
pl=t=) oi =F Ta aliate miele
Natural Language
Processing

YolNV=melelmat- 140) e-1ml-lalelel-le(-m 0) cele-sy) ale m elcele) (laa cm lnamiaal-1ar

fof=l-yemal=10lc-] mal-aNie) a,c

‘we .
NV VAVAYAUVA f= [ela exo] aa)

evanallal a accrele Na =ie),4.cmeialelelar-lale lm aleleck

se-Valeipe-lia-larem\Acelalie-lamacclasgielerely)

7 4 “a 7

omar ~~ i

_ 2 a _ ~ s al 7 _
oa - a

>

_

Deep Learning for
Natural Language

Processing

Solve your natural language processing problems

with smart deep neural networks

Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain

and Monicah Wambugu

_

Deep Learning for Natural Language Processing

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, and Monicah Wambugu

Technical Reviewer: Aashita Kesarwani

Managing Editor: Snehal Tambe

Acquisitions Editors: Kunal Sawant and Koushik Sen

Production Editor: Samita Warang

Editorial Board: David Barnes, Mayank Bhardwaj, Ewan Buckingham, Simon Cox,

Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Douglas Paterson,

Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur, Mohita Vyas, and
Jonathan Wray

First Published: June 2019

Production Reference: 1070619

ISBN: 978-1-83855-029-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface

Introduction to Natural Language Processing 1

SEAEMRPRMERCMOIY So o09, oiesitssabecovnang sznamr ese aktar au egee das cas tnincagat aves faioy seadet tasty eeeip ieee 2

The Basics of Natural Language Processing:sssscsssseseessesssssesesseesaseses 2

Importance of natural language ProcesSINGsscessssssssssssssssscesssessseeseseesees 4

Capabilities of Natural language processing te 200 HY ccc 5

Applications of Natural Language Processingscssccsscesseerseesreerseeserenees 6

TOXE PFEPLOCRSSING sicccsrcccceccosesccssssosesoversossscceesssosocoscssrvecosssecesseeeeseessceeasscessocsoeseae 8

TeXt Preprocessing TECHNIQUEScccscercsrssessrssrssessresersrsssssassssssssssossnsoscessoess 8

LOWEFCASING/UPPercCASINGscscccsorsscssorsorsresssccsossrcsscssnesorsesssnssnassocsosssasasssnssess 9

Exercise 1: Performing Lowercasing ON a SENTENCEccsscesceeseeeseeeseeerseesenes 10

DIMA RIPET RYU EID Go cane cisdecrerkoeses doasvostedammdadiecasasucteucPregestonrcsncstitsuctor cadaver esccreesiererets 11

Exercise 2: REMOVING NOISE FrOM WOTKScssessescesseseeseesseesesessssssessessenseaceaes 12

MET PRESETTIANI LAU cccccacsercesecconconcdesenchaters cvs0lt ssuherssened cacesuwesaeshsscesnaeuseseasasansaandes 13

StOMIMING ...cececescsessesesesessecssensesssnsssncnssesssssssssssessassasesssssssesssssessessussesssssseseeserssees 14

Exercise 3: Performing SteMMiINg ON WOTMScsesessessesesseseseeseesstsessensssesees 14

PmeUTEWUCATTTACICWN <ccopecsscascsvecsscoureceeporatiecrapssuncsotente resets ps4e vasuss sesératenssvbseeieascesasacens 15

Exercise 4: Performing Lemmatization ON WOFSscsseseseeseseesrseesesetereeees 16

MEBEVETATION cccecccececcsecaserecosoccocsasedesvessdacvonssasssesbarcwazescdecveasdessveceseusosresssensssseconesee 17

Exercise 5: TOKENIZING WOMKS:cescesescessersessssesesssescssescessssssesssesssssssessesssseaseres 17

Exercise 6: TOKENIZING SENTENCESsceseeesescesseereesstseesesssessersensensssssenenssenensenses 18

Additional TECHNIQUESccccsseseeeeeereesreterststereeteetensessnsesesisnsesssssessesessseseneseseees 18

Exercise 7: REMOVING StOP WOISeseceseseesessrsesesstersessstsrsssessessssnsnesseseneeseneees 19

WOrm@EMbDERGIN gS en, eR iccavsace ce tee AOD onsbonsde eben ae 20

The Generation Of Word EMbedAINGSsscssscscercccssccsseccrserssesccsssecseseeeees 21

WIG ZV OO Ie score issacsecosnsteacanscueceuvecvsllesantvehad teaatessenrisimantsstetadideraheet) esos deanndvod 21

Functioning Of WoOrd2V 06 -ssecssssnscsinemnsssnreanninniniivencrerieverracsvesnsverreqsresacerve 22

