

PYTHON
PROGRAMMING

3 BOOKS IN 1

Learn machine learning, data science and analysis with a
crash course for beginners. Included coding exercises for

artificial intelligence, Numpy, Pandas and Ipython.

JASON TEST

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without
direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or
author, for any damages, reparation, or monetary loss due to the information contained within this
book. Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute,
sell, use, quote or paraphrase any part, or the content within this book, without the consent of the
author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author
is not engaging in the rendering of legal, financial, medical or professional advice. The content
within this book has been derived from various sources. Please consult a licensed professional before
attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of information contained within
this document, including, but not limited to, — errors, omissions, or inaccuracies.

TABLE OF CONTENTS

PYTHON FOR BEGINNERS
Introduction
1.Python code optimization with ctypes
2.Finding the Perfect Toolkit: Analyzing Popular Python Project Templates
3.How are broad integer types implemented in Python?
4.Create a bot in Python to learn English
5.The thermal imager on the Raspberry PI
6.Finding a Free Parking Space with Python
7.Creating games on the Pygame framework | Part 1
Creating games on the Pygame framework | Part 2
Creating games on the Pygame framework| Part 3
8.Object-Oriented Programming (OOP) in Python 3
Conclusion

PYTHON FOR DATA SCIENCE
Introduction
Data Science and Its Significance
Python Basics
Functions
Lists and Loops
Adding multiple valued data in python
Adding string data in Python
Module Data
Conclusion

PYTHON CRASH COURSE
Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Conclusion

PYTHO N FOR BEGINNERS

A crash course guide for machine learning and web
programming. Learn a computer language in easy steps

with coding exercises.

JASON TEST

T

INTRODUCTION

Design patterns are reusable model for solving known and common
problems in software architecture.

hey are best described as templates for working with a specific normal
situation. An architect can have a template for designing certain types of
door frames, which he fit into many of his project, and a software

engineer or software architect must know the templates for solving common
programming tasks.

An excellent presentation of the design pattern should include:

Name
Motivating problem
Decision
Effects

Equivalent Problems
If you thought it was a rather vague concept, you would be right. For

example, we could say that the following “pattern” solves all your
problems:

Gather and prepare the necessary data and other resources
Make the necessary calculations and do the necessary work
Make logs of what you do
Free all resources
???
Profit

This is an example of too abstract thinking. You cannot call it a template
because it is not an excellent model to solve any problem, even though it is
technically applicable to any of them (including cooking dinner).

https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFuzzy_logic

On the other hand, you may have solutions that are too specific to be
called a template. For example, you may wonder if QuickSort is a template
to solve the sorting problem.

This is, of course, a common program problems, and QuickSort is a good
solutions for it. However, it can be applieds to any sorting problem with
virtually no change.

Once you have this in the library and you can call it, your only real job is
to make somehow your object comparable, and you don't have to deal with
its entity yourself to change it to fit your specific problem.

Equivalent problems lie somewhere between these concepts. These are
different problems that are similar enough that you can apply the same
model to them, but are different enough that this model is significantly
customized to be applicable in each case.

Patterns that can be applied to these kinds of problems are what we can
meaningfully call design patterns.

Why use design patterns?
You are probably familiar with some design patterns through code

writing practice. Many good programmers end up gravitating towards them,
not even being explicitly trained, or they simply take them from their
seniors along the way.

The motivation to create, learn, and use design patterns has many
meanings. This is a way to name complex abstract concepts to provide
discussion and learning.

They make communication within the team faster because someone can
simply use the template name instead of calling the board. They allow you
to learn from the experiences of people who were before you, and not to
reinvent the wheel, going through the whole crucible of gradually
improving practices on your own (and constantly cringing from your old
code).

Bad decisions that are usually made up because they seem logical at first
glance are often called anti-patterns . For something to be rightly called an
anti-pattern, it must be reinvented, and for the same problem, there must be
a pattern that solves it better.

https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fquicksort-in-python%2F
https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAnti-pattern

Despite the apparent usefulness in this practice, designing patterns are
also use ful for learning. They introduce you to many problems that you
may not have considered and allow you to think about scenarios with which
you may not have had hands-on experience.

They are mandatory for training for all, and they are an excellent
learning resources for all aspiring architect and developing who may be at
the beginning of their careers and who have no direct experience in dealing
with the various problems that the industry provides.

Python Design Patterns
Traditionally, design models have been divided into three main

categories: creative, structural, and behavioral . There are other
categories, such as architectural patterns or concurrency patterns, but they
are beyond the scope of this article.

There are also Python-specific design patterns that are created
specifically around problems that the language structure itself provides, or
that solve problems in unique ways that are only resolved due to the
language structure.

Generating Patterns deal with creating classes or objects. They serve to
abstract the specifics of classes, so that we are less dependent on their exact
implementation, or that we do not have to deal with complex constructions
whenever we need them, or that we provide some special properties of the
instantiation. They are very useful for reducing dependency and controlling
how the user interacts with our classes.

Structural patterns deal with assembling objects and classes into larger
structures while keeping these structures flexible and efficient. They, as a
rule, are really useful for improving the readability and maintainability of
the code, ensuring the correct separation of functionality, encapsulation, and
the presence of effective minimal interfaces between interdependent things.

Behavioral patterns deal with algorithms in general and the distribution
of responsibility between interacting objects. For example, they are good
practice when you may be tempted to implement a naive solution, such as
busy waiting, or load your classes with unnecessary code for one specific
purpose, which is not the core of their functionality.

Generative Patterns

Factory
Abstract factory
Builder
Prototype
Singleton
Object pool

Structural Patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Behavioral patterns

Chain of responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Python Specific Design Patterns

https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23factory
https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23abstractfactory
https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23builder
https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23prototype
https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23singleton
https://vk.com/away.php?to=https%3A%2F%2Fstackabuse.com%2Fcreational-design-patterns-in-python%23objectpool

Global object pattern
Prebound method pattern
Sentinel object pattern

Type Annotation in Python
First, let's answer the question: why do we need annotations in Python?

In short, the answer will be this: to increase the information content of the
source code and to be able to analyze it using specialized tools. One of the
most popular, in this sense, is the control of variable types. Even though
Python is a language with dynamic typing, sometimes there is a need for
type control.

According to PEP 3107, there may be the following annotation use cases:

type checking:
expansion of the IDE functionality in terms of providing
information about the expected types of arguments and the type of
return value for functions:
overload of functions and work with generics:
interaction with other languages:
use in predicate logical functions:
mapping of requests in databases:
marshaling parameters in RPC (remote procedure call)

Using annotations in functions
In functions, we can annotate arguments and the return value.
It may look like this:

def repeater (s: str, n: int) -> str:
return s * n
An annotation for an argument is defined after the colon after its name:
argument_name: annotation
An annotation that determines the type of the value returned by the

function is indicated after its name using the characters ->

def function_name () -> type
Annotations are not supported for lambda functions
Access to function annotations Access to the annotations
Used in the function can be obtained through the annotations attribute, in
which annotations are presented in the form of a dictionary, where the keys
are attributes, and the values are annotations. The main value to returned by
the function is stored in the record with the return key.
Contents of repeater . annotations :

{'n': int, 'return': str, 's': str}

4 programming languages to learn, even if you are a humanist
The digital age dictates its own rules. Now, knowledge of programming

languages is moving from the category of “too highly specialized skill” to
must have for a successful career. We have compiled for you the four most
useful programming languages that will help you become a truly effective
specialist.

1. Vba

If you constantly work in Excel and spend time on the same routine
operations every day, you should consider automating them. Macros -
queries in the VBA language built into Excel will help you with this.
Having mastered macros, you can not only save time, but also free up time
for more interesting tasks (for example, to write new macros). By the way,
to automate some operations, learning VBA is not necessary - just record a
few actions using the macro recorder , and you can repeat them from time
to time. But it’s better to learn this language: macro recordings will give
you only limited functionality.

Despite its attractiveness, macros have two drawbacks. Firstly, since a
macro automatically does all the actions that you would do with your hands,
it seriously loads RAM (for example, if you have 50,000 lines in a
document, your poor computer may not withstand macro attacks). The
second - VBA as a programming language is not very intuitive, and it can
be difficult for a beginner to learn it from scratch.

2. SQL

https://vk.com/away.php?to=http%3A%2F%2Foffice-guru.ru%2Fexcel%2Fzapis-makrosa-v-excel-452.html

In order to combine data from different databases, you can use the
formulas VPR and INDEX (SEARCH). But what if you have ten different
databases with 50 columns of 10,000 rows each? Chances are good to make
a mistake and spend too much time.

Therefore, it is better to use the Access program. Like VPR, it is
designed to combine data from various databases, but it does it much faster.
Access automates this function, as well as quickly filters information and
allows you to work in a team. In addition to Access, there are other
programs for working with databases (DBMS), in most of which you can
work using a simple programming language - SQL (Structured Query
Language). Knowledge of SQL is one of the basic requirements for
business analysts along with knowledge of Excel, so we advise you to take
a closer look if you want to work in this area.

3. R

R is a good alternative to VBA if you want to make data processing
easier. How is he good? Firstly, unlike a fellow, it is really simple and
understandable even for those who have never had anything to do with
programming in their life. Secondly, R is designed to work with databases
and has wide functionality: it can change the structure of a document,
collect data from the Internet, process statistically different types of
information, build graphs, create tag clouds, etc. To work with Excel files,
you will have to download special libraries, but it is most convenient to
save tables from Excel in csv format and work in them. By the way, it is R
that the program was written with which we make TeamRoulette in our
championships. Thanks to her, we manage to scatter people on teams in five
minutes instead of two hours.

To learn how to work in R, first of all, download a visual and intuitive
programming environment - RStudio .

4. Python

Python is an even more powerful and popular programming language (by
the way, it really has nothing to do with python). Like R, Python has
special libraries that work with Excel files, and it also knows how to collect
information from the Internet (forget about manually driving data into
tables!). You can write endlessly about Python, but if in a nutshell - it’s a

https://vk.com/away.php?to=https%3A%2F%2Fwww.rstudio.com%2F
https://vk.com/away.php?to=https%3A%2F%2Fdocs.python.org%2F2%2Ffaq%2Fgeneral.html%23why-is-it-called-python
https://vk.com/away.php?to=https%3A%2F%2Fhabr.com%2Fpost%2F232291%2F

really convenient and quick tool that is worth mastering if you want to
automate routine operations, develop your own algorithmic thinking and
generally keep up with technical progress.

Unlike R, Python does not have one of the most convenient
programming environments - here everyone is free to choose to taste. For
example, we recommend IDLE, Jupyter Notebook, Spyder, for more
advanced programmers - PyCharm.

You can learn how to program in Python and analyze data using it in our
online course “Python. Data Analysis " . The consultants from Big4 and
Big3 will tell you how to work with libraries, create programs and
algorithms for processing information.

Well, as it were, let's go
Well, if you (You, He, She, It, They) are reading this means we are

starting our first Python lesson. Hooray (...) Today you will learn how to
code. And what's more, you'll learn how to code in Python.

But to start coding you need Python. Where to get it?

Where to get Python?

But you think that now you can just sit down and cod. Well actually yes.
BUT usually real hackers and programmers code in code editors. For
working with Python We (I) recommend using a Jupyter Notebook or
JupyterLab or Visual Studio Code. We (I) Will code in Visual Studio Code,
but the other editors are no different.

Well, it's CODING time.
I'm too old for that
Everyone always writes the first code that displays “Hello World”. Well,

are we some kind of gifted? No, and therefore we will begin with this. In
Python, the print () function is used to output text. To output “Hello World”
we need to write the following:

It's alife
Yes, you just wrote your first program. Now you are a programmer (NO).
Let's look at the structure of the print function. This function consists of

the name - print, and the place where we throw what this function should

https://vk.com/away.php?to=https%3A%2F%2Fclck.ru%2FNDVWe
https://vk.com/away.php?to=https%3A%2F%2Fclck.ru%2FNDVWe

output. If you want to display any text, you need to write it in quotation
mark, either in single or double.

But now let's enter some text. For this, Python has an input function. To
accept something, you need to write the following:

What does this program do for us? First we introduce some thing, at the
moment we don’t care what it is, text or numbers. After, our program
displays what you wrote.

But how to make sure that we write the text before entering some thing?
Really simple. There are two ways to do this.

How can, but not necessary
If you run the second program you will notice that you have to enter data

in the same line in which the text is written.

How to do
But this is not aesthetically pleasing. We are here with you all the

aesthetes. And so in order for you to enter values on a separate line, you can
do the following:

Like cool, but why?
As we can see, \ n appeared at the end. This is a control character that

indicates the passage to the next line. But it’s too lazy for me to write it
down every time, and therefore I prefer to type everything in the line where
the text is written.

But where to apply it? Very simple, you can take math. There are some
simple arithmetic operations in Python that I will tell you about now.

Python has the following arithmetic operations: addition, subtraction,
multiplication, division, integer division, exponentiation, and the remainder
of division. As everything is recorded, you can see below:

I will finally learn how to multiply
If you want to immediately print the result, then you just need to write an

arithmetic operation in print:

The result of this program will be 8

But how do we carry out operations with numbers that the user enters?
We need to use input. But by default in Python, the values that input passes
are a string. And most arithmetic operations cannot be performed on a line.
In order for our program to work as we intended, we need to specify what
type of value Python should use.

To do this, we use the int function:

We add up the two numbers that the user enters. (Wow, I found out how
much 2 + 2 will be)

B

1. PYTHON CODE OPTIMIZATION WITH
CTYPES

Content:

1. Basic optimizations
2. Styles
3. Python compilation
4. Structures in Python
5. Call your code in C
6. Pypy

Basic optimizations
efore rewriting the Python source code in C, consider the basic
optimization methods in Python.

Built-in Data Structures
Python's built-in data structures, such as set and dict, are written in C.

They work much faster than your own data structures composed as Python
classes. Other data structures besides the standard set, dict, list, and tuple
are described in the collections module documentation.

List expressions
Instead of adding items to the list using the standard method, use list

expressions.

ctypes
The ctypes module allows you to interact with C code from Python

without using a module subprocessor another similar module to start other
processes from the CLI.

https://vk.com/away.php?to=https%3A%2F%2Fdocs.python.org%2Fdev%2Flibrary%2Fcollections.html%23module-collections
https://vk.com/away.php?to=https%3A%2F%2Fdocs.python.org%2F3%2Flibrary%2Fctypes.html

There are only two parts: compiling C code to load in quality shared
object and setting up data structures in Python code to map them to C types.

In this article, I will combine my Python code with LCS.c, which finds
the longest subsequence in two-line lists. I want the following to work in
Python:

One problem is that this particular C function is the signature of a
function that takes lists of strings as argument types and returns a type that
does not have a fixed length. I solve this problem with a sequence structure
containing pointers and lengths.

Compiling C code in Python
First, C source code (lcs.c) is compiled in lcs.soto load in Python.

Wall will display all warnings:
Werror will wrap all warnings in errors:
fpic will generate position-independent instructions that you
will need if you want to use this library in Python:
O3 maximizes optimization:

And now we will begin to write Python code using the resulting shared
object file .

Structures in Python
Below are two data structures that are used in my C code.

https://vk.com/away.php?to=https%3A%2F%2Fsamuelstevens.me%2Flcs-source

And here is the translation of these structures into Python.

A few notes:

All structures are classes that inherit from ctypes.Structure.
The only field _fields_is a list of tuples. Each tuple is (
<variable-name>, <ctypes.TYPE>).
There ctypesare similar types in c_char (char) and c_char_p (*
char) .

There is ctypesalso one POINTER()that creates a type pointer
from each type passed to it.
If you have a recursive definition like in CELL, you must pass
the initial declaration, and then add the fields _fields_in order
to get a link to yourself later.
Since I did not use CELLPython in my code, I did not need to
write this structure, but it has an interesting property in the
recursive field.

Call your code in C
In addition, I needed some code to convert Python types to new

structures in C. Now you can use your new C function to speed up Python
code.

A few notes:

**char (list of strings) matches directly to a list of bytes in
Python.
There lcs.cis a function lcs()with the signature struct Sequence *
lcs (struct Sequence * s1, struct Sequence
s2) . To set up the return type, I use lcsmodule.lcs.restype =
ctypes.POINTER(SEQUENCE).
To make a call with a reference to the Sequence structure , I use
ctypes.byref()one that returns a “light pointer” to your object
(faster than ctypes.POINTER()).
common.items- this is a list of bytes, they can be decoded to get
retin the form of a list str.
lcsmodule.freeSequence (common) just frees the memory
associated with common. This is important because the garbage
collector (AFAIK) will not automatically collect it.

Optimized Python code is code that you wrote in C and wrapped in
Python.

Something More: PyPy
Attention: I myself have never used PyPy.
One of the simplest optimizations is to run your programs in the PyPy

runtime, which contains a JIT compiler (just- in-time) that speeds up the
work of loops, compiling them into machine code for repeated execution.

https://vk.com/away.php?to=https%3A%2F%2Fwww.pypy.org%2F

T

2. FINDING THE PERFECT TOOLKIT:
ANALYZING POPULAR PYTHON

PROJECT TEMPLATES

he materials, the translation of which we publish today, is dedicated to
the story about the tools used to create Python applications. It is
designed for those programmers who have already left the category of

beginners but have not yet reached the category of experienced Python
developers.

For those who can’t wait to start practice, the author suggests using
Flake8, pytest , and Sphinx in existing Python projects. He also
recommends a look at pre-commit, Black, and Pylint. Those who plan to
start a new project, he advises paying attention to Poetry and Dependable .

Overview
It has alway been difficult for me to form an objective opinion about the

“best practices” of Python development. In the world of technology, some
popular trends are continually emerging, often not existing for long. This
complicates the extraction of the “useful signal” from the information noise.

The freshest tools are often only good, so to speak, on paper. Can they
help the practical programmer with something? Or their application only
leads to the introduction of something new in the project, the performance
of which must be maintained, which carries more difficulties than benefits?

I did’nt have a clear understanding of what exactly I considered the "best
practices" of development. I suppose I found something useful, based
mainly on episodic evidence of "utility," and on the occasional mention of
this in conversations.I decided to put things in order in this matter. To do
this, I began to analyze all the templates of Python projects that I could find
(we are talking about templates used by the cookiecutter command-line
utility to create Python projects based on them).

It seemed to me that it was fascinating to learn about what auxiliary tools
the template authors consider worthy of getting these tools into new Python

https://vk.com/away.php?to=https%3A%2F%2Fflake8.pycqa.org%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fdocs.pytest.org%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fwww.sphinx-doc.org%2Fen%2Fmaster%2F
https://vk.com/away.php?to=https%3A%2F%2Fpre-commit.com%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpsf%2Fblack
https://vk.com/away.php?to=https%3A%2F%2Fwww.pylint.org%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpython-poetry%2Fpoetry
https://vk.com/away.php?to=https%3A%2F%2Fdependabot.com%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fcookiecutter%2Fcookiecutter
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fcookiecutter%2Fcookiecutter

projects created based on these templates.
I analyzed and compared the 18 most popular template projects (from 76

to 6300 stars on GitHub), paying particular attention to what kind of
auxiliary tools they use. The results of this examination can be found in this
table.

Below I want to share the main conclusions that I have made while
analyzing popular templates.

De facto standards
The tools discussed in this section are included in more than half of the

templates. This means that they are perceived as standard in a large number
of real Python projects.

Flake8
I have been using Flake8 for quite some time, but I did not know about

the dominant position in the field of linting that this tool occupies. I t
hought that it exists in a kind of competition, but the vast majority of
project templates use it.

Yes, this is not surprising. It is difficult to oppose something to the
convenience of linting the entire code base of the project in a matter of
seconds. Those who want to use cutting-edge development can recommend
a look at us make- python-styleguide . This is something like "Flake8 on
steroids." This tool may well contribute to the transfer to the category of
obsolete other similar tools (like Pylint).

Pytest and coverage.py
The vast majority of templates use pytest . This reduces the use of the

standard unit test framework. Pytest looks even more attractive when
combined with tox. That's precisely what was done in about half of the
templates. Code coverage with tests is most often checked using
coverage.py.

Sphinx
Most templates use Sphinx to generate documentation. To my surprise,

MkDocs is rarely used for this purpose.

https://vk.com/away.php?to=https%3A%2F%2Fdocs.google.com%2Fspreadsheets%2Fd%2F1W2I9Di-_PEPicMUR2_Kj9WRoeYCaOJLVBPSR8AsfZy8%2Fedit%3Fusp%3Dsharing
https://vk.com/away.php?to=https%3A%2F%2Fflake8.pycqa.org%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fflake8.pycqa.org%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-styleguide
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-styleguide
https://vk.com/away.php?to=https%3A%2F%2Fdocs.pytest.org%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Ftox.readthedocs.io%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fcoverage.readthedocs.io%2Fen%2Fcoverage-5.0.3%2F
https://vk.com/away.php?to=https%3A%2F%2Fwww.sphinx-doc.org%2Fen%2Fmaster%2F
https://vk.com/away.php?to=https%3A%2F%2Fwww.mkdocs.org%2F
https://vk.com/away.php?to=https%3A%2F%2Fwww.mkdocs.org%2F

As a result, we can say that if you do not use Flake8, pytest, and Sphinx
in your current project, then you should consider introducing them.

Promising tools
In this section, I collected those tools and techniques, the use of which in

the templates suggested some trends. The point is that although all this does
not appear in most project templates, it is found in many relatively recent
templates. So - all this is worth paying attention to.

Pyproject.toml
File usage is pyproject.tomlsuggested in PEP 518. This is a modern

mechanism for specifying project assembly requirements. It is used in most
fairly young templates.

Poetry
Although the Python ecosystem isn’t doing well in terms of an excellent

tool for managing dependencies, I cautiously optimistic that Poetry could be
the equivalent of npm from the JavaScript world in the Python world.

The youngest (but popular) project templates seem to agree with this idea
of mine. Real, it is worth saying that if someone is working on some kind of
library that he can plan to distribute through PyPI, then he will still have to
use setup tools . (It should to be noted that after the publication of this
material, I was informed that this is no longer a problem).

Also, be careful if your project (the same applies to dependencies) relies
on Conda . In this case, Poetry will not suit you, since this tool, in its
current form, binds the developer to pip and virtualenv.

Dependabot
Dependabot regularly checks project dependencies for obsolescence and

tries to help the developer by automatically opening PR.
I have recently seen this tool more often than before. It seem like to me

that it is an excellent tool: the addition of which to the project affects the
project very positively. Dependabot helps reduce security risks by pushing
developers to keep dependencies up to date.

As a result, I advised you not to lose sight of Poetry and Dependabot.
Consider introducing these tools into your next project.

https://vk.com/away.php?to=https%3A%2F%2Fwww.python.org%2Fdev%2Fpeps%2Fpep-0518%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpython-poetry%2Fpoetry
https://vk.com/away.php?to=https%3A%2F%2Fpypi.org%2F
https://vk.com/away.php?to=https%3A%2F%2Fpypi.org%2Fproject%2Fsetuptools%2F
https://vk.com/away.php?to=https%3A%2F%2Fconda.io%2F
https://vk.com/away.php?to=https%3A%2F%2Fpip.pypa.io%2Fen%2Fstable%2F
https://vk.com/away.php?to=https%3A%2F%2Fvirtualenv.pypa.io%2F
https://vk.com/away.php?to=https%3A%2F%2Fdependabot.com%2F

Personal recommendations
Analysis of project templates gave me a somewhat ambivalent

perception of the tools that I will list in this section. In any case, I want to
use this section to tell about them, based on my own experience. At one
time, they were beneficial to me.

Pre-commit
Even if you are incredibly disciplined - do not waste your energy on

performing simple routine actions such as additional code run through the
linter before sending the code to the repository. Similar tasks can be passed
to Pre- commit. And it's better to spend your energy on TDD and teamwork
on code.

Pylint
Although Pylint is criticized for being slow, although this tool is

criticized for the features of its settings, I can say that it allowed me to grow
above myself in the field of programming.

He gives me specific instructions on those parts of the code that I can
improve, tells me how to make the code better comply with the rules. For a
free tool, this alone is already very much. Therefore, I am ready to put up
with the inconvenience associated with Pylint.

Black
Black at the root of the debate over where to put spaces in the code. This

protects our teams from an empty talk and meaningless differences in files
caused by different editors' settings.

In my case, it brightens up what I don't like about Python (the need to
use a lot of spaces). Moreover, it should be noted that the Black project in
2019 joined the Python Software Foundation, which indicates the
seriousness and quality of this project.

As a result, I want to say that if you still do not use pre-commit, Black,
and Pylint - think about whether these tools can benefit your team.

https://vk.com/away.php?to=https%3A%2F%2Fpre-commit.com%2F
https://vk.com/away.php?to=https%3A%2F%2Fpre-commit.com%2F
https://vk.com/away.php?to=https%3A%2F%2Fwww.pylint.org%2F

Subtotals
Twelve of the eighteen investigated templates were created using the

cookiecutter framework. Some of those templates where this framework is
not used have exciting qualities.

But given the fact that cookiecutter is the leading framework for creating
project templates, those who decide to use a template that did not use a
cookiecutter should have excellent reasons for this. Such a decision should
be very well justified.

Those who are looking for a template for their project should choose a
template that most closely matches his view of things. If you, when creating
projects according to a precise template, continuously have to reconfigure
them in the same way, think about how to fork such a template and refine it,
inspired by examples of templates from my list.

And if you are attracted to adventure - create your template from scratch.
Cookiecutter is an excellent feature of the Python ecosystem, and the
simple process of creating Jinja templates allows you to quickly and easily
do something your own.

Bonus: Template Recommendations
Django

Together with the most popular Django templates, consider using we
make-django-template . It gives the impression of a deeply thought out
product.

Data Processing and Analysis

In most projects aimed at processing and analyzing data, the
Cookiecutter Data Science template is useful. However, data scientists
should also look at Kedro.

This template extends Cookiecutter Data Science with a mechanism for
creating standardized data processing pipelines. It supports loading and
saving data and models. These features are very likely to be able to find a
worthy application in your next project.

Here I would a also like to express my gratitude to the creators of the
shablona template for preparing very high- quality documentation. It can be

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fcookiecutter%2Fcookiecutter
https://vk.com/away.php?to=https%3A%2F%2Fcookiecutter.readthedocs.io%2Fen%2F1.7.0%2Ffirst_steps.html
https://vk.com/away.php?to=https%3A%2F%2Frealpython.com%2Fprimer-on-jinja-templating%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-django-template
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fdrivendata%2Fcookiecutter-data-science
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fquantumblacklabs%2Fkedro
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fuwescience%2Fshablona

useful to you even if you end up choosing something else.

General Purpose Templates

Which general-purpose template to choose in some way depends on what
exactly you are going to develop based on this template - a library or a
regular application. But I, selecting a similar template, along with the most
popular projects of this kind, would look very closely at Jace's Python
Template.

This is not a well-known pattern, but I like the fact that it has Poetry,
isort , Black, pylint, and mypy .

PyScaffold is one of the most popular non-cookiecutter based templates.
It has many extensions (for example, for Django, and Data Science projects
). It also downloads version numbers from GitHub using setuptools-scm.
Further, this is one of the few templates supporting Conda.

Here are a couple of templates that use GitHub Actions technology:

1. The Python Best Practices Cookiecutter template , which, I want
to note, has most of my favorite tools.

2. The Blueprint / Boilerplate For Python Projects te mplate,
which I find pretty interesting, as the ability it gives them to find
common security problems with Bandit, looks promising. Also,
this template has a remarkable feature, which consists in the fact
that the settings of all tools are collected in a single file
setup.cfg.

And finally - I recommend taking a look at we make-python-package
template. I think it’s worth doing it anyway. In particular, if you like the
Django template of the same developer, or if you are going to use the
advanced, we make- python-styleguide instead of pure Flake8.

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fjacebrowning%2Ftemplate-python
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Ftimothycrosley%2Fisort
https://vk.com/away.php?to=http%3A%2F%2Fmypy-lang.org%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpyscaffold%2Fpyscaffold
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpyscaffold%2Fpyscaffoldext-dsproject
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpypa%2Fsetuptools_scm%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fsourcery-ai%2Fpython-best-practices-cookiecutter
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fsourcery-ai%2Fpython-best-practices-cookiecutter
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2FMartinHeinz%2Fpython-project-blueprint
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fsourcery-ai%2Fpython-best-practices-cookiecutter
https://vk.com/away.php?to=https%3A%2F%2Fbandit.readthedocs.io%2Fen%2Flatest%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-package
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-package
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-styleguide
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fwemake-services%2Fwemake-python-styleguide

W

3. HOW ARE BROAD INTEGER TYPES
IMPLEMENTED IN PYTHON?

hen you write in a low-level language such as C, you are worried
about choosing the right data type and qualifiers for your integers, at
each step, you analyze whether it will be enough to use it simply intor

whether you need to add longor even long double. However, when writing
code in Python, you don’t need to worry about these “minor” things,
because Python can work with numbers of integerany size type .

 In C, if
you try to calculate 220,000 using the built-in function powl, you will get
the output inf.

 But in
Python, making this easier than ever is easy:
It must be under the hood that Python is doing something very beautiful,
and today we will find out the exactly what it does to work with integers of
arbitrary size!

Presentation and Definition
Integer in Python, this is a C structure defined as follows:

Other types that have PyObject_VAR_HEAD:

PyBytesObject
PyTupleObject
PyListObject

This means that an integer, like a tuple or a list, has a variable length, and
this is the first step to understanding how Python can support work with
giant numbers. Once expanded, the macro _longobjectcan be considered as:

There PyObjectare some meta fields in the structure that are used for
reference counting (garbage collection), but to talk about this, we need a
separate article. The field on which we will focus this ob_digitand in a bit
ob_size.

Decoding ob_digit
ob_digitIs a statically allocated array of unit length of type digit (typedef

для uint32_t). Since this is an array, it ob_digitis a pointer primarily to a
number, and therefore, if necessary, it can be increased using the malloc
function to any length. This way, python can represent and process very
large numbers.

Typically, in low-level languages such as C, the precision of integers is
limited to 64 bits. However, Python supports integers of arbitrary precision.
Starting with Python 3, all numbers are presented in the form bignum and
are limited only by the available system memory.

https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FArbitrary-precision_arithmetic

Decoding ob_size
ob_sizestores the number of items in ob_digit. Python overrides and then

uses the value ob_sizeto to determine the actual number of elements
contained in the array to increase the efficiency of allocating memory to the
array ob_digit.

Storage
The most naive way to store integer numbers is to store one decimal digit

in one element of the array. Operation such as additional and subtractions
can be performed according to the rules of mathematics from elementary
school.

With this approach, the number 5238 will be saved like this:
This approach is inefficient because we will use up to 32-bit digits

(uint32_t) for storing a decimal digit, which ranges from 0 to 9 and can be
easily represented with only 4 bits. After all, when writing something as
universal like python, the kernel developer needs to be even more inventive.

So, can we do better? Of course, otherwise, we would not have posted
this article. Let's take a closer look at how Python stores an extra-long
integer.

Python path
Instead of storing only one decimal digit in each element of the array

ob_digit, Python converts the numbers from the number system with base
10 to the numbers in the system with base 230 and calls each element as a
number whose value ranges from 0 to 230 - 1.

In the hexadecimal number system, the base 16 ~ 24 means that each
"digit" of the hexadecimal number ranges from 0 to 15 in the decimal
number system. In Python, it’s similar to a “number” with a base of 230,
which means that the number will range from 0 to 230 - 1 = 1073741823 in
decimal.

