:

Exam.__dict__['writing_grade'].__set__(exam, 40)

When I retrieve a property:

exam.writing_grade

it is interpreted as:

Exam.__dict__['writing_grade'].__get__(exam, Exam)

What drives this behavior is the __getattribute__ method of object 
(see Item 47: “Use __getattr__, __getattribute__, and __setattr__ 
for Lazy Attributes”). In short, when an Exam instance doesn’t have an 
attribute named writing_grade, Python falls back to the Exam class’s 
attribute instead. If this class attribute is an object that has __get__ 
and __set__ methods, Python assumes that you want to follow the 
descriptor protocol.

Knowing this behavior and how I used @property for grade validation 
in the Homework class, here’s a reasonable first attempt at implement-
ing the Grade descriptor:

class Grade:

    def __init__(self):

        self._value = 0

 

    def __get__(self, instance, instance_type):

        return self._value

 

    def __set__(self, instance, value):

        if not (0 <= value <= 100):

            raise ValueError(

                'Grade must be between 0 and 100')

        self._value = value
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Unfortunately, this is wrong and results in broken behavior. Access-
ing multiple attributes on a single Exam instance works as expected:

class Exam:

    math_grade = Grade()

    writing_grade = Grade()

    science_grade = Grade()

 

first_exam = Exam()

first_exam.writing_grade = 82

first_exam.science_grade = 99

print('Writing', first_exam.writing_grade)

print('Science', first_exam.science_grade)

>>>

Writing 82

Science 99

But accessing these attributes on multiple Exam instances causes 
unexpected behavior:

second_exam = Exam()

second_exam.writing_grade = 75

print(f'Second {second_exam.writing_grade} is right')

print(f'First  {first_exam.writing_grade} is wrong; '

      f'should be 82')

>>>

Second 75 is right

First  75 is wrong; should be 82

The problem is that a single Grade instance is shared across all Exam 
instances for the class attribute writing_grade. The Grade instance for 
this attribute is constructed once in the program lifetime, when the 
Exam class is first defined, not each time an Exam instance is created.

To solve this, I need the Grade class to keep track of its value for each 
unique Exam instance. I can do this by saving the per-instance state 
in a dictionary:

class Grade:

    def __init__(self):

        self._values = {}

 

    def __get__(self, instance, instance_type):

        if instance is None:

            return self

        return self._values.get(instance, 0)
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    def __set__(self, instance, value):

        if not (0 <= value <= 100):

            raise ValueError(

                'Grade must be between 0 and 100')

        self._values[instance] = value

This implementation is simple and works well, but there’s still one 
gotcha: It leaks memory. The _values dictionary holds a reference to 
every instance of Exam ever passed to __set__ over the lifetime of the 
program. This causes instances to never have their reference count 
go to zero, preventing cleanup by the garbage collector (see Item 81: 
“Use tracemalloc to Understand Memory Usage and Leaks” for how to 
detect this type of problem).

To fix this, I can use Python’s weakref built-in module. This module 
provides a special class called WeakKeyDictionary that can take the 
place of the simple dictionary used for _values. The unique behavior 
of WeakKeyDictionary is that it removes Exam instances from its set of 
items when the Python runtime knows it’s holding the instance’s last 
remaining reference in the program. Python does the bookkeeping for 
me and ensures that the _values dictionary will be empty when all 
Exam instances are no longer in use:

from weakref import WeakKeyDictionary

 

class Grade:

    def __init__(self):

        self._values = WeakKeyDictionary()

 

    def __get__(self, instance, instance_type):

        ...

 

    def __set__(self, instance, value):

        ...

Using this implementation of the Grade descriptor, everything works 
as expected:

class Exam:

    math_grade = Grade()

    writing_grade = Grade()

    science_grade = Grade()

 

first_exam = Exam()

first_exam.writing_grade = 82

second_exam = Exam()

second_exam.writing_grade = 75

print(f'First  {first_exam.writing_grade} is right')

print(f'Second {second_exam.writing_grade} is right')
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>>>

First  82 is right

Second 75 is right

Things to Remember

✦ Reuse the behavior and validation of @property methods by defining 
your own descriptor classes.

✦ Use WeakKeyDictionary to ensure that your descriptor classes don’t 
cause memory leaks.

✦ Don’t get bogged down trying to understand exactly how 
__getattribute__ uses the descriptor protocol for getting and set-
ting attributes.

Item 47:  Use __getattr__, __getattribute__, 
and __setattr__ for Lazy Attributes

Python’s object hooks make it easy to write generic code for glu-
ing systems together. For example, say that I want to represent the 
records in a database as Python objects. The database has its schema 
set already. My code that uses objects corresponding to those records 
must also know what the database looks like. However, in Python, 
the code that connects Python objects to the database doesn’t need to 
explicitly specify the schema of the records; it can be generic.

How is that possible? Plain instance attributes, @property methods, 
and descriptors can’t do this because they all need to be defined in 
advance. Python makes this dynamic behavior possible with the 
__getattr__ special method. If a class defines __getattr__, that 
method is called every time an attribute can’t be found in an object’s 
instance dictionary:

class LazyRecord:

    def __init__(self):

        self.exists = 5

 

    def __getattr__(self, name):

        value = f'Value for {name}'

        setattr(self, name, value)

        return value

Here, I access the missing property foo. This causes Python to call 
the __getattr__ method above, which mutates the instance dictio-
nary __dict__:

data = LazyRecord()

print('Before:', data.__dict__)
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print('foo:   ', data.foo)

print('After: ', data.__dict__)

>>>

Before: {'exists': 5}

foo:    Value for foo

After:  {'exists': 5, 'foo': 'Value for foo'}

Here, I add logging to LazyRecord to show when __getattr__ is actu-
ally called. Note how I call super().__getattr__() to use the super-
class’s implementation of __getattr__ in order to fetch the real 
property value and avoid infinite recursion (see Item 40: “Initialize 
Parent Classes with super” for background):

class LoggingLazyRecord(LazyRecord):

    def __getattr__(self, name):

        print(f'* Called __getattr__({name!r}), '

              f'populating instance dictionary')

        result = super().__getattr__(name)

        print(f'* Returning {result!r}')

        return result

 

data = LoggingLazyRecord()

print('exists:     ', data.exists)

print('First foo:  ', data.foo)

print('Second foo: ', data.foo)

>>>

exists:      5

* Called __getattr__('foo'), populating instance dictionary

* Returning 'Value for foo'

First foo:   Value for foo

Second foo:  Value for foo

The exists attribute is present in the instance dictionary, so 
__getattr__ is never called for it. The foo attribute is not in the 
instance dictionary initially, so __getattr__ is called the first time. 
But the call to __getattr__ for foo also does a setattr, which pop-
ulates foo in the instance dictionary. This is why the second time I 
access foo, it doesn’t log a call to __getattr__.

This behavior is especially helpful for use cases like lazily accessing 
schemaless data. __getattr__ runs once to do the hard work of load-
ing a property; all subsequent accesses retrieve the existing result.

Say that I also want transactions in this database system. The next 
time the user accesses a property, I want to know whether the cor-
responding record in the database is still valid and whether the 



transaction is still open. The __getattr__ hook won’t let me do this 
reliably because it will use the object’s instance dictionary as the fast 
path for existing attributes.

To enable this more advanced use case, Python has another object 
hook called __getattribute__. This special method is called every 
time an attribute is accessed on an object, even in cases where it does 
exist in the attribute dictionary. This enables me to do things like 
check global transaction state on every property access. It’s import-
ant to note that such an operation can incur significant overhead 
and negatively impact performance, but sometimes it’s worth it. Here, 
I define ValidatingRecord to log each time __getattribute__ is called:

class ValidatingRecord:

    def __init__(self):

        self.exists = 5

 

    def __getattribute__(self, name):

        print(f'* Called __getattribute__({name!r})')

        try:

            value = super().__getattribute__(name)

            print(f'* Found {name!r}, returning {value!r}')

            return value

        except AttributeError:

            value = f'Value for {name}'

            print(f'* Setting {name!r} to {value!r}')

            setattr(self, name, value)

            return value

 

data = ValidatingRecord()

print('exists:     ', data.exists)

print('First foo:  ', data.foo)

print('Second foo: ', data.foo)

>>>

* Called __getattribute__('exists')

* Found 'exists', returning 5

exists:      5

* Called __getattribute__('foo')

* Setting 'foo' to 'Value for foo'

First foo:   Value for foo

* Called __getattribute__('foo')

* Found 'foo', returning 'Value for foo'

Second foo:  Value for foo
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In the event that a dynamically accessed property shouldn’t exist, 
I can raise an AttributeError to cause Python’s standard missing 
property behavior for both __getattr__ and __getattribute__:

class MissingPropertyRecord:

    def __getattr__(self, name):

        if name == 'bad_name':

            raise AttributeError(f'{name} is missing')

        ...

 

data = MissingPropertyRecord()

data.bad_name

>>>

Traceback ...

AttributeError: bad_name is missing

Python code implementing generic functionality often relies on the 
hasattr built-in function to determine when properties exist, and the 
getattr built-in function to retrieve property values. These functions 
also look in the instance dictionary for an attribute name before call-
ing __getattr__:

data = LoggingLazyRecord()  # Implements __getattr__

print('Before:         ', data.__dict__)

print('Has first foo:  ', hasattr(data, 'foo'))

print('After:          ', data.__dict__)

print('Has second foo: ', hasattr(data, 'foo'))

>>>

Before:          {'exists': 5}

* Called __getattr__('foo'), populating instance dictionary

* Returning 'Value for foo'

Has first foo:   True

After:           {'exists': 5, 'foo': 'Value for foo'}

Has second foo:  True

In the example above, __getattr__ is called only once. In contrast, 
classes that implement __getattribute__ have that method called 
each time hasattr or getattr is used with an instance:

data = ValidatingRecord()  # Implements __getattribute__

print('Has first foo:  ', hasattr(data, 'foo'))

print('Has second foo: ', hasattr(data, 'foo'))

>>>

* Called __getattribute__('foo')

* Setting 'foo' to 'Value for foo'

Has first foo:   True



* Called __getattribute__('foo')

* Found 'foo', returning 'Value for foo'

Has second foo:  True

Now, say that I want to lazily push data back to the database 
when values are assigned to my Python object. I can do this with 
__setattr__, a similar object hook that lets you intercept arbitrary 
attribute assignments. Unlike when retrieving an attribute with 
__getattr__ and __getattribute__, there’s no need for two separate 
methods. The __setattr__ method is always called every time an 
attribute is assigned on an instance (either directly or through the 
setattr built-in function):

class SavingRecord:

    def __setattr__(self, name, value):

        # Save some data for the record

        ...

        super().__setattr__(name, value)

Here, I define a logging subclass of SavingRecord. Its __setattr__ 
method is always called on each attribute assignment:

class LoggingSavingRecord(SavingRecord):

    def __setattr__(self, name, value):

        print(f'* Called __setattr__({name!r}, {value!r})')

        super().__setattr__(name, value)

 

data = LoggingSavingRecord()

print('Before: ', data.__dict__)

data.foo = 5

print('After:  ', data.__dict__)

data.foo = 7

print('Finally:', data.__dict__)

>>>

Before:  {}

* Called __setattr__('foo', 5)

After:   {'foo': 5}

* Called __setattr__('foo', 7)

Finally: {'foo': 7}

The problem with __getattribute__ and __setattr__ is that they’re 
called on every attribute access for an object, even when you may not 
want that to happen. For example, say that I want attribute accesses 
on my object to actually look up keys in an associated dictionary:

class BrokenDictionaryRecord:

    def __init__(self, data):

        self._data = {}
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    def __getattribute__(self, name):

        print(f'* Called __getattribute__({name!r})')

        return self._data[name]

This requires accessing self._data from the __getattribute__ 
method. However, if I actually try to do that, Python will recurse until 
it reaches its stack limit, and then it’ll die:

data = BrokenDictionaryRecord({'foo': 3})

data.foo

>>>

* Called __getattribute__('foo')

* Called __getattribute__('_data')

* Called __getattribute__('_data')

* Called __getattribute__('_data')

...

Traceback ...

RecursionError: maximum recursion depth exceeded while calling 

➥a Python object

The problem is that __getattribute__ accesses self._data, which 
causes __getattribute__ to run again, which accesses self._data 
again, and so on. The solution is to use the super().__getattribute__ 
method to fetch values from the instance attribute dictionary. This 
avoids the recursion:

class DictionaryRecord:

    def __init__(self, data):

        self._data = data

 

    def __getattribute__(self, name):

        print(f'* Called __getattribute__({name!r})')

        data_dict = super().__getattribute__('_data')

        return data_dict[name]

 

data = DictionaryRecord({'foo': 3})

print('foo: ', data.foo)

>>>

* Called __getattribute__('foo')

foo:  3

__setattr__ methods that modify attributes on an object also need to 
use super().__setattr__ accordingly.

Things to Remember

✦ Use __getattr__ and __setattr__ to lazily load and save attributes 
for an object.
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✦ Understand that __getattr__ only gets called when accessing a 
missing attribute, whereas __getattribute__ gets called every time 
any attribute is accessed.

✦ Avoid infinite recursion in __getattribute__ and __setattr__ 
by using methods from super() (i.e., the object class) to access 
instance attributes.

Item 48: Validate Subclasses with __init_subclass__

One of the simplest applications of metaclasses is verifying that a 
class was defined correctly. When you’re building a complex class 
hierarchy, you may want to enforce style, require overriding meth-
ods, or have strict relationships between class attributes. Metaclasses 
enable these use cases by providing a reliable way to run your valida-
tion code each time a new subclass is defined.

Often a class’s validation code runs in the __init__ method, when an 
object of the class’s type is constructed at runtime (see Item 44: “Use 
Plain Attributes Instead of Setter and Getter Methods” for an exam-
ple). Using metaclasses for validation can raise errors much earlier, 
such as when the module containing the class is first imported at 
program startup.

Before I get into how to define a metaclass for validating subclasses, 
it’s important to understand the metaclass action for standard 
objects. A metaclass is defined by inheriting from type. In the default 
case, a metaclass receives the contents of associated class statements 
in its __new__ method. Here, I can inspect and modify the class infor-
mation before the type is actually constructed:

class Meta(type):

    def __new__(meta, name, bases, class_dict):

        print(f'* Running {meta}.__new__ for {name}')

        print('Bases:', bases)

        print(class_dict)

        return type.__new__(meta, name, bases, class_dict)

 

class MyClass(metaclass=Meta):

    stuff = 123

 

    def foo(self):

        pass

 

class MySubclass(MyClass):

    other = 567

 

    def bar(self):

        pass
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The metaclass has access to the name of the class, the parent classes 
it inherits from (bases), and all the class attributes that were defined 
in the class’s body. All classes inherit from object, so it’s not explicitly 
listed in the tuple of base classes:

>>>

* Running <class '__main__.Meta'>.__new__ for MyClass

Bases: ()

{'__module__': '__main__',

 '__qualname__': 'MyClass',

 'stuff': 123,

 'foo': <function MyClass.foo at 0x105a05280>}

* Running <class '__main__.Meta'>.__new__ for MySubclass

Bases: (<class '__main__.MyClass'>,)

{'__module__': '__main__',

 '__qualname__': 'MySubclass',

 'other': 567,

 'bar': <function MySubclass.bar at 0x105a05310>}

I can add functionality to the Meta.__new__ method in order to vali-
date all of the parameters of an associated class before it’s defined. 
For example, say that I want to represent any type of multisided 
polygon. I can do this by defining a special validating metaclass and 
using it in the base class of my polygon class hierarchy. Note that it’s 
important not to apply the same validation to the base class:

class ValidatePolygon(type):

    def __new__(meta, name, bases, class_dict):

        # Only validate subclasses of the Polygon class

        if bases:

            if class_dict['sides'] < 3:

                raise ValueError('Polygons need 3+ sides')

        return type.__new__(meta, name, bases, class_dict)

 

class Polygon(metaclass=ValidatePolygon):

    sides = None  # Must be specified by subclasses

 

    @classmethod

    def interior_angles(cls):

        return (cls.sides - 2) * 180

 

class Triangle(Polygon):

    sides = 3

 



class Rectangle(Polygon):

    sides = 4

 

class Nonagon(Polygon):

    sides = 9

 

assert Triangle.interior_angles() == 180

assert Rectangle.interior_angles() == 360

assert Nonagon.interior_angles() == 1260

If I try to define a polygon with fewer than three sides, the valida-
tion will cause the class statement to fail immediately after the class 
statement body. This means the program will not even be able to start 
running when I define such a class (unless it’s defined in a dynam-
ically imported module; see Item 88: “Know How to Break Circular 
Dependencies” for how this can happen):

print('Before class')

 

class Line(Polygon):

    print('Before sides')

    sides = 2

    print('After sides')

 

print('After class')

>>>

Before class

Before sides

After sides

Traceback ...

ValueError: Polygons need 3+ sides

This seems like quite a lot of machinery in order to get Python to 
accomplish such a basic task. Luckily, Python 3.6 introduced simpli-
fied syntax—the __init_subclass__ special class method—for achiev-
ing the same behavior while avoiding metaclasses entirely. Here, I use 
this mechanism to provide the same level of validation as before:

class BetterPolygon:

    sides = None  # Must be specified by subclasses

 

    def __init_subclass__(cls):

        super().__init_subclass__()

        if cls.sides < 3:

            raise ValueError('Polygons need 3+ sides')
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    @classmethod

    def interior_angles(cls):

        return (cls.sides - 2) * 180

 

class Hexagon(BetterPolygon):

    sides = 6

 

assert Hexagon.interior_angles() == 720

The code is much shorter now, and the ValidatePolygon metaclass is 
gone entirely. It’s also easier to follow since I can access the sides 
attribute directly on the cls instance in __init_subclass__ instead of 
having to go into the class’s dictionary with class_dict['sides']. If 
I define an invalid subclass of BetterPolygon, the same exception is 
raised:

print('Before class')

 

class Point(BetterPolygon):

    sides = 1

 

print('After class')

>>>

Before class

Traceback ...

ValueError: Polygons need 3+ sides

Another problem with the standard Python metaclass machinery 
is that you can only specify a single metaclass per class definition. 
Here, I define a second metaclass that I’d like to use for validating the 
fill color used for a region (not necessarily just polygons):

class ValidateFilled(type):

    def __new__(meta, name, bases, class_dict):

        # Only validate subclasses of the Filled class

        if bases:

            if class_dict['color'] not in ('red', 'green'):

                raise ValueError('Fill color must be supported')

        return type.__new__(meta, name, bases, class_dict)

 

class Filled(metaclass=ValidateFilled):

    color = None  # Must be specified by subclasses



When I try to use the Polygon metaclass and Filled metaclass 
together, I get a cryptic error message:

class RedPentagon(Filled, Polygon):

    color = 'red'

    sides = 5

>>>

Traceback ...

TypeError: metaclass conflict: the metaclass of a derived 

➥class must be a (non-strict) subclass of the metaclasses 

➥of all its bases

It’s possible to fix this by creating a complex hierarchy of metaclass 
type definitions to layer validation:

class ValidatePolygon(type):

    def __new__(meta, name, bases, class_dict):

        # Only validate non-root classes

        if not class_dict.get('is_root'):

            if class_dict['sides'] < 3:

                raise ValueError('Polygons need 3+ sides')

        return type.__new__(meta, name, bases, class_dict)

 

class Polygon(metaclass=ValidatePolygon):

    is_root = True

    sides = None  # Must be specified by subclasses

 

class ValidateFilledPolygon(ValidatePolygon):

    def __new__(meta, name, bases, class_dict):

        # Only validate non-root classes

        if not class_dict.get('is_root'):

            if class_dict['color'] not in ('red', 'green'):

                raise ValueError('Fill color must be supported')

        return super().__new__(meta, name, bases, class_dict)

 

class FilledPolygon(Polygon, metaclass=ValidateFilledPolygon):

    is_root = True

    color = None  # Must be specified by subclasses

This requires every FilledPolygon instance to be a Polygon instance:

class GreenPentagon(FilledPolygon):

    color = 'green'

    sides = 5

 

greenie = GreenPentagon()

assert isinstance(greenie, Polygon)
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Validation works for colors:

class OrangePentagon(FilledPolygon):

    color = 'orange'

    sides = 5

>>>

Traceback ...

ValueError: Fill color must be supported

Validation also works for number of sides:

class RedLine(FilledPolygon):

    color = 'red'

    sides = 2

>>>

Traceback ...

ValueError: Polygons need 3+ sides

However, this approach ruins composability, which is often the pur-
pose of class validation like this (similar to mix-ins; see Item 41: 
“Consider Composing Functionality with Mix-in Classes”). If I want to 
apply the color validation logic from ValidateFilledPolygon to another 
hierarchy of classes, I’ll have to duplicate all of the logic again, which 
reduces code reuse and increases boilerplate.

The __init_subclass__ special class method can also be used to 
solve this problem. It can be defined by multiple levels of a class 
hierarchy as long as the super built-in function is used to call any 
parent or sibling __init_subclass__ definitions (see Item 40: “Initial-
ize Parent Classes with super” for a similar example). It’s even com-
patible with multiple inheritance. Here, I define a class to represent 
region fill color that can be composed with the BetterPolygon class 
from before:

class Filled:

    color = None  # Must be specified by subclasses

 

    def __init_subclass__(cls):

        super().__init_subclass__()

        if cls.color not in ('red', 'green', 'blue'):

            raise ValueError('Fills need a valid color')

I can inherit from both classes to define a new class. Both classes call 
super().__init_subclass__(), causing their corresponding validation 
logic to run when the subclass is created:

class RedTriangle(Filled, Polygon):

    color = 'red'

    sides = 3

 



ruddy = RedTriangle()

assert isinstance(ruddy, Filled)

assert isinstance(ruddy, Polygon)

If I specify the number of sides incorrectly, I get a validation error:

print('Before class')

 

class BlueLine(Filled, Polygon):

    color = 'blue'

    sides = 2

 

print('After class')

>>>

Before class

Traceback ...

ValueError: Polygons need 3+ sides

If I specify the color incorrectly, I also get a validation error:

print('Before class')

 

class BeigeSquare(Filled, Polygon):

    color = 'beige'

    sides = 4

 

print('After class')

>>>

Before class

Traceback ...

ValueError: Fills need a valid color

You can even use __init_subclass__ in complex cases like diamond 
inheritance (see Item 40: “Initialize Parent Classes with super”). Here, 
I define a basic diamond hierarchy to show this in action:

class Top:

    def __init_subclass__(cls):

        super().__init_subclass__()

        print(f'Top for {cls}')

 

class Left(Top):

    def __init_subclass__(cls):

        super().__init_subclass__()

        print(f'Left for {cls}')

 

class Right(Top):

    def __init_subclass__(cls):
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        super().__init_subclass__()

        print(f'Right for {cls}')

 

class Bottom(Left, Right):

    def __init_subclass__(cls):

        super().__init_subclass__()

        print(f'Bottom for {cls}')

>>>

Top for <class '__main__.Left'>

Top for <class '__main__.Right'>

Top for <class '__main__.Bottom'>

Right for <class '__main__.Bottom'>

Left for <class '__main__.Bottom'>

As expected, Top.__init_subclass__ is called only a single time for 
each class, even though there are two paths to it for the Bottom class 
through its Left and Right parent classes.

Things to Remember

✦ The __new__ method of metaclasses is run after the class state-
ment’s entire body has been processed.

✦ Metaclasses can be used to inspect or modify a class after it’s 
defined but before it’s created, but they’re often more heavyweight 
than what you need.

✦ Use __init_subclass__ to ensure that subclasses are well formed 
at the time they are defined, before objects of their type are 
constructed.

✦ Be sure to call super().__init_subclass__ from within your class’s 
__init_subclass__ definition to enable validation in multiple layers 
of classes and multiple inheritance.

Item 49:  Register Class Existence with 
__init_subclass__

Another common use of metaclasses is to automatically register types 
in a program. Registration is useful for doing reverse lookups, where 
you need to map a simple identifier back to a corresponding class.

For example, say that I want to implement my own serialized repre-
sentation of a Python object using JSON. I need a way to turn an 
object into a JSON string. Here, I do this generically by defining a 
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base class that records the constructor parameters and turns them 
into a JSON dictionary:

import json

 

class Serializable:

    def __init__(self, *args):

        self.args = args

 

    def serialize(self):

        return json.dumps({'args': self.args})

This class makes it easy to serialize simple, immutable data struc-
tures like Point2D to a string:

class Point2D(Serializable):

    def __init__(self, x, y):

        super().__init__(x, y)

        self.x = x

        self.y = y

 

    def __repr__(self):

        return f'Point2D({self.x}, {self.y})'

 

point = Point2D(5, 3)

print('Object:    ', point)

print('Serialized:', point.serialize())

>>>

Object:     Point2D(5, 3)

Serialized: {"args": [5, 3]}

Now, I need to deserialize this JSON string and construct the Point2D 
object it represents. Here, I define another class that can deserialize 
the data from its Serializable parent class:

class Deserializable(Serializable):

    @classmethod

    def deserialize(cls, json_data):

        params = json.loads(json_data)

        return cls(*params['args'])

Using Deserializable makes it easy to serialize and deserialize sim-
ple, immutable objects in a generic way:

class BetterPoint2D(Deserializable):

    ...
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before = BetterPoint2D(5, 3)

print('Before:    ', before)

data = before.serialize()

print('Serialized:', data)

after = BetterPoint2D.deserialize(data)

print('After:     ', after)

>>>

Before:     Point2D(5, 3)

Serialized: {"args": [5, 3]}

After:      Point2D(5, 3)

The problem with this approach is that it works only if you know 
the intended type of the serialized data ahead of time (e.g., Point2D, 
BetterPoint2D). Ideally, you’d have a large number of classes serializ-
ing to JSON and one common function that could deserialize any of 
them back to a corresponding Python object.

To do this, I can include the serialized object’s class name in the 
JSON data:

class BetterSerializable:

    def __init__(self, *args):

        self.args = args

 

    def serialize(self):

        return json.dumps({

            'class': self.__class__.__name__,

            'args': self.args,

        })

 

    def __repr__(self):

        name = self.__class__.__name__

        args_str = ', '.join(str(x) for x in self.args)

        return f'{name}({args_str})'

Then, I can maintain a mapping of class names back to construc-
tors for those objects. The general deserialize function works for any 
classes passed to register_class:

registry = {}

 

def register_class(target_class):

    registry[target_class.__name__] = target_class

 

def deserialize(data):

    params = json.loads(data)



    name = params['class']

    target_class = registry[name]

    return target_class(*params['args'])

To ensure that deserialize always works properly, I must call 
register_class for every class I may want to deserialize in the future:

class EvenBetterPoint2D(BetterSerializable):

    def __init__(self, x, y):

        super().__init__(x, y)

        self.x = x

        self.y = y

 

register_class(EvenBetterPoint2D)

Now, I can deserialize an arbitrary JSON string without having to 
know which class it contains:

before = EvenBetterPoint2D(5, 3)

print('Before:    ', before)

data = before.serialize()

print('Serialized:', data)

after = deserialize(data)

print('After:     ', after)

>>>

Before:     EvenBetterPoint2D(5, 3)

Serialized: {"class": "EvenBetterPoint2D", "args": [5, 3]}

After:      EvenBetterPoint2D(5, 3)

The problem with this approach is that it’s possible to forget to call 
register_class:

class Point3D(BetterSerializable):

    def __init__(self, x, y, z):

        super().__init__(x, y, z)

        self.x = x

        self.y = y

        self.z = z

 

# Forgot to call register_class! Whoops!

This causes the code to break at runtime, when I finally try to deseri-
alize an instance of a class I forgot to register:

point = Point3D(5, 9, -4)

data = point.serialize()

deserialize(data)
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>>>

Traceback ...

KeyError: 'Point3D'

Even though I chose to subclass BetterSerializable, I don’t actually 
get all of its features if I forget to call register_class after the class 
statement body. This approach is error prone and especially chal-
lenging for beginners. The same omission can happen with class dec-

orators (see Item 51: “Prefer Class Decorators Over Metaclasses for 
Composable Class Extensions” for when those are appropriate).

What if I could somehow act on the programmer’s intent to use 
BetterSerializable and ensure that register_class is called in all 
cases? Metaclasses enable this by intercepting the class statement 
when subclasses are defined (see Item 48: “Validate Subclasses with 
__init_subclass__” for details on the machinery). Here, I use a meta-
class to register the new type immediately after the class’s body:

class Meta(type):

    def __new__(meta, name, bases, class_dict):

        cls = type.__new__(meta, name, bases, class_dict)

        register_class(cls)

        return cls

 

class RegisteredSerializable(BetterSerializable,

                             metaclass=Meta):

    pass

When I define a subclass of RegisteredSerializable, I can be confident 
that the call to register_class happened and deserialize will always 
work as expected:

class Vector3D(RegisteredSerializable):

    def __init__(self, x, y, z):

        super().__init__(x, y, z)

        self.x, self.y, self.z = x, y, z

 

before = Vector3D(10, -7, 3)

print('Before:    ', before)

data = before.serialize()

print('Serialized:', data)

print('After:     ', deserialize(data))

>>>

Before:     Vector3D(10, -7, 3)

Serialized: {"class": "Vector3D", "args": [10, -7, 3]}

After:      Vector3D(10, -7, 3)



An even better approach is to use the __init_subclass__ special class 
method. This simplified syntax, introduced in Python 3.6, reduces 
the visual noise of applying custom logic when a class is defined. It 
also makes it more approachable to beginners who may be confused 
by the complexity of metaclass syntax:

class BetterRegisteredSerializable(BetterSerializable):

    def __init_subclass__(cls):

        super().__init_subclass__()

        register_class(cls)

 

class Vector1D(BetterRegisteredSerializable):

    def __init__(self, magnitude):

        super().__init__(magnitude)

        self.magnitude = magnitude

 

before = Vector1D(6)

print('Before:    ', before)

data = before.serialize()

print('Serialized:', data)

print('After:     ', deserialize(data))

>>>

Before:     Vector1D(6)

Serialized: {"class": "Vector1D", "args": [6]}

After:      Vector1D(6)

By using __init_subclass__ (or metaclasses) for class registration, 
you can ensure that you’ll never miss registering a class as long as 
the inheritance tree is right. This works well for serialization, as 
I’ve shown, and also applies to database object-relational mappings 
(ORMs), extensible plug-in systems, and callback hooks.

Things to Remember

✦ Class registration is a helpful pattern for building modular Python 
programs.

✦ Metaclasses let you run registration code automatically each time a 
base class is subclassed in a program.

✦ Using metaclasses for class registration helps you avoid errors by 
ensuring that you never miss a registration call.

✦ Prefer __init_subclass__ over standard metaclass machinery 
because it’s clearer and easier for beginners to understand.
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Item 50: Annotate Class Attributes with __set_name__

One more useful feature enabled by metaclasses is the ability to mod-
ify or annotate properties after a class is defined but before the class 
is actually used. This approach is commonly used with descriptors 
(see Item 46: “Use Descriptors for Reusable @property Methods”) to 
give them more introspection into how they’re being used within their 
containing class.

For example, say that I want to define a new class that represents a 
row in a customer database. I’d like to have a corresponding property 
on the class for each column in the database table. Here, I define a 
descriptor class to connect attributes to column names:

class Field:

    def __init__(self, name):

        self.name = name

        self.internal_name = '_' + self.name

 

    def __get__(self, instance, instance_type):

        if instance is None:

            return self

        return getattr(instance, self.internal_name, '')

 

    def __set__(self, instance, value):

        setattr(instance, self.internal_name, value)

With the column name stored in the Field descriptor, I can save all of 
the per-instance state directly in the instance dictionary as protected 
fields by using the setattr built-in function, and later I can load state 
with getattr. At first, this seems to be much more convenient than 
building descriptors with the weakref built-in module to avoid mem-
ory leaks.

Defining the class representing a row requires supplying the data-
base table’s column name for each class attribute:

class Customer:

    # Class attributes

    first_name = Field('first_name')

    last_name = Field('last_name')

    prefix = Field('prefix')

    suffix = Field('suffix')

Using the class is simple. Here, you can see how the Field descriptors 
modify the instance dictionary __dict__ as expected:

cust = Customer()

print(f'Before: {cust.first_name!r} {cust.__dict__}')
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cust.first_name = 'Euclid'

print(f'After:  {cust.first_name!r} {cust.__dict__}')

>>>

Before: '' {}

After:  'Euclid' {'_first_name': 'Euclid'}

But the class definition seems redundant. I already declared the 
name of the field for the class on the left ('field_name ='). Why do 
I also have to pass a string containing the same information to the 
Field constructor (Field('first_name')) on the right?

class Customer:

    # Left side is redundant with right side

    first_name = Field('first_name')

    ...

The problem is that the order of operations in the Customer class defi-
nition is the opposite of how it reads from left to right. First, the Field 
constructor is called as Field('first_name'). Then, the return value 
of that is assigned to Customer.field_name. There’s no way for a Field 
instance to know upfront which class attribute it will be assigned to.

To eliminate this redundancy, I can use a metaclass. Metaclasses 
let you hook the class statement directly and take action as soon 
as a class body is finished (see Item 48: “Validate Subclasses with 
__init_subclass__” for details on how they work). In this case, I can 
use the metaclass to assign Field.name and Field.internal_name on 
the descriptor automatically instead of manually specifying the field 
name multiple times:

class Meta(type):

    def __new__(meta, name, bases, class_dict):

        for key, value in class_dict.items():

            if isinstance(value, Field):

                value.name = key

                value.internal_name = '_' + key

        cls = type.__new__(meta, name, bases, class_dict)

        return cls

Here, I define a base class that uses the metaclass. All classes repre-
senting database rows should inherit from this class to ensure that 
they use the metaclass:

class DatabaseRow(metaclass=Meta):

    pass

To work with the metaclass, the Field descriptor is largely unchanged. 
The only difference is that it no longer requires arguments to be passed 
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to its constructor. Instead, its attributes are set by the Meta.__new__ 
method above:

class Field:

    def __init__(self):

        # These will be assigned by the metaclass.

        self.name = None

        self.internal_name = None

 

    def __get__(self, instance, instance_type):

        if instance is None:

            return self

        return getattr(instance, self.internal_name, '')

 

    def __set__(self, instance, value):

        setattr(instance, self.internal_name, value)

By using the metaclass, the new DatabaseRow base class, and the new 
Field descriptor, the class definition for a database row no longer has 
the redundancy from before:

class BetterCustomer(DatabaseRow):

    first_name = Field()

    last_name = Field()

    prefix = Field()

    suffix = Field()

The behavior of the new class is identical to the behavior of the old 
one:

cust = BetterCustomer()

print(f'Before: {cust.first_name!r} {cust.__dict__}')

cust.first_name = 'Euler'

print(f'After:  {cust.first_name!r} {cust.__dict__}')

>>>

Before: '' {}

After:  'Euler' {'_first_name': 'Euler'}

The trouble with this approach is that you can’t use the Field class for 
properties unless you also inherit from DatabaseRow. If you somehow 
forget to subclass DatabaseRow, or if you don’t want to due to other 
structural requirements of the class hierarchy, the code will break:

class BrokenCustomer:

    first_name = Field()

    last_name = Field()

    prefix = Field()

    suffix = Field()

 



cust = BrokenCustomer()

cust.first_name = 'Mersenne'

>>>

Traceback ...

TypeError: attribute name must be string, not 'NoneType'

The solution to this problem is to use the __set_name__ special method 
for descriptors. This method, introduced in Python 3.6, is called on 
every descriptor instance when its containing class is defined. It 
receives as parameters the owning class that contains the descriptor 
instance and the attribute name to which the descriptor instance was 
assigned. Here, I avoid defining a metaclass entirely and move what 
the Meta.__new__ method from above was doing into __set_name__:

class Field:

    def __init__(self):

        self.name = None

        self.internal_name = None

 

    def __set_name__(self, owner, name):

        # Called on class creation for each descriptor

        self.name = name

        self.internal_name = '_' + name

 

    def __get__(self, instance, instance_type):

        if instance is None:

            return self

        return getattr(instance, self.internal_name, '')

 

    def __set__(self, instance, value):

        setattr(instance, self.internal_name, value)

Now, I can get the benefits of the Field descriptor without having to 
inherit from a specific parent class or having to use a metaclass:

class FixedCustomer:

    first_name = Field()

    last_name = Field()

    prefix = Field()

    suffix = Field()

 

cust = FixedCustomer()

print(f'Before: {cust.first_name!r} {cust.__dict__}')

cust.first_name = 'Mersenne'

print(f'After:  {cust.first_name!r} {cust.__dict__}')
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>>>

Before: '' {}

After:  'Mersenne' {'_first_name': 'Mersenne'}

Things to Remember

✦ Metaclasses enable you to modify a class’s attributes before the 
class is fully defined.

✦ Descriptors and metaclasses make a powerful combination for 
declarative behavior and runtime introspection.

✦ Define __set_name__ on your descriptor classes to allow them to 
take into account their surrounding class and its property names.

✦ Avoid memory leaks and the weakref built-in module by having 
descriptors store data they manipulate directly within a class’s 
instance dictionary.

Item 51:  Prefer Class Decorators Over Metaclasses for 
Composable Class Extensions

Although metaclasses allow you to customize class creation in multi-
ple ways (see Item 48: “Validate Subclasses with __init_subclass__” 
and Item 49: “Register Class Existence with __init_subclass__”), they 
still fall short of handling every situation that may arise.

For example, say that I want to decorate all of the methods of a class 
with a helper that prints arguments, return values, and exceptions 
raised. Here, I define the debugging decorator (see Item 26: “Define 
Function Decorators with functools.wraps” for background):

from functools import wraps

 

def trace_func(func):

    if hasattr(func, 'tracing'):  # Only decorate once

        return func

 

    @wraps(func)

    def wrapper(*args, **kwargs):

        result = None

        try:

            result = func(*args, **kwargs)

            return result

        except Exception as e:

            result = e

            raise
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        finally:

            print(f'{func.__name__}({args!r}, {kwargs!r}) -> '

                  f'{result!r}')

 

    wrapper.tracing = True

    return wrapper

I can apply this decorator to various special methods in my new dict 
subclass (see Item 43: “Inherit from collections.abc for Custom Con-
tainer Types” for background):

class TraceDict(dict):

    @trace_func

    def __init__(self, *args, **kwargs):

        super().__init__(*args, **kwargs)

 

    @trace_func

    def __setitem__(self, *args, **kwargs):

        return super().__setitem__(*args, **kwargs)

 

    @trace_func

    def __getitem__(self, *args, **kwargs):

        return super().__getitem__(*args, **kwargs)

 

    ...

And I can verify that these methods are decorated by interacting with 
an instance of the class:

trace_dict = TraceDict([('hi', 1)])

trace_dict['there'] = 2

trace_dict['hi']

try:

    trace_dict['does not exist']

except KeyError:

    pass  # Expected

>>>

__init__(({'hi': 1}, [('hi', 1)]), {}) -> None

__setitem__(({'hi': 1, 'there': 2}, 'there', 2), {}) -> None

__getitem__(({'hi': 1, 'there': 2}, 'hi'), {}) -> 1

__getitem__(({'hi': 1, 'there': 2}, 'does not exist'), 

➥{}) -> KeyError('does not exist')

The problem with this code is that I had to redefine all of the methods 
that I wanted to decorate with @trace_func. This is redundant boiler-
plate that’s hard to read and error prone. Further, if a new method is 
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later added to the dict superclass, it won’t be decorated unless I also 
define it in TraceDict.

One way to solve this problem is to use a metaclass to automati-
cally decorate all methods of a class. Here, I implement this behav-
ior by wrapping each function or method in the new type with the 
trace_func decorator:

import types

 

trace_types = (

    types.MethodType,

    types.FunctionType,

    types.BuiltinFunctionType,

    types.BuiltinMethodType,

    types.MethodDescriptorType,

    types.ClassMethodDescriptorType)

 

class TraceMeta(type):

    def __new__(meta, name, bases, class_dict):

        klass = super().__new__(meta, name, bases, class_dict)

 

        for key in dir(klass):

            value = getattr(klass, key)

            if isinstance(value, trace_types):

                wrapped = trace_func(value)

                setattr(klass, key, wrapped)

 

        return klass

Now, I can declare my dict subclass by using the TraceMeta metaclass 
and verify that it works as expected:

class TraceDict(dict, metaclass=TraceMeta):

    pass

 

trace_dict = TraceDict([('hi', 1)])

trace_dict['there'] = 2

trace_dict['hi']

try:

    trace_dict['does not exist']

except KeyError:

    pass  # Expected

>>>

__new__((<class '__main__.TraceDict'>, [('hi', 1)]), {}) -> {}

__getitem__(({'hi': 1, 'there': 2}, 'hi'), {}) -> 1



__getitem__(({'hi': 1, 'there': 2}, 'does not exist'), 

➥{}) -> KeyError('does not exist')

This works, and it even prints out a call to __new__ that was miss-
ing from my earlier implementation. What happens if I try to use 
TraceMeta when a superclass already has specified a metaclass?

class OtherMeta(type):

    pass

 

class SimpleDict(dict, metaclass=OtherMeta):

    pass

 

class TraceDict(SimpleDict, metaclass=TraceMeta):

    pass

>>>

Traceback ...

TypeError: metaclass conflict: the metaclass of a derived 

➥class must be a (non-strict) subclass of the metaclasses 

➥of all its bases

This fails because TraceMeta does not inherit from OtherMeta. In the-
ory, I can use metaclass inheritance to solve this problem by having 
OtherMeta inherit from TraceMeta:

class TraceMeta(type):

    ...

 

class OtherMeta(TraceMeta):

    pass

 

class SimpleDict(dict, metaclass=OtherMeta):

    pass

 

class TraceDict(SimpleDict, metaclass=TraceMeta):

    pass

 

trace_dict = TraceDict([('hi', 1)])

trace_dict['there'] = 2

trace_dict['hi']

try:

    trace_dict['does not exist']

except KeyError:

    pass  # Expected
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>>>

__init_subclass__((), {}) -> None

__new__((<class '__main__.TraceDict'>, [('hi', 1)]), {}) -> {}

__getitem__(({'hi': 1, 'there': 2}, 'hi'), {}) -> 1

__getitem__(({'hi': 1, 'there': 2}, 'does not exist'), 

➥{}) -> KeyError('does not exist')

But this won’t work if the metaclass is from a library that I can’t mod-
ify, or if I want to use multiple utility metaclasses like TraceMeta at 
the same time. The metaclass approach puts too many constraints on 
the class that’s being modified.