Exercise 8: Generating Word Embeddings Using Word2Vecssssssssseeees 25

MIO VE csccsacdscnesaunsstescceussedus svove dunes ontceensveescapobnedven deat tuenueay meeneetears siveannteursbsvassees 20

Exercise 9: Generating Word Embeddings Using GloVe:ssscccsseeeserseee 30

Activity 1: Generating Word Embeddings from a Corpus
USHA S WO 2VCCiivosnescraisnssnisesvesssonnesisocunea duacdctbaestcaddbeaaeecutavedavresabeees op seectaaaehinas 32

SUT S helo aes os dns Aiea das Fa veus bund erde nd ode doa bac adie a UNS Has teckes Soe at ce eae 33

Applications of Natural Language Processing 35

HALO CEEMGRIOT YAU ras cteeti cts sese ine Neh cess vaieooneshecbatansdipabiuanen bean saauemiae sia cmee aires 36

Pelle NET SS VSG sagt ce etd cn SUT EOITS <vscasecnsveraecasesissvuevastsonesans Gey Uasnens teabarereee geeaeee 36

RabborOl SISOGEN Fic savettrtisratesd ages poe Spite cous abhcyut coal gi saaianuanssonnasas sent eipeeabmamapanoen Ey

POS Tagger Ae RN OE oi eseicnen te Resse eee vay eeeaeaias 38

Applications of Parts of Speech Taggingssssescsrsccsssscsrecesssccerersenes 42

TVS ST POS WAR OS yc, coarsscnsh iksng dasa sn cnvegdinsasin al niera tperea nae aeaia ee eo 42

Pee a Sed! POS TAQROLS «6, svitsensscvsnsetsiivosavincetieiaavensctencenancnnaba as sO keene 43

Exercise 10: Performing Rule-Based POS Taggingcsscssscssressseesseeerenes 44

SLOEMASTICEPOS ta PONS csi crksrcrsdaiteas vevsersanssorsdpenasnsendvdogeyes STEM eRT aE 46

Exercise 11: Performing Stochastic POS Taggingssscsssessercsssrsesssesennes 48

COPPULE DELIV ES 1736. 7.00700. Pec seat telly Avetetcva tab xdheh'aseavrupvsuansssseatetancncedin dee anainae nena 49

Exercise-12>Performing chunking WIth NE TK iss: «cesarean ieee ici 51

Exercise 13: Performing Chunking with SpaCyccsscccsseccssscssrecesseseenseeens 52

GRIPS. .cececocesceiansesssenssdenensdiuadus opsncrsnge ses Ulrdups esictian vests: 000k oat 53

Exercise 14: Performing CHIMKING:sescassecvsapueieaenietgarn scehvan cone enna 53

Activity 2: Building and Training Your Own POS Taggercssccscsseeesceseeens 54

Named Entity Recognition ert A A Se BIR, Lead, & e 55

IN ASU ERIC OSS cscececyehserssnessiseasasscivasenedancsossveusdnececeinsss SM AMUOR a Let MER RU 56

NB OR EC ETE SROCOGMIZOLS. 1. ss stancaxdecedvisecssiosovevasclt MOIR UE Ate EME AR 56

Applications of Named Entity Recognitionccccccsscsssssssssssescsessssessssssessees 57

Types of Named Entity Recognizercsscssecessssssssssssssssssesssscsssssscsssessessees 58

PRLUESEASOCLINERS o5..s.s0scsstivecsisssnsseeaesesians Pema 1k Reta GIN SAUNT CAL TIe, D 58

Baa SL ee Sc den 0h gsintedn a av sn emeadishoseveaenisnsan encninouiuedteoiesesnmenootabeoen Om 59

Exercise 15: Perform Named Entity Recognition With NLTKccccseseees 60

Exercise 16: Performing Named Entity Recognition with spaCy 61

Activity 3: Performing NER on a Tagged COrpusSccscssscsscssecereesseesssenseees 63

BELA TDIMEME aed onacgseahonsdsarhsseadsnocs ine sseustvescdsns ices cetacean araneretcn cteesteerstertereserra tera: 65

Introduction to Neural Networks 67

PIV ET OGMMEUIGMA Rs isaadas. 5: Gvovarady rome oceceiysvuneades 110 canecous th famieotade ram seiuieiees te caeerads eT 68

INEEOGUCTION,LO.DeeD LEANINGcciccccsssccoressesscssonseeecereocereesetetcourtauesvediecccssate 68

Comparing Machine Learning and Deep Learning is Hated TaD ee Mevnss foot 70:

RU ree US aca a actevangsvvnoai's satel anal siase irons tosieuninessistaooderdleiacehecarestvsooese 71