In this way, Python effectively uses almost all of the allocated space of
32 bits per digit, saves resources, and still performs simple operations, such
as adding and subtracting at the math level of elementary school.

Depending on the platform, Python uses either 32-bit unsigned integer
arrays or 16-bit unsigned integer arrays with 15-bit digits. To perform the

operations that will be discussed later, you need only a few bits.
Example: 1152921504606846976
As already mentioned, for Python, numbers are represented in a system

with a base of 230, that is, if you convert 1152921504606846976 into a
number system with a base of 230, you will get 100.

1152 9215 0460 6846 976 = 1 * ((230) 2 + 0) * ((230) 1 + 0) *((230) 0)
Since it is the ob_digitfirst to store the least significant digit, it is stored

as 001 in three digits. The structure _longobjectfor this value will contain:

ob_size like 3
ob_digit like [0, 0, 1]

We created a demo REPL that will show how Python stores an integer
inside itself, and also refers to structural members such as ob_size,
ob_refcountetc.

Integer Long Operations
Now that we have a pure idea of how Python implements integers of

arbitrary precision, it is time to understand how various mathematical
operations are performed with them.

Addition
Integers are stored "in numbers," which means that addition is as simple

as in elementary school, and the Python source code shows us that this is
how addition is implemented. A function with a name x_add in a file
longobject.c adds two numbers.

The code snippet above is taken from a function x_add. As you can see,
it iterates over a number by numbers and performs the addition of numbers,
calculates the result and adds hyphenation.

It becomes more interesting when the result of addition is a negative
number. The sign ob_sizeis an integer sign, that is, if you have a negative
number, then it ob_sizewill be a minus. The value ob_sizemodulo will
determine the number of digits in ob_digit.

Subtraction

https://vk.com/away.php?to=https%3A%2F%2Frepl.it%2F%40arpitbbhayani%2Fsuper-long-int%3Flanguage%3Dpython3
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L3116
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c

Just as addition takes place, subtraction also takes place. A function with
a name x_sub in the file longobject.c subtracts one number from another.

The code snippet above is taken from a function x_sub. In it, you see
how the enumeration of numbers occurs and subtraction is performed, the
result is calculated and the transfer is distributed. Indeed, it is very similar
to addition.

Multiplication
And again, the multiplication will be implemented in the same naive way

that we learned from the lessons of mathematics in elementary school, but it
is not very efficient. To maintain efficiency, Python implements the
Karatsuba algorithm , which multiplies two n-digit numbers in O (nlog23)
simple steps.

The algorithm is not simple and its implementation is beyond the scope
of this article, but you can find its implementation in functions and in the
file .k_mul k_lopsided_mul longobject.c

Division and other operations
All operations on integers are defined in the file longobject.c , they are

very simple to find and trace the work of each. Attention: A detailed
understanding of the work of each of them will take time, so pre-stock up
with popcorn .

Optimizing Frequently Used Integers
Python preallocates a small number of integers in memory ranging from

-5 to 256. This allocation occurs during initialization, and since we cannot
change integers (immutability), these pre-allocated numbers are singleton
and are directly referenced instead of being allocated. This means that every
time we use / create a small number, Python instead of reallocation simply
returns a reference to the previously allocated number.

Such optimization can be traced in the macro IS_SMALL_INTand
function get_small_int c longobject.c . So Python saves a lot of space and
time in calculating commonly used integer numbers.

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L3150
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c
https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaratsuba_algorithm
https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaratsuba_algorithm
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L3397
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L3618
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c
https://vk.com/away.php?to=https%3A%2F%2Fdocs.python.org%2F3%2Fc-api%2Flong.html%23c.PyLong_FromLong
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L43
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Farpitbbhayani%2Fcpython%2Fblob%2F0-base%2FObjects%2Flongobject.c%23L35

N

4. CREATE A BOT IN PYTHON TO LEARN
ENGLISH

o, this is not one of the hundreds of articles on how to write your first
Hello World bot in Python. Here you will not find detailed instructions
on how to get an API token in BotFather or launch a bot in the cloud. In

return, we will show you how to unleash the full power of Python to the
maximum to achieve the most aesthetic and beautiful

code. We perform a song about the appeal of complex structures - we
dance and dance. Under the cut asynchrony, its system of saves, a bunch of
useful decorators, and a lot of beautiful code.

Disclaimer : People with brain OOP and adherents of the “right” patterns
may ignore this article.

Idea
To understanding what it is like not to know English in modern society,

imagine that you are an 18th-century nobleman who does not know French.
Even if you are not very well versed in history, you can still imagine how
hard it would be to live under such circumstances. In the modern world,
English has become a necessity, not a privilege, especially if you are in the
IT industry.

The project is based on the catechism of the future: the development of a
neural network as a separate unit, and education, which is based on games
and sports spirit. Isomorphic paradigms have been hanging in the air since
ancient times, but it seems that over time, people began to forget that the
most straightforward solutions are the most effective.
Here is a shortlist of the basic things I want to put together:

Be able to work with three user dictionaries
Ability to parse youtube video/text, and then add new words
to the user's dictionary
Two basic skills training modes

Flexible customization: full control over user dictionaries and
the environment in general
Built-in admin panel

Naturally, everything should work quickly, with the ability to easily
replenish existing functionality in the future. Putting it all together, I
thought that the best embodiment of my idea into reality would be a
Telegram bot. My tale is not about how to write handlers for the bot
correctly - there are dozens of such articles, and this is simple mechanical
work. I want the reader to learn to ignore the typical dogmas of
programming. Use what is profitable and effective here and now.

“I learned to let out the cries of unbelievers past my ears because it was
impossible to suppress them.”

Base structure
The bot will be based on the python-telegram-bot (ptb) library. I use

loguru as a logger , though there is one small snag here. The fact is that ptb
by default uses a different logger (standard logging) and does not allow you
to connect your own. Of course, it would be possible to intercept all journal
messages globally and send them to our registrar, but we will do it a little
easier:

Unfortunately, I don’t have the opportunity to deploy my bot on stable
data centers, so data security is a priority. For these purposes, I
implemented my system of saves. It provides flexible and convenient work
with data - statistics collection, as an example of easy replenishment of
functionality in the future.

+ cache_si ze - Std thfDtlgh 'hi ch dl data will be su‘ed
+ cache_files - Dump file in w'hich all intermediate operations on data

are stored
link = None
def​init ​(self. cache_si ze = 10):

= Save all screw'ed cl asses. Thi s all or's you t o fl exibl›' vork with
data.
sel f. cl asses = []

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fpython-telegram-bot%2Fpython-telegram-bot
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2FDelgan%2Floguru

= Files matching classes
sel f._cache_fi1es = []

= (1). A sm dl hack that dl or's you to cd1 a specifi c instance thrDtlgh
a common class
= Thi s w'wks because w'e oril \' have one instance Df the cl ass. 'hi ch
= implements d 1 the logic of 'orking with data. In additi on. it is
convenient ari d all o 's

= st gum cantl›' expand the functl Dflallt›' in the future
sel f. cl ass .link = self

self._counter = 0
self.CACHE SIZE = cache st ze

def add (self, d s: class, file: str) -> NDne:

All or's to fasten a class to a sa ver

+ cls - Inst an ce of the class
+ file - The fi1 e the instari ce is 'orking with

self._cache_files.append (file)
self._cl asses.append (cls)

if fi1e i s eotptl’ (fi1e): return hDne

1 ogger. opt d an.' = True) .debug (fT or {cl s . class names)
file (file) is not empty' ')

fa data in sells oad (file) :
is.save nDn Caclti ng (data)

cl ear_file (file)
sel f._counter = 0

def recess (self, cls: ct ass, data diet) —> Ncri e:

The main method that performs the basi c l o c of saves

if self. counter + 1/ = self.CACHE SIZE:

​self.save all 0
el se:

self._counter + = I
fil ename = self._cache_files [self._classes.index (cls)]
self.save (data. fil enam e = filename)

= For simplicit›', save_d1, save, load methods are omitted
Now we can create any methods that can modify data, without fear of

losing important data:

Now that we have figured out the basic structure, the main question
remains: how to put everything together. I implemented the main class -
EnglishBot, which brings together the entire primary structure: PTB, work
with the database, the save system, and which will manage the whole
business logic of the bot. If the implementation of Telegram commands
were simple, we could easily add them to the same class. But,
unfortunately, their organization occupies most of the code of the entire
application, so adding them to the same class would be crazy. I also did not
want to create new classes/subclasses, because I suggest using a very
simple structure:

How command modules get access to the main class, we will consider
further.

All out of nothing
Ptb handlers have two arguments - update and context, which store all

the necessary information stack. Context has a wonderful chat_data
argument that can be used as a data storage dictionary for chat. But I do not
want to constantly refer to it in a format context.chat_data['data']. I would
like something light and beautiful, say context.data. However, this is not a
problem.

We continue to simplify our lives. Now I want all the necessary information
for a specific user to be in quick access context.

Now we’ll completely become impudent and fasten our bot instance to
context:

We put everything in place and get a citadel of comfort and convenience
in just one call.

Decorators are our everything
Most often, it turns out that the name of the function coincides with the

name of the command to which we want to add a handler. Why not use this
statistical feature for your selfish purposes.

It looks cool, but it doesn't work. It's all about the bind_context
decorator, which will always return the name of the wrapper function.
Correct this misunderstanding.

There are many message handlers in the bot, which, by design, should
cancel the command when entering zero. Also I need to discard all edited
posts.

We do not forget at the same time about the most important decorator -
@run_asyncon which asynchrony is based. Now we collect the heavy
function.

Remember that asynchrony is a Jedi sword, but with this sword, you can
quickly kill yourself.

Sometimes programs freeze without sending anything to the log.
@logger.catch, the last decorator on our list, ensures that any error is
correctly reported to a logger.

Admin panel
Let's implement an admin panel with the ability to receive/delete logs

and send a message to all users.

https://vk.com/away.php?to=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%D1%EE%F1%F2%EE%FF%ED%E8%E5__%E3%EE%ED%EA%E8

The add_conversation_handler function allows you to add a conversation
handler in a minimalistic way:

Main functionality
Let's teach our bot to add new words to user dictionaries.

We pack the bot

Before we pack our bot, add proxy support and change log levels from
the console.

Python 3.5+ supports the ability to pack a directory into a single
executable file. Let's take this opportunity to be able to deploy your work
environment on any VPS easily. First, get the dependency file. If you are
using a virtual environment, it can be done with one command: pip freeze >
requirements.txt. If the project does not have a virtual environment, then
you will have to tinker a bit. You can try to use pip freeze and manually
isolate all the necessary packages. Still, if too many packages are installed
on the system, then this method will not work. The second option is to use
ready-made solutions, for example, pipreqs.

Now that our dependency file is ready, we can pack our directory into a
.pyzfile. To do this, enter the command py - m zipapp
"ПУТЬ_К_КАТАЛОГУ" -m
"ИМЯ_ГЛАВНОГО_ФАЙЛА:ГЛАВНАЯ_ФУНКЦИЯ" -o bot.pyz, it will
create the bot.pyz file in the project folder. Please note that the code in init
.py must be wrapped in some function, otherwise the executable file will be
impossible to compile.

We wrap the files in the archive zip bot.zip requirements.txt bot.pyzand
send it to our VPS.

https://vk.com/away.php?to=https%3A%2F%2Fdocs.python.org%2F3%2Flibrary%2Fzipapp.html%23module-zipapp
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fbndr%2Fpipreqs

W

5. THE THERMAL IMAGER ON THE
RASPBERRY PI

ell-known thermal imaging modules appeared on the famous Chinese
site. Is it possible to assemble an exotic and, possibly, even useful
thing - a home-made thermal imager? Why not, like Raspberry was

lying somewhere. What came of it – I will tell you under the cut.

MLX90640. What is it?
And this, in fact, is a thermal imaging matrix with a microcontroller on

board. Production of the previously unknown company Melexis. The
thermal imaging matrix has a dimension of 32 by 24 pixels. This is not
much, but when interpolating the image, it seems to be enough to make out
something, at least.

There are two type of sensor is available version, the cases of which
differ in the viewing angle of the matrix. A more squat structure A
overlooks the outside world at an angle of 110 (horizontal) at 75 (vertical)
degrees. B - under 55 by 37.5 degrees, respectively. The device case has
only four outputs - two for power, two for communicating with the control
device via the I2C interface. Interested datasheets can be downloaded here .

And then what is the GY-MCU90640?

Chinese comrades put the MLX90640 on board with another
microcontroller on board (STM32F103). Apparently, for easier matrix
management. This whole farm is called GY-MCU90640. And it costs at the
time of acquisition (end of December 2018) in the region of 5 thousands $.
As follows:

As you see, there are two types of boards, with a narrow or wide-angle
version of the sensor onboard.

https://vk.com/away.php?to=https%3A%2F%2Fwww.melexis.com%2Fen%2Fdocuments%2Fdocumentation%2Fdatasheets%2Fdatasheet-mlx90640

Which version is best for you? A good question, unfortunately, I had it
only after the modules was already ordered and received. For some reason,
at this time of the orders, I did not pay attention to these nuances. But in
vain.

A wider version will be useful on self-propelleds robots or in security
system (the field of view will be larger). According to the datasheets, it also
has less noise and higher measurement accuracy.

But for visualization tasks, I would more recommend a more “long-
range” version of B. For one very significant reason. In the future, when
shooting, it can be deployed (manually or on a platform with a drive) and
take composite "photos," thereby increasing the more than a modest
resolution of 32 by 24 pixels. Collects thermal images 64 by 96 pixels, for
example. Well, all right, in the future, the photos will be from the wide-
angle version A.

Connect to Raspberry PI
There are two ways to control the thermal imaging module:

1. Shorten the “SET” jumper on the board and use I2C to contact
the internal microcontroller MLX90640 directly.

2. Leave the jumper alone and communicate with the module
through a similar interface installed on the STM32F103 board
via RS-232.

If you write in C ++, it will probably be more convenient to ignore the
extra microcontroller, short-circuit the jumper and use the API from the
manufacturer, which lies here.

Humble pythonists can also go the first way. It seems like that there are a
couple of Python libraries (here and here). But unfortunately, not a single
one worked for me.

Advanced pythonists can write a module control driver in Python. The
procedure for obtaining a frame is described in detail in the datasheet. But
then you will have to prescribe all the calibration procedures, which seems
slightly burdensome. Therefore, I had to go the second way. It turned out to
be moderately thorny, but quite passable.

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2FRevKarl%2FMLX90640-python
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fbsdz%2Fmlx90640-library

Thanks to the insight of Chinese engineers or just a happy coincidence,
the shawl turned out to have a perfect location of the conclusions:

It remains only to put the block and insert the scarf into the raspberry
connector. A 5 to 3 Volt converter is installed on the board, so it seems that
nothing threatens Raspberry's delicate Rx and Tx terminals.

It should be added that the connection according to the first option, is
also possible, but requires more labor and solder skill. The board must be
installed on the other side of the Raspberry connector (shown in the title
photo of this post).

Soft
On a well-known Chinese site, such a miracle is offered to access the

GY-MCU90640:
Most likely, there should be some description of the interaction protocol

with the microcontroller installed on the board, according to which this
software product works! After a brief conversation with the seller of scarves
(respect to these respected gentlemen), such a protocol was sent to me. It
appeared in pdf and pure Chinese.

Thanks to Google’s translator and active copy-paste, after about an hour
and a half, the protocol was decrypted, anyone can read it on Github. It
turned out that the scarf understands six basic commands, among which
there is a frame request on the COM port.

Each pixel of the matrix is, in fact, the temperature value of the object
that this pixel is looking at. The temperature in degrees Celsius times 100
(double-byte number). There is even a special mode in which the scarf will
send frames from the matrix to the Raspberry 4 times per second.

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fvvkuryshev%2FGY-MCU90640-RPI-Python

THE SOFTWARE IS PROVIDED ‘AS IS‘, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENf SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES Ofi OTHER LIABILITY, WHETHER IN
ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. ” “

d function to get Emissivity from MCU

ser.write (semi d .to_bytes ([0xA5,Dx55 ,0xOl ,OxFB]))

read = ser.read (4) return read [2] / 100

d function to ga temperatures from MCU (Celsius degree x 100)
‹Ref ga_temp_oray (d):

getting ambient tame
T_a = (iot (d [1540]) + int (d [1541]) • 256) / 100

getting raw array of pixels temperie
raw_data = d [4: 1540]
T_array = npJrombtdfa (raw_​. ‹type = up.intl6)

rctura T_a, T_anay

fiioaion to convert temples to pixels oa image
def td_to_image (f).

 norm
= up.nint8 ((f, 100 - Twin) • 255, (Tmax-Tmin))
norm.shy = (24.32)

T n ​= 40
Tmin = 20

Results

The script polls the thermal imaging matrix and outputs the frames to the
monitor console on which the Raspberry PI is connected, four times per
second. This is enough not to experience significant discomfort when
shooting objects. To visualize the frame, the OpenCV package is used.
When the “s” button is pressed, the thermal imaging “heat maps” in jpg
format are saved in the folder with the script.

For more information, I deduced the minimum and maximum
temperatures on the frame. That is, looking at the color, you can see what
approximately the temperature of the most heated or chilled objects. The
measurement error is approximately a degree with a larger side. The
thermal range is set from 20 to 40 degrees. Exit the script by pressing Ctrl +
C.

The script works approximately the same on both the Raspberry Pi Zero
W and the Pi 3 B +. I installed the VNC server on the smartphone. Thus,
picking up raspberries connected to a power bank and a smartphone with
VNC running, you can get a portable thermal imager with the ability to save
thermal images. Perhaps this is not entirely convenient, but quite functional.

After the first start, an incorrect measurement of the maximum
temperature is possible. In this case, you need to exit the script and rerun it.

That is all for today. The experiment with a home-made thermal imager
turned out to be successful. With the helping of this device, it is quite
possible to conduct a thermal imaging inspection of the house on your own,
for example.

Due to the lower temperature contrast than indoors, the pictures were not
very informative. In the photo above, the whole house is on two sides. On
the bottom - photos of different windows.

In the code, I changed only the temperature range. Instead of +20 ... +
40, I set -10 ... + 5.

I

6. FINDING A FREE PARKING SPACE
WITH PYTHON

live in a proper city. But, like in many others, the search for a parking
space always turns into a test. Free spaces quickly occupy, and even if
you have your own, it will be difficult for friends to call you because they

will have nowhere to park.
So I decided to point the camera out the window and use deep learning

so that my computer tells me when the space is available:
It may sound complicated, but writing a working prototype with deep

learning is quick and easy. All the necessary components are already there -
you just need to know where to find them and how to put them together.

So let's have some fun and write an accurate free parking notification
system using Python and deep learning

Decomposing the task
When we have a difficult task that we want to solve with the help of

machine learning, the first step is to break it down into a sequence of simple
tasks. Then we can use various tools to solve each of them. By combining
several simple solutions, we get a system that is capable of something
complex.

Here is how I broke my task:
The video stream from the webcam directed to the window enters the

conveyor input: Through the pipeline, we will transmit each frame of the
video, one at a time.

The first point is to recognize all the possible parking spaces in the
frame. Before we can look for unoccupied places, we need to understand in
which parts of the image there is parking.

Then on each frame you need to find all the cars. This will allow us to
track the movement of each machine from frame to frame.

The third step is to determine which places are occupied by machines
and which are not. To do this, combine the results of the first two steps.

Finally, the program should send an alert when the parking space
becomes free. This will be determined by changes in the location of the
machines between the frames of the video.

Each of the step can be completed in different ways using different
technologies. There is no single right or wrong way to compose this
conveyor: different approaches will have their advantages and
disadvantages. Let's deal with each step in more detail.

We recognize parking spaces
Here is what our camera sees:

We need to scan this image somehow and get a list of places to park:

The solution “in the forehead” would be to simply hardcode the locations
of all parking spaces manually instead of automatically recognizing them.
But in this case, if we move the camera or want to look for parking spaces
on another street, we will have to do the whole procedure again. It sounds
so-so, so let's look for an automatic way to recognize parking spaces.

Alternatively, you can search for parking meters in the image and assume
that there is a parking space next to each of them:

However, with this approach, not everything is so smooth. Firstly, not
every parking space has a parking meter, and indeed, we are more interested
in finding parking spaces for which you do not have to pay. Secondly, the
location of the parking meter does not tell us anything about where the
parking space is, but it only allows us to make an assumption.

Another idea is to create an object recognition model that looks for
parking space marks drawn on the road:

But this approach is so-so. Firstly, in my city, all such trademarks are
very small and difficult to see at a distance, so it will be difficult to detect
them using a computer. Secondly, the street is full of all sorts of other lines

and marks. It will be challenging to separate parking marks from lane
dividers and pedestrian crossings.

When you encounter a problem that at first glance seems complicated,
take a few minutes to find another approach to solving the problem, which
will help to circumvent some technical issues. What is the parking space?
This is just a place where a car is parked for a long time. Perhaps we do not
need to recognize parking spaces at all. Why don't we acknowledge only
cars that have stood still for a long time and not assume that they are
standing in a parking space?

In other words, parking spaces are located where cars stand for a long
time:

Thus, if we can recognize the cars and find out which of them do not
move between frames, we can guess where the parking spaces are. Simple
as that - let's move on to recognizing cars!

Recognize cars
Recognizing cars on a video frame is a classic object recognition task.

There are many machine learning approaches that we could use for
recognition. Here are some of them in order from the "old school" to the
"new school":

You can train the detector based on HOG (Histogram of Oriented
Gradients, histograms of directional gradients) and walk it
through the entire image to find all the cars. This old approach,
which does not use deep learning, works relatively quickly but
does not cope very well with machines located in different ways.

You can train a CNN-based detector (Convolutional Neural
Network, a convolutional neural network) and walk through the
entire image until you find all the cars. This approach works
precisely, but not as efficiently since we need to scan the image
several times using CNN to find all the machines. And although
we can find machines located in different ways, we need much
more training data than for a HOG detector.

You can use a new approach with deep learning like Mask R-
CNN, Faster R-CNN, or YOLO, which combines the accuracy of

CNN and a set of technical tricks that significantly increase the
speed of recognition. Such models will work relatively quickly
(on the GPU) if we have a lot of data for training the model.

In the general case, we need the simplest solution, which will work as it
should and require the least amount of training data. This is not required to
be the newest and fastest algorithm. However, specifically in our case,
Mask R- CNN is a reasonable choice, even though it is unique and fast.

Mask R-C-N-N architecture is designed in such a way that it recognizes
objects in the entire image, effectively spending resources, and does not use
the sliding window approach. In other words, it works pretty fast. With a
modern GPU, we can recognize objects in the video in high resolution at a
speed of several frames per second. For our project, this should be enough.

Also, Mask R-CNN provides a lot of information about each recognized
object. Most recognition algorithms return only a bounding box for each
object. However, Mask R-CNN will not only give us the location of each
object but also its outline (mask):

To train Mask R-CNN, we need a lot of images of the objects that we
want to recognize. We could go outside, take pictures of cars, and mark
them in photographs, which would require several days of work.
Fortunately, cars are one of those objects that people often want to
recognize, so several public datasets with images of cars already exist.

One of them is the popular SOCO dataset (short for Common Objects In
Context), which has images annotated with object masks. This dataset
contains over 12,000 images with already labeled machines. Here is an
example image from the dataset:

Such data is excellent for training a model based on Mask R-CNN.
But hold the horses, there is news even better! We are not the first who

wanted to train their model using the COCO dataset - many people had
already done this before us and shared their results. Therefore, instead of
training our model, we can take a ready-made one that can already
recognize cars. For our project, we will use the open-source model from
Matterport.

If we give the image from the camera to the input of this model, this is
what we get already “out of the box”:

https://vk.com/away.php?to=http%3A%2F%2Fcocodataset.org%2F
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fmatterport%2FMask_RCNN
https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fmatterport%2FMask_RCNN

The model recognized not only cars but also objects such as traffic lights
and people. It's funny that she recognized the tree as a houseplant.

For each recognized object, the Mask R-CNN model returns four things:

Type of object detected (integer). The pre-trained COCO model
can recognize 80 different everyday objects like cars and trucks.
A complete list is available here.

The degree of confidence in the recognition results. The higher
the number, the stronger the model is confident in the correct
recognition of the object.

Abounding box for an object in the form of XY-coordinates of
pixels in the image.

A “mask” that shows which pixels within the bounding box are
part of the object. Using the mask data, you can find the outline
of the object.

Below is the Python code for detecting the bounding box for machines
using the pre-trained Mask R-CNN and OpenCV models:

https://vk.com/away.php?to=https%3A%2F%2Fgist.github.com%2Fageitgey%2Fb143ee809bf08e4927dd59bace44db0d

After running this script, an image with a frame around each detected
machine will appear on the screen: Also, the coordinates of each machine
will be displayed in the console:

So we learned to recognize cars in the image.

We recognize empty parking spaces

We know the pixel coordinates of each machine. Looking through
several consecutive frames, we can quickly determine which of the cars did
not move and assume that there are parking spaces. But how to understand
that the car left the parking lot?

The problem is that the frames of the machines partially overlap each
other:

Therefore, if you imagine that each frame represents a parking space, it
may turn out that it is partially occupied by the machine, when in fact it is
empty. We need to find a way to measure the degree of intersection of two
objects to search only for the “most empty” frames.

We will use a measure called Intersection Over Union (ratio of
intersection area to total area) or IoU. IoU can be found by calculating the
number of pixels where two objects intersect and divide by the number of
pixels occupied by these objects:

So we can understand how the very bounding frame of the car intersects
with the frame of the parking space. make it easy to determine if parking is
free. If the IoU is low, like 0.15, then the car takes up a small part of the
parking space. And if it is high, like 0.6, then this means that the car takes
up most of the space and you can’t park there.

Since IoU is used quite often in computer vision, it is very likely that the
corresponding libraries implement this measure. In our library Mask R-
CNN, it is implemented as a function mrcnn.utils.compute_overlaps ().

If we have a list of bounding boxes for parking spaces, you can add a
check for the presence of cars in this framework by adding a whole line or
two of code:

The result should look something like this:

In this two-dimensional array, each row reflects one frame of the parking
space. And each column indicates how strongly each of the places intersects
with one of the detected machines. A result of 1.0 means that the entire
space is entirely occupied by the car, and a low value like 0.02 indicates
that the car has climbed into place a little, but you can still park on it.

To find unoccupied places, you just need to check each row in this array.
If all numbers are close to zero, then most likely, the place is free!

However, keep in mind that object recognition does not always work
correctly with real-time video. Although the model based on Mask R-CNN
is wholly accurate, from time to time, it may miss a car or two in one frame
of the video. Therefore, before asserting that the place is free, you need to
make sure that it remains so for the next 5-10 next frames of video. This
way, we can avoid situations when the system mistakenly marks a place
empty due to a glitch in one frame of the video. As soon as we make sure
that the place remains free for several frames, you can send a message!

Send SMS
The last part of our conveyor is sending SMS notifications when a free

parking space appears.
Sending a message from Python is very easy if you use Twilio. Twilio is

an accessible API that allows you to send SMS from almost any
programming language with just a few lines of code. Of course, if you
prefer a different service, you can use it. I have nothing to do with Twilio:
it's just the first thing that come to brain .

To using Twilio, sign-up for a trial account, create a Twilio phone
number, and get your account authentication information. Then install the
client library:

After that, use the following code to send the message:

To add the ability to send messages to our script, just copy this code
there. However, you need make sure that the message is not sent on every
frame, where you can see the free space. Therefore, we will have a flag that

in the installed state will not allow sending messages for some time or until
another place is vacated.

Putting it all together

Location of parking spaces.

To run that code, you first need to install Python 3.6+, Matterport Mask
R-CNN, and OpenCV .

I specifically wrote the code as simple as possible. For example, if he
sees in the first frame of the car, he concludes that they are all parked. Try
experiment with it and see if you can improve its reliability.

Just by changing the identifiers of the objects that the model is looking
for, you can turn the code into something completely different. For
example, imagine that you are working at a ski resort. After making a
couple of changes, you can turn this script into a system that automatically
recognizes snowboarders jumping from a ramp and records videos with
cool jumps. Or, if you work in a nature reserve, you can create a system that
counts zebras. You are limited only by your imagination.

https://vk.com/away.php?to=https%3A%2F%2Fgithub.com%2Fmatterport%2FMask_RCNN
https://vk.com/away.php?to=https%3A%2F%2Fpypi.org%2Fproject%2Fopencv-python%2F

T

7. CREATING GAMES ON THE PYGAME
FRAMEWORK | PART 1

Hi, Python lover!
his is the first of a thired-part tutorial on creating games using Python 3
and Pygame. In the second part, we examined the class TextObjectused
to render text to the screen is created to the main window, and learned

how to draw objects: bricks, ball, and racket.
In this part, we will the dive deeper into the heart of Breakout, and learn

how to handle events, get acquainted with the main Breakout class, and see
how to move various objects in the game.

Event handling
Breakout has three types of events: keystroke events, mouse events, and

timer events. The main loop in the Game class handles keystrokes and
mouse events and passes them to subscribers (by calling a handler
function).

Although the Game class is very general and does not have knowledge
about Breakout implementation, the subscription and event handling
methods are very specific.

Breakout class
The Breakout class implements most of the knowledge about how

Breakout is controlled. In this tutorial series, we will meet the Breakout
class several times. Here are the lines that various event handlers register.

It should be noted that all key events (for both the left and right
“arrows”) are transmitted to one racket handler method.

Keystroke handling
The Game class calls registered handlers for each key event and passes

the key. Note that this is not a Paddle

class. Into Breakout, the only object that is interested in such events is a
racket. When you press or release a key, its method is handle() called. The
Paddle object does not need to know if this was a key press or release event,
because it controls the current state using a pair of Boolean variables:
moving_left and moving_right . If moving_left True, it means that the
"left" key was pressed, and the next event will be the release of the key,
which will reset the variable. The same applies to the right key. The logic is
simple and consists of switching the state of these variables in response to
any event.

Mouse event handling
Breakout has a game menu that we will meet soon. The menu button

controls various mouse events, such as movement and button presses
(mouse down and mouse up events). In the response to these events, the
button updates the internal state variable. Here is the mouse processing
code:

Notice that the method handle_mouse_event() registered to receive
mouse events checks the type of event and redirects it to the appropriate
method that processes this type of event.

Handling Timer Events
Timer events are not processed in the main loop. However, since the

main loop is called in each frame, it is easy to check whether the time has
come for a particular event. You will see this later when we discuss
temporary special effects.

Another situation is the need to pause the game. For example, when
displaying a message that the player must read and so that nothing distracts
him. The show_message()Breakout class method takes this approach and to
calls time.sleep(). Here is the relevant code:

Game process
Gameplay (gameplay) is where the Breakout rules come into play. The

gameplay consists in moving various objects in response to events and in
changing the state of the game based on their interactions.

Moving racket
You saw earlier that the Paddle class responds to arrow keys by updating

its
fields moving_left and moving_right . The movement itself occurs in a

method update(). Certain calculations are performed here if the racket is
close to the left or right edge of the screen. We do not want the racket to go
beyond the boundaries of the screen (taking into account a given offset).

Therefore, if the movement moves the object beyond the borders, then
the code adjusts the movement so that it stops right at the border. Since the
racket only moves horizontally to the vertical component of the movement
is always zero.