To solve this problem, Python supports class decorators. Class 
 decorators work just like function decorators: They’re applied with the 
@ symbol prefixing a function before the class declaration. The func-
tion is expected to modify or re-create the class accordingly and then 
return it:

def my_class_decorator(klass):

    klass.extra_param = 'hello'

    return klass

 

@my_class_decorator

class MyClass:

    pass

 

print(MyClass)

print(MyClass.extra_param)

>>>

<class '__main__.MyClass'>

hello

I can implement a class decorator to apply trace_func to all methods 
and functions of a class by moving the core of the TraceMeta.__new__ 
method above into a stand-alone function. This implementation is 
much shorter than the metaclass version:

def trace(klass):

    for key in dir(klass):

        value = getattr(klass, key)

        if isinstance(value, trace_types):

            wrapped = trace_func(value)

            setattr(klass, key, wrapped)

    return klass



I can apply this decorator to my dict subclass to get the same behav-
ior as I get by using the metaclass approach above:

@trace

class TraceDict(dict):

    pass

 

trace_dict = TraceDict([('hi', 1)])

trace_dict['there'] = 2

trace_dict['hi']

try:

    trace_dict['does not exist']

except KeyError:

    pass  # Expected

>>>

__new__((<class '__main__.TraceDict'>, [('hi', 1)]), {}) -> {}

__getitem__(({'hi': 1, 'there': 2}, 'hi'), {}) -> 1

__getitem__(({'hi': 1, 'there': 2}, 'does not exist'), 

➥{}) -> KeyError('does not exist')

Class decorators also work when the class being decorated already 
has a metaclass:

class OtherMeta(type):

    pass

 

@trace

class TraceDict(dict, metaclass=OtherMeta):

    pass

 

trace_dict = TraceDict([('hi', 1)])

trace_dict['there'] = 2

trace_dict['hi']

try:

    trace_dict['does not exist']

except KeyError:

    pass  # Expected

>>>

__new__((<class '__main__.TraceDict'>, [('hi', 1)]), {}) -> {}

__getitem__(({'hi': 1, 'there': 2}, 'hi'), {}) -> 1

__getitem__(({'hi': 1, 'there': 2}, 'does not exist'), 

➥{}) -> KeyError('does not exist')

When you’re looking for composable ways to extend classes, class 
decorators are the best tool for the job. (See Item 73: “Know How 
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to Use heapq for Priority Queues” for a useful class decorator called 
functools.total_ordering.)

Things to Remember

✦ A class decorator is a simple function that receives a class instance 
as a parameter and returns either a new class or a modified version 
of the original class.

✦ Class decorators are useful when you want to modify every method 
or attribute of a class with minimal boilerplate.

✦ Metaclasses can’t be composed together easily, while many class 
decorators can be used to extend the same class without conflicts.



7
Concurrency and 

Parallelism

Concurrency enables a computer to do many different things  seemingly 
at the same time. For example, on a computer with one CPU core, the 
operating system rapidly changes which program is running on the 
single processor. In doing so, it interleaves execution of the programs, 
providing the illusion that the programs are running simultaneously.

Parallelism, in contrast, involves actually doing many different things 
at the same time. A computer with multiple CPU cores can execute 
multiple programs simultaneously. Each CPU core runs the instruc-
tions of a separate program, allowing each program to make forward 
progress during the same instant.

Within a single program, concurrency is a tool that makes it easier 
for programmers to solve certain types of problems. Concurrent pro-
grams enable many distinct paths of execution, including separate 
streams of I/O, to make forward progress in a way that seems to be 
both simultaneous and independent.

The key difference between parallelism and concurrency is speedup. 
When two distinct paths of execution in a program make forward 
progress in parallel, the time it takes to do the total work is cut in 
half; the speed of execution is faster by a factor of two. In contrast, 
concurrent programs may run thousands of separate paths of execu-
tion seemingly in parallel but provide no speedup for the total work.

Python makes it easy to write concurrent programs in a variety of 
styles. Threads support a relatively small amount of concurrency, 
while coroutines enable vast numbers of concurrent functions. 
Python can also be used to do parallel work through system calls, 
subprocesses, and C extensions. But it can be very difficult to make 
concurrent Python code truly run in parallel. It’s important to under-
stand how to best utilize Python in these different situations.
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Item 52: Use subprocess to Manage Child Processes

Python has battle-hardened libraries for running and managing child 
processes. This makes it a great language for gluing together other 
tools, such as command-line utilities. When existing shell scripts get 
complicated, as they often do over time, graduating them to a rewrite 
in Python for the sake of readability and maintainability is a natural 
choice.

Child processes started by Python are able to run in parallel, enabling 
you to use Python to consume all of the CPU cores of a machine and 
maximize the throughput of programs. Although Python itself may 
be CPU bound (see Item 53: “Use Threads for Blocking I/O, Avoid for 
Parallelism”), it’s easy to use Python to drive and coordinate CPU- 
intensive workloads.

Python has many ways to run subprocesses (e.g., os.popen, os.exec*), 
but the best choice for managing child processes is to use the 
subprocess built-in module. Running a child process with subprocess 
is simple. Here, I use the module’s run convenience function to start a 
process, read its output, and verify that it terminated cleanly:

import subprocess

 

result = subprocess.run(

    ['echo', 'Hello from the child!'],

    capture_output=True,

    encoding='utf-8')

 

result.check_returncode()  # No exception means clean exit

print(result.stdout)

>>>

Hello from the child!

Note

The examples in this item assume that your system has the echo, sleep, and 
openssl commands available. On Windows, this may not be the case. Please 
refer to the full example code for this item to see specific directions on how to 
run these snippets on Windows.

Child processes run independently from their parent process, the 
Python interpreter. If I create a subprocess using the Popen class 
instead of the run function, I can poll child process status periodically 
while Python does other work:

proc = subprocess.Popen(['sleep', '1'])

while proc.poll() is None:

    print('Working...')
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    # Some time-consuming work here

    ...

 

print('Exit status', proc.poll())

>>>

Working...

Working...

Working...

Working...

Exit status 0

Decoupling the child process from the parent frees up the parent 
 process to run many child processes in parallel. Here, I do this by 
starting all the child processes together with Popen upfront:

import time

 

start = time.time()

sleep_procs = []

for _ in range(10):

    proc = subprocess.Popen(['sleep', '1'])

    sleep_procs.append(proc)

Later, I wait for them to finish their I/O and terminate with the 
communicate method:

for proc in sleep_procs:

    proc.communicate()

 

end = time.time()

delta = end - start

print(f'Finished in {delta:.3} seconds')

>>>

Finished in 1.05 seconds

If these processes ran in sequence, the total delay would be 10  seconds 
or more rather than the ~1 second that I measured.

You can also pipe data from a Python program into a subprocess and 
retrieve its output. This allows you to utilize many other programs to 
do work in parallel. For example, say that I want to use the openssl 
command-line tool to encrypt some data. Starting the child process 
with command-line arguments and I/O pipes is easy:

import os

def run_encrypt(data):

    env = os.environ.copy()



228 Chapter 7 Concurrency and Parallelism

    env['password'] = 'zf7ShyBhZOraQDdE/FiZpm/m/8f9X+M1'

    proc = subprocess.Popen(

        ['openssl', 'enc', '-des3', '-pass', 'env:password'],

        env=env,

        stdin=subprocess.PIPE,

        stdout=subprocess.PIPE)

    proc.stdin.write(data)

    proc.stdin.flush()  # Ensure that the child gets input

    return proc

Here, I pipe random bytes into the encryption function, but in prac-
tice this input pipe would be fed data from user input, a file handle, a 
network socket, and so on:

procs = []

for _ in range(3):

    data = os.urandom(10)

    proc = run_encrypt(data)

    procs.append(proc)

The child processes run in parallel and consume their input. Here, 
I wait for them to finish and then retrieve their final output. The 
 output is random encrypted bytes as expected:

for proc in procs:

    out, _ = proc.communicate()

    print(out[-10:])

>>>

b'\x8c(\xed\xc7m1\xf0F4\xe6'

b'\x0eD\x97\xe9>\x10h{\xbd\xf0'

b'g\x93)\x14U\xa9\xdc\xdd\x04\xd2'

It’s also possible to create chains of parallel processes, just like 
UNIX pipelines, connecting the output of one child process to the 
input of another, and so on. Here’s a function that starts the openssl 
 command-line tool as a subprocess to generate a Whirlpool hash of 
the input stream:

def run_hash(input_stdin):

    return subprocess.Popen(

        ['openssl', 'dgst', '-whirlpool', '-binary'],

        stdin=input_stdin,

        stdout=subprocess.PIPE)

Now, I can kick off one set of processes to encrypt some data and 
another set of processes to subsequently hash their encrypted output. 
Note that I have to be careful with how the stdout instance of the 



upstream process is retained by the Python interpreter process that’s 
starting this pipeline of child processes:

encrypt_procs = []

hash_procs = []

for _ in range(3):

    data = os.urandom(100)

 

    encrypt_proc = run_encrypt(data)

    encrypt_procs.append(encrypt_proc)

 

    hash_proc = run_hash(encrypt_proc.stdout)

    hash_procs.append(hash_proc)

 

    # Ensure that the child consumes the input stream and

    # the communicate() method doesn't inadvertently steal

    # input from the child. Also lets SIGPIPE propagate to

    # the upstream process if the downstream process dies.

    encrypt_proc.stdout.close()

    encrypt_proc.stdout = None

The I/O between the child processes happens automatically once they 
are started. All I need to do is wait for them to finish and print the 
final output:

for proc in encrypt_procs:

    proc.communicate()

    assert proc.returncode == 0

 

for proc in hash_procs:

    out, _ = proc.communicate()

    print(out[-10:])

    assert proc.returncode == 0

>>>

b'\xe2j\x98h\xfd\xec\xe7T\xd84'

b'\xf3.i\x01\xd74|\xf2\x94E'

b'5_n\xc3-\xe6j\xeb[i'

If I’m worried about the child processes never finishing or somehow 
blocking on input or output pipes, I can pass the timeout parameter 
to the communicate method. This causes an exception to be raised if 
the child process hasn’t finished within the time period, giving me a 
chance to terminate the misbehaving subprocess:

proc = subprocess.Popen(['sleep', '10'])

try:

    proc.communicate(timeout=0.1)
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except subprocess.TimeoutExpired:

    proc.terminate()

    proc.wait()

 

print('Exit status', proc.poll())

>>>

Exit status -15

Things to Remember

✦ Use the subprocess module to run child processes and manage their 
input and output streams.

✦ Child processes run in parallel with the Python interpreter, enabling 
you to maximize your usage of CPU cores.

✦ Use the run convenience function for simple usage, and the Popen 
class for advanced usage like UNIX-style pipelines.

✦ Use the timeout parameter of the communicate method to avoid dead-
locks and hanging child processes.

Item 53:  Use Threads for Blocking I/O, Avoid for 
Parallelism

The standard implementation of Python is called CPython. CPython 
runs a Python program in two steps. First, it parses and compiles the 
source text into bytecode, which is a low-level representation of the 
program as 8-bit instructions. (As of Python 3.6, however, it’s tech-
nically wordcode with 16-bit instructions, but the idea is the same.) 
Then, CPython runs the bytecode using a stack-based interpreter. The 
bytecode interpreter has state that must be maintained and coherent 
while the Python program executes. CPython enforces coherence with 
a mechanism called the global interpreter lock (GIL).

Essentially, the GIL is a mutual-exclusion lock (mutex) that prevents 
CPython from being affected by preemptive multithreading, where 
one thread takes control of a program by interrupting another thread. 
Such an interruption could corrupt the interpreter state (e.g., garbage 
collection reference counts) if it comes at an unexpected time. The 
GIL prevents these interruptions and ensures that every bytecode 
instruction works correctly with the CPython implementation and its 
C-extension modules.

The GIL has an important negative side effect. With programs written 
in languages like C++ or Java, having multiple threads of execution 
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means that a program could utilize multiple CPU cores at the same 
time. Although Python supports multiple threads of execution, the GIL 
causes only one of them to ever make forward progress at a time. This 
means that when you reach for threads to do parallel computation 
and speed up your Python programs, you will be sorely disappointed.

For example, say that I want to do something computationally inten-
sive with Python. Here, I use a naive number factorization algorithm 
as a proxy:

def factorize(number):

    for i in range(1, number + 1):

        if number % i == 0:

            yield i

Factoring a set of numbers in serial takes quite a long time:

import time

 

numbers = [2139079, 1214759, 1516637, 1852285]

start = time.time()

 

for number in numbers:

    list(factorize(number))

 

end = time.time()

delta = end - start

print(f'Took {delta:.3f} seconds')

>>>

Took 0.399 seconds

Using multiple threads to do this computation would make sense in 
other languages because I could take advantage of all the CPU cores 
of my computer. Let me try that in Python. Here, I define a Python 
thread for doing the same computation as before:

from threading import Thread

 

class FactorizeThread(Thread):

    def __init__(self, number):

        super().__init__()

        self.number = number

 

    def run(self):

        self.factors = list(factorize(self.number))
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Then, I start a thread for each number to factorize in parallel:

start = time.time()

 

threads = []

for number in numbers:

    thread = FactorizeThread(number)

    thread.start()

    threads.append(thread)

Finally, I wait for all of the threads to finish:

for thread in threads:

    thread.join()

 

end = time.time()

delta = end - start

print(f'Took {delta:.3f} seconds')

>>>

Took 0.446 seconds

Surprisingly, this takes even longer than running factorize in serial. 
With one thread per number, you might expect less than a 4x speedup 
in other languages due to the overhead of creating threads and coor-
dinating with them. You might expect only a 2x speedup on the dual-
core machine I used to run this code. But you wouldn’t expect the 
performance of these threads to be worse when there are multiple 
CPUs to utilize. This demonstrates the effect of the GIL (e.g., lock con-
tention and scheduling overhead) on programs running in the stan-
dard CPython interpreter.

There are ways to get CPython to utilize multiple cores, but they 
don’t work with the standard Thread class (see Item 64: “Consider 
concurrent.futures for True Parallelism”), and they can require sub-
stantial effort. Given these limitations, why does Python support 
threads at all? There are two good reasons.

First, multiple threads make it easy for a program to seem like it’s 
doing multiple things at the same time. Managing the juggling act 
of simultaneous tasks is difficult to implement yourself (see Item 56: 
“Know How to Recognize When Concurrency Is Necessary” for an 
example). With threads, you can leave it to Python to run your func-
tions concurrently. This works because CPython ensures a level of 
fairness between Python threads of execution, even though only one 
of them makes forward progress at a time due to the GIL.

The second reason Python supports threads is to deal with blocking 
I/O, which happens when Python does certain types of system calls. 
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A Python program uses system calls to ask the computer’s  operating 
system to interact with the external environment on its behalf. Block-
ing I/O includes things like reading and writing files, interacting 
with networks, communicating with devices like displays, and so on. 
Threads help handle blocking I/O by insulating a program from the 
time it takes for the operating system to respond to requests.

For example, say that I want to send a signal to a remote-controlled 
helicopter through a serial port. I’ll use a slow system call (select) as 
a proxy for this activity. This function asks the operating system to 
block for 0.1 seconds and then return control to my program, which is 
similar to what would happen when using a synchronous serial port:

import select

import socket

 

def slow_systemcall():

    select.select([socket.socket()], [], [], 0.1)

Running this system call in serial requires a linearly increasing 
amount of time:

start = time.time()

 

for _ in range(5):

    slow_systemcall()

 

end = time.time()

delta = end - start

print(f'Took {delta:.3f} seconds')

>>>

Took 0.510 seconds

The problem is that while the slow_systemcall function is running, my 
program can’t make any other progress. My program’s main thread of 
execution is blocked on the select system call. This situation is awful 
in practice. You need to be able to compute your helicopter’s next move 
while you’re sending it a signal; otherwise, it’ll crash. When you find 
yourself needing to do blocking I/O and computation simultaneously, 
it’s time to consider moving your system calls to threads.

Here, I run multiple invocations of the slow_systemcall function in 
separate threads. This would allow me to communicate with multiple 
serial ports (and helicopters) at the same time while leaving the main 
thread to do whatever computation is required:

start = time.time()
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threads = []

for _ in range(5):

    thread = Thread(target=slow_systemcall)

    thread.start()

    threads.append(thread)

With the threads started, here I do some work to calculate the next 
helicopter move before waiting for the system call threads to finish:

def compute_helicopter_location(index):

    ...

 

for i in range(5):

    compute_helicopter_location(i)

 

for thread in threads:

    thread.join()

 

end = time.time()

delta = end - start

print(f'Took {delta:.3f} seconds')

>>>

Took 0.108 seconds

The parallel time is ~5x less than the serial time. This shows that 
all the system calls will run in parallel from multiple Python threads 
even though they’re limited by the GIL. The GIL prevents my Python 
code from running in parallel, but it doesn’t have an effect on system 
calls. This works because Python threads release the GIL just before 
they make system calls, and they reacquire the GIL as soon as the 
system calls are done.

There are many other ways to deal with blocking I/O besides using 
threads, such as the asyncio built-in module, and these alternatives 
have important benefits. But those options might require extra work 
in refactoring your code to fit a different model of execution (see Item 
60: “Achieve Highly Concurrent I/O with Coroutines” and Item 62: 
“Mix Threads and Coroutines to Ease the Transition to asyncio”). 
Using threads is the simplest way to do blocking I/O in parallel with 
minimal changes to your program.

Things to Remember

✦ Python threads can’t run in parallel on multiple CPU cores because 
of the global interpreter lock (GIL).



 Item 54: Use Lock to Prevent Data Races in Threads 235

✦ Python threads are still useful despite the GIL because they provide 
an easy way to do multiple things seemingly at the same time.

✦ Use Python threads to make multiple system calls in parallel. This 
allows you to do blocking I/O at the same time as computation.

Item 54: Use Lock to Prevent Data Races in Threads

After learning about the global interpreter lock (GIL) (see Item 53: 
“Use Threads for Blocking I/O, Avoid for Parallelism”), many new 
Python programmers assume they can forgo using mutual- exclusion 
locks (also called mutexes) in their code altogether. If the GIL is 
already  preventing Python threads from running on multiple CPU 
cores in parallel, it must also act as a lock for a program’s data struc-
tures, right? Some testing on types like lists and dictionaries may 
even show that this assumption appears to hold.

But beware, this is not truly the case. The GIL will not protect you. 
Although only one Python thread runs at a time, a thread’s opera-
tions on data structures can be interrupted between any two byte-
code instructions in the Python interpreter. This is dangerous if you 
access the same objects from multiple threads simultaneously. The 
invariants of your data structures could be violated at practically any 
time because of these interruptions, leaving your program in a cor-
rupted state.

For example, say that I want to write a program that counts many 
things in parallel, like sampling light levels from a whole network of 
sensors. If I want to determine the total number of light samples over 
time, I can aggregate them with a new class:

class Counter:

    def __init__(self):

        self.count = 0

 

    def increment(self, offset):

        self.count += offset

Imagine that each sensor has its own worker thread because reading 
from the sensor requires blocking I/O. After each sensor measure-
ment, the worker thread increments the counter up to a maximum 
number of desired readings:

def worker(sensor_index, how_many, counter):

    for _ in range(how_many):

        # Read from the sensor

        ...

        counter.increment(1)
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Here, I run one worker thread for each sensor in parallel and wait for 
them all to finish their readings:

from threading import Thread

 

how_many = 10**5

counter = Counter()

 

threads = []

for i in range(5):

    thread = Thread(target=worker,

                    args=(i, how_many, counter))

    threads.append(thread)

    thread.start()

 

for thread in threads:

    thread.join()

 

expected = how_many * 5

found = counter.count

print(f'Counter should be {expected}, got {found}')

>>>

Counter should be 500000, got 246760

This seemed straightforward, and the outcome should have been 
obvious, but the result is way off! What happened here? How could 
something so simple go so wrong, especially since only one Python 
interpreter thread can run at a time?

The Python interpreter enforces fairness between all of the threads 
that are executing to ensure they get roughly equal processing time. 
To do this, Python suspends a thread as it’s running and resumes 
another thread in turn. The problem is that you don’t know exactly 
when Python will suspend your threads. A thread can even be paused 
seemingly halfway through what looks like an atomic operation. 
That’s what happened in this case.

The body of the Counter object’s increment method looks simple, and is 
equivalent to this statement from the perspective of the worker thread:

counter.count += 1

But the += operator used on an object attribute actually instructs 
Python to do three separate operations behind the scenes. The state-
ment above is equivalent to this:

value = getattr(counter, 'count')

result = value + 1

setattr(counter, 'count', result)
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Python threads incrementing the counter can be suspended between 
any two of these operations. This is problematic if the way the oper-
ations interleave causes old versions of value to be assigned to the 
counter. Here’s an example of bad interaction between two threads, 
A and B:

# Running in Thread A

value_a = getattr(counter, 'count')

# Context switch to Thread B

value_b = getattr(counter, 'count')

result_b = value_b + 1

setattr(counter, 'count', result_b)

# Context switch back to Thread A

result_a = value_a + 1

setattr(counter, 'count', result_a)

Thread B interrupted thread A before it had completely finished. 
Thread B ran and finished, but then thread A resumed mid-execution, 
overwriting all of thread B’s progress in incrementing the counter. 
This is exactly what happened in the light sensor example above.

To prevent data races like these, and other forms of data structure 
corruption, Python includes a robust set of tools in the threading 
built-in module. The simplest and most useful of them is the Lock 
class, a mutual-exclusion lock (mutex).

By using a lock, I can have the Counter class protect its current 
value against simultaneous accesses from multiple threads. Only one 
thread will be able to acquire the lock at a time. Here, I use a with 
statement to acquire and release the lock; this makes it easier to see 
which code is executing while the lock is held (see Item 66: “Consider 
contextlib and with Statements for Reusable try/finally Behavior” 
for background):

from threading import Lock

 

class LockingCounter:

    def __init__(self):

        self.lock = Lock()

        self.count = 0

 

    def increment(self, offset):

        with self.lock:

            self.count += offset
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Now, I run the worker threads as before but use a LockingCounter 
instead:

counter = LockingCounter()

 

for i in range(5):

    thread = Thread(target=worker,

                    args=(i, how_many, counter))

    threads.append(thread)

    thread.start()

 

for thread in threads:

    thread.join()

 

expected = how_many * 5

found = counter.count

print(f'Counter should be {expected}, got {found}')

>>>

Counter should be 500000, got 500000

The result is exactly what I expect. Lock solved the problem.

Things to Remember

✦ Even though Python has a global interpreter lock, you’re still 
responsible for protecting against data races between the threads in 
your programs.

✦ Your programs will corrupt their data structures if you allow mul-
tiple threads to modify the same objects without mutual-exclusion 
locks (mutexes).

✦ Use the Lock class from the threading built-in module to enforce 
your program’s invariants between multiple threads.

Item 55:  Use Queue to Coordinate Work Between 
Threads

Python programs that do many things concurrently often need to 
coordinate their work. One of the most useful arrangements for con-
current work is a pipeline of functions.

A pipeline works like an assembly line used in manufacturing. Pipe-
lines have many phases in serial, with a specific function for each 
phase. New pieces of work are constantly being added to the begin-
ning of the pipeline. The functions can operate concurrently, each 
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working on the piece of work in its phase. The work moves forward 
as each function completes until there are no phases remaining. This 
approach is especially good for work that includes blocking I/O or 
subprocesses—activities that can easily be parallelized using Python 
(see Item 53: “Use Threads for Blocking I/O, Avoid for Parallelism”).

For example, say I want to build a system that will take a constant 
stream of images from my digital camera, resize them, and then add 
them to a photo gallery online. Such a program could be split into 
three phases of a pipeline. New images are retrieved in the first phase. 
The downloaded images are passed through the resize function in the 
second phase. The resized images are consumed by the upload func-
tion in the final phase.

Imagine that I’ve already written Python functions that execute the 
phases: download, resize, upload. How do I assemble a pipeline to do 
the work concurrently?

def download(item):

    ...

 

def resize(item):

    ...

 

def upload(item):

    ...

The first thing I need is a way to hand off work between the pipeline 
phases. This can be modeled as a thread-safe producer–consumer 
queue (see Item 54: “Use Lock to Prevent Data Races in Threads” to 
understand the importance of thread safety in Python; see Item 71: 
“Prefer deque for Producer–Consumer Queues” to understand queue 
performance):

from collections import deque

from threading import Lock

 

class MyQueue:

    def __init__(self):

        self.items = deque()

        self.lock = Lock()

The producer, my digital camera, adds new images to the end of the 
deque of pending items:

    def put(self, item):

        with self.lock:

            self.items.append(item)
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The consumer, the first phase of the processing pipeline, removes 
images from the front of the deque of pending items:

    def get(self):

        with self.lock:

            return self.items.popleft()

Here, I represent each phase of the pipeline as a Python thread that 
takes work from one queue like this, runs a function on it, and puts 
the result on another queue. I also track how many times the worker 
has checked for new input and how much work it’s completed:

from threading import Thread

import time

 

class Worker(Thread):

    def __init__(self, func, in_queue, out_queue):

        super().__init__()

        self.func = func

        self.in_queue = in_queue

        self.out_queue = out_queue

        self.polled_count = 0

        self.work_done = 0

The trickiest part is that the worker thread must properly han-
dle the case where the input queue is empty because the previous 
phase hasn’t completed its work yet. This happens where I catch the 
IndexError exception below. You can think of this as a holdup in the 
assembly line:

    def run(self):

        while True:

            self.polled_count += 1

            try:

                item = self.in_queue.get()

            except IndexError:

                time.sleep(0.01)  # No work to do

            else:

                result = self.func(item)

                self.out_queue.put(result)

                self.work_done += 1

Now, I can connect the three phases together by creating the queues 
for their coordination points and the corresponding worker threads:

download_queue = MyQueue()

resize_queue = MyQueue()

upload_queue = MyQueue()
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done_queue = MyQueue()

threads = [

    Worker(download, download_queue, resize_queue),

    Worker(resize, resize_queue, upload_queue),

    Worker(upload, upload_queue, done_queue),

]

I can start the threads and then inject a bunch of work into the first 
phase of the pipeline. Here, I use a plain object instance as a proxy 
for the real data required by the download function:

for thread in threads:

    thread.start()

 

for _ in range(1000):

    download_queue.put(object())

Now, I wait for all of the items to be processed by the pipeline and end 
up in the done_queue:

while len(done_queue.items) < 1000:

    # Do something useful while waiting

    ...

This runs properly, but there’s an interesting side effect caused by 
the threads polling their input queues for new work. The tricky part, 
where I catch IndexError exceptions in the run method, executes a 
large number of times:

processed = len(done_queue.items)

polled = sum(t.polled_count for t in threads)

print(f'Processed {processed} items after '

      f'polling {polled} times')

>>>

Processed 1000 items after polling 3035 times

When the worker functions vary in their respective speeds, an ear-
lier phase can prevent progress in later phases, backing up the pipe-
line. This causes later phases to starve and constantly check their 
input queues for new work in a tight loop. The outcome is that worker 
threads waste CPU time doing nothing useful; they’re constantly rais-
ing and catching IndexError exceptions.

But that’s just the beginning of what’s wrong with this implementa-
tion. There are three more problems that you should also avoid. First, 
determining that all of the input work is complete requires yet another 
busy wait on the done_queue. Second, in Worker, the run method will 
execute forever in its busy loop. There’s no obvious way to signal to a 
worker thread that it’s time to exit.
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Third, and worst of all, a backup in the pipeline can cause the 
 program to crash arbitrarily. If the first phase makes rapid progress 
but the second phase makes slow progress, then the queue connecting 
the first phase to the second phase will constantly increase in size. 
The second phase won’t be able to keep up. Given enough time and 
input data, the program will eventually run out of memory and die.

The lesson here isn’t that pipelines are bad; it’s that it’s hard to build 
a good producer–consumer queue yourself. So why even try?

Queue to the Rescue

The Queue class from the queue built-in module provides all of the 
functionality you need to solve the problems outlined above.

Queue eliminates the busy waiting in the worker by making the get 
method block until new data is available. For example, here I start a 
thread that waits for some input data on a queue:

from queue import Queue

 

my_queue = Queue()

 

def consumer():

    print('Consumer waiting')

    my_queue.get()              # Runs after put() below

    print('Consumer done')

 

thread = Thread(target=consumer)

thread.start()

Even though the thread is running first, it won’t finish until an item 
is put on the Queue instance and the get method has something to 
return:

print('Producer putting')

my_queue.put(object())          # Runs before get() above

print('Producer done')

thread.join()

>>>

Consumer waiting

Producer putting

Producer done

Consumer done

To solve the pipeline backup issue, the Queue class lets you specify 
the maximum amount of pending work to allow between two phases. 
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This buffer size causes calls to put to block when the queue is already 
full. For example, here I define a thread that waits for a while before 
consuming a queue:

my_queue = Queue(1)             # Buffer size of 1

 

def consumer():

    time.sleep(0.1)             # Wait

    my_queue.get()              # Runs second

    print('Consumer got 1')

    my_queue.get()              # Runs fourth

    print('Consumer got 2')

    print('Consumer done')

 

thread = Thread(target=consumer)

thread.start()

The wait should allow the producer thread to put both objects on the 
queue before the consumer thread ever calls get. But the Queue size 
is one. This means the producer adding items to the queue will have 
to wait for the consumer thread to call get at least once before the 
second call to put will stop blocking and add the second item to the 
queue:

my_queue.put(object())          # Runs first

print('Producer put 1')

my_queue.put(object())          # Runs third

print('Producer put 2')

print('Producer done')

thread.join()

>>>

Producer put 1

Consumer got 1

Producer put 2

Producer done

Consumer got 2

Consumer done

The Queue class can also track the progress of work using the 
task_done method. This lets you wait for a phase’s input queue to 
drain and eliminates the need to poll the last phase of a pipeline (as 
with the done_queue above). For example, here I define a consumer 
thread that calls task_done when it finishes working on an item:

in_queue = Queue()
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def consumer():

    print('Consumer waiting')

    work = in_queue.get()       # Runs second

    print('Consumer working')

    # Doing work

    ...

    print('Consumer done')

    in_queue.task_done()        # Runs third

 

thread = Thread(target=consumer)

thread.start()

Now, the producer code doesn’t have to join the consumer thread or 
poll. The producer can just wait for the in_queue to finish by calling 
join on the Queue instance. Even once it’s empty, the in_queue won’t 
be joinable until after task_done is called for every item that was ever 
enqueued:

print('Producer putting')

in_queue.put(object())         # Runs first

print('Producer waiting')

in_queue.join()                # Runs fourth

print('Producer done')

thread.join()

>>>

Consumer waiting

Producer putting

Producer waiting

Consumer working

Consumer done

Producer done

I can put all these behaviors together into a Queue subclass that also 
tells the worker thread when it should stop processing. Here, I define 
a close method that adds a special sentinel item to the queue that 
indicates there will be no more input items after it:

class ClosableQueue(Queue):

    SENTINEL = object()

 

    def close(self):

        self.put(self.SENTINEL)

Then, I define an iterator for the queue that looks for this special 
object and stops iteration when it’s found. This __iter__ method also 
calls task_done at appropriate times, letting me track the progress of 
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work on the queue (see Item 31: “Be Defensive When Iterating Over 
Arguments” for details about __iter__):

    def __iter__(self):

        while True:

            item = self.get()

            try:

                if item is self.SENTINEL:

                    return  # Cause the thread to exit

                yield item

            finally:

                self.task_done()

Now, I can redefine my worker thread to rely on the behavior of 
the ClosableQueue class. The thread will exit when the for loop is 
exhausted:

class StoppableWorker(Thread):

    def __init__(self, func, in_queue, out_queue):

        super().__init__()

        self.func = func

        self.in_queue = in_queue

        self.out_queue = out_queue

 

    def run(self):

        for item in self.in_queue:

            result = self.func(item)

            self.out_queue.put(result)

I re-create the set of worker threads using the new worker class:

download_queue = ClosableQueue()

resize_queue = ClosableQueue()

upload_queue = ClosableQueue()

done_queue = ClosableQueue()

threads = [

    StoppableWorker(download, download_queue, resize_queue),

    StoppableWorker(resize, resize_queue, upload_queue),

    StoppableWorker(upload, upload_queue, done_queue),

]

After running the worker threads as before, I also send the stop sig-
nal after all the input work has been injected by closing the input 
queue of the first phase:

for thread in threads:

    thread.start()
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for _ in range(1000):

    download_queue.put(object())

 

download_queue.close()

Finally, I wait for the work to finish by joining the queues that con-
nect the phases. Each time one phase is done, I signal the next phase 
to stop by closing its input queue. At the end, the done_queue contains 
all of the output objects, as expected:

download_queue.join()

resize_queue.close()

resize_queue.join()

upload_queue.close()

upload_queue.join()

print(done_queue.qsize(), 'items finished')

 

for thread in threads:

    thread.join()

>>>

1000 items finished

This approach can be extended to use multiple worker threads per 
phase, which can increase I/O parallelism and speed up this type of 
program significantly. To do this, first I define some helper functions 
that start and stop multiple threads. The way stop_threads works 
is by calling close on each input queue once per consuming thread, 
which ensures that all of the workers exit cleanly:

def start_threads(count, *args):

    threads = [StoppableWorker(*args) for _ in range(count)]

    for thread in threads:

        thread.start()

    return threads

 

def stop_threads(closable_queue, threads):

    for _ in threads:

        closable_queue.close()

 

    closable_queue.join()

 

    for thread in threads:

        thread.join()
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Then, I connect the pieces together as before, putting objects to pro-
cess into the top of the pipeline, joining queues and threads along the 
way, and finally consuming the results:

download_queue = ClosableQueue()

resize_queue = ClosableQueue()

upload_queue = ClosableQueue()

done_queue = ClosableQueue()

 

download_threads = start_threads(

    3, download, download_queue, resize_queue)

resize_threads = start_threads(

    4, resize, resize_queue, upload_queue)

upload_threads = start_threads(

    5, upload, upload_queue, done_queue)

 

for _ in range(1000):

    download_queue.put(object())

 

stop_threads(download_queue, download_threads)

stop_threads(resize_queue, resize_threads)

stop_threads(upload_queue, upload_threads)

 

print(done_queue.qsize(), 'items finished')

>>>

1000 items finished

Although Queue works well in this case of a linear pipeline, there 
are many other situations for which there are better tools that you 
should consider (see Item 60: “Achieve Highly Concurrent I/O with 
Coroutines”).

Things to Remember

✦ Pipelines are a great way to organize sequences of work—especially 
I/O-bound programs—that run concurrently using multiple Python 
threads.

✦ Be aware of the many problems in building concurrent pipelines: 
busy waiting, how to tell workers to stop, and potential memory 
explosion.

✦ The Queue class has all the facilities you need to build robust 
 pipelines: blocking operations, buffer sizes, and joining.
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Item 56:  Know How to Recognize When Concurrency 
Is Necessary

Inevitably, as the scope of a program grows, it also becomes more 
complicated. Dealing with expanding requirements in a way that 
maintains clarity, testability, and efficiency is one of the most difficult 
parts of programming. Perhaps the hardest type of change to handle 
is moving from a single-threaded program to one that needs multiple 
concurrent lines of execution.

Let me demonstrate how you might encounter this problem with an 
example. Say that I want to implement Conway’s Game of Life, a clas-
sic illustration of finite state automata. The rules of the game are sim-
ple: You have a two-dimensional grid of an arbitrary size. Each cell in 
the grid can either be alive or empty:

ALIVE = '*'

EMPTY = '-'

The game progresses one tick of the clock at a time. Every tick, each 
cell counts how many of its neighboring eight cells are still alive. 
Based on its neighbor count, a cell decides if it will keep living, die, 
or regenerate. (I’ll explain the specific rules further below.) Here’s an 
example of a 5 × 5 Game of Life grid after four generations with time 
going to the right:

  0   |   1   |   2   |   3   |   4  

----- | ----- | ----- | ----- | -----

-*--- | --*-- | --**- | --*-- | -----

--**- | --**- | -*--- | -*--- | -**--

---*- | --**- | --**- | --*-- | -----

----- | ----- | ----- | ----- | -----

I can represent the state of each cell with a simple container class. 
The class must have methods that allow me to get and set the value 
of any coordinate. Coordinates that are out of bounds should wrap 
around, making the grid act like an infinite looping space:

class Grid:

    def __init__(self, height, width):

        self.height = height

        self.width = width

        self.rows = []

        for _ in range(self.height):

            self.rows.append([EMPTY] * self.width)
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    def get(self, y, x):

        return self.rows[y % self.height][x % self.width]

 

    def set(self, y, x, state):

        self.rows[y % self.height][x % self.width] = state

 

    def __str__(self):

        ...

To see this class in action, I can create a Grid instance and set its ini-
tial state to a classic shape called a glider:

grid = Grid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

print(grid)

>>>

---*-----

----*----

--***----

---------

---------

Now, I need a way to retrieve the status of neighboring cells. I can 
do this with a helper function that queries the grid and returns the 
count of living neighbors. I use a simple function for the get param-
eter instead of passing in a whole Grid instance in order to reduce 
coupling (see Item 38: “Accept Functions Instead of Classes for Simple 
Interfaces” for more about this approach):

def count_neighbors(y, x, get):

    n_ = get(y - 1, x + 0)  # North

    ne = get(y - 1, x + 1)  # Northeast

    e_ = get(y + 0, x + 1)  # East

    se = get(y + 1, x + 1)  # Southeast

    s_ = get(y + 1, x + 0)  # South

    sw = get(y + 1, x - 1)  # Southwest

    w_ = get(y + 0, x - 1)  # West

    nw = get(y - 1, x - 1)  # Northwest

    neighbor_states = [n_, ne, e_, se, s_, sw, w_, nw]

    count = 0
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    for state in neighbor_states:

        if state == ALIVE:

            count += 1

    return count

Now, I define the simple logic for Conway’s Game of Life, based on the 
game’s three rules: Die if a cell has fewer than two neighbors, die if a 
cell has more than three neighbors, or become alive if an empty cell 
has exactly three neighbors:

def game_logic(state, neighbors):

    if state == ALIVE:

        if neighbors < 2:

            return EMPTY     # Die: Too few

        elif neighbors > 3:

            return EMPTY     # Die: Too many

    else:

        if neighbors == 3:

            return ALIVE     # Regenerate

    return state

I can connect count_neighbors and game_logic together in another 
function that transitions the state of a cell. This function will be 
called each generation to figure out a cell’s current state, inspect the 
neighboring cells around it, determine what its next state should be, 
and update the resulting grid accordingly. Again, I use a function 
interface for set instead of passing in the Grid instance to make this 
code more decoupled:

def step_cell(y, x, get, set):

    state = get(y, x)

    neighbors = count_neighbors(y, x, get)

    next_state = game_logic(state, neighbors)

    set(y, x, next_state)

Finally, I can define a function that progresses the whole grid of cells 
forward by a single step and then returns a new grid containing 
the state for the next generation. The important detail here is that 
I need all dependent functions to call the get method on the previ-
ous  generation’s Grid instance, and to call the set method on the 
next generation’s Grid instance. This is how I ensure that all of 
the cells move in lockstep, which is an essential part of how the game 
works. This is easy to achieve because I used function interfaces for 
get and set instead of passing Grid instances:

def simulate(grid):

    next_grid = Grid(grid.height, grid.width)
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    for y in range(grid.height):

        for x in range(grid.width):

            step_cell(y, x, grid.get, next_grid.set)

    return next_grid

Now, I can progress the grid forward one generation at a time. You 
can see how the glider moves down and to the right on the grid based 
on the simple rules from the game_logic function:

class ColumnPrinter:

    ...

 

columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = simulate(grid)

 

print(columns)

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------

This works great for a program that can run in one thread on a sin-
gle machine. But imagine that the program’s requirements have 
changed—as I alluded to above—and now I need to do some I/O (e.g., 
with a socket) from within the game_logic function. For example, this 
might be required if I’m trying to build a massively multiplayer online 
game where the state transitions are determined by a combination of 
the grid state and communication with other players over the Internet.

How can I extend this implementation to support such functional-
ity? The simplest thing to do is to add blocking I/O directly into the 
game_logic function:

def game_logic(state, neighbors):

    ...

    # Do some blocking input/output in here:

    data = my_socket.recv(100)

    ...

The problem with this approach is that it’s going to slow down the 
whole program. If the latency of the I/O required is 100 millisec-
onds (i.e., a reasonably good cross-country, round-trip latency on the 
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Internet), and there are 45 cells in the grid, then each generation will 
take a minimum of 4.5 seconds to evaluate because each cell is pro-
cessed serially in the simulate function. That’s far too slow and will 
make the game unplayable. It also scales poorly: If I later wanted to 
expand the grid to 10,000 cells, I would need over 15 minutes to eval-
uate each generation.

The solution is to do the I/O in parallel so each generation takes 
roughly 100 milliseconds, regardless of how big the grid is. The 
process of spawning a concurrent line of execution for each unit of 
work—a cell in this case—is called fan-out. Waiting for all of those 
concurrent units of work to finish before moving on to the next phase 
in a coordinated process—a generation in this case—is called fan-in.

Python provides many built-in tools for achieving fan-out and fan-in 
with various trade-offs. You should understand the pros and cons 
of each approach and choose the best tool for the job, depending 
on the situation. See the items that follow for details based on this 
Game of Life example program (Item 57: “Avoid Creating New Thread 
Instances for On-demand Fan-out,” Item 58: “Understand How Using 
Queue for Concurrency Requires Refactoring,” Item 59: “Consider 
ThreadPoolExecutor When Threads Are Necessary for Concurrency,” 
and Item 60: “Achieve Highly Concurrent I/O with Coroutines”).

Things to Remember

✦ A program often grows to require multiple concurrent lines of exe-
cution as its scope and complexity increases.

✦ The most common types of concurrency coordination are fan-out 
(generating new units of concurrency) and fan-in (waiting for exist-
ing units of concurrency to complete).

✦ Python has many different ways of achieving fan-out and fan-in.

Item 57:  Avoid Creating New Thread Instances for 
On-demand Fan-out

Threads are the natural first tool to reach for in order to do parallel 
I/O in Python (see Item 53: “Use Threads for Blocking I/O, Avoid for 
Parallelism”). However, they have significant downsides when you try 
to use them for fanning out to many concurrent lines of execution.

To demonstrate this, I’ll continue with the Game of Life example from 
before (see Item 56: “Know How to Recognize When Concurrency Is 
Necessary” for background and the implementations of various func-
tions and classes below). I’ll use threads to solve the latency problem 
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caused by doing I/O in the game_logic function. To begin, threads 
require coordination using locks to ensure that assumptions within 
data structures are maintained properly. I can create a subclass of 
the Grid class that adds locking behavior so an instance can be used 
by multiple threads simultaneously:

from threading import Lock

 

ALIVE = '*'

EMPTY = '-'

 

class Grid:

    ...

 

class LockingGrid(Grid):

    def __init__(self, height, width):

        super().__init__(height, width)

        self.lock = Lock()

 

    def __str__(self):

        with self.lock:

            return super().__str__()

 

    def get(self, y, x):

        with self.lock:

            return super().get(y, x)

 

    def set(self, y, x, state):

        with self.lock:

            return super().set(y, x, state)

Then, I can reimplement the simulate function to fan out by creating a 
thread for each call to step_cell. The threads will run in parallel and 
won’t have to wait on each other’s I/O. I can then fan in by waiting for 
all of the threads to complete before moving on to the next generation:

from threading import Thread

 

def count_neighbors(y, x, get):

    ...

 

def game_logic(state, neighbors):

    ...

    # Do some blocking input/output in here:

    data = my_socket.recv(100)

    ...
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def step_cell(y, x, get, set):

    state = get(y, x)

    neighbors = count_neighbors(y, x, get)

    next_state = game_logic(state, neighbors)

    set(y, x, next_state)

 

def simulate_threaded(grid):

    next_grid = LockingGrid(grid.height, grid.width)

 

    threads = []

    for y in range(grid.height):

        for x in range(grid.width):

            args = (y, x, grid.get, next_grid.set)

            thread = Thread(target=step_cell, args=args)

            thread.start()  # Fan out

            threads.append(thread)

 

    for thread in threads:

        thread.join()       # Fan in

 

    return next_grid

I can run this code using the same implementation of step_cell and 
the same driving code as before with only two lines changed to use 
the LockingGrid and simulate_threaded implementations:

class ColumnPrinter:

    ...