Netra Networks Acchiite Cty Caicsic5c520c te ss osiseveatnn cars saccupsveactecds ofetagieattaoweveetovsscteet 72

TIGLAY OFS ARCs neaetesceusbavetssdt AU MMbercvtsnabecutac da taadoa ea sab nCOlRbabded el tshedeterabes 73

NOGSRIYE. Sad 2 sik RAE, HR OR 75

TH GBO SOS rceniscsvidvsorsssteasnvvnvinsereovvonsvssiesevunsedanioveneurdesaccosselGavscneashiVneszecounsstswedevestty a5

Ue a cacao bs eee RIN ERs RULE aie Fa sh has ga cd RUG ven co REMUS are ot eee 76

PRP EG AE IEALAECATIGLIONIS disih osastances oi tedeciaas tits ieesdse ces ddsacsiatscscaviveriotttomh todtte Sete ero ones 76

Training a Neural Networksssssssessesssstsestsesessesseseesseesesssessseseeseeenes 77

Calculating WeIgNtSsssscssssseseeseesesescscsessncessesssssssessessesesesssssssevesesevesesenenes 78

CREPES UTE CTEAG RTO Meteor re ce eet cy arene cece sakes iergEers ci aavnecsecccosseseassusvanessnssatess 80

The Gradient Descent AIZOrithiscsrvsressssscssossrerseesseesssesessssssssssensees 82

BackpropagatiOnsssserecsereerersessssssssrsssssssssserssssnsesssssssssensssenessenseeeneeneseeneneeees 86

Designing a Neural Network and Its Applicationscscccesereeesrreees 87

SUPEFVISEd: NEUlAl NECWOLKS. ...sescescesesassesscooasessqrtrsssacecoscassednassaseconctetaaaldecoade 87

Unsupervised neural NEtwoOrkS. ..csssccsscsssssserensssancasserondecesemiscaien Sobetcthasassdedanad 88

Exercise 17: Creating a NEUral NECWOFKcssscccssscesssrscessseeseserscssssseseseensees 88

Fundamentals of Deploying a Model aS a SePrviCeccssecccseseeseseeees 2

Activity 4: Sentiment Analysis Of REVIEWS:csssccsssccsssssesceserensesesseseesnnes 93

SUITIUNPAIV nscasssvsnsanccarssseosmnetssaapensnesesigaaneessiascomenk os ostbetgaies tae nanesas anusnsn ieee aeeee 94

Foundations of Convolutional Neural Network 97

BEYENOCLRIOUIOTN (eo csacets fab oh Sfeanansssqseut Magni sa nts peta anne (teeiste ated nat ca heniiae add peace aa 98

Exercise 18: Finding Out How Computers See IMAgESsseeeccesereeeeeeeenee 99

Understanding the Architecture Of a CNN .u.........ccssccccssrecessseesssereeenees 101

Fe AEE RRMEX LCA CL Omens sii sevsiinsnnn dveiecin evden enepeiirvesenndinenrnentvsinevetnrerenteyeetinacmennmninl 101

OTN 3s clin k's a sents va eactsala HW 3 spacing es seemapila tu sapemehonpnameenenn 102

THEM SLULACEIVATION FUMCEION . ocivscsssesavassaceosnennsnpntttonecd Beoetue SEMRIRGH Sen. f cuenta 103

Exercise, 19: Visualizing ReLU) aetrcn6. Gaal Dit aainend Aha oan 103

BPD STU) SW tse, caacidiame ran ccisnsepinnssdmsongmesgsa hsdnacdins ks iamiinhenskehiietstiaeass sapisieemmnn nics ieee 104

CAROL pe ches ates Sie natereawed sauanounsencennssdapeaenivadaxansncassncaunnnttelebe ated ited ae aeeeeeenane 105

Classification in Convolutional Neural Networkccsscssscescesreeeesesereees 105

Exercise 20: Creating a Simple CNN Architecturecccsccesreceereeeeseeeees 106

TRB Adan IN ceaoiansc Ei bateed bs saan ase Tends dip sina vas prenenseapeenin aon 109

BG GS@. 2 LOU ACN os scscs veacskeuninannancetsiaoiaceetiantianesiliamaeriseeae 111

ADBIVINS-CNNS:(0,. LOX ccicosisiuccepms sgsiichine dittsss ioaserssnnensangnsrsssenosuatlQeetoh thie Oe 113

Exercise 22: Application of a Simple CNN to a Reuters News
TOpic for ClassiflCatlOri: wecavseesscsendusveccsvedvetedececnuerensecasdtagenscaeetel ce et gnnnennannnnE 114