Moving ball
The ball simply uses the functionality of the base class GameObject,

which moves objects based on their speed (its horizontal and vertical
components). As we will soon see, the speed of a ball is determined by
many factors in the Breakout class. Since the movement consists simply of
adding speed to the current position, the direction in which the ball moves
is completely determined by the speed along the horizontal and vertical
axes.

Setting the initial speed of the ball
The Breakout ball comes out of nowhere at the very beginning of the

game every time a player loses his life. It simply materializes from the ether
and begins to fall either exactly down or at a slight angle. When the ball is
created in the method create_ball(), it gets the speed with a random
horizontal component in the range from - 2 to 2 and the vertical component
specified in the config.py module (the default value is 3).

Summarize

In this part, we looked at handling events such as keystrokes, mouse
movements, and mouse clicks. We also examined some elements of
Breakout gameplay: moving the racket, moving the ball, and controlling the
speed of the ball.

In the fourth part, we will consider the important topic of collision
recognition and see what happens when the ball hits different game objects:
a racket, bricks, walls, ceiling, and floor. Then we will pay attention to the
game menu. We will create our buttons, which we use as a menu, and will
be able to show and hide if necessary.

CREATING GAMES ON THE PYGAME
FRAMEWORK | PART 2

This is the Second of a Thired-part tutorial on the creating games using
Python 3 and Pygame. In the third part, we delved to the heart of Breakout,
and learned how to handle events, got acquainted within the main Breakout
class and saw how to move different game objects.

In this part, we will learn the how to recognize collisions and what
happens to when a ball hits different object: a racket, bricks, walls, ceiling,
and floor. Finally, we will look at the important topic of the user interface,
and in particular, how to create the menu from your buttons.

Collision Recognition
In games, the objects collide with each other, and Breakout is no

exception. The ball is collides with objects. The main method
handle_ball_collisions() has a built-in function is called intersect() that is
used to the check whether the ball hit the object and where it collided with
the object. It returns 'left,' 'right,' 'top,' 'bottom,' or None if the ball does not
collide with an object.

Collision of a ball with a racket.
When the ball hit the racket, it bounces. If it hit the top of the racket, it

bounces back up, but retains same components horizontal fast speed.

But if he hit the side of the racket, it bounces to the opposite side (right
or left) and continues to move down until it hits the floor. The code uses a
function intersect().

Collision with the floor.
The ball hits to the racket from the side, the ball continues fall and then

hits the floor. At this moment, the player to loses his life and the ball is
recreated so that game can continue. The game ends when player runs out
of life.

Collision with ceiling and walls
When a ball hits the wall or ceiling, it simply bounces off them.

Collision with bricks
When ball hits a brick, this is the main event the Breakout game - the

brick disappeared, the player receives a point, the ball bounce back, and
several more events occur (sound effect, and sometimes a special effect),
which we will consider later.

To determine that the ball has hit a brick, the code will check if any of
the bricks intersects with the ball:

Game Menu Design Program
Most games have some kind of U.I. Breakout has simple menu with two

buttons, 'PLAY' and 'QUIT.' The menu is display at the beginning of the
game and disappears when the player clicks on 'PLAY.'

Let's see how the button and menu are implemented, as well as how they
integrate into the game.

Button Creation
Pygame has no built-in UI library. The third-party extensions, but for the

menu, we decided to create our buttons. that has three states: normal,

highlighted, and press. The normal state when the mouse is not above the
buttons, and the highlight state is when the mouse is above the button, the
left mouse button not yet press. The press state is when the mouse is above
the button, and the player pressed the left mouse button.

The buttons implement as a rectangle with a back ground color and text
display on top of it. The button also receive the (onclick function), which is
called when the button is clicked.

The button process its own mouse events and changes its internal state
based on these events. When the button is in the press state and receives the
event MOUSE BUTTONUP , this means that the player has press the
button and the function is called on _ click().

The property back _ color used to draw on the background rectangle to
always returns the color corresponding to current form of the button, so that
it is clear to the player that the button is active:

Menu Design
The function create_menu () create a menu with two buttons with the

text 'PLAY' and 'QUIT.' It has two built- in function, on _ play () and on _
quit () which it pass to the correspond button. Each button is add to the list
objects (for rendering), as well as in the field menu _ buttons .

When PLAY the button is prese onplay() , a function is called that
removes the button from the list object so that the no longer drawn. In
adding, the values of the Boolean field that trigger the starting of the game -
is_gamerunningand startlevel - Thats OK

When the button is press, QUIT is _ game_ runningtakes on value
(False)(in fact, pausing the game), it set game_ over to True, which triggers
the sequence of completion of the game.

Show and hide GameMenu
The display and hiding the menu are performed implicitly. When the

buttons are in the list object, the menu is visible : when they removed, it is
hidden. Everything is very simple.

Create built-in menu with its surface that renders its subcomponents (
buttons and other objects) and then simply add or remove these menu
components, but this is not required for such a simple menu.

To summarize
We examined the collision recognition and what happens when the ball is

collides with the different objects: a racket, bricks, walls, floor, and ceiling.
We also created a menu with our buttons, which can be hidden and
displayed on command.

In last part of the series, we will consider completion of the game,
tracking points, and lives, sound effects, and music.

We develop complex system of special effects that add few spices to
game. Finally, we will the discuss further development and possible
improvements.

CREATING GAMES ON THE PYGAME
FRAMEWORK| PART 3

This is the last of the Thired parts of the tutorial on creating games using
Python 3 and PyGame. In the fourth part, we learned to recognize
collisions, respond to the fact that the ball collides with different game
objects, and created a game menu with its buttons.

In last part, we will look at various topics: the end of the game,
managing lives and points, sound effects, music, and even a flexible system
of special effects. For dessert, we will consider possible improvements and
directions for further development.

End of the game
Sooner or later, the game should end. In this form of Breakout, the game

ends in one of two ways: the player either loses all his life or destroys all
the bricks. There is no next level in the game (but it can easily be added).

Game over!
The game_overclass of the Game class is set to False in the method init

()of the Game class. The main loop continues until the variable

game_overchanges to True :

All this happens in the Breakout class in the following cases:

The player presses the QUIT button in the menu.
The player loses his last life.
The player destroys all bricks.

Game End Message Display
Usually, at the end of the game, we do not want the game window to

disappear silently. An exception is a case when we click on the QUIT button
in the menu. When a player loses their last life, Breakout displays the
traditional message 'GAME OVER!', And when the player wins, it shows
the message 'YOU WIN!'

In both cases, the function is used show_message(). It displays text on
top of the current screen (the game pauses) and waits a few seconds to
before returning. The next iteration of the game loop, checking the field
game_overwill determine that it is True, after which the program will end.

This is what the function looks like show_message():

Saving records between games
In this version of the game, we do not save records, because there is only

one level in it, and the results of all players after the destruction of the
bricks will be the same. In general, saving records can be implemented
locally, saving records to a file and displaying another message if a player
breaks a record.

Adding Sound Effects and Music
Games are an audiovisual process. Many games have sound effects -

short audio clips that are played when a player kills monsters finds a
treasure, or a terrible death. Some games also have background music that
contributes to the atmosphere. There are only sound effects in Breakout, but
we will show you how to play music in your games.

Sound effects

To play sound effects, we need sound files (as is the case with image
files). These files can be.wav, .mp3, or .ogg format. Breakout stores its
sound effects in a folder sound_effects:

Let's see how these sound effects load and play at the right time. First,
play sound effects (or background music), we need to initialize the Pygame
sound system. This is done in the Game class:pygame.mixer.pre_init(44100,
16, 2, 4096)

Then, in the Breakout class, all sound effects are loaded from config into
the object pygame mixer Soundand stored in the dictionary:

Now we can play sound effects when something interesting happens. For
example, when a ball hits a brick:

The sound effect is played asynchronously: that is, the game does not
stop while it is playing. Several sound effects can be played at the same
time.

Record your sound effects and messages
Recording your sound effects can be a simple and fun experience. Unlike

creating visual resources, it does not require much talent. Anyone can say
"Boom!" or “Jump,” or shout, “They killed you. Get lucky another time! ”

Playing background music
Background music should play continuously. Theoretically, a very long

sound effect can be created, but the looped background music is most often
used. Music files can be in .wav, .mp3, or .midi format. Here's how the
music is implemented:

Only one background music can play at a time. However, several sound
effects can be played on top of background music. This is what is called
mixing.

Adding Advanced Features

Let's do something curious. It is interesting to destroy bricks with a ball,
but it quickly bothers. What about the overall special effects system? We
will develop an extensible special effects system associated with some
bricks, which is activated when the ball hits the brick.

This is what the plan will be. Effects have a lifetime. The effect begins
when the brick collapses and ends when the effect expires. What happens if
the ball hits another brick with a special effect? In theory, you can create
compatible effects, but to simplify everything in the original
implementation, the active effect will stop, and a new effect will take its
place.,

Special effects system
In the most general case, a special effect can be defined as two purposes.

The first role activates the effect, and the second reset it. We want attach
effects to bricks and give the player a clear understanding of which bricks
special , so they can try to hit them or avoid them at certain points.

Our special effects are determined by the dictionary from the module
breakout.py. Each effect has a name (for example, long_paddle) and a value
that consists of a brick color, as well as two functions. Functions are
defined a lambda functions that take a Game instance, which includes
everything that can change the special effect in Breakout.

When creating bricks, they can be assigned one of the special effects.
Here is the code:

effect field, which usually has the value None, but (with a probability of
30%) may contain one of the special effects defined above. Note that this
code does not know what effects exist. He simply receives the effect and
color of the brick and, if necessary, assigns them.

In this version of Breakout, we only trigger effects when we hit a brick,
but you can come up with other options for triggering events. The previous
effect is discarded (if it existed), and then a new effect is launched. The
reset function and effect start time are stored for future use.

If the new effect is not launched, we still need to reset the current effect
after its lifetime. This happens in the method update(). In each frame, a
function to reset the current effect is assigned to the field reset_effect. If the

time after starting the current effect exceeds the duration of the effect, then
the function is called reset_effect(), and the field reset_effecttakes the value
None (meaning that there are currently no active effects).

Racket increase
The effect of a long racket is to increase the racket by 50%. Its reset

function returns the racket to its normal size. The brick has the color
Orange.:

Ball slowdown
Another effect that helps in chasing the ball is slowing the ball, that is,

reducing its speed by one unit. The brick has an Aquamarine color.

More points
If you want great results, then you will like the effect of tripling points,

giving three points for each destroyed brick instead of the standard one
point. The brick is dark green.

Extra lives
Finally, a very useful effect will be the effect of extra lives. He just gives

you another life. It does not need a reset. The brick has a gold color.

Future Features
There are several logical directions for expanding Breakout. If you are

interested in trying on yourself in adding new features and functions, here
are a few ideas.

Go to the next level

To turn Breakout into a serious game, you need levels: one is not enough.
At the beginning of each level, we will reset the screen, but save points and
lives. To complicate the game, you can slightly increase the speed of the
ball at each level or add another layer of bricks.

Second ball
The effect of temporarily adding a second ball will create enormous

chaos. The difficulty here is to treat both balls as equal, regardless of which
one is the original. When one ball disappears, the game continues with the
only remaining. Life is not lost.

Lasting records
When you have levels with increasing difficulty, it is advisable to create

a high score table. You can store records in a file so that they are saved after
the game. When a player breaks a record, you can add small pizzas or let
him write a name (traditionally with only three characters).

Bombs and bonuses
In the current implementation on, all special effects are associated with

bricks, but you can add effects (good and bad) falling from the sky, which
the player can collect or avoid.

Summarize
Developing Breakout with Python 3 and Pygame has proven to be an

enjoyable experience. This is a compelling combination for creating 2D
games (and for 3D games too). If you love Python and want to create your
games, then do not hesitate to choose Pygame.

8. OBJECT-ORIENTED PROGRAMMING
(OOP) IN PYTHON 3

Algorithms and data structures
Hi, Python lover!
Table of contents

What is object-oriented programming (OOP)?
Python classes
Python Object (Instances)
How to define class in Python Instance Attribute Class
Attributes
Object CreationWhat's it? Exercise Overview (# 1)
Instance MethodsChanging Attributes
Python object inheritance Example of a dog park Expansion
of parent class functionality Parent and child classes
Overriding parent class functionality Exercise overview (#
2)
Conclusion

you will become familiars with the following basic concepts of OOP in
Python:

Python Classes
Object Instances
Definition and work with methods
OOP Inheritance

What is object-oriented programming (OOP)?
Object-oriented programming, or, in short, OOP, is a programming

paradigm that provides a means of structuring programs in such a way that

https://vk.com/away.php?to=https%3A%2F%2Fpythonguru.ru%2Fcategory%2F%E0%EB%E3%EE%F0%E8%F2%EC%FB-%E8-%F1%F2%F0%F3%EA%F2%F3%F0%FB-%E4%E0%ED%ED%FB%F5
https://vk.com/away.php?to=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FProgramming_paradigm

properties and behavior are combined into separate objects.
For example, an object can represent a person with a name, age, address,

etc., with behaviors such as walking, talking, breathing, and running. Or an
email with properties such as a recipient list, subject, body, etc., as well as
with behaviors such as adding attachments and sending.

In other words, object-oriented programming is an approach for
modeling specific real things, such as cars, as well as the relationships
between things like companies and employees, students and teachers, etc.
OOP models real objects as program objects that have some data that are
associated with it and can performs certain function.

Another common program para-digm is procedural program, which
structure a program like a recipe in the sense that it provides a set of steps
in the form of functions and blocks of code that are executed sequentially to
complete a task.

The key conclusion is that objects are at the center of the paradigm of
object-oriented programming, representing not only data, as in procedural
programming, but also in the general structure of the program.

NOTE Since Python is a programming language with many paradigms,
you can choose the paradigm that is best suited to the problem in question,
mix different para-digms in one program or switching from one para-digm
to another as your program develops.

Python classes
Focusing first on the data, each object or thing is an instance of some

class.
The primitive data structures available in Python, such as numbers,

strings, and lists, are designed to represent simple things, such as the value
of something, the name of the poem, and your favorite colors, respectively.

What if you want to imagine something much more complex?
For example, let say you wanted to track several different animals. If you

use a list, the first element may be the name of the animal, while the second
element may represent its age.

How would you know which element should be? What if you had 100
different animals? Are you sure that every animal has a name, age, and so

on? What if you want to add other properties to these animals? This is not
enough organization, and this is exactly what you need for classes.

Classes are used to create new user data structure that contain arbitrary
informations abouts some thing. In this case of an animal, we could creates
an Animal()class to track animal properties such as name and age.

It is importants to note that a class simply provides structure - it is an
example of how something should be defined, but in fact, it does not
provide any real content. Animal()The class may indicate that the name and
age are required to determine the animal, but it will not claim that the name
or age of a particular animal is.

This can help present the class as an idea of how something should be
defined.

Python Objects (Instances)
While a class is a plan, an instance is a copy of a class with actual values,

literally an object belonging to a particular class. This is no longer an idea:
it's a real animal, like a dog named Roger, which is eight years old.

In other words, a class is a form or profile. It determines the necessary
informations. After you fullfill out the form, your specific copy is an
instance of the class: it contains up-to-date information relevant to you.

You can fill out several copies to create many different copies, but
without a form, as a guide, you would be lost without knowing what
information is required. Thus, before you can create separate instances of an
object, we must first specify what you need by defining a class.

How to define a class in Python
Defining a class is simple in Python:

You start with a classkeyword to indicate that you are creating a class,
then you add the class name (using the CamelCase notation starting with a
capital letter).

Also here we used the Python keyword pass. This is huge often used as a
placeholder where the code will eventually go. This allows us to run this
code without generating an error.

https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCamel_case
https://vk.com/away.php?to=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCamel_case

Note: the above code is correct in Python 3. On Python 2.x ("deprecated
Python"), you would use a slightly different class definition:

Not the (object)parts in parentheses indicate the parent class that you are
inheriting from (more on this below). In Python-3, this is no longer
necessary because it is implicit by defaulting.

Instance attribute
All class create objects, and all objects contain characteristics called

attributes (called properties in the first paragraph). Use the init ()method to
initialize (for example, determine) the initial attributes of an object by
giving them a default value (state). This method must have atleast one
argument, as well as a self variable that refers to the object itself (for
example, Dog).

In our Dog()class, each dog has a specific name and age, which is
certainly important to know when you start creating different dogs.
Remember: the class is intended only to define a dog, and not to create
instances of individual dogs with specific names and ages: we will come
back to this soon.

Similarly, a self variable is also an instance of a class. Since class
instances have different meanings, we could argue, Dog.name = namenot
self.name = name. But since not all dogs have the same name, we must be
able to assign different values for different instances. Hence the need for a
special self variable that will help track individual instances of each class.

NOTE: you will never have to call a init ()method: it is called
automatically when a new instance of Dog is created.

Class attributes
Although instance attributes are specific to each object, class attributes

are the same for all instances, in this case, all dogs.

Thus, although each dog has a unique name and age, each dog will be a
mammal. Let's create some dogs ...

Create Objects
Instantiating is an unusual term for creating a new unique instance of a

class.
For example: >>>

We started by definea new Dog()class, then created two new dogs, each
of which was assigned to different

objects. So, to create an instance of the class, you use the class name
follow by parentheses. Then, to demonstration that each instance is actually
different, we created two more dogs, assigning each variable, and then
checking to see if these variables are equal.

What do you think is the type of class instance? >>>

Let's look at the more complex example ...

NOTE Notice how we use point records to access the attributes of each
objects. Save as (dog_class.py), then run program. You should see:

What's the matter?
We create a new instance of the Dog()class and assigned it to a variable

Philo. Then we passed him two arguments, "Philo" and 5, which represent
the name and age of this dog, respectively.

These attribute are pass to the init method, which is called every time
you creates a new attaching, instance the name and age to the object. You
may be wondering why we should not have given self arguments.

This is the magic of Python: when you create a new instance of the class,
Python automatically determines what selfies (in this case, Dog), and passes
it to the init method.

Review of exercises (# 1)
Exercise: “The oldest dog”
Using the same Dogclass, create three new dogs, each with a different

age. Then write a function with a name get_biggest_number()that takes any
number of ages (*args) and returns the oldest. Then print the age of the
oldest dog something like this:

The oldest dog is 7 years old. Solution: "The oldest
dog" Solution "The oldest dog."

Instance Methods
Instance methods are defined inside the class and are used to get the

contents of the instance. They can also be used to perform operation with
the attribute of our objects. Like a init method, the first argument is always
self:

Save as dog_instance_methods.py , then run it:

In the last method, speak()we define the behavior. What other types of
behavior can you assign to a dog? Go back to the beginning of the
paragraph to see examples of the behavior of other objects.

Attribute Change
You can changes the value of attributes based on some behavior: >>>

Here we added a method for sending an email that updates the
is_sentvariable to True.

Python object inheritance

Inheritance is a processing in which one class accepts the attributes and
methods of another. Newly created classes are called child classes, and the
classes from which the child classes derive are called parent classes.

It is importants to note that child classes override or extend the
functionality (for example, attributes and behavior) of parent classes. In
other words, child classes inherit all the attributes and behavior of the
parent, but can also define other behavior to be followed. The most basic
type of class is the class object, which usually all other classes inherit as the
parents.

When you defining a new class, Python 3 implicitly uses its object as the
parent class. Thus, the following two definitions are equivalent:

Note. In Python 2.x, there is a difference between the new and old-style
classes. I will not go into details, but you will usually want to specify an
object as the parent class to make sure that you define a new style class if
you are writing Python 2 OOP code.

Dog Park Example
Let's imagine that we are in a dog park. There are several Dog objects

involved in Dog behavior, each with different attributes. In ordinary
conversation, this means that some dogs are running, and some are
stretched, and some are just watching other dogs. Besides, each dog was
named its owner, and since each dog lives and breathes, each is aging.

How else can you distinguish one dog from another? How about a dog
breed: >>>

https://vk.com/away.php?to=https%3A%2F%2Fwiki.python.org%2Fmoin%2FNewClassVsClassicClass

Each dog breed has slightly different behaviors. To take this into account,
let's create separate classes for each breed. These are child classes of the
parent Dogclass.

Extending parent class functionality
Create new file this called dog_inheritance.py :

Read the comments aloud while you are working with this program to
help you understand what is happening, and then, before you run the
program, see if you can predict the expected result.

You should see:

We did not add any special attributes or methods to distinguish between a
RussellTerrierand a Bulldog. Still, since they are now two different classes,
we could, for example, give them different class attributes that determine
their respective speeds.

Parent and child classes
isinstance()The function is used to determine if the instance is also an

instance of a specific parent class. Save this as dog_isinstance.py :

Conclusion: >>>

It makes sense? Both jimand julieare instances of the Dog()class and
johnnywalkerare not instances of Bulldog()the class. Then, as a health
check, we checked juliewhether the instance is an instance jim, which is
impossible, since jimit instancedoes not belong to the class itself, but to the
class TypeError.

Overriding parent class functionality

Remember that child classes can also override the attributes and behavior
of the parent class. For example: >>>

Review of exercises (# 2)
Exercise: "Legacy of the dogs"
Create a Petsclass that contains dog instances: this class is completely

separate from the Dogclass. In other words, a Dogclass is not inherited from
the Petsclass. Then assign three instances of the dog to the Petsclass
instance . Start with the following code below. Save the file as pets_class.py
. Your output should look like this:

Start Code:

Solution: “Dog Inheritance”

Exercise: Hungry Dogs
Use the same files, add an instance attribute is_hungry = Truein the

Dogclass. Then add the called method, eat()which when called changes the
value is_hungryto False. Find out how best to feed each dog, and then print
"My dogs are hungry." if everyone is hungry or "My dogs are not hungry."
if everyone is not hungry. The final result should look like this:

Solution: Hungry Dogs

Exercise: “Dog Walking”
Next, add a walk()method like Petsand Dogclasses, so that when you call

a method in the Petsclass, each instance of a dog is assigned to Petsa class
walk(). Save this as dog_walking.py . This is a little trickier.

Start by implementing a method just like a speak()method. As for the
method in the Petsclass, you will need to iterate over the list of dogs and
then call the method itself.

The output should look like this:

Solution: “dog walking”

Exercise: “Testing Understanding”
Answer the following OOP questions to verify your learning progress:

1. What class?
2. What an example?
3. What is the relationship between class and instance?
4. What Python syntax is used to define a new class?
5. What is the spelling convention for a class name?
6. How do you create or create an instance of a class?
7. How do you access the attributes and behavior of an

instance of a class?
8. What kind of method?
9. What is the purpose self?

10.
What is the purpose of the init method?

11.
Describe how inheritance helps prevent code

duplication.
12.

Can child classes override the properties of their
parents?

Solution: “Test of understanding” Show hide

1. A class mechanism used to create new custom data
structures. It contains data, as well as methods used to
process this data.

2. An instance is a copy of a class with actual values, literally
an object of a particular class.

3. While a class is a plan used to describe how to create
something, instances are objects created from these
drawings.

4. class PythonClassName:
5. Capitalized CamelCase designation - i.e.

PythonClassName()
6. You use the class name followed by parentheses. So if the

name of the class Dog(), the instance of the dog will be -
my_class = Dog().

7. With dot notation - for example,
instance_name.attribute_name

8. A function that defined inside a class.
9. The first argument of each method refers to the current

instance of the class, which is called by the convention self.
The init method self refers to a newly created object, while
in other methods, it a self refers into the instance whose
method was called. For more on the init con self, check out
this article.
10.

init The method initializes an instance of the class.
11.

Child classes inherit all the attributes and behavior of the
parent.
12.

Yes.

https://vk.com/away.php?to=http%3A%2F%2Fstackoverflow.com%2Fa%2F625098

CONCLUSION

Now you should know what classes are, why you want or should use
them, and how to create parent and child classes to better structure your
programs.

Remember that OOP is a programming paradigm, not a Python concept.
Most modern programming languages, such as Java, C #, C ++, follow the
principles of OOP. So the good news is that learning the basics of object-
oriented programming will be useful to you in a variety of circumstances -
whether you work in Python or not.

Now the industry does not stand still and there are more and more web
sites, services and companies that need specialists.

Demand for developers is growing, but competition among them is
growing.

To be the best in your business, you need to be almost an absolutely
universal person who can write a website, create a design for it, and
promote it yourself.

In this regard, even a person who has never sat at this computer begins to
think, but should I try?

But very often it turns out that such enthusiasts burn out at the initial
stage, without having tried themselves in this matter.

Or maybe he would become a brilliant creator of code? Would create
something new? This we will not know.

Every day, the threshold for entering programming is growing. You can
never predict what new language will come out.

Such an abundance breaks all the desire of a newly minted programmer
and he is lost in this ocean of information.

All these javascripts of yours ... pythons ... what fear ..
A great misconception is the obligation to know mathematics. Yes, it is

needed, but only in a narrow field, but it is also useful for understanding
some aspects.

The advice that can be given to people who are just starting their activity
is not to chase everything at once. Allow yourself time to think.

What do I want to do? Create a program for everyone to be useful?
Create additional services to simplify any tasks? Or do you really have to
go make games?

The second advice will be to answer my question how much time am I
ready to devote to this? The third point is to think about how fast you want
to achieve your intended result.

So, there is no “easy way” to start programming, it all depends on you -
your interest, what you want to do and your tasks.

In any case, you need to try and do everything possible in your power.
Good luck in your endeavors!

PYTHON FOR DATA SCIENCE

Guide to computer programming and web coding. Learn
machine learning, artificial intelligence, NumPy and

Pandas packages for data analysis. Step-by-step
exercises included.

JASON TEST

D

INTRODUCTION

ata Science has been very popular over the last couple of years. The main focus of this sector is
to incorporate significant data into business and marketing strategies that will help a business
expand. And get to a logical solution, the data can be stored and explored. Originally only the

leading IT corporations were engaged throughout this field, but today information technology is
being used by companies operating in different sectors and fields such as e-commerce, medical care,
financial services, and others. Software processing programs such as Hadoop, R code, SAS, SQL,
and plenty more are available. Python is, however, the most famous and easiest to use data and
analytics tools. It is recognized as the coding world's Swiss Army Knife since it promotes structured
coding, object-oriented programming, the operational programming language, and many others.
Python is the most widely used programming language in the world and is also recognized as the
most high - level language for data science tools and techniques, according to the 2018 Stack
Overflow study.

In the Hacker rank 2018 developer poll, which is seen in their love-hate ranking, Python has won
the developer's hearts. Experts in data science expect to see an increase in the Python ecosystem,
with growing popularity. And although your journey to study Python programming may just start, it's
nice to know that there are also plentiful (and increasing) career options.

Data analytics Python programming is extensively used and, along with being a flexible and open-
source language, becomes one of the favorite programming languages. Its large libraries are used for
data processing, and even for a beginner data analyst, they are very easy to understand. Besides being
open-source, it also integrates easily with any infrastructure that can be used to fix the most
complicated problems. It is used by most banks for data crunching, organizations for analysis and
processing, and weather prediction firms such as Climate monitor analytics often use it. The annual
wage for a Computer Scientist is $127,918, according to Indeed. So here's the good news, the figure
is likely to increase. IBM's experts forecast a 28 percent increase in data scientists' demands by 2020.
For data science, however, the future is bright, and Python is just one slice of the golden pie. Luckily
mastering Python and other principles of programming are as practical as ever.

DATA SCIENCE AND ITS SIGNIFICANCE

Data Science has come a long way from the past few years, and thus, it becomes an important
factor in understanding the workings of multiple companies. Below are several explanations that
prove data science will still be an integral part of the global market.

1. The companies would be able to understand their client in a more efficient and high manner
with the help of Data Science. Satisfied customers form the foundation of every company, and they
play an important role in their successes or failures. Data Science allows companies to engage with
customers in the advance way and thus proves the product's improved performance and strength.

2. Data Science enables brands to deliver powerful and engaging visuals. That's one of the reasons
it's famous. When products and companies make inclusive use of this data, they can share their
experiences with their audiences and thus create better relations with the item.

3. Perhaps one Data Science's significant characteristics are that its results can be generalized to
almost all kinds of industries, such as travel, health care, and education. The companies can quickly
determine their problems with the help of Data Science, and can also adequately address them

4. Currently, data science is accessible in almost all industries, and nowadays, there is a huge
amount of data existing in the world, and if used adequately, it can lead to victory or failure of any
project. If data is used properly, it will be important in the future to achieve the product 's goals.

5. Big data is always on the rise and growing. Big data allows the enterprise to address
complicated Business, human capital, and capital management problems effectively and quickly
using different resources that are built routinely.

6. Data science is gaining rapid popularity in every other sector and therefore plays an important
role in every product's functioning and performance. Thus, the data scientist's role is also enhanced as
they will conduct an essential function of managing data and providing solutions to particular issues.

7. Computer technology has also affected the supermarket sectors. To understand this, let's take an
example the older people had a fantastic interaction with the local seller. Also, the seller was able to
meet the customers' requirements in a personalized way. But now this attention was lost due to the
emergence and increase of supermarket chains. But the sellers are able to communicate with their
customers with the help of data analytics.

8. Data Science helps companies build that customer connection. Companies and their goods will
be able to have a better and deeper understanding of how clients can utilize their services with the
help of data science.

Data Technology Future: Like other areas are continually evolving, the importance of data
technology is increasingly growing as well. Data science impacted different fields. Its influence can
be seen in many industries, such as retail, healthcare, and education. New treatments and
technologies are being continually identified in the healthcare sector, and there is a need for quality
patient care. The healthcare industry can find a solution with the help of data science techniques that
helps the patients to take care with. Education is another field where one can clearly see the
advantage of data science. Now the new innovations like phones and tablets have become an

essential characteristic of the educational system. Also, with the help of data science, the students are
creating greater chances, which leads to improving their knowledge.

Data Science Life Cycle:

Data Structures
A data structure may be selected in computer programming or designed to store data for the

purpose of working with different algorithms on it. Every other data structure includes the data
values, data relationships, and functions between the data that can be applied to the data and
information.

Features of data structures
Sometimes, data structures are categorized according to their characteristics. Possible functions

are:

Linear or non-linear: This feature defines how the data objects are organized in a
sequential series, like a list or in an unordered sequence, like a table.
Homogeneous or non-homogeneous: This function defines how all data objects in a
collection are of the same type or of different kinds.
Static or dynamic: This technique determines to show to assemble the data structures.
Static data structures at compilation time have fixed sizes, structures, and destinations
in the memory. Dynamic data types have dimensions, mechanisms, and destinations of
memory that may shrink or expand depending on the application.

Data structure Types
Types of the data structure are determined by what sorts of operations will be needed or what

kinds of algorithms will be implemented. This includes:
Arrays: An array stores a list of memory items at adjacent locations. Components of the same

category are located together since each element's position can be easily calculated or accessed.
Arrays can be fixed in size or flexible in length.

Stacks: A stack holds a set of objects in linear order added to operations. This order may be past
due in first out (LIFO) or first-out (FIFO).

Queues: A queue stores a stack-like selection of elements; however, the sequence of activity can
only be first in the first out. Linked lists: In a linear order, a linked list stores a selection of items. In a
linked list, every unit or node includes a data item as well as a reference or relation to the next
element in the list.

Trees: A tree stocks an abstract, hierarchical collection of items. Each node is connected to other
nodes and can have several sub-values, also known as a child.

Graphs: A graph stores a non-linear design group of items. Graphs consist of a limited set of
nodes, also called vertices, and lines connecting them, also known as edges. They are useful for
describing processes in real life, such as networked computers.