 

grid = LockingGrid(5, 9)            # Changed

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

 

columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = simulate_threaded(grid)  # Changed

 

print(columns)



>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------

This works as expected, and the I/O is now parallelized between the 
threads. However, this code has three big problems:

 ■ The Thread instances require special tools to coordinate with 
each other safely (see Item 54: “Use Lock to Prevent Data Races in 
Threads”). This makes the code that uses threads harder to rea-
son about than the procedural, single-threaded code from before. 
This complexity makes threaded code more difficult to extend and 
maintain over time.

 ■ Threads require a lot of memory—about 8 MB per executing 
thread. On many computers, that amount of memory doesn’t mat-
ter for the 45 threads I’d need in this example. But if the game 
grid had to grow to 10,000 cells, I would need to create that many 
threads, which couldn’t even fit in the memory of my machine. 
Running a thread per concurrent activity just won’t work.

 ■ Starting a thread is costly, and threads have a negative perfor-
mance impact when they run due to context switching between 
them. In this case, all of the threads are started and stopped each 
generation of the game, which has high overhead and will increase 
latency beyond the expected I/O time of 100 milliseconds.

This code would also be very difficult to debug if something went wrong. 
For example, imagine that the game_logic function raises an exception, 
which is highly likely due to the generally flaky nature of I/O:

def game_logic(state, neighbors):

    ...

    raise OSError('Problem with I/O')

    ...

I can test what this would do by running a Thread instance pointed at 
this function and redirecting the sys.stderr output from the program 
to an in-memory StringIO buffer:

import contextlib

import io
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fake_stderr = io.StringIO()

with contextlib.redirect_stderr(fake_stderr):

    thread = Thread(target=game_logic, args=(ALIVE, 3))

    thread.start()

    thread.join()

 

print(fake_stderr.getvalue())

>>>

Exception in thread Thread-226:

Traceback (most recent call last):

  File "threading.py", line 917, in _bootstrap_inner

    self.run()

  File "threading.py", line 865, in run

    self._target(*self._args, **self._kwargs)

  File "example.py", line 193, in game_logic

    raise OSError('Problem with I/O')

OSError: Problem with I/O

An OSError exception is raised as expected, but somehow the code 
that created the Thread and called join on it is unaffected. How can 
this be? The reason is that the Thread class will independently catch 
any exceptions that are raised by the target function and then write 
their traceback to sys.stderr. Such exceptions are never re-raised to 
the caller that started the thread in the first place.

Given all of these issues, it’s clear that threads are not the solution if 
you need to constantly create and finish new concurrent functions. 
Python provides other solutions that are a better fit (see Item 58: 
“Understand How Using Queue for Concurrency Requires Refactoring,” 
Item 59: “Consider ThreadPoolExecutor When Threads Are Necessary 
for Concurrency”, and Item 60: “Achieve Highly Concurrent I/O with 
Coroutines”).

Things to Remember

✦ Threads have many downsides: They’re costly to start and run 
if you need a lot of them, they each require a significant amount 
of memory, and they require special tools like Lock instances for 
coordination.

✦ Threads do not provide a built-in way to raise exceptions back in 
the code that started a thread or that is waiting for one to finish, 
which makes them difficult to debug.
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Item 58:  Understand How Using Queue for Concurrency 
Requires Refactoring

In the previous item (see Item 57: “Avoid Creating New Thread 
Instances for On-demand Fan-out”) I covered the downsides of using 
Thread to solve the parallel I/O problem in the Game of Life example 
from earlier (see Item 56: “Know How to Recognize When Concur-
rency Is Necessary” for background and the implementations of vari-
ous functions and classes below).

The next approach to try is to implement a threaded pipeline using 
the Queue class from the queue built-in module (see Item 55: “Use 
Queue to Coordinate Work Between Threads” for background; I rely on 
the implementations of ClosableQueue and StoppableWorker from that 
item in the example code below).

Here’s the general approach: Instead of creating one thread per cell 
per generation of the Game of Life, I can create a fixed number of 
worker threads upfront and have them do parallelized I/O as needed. 
This will keep my resource usage under control and eliminate the 
overhead of frequently starting new threads.

To do this, I need two ClosableQueue instances to use for communi-
cating to and from the worker threads that execute the game_logic 
function:

from queue import Queue

 

class ClosableQueue(Queue):

    ...

 

in_queue = ClosableQueue()

out_queue = ClosableQueue()

I can start multiple threads that will consume items from the 
in_queue, process them by calling game_logic, and put the results on 
out_queue. These threads will run concurrently, allowing for parallel 
I/O and reduced latency for each generation:

from threading import Thread

 

class StoppableWorker(Thread):

    ...

 

def game_logic(state, neighbors):

    ...
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    # Do some blocking input/output in here:

    data = my_socket.recv(100)

    ...

 

def game_logic_thread(item):

    y, x, state, neighbors = item

    try:

        next_state = game_logic(state, neighbors)

    except Exception as e:

        next_state = e

    return (y, x, next_state)

 

# Start the threads upfront

threads = []

for _ in range(5):

    thread = StoppableWorker(

        game_logic_thread, in_queue, out_queue)

    thread.start()

    threads.append(thread)

Now, I can redefine the simulate function to interact with these 
queues to request state transition decisions and receive correspond-
ing responses. Adding items to in_queue causes fan-out, and consum-
ing items from out_queue until it’s empty causes fan-in:

ALIVE = '*'

EMPTY = '-'

 

class SimulationError(Exception):

    pass

 

class Grid:

    ...

 

def count_neighbors(y, x, get):

    ...

 

def simulate_pipeline(grid, in_queue, out_queue):

    for y in range(grid.height):

        for x in range(grid.width):

            state = grid.get(y, x)

            neighbors = count_neighbors(y, x, grid.get)

            in_queue.put((y, x, state, neighbors))  # Fan out

 

    in_queue.join()

    out_queue.close()

 



    next_grid = Grid(grid.height, grid.width)

    for item in out_queue:                          # Fan in

        y, x, next_state = item

        if isinstance(next_state, Exception):

            raise SimulationError(y, x) from next_state

        next_grid.set(y, x, next_state)

 

    return next_grid

The calls to Grid.get and Grid.set both happen within this new 
simulate_pipeline function, which means I can use the  single-threaded 
implementation of Grid instead of the implementation that requires 
Lock instances for synchronization.

This code is also easier to debug than the Thread approach used 
in the previous item. If an exception occurs while doing I/O in the 
game_logic function, it will be caught, propagated to the out_queue, 
and then re-raised in the main thread:

def game_logic(state, neighbors):

    ...

    raise OSError('Problem with I/O in game_logic')

    ...

 

simulate_pipeline(Grid(1, 1), in_queue, out_queue)

>>>

Traceback ...

OSError: Problem with I/O in game_logic

 

The above exception was the direct cause of the following 

➥exception:

 

Traceback ...

SimulationError: (0, 0)

I can drive this multithreaded pipeline for repeated generations by 
calling simulate_pipeline in a loop:

class ColumnPrinter:

    ...

 

grid = Grid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)
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grid.set(2, 4, ALIVE)

 

columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = simulate_pipeline(grid, in_queue, out_queue)

 

print(columns)

 

for thread in threads:

    in_queue.close()

for thread in threads:

    thread.join()

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --------- | --*-*---- | --------- | ----*----

--***---- | --------- | ---**---- | --------- | --*-*----

--------- | --------- | ---*----- | --------- | ---**----

--------- | --------- | --------- | --------- | ---------

The results are the same as before. Although I’ve addressed the mem-
ory explosion problem, startup costs, and debugging issues of using 
threads on their own, many issues remain:

 ■ The simulate_pipeline function is even harder to follow than the 
simulate_threaded approach from the previous item.

 ■ Extra support classes were required for ClosableQueue and 
StoppableWorker in order to make the code easier to read, at the 
expense of increased complexity.

 ■ I have to specify the amount of potential parallelism—the num-
ber of threads running game_logic_thread—upfront based on my 
expectations of the workload instead of having the system auto-
matically scale up parallelism as needed.

 ■ In order to enable debugging, I have to manually catch exceptions 
in worker threads, propagate them on a Queue, and then re-raise 
them in the main thread.

However, the biggest problem with this code is apparent if the require-
ments change again. Imagine that later I needed to do I/O within 
the count_neighbors function in addition to the I/O that was needed 
within game_logic:

def count_neighbors(y, x, get):

    ...



    # Do some blocking input/output in here:

    data = my_socket.recv(100)

    ...

In order to make this parallelizable, I need to add another stage to the 
pipeline that runs count_neighbors in a thread. I need to make sure 
that exceptions propagate correctly between the worker threads and 
the main thread. And I need to use a Lock for the Grid class in order 
to ensure safe synchronization between the worker threads (see Item 
54: “Use Lock to Prevent Data Races in Threads” for background and 
Item 57: “Avoid Creating New Thread Instances for On-demand Fan-
out” for the implementation of LockingGrid):

def count_neighbors_thread(item):

    y, x, state, get = item

    try:

        neighbors = count_neighbors(y, x, get)

    except Exception as e:

        neighbors = e

    return (y, x, state, neighbors)

 

def game_logic_thread(item):

    y, x, state, neighbors = item

    if isinstance(neighbors, Exception):

        next_state = neighbors

    else:

        try:

            next_state = game_logic(state, neighbors)

        except Exception as e:

            next_state = e

    return (y, x, next_state)

 

class LockingGrid(Grid):

    ...

I have to create another set of Queue instances for the 
count_neighbors_thread workers and the corresponding Thread 
instances:

in_queue = ClosableQueue()

logic_queue = ClosableQueue()

out_queue = ClosableQueue()

 

threads = []
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for _ in range(5):

    thread = StoppableWorker(

        count_neighbors_thread, in_queue, logic_queue)

    thread.start()

    threads.append(thread)

 

for _ in range(5):

    thread = StoppableWorker(

        game_logic_thread, logic_queue, out_queue)

    thread.start()

    threads.append(thread)

Finally, I need to update simulate_pipeline to coordinate the multiple 
phases in the pipeline and ensure that work fans out and back in 
correctly:

def simulate_phased_pipeline(

        grid, in_queue, logic_queue, out_queue):

    for y in range(grid.height):

        for x in range(grid.width):

            state = grid.get(y, x)

            item = (y, x, state, grid.get)

            in_queue.put(item)          # Fan out

 

    in_queue.join()

    logic_queue.join()                  # Pipeline sequencing

    out_queue.close()

 

    next_grid = LockingGrid(grid.height, grid.width)

    for item in out_queue:              # Fan in

        y, x, next_state = item

        if isinstance(next_state, Exception):

            raise SimulationError(y, x) from next_state

        next_grid.set(y, x, next_state)

 

    return next_grid

With these updated implementations, now I can run the multiphase 
pipeline end-to-end:

grid = LockingGrid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

 



columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = simulate_phased_pipeline(

        grid, in_queue, logic_queue, out_queue)

 

print(columns)

 

for thread in threads:

    in_queue.close()

for thread in threads:

    logic_queue.close()

for thread in threads:

    thread.join()

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------

Again, this works as expected, but it required a lot of changes and 
boilerplate. The point here is that Queue does make it possible to solve 
fan-out and fan-in problems, but the overhead is very high. Although 
using Queue is a better approach than using Thread instances on their 
own, it’s still not nearly as good as some of the other tools provided 
by Python (see Item 59: “Consider ThreadPoolExecutor When Threads 
Are Necessary for Concurrency” and Item 60: “Achieve Highly Con-
current I/O with Coroutines”).

Things to Remember

✦ Using Queue instances with a fixed number of worker threads 
improves the scalability of fan-out and fan-in using threads.

✦ It takes a significant amount of work to refactor existing code to use 
Queue, especially when multiple stages of a pipeline are required.

✦ Using Queue fundamentally limits the total amount of I/O paral-
lelism a program can leverage compared to alternative approaches 
provided by other built-in Python features and modules.
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Item 59:  Consider ThreadPoolExecutor When Threads 
Are Necessary for Concurrency

Python includes the concurrent.futures built-in module, which pro-
vides the ThreadPoolExecutor class. It combines the best of the Thread 
(see Item 57: “Avoid Creating New Thread Instances for On-demand 
Fan-out”) and Queue (see Item 58: “Understand How Using Queue for 
Concurrency Requires Refactoring”) approaches to solving the par-
allel I/O problem from the Game of Life example (see Item 56: “Know 
How to Recognize When Concurrency Is Necessary” for background 
and the implementations of various functions and classes below):

ALIVE = '*'

EMPTY = '-'

 

class Grid:

    ...

 

class LockingGrid(Grid):

    ...

 

def count_neighbors(y, x, get):

    ...

 

def game_logic(state, neighbors):

    ...

    # Do some blocking input/output in here:

    data = my_socket.recv(100)

    ...

 

def step_cell(y, x, get, set):

    state = get(y, x)

    neighbors = count_neighbors(y, x, get)

    next_state = game_logic(state, neighbors)

    set(y, x, next_state)

Instead of starting a new Thread instance for each Grid square, I can 
fan out by submitting a function to an executor that will be run in a 
separate thread. Later, I can wait for the result of all tasks in order to 
fan in:

from concurrent.futures import ThreadPoolExecutor

 

def simulate_pool(pool, grid):

    next_grid = LockingGrid(grid.height, grid.width)
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    futures = []

    for y in range(grid.height):

        for x in range(grid.width):

            args = (y, x, grid.get, next_grid.set)

            future = pool.submit(step_cell, *args)  # Fan out

            futures.append(future)

 

    for future in futures:

        future.result()                             # Fan in

 

    return next_grid

The threads used for the executor can be allocated in advance, which 
means I don’t have to pay the startup cost on each execution of 
simulate_pool. I can also specify the maximum number of threads 
to use for the pool—using the max_workers parameter—to prevent the 
memory blow-up issues associated with the naive Thread solution to 
the parallel I/O problem:

class ColumnPrinter:

    ...

 

grid = LockingGrid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

 

columns = ColumnPrinter()

with ThreadPoolExecutor(max_workers=10) as pool:

    for i in range(5):

        columns.append(str(grid))

        grid = simulate_pool(pool, grid)

 

print(columns)

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------
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The best part about the ThreadPoolExecutor class is that it automati-
cally propagates exceptions back to the caller when the result method 
is called on the Future instance returned by the submit method:

def game_logic(state, neighbors):

    ...

    raise OSError('Problem with I/O')

    ...

 

with ThreadPoolExecutor(max_workers=10) as pool:

    task = pool.submit(game_logic, ALIVE, 3)

    task.result()

>>>

Traceback ...

OSError: Problem with I/O

If I needed to provide I/O parallelism for the count_neighbors func-
tion in addition to game_logic, no modifications to the program would 
be required since ThreadPoolExecutor already runs these functions 
concurrently as part of step_cell. It’s even possible to achieve CPU 
parallelism by using the same interface if necessary (see Item 64: 
“Consider concurrent.futures for True Parallelism”).

However, the big problem that remains is the limited amount of I/O par-
allelism that ThreadPoolExecutor provides. Even if I use a max_workers 
parameter of 100, this solution still won’t scale if I need 10,000+ cells 
in the grid that require simultaneous I/O. ThreadPoolExecutor is a 
good choice for situations where there is no asynchronous solution 
(e.g., file I/O), but there are better ways to maximize I/O parallel-
ism in many cases (see Item 60: “Achieve Highly Concurrent I/O with 
Coroutines”).

Things to Remember

✦ ThreadPoolExecutor enables simple I/O parallelism with limited 
refactoring, easily avoiding the cost of thread startup each time fan-
out concurrency is required.

✦ Although ThreadPoolExecutor eliminates the potential memory 
blow-up issues of using threads directly, it also limits I/O parallel-
ism by requiring max_workers to be specified upfront.

Item 60:  Achieve Highly Concurrent I/O with 
Coroutines

The previous items have tried to solve the parallel I/O problem for 
the Game of Life example with varying degrees of success. (See Item 
56: “Know How to Recognize When Concurrency Is Necessary” for 
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background and the implementations of various functions and classes 
below.) All of the other approaches fall short in their ability to han-
dle thousands of simultaneously concurrent functions (see Item 57: 
“Avoid Creating New Thread Instances for On-demand Fan-out,” Item 
58: “Understand How Using Queue for Concurrency Requires Refactor-
ing,” and Item 59: “Consider ThreadPoolExecutor When Threads Are 
Necessary for Concurrency”).

Python addresses the need for highly concurrent I/O with coroutines. 
Coroutines let you have a very large number of seemingly simultane-
ous functions in your Python programs. They’re implemented using 
the async and await keywords along with the same infrastructure 
that powers generators (see Item 30: “Consider Generators Instead of 
Returning Lists,” Item 34: “Avoid Injecting Data into Generators with 
send,” and Item 35: “Avoid Causing State Transitions in Generators 
with throw”). 

The cost of starting a coroutine is a function call. Once a coroutine 
is active, it uses less than 1 KB of memory until it’s exhausted. Like 
threads, coroutines are independent functions that can consume 
inputs from their environment and produce resulting outputs. The 
difference is that coroutines pause at each await expression and 
resume executing an async function after the pending awaitable is 
resolved (similar to how yield behaves in generators).

Many separate async functions advanced in lockstep all seem to 
run simultaneously, mimicking the concurrent behavior of Python 
threads. However, coroutines do this without the memory overhead, 
startup and context switching costs, or complex locking and synchro-
nization code that’s required for threads. The magical mechanism 
powering coroutines is the event loop, which can do highly concurrent 
I/O efficiently, while rapidly interleaving execution between appropri-
ately written functions.

I can use coroutines to implement the Game of Life. My goal is to 
allow for I/O to occur within the game_logic function while overcom-
ing the problems from the Thread and Queue approaches in the previ-
ous items. To do this, first I indicate that the game_logic function is a 
coroutine by defining it using async def instead of def. This will allow 
me to use the await syntax for I/O, such as an asynchronous read 
from a socket:

ALIVE = '*'

EMPTY = '-'
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class Grid:

    ...

 

def count_neighbors(y, x, get):

    ...

 

async def game_logic(state, neighbors):

    ...

    # Do some input/output in here:

    data = await my_socket.read(50)

    ...

Similarly, I can turn step_cell into a coroutine by adding async to its 
definition and using await for the call to the game_logic function:

async def step_cell(y, x, get, set):

    state = get(y, x)

    neighbors = count_neighbors(y, x, get)

    next_state = await game_logic(state, neighbors)

    set(y, x, next_state)

The simulate function also needs to become a coroutine:

import asyncio

 

async def simulate(grid):

    next_grid = Grid(grid.height, grid.width)

 

    tasks = []

    for y in range(grid.height):

        for x in range(grid.width):

            task = step_cell(

                y, x, grid.get, next_grid.set)      # Fan out

            tasks.append(task)

 

    await asyncio.gather(*tasks)                    # Fan in

 

    return next_grid

The coroutine version of the simulate function requires some 
explanation:

 ■ Calling step_cell doesn’t immediately run that function. Instead, 
it returns a coroutine instance that can be used with an await 
expression at a later time. This is similar to how generator func-
tions that use yield return a generator instance when they’re 
called instead of executing immediately. Deferring execution like 
this is the mechanism that causes fan-out.
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 ■ The gather function from the asyncio built-in library causes 
fan-in. The await expression on gather instructs the event loop to 
run the step_cell coroutines concurrently and resume execution 
of the simulate coroutine when all of them have been completed.

 ■ No locks are required for the Grid instance since all execution 
occurs within a single thread. The I/O becomes parallelized as 
part of the event loop that’s provided by asyncio.

Finally, I can drive this code with a one-line change to the origi-
nal example. This relies on the asyncio.run function to execute the 
simulate coroutine in an event loop and carry out its dependent I/O:

class ColumnPrinter:

    ...

 

grid = Grid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

 

columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = asyncio.run(simulate(grid))   # Run the event loop

 

print(columns)

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------

The result is the same as before. All of the overhead associ-
ated with threads has been eliminated. Whereas the Queue and 
ThreadPoolExecutor approaches are limited in their exception 
 handling—merely re-raising exceptions across thread boundaries—
with coroutines I can actually use the interactive debugger to step 
through the code line by line (see Item 80: “Consider Interactive 
Debugging with pdb”):

async def game_logic(state, neighbors):

    ...
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    raise OSError('Problem with I/O')

    ...

 

asyncio.run(game_logic(ALIVE, 3))

>>>

Traceback ...

OSError: Problem with I/O

Later, if my requirements change and I also need to do I/O from 
within count_neighbors, I can easily accomplish this by adding async 
and await keywords to the existing functions and call sites instead of 
having to restructure everything as I would have had to do if I were 
using Thread or Queue instances (see Item 61: “Know How to Port 
Threaded I/O to asyncio” for another example):

async def count_neighbors(y, x, get):

    ...

 

async def step_cell(y, x, get, set):

    state = get(y, x)

    neighbors = await count_neighbors(y, x, get)

    next_state = await game_logic(state, neighbors)

    set(y, x, next_state)

 

grid = Grid(5, 9)

grid.set(0, 3, ALIVE)

grid.set(1, 4, ALIVE)

grid.set(2, 2, ALIVE)

grid.set(2, 3, ALIVE)

grid.set(2, 4, ALIVE)

 

columns = ColumnPrinter()

for i in range(5):

    columns.append(str(grid))

    grid = asyncio.run(simulate(grid))

 

print(columns)

>>>

    0     |     1     |     2     |     3     |     4    

---*----- | --------- | --------- | --------- | ---------

----*---- | --*-*---- | ----*---- | ---*----- | ----*----

--***---- | ---**---- | --*-*---- | ----**--- | -----*---

--------- | ---*----- | ---**---- | ---**---- | ---***---

--------- | --------- | --------- | --------- | ---------
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The beauty of coroutines is that they decouple your code’s instruc-
tions for the external environment (i.e., I/O) from the implementation 
that carries out your wishes (i.e., the event loop). They let you focus 
on the logic of what you’re trying to do instead of wasting time trying 
to figure out how you’re going to accomplish your goals concurrently.

Things to Remember

✦ Functions that are defined using the async keyword are called 
coroutines. A caller can receive the result of a dependent coroutine 
by using the await keyword.

✦ Coroutines provide an efficient way to run tens of thousands of 
functions seemingly at the same time.

✦ Coroutines can use fan-out and fan-in in order to parallelize I/O, 
while also overcoming all of the problems associated with doing I/O 
in threads.

Item 61: Know How to Port Threaded I/O to asyncio

Once you understand the advantage of coroutines (see Item 60: 
“Achieve Highly Concurrent I/O with Coroutines”), it may seem daunt-
ing to port an existing codebase to use them. Luckily, Python’s sup-
port for asynchronous execution is well integrated into the language. 
This makes it straightforward to move code that does threaded, 
blocking I/O over to coroutines and asynchronous I/O.

For example, say that I have a TCP-based server for playing a game 
involving guessing a number. The server takes lower and upper 
parameters that determine the range of numbers to consider. Then, 
the server returns guesses for integer values in that range as they are 
requested by the client. Finally, the server collects reports from the 
client on whether each of those numbers was closer (warmer) or fur-
ther away (colder) from the client’s secret number.

The most common way to build this type of client/server system is by 
using blocking I/O and threads (see Item 53: “Use Threads for Block-
ing I/O, Avoid for Parallelism”). To do this, I need a helper class that 
can manage sending and receiving of messages. For my purposes, 
each line sent or received represents a command to be processed:

class EOFError(Exception):

    pass

 

class ConnectionBase:

    def __init__(self, connection):
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        self.connection = connection

        self.file = connection.makefile('rb')

 

    def send(self, command):

        line = command + '\n'

        data = line.encode()

        self.connection.send(data)

 

    def receive(self):

        line = self.file.readline()

        if not line:

            raise EOFError('Connection closed')

        return line[:-1].decode()

The server is implemented as a class that handles one connection at a 
time and maintains the client’s session state: 

import random

 

WARMER = 'Warmer'

COLDER = 'Colder'

UNSURE = 'Unsure'

CORRECT = 'Correct'

 

class UnknownCommandError(Exception):

    pass

 

class Session(ConnectionBase):

    def __init__(self, *args):

        super().__init__(*args)

        self._clear_state(None, None)

 

    def _clear_state(self, lower, upper):

        self.lower = lower

        self.upper = upper

        self.secret = None

        self.guesses = []

It has one primary method that handles incoming commands from 
the client and dispatches them to methods as needed. Note that here 
I’m using an assignment expression (introduced in Python 3.8; see 
Item 10: “Prevent Repetition with Assignment Expressions”) to keep 
the code short:

    def loop(self):

        while command := self.receive():



            parts = command.split(' ')

            if parts[0] == 'PARAMS':

                self.set_params(parts)

            elif parts[0] == 'NUMBER':

                self.send_number()

            elif parts[0] == 'REPORT':

                self.receive_report(parts)

            else:

                raise UnknownCommandError(command)

The first command sets the lower and upper bounds for the numbers 
that the server is trying to guess:

    def set_params(self, parts):

        assert len(parts) == 3

        lower = int(parts[1])

        upper = int(parts[2])

        self._clear_state(lower, upper)

The second command makes a new guess based on the previous state 
that’s stored in the client’s Session instance. Specifically, this code 
ensures that the server will never try to guess the same number more 
than once per parameter assignment:

    def next_guess(self):

        if self.secret is not None:

            return self.secret

 

        while True:

            guess = random.randint(self.lower, self.upper)

            if guess not in self.guesses:

                return guess

 

    def send_number(self):

        guess = self.next_guess()

        self.guesses.append(guess)

        self.send(format(guess))

The third command receives the decision from the client of whether 
the guess was warmer or colder, and it updates the Session state 
accordingly:

    def receive_report(self, parts):

        assert len(parts) == 2

        decision = parts[1]

 

        last = self.guesses[-1]
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        if decision == CORRECT:

            self.secret = last

 

        print(f'Server: {last} is {decision}')

The client is also implemented using a stateful class:

import contextlib

import math

 

class Client(ConnectionBase):

    def __init__(self, *args):

        super().__init__(*args)

        self._clear_state()

 

    def _clear_state(self):

        self.secret = None

        self.last_distance = None

The parameters of each guessing game are set using a with state-
ment to ensure that state is correctly managed on the server side (see 
Item 66: “Consider contextlib and with Statements for Reusable try/
finally Behavior” for background and Item 63: “Avoid Blocking the 
asyncio Event Loop to Maximize Responsiveness” for another exam-
ple). This method sends the first command to the server:

    @contextlib.contextmanager

    def session(self, lower, upper, secret):

        print(f'Guess a number between {lower} and {upper}!'

              f' Shhhhh, it\'s {secret}.')

        self.secret = secret

        self.send(f'PARAMS {lower} {upper}')

        try:

            yield

        finally:

            self._clear_state()

            self.send('PARAMS 0 -1')

New guesses are requested from the server, using another method 
that implements the second command:

    def request_numbers(self, count):

        for _ in range(count):

            self.send('NUMBER')

            data = self.receive()

            yield int(data)

            if self.last_distance == 0:

                return



Whether each guess from the server was warmer or colder than the 
last is reported using the third command in the final method:

    def report_outcome(self, number):

        new_distance = math.fabs(number - self.secret)

        decision = UNSURE

 

        if new_distance == 0:

            decision = CORRECT

        elif self.last_distance is None:

            pass

        elif new_distance < self.last_distance:

            decision = WARMER

        elif new_distance > self.last_distance:

            decision = COLDER

 

        self.last_distance = new_distance

 

        self.send(f'REPORT {decision}')

        return decision

I can run the server by having one thread listen on a socket and 
spawn additional threads to handle the new connections:

import socket

from threading import Thread

 

def handle_connection(connection):

    with connection:

        session = Session(connection)

        try:

            session.loop()

        except EOFError:

            pass

 

def run_server(address):

    with socket.socket() as listener:

        listener.bind(address)

        listener.listen()

        while True:

            connection, _ = listener.accept()

            thread = Thread(target=handle_connection,

                            args=(connection,),

                            daemon=True)

            thread.start()
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The client runs in the main thread and returns the results of the 
guessing game to the caller. This code explicitly exercises a variety 
of Python language features (for loops, with statements, generators, 
comprehensions) so that below I can show what it takes to port these 
over to using coroutines:

def run_client(address):

    with socket.create_connection(address) as connection:

        client = Client(connection)

 

        with client.session(1, 5, 3):

            results = [(x, client.report_outcome(x))

                       for x in client.request_numbers(5)]

 

        with client.session(10, 15, 12):

            for number in client.request_numbers(5):

                outcome = client.report_outcome(number)

                results.append((number, outcome))

 

    return results

Finally, I can glue all of this together and confirm that it works as 
expected:

def main():

    address = ('127.0.0.1', 1234)

    server_thread = Thread(

        target=run_server, args=(address,), daemon=True)

    server_thread.start()

 

    results = run_client(address)

    for number, outcome in results:

        print(f'Client: {number} is {outcome}')

 

main()

>>>

Guess a number between 1 and 5! Shhhhh, it's 3.

Server: 4 is Unsure

Server: 1 is Colder

Server: 5 is Unsure

Server: 3 is Correct

Guess a number between 10 and 15! Shhhhh, it's 12.

Server: 11 is Unsure

Server: 10 is Colder

Server: 12 is Correct



Client: 4 is Unsure

Client: 1 is Colder

Client: 5 is Unsure

Client: 3 is Correct

Client: 11 is Unsure

Client: 10 is Colder

Client: 12 is Correct

How much effort is needed to convert this example to using async, 
await, and the asyncio built-in module? 

First, I need to update my ConnectionBase class to provide coroutines 
for send and receive instead of blocking I/O methods. I’ve marked 
each line that’s changed with a # Changed comment to make it clear 
what the delta is between this new example and the code above:

class AsyncConnectionBase:

    def __init__(self, reader, writer):             # Changed

        self.reader = reader                        # Changed

        self.writer = writer                        # Changed

 

    async def send(self, command):

        line = command + '\n'

        data = line.encode()

        self.writer.write(data)                     # Changed

        await self.writer.drain()                   # Changed

 

    async def receive(self):

        line = await self.reader.readline()         # Changed

        if not line:

            raise EOFError('Connection closed')

        return line[:-1].decode()

I can create another stateful class to represent the session state for 
a single connection. The only changes here are the class’s name and 
inheriting from AsyncConnectionBase instead of ConnectionBase:

class AsyncSession(AsyncConnectionBase):            # Changed

    def __init__(self, *args):

        ...

 

    def _clear_values(self, lower, upper):

        ...

The primary entry point for the server’s command processing loop 
requires only minimal changes to become a coroutine:

    async def loop(self):                           # Changed
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        while command := await self.receive():      # Changed

            parts = command.split(' ')

            if parts[0] == 'PARAMS':

                self.set_params(parts)

            elif parts[0] == 'NUMBER':

                await self.send_number()            # Changed

            elif parts[0] == 'REPORT':

                self.receive_report(parts)

            else:

                raise UnknownCommandError(command)

No changes are required for handling the first command:

    def set_params(self, parts):

        ...

The only change required for the second command is allowing asyn-
chronous I/O to be used when guesses are transmitted to the client:

    def next_guess(self):

        ...

 

    async def send_number(self):                    # Changed

        guess = self.next_guess()

        self.guesses.append(guess)

        await self.send(format(guess))              # Changed

No changes are required for processing the third command:

    def receive_report(self, parts):

        ...

Similarly, the client class needs to be reimplemented to inherit from 
AsyncConnectionBase:

class AsyncClient(AsyncConnectionBase):             # Changed

    def __init__(self, *args):

        ...

 

    def _clear_state(self):

        ...

The first command method for the client requires a few async and await 
keywords to be added. It also needs to use the asynccontextmanager 
helper function from the contextlib built-in module:

    @contextlib.asynccontextmanager                 # Changed

    async def session(self, lower, upper, secret):  # Changed

        print(f'Guess a number between {lower} and {upper}!'

              f' Shhhhh, it\'s {secret}.')



        self.secret = secret

        await self.send(f'PARAMS {lower} {upper}')  # Changed

        try:

            yield

        finally:

            self._clear_state()

            await self.send('PARAMS 0 -1')          # Changed

The second command again only requires the addition of async and 
await anywhere coroutine behavior is required:

    async def request_numbers(self, count):         # Changed

        for _ in range(count):

            await self.send('NUMBER')               # Changed

            data = await self.receive()             # Changed

            yield int(data)

            if self.last_distance == 0:

                return

The third command only requires adding one async and one await 
keyword:

    async def report_outcome(self, number):         # Changed

        ...

        await self.send(f'REPORT {decision}')       # Changed

        ...

The code that runs the server needs to be completely reimplemented 
to use the asyncio built-in module and its start_server function:

import asyncio

 

async def handle_async_connection(reader, writer):

    session = AsyncSession(reader, writer)

    try:

        await session.loop()

    except EOFError:

        pass

 

async def run_async_server(address):

    server = await asyncio.start_server(

        handle_async_connection, *address)

    async with server:

        await server.serve_forever()

The run_client function that initiates the game requires changes on 
nearly every line. Any code that previously interacted with the block-
ing socket instances has to be replaced with asyncio versions of 
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similar functionality (which are marked with # New below). All other 
lines in the function that require interaction with coroutines need to 
use async and await keywords as appropriate. If you forget to add one 
of these keywords in a necessary place, an exception will be raised at 
runtime.

async def run_async_client(address):

    streams = await asyncio.open_connection(*address)   # New

    client = AsyncClient(*streams)                      # New

 

    async with client.session(1, 5, 3):

        results = [(x, await client.report_outcome(x))

                   async for x in client.request_numbers(5)]

 

    async with client.session(10, 15, 12):

        async for number in client.request_numbers(5):

            outcome = await client.report_outcome(number)

            results.append((number, outcome))

 

    _, writer = streams                                 # New

    writer.close()                                      # New

    await writer.wait_closed()                          # New

 

    return results

What’s most interesting about run_async_client is that I didn’t have 
to restructure any of the substantive parts of interacting with the 
AsyncClient in order to port this function over to use coroutines. Each 
of the language features that I needed has a corresponding asynchro-
nous version, which made the migration easy to do.

This won’t always be the case, though. There are currently no asyn-
chronous versions of the next and iter built-in functions (see Item 
31: “Be Defensive When Iterating Over Arguments” for background); 
you have to await on the __anext__ and __aiter__ methods directly. 
There’s also no asynchronous version of yield from (see Item 33: 
“Compose Multiple Generators with yield from”), which makes it 
noisier to compose generators. But given the rapid pace at which 
async functionality is being added to Python, it’s only a matter of time 
before these features become available.

Finally, the glue needs to be updated to run this new asynchro-
nous example end-to-end. I use the asyncio.create_task function to 
enqueue the server for execution on the event loop so that it runs in 
parallel with the client when the await expression is reached. This is 



another approach to causing fan-out with different behavior than the 
asyncio.gather function:

async def main_async():

    address = ('127.0.0.1', 4321)

 

    server = run_async_server(address)

    asyncio.create_task(server)

 

    results = await run_async_client(address)

    for number, outcome in results:

        print(f'Client: {number} is {outcome}')

 

asyncio.run(main_async())

>>>

Guess a number between 1 and 5! Shhhhh, it's 3.

Server: 5 is Unsure

Server: 4 is Warmer

Server: 2 is Unsure

Server: 1 is Colder

Server: 3 is Correct

Guess a number between 10 and 15! Shhhhh, it's 12.

Server: 14 is Unsure

Server: 10 is Unsure

Server: 15 is Colder

Server: 12 is Correct

Client: 5 is Unsure

Client: 4 is Warmer

Client: 2 is Unsure

Client: 1 is Colder

Client: 3 is Correct

Client: 14 is Unsure

Client: 10 is Unsure

Client: 15 is Colder

Client: 12 is Correct

This works as expected. The coroutine version is easier to follow 
because all of the interactions with threads have been removed. The 
asyncio built-in module also provides many helper functions and 
shortens the amount of socket boilerplate required to write a server 
like this.

Your use case may be more complex and harder to port for a variety 
of reasons. The asyncio module has a vast number of I/O, synchro-
nization, and task management features that could make adopting 

 Item 61: Know How to Port Threaded I/O to asyncio 281



282 Chapter 7 Concurrency and Parallelism

coroutines easier for you (see Item 62: “Mix Threads and Coroutines 
to Ease the Transition to asyncio” and Item 63: “Avoid Blocking the 
asyncio Event Loop to Maximize Responsiveness”). Be sure to check 
out the online documentation for the library (https://docs.python.
org/3/library/asyncio.html) to understand its full potential.

Things to Remember

✦ Python provides asynchronous versions of for loops, with state-
ments, generators, comprehensions, and library helper functions 
that can be used as drop-in replacements in coroutines.

✦ The asyncio built-in module makes it straightforward to port exist-
ing code that uses threads and blocking I/O over to coroutines and 
asynchronous I/O.

Item 62:  Mix Threads and Coroutines to Ease the 
Transition to asyncio

In the previous item (see Item 61: “Know How to Port Threaded I/O to 
asyncio”), I ported a TCP server that does blocking I/O with threads 
over to use asyncio with coroutines. The transition was big-bang: 
I moved all of the code to the new style in one go. But it’s rarely  feasible 
to port a large program this way. Instead, you usually need to incre-
mentally migrate your codebase while also updating your tests as 
needed and verifying that everything works at each step along the way.

In order to do that, your codebase needs to be able to use threads 
for blocking I/O (see Item 53: “Use Threads for Blocking I/O, Avoid 
for Parallelism”) and coroutines for asynchronous I/O (see Item 60: 
“Achieve Highly Concurrent I/O with Coroutines”) at the same time 
in a way that’s mutually compatible. Practically, this means that you 
need threads to be able to run coroutines, and you need coroutines to 
be able to start and wait on threads. Luckily, asyncio includes built-in 
facilities for making this type of interoperability straightforward.

For example, say that I’m writing a program that merges log files into 
one output stream to aid with debugging. Given a file handle for an 
input log, I need a way to detect whether new data is available and 
return the next line of input. I can do this using the tell method of 
the file handle to check whether the current read position matches the 
length of the file. When no new data is present, an exception should 
be raised (see Item 20: “Prefer Raising Exceptions to Returning None” 
for background):

class NoNewData(Exception):

    pass
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def readline(handle):

    offset = handle.tell()

    handle.seek(0, 2)

    length = handle.tell()

 

    if length == offset:

        raise NoNewData

 

    handle.seek(offset, 0)

    return handle.readline()

By wrapping this function in a while loop, I can turn it into a worker 
thread. When a new line is available, I call a given callback function 
to write it to the output log (see Item 38: “Accept Functions Instead of 
Classes for Simple Interfaces” for why to use a function interface for 
this instead of a class). When no data is available, the thread sleeps 
to reduce the amount of busy waiting caused by polling for new data. 
When the input file handle is closed, the worker thread exits:

import time

 

def tail_file(handle, interval, write_func):

    while not handle.closed:

        try:

            line = readline(handle)

        except NoNewData:

            time.sleep(interval)

        else:

            write_func(line)

Now, I can start one worker thread per input file and unify their out-
put into a single output file. The write helper function below needs to 
use a Lock instance (see Item 54: “Use Lock to Prevent Data Races in 
Threads”) in order to serialize writes to the output stream and make 
sure that there are no intra-line conflicts:

from threading import Lock, Thread

 

def run_threads(handles, interval, output_path):

    with open(output_path, 'wb') as output:

        lock = Lock()

        def write(data):

            with lock:

                output.write(data)
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        threads = []

        for handle in handles:

            args = (handle, interval, write)

            thread = Thread(target=tail_file, args=args)

            thread.start()

            threads.append(thread)

 

        for thread in threads:

            thread.join()

As long as an input file handle is still alive, its corresponding worker 
thread will also stay alive. That means it’s sufficient to wait for the 
join method from each thread to complete in order to know that the 
whole process is done.

Given a set of input paths and an output path, I can call run_threads 
and confirm that it works as expected. How the input file handles are 
created or separately closed isn’t important in order to demonstrate 
this code’s behavior, nor is the output verification function—defined 
in confirm_merge that follows—which is why I’ve left them out here:

def confirm_merge(input_paths, output_path):

    ...

 

input_paths = ...

handles = ...

output_path = ...

run_threads(handles, 0.1, output_path)

 

confirm_merge(input_paths, output_path)

With this threaded implementation as the starting point, how can 
I incrementally convert this code to use asyncio and coroutines 
instead? There are two approaches: top-down and bottom-up.

Top-down means starting at the highest parts of a codebase, like in 
the main entry points, and working down to the individual functions 
and classes that are the leaves of the call hierarchy. This approach 
can be useful when you maintain a lot of common modules that you 
use across many different programs. By porting the entry points first, 
you can wait to port the common modules until you’re already using 
coroutines everywhere else.

The concrete steps are:

 1. Change a top function to use async def instead of def.

 2. Wrap all of its calls that do I/O—potentially blocking the event 
loop—to use asyncio.run_in_executor instead.



 3. Ensure that the resources or callbacks used by run_in_executor 
invocations are properly synchronized (i.e., using Lock or the 
asyncio.run_coroutine_threadsafe function).

 4. Try to eliminate get_event_loop and run_in_executor calls by 
moving downward through the call hierarchy and converting 
intermediate functions and methods to coroutines (following the 
first three steps).

Here, I apply steps 1–3 to the run_threads function:

import asyncio

 

async def run_tasks_mixed(handles, interval, output_path):

    loop = asyncio.get_event_loop()

 

    with open(output_path, 'wb') as output:

        async def write_async(data):

            output.write(data)

 

        def write(data):

            coro = write_async(data)

            future = asyncio.run_coroutine_threadsafe(

                coro, loop)

            future.result()

 

        tasks = []

        for handle in handles:

            task = loop.run_in_executor(

                None, tail_file, handle, interval, write)

            tasks.append(task)

 

        await asyncio.gather(*tasks)

The run_in_executor method instructs the event loop to run a given 
function—tail_file in this case—using a specific ThreadPoolExecutor 
(see Item 59: “Consider ThreadPoolExecutor When Threads Are Neces-
sary for Concurrency”) or a default executor instance when the first 
parameter is None. By making multiple calls to run_in_executor with-
out corresponding await expressions, the run_tasks_mixed coroutine 
fans out to have one concurrent line of execution for each input file. 
Then, the asyncio.gather function along with an await expression 
fans in the tail_file threads until they all complete (see Item 56: 
“Know How to Recognize When Concurrency Is Necessary” for more 
about fan-out and fan-in).
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This code eliminates the need for the Lock instance in the write helper 
by using asyncio.run_coroutine_threadsafe. This function allows 
plain old worker threads to call a coroutine—write_async in this 
case—and have it execute in the event loop from the main thread (or 
from any other thread, if necessary). This effectively synchronizes the 
threads together and ensures that all writes to the output file are only 
done by the event loop in the main thread. Once the asyncio.gather 
awaitable is resolved, I can assume that all writes to the output file 
have also completed, and thus I can close the output file handle in 
the with statement without having to worry about race conditions.