Application Areas Of CNNS: sscsi..ccccsssctsevassthvssasysesivesansssiteoetureeneenaeemrnsenaee! 116

Activity 5: Sentiment Analysis on a Real-life Datasetsscsscesreeenees 120

SUITUITIALY sicsesesdarcssnscsssonecncagnecenssoong¥konucaveneteainneaslec eet ben ante aetna! 121

Recurrent Neural Networks 123

TOSI. 0S 9 Rape a ean ior on IS ae esr tee nual aha dain ery 124

Previous Versions Of Neural Networkscccccscscscscscsssssssssecesesesecececeees 25

ESESGIN Sutras hae) ToeeaR tga ee eTS, TINIGET. cs eae cccesrscssecerseteocrescvevsscuavecaccecansee Meeccesed 127

PIN NVECHIGEIUICRS tLe. aretccis gat aun ahah aniettvsc associ sumaacrrsueeesecas css 132

CMM ccearetr a as sects tsi ccaaseessenienietanssesinascecscrds asks pdeati assassin 133

eG, Gradieit, ELOW, ...sscosrersesannenorssesaiasacssassanccervorantitehth MMGUR: 136

AAPISU MS WEI ZA MALIX WY. ...+.0r0saeseerseossscassransnncnsonaRealelier see eee rele 136

Adjusting Weight Matrix Ws ssissnhjeanss SOR tel, guitar ered. 2. 3 137

ForUpdating: Wa. cine anaes OE. a ie eh oR: 139

SAE LG arerract sa tecriarcicees tcteaictcrem terete rtm eetteeren te terre tr ccnees 142

EMCEE CALI CITES we sttarsarstnccee -retsccarereeri ies teatereetes comer eattinciarer etter iacterie 142

VANISHING GraClents-2,...-c:.sescocsarsvessaenee tbat Meauelde Mieke ate tate ect tt ode 142

SAH Kot fp UHL Wt So a apenas ceo tien semen nan ra av A mn see ah 143

Exercise 23: Building an RNN Model to Show the Stability
GP al PICU SeO Vela | LING eerste tyetnseatdecnasestie gt citenssoasastcissacaesasssodececannrasenneasne oe 145

RCE ULV CLAUS, o LARGO SS gcrscoxssqccgesc<catvececencass sodscousetabaasspachfineqeriasenvonnpa sc oavaer? 148

Exercise 24: Turning a Stateless Network into a Stateful Network
DYONly Changing ALZUIMENUS...cccrsossnserssorcovssvosnesondsassnssonsenasennnvnadins Weddlbaan dius 149

Activity 6: Solving a Problem with an RNN - Author Attribution 152

SLUM IMAL Workdtio« feo thea eae are Rh a nae a 153

Gated Recurrent Units (GRUs) 155

DAVE CMON occ sence ecnrtaate atete tes nnanacoeasitoacdnassinauen stat M@beeneee et aemeeneta ES 156

The Drawback of Simple RNNSsscssssssssccssssssessesresecsessescoesesesesees 157

The Exploding Gradient Problemcscscssssssrersescreesereseeessensseeseessesseseers 159

CFACE CIE CUITONIE LITRINSH CRUIS) Gccccctcccccccastovsentvsccasssessonsscsrssesessscentrevevsacess 160

Types Of Gatecscccsssssrssesseseserecerseeseseesssssssssssssensssnsnesssssssensssssesasssecasesacens 163

The Update Gatescssssssresessseneresesesescssscesssscssscesasesssssssasesseesseesesenssensssesenees 163

TTVEERESC UT Gate iets ei laccicccadcdls clude ime Peeet rae ate omen aon ete 165

TheiGandidatevActivationmFUunctlom «sccisscsscecccssssecerssnconcsassb es tnsapenccosassovatosagenes 168

GRUBMANIATIONS Siete By. Beds Wavaeis cee sanscasdesoosencecsasip sapmeer ee orncepeatip woken ieaies 171

SentimentAnalysis:withiGRU my aan nents. a Warcccumtestsissetraceveaviceuesdsdsesebeds 171

Exercise 25: Calculating the Model Validation Accuracy
aNG.LOSS tof SENtIMENt ClASSILICAUION] cc.5cs<csvevessassstoswsaetsssssasastcsacxterstucpeorsenae ie

Activity 7: Developing a Sentiment Classification Model
USHIST A-SIMPIE:RNN, wssicccossoncesneerenstscsadesesavantedeaencarnss daca bade cadets eteaaaom Vit

Tex€ Generation WItKh'GRUSs cA riid Se iadevcccctate Memeo iced eeeesa tabeb eat Malesia 178