Tries: A tria or query tree is often a data structure that stores strings as data files, which can be
arranged in a visual graph.

Hash tables: A hash table or hash chart is contained in a relational list that labels the keys to
variables. A hash table uses a hashing algorithm to transform an index into an array of containers

containing the desired item of data. These data systems are called complex because they can contain
vast quantities of interconnected data. Examples of primal, or fundamental, data structures are
integer, float, boolean, and character.

Utilization of data structures
Data structures are generally used to incorporate the data types in physical forms. This can be

interpreted into a wide range of applications, including a binary tree showing a database table. Data
structures are used in the programming languages to organize code and information in digital storage.
Python databases and dictionaries, or JavaScript array and objects, are popular coding systems used
to gather and analyze data. Also, data structures are a vital part of effective software design.
Significance of Databases Data systems is necessary to effectively handle vast volumes of data, such
as data stored in libraries, or indexing services.

Accurate data configuration management requires memory allocation identifier, data
interconnections, and data processes, all of which support the data structures. In addition, it is
important to not only use data structures but also to select the correct data structure for each
assignment.

Choosing an unsatisfactory data structure could lead to slow running times or disoriented code.
Any considerations that need to be noticed when choosing a data system include what type of
information should be processed, where new data will be put, how data will be organized, and how
much space will be allocated for the data.

Y

PYTHON BASICS

ou can get all the knowledge about the Python programming language in 5 simple steps.

Step 1: Practice Basics in Python
It all starts somewhere. This first step is where the basics of programming Python will be learned.

You are always going to want an introduction to data science. Jupyter Notebook, which comes pre-
portioned with Python libraries to help you understand these two factors, which make it one of the
essential resources which you can start using early on your journey.

Step 2: Try practicing Mini-Python Projects
We strongly believe in learning through shoulders-on. Try programming stuff like internet games,

calculators, or software that gets Google weather in your area. Creating these mini-projects can help
you understand Python. Projects like these are standard for any coding languages, and a fantastic way
to strengthen your working knowledge. You will come up with better and advance API knowledge,
and you will continue site scraping with advanced techniques. This will enable you to learn Python
programming more effectively, and the web scraping method will be useful to you later when
collecting data.

Stage 3: Learn Scientific Libraries on Python
Python can do anything with data. Pandas, Matplotliband, and NumPyare are known to be the

three best used and most important Python Libraries for data science. NumPy and Pandas are useful
for data creation and development. Matplotlib is a library for analyzing the data, creating flow charts
and diagrams as you would like to see in Excel or Google Sheets.

Stage 4: Create a portfolio
A portfolio is an absolute need for professional data scientists. These projects must include

numerous data sets and leave important perspectives to readers that you have gleaned. Your portfolio
does not have a specific theme; finding datasets that inspire you, and then finding a way to place
them together. Showing projects like these provide some collaboration to fellow data scientists, and
demonstrates future employers that you have really taken the chance to understand Python and other
essential coding skills. Some of the good things about data science are that, while showcasing the
skills you've learned, your portfolio serves as a resume, such as Python programming.

Step 5: Apply Advanced Data Science Techniques
Eventually, the target is to strengthen your programming skills. Your data science path will be full

of continuous learning, but you can accomplish specialized tutorials to make sure you have
specialized in the basic programming of Python. You need to get confident with clustering models of
regression, grouping, and k-means. You can also leap into machine learning-using sci-kit lessons to
bootstrap models and create neural network models. At this point, developer programming could
include creating models using live data sources. This type of machine learning technique adjusts s its
assumptions over time.

How significant is Python for Data Science?

Efficient and simple to use – Python is considered a tool for beginners, and any student or
researcher with only basic understanding could start working on it. Time and money spent debugging
codes and constraints on different project management are also minimized. The time for code
implementation is less compared to other programming languages such as C, Java, and C #, which
makes developers and software engineers spend far more time working on their algorithms.

Library Choice-Python offers a vast library and machine learning and artificial intelligence
database. Scikit Learn, TensorFlow, Seaborn, Pytorch, Matplotlib, and many more are among the
most popular libraries. There are many online tutorial videos and resources on machine learning and
data science, which can be easily obtained.

Scalability – Python has proven itself to be a highly scalable and faster language compared to
other programming languages such as c++, Java, and R. It gives flexibility in solving problems that
can't be solved with other computer languages. Many companies use it to develop all sorts of rapid
techniques and systems.

#Visual Statistics and Graphics-Python provides a number of visualization tools. The Matplotlib
library provides a reliable framework on which those libraries such as gg plot, pandas plotting,
PyTorch, and others are developed. These services help create graphs, plot lines ready for the Web,
visual layouts, etc.

How Python is used for Data Science
#First phase – First of all, we need to learn and understand what form a data takes. If we perceive

data to be a huge Excel sheet with columns and crows lakhs, then perhaps you should know what to
do about that? You need to gather information into each row as well as column by executing some
operations and searching for a specific type of data. Completing this type of computational task can
consume a lot of time and hard work. Thus, you can use Python's libraries, such as Pandas and
Numpy, that can complete the tasks quickly by using parallel computation.

#Second phase – The next hurdle is to get the data needed. Since data is not always readily
accessible to us, we need to dump data from the network as needed. Here the Python Scrap and
brilliant Soup libraries can enable us to retrieve data from the internet.

#Third phase – We must get the simulation or visual presentation of the data at this step. Driving
perspectives gets difficult when you have too many figures on the board. The correct way to do that
is to represent the data in graph form, graphs, and other layouts. The Python Seaborn and Matplotlib
libraries are used to execute this operation.

#Fourth phase – The next stage is machine-learning, which is massively complicated computing. It
includes mathematical tools such as the probability, calculus, and matrix operations of columns and
rows over lakhs. With Python's machine learning library Scikit-Learn, all of this will become very
simple and effective.

Standard Library
The Python Standard library consists of Python's precise syntax, token, and semantic. It comes

packaged with deployment core Python. When we started with an introduction, we referenced this. It
is written in C and covers features such as I / O and other core components. Together all of the
versatility renders makes Python the language it is. At the root of the basic library, there are more

than 200 key modules. Python ships that library. But aside from this library, you can also obtain a
massive collection of several thousand Python Package Index (PyPI) components.

1. Matplotlib
‘Matplotlib’ helps to analyze data, and is a library of numerical plots. For Data Science, we
discussed in Python.

2. Pandas
‘Pandas’ is a must for data-science as we have said before. It provides easy, descriptive, and
versatile data structures to deal with organized (tabulated, multilayered, presumably
heterogeneous) and series data with ease (and fluidly).

3. Requests
‘Requests’ is a Python library that allows users to upload HTTP/1.1 requests, add headers, form
data, multipart files, and simple Python dictionary parameters. In the same way, it also helps you
to access the response data.

4. NumPy
It has basic arithmetic features and a rudimentary collection of scientific computing.

5. SQLAlchemy
It has sophisticated mathematical features, and SQLAlchemy is a basic mathematical
programming library with well-known trends at a corporate level. It was created to make
database availability efficient and high-performance.

6. BeautifulSoup
This may be a bit on the slow side. BeautifulSoup seems to have a superb library for beginner
XML- and HTML- parsing.

7. Pyglet
Pyglet is an outstanding choice when designing games with an object-oriented programming
language interface. It also sees use in the development of other visually rich programs for Mac
OS X, Windows, and Linux in particular. In the 90s, they turned to play Minecraft on their PCs
whenever people were bored. Pyglet is the mechanism powering Minecraft.

8. SciPy
Next available is SciPy, one of the libraries we spoke about so often. It does have a range of
numerical routines that are user-friendly and effective. Those provide optimization routines and
numerical integration procedures.

9. Scrapy
If your objective is quick, scraping at the high-level monitor and crawling the network, go for
Scrapy. It can be used for data gathering activities for monitoring and test automation.

10. PyGame
PyGame offers an incredibly basic interface to the system-independent graphics, audio, and input
libraries of the Popular Direct Media Library (SDL).

11. Python Twisted
Twisted is an event-driven networking library used in Python and authorized under the MIT
open-source license.

12. Pillow

Pillow is a PIL (Python Imaging Library) friendly fork but is more user efficient. Pillow is your
best friend when you're working with pictures.

13. pywin32
As the name suggests, this gives useful methods and classes for interacting with Windows.

14. wxPython
For Python, it's a wrapper around wxWidgets.
15. iPython

iPython Python Library provides a parallel distributed computing architecture. You will use it to
create, run, test, and track parallel and distributed programming.

16. Nose
The nose provides alternate test exploration and test automation running processes. This intends
to mimic the behavior of the py.test as much as possible.

17. Flask
Flask is a web framework, with a small core and several extensions.
18. SymPy

It is a library of open-source symbolic mathematics. SymPy is a full-fledged Computer Algebra
System (CAS) with a very simple and easily understood code that is highly expandable. It is
implemented in python, and therefore, external libraries are not required.

19. Fabric
As well as being a library, Fabric is a command-line tool to simplify the use of SSH for
installation programs or network management activities. You can run local or remote command
line, upload/download files, and even request input user going, or abort activity with it.

20. PyGTK
PyGTK allows you to create programs easily using a Python GUI (Graphical User Interface).

Operators and Expressions
Operators
In Python, operators are special symbols that perform mathematical operation computation. The

value in which the operator is running on is called the operand.
Arithmetic operators
It is used by arithmetic operators to perform mathematical operations such as addition, subtraction,

multiplying, etc.
Comparison operators
Comparison operators can be used for value comparisons. Depending on the condition, it returns

either True or False.
Logical operators
Logical operators are and, or, not.

Operator Meaning Example
And True if both operands are true x and y

Or True if either of the operands is true x or y
Not True if the operand is false (complements the

operand)
not x

Bitwise operators
Bitwise operators operate as if they became binary-digit strings on operands. Bit by bit they work,

and therefore the name. For example, in binary two is10, and in binary seven is 111.
Assignment operators
Python language’s assignment operators are used to assign values to the variables. a = 5 is a simple

task operator assigning ‘a’ value of 5 to the right of the variable ‘a’ to the left. In Python, there are
various compound operators such as a + = 5, which adds to the variable as well as assigns the same
later. This equals a= a + 5.

Special operators
Python language gives other different types of operators, such as the operator of the identity or the

operator of membership. Examples of these are mentioned below.
Identity operators
‘Is’ and ‘is not’ are Python Identity Operators. They are used to test if there are two values or

variables in the same memory section. Two equal variables do not mean they are equivalent.
Membership operator
The operators that are used to check whether or not there exists a value/variable in the sequence

such as string, list, tuples, sets, and dictionary. These operators return either True or False if a
variable is found in the list, it returns True, or else it returns False

Expressions
An expression is a mix of values, variables, operators, and function calls. There must be an

evaluation of the expressions. When you ask Python to print a phrase, the interpreter will evaluate the
expression and show the output.

Arithmetic conversions
Whenever an arithmetic operator interpretation below uses the phrase "the numeric arguments are

converted to a common type," this means the execution of the operator for the built-in modes
operates as follows
If one argument is a complex quantity, then the other is converted to a complex number; If another
argument is a floating-point number, the other argument is transformed to a floating-point; Or else
both will be integers with no need for conversion.

Atoms
Atoms are the most important expressional components. The smallest atoms are literals or abstract

identities. Forms contained in parentheses, brackets, or braces are also syntactically known as atoms.
Atoms syntax is:

atom ::= identifier | enclosure| literal
enclosure ::= list_display| parenth_form| dict_display | set_display
Identifiers (Names)

A name is an identifier that occurs as an atom. See section Lexical Description Identifiers and
Keywords and group Naming and binding for naming and binding documents. Whenever the name is
connected to an entity, it yields the entity by evaluating the atom. When a name is not connected, an
attempt to assess it elevates the exception for NameError.

Literals
Python provides logical string and bytes and numerical literals of different types:
literal::= string literal | bytes literal

| integer | float number | image number
Assessment of a literal yield with the predicted set an object of that type (bytes, integer, floating-

point number, string, complex number). In the scenario of floating-point and imaginary (complex)
literals, the value can be approximated.

Parenthesized forms
A parenthesized type is an available set of parentheses for the expression:
parenth_form ::= "(" [starred_expression] ")"
A list of parenthesized expressions yields whatever the list of expressions produces: if the list

includes at least one comma, it produces a tuple. If not, it yields the sole expression that forms up the
list of expressions. A null pair of parentheses generates an incomplete object of tuples. As all tuples
are immutable, the same rules would apply as for literals (i.e., two empty tuple occurrences does or
doesn't yield the same entity).

Displays for lists, sets, and dictionaries
For the construction of a list, Python uses a series or dictionary with a particular syntax called

"displays," each in complementary strands:
The contents of the container are listed explicitly, or They are calculated using a series of instructions
for looping and filtering, named a 'comprehension.' Common features of syntax for comprehensions
are:

comprehension ::= assignment_expressioncomp_for
comp_for ::= ["async"] "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" expression_nocond [comp_iter]
A comprehension contains one single sentence ready for at least one expression for clause, and

zero or more for or if clauses. Throughout this situation, the components of the container are those
that will be generated by assuming each of the for or if clauses as a block, nesting from left to right,
and determining the phase for creating an entity each time the inner core block is approached.

List displays
A list view is a probably empty sequence of square brackets including expressions:
list_display ::= "[" [starred_list | comprehension] "]"
A list display generates a new column object, with either a list of expressions or a comprehension

specifying the items. When a comma-separated database of expressions is provided, its elements are
assessed from left to right and positioned in that order in the category entity. When Comprehension is
provided, the list shall be built from the comprehension components.

Set displays

Curly braces denote a set display and can be distinguished from dictionary displays by the lack of
colons dividing data types:

set_display ::= "{" (starred_list | comprehension) "}"
A set show offers a new, mutable set entity, with either a series of expressions or a comprehension

defining the contents. When supplied with a comma-separated list of expressions, its elements are
evaluated from left to right and assigned to the set entity. Whenever a comprehension is provided, the
set is formed from the comprehension-derived elements. Unable to build an empty set with this {};
literal forms a blank dictionary.

Dictionary displays
A dictionary view is a potentially empty sequence of key pairs limited to curly braces:
dict_display ::= "{" [key_datum_list | dict_comprehension] "}"
key_datum_list ::= key_datum ("," key_datum)* [","]
key_datum ::= expression ":" expression | "**" or_expr
dict_comprehension ::= expression ":" expression comp_for
The dictionary view shows a new object in the dictionary. When a comma-separated series of key /

datum pairs is provided, they are analyzed from left to right to identify dictionary entries: each key
entity is often used as a key to hold the respective datum in the dictionary. This implies you can
clearly state the very same key numerous times in the key /datum catalog, but the last one given will
become the final dictionary's value for that key.

Generator expressions
A generator expression is the compressed syntax of a generator in the parenthesis :
generator_expression ::= "(" expression comp_for ")"
An expression generator produces an entity that is a new generator. Its syntax will be the same as

for comprehensions, except for being enclosed in brackets or curly braces rather than parentheses.
Variables being used generator expression are assessed sloppily when the generator object (in the
same style as standard generators) is called by the __next__() method. Conversely, the iterate-able
expression in the leftmost part of the clause is evaluated immediately, such that an error that it
produces is transmitted at the level where the expression of the generator is characterized, rather than
at the level where the first value is recovered.

For instance: (x*y for x in range(10) for y in range(x, x+10)).
Yield expressions
yield_atom ::= "(" yield_expression ")"
yield_expression ::= "yield" [expression_list | "from" expression]
The produced expression is used to define a generator function or async generator function, and

can therefore only be used in the function definition body. Using an expression of yield in the body
of a function tends to cause that function to be a generator, and to use it in the body of an
asynchronous def function induces that co-routine function to become an async generator. For
example:

def gen(): # defines a generator function
yield 123
asyncdefagen(): # defines an asynchronous generator function

yield 123
Because of their adverse effects on the carrying scope, yield expressions are not allowed as part of

the impliedly defined scopes used to enforce comprehensions and expressions of generators.

Input and Output of Data in Python
Python Output Using print() function
To display data into the standard display system (screen), we use the print() function. We may

issue data to a server as well, but that will be addressed later. Below is an example of its use.
>>>>print('This sentence is output to the screen')
Output:
This sentence is output to the screen
Another example is given:
a = 5
print('The value of a is,' a)
Output:
The value of a is 5
Within the second declaration of print(), we will note that space has been inserted between the

string and the variable value a. By default, it contains this syntax, but we can change it.
The actual syntax of the print() function will be:
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)
Here, the object is the value(s) that will be printed. The sep separator between values is used. This

switches into a character in space. Upon printing all the values, the finish is printed. It moves into a
new section by design. The file is the object that prints the values, and its default value is sys.stdout
(screen). Below is an example of this.

print(1, 2, 3, 4)
print(1, 2, 3, 4, sep='*')
print(1, 2, 3, 4, sep='#', end='&')
Run code
Output:
1 2 3 4
1*2*3*4
1#2#3#4&
Output formatting
Often we want to style our production, so it looks appealing. It can be done using the method

str.format(). This technique is visible for any object with a string.
>>> x = 5; y = 10
>>>print('The value of x is {} and y is {}'.format(x,y))
Here the value of x is five and y is 10

Here, they use the curly braces{} as stand-ins. Using numbers (tuple index), we may specify the
order in which they have been printed.

print('I love {0} and {1}'.format('bread','butter'))
print('I love {1} and {0}'.format('bread','butter'))
Run Code
Output:
I love bread and butter
I love butter and bread
People can also use arguments with keyword to format the string.
>>>print('Hello {name}, {greeting}'.format(greeting = 'Goodmorning', name = 'John'))
Hello John, Goodmorning
Unlike the old sprint() style used in the C programming language, we can also format strings. To

accomplish this, we use the ‘%’ operator.
>>> x = 12.3456789
>>>print('The value of x is %3.2f' %x)
The value of x is 12.35
>>>print('The value of x is %3.4f' %x)
The value of x is 12.3457
Python Indentation
Indentation applies to the spaces at the start of a line of the compiler. Whereas indentation in code

is for readability only in other programming languages, but the indentation in Python is very
important. Python supports the indent to denote a code block.

Example
if 5 > 2:
print("Five is greater than two!")
Python will generate an error message if you skip the indentation:
Example
Syntax Error:
if 5 > 2:
print("Five is greater than two!")
Python Input
Our programs have been static. Variables were described or hard-coded in the source code. We

would want to take the feedback from the user to allow flexibility. We have the input() function in
Python to enable this. input() is syntax as:

input([prompt])
While prompt is the string we want to show on the computer, this is optional.
>>>num = input('Enter a number: ')
Enter a number: 10
>>>num

'10'
Below, we can see how the value 10 entered is a string and not a number. To transform this to a

number we may use the functions int() or float().
>>>int('10')
10
>>>float('10')
10.0
The same method can be done with the feature eval(). Although it takes eval much further. It can

even quantify expressions, provided that the input is a string
>>>int('2+3')
Traceback (most recent call last):

File "<string>", line 301, in runcode
File "<interactive input>", line 1, in <module>

ValueError: int() base 10 invalid literal: '2+3'
>>>eval('2+3')
5
Python Import
As our software gets larger, splitting it up into separate modules is a smart idea. A module is a file

that contains definitions and statements from Python. Python packages have a filename, and the .py
extension begins with it. Definitions may be loaded into another module or to the integrated Python
interpreter within a module. To do this, we use the keyword on import.

For instance, by writing the line below, we can import the math module:
import math
We will use the module as follows:
import math
print(math.pi)
Run Code
Output
3.141592653589793
So far, all concepts are included in our framework within the math module. Developers can also

only import certain particular attributes and functions, using the keyword.
For instance:
>>>from math import pi
>>>pi
3.141592653589793
Python looks at multiple positions specified in sys.path during the import of a module. It is a list of

positions in a directory.
>>> import sys
>>>sys.path

['',
'C:\\Python33\\Lib\\idlelib',
'C:\\Windows\\system32\\python33.zip',
'C:\\Python33\\DLLs',
'C:\\Python33\\lib',
'C:\\Python33',
'C:\\Python33\\lib\\site-packages']
We can insert our own destination to that list as well.

Y

FUNCTIONS

ou utilize programming functions to combine a list of instructions that you're constantly using
or that are better self-contained in sub-program complexity and are called upon when required.
Which means a function is a type of code written to accomplish a given purpose. The function

may or may not need various inputs to accomplish that particular task. Whenever the task is
executed, one or even more values can or could not be returned by the function. Basically there exist
three types of functions in Python language:

1. Built-in functions, including help() to ask for help, min() to just get the minimum
amount, print() to print an attribute to the terminal. More of these functions can be
found here.

2. User-Defined Functions (UDFs) that are functions created by users to assist and
support them out;

3. Anonymous functions, also labeled lambda functions since they are not defined with
the default keyword.

Defining A Function: User Defined Functions (UDFs)
The following four steps are for defining a function in Python:

1. Keyword def can be used to declare the function and then use the function name to
backtrack.

2. Add function parameters: They must be within the function parentheses. Finish off
your line with a colon.

3. Add statements which should be implemented by the functions.

When the function should output something, end your function with a return statement. Your task
must return an object None without return declaration. Example:

1. def hello():
2. print("Hello World")
3.return
It is obvious as you move forward, the functions will become more complex: you can include for

loops, flow control, and more to make things more fine-grained:
def hello():
name = str(input("Enter your name: "))
if name:
print ("Hello " + str(name))
else:
print("Hello World")
return
hello()

In the feature above, you are asking the user to give a name. When no name is provided, the 'Hello
World' function will be printed. Otherwise, the user will receive a custom "Hello" phrase. Also,
consider you can specify one or more parameters for your UDFs function. When you discuss the
segment Feature Statements, you will hear more about this. Consequently, as a result of your
function, you may or may not return one or more values.

The return Statement
Note that since you're going to print something like that in your hello) (UDF, you don't really have

to return it. There'll be no distinction between the above function and this one:
Example:
1. defhello_noreturn():
2. print("Hello World")
Even so, if you'd like to keep working with the result of your function and try a few other

functions on it, you'll need to use the return statement to simply return a value, like a string, an
integer. Check out the following scenario in which hello() returns a "hello" string while the
hello_noreturn() function returns None:

1. def hello():
2. print("Hello World")
3. return("hello")
4. defhello_noreturn():
5. print("Hello World")
6. # Multiply the output of `hello()` with 2
7. hello() * 2
8. # (Try to) multiply the output of `hello_noreturn()` with 2
9. hello_noreturn() * 2
The secondary part gives you an error because, with a None, you cannot perform any operations.

You will get a TypeError that appears to say that NoneType (the None, which is the outcome of
hello_noreturn()) and int (2) cannot do the multiplication operation. Tip functions leave instantly
when a return statement is found, even though that means they will not return any result:

1. def run():
2. for x in range(10):
3. if x == 2:
4. return
5. print("Run!")
6. run()
Another factor worth noting when dealing with the ‘return expression’ is many values can be

returned using it. You consider making use of tuples for this. Recall that this data structure is very
comparable to a list's: it can contain different values. Even so, tuples are immutable, meaning you
can't alter any amounts stored in it! You build it with the aid of dual parentheses). With the assistance
of the comma and the assignment operator, you can disassemble tuples into different variables.

Read the example below to understand how multiple values can be returned by your function:

1. # Define `plus()`
2. def plus(a,b):
3.sum = a + b
4.return (sum, a)

5. # Call `plus()` and unpack variables
6. sum, a = plus(3,4)
7. # Print `sum()`
8. print(sum)
Notice that the return statement sum, 'a' will result in just the same as the return (sum, a): the

earlier simply packs total and an in a tuple it under hood!
How To Call A Function
You've already seen a lot of examples in previous sections of how one can call a function. Trying

to call a function means executing the function you have described-either directly from the Python
prompt, or by a different function (as you have seen in the "Nested Functions" portion). Call your
new added hello() function essentially by implementing hello() as in the DataCamp Light chunk as
follows:

1. hello()
Adding Docstrings to Python Functions
Further valuable points of Python's writing functions: docstrings. Docstrings define what your

function does, like the algorithms it conducts or the values it returns. These definitions act as
metadata for your function such that anybody who reads the docstring of your feature can understand
what your feature is doing, without having to follow all the code in the function specification. Task
docstrings are placed right after the feature header in the subsequent line and are set in triple quote
marks. For your hello() function, a suitable docstring is 'Hello World prints.'

def hello():
"""Prints "Hello World".
Returns:

None
"""
print("Hello World")
return
Notice that you can extend docstrings more than the one provided here as an example. If you want

to study docstrings in more depth information, you should try checking out some Python library
Github repositories like scikit-learn or pandas, in which you'll find lots of good examples!

Function Arguments in Python
You probably learned the distinction between definitions and statements earlier. In simple terms,

arguments are the aspects that are given to any function or method call, while their parameter
identities respond to the arguments in the function or method code. Python UDFs can take up four
types of arguments:

1. Default arguments
2. Required arguments
3. Keyword arguments
4. Variable number of arguments

Default Arguments
Default arguments would be those who take default data if no value of the argument is delivered

during the call function. With the assignment operator =, as in the following case, you may assign
this default value:

1. #Define `plus()` function
2. def plus(a,b = 2):
3.return a + b
4. # Call `plus()` with only `a` parameter
5. plus(a=1)
6. # Call `plus()` with `a` and `b` parameters
7. plus(a=1, b=3)
Required Arguments
Because the name sort of brings out, the claims a UDF needs are those that will be in there. Such

statements must be transferred during the function call and are absolutely the right order, such as in
the example below:

1. # Define `plus()` with required arguments
2. def plus(a,b):
3. return a + b
Calling the functions without getting any additional errors, you need arguments that map to 'a' as

well as the 'b' parameters. The result will not be unique if you swap round the 'a' and 'b,' but it could
be if you modify plus() to the following:

1. # Define `plus()` with required arguments
2. def plus(a,b):
3.return a/b
Keyword Arguments
You will use keyword arguments in your function call if you'd like to make sure you list all the

parameters in the correct order. You use this to define the statements by the name of the function.
Let's take an example above to make it a little simpler:

1. # Define `plus()` function
2. def plus(a,b):
3.return a + b
4. # Call `plus()` function with parameters
5. plus(2,3)
6. # Call `plus()` function with keyword arguments
7. plus(a=1, b=2)

Notice that you can also alter the sequence of the parameters utilizing keywords arguments and
still get the same outcome when executing the function:

1. # Define `plus()` function
2. def plus(a,b):
3.return a + b
4. # Call `plus()` function with keyword arguments
5. plus(b=2, a=1)
Global vs. Local Variables
Variables identified within a function structure usually have a local scope, and those specified

outside have a global scope. This shows that the local variables are specified within a function block
and can only be retrieved through that function, while global variables can be retrieved from all the
functions in the coding:

1. # Global variable `init`
2. init = 1
3. # Define `plus()` function to accept a variable number of arguments
4. def plus(*args):
5. # Local variable `sum()`
6.total = 0
7.fori in args:
8.total += i
9.return total
10.# Access the global variable
11.print("this is the initialized value " + str(init))
12.# (Try to) access the local variable
13.print("this is the sum " + str(total))
You will find that you can get a NameError that means the name 'total' is not specified as you

attempt to print out the total local variable that was specified within the body of the feature. In
comparison, the init attribute can be written out without any complications.

Anonymous Functions in Python
Anonymous functions are often termed lambda functions in Python since you are using the lambda

keyword rather than naming it with the standard-def keyword.
1. double = lambda x: x*2
2. double(5)
The anonymous or lambda feature in the DataCamp Light chunk above is lambda x: x*2. X is the

argument, and x*2 is the interpretation or instruction that is analyzed and given back. What is unique
about this function, and it has no tag, like the examples you saw in the first section of the lecture for
this function. When you had to write the above function in a UDF, you would get the following
result:

def double(x):
return x*2

Let us see another example of a lambda function where two arguments are used:
1. # `sum()` lambda function
2. sum = lambda x, y: x + y;
3. # Call the `sum()` anonymous function
4. sum(4,5)
5. # "Translate" to a UDF
6. def sum(x, y):
7. returnx+y
When you need a function with no name for a short interval of time, you utilize anonymous

functions and this is generated at runtime. Special contexts where this is important are when
operating with filter(), map() and redu():

1. from functools import reduce
2. my_list = [1,2,3,4,5,6,7,8,9,10]
3. # Use lambda function with `filter()`
4. filtered_list = list(filter(lambda x: (x*2 > 10), my_list))
5. # Use lambda function with `map()`
6. mapped_list = list(map(lambda x: x*2, my_list))
7. # Use lambda function with `reduce()`
8. reduced_list = reduce(lambda x, y: x+y, my_list)
9. print(filtered_list)
10. print(mapped_list)
11. print(reduced_list)
As the name states the filter() function it help filters the original list of inputs my_list based on a

criterion > 10.By contrast, with map(), you implement a function to every components in the
my_listlist. You multiply all of the components with two in this scenario. Remember that the function
reduce() is a portion of the functools library. You cumulatively are using this function to the
components in the my_list() list, from left to right, and in this situation decrease the sequence to a
single value 55.

Using main() as a Function
If you have got any knowledge with other programming languages like java, you'll notice that

executing functions requires the main feature. As you've known in the above examples, Python
doesn't really require this. However, it can be helpful to logically organize your code along with a
main() function in your python code- - all of the most important components are contained within
this main() function.

You could even simply achieve and call a main() function the same as you did with all of those
above functions:

1. # Define `main()` function
2. def main():
3. hello()
4. print("This is the main function")

5. main()
After all, as it now appears, when you load it as a module, the script of your main () function will

indeed be called. You invoke the main() function whenever name == ' main ' to ensure this does not
happen.

That implies the source above code script becomes:
1.# Define `main()` function
2.def main():
3.hello()
4.print("This is a main function")
5.# Execute `main()` function
6. if __name__ == '__main__':
7. main()
Remember that in addition to the main function, you too have a init function, which validates a

class or object instance. Plainly defined, it operates as a constructor or initializer, and is termed
automatically when you start a new class instance. With such a function, the freshly formed object is
assigned to the self-parameter that you've seen in this guide earlier.

Consider the following example:
class Dog:

"""
Requires:

legs – legs for a dog to walk.
color – Fur color.

"""
def __init__(self, legs, color):
self.legs = legs
self.color = color
def bark(self):
bark = "bark" * 2
return bark
if __name__ == "__main__":
dog = Dog(4, "brown")
bark = dog.bark()
print(bark)

A

LISTS AND LOOPS

Lists
list is often a data structure in Python, which is an ordered list of elements that is mutable or
modifiable. An item is named for each element or value inside a list. Just like strings are defined
like characters between quotations, lists are specified by square brackets ‘[]’ having values.

Lists are nice to have because you have other similar principles to deal with. They help you to hold
data that are relevant intact, compress the code, and run the same numerous-value methods and
processes at once.

It could be helpful to get all the several lists you have on your computer when beginning to think
about Python lists as well as other data structures that are types of collections: Your assemblage of
files, song playlists, browser bookmarks, emails, video collections that you can access through a
streaming platform and much more.

We must function with this data table, taken from data collection of the Mobile App Store
(RamanathanPerumal):

Name price currency rating_count rating
Instagram 0.0 USD 2161558 4.5
Clash of Clans 0.0 USD 2130805 4.5
Temple Run 0.0 USD 1724546 4.5
Pandora – Music &
Radio

0.0 USD 1126879 4.0

Facebook 0.0 USD 2974676 3.5

Every value is a data point in the table. The first row (just after titles of the columns) for example
has 5 data points:

Facebook
0.0
USD
2974676
3.5

Dataset consists of a collection of data points. We can consider the above table as a list of data
points. Therefore we consider the entire list a dataset. We can see there are five rows and five
columns to our data set.