I can verify that this code works as expected. I use the asyncio.run 
function to start the coroutine and run the main event loop:

input_paths = ...

handles = ...

output_path = ...

asyncio.run(run_tasks_mixed(handles, 0.1, output_path))

 

confirm_merge(input_paths, output_path)

Now, I can apply step 4 to the run_tasks_mixed function by moving 
down the call stack. I can redefine the tail_file dependent function 
to be an asynchronous coroutine instead of doing blocking I/O by fol-
lowing steps 1–3:

async def tail_async(handle, interval, write_func):

    loop = asyncio.get_event_loop()

 

    while not handle.closed:

        try:

            line = await loop.run_in_executor(

                None, readline, handle)

        except NoNewData:

            await asyncio.sleep(interval)

        else:

            await write_func(line)

This new implementation of tail_async allows me to push calls to 
get_event_loop and run_in_executor down the stack and out of the 
run_tasks_mixed function entirely. What’s left is clean and much eas-
ier to follow:

async def run_tasks(handles, interval, output_path):

    with open(output_path, 'wb') as output:

        async def write_async(data):

            output.write(data)

 



        tasks = []

        for handle in handles:

            coro = tail_async(handle, interval, write_async)

            task = asyncio.create_task(coro)

            tasks.append(task)

 

        await asyncio.gather(*tasks)

I can verify that run_tasks works as expected, too:

input_paths = ...

handles = ...

output_path = ...

asyncio.run(run_tasks(handles, 0.1, output_path))

 

confirm_merge(input_paths, output_path)

It’s possible to continue this iterative refactoring pattern and convert 
readline into an asynchronous coroutine as well. However, that func-
tion requires so many blocking file I/O operations that it doesn’t seem 
worth porting, given how much that would reduce the clarity of the 
code and hurt performance. In some situations, it makes sense to 
move everything to asyncio, and in others it doesn’t.

The bottom-up approach to adopting coroutines has four steps that 
are similar to the steps of the top-down style, but the process tra-
verses the call hierarchy in the opposite direction: from leaves to 
entry points.

The concrete steps are:

 1. Create a new asynchronous coroutine version of each leaf func-
tion that you’re trying to port.

 2. Change the existing synchronous functions so they call the 
coroutine versions and run the event loop instead of implement-
ing any real behavior.

 3. Move up a level of the call hierarchy, make another layer of corou-
tines, and replace existing calls to synchronous functions with 
calls to the coroutines defined in step 1.

 4. Delete synchronous wrappers around coroutines created in step 2 
as you stop requiring them to glue the pieces together.

For the example above, I would start with the tail_file function since 
I decided that the readline function should keep using blocking I/O. 
I can rewrite tail_file so it merely wraps the tail_async coroutine 
that I defined above. To run that coroutine until it finishes, I need to 
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create an event loop for each tail_file worker thread and then call 
its run_until_complete method. This method will block the current 
thread and drive the event loop until the tail_async coroutine exits, 
achieving the same behavior as the threaded, blocking I/O version of 
tail_file:

def tail_file(handle, interval, write_func):

    loop = asyncio.new_event_loop()

    asyncio.set_event_loop(loop)

 

    async def write_async(data):

        write_func(data)

 

    coro = tail_async(handle, interval, write_async)

    loop.run_until_complete(coro)

This new tail_file function is a drop-in replacement for the old one. 
I can verify that everything works as expected by calling run_threads 
again:

input_paths = ...

handles = ...

output_path = ...

run_threads(handles, 0.1, output_path)

 

confirm_merge(input_paths, output_path)

After wrapping tail_async with tail_file, the next step is to convert 
the run_threads function to a coroutine. This ends up being the same 
work as step 4 of the top-down approach above, so at this point, the 
styles converge.

This is a great start for adopting asyncio, but there’s even more 
that you could do to increase the responsiveness of your program 
(see Item 63: “Avoid Blocking the asyncio Event Loop to Maximize 
Responsiveness”).

Things to Remember

✦ The awaitable run_in_executor method of the asyncio event 
loop enables coroutines to run synchronous functions in 
ThreadPoolExecutor pools. This facilitates top-down migrations to 
asyncio.

✦ The run_until_complete method of the asyncio event loop enables 
synchronous code to run a coroutine until it finishes. The 
asyncio.run_coroutine_threadsafe function provides the same 
functionality across thread boundaries. Together these help with 
bottom-up migrations to asyncio.
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Item 63:  Avoid Blocking the asyncio Event Loop to 
Maximize Responsiveness

In the previous item I showed how to migrate to asyncio incrementally 
(see Item 62: “Mix Threads and Coroutines to Ease the Transition to 
asyncio” for background and the implementation of various functions 
below). The resulting coroutine properly tails input files and merges 
them into a single output:

import asyncio

 

async def run_tasks(handles, interval, output_path):

    with open(output_path, 'wb') as output:

        async def write_async(data):

            output.write(data)

 

        tasks = []

        for handle in handles:

            coro = tail_async(handle, interval, write_async)

            task = asyncio.create_task(coro)

            tasks.append(task)

 

        await asyncio.gather(*tasks)

However, it still has one big problem: The open, close, and write calls 
for the output file handle happen in the main event loop. These opera-
tions all require making system calls to the program’s host operating 
system, which may block the event loop for significant amounts of 
time and prevent other coroutines from making progress. This could 
hurt overall responsiveness and increase latency, especially for pro-
grams such as highly concurrent servers.

I can detect when this problem happens by passing the debug=True 
parameter to the asyncio.run function. Here, I show how the file and 
line of a bad coroutine, presumably blocked on a slow system call, 
can be identified:

import time

 

async def slow_coroutine():

    time.sleep(0.5)  # Simulating slow I/O

 

asyncio.run(slow_coroutine(), debug=True)

>>>

Executing <Task finished name='Task-1' coro=<slow_coroutine() 

➥done, defined at example.py:29> result=None created 

➥at .../asyncio/base_events.py:487> took 0.503 seconds

...
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If I want the most responsive program possible, I need to minimize 
the potential system calls that are made from within the event loop. 
In this case, I can create a new Thread subclass (see Item 53: “Use 
Threads for Blocking I/O, Avoid for Parallelism”) that encapsulates 
everything required to write to the output file using its own event 
loop:

from threading import Thread

 

class WriteThread(Thread):

    def __init__(self, output_path):

        super().__init__()

        self.output_path = output_path

        self.output = None

        self.loop = asyncio.new_event_loop()

 

    def run(self):

        asyncio.set_event_loop(self.loop)

        with open(self.output_path, 'wb') as self.output:

            self.loop.run_forever()

 

        # Run one final round of callbacks so the await on

        # stop() in another event loop will be resolved.

        self.loop.run_until_complete(asyncio.sleep(0))

Coroutines in other threads can directly call and await on the write 
method of this class, since it’s merely a thread-safe wrapper around 
the real_write method that actually does the I/O. This eliminates 
the need for a Lock (see Item 54: “Use Lock to Prevent Data Races in 
Threads”):

    async def real_write(self, data):

        self.output.write(data)

 

    async def write(self, data):

        coro = self.real_write(data)

        future = asyncio.run_coroutine_threadsafe(

            coro, self.loop)

        await asyncio.wrap_future(future)

Other coroutines can tell the worker thread when to stop in a thread-
safe manner, using similar boilerplate:

    async def real_stop(self):

        self.loop.stop()

 



    async def stop(self):

        coro = self.real_stop()

        future = asyncio.run_coroutine_threadsafe(

            coro, self.loop)

        await asyncio.wrap_future(future)

I can also define the __aenter__ and __aexit__ methods to allow this 
class to be used in with statements (see Item 66: “Consider contextlib 
and with Statements for Reusable try/finally Behavior”). This 
ensures that the worker thread starts and stops at the right times 
without slowing down the main event loop thread:

    async def __aenter__(self):

        loop = asyncio.get_event_loop()

        await loop.run_in_executor(None, self.start)

        return self

 

    async def __aexit__(self, *_):

        await self.stop()

With this new WriteThread class, I can refactor run_tasks into a fully 
asynchronous version that’s easy to read and completely avoids run-
ning slow system calls in the main event loop thread:

def readline(handle):

    ...

 

async def tail_async(handle, interval, write_func):

    ...

 

async def run_fully_async(handles, interval, output_path):

    async with WriteThread(output_path) as output:

        tasks = []

        for handle in handles:

            coro = tail_async(handle, interval, output.write)

            task = asyncio.create_task(coro)

            tasks.append(task)

 

        await asyncio.gather(*tasks)

I can verify that this works as expected, given a set of input handles 
and an output file path:

def confirm_merge(input_paths, output_path):

    ...
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input_paths = ...

handles = ...

output_path = ...

asyncio.run(run_fully_async(handles, 0.1, output_path))

 

confirm_merge(input_paths, output_path)

Things to Remember

✦ Making system calls in coroutines—including blocking I/O and 
starting threads—can reduce program responsiveness and increase 
the perception of latency.

✦ Pass the debug=True parameter to asyncio.run in order to detect 
when certain coroutines are preventing the event loop from reacting 
quickly.

Item 64:  Consider concurrent.futures for True 
Parallelism

At some point in writing Python programs, you may hit the perfor-
mance wall. Even after optimizing your code (see Item 70: “Profile 
Before Optimizing”), your program’s execution may still be too slow 
for your needs. On modern computers that have an increasing num-
ber of CPU cores, it’s reasonable to assume that one solution would 
be parallelism. What if you could split your code’s computation into 
independent pieces of work that run simultaneously across multiple 
CPU cores?

Unfortunately, Python’s global interpreter lock (GIL) prevents true 
parallelism in threads (see Item 53: “Use Threads for Blocking I/O, 
Avoid for Parallelism”), so that option is out. Another common sugges-
tion is to rewrite your most performance-critical code as an extension 
module, using the C language. C gets you closer to the bare metal 
and can run faster than Python, eliminating the need for parallelism 
in some cases. C extensions can also start native threads indepen-
dent of the Python interpreter that run in parallel and utilize multiple 
CPU cores with no concern for the GIL. Python’s API for C exten-
sions is well documented and a good choice for an escape hatch. It’s 
also worth checking out tools like SWIG (https://github.com/swig/
swig) and CLIF (https://github.com/google/clif) to aid in extension 
development.

But rewriting your code in C has a high cost. Code that is short and 
understandable in Python can become verbose and complicated in C. 
Such a port requires extensive testing to ensure that the functionality 
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is equivalent to the original Python code and that no bugs have been 
introduced. Sometimes it’s worth it, which explains the large ecosys-
tem of C-extension modules in the Python community that speed up 
things like text parsing, image compositing, and matrix math. There 
are even open source tools such as Cython (https://cython.org) and 
Numba (https://numba.pydata.org) that can ease the transition to C.

The problem is that moving one piece of your program to C isn’t suffi-
cient most of the time. Optimized Python programs usually don’t have 
one major source of slowness; rather, there are often many signifi-
cant contributors. To get the benefits of C’s bare metal and threads, 
you’d need to port large parts of your program, drastically increasing 
testing needs and risk. There must be a better way to preserve your 
investment in Python to solve difficult computational problems.

The multiprocessing built-in module, which is easily accessed via the 
concurrent.futures built-in module, may be exactly what you need 
(see Item 59: “Consider ThreadPoolExecutor When Threads Are Neces-
sary for Concurrency” for a related example). It enables Python to uti-
lize multiple CPU cores in parallel by running additional interpreters 
as child processes. These child processes are separate from the main 
interpreter, so their global interpreter locks are also separate. Each 
child can fully utilize one CPU core. Each child has a link to the main 
process where it receives instructions to do computation and returns 
results.

For example, say that I want to do something computationally inten-
sive with Python and utilize multiple CPU cores. I’ll use an implemen-
tation of finding the greatest common divisor of two numbers as a 
proxy for a more computationally intense algorithm (like simulating 
fluid dynamics with the Navier–Stokes equation):

# my_module.py

def gcd(pair):

    a, b = pair

    low = min(a, b)

    for i in range(low, 0, -1):

        if a % i == 0 and b % i == 0:

            return i

    assert False, 'Not reachable'

Running this function in serial takes a linearly increasing amount of 
time because there is no parallelism:

# run_serial.py

import my_module

import time
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NUMBERS = [

    (1963309, 2265973), (2030677, 3814172),

    (1551645, 2229620), (2039045, 2020802),

    (1823712, 1924928), (2293129, 1020491),

    (1281238, 2273782), (3823812, 4237281),

    (3812741, 4729139), (1292391, 2123811),

]

 

def main():

    start = time.time()

    results = list(map(my_module.gcd, NUMBERS))

    end = time.time()

    delta = end - start

    print(f'Took {delta:.3f} seconds')

 

if __name__ == '__main__':

    main()

>>>

Took 1.173 seconds

Running this code on multiple Python threads will yield no speed 
improvement because the GIL prevents Python from using multiple 
CPU cores in parallel. Here, I do the same computation as above but 
using the concurrent.futures module with its ThreadPoolExecutor 
class and two worker threads (to match the number of CPU cores on 
my computer):

# run_threads.py

import my_module

from concurrent.futures import ThreadPoolExecutor

import time

 

NUMBERS = [

    ...

]

 

def main():

    start = time.time()

    pool = ThreadPoolExecutor(max_workers=2)

    results = list(pool.map(my_module.gcd, NUMBERS))

    end = time.time()

    delta = end - start

    print(f'Took {delta:.3f} seconds')

 



if __name__ == '__main__':

    main()

>>>

Took 1.436 seconds

It’s even slower this time because of the overhead of starting and com-
municating with the pool of threads.

Now for the surprising part: Changing a single line of code causes 
something magical to happen. If I replace the ThreadPoolExecutor 
with the ProcessPoolExecutor from the concurrent.futures module, 
everything speeds up:

# run_parallel.py

import my_module

from concurrent.futures import ProcessPoolExecutor

import time

 

NUMBERS = [

    ...

]

 

def main():

    start = time.time()

    pool = ProcessPoolExecutor(max_workers=2)  # The one change

    results = list(pool.map(my_module.gcd, NUMBERS))

    end = time.time()

    delta = end - start

    print(f'Took {delta:.3f} seconds')

 

if __name__ == '__main__':

    main()

>>>

Took 0.683 seconds

Running on my dual-core machine, this is significantly faster! How is 
this possible? Here’s what the ProcessPoolExecutor class actually does 
(via the low-level constructs provided by the multiprocessing module):

 1. It takes each item from the numbers input data to map.

 2. It serializes the item into binary data by using the pickle module 
(see Item 68: “Make pickle Reliable with copyreg”).

 3. It copies the serialized data from the main interpreter process to 
a child interpreter process over a local socket.
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 4. It deserializes the data back into Python objects, using pickle in 
the child process.

 5. It imports the Python module containing the gcd function.

 6. It runs the function on the input data in parallel with other child 
processes.

 7. It serializes the result back into binary data.

 8. It copies that binary data back through the socket.

 9. It deserializes the binary data back into Python objects in the 
parent process.

 10. It merges the results from multiple children into a single list to 
return.

Although it looks simple to the programmer, the multiprocessing mod-
ule and ProcessPoolExecutor class do a huge amount of work to make 
parallelism possible. In most other languages, the only touch point 
you need to coordinate two threads is a single lock or atomic operation 
(see Item 54: “Use Lock to Prevent Data Races in Threads” for an exam-
ple). The overhead of using multiprocessing via ProcessPoolExecutor is 
high because of all of the serialization and deserialization that must 
happen between the parent and child processes.

This scheme is well suited to certain types of isolated, high-leverage 
tasks. By isolated, I mean functions that don’t need to share state 
with other parts of the program. By high-leverage tasks, I mean sit-
uations in which only a small amount of data must be transferred 
between the parent and child processes to enable a large amount of 
computation. The greatest common divisor algorithm is one example 
of this, but many other mathematical algorithms work similarly.

If your computation doesn’t have these characteristics, then the over-
head of ProcessPoolExecutor may prevent it from speeding up your 
program through parallelization. When that happens, multiprocessing 
provides more advanced facilities for shared memory, cross-process 
locks, queues, and proxies. But all of these features are very com-
plex. It’s hard enough to reason about such tools in the memory space 
of a single process shared between Python threads. Extending that 
complexity to other processes and involving sockets makes this much 
more difficult to understand.

I suggest that you initially avoid all parts of the multiprocessing 
built-in module. You can start by using the ThreadPoolExecutor 
class to run isolated, high-leverage functions in threads. Later you 
can move to the ProcessPoolExecutor to get a speedup. Finally, when 



you’ve completely exhausted the other options, you can consider using 
the multiprocessing module directly.

Things to Remember

✦ Moving CPU bottlenecks to C-extension modules can be an effective 
way to improve performance while maximizing your investment in 
Python code. However, doing so has a high cost and may introduce 
bugs.

✦ The multiprocessing module provides powerful tools that can paral-
lelize certain types of Python computation with minimal effort.

✦ The power of multiprocessing is best accessed through the 
concurrent.futures built-in module and its simple ProcessPoolExecutor 
class.

✦ Avoid the advanced (and complicated) parts of the multiprocessing 
module until you’ve exhausted all other options.

 Item 64: Consider concurrent.futures for True Parallelism 297





8
Robustness and 

Performance

Once you’ve written a useful Python program, the next step is to 
 productionize your code so it’s bulletproof. Making programs depend-
able when they encounter unexpected circumstances is just as 
important as making programs with correct functionality. Python has 
built-in features and modules that aid in hardening your  programs so 
they are robust in a wide variety of situations.

One dimension of robustness is scalability and performance. When 
you’re implementing Python programs that handle a non-trivial 
amount of data, you’ll often see slowdowns caused by the algorith-
mic complexity of your code or other types of computational overhead. 
Luckily, Python includes many of the algorithms and data structures 
you need to achieve high performance with minimal effort.

Item 65:  Take Advantage of Each Block in try/except
/else/finally

There are four distinct times when you might want to take action 
during exception handling in Python. These are captured in the func-
tionality of try, except, else, and finally blocks. Each block serves a 
unique purpose in the compound statement, and their various com-
binations are useful (see Item 87: “Define a Root Exception to Insulate 
Callers from APIs” for another example).

finally Blocks

Use try/finally when you want exceptions to propagate up but also 
want to run cleanup code even when exceptions occur. One common 
usage of try/finally is for reliably closing file handles (see Item 66: 
“Consider contextlib and with Statements for Reusable try/finally 
Behavior” for another—likely better—approach):

def try_finally_example(filename):

    print('* Opening file')
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    handle = open(filename, encoding='utf-8') # Maybe OSError

    try:

        print('* Reading data')

        return handle.read()  # Maybe UnicodeDecodeError

    finally:

        print('* Calling close()')

        handle.close()        # Always runs after try block

Any exception raised by the read method will always propagate up to 
the calling code, but the close method of handle in the finally block 
will run first:

filename = 'random_data.txt'

 

with open(filename, 'wb') as f:

    f.write(b'\xf1\xf2\xf3\xf4\xf5')  # Invalid utf-8

 

data = try_finally_example(filename)

>>>

* Opening file

* Reading data

* Calling close()

Traceback ...

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf1 in 

➥position 0: invalid continuation byte

You must call open before the try block because exceptions that occur 
when opening the file (like OSError if the file does not exist) should 
skip the finally block entirely:

try_finally_example('does_not_exist.txt')

>>>

* Opening file

Traceback ...

FileNotFoundError: [Errno 2] No such file or directory: 

➥'does_not_exist.txt'

else Blocks

Use try/except/else to make it clear which exceptions will be han-
dled by your code and which exceptions will propagate up. When 
the try block doesn’t raise an exception, the else block runs. The 
else block helps you minimize the amount of code in the try block, 
which is good for isolating potential exception causes and improves 
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readability. For example, say that I want to load JSON dictionary data 
from a string and return the value of a key it contains:

import json

 

def load_json_key(data, key):

    try:

        print('* Loading JSON data')

        result_dict = json.loads(data)  # May raise ValueError

    except ValueError as e:

        print('* Handling ValueError')

        raise KeyError(key) from e

    else:

        print('* Looking up key')

        return result_dict[key]         # May raise KeyError

In the successful case, the JSON data is decoded in the try block, 
and then the key lookup occurs in the else block:

assert load_json_key('{"foo": "bar"}', 'foo') == 'bar'

>>>

* Loading JSON data

* Looking up key

If the input data isn’t valid JSON, then decoding with json.loads 
raises a ValueError. The exception is caught by the except block and 
handled:

load_json_key('{"foo": bad payload', 'foo')

>>>

* Loading JSON data

* Handling ValueError

Traceback ...

JSONDecodeError: Expecting value: line 1 column 9 (char 8)

 

The above exception was the direct cause of the following 

➥exception:

 

Traceback ...

KeyError: 'foo'

If the key lookup raises any exceptions, they propagate up to the 
caller because they are outside the try block. The else clause ensures 
that what follows the try/except is visually distinguished from the 
except block. This makes the exception propagation behavior clear:

load_json_key('{"foo": "bar"}', 'does not exist')
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>>>

* Loading JSON data

* Looking up key

Traceback ...

KeyError: 'does not exist'

Everything Together

Use try/except/else/finally when you want to do it all in one com-
pound statement. For example, say that I want to read a descrip-
tion of work to do from a file, process it, and then update the file 
in-place. Here, the try block is used to read the file and process it; the 
except block is used to handle exceptions from the try block that are 
expected; the else block is used to update the file in place and allow 
related exceptions to propagate up; and the finally block cleans up 
the file handle:

UNDEFINED = object()

 

def divide_json(path):

    print('* Opening file')

    handle = open(path, 'r+')   # May raise OSError

    try:

        print('* Reading data')

        data = handle.read()    # May raise UnicodeDecodeError

        print('* Loading JSON data')

        op = json.loads(data)   # May raise ValueError

        print('* Performing calculation')

        value = (

            op['numerator'] /

            op['denominator'])  # May raise ZeroDivisionError

    except ZeroDivisionError as e:

        print('* Handling ZeroDivisionError')

        return UNDEFINED

    else:

        print('* Writing calculation')

        op['result'] = value

        result = json.dumps(op)

        handle.seek(0)          # May raise OSError

        handle.write(result)    # May raise OSError

        return value

    finally:

        print('* Calling close()')

        handle.close()          # Always runs



In the successful case, the try, else, and finally blocks run:

temp_path = 'random_data.json'

 

with open(temp_path, 'w') as f:

    f.write('{"numerator": 1, "denominator": 10}')

 

assert divide_json(temp_path) == 0.1

>>>

* Opening file

* Reading data

* Loading JSON data

* Performing calculation

* Writing calculation

* Calling close()

If the calculation is invalid, the try, except, and finally blocks run, 
but the else block does not:

with open(temp_path, 'w') as f:

    f.write('{"numerator": 1, "denominator": 0}')

 

assert divide_json(temp_path) is UNDEFINED

>>>

* Opening file

* Reading data

* Loading JSON data

* Performing calculation

* Handling ZeroDivisionError

* Calling close()

If the JSON data was invalid, the try block runs and raises an excep-
tion, the finally block runs, and then the exception is propagated up 
to the caller. The except and else blocks do not run:

with open(temp_path, 'w') as f:

    f.write('{"numerator": 1 bad data')

 

divide_json(temp_path)

>>>

* Opening file

* Reading data

* Loading JSON data

* Calling close()

Traceback ...

JSONDecodeError: Expecting ',' delimiter: line 1 column 17 

➥(char 16)
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This layout is especially useful because all of the blocks work together 
in intuitive ways. For example, here I simulate this by running the 
divide_json function at the same time that my hard drive runs out of 
disk space:

with open(temp_path, 'w') as f:

    f.write('{"numerator": 1, "denominator": 10}')

 

divide_json(temp_path)

>>>

* Opening file

* Reading data

* Loading JSON data

* Performing calculation

* Writing calculation

* Calling close()

Traceback ...

OSError: [Errno 28] No space left on device

When the exception was raised in the else block while rewriting the 
result data, the finally block still ran and closed the file handle as 
expected.

Things to Remember

✦ The try/finally compound statement lets you run cleanup code 
regardless of whether exceptions were raised in the try block.

✦ The else block helps you minimize the amount of code in try blocks 
and visually distinguish the success case from the try/except 
blocks.

✦ An else block can be used to perform additional actions after a suc-
cessful try block but before common cleanup in a finally block.

Item 66:  Consider contextlib and with Statements for 
Reusable try/finally Behavior

The with statement in Python is used to indicate when code is run-
ning in a special context. For example, mutual-exclusion locks (see 
Item 54: “Use Lock to Prevent Data Races in Threads”) can be used 
in with statements to indicate that the indented code block runs only 
while the lock is held:

from threading import Lock

 

lock = Lock()
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with lock:

    # Do something while maintaining an invariant

    ...

The example above is equivalent to this try/finally construction 
because the Lock class properly enables the with statement (see Item 
65: “Take Advantage of Each Block in try/except/else/finally” for 
more about try/finally):

lock.acquire()

try:

    # Do something while maintaining an invariant

    ...

finally:

    lock.release()

The with statement version of this is better because it eliminates the 
need to write the repetitive code of the try/finally construction, and 
it ensures that you don’t forget to have a corresponding release call 
for every acquire call.

It’s easy to make your objects and functions work in with statements 
by using the contextlib built-in module. This module contains the 
contextmanager decorator (see Item 26: “Define Function Decorators 
with functools.wraps” for background), which lets a simple function be 
used in with statements. This is much easier than defining a new class 
with the special methods __enter__ and __exit__ (the standard way).

For example, say that I want a region of code to have more debug 
logging sometimes. Here, I define a function that does logging at two 
severity levels:

import logging

 

def my_function():

    logging.debug('Some debug data')

    logging.error('Error log here')

    logging.debug('More debug data')

The default log level for my program is WARNING, so only the error mes-
sage will print to screen when I run the function:

my_function()

>>>

Error log here
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I can elevate the log level of this function temporarily by defining a 
context manager. This helper function boosts the logging severity 
level before running the code in the with block and reduces the log-
ging severity level afterward:

from contextlib import contextmanager

 

@contextmanager

def debug_logging(level):

    logger = logging.getLogger()

    old_level = logger.getEffectiveLevel()

    logger.setLevel(level)

    try:

        yield

    finally:

        logger.setLevel(old_level)

The yield expression is the point at which the with block’s contents 
will execute (see Item 30: “Consider Generators Instead of Returning 
Lists” for background). Any exceptions that happen in the with block 
will be re-raised by the yield expression for you to catch in the helper 
function (see Item 35: “Avoid Causing State Transitions in Generators 
with throw” for how that works).

Now, I can call the same logging function again but in the 
debug_logging context. This time, all of the debug messages are 
printed to the screen during the with block. The same function run-
ning outside the with block won’t print debug messages:

with debug_logging(logging.DEBUG):

    print('* Inside:')

    my_function()

 

print('* After:')

my_function()

>>>

* Inside:

Some debug data

Error log here

More debug data

* After:

Error log here

Using with Targets

The context manager passed to a with statement may also return an 
object. This object is assigned to a local variable in the as part of the 



compound statement. This gives the code running in the with block 
the ability to directly interact with its context. 

For example, say I want to write a file and ensure that it’s always 
closed correctly. I can do this by passing open to the with statement. 
open returns a file handle for the as target of with, and it closes the 
handle when the with block exits:

with open('my_output.txt', 'w') as handle:

    handle.write('This is some data!')

This approach is more Pythonic than manually opening and closing 
the file handle every time. It gives you confidence that the file is even-
tually closed when execution leaves the with statement. By highlight-
ing the critical section, it also encourages you to reduce the amount 
of code that executes while the file handle is open, which is good 
practice in general.

To enable your own functions to supply values for as targets, all you 
need to do is yield a value from your context manager. For example, 
here I define a context manager to fetch a Logger instance, set its 
level, and then yield it as the target:

@contextmanager

def log_level(level, name):

    logger = logging.getLogger(name)

    old_level = logger.getEffectiveLevel()

    logger.setLevel(level)

    try:

        yield logger

    finally:

        logger.setLevel(old_level)

Calling logging methods like debug on the as target produces output 
because the logging severity level is set low enough in the with block 
on that specific Logger instance. Using the logging module directly 
won’t print anything because the default logging severity level for the 
default program logger is WARNING:

with log_level(logging.DEBUG, 'my-log') as logger:

    logger.debug(f'This is a message for {logger.name}!')

    logging.debug('This will not print')

>>>

This is a message for my-log!

After the with statement exits, calling debug logging methods on the 
Logger named 'my-log' will not print anything because the default 
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logging severity level has been restored. Error log messages will 
always print:

logger = logging.getLogger('my-log')

logger.debug('Debug will not print')

logger.error('Error will print')

>>>

Error will print

Later, I can change the name of the logger I want to use by simply 
updating the with statement. This will point the Logger that’s the as 
target in the with block to a different instance, but I won’t have to 
update any of my other code to match:

with log_level(logging.DEBUG, 'other-log') as logger:

    logger.debug(f'This is a message for {logger.name}!')

    logging.debug('This will not print')

>>>

This is a message for other-log!

This isolation of state and decoupling between creating a context and 
acting within that context is another benefit of the with statement.

Things to Remember

✦ The with statement allows you to reuse logic from try/finally blocks 
and reduce visual noise.

✦ The contextlib built-in module provides a contextmanager decorator 
that makes it easy to use your own functions in with statements.

✦ The value yielded by context managers is supplied to the as part 
of the with statement. It’s useful for letting your code directly access 
the cause of a special context.

Item 67: Use datetime Instead of time for Local Clocks

Coordinated Universal Time (UTC) is the standard, time-zone- 
independent representation of time. UTC works great for computers 
that represent time as seconds since the UNIX epoch. But UTC isn’t 
ideal for humans. Humans reference time relative to where they’re 
currently located. People say “noon” or “8 am” instead of “UTC 15:00 
minus 7 hours.” If your program handles time, you’ll probably find 
yourself converting time between UTC and local clocks for the sake of 
human understanding.
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Python provides two ways of accomplishing time zone conversions. 
The old way, using the time built-in module, is terribly error prone. 
The new way, using the datetime built-in module, works great with 
some help from the community-built package named pytz.

You should be acquainted with both time and datetime to thoroughly 
understand why datetime is the best choice and time should be 
avoided.

The time Module

The localtime function from the time built-in module lets you convert 
a UNIX timestamp (seconds since the UNIX epoch in UTC) to a local 
time that matches the host computer’s time zone (Pacific Daylight 
Time in my case). This local time can be printed in human-readable 
format using the strftime function:

import time

 

now = 1552774475

local_tuple = time.localtime(now)

time_format = '%Y-%m-%d %H:%M:%S'

time_str = time.strftime(time_format, local_tuple)

print(time_str)

>>>

2019-03-16 15:14:35

You’ll often need to go the other way as well, starting with user input 
in human-readable local time and converting it to UTC time. You can 
do this by using the strptime function to parse the time string, and 
then calling mktime to convert local time to a UNIX timestamp:

time_tuple = time.strptime(time_str, time_format)

utc_now = time.mktime(time_tuple)

print(utc_now)

>>>

1552774475.0

How do you convert local time in one time zone to local time in 
another time zone? For example, say that I’m taking a flight between 
San Francisco and New York, and I want to know what time it will be 
in San Francisco when I’ve arrived in New York.

I might initially assume that I can directly manipulate the return val-
ues from the time, localtime, and strptime functions to do time zone 
conversions. But this is a very bad idea. Time zones change all the time 
due to local laws. It’s too complicated to manage yourself, especially if 
you want to handle every global city for flight departures and arrivals.
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Many operating systems have configuration files that keep up with 
the time zone changes automatically. Python lets you use these time 
zones through the time module if your platform supports it. On other 
platforms, such as Windows, some time zone functionality isn’t avail-
able from time at all. For example, here I parse a departure time from 
the San Francisco time zone, Pacific Daylight Time (PDT):

import os

 

if os.name == 'nt':

    print("This example doesn't work on Windows")

else:

    parse_format = '%Y-%m-%d %H:%M:%S %Z'

    depart_sfo = '2019-03-16 15:45:16 PDT'

    time_tuple = time.strptime(depart_sfo, parse_format)

    time_str = time.strftime(time_format, time_tuple)

    print(time_str)

>>>

2019-03-16 15:45:16

After seeing that 'PDT' works with the strptime function, I might also 
assume that other time zones known to my computer will work. Unfor-
tunately, this isn’t the case. strptime raises an exception when it sees 
Eastern Daylight Time (EDT), which is the time zone for New York:

arrival_nyc = '2019-03-16 23:33:24 EDT'

time_tuple = time.strptime(arrival_nyc, time_format)

>>>

Traceback ...

ValueError: unconverted data remains:  EDT

The problem here is the platform-dependent nature of the time mod-
ule. Its behavior is determined by how the underlying C functions 
work with the host operating system. This makes the functionality of 
the time module unreliable in Python. The time module fails to consis-
tently work properly for multiple local times. Thus, you should avoid 
using the time module for this purpose. If you must use time, use it 
only to convert between UTC and the host computer’s local time. For 
all other types of conversions, use the datetime module.

The datetime Module

The second option for representing times in Python is the datetime 
class from the datetime built-in module. Like the time module, 
datetime can be used to convert from the current time in UTC to local 
time.



Here, I convert the present time in UTC to my computer’s local time, 
PDT:

from datetime import datetime, timezone

 

now = datetime(2019, 3, 16, 22, 14, 35)

now_utc = now.replace(tzinfo=timezone.utc)

now_local = now_utc.astimezone()

print(now_local)

>>>

2019-03-16 15:14:35-07:00

The datetime module can also easily convert a local time back to a 
UNIX timestamp in UTC:

time_str = '2019-03-16 15:14:35'

now = datetime.strptime(time_str, time_format)

time_tuple = now.timetuple()

utc_now = time.mktime(time_tuple)

print(utc_now)

>>>

1552774475.0

Unlike the time module, the datetime module has facilities for reli-
ably converting from one local time to another local time. However, 
datetime only provides the machinery for time zone operations with 
its tzinfo class and related methods. The Python default installation 
is missing time zone definitions besides UTC.

Luckily, the Python community has addressed this gap with the pytz 
module that’s available for download from the Python Package Index 
(see Item 82: “Know Where to Find Community-Built Modules” for 
how to install it). pytz contains a full database of every time zone 
definition you might need.

To use pytz effectively, you should always convert local times to UTC 
first. Perform any datetime operations you need on the UTC values 
(such as offsetting). Then, convert to local times as a final step.

For example, here I convert a New York City flight arrival time to a 
UTC datetime. Although some of these calls seem redundant, all of 
them are necessary when using pytz:

import pytz

 

arrival_nyc = '2019-03-16 23:33:24'

nyc_dt_naive = datetime.strptime(arrival_nyc, time_format)
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eastern = pytz.timezone('US/Eastern')

nyc_dt = eastern.localize(nyc_dt_naive)

utc_dt = pytz.utc.normalize(nyc_dt.astimezone(pytz.utc))

print(utc_dt)

>>>

2019-03-17 03:33:24+00:00

Once I have a UTC datetime, I can convert it to San Francisco local 
time:

pacific = pytz.timezone('US/Pacific')

sf_dt = pacific.normalize(utc_dt.astimezone(pacific))

print(sf_dt)

>>>

2019-03-16 20:33:24-07:00

Just as easily, I can convert it to the local time in Nepal:

nepal = pytz.timezone('Asia/Katmandu')

nepal_dt = nepal.normalize(utc_dt.astimezone(nepal))

print(nepal_dt)

>>>

2019-03-17 09:18:24+05:45

With datetime and pytz, these conversions are consistent across all 
environments, regardless of what operating system the host computer 
is running.

Things to Remember

✦ Avoid using the time module for translating between different time 
zones.

✦ Use the datetime built-in module along with the pytz community 
module to reliably convert between times in different time zones.

✦ Always represent time in UTC and do conversions to local time as 
the very final step before presentation.

Item 68: Make pickle Reliable with copyreg

The pickle built-in module can serialize Python objects into a stream 
of bytes and deserialize bytes back into objects. Pickled byte streams 
shouldn’t be used to communicate between untrusted parties. The 
purpose of pickle is to let you pass Python objects between programs 
that you control over binary channels.
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Note

The pickle module’s serialization format is unsafe by design. The serialized data 
contains what is essentially a program that describes how to reconstruct the 
original Python object. This means a malicious pickle payload could be used to 
compromise any part of a Python program that attempts to  deserialize it.

In contrast, the json module is safe by design. Serialized JSON data contains 
a simple description of an object hierarchy. Deserializing JSON data does 
not expose a Python program to additional risk. Formats like JSON should 
be used for communication between programs or people who don’t trust 
each other.

For example, say that I want to use a Python object to represent the 
state of a player’s progress in a game. The game state includes the 
level the player is on and the number of lives they have remaining:

class GameState:

    def __init__(self):

        self.level = 0

        self.lives = 4

The program modifies this object as the game runs:

state = GameState()

state.level += 1  # Player beat a level

state.lives -= 1  # Player had to try again

 

print(state.__dict__)

>>>

{'level': 1, 'lives': 3}

When the user quits playing, the program can save the state of the 
game to a file so it can be resumed at a later time. The pickle mod-
ule makes it easy to do this. Here, I use the dump function to write 
the GameState object to a file:

import pickle

 

state_path = 'game_state.bin'

with open(state_path, 'wb') as f:

    pickle.dump(state, f)

Later, I can call the load function with the file and get back the 
GameState object as if it had never been serialized:

with open(state_path, 'rb') as f:

    state_after = pickle.load(f)

 

print(state_after.__dict__)
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>>>

{'level': 1, 'lives': 3}

The problem with this approach is what happens as the game’s fea-
tures expand over time. Imagine that I want the player to earn points 
toward a high score. To track the player’s points, I’d add a new field to 
the GameState class

class GameState:

    def __init__(self):

        self.level = 0

        self.lives = 4

        self.points = 0  # New field

Serializing the new version of the GameState class using pickle will 
work exactly as before. Here, I simulate the round-trip through a file 
by serializing to a string with dumps and back to an object with loads:

state = GameState()

serialized = pickle.dumps(state)

state_after = pickle.loads(serialized)

print(state_after.__dict__)

>>>

{'level': 0, 'lives': 4, 'points': 0}

But what happens to older saved GameState objects that the user may 
want to resume? Here, I unpickle an old game file by using a program 
with the new definition of the GameState class:

with open(state_path, 'rb') as f:

    state_after = pickle.load(f)

 

print(state_after.__dict__)

>>>

{'level': 1, 'lives': 3}

The points attribute is missing! This is especially confusing because 
the returned object is an instance of the new GameState class:

assert isinstance(state_after, GameState)

This behavior is a byproduct of the way the pickle module works. Its 
primary use case is making object serialization easy. As soon as your 
use of pickle moves beyond trivial usage, the module’s functionality 
starts to break down in surprising ways.

Fixing these problems is straightforward using the copyreg built-in 
module. The copyreg module lets you register the functions responsible 



for serializing and deserializing Python objects, allowing you to con-
trol the behavior of pickle and make it more reliable.

Default Attribute Values

In the simplest case, you can use a constructor with default  arguments 
(see Item 23: “Provide Optional Behavior with Keyword Arguments” 
for background) to ensure that GameState objects will always have all 
attributes after unpickling. Here, I redefine the constructor this way:

class GameState:

    def __init__(self, level=0, lives=4, points=0):

        self.level = level

        self.lives = lives

        self.points = points

To use this constructor for pickling, I define a helper function that 
takes a GameState object and turns it into a tuple of parameters for 
the copyreg module. The returned tuple contains the function to use 
for unpickling and the parameters to pass to the unpickling function:

def pickle_game_state(game_state):

    kwargs = game_state.__dict__

    return unpickle_game_state, (kwargs,)

Now, I need to define the unpickle_game_state helper. This func-
tion takes serialized data and parameters from pickle_game_state 
and returns the corresponding GameState object. It’s a tiny wrapper 
around the constructor:

def unpickle_game_state(kwargs):

    return GameState(**kwargs)

Now, I register these functions with the copyreg built-in module:

import copyreg

 

copyreg.pickle(GameState, pickle_game_state)

After registration, serializing and deserializing works as before:

state = GameState()

state.points += 1000

serialized = pickle.dumps(state)

state_after = pickle.loads(serialized)

print(state_after.__dict__)

>>>

{'level': 0, 'lives': 4, 'points': 1000}
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With this registration done, now I’ll change the definition of GameState 
again to give the player a count of magic spells to use. This change is 
similar to when I added the points field to GameState:

class GameState:

    def __init__(self, level=0, lives=4, points=0, magic=5):

        self.level = level

        self.lives = lives

        self.points = points

        self.magic = magic  # New field

But unlike before, deserializing an old GameState object will result in 
valid game data instead of missing attributes. This works because 
unpickle_game_state calls the GameState constructor directly instead 
of using the pickle module’s default behavior of saving and restor-
ing only the attributes that belong to an object. The GameState con-
structor’s keyword arguments have default values that will be used 
for any parameters that are missing. This causes old game state 
files to receive the default value for the new magic field when they are 
deserialized:

print('Before:', state.__dict__)

state_after = pickle.loads(serialized)

print('After: ', state_after.__dict__)

>>>

Before: {'level': 0, 'lives': 4, 'points': 1000}

After:  {'level': 0, 'lives': 4, 'points': 1000, 'magic': 5}

Versioning Classes

Sometimes you need to make backward-incompatible changes to your 
Python objects by removing fields. Doing so prevents the default argu-
ment approach above from working.

For example, say I realize that a limited number of lives is a bad idea, 
and I want to remove the concept of lives from the game. Here, I rede-
fine the GameState class to no longer have a lives field:

class GameState:

    def __init__(self, level=0, points=0, magic=5):

        self.level = level

        self.points = points

        self.magic = magic

The problem is that this breaks deserialization of old game data. 
All fields from the old data, even ones removed from the class, will 
be passed to the GameState constructor by the unpickle_game_state 
function:

pickle.loads(serialized)



>>>

Traceback ...

TypeError: __init__() got an unexpected keyword argument 

➥'lives'

I can fix this by adding a version parameter to the functions supplied 
to copyreg. New serialized data will have a version of 2 specified when 
pickling a new GameState object:

def pickle_game_state(game_state):

    kwargs = game_state.__dict__

    kwargs['version'] = 2

    return unpickle_game_state, (kwargs,)

Old versions of the data will not have a version argument present, 
which means I can manipulate the arguments passed to the GameState 
constructor accordingly:

def unpickle_game_state(kwargs):

    version = kwargs.pop('version', 1)

    if version == 1:

        del kwargs['lives']

    return GameState(**kwargs)

Now, deserializing an old object works properly:

copyreg.pickle(GameState, pickle_game_state)

print('Before:', state.__dict__)

state_after = pickle.loads(serialized)

print('After: ', state_after.__dict__)

>>>

Before: {'level': 0, 'lives': 4, 'points': 1000}

After:  {'level': 0, 'points': 1000, 'magic': 5}

I can continue using this approach to handle changes between 
future versions of the same class. Any logic I need to adapt an 
old version of the class to a new version of the class can go in the 
unpickle_game_state function.

Stable Import Paths

One other issue you may encounter with pickle is breakage from 
renaming a class. Often over the life cycle of a program, you’ll refac-
tor your code by renaming classes and moving them to other mod-
ules. Unfortunately, doing so breaks the pickle module unless you’re 
careful.
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Here, I rename the GameState class to BetterGameState and remove 
the old class from the program entirely:

class BetterGameState:

    def __init__(self, level=0, points=0, magic=5):

        self.level = level

        self.points = points

        self.magic = magic

Attempting to deserialize an old GameState object now fails because 
the class can’t be found:

pickle.loads(serialized)

>>>

Traceback ...

AttributeError: Can't get attribute 'GameState' on <module 

➥'__main__' from 'my_code.py'>

The cause of this exception is that the import path of the serialized 
object’s class is encoded in the pickled data:

print(serialized)

>>>

b'\x80\x04\x95A\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__

➥\x94\x8c\tGameState\x94\x93\x94)\x81\x94}\x94(\x8c\x05level

➥\x94K\x00\x8c\x06points\x94K\x00\x8c\x05magic\x94K\x05ub.'