Exercise 26: Generating Text USING GRUSccscescsccssteeccsstsssntsessseceens 178

Activity 8: Train Your Own Character Generation Model

RIGMCEA TOI StS OTT OUUTECNOICE. ans cas ssacescesesnxeddtvon tyveattenaatek as Chevannetameacusaeamaett 185

ULLAL ceres ante Periccthdasecsigrasach Csonsseseceansescaenesieissaseavegoes veigeesdes mimiaMeimmarel 186

Long Short-Term Memory (LSTM) 189

[GUO CIRIGTI O Re rpesstete ety aa tery fent oi ts nactonnaivcnassrvonwrneven sine enrins euthavrevennaneesentoren 190

Ce nidiarde Masti: oct eds yitryectene tae CeTASay esl sapien sediehsivdaunsosttebasieg Madness vee tela oat 190

TH IGIFORS CC.GBUC heciceneisacasssentigavidentisyiiti esti cniesusiereeppaeeredniepeiawametnsS 192

The Input Gate and the Candidate Cell Statessccsssssssecesrceeseees 196

Celta bet pate inser ik sk a Rie Gi dts asia dave RO I teas 199

Output Gate and Current Activationccsscccssccssscessssceceseeeessteeeeees 201

Exercise 27: Building an LSTM-Based Model to Classify
ALL Eniall Asis Pan OF NOUS DMI CHAIN): sscasscacecsksesarsaarvisasrenenbsecrenaheesttre ta 203

Activity 9: Building a Spam or Ham Classifier Using a Simple RNN 210

NeuraltVanguage. Translation, sanvireusveemcremy cvesenvanenaeceineniaen eee 211

Activity 10: Creating a French-to-English translation model::e000+ 227

SOITUIMISRY fies..ces Jui evetbess dll vebenssssvecoennsverentweseete ned cee Pe One tease tenet 228

State-of-the-Art Natural Language Processing 231

Ee aU OT Et iet sree dvnccarccictetiert eetecterker te netesciacecttttaxieeitteicn Mere 232

BRUM ECAYENIESITIS <s7.ceci-scantsaryccssrsntraet river tecutasst fomreles. erica arthres ereeeery ote 232

PIL EATLGLICION IVECTIAITISIIT IOGGI cccscsusecdetesesscscsscsrseeesoessucsuesssaeesoaseavacsstsosarests 235

Data Normalization Using an Attention Mechanismssccscsssseeseees 236

SPT 27)? ee ge I RRR a ARR aR 252

ELS 0 Goa a A ORR rea et poe Pe Re a 237

NA CSTaLA Ted # Yleg Clad Fe Tl Cot ese RP atest Pol ony eR A A 237

Fhe Calculation: of Alpha-cisccsssssesssvecsvrevsssseaseseees . Snevvanteitveenivtenneutevencentovennidl 239

Exercise 28: Build a Date Normalization Model for

CME EMEC OILIFY NW iet des sest cunt Svstsanco tite ist sea eee teatteseantdss eaten isekeveireniccer ee esesates 241

Other Architectures and DevelOpMeNtssscccesseceesssreceessececesseceees 255

trea pA NRE Act is caseasevavanseshatsssxeriaigegereragettixecetha-raceietcsey eset eaesseeheneee ee 255

eM rao eregsacicdscagy ons ccavssdssarsbsicesavseaghcpeserssatercsnte¥s caaiasyaus Coucvanterecacenives cesar asyts 256

SITE RNA Ee eCecsthenscseasisesSeoanncdndpsssccavrabusoasseote cies cdesstencatioguvenedsseetaarocantyerseuntnrs 257

Activity 11: Build a Text SUMMarization MOdelceesescssseeseoseeeees 257

SUM ER ND MRter a isa cpvnetsséeotesesséoonctt VeauecertrerasccVeveadednte dss casavaseecascees setentencasesies 258

A Practical NLP Project Workflow in an Organization 261

PEUMMECABTAP SUR e occ, seiccntvi torcasttee is str eee Wee ecscicasss Cas ineescacuoe titasneeeaataevciene 262

General Workflow for the Development of a Machine Learning Product 262

MITEL COSCIICALIOND VV OTKIIOWS ssancsscccscotsnsctpercossestarssusecessisscevsssavssasessnssoessssovenuse 262

AUIS EGE ALCHT VV OF IMLOW foceatrecrcrcreccgrtetee se sdsfexcisosesseutooeusneasecunavsvassvussavnsecesanare 263

MSRP OC UCCIONM-Ol GML) VV OLKTIOW visecsarcrsicsyscs+voscsessseocsesecesounsssnensnennsencnsons 264

PFODISM DEFINICION-:..0.-cccssessassassevscsvacacsscsscscseontsscssesesszusseassessnvcrsaransonse 265