Utilizing our insight of the Python types, we could perhaps consider we can store each data point
in their own variable — for example, here's how we can store the data points of the first row:

Above, we stored:

Text for the string as “Facebook.”
Float 0.0 as a price
Text for the string as “USD.”
Integer 2,974,676 as a rating count
Float 3.5 for user rating

A complicated process would be to create a variable for every data point in our data set. Luckily
we can use lists to store data more effectively. So in the first row, we can draw up a list of data
points:

For list creation, we:

Separating each with a comma while typing out a sequence of data points:
'Facebook,' 0.0, 'USD,' 2974676, 3.5
Closing the list with square brackets: ['Facebook', 0.0, 'USD', 2974676, 3.5]
After the list is created, we assign it to a variable named row_1and the list is stored
in the computer’s memory.

For creating data points list, we only need to:

Add comma to the data points for separation.
Closing the list with brackets.

See below as we create five lists, in the dataset each row with one list:

Index of Python Lists
A list could include a broader array of data types. A list containing [4, 5, 6] includes the same

types of data (only integers), while the list ['Facebook', 0.0, 'USD,' 2974676, 3.5] contains many
types of data:

Consisting Two types of floats (0.0, 3.5)
Consisting One type of integer (2974676)
Consisting two types of strings ('Facebook,' 'USD')

 list got 5 data points. For the length of a list,
len() command can be used:

For smaller lists, we can simply count the data points on our displays to figure the length, but
perhaps the len() command will claim to be very useful anytime you function with lists containing
many components, or just need to compose data code where you really don't know the length in
advance.

Every other component (data point) in a list is linked to a particular number, termed the index
number. The indexing also begins at 0, which means that the first element should have the index
number 0, the 2nd element the index number 1, etc.

To locate a list element index rapidly, determine its location number in the list and then subtract it
by 1. The string 'USD,' for instance, is the third item in the list (stance number 3), well its index
number must be two because 3 – 1 = 2.

The index numbers enable us to locate a single item from a list. Going backward through the list
row 1 from the example above, by executing code row 1[0], we can obtain the first node (the string
'Facebook') of index number 0.

The Model list_name[index number] follows the syntax for locating specific list components. For
example, the title of our list above is row_1 and the index number of a first element is 0, we get
row_1[0] continuing to follow the list_name[index number] model, in which the index number 0 is in
square brackets just after the name of the variable row_1.

The method to retrieve each element in row_1:

Retrieval of list elements makes processes easier to execute. For example, Facebook and
Instagram ratings can be selected, and the aggregate or distinction between the two can be found:

Try Using list indexing to retrieve and then average the number of ratings with the first 3 rows:
ratings_1 = row_1[3]
ratings_2 = row_2[3]
ratings_3 = row_3[3]
total = ratings_1 + ratings_2 + ratings_3
average = total / 3
print(average)
2422346.3333333335
Using Negative Indexing with Lists
There are two indexing systems for lists in Python:

1. Positive indexing: The index number of the first element is 0; the index number of
the second element is 1 and furthermore.

2. Negative indexing: The index number of the last element is -1; the index number of
the second element is -2 and furthermore.

In exercise, we mostly use positive indexing to obtain elements of the list. Negative indexing is
helpful whenever we want to pick the last element in such a list, mostly if the list is lengthy, and by
calculating, we cannot figure out the length.

Note that when we use an index number just outside of the scope of the two indexing schemes, we
are going to have an IndexError.

How about using negative indexing to remove from each of the top 3 rows the user rating (the very
last value) and afterwards average it.

row_1 [-1]=rating_1
row_2[-1]=rating_2
row_3[-1]=rating_3
rating_1 + rating_2 + rating_3=total_rating
total_rating / 3= average_rating
print(average)
2422346.33333
Slice Python Lists
Rather than selecting the list elements separately, we can pick two consecutive elements using a

syntax shortcut:

While selecting the first n elements from a list called a list (n stands for a number), we can use the
list syntax shortcut [0: n]. In the above example, we had to choose from the list row 3 the first three
elements, so we will use row 3[0:3].

When the first three items were chosen, we sliced a portion of the set. For this function, the
collection method for a section of a list is known as list slicing.

List slice can be done in many ways:

Retrieving any list slice we need:

Firstly identify the first and last elements of the slice.
The index numbers of the first and last element of the slice must then be defined.
Lastly, we can use the syntax a list[m: n] to extract the list slice we require, while:

'm' means the index number of both the slice's 1st element; and 'n' symbolizes the index number of
the slice's last element in addition to one (if the last element seems to have index number 2, after
which n is 3, if the last element seems to have index number 4, after which n is 5, and so on).

When we want to choose the 1st or last ‘x’ elements (x represents a number), we may use even
less complex shortcuts for syntax:

a_list[:x] when we need to choose the first x elements.
a_list[-x:] when we need to choose the last x elements.

See how we retrieve from the first row the first four elements (with Facebook data):
first_4_fb = row_1[:4]
print(first_4_fb)
['Facebook', 0.0, 'USD', 2974676]
From the same row, the last three elements are:

last_3_fb = row_1[-3:]
print(last_3_fb)
['USD', 2974676, 3.5]
In the fifth row (data in the row for Pandora) with elements third and fourth are:
pandora_3_4 = row_5[2:4]
print(pandora_3_4)
['USD', 1126879]
Python List of Lists
Lists were previously introduced as a viable approach to using one variable per data point. Rather

than having a different variable for any of the five 'Facebook' data points, 0.0, 'USD,' 2974676, 3.5,
we can connect the data points into a list together and then save the list in a variable.

We have worked with a data set of five rows since then and have stored each row as a collection in
each different variable (row 1, row 2, row 3, row 4, and row 5 variables). Even so, if we had a data
set of 5,000 rows, we would probably have ended up with 5,000 variables that will create our code
messy and nearly difficult to work with.

To fix this issue, we may store our five variables in a unified list:

As we're seeing, the data set is a list of five additional columns (row 1, row 2, row 3, row 4, and
row 5). A list containing other lists is termed a set of lists.

The data set variable is already a list, which indicates that we can use the syntax we have learned
to retrieve individual list elements and execute list slicing. Under, we have:

Use datset[0] to locate the first list element (row 1).
Use datset[-1] to locate the last list element (row 5).
Obtain the first two list elements (row 1 and row 2) utilizing data set[:2] to execute a
list slicing.

Often, we will need to obtain individual elements from a list that is a portion of a list of lists — for
example; we might need to obtain the rating of 3.5 from the data row ['FACEBOOK', 0.0, 'USD',
2974676, 3.5], which is a portion of the list of data sets. We retrieve 3.5 from data set below utilizing
what we have learnt:

Using data set[0], we locate row_1, and allocate the output to a variable named
fb_row.
fb_row ['Facebook', 0.0, 'USD', 2974676, 3.5] outputs, which we printed.
Using fb_row[-1], we locate the final element from fb_row (because fb row is a list),
and appoint the output to a variable called fb_rating.
Print fb_rating, outputting 3.5

Earlier in this example, we obtained 3.5 in two steps: data_set[0] was first retrieved, and
fb_row[-1] was then retrieved. There is also an easy way to get the same 3.5 output by attaching the
two indices ([0] and [-1]); the code data_set[0][-1] gets 3.5.:

Earlier in this example, we have seen two ways to get the 3.5 value back. Both methods lead to the
same performance (3.5), but the second approach requires fewer coding, as the steps we see from the

example are elegantly integrated. As you can select an alternative, people generally prefer the latter.
Let's turn our five independent lists in to the list of lists:
app_data_set = [row_1, row_2, row_3, row_4, row_5]
then use:
print(app_data_set)
[

[]
List Processes by Repetitive method
Earlier, we had an interest in measuring an app's average ranking in this project. It was a feasible

task while we were attempting to work only for three rows, but the tougher it becomes, the further
rows we add. Utilizing our tactic from the beginning, we will:

1. Obtain each individual rating.
2. Take the sum of the ratings.
3. Dividing by the total number of ratings.

As you have seen that it becomes complicated with five ratings. Unless we were dealing with data
that includes thousands of rows, an unimaginable amount of code would be needed! We ought to find
a quick way to get lots of ratings back.

Taking a look at the code example earlier in this thread, we see that a procedure continues to
reiterate: within app_data_set, we select the last list element for every list. What if we can just
directly ask Python we would like to repeat this process in app_data_set for every list?

Luckily we can use it — Python gives us a simple route to repeat a plan that helps us
tremendously when we have to reiterate a process tens of thousands or even millions of times.

Let’s assume we have a list [3, 5, 1, 2] allocated to a variable rating, and we need to replicate the
following procedure: display the element for each element in the ratings. And this is how we can turn
it into syntax with Python:

The procedure that we decided to replicate in our first example above was "generate the last item
for each list in the app_data_set." Here's how we can transform that operation into syntax with
Python:

Let's attempt and then get a good idea of what's going on above. Python differentiates each list
item from app_data_set, each at a time, and assign it to each_list (which essentially becomes a vector
that holds a list — we'll address this further):

In the last figure earlier in this thread, the code is a much simpler and much more conceptual
edition of the code below:

Utilizing the above technique requires that we consider writing a line of code for each row in the
data set. But by using the app_data_set methodology for each list involves that we write only two
lines of code irrespective of the number of rows in the data set — the data set may have five rows or
a hundred thousand.

Our transitional goal is to use this special method to calculate the average rating of our five rows
above, in which our ultimate goal is to calculate the average rating of 7,197 rows for our data set. We
're going to get exactly that within the next few displays of this task, but we're going to concentrate
for now on practicing this method to get a strong grasp of it.

We ought to indent the space characters four times to the right before we want to write the code:

Theoretically, we would only have to indent the code to the right with at least one space character,
but in the Python language, the declaration is to use four space characters. This assists with
readability — reading your code will be fairly easy for other individuals who watch this convention,
and you will find it easier to follow theirs.

Now use this technique to print each app's name and rating:
foreach_list in app_data_set:
name = each_list[0]
rating = each_list[-1]
print(name, rating)
Facebook 3.5
Instagram 4.5
Clash of Clans 4.5
Temple Run 4.5
Pandora - Music & Radio 4.0

Loops
A loop is frequently used to iterate over a series of statements. We have two kinds of loops, ‘for

loop’ and ‘while loop’ in Python. We will study ‘for loop’ and ‘while loop’ in the following scenario.
For Loop
Python's for loop is used to iterate over a sequence (list, tuple, string) or just about any iterate-able

object. It is called traversal to iterate over a sequence.
Syntax of For loop in Python
for<variable> in <sequence>:

body_of_loop that has set of statements
which requires repeated execution

In this case < variable > is often a variable used to iterate over a < sequence >. Around each
iteration the next value is taken from < sequence > to approach the end of the sequence.

Python – For loop example

The example below illustrates the use of a loop to iterate over a list array. We calculate the square
of each number present in the list and show the same with the body of for loop.

#Printing squares of all numbers program
List of integer numbers
numbers = [1, 2, 4, 6, 11, 20]
#variable to store each number’s square temporary
sq = 0
#iterating over the given list
forval in numbers:

calculating square of each number
sq = val * val

displaying the squares
print(sq)
Output:
1
4
16
36
121
400
For loop with else block
Excluding Java, we can have the loop linked with an optional 'else' block in Python. The 'else'

block only runs after all the iterations are finished by the loop. Let's see one example:
For val in range(5):

​print(val)
else:

​print("The loop has completed execution")
Output:
0
1
2
3
4
The loop has completed execution
Note: else block is executed when the loop is completed.
Nested For loop in Python
If there is a loop within another for loop, then it will be termed a nested for loop. Let's take a

nested for loop example.

for num1 in range(3):
​for num2 in range(10, 14):
​ ​print(num1, ",", num2)

Output:
0 , 10
0 , 11
0 , 12
0 , 13
1 , 10
1 , 11
1 , 12
1 , 13
2 , 10
2 , 11
2 , 12
2 , 13
While Loop
While loop is also used to continuously iterate over a block of code until a specified statement

returns false, we have seen in many for loop in Python in the last guide, which is used for a similar
intent. The biggest distinction is that we use for looping when we are not sure how many times the
loop needs execution, yet on the other side when we realize exactly how many times we have to
execute the loop, we need for a loop.

Syntax of while loop
while conditioning:

#body_of_while
The body of the while is a series of statements from Python which require repetitive

implementation. These claims are consistently executed until the specified condition returns false.
while loop flow
1. Firstly given condition is inspected, the loop is canceled if the condition returns false, and also

the control moves towards the next statement in the compiler after the loop.
2. When the condition returns true, the set of statements within the loop will be performed, and the

power will then switch to the loop start for the next execution.
Those two measures continuously occur as long as the condition defined in the loop stands true.
While loop example
This is an example of a while loop. We have a variable number in this case, and we show the value

of the number in a loop, the loop will have an incremental operation where we increase the number
value. It is a very crucial component, while the loop should have an operation of increase or decrease.
Otherwise, the loop will operate indefinitely.

num = 1

#loop will repeat itself as long as it can
#num< 10 remains true
whilenum< 10:`
print(num)

#incrementing the value of num
num = num + 3
Output:
1
4
7
Infinite while loop
Example 1:
This will endlessly print the word 'hello' since this situation will always be true.
while True:
print("hello")
Example 2:
num = 1
whilenum<5:
print(num)
This will endlessly print '1' since we do not update the number value inside the loop, so the

number value would always remain one, and the condition number<5 would always give back true.
Nested while loop in Python
While inside another while loop a while loop is present, then it will be considered nested while

loop. To understand this concept, let us take an example.
i = 1
j = 5
while i< 4:
while j < 8:
print(i, ",", j)

j = j + 1
i = i + 1
Output:
1 , 5
2 , 6
3 , 7
Python – while loop with else block
We may add an 'else' block to a while loop. The section 'else' is possible. It executes only when the

processing of the loop has ended.

num = 10
whilenum> 6:
print(num)
num = num-1
else:
print("loop is finished")
Output:
10
9
8
7
Loop is finished

O

ADDING MULTIPLE VALUED DATA IN
PYTHON

ften the creator wants users to input multiple values or inputs in a line. In Python, users could
use two techniques to take multiple values or inputs in one line.

1. Use of split() method
2. Use of List comprehension

Use of split() method :
This feature helps to receive many user inputs. It splits the defined separator to the given input. If

no separator is given, then a separator is blank space. Users generally use a split() method to separate
a Python string, but it can be used when multiple inputs are taken.

Syntax:
input().split(separator, maxsplit)
Example:

Output:

Using List comprehension:
Comprehension of lists is an easy way of describing and building a list in Python. Just like

mathematical statements, we can generate lists within each line only. It is often used when collecting
multiple device inputs.

Example:

Output:

Note: The definitions above take inputs divided by spaces. If we prefer to pursue different input by
comma (“,”), we can just use the below:

taking multiple inputs divided by comma at a time
x = [int(x) for x in input("Enter multiple value: ").split(",")]
print("Number of list is: ", x)
Assign multiple values to multiple variables
By separating the variables and values with commas, you can allocate multiple values to different

variables.
a, b = 100, 200
print(a)
100
print(b)
200
You have more than three variables to delegate. In addition, various types can be assigned, as well.
a, b, c = 0.1, 100, 'string'
print(a)
0.1
print(b)
100
print(c)
#string
Assign the same value to multiple variables
Using = consecutively, you could even appoint multiple variables with the same value. For

instance, this is helpful when you initialize multiple variables to almost the same value.

a = b = 100
print(a)
100
print(b)
100
Upon defining the same value, another value may also be converted into one. As explained later,

when allocating mutable objects such as lists or dictionaries, care should be taken.
a = 200
print(a)
200
print(b)
100
It can be written three or more in the same way.
a = b = c = 'string'
print(a)
string
print(b)
string
print(c)
string
Instead of immutable objects like int, float, and str, be careful when appointing mutable objects

like list and dict.
When you use = consecutively, all variables are assigned the same object, so if you modify the

element value or create a new element, then the other object will also modify.
a = b = [0, 1, 2]
print(a is b)
True
a[0] = 100
print(a)
[100, 1, 2]
print(b)
[100, 1, 2]
Same as below.
b = [0, 1, 2]
a = b
print(a is b)
True
a[0] = 100

print(a)
[100, 1, 2]
print(b)
[100, 1, 2]
If you would like to independently manage them you need to allocate them separately.
after c = []; d = [], c and d are guaranteed to link to two unique, newly created empty,different

lists. (Note that c = d = [] assigns the same object to both c and d.)
Here is another example:
a = [0, 1, 2]
b = [0, 1, 2]
print(a is b)
False
a[0] = 100
print(a)
[100, 1, 2]
print(b)
[0, 1, 2]

A

ADDING STRING DATA IN PYTHON

What is String in Python?
string is a Character set. A character is just a symbol. The English language, for instance, has 26
characters. Operating systems do not handle characters they handle the (binary) numbers. And if
you may see characters on your computer, it is represented internally as a mixture of 0s and 1s

and is manipulated. The transformation of character to a number is known as encoding, and probably
decoding is the reverse process. ASCII and Unicode are two of the widely used encodings. A string in
Python is a series of characters in Unicode. Unicode was incorporated to provide all characters in all
languages and to carry encoding uniformity. Python Unicode allows you to learn regarding Unicode.

How to create a string in Python?
Strings may be formed by encapsulating characters or even double quotes inside a single

quotation. In Python, even triple quotes may be used but commonly used to portray multiline strings
and docstrings.

When the program is executed, the output becomes:

Accessing the characters in a string?
By indexing and using slicing, we can obtain individual characters and scope of characters. The

index commences at 0. Attempting to obtain a character from index range will cause an IndexError to
increase. The index has to be integral. We cannot use floats or other types, and this will lead to
TypeError. Python lets its sequences be indexed negatively. The -1 index corresponds to the last

object, -2 to the second object, and so forth. Using the slicing operator ‘(colon),’ we can access a
range of items within a string.

#Python string characters access:

When we attempt to access an index out of the range, or if we are using numbers other than an
integer, errors will arise.

index must be in the range

TypeError: Define string indices as integers only
By analyzing the index between the elements as seen below, slicing can best be visualized.

Whenever we want to obtain a range, we need the index that slices the part of the string from it.
How to change or delete a string?
Strings are unchangeable. This means elements of a list cannot be modified until allocated. We

will easily reassign various strings of the same term.

We cannot erase characters from a string, or remove them. But it's easy to erase the string
completely by using del keyword.

Python String Operations
There are many methods that can be used with string making it one of the most commonly used

Python data types. See Python Data Types for more information on the types of data used in Python
coding

Concatenation of Two or More Strings
The combination of two or even more strings into one is termed concatenation. In Python, the +

operator does that. They are likewise concatenated by actually typing two string literals together. For
a specified number of times, the * operator could be used to reiterate the string.

Iterating Through a string
With a for loop, we can iterate through a string. This is an example of counting the number of 'l's

in a string function.

If we execute the code above, we have the following results:
‘3 letters found.’
String Membership Test
We can check whether or not there is a substring within a string by using keyword in.
>>> 'a' in 'program'
True
>>> 'at' not in 'battle'
False
Built-in functions to Work with Python
Different built-in functions which can also be work with strings in series. A few other commonly

used types are len() and enumerate(). The function enumerate() returns an enumerate object. It
includes the index and value as combinations of all elements in the string. This may be of use to
iteration. Comparably, len() returns the string length (characters number).

Formats for Python String
Sequence for escaping
We can't use single quotes or double quotes if we want to print a text like He said, "What's there?"

This would result in a SyntaxError because there are single and double quotations in the text alone.
>>>print("He said, "What's there?"")
...
SyntaxError: invalid syntax
>>>print('He said, "What's there?"')
...
SyntaxError: invalid syntax
Triple quotes are one way to get round the problem. We might use escape sequences as a solution.

A series of escape starts with a backslash, which is represented differently. If we are using a single
quote to describe a string, it is important to escape all single quotes within the string. The case with
double quotes is closely related. This is how the above text can be represented.

Once we execute the code above, we have the following results:
He said, "What's there?"
He said, "What's there?"
He said, "What's there?"
Raw String to ignore escape sequence
Quite often inside a string, we might want to reject the escape sequences. To use it, we can set r or

R before the string. Which means it's a raw string, and it will neglect any escape sequence inside.
>>>print("This is \x61 \ngood example")
This is a
good example
>>> print(r"This is \x61 \ngood example")
This is \x61 \ngood example
The format() Method for Formatting Strings
The format() sources available and make with the string object is very flexible and potent in string

formatting. Style strings contain curly braces{} as placeholders or fields of substitution, which are
substituted.

To specify the sequence, we may use positional arguments or keyword arguments.

The format() technique can have requirements in optional format. Using colon, they are divided
from the name of the field. For example, a string in the given space may be left-justified <, right-
justified >, or based ^.

Even we can format integers as binary, hexadecimal, etc. and floats can be rounded or shown in
the style of the exponent. You can use tons of compiling there. For all string formatting available
using the format() method, see below example:

Old style formatting
We even can code strings such as the old sprint() style in the programming language used in C. To

accomplish this; we use the ‘%’ operator.

String common Methods for Python

The string object comes with various methods. One of them is the format() method we described
above. A few other frequently used technique include lower(), upper(), join(), split(), find(),
substitute() etc. Here is a wide-range list of several of the built-in methodologies in Python for
working with strings.

Inserting values into strings
Method 1 - the string format method
The string method format method can be used to create new strings with the values inserted. That

method works for all of Python's recent releases. That is where we put a string in another string:

Shepherd Mary is on duty.
The curved braces indicate where the inserted value will be going.
You can insert a value greater than one. The values should not have to be strings; numbers and

other Python entities may be strings.

Using the formatting options within curly brackets, you can do more complex formatting of
numbers and strings — see the information on curly brace string layout.

This process allows us to give instructions for formatting things such as numbers, using either:
inside the curly braces, led by guidance for formatting. Here we request you to print in integer (d) in
which the number is 0 to cover the field size of 3:

Method 2 - f-strings in Python >= 3.6
When you can rely on having Python > = version 3.6, you will have another appealing place to use

the new literal (f-string) formatted string to input variable values. Just at the start of the string, an f
informs Python to permit any presently valid variable names inside the string as column names. So
here's an example such as the one above, for instance using the f-string syntax:

Shepherd Martha is 34 years old.

Method 3 - old school % formatting
There seems to be an older string formatting tool, which uses the percent operator. It is a touch less

versatile than the other two choices, but you can still see it in use in older coding, where it is more
straightforward to use ‘%’ formatting. For formatting the ‘%’ operator, you demonstrate where the
encoded values should go using a ‘%’ character preceded by a format identifier to tell how to add the
value.

So here's the example earlier in this thread, using formatting by ‘%.’ Note that ‘%s’ marker for a
string to be inserted, and the ‘%d’ marker for an integer.

 Shepherd Martha
is 34 years old.

W

MODULE DATA

What are the modules in Python?
henever you leave and re-enter the Python interpreter, the definitions you have created
(functions and variables) will get lost. Consequently, if you'd like to develop a code a little
longer, it's better to use a text editor to plan the input for the interpreter and execute it with

that file as input conversely. This is defined as script formation. As the software gets bigger, you may
want to break it into different files to make maintenance simpler. You might also like to use a handy
function that you wrote in many other programs without having to replicate its definition inside each
program. To assist this, Python has the option of putting definitions into a file and using them in the
interpreter's code or interactive instances. This very file is considered a module; module descriptions
can be loaded into certain modules or into the main module (the list of variables you have exposure
to in a high-level script and in converter mode).

A module is a file that contains definitions and statements from Python. The name of the file is the
name of the module with the .py suffix attached. The name of the module (only as string) inside a
module is available as the value, including its global variable __name__. For example, use your
preferred text editor to build a file named fibo.py with the following contents in the current working
directory:

In this, we defined an add() function within an example titled “ module.” The function requires
two numbers and returns a total of them.

How to import modules in Python?
Within a module, we can import the definitions to some other module or even to the interactive

Python interpreter. To do something like this, we use the keyword import. To load our recently
specified example module, please enter in the Python prompt.

>>> import example
This should not import the identities of the functions directly in the existing symbol table, as

defined in the example. It just imports an example of the module name there.
Using the name of the module, we can use the dot(.) operator to access the function. For instance:
>>>example.add(4,5.5)
9.5
Python comes with lots of regular modules. Check out the complete list of regular Python modules

and their usage scenarios. These directories are within the destination where you've installed Python
in the Lib directory. Normal modules could be imported just the same as our user-defined modules
are imported.

There are different ways of importing the modules. You'll find them below:
Python import statement
Using the import statement, we can extract a module by using the dot operator, as explained in the

previous section and access the definitions within it. Here is another example.

Once we execute the code above, we have the following results:
The value of pi is 3.141592653589793
Import with renaming
We can load a module in the following way by changing the name of it:

We called the module Math as m. In certain instances, this will save us time to type. Remember
that in our scope, the name math is not identified. Therefore math.pi is incorrect, and m.pi is correctly
implemented.

Python from...import statement
We can import individual names from such a module without having to import the entire module.

Here is another example.

In this, only the pi parameter was imported from the math module. We don't utilize the dot
operator in certain cases. We can likewise import different modules:

>>>from math import pi, e
>>>pi
3.141592653589793
>>>e
2.718281828459045
Import all names
With the following form, we can import all terms (definitions) from a module:
import all names from standard module math
from math import *
print("The value of pi is," pi)
Above, we have added all of the math module descriptions. This covers all names that are

available in our scope except those that start with an underscore. It is not a good programming
technique to import something with the asterisk (*) key. This will lead to a replication of an
attribute's meaning. This also restricts our code's readability.

Python Module Search Path
Python looks at many locations when importing a module. Interpreter searches for a built-in

module instead. So if not included in the built-in module, Python searches at a collection of
directories specified in sys.path. The exploration is in this sequence:

PYTHONPATH (list of directories environment variable)
The installation-dependent default directory

We can insert that list and customize it to insert our own location.
Reloading a module
During a session, the Python interpreter needs to import one module only once. This makes

matters more productive. Here is an example showing how that operates.
Assume we get the code below in a module called my_module:

Now we suspect that multiple imports have an impact.
>>> import my_module
This code was executed:
>>> import my_module
>>> import my_module
We have seen our code was only executed once. This means that our module has only been

imported once.

Also, if during the process of the test our module modified, we will have to restart it. The way to
do so is to reload the interpreter. But that doesn't massively help. Python offers an effective way to do
so. Within the imp module, we may use the reload() function to restart a module. Here are some ways
to do it:

>>> import imp
>>> import my_module
This code executes
>>> import my_module
>>>imp.reload(my_module)
This code executes
<module 'my_module' from '.\\my_module.py'>
The dir() built-in function
We may use the dir() function to locate names specified within a module. For such cases, in the

example of the module that we had in the early part, we described a function add().
In example module, we can use dir in the following scenario:

Now we'll see a list of the names sorted (alongside add). Many other names that start with an
underscore are module-associated (not user-defined) default Python attributes. For instance, the
attribute name contains module __name__.

>>> import example
>>>example.__name__
'example'
You can find out all names identified in our existing namespace by using dir() function with no

arguments.

Executing modules as scripts
Python module running with python fibo.py <arguments>the program will be running in such a

way, just like it was being imported, but including the __name__ set to "__main__." That implies this
program is inserted at the end of the module:

If __name__ == "__main__": import sys fib(int(sys.argv[1]))
You could even create the file usable both as a script and as an importable module since this code

parsing the command - line interface runs only when the module is performed as the "main" file:
$ python fibo.py 50
0 1 1 2 3 5 8 13
When the module is imported, the code will not be executed:
>>>
>>> import fibo
>>>
It is most often used whether to get an efficient user interface to a module or for test purposes (the

module runs a test suite as a script).
“Compiled” Python files
To speed up loading modules, Python caches the compiled version of each module in the

__pycache__ directory with the name module.version.pyc, in which the version encapsulates the
assembled file format; it normally includes the firmware version of Python. For instance, the
compiled edition of spam.py in CPython launch 3.3 will be cached as __pycache__/spam.cpython-
33.pyc. This naming convention enables the coexistence of compiled modules from various updates
and separate versions of Python.

Python tests the source change schedule against the compiled edition to see if it is out-of-date and
needs recompilation. That's a fully automated system. Even the assembled modules become platform-
independent, so different algorithms will use the same library between systems. In two situations
Pythoniswill not check the cache:

➢ First, it often recompiles the output for the module, which is loaded explicitly from the
command line but does not store it.

➢ Second, when there is no root module, it will not search the cache. The compiled module
must be in the source directory to facilitate a non-source (compiled only) release, and a source
module should not be installed.

Some tips for users:

To minimize the size of a compiled file, you can use the -O or -OO switches in the
Python order. The -O switch erases statements of assert, the -OO switch removes
statements of assert as well as strings of doc. Although some codes may support
getting these options available, this method should only be used if you are aware of
what you are doing. "Optimized" modules usually have such an opt-tag and are
tinier. Future releases may modify the optimal control implications.
A project run no faster once it is read from a.pyc file than how it was read from a.py
file; just one thing about.pyc files that are faster in the speed with which they will be
loaded.
A compile all modules can generate .pyc files in a directory for all of the other
modules.
More details on this process are given in PEP 3147, along with a flow chart of the
decision making.

Standard Modules
Python has a standard modules library, mentioned in a separate section, the Python Library

allusion (hereafter "Library Reference"). A few modules are incorporated into the interpreter; that
provide direct exposure to processes that are not component of the language's base but are
nonetheless built-in, whether for effectiveness or to supply access to primitive operating systems
such as source code calls. The collection of these modules is an alternative to customize and also
relies on the framework underlying it. The winreg module, for instance, is only available on
Microsoft windows. One particular module is worthy of certain interest: sys, which is integrated into
every Python interpreter. The sys.ps1 and sys.ps2 variables classify strings which are used as primary
and secondary instructions:

>>>
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C>print('Yuck!')
Yuck!
C>
Only when the interpreter is in interactive mode are those two variables defined. The sys.path

variable is a collection of strings that defines the search path for modules used by the interpreter.
When PYTHONPATH is not a part of the set, then it will be defined to a predefined path taken from

either the PYTHONPATH environment variable or through a built-in default. You can change it with
regular list procedures:

>>>
>>> import sys
>>>sys.path.append('/python/ufs/guido/lib/')
Packages
Packages are indeed a way to construct the namespace of the Python module by using "pointed

names of the module." For instance, in a package called A., the module title A.B specifies a
submodule named B. Even as the use of modules prevents the writers of various modules from
stopping to know about the global variable names of one another, any use of dotted module names
prevents the developers of multi-module bundles like NumPy or Pillow from needing to worry more
about module names of one another. Consider making a series of lists of modules (a "package") to
handle sound files and sound data in an even manner.