The solution is to use copyreg again. I can specify a stable identifier 
for the function to use for unpickling an object. This allows me to 
transition pickled data to different classes with different names when 
it’s deserialized. It gives me a level of indirection:

copyreg.pickle(BetterGameState, pickle_game_state)

After I use copyreg, you can see that the import path to 
unpickle_game_state is encoded in the serialized data instead of 
BetterGameState:

state = BetterGameState()

serialized = pickle.dumps(state)

print(serialized)

>>>

b'\x80\x04\x95W\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__

➥\x94\x8c\x13unpickle_game_state\x94\x93\x94}\x94(\x8c

➥\x05level\x94K\x00\x8c\x06points\x94K\x00\x8c\x05magic\x94K

➥\x05\x8c\x07version\x94K\x02u\x85\x94R\x94.'
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The only gotcha is that I can’t change the path of the module in 
which the unpickle_game_state function is present. Once I serialize 
data with a function, it must remain available on that import path for 
deserialization in the future.

Things to Remember

✦ The pickle built-in module is useful only for serializing and deseri-
alizing objects between trusted programs.

✦ Deserializing previously pickled objects may break if the classes 
involved have changed over time (e.g., attributes have been added 
or removed).

✦ Use the copyreg built-in module with pickle to ensure backward 
compatibility for serialized objects.

Item 69: Use decimal When Precision Is Paramount

Python is an excellent language for writing code that interacts with 
numerical data. Python’s integer type can represent values of any 
practical size. Its double-precision floating point type complies with 
the IEEE 754 standard. The language also provides a standard com-
plex number type for imaginary values. However, these aren’t enough 
for every situation.

For example, say that I want to compute the amount to charge a cus-
tomer for an international phone call. I know the time in minutes 
and seconds that the customer was on the phone (say, 3 minutes 
42  seconds). I also have a set rate for the cost of calling Antarctica 
from the United States ($1.45/minute). What should the charge be?

With floating point math, the computed charge seems reasonable

rate = 1.45

seconds = 3*60 + 42

cost = rate * seconds / 60

print(cost)

>>>

5.364999999999999

The result is 0.0001 short of the correct value (5.365) due to how IEEE 
754 floating point numbers are represented. I might want to round up 
this value to 5.37 to properly cover all costs incurred by the customer. 
However, due to floating point error, rounding to the nearest whole 
cent actually reduces the final charge (from 5.364 to 5.36) instead of 
increasing it (from 5.365 to 5.37):

print(round(cost, 2))
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>>>

5.36

The solution is to use the Decimal class from the decimal built-in mod-
ule. The Decimal class provides fixed point math of 28 decimal places 
by default. It can go even higher, if required. This works around the 
precision issues in IEEE 754 floating point numbers. The class also 
gives you more control over rounding behaviors.

For example, redoing the Antarctica calculation with Decimal results 
in the exact expected charge instead of an approximation:

from decimal import Decimal

 

rate = Decimal('1.45')

seconds = Decimal(3*60 + 42)

cost = rate * seconds / Decimal(60)

print(cost)

>>>

5.365

Decimal instances can be given starting values in two different ways. 
The first way is by passing a str containing the number to the Decimal 
constructor. This ensures that there is no loss of precision due to the 
inherent nature of Python floating point numbers. The second way 
is by directly passing a float or an int instance to the constructor. 
Here, you can see that the two construction methods result in differ-
ent behavior.

print(Decimal('1.45'))

print(Decimal(1.45))

>>>

1.45

1.4499999999999999555910790149937383830547332763671875

The same problem doesn’t happen if I supply integers to the Decimal 
constructor:

print('456')

print(456)

>>>

456

456

If you care about exact answers, err on the side of caution and use 
the str constructor for the Decimal type.



Getting back to the phone call example, say that I also want to sup-
port very short phone calls between places that are much cheaper 
to connect (like Toledo and Detroit). Here, I compute the charge for a 
phone call that was 5 seconds long with a rate of $0.05/minute:

rate = Decimal('0.05')

seconds = Decimal('5')

small_cost = rate * seconds / Decimal(60)

print(small_cost)

>>>

0.004166666666666666666666666667

The result is so low that it is decreased to zero when I try to round it 
to the nearest whole cent. This won’t do!

print(round(small_cost, 2))

>>>

0.00

Luckily, the Decimal class has a built-in function for rounding to 
exactly the decimal place needed with the desired rounding behavior. 
This works for the higher cost case from earlier:

from decimal import ROUND_UP

 

rounded = cost.quantize(Decimal('0.01'), rounding=ROUND_UP)

print(f'Rounded {cost} to {rounded}')

>>>

Rounded 5.365 to 5.37

Using the quantize method this way also properly handles the small 
usage case for short, cheap phone calls:.

rounded = small_cost.quantize(Decimal('0.01'),

                              rounding=ROUND_UP)

print(f'Rounded {small_cost} to {rounded}')

>>>

Rounded 0.004166666666666666666666666667 to 0.01

While Decimal works great for fixed point numbers, it still has limita-
tions in its precision (e.g., 1/3 will be an approximation). For repre-
senting rational numbers with no limit to precision, consider using 
the Fraction class from the fractions built-in module.

 Item 69: Use decimal When Precision Is Paramount 321



322 Chapter 8 Robustness and Performance

Things to Remember

✦ Python has built-in types and classes in modules that can repre-
sent practically every type of numerical value.

✦ The Decimal class is ideal for situations that require high precision 
and control over rounding behavior, such as computations of mon-
etary values.

✦ Pass str instances to the Decimal constructor instead of float 
instances if it’s important to compute exact answers and not float-
ing point approximations.

Item 70: Profile Before Optimizing

The dynamic nature of Python causes surprising behaviors in its run-
time performance. Operations you might assume would be slow are 
actually very fast (e.g., string manipulation, generators). Language 
features you might assume would be fast are actually very slow (e.g., 
attribute accesses, function calls). The true source of slowdowns in a 
Python program can be obscure.

The best approach is to ignore your intuition and directly measure 
the performance of a program before you try to optimize it. Python 
provides a built-in profiler for determining which parts of a program 
are responsible for its execution time. This means you can focus your 
optimization efforts on the biggest sources of trouble and ignore parts 
of the program that don’t impact speed (i.e., follow Amdahl’s law).

For example, say that I want to determine why an algorithm in a pro-
gram is slow. Here, I define a function that sorts a list of data using 
an insertion sort:

def insertion_sort(data):

    result = []

    for value in data:

        insert_value(result, value)

    return result

The core mechanism of the insertion sort is the function that finds 
the insertion point for each piece of data. Here, I define an extremely 
inefficient version of the insert_value function that does a linear scan 
over the input array:

def insert_value(array, value):

    for i, existing in enumerate(array):

        if existing > value:

            array.insert(i, value)
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            return

    array.append(value)

To profile insertion_sort and insert_value, I create a data set of ran-
dom numbers and define a test function to pass to the profiler:

from random import randint

 

max_size = 10**4

data = [randint(0, max_size) for _ in range(max_size)]

test = lambda: insertion_sort(data)

Python provides two built-in profilers: one that is pure Python 
(profile) and another that is a C-extension module (cProfile). The 
cProfile built-in module is better because of its minimal impact on 
the performance of your program while it’s being profiled. The pure- 
Python alternative imposes a high overhead that skews the results.

Note

When profiling a Python program, be sure that what you’re measuring is the 
code itself and not external systems. Beware of functions that access the net-
work or resources on disk. These may appear to have a large impact on your 
program’s execution time because of the slowness of the underlying systems. 
If your program uses a cache to mask the latency of slow resources like these, 
you should ensure that it’s properly warmed up before you start profiling.

Here, I instantiate a Profile object from the cProfile module and run 
the test function through it using the runcall method:

from cProfile import Profile

 

profiler = Profile()

profiler.runcall(test)

When the test function has finished running, I can extract statistics 
about its performance by using the pstats built-in module and its 
Stats class. Various methods on a Stats object adjust how to select 
and sort the profiling information to show only the things I care 
about:

from pstats import Stats

 

stats = Stats(profiler)

stats.strip_dirs()

stats.sort_stats('cumulative')

stats.print_stats()
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The output is a table of information organized by function. The data 
sample is taken only from the time the profiler was active, during the 
runcall method above:

>>>

         20003 function calls in 1.320 seconds

 

   Ordered by: cumulative time

 

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

        1    0.000    0.000    1.320    1.320 main.py:35(<lambda>)

        1    0.003    0.003    1.320    1.320 main.py:10(insertion_sort)

    10000    1.306    0.000    1.317    0.000 main.py:20(insert_value)

     9992    0.011    0.000    0.011    0.000 {method 'insert' of 'list' objects}

        8    0.000    0.000    0.000    0.000 {method 'append' of 'list' objects}

Here’s a quick guide to what the profiler statistics columns mean:

 ■ ncalls: The number of calls to the function during the profiling 
period.

 ■ tottime: The number of seconds spent executing the function, 
excluding time spent executing other functions it calls.

 ■ tottime percall: The average number of seconds spent in the 
function each time it is called, excluding time spent executing 
other functions it calls. This is tottime divided by ncalls.

 ■ cumtime: The cumulative number of seconds spent executing the 
function, including time spent in all other functions it calls.

 ■ cumtime percall: The average number of seconds spent in the 
function each time it is called, including time spent in all other 
functions it calls. This is cumtime divided by ncalls.

Looking at the profiler statistics table above, I can see that the biggest 
use of CPU in my test is the cumulative time spent in the insert_value 
function. Here, I redefine that function to use the bisect built-in mod-
ule (see Item 72: “Consider Searching Sorted Sequences with bisect”):

from bisect import bisect_left

 

def insert_value(array, value):

    i = bisect_left(array, value)

    array.insert(i, value)

I can run the profiler again and generate a new table of profiler sta-
tistics. The new function is much faster, with a cumulative time spent 
that is nearly 100 times smaller than with the previous insert_value 
function:
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>>>

         30003 function calls in 0.017 seconds

 

   Ordered by: cumulative time

 

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

        1    0.000    0.000    0.017    0.017 main.py:35(<lambda>)

        1    0.002    0.002    0.017    0.017 main.py:10(insertion_sort)

    10000    0.003    0.000    0.015    0.000 main.py:110(insert_value)

    10000    0.008    0.000    0.008    0.000 {method 'insert' of 'list' objects}

    10000    0.004    0.000    0.004    0.000 {built-in method _bisect.bisect_left}

Sometimes when you’re profiling an entire program, you might find 
that a common utility function is responsible for the majority of exe-
cution time. The default output from the profiler makes such a situ-
ation difficult to understand because it doesn’t show that the utility 
function is called by many different parts of your program.

For example, here the my_utility function is called repeatedly by two 
different functions in the program:

def my_utility(a, b):

    c = 1

    for i in range(100):

        c += a * b

 

def first_func():

    for _ in range(1000):

        my_utility(4, 5)

 

def second_func():

    for _ in range(10):

        my_utility(1, 3)

 

def my_program():

    for _ in range(20):

        first_func()

        second_func()

Profiling this code and using the default print_stats output gener-
ates statistics that are confusing:

>>>

         20242 function calls in 0.118 seconds

 

   Ordered by: cumulative time

 

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

        1    0.000    0.000    0.118    0.118 main.py:176(my_program)

       20    0.003    0.000    0.117    0.006 main.py:168(first_func)

    20200    0.115    0.000    0.115    0.000 main.py:161(my_utility)

       20    0.000    0.000    0.001    0.000 main.py:172(second_func)
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The my_utility function is clearly the source of most execution time, 
but it’s not immediately obvious why that function is called so much. 
If you search through the program’s code, you’ll find multiple call 
sites for my_utility and still be confused.

To deal with this, the Python profiler provides the print_callers 
method to show which callers contributed to the profiling information 
of each function:

stats.print_callers()

This profiler statistics table shows functions called on the left and 
which function was responsible for making the call on the right. Here, 
it’s clear that my_utility is most used by first_func:

>>>

   Ordered by: cumulative time

 

Function                                was called by...

                                            ncalls  tottime  cumtime

main.py:176(my_program)                 <- 

main.py:168(first_func)                 <-      20    0.003    0.117  main.py:176(my_program)

main.py:161(my_utility)                 <-   20000    0.114    0.114  main.py:168(first_func)

                                               200    0.001    0.001  main.py:172(second_func)

Profiling.md:172(second_func)           <-      20    0.000    0.001  main.py:176(my_program)

Things to Remember

✦ It’s important to profile Python programs before optimizing because 
the sources of slowdowns are often obscure.

✦ Use the cProfile module instead of the profile module because it 
provides more accurate profiling information.

✦ The Profile object’s runcall method provides everything you need 
to profile a tree of function calls in isolation.

✦ The Stats object lets you select and print the subset of profil-
ing information you need to see to understand your program’s 
performance.

Item 71: Prefer deque for Producer–Consumer Queues

A common need in writing programs is a first-in, first-out (FIFO) 
queue, which is also known as a producer–consumer queue. A FIFO 
queue is used when one function gathers values to process and 
another function handles them in the order in which they were 
received. Often, programmers use Python’s built-in list type as a 
FIFO queue.
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For example, say that I have a program that’s processing incoming 
emails for long-term archival, and it’s using a list for a producer–
consumer queue. Here, I define a class to represent the messages:

class Email:

    def __init__(self, sender, receiver, message):

        self.sender = sender

        self.receiver = receiver

        self.message = message

    ...

I also define a placeholder function for receiving a single email, pre-
sumably from a socket, the file system, or some other type of I/O 
system. The implementation of this function doesn’t matter; what’s 
important is its interface: It will either return an Email instance or 
raise a NoEmailError exception:

class NoEmailError(Exception):

    pass

 

def try_receive_email():

    # Returns an Email instance or raises NoEmailError

    ...

The producing function receives emails and enqueues them to be con-
sumed at a later time. This function uses the append method on the 
list to add new messages to the end of the queue so they are pro-
cessed after all messages that were previously received:

def produce_emails(queue):

    while True:

        try:

            email = try_receive_email()

        except NoEmailError:

            return

        else:

            queue.append(email)  # Producer

The consuming function does something useful with the emails. This 
function calls pop(0) on the queue, which removes the very first item 
from the list and returns it to the caller. By always processing items 
from the beginning of the queue, the consumer ensures that the items 
are processed in the order in which they were received:

def consume_one_email(queue):

    if not queue:

        return

    email = queue.pop(0)  # Consumer
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    # Index the message for long-term archival

    ...

Finally, I need a looping function that connects the pieces together. 
This function alternates between producing and consuming until the 
keep_running function returns False (see Item 60: “Achieve Highly 
Concurrent I/O with Coroutines” on how to do this concurrently):

def loop(queue, keep_running):

    while keep_running():

        produce_emails(queue)

        consume_one_email(queue)

 

def my_end_func():

    ...

 

loop([], my_end_func)

Why not process each Email message in produce_emails as it’s returned 
by try_receive_email? It comes down to the trade-off between latency 
and throughput. When using producer–consumer queues, you often 
want to minimize the latency of accepting new items so they can be 
collected as fast as possible. The consumer can then process through 
the backlog of items at a consistent pace—one item per loop in this 
case—which provides a stable performance profile and consistent 
throughput at the cost of end-to-end latency (see Item 55: “Use Queue 
to Coordinate Work Between Threads” for related best practices).

Using a list for a producer–consumer queue like this works fine up 
to a point, but as the cardinality—the number of items in the list—
increases, the list type’s performance can degrade superlinearly. 
To analyze the performance of using list as a FIFO queue, I can 
run some micro-benchmarks using the timeit built-in module. Here, 
I define a benchmark for the performance of adding new items to the 
queue using the append method of list (matching the producer func-
tion’s usage):

import timeit

 

def print_results(count, tests):

    avg_iteration = sum(tests) / len(tests)

    print(f'Count {count:>5,} takes {avg_iteration:.6f}s')

    return count, avg_iteration

 

def list_append_benchmark(count):

    def run(queue):



        for i in range(count):

            queue.append(i)

 

    tests = timeit.repeat(

        setup='queue = []',

        stmt='run(queue)',

        globals=locals(),

        repeat=1000,

        number=1)

 

    return print_results(count, tests)

Running this benchmark function with different levels of cardinality 
lets me compare its performance in relationship to data size:

def print_delta(before, after):

    before_count, before_time = before

    after_count, after_time = after

    growth = 1 + (after_count - before_count) / before_count

    slowdown = 1 + (after_time - before_time) / before_time

    print(f'{growth:>4.1f}x data size, {slowdown:>4.1f}x time')

 

baseline = list_append_benchmark(500)

for count in (1_000, 2_000, 3_000, 4_000, 5_000):

    comparison = list_append_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000039s

 

Count 1,000 takes 0.000073s

 2.0x data size,  1.9x time

 

Count 2,000 takes 0.000121s

 4.0x data size,  3.1x time

 

Count 3,000 takes 0.000172s

 6.0x data size,  4.5x time

 

Count 4,000 takes 0.000240s

 8.0x data size,  6.2x time

 

Count 5,000 takes 0.000304s

10.0x data size,  7.9x time
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This shows that the append method takes roughly constant time for 
the list type, and the total time for enqueueing scales linearly as the 
data size increases. There is overhead for the list type to increase its 
capacity under the covers as new items are added, but it’s reasonably 
low and is amortized across repeated calls to append.

Here, I define a similar benchmark for the pop(0) call that removes 
items from the beginning of the queue (matching the consumer func-
tion’s usage):

def list_pop_benchmark(count):

    def prepare():

        return list(range(count))

 

    def run(queue):

        while queue:

            queue.pop(0)

 

    tests = timeit.repeat(

        setup='queue = prepare()',

        stmt='run(queue)',

        globals=locals(),

        repeat=1000,

        number=1)

 

    return print_results(count, tests)

I can similarly run this benchmark for queues of different sizes to see 
how performance is affected by cardinality:

baseline = list_pop_benchmark(500)

for count in (1_000, 2_000, 3_000, 4_000, 5_000):

    comparison = list_pop_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000050s

 

Count 1,000 takes 0.000133s

 2.0x data size,  2.7x time

 

Count 2,000 takes 0.000347s

 4.0x data size,  6.9x time

 

Count 3,000 takes 0.000663s

 6.0x data size, 13.2x time

 



Count 4,000 takes 0.000943s

 8.0x data size, 18.8x time

 

Count 5,000 takes 0.001481s

10.0x data size, 29.5x time

Surprisingly, this shows that the total time for dequeuing items from 
a list with pop(0) scales quadratically as the length of the queue 
increases. The cause is that pop(0) needs to move every item in the 
list back an index, effectively reassigning the entire list’s contents. 
I need to call pop(0) for every item in the list, and thus I end up 
doing roughly len(queue) * len(queue) operations to consume the 
queue. This doesn’t scale.

Python provides the deque class from the collections built-in module 
to solve this problem. deque is a double-ended queue implementation. 
It provides constant time operations for inserting or removing items 
from its beginning or end. This makes it ideal for FIFO queues.

To use the deque class, the call to append in produce_emails can 
stay the same as it was when using a list for the queue. The 
list.pop method call in consume_one_email must change to call the 
deque.popleft method with no arguments instead. And the loop 
method must be called with a deque instance instead of a list. Every-
thing else stays the same. Here, I redefine the one function affected to 
use the new method and run loop again:

import collections

 

def consume_one_email(queue):

    if not queue:

        return

    email = queue.popleft()  # Consumer

    # Process the email message

    ...

 

def my_end_func():

    ...

 

loop(collections.deque(), my_end_func)

I can run another version of the benchmark to verify that append 
performance (matching the producer function’s usage) has stayed 
roughly the same (modulo a constant factor):

def deque_append_benchmark(count):

    def prepare():

        return collections.deque()
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    def run(queue):

        for i in range(count):

            queue.append(i)

 

    tests = timeit.repeat(

        setup='queue = prepare()',

        stmt='run(queue)',

        globals=locals(),

        repeat=1000,

        number=1)

    return print_results(count, tests)

 

baseline = deque_append_benchmark(500)

for count in (1_000, 2_000, 3_000, 4_000, 5_000):

    comparison = deque_append_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000029s

 

Count 1,000 takes 0.000059s

 2.0x data size,  2.1x time

 

Count 2,000 takes 0.000121s

 4.0x data size,  4.2x time

 

Count 3,000 takes 0.000171s

 6.0x data size,  6.0x time

 

Count 4,000 takes 0.000243s

 8.0x data size,  8.5x time

 

Count 5,000 takes 0.000295s

10.0x data size, 10.3x time

And I can benchmark the performance of calling popleft to mimic 
the consumer function’s usage of deque:

def dequeue_popleft_benchmark(count):

    def prepare():

        return collections.deque(range(count))

 

    def run(queue):

        while queue:

            queue.popleft()

 

    tests = timeit.repeat(



        setup='queue = prepare()',

        stmt='run(queue)',

        globals=locals(),

        repeat=1000,

        number=1)

 

    return print_results(count, tests)

 

baseline = dequeue_popleft_benchmark(500)

for count in (1_000, 2_000, 3_000, 4_000, 5_000):

    comparison = dequeue_popleft_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000024s

 

Count 1,000 takes 0.000050s

 2.0x data size,  2.1x time

 

Count 2,000 takes 0.000100s

 4.0x data size,  4.2x time

 

Count 3,000 takes 0.000152s

 6.0x data size,  6.3x time

 

Count 4,000 takes 0.000207s

 8.0x data size,  8.6x time

 

Count 5,000 takes 0.000265s

10.0x data size, 11.0x time

The popleft usage scales linearly instead of displaying the super-
linear behavior of pop(0) that I measured before—hooray! If you 
know that the performance of a program critically depends on the 
speed of producer–consumer queues, then deque is a great choice. 
If you’re not sure, then you should instrument your program to 
find out (see Item 70: “Profile Before Optimizing”).

Things to Remember

✦ The list type can be used as a FIFO queue by having the producer 
call append to add items and the consumer call pop(0) to receive 
items. However, this may cause problems because the performance 
of pop(0) degrades superlinearly as the queue length increases.
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✦ The deque class from the collections built-in module takes constant 
time—regardless of length—for append and popleft, making it ideal 
for FIFO queues.

Item 72:  Consider Searching Sorted Sequences 
with bisect

It’s common to find yourself with a large amount of data in memory 
as a sorted list that you then want to search. For example, you may 
have loaded an English language dictionary to use for spell check-
ing, or perhaps a list of dated financial transactions to audit for 
correctness.

Regardless of the data your specific program needs to process, search-
ing for a specific value in a list takes linear time proportional to the 
list’s length when you call the index method:

data = list(range(10**5))

index = data.index(91234)

assert index == 91234

If you’re not sure whether the exact value you’re searching for is in the 
list, then you may want to search for the closest index that is equal 
to or exceeds your goal value. The simplest way to do this is to lin-
early scan the list and compare each item to your goal value:

def find_closest(sequence, goal):

    for index, value in enumerate(sequence):

        if goal < value:

            return index

    raise ValueError(f'{goal} is out of bounds')

 

index = find_closest(data, 91234.56)

assert index == 91235

Python’s built-in bisect module provides better ways to accom-
plish these types of searches through ordered lists. You can use the 
bisect_left function to do an efficient binary search through any 
sequence of sorted items. The index it returns will either be where the 
item is already present in the list or where you’d want to insert the 
item in the list to keep it in sorted order:

from bisect import bisect_left

 

index = bisect_left(data, 91234)     # Exact match

assert index == 91234
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index = bisect_left(data, 91234.56)  # Closest match

assert index == 91235

The complexity of the binary search algorithm used by the bisect 
module is logarithmic. This means searching in a list of length 
1 million takes roughly the same amount of time with bisect as 
linearly searching a list of length 20 using the list.index method 
(math.log2(10**6) == 19.93...). It’s way faster!

I can verify this speed improvement for the example from above by 
using the timeit built-in module to run a micro-benchmark:

import random

import timeit

 

size = 10**5

iterations = 1000

 

data = list(range(size))

to_lookup = [random.randint(0, size)

             for _ in range(iterations)]

 

def run_linear(data, to_lookup):

    for index in to_lookup:

        data.index(index)

 

def run_bisect(data, to_lookup):

    for index in to_lookup:

        bisect_left(data, index)

 

baseline = timeit.timeit(

    stmt='run_linear(data, to_lookup)',

    globals=globals(),

    number=10)

print(f'Linear search takes {baseline:.6f}s')

 

comparison = timeit.timeit(

    stmt='run_bisect(data, to_lookup)',

    globals=globals(),

    number=10)

print(f'Bisect search takes {comparison:.6f}s')

 

slowdown = 1 + ((baseline - comparison) / comparison)

print(f'{slowdown:.1f}x time')
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>>>

Linear search takes 5.370117s

Bisect search takes 0.005220s

1028.7x time

The best part about bisect is that it’s not limited to the list type; 
you can use it with any Python object that acts like a sequence (see 
Item 43: “Inherit from collections.abc for Custom Container Types” 
for how to do that). The module also provides additional features for 
more advanced situations (see help(bisect)).

Things to Remember

✦ Searching sorted data contained in a list takes linear time using 
the index method or a for loop with simple comparisons.

✦ The bisect built-in module’s bisect_left function takes logarith-
mic time to search for values in sorted lists, which can be orders of 
magnitude faster than other approaches.

Item 73: Know How to Use heapq for Priority Queues

One of the limitations of Python’s other queue implementations (see 
Item 71: “Prefer deque for Producer–Consumer Queues” and Item 55: 
“Use Queue to Coordinate Work Between Threads”) is that they are 
first-in, first-out (FIFO) queues: Their contents are sorted by the order 
in which they were received. Often, you need a program to process 
items in order of relative importance instead. To accomplish this, a 
priority queue is the right tool for the job.

For example, say that I’m writing a program to manage books bor-
rowed from a library. There are people constantly borrowing new 
books. There are people returning their borrowed books on time. And 
there are people who need to be reminded to return their overdue 
books. Here, I define a class to represent a book that’s been borrowed:

class Book:

    def __init__(self, title, due_date):

        self.title = title

        self.due_date = due_date

I need a system that will send reminder messages when each book 
passes its due date. Unfortunately, I can’t use a FIFO queue for this 
because the amount of time each book is allowed to be borrowed var-
ies based on its recency, popularity, and other factors. For example, a 
book that is borrowed today may be due back later than a book that’s 
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borrowed tomorrow. Here, I achieve this behavior by using a standard 
list and sorting it by due_date each time a new Book is added:

def add_book(queue, book):

    queue.append(book)

    queue.sort(key=lambda x: x.due_date, reverse=True)

 

queue = []

add_book(queue, Book('Don Quixote', '2019-06-07'))

add_book(queue, Book('Frankenstein', '2019-06-05'))

add_book(queue, Book('Les Misérables', '2019-06-08'))

add_book(queue, Book('War and Peace', '2019-06-03'))

If I can assume that the queue of borrowed books is always in sorted 
order, then all I need to do to check for overdue books is to inspect the 
final element in the list. Here, I define a function to return the next 
overdue book, if any, and remove it from the queue:

class NoOverdueBooks(Exception):

    pass

 

def next_overdue_book(queue, now):

    if queue:

        book = queue[-1]

        if book.due_date < now:

            queue.pop()

            return book

 

    raise NoOverdueBooks

I can call this function repeatedly to get overdue books to remind peo-
ple about in the order of most overdue to least overdue:

now = '2019-06-10'

 

found = next_overdue_book(queue, now)

print(found.title)

 

found = next_overdue_book(queue, now)

print(found.title)

>>>

War and Peace

Frankenstein
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If a book is returned before the due date, I can remove the scheduled 
reminder message by removing the Book from the list:

def return_book(queue, book):

    queue.remove(book)

 

queue = []

book = Book('Treasure Island', '2019-06-04')

 

add_book(queue, book)

print('Before return:', [x.title for x in queue])

 

return_book(queue, book)

print('After return: ', [x.title for x in queue])

>>>

Before return: ['Treasure Island']

After return:  []

And I can confirm that when all books are returned, the return_book 
function will raise the right exception (see Item 20: “Prefer Raising 
Exceptions to Returning None”):

try:

    next_overdue_book(queue, now)

except NoOverdueBooks:

    pass          # Expected

else:

    assert False  # Doesn't happen

However, the computational complexity of this solution isn’t 
ideal. Although checking for and removing an overdue book has 
a constant cost, every time I add a book, I pay the cost of sorting 
the whole list again. If I have len(queue) books to add, and the 
cost of sorting them is roughly len(queue) * math.log(len(queue)), 
the time it takes to add books will grow superlinearly 
(len(queue) * len(queue) * math.log(len(queue))).

Here, I define a micro-benchmark to measure this performance 
behavior experimentally by using the timeit built-in module (see Item 
71: “Prefer deque for Producer–Consumer Queues” for the implemen-
tation of print_results and print_delta):

import random

import timeit

 

def print_results(count, tests):

    ...

 



def print_delta(before, after):

    ...

 

def list_overdue_benchmark(count):

    def prepare():

        to_add = list(range(count))

        random.shuffle(to_add)

        return [], to_add

 

    def run(queue, to_add):

        for i in to_add:

            queue.append(i)

            queue.sort(reverse=True)

 

        while queue:

            queue.pop()

 

    tests = timeit.repeat(

        setup='queue, to_add = prepare()',

        stmt=f'run(queue, to_add)',

        globals=locals(),

        repeat=100,

        number=1)

 

    return print_results(count, tests)

I can verify that the runtime of adding and removing books from the 
queue scales superlinearly as the number of books being borrowed 
increases:

baseline = list_overdue_benchmark(500)

for count in (1_000, 1_500, 2_000):

    comparison = list_overdue_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.001138s

 

Count 1,000 takes 0.003317s

 2.0x data size,  2.9x time

 

Count 1,500 takes 0.007744s

 3.0x data size,  6.8x time

 

Count 2,000 takes 0.014739s

 4.0x data size, 13.0x time
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When a book is returned before the due date, I need to do a linear 
scan in order to find the book in the queue and remove it. Removing 
a book causes all subsequent items in the list to be shifted back 
an index, which has a high cost that also scales superlinearly. Here, 
I define another micro-benchmark to test the performance of return-
ing a book using this function:

def list_return_benchmark(count):

    def prepare():

        queue = list(range(count))

        random.shuffle(queue)

 

        to_return = list(range(count))

        random.shuffle(to_return)

 

        return queue, to_return

 

    def run(queue, to_return):

        for i in to_return:

            queue.remove(i)

 

    tests = timeit.repeat(

        setup='queue, to_return = prepare()',

        stmt=f'run(queue, to_return)',

        globals=locals(),

        repeat=100,

        number=1)

 

    return print_results(count, tests)

And again, I can verify that indeed the performance degrades super-
linearly as the number of books increases:

baseline = list_return_benchmark(500)

for count in (1_000, 1_500, 2_000):

    comparison = list_return_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000898s

 

Count 1,000 takes 0.003331s

 2.0x data size,  3.7x time

 

Count 1,500 takes 0.007674s

 3.0x data size,  8.5x time

 



Count 2,000 takes 0.013721s

 4.0x data size, 15.3x time

Using the methods of list may work for a tiny library, but it certainly 
won’t scale to the size of the Great Library of Alexandria, as I want it to!

Fortunately, Python has the built-in heapq module that solves this 
problem by implementing priority queues efficiently. A heap is a data 
structure that allows for a list of items to be maintained where 
the computational complexity of adding a new item or removing the 
smallest item has logarithmic computational complexity (i.e., even 
better than linear scaling). In this library example, smallest means 
the book with the earliest due date. The best part about this module 
is that you don’t have to understand how heaps are implemented in 
order to use its functions correctly.

Here, I reimplement the add_book function using the heapq module. 
The queue is still a plain list. The heappush function replaces the 
list.append call from before. And I no longer have to call list.sort on 
the queue:

from heapq import heappush

 

def add_book(queue, book):

    heappush(queue, book)

If I try to use this with the Book class as previously defined, I get this 
somewhat cryptic error:

queue = []

add_book(queue, Book('Little Women', '2019-06-05'))

add_book(queue, Book('The Time Machine', '2019-05-30'))

>>>

Traceback ...

TypeError: '<' not supported between instances of 'Book' and 

➥'Book'

The heapq module requires items in the priority queue to be compa-
rable and have a natural sort order (see Item 14: “Sort by Complex 
Criteria Using the key Parameter” for details). You can quickly give 
the Book class this behavior by using the total_ordering class dec-
orator from the functools built-in module (see Item 51: “Prefer Class 
Decorators Over Metaclasses for Composable Class Extensions” for 
background) and implementing the __lt__ special method (see Item 
43: “Inherit from collections.abc for Custom Container Types” for 
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background). Here, I redefine the class with a less-than method that 
simply compares the due_date fields between two Book instances:

import functools

 

@functools.total_ordering

class Book:

    def __init__(self, title, due_date):

        self.title = title

        self.due_date = due_date

 

    def __lt__(self, other):

        return self.due_date < other.due_date

Now, I can add books to the priority queue by using the heapq.heappush 
function without issues:

queue = []

add_book(queue, Book('Pride and Prejudice', '2019-06-01'))

add_book(queue, Book('The Time Machine', '2019-05-30'))

add_book(queue, Book('Crime and Punishment', '2019-06-06'))

add_book(queue, Book('Wuthering Heights', '2019-06-12'))

Alternatively, I can create a list with all of the books in any order and 
then use the sort method of list to produce the heap:

queue = [

    Book('Pride and Prejudice', '2019-06-01'),

    Book('The Time Machine', '2019-05-30'),

    Book('Crime and Punishment', '2019-06-06'),

    Book('Wuthering Heights', '2019-06-12'),

]

queue.sort()

Or I can use the heapq.heapify function to create a heap in linear 
time (as opposed to the sort method’s len(queue) * log(len(queue)) 
complexity):

from heapq import heapify

 

queue = [

    Book('Pride and Prejudice', '2019-06-01'),

    Book('The Time Machine', '2019-05-30'),

    Book('Crime and Punishment', '2019-06-06'),

    Book('Wuthering Heights', '2019-06-12'),

]

heapify(queue)



To check for overdue books, I inspect the first element in the list 
instead of the last, and then I use the heapq.heappop function instead 
of the list.pop function:

from heapq import heappop

 

def next_overdue_book(queue, now):

    if queue:

        book = queue[0]           # Most overdue first

        if book.due_date < now:

            heappop(queue)        # Remove the overdue book

            return book

 

    raise NoOverdueBooks

Now, I can find and remove overdue books in order until there are 
none left for the current time:

now = '2019-06-02'

 

book = next_overdue_book(queue, now)

print(book.title)

 

book = next_overdue_book(queue, now)

print(book.title)

 

try:

    next_overdue_book(queue, now)

except NoOverdueBooks:

    pass          # Expected

else:

    assert False  # Doesn't happen

>>>

The Time Machine

Pride and Prejudice

I can write another micro-benchmark to test the performance of this 
implementation that uses the heapq module:

def heap_overdue_benchmark(count):

    def prepare():

        to_add = list(range(count))

        random.shuffle(to_add)

        return [], to_add

 

    def run(queue, to_add):

        for i in to_add:
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            heappush(queue, i)

        while queue:

            heappop(queue)

 

    tests = timeit.repeat(

        setup='queue, to_add = prepare()',

        stmt=f'run(queue, to_add)',

        globals=locals(),

        repeat=100,

        number=1)

 

    return print_results(count, tests)

This benchmark experimentally verifies that the heap-based 
priority queue implementation scales much better (roughly 
len(queue) * math.log(len(queue))), without superlinearly degrading 
performance:

baseline = heap_overdue_benchmark(500)

for count in (1_000, 1_500, 2_000):

    comparison = heap_overdue_benchmark(count)

    print_delta(baseline, comparison)

>>>

Count   500 takes 0.000150s

 

Count 1,000 takes 0.000325s

 2.0x data size,  2.2x time

 

Count 1,500 takes 0.000528s

 3.0x data size,  3.5x time

 

Count 2,000 takes 0.000658s

 4.0x data size,  4.4x time

With the heapq implementation, one question remains: How should 
I handle returns that are on time? The solution is to never remove a 
book from the priority queue until its due date. At that time, it will 
be the first item in the list, and I can simply ignore the book if it’s 
already been returned. Here, I implement this behavior by adding a 
new field to track the book’s return status:

@functools.total_ordering

class Book:

    def __init__(self, title, due_date):

        self.title = title

        self.due_date = due_date



        self.returned = False  # New field

 

    ...

Then, I change the next_overdue_book function to repeatedly ignore 
any book that’s already been returned:

def next_overdue_book(queue, now):

    while queue:

        book = queue[0]

        if book.returned:

            heappop(queue)

            continue

 

        if book.due_date < now:

            heappop(queue)

            return book

 

        break

 

    raise NoOverdueBooks

This approach makes the return_book function extremely fast 
because it makes no modifications to the priority queue:

def return_book(queue, book):

    book.returned = True

The downside of this solution for returns is that the priority queue 
may grow to the maximum size it would have needed if all books from 
the library were checked out and went overdue. Although the queue 
operations will be fast thanks to heapq, this storage overhead may 
take significant memory (see Item 81: “Use tracemalloc to Understand 
Memory Usage and Leaks” for how to debug such usage).

That said, if you’re trying to build a robust system, you need to plan 
for the worst-case scenario; thus, you should expect that it’s possible 
for every library book to go overdue for some reason (e.g., a natural 
disaster closes the road to the library). This memory cost is a design 
consideration that you should have already planned for and mitigated 
through additional constraints (e.g., imposing a maximum number of 
simultaneously lent books).

Beyond the priority queue primitives that I’ve used in this example, 
the heapq module provides additional functionality for advanced use 
cases (see help(heapq)). The module is a great choice when its function-
ality matches the problem you’re facing (see the queue.PriorityQueue 
class for another thread-safe option).
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Things to Remember

✦ Priority queues allow you to process items in order of importance 
instead of in first-in, first-out order.

✦ If you try to use list operations to implement a priority queue, your 
program’s performance will degrade superlinearly as the queue 
grows.

✦ The heapq built-in module provides all of the functions you need to 
implement a priority queue that scales efficiently.

✦ To use heapq, the items being prioritized must have a natural sort 
order, which requires special methods like __lt__ to be defined for 
classes.

Item 74:  Consider memoryview and bytearray for 
Zero-Copy Interactions with bytes

Although Python isn’t able to parallelize CPU-bound computation 
without extra effort (see Item 64: “Consider concurrent.futures for 
True Parallelism”), it is able to support high-throughput, parallel I/O 
in a variety of ways (see Item 53: “Use Threads for Blocking I/O, Avoid 
for Parallelism” and Item 60: “Achieve Highly Concurrent I/O with 
Coroutines”). That said, it’s surprisingly easy to use these I/O tools 
the wrong way and reach the conclusion that the language is too slow 
for even I/O-bound workloads.

For example, say that I’m building a media server to stream television 
or movies over a network to users so they can watch without having 
to download the video data in advance. One of the key features of 
such a system is the ability for users to move forward or backward 
in the video playback so they can skip or repeat parts. In the client 
program, I can implement this by requesting a chunk of data from the 
server corresponding to the new time index selected by the user:

def timecode_to_index(video_id, timecode):

    ...

    # Returns the byte offset in the video data

 

def request_chunk(video_id, byte_offset, size):

    ...

    # Returns size bytes of video_id's data from the offset

 

video_id = ...

timecode = '01:09:14:28'

byte_offset = timecode_to_index(video_id, timecode)
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size = 20 * 1024 * 1024

video_data = request_chunk(video_id, byte_offset, size)

How would you implement the server-side handler that receives the 
request_chunk request and returns the corresponding 20 MB chunk 
of video data? For the sake of this example, I assume that the com-
mand and control parts of the server have already been hooked up 
(see Item 61: “Know How to Port Threaded I/O to asyncio” for what 
that requires). I focus here on the last steps where the requested 
chunk is extracted from gigabytes of video data that’s cached in mem-
ory and is then sent over a socket back to the client. Here’s what the 
implementation would look like:

socket = ...             # socket connection to client

video_data = ...         # bytes containing data for video_id

byte_offset = ...        # Requested starting position

size = 20 * 1024 * 1024  # Requested chunk size

 

chunk = video_data[byte_offset:byte_offset + size]

socket.send(chunk)

The latency and throughput of this code will come down to two fac-
tors: how much time it takes to slice the 20 MB video chunk from 
video_data, and how much time the socket takes to transmit that 
data to the client. If I assume that the socket is infinitely fast, I can 
run a micro-benchmark by using the timeit built-in module to under-
stand the performance characteristics of slicing bytes instances this 
way to create chunks (see Item 11: “Know How to Slice Sequences” for 
background):

import timeit

 

def run_test():

    chunk = video_data[byte_offset:byte_offset + size]

    # Call socket.send(chunk), but ignoring for benchmark

 

result = timeit.timeit(

    stmt='run_test()',

    globals=globals(),

    number=100) / 100

 

print(f'{result:0.9f} seconds')

>>>

0.004925669 seconds
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It took roughly 5 milliseconds to extract the 20 MB slice of data to 
transmit to the client. That means the overall throughput of my 
server is limited to a theoretical maximum of 20 MB / 5 milliseconds 
= 7.3 GB / second, since that’s the fastest I can extract the video 
data from memory. My server will also be limited to 1 CPU-second / 
5  milliseconds = 200 clients requesting new chunks in parallel, which 
is tiny compared to the tens of thousands of simultaneous connec-
tions that tools like the asyncio built-in module can support. The 
problem is that slicing a bytes instance causes the underlying data to 
be copied, which takes CPU time.

A better way to write this code is by using Python’s built-in memoryview 
type, which exposes CPython’s high-performance buffer protocol to 
programs. The buffer protocol is a low-level C API that allows the 
Python runtime and C extensions to access the underlying data 
buffers that are behind objects like bytes instances. The best part 
about memoryview instances is that slicing them results in another 
memoryview instance without copying the underlying data. Here, I cre-
ate a memoryview wrapping a bytes instance and inspect a slice of it:

data = b'shave and a haircut, two bits'

view = memoryview(data)

chunk = view[12:19]

print(chunk)

print('Size:           ', chunk.nbytes)

print('Data in view:   ', chunk.tobytes())

print('Underlying data:', chunk.obj)

>>>

<memory at 0x10951fb80>

Size:            7

Data in view:    b'haircut'

Underlying data: b'shave and a haircut, two bits'

By enabling zero-copy operations, memoryview can provide enor-
mous speedups for code that needs to quickly process large amounts 
of memory, such as numerical C extensions like NumPy and 
I/O-bound programs like this one. Here, I replace the simple bytes 
slicing from above with memoryview slicing instead and repeat the 
same micro-benchmark:

video_view = memoryview(video_data)

 

def run_test():

    chunk = video_view[byte_offset:byte_offset + size]

    # Call socket.send(chunk), but ignoring for benchmark

 



result = timeit.timeit(

    stmt='run_test()',

    globals=globals(),

    number=100) / 100

 

print(f'{result:0.9f} seconds')

>>>

0.000000250 seconds

The result is 250 nanoseconds. Now the theoretical maximum through-
put of my server is 20 MB / 250 nanoseconds = 164 TB / second. 
For parallel clients, I can theoretically support up to 1 CPU- second / 
250 nanoseconds = 4 million. That’s more like it! This means that 
now my program is entirely bound by the underlying performance of 
the socket connection to the client, not by CPU constraints.