Data ACQUISITIONsccorscsssscsseasscsssncssearscsssecsssassessersscssocescnsssaceseosacsssrsoes 266

GOOgIS COlADccscscsreresersseeresescneesessaseesecssssesnssssassssesesesssseseseseenenseceesesees 267

DEDlOVIMIENE sids....scserccesneptpessdoveced sbice dvubettees tated pace kay.ct sp tts Seek cbedahaad< Vath soee ties 280

Making Ghanges tora Flask WeDiAD DP i sicseisscsscnacttasaesassuecreeassbon secturiteunsawneemiy 281

Use Docker to Wrap the Flask Web Application into a Container 282

Host the Container on an Amazon Web Services (AWS) EC2 instance 284

WINPIRON EMM GN US ett 2a, Aa tegrated eat pepsin depp hiaeanenameabenanie 291

SUITMINIALY << ccesossovsesescssvessdeunanesstavceucatnsesstvon sasnecetpoetanssetsnentseediepasansetenanensadaied a2

Appendix 295

Index 347

Pe, Tete eey She vey't

PoP Sag EF AG i eranee al of

~ " .

4
=r

Fl

5

3 s Pad

S —

et

_
a

-

a t

nt a 4
{ 7 ' ¥

Gee ook
apatite ar hg *

hes ee 7 _

Preface

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll

need to get started, and the hardware and software requirements required to complete all of

the included activities and exercises.

ii | Preface

About the Book

Applying deep learning approaches to various NLP tasks can take your computational
algorithms to a completely new level in terms of speed and accuracy. deep learning for
natural language processing starts off by highlighting the basic building blocks of the
natural language processing domain. The book goes on to introduce the problems that
you can solve using state-of-the-art neural network models. Delving into the various
neural network architectures and their specific areas of application will help you to
understand how to select the best model to suit your needs. As you advance through
this deep learning book, you'll study convolutional, recurrent, and recursive neural
networks, in addition to covering long short-term memory networks (LSTM). In the
later chapters, you will be able to develop applications using NLP techniques such as

attention model and beam search.

By the end of this book, you will not only have sound knowledge of natural language
processing, but you will also be able to select the best text pre-processing and neural
network models to solve a number of NLP issues.

About the Authors

Karthiek Reddy Bokka is a speech and audio machine learning engineer graduate
from the University of Southern California and is currently working for Bi-amp
Systems in Portland. His interests include deep learning, digital signal and audio
processing, natural language processing, and computer vision. He has experience in
designing, building, and deploying applications with artificial intelligence to solve real-
world problems with varied forms of practical data, including image, speech, music,
unstructured raw data, and such.

Shubhangi Hora is a Python developer, artificial intelligence enthusiast, and a writer.

With a background in computer science and psychology, she is particularly interested in
mental health-related AI. She is based in Pune, India, and is passionate about furthering

natural language processing through machine learning and deep learning. Apart from
this, she enjoys the performing arts and is a trained musician.

Tanuj Jain is a data scientist working at a Germany-based company. He has been
developing deep learning models and putting them in production for commercial use at
his current job. Natural language processing is a special interest area for him, whereby
he has applied his know-how to classification and sentiment rating tasks. He has a

Master's degree in electrical engineering with a focus on statistical pattern recognition.

About the Book | iii

Monicah Wambugu is the lead data scientist at a financial technology company that
offers micro-loans by leveraging on data, machine learning, and analytics to perform
alternative credit scoring. She is a graduate student at the School of Information at UC
Berkeley Masters in Information Management and Systems. Monicah is particularly
interested in how data science and machine learning can be used to design products
and applications that respond to the behavioral and socio-economic needs of target
audiences.

Description

This book will start with the basic building blocks of natural language processing
domain. It will introduce the problems that can be solved using the state-of-the-art
Neural Network models. It will cover deeply the necessary pre-processing needed
in the text processing tasks. The book will cover some hot topics in the NLP domain,
which include Convolutional Neural Networks, Recurrent Neural Networks, and

Long Short Term Memory Networks. The audience of this book will understand the
importance of text pre-processing, and hyper parameter tuning as well.

Learning Objectives

¢ Learn the fundamentals of natural language processing.

¢ Understand various pre-processing techniques for deep learning problems.

* Develop Vector representation of text using word2vec & Glove.

* Understand Named Entity Recognition.

¢ Perform Parts of Speech Tagging using machine learning.

¢ Train and deploy a scalable model.

¢ Understand several architectures of neural networks.

Audience

Aspiring data scientists and engineers who want to be introduced to deep learning in

the domain of natural language processing.