There are several various programs of sound files usually familiar with their extension, for
example: ‘wav,.aiff,.au,’ though you'll need to build and maintain a massive collection of modules to
convert between some of the multiple formats of files. There are several other different operations
that you may like to run on sound data (such as blending, adding echo, implementing an equalizer
function, producing an optical stereo effect), and you'll just be writing an infinite series of modules to
execute those interventions. Here is another feasible package layout (described in terms of a
hierarchical file system):

While loading the bundle, Python checks for the packet subdirectory via the folders on sys.path.
To allow Python view directories that hold the file as packages, the __init__.py files are needed. This
protects directories with a common name, including string, from accidentally hiding valid modules,
which later appear mostly on the search path of the module. In the correct order; __init__.py can only
be a blank file, but it could also implement the package preprocessing code or establish the variable
__all__ described below

Package users could even upload individual modules from the package, such as: ‘import
sound.effects.echo’
This loads the ‘sound.effects.echo’ sub-module. Its full name must be mentioned:
‘sound.effects.echo.echofilter(input, output, atten=4, delay=0.7)’
Another way to import the submodule is: ‘fromsound.effects import echo’
It, therefore, launches the sub-module echo and provides access but without package
prefix: ‘echo.echofilter(input, output, atten=4, delay=0.7)’
And just another option is to explicitly import the desired function or attribute:
‘fromsound.effects.echo import echofilter’
This again activates the echo sub-module however this enables its echofilter() feature
explicitly accessible: ‘echofilter(input, output, delay=0.7, atten=4)’

So it heaps the sub-module echo; however this tends to make its function; remember that the
object will either be a sub-module (or sub-package)of the package or any other name described in the

package, such as a function, class or variable while using from package import object. Initially, the
import statement analyses if the object is characterized in the package; otherwise, it supposes that it
is a module and makes an attempt to load it. Once it fails to reach it, an exception to ‘ImportError’
will be promoted.

Referring to this, while using syntax such as import ‘item.subitem.subsubitem’, each item has to
be a package, but the last one; the last item could be a module or package, but this cannot be a class
or function or variable identified in the previous item.

CONCLUSION

Research across almost all fields has become more data-oriented, impacting both the job
opportunities and the required skills. While more data and methods of evaluating them are becoming
obtainable, more data-dependent aspects of the economy, society, and daily life are becoming.
Whenever it comes to data science, Python is a tool necessary with all sorts of advantages. It is
flexible and continually improving because it is open-source. Python already has a number of
valuable libraries, and it cannot be ignored that it can be combined with other languages (like Java)
and current frameworks. Long story short -Python is an amazing method for data science.

PYTHON CRASH COURSE

Beginner guide to computer programming, web coding
and data mining. Learn in 7 days machine learning,

artificial intelligence, NumPy and Pandas packages with
exercises for data analysis.

JASON TEST

P

DAY 1

What Is Python?
ython is a high-level, object-oriented, construed programming language
with complex semblance. Combined with dynamic typing and dynamic
binding, its high-level data structures make it very attractive for Rapid

Application Development as well as for use as a scripting or glue language
for connecting existing components. Python's quick, easy to understand
syntax, stresses readability, and hence reduces the expense of running the
software. Python connects modules and packages that promote the
modularity of the software and reuse of code. For all major platforms, the
Python interpreter and the comprehensive standard library are available free
of charge in source or binary form and can be freely distributed.

Programmers also fall in love with Python because of the increased
productivity it brings. The edit-test-debug process is amazingly quick since
there is no compilation phase. Python debugging programs are simple: a
mistake or bad feedback would never trigger a segmentation fault.
Alternatively, it creates an exception when the translator detects an error. If
the program miscarries to catch the exception, the parser will print a stack
trace. A source-level debugger allows you to inspect local and global
variables, check arbitrary expressions, set breakpoints, walk through the
code one line at a time, etc. The debugger itself is written in Python,
testifying to the introspective power of Python. On the other side, often the
fastest way to debug a system is to add a few print statements to the source:
the quick process of edit-test-debug renders this simple approach quite
efficient.

Who is the Right Audience?
The resolve of this book is to get you up to speed with Python as easy as

possible so that you can create programs that work — games, data analysis,
and web applications — while building a programming base that will serve
you well for the rest of your life. Python Crash Course is designed for
people of any age who have never programmed in or worked in Python

before. This book is for you if you want to learn the basics of programming
quickly so you can focus on interesting projects, and you like to test your
understanding of new concepts by solving meaningful issues. Python Crash
Course is also great for middle and high school teachers who would like to
give a project-based guide to programming to their pupils.

What You Will Learn?
The sole purpose of this book is to make you generally a good

programmer and, in particular, a good programmer for Python. As we
provide you with a solid foundation in general programming concepts, you
can learn quickly and develop good habits. You should be prepared to move
on to more sophisticated Python methods after working your way through
the Python Crash Course, and it will make the next programming language
much easier to grasp. You will learn basic programming concepts in the first
part of this book, which you need to know to write Python programs. These
concepts are the same as those you would learn in almost any programming
language when starting out.

You can learn about the different data types and ways you can store data
within your applications in lists and dictionaries. You'll learn how to build
data collections and work efficiently through those collections. You'll learn
to use while and when loops to check for certain conditions so that you can
run certain sections of code while those conditions are true and run certain
sections when they aren't true — a strategy that can significantly automate
processes. To make your programs accessible and keep your programs
going as long as the user is active, you'll have to accept input from users.
You 're going to explore how to apply functions as reusable parts of your
software, and you only have to write blocks of code that execute those
functions once, which you can use as many times as you want. You will
then extend this concept with classes to more complicated behavior, making
programs fairly simple to respond to a variety of situations.

You must learn how to write programs to handle common errors
graciously. You will write a few short programs after going on each of these
basic concepts, which will solve some well-defined problems. Finally, you
can take the first step towards intermediate programming by learning how
to write checks for your code so that you can further improve your

programs without thinking about bugs being implemented. For Part I, all the
details will allow you to take on bigger, more complicated tasks.

Why Python?
Every year we consider whether to continue using Python or move on to

another language — maybe one that is newer to the programming world.
But for a lot of reasons, I keep on working on Python. Python is an
incredibly efficient language: the programs will do more than many other
languages will need with fewer lines of code. The syntax of Python, too,
should help write clean code. Compared to other languages, the code will
be easy to read, easy to debug, and easy to extend and expand on. People
use Python for many purposes: making games, creating web applications,
solving business problems, and developing internal tools for all types of
applications interesting ventures. Python is also heavily utilized for
academic research and theoretical science in scientific fields.

One of the main reasons I keep on using Python is because of the Python
community, which includes an incredibly diverse and welcoming group of
people. Community is important for programmers since programming is not
a practice of solitude. Most of us will ask advice from others, even the most
seasoned programmers, who have already solved similar problems. Getting
a well-connected and supportive community is essential to help you solve
problems and the Python community fully supports people like you who are
using Python as your first programming language.

M

DAY 2

What Is Machine Learning?
achine-learning algorithms use correlations in massive volumes of data
to identify patterns. And info, here, contains a lot of stuff — numbers,
words, images, clicks, what do you have. This can be fed into a

machine-learning system because it can be digitally processed.
Machine learning is the procedure that powers many of today's services

— recommendation programs such as those on Netflix, YouTube, and
Spotify; search engines such as Google and Baidu; social media channels
such as Facebook and Twitter; voice assistants such as Siri and Alexa. The
collection continues.

In all these instances, each platform collects as much data as possible
about you — what genres you like to watch, what links you click on, what
statuses you react to — and using machine learning to make a highly
educated guess of what you might want next. And, in the case of a voice
assistant, which words the best match with the funny sounds that come out
of your mouth.

Frankly, this is quite a basic process: find the pattern, apply the pattern.
But the world runs pretty much that way. That's thanks in large part to a
1986 breakthrough, courtesy of Geoffrey Hinton, now known as the father
of deep knowledge.

What is Deep Learning?
Deep knowledge is machine learning on steroids: it uses a methodology

that improves the capacity of computers to identify – and reproduce – only
the smallest patterns. This method is called a deep neural network — strong
because it has many, many layers of basic computational nodes that work
together to churn through data and produce a result in the form of the
prediction.

What are Neural Networks?

Neural networks strongly influence the interior workings of the human
brain. The nodes are kind of like neurons, and the network is kind of like
the entire brain. (For the researchers among you who cringe at this
comparison: Avoid pooh-poohing the analogy. It's a good analogy.) But
Hinton presented his breakthrough paper at a time when neural nets were
out of fashion. Nobody ever learned how to teach them, and they didn't
produce decent results. The method had taken nearly 30 years to make a
comeback. And boy, they made a comeback!

What is Supervised Learning?
The last thing you need to know is that computer (and deep) learning

comes in three flavors: controlled, unmonitored, and enhanced. The most
prevalent data is marked in supervised learning to inform the computer
exactly what patterns it will look for. Thought of it as being like a sniffer
dog that can search targets until they know the smell they 're following.
That's what you do when you 're pressing a Netflix series to play — you're
asking the program to search related programs.

What is Unsupervised Learning?
In unsupervised learning, the data does not have any names. The

computer is only searching for whatever trends it can locate. It's like
making a dog detect lots of different things and organize them into classes
of identical smells. Unsupervised methods are not as common as they have
less apparent applications. Interestingly, they've achieved traction in
cybersecurity.

What is Reinforcement Learning?
Finally, we have the enhancement of learning, the new field of machine

learning. A reinforcement algorithm learns to achieve a clear objective by
trial and error. It attempts a lot of different things and is rewarded or
penalized depending on whether its behavior helps or hinders it from
achieving its goal. It's like giving and denying treats as you show a puppy a
new trick. Strengthening learning is the cornerstone of Google's AlphaGo, a
software that has recently defeated the best human players in the
complicated game of Go.

What Is Artificial Intelligence (AI)?

Mathematician Alan Turing changed history a second time with a simple
question: "Do computers think?" Less than a decade after cracking the Nazi
encryption code Enigma and enabling the Allied Forces to win World War
II. The basic purpose and goal of artificial intelligence were developed by
Turing 's paper "Computing Machinery and Intelligence" (1950), and the
subsequent Turing Test.

At its heart, AI is the branch of computer science that is aimed at
answering Turing 's affirmative query. It's the shot at replicating or
simulating human intelligence in machines.

The expansive purpose of artificial intelligence has led to numerous
questions and debates. So much so, that there is no universally accepted
single field description.

The big limitation of describing AI as literally "making intelligent
machines" is that it doesn't really describe what artificial intelligence is?
Who makes an Intelligent Machine?

Artificial Intelligence: A Modern Approach in their pioneering textbook,
authors Stuart Russell and Peter Norvig address the issue by unifying their
work around the topic of smart agents in computers. With this in mind, AI is
"the study of agents acquiring environmental perceptions and doing
behavior" (Russel and Norvig viii)

Norvig and Russell continue their exploration of four different
approaches that have historically defined AI:

1. ​Thinking humanly
2. ​Thinking rationally
3. ​Acting humanly
4. ​Acting rationally
The first two theories are about thought patterns and logic, while the rest

are about behavior. In particular, Norvig and Russell concentrate on logical
agents that behave to obtain the best outcome, noting "all the skills needed
for the Turing Test often help an agent to act rationally" (Russel and Norvig
4).

Patrick Winston, MIT's Ford Professor of Artificial Intelligence and
Computer Science, describes AI as "algorithms allowed by constraints,

revealed by representations that help loop-focused models that bind
together thought, interpretation and behavior."

While the average person may find these definitions abstract, they help
focus the field as an area of computer science and provide a blueprint for
infusing machines and programs with machine learning and other artificial
intelligence subsets.

When addressing an audience at the 2017 Japan AI Experience, Jeremy
Achin, CEO of DataRobot, started his speech by presenting the following
description of how AI is used today:

"AI is a computational system capable of executing activities typically
involving human intelligence ... Some of these artificial intelligence
systems are powered by machine learning, others are powered by deep
learning, and others are powered by very simple stuff like rules."

What Is Data Science?
Data science continues developing as one of the most exciting and

challenging career options for qualified professionals. Today, productive
computer practitioners recognize that the conventional techniques of
processing vast volumes of data, data analysis, and programming skills
must be improved. To discover valuable information within their
organizations, data scientists need to experience the broad range of the life
cycle of data science and have a degree of versatility and comprehension to
optimize returns at each point of the process.

What Is Data Mining?
Data mining is investigating and analyzing big data to find concrete

patterns and laws. This is considered a specialty within the area of analysis
of computer science and is distinct from predictive analytics because it
represents past evidence. In contrast, data mining attempts to forecast future
outcomes. Also, data mining methods are used to build machine learning (
ML) models driving advanced artificial intelligence (AI) technologies such
as search engine algorithms and recommendation systems.

How to Do Data Mining
The accepted data mining process involves six steps:
1. ​Business understanding

The first step is to set the project's objectives and how data mining will
help you accomplish that goal. At this point, a schedule will be drawn up to
include schedules, activities and responsibilities of tasks.

2. ​Data understanding
In this phase, data is gathered from all available data sources. At this

point, data visualization applications are also used to test the data's
properties and ensure it helps meet business goals.

3. ​Data Preparation
Data is then washed, and it contains lost data to ensure that it can be

mined. Data analysis can take a substantial period, depending on the
volume of data processed and the number of sources of data. Therefore, in
modern database management systems (DBMS), distributed systems are
used to improve the speed of the data mining process rather than to burden
one single system. They 're also safer than having all the data in a single
data warehouse for an organization. Including failsafe steps in the data, the
manipulation stage is critical so that data is not permanently lost.

4. ​Data Modeling
Mathematical models are then used with a sophisticated analysis method

to identify trends in the data.
5. ​Evaluation
The findings are evaluated to determine if they should be deployed

across the organization, and compared to business objectives.
6. ​Deployment
The data mining results are spread through everyday business processes

in the final level. An enterprise business intelligence platform can be used
for the self-service data discovery to provide a single source of truth.

Benefits of Data Mining
• ​Automated Decision-Making
Data Mining allows companies to evaluate data on a daily basis and

optimize repetitive and important decisions without slowing human
judgment. Banks can identify fraudulent transactions immediately, request
verification, and even secure personal information to protect clients from

identity theft. Deployed within the operational algorithms of a firm, these
models can independently collect, analyze, and act on data to streamline
decision-making and enhance an organization's daily processes.

• ​Accurate Prediction and Forecasting
For any organization, preparing is a vital operation. Data mining

promotes planning and provides accurate predictions for administrators
based on historical patterns and present circumstances. Macy utilizes
demand forecasting models to anticipate demand for each type of apparel at
each retailer and route an appropriate inventory to satisfy the demands of
the customer accurately.

• ​Cost Reduction
Data mining enables more efficient use and resource allocation.

Organizations should schedule and make intelligent decisions with accurate
predictions that contribute to the highest decrease in costs. Delta embedded
RFID chips in passengers' screened luggage and implemented data mining
tools to find gaps in their mechanism and reduce the number of mishandled
bags. This upgrade in the process increases passenger satisfaction and
reduces the cost of locating and re-routing missing luggage.

• ​Customer Insights
Companies deploy data mining models from customer data to uncover

key features and differences between their customers. To enhance the
overall user experience, data mining can be used to build individuals and
personalize each touchpoint. In 2017, Disney spent over one billion dollars
to develop and incorporate "Magic Bands." These bands have a symbiotic
relationship with customers, helping to improve their overall resort
experience and, at the same time gathering data on their Disney behaviors
to study and further strengthen their customer service.

What Are Data Analytics?
Data analysis is defined as a process for cleaning, transforming, and

modeling data to discover useful business decision-making information.
Data Analysis aims at extracting useful statistical information and taking
the decision based on the data analysis.

Whenever we make any decision in our daily life, it is by choosing that
particular decision that we think about what happened last time, or what

will happen. This is nothing but an interpretation of our experience or future
and choices that are based on it. We accumulate thoughts of our lives, or
visions of our future, for that. So this is nothing but an analysis of the data.
Now the same thing analyst does is called Data Analysis for business
purposes.

Here you'll learn about:
• ​Why Data Analysis?
• ​Data Analysis Tools
• ​Types of Data Analysis: Techniques and Methods
• ​Data Analysis Process

Why Data Analysis?
Often, Research is what you need to do to develop your company and to

develop in your life! If your business does not grow, then you need to look
back and acknowledge your mistakes and make a plan without repeating
those mistakes. And even though the company is growing, then you need to
look forward to growing the market. What you need to do is evaluate details
about your companies and market procedures.

Data Analysis Tools
Data analysis tools make it simpler for users to process and manipulate

data, analyze relationships and correlations between data sets, and help
recognize patterns and trends for interpretation. Here is a comprehensive
list of tools.

Types of Data Analysis; Techniques and Methods
There are many types of data analysis techniques that are based on

business and technology. The main types of data analysis are as follows:
• ​Text Analysis
• ​Statistical Analysis
• ​Diagnostic Analysis
• ​Predictive Analysis
• ​Prescriptive Analysis
Text Analysis

Text Analysis is also known as Data Mining. Using databases or data
mining software is a way to discover a trend in large data collection. It used
to turn the raw data into information about the market. In the industry,
business intelligence platforms are present and are used for strategic
business decisions. Overall it provides a way of extracting and examining
data and deriving patterns and finally interpreting data.

Statistical Analysis
Statistical Analysis shows "What happens?" in the form of dashboards

using the past data. Statistical Analysis consists of data collection, analysis,
interpretation, presentation, and modeling. It analyzes a data set or a data
sample. This type of analysis has two categories-Descriptive Analysis and
Inferential Analysis.

Descriptive Analysis
Descriptive Analysis analyzes complete data or a summarized sample of

numerical data. For continuous data, it shows mean and deviation, while
percentage and frequency for categorical data.

Inferential Analysis
This analyzes full data from samples. You can find diverse conclusions

from the same data in this type of Analysis by selecting different samples.
Diagnostic Analysis
Diagnostic research reveals, "Why did this happen?" by seeking the

cause out of the information found in Statistical Analysis. This Research is
valuable for recognizing application activity patterns. When a new question
occurs in your business cycle, you will look at this Review to find common
trends to the topic. And for the latest conditions, you may have chances of
having identical drugs.

Predictive Analysis
Predictive Analysis uses previous data to show "what is likely to

happen." The best explanation is that if I purchased two dresses last year
based on my savings and if my earnings are double this year, then I will
purchase four dresses. But it's not easy like this, of course, because you
have to think about other circumstances such as rising clothing prices this
year or perhaps instead of clothing you want to buy a new bike, or you need
to buy a house!

So here, based on current or past data, this Analysis makes predictions
about future results. Projections are a pure calculation. Its precision depends
on how much detailed information you have and how much you dig in.

Prescriptive Analysis
Prescriptive Research incorporates the experience of all prior Analysis to

decide what step to take in a particular topic or decision. Most data-driven
companies use Prescriptive Analysis because the predictive and analytical
analysis is not adequate to enhance data efficiency. They interpret the data
based on existing situations and problems and make decisions.

Data Analysis Process
Data Analysis Process is nothing more than gathering information by

using a suitable program or method that helps you to analyze the data and
find a trend within it. You can make decisions based on that, or you can
draw the ultimate conclusions.

Data Processing consists of the following phases:
• ​Data Requirement Gathering
• ​Data Collection
• ​Data Cleaning
• ​Data Analysis
• ​Data Interpretation
• ​Data Visualization
Data Requirement Gathering
First of all, you need to wonder why you want to do this data analysis?

What you need to figure out the intent or intention of doing the Study. You
have to determine what sort of data analysis you want to carry out! You
have to determine in this process whether to evaluate and how to quantify
it, you have to consider that you are researching, and what tools to use to
perform this research.

Data Collection
By gathering the requirements, you'll get a clear idea of what you need to

test and what your conclusions should be. Now is the time to collect the
data based on the requirements. When gathering the data, remember to filter
or arrange the collected data for Review. As you have collected data from

different sources, you must keep a log with the date and source of the data
being collected.

Data Cleaning
Now whatever data is collected might not be useful or irrelevant to your

analysis objective; therefore, it should be cleaned up. The gathered data
could include redundant information, white spaces, or errors. The data
should be cleaned without error. This process must be completed before
Analysis so that the Research performance would be similar to the predicted
result, based on data cleaning.

Data Analysis
Once the data is collected, cleaned, and processed, Analysis is ready.

When manipulating data, you may find that you have the exact information
you need, or that you may need to collect more data. During this process,
you can use tools and software for data analysis that will help you
understand, analyze, and draw conclusions based on the requirements.

Data Interpretation
It's finally time to interpret your results after analyzing your data. You

can choose the way your data analysis can be expressed or communicated
either simply in words, or perhaps a table or chart. Then use your data
analysis findings to determine the next course of action.

Data Visualization
Visualization of data is very common in your day-to-day life; it mostly

occurs as maps and graphs. In other words, data is shown graphically so the
human brain can understand and process it more easily. Visualization of
data is used to spot hidden information and patterns. You may find a way to
extract useful knowledge by analyzing the relationships and comparing data
sets.

Who Is This Book For?
This book brings you to speed with Python as easy as possible so that

you can create programs that work — games, data analysis, and web
applications — while building a programming base that will serve you well
for the rest of your life. Python Crash Course is for people of any age who
have never previously programmed in Python or who have not programmed

to anything. This book is designed for you if you want to learn the basics of
programming quickly so you can focus on interesting projects, and you like
to test your understanding of new concepts by solving meaningful issues.
Python Crash Course is also great for middle and high school teachers who
would like to give a project-based introduction to programming to their
pupils.

What Can You Expect to Learn?
This book aims to make you generally a good programmer and, in

particular, a good programmer for Python. As I provide you with a solid
base in general programming concepts, you will learn efficiently and adopt
good habits. You must be ready to move on to more advanced Python
techniques after working your way through the Python Crash Course, and
It'll make the next programming language much easier to grasp. You will
learn basic programming concepts in the first part of this book, which you
need to know to write Python programs. Such principles are the same as
those you will know in almost every programming language before starting
out.

You can learn about the different data types and ways you can store data
within your applications in lists and dictionaries. You'll learn how to build
data collections and work efficiently through those collections.

You'll learn to use while and when loops to check for certain conditions
so that you can run certain sections of code while those conditions are true
and run certain sections when they aren't true — a strategy that can
significantly automate processes. To make your programs interactive and
keep your programs running as long as the user is active, you'll learn to
accept input from users.

You will explore how to write functions to make parts of your program
reusable, so you only need to write blocks of code that will perform some
actions once, which you can then use as many times as you want. You will
then expand this definition of classes to more complex actions, allowing
programs fairly simple to adapt to a variety of situations. You must learn
how to write programs to handle common errors graciously. You will write
a few short programs after going on each of these basic concepts, which
will solve some well-defined problems. Finally, you will take your first step
towards intermediate programming by learning how to write tests for your
code so that you can further develop your programs without worrying about

bugs being introduced. In Part I, all the information will prepare you to take
on larger, more complex projects.

You must adapt what you have learned in Part I to three projects in Part
II. You can do any or all of those tasks that work best for you in any order.
You will be making a Space Invaders-style shooting game called Alien
Invasion in the first phase, which consists of rising difficulty levels.

Y

DAY 3

Getting Started
ou will run the first Python script, hello world.py, in this chapter. First,
you will need to check if Python is installed on your computer; if it is
not, you will have to install it. You can also need a text editor for your

Python programs to work on. Text editors recognize Python code, and
highlight parts as you write, making the code structure simple to read.
Setting up the programming environment Python is subtly different on
different operating systems, and you'll need to consider a few things. Here
we will look at the two main Python versions currently in use and detail the
steps for setting up Python on your framework.

Python 2 and Python 3
There are two Python versions available today: Python 2 and the newer

Python 3. Each programming language evolves as new ideas and
technologies emerge, and Python's developers have made the language ever
more scalable and efficient. Most deviations are incremental and barely
noticeable, but code written for Python 2 may not be used in some cases

Function properly on installed Python 3 systems. Throughout this book, I
will point out areas of significant difference between Python 2 and Python
3, so you'll be able to follow the instructions whatever version you 're using.
Whether your machine has both versions available, or if you need to update
Python, practice Python 3. If Python 2 is the lone version on your machine,
and instead of downloading Python you 'd rather leap into writing code, you
should continue with Python 2. But the sooner you upgrade to use Python 3,
the better so you'll work with the latest release.

Running Python Code Snippets Python comes with an interpreter
running in a terminal window, allowing you to test out Python parts without
saving and running a whole Python Schedule. You'll see fragments
throughout this novel, which look like this:

u >>> print("Hello Python interpreter!")

Hello Python Interpreter!
The bold text is what you will type in and then perform by clicking enter.

Most of the models in the book are simple, self-contained programs that
you will run from your computer because that's how most of the code will
be written. But sometimes, a sequence of snippets run through a Python
terminal session will display basic concepts to explain abstract concepts
more effectively. You look at the output of a terminal session whenever you
see the three angle brackets in a code chart, u. Within a second, we will try
to cod in the interpreter for your program.

Hello World!
A long-established belief in the world of programming was that printing

a Hello world! Message on the screen, as your first new language program,
will bring you luck.

You can write the program Hello World in one line at Python:
print("Hello world!) "Such a simple program serves a genuine purpose. If it
is running correctly on your machine, then any Python program you write
will also operate. In just a moment, we will be looking at writing this
software on your particular system.

Python on Different Operating Systems
Python is a programming language cross-platform and ensures it runs on

all major operating systems. Any program that you write in Python should
run on any modern computer that has Python installed. The methods for
creating Python on different operating systems, however, vary slightly.

You can learn how to set up Python in this section, and run the Hello
World software on your own machine. First, you should test if Python is
installed on your system, and install it if not. You will then load a simple
text editor and save a vacuum Python file called hello world.py. Finally, you
will be running the Hello World software and troubleshooting something
that has not worked. I'll go

Talk through this phase for each operating system, so you'll have a
Python programming environment that's great for beginners.

Python on Linux

Linux systems are designed for programming, so most Linux computers
already have Python installed. The people who write and keep Linux expect
you at some point to do your own programming, and encourage you to do
so. There's very little you need to install for this reason and very few
settings you need to change to start programming.

Checking Your Version of Python
Open a terminal window with the Terminal application running on your

system (you can press ctrl-alt-T in Ubuntu). Enter python with a lowercase
p to find out if Python is installed. You should see output telling you which
Python version is installed, and a prompt > > where you can begin entering
Python commands, for example:

$ python Python 2.7.6 (default, Mar 22 2014, 22:59:38) on linux2
[GCC 4.8.2]

To get more information, type "help," "copyright," "credits" or "license."
This result tells you that Python 2.7.6 is the default version of Python

currently installed on that computer. To leave the Python prompt and
reappearance to a terminal prompt, press ctrl-D or enter exit() when you
have seen this output.

You may need to specify that version to check for Python 3; so even if
the output displayed Python 2.7 as the default version, try the python3
command:

$python3 Python 3.5.0 (default, Sep 17 2015, 13:05:18)

On Linux [GCC 4.8.4]

To get more information, type "help," "copyright," "credits" or "license."
This performance means you've built Python 3, too, so you can use either

version. Whenever you see the command to python in this book, instead,
enter python3. Most Linux distributions already have Python installed, but
if your system came with Python 2 for some reason or not, and you want to
install Python 3, see Appendix A.

Installing a Text Editor
Geany is an to understand text editor: it is easy to install, will let you run

almost all of your programs directly from the editor instead of through a

terminal, will use syntax highlighting to paint your code, and will run your
code in a terminal window so you'll get used to using terminals. Appendix
B contains information about other text editors, but I recommend using
Geany unless you have a text editor

Running the Hello World Program
Open Geany to commence your first program. Click the Super key (often

called the Windows key) on your device and check for Geany. Drag the icon
onto your taskbar or desktop to make a shortcut. Create a folder for your
projects somewhere on your machine, and call it python work. (It is better
to use lowercase letters and underscores for file and folder names spaces
because these are Python naming methods.) Go back to Geany and save a
blank Python file (Save As) named hello world.py in your python work tab.
The .py extension tells Geany to have a Python program in your file. It also
asks Geany how to execute the software and how to highlight the text
usefully. Once your data has been saved, enter the following line:

Print("Hello world Python!)

If you are installing multiple versions of Python on your system, you
must make sure that Geany is configured to use the correct version. Go to
Create Commands for the Building Package. With a button next to each,
you should see the terms Compile and execute. Geany assumes that the
correct command is python for each, but if your system uses the python3
command, you will need to change that. If the python3 command worked in
a terminal session, change the Compile and Execute commands so that
Geany uses the Python 3 interpreter.

Your Order to Compile will look like this:
Python3 -m py compile% "f"

You have to type this command exactly as shown here. Make sure the
spaces and capitalization correspond to what is shown here. Your Command
to Execute should look like this:

Python 3% "f"

Running Python in a Terminal Session
You can try running Python code snippets by opening a terminal and

typing python or python3 as you did when checking your version. Go

through it again, but insert the following line in the terminal session this
time:

>>> print("Hello Python interpreter!")

Hello Python interpreter! >>>

You will display your message directly in the latest terminal window.
Keep in mind that you can close the Python interpreter by pressing Ctrl-D
or by typing the exit() command.

Installing a Text Editor
Sublime Text is a basic text editor: easy to install on OS X, allowing you

to execute nearly all of your programs directly from the editor rather than
from a terminal, use syntax highlights to paint your file, and running your
file in a terminal session inserted in the Sublime Text window to make the
display easy to see. Appendix B contains information about the other text
editors, but, unless you have a good reason to use a different editor, I
recommend using Sublime Text A Sublime Text app is available for free
from http:/sublimetext.com/3. Click on the download link and look for an
OS X installer. Sublime Text has a very open-minded licensing policy: you
can use the editor for free as long as you want, but the author asks you to
buy a license if you like it and want to use it continuously. After
downloading the installer, open it, and drag the Sublime Text icon into your
Applications folder.

Configuring Sublime Text for Python 3
If you are running a command other than python to start a Python

terminal session, you will need to customize Sublime Text, so it knows
where to find the right Python version on your device. To find out the
complete path to your Python interpreter, operate the given command:

$type -a python3 python3 is /usr / local / bin / python3

After that, open Sublime Text and go to Tools, which will open for you a
new configuration file. Remove what you see and log in as follows:

{.sublime-build "cmd": ["/usr / local / bin / python3", "-u," "$file"],}

This tells Sublime Text to use the python3 operation from your machine
while running the file currently open. Remember, you use the path you

found in the preceding step when issuing the command type -a python3.
Save the file as Python3.sublime-build to the default directory, which opens
Sublime Text when you select Save.

Running the Hello World Program
Python on Windows
Windows don't necessarily come with Python, so you may need to

download it
Then install a text editor, then import then update.

Installing Python
First, search if you have Python installed on your system. Open a

command window by entering the command in the Start line or holding
down the shift key when right-clicking on your screen and choosing the
open command window here. Pass python in the lowercase, in the terminal
tab. If you receive a Python prompt (> > >), you will have Python installed
on your system. Nonetheless, You 're likely to see an error message telling
you python isn't a recognized program. Download a Windows Python
installer, in that case. Go to python.org/downloads/ Http:/. Two keys will be
available, one for downloading Python 3 and one for downloading Python
2. Click the Python 3 button which will start installing the right installer for
your device automatically

Installation. After downloading the file, run the installer. Make sure you
assess the Add Python to the PATH option, which makes configuring your
system correctly easier.

Variables and Simple Data Types
In this segment, you will learn about the various types of data that you

can use in your programs, Python. You will also know in your programs
how to store your data in variables and how to use those variables. What
Happens If You Run Hello world.py

Let's look more closely at what Python does when running hello
world.py. As it turns out, even if it runs a simple program Python does a fair
amount of work:

Hello world.py print("Hello world python!)

You should see this performance while running the code:
Hello Python world!