Now, imagine that the data must flow in the other direction, where 
some clients are sending live video streams to the server in order to 
broadcast them to other users. In order to do this, I need to store the 
latest video data from the user in a cache that other clients can read 
from. Here’s what the implementation of reading 1 MB of new data 
from the incoming client would look like:

socket = ...        # socket connection to the client

video_cache = ...   # Cache of incoming video stream

byte_offset = ...   # Incoming buffer position

size = 1024 * 1024  # Incoming chunk size

 

chunk = socket.recv(size)

video_view = memoryview(video_cache)

before = video_view[:byte_offset]

after = video_view[byte_offset + size:]

new_cache = b''.join([before, chunk, after])

The socket.recv method returns a bytes instance. I can splice the 
new data with the existing cache at the current byte_offset by using 
simple slicing operations and the bytes.join method. To understand 
the performance of this, I can run another micro-benchmark. I’m 
using a dummy socket, so the performance test is only for the mem-
ory operations, not the I/O interaction:

def run_test():

    chunk = socket.recv(size)

    before = video_view[:byte_offset]

    after = video_view[byte_offset + size:]

    new_cache = b''.join([before, chunk, after])
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result = timeit.timeit(

    stmt='run_test()',

    globals=globals(),

    number=100) / 100

 

print(f'{result:0.9f} seconds')

>>>

0.033520550 seconds

It takes 33 milliseconds to receive 1 MB and update the video cache. 
This means my maximum receive throughput is 1 MB / 33  milliseconds 
= 31 MB / second, and I’m limited to 31 MB / 1 MB = 31 simultaneous 
clients streaming in video data this way. This doesn’t scale.

A better way to write this code is to use Python’s built-in bytearray 
type in conjunction with memoryview. One limitation with bytes 
instances is that they are read-only and don’t allow for individual 
indexes to be updated:

my_bytes = b'hello'

my_bytes[0] = b'\x79'

>>>

Traceback ...

TypeError: 'bytes' object does not support item assignment

The bytearray type is like a mutable version of bytes that allows for 
arbitrary positions to be overwritten. bytearray uses integers for its 
values instead of bytes:

my_array = bytearray(b'hello')

my_array[0] = 0x79

print(my_array)

>>>

bytearray(b'yello')

A memoryview can also be used to wrap a bytearray. When you slice 
such a memoryview, the resulting object can be used to assign data to a 
particular portion of the underlying buffer. This eliminates the copy-
ing costs from above that were required to splice the bytes instances 
back together after data was received from the client:

my_array = bytearray(b'row, row, row your boat')

my_view = memoryview(my_array)

write_view = my_view[3:13]

write_view[:] = b'-10 bytes-'

print(my_array)



>>>

bytearray(b'row-10 bytes- your boat')

Many library methods in Python, such as socket.recv_into and 
RawIOBase.readinto, use the buffer protocol to receive or read data 
quickly. The benefit of these methods is that they avoid allocating 
memory and creating another copy of the data; what’s received goes 
straight into an existing buffer. Here, I use socket.recv_into along 
with a memoryview slice to receive data into an underlying bytearray 
without the need for splicing:

video_array = bytearray(video_cache)

write_view = memoryview(video_array)

chunk = write_view[byte_offset:byte_offset + size]

socket.recv_into(chunk)

I can run another micro-benchmark to compare the performance of 
this approach to the earlier example that used socket.recv:

def run_test():

    chunk = write_view[byte_offset:byte_offset + size]

    socket.recv_into(chunk)

 

result = timeit.timeit(

    stmt='run_test()',

    globals=globals(),

    number=100) / 100

 

print(f'{result:0.9f} seconds')

>>>

0.000033925 seconds

It took 33 microseconds to receive a 1 MB video transmission. This 
means my server can support 1 MB / 33 microseconds = 31 GB /  
second of max throughput, and 31 GB / 1 MB = 31,000 parallel 
streaming clients. That’s the type of scalability that I’m looking for!

Things to Remember

✦ The memoryview built-in type provides a zero-copy interface for 
reading and writing slices of objects that support Python’s high- 
performance buffer protocol.

✦ The bytearray built-in type provides a mutable bytes-like type 
that can be used for zero-copy data reads with functions like 
socket.recv_from.

✦ A memoryview can wrap a bytearray, allowing for received data to be 
spliced into an arbitrary buffer location without copying costs.
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Python doesn’t have compile-time static type checking. There’s 
 nothing in the interpreter that will ensure that your program will 
work correctly when you run it. Python does support optional type 
annotations that can be used in static analysis to detect many kinds 
of bugs (see Item 90: “Consider Static Analysis via typing to Obviate 
Bugs” for details). However, it’s still fundamentally a dynamic lan-
guage, and anything is possible. With Python, you ultimately don’t 
know if the functions your program calls will be defined at runtime, 
even when their existence is evident in the source code. This dynamic 
behavior is both a blessing and a curse.

The large numbers of Python programmers out there say it’s worth 
going without compile-time static type checking because of the pro-
ductivity gained from the resulting brevity and simplicity. But most 
people using Python have at least one horror story about a program 
encountering a boneheaded error at runtime. One of the worst exam-
ples I’ve heard of involved a SyntaxError being raised in production as 
a side effect of a dynamic import (see Item 88: “Know How to Break 
Circular Dependencies”), resulting in a crashed server process. The 
programmer I know who was hit by this surprising occurrence has 
since ruled out using Python ever again.

But I have to wonder, why wasn’t the code more well tested before 
the program was deployed to production? Compile-time static type 
safety isn’t everything. You should always test your code, regardless 
of what language it’s written in. However, I’ll admit that in Python it 
may be more important to write tests to verify correctness than in 
other languages. Luckily, the same dynamic features that create risks 
also make it extremely easy to write tests for your code and to debug 
malfunctioning programs. You can use Python’s dynamic nature and 
easily overridable behaviors to implement tests and ensure that your 
programs work as expected.
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You should think of tests as an insurance policy on your code. Good 
tests give you confidence that your code is correct. If you refactor or 
expand your code, tests that verify behavior—not implementation—
make it easy to identify what’s changed. It sounds counterintuitive, 
but having good tests actually makes it easier to modify Python code, 
not harder.

Item 75: Use repr Strings for Debugging Output

When debugging a Python program, the print function and format 
strings (see Item 4: “Prefer Interpolated F-Strings Over C-style Format 
Strings and str.format”), or output via the logging built-in module, 
will get you surprisingly far. Python internals are often easy to access 
via plain attributes (see Item 42: “Prefer Public Attributes Over Pri-
vate Ones”). All you need to do is call print to see how the state of 
your program changes while it runs and understand where it goes 
wrong.

The print function outputs a human-readable string version of 
 whatever you supply it. For example, printing a basic string prints the 
contents of the string without the surrounding quote characters:

print('foo bar')

>>>

foo bar

This is equivalent to all of these alternatives:

 ■ Calling the str function before passing the value to print

 ■ Using the '%s' format string with the % operator

 ■ Default formatting of the value with an f-string

 ■ Calling the format built-in function

 ■ Explicitly calling the __format__ special method

 ■ Explicitly calling the __str__ special method

Here, I verify this behavior:

my_value = 'foo bar'

print(str(my_value))

print('%s' % my_value)

print(f'{my_value}')

print(format(my_value))

print(my_value.__format__('s'))

print(my_value.__str__())
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>>>

foo bar

foo bar

foo bar

foo bar

foo bar

foo bar

The problem is that the human-readable string for a value doesn’t 
make it clear what the actual type and its specific composition are. 
For example, notice how in the default output of print, you can’t dis-
tinguish between the types of the number 5 and the string '5':

print(5)

print('5')

 

int_value = 5

str_value = '5'

print(f'{int_value} == {str_value} ?')

>>>

5

5

5 == 5 ?

If you’re debugging a program with print, these type differences mat-
ter. What you almost always want while debugging is to see the repr 
version of an object. The repr built-in function returns the printable 

representation of an object, which should be its most clearly under-
standable string representation. For most built-in types, the string 
returned by repr is a valid Python expression:

a = '\x07'

print(repr(a))

>>>

'\x07'

Passing the value from repr to the eval built-in function should result 
in the same Python object that you started with (and, of course, in 
practice you should only use eval with extreme caution):

b = eval(repr(a))

assert a == b

When you’re debugging with print, you should call repr on a value 
before printing to ensure that any difference in types is clear:

print(repr(5))

print(repr('5'))
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>>>

5

'5'

This is equivalent to using the '%r' format string with the % operator 
or an f-string with the !r type conversion:

print('%r' % 5)

print('%r' % '5')

 

int_value = 5

str_value = '5'

print(f'{int_value!r} != {str_value!r}')

>>>

5

'5'

5 != '5'

For instances of Python classes, the default human-readable string 
value is the same as the repr value. This means that passing an 
instance to print will do the right thing, and you don’t need to explic-
itly call repr on it. Unfortunately, the default implementation of 
repr for object subclasses isn’t especially helpful. For example, here 
I define a simple class and then print one of its instances:

class OpaqueClass:

    def __init__(self, x, y):

        self.x = x

        self.y = y

 

obj = OpaqueClass(1, 'foo')

print(obj)

>>>

<__main__.OpaqueClass object at 0x10963d6d0>

This output can’t be passed to the eval function, and it says nothing 
about the instance fields of the object.

There are two solutions to this problem. If you have control of the 
class, you can define your own __repr__ special method that returns 
a string containing the Python expression that re-creates the object. 
Here, I define that function for the class above:

class BetterClass:

    def __init__(self, x, y):

        self.x = x

        self.y = y
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    def __repr__(self):

        return f'BetterClass({self.x!r}, {self.y!r})'

Now the repr value is much more useful:

obj = BetterClass(2, 'bar')

print(obj)

>>>

BetterClass(2, 'bar')

When you don’t have control over the class definition, you can reach 
into the object’s instance dictionary, which is stored in the __dict__ 
attribute. Here, I print out the contents of an OpaqueClass instance:

obj = OpaqueClass(4, 'baz')

print(obj.__dict__)

>>>

{'x': 4, 'y': 'baz'}

Things to Remember

✦ Calling print on built-in Python types produces the human- 
readable string version of a value, which hides type information.

✦ Calling repr on built-in Python types produces the printable string 
version of a value. These repr strings can often be passed to the 
eval built-in function to get back the original value.

✦ %s in format strings produces human-readable strings like str. %r 
produces printable strings like repr. F-strings produce human- 
readable strings for replacement text expressions unless you specify 
the !r suffix.

✦ You can define the __repr__ special method on a class to customize 
the printable representation of instances and provide more detailed 
debugging information.

Item 76:  Verify Related Behaviors in TestCase 
Subclasses

The canonical way to write tests in Python is to use the unittest 
built-in module. For example, say I have the following utility function 
defined in utils.py that I would like to verify works correctly across a 
variety of inputs:

# utils.py

def to_str(data):
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    if isinstance(data, str):

        return data

    elif isinstance(data, bytes):

        return data.decode('utf-8')

    else:

        raise TypeError('Must supply str or bytes, '

                        'found: %r' % data)

To define tests, I create a second file named test_utils.py or 
utils_test.py—the naming scheme you prefer is a style choice—that 
contains tests for each behavior that I expect:

# utils_test.py

from unittest import TestCase, main

from utils import to_str

 

class UtilsTestCase(TestCase):

    def test_to_str_bytes(self):

        self.assertEqual('hello', to_str(b'hello'))

 

    def test_to_str_str(self):

        self.assertEqual('hello', to_str('hello'))

 

    def test_failing(self):

        self.assertEqual('incorrect', to_str('hello'))

 

if __name__ == '__main__':

    main()

Then, I run the test file using the Python command line. In this case, 
two of the test methods pass and one fails, with a helpful error mes-
sage about what went wrong:

$ python3 utils_test.py

F..

===============================================================

FAIL: test_failing (__main__.UtilsTestCase)

---------------------------------------------------------------

Traceback (most recent call last):

  File "utils_test.py", line 15, in test_failing

    self.assertEqual('incorrect', to_str('hello'))

AssertionError: 'incorrect' != 'hello'

- incorrect

+ hello

 

 

---------------------------------------------------------------



Ran 3 tests in 0.002s

 

FAILED (failures=1)

Tests are organized into TestCase subclasses. Each test case is a 
method beginning with the word test. If a test method runs without 
raising any kind of Exception (including AssertionError from assert 
statements), the test is considered to have passed successfully. If one 
test fails, the TestCase subclass continues running the other test 
methods so you can get a full picture of how all your tests are doing 
instead of stopping at the first sign of trouble.

If you want to iterate quickly to fix or improve a specific test, you can 
run only that test method by specifying its path within the test mod-
ule on the command line:

$ python3 utils_test.py UtilsTestCase.test_to_str_bytes

.

---------------------------------------------------------------

Ran 1 test in 0.000s

 

OK

You can also invoke the debugger from directly within test methods 
at specific breakpoints in order to dig more deeply into the cause of 
failures (see Item 80: “Consider Interactive Debugging with pdb” for 
how to do that).

The TestCase class provides helper methods for making assertions in 
your tests, such as assertEqual for verifying equality, assertTrue for 
verifying Boolean expressions, and many more (see help(TestCase) 
for the full list). These are better than the built-in assert state-
ment because they print out all of the inputs and outputs to help 
you understand the exact reason the test is failing. For example, here 
I have the same test case written with and without using a helper 
assertion method:

# assert_test.py

from unittest import TestCase, main

from utils import to_str

 

class AssertTestCase(TestCase):

    def test_assert_helper(self):

        expected = 12

        found = 2 * 5

        self.assertEqual(expected, found)
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    def test_assert_statement(self):

        expected = 12

        found = 2 * 5

        assert expected == found

 

if __name__ == '__main__':

    main()

Which of these failure messages seems more helpful to you?

$ python3 assert_test.py

FF

===============================================================

FAIL: test_assert_helper (__main__.AssertTestCase)

---------------------------------------------------------------

Traceback (most recent call last):

  File "assert_test.py", line 16, in test_assert_helper

    self.assertEqual(expected, found)

AssertionError: 12 != 10

 

===============================================================

FAIL: test_assert_statement (__main__.AssertTestCase)

---------------------------------------------------------------

Traceback (most recent call last):

  File "assert_test.py", line 11, in test_assert_statement

    assert expected == found

AssertionError

 

---------------------------------------------------------------

Ran 2 tests in 0.001s

 

FAILED (failures=2)

There’s also an assertRaises helper method for verifying excep-
tions that can be used as a context manager in with statements (see 
Item 66: “Consider contextlib and with Statements for Reusable 
try/finally Behavior” for how that works). This appears similar to a 
try/except statement and makes it abundantly clear where the excep-
tion is expected to be raised:

# utils_error_test.py

from unittest import TestCase, main

from utils import to_str

 

class UtilsErrorTestCase(TestCase):



    def test_to_str_bad(self):

        with self.assertRaises(TypeError):

            to_str(object())

 

    def test_to_str_bad_encoding(self):

        with self.assertRaises(UnicodeDecodeError):

            to_str(b'\xfa\xfa')

 

if __name__ == '__main__':

    main()

You can define your own helper methods with complex logic in 
TestCase subclasses to make your tests more readable. Just ensure 
that your method names don’t begin with the word test, or they’ll 
be run as if they’re test cases. In addition to calling TestCase asser-
tion methods, these custom test helpers often use the fail method to 
clarify which assumption or invariant wasn’t met. For example, here 
I define a custom test helper method for verifying the behavior of a 
generator:

# helper_test.py

from unittest import TestCase, main

 

def sum_squares(values):

    cumulative = 0

    for value in values:

        cumulative += value ** 2

        yield cumulative

 

class HelperTestCase(TestCase):

    def verify_complex_case(self, values, expected):

        expect_it = iter(expected)

        found_it = iter(sum_squares(values))

        test_it = zip(expect_it, found_it)

 

        for i, (expect, found) in enumerate(test_it):

            self.assertEqual(

                expect,

                found,

                f'Index {i} is wrong')

 

        # Verify both generators are exhausted

        try:

            next(expect_it)

        except StopIteration:

            pass
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        else:

            self.fail('Expected longer than found')

 

        try:

            next(found_it)

        except StopIteration:

            pass

        else:

            self.fail('Found longer than expected')

 

    def test_wrong_lengths(self):

        values = [1.1, 2.2, 3.3]

        expected = [

            1.1**2,

        ]

        self.verify_complex_case(values, expected)

 

    def test_wrong_results(self):

        values = [1.1, 2.2, 3.3]

        expected = [

            1.1**2,

            1.1**2 + 2.2**2,

            1.1**2 + 2.2**2 + 3.3**2 + 4.4**2,

        ]

        self.verify_complex_case(values, expected)

 

if __name__ == '__main__':

    main()

The helper method makes the test cases short and readable, and the 
outputted error messages are easy to understand:

$ python3 helper_test.py

FF

===============================================================

FAIL: test_wrong_lengths (__main__.HelperTestCase)

---------------------------------------------------------------

Traceback (most recent call last):

  File "helper_test.py", line 43, in test_wrong_lengths

    self.verify_complex_case(values, expected)

  File "helper_test.py", line 34, in verify_complex_case

    self.fail('Found longer than expected')

AssertionError: Found longer than expected

 



===============================================================

FAIL: test_wrong_results (__main__.HelperTestCase)

---------------------------------------------------------------

Traceback (most recent call last):

  File "helper_test.py", line 52, in test_wrong_results

    self.verify_complex_case(values, expected)

  File "helper_test.py", line 24, in verify_complex_case

    f'Index {i} is wrong')

AssertionError: 36.3 != 16.939999999999998 : Index 2 is wrong

 

---------------------------------------------------------------

Ran 2 tests in 0.002s

 

FAILED (failures=2)

I usually define one TestCase subclass for each set of related tests. 
Sometimes, I have one TestCase subclass for each function that has 
many edge cases. Other times, a TestCase subclass spans all func-
tions in a single module. I often create one TestCase subclass for test-
ing each basic class and all of its methods.

The TestCase class also provides a subTest helper method that enables 
you to avoid boilerplate by defining multiple tests within a single test 
method. This is especially helpful for writing data-driven tests, and it 
allows the test method to continue testing other cases even after one 
of them fails (similar to the behavior of TestCase with its contained 
test methods). To show this, here I define an example data-driven test:

# data_driven_test.py

from unittest import TestCase, main

from utils import to_str

 

class DataDrivenTestCase(TestCase):

    def test_good(self):

        good_cases = [

            (b'my bytes', 'my bytes'),

            ('no error', b'no error'),  # This one will fail

            ('other str', 'other str'),

            ...

        ]

        for value, expected in good_cases:

            with self.subTest(value):

                self.assertEqual(expected, to_str(value))
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    def test_bad(self):

        bad_cases = [

            (object(), TypeError),

            (b'\xfa\xfa', UnicodeDecodeError),

            ...

        ]

        for value, exception in bad_cases:

            with self.subTest(value):

                with self.assertRaises(exception):

                    to_str(value)

 

if __name__ == '__main__':

    main()

The 'no error' test case fails, printing a helpful error message, but 
all of the other cases are still tested and confirmed to pass:

$ python3 data_driven_test.py

.

===============================================================

FAIL: test_good (__main__.DataDrivenTestCase) [no error]

---------------------------------------------------------------

Traceback (most recent call last):

  File "testing/data_driven_test.py", line 18, in test_good

    self.assertEqual(expected, to_str(value))

AssertionError: b'no error' != 'no error'

 

---------------------------------------------------------------

Ran 2 tests in 0.001s

 

FAILED (failures=1)

Note

Depending on your project’s complexity and testing requirements, the pytest 
(https://pytest.org) open source package and its large number of community 
plug-ins can be especially useful.

Things to Remember

✦ You can create tests by subclassing the TestCase class from the 
unittest built-in module and defining one method per behavior 
you’d like to test. Test methods on TestCase classes must start with 
the word test.

✦ Use the various helper methods defined by the TestCase class, such 
as assertEqual, to confirm expected behaviors in your tests instead 
of using the built-in assert statement.
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✦ Consider writing data-driven tests using the subTest helper method 
in order to reduce boilerplate.

Item 77:  Isolate Tests from Each Other with setUp, 
tearDown, setUpModule, and tearDownModule

TestCase classes (see Item 76: “Verify Related Behaviors in TestCase 
Subclasses”) often need to have the test environment set up before 
test methods can be run; this is sometimes called the test harness. 
To do this, you can override the setUp and tearDown methods of a 
TestCase subclass. These methods are called before and after each 
test method, respectively, so you can ensure that each test runs in 
isolation, which is an important best practice of proper testing.

For example, here I define a TestCase that creates a temporary direc-
tory before each test and deletes its contents after each test finishes:

# environment_test.py

from pathlib import Path

from tempfile import TemporaryDirectory

from unittest import TestCase, main

 

class EnvironmentTest(TestCase):

    def setUp(self):

        self.test_dir = TemporaryDirectory()

        self.test_path = Path(self.test_dir.name)

 

    def tearDown(self):

        self.test_dir.cleanup()

 

    def test_modify_file(self):

        with open(self.test_path / 'data.bin', 'w') as f:

            ...

 

if __name__ == '__main__':

    main()

When programs get complicated, you’ll want additional tests to ver-
ify the end-to-end interactions between your modules instead of only 
testing code in isolation (using tools like mocks; see Item 78: “Use 
Mocks to Test Code with Complex Dependencies”). This is the differ-
ence between unit tests and integration tests. In Python, it’s important 
to write both types of tests for exactly the same reason: You have no 
guarantee that your modules will actually work together unless you 
prove it.
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One common problem is that setting up your test environment for 
integration tests can be computationally expensive and may require 
a lot of wall-clock time. For example, you might need to start a data-
base process and wait for it to finish loading indexes before you can 
run your integration tests. This type of latency makes it impracti-
cal to do test preparation and cleanup for every test in the TestCase 
class’s setUp and tearDown methods.

To handle this situation, the unittest module also supports 
 module-level test harness initialization. You can configure expensive 
resources a single time, and then have all TestCase classes and their 
test methods run without repeating that initialization. Later, when all 
tests in the module are finished, the test harness can be torn down 
a single time. Here, I take advantage of this behavior by defining 
setUpModule and tearDownModule functions within the module con-
taining the TestCase classes:

# integration_test.py

from unittest import TestCase, main

 

def setUpModule():

    print('* Module setup')

 

def tearDownModule():

    print('* Module clean-up')

 

class IntegrationTest(TestCase):

    def setUp(self):

        print('* Test setup')

 

    def tearDown(self):

        print('* Test clean-up')

 

    def test_end_to_end1(self):

        print('* Test 1')

 

    def test_end_to_end2(self):

        print('* Test 2')

 

if __name__ == '__main__':

    main()

$ python3 integration_test.py 

* Module setup

* Test setup

* Test 1



 Item 78: Use Mocks to Test Code with Complex Dependencies 367

* Test clean-up

.* Test setup

* Test 2

* Test clean-up

.* Module clean-up

 

---------------------------------------------------------------

Ran 2 tests in 0.000s

 

OK

I can clearly see that setUpModule is run by unittest only once, 
and it happens before any setUp methods are called. Similarly, 
tearDownModule happens after the tearDown method is called.

Things to Remember

✦ It’s important to write both unit tests (for isolated functionality) and 
integration tests (for modules that interact with each other).

✦ Use the setUp and tearDown methods to make sure your tests are 
isolated from each other and have a clean test environment.

✦ For integration tests, use the setUpModule and tearDownModule 
 module-level functions to manage any test harnesses you need for 
the entire lifetime of a test module and all of the TestCase classes 
that it contains.

Item 78:  Use Mocks to Test Code with Complex 
Dependencies

Another common need when writing tests (see Item 76: “Verify Related 
Behaviors in TestCase Subclasses”) is to use mocked functions and 
classes to simulate behaviors when it’s too difficult or slow to use the 
real thing. For example, say that I need a program to maintain the 
feeding schedule for animals at the zoo. Here, I define a function to 
query a database for all of the animals of a certain species and return 
when they most recently ate:

class DatabaseConnection:

    ...

 

def get_animals(database, species):

    # Query the database

    ...

    # Return a list of (name, last_mealtime) tuples
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How do I get a DatabaseConnection instance to use for testing this 
function? Here, I try to create one and pass it into the function being 
tested:

database = DatabaseConnection('localhost', '4444')

 

get_animals(database, 'Meerkat')

>>>

Traceback ...

DatabaseConnectionError: Not connected

There’s no database running, so of course this fails. One solution is 
to actually stand up a database server and connect to it in the test. 
However, it’s a lot of work to fully automate starting up a database, 
configuring its schema, populating it with data, and so on in order to 
just run a simple unit test. Further, it will probably take a lot of wall-
clock time to set up a database server, which would slow down these 
unit tests and make them harder to maintain.

A better approach is to mock out the database. A mock lets you provide 
expected responses for dependent functions, given a set of expected 
calls. It’s important not to confuse mocks with fakes. A fake would 
provide most of the behavior of the DatabaseConnection class but with 
a simpler implementation, such as a basic in-memory, single-threaded 
database with no persistence.

Python has the unittest.mock built-in module for creating mocks and 
using them in tests. Here, I define a Mock instance that simulates the 
get_animals function without actually connecting to the database:

from datetime import datetime

from unittest.mock import Mock

 

mock = Mock(spec=get_animals)

expected = [

    ('Spot', datetime(2019, 6, 5, 11, 15)),

    ('Fluffy', datetime(2019, 6, 5, 12, 30)),

    ('Jojo', datetime(2019, 6, 5, 12, 45)),

]

mock.return_value = expected

The Mock class creates a mock function. The return_value attribute 
of the mock is the value to return when it is called. The spec argu-
ment indicates that the mock should act like the given object, which 
is a function in this case, and error if it’s used in the wrong way. 
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For example, here I try to treat the mock function as if it were a mock 
object with attributes:

mock.does_not_exist

>>>

Traceback ...

AttributeError: Mock object has no attribute 'does_not_exist'

Once it’s created, I can call the mock, get its return value, and ver-
ify that what it returns matches expectations. I use a unique object 
value as the database argument because it won’t actually be used by 
the mock to do anything; all I care about is that the database param-
eter was correctly plumbed through to any dependent functions that 
needed a DatabaseConnection instance in order to work (see Item 55: 
“Use Queue to Coordinate Work Between Threads” for another example 
of using sentinel object instances):

database = object()

result = mock(database, 'Meerkat')

assert result == expected

This verifies that the mock responded correctly, but how do I know if 
the code that called the mock provided the correct arguments? For 
this, the Mock class provides the assert_called_once_with method, 
which verifies that a single call with exactly the given parameters was 
made:

mock.assert_called_once_with(database, 'Meerkat')

If I supply the wrong parameters, an exception is raised, and any 
TestCase that the assertion is used in fails:

mock.assert_called_once_with(database, 'Giraffe')

>>>

Traceback ...

AssertionError: expected call not found.

Expected: mock(<object object at 0x109038790>, 'Giraffe')

Actual: mock(<object object at 0x109038790>, 'Meerkat')

If I actually don’t care about some of the individual parameters, such 
as exactly which database object was used, then I can indicate that 
any value is okay for an argument by using the unittest.mock.ANY 
constant. I can also use the assert_called_with method of Mock to 
verify that the most recent call to the mock—and there may have 
been multiple calls in this case—matches my expectations:

from unittest.mock import ANY
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mock = Mock(spec=get_animals)

mock('database 1', 'Rabbit')

mock('database 2', 'Bison')

mock('database 3', 'Meerkat')

 

mock.assert_called_with(ANY, 'Meerkat')

ANY is useful in tests when a parameter is not core to the behavior that’s 
being tested. It’s often worth erring on the side of under- specifying 
tests by using ANY more liberally instead of over-specifying tests and 
having to plumb through various test parameter expectations.

The Mock class also makes it easy to mock exceptions being raised:

class MyError(Exception):

    pass

 

mock = Mock(spec=get_animals)

mock.side_effect = MyError('Whoops! Big problem')

result = mock(database, 'Meerkat')

>>>

Traceback ...

MyError: Whoops! Big problem

There are many more features available, so be sure to see 
help(unittest.mock.Mock) for the full range of options.

Now that I’ve shown the mechanics of how a Mock works, I can apply 
it to an actual testing situation to show how to use it effectively in 
writing unit tests. Here, I define a function to do the rounds of feeding 
animals at the zoo, given a set of database-interacting functions:

def get_food_period(database, species):

    # Query the database

    ...

    # Return a time delta

 

def feed_animal(database, name, when):

    # Write to the database

    ...

 

def do_rounds(database, species):

    now = datetime.datetime.utcnow()

    feeding_timedelta = get_food_period(database, species)

    animals = get_animals(database, species)

    fed = 0
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    for name, last_mealtime in animals:

        if (now - last_mealtime) > feeding_timedelta:

            feed_animal(database, name, now)

            fed += 1

 

    return fed

The goal of my test is to verify that when do_rounds is run, the right 
animals got fed, the latest feeding time was recorded to the data-
base, and the total number of animals fed returned by the function 
matches the correct total. In order to do all this, I need to mock out 
datetime.utcnow so my tests have a stable time that isn’t affected by 
daylight saving time and other ephemeral changes. I need to mock 
out get_food_period and get_animals to return values that would 
have come from the database. And I need to mock out feed_animal to 
accept data that would have been written back to the database.

The question is: Even if I know how to create these mock functions 
and set expectations, how do I get the do_rounds function that’s 
being tested to use the mock dependent functions instead of the 
real versions? One approach is to inject everything as keyword-only 
arguments (see Item 25: “Enforce Clarity with Keyword-Only and 
Positional-Only Arguments”):

def do_rounds(database, species, *,

              now_func=datetime.utcnow,

              food_func=get_food_period,

              animals_func=get_animals,

              feed_func=feed_animal):

    now = now_func()

    feeding_timedelta = food_func(database, species)

    animals = animals_func(database, species)

    fed = 0

 

    for name, last_mealtime in animals:

        if (now - last_mealtime) > feeding_timedelta:

            feed_func(database, name, now)

            fed += 1

 

    return fed

To test this function, I need to create all of the Mock instances upfront 
and set their expectations:

from datetime import timedelta
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now_func = Mock(spec=datetime.utcnow)

now_func.return_value = datetime(2019, 6, 5, 15, 45)

 

food_func = Mock(spec=get_food_period)

food_func.return_value = timedelta(hours=3)

 

animals_func = Mock(spec=get_animals)

animals_func.return_value = [

    ('Spot', datetime(2019, 6, 5, 11, 15)),

    ('Fluffy', datetime(2019, 6, 5, 12, 30)),

    ('Jojo', datetime(2019, 6, 5, 12, 45)),

]

 

feed_func = Mock(spec=feed_animal)

Then, I can run the test by passing the mocks into the do_rounds 
function to override the defaults:

result = do_rounds(

    database,

    'Meerkat',

    now_func=now_func,

    food_func=food_func,

    animals_func=animals_func,

    feed_func=feed_func)

 

assert result == 2

Finally, I can verify that all of the calls to dependent functions 
matched my expectations:

from unittest.mock import call

 

food_func.assert_called_once_with(database, 'Meerkat')

 

animals_func.assert_called_once_with(database, 'Meerkat')

 

feed_func.assert_has_calls(

    [

        call(database, 'Spot', now_func.return_value),

        call(database, 'Fluffy', now_func.return_value),

    ],

    any_order=True)

I don’t verify the parameters to the datetime.utcnow mock or how many 
times it was called because that’s indirectly verified by the return value 
of the function. For get_food_period and get_animals, I verify a single 
call with the specified parameters by using assert_called_once_with. 
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For the feed_animal function, I verify that two calls were made—
and their order didn’t matter—to write to the database using the 
unittest.mock.call helper and the assert_has_calls method.

This approach of using keyword-only arguments for injecting mocks 
works, but it’s quite verbose and requires changing every function 
you want to test. The unittest.mock.patch family of functions makes 
injecting mocks easier. It temporarily reassigns an attribute of a mod-
ule or class, such as the database-accessing functions that I defined 
above. For example, here I override get_animals to be a mock using 
patch:

from unittest.mock import patch

 

print('Outside patch:', get_animals)

 

with patch('__main__.get_animals'):

    print('Inside patch: ', get_animals)

 

print('Outside again:', get_animals)

>>>

Outside patch: <function get_animals at 0x109217040>

Inside patch:  <MagicMock name='get_animals' id='4454622832'>

Outside again: <function get_animals at 0x109217040>

patch works for many modules, classes, and attributes. It can be used 
in with statements (see Item 66: “Consider contextlib and with State-
ments for Reusable try/finally Behavior”), as a function decorator 
(see Item 26: “Define Function Decorators with functools.wraps”), or 
in the setUp and tearDown methods of TestCase classes (see Item 76: 
“Verify Related Behaviors in TestCase Subclasses”). For the full range 
of options, see help(unittest.mock.patch).

However, patch doesn’t work in all cases. For example, to test do_rounds 
I need to mock out the current time returned by the datetime.utcnow 
class method. Python won’t let me do that because the datetime class is 
defined in a C-extension module, which can’t be modified in this way:

fake_now = datetime(2019, 6, 5, 15, 45)

 

with patch('datetime.datetime.utcnow'):

    datetime.utcnow.return_value = fake_now

>>>

Traceback ...

TypeError: can't set attributes of built-in/extension type 

➥'datetime.datetime'
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To work around this, I can create another helper function to fetch 
time that can be patched:

def get_do_rounds_time():

    return datetime.datetime.utcnow()

 

def do_rounds(database, species):

    now = get_do_rounds_time()

    ...

 

with patch('__main__.get_do_rounds_time'):

    ...

Alternatively, I can use a keyword-only argument for the 
datetime.utcnow mock and use patch for all of the other mocks:

def do_rounds(database, species, *, utcnow=datetime.utcnow):

    now = utcnow()

    feeding_timedelta = get_food_period(database, species)

    animals = get_animals(database, species)

    fed = 0

 

    for name, last_mealtime in animals:

        if (now - last_mealtime) > feeding_timedelta:

            feed_func(database, name, now)

            fed += 1

 

    return fed

I’m going to go with the latter approach. Now, I can use the 
patch.multiple function to create many mocks and set their 
expectations:

from unittest.mock import DEFAULT

 

with patch.multiple('__main__',

                    autospec=True,

                    get_food_period=DEFAULT,

                    get_animals=DEFAULT,

                    feed_animal=DEFAULT):

    now_func = Mock(spec=datetime.utcnow)

    now_func.return_value = datetime(2019, 6, 5, 15, 45)

    get_food_period.return_value = timedelta(hours=3)

    get_animals.return_value = [

        ('Spot', datetime(2019, 6, 5, 11, 15)),

        ('Fluffy', datetime(2019, 6, 5, 12, 30)),

        ('Jojo', datetime(2019, 6, 5, 12, 45))

    ]
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With the setup ready, I can run the test and verify that the calls were 
correct inside the with statement that used patch.multiple:

    result = do_rounds(database, 'Meerkat', utcnow=now_func)

    assert result == 2

 

    food_func.assert_called_once_with(database, 'Meerkat')

    animals_func.assert_called_once_with(database, 'Meerkat')

    feed_func.assert_has_calls(

        [

            call(database, 'Spot', now_func.return_value),

            call(database, 'Fluffy', now_func.return_value),

        ],

        any_order=True)

The keyword arguments to patch.multiple correspond to names in the 
__main__ module that I want to override during the test. The DEFAULT 
value indicates that I want a standard Mock instance to be created for 
each name. All of the generated mocks will adhere to the specification 
of the objects they are meant to simulate, thanks to the autospec=True 
parameter.

These mocks work as expected, but it’s important to realize that it’s 
possible to further improve the readability of these tests and reduce 
boilerplate by refactoring your code to be more testable (see Item 79: 
“Encapsulate Dependencies to Facilitate Mocking and Testing”).

Things to Remember

✦ The unittest.mock module provides a way to simulate the behavior 
of interfaces using the Mock class. Mocks are useful in tests when 
it’s difficult to set up the dependencies that are required by the code 
that’s being tested.

✦ When using mocks, it’s important to verify both the behavior of the 
code being tested and how dependent functions were called by that 
code, using the Mock.assert_called_once_with family of methods.

✦ Keyword-only arguments and the unittest.mock.patch family of 
functions can be used to inject mocks into the code being tested.

Item 79:  Encapsulate Dependencies to Facilitate 
Mocking and Testing

In the previous item (see Item 78: “Use Mocks to Test Code with 
Complex Dependencies”), I showed how to use the facilities of the 
unittest.mock built-in module—including the Mock class and patch 
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family of functions—to write tests that have complex dependencies, 
such as a database. However, the resulting test code requires a lot of 
boilerplate, which could make it more difficult for new readers of the 
code to understand what the tests are trying to verify.

One way to improve these tests is to use a wrapper object to encapsu-
late the database’s interface instead of passing a DatabaseConnection 
object to functions as an argument. It’s often worth refactoring your 
code (see Item 89: “Consider warnings to Refactor and Migrate Usage” 
for one approach) to use better abstractions because it facilitates cre-
ating mocks and writing tests. Here, I redefine the various database 
helper functions from the previous item as methods on a class instead 
of as independent functions:

class ZooDatabase:

    ...

 

    def get_animals(self, species):

        ...

 

    def get_food_period(self, species):

        ...

 

    def feed_animal(self, name, when):

        ...

Now, I can redefine the do_rounds function to call methods on a 
ZooDatabase object:

from datetime import datetime

 

def do_rounds(database, species, *, utcnow=datetime.utcnow):

    now = utcnow()

    feeding_timedelta = database.get_food_period(species)

    animals = database.get_animals(species)

    fed = 0

 

    for name, last_mealtime in animals:

        if (now - last_mealtime) >= feeding_timedelta:

            database.feed_animal(name, now)

            fed += 1

 

    return fed

Writing a test for do_rounds is now a lot easier because I no longer 
need to use unittest.mock.patch to inject the mock into the code 
being tested. Instead, I can create a Mock instance to represent 
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a ZooDatabase and pass that in as the database parameter. The Mock 
class returns a mock object for any attribute name that is accessed. 
Those attributes can be called like methods, which I can then use to 
set expectations and verify calls. This makes it easy to mock out all of 
the methods of a class:

from unittest.mock import Mock

 

database = Mock(spec=ZooDatabase)

print(database.feed_animal)

database.feed_animal()

database.feed_animal.assert_any_call()

>>>

<Mock name='mock.feed_animal' id='4384773408'>

I can rewrite the Mock setup code by using the ZooDatabase 
encapsulation:

from datetime import timedelta

from unittest.mock import call

 

now_func = Mock(spec=datetime.utcnow)

now_func.return_value = datetime(2019, 6, 5, 15, 45)

 

database = Mock(spec=ZooDatabase)

database.get_food_period.return_value = timedelta(hours=3)

database.get_animals.return_value = [

    ('Spot', datetime(2019, 6, 5, 11, 15)),

    ('Fluffy', datetime(2019, 6, 5, 12, 30)),

    ('Jojo', datetime(2019, 6, 5, 12, 55))

]

Then I can run the function being tested and verify that all depen-
dent methods were called as expected:

result = do_rounds(database, 'Meerkat', utcnow=now_func)

assert result == 2

 

database.get_food_period.assert_called_once_with('Meerkat')

database.get_animals.assert_called_once_with('Meerkat')

database.feed_animal.assert_has_calls(

    [

        call('Spot', now_func.return_value),

        call('Fluffy', now_func.return_value),

    ],

    any_order=True)
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Using the spec parameter to Mock is especially useful when mocking 
classes because it ensures that the code under test doesn’t call a mis-
spelled method name by accident. This allows you to avoid a common 
pitfall where the same bug is present in both the code and the unit 
test, masking a real error that will later reveal itself in production:

database.bad_method_name()

>>>

Traceback ...

AttributeError: Mock object has no attribute 'bad_method_name'

If I want to test this program end-to-end with a mid-level integration 
test (see Item 77: “Isolate Tests from Each Other with setUp, tearDown, 
setUpModule, and tearDownModule”), I still need a way to inject a mock 
ZooDatabase into the program. I can do this by creating a helper func-
tion that acts as a seam for dependency injection. Here, I define such 
a helper function that caches a ZooDatabase in module scope (see Item 
86: “Consider Module-Scoped Code to Configure Deployment Envi-
ronments”) by using a global statement:

DATABASE = None

 

def get_database():

    global DATABASE

    if DATABASE is None:

        DATABASE = ZooDatabase()

    return DATABASE

 

def main(argv):

    database = get_database()

    species = argv[1]

    count = do_rounds(database, species)

    print(f'Fed {count} {species}(s)')

    return 0

Now, I can inject the mock ZooDatabase using patch, run the test, and 
verify the program’s output. I’m not using a mock datetime.utcnow 
here; instead, I’m relying on the database records returned by the 
mock to be relative to the current time in order to produce similar 
behavior to the unit test. This approach is more flaky than mocking 
everything, but it also tests more surface area:

import contextlib

import io

from unittest.mock import patch
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with patch('__main__.DATABASE', spec=ZooDatabase):

    now = datetime.utcnow()

 

    DATABASE.get_food_period.return_value = timedelta(hours=3)

    DATABASE.get_animals.return_value = [

        ('Spot', now - timedelta(minutes=4.5)),

        ('Fluffy', now - timedelta(hours=3.25)),

        ('Jojo', now - timedelta(hours=3)),

    ]

 

    fake_stdout = io.StringIO()

    with contextlib.redirect_stdout(fake_stdout):

        main(['program name', 'Meerkat'])

 

    found = fake_stdout.getvalue()

    expected = 'Fed 2 Meerkat(s)\n'

 

    assert found == expected

The results match my expectations. Creating this integration test was 
straightforward because I designed the implementation to make it 
easier to test.

Things to Remember

✦ When unit tests require a lot of repeated boilerplate to set up mocks, 
one solution may be to encapsulate the functionality of dependen-
cies into classes that are more easily mocked.

✦ The Mock class of the unittest.mock built-in module simulates 
classes by returning a new mock, which can act as a mock method, 
for each attribute that is accessed.

✦ For end-to-end tests, it’s valuable to refactor your code to have more 
helper functions that can act as explicit seams to use for injecting 
mock dependencies in tests.

Item 80: Consider Interactive Debugging with pdb

Everyone encounters bugs in code while developing programs. Using 
the print function can help you track down the sources of many 
issues (see Item 75: “Use repr Strings for Debugging Output”). 
 Writing tests for specific cases that cause trouble is another great way 
to isolate problems (see Item 76: “Verify Related Behaviors in TestCase 
Subclasses”).
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But these tools aren’t enough to find every root cause. When you need 
something more powerful, it’s time to try Python’s built-in interactive 

debugger. The debugger lets you inspect program state, print local 
variables, and step through a Python program one statement at a time.

In most other programming languages, you use a debugger by spec-
ifying what line of a source file you’d like to stop on, and then exe-
cute the program. In contrast, with Python, the easiest way to use 
the debugger is by modifying your program to directly initiate the 
debugger just before you think you’ll have an issue worth investigat-
ing. This means that there is no difference between starting a Python 
program in order to run the debugger and starting it normally.

To initiate the debugger, all you have to do is call the breakpoint 
built-in function. This is equivalent to importing the pdb built-in mod-
ule and running its set_trace function:

# always_breakpoint.py

import math

 

def compute_rmse(observed, ideal):

    total_err_2 = 0

    count = 0

    for got, wanted in zip(observed, ideal):

        err_2 = (got - wanted) ** 2

        breakpoint()  # Start the debugger here

        total_err_2 += err_2

        count += 1

 

    mean_err = total_err_2 / count

    rmse = math.sqrt(mean_err)

    return rmse

 

result = compute_rmse(

    [1.8, 1.7, 3.2, 6],

    [2, 1.5, 3, 5])

print(result)

As soon as the breakpoint function runs, the program pauses its exe-
cution before the line of code immediately following the breakpoint 
call. The terminal that started the program turns into an interactive 
Python shell:

$ python3 always_breakpoint.py 

> always_breakpoint.py(12)compute_rmse()

-> total_err_2 += err_2

(Pdb)



At the (Pdb) prompt, you can type in the names of local variables to 
see their values printed out (or use p <name>). You can see a list of all 
local variables by calling the locals built-in function. You can import 
modules, inspect global state, construct new objects, run the help 
built-in function, and even modify parts of the running program—
whatever you need to do to aid in your debugging. 