They will start with the basics of natural language processing concepts and will

gradually dive deeper into the concepts of Neural Networks and their application in

text processing problems. They will get to learn different Neural Network architectures

along with their application areas. Strong knowledge in Python and linear algebra skills

are expected.

iv | Preface

Approach

Deep learning for natural language processing will start with the very basic concepts
of natural language processing. Once the basic concepts are introduced, the audience
will gradually be made aware of the applications and problems in the real world where
NLP techniques are applicable. Once the user understands the problem domain, the

approach for developing the solution will be introduced. As part of solution-based
approach, basic building blocks of Neural Networks are discussed. Eventually, modern
architectures of various Neural Networks are elaborated with their corresponding
application areas with examples.

Hardware Requirements

For the optimal experience, we recommend the following hardware configuration:

¢ Processor: Intel Core i5 or equivalent

¢ Memory: 4 GB RAM

¢ Storage: 5 GB available space

Software Requirements

We also recommend that you have the following software installed in advance:

¢ OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Linux

(Ubuntu, Debian, Red Hat, or Suse), or the latest version of OS X

¢ Python (3.6.5 or later, preferably 3.7; available through https: //www.python.org /
downloads/release /python-371/)

¢ Jupyter (go to https: //jupyter.org /install and follow the instructions to install).
Alternatively, you can use Anaconda to install Jupyter.

¢ Keras (https: //keras.io/#installation)

* Google Colab: It is a free Jupyter notebook environment and runs on cloud infra-
structure. It is highly recommended as it requires no porn and has Pree -installed
popular Python packages and libraries (https: //col: 3
books /welcome.ipynb)

About the Book | v

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

A block of code is set as follows:

from sklearn.datasets import make_blobs

import matplotlib.pyplot as plt

import numpy as np

~Matplotlib inline

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Next, click Generate
file followed by Download now and name the downloaded file model.h5."

Installation and Setup

Each great journey begins with a humble step, and our upcoming adventure in the land
of data wrangling is no exception. Before we can do awesome things with data, we need
to be prepared with the most productive environment. In this small note, we shall see
how to do that.

Install Python on Windows

1. Find your desired version of Python on the official installation page at https: //
www.python.org /downloads/windows/.

2. Ensure that you install the correct "-bit" version depending on your computer
system, either 32-bit or 64-bit. You can find out this information in the System
Properties window of your OS.

After you download the installer, simply double-click on the file and follow the
user-friendly prompts shown on screen.

vi | Preface

Install Python on Linux

To install Python on Linux, perform the following:

I. Open the command prompt and verify that p\Python 3 is not already installed by
running python3 --version.

To install Python 3, run this:

sudo apt-get update

sudo apt-get install python3.6

If you encounter problems, there are numerous sources online that can help you
troubleshoot the issue.

Install Python on macOS X

To install Python on macOS X, do the following:

iP Open the terminal by holding command and space (CMD + Space), typing terminal
in the open search box, and hitting enter.

Install Xcode through the command line by running xcode-select --install.

The easiest way to install Python 3 is using homebrew, which is installed through
the command line by running ruby -e "$(curl -fsSL https: //raw. githubusercon-

tent .com/Homebrew/install/master/install)".

Add homebrew to your PATH environment variable. Open your profile in the
command line by running sudo nano ~/.profile and inserting export PATH="/usr/
local/opt/python/libexec/bin: $PATH" at the bottom.

The final step is to install Python. In the command line, run brew install python.

Note that if you install Anaconda, the latest version of Python will be installed
automatically.

About the Book | vii

Installing Keras

To install Keras, perform the following steps:

1. Since Keras requires another deep learning framework to behave as the backend,
you'll need to download another framework first, and TensorFlow is recom-
mended.

To install TensorFlow for your platform, click on https: //www.tensorflow.org /
install /.

2. Once the backend has been installed, you can install Keras using either the follow-
ing command:

sudo pip install keras

Alternatively, you can install it from the Github source, clone Keras using this:

git clone https://github.com/keras-team/keras. git

3. Install Keras on Python using the following commands:

cd keras

sudo python setup.py install

You need to configure the backend now. Refer to the following link for more
information: (https: //keras.io/backend/)

Additional Resources

The code bundle for this book is also hosted on GitHub at: https: //github.com/

TrainingByPackt /Deep-Learning-for-Natural-Language-Processing. We also have other

code bundles from our rich catalog of books and videos available at https: //github.
com /PacktPublishing /. Check them out!