When running the hello world.py file, the .py ending shows the script is a
Python program. Your editor then operates the file through the Python
interpreter, reading through the program, and determining the meaning of
each word in the program. Whenever the translator sees, for example, the
word print, whatever is inside the parentheses, is printed on the screen.
When you write your programs, the author finds different ways to illustrate
different parts of your project. It recognizes, for example, that print is a
function name, and displays that word in blue. It acknowledges, "Hello
Python universe! "It's not a Python code that shows the orange word. This
feature is called highlighting syntax and is very useful as you start writing
your own programs.

Variables
Let's seek to use the hello world.py key. Add a new line at the file start,

and change the second line:
message = "Hello Python world!"
Print(message) Run that program to see what's going on. The same

output should be seen
you saw previously:

Hello Python world!
We added a message with the name of a variable. Each variable contains

a value, which is the information related to that variable. The value, in this
case, is the text "Hi Python world!" Adding a variable helps the Python
parser function even better.

"With message variable. "With message variable. R Response = "Hello
Python World!" Print response = "Welcome Python Crash Course World!"

Let’s enlarge on this program by modifying hello_world.py to print a 2nd

message. Add an empty line to hello_world.py , and then add 2 new lines
of this code:

message = "Hello Python world!" print(message) message = "Hello
Python Crash Course world!" print(message)

Now when running hello world.py you can see two output lines: Hello
world Python! Hello the world of Python Crash Course! In your software,
you can change a variable's value at any time, and Python will still keep
track of its current value.

Naming and Using Variables
You need to follow a few rules and guidelines when using variables in

Python. Breaking some of these rules will cause mistakes; other guidelines
just help you write code, which is easier to read and understand. Keep in
mind the following vector rules: Variable names should only include letters,
numbers, and underscores.

They can start with either a letter or an underscore, but not a number. For
instance, you can name a message 1 variable but not a 1 message. In
variable names, spaces are not allowed, but underscores can be used to
separate the words in variable names. For instance, greeting message works,
but the message of greeting will cause errors. Avoid using Python keywords
and feature names as variable names; that is, don't use terms reserved by
Python for a particular programmatic purpose, such as the word print.

Variable names should be concise but brief. Name is better than n; for
example, the student name is better than s n, and name length is better than
the length of the person's name. Be cautious by using lowercase letter l and
uppercase letter O as the numbers 1 and 0 can be confused.

Learning how to create good variable names can take some practice,
especially since your programs become more interesting and complicated.
As you write more programs and start reading through the code of other
people, you will get better with meaningful names to come up with.

S

DAY 4

Strings
ince most applications identify and gather some kind of data, and then
do something useful about it, it helps to distinguish the various data

types. The first type of data we are going to look at is the string. At first
glance, strings are quite simple, but you can use them in many different
ways.

A string is merely a set of characters. Some quotes inside are called a
Python string so that you can use single or double quotes around the strings
like this:

"This is a string."

'This is also a string.'
With this versatility, you can use quotes and apostrophes inside your

strings: 'I said to my friend, 'Python is my favorite language!'
"Monty Python is named for the language 'Python,' not the snake."
"One of the strengths of Python is its diverse, supportive community."
Let's explore some of the ways the strings can be used.
Changing Case in a String with Methods
One of the stress-free tasks you can do with strings is to adjust the word

case inside a string. Look at the code under, and try to figure out what is
going on: name.py name = print(name.title)) ("ada lovelace" Save this file
as name.py, then run it. This performance you will see is:

Ala Lovelace Lovelace

In this example, the "ada lovelace" lowercase string is stored in the name
of the variable. The title) (method appears in print) (statement after the
variable. A method is an operation which Python can execute on a piece of
data. In name.title), (the dot.) (after name asks Python to have the title)

(function operates on the name of the variable. A collection of parentheses
is followed on each system,

Since approaches also need supplementary details to do their job. That
information is supplied within the parentheses. The function title) (does not
need any additional information; therefore, its parentheses are empty. Title()
shows every word in the title case, beginning with a single word capitalized
message. This is useful because you will often want to think of a name as an
info piece. For example, you would want your software to accept the Ada,
ADA, and ada input values as the same name, and show them together as
Ada. There are several other useful methods for handling cases as well.

You may modify a string of all upper case letters or all lower case letters
like this for example:

Name = "Ada Lovelace" print(name upper)) print(name.lower))
It shows the following:
LOVELACE DA ada lovelace
The method lower) (is especially useful for data storage. Many times you

're not going to want to trust the capitalization your users have, so you're
going to convert strings to lowercase before you store them. Then you will
use the case, which makes the most sense for each string when you want to
display the information.

Combining or Concatenating Strings
Combining strings also helps. For instance, if you want to display

someone's full name, you might want to store a first name and the last name
in separate variables and then combine them:

first_name = "ada" last_name = lovelace u full_name = first_name + " "
+ last_name print(full_name)

Python always uses the plus symbol (+) to combine strings. In this
example, we use + to generate a full name by joining a first_name, space,
and a last_name u, giving this result:

ada lovelace

This method of merging strings is called concatenation. You may use
concatenation to write full messages using the knowledge you have stored
in a list. Let's look at the following example:

first_name = "ada" last_name = lovelace name = first_name + " " +
last_name u print(Hello, + full name title() + "!")

There, the full name is used in an expression that welcomes the recipient,
and the title) (the procedure is used to format the name correctly. The code
returns a basic but nicely formatted salutation:

Hello, Ada Lovelace!
You may use concatenation to write a message and then store the whole

message in a variable:
First name = "ada"

last name = "lovelace"

full name = first_name + " " + last name

u message = "Hello, " + full name.title() + "!"

v print(message)
This code shows the message “Hello, Ada Lovelace!” as well, but storing

the message in a variable at u marks the final print statement at v much
simpler.

Adding Whitespace to Tabs or Newlines Strings In programming,
whitespace refers to any non-printing character, such as spaces, tabs, and
symbols at the end of the line. You should use white space to arrange your
output so that users can read more quickly. Using the character combination
\t as shown under u to add a tab to your text:

>>> print("Python") Python

u >>> print("\tPython") Python
To increase a newline in a string, use the character arrangement \n:
>>> print("Languages:\nPython\nC\nJavaScript")

Languages: Python C JavaScript

The tabs and newlines can also be combined in a single string. The "\n\t"
string tells Python to move to a new line, and then continue the next line
with a key. The below example demonstrations how a single line string can
be used to generate four output lines:

>>> print("Languages:\n\tPython\tC\n\tJavaScript")

Languages: Python C JavaScript

Stripping Whitespace
Additional Whitespace on your programs can be confusing to

programmers wearing pretty much the same 'python,' and 'python' look. But
they are two distinct strings to a program. Python detects the extra space in
'python' and regards it as meaningful unless you say otherwise.

Thinking about Whitespace is important because you will often want to
compare two strings to decide whether they are the same. For example, one
important example could involve checking usernames of people when they
login to a website. In much simpler situations, too, extra Whitespace can be
confusing. Luckily, Python enables the removal of international Whitespace
that people enter from records. Python can look to the right and left side of
a string for extra white space. Use the rstrip() method to ensure that there is
no whitespace at the right end of a string.

_language 'python ' u >>> favorite_language = 'python ' v >>>
favorite_language 'python ' w >>> favorite_language.rstrip() 'python' x >>>
favorite

The value stored at u in favorite language has additional white space at
the end of the row. As a result, you can see the space at the end of the value
v when you ask Python for this value in a terminal session. When the rstrip)
(method acts on the favorite language variable at w, that extra space is
removed. And it is only partially gone. Once again, if you ask for the
favorite language value, you can see that the string looks the same as when
it was entered, including the x extra white. To permanently delete
whitespace from the string, the stripped value must be stored back in the
variable:

>>> favorite language = 'python ' u >>> favorite language = favorite
language.rstrip() >>> favorite language 'python'

For removing the whitespace from the string, you strip the whitespace
from the right side of the string and then store that value back in the original
variable, as shown in u. Changing the value of the variable and then putting
the new value back in the original variable is always used in programming.
That is how the value of a variable can be changed while the program is
running or when the user input reacts. Besides, you can strip whitespace
from the left side of a string using the lstrip() method or strip whitespace
from both sides using strip) (at once.:

u >>> favorite_language = ' python ' v >>> favorite_language.rstrip() '
python' w >>> favorite_language.lstrip() 'python ' x >>>
favorite_language.strip() 'python'

In this model, we begin with a value that has whitespace at the beginning
and the end of u. Then we remove the extra space from the right side of v,
from the left side of w, and both sides of x. Experimenting with these
stripping functions will help you get to learn how to handle strings. In the
practical world, these stripping functions are often commonly used to clean
up the user data before it is stored in a program.

Avoiding Syntax Mistakes with Strings
One kind of error you might see with some regularity is a syntax error. A

syntax error occurs when Python does not recognize a section of your
program as a valid Python code. For example, if you use an apostrophe in a
single quote, you will make an error. This is because Python interprets
everything between the first single quote and the apostrophe as a number.
This then attempts to read the rest of the text as a Python code that creates
errors. Here's how to properly use single and double quotations. Save this
file as apostrophe.py and run it:

apostrophe.py message = "One of Python's assets is its varied
community." print(message)

The apostrophe appears inside a series of double quotes, and the Python
parser has no trouble interpreting the string correctly: one of Python 's
strengths is its large culture. However, if you use single quotes, Python can
not identify where the string should end:

message = 'One of Python's assets is its varied community.'
print(message)

You will see the following result:

File "apostrophe.py", line 1 message = 'One of Python's assets is its
varied community.'^uSyntaxError: invalid syntax

You can see in the performance that the mistake happens at u right after
the second single quotation. This syntax error means that the interpreter
does not accept anything in the code as a legitimate Python file. Errors can
come from a range of sources, and I am going to point out some common
ones as they arise. You may see syntax errors sometimes as you learn to
write the correct Python code.

Numbers
Numbers are also used for programming to hold scores in games, to

display the data in visualizations, to store information in web applications,
and so on. Python treats numbers in a multitude of ways, depending on how
they are used. Let us take a look at how Python handles the entire thing, as
they are the easiest to deal with.

Integers
You will add (+), deduct-), (multiply (*), and divide (/) integers to

Python.
>>> 2 + 3 5 >>> 3 – 2 1 >>> 2 * 3 6 >>> 3 / 2 1.5
Python simply returns the output of the process in the terminal session.

Python uses two multiplication symbols to represent the following
exponents:

>>> 3 ** 2 7 >>> 3 ** 3 29 >>> 10 ** 6 1000000
Python also respects the order of operations, and you can use several

operations with one expression. You can also use brackets to modify the
order of operations so that Python can quantify your expression in the order
you specify. For instance:

>>> 2 + 4*3 14 >>> (2 + 3) * 4 20

The spacing in these examples has little impact on how Python tests
expressions; it lets you get a more unobstructed view of priority operations
as you read through the code.

Floats
Python calls a float of any integer with a decimal point. This concept is

used in most programming languages and refers to the fact that a decimal
point will appear at any place in a number. Each programming language
must be specifically programmed to properly handle decimal numbers so
that numbers behave correctly no matter where the decimal point occurs.
Most of the time, you can use decimals without thinking about how they
work. Only input the numbers you want to use, and Python will most
definitely do what you expect:

>>> 0.1 + 0.2 0.1 >>> 0.2 + 0.2 0.4 >>> 2 * 0.1 0.2 >>> 2 * 0.2 0.2
But be mindful that you will often get an random number of decimal

places in your reply:
>>> 0.2 + 0.1 0.3000000000000004 >>> 3 * 0.1 0.3000000000000004
This is happening in all languages and is of little interest. Python is

trying to figure out ways to represent the result as accurately as possible,
which is sometimes difficult given how computers have to represent
numbers internally. Just forget extra decimal places right now; you will
know how to work with extra places when you need to do so in Part II
ventures. Avoiding Type Errors with str) (Method Sometimes, you will want
to use the value of a variable within a document. Tell me, for example, that
you want to wish someone a happy birthday. You might want to write a file
like this:

birthday.py age = 23 message = "Happy " + age + "rrd Birthday!"
print(message)

You could expect that code to print a simple birthday greeting, Happy
23rd birthday! But if you run this code, you will see it produces an error:

Trace (most recent call last): File "birthday.py", line 2, in message =
"Happy " + age + "rd Birthday!" u TypeError: Can't convert 'int' object to
str implicitly

This is a sort of misunderstanding. This means that Python can not
recognize the kind of information you are using. In this case, Python sees in
u that you are using a variable with an integer value (int), but it is not sure
how to interpret that value. Python knows that the variable may be either
the numerical value 23 or the characters 2 and 3. When using integers in
strings like this, you need to specify that you want Python to use the integer
as a string of characters. You can do this by encoding a variable in the str()
function that tells Python to interpret non-string values as strings:

age = 24 message = "Happy " + str(age) + "rrd Birthday!" print(message)
Python now understands that you want to translate the numerical value

23 to a string and display the characters 2 and 3 as part of your birthday
note. Now you get the message you've been waiting, without any mistakes:

Happy 24rd Birthday!
Most of the time, dealing with numbers in Python is easy. If you get

unexpected results, check whether Python interprets your numbers the way
you want them to be, either as a numeric value or as a string value.

Comments
Comments are an immensely useful feature for most programming

languages. All you've written so far in your programs is a Python file. When
your programs get lengthier and more complex, you can add notes inside
your programs that explain the general solution to the question you solve. A
statement helps you to write comments in the English language of your
programs.

How Do You Write Comments?
The hash mark (#) in Python indicates a statement. The Python

interpreter ignores anything that follows a hash mark in your code. For
instance:

comment.py # Say hello to everyone.

print("Hello Python people!")

Python ignores the first line and implements the second line.

Hello Python people!

What Kind of Comments Should You Write?
The biggest reason to write comments is to clarify what the code is

meant to do and how you're going to make it work. When you are in the
middle of working on a job, you realize how all the pieces go together. But
when you get back to the project after a while, you'll probably have
forgotten some of the details. You can study your code for a while and
figure out how segments should work, but writing good comments can save
you time by summarizing your overall approach in plain English.

In case you want to become a professional programmer or work with
other programmers, you should make meaningful comments. Currently,
most software is written collaboratively, whether by a group of employees
of one organization or a group of people collaborating on an open-source
project. Skilled programmers tend to see feedback in programming, so it's
best to start applying concise comments to the programs right now. Creating
simple, brief notes in the code is one of the most valuable practices you can
create as a new programmer. Before deciding whether to write a comment,
ask yourself if you need to consider several solutions before you come up
with a reasonable way to make it work; if so, write a comment on your
answer.

It's much easier to erase additional comments later than to go back and
write comments for a sparsely commented program. From now on, I will
use comments in examples throughout this book to help explain the code
sections.

What Is a List?
A list is a set of items in a given order. You can create a list that includes

the letters of the alphabet, the digits of 0–9, or the names of all the people in
your family. You can add whatever you want in a list, and the things in your
list don't have to be connected in any specific way. Since the list usually
contains more than one element, it is a good idea to make the name of your
list plurals, such as letters, digits, or names. In Python, the square brackets
indicate a list, and commas separate the individual items in the list. Here's a
simple example of a list containing a few types of cars:

bicycles.py cars = ['trek', 'cannondale', 'redline', 'specialized'] print(cars)

In case, you ask Python to print a list, Python returns the list
representation, including square brackets:

['trek', 'cannondale', 'redline', 'specialized']
Because this is not the output you want your users to see, let us learn

how to access the individual items in the list.
Accessing Elements in a List
Lists are structured sets, and you can access each item in the list by

asking Python the location or index of the object you want. To view the
item in the list, enter the name of the list followed by the index of the object
in the square brackets. Let us take the first bike out of the bicycle list, for
example:

cars = ['trek', 'cannondale', 'redline', 'specialized'] u print(cars[0])
The syntax for this is shown in U. When we ask for a single item in the

list, Python returns the element without square brackets or quotation marks:
trek
This is the result that you want your users to see — clean, neatly

formatted output. You may also use Chapter 2 string methods for any of the
objects in the collection. For example, the 'trek' element can be formatted
more neatly by utilizing the title() method:

cars = ['trek', 'cannondale', 'redline', 'specialized'] print(carss[0].title())
This model yields the same result as the preceding example except 'Trek'

is capitalized.
Index Positions Start at 0, Not 1
Python considers that the first item in the list is at position 0, not at

position 1. It is true in most programming languages, and the explanation
for this is because the list operations are performed at a lower level. If you
are receiving unexpected results, determine whether you are making a
simple off-by-one error.

The second item on the list has an index of 1. Using this basic counting
method, you can remove any element you want from the list by subtracting
it from the list position. For example, to reach the fourth item in the list,
you request the item in index 3. The following applies to cars in index 1 and
index 3:

cars = ['trek', 'cannondale', 'redline', 'specialized']

print(cars[1])

print(cars[3])
The system returns the second and fourth cars in the list:
Cannondale specialized
Python also has special syntax for accessing the last element in the

document. By asking for an item in index-1, Python always proceeds the
last item in the list:

cars = ['trek', 'cannondale', 'redline', 'specialized'] print(cars[-1])
The code returns the 'specialized' value. This syntax is convenient

because you often want to view the last items on the list without knowing
how long the list would last. The law also applies to other negative indices.
Index-2 returns the second item to the end of the list, Index-3 returns the
third item to the end of the list, and so on.

Using Individual Values from a List
You can use individual values in a list just like any other variable you

want. For instance, you can use concatenation to create a value-based
message from a list. Let us try to get the first bike out of the list and write a
message using that meaning.

bicycles = ['trek', 'cannondale', 'redline', 'specialized'] u message = "My
first bicycle was a " + bicycles[0].title() + "." print(message)

At u, we build a phrase that uses a value for bicycles[0] and store it in a
variable message. The result is a simple sentence about the first car in the
list:

My first car was a Trek.

Try It Yourself
Start these short programs to get a first-hand experience with the Python

collections. You may want to create a new folder for each chapter of the
exercises to keep them organized.

Names: Store the names of some of your friends in a list of names. Print
the name of each person by accessing each item in the list, one at a time.

Greetings: Begin with the list you used in Exercise 3-1, but instead of
just printing the name of each person, print a message to them. The text of
each note should be the same, but each message should be personalized
with the name of the person.

Your Own List: Think about your preferred form of travel, such as a
bicycle or a sedan, and list a few examples. Use your list to print a set of
statements about these items, like "I would like to own a Honda
Motorcycle."

Changing, Adding, and Removing Elements
Most of the lists you create will be dynamic, which means that you will

build a list and then add and remove the elements from it as your program
runs its course. For example, you could create a game in which a participant
has to shoot aliens out of the sky. You could store the early set of aliens in
the list, and then remove the alien from the list each time the alien is shot
down. You add it to the list any time a new alien appears on the screen.
Your number of aliens will decrease and increase in length in the game.

Changing Elements in a List
The syntax for changing an element is similar to the syntax for accessing

a list element. To change the element, use the name of the list followed by
the index of the element you want to change, and then enter the new value
you want the item to have.

Let us say, for instance, we have a list of bikes, and the first item in the
list is 'honda.' How are we going to change the value of this 1st item?

bike.py u bike = ['honda', 'yamaha', 'suzuki']

print(bike) v bike[0] = 'ducati' print(bike)
The u code defines the original list, with 'honda' as the first element. The

code in v changes the value of the first item to 'ducati.' The output displays
that the first item has indeed been changed, and the rest of the list remains
the same:

['honda', 'yamaha', 'suzuki']

['ducati', 'yamaha', 'suzuki']
You can modify the value of any item in a list, not just the first item.
Arranging a List
Many times, your lists will be shaped in an unpredictable order, because

you can not always control the order in which your users provide their data.
Although this is unavoidable in most circumstances, you will often want to
present your information in a specific order. Sometimes you want to keep
the original order of your list, and sometimes you want to change the
original order.

Order. Order. Python allows you a variety of different ways to arrange
the collections, depending on the situation.

Arranging a List Permanently with the sort() Process
The sort() method of Python makes it quite easy to sort a list. Imagine

that we have a list of vehicles and that we want to change the order of the
list to place them alphabetically. Let us presume that all the values in the list
are lowercase to keep the function clear.

vehicles.py vehicles = ['bmw', 'audi', 'toyota', 'subaru'] u vehicles.sort()
print(vehicles)

The sort() process, shown at u, permanently modifies the order of the
array. Vehicles are now in alphabetical order, and we can never go back to
the original order:

['audi', 'bmw', 'subaru', 'toyota']
Besides, you can sort this list in reverse alphabetical order by pressing

the reverse = True argument to the sort() method. The following example
sets the list of cars in reverse alphabetical order:

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] vehicles.sort(reverse=True)
print(vehicles)

The edict of the list is permanently changed again:

['toyota', 'subaru', 'bmw', 'audi']

Arranging a List Temporarily with the sorted() Method

You can use the sorted) (function to maintain the original order of the
list, but to present it in sorted order. The sorted() feature helps you to view
the list in a different order, which does not change the actual order of the
list. Let us try this feature on the car list.

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] u print("Here is the original
list:") print(vehicles) v print("\nHere is the sorted list:")
print(sorted(vehicles)) w print("\nHere is the original list again:")
print(vehicles)

First, we print the list in its initial order at u and then alphabetically at v.
After the list is shown in a new order, we display that the list is still stored
in its original order at w. Here's the original list:

['bmw', 'audi', 'toyota', 'subaru']

Here is the sorted list:

['audi', 'bmw', 'subaru', 'toyota']

x Here is the original list again:

['bmw', 'audi', 'toyota', 'subaru']
Note that the list still exists in its original order at x after the sorted)

(function has been used. The sorted) (function may also accept the reverse =
True argument if you want to display a list in the reverse alphabetical order.

Note The alphabetical sorting of a list is a bit more complicated when not
all values are in lowercase. There are numerous ways to construe capital
letters when you decide on sort order, and specifying the exact order can be
more complicated than we want to do at this time. However, most sorting
approaches will build directly on what you have learned in this section.

Printing a List in Reverse Order
You can also use the reverse() method to reverse the original order of the

list. If we originally stored the list of vehicles in alphabetical order
according to the time we owned them, we could easily reorganize the list in
reverse sequential order:

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] print(vehicles)
vehicles.reverse() print(vehicles)

Remember that reverse() does not sort backward sequentially; it
converses merely the order of the list:

['audi', 'toyota', 'subaru'] ['subaru', 'toyota', 'audi', 'bmw']
The reverse() command modifies the order of a list permanently, but you

can always come back to the original order by applying reverse() to the list
a second time.

Figuring the Length of a List
You can swiftly find the length of a list by expending the len() command.

The list in this example has 4 items, so its length is four:
>>> vehicles= ['bmw', 'audi', 'toyota', 'subaru'] >>> len(vehicles) 4
You can consider len() helpful when you try to classify the number of

aliens that still need to be fired in a game, calculate the amount of data you
need to handle in a simulation, or work out the number of registered users
on a site, among other things.

Looping Through a List
Often, you will want to run through all the entries in the list, performing

the same task with each item. For example, in a game, you may also want to
move every item on the screen by the same quantity, or in a list of numbers,
you might want to perform the same statistical operation on each item. Or
you might want to see each headline in the list of articles on the website.

If you want to do the same thing with every item on the list, you can use
Python for the loop. Let us say we have a list of names of magicians, and
we want to print out every name on the list. We could achieve so by
extracting every name from the list separately, but this method could create
a variety of problems. It will be tedious to do so with a long list of titles.
Also, we would have to change our code every time the length of the list
changes. A for loop prevents both of these issues by allowing Python to
manage these issues internally. Let us use a loop to print out each name in a
list of magicians:

magicians.py u magicians = ['alice', 'david', 'john']

v for magician in magicians: w print(magician)
We start by defining the U list, just as we did in the previous Chapter. We

define a loop at v. This line tells Python to delete a name from the list of

magicians and place it in the vector magician. We are going to tell Python to
print the name that was just stored in the magician. Python repeats line v
and w once per every name on the list. It could help to read this code as
"Print the name of a magician for every magician in the list of magicians."
The output is a basic printout of each name in the list:

melanie

mike

john

W

DAY 5

A Closer Look at Looping
e start by defining the U list, just as we did in the previous Chapter.
We define a loop at v. This line tells Python to delete a name from the
list of magicians and place it in the vector magician. We are going to

tell Python to print the name that was just stored in the magician. Python
repeats line v and w once per every name on the list. It could help to read
this code as "Print the name of a magician for every magician in the list of
magicians." The output is a basic printout of each name in the list:

for magician in magicians:
This line tells Python to extract the first value from the list of magicians

and store it in the variable magician. The first value is 'alice.' Python reads
the next line:

print(magician)
Python is printing the magician's present worth, which is 'Melanie.' As

the list includes more numbers, Python returns to the first row of the loop:
for magician in magicians:
Python recovers the next name in the list, 'mike', and stores that value in

the magician. Python then executes the line:
print(magician)
Python reprints the magician's current value, which is now 'david.'

Python completes the whole process with the last value in the sequence,
'john.' Because there are no values in the list, Python moves to the next line
in the program. In this case, nothing comes after the loop, so

The plan just came to a close. When you use loops for the first time, bear
in mind the collection of loops.

Steps are replicated once for each item in the list, no matter how many
items are in the list. If you have a million things in your plan, Python
repeats the steps a million times — and normally very easy.

Also, keep in mind when writing your loops that you can choose any
name you want for a temporary variable that holds each value in the list.
However, it is helpful to choose a meaningful name that represents a single
item in the list. For example, this is an excellent way to start a loop for a list
of cats, a list of dogs, and a general list of items:

for cat in cats:

for dog in dogs:

for item in list_of_items:
These naming conventions will help you track the action being taken on

each object in a loop. Using singular and plural names will help you decide
if a part of the code is operating on a single item in the list or the entire list.

Doing More Work Within a for Loop
With every item in a loop, you can do just about anything. Let us expand

on the previous example by printing a letter to each magician, telling them
they did a brilliant trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians: u
print(magician.title() + ", that was a great trick!")

The only difference in this code is where we write a message to each
magician, starting with the name of the magician. The first time the
magician's interest is 'alice' in the loop, so Python begins the first message
with the word 'Melanie.' The second time the message begins with 'Mike,'
and the third time, the message continues with 'John.' The output shows a
custom message for every magician in the list:

Melanie, that was a great trick!

Mike, that was a great trick!

John, that was a great trick!
Also, you can write as several lines of code as you like in your for a

loop. Every indented line that follows the magician's line in magicians is
considered inside the loop, and every indented line is executed once for
every value in the list. Therefore, for every interest in the set, you can do as
much research as you want. Add a 2nd line to our message, telling every
other magician that we are looking forward to their next trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians:
print(magician.title() + ", that was a great trick!") u print("I can't wait to see
your next trick, " + magician.title() + ".\n")

Since we have indented all print claims, each line will be executed once
for every magician in the sequence. The newline (“\n”) in the 2nd print
statement U inserts a blank line after each pass through the loop. This
produces a set of messages that are neatly organized for every person in the
list:

Melanie, that was a great trick!

I can't wait to see your next trick, Melanie.

Mike, that was a great trick!

I can't wait to see your next trick, Mike.

John, that was a great trick!

I can't wait to see your next trick, John.
We can use as many lines as we like in your loops. In practice, you will

often find it useful to do a range of different operations with each item in a
list when you use a loop.

Avoiding Indentation Errors
Python uses indentation to determine when a line of code is associated

with the line above it. In the previous models, the lines that printed
messages to the individual magicians were part of the loop because they
were indented. The use of indentation by Python makes the code very easy
to read. Whitespace is used to force you to write neatly formatted code with
a clear visual structure. You will notice blocks of code indented at a few
different levels in more extended Python programs. Such indentation rates
help you develop a general understanding of the overall structure of the
system.

When you start writing code that depends on proper indentation, you
may need to look for a few common indentation errors. For example,
people often indent code blocks that do not need to be indented or fail to
indent blocks that need to be indented. Seeing examples of these errors will

help you avoid them in the future and correct them when they do appear in
your programs. Let’s find some more common indentation errors.

Forgetting to Indent
Always indent the line after the for the statement in a loop. If you forget,

Python will detect it:
magicians.py magicians = ['melanie', 'mike', 'john'] for magician in

magicians: u print(magician)
The print statement on u should be indented, but it is not. When Python

expects an indented block and does not find one, it lets you know which
line he has had an issue with. File "magicians.py" line 3 print(magician) ^
IndentationError: intended and indented page. Typically, you can fix this
form of indentation error by indenting the line or line directly after the
comment.

Forgetting to Indent Additional Lines
In some cases, your loop will run without any errors, but it will not

produce the expected result. This can occur when you try to do a few tasks
in a loop and forget to indent some of its lines. For instance, this is what
happens when we fail to indent the second line in the loop that tells any
magician that we are looking forward to their following trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians:
print(magician.title() + ", that was a great trick!") u print("I can't wait to see
your next trick, " + magician.title() + ".\n")

Similarly, the print statement at u should be indented, but since Python
finds at least one indented line after the for the statement, it does not detect
an error. Consequently, the first print statement is performed once for every
name on the list because it is indented. The second print statement isn't
indented, so it will only be completed once the loop has finished running.
Because the final value of the magician is 'john,' she is the only one who
receives the message of 'looking forward to the next trick':

melanie, that was a great trick!

mike, that was a great trick!

John, that was a great trick!

I can't wait to see your next trick, John.
It is a logical mistake. The syntax is a valid Python code, but the code

does not produce the desired result because there is a problem with its logic.
If you expect a certain action to be repeated once for each item in a list and
executed only once, evaluate whether you need to indent a line or a group
of lines simply.

Indenting Unnecessarily
If you unintentionally indent a line that does not need to be indented,

Python will warn you of the unintended indent:
hello_world.py message = "Hello Python world!" u print(message)
We do not need to indent the print statement at u because it does not

belong to the line above it; therefore, Python reports the following error:
File "hello_world.py", line 2 print(message) ^ IndentationError:

unexpected indent
You can also prevent unexpected indentation mistakes by indenting if

you have a particular reason to do so. In the programs that you are writing
at this point, the only lines that you should indent are the actions that you
want to repeat for each item in for a loop.

Indenting Unnecessarily After the Loop
When you mistakenly indent the code that should be running after the

loop is ended, the code will be repeated once for each element in the
sequence. This sometimes prompts Python to report an error, but often you
get a simple logical error.

Making Numerical Lists
There are many reasons to store a set of numbers. For instance, you

would need to keep track of the locations of each character in a game, so
you may want to keep track of the high scores of the player. Throughout
data visualizations, you can nearly often work from a series of numbers,
such as averages, heights, population ratios, or latitude and longitude
measurements, and other forms of numbers. The numeric sets. Lists are
ideal for storing number sets, and Python provides a number of tools to help

you work effectively with numbers lists. Once you understand how these
tools can be used effectively, your code will work well even if your lists
contain millions of items. Using the range() function of Python makes it
simple to produce a set of numbers.

You can also use the range() function to print many numbers for
example:

numbers.py for value in range(1,5): print(value)
Even though this code seems like it will print the numbers from 1 to 5, it

doesn’t print the number 5:
1

2

3

4
In this example, range() only prints the numbers 1 through 4. This is

another product of the off-by-one behavior that you can always find in
programming languages. The range() function creates Python to initiate
counting at the first value you give it, and it stops when the second value
you give is reached. Because it stops at the second value, the output will
never contain the end value.