In addition, the debugger has a variety of special commands to con-
trol and understand program execution; type help to see the full list.

Three very useful commands make inspecting the running program 
easier:

 ■ where: Print the current execution call stack. This lets you figure 
out where you are in your program and how you arrived at the 
breakpoint trigger.

 ■ up: Move your scope up the execution call stack to the caller of the 
current function. This allows you to inspect the local variables in 
higher levels of the program that led to the breakpoint.

 ■ down: Move your scope back down the execution call stack one 
level.

When you’re done inspecting the current state, you can use these five 
debugger commands to control the program’s execution in different 
ways:

 ■ step: Run the program until the next line of execution in the pro-
gram, and then return control back to the debugger prompt. If the 
next line of execution includes calling a function, the debugger 
stops within the function that was called.

 ■ next: Run the program until the next line of execution in the 
current function, and then return control back to the debugger 
prompt. If the next line of execution includes calling a function, 
the debugger will not stop until the called function has returned.

 ■ return: Run the program until the current function returns, and 
then return control back to the debugger prompt.

 ■ continue: Continue running the program until the next break-
point is hit (either through the breakpoint call or one added by a 
debugger command).

 ■ quit: Exit the debugger and end the program. Run this command 
if you’ve found the problem, gone too far, or need to make program 
modifications and try again.
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The breakpoint function can be called anywhere in a program. If you 
know that the problem you’re trying to debug happens only under 
special circumstances, then you can just write plain old Python 
code to call breakpoint after a specific condition is met. For example, 
here I start the debugger only if the squared error for a datapoint is 
more than 1:

# conditional_breakpoint.py

def compute_rmse(observed, ideal):

    ...

    for got, wanted in zip(observed, ideal):

        err_2 = (got - wanted) ** 2

        if err_2 >= 1:  # Start the debugger if True

            breakpoint()

        total_err_2 += err_2

        count += 1

    ...

result = compute_rmse(

    [1.8, 1.7, 3.2, 7],

    [2, 1.5, 3, 5])

print(result)

When I run the program and it enters the debugger, I can confirm 
that the condition was true by inspecting local variables:

$ python3 conditional_breakpoint.py 

> conditional_breakpoint.py(14)compute_rmse()

-> total_err_2 += err_2

(Pdb) wanted

5

(Pdb) got

7

(Pdb) err_2

4

Another useful way to reach the debugger prompt is by using post- 

mortem debugging. This enables you to debug a program after it’s 
already raised an exception and crashed. This is especially helpful 
when you’re not quite sure where to put the breakpoint function call.

Here, I have a script that will crash due to the 7j complex number 
being present in one of the function’s arguments:

# postmortem_breakpoint.py

import math

 

def compute_rmse(observed, ideal):

    ...

 



result = compute_rmse(

    [1.8, 1.7, 3.2, 7j],  # Bad input

    [2, 1.5, 3, 5])

print(result)

I use the command line python3 -m pdb -c continue <program path> 
to run the program under control of the pdb module. The continue 
command tells pdb to get the program started immediately. Once it’s 
running, the program hits a problem and automatically enters the 
interactive debugger, at which point I can inspect the program state:

$ python3 -m pdb -c continue postmortem_breakpoint.py 

Traceback (most recent call last):

  File ".../pdb.py", line 1697, in main

    pdb._runscript(mainpyfile)

  File ".../pdb.py", line 1566, in _runscript

    self.run(statement)

  File ".../bdb.py", line 585, in run

    exec(cmd, globals, locals)

  File "<string>", line 1, in <module>

  File "postmortem_breakpoint.py", line 4, in <module>

    import math

  File "postmortem_breakpoint.py", line 16, in compute_rmse

    rmse = math.sqrt(mean_err)

TypeError: can't convert complex to float

Uncaught exception. Entering post mortem debugging

Running 'cont' or 'step' will restart the program

> postmortem_breakpoint.py(16)compute_rmse()

-> rmse = math.sqrt(mean_err)

(Pdb) mean_err

(-5.97-17.5j)

You can also use post-mortem debugging after hitting an uncaught 
exception in the interactive Python interpreter by calling the pm 
function of the pdb module (which is often done in a single line as 
import pdb; pdb.pm()):

$ python3

>>> import my_module

>>> my_module.compute_stddev([5])

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "my_module.py", line 17, in compute_stddev

    variance = compute_variance(data)

  File "my_module.py", line 13, in compute_variance

    variance = err_2_sum / (len(data) - 1)
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ZeroDivisionError: float division by zero

>>> import pdb; pdb.pm()

> my_module.py(13)compute_variance()

-> variance = err_2_sum / (len(data) - 1)

(Pdb) err_2_sum

0.0

(Pdb) len(data)

1

Things to Remember

✦ You can initiate the Python interactive debugger at a point of inter-
est directly in your program by calling the breakpoint built-in 
function.

✦ The Python debugger prompt is a full Python shell that lets you 
inspect and modify the state of a running program.

✦ pdb shell commands let you precisely control program execution 
and allow you to alternate between inspecting program state and 
progressing program execution.

✦ The pdb module can be used for debug exceptions after they 
happen in independent Python programs (using python -m pdb -c 
continue <program path>) or the interactive Python interpreter (using 
import pdb; pdb.pm()).

Item 81:  Use tracemalloc to Understand Memory 
Usage and Leaks

Memory management in the default implementation of Python, 
 CPython, uses reference counting. This ensures that as soon as all 
references to an object have expired, the referenced object is also 
cleared from memory, freeing up that space for other data. CPython 
also has a built-in cycle detector to ensure that self-referencing objects 
are eventually garbage collected.

In theory, this means that most Python programmers don’t have to 
worry about allocating or deallocating memory in their programs. It’s 
taken care of automatically by the language and the CPython run-
time. However, in practice, programs eventually do run out of mem-
ory due to no longer useful references still being held. Figuring out 
where a Python program is using or leaking memory proves to be a 
challenge.

The first way to debug memory usage is to ask the gc built-in module 
to list every object currently known by the garbage collector. Although 
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it’s quite a blunt tool, this approach lets you quickly get a sense of 
where your program’s memory is being used.

Here, I define a module that fills up memory by keeping references:

# waste_memory.py

import os

 

class MyObject:

    def __init__(self):

        self.data = os.urandom(100)

 

def get_data():

    values = []

    for _ in range(100):

        obj = MyObject()

        values.append(obj)

    return values

 

def run():

    deep_values = []

    for _ in range(100):

        deep_values.append(get_data())

    return deep_values

Then, I run a program that uses the gc built-in module to print out 
how many objects were created during execution, along with a small 
sample of allocated objects:

# using_gc.py

import gc

 

found_objects = gc.get_objects()

print('Before:', len(found_objects))

 

import waste_memory

 

hold_reference = waste_memory.run()

 

found_objects = gc.get_objects()

print('After: ', len(found_objects))

for obj in found_objects[:3]:

    print(repr(obj)[:100])

>>>

Before: 6207

After:  16801
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<waste_memory.MyObject object at 0x10390aeb8>

<waste_memory.MyObject object at 0x10390aef0>

<waste_memory.MyObject object at 0x10390af28>

...

The problem with gc.get_objects is that it doesn’t tell you anything 
about how the objects were allocated. In complicated programs, 
objects of a specific class could be allocated many different ways. 
Knowing the overall number of objects isn’t nearly as important as 
identifying the code responsible for allocating the objects that are 
leaking memory.

Python 3.4 introduced a new tracemalloc built-in module for solving 
this problem. tracemalloc makes it possible to connect an object back 
to where it was allocated. You use it by taking before and after snap-
shots of memory usage and comparing them to see what’s changed. 
Here, I use this approach to print out the top three memory usage 
offenders in a program:

# top_n.py

import tracemalloc

 

tracemalloc.start(10)                      # Set stack depth

time1 = tracemalloc.take_snapshot()        # Before snapshot

 

import waste_memory

 

x = waste_memory.run()                     # Usage to debug

time2 = tracemalloc.take_snapshot()        # After snapshot

 

stats = time2.compare_to(time1, 'lineno')  # Compare snapshots

for stat in stats[:3]:

    print(stat)

>>>

waste_memory.py:5: size=2392 KiB (+2392 KiB), count=29994 

➥(+29994), average=82 B

waste_memory.py:10: size=547 KiB (+547 KiB), count=10001 

➥(+10001), average=56 B

waste_memory.py:11: size=82.8 KiB (+82.8 KiB), count=100 

➥(+100), average=848 B

The size and count labels in the output make it immediately clear 
which objects are dominating my program’s memory usage and where 
in the source code they were allocated.



The tracemalloc module can also print out the full stack trace of each 
allocation (up to the number of frames passed to the tracemalloc.start 
function). Here, I print out the stack trace of the biggest source of 
memory usage in the program:

# with_trace.py

import tracemalloc

 

tracemalloc.start(10)

time1 = tracemalloc.take_snapshot()

 

import waste_memory

 

x = waste_memory.run()

time2 = tracemalloc.take_snapshot()

 

stats = time2.compare_to(time1, 'traceback')

top = stats[0]

print('Biggest offender is:')

print('\n'.join(top.traceback.format()))

>>>

Biggest offender is:

  File "with_trace.py", line 9

    x = waste_memory.run()

  File "waste_memory.py", line 17

    deep_values.append(get_data())

  File "waste_memory.py", line 10

    obj = MyObject()

  File "waste_memory.py", line 5

    self.data = os.urandom(100)

A stack trace like this is most valuable for figuring out which partic-
ular usage of a common function or class is responsible for memory 
consumption in a program.

Things to Remember

✦ It can be difficult to understand how Python programs use and leak 
memory.

✦ The gc module can help you understand which objects exist, but it 
has no information about how they were allocated.

✦ The tracemalloc built-in module provides powerful tools for under-
standing the sources of memory usage.

 Item 81: Use tracemalloc to Understand Memory Usage and Leaks 387





10 Collaboration

Python has language features that help you construct well-defined 
APIs with clear interface boundaries. The Python community has 
established best practices to maximize the maintainability of code 
over time. In addition, some standard tools that ship with Python 
enable large teams to work together across disparate environments.

Collaborating with others on Python programs requires being 
 deliberate in how you write your code. Even if you’re working on your 
own, chances are you’ll be using code written by someone else via the 
standard library or open source packages. It’s important to under-
stand the mechanisms that make it easy to collaborate with other 
Python programmers.

Item 82:  Know Where to Find Community-Built 
Modules

Python has a central repository of modules (https://pypi.org) that you 
can install and use in your programs. These modules are built and 
maintained by people like you: the Python community. When you find 
yourself facing an unfamiliar challenge, the Python Package Index 
(PyPI) is a great place to look for code that will get you closer to your 
goal.

To use the Package Index, you need to use the command-line tool pip 
(a recursive acronym for “pip installs packages”). pip can be run with 
python3 -m pip to ensure that packages are installed for the correct 
version of Python on your system (see Item 1: “Know Which Version of 
Python You’re Using”). Using pip to install a new module is simple. For 
example, here I install the pytz module that I use elsewhere in this 
book (see Item 67: “Use datetime Instead of time for Local Clocks”):

$ python3 -m pip install pytz

Collecting pytz
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  Downloading ... 

Installing collected packages: pytz

Successfully installed pytz-2018.9

pip is best used together with the built-in module venv to consistently 
track sets of packages to install for your projects (see Item 83: “Use 
Virtual Environments for Isolated and Reproducible Dependencies”). 
You can also create your own PyPI packages to share with the Python 
community or host your own private package repositories for use 
with pip.

Each module in the PyPI has its own software license. Most of the 
packages, especially the popular ones, have free or open source 
licenses (see https://opensource.org for details). In most cases, these 
licenses allow you to include a copy of the module with your program; 
when in doubt, talk to a lawyer.

Things to Remember

✦ The Python Package Index (PyPI) contains a wealth of common 
packages that are built and maintained by the Python community.

✦ pip is the command-line tool you can use to install packages 
from PyPI.

✦ The majority of PyPI modules are free and open source software.

Item 83:  Use Virtual Environments for Isolated and 
Reproducible Dependencies

Building larger and more complex programs often leads you to rely on 
various packages from the Python community (see Item 82: “Know 
Where to Find Community-Built Modules”). You’ll find yourself run-
ning the python3 -m pip command-line tool to install packages like 
pytz, numpy, and many others.

The problem is that, by default, pip installs new packages in a global 
location. That causes all Python programs on your system to be 
affected by these installed modules. In theory, this shouldn’t be an 
issue. If you install a package and never import it, how could it affect 
your programs?

The trouble comes from transitive dependencies: the packages 
that the packages you install depend on. For example, you can see 
what the Sphinx package depends on after installing it by asking pip:

$ python3 -m pip show Sphinx

Name: Sphinx
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Version: 2.1.2

Summary: Python documentation generator

Location: /usr/local/lib/python3.8/site-packages

Requires: alabaster, imagesize, requests, 

➥sphinxcontrib-applehelp, sphinxcontrib-qthelp, 

➥Jinja2, setuptools, sphinxcontrib-jsmath, 

➥sphinxcontrib-serializinghtml, Pygments, snowballstemmer, 

➥packaging, sphinxcontrib-devhelp, sphinxcontrib-htmlhelp, 

➥babel, docutils

Required-by:

If you install another package like flask, you can see that it, too, 
depends on the Jinja2 package:

$ python3 -m pip show flask

Name: Flask

Version: 1.0.3

Summary: A simple framework for building complex web applications.

Location: /usr/local/lib/python3.8/site-packages

Requires: itsdangerous, click, Jinja2, Werkzeug

Required-by:

A dependency conflict can arise as Sphinx and flask diverge over 
time. Perhaps right now they both require the same version of 
Jinja2, and everything is fine. But six months or a year from now, 
Jinja2 may release a new version that makes breaking changes 
to users of the library. If you update your global version of Jinja2 
with python3 -m pip install --upgrade Jinja2, you may find that Sphinx 
breaks, while flask keeps working.

The cause of such breakage is that Python can have only a single 
global version of a module installed at a time. If one of your installed 
packages must use the new version and another package must use 
the old version, your system isn’t going to work properly; this situa-
tion is often called dependency hell.

Such breakage can even happen when package maintainers try their 
best to preserve API compatibility between releases (see Item 85: 
“Use Packages to Organize Modules and Provide Stable APIs”). New 
 versions of a library can subtly change behaviors that API-consuming 
code relies on. Users on a system may upgrade one package to a new 
version but not others, which could break dependencies. If you’re not 
careful there’s a constant risk of the ground moving beneath your feet.

These difficulties are magnified when you collaborate with other 
developers who do their work on separate computers. It’s best to 
assume the worst: that the versions of Python and global packages 
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that they have installed on their machines will be slightly different 
from yours. This can cause frustrating situations such as a codebase 
working perfectly on one programmer’s machine and being completely 
broken on another’s.

The solution to all of these problems is using a tool called venv, which 
provides virtual environments. Since Python 3.4, pip and the venv 
module have been available by default along with the Python installa-
tion (accessible with python -m venv).

venv allows you to create isolated versions of the Python environment. 
Using venv, you can have many different versions of the same package 
installed on the same system at the same time without conflicts. This 
means you can work on many different projects and use many differ-
ent tools on the same computer. venv does this by installing explicit 
versions of packages and their dependencies into completely separate 
directory structures. This makes it possible to reproduce a Python 
environment that you know will work with your code. It’s a reliable 
way to avoid surprising breakages.

Using venv on the Command Line

Here’s a quick tutorial on how to use venv effectively. Before using 
the tool, it’s important to note the meaning of the python3 command 
line on your system. On my computer, python3 is located in the 
/usr/local/bin directory and evaluates to version 3.8.0 (see Item 1: 
“Know Which Version of Python You’re Using”):

$ which python3

/usr/local/bin/python3

$ python3 --version

Python 3.8.0

To demonstrate the setup of my environment, I can test that running 
a command to import the pytz module doesn’t cause an error. This 
works because I already have the pytz package installed as a global 
module:

$ python3 -c 'import pytz'

$

Now, I use venv to create a new virtual environment called myproject. 
Each virtual environment must live in its own unique directory. The 
result of the command is a tree of directories and files that are used 
to manage the virtual environment:

$ python3 -m venv myproject

$ cd myproject



$ ls

bin     include     lib     pyvenv.cfg

To start using the virtual environment, I use the source command 
from my shell on the bin/activate script. activate modifies all of 
my environment variables to match the virtual environment. It also 
updates my command-line prompt to include the virtual environment 
name (“myproject”) to make it extremely clear what I’m working on:

$ source bin/activate

(myproject)$

On Windows the same script is available as:

C:\> myproject\Scripts\activate.bat

(myproject) C:>

Or with PowerShell as:

PS C:\> myproject\Scripts\activate.ps1

(myproject) PS C:>

After activation, the path to the python3  command-line tool has moved 
to within the virtual environment directory:

(myproject)$ which python3

/tmp/myproject/bin/python3

(myproject)$ ls -l /tmp/myproject/bin/python3

... -> /usr/local/bin/python3.8

This ensures that changes to the outside system will not affect the 
virtual environment. Even if the outer system upgrades its default 
python3 to version 3.9, my virtual environment will still explicitly 
point to version 3.8.

The virtual environment I created with venv starts with no packages 
installed except for pip and setuptools. Trying to use the pytz pack-
age that was installed as a global module in the outside system will 
fail because it’s unknown to the virtual environment:

(myproject)$ python3 -c 'import pytz'

Traceback (most recent call last):

  File "<string>", line 1, in <module>

ModuleNotFoundError: No module named 'pytz'

I can use the pip command-line tool to install the pytz module into 
my virtual environment:

(myproject)$ python3 -m pip install pytz

Collecting pytz
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  Downloading ... 

Installing collected packages: pytz

Successfully installed pytz-2019.1

Once it’s installed, I can verify that it’s working by using the same 
test import command:

(myproject)$ python3 -c 'import pytz'

(myproject)$

When I’m done with a virtual environment and want to go back to my 
default system, I use the deactivate command. This restores my envi-
ronment to the system defaults, including the location of the python3 
command-line tool:

(myproject)$ which python3

/tmp/myproject/bin/python3

(myproject)$ deactivate

$ which python3

/usr/local/bin/python3

If I ever want to work in the myproject environment again, I can just 
run source bin/activate in the directory as before.

Reproducing Dependencies

Once you are in a virtual environment, you can continue installing 
packages in it with pip as you need them. Eventually, you might want 
to copy your environment somewhere else. For example, say that I 
want to reproduce the development environment from my workstation 
on a server in a datacenter. Or maybe I want to clone someone else’s 
environment on my own machine so I can help debug their code.

venv makes such tasks easy. I can use the python3 -m pip freeze 
command to save all of my explicit package dependencies into a file 
(which, by convention, is named requirements.txt):

(myproject)$ python3 -m pip freeze > requirements.txt

(myproject)$ cat requirements.txt

certifi==2019.3.9

chardet==3.0.4

idna==2.8

numpy==1.16.2

pytz==2018.9

requests==2.21.0

urllib3==1.24.1



Now, imagine that I’d like to have another virtual environment that 
matches the myproject environment. I can create a new directory as 
before by using venv and activate it:

$ python3 -m venv otherproject

$ cd otherproject

$ source bin/activate

(otherproject)$

The new environment will have no extra packages installed:

(otherproject)$ python3 -m pip list

Package    Version

---------- -------

pip        10.0.1 

setuptools 39.0.1

I can install all of the packages from the first environment by  running 
python3 -m pip install on the requirements.txt that I generated with 
the python3 -m pip freeze command:

(otherproject)$ python3 -m pip install -r /tmp/myproject/

➥requirements.txt

This command cranks along for a little while as it retrieves and 
installs all of the packages required to reproduce the first environ-
ment. When it’s done, I can list the set of installed packages in the 
second virtual environment and should see the same list of depen-
dencies found in the first virtual environment:

(otherproject)$ python3 -m pip list

Package    Version 

---------- --------

certifi    2019.3.9

chardet    3.0.4   

idna       2.8     

numpy      1.16.2  

pip        10.0.1  

pytz       2018.9  

requests   2.21.0  

setuptools 39.0.1  

urllib3    1.24.1

Using a requirements.txt file is ideal for collaborating with others 
through a revision control system. You can commit changes to your 
code at the same time you update your list of package dependencies, 
ensuring that they move in lockstep. However, it’s important to note 
that the specific version of Python you’re using is not included in the 
requirements.txt file, so that must be managed separately.
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The gotcha with virtual environments is that moving them breaks 
everything because all of the paths, like the python3 command-line 
tool, are hard-coded to the environment’s install directory. But ulti-
mately this limitation doesn’t matter. The whole purpose of virtual 
environments is to make it easy to reproduce a setup. Instead of mov-
ing a virtual environment directory, just use python3 -m pip freeze 
on the old one, create a new virtual environment somewhere else, and 
reinstall everything from the requirements.txt file.

Things to Remember

✦ Virtual environments allow you to use pip to install many differ-
ent versions of the same package on the same machine without 
conflicts.

✦ Virtual environments are created with python -m venv, enabled with 
source bin/activate, and disabled with deactivate.

✦ You can dump all of the requirements of an environment with 
python3 -m pip freeze. You can reproduce an environment by  running 
python3 -m pip install -r requirements.txt.

Item 84:  Write Docstrings for Every Function, 
Class, and Module

Documentation in Python is extremely important because of the 
dynamic nature of the language. Python provides built-in support 
for attaching documentation to blocks of code. Unlike with many 
other languages, the documentation from a program’s source code is 
directly accessible as the program runs.

For example, you can add documentation by providing a docstring 
immediately after the def statement of a function:

def palindrome(word):

    """Return True if the given word is a palindrome."""

    return word == word[::-1]

 

assert palindrome('tacocat')

assert not palindrome('banana')

You can retrieve the docstring from within the Python program by 
accessing the function’s __doc__ special attribute:

print(repr(palindrome.__doc__))

>>>

'Return True if the given word is a palindrome.'
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You can also use the built-in pydoc module from the command line 
to run a local web server that hosts all of the Python documentation 
that’s accessible to your interpreter, including modules that you’ve 
written:

$ python3 -m pydoc -p 1234

Server ready at http://localhost:1234/

Server commands: [b]rowser, [q]uit

server> b

Docstrings can be attached to functions, classes, and modules. This 
connection is part of the process of compiling and running a Python 
program. Support for docstrings and the __doc__ attribute has three 
consequences:

 ■ The accessibility of documentation makes interactive develop-
ment easier. You can inspect functions, classes, and modules to 
see their documentation by using the help built-in function. This 
makes the Python interactive interpreter (the Python “shell”) and 
tools like IPython Notebook (https://ipython.org) a joy to use 
while you’re developing algorithms, testing APIs, and writing code 
snippets.

 ■ A standard way of defining documentation makes it easy to build 
tools that convert the text into more appealing formats (like 
HTML). This has led to excellent documentation-generation tools 
for the Python community, such as Sphinx (https://www.sphinx-
doc.org). It has also enabled community-funded sites like Read 
the Docs (https://readthedocs.org) that provide free hosting of 
beautiful-looking documentation for open source Python projects.

 ■ Python’s first-class, accessible, and good-looking documentation 
encourages people to write more documentation. The members 
of the Python community have a strong belief in the importance 
of documentation. There’s an assumption that “good code” also 
means well-documented code. This means that you can expect 
most open source Python libraries to have decent documentation.

To participate in this excellent culture of documentation, you need to 
follow a few guidelines when you write docstrings. The full details are 
discussed online in PEP 257 (https://www.python.org/dev/peps/pep-
0257/). There are a few best practices you should be sure to follow.

Documenting Modules

Each module should have a top-level docstring—a string literal that is 
the first statement in a source file. It should use three double quotes 
("""). The goal of this docstring is to introduce the module and its 
contents.
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The first line of the docstring should be a single sentence describing 
the module’s purpose. The paragraphs that follow should contain the 
details that all users of the module should know about its operation. 
The module docstring is also a jumping-off point where you can high-
light important classes and functions found in the module.

Here’s an example of a module docstring:

# words.py

#!/usr/bin/env python3

"""Library for finding linguistic patterns in words.

 

Testing how words relate to each other can be tricky sometimes!

This module provides easy ways to determine when words you've

found have special properties.

 

Available functions:

- palindrome: Determine if a word is a palindrome.

- check_anagram: Determine if two words are anagrams.

...

"""

...

If the module is a command-line utility, the module docstring is also 
a great place to put usage information for running the tool.

Documenting Classes

Each class should have a class-level docstring. This largely follows 
the same pattern as the module-level docstring. The first line is the 
single-sentence purpose of the class. Paragraphs that follow discuss 
important details of the class’s operation.

Important public attributes and methods of the class should be high-
lighted in the class-level docstring. It should also provide guidance to 
subclasses on how to properly interact with protected attributes (see 
Item 42: “Prefer Public Attributes Over Private Ones”) and the super-
class’s methods.

Here’s an example of a class docstring:

class Player:

    """Represents a player of the game.

 

    Subclasses may override the 'tick' method to provide

    custom animations for the player's movement depending

    on their power level, etc.
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    Public attributes:

    - power: Unused power-ups (float between 0 and 1).

    - coins: Coins found during the level (integer).

    """

    ...

Documenting Functions

Each public function and method should have a docstring. This fol-
lows the same pattern as the docstrings for modules and classes. The 
first line is a single-sentence description of what the function does. 
The paragraphs that follow should describe any specific behaviors 
and the arguments for the function. Any return values should be 
mentioned. Any exceptions that callers must handle as part of the 
function’s interface should be explained (see Item 20: “Prefer Raising 
Exceptions to Returning None” for how to document raised exceptions).

Here’s an example of a function docstring:

def find_anagrams(word, dictionary):

    """Find all anagrams for a word.

 

    This function only runs as fast as the test for

    membership in the 'dictionary' container.

 

    Args:

        word: String of the target word.

        dictionary: collections.abc.Container with all

            strings that are known to be actual words.

 

    Returns:

        List of anagrams that were found. Empty if

        none were found.

    """

    ...

There are also some special cases in writing docstrings for functions 
that are important to know:

 ■ If a function has no arguments and a simple return value, a 
 single-sentence description is probably good enough.

 ■ If a function doesn’t return anything, it’s better to leave out any 
mention of the return value instead of saying “returns None.”

 ■ If a function’s interface includes raising exceptions (see Item 20: 
“Prefer Raising Exceptions to Returning None” for an example), its 
docstring should describe each exception that’s raised and when 
it’s raised.
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 ■ If you don’t expect a function to raise an exception during normal 
operation, don’t mention that fact.

 ■ If a function accepts a variable number of arguments (see Item 22: 
“Reduce Visual Noise with Variable Positional Arguments”) or key-
word arguments (see Item 23: “Provide Optional Behavior with 
Keyword Arguments”), use *args and **kwargs in the documented 
list of arguments to describe their purpose.

 ■ If a function has arguments with default values, those defaults 
should be mentioned (see Item 24: “Use None and Docstrings to 
Specify Dynamic Default Arguments”).

 ■ If a function is a generator (see Item 30: “Consider Generators 
Instead of Returning Lists”), its docstring should describe what 
the generator yields when it’s iterated.

 ■ If a function is an asynchronous coroutine (see Item 60: “Achieve 
Highly Concurrent I/O with Coroutines”), its docstring should 
explain when it will stop execution.

Using Docstrings and Type Annotations

Python now supports type annotations for a variety of purposes (see 
Item 90: “Consider Static Analysis via typing to Obviate Bugs” for how 
to use them). The information they contain may be redundant with 
typical docstrings. For example, here is the function signature for 
find_anagrams with type annotations applied:

from typing import Container, List

 

def find_anagrams(word: str,

                  dictionary: Container[str]) -> List[str]:

    ...

There is no longer a need to specify in the docstring that the word 
argument is a string, since the type annotation has that infor-
mation. The same goes for the dictionary argument being a 
collections.abc.Container. There’s no reason to mention that the 
return type will be a list, since this fact is clearly annotated. And 
when no anagrams are found, the return value still must be a list, so 
it’s implied that it will be empty; that doesn’t need to be noted in the 
docstring. Here, I write the same function signature from above along 
with the docstring that has been shortened accordingly:

def find_anagrams(word: str,

                  dictionary: Container[str]) -> List[str]:

    """Find all anagrams for a word.
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    This function only runs as fast as the test for

    membership in the 'dictionary' container.

 

    Args:

        word: Target word.

        dictionary: All known actual words.

 

    Returns:

        Anagrams that were found.

    """

    ...

The redundancy between type annotations and docstrings should be 
similarly avoided for instance fields, class attributes, and methods. 
It’s best to have type information in only one place so there’s less risk 
that it will skew from the actual implementation.

Things to Remember

✦ Write documentation for every module, class, method, and function 
using docstrings. Keep them up-to-date as your code changes.

✦ For modules: Introduce the contents of a module and any important 
classes or functions that all users should know about.

✦ For classes: Document behavior, important attributes, and subclass 
behavior in the docstring following the class statement.

✦ For functions and methods: Document every argument, returned 
value, raised exception, and other behaviors in the docstring follow-
ing the def statement.

✦ If you’re using type annotations, omit the information that’s already 
present in type annotations from docstrings since it would be 
redundant to have it in both places.

Item 85:  Use Packages to Organize Modules and 
Provide Stable APIs

As the size of a program’s codebase grows, it’s natural for you to reor-
ganize its structure. You’ll split larger functions into smaller func-
tions. You’ll refactor data structures into helper classes (see Item 37: 
“Compose Classes Instead of Nesting Many Levels of Built-in Types” 
for an example). You’ll separate functionality into various modules 
that depend on each other.

At some point, you’ll find yourself with so many modules that you 
need another layer in your program to make it understandable. For 
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this purpose, Python provides packages. Packages are modules that 
contain other modules.

In most cases, packages are defined by putting an empty file named 
__init__.py into a directory. Once __init__.py is present, any other 
Python files in that directory will be available for import, using a path 
relative to the directory. For example, imagine that I have the follow-
ing directory structure in my program:

main.py

mypackage/__init__.py

mypackage/models.py

mypackage/utils.py

To import the utils module, I use the absolute module name that 
includes the package directory’s name:

# main.py

from mypackage import utils

This pattern continues when I have package directories present 
within other packages (like mypackage.foo.bar).

The functionality provided by packages has two primary purposes in 
Python programs.

Namespaces

The first use of packages is to help divide your modules into separate 
namespaces. They enable you to have many modules with the same 
filename but different absolute paths that are unique. For example, 
here’s a program that imports attributes from two modules with the 
same filename, utils.py:

# main.py

from analysis.utils import log_base2_bucket

from frontend.utils import stringify

 

bucket = stringify(log_base2_bucket(33))

This approach breaks when the functions, classes, or submodules 
defined in packages have the same names. For example, say that I 
want to use the inspect function from both the analysis.utils and 
the frontend.utils modules. Importing the attributes directly won’t 
work because the second import statement will overwrite the value of 
inspect in the current scope:

# main2.py

from analysis.utils import inspect

from frontend.utils import inspect  # Overwrites!
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The solution is to use the as clause of the import statement to rename 
whatever I’ve imported for the current scope:

# main3.py

from analysis.utils import inspect as analysis_inspect

from frontend.utils import inspect as frontend_inspect

 

value = 33

if analysis_inspect(value) == frontend_inspect(value):

    print('Inspection equal!')

The as clause can be used to rename anything retrieved with the 
import statement, including entire modules. This facilitates accessing 
namespaced code and makes its identity clear when you use it.

Another approach for avoiding imported name conflicts is to always 
access names by their highest unique module name. For the exam-
ple above, this means I’d use basic import statements instead of 
import from:

# main4.py

import analysis.utils

import frontend.utils

 

value = 33

if (analysis.utils.inspect(value) ==

    frontend.utils.inspect(value)):

    print('Inspection equal!')

This approach allows you to avoid the as clause altogether. It also 
makes it abundantly clear to new readers of the code where each of 
the similarly named functions is defined.

Stable APIs

The second use of packages in Python is to provide strict, stable APIs 
for external consumers.

When you’re writing an API for wider consumption, such as an open 
source package (see Item 82: “Know Where to Find Community-Built 
Modules” for examples), you’ll want to provide stable functionality that 
doesn’t change between releases. To ensure that happens, it’s import-
ant to hide your internal code organization from external users. This 
way, you can refactor and improve your package’s internal modules 
without breaking existing users.

Python can limit the surface area exposed to API consumers by using 
the __all__ special attribute of a module or package. The value of 
__all__ is a list of every name to export from the module as part of 
its public API. When consuming code executes from foo import *, 



404 Chapter 10 Collaboration

only the attributes in foo.__all__ will be imported from foo. If __all__ 
isn’t present in foo, then only public attributes—those without a lead-
ing underscore—are imported (see Item 42: “Prefer Public Attributes 
Over Private Ones” for details about that convention).

For example, say that I want to provide a package for calculating col-
lisions between moving projectiles. Here, I define the models module of 
mypackage to contain the representation of projectiles:

# models.py

__all__ = ['Projectile']

 

class Projectile:

    def __init__(self, mass, velocity):

        self.mass = mass

        self.velocity = velocity

I also define a utils module in mypackage to perform operations on the 
Projectile instances, such as simulating collisions between them:

# utils.py

from . models import Projectile

 

__all__ = ['simulate_collision']

 

def _dot_product(a, b):

    ...

 

def simulate_collision(a, b):

    ...

Now, I’d like to provide all of the public parts of this API as a set of 
attributes that are available on the mypackage module. This will allow 
downstream consumers to always import directly from mypackage 
instead of importing from mypackage.models or mypackage.utils. This 
ensures that the API consumer’s code will continue to work even if the 
internal organization of mypackage changes (e.g., models.py is deleted).

To do this with Python packages, you need to modify the __init__.py 
file in the mypackage directory. This file is what actually becomes the 
contents of the mypackage module when it’s imported. Thus, you can 
specify an explicit API for mypackage by limiting what you import into 
__init__.py. Since all of my internal modules already specify __all__, 
I can expose the public interface of mypackage by simply import-
ing everything from the internal modules and updating __all__ 
accordingly:

# __init__.py

__all__ = []

from . models import *



__all__ += models.__all__

from . utils import *

__all__ += utils.__all__

Here’s a consumer of the API that directly imports from mypackage 
instead of accessing the inner modules:

# api_consumer.py

from mypackage import *

 

a = Projectile(1.5, 3)

b = Projectile(4, 1.7)

after_a, after_b = simulate_collision(a, b)

Notably, internal-only functions like mypackage.utils._dot_product 
will not be available to the API consumer on mypackage because they 
weren’t present in __all__. Being omitted from __all__ also means 
that they weren’t imported by the from mypackage import * state-
ment. The internal-only names are effectively hidden.

This whole approach works great when it’s important to provide an 
explicit, stable API. However, if you’re building an API for use between 
your own modules, the functionality of __all__ is probably unneces-
sary and should be avoided. The namespacing provided by packages 
is usually enough for a team of programmers to collaborate on large 
amounts of code they control while maintaining reasonable interface 
boundaries.
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Beware of import *

Import statements like from x import y are clear because the 
source of y is explicitly the x package or module. Wildcard imports 
like from foo import * can also be useful, especially in interac-
tive Python sessions. However, wildcards make code more diffi-
cult to understand:

 ■ from foo import * hides the source of names from new read-
ers of the code. If a module has multiple import * statements, 
you’ll need to check all of the referenced modules to figure out 
where a name was defined.

 ■ Names from import * statements will overwrite any conflicting 
names within the containing module. This can lead to strange 
bugs caused by accidental interactions between your code and 
overlapping names from multiple import * statements.

The safest approach is to avoid import * in your code and explicitly 
import names with the from x import y style.
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Things to Remember

✦ Packages in Python are modules that contain other modules. Pack-
ages allow you to organize your code into separate, non-conflicting 
namespaces with unique absolute module names.

✦ Simple packages are defined by adding an __init__.py file to a 
directory that contains other source files. These files become the 
child modules of the directory’s package. Package directories may 
also contain other packages.

✦ You can provide an explicit API for a module by listing its publicly 
visible names in its __all__ special attribute.

✦ You can hide a package’s internal implementation by only import-
ing public names in the package’s __init__.py file or by naming 
 internal-only members with a leading underscore.

✦ When collaborating within a single team or on a single codebase, 
using __all__ for explicit APIs is probably unnecessary.

Item 86:  Consider Module-Scoped Code to Configure 
Deployment Environments

A deployment environment is a configuration in which a program 
runs. Every program has at least one deployment environment: the 
production environment. The goal of writing a program in the first 
place is to put it to work in the production environment and achieve 
some kind of outcome.

Writing or modifying a program requires being able to run it on the 
computer you use for developing. The configuration of your develop-

ment environment may be very different from that of your production 
environment. For example, you may be using a tiny single-board 
computer to develop a program that’s meant to run on enormous 
supercomputers.

Tools like venv (see Item 83: “Use Virtual Environments for Isolated 
and Reproducible Dependencies”) make it easy to ensure that all envi-
ronments have the same Python packages installed. The trouble is 
that production environments often require many external assump-
tions that are hard to reproduce in development environments.

For example, say that I want to run a program in a web server con-
tainer and give it access to a database. Every time I want to modify 
my program’s code, I need to run a server container, the database 
schema must be set up properly, and my program needs the password 
for access. This is a very high cost if all I’m trying to do is verify that 
a one-line change to my program works correctly.
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The best way to work around such issues is to override parts of a pro-
gram at startup time to provide different functionality depending on 
the deployment environment. For example, I could have two different 
__main__ files—one for production and one for development:

# dev_main.py

TESTING = True

 

import db_connection

 

db = db_connection.Database()

# prod_main.py

TESTING = False

 

import db_connection

 

db = db_connection.Database()

The only difference between the two files is the value of the TESTING 
constant. Other modules in my program can then import the __main__ 
module and use the value of TESTING to decide how they define their 
own attributes:

# db_connection.py

import __main__

 

class TestingDatabase:

    ...

 

class RealDatabase:

    ...

 

if __main__.TESTING:

    Database = TestingDatabase

else:

    Database = RealDatabase

The key behavior to notice here is that code running in module 
scope—not inside a function or method—is just normal Python code. 
You can use an if statement at the module level to decide how the 
module will define names. This makes it easy to tailor modules to 
your various deployment environments. You can avoid having to 
reproduce costly assumptions like database configurations when 
they aren’t needed. You can inject local or fake implementations that 
ease interactive development, or you can use mocks for writing tests 
(see Item 78: “Use Mocks to Test Code with Complex Dependencies”).
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Note

When your deployment environment configuration gets really complicated, 
you should consider moving it out of Python constants (like TESTING) and into 
dedicated configuration files. Tools like the configparser built-in module let 
you maintain production configurations separately from code, a distinction 
that’s crucial for collaborating with an operations team.

This approach can be used for more than working around external 
assumptions. For example, if I know that my program must work dif-
ferently depending on its host platform, I can inspect the sys module 
before defining top-level constructs in a module:

# db_connection.py

import sys

 

class Win32Database:

    ...

 

class PosixDatabase:

    ...

 

if sys.platform.startswith('win32'):

    Database = Win32Database

else:

    Database = PosixDatabase

Similarly, I could use environment variables from os.environ to guide 
my module definitions.

Things to Remember

✦ Programs often need to run in multiple deployment environments 
that each have unique assumptions and configurations.

✦ You can tailor a module’s contents to different deployment environ-
ments by using normal Python statements in module scope.

✦ Module contents can be the product of any external condition, 
including host introspection through the sys and os modules.

Item 87:  Define a Root Exception to Insulate Callers 
from APIs

When you’re defining a module’s API, the exceptions you raise are 
just as much a part of your interface as the functions and classes you 
define (see Item 20: “Prefer Raising Exceptions to Returning None” for 
an example).



Python has a built-in hierarchy of exceptions for the language and 
standard library. There’s a draw to using the built-in exception types 
for reporting errors instead of defining your own new types. For exam-
ple, I could raise a ValueError exception whenever an invalid parame-
ter is passed to a function in one of my modules:

# my_module.py

def determine_weight(volume, density):

    if density <= 0:

        raise ValueError('Density must be positive')

    ...

In some cases, using ValueError makes sense, but for APIs, it’s much 
more powerful to define a new hierarchy of exceptions. I can do this 
by providing a root Exception in my module and having all other 
exceptions raised by that module inherit from the root exception:

# my_module.py

class Error(Exception):

    """Base-class for all exceptions raised by this module."""

 

class InvalidDensityError(Error):

    """There was a problem with a provided density value."""

 

class InvalidVolumeError(Error):

    """There was a problem with the provided weight value."""

 

def determine_weight(volume, density):

    if density < 0:

        raise InvalidDensityError('Density must be positive')

    if volume < 0:

        raise InvalidVolumeError('Volume must be positive')

    if volume == 0:

        density / volume

Having a root exception in a module makes it easy for consumers of 
an API to catch all of the exceptions that were raised deliberately. For 
example, here a consumer of my API makes a function call with a 
try/except statement that catches my root exception:

try:

    weight = my_module.determine_weight(1, -1)

except my_module.Error:

    logging.exception('Unexpected error')

>>>

Unexpected error
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Traceback (most recent call last):

  File ".../example.py", line 3, in <module>

    weight = my_module.determine_weight(1, -1)

  File ".../my_module.py", line 10, in determine_weight

    raise InvalidDensityError('Density must be positive')

InvalidDensityError: Density must be positive

Here, the logging.exception function prints the full stack trace of the 
caught exception so it’s easier to debug in this situation. The try/
except also prevents my API’s exceptions from propagating too far 
upward and breaking the calling program. It insulates the calling 
code from my API. This insulation has three helpful effects.

First, root exceptions let callers understand when there’s a problem 
with their usage of an API. If callers are using my API properly, they 
should catch the various exceptions that I deliberately raise. If they 
don’t handle such an exception, it will propagate all the way up to 
the insulating except block that catches my module’s root exception. 
That block can bring the exception to the attention of the API con-
sumer, providing an opportunity for them to add proper handling of 
the missed exception type:

try:

    weight = my_module.determine_weight(-1, 1)

except my_module.InvalidDensityError:

    weight = 0

except my_module.Error:

    logging.exception('Bug in the calling code')

>>>

Bug in the calling code

Traceback (most recent call last):

  File ".../example.py", line 3, in <module>

    weight = my_module.determine_weight(-1, 1)

  File ".../my_module.py", line 12, in determine_weight

    raise InvalidVolumeError('Volume must be positive')

InvalidVolumeError: Volume must be positive

The second advantage of using root exceptions is that they can help 
find bugs in an API module’s code. If my code only deliberately raises 
exceptions that I define within my module’s hierarchy, then all other 
types of exceptions raised by my module must be the ones that I didn’t 
intend to raise. These are bugs in my API’s code.

Using the try/except statement above will not insulate API consum-
ers from bugs in my API module’s code. To do that, the caller needs to 
add another except block that catches Python’s base Exception class. 



This allows the API consumer to detect when there’s a bug in the API 
module’s implementation that needs to be fixed. The output for this 
example includes both the logging.exception message and the default 
interpreter output for the exception since it was re-raised:

try:

    weight = my_module.determine_weight(0, 1)

except my_module.InvalidDensityError:

    weight = 0

except my_module.Error:

    logging.exception('Bug in the calling code')

except Exception:

    logging.exception('Bug in the API code!')

    raise  # Re-raise exception to the caller

>>>

Bug in the API code!

Traceback (most recent call last):

  File ".../example.py", line 3, in <module>

    weight = my_module.determine_weight(0, 1)

  File ".../my_module.py", line 14, in determine_weight

    density / volume

ZeroDivisionError: division by zero

Traceback ...

ZeroDivisionError: division by zero

The third impact of using root exceptions is future-proofing an API. 
Over time, I might want to expand my API to provide more spe-
cific exceptions in certain situations. For example, I could add an 
Exception subclass that indicates the error condition of supplying 
negative densities:

# my_module.py

...

 

class NegativeDensityError(InvalidDensityError):

    """A provided density value was negative."""

 

...

 

def determine_weight(volume, density):

    if density < 0:

        raise NegativeDensityError('Density must be positive')

    ...
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The calling code will continue to work exactly as before because it 
already catches InvalidDensityError exceptions (the parent class 
of NegativeDensityError). In the future, the caller could decide to 
 special-case the new type of exception and change the handling 
behavior accordingly:

try:

    weight = my_module.determine_weight(1, -1)

except my_module.NegativeDensityError:

    raise ValueError('Must supply non-negative density')

except my_module.InvalidDensityError:

    weight = 0

except my_module.Error:

    logging.exception('Bug in the calling code')

except Exception:

    logging.exception('Bug in the API code!')

    raise

>>>

Traceback ...

NegativeDensityError: Density must be positive

 

The above exception was the direct cause of the following 

➥exception:

 

Traceback ...

ValueError: Must supply non-negative density

I can take API future-proofing further by providing a broader set of 
exceptions directly below the root exception. For example, imagine 
that I have one set of errors related to calculating weights, another 
related to calculating volume, and a third related to calculating 
density:

# my_module.py

class Error(Exception):

    """Base-class for all exceptions raised by this module."""

 

class WeightError(Error):

    """Base-class for weight calculation errors."""

 

class VolumeError(Error):

    """Base-class for volume calculation errors."""

 

class DensityError(Error):

    """Base-class for density calculation errors."""

...
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Specific exceptions would inherit from these general exceptions. Each 
intermediate exception acts as its own kind of root exception. This 
makes it easier to insulate layers of calling code from API code based 
on broad functionality. This is much better than having all callers 
catch a long list of very specific Exception subclasses.

Things to Remember

✦ Defining root exceptions for modules allows API consumers to 
 insulate themselves from an API.

✦ Catching root exceptions can help you find bugs in code that 
 consumes an API.

✦ Catching the Python Exception base class can help you find bugs in 
API implementations.

✦ Intermediate root exceptions let you add more specific types of 
exceptions in the future without breaking your API consumers.

Item 88: Know How to Break Circular Dependencies

Inevitably, while you’re collaborating with others, you’ll find a mutual 
interdependence between modules. It can even happen while you work 
by yourself on the various parts of a single program.

For example, say that I want my GUI application to show a dialog box 
for choosing where to save a document. The data displayed by the dia-
log could be specified through arguments to my event handlers. But 
the dialog also needs to read global state, such as user preferences, to 
know how to render properly.

Here, I define a dialog that retrieves the default document save loca-
tion from global preferences:

# dialog.py

import app

 

class Dialog:

    def __init__(self, save_dir):

        self.save_dir = save_dir

    ...

 

save_dialog = Dialog(app.prefs.get('save_dir'))

 

def show():

    ...
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The problem is that the app module that contains the prefs object 
also imports the dialog class in order to show the same dialog on pro-
gram start:

# app.py

import dialog

 

class Prefs:

    ...

    def get(self, name):

        ...

 

prefs = Prefs()

dialog.show()

It’s a circular dependency. If I try to import the app module from my 
main program like this:

# main.py

import app

I get an exception:

>>>

$ python3 main.py 

Traceback (most recent call last):

  File ".../main.py", line 17, in <module>

    import app

  File ".../app.py", line 17, in <module>

    import dialog

  File ".../dialog.py", line 23, in <module>

    save_dialog = Dialog(app.prefs.get('save_dir'))

AttributeError: partially initialized module 'app' has no 

➥attribute 'prefs' (most likely due to a circular import)

To understand what’s happening here, you need to know how Python’s 
import machinery works in general (see the importlib built-in package 
for the full details). When a module is imported, here’s what Python 
actually does, in depth-first order:

1. Searches for a module in locations from sys.path

2. Loads the code from the module and ensures that it compiles

3. Creates a corresponding empty module object

4. Inserts the module into sys.modules

5. Runs the code in the module object to define its contents
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The problem with a circular dependency is that the attributes of a 
module aren’t defined until the code for those attributes has executed 
(after step 5). But the module can be loaded with the import state-
ment immediately after it’s inserted into sys.modules (after step 4).

In the example above, the app module imports dialog before defin-
ing anything. Then, the dialog module imports app. Since app still 
hasn’t finished running—it’s currently importing dialog—the app 
module is empty (from step 4). The AttributeError is raised (during 
step 5 for dialog) because the code that defines prefs hasn’t run yet 
(step 5 for app isn’t complete).

The best solution to this problem is to refactor the code so that the 
prefs data structure is at the bottom of the dependency tree. Then, 
both app and dialog can import the same utility module and avoid 
any circular dependencies. But such a clear division isn’t always pos-
sible or could require too much refactoring to be worth the effort.

There are three other ways to break circular dependencies.

Reordering Imports

The first approach is to change the order of imports. For example, if I 
import the dialog module toward the bottom of the app module, after 
the app module’s other contents have run, the AttributeError goes 
away:

# app.py

class Prefs:

    ...

 

prefs = Prefs()

 

import dialog  # Moved

dialog.show()

This works because, when the dialog module is loaded late, its recur-
sive import of app finds that app.prefs has already been defined (step 
5 is mostly done for app).

Although this avoids the AttributeError, it goes against the PEP 8 
style guide (see Item 2: “Follow the PEP 8 Style Guide”). The style 
guide suggests that you always put imports at the top of your Python 
files. This makes your module’s dependencies clear to new readers of 
the code. It also ensures that any module you depend on is in scope 
and available to all the code in your module.
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Having imports later in a file can be brittle and can cause small 
changes in the ordering of your code to break the module entirely. 
I suggest not using import reordering to solve your circular depen-
dency issues.

Import, Configure, Run

A second solution to the circular imports problem is to have mod-
ules minimize side effects at import time. I can have my modules only 
define functions, classes, and constants. I avoid actually running 
any functions at import time. Then, I have each module provide a 
configure function that I call once all other modules have finished 
importing. The purpose of configure is to prepare each module’s state 
by accessing the attributes of other modules. I run configure after 
all modules have been imported (step 5 is complete), so all attributes 
must be defined.

Here, I redefine the dialog module to only access the prefs object 
when configure is called:

# dialog.py

import app

 

class Dialog:

    ...

 

save_dialog = Dialog()

 

def show():

    ...

 

def configure():

    save_dialog.save_dir = app.prefs.get('save_dir')

I also redefine the app module to not run activities on import:

# app.py

import dialog

 

class Prefs:

    ...

 

prefs = Prefs()

 

def configure():

    ...



Finally, the main module has three distinct phases of execution—
import everything, configure everything, and run the first activity:

# main.py

import app

import dialog

 

app.configure()

dialog.configure()

 

dialog.show()

This works well in many situations and enables patterns like depen-

dency injection. But sometimes it can be difficult to structure your 
code so that an explicit configure step is possible. Having two dis-
tinct phases within a module can also make your code harder to read 
because it separates the definition of objects from their configuration.

Dynamic Import

The third—and often simplest—solution to the circular imports prob-
lem is to use an import statement within a function or method. This 
is called a dynamic import because the module import happens while 
the program is running, not while the program is first starting up 
and initializing its modules.

Here, I redefine the dialog module to use a dynamic import. The 
dialog.show function imports the app module at runtime instead of 
the dialog module importing app at initialization time:

# dialog.py

class Dialog:

    ...

 

save_dialog = Dialog()

 

def show():

    import app  # Dynamic import

    save_dialog.save_dir = app.prefs.get('save_dir')

    ...

The app module can now be the same as it was in the original exam-
ple. It imports dialog at the top and calls dialog.show at the bottom:

# app.py

import dialog
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class Prefs:

    ...

 

prefs = Prefs()

dialog.show()

This approach has a similar effect to the import, configure, and run 
steps from before. The difference is that it requires no structural 
changes to the way the modules are defined and imported. I’m simply 
delaying the circular import until the moment I must access the other 
module. At that point, I can be pretty sure that all other modules 
have already been initialized (step 5 is complete for everything).

In general, it’s good to avoid dynamic imports like this. The cost of the 
import statement is not negligible and can be especially bad in tight 
loops. By delaying execution, dynamic imports also set you up for 
surprising failures at runtime, such as SyntaxError exceptions long 
after your program has started running (see Item 76: “Verify Related 
Behaviors in TestCase Subclasses” for how to avoid that). However, 
these downsides are often better than the alternative of restructuring 
your entire program.

Things to Remember

✦ Circular dependencies happen when two modules must call into 
each other at import time. They can cause your program to crash at 
startup.

✦ The best way to break a circular dependency is by refactoring 
mutual dependencies into a separate module at the bottom of the 
dependency tree.

✦ Dynamic imports are the simplest solution for breaking a circular 
dependency between modules while minimizing refactoring and 
complexity.

Item 89:  Consider warnings to Refactor and 
Migrate Usage

It’s natural for APIs to change in order to satisfy new requirements 
that meet formerly unanticipated needs. When an API is small and has 
few upstream or downstream dependencies, making such changes is 
straightforward. One programmer can often update a small API and 
all of its callers in a single commit.



However, as a codebase grows, the number of callers of an API can be 
so large or fragmented across source repositories that it’s infeasible 
or impractical to make API changes in lockstep with updating callers 
to match. Instead, you need a way to notify and encourage the people 
that you collaborate with to refactor their code and migrate their API 
usage to the latest forms.

For example, say that I want to provide a module for calculating how 
far a car will travel at a given average speed and duration. Here, 
I define such a function and assume that speed is in miles per hour 
and duration is in hours:

def print_distance(speed, duration):

    distance = speed * duration

    print(f'{distance} miles')

 

print_distance(5, 2.5)

>>>

12.5 miles

Imagine that this works so well that I quickly gather a large number 
of dependencies on this function. Other programmers that I collabo-
rate with need to calculate and print distances like this all across our 
shared codebase.

Despite its success, this implementation is error prone because the 
units for the arguments are implicit. For example, if I wanted to see 
how far a bullet travels in 3 seconds at 1000 meters per second, I 
would get the wrong result:

print_distance(1000, 3)

>>>

3000 miles

I can address this problem by expanding the API of print_distance to 
include optional keyword arguments (see Item 23: “Provide Optional 
Behavior with Keyword Arguments” and Item 25: “Enforce Clarity 
with Keyword-Only and Positional-Only Arguments”) for the units of 
speed, duration, and the computed distance to print out:

CONVERSIONS = {

    'mph': 1.60934 / 3600 * 1000,   # m/s

    'hours': 3600,                  # seconds

    'miles': 1.60934 * 1000,        # m

    'meters': 1,                    # m

    'm/s': 1,                       # m

    'seconds': 1,                   # s

}
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def convert(value, units):

    rate = CONVERSIONS[units]

    return rate * value

 

def localize(value, units):

    rate = CONVERSIONS[units]

    return value / rate

 

def print_distance(speed, duration, *,

                   speed_units='mph',

                   time_units='hours',

                   distance_units='miles'):

    norm_speed = convert(speed, speed_units)

    norm_duration = convert(duration, time_units)

    norm_distance = norm_speed * norm_duration

    distance = localize(norm_distance, distance_units)

    print(f'{distance} {distance_units}')

Now, I can modify the speeding bullet call to produce an accurate 
result with a unit conversion to miles:

print_distance(1000, 3,

               speed_units='meters',

               time_units='seconds')

>>>

1.8641182099494205 miles

It seems like requiring units to be specified for this function is a much 
better way to go. Making them explicit reduces the likelihood of errors 
and is easier for new readers of the code to understand. But how can I 
migrate all callers of the API over to always specifying units? How do 
I minimize breakage of any code that’s dependent on print_distance 
while also encouraging callers to adopt the new units arguments as 
soon as possible?

For this purpose, Python provides the built-in warnings module. 
Using warnings is a programmatic way to inform other programmers 
that their code needs to be modified due to a change to an underly-
ing library that they depend on. While exceptions are primarily for 
automated error handling by machines (see Item 87: “Define a Root 
Exception to Insulate Callers from APIs”), warnings are all about 
communication between humans about what to expect in their col-
laboration with each other.



I can modify print_distance to issue warnings when the optional 
keyword arguments for specifying units are not supplied. This way, 
the arguments can continue being optional temporarily (see Item 24: 
“Use None and Docstrings to Specify Dynamic Default Arguments” 
for background), while providing an explicit notice to people running 
dependent programs that they should expect breakage in the future if 
they fail to take action:

import warnings

 

def print_distance(speed, duration, *,

                   speed_units=None,

                   time_units=None,

                   distance_units=None):

    if speed_units is None:

        warnings.warn(

            'speed_units required', DeprecationWarning)

        speed_units = 'mph'

 

    if time_units is None:

        warnings.warn(

            'time_units required', DeprecationWarning)

        time_units = 'hours'

 

    if distance_units is None:

        warnings.warn(

            'distance_units required', DeprecationWarning)

        distance_units = 'miles'

 

    norm_speed = convert(speed, speed_units)

    norm_duration = convert(duration, time_units)

    norm_distance = norm_speed * norm_duration

    distance = localize(norm_distance, distance_units)

    print(f'{distance} {distance_units}')

I can verify that this code issues a warning by calling the function 
with the same arguments as before and capturing the sys.stderr out-
put from the warnings module:

import contextlib

import io

 

fake_stderr = io.StringIO()

with contextlib.redirect_stderr(fake_stderr):
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    print_distance(1000, 3,

                   speed_units='meters',

                   time_units='seconds')

 

print(fake_stderr.getvalue())

>>>

1.8641182099494205 miles

.../example.py:97: DeprecationWarning: distance_units required

  warnings.warn(

Adding warnings to this function required quite a lot of repetitive boil-
erplate that’s hard to read and maintain. Also, the warning message 
indicates the line where warning.warn was called, but what I really 
want to point out is where the call to print_distance was made with-

out soon-to-be-required keyword arguments.

Luckily, the warnings.warn function supports the stacklevel param-
eter, which makes it possible to report the correct place in the stack 
as the cause of the warning. stacklevel also makes it easy to write 
functions that can issue warnings on behalf of other code, reducing 
boilerplate. Here, I define a helper function that warns if an optional 
argument wasn’t supplied and then provides a default value for it:

def require(name, value, default):

    if value is not None:

        return value

    warnings.warn(

        f'{name} will be required soon, update your code',

        DeprecationWarning,

        stacklevel=3)

    return default

 

def print_distance(speed, duration, *,

                   speed_units=None,

                   time_units=None,

                   distance_units=None):

    speed_units = require('speed_units', speed_units, 'mph')

    time_units = require('time_units', time_units, 'hours')

    distance_units = require(

        'distance_units', distance_units, 'miles')

 

    norm_speed = convert(speed, speed_units)

    norm_duration = convert(duration, time_units)

    norm_distance = norm_speed * norm_duration

    distance = localize(norm_distance, distance_units)

    print(f'{distance} {distance_units}')



I can verify that this propagates the proper offending line by inspect-
ing the captured output:

import contextlib

import io

 

fake_stderr = io.StringIO()

with contextlib.redirect_stderr(fake_stderr):

    print_distance(1000, 3,

                   speed_units='meters',

                   time_units='seconds')

 

print(fake_stderr.getvalue())

>>>

1.8641182099494205 miles

.../example.py:174: DeprecationWarning: distance_units will be 

➥required soon, update your code

  print_distance(1000, 3,

The warnings module also lets me configure what should happen 
when a warning is encountered. One option is to make all warnings 
become errors, which raises the warning as an exception instead of 
printing it out to sys.stderr:

warnings.simplefilter('error')

try:

    warnings.warn('This usage is deprecated',

                  DeprecationWarning)

except DeprecationWarning:

    pass  # Expected

This exception-raising behavior is especially useful for automated 
tests in order to detect changes in upstream dependencies and fail 
tests accordingly. Using such test failures is a great way to make it 
clear to the people you collaborate with that they will need to update 
their code. You can use the -W error command-line argument to the 
Python interpreter or the PYTHONWARNINGS environment variable to 
apply this policy:

$ python -W error example_test.py 

Traceback (most recent call last):

  File ".../example_test.py", line 6, in <module>

    warnings.warn('This might raise an exception!')

UserWarning: This might raise an exception!
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Once the people responsible for code that depends on a deprecated 
API are aware that they’ll need to do a migration, they can tell the 
warnings module to ignore the error by using the simplefilter and 
filterwarnings functions (see https://docs.python.org/3/library/
warnings for all the details):

warnings.simplefilter('ignore')

warnings.warn('This will not be printed to stderr')

After a program is deployed into production, it doesn’t make sense for 
warnings to cause errors because they might crash the program at a 
critical time. Instead, a better approach is to replicate warnings into 
the logging built-in module. Here, I accomplish this by calling the 
logging.captureWarnings function and configuring the corresponding 
'py.warnings' logger:

import logging

 

fake_stderr = io.StringIO()

handler = logging.StreamHandler(fake_stderr)

formatter = logging.Formatter(

    '%(asctime)-15s WARNING] %(message)s')

handler.setFormatter(formatter)

 

logging.captureWarnings(True)

logger = logging.getLogger('py.warnings')

logger.addHandler(handler)

logger.setLevel(logging.DEBUG)

 

warnings.resetwarnings()

warnings.simplefilter('default')

warnings.warn('This will go to the logs output')

 

print(fake_stderr.getvalue())

>>>

2019-06-11 19:48:19,132 WARNING] .../example.py:227: 

➥UserWarning: This will go to the logs output

  warnings.warn('This will go to the logs output')

Using logging to capture warnings ensures that any error reporting 
systems that my program already has in place will also receive notice 
of important warnings in production. This can be especially useful if 
my tests don’t cover every edge case that I might see when the pro-
gram is undergoing real usage.



API library maintainers should also write unit tests to verify that 
warnings are generated under the correct circumstances with clear 
and actionable messages (see Item 76: “Verify Related Behaviors in 
TestCase Subclasses”). Here, I use the warnings.catch_warnings func-
tion as a context manager (see Item 66: “Consider contextlib and 
with Statements for Reusable try/finally Behavior” for background) 
to wrap a call to the require function that I defined above:

with warnings.catch_warnings(record=True) as found_warnings:

    found = require('my_arg', None, 'fake units')

    expected = 'fake units'

    assert found == expected

Once I’ve collected the warning messages, I can verify that their num-
ber, detail messages, and categories match my expectations:

assert len(found_warnings) == 1

single_warning = found_warnings[0]

assert str(single_warning.message) == (

    'my_arg will be required soon, update your code')

assert single_warning.category == DeprecationWarning

Things to Remember

✦ The warnings module can be used to notify callers of your API about 
deprecated usage. Warning messages encourage such callers to fix 
their code before later changes break their programs.

✦ Raise warnings as errors by using the -W error command-line argu-
ment to the Python interpreter. This is especially useful in auto-
mated tests to catch potential regressions of dependencies.

✦ In production, you can replicate warnings into the logging module 
to ensure that your existing error reporting systems will capture 
warnings at runtime.

✦ It’s useful to write tests for the warnings that your code generates to 
make sure that they’ll be triggered at the right time in any of your 
downstream dependencies.

Item 90:  Consider Static Analysis via typing to 
Obviate Bugs

Providing documentation is a great way to help users of an API under-
stand how to use it properly (see Item 84: “Write Docstrings for Every 
Function, Class, and Module”), but often it’s not enough, and incor-
rect usage still causes bugs. Ideally, there would be a programmatic 
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mechanism to verify that callers are using your APIs the right way, 
and that you are using your downstream dependencies correctly. 
Many programming languages address part of this need with com-
pile-time type checking, which can identify and eliminate some cate-
gories of bugs.

Historically Python has focused on dynamic features and has not 
provided compile-time type safety of any kind. However, more recently 
Python has introduced special syntax and the built-in typing mod-
ule, which allow you to annotate variables, class fields, functions, 
and methods with type information. These type hints allow for grad-

ual typing, where a codebase can be incrementally updated to specify 
types as desired.

The benefit of adding type information to a Python program is that 
you can run static analysis tools to ingest a program’s source code 
and identify where bugs are most likely to occur. The typing built-in 
module doesn’t actually implement any of the type checking function-
ality itself. It merely provides a common library for defining types, 
including generics, that can be applied to Python code and consumed 
by separate tools.

Much as there are multiple distinct implementations of the Python 
interpreter (e.g., CPython, PyPy), there are multiple implementa-
tions of static analysis tools for Python that use typing. As of the time 
of this writing, the most popular tools are mypy (https://github.com/
python/mypy), pytype (https://github.com/google/pytype), pyright 
(https://github.com/microsoft/pyright), and pyre (https://pyre-check.
org). For the typing examples in this book, I’ve used mypy with the 
--strict flag, which enables all of the various warnings supported by the 
tool. Here’s an example of what running the command line looks like:

$ python3 -m mypy --strict example.py

These tools can be used to detect a large number of common errors 
before a program is ever run, which can provide an added layer of 
safety in addition to having good unit tests (see Item 76: “Verify 
Related Behaviors in TestCase Subclasses”). For example, can you 
find the bug in this simple function that causes it to compile fine but 
throw an exception at runtime?

def subtract(a, b):

    return a - b

 

subtract(10, '5')

>>>

Traceback ...

TypeError: unsupported operand type(s) for -: 'int' and 'str'



Parameter and variable type annotations are delineated with a colon 
(such as name: type). Return value types are specified with -> type 
following the argument list. Using such type annotations and mypy, 
I can easily spot the bug:

def subtract(a: int, b: int) -> int:  # Function annotation

    return a - b

 

subtract(10, '5')  # Oops: passed string value

$ python3 -m mypy --strict example.py

.../example.py:4: error: Argument 2 to "subtract" has 

incompatible type "str"; expected "int"

Another common mistake, especially for programmers who have 
recently moved from Python 2 to Python 3, is mixing bytes and str 
instances together (see Item 3: “Know the Differences Between bytes 
and str”). Do you see the problem in this example that causes a run-
time error?

def concat(a, b):

    return a + b

 

concat('first', b'second')

>>>

Traceback ...

TypeError: can only concatenate str (not "bytes") to str

Using type hints and mypy, this issue can be detected statically before 
the program runs:

def concat(a: str, b: str) -> str:

    return a + b

 

concat('first', b'second')  # Oops: passed bytes value

$ python3 -m mypy --strict example.py

.../example.py:4: error: Argument 2 to "concat" has 

➥incompatible type "bytes"; expected "str"

Type annotations can also be applied to classes. For example, this 
class has two bugs in it that will raise exceptions when the program 
is run:

class Counter:

    def __init__(self):

        self.value = 0
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    def add(self, offset):

        value += offset

 

    def get(self) -> int:

        self.value

The first one happens when I call the add method:

counter = Counter()

counter.add(5)

>>>

Traceback ...

UnboundLocalError: local variable 'value' referenced before 

➥assignment

The second bug happens when I call get:

counter = Counter()

found = counter.get()

assert found == 0, found

>>>

Traceback ...

AssertionError: None

Both of these problems are easily found by mypy:

class Counter:

    def __init__(self) -> None:

        self.value: int = 0  # Field / variable annotation

 

    def add(self, offset: int) -> None:

        value += offset      # Oops: forgot "self."

 

    def get(self) -> int:

        self.value           # Oops: forgot "return"

 

counter = Counter()

counter.add(5)

counter.add(3)

assert counter.get() == 8

$ python3 -m mypy --strict example.py

.../example.py:6: error: Name 'value' is not defined

.../example.py:8: error: Missing return statement



One of the strengths of Python’s dynamism is the ability to write 
generic functionality that operates on duck types (see Item 15: “Be 
Cautious When Relying on dict Insertion Ordering” and Item 43: 
“Inherit from collections.abc for Custom Container Types”). This 
allows one implementation to accept a wide range of types, saving a 
lot of duplicative effort and simplifying testing. Here, I’ve defined such 
a generic function for combining values from a list. Do you under-
stand why the last assertion fails?

def combine(func, values):

    assert len(values) > 0

 

    result = values[0]

    for next_value in values[1:]:

        result = func(result, next_value)

 

    return result

 

def add(x, y):

    return x + y

 

inputs = [1, 2, 3, 4j]

result = combine(add, inputs)

assert result == 10, result  # Fails

>>>

Traceback ...

AssertionError: (6+4j)

I can use the typing module’s support for generics to annotate this 
function and detect the problem statically:

from typing import Callable, List, TypeVar

 

Value = TypeVar('Value')

Func = Callable[[Value, Value], Value]

 

def combine(func: Func[Value], values: List[Value]) -> Value:

    assert len(values) > 0

 

    result = values[0]

    for next_value in values[1:]:

        result = func(result, next_value)

 

    return result
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Real = TypeVar('Real', int, float)

 

def add(x: Real, y: Real) -> Real:

    return x + y

 

inputs = [1, 2, 3, 4j]  # Oops: included a complex number

result = combine(add, inputs)

assert result == 10

$ python3 -m mypy --strict example.py

.../example.py:21: error: Argument 1 to "combine" has 

➥incompatible type "Callable[[Real, Real], Real]"; expected 

➥"Callable[[complex, complex], complex]"

Another extremely common error is to encounter a None value when 
you thought you’d have a valid object (see Item 20: “Prefer Raising 
Exceptions to Returning None”). This problem can affect seemingly 
simple code. Do you see the issue here?

def get_or_default(value, default):

    if value is not None:

        return value

    return value

 

found = get_or_default(3, 5)

assert found == 3

 

found = get_or_default(None, 5)

assert found == 5, found  # Fails

>>>

Traceback ...

AssertionError: None

The typing module supports option types, which ensure that pro-
grams only interact with values after proper null checks have been 
performed. This allows mypy to infer that there’s a bug in this code: 
The type used in the return statement must be None, and that doesn’t 
match the int type required by the function signature:

from typing import Optional

 

def get_or_default(value: Optional[int],

                   default: int) -> int:

    if value is not None:

        return value

    return value  # Oops: should have returned "default"



$ python3 -m mypy --strict example.py

.../example.py:7: error: Incompatible return value type (got 

➥"None", expected "int")

A wide variety of other options are available in the typing module. 
See https://docs.python.org/3.8/library/typing for all of the details. 
Notably, exceptions are not included. Unlike Java, which has checked 
exceptions that are enforced at the API boundary of every method, 
Python’s type annotations are more similar to C#’s: Exceptions are 
not considered part of an interface’s definition. Thus, if you want to 
verify that you’re raising and catching exceptions properly, you need 
to write tests.

One common gotcha in using the typing module occurs when you 
need to deal with forward references (see Item 88: “Know How to 
Break Circular Dependencies” for a similar problem). For example, 
imagine that I have two classes and one holds a reference to the other:

class FirstClass:

    def __init__(self, value):

        self.value = value

 

class SecondClass:

    def __init__(self, value):

        self.value = value

 

second = SecondClass(5)

first = FirstClass(second)

If I apply type hints to this program and run mypy it will say that 
there are no issues:

class FirstClass:

    def __init__(self, value: SecondClass) -> None:

        self.value = value

 

class SecondClass:

    def __init__(self, value: int) -> None:

        self.value = value

 

second = SecondClass(5)

first = FirstClass(second)

$ python3 -m mypy --strict example.py
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However, if you actually try to run this code, it will fail because 
SecondClass is referenced by the type annotation in the 
FirstClass.__init__ method’s parameters before it’s actually defined:

class FirstClass:

    def __init__(self, value: SecondClass) -> None:  # Breaks

        self.value = value

 

class SecondClass:

    def __init__(self, value: int) -> None:

        self.value = value

 

second = SecondClass(5)

first = FirstClass(second)

>>>

Traceback ...

NameError: name 'SecondClass' is not defined

One workaround supported by these static analysis tools is to use 
a string as the type annotation that contains the forward reference. 
The string value is later parsed and evaluated to extract the type 
information to check:

class FirstClass:

    def __init__(self, value: 'SecondClass') -> None:  # OK

        self.value = value

 

class SecondClass:

    def __init__(self, value: int) -> None:

        self.value = value

 

second = SecondClass(5)

first = FirstClass(second)

A better approach is to use from __future__ import annotations, 
which is available in Python 3.7 and will become the default in 
Python 4. This instructs the Python interpreter to completely ignore 
the values supplied in type annotations when the program is being 
run. This resolves the forward reference problem and provides a per-
formance improvement at program start time:

from __future__ import annotations

 

class FirstClass:

    def __init__(self, value: SecondClass) -> None:  # OK

        self.value = value
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class SecondClass:

    def __init__(self, value: int) -> None:

        self.value = value

 

second = SecondClass(5)

first = FirstClass(second)

Now that you’ve seen how to use type hints and their potential bene-
fits, it’s important to be thoughtful about when to use them. Here are 
some of the best practices to keep in mind:

 ■ It’s going to slow you down if you try to use type annotations from 
the start when writing a new piece of code. A general strategy is 
to write a first version without annotations, then write tests, and 
then add type information where it’s most valuable.

 ■ Type hints are most important at the boundaries of a codebase, 
such as an API you provide that many callers (and thus other 
people) depend on. Type hints complement integration tests (see 
Item 77: “Isolate Tests from Each Other with setUp, tearDown, 
setUpModule, and tearDownModule”) and warnings (see Item 89: 
“Consider warnings to Refactor and Migrate Usage”) to ensure that 
your API callers aren’t surprised or broken by your changes.

 ■ It can be useful to apply type hints to the most complex and error-
prone parts of your codebase that aren’t part of an API. However, 
it may not be worth striving for 100% coverage in your type anno-
tations because you’ll quickly encounter diminishing returns.

 ■ If possible, you should include static analysis as part of your 
automated build and test system to ensure that every commit to 
your codebase is vetted for errors. In addition, the configuration 
used for type checking should be maintained in the repository to 
ensure that all of the people you collaborate with are using the 
same rules.

 ■ As you add type information to your code, it’s important to run 
the type checker as you go. Otherwise, you may nearly finish 
sprinkling type hints everywhere and then be hit by a huge wall 
of errors from the type checking tool, which can be disheartening 
and make you want to abandon type hints altogether.

Finally, it’s important to acknowledge that in many situations, you 
may not need or want to use type annotations at all. For small pro-
grams, ad-hoc code, legacy codebases, and prototypes, type hints 
may require far more effort than they’re worth.
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Things to Remember

✦ Python has special syntax and the typing built-in module for 
annotating variables, fields, functions, and methods with type 
information.

✦ Static type checkers can leverage type information to help you avoid 
many common bugs that would otherwise happen at runtime.

✦ There are a variety of best practices for adopting types in your pro-
grams, using them in APIs, and making sure they don’t get in the 
way of your productivity.
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first-in, first-out (FIFO) queues, 

326–334
for loops, avoiding else blocks, 

32–35
format built-in function, 15–19
format strings

bytes versus str instances, 8–9
C-style strings versus f-strings, 

11–21
format built-in function, 

15–19
f-strings explained, 19–21
interpolated format strings, 

19–21
problems with C-style strings, 

11–15
str.format method, 15–19

forward slash (/) operator, 
positional-only arguments, 99

f-strings
C-style strings versus, 11–21
str.format method versus, 15–19
explained, 19–21

functions, 77. See also generators
closures, variable scope and, 

83–86
decorators, 101–104
documentation, 399–400
dynamic default arguments, 

93–96
as hooks, 151–155
keyword arguments, 89–92
keyword-only arguments, 96–101
None return value, raising 

exceptions versus, 80–82
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in pipelines, 238–247
positional-only arguments, 

96–101
multiple return values, 77–80
variable positional arguments, 

86–89
functools.wraps method, 101–104

G
gc built-in module, 384–386
generator expressions, 121–122
generators, 107

yield from for composing, 
123–126

injecting data into, 126–131
itertools module with, 136–142
returning lists versus, 114–116
send method, 126–131
throw method, 132–136

generic object construction, 
155–160

get method for missing dictionary 
keys, 65–70

getter methods, attributes versus, 
181–185

GIL (global interpreter lock), 230–
235, 292

gradual typing, 426

H
hasattr built-in function, 198–199
hash tables, 43
heapq built-in module, 336–346
heaps, 341
helper functions, expressions 

versus, 21–24
highly concurrent I/O, 266–271
hooks, functions as, 151–155

I
if/else conditional expressions, 23
import paths, stabilizing, 317–319
importing modules, 5, 414–415
in expressions for missing 

dictionary keys, 65–70
indexing

slicing and, 44
unpacking versus, 24–28

inheritance

from collections.abc module, 
174–178

diamond inheritance, 161–162, 
207–208

initializing parent classes, 160–164
injecting

data into generators, 126–131
dependencies, 378–379
mocks, 371–375

input/output (I/O). See I/O (input/
output)

insertion ordering, dictionaries, 
58–65

installing modules, 389–390
integration tests, unit tests versus, 

365
interactive debugging, 379–384
interfaces, 145

simple functions for, 151–155
interpolated format strings. See 

f-strings
I/O (input/output)

avoiding blocking asyncio event 
loop, 289–292

using threads for, 230–235
highly concurrent, 266–271
porting threaded I/O to asyncio 

built-in module, 271–282
zero-copy interactions, 346–351

isolating tests, 365–367
iterator protocol, 119–121
iterators. See also loops

combining items, 139–142
filtering items, 138–139
generator expressions and, 

121–122
generator functions and, 115–116
linking, 136–138
as function arguments, 116–121
StopIteration exception, 117

itertools module, 136–142
itertools.accumulate method, 

139–140
itertools.chain method, 136
itertools.combinations method, 141
itertools.combinations_with_

replacement method, 141–142
itertools.cycle method, 137
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itertools.dropwhile method, 139
itertools.filterfalse method, 139
itertools.islice method, 138
itertools.permutations method, 

140–141
itertools.product method, 140
itertools.repeat method, 136
itertools.takewhile method, 138
itertools.tee method, 137
itertools.zip_longest method, 31–32, 

137–138

J
json built-in module, 313

K
key parameter, sorting lists, 52–58
KeyError exceptions for missing 

dictionary keys, 65–70
keys

handling in dictionaries
__missing__ method, 73–75
defaultdict versus setdefault 

methods, 70–72
get method versus in 

expressions, 65–70
keyword arguments, 89–92
keyword-only arguments, 96–101

L
lazy attributes, 195–201
leaks (memory), debugging, 

384–387
linking iterators, 136–138
list comprehensions, 107–108

generator expressions versus, 
121–122

lists, 43. See also comprehensions
as FIFO queues, 326–331
as return values, generators 

versus, 114–116
slicing, 43–46

catch-all unpacking versus, 
48–52

striding with, 46–48
sorting

with key parameter, 52–58
searching sorted lists, 

334–336

local time, 308–312
Lock class, preventing data races, 

235–238
loops. See also comprehensions

else blocks, avoiding, 32–35
range versus enumerate built-in 

functions, 28–30
zip built-in function, 30–32

M
map built-in function, 

comprehensions versus, 
107–109

memory usage, debugging, 384–387
memoryview built-in type, 346–351
metaclasses, 181

annotating attributes, 214–218
class decorators versus, 218–224
registering classes, 208–213
validating subclasses, 201–208

migrating API usage, 418–425
missing dictionary keys

__missing__ method, 73–75
defaultdict versus setdefault 

methods, 70–72
get method versus in 

expressions, 65–70
mix-in classes, 164–169
mocks

encapsulating dependencies for, 
375–379

testing with, 367–375
modules

documentation, 397–398
importing, 5, 414–415

dynamic import, 417–418
import/configure/run, 

415–416
reordering imports, 415–416

installing, 389–390
organizing into packages, 

401–406
module-scoped code, 406–408
multiple assignment. See tuples
multiple return values, unpacking, 

77–80
multiple generators, composing with 

yield from expression, 123–126
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multiprocessing built-in module, 
292–297

multi-threaded program, converting 
from single-threaded to, 
248–252

mutexes (mutual-exclusion locks), 
preventing data races, 
235–238

N
namedtuple type, 149–150
namespaces, 402–403
naming conventions, 3–4
negative numbers for slicing, 44
nested built-in types, classes 

versus, 145–148
None

for dynamic default arguments, 
93–96

raising exceptions versus 
returning, 80–82

nonlocal statement, 85–86

O
objects, generic construction, 

155–160
optimizing, profiling before, 

322–326
option types, 430
optional arguments, extending 

functions with, 92
OrderedDict class, 61
organizing modules into packages, 

401–406

P
packages

installing, 389–390
organizing modules into, 

401–406
parallel iteration, zip built-in 

function, 30–32
parallelism, 225

avoiding threads, 230–235
concurrency versus, 225
with concurrent.futures built-in 

module, 292–297
managing child processes, 

226–230

parent classes, initializing, 160–164
pdb built-in module, 379–384
PEP 8 style guide, 2–5
percent (%) operator

bytes versus str instances, 8–9
dictionaries versus tuples with, 

13–15
formatting strings, 11

performance, 299
first-in, first-out (FIFO) queues, 

326–334
priority queues, 336–346
profiling before optimizing, 

322–326
searching sorted lists, 334–336
zero-copy interactions, 346–351

pickle built-in module, 312–319
pip command-line tool, 389–390
pipelines

coordinating threads with, 
238–247

parallel processes, chains of, 
228–229

refactoring to use Queue for, 
257–263

plus (+) operator, bytes versus str 
instances, 7

polymorphism, 155–160
porting threaded I/O to asyncio 

built-in module, 271–282
positional arguments, variable, 

86–89
positional-only arguments, 96–101
post-mortem debugging, 382–384
print function, debugging with, 

354–357
priority queues, 336–346
private attributes, public attributes 

versus, 169–174
processes, managing child 

processes, 226–230
ProcessPoolExecutor class, 295–297
producer-consumer queues, 

326–334
production environment, 406
profiling before optimizing, 322–326
public attributes, private attributes 

versus, 169–174
Pylint, 5
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PyPI (Python Package Index), 
389–390

Python
determining version used, 1–2
style guide. See PEP 8 style guide

Python 2, 1–2
Python 3, 1–2
Python Enhancement Proposal #8. 

See PEP 8 style guide
Python Package Index (PyPI), 

389–390
Pythonic style, 1
pytz module, 311–312

Q
Queue class

coordinating threads with, 
238–247

refactoring to use for 
concurrency, 257–263

R
raising exceptions, None return 

value versus, 80–82
range built-in function, enumerate 

built-in function versus,
28–30

refactoring
attributes, 186–189
to break circular dependencies, 

415
to classes, 148–151
to use Queue class for 

concurrency, 257–263
registering classes, 208–213
reordering imports, 415–416
repetitive code, avoiding, 35–41
repr strings, debugging with, 

354–357
reproducing dependencies, 394–396
return values

generators versus lists as, 
114–116

None return value, raising 
exceptions versus, 80–82

unpacking multiple, 77–80
reusable @property methods, 

190–195

reusable try/finally blocks, 
304–308

robustness, 299
exception handling with try/

except/else/finally blocks, 
299–304

reusable try/finally blocks, 
304–308

rounding numbers, 319–322
serialization/deserialization with 

pickle, 312–319
time zone conversion, 308–312

root exceptions for APIs, 408–413
rounding numbers with Decimal 

class, 319–322
rule of least surprise, 181

S
scope, closures and, 83–86
scoping bug, 85
searching sorted lists, 334–336
send method in generators, 126–131
sequences

searching sorted, 334–336
slicing, 43–46

catch-all unpacking versus, 
48–52

striding, 46–48
serializing

classes, 168–169
with pickle built-in module, 

312–319
set comprehensions, 108–109
setdefault method (dictionaries), 

68–70
defaultdict method versus, 70–72

setter methods, attributes versus, 
181–185

setUp method (TestCase class), 
365–367

setUpModule function, 365–367
single-threaded program, 

converting to multi-threaded, 
248–252

slicing
memoryview instances, 348
sequences, 43–46
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catch-all unpacking versus, 
48–52

striding, 46–48
software licensing, 390
sorting

dictionaries, insertion ordering, 
58–65

lists
with key parameter, 52–58
searching sorted lists, 

334–336
speedup, 225
stabilizing import paths, 317–319
stable APIs, 403–405
stable sorting, 56–57
star args, 86–89
starred expressions, 49–52
statements, PEP 8 style guide, 4
static analysis, 425–434
StopIteration exception, 117
str instances, bytes instances 

versus, 5–10
str.format method, 15–19
striding, 46–48
strings, C-style versus f-strings, 

11–21
format built-in function, 15–19
interpolated format strings, 

19–21
problems with C-style strings, 

11–15
str.format method, 15–19

subclasses, validating, 201–208
subexpressions in comprehensions, 

109–110
subprocess built-in module, 

226–230
super built-in function, 160–164

T
tearDown method (TestCase class), 

365–367
tearDownModule function, 365–367
ternary expressions, 23
test harness, 365
TestCase subclasses

isolating tests, 365–367

verifying related behaviors, 
357–365

testing
encapsulating dependencies for, 

375–379
importance of, 353–354
isolating tests, 365–367
with mocks, 367–375
with TestCase subclasses, 

357–365
unit versus integration tests, 365
with unittest built-in module, 

357
ThreadPoolExecutor class, 264–266
threads

avoiding for fan-out, 252–256
combining with coroutines, 

282–288
converting from single- to multi-

threaded program, 248–252
coordinating between, 238–247
porting threaded I/O to asyncio 

built-in module, 271–282
preventing data races, 235–238
refactoring to use Queue class for 

concurrency, 257–263
ThreadPoolExecutor class, 

264–266
when to use, 230–235

throw method in generators, 
132–136

time built-in module, 308–312
time zone conversion, 308–312
timeout parameter for 

subprocesses, 229–230
tracemalloc built-in module, 

384–387
try blocks

exception handling, 299–304
versus with statements, 304–308

tuples
dictionaries versus with format 

strings, 13–15
indexing versus unpacking, 

24–28
namedtuple type, 149–150
sorting with multiple criteria, 

55–56
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underscore (_) variable name in, 
149

type annotations, 82
docstrings and, 400–401
with static analysis, 425–434

type hints, 426
typing built-in module, 425–434

U
underscore (_) variable name, 149
Unicode data, converting to binary, 

6–7
unit tests, integration tests versus, 

365
unittest built-in module, 357
unpacking

indexing versus, 24–28
multiple return values, 77–80
slicing versus, 48–52

UTC (Coordinated Universal Time), 
308

V
validating subclasses, 201–208
variable positional arguments 

(varargs), 86–89
variable scope, closures and, 83–86
venv built-in module, 392–394
versioning classes, 316–317

versions of Python, determining 
version used, 1–2

virtual environments, 390–396

W
walrus (:=) operator

assignment expression, 35–41
in comprehensions, 112–114

warnings built-in module, 418–425
weakref built-in module, 194
while loops, avoiding else blocks, 

32–35
whitespace, 3
with statements for reusable try/

finally blocks, 304–308
with as targets, 306–308
writing docstrings, 396–401

for classes, 398–399
for functions, 399–400
for modules, 397–398
type annotations and, 400–401

Y
yield from expressions, composing 

multiple generators, 123–126

Z
zero-copy interactions, 346–351
zip built-in function, 30–32
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