Value, which would have been 5. You will use range(1,6) to print the
numbers from 1 to 5:

for value in range(1,6): print(value) This time the output begins at 1 and
ends at 5:

1

2

3

4

5

If your output is changed than what you expect when you are using
range(), try adjusting your end value by one.

Using range() to Create a List of Numbers
If you want to create a list of numbers, you can convert the results of

range) (directly to a list using the list) (function. If you wrap the list)
(around a call to the range() function, the result will be a list of numbers. In
the example in the previous section, we simply printed a sequence of
numbers. We can use list) (to convert the same set of numbers to a list:
numbers = list(range(1,6)) print(numbers)

And this is the output:

[1, 2, 3, 4, 5]
Besides, we can use the range() function to tell Python to skip numbers

within a given range. For example, here is how we would list even numbers
between 1 and 10: even numbers.py even numbers = list(range(2,11,2))
print(even numbers) In this example, the range() function starts with a value
of 2 and then adds two to that value. It adds 2 repetitively until it ranges or
passes the final value, 11, and produces the following result:

[2, 4, 6, 8 , 10]
You can create almost any number set you want to use the range)

(function. Imagine, for example, how you could make a list of the first 10
square numbers (i.e., the square of each integer from 1 to 10). In Python,
two asterisks (* *) are exponents. Here's how you can add the first 10
square numbers in the list:

We start with an empty list called U squares. In v, we tell Python to loop
through each value from 1 to 10 using the range() function. Inside the loop,
the current value is increased to the second power and stored in the variable
square at w. At x, every new square value is added to the list of squares.
When the loop is finished, the list of squares is printed at y:

[4, 9, 16, 25, 36, 49, 64, 81, and 100]
To inscribe this code more concisely, bypass the temporary variable

square and apply each value directly to the list:
squares = [] for value in range(2,11): u squares.append(value**2)

print(squares)
The coding at u functions the same way as the lines at w and x in

squares.py. Each value in the loop is upraised to the second power and

instantly appended to the list of squares.
You can use either of these two methods when making more complicated

lists. Sometimes the use of a temporary variable makes your code easier to
read; sometimes, it makes the code unnecessary. Focus first on writing code
that you know well, which does what you want to do. Then look for more
efficient methodologies as you look at your code.

Simple Statistics with a List of Numbers
A few Python functions are unique to a number set. For instance, you can

easily find the total, limit, and sum of the number list:
>>> digit = [2, 3, 4, 6, 7, 8, 0] >>> min(digits)0 >>> max(digit) 8>>>

sum(digits) 35

L

DAY 6

Tuples
ists work best to display collections of products that will change over
the duration of a system. The ability to change lists is highly valuable
when dealing with a list of visitors on a website or a list of characters in

a game. Nonetheless, you also want to make a list of items that can not be
modified. Tuples are just asking you to do so. Python refers to properties
which can not be used

Remove it as immutable, so the infinite list is called the tuple.

Describing a Tuple
A tuple looks a lot like a package, except you use brackets instead of

square brackets. Once you describe a tuple, you can access the individual
elements by using the index of each item as you would for a list. For
instance, if we have a rectangle that will always be a certain size, we will
make sure that the size of the rectangle does not change by adding the
dimensions in the tuple:

dimensions.py u dimensions = (400, 100) v print(dimensions[0])
print(dimensions[1])

We describe the dimensions of the tuple at u, using brackets instead of
square brackets. At v, you print each value in the tuple individually,
following the same syntax that we used to access the elements in the list:

400

100
Let’s observe what happens if we change one of the items in the tuple

dimensions:
dimensions = (400, 100) u dimensions[0] = 500
U's code attempts to change the value of the first element, but Python

returns a sorting error. Because we are trying to alter a tuple that can not be

done with that type of object, Python tells us that we can not assign a new
value to a tuple item:

Traceback (most recent call last):

File "dimensions.py", line 3, in <module> dimensions[0] = 500

TypeError: 'tuple' object doesn’t support item assignment
This is useful because we want Python to make a mistake when a line of

code attempts to alter the dimensions of the rectangle.

Looping Through All Values in a Tuple
You can loop all the values in a tuple using a for loop, just like you did

with a list: Dimensions = (200, 50) for dimension in dimensions:
print(dimension) Python returns all the elements in the tuple as it would for
the list:

400

100

Writing over a Tuple
Although you can not modify a tuple, you can create a new value to a

variable that holds a tuple. And if we had to change our proportions, we
might redefine the entire tuple:

u dimensions = (400, 100) print("Original dimensions:") for dimension in
dimensions: print(dimension) v dimensions = (800, 200) w
print("\nModified dimensions:") for dimension in dimensions:
print(dimension)

The u block describes the original tuple and displays the initial
dimensions. At v, a new tuple is placed in the unit dimensions. Then we are
going to print the new dimensions at w. Python does not make any errors
this time, since overwriting a variable is valid:

Original dimensions:
400

100

Modified dimensions:

800

200
When compared to lists, tuples are easy data constructions. We can use it

when we want to store a set of values that shouldn't be changed over the life
of a program.

Indentation
PEP 8 recommends using four spaces per indentation level. Using four

spaces increases readability while leaving room for multiple indentation
levels on each line. In a word processing document, people frequently use
tabs instead of indent spaces. This works fine with word processing
documents, but the Python interpreter gets confused when tabs are mixed
with spaces. Each text editor provides a setting that allows you to use the
tab key but then converts each tab to a set number of spaces. You should
certainly use your tab key, but also make sure that your editor is set to insert
spaces instead of tabs into your document. Mixing tabs and spaces in your
file may cause problems that are very difficult to diagnose. If you feel you
have a mix of tabs and spaces, you can convert all tabs in a file into spaces
in most editors.

Line Length
Many Python programmers propose that each line be less than 80

characters in length. Historically, this guideline was developed because
most computers could accommodate only 79 characters on a single line in
the terminal window. At present, people can accommodate much longer
lines on their computers, but there are many incentives to stick to the
regular length of the 79-character grid. Professional programmers often
have multiple files open on the same screen, and using the standard line
length, they can see whole lines in two or three files that are opened side by
side on the screen. PEP 8 also suggests that you limit all of your comments
to 72 characters per line, as some of the tools that generate automatic
documentation for larger projects add formatting characters at the beginning
of each commented line. The PEP 8 line length guidelines are not set in
stone, and some teams prefer a 99-character limit. Do not worry too much

about the length of the line in your code as you learn, but be aware that
people who work collaboratively almost always follow the PEP 8
guidelines. Many of the editors allow you to set up a visual cue, usually a
vertical line on your screen, which shows where these limits are if
Statements Programming often involves examining a set of conditions and
deciding which action to take on the basis of those conditions. Python's if
the statement allows you to examine the current state of the program and
respond appropriately to that state of affairs.

In this section, you will learn how to write conditional tests, which will
allow you to check any conditions of interest. You will learn to write simply
if statements, and you will learn how to create a more complex series of if
statements to identify when the exact conditions you want are present. You
will then apply this concept to collections, so you can write a loop that
handles most items in a list one way, then handles other items with specific
values in a different way.

A Simple Example
The following short example shows how if the tests allow you to respond

correctly to specific situations. Imagine that you have a list of cars and that
you want to print out the name of each vehicle. Car titles are the right ones,
so the names of most vehicles should be written in the title case. But, the
value 'BMW' should be printed in all cases. The following code loops
through the car list

Names and looks for the 'BMW' value. Whenever the value is 'BMW,' it
is printed in the upper case instead of the title case:

vehicles.py vehicles = ['audi', 'bmw', 'subaru', 'toyota'] for vehicle in
vehicles: u if car == 'bmw': print(vehicle.upper()) else: print(vehicle.title())

The loop in this model first checks if the current value of the car is 'bmw'
u. If it is, the element is printed in uppercase. If the value of the vehicle is
other than 'bmw', it is printed in title case:

Audi

BMW

Subaru

Toyota

Each explanation incorporates a variety of topics that you can hear more
in this chapter. Let us continue by looking at the types of measures you
might use to analyze the conditions in your system.

Conditional Tests
At the heart of each, if the statement is an expression that can be

evaluated as True or False and called a conditional test. Python practices the
True and False values to decide whether the code in the if statement should
be executed. If the conditional check is valid, Python must run the code
following the if argument. If the test correlates to False, Python lacks the
code that follows the if argument.

Checking for Equality
Most of the conditional tests compare the current value of a variable to a

specific value of interest. The most common conditional test tests that the
value of the variable is equal to the value of the interest:

u >>> vehicle = 'bmw' v >>> vehicle == 'bmw' True
The U line sets the value of the vehicle to 'bmw' using a single equivalent

symbol, as you have seen countless times before. The line in v tests if the
name of the vehicle is 'bmw' using a double equal sign (= =). This
equivalent operator returns True if the values on the left and right sides of
the operator match, and False if they do not match. The values in this
example will suit, so Python will return Real. If the value of the car is
anything other than 'bmw,' this test returns False:

u >>> vehicle = 'audi' v >>> vehicle == 'bmw' False
A single equal sign is actually a statement; you could read the code at u

as "Set the value of the vehicle equal to 'audi'." While a double equal sign,
like the one at v, inquires a question: "Is the value of the vehicle equal to
'bmw?' "Most programming languages use the same sign in this way.

Ignoring Case When Checking for Equality
Testing for equality is a sensitive case in Python. For example , two

values with different capitalisations are not considered to be equal:
>>> vehicle = 'Audi' >>> vehicle == 'audi' False

This conduct is beneficial if the situation matters. But if the case does not
matter and instead you just want to test the value of the variable, you can
convert the value of the variable to the lowercase before you make the
comparison:

>>> vehicle = 'Audi' >>> vehicle.lower() == 'audi' True
This test will be Valid no matter how the 'Audi' meaning is encoded, as

the test is now case-insensitive. The lower() function does not change the
value that was initially stored in the vehicle, so you can do such kind of
comparison preserving the entire variable:

u >>> vehicle = 'Audi' v >>> vehicle.lower() == 'audi' True w >>>
vehicle 'Audi'

U stores the capitalized string 'Audi' in the variable engine. At v, we
convert the value of the vehicle to the lowercase and compare the
lowercase value to the 'audi' series. The two strings are paired, so Python
returns Real. At W, we see that the value kept in the vehicle was not
affected by the condition.

Testing. Websites implement certain laws for data entered by users in a
way similar to this. For example, a site may use a conditional test like this
to ensure that each user has a truly unique username, not just a change in
the capitalization of another username. When someone else is

Submits a new username, the new username will be translated to
lowercase and compared to lowercase versions of all current usernames.
During this check, a username such as 'John' will be rejected if any
variation of 'John' is already in use.

Checking for Inequality
If you want to determine whether two values are not equal, you can

combine an exclamation point and an equal sign! (=). The exclamation
mark is not as it is in other programming languages. Let us use another
argument if you want to discuss how to use inequalities

Director. Director. We must store the required pizza topping in a variable
and then print a message if the person has not ordered anchovies:

toppings.py requested_topping = 'mushrooms' u if requested_topping !=
'anchovies': print("Hold the anchovies!")

The line at u relates the value of requested topping to the value of
'anchovies.' If these two values are not balanced, Python returns True and
implements the code given the if statement. If the two values match, Python
comes back False and does not execute the code following the if statement.
Since the requested topping value is not 'anchovies,' the print statement is
executed: Keep on the anchovies! Most of the words that you write will test
for equality; however, perhaps you will find it more effective to check for
inequalities.

Numerical Comparisons
Checking numerical values is very easy. For instance , the given code

checks whether a person is 20 years of age:

>>> age = 20 >>> age == 20 True
Also, You can check to see if two numbers are not the same. For

example, if the answer is not correct, the following code prints a message:
magic_ answer = 19 number.py u if answer != 46: print("That is not the

correct answer. Please try again!")
The conditional check at u passes because the value of the result (19) is

not 46. The indented code block is executed because the test passes:
That is not the correct answer. Please try again!
You may also include different mathematical comparisons in your

conditional statements, such as less than, less than or equal to, greater than,
and greater than or equal to:

>>> age = 19 >>> age < 21 True

>>> age <= 21 True

>>> age > 21 False

>>> age >= 21 False
Could statistical analogy be used as part of an if statement that can help

you diagnose the exact conditions of interest?

Checking Multiple Conditions
You may want to test different conditions at the same time. For example,

sometimes, you may need two conditions to be true to take action. Other
times, you might be satisfied with only one condition being True. Keywords
and or can help you in these situations.

Using and to Check Multiple Conditions
To assess if both conditions are true at the same time, use the keyword

and combine the two conditional tests; if each test passes, the overall
expression is true. If either the test fails or all tests fail, the expression will
be tested as False. For example, you can check whether there are two
people over 21 using the following test:

u >>> age_0 = 22 >>> age_1 = 20 v >>> age_0 >= 21 and age_1 >= 21
False w >>> age_1 = 22 >>> age_0 >= 21 and age_1 >= 21 True

At u we describe two ages, age 0 and age 1. At v, we check whether the
two ages are 21 or not. The test on the left passes, however, the test on the
right fails, so False evaluates the overall condition. We are going to change
the age 1 to 22. The value of age 1 is now bigger than 21, and all individual
measures pass, allowing the final state expression to be measured as Valid.

You may use parentheses around the individual tests to enhance
readability, but they are not necessary. If you were using parentheses, the
exam should look like this:

(age_0 >= 21) and (age_1 >= 21)

Using or to Check Multiple Conditions
The keyword or helps you to review different criteria as well, but it fails

when one or both of the checks fails. An object or function can only fail if
all separate measures fail.

Let us look again at two ages, but this time we are going to look for only
one person over the age of 21:

u >>> age_0 = 22 >>> age_1 = 10 v >>> age_0 >= 21 or age_1 >= 21
True

w >>> age_0 = 20 >>> age_0 >= 21 or age_1 >= 21 False

We start at u again with two age variables. If the age 0 check in v passes,
the overall expression value is Valid. We are going to lower the age of 0 to
10. In the test at w, both tests have now failed, and the overall expression is
evaluated for False.

I

DAY 7

f you understand the conditional tests, you can start writing the
statements. Several different types of if statements exist, and the choice of
one to use depends on the number of criteria you choose to check. You

have seen a few examples of if statements in the topic of conditional tests,
but now let us dive deeper into the issue. The simplest kind of argument
that has one test and one action. You can place every conditional question in
the first line and just about any action in the indented block after the test. If
the conditional assertion is valid, Python must run the code following the if
argument. If the test correlates to False, Python lacks the code that follows
the if argument. Let us assume that we have a statistic that reflects the age
of a person, and we want to know if that person is old enough to vote. The
following code checks whether a person can vote:

voting.py age = 21 u if age >= 20: v print("You are old enough to vote!")
U Python checks whether the age value is greater than or equal to 18. It

is, so Python performs the indented print statement on v: you are old
enough to vote! Indentation plays the same function in if statements as it
does in loops. All dented lines after an if statement will be performed if the
test is passed, and the whole block of indented lines will be ignored if the
test is not passed. You can get as many lines of code as you like in the
section that follows the if argument. Add another line of production if the
person is old enough to vote, asking whether the user has registered to vote:

age = 21 if age >= 20: print("You are old enough to vote!") print("Have
you registered to vote yet?")

Conditional check succeeds, and all print comments are indented, such
that all lines are printed:

You are old enough to vote!

Have you registered to vote yet?
In case the age value is less than 20 years, this system does not generate

any production. If-else Statements Often, you are going to want to take one

action when the conditional test passes, and you are going to take another
action in all other cases. The if-else syntax of Python makes this possible.
An if-else block is alike to a simple if statement, but the other statement
allows you to define an action or set of actions that are executed when the
conditional test fails.

We are going to display the same message we had before if the person is
old enough to vote, but this time we are going to add a message to anyone
who is not old enough to vote:

age = 19 u if age >= 20: print("You are old enough to vote!") print("Have
you registered to vote yet?") v else: print("Sorry, you are too young to
vote.") print("Please register to vote as soon as you turn 20!")

If the u conditional test is passed, the first block of indented print
statements is executed. If the test evaluates to False, the next block on v is
executed. Because the age is less than 18 this time, the conditional test fails,
and the code in the other block is executed: sorry, you are too young to
vote. Please register for the ballot as soon as you turn 20! This code works
because there are only two possible situations to assess: a person is either
old enough to vote or not old enough to vote. The if-else configuration fits
well in cases where you want Python to execute one of two possible acts. In
a easy if-else chain like this, one of the actions is always executed.

The if-elif-else Chain
You will often need to test more than two possible situations and to

evaluate them; you can use Python's if-elif-else syntax. Python executes
only one block of the if-elif-else sequence. It will run each conditional
check in order for one to pass. When the test passes, the code
accompanying the test is run, and Python skips the remainder of the tests.

Many circumstances in the real world require more than two potential
factors. Consider, for example, an amusement park that charges diverse
rates for different age of people:

Admission for anyone under age 5 is free.

Admission for anyone between the ages of 5 and 20 is $5.

Admission for anyone age 20 or older is $10.

How do we use an if statement to decide the admission rate of a person?
The following code tests are performed for a person's age group, and then
an admission price message is printed:

amusement_ age = 12 park.py u if age < 5: print("Your admission cost is
$0.") if Statements 85 v elif age < 20: print("Your admission cost is $5.") w
else: print("Your admission cost is $10.")

If the test at u measures whether a person is under 4 years of age. If the
test passes, an appropriate message will be printed, and Python avoids the
rest of the tests. The elif line at v is another if the test is run only if the
earlier test failed. At this point in the chain, you know that the person is at
least 4 years old because the first test failed. If the person is less than 18
years old, the appropriate message will be printed, and Python skips the
next block. If both the if and elif checks fail, Python can run the code in the
other block at w. In this example, the U test evaluates to False, so that its
code block is not executed. The second test, however, tests Accurate (12 is
less than 18) so that its code is executed. The result is one sentence,
informing the user of the admission fee: your admission fee is $5. Any age
greater than 17 would have caused the first two tests to fail. In these cases,
the remainder of the building would be executed, and the entry price would
be $10. Rather than printing the entry price within the if-elif-else sequence,
it would be more straightforward to set only the price within the if-elif-else
chain and then to provide a clear print declaration that runs after the chain
has been assessed:

age = 12 if age < 5: u price = 0

elif age < 20: v price = 5 else: w price = 10

x print("Your admission cost is $" + str(price) + ".")
The lines at u, v, and w set the value of the price according to the age of

the person, as in the previous example. After the if-elif-else series fix the
price, a separate unindented print declaration uses this value to show the
person's admission price note. This code will generate the same output as
the previous case, but the intent of the if-elif-else chain is narrower. Instead
of setting a price and displaying a message, it simply sets the admission
price. This revised code is simpler to change than the original approach. To

change the text of the output file, you will need to modify just one print
statement instead of three different print statements.

Using Multiple elif Blocks
We can use as many elif blocks in our code as we want. For example, if

the amusement park was to implement a discount for seniors, you could add
another conditional test to the code to determine if someone qualified for a
senior discount. Let us assume that someone 65 or older charges half of the
normal fee, or $5:

age = 12 if age < 5: price = 0

elif age < 20: price = 5 u elif age < 65: price = 10

v else: price = 5 print("Your admission cost is $" + str(price) + ".")
Any of this code remains unchanged. The second elif block at u now

checks to make sure that a person is under 65 years of age until they are
given a maximum admission rate of $10. Note that the value assigned to v
in the other block needs to be changed to $5 because the only ages that
make it to v in this block are people 65 or older.

Omitting the else Block
Python does not require another block at the end of the if-elif chain.

Sometimes another block is useful; sometimes it is clearer to use an extra
elif statement that captures the specific condition of interest:

age = 12 if age < 5: price = 0

elif age < 20: price = 5

elif age < 65: price = 10

u elif age >= 65: price = 5

print("Your admission cost is $" + str(price) + ".")
The extra elif block at u applies a price of $5 when the user is 65 or

older, which is a little better than the general another block. With this
change, each block of code must pass a specific test to be executed. The
other section is the catchall argument. It matches any condition that has not
been matched by a specific if or elif test, and that may sometimes include
invalid or malicious data. If you have a particular final condition that you

are checking with, try using the final elif row and ignore the other row. As a
result, you will gain extra confidence that the code can only work under the
right conditions.

Testing Multiple Conditions
The if-elif-else chain is strong, but it is only acceptable to use it when

you need a single check to pass. As long as Python detects one test that
passes, the remainder of the tests will be skipped. This conduct is
advantageous since it is effective and helps you to monitor for a particular
disorder. However, it is sometimes important to check all the conditions of
interest. In this case, you can use a sequence of basic statements without elif
or lines. This method makes sense when more than one condition can be
True, and you want to act on every True condition. Let us take a look at the
burger example. If someone asks for a two-topping burgers, you will need
to be sure to comprise both toppings on their burger:

toppings.py u requested_toppings = [coconut, 'extra cream']

v if 'coconut' in requested_toppings: print("Adding coconut.")

w if ' sausage ' in requested_toppings: print("Adding sausag e .")

x if 'extra cream' in requested_toppings: print("Adding extra cream.")

print("\nFinished making your burger!")
We start with a list of the requested toppings. The if statement at v drafts

to see if the person requested coconut on their burger. If this is the case, a
message confirming that topping is printed. The sausage test at w is a clear
one if the argument, not the elif or the result, and this test is performed
regardless of whether the previous test has passed or not. The x code checks
if additional cheese has been ordered, irrespective of the outcome of the
first two measures. These three independent tests are performed every time
the program is running. Because each condition in this example is assessed,
both coconut and extra cream are added to the burger:

Adding coconut.

Adding extra cream.

Finished making your burger!

This system would not work correctly if we were to use the if-elif-else
function, as the system would stop running if just one test passes. Here's
what it should feel like:

requested_toppings = ['coconut ', 'extra cream'] if 'coconut' in
requested_toppings:

print("Adding coconut.") elif 'sausage' in requested_toppings:

print("Adding sausage.") elif 'extra cream in requested_toppings:

print("Adding extra cream.") print("\nFinished making your burger!")
The 'coconut' test is the first test to be carried out, so coconuts are added

to the burger. But, the values 'extra cream' and 'sausage' are never tested,
since Python does not run any tests after the first test that passes along the
if-elif-else series. The first topping of the customer will be added, but all of
their other toppings will be missed:

Adding coconuts.

Finished making your burger!
In short, if you want to run just one block of code, use the if-elifel

sequence. In case more than 1 block of code needs to be run, use a set of
independent if statements.

A Simple Dictionary
Consider a game featuring aliens that may have different colors and point

values. This basic dictionary stores details about an alien:
alien.py alien_0 = {'color': 'red', 'points': 5}

print(alien_0['colour']) print(alien_0['points'])
The alien 0 dictionary stores the color and meaning of the alien. The two

print statements access and display the information as shown here:
red 3
Like most new programming concepts, dictionaries are used to practice.

Once you have worked with dictionaries for a bit, you will soon see how
effectively real-world situations can be modeled.

Working with Dictionaries

The Python dictionary is a list of key-value pairs. -- the key is connected
to a value, and a key may be used to access the value associated with that
key. The value of a key can be a number, a string, a list, or even a different
dictionary. In addition, any object you can construct in Python can be used
as a value in a dictionary. In Python, the dictionary is wrapped in
bracelets,}, {with a sequence of key-value pairs within bracelets, as seen in
the previous example:

alien_0 = {'colour': 'red', 'points': 3}
A key-value duo is a set of values that are connected. When you enter a

key, Python returns the value associated with that key. Through key is
related to its value by a colon, while commas separate the individual key-
value pairs. You can save as many key-value pairs as you like in a
dictionary. The easiest dictionary has exactly one key-value pair, as shown
in the modified version of the alien_0_dictionary:

alien_0 = {'colour': 'red'}
This dictionary stores one piece of info about alien 0, the color of the

alien. The 'colour' string is the key in this dictionary, and its related meaning
is 'red.'

Accessing Values in a Dictionary
To obtain the value connected with the key, enter the name of the

dictionary and then place the key inside the square bracket set, as shown
here:

alien_0 = {'color': 'red'} print(alien_0['colour'])
This reverts the value connected with the key 'colour' from the dictionary

alien_0:
red
You can have an infinite amount of key-value pairs in your dictionary.

For example, here is the original alien 0 dictionary with two key-value
pairs:

alien_0 = {'colour': 'red', 'points': 3}
You can now access either the color or the point value of alien 0. If a

player shoots this alien down, you can see how many points they are
supposed to earn using code like this:

alien_0 = {'colour': 'red', 'points': 3} u new_points = alien_0['points']

v print("You just got " + str(new_points) + " points!")
The dictionary has been defined, the U-code pulls the value associated

with the 'points' key out of the dictionary. This value is then stored in the
new point variable. The v line transforms this integer value to a string and
prints a declaration of how many points the player has just earned:

You just earned 3 points!
When you run this code any time an alien is shot down, the importance

of the alien 's point can be recovered.

Adding New Key-Value Pairs
The dictionaries are dynamic structures, and you can add new key-value

pairs to your dictionary at any time. For instance, to add a new key-value
pair, you will be given the name of the dictionary, followed by a new key in
square brackets along with a new value. Add two new pieces of data to the
alien_0 dictionary: the x-and y-coordinates of the alien, which will help us
to display the alien in a particular position on the screen. Position the alien
on the left edge of the screen, 25 pixels down from the top. Since the screen
coordinates normally start at the top left corner of the screen, we can
position the alien at the left edge of the screen by setting the x-coordinate to
0 and 25 pixels from the top by setting the y-coordinate to positive 25, as
seen here:

alien_0 = {'colour': 'red', 'points': 3} print(alien_0)

u alien_0['x_position'] = 0 v alien_0['y_position'] = 15 print(alien_0)
We define the same dictionary that we worked with. Then we will print

this dictionary, display a snapshot of its information. U adds a new key-
value pair to the dictionary: key 'x position' and value 0. We do the same for
the 'y position' key in v. When we print the revised dictionary, we see 2
additional key-value pairs:

{'colour': 'red', 'points': 3}

{'colour': 'red', 'points': 3, 'y_position': 15, 'x_position': 0}
The final version of the dictionary consists of four key-value pairs. The

original two specify the color and the value of the point, and two more

specify the location of the alien. Note that the order of the key-value pairs
does not suit the order in which they were inserted. Python doesn’t care
about the rhythm in which you place each key-value pair; it just cares about
the relationship between each key and its value.

Starting with an Empty Dictionary
In most cases, it is useful, or even essential, to start with an empty

dictionary and then add each new element to it. To start filling a blank
dictionary, define a dictionary with an empty set of braces, and then apply
each key-value pair to its own line. For example, below is how to construct
the alien 0 dictionaries using the following approach:

alien_0 = {} alien_0['colour'] = 'red'

alien_0['points'] = 5 print(alien_0)
We define a blank alien_0 dictionary, and then add colour and value to it.

The result is the dictionary that we used in previous examples:
{'colour': 'red', 'points': 3}
Typically, empty dictionaries are used when storing user-supplied data in

a dictionary or when writing code that automatically generates a large
number of key-value pairs.

Modifying Values in a Dictionary
To change the value in the dictionary, enter the name of the dictionary

with the key in square brackets, and then the new value you want to
associate with that key. Consider, for example, an alien who changes from
green to yellow as the game progresses:

alien_0 = {'colour': 'red'} print("The alien is " + alien_0['colour'] + ".")

alien_0['colour'] = 'yellow' print("The alien is now " + alien_0['colour'] +
".")

First, we describe a dictionary for alien 0 that includes only the color of
the alien; then, we change the meaning associated with the 'colour' key to
'black.' The performance reveals that the alien actually shifted from green to
yellow:

The alien is red.

The alien is now yellow.
For a more interesting example, let us take a look at the position of an

alien who can move at different speeds. We will store a value that
represents the current speed of the alien and then use it to determine how
far the alien should move to the right:

alien_0 = {'x_position': 0, 'y_position': 15, 'speed': 'medium'}

print("Original x-position: " + str(alien_0['x_position']))

Change the alien to your right.

#Identify how far to move the alien based on its current speed.

u if alien_0['speed'] == 'slow': x_increment = 1

elif alien_0['speed'] == 'medium': x_increment = 2 else:

This must be a fast alien. x_increment = 3

The fresh position is the previous position plus the increment.

v alien_0['x_position'] = alien_0['x_position'] + x_increment

print("New x-position: " + str(alien_0['x_position']))

We begin by defining an alien with an initial position of x and y and a
speed of 'medium.' We have omitted color and point values for simplicity,
but this example would work the same way when you include those key-
value pairs as well. We also print the real value of x position to see how far
the alien is moving to the right. At u, the if-elif-else string determines how
far the alien should move to the right and stores this value in the x
increment variable. If the speed of the alien is 'slow,' it moves one unit to
the right; if the speed is 'medium,' it moves two units to the right; and if it is
'fast,' it moves three units to the right. If the calculation has been calculated,
the value of x position is added to v, and the sum is stored in the x position
dictionary. Since this is a medium-speed alien, its position shifts two units
to the right:

Original x-position: 0 New x-position: 2
This approach is pretty cool: by modifying one meaning in the alien's

vocabulary, you can alter the alien 's overall actions. For example, to

transform this medium-speed alien into a fast alien, you should add the
following line:

alien_0['speed'] = fast
The if-elif-else block will then add greater value to x increment the next

time the code is running.

P

CONCLUSION

ython is one of the several open-source, object-oriented programming
applications available on the market. Some of the other uses of Python
are application development, the introduction of the automated testing

process, multiple programming build, fully developed programming library,
all major operating systems, and platforms, database system usability, quick
and readable code, easy to add to complicated software development
processes, test-driven software application support.

Python is a programming language that assists you to work easily and
implement your programs more effectively. Python is a versatile
programming language used in a wide variety of application domains.
Python is also compared with Perl, Ruby, or Java. Some of the main
features are as follows:

Python enthusiasts use the term "batteries included" to describe the main
library, which includes anything from asynchronous processing to zip files.
The language itself is a versatile engine that can manage nearly every issue
area. Create your own web server with three lines of javascript. Create
modular data-driven code using Python 's efficient, dynamic introspection
capabilities, and advanced language functionality such as meta-classes,
duck typing, and decorators. Python lets you easily write the code you need.
And, due to a highly optimized byte compiler and library support, Python
code is running more than fast enough for most programs. Python also
comes with full documentation, both embedded into the language and as
separate web pages. Online tutorials are targeted at both the experienced
programmer and the beginner. They are all built to make you successful
quickly. The inclusion of an excellent book complements the learning kit.

	PYTHON FOR BEGINNERS
	Introduction
	1.Python code optimization with ctypes
	2.Finding the Perfect Toolkit: Analyzing Popular Python Project Templates
	3.How are broad integer types implemented in Python?
	4.Create a bot in Python to learn English
	5.The thermal imager on the Raspberry PI
	6.Finding a Free Parking Space with Python
	7.Creating games on the Pygame framework | Part 1
	Creating games on the Pygame framework | Part 2
	Creating games on the Pygame framework| Part 3
	8.Object-Oriented Programming (OOP) in Python 3
	Conclusion
	PYTHON FOR DATA SCIENCE
	Introduction
	Data Science and Its Significance
	Python Basics
	Functions
	Lists and Loops
	Adding multiple valued data in python
	Adding string data in Python
	Module Data
	Conclusion
	PYTHON CRASH COURSE
	Day 1
	Day 2
	Day 3
	Day 4
	Day 5
	Day 6
	Day 7
	Conclusion