You can download the graphic bundle for the book from here:

https: //www.packtpub.com /sites /default /files/downloads/9781838558024

ColorImages.pdf

€ 1

aay yee ,

af = creer ieated))*
tye fo prep Pei iene meme voice yay

a wb r i L mA , > i
a y ») 4 ‘ oc c ‘ a re

:

By beobe that Sool ete Tha dine late 1 iyo at

wWiomatically ered cnc seid ait) yo! altos 2

_REOEREREMIBTS y naandaces

Introduction to

Natural Language

Processing
Learning Objectives

By the end of this chapter, you will be able to:

Describe natural language processing and its applications

Explain different text preprocessing techniques

Perform text preprocessing on text corpora

Explain the functioning of Word2Vec and GloVe word embeddings

Generate word embeddings using Word2Vec and GloVe

Use the NLTK, Gensim, and Glove-Python libraries for text preprocessing and generating

word embeddings

This chapter aims to equip you with knowledge of the basics of natural language processing and

experience with the various text preprocessing techniques used in Deep Learning.

2 | Introduction to Natural Language Processing

Introduction

Welcome to deep learning for Natural Language Processing. This book guides you in
understanding and optimizing deep learning techniques for the purpose of natural
language processing, which furthers the reality of generalized artificial intelligence.
You will journey through the concepts of natural language processing - its applications
and implementations - and learn the ways of deep neural networks, along with utilizing
them to enable machines to understand natural language.

The Basics of Natural Language Processing

To understand what natural language processing is, let's break the term into two:

¢ Natural language is a form of written and spoken communication that has
developed organically and naturally.

¢ Processing means analyzing and making sense of input data with computers.

M4 te) Sy

NLP model

Figure 1.1: Natural language processing

Therefore, natural language processing is the machine-based processing of human
communication. It aims to teach machines how to process and understand the language
of humans, thereby allowing an easy channel of communication between human and
machines.

For example, the personal voice assistants found in our phones and smart speakers,
such as Alexa and Siri, are a result of natural language processing. They have been
created in such a manner that they are able to not only understand what we say to
them but also to act upon what we say and respond with feedback. Natural language
processing algorithms aid these technologies in communicating with humans.

®

The Basics of Natural Language Processing | 3

The key thing to consider in the mentioned definition of natural language processing
is that the communication needs to occur in the natural language of humans. We've
been communicating with machines for decades now by creating programs to perform
certain tasks and executing them. However, these programs are written in languages
that are not natural languages, because they are not forms of spoken communication
and they haven't developed naturally or organically. These languages, such as Java,
Python, C, and C++, were created with machines in mind and the consideration always

being, "what will the machine be able to understand and process easily?"

While Python is a more user-friendly language and so is easier for humans to learn and
be able to write code in, the basic point remains the same - to communicate with a
machine, humans must learn a language that the machine is able to understand.

Pe ‘tle : a

a os =

y y an Machine

/ Natural [, oc. \
Language \

\ Processing

Figure 1.2: Venn diagram for natural language processing

The purpose of natural language processing is the opposite of this. Rather than having

humans conform to the ways of a machine and learn how to effectively communicate

with them, natural language processing enables machines to conform to humans and

learn their way of communication. This makes more sense since the aim of technology

is to make our lives easier.

To clarify this with an example, your first ever program was probably a piece of code

that asked the machine to print ‘hello world’. This was you conforming to the machine

and asking it to execute a task in a language that it understood. Asking your voice

assistant to say ‘hello world’ by voicing this commang to it, and having it say hello

world' back to you, is an example of the application of natural language processing,

because you are communicating with a machine in your natural language (in this case,

English). The machine is conforming to your form of communication, understanding

what you're saying, processing what you're asking it to do, and then executing the task.

4 | Introduction to Natural Language Processing

Importance of natural language processing

The following figure illustrates the various sections of the field of artificial intelligence:

Artificial Intelligence

a. : nee Natural
sil Language Robotics Vision Learning Neural Processin
Networks :

Fig 1.3: Artificial intelligence and some of its subfields

Along with machine learning and deep learning, natural language processing is a
subfield of artificial intelligence, and because it deals with natural language, it's actually
at the intersection of artificial intelligence and linguistics.

As mentioned, natural language processing is what enables machines to understand the
language of humans, thus allowing an efficient channel of communication between the
two. However, there is another reason Natural language processing is necessary, and
that is because, like machines, machine learning and deep learning models work best
with numerical data. Numerical data is hard for humans to naturally produce; imagine
us talking in numbers rather than words. So, natural language processing works with
textual data and converts it into numerical data, enabling machine learning and deep
learning models to be fitted on it. Thus, it exists to bridge the communication gap
between humans and machines by taking the spoken and written forms of language
from humans and converting them into data that can be understood by machines.
Thanks to natural language processing, the machine is able to make sense of, answer
questions based on, solve problems using, and communicate in a natural language,
among other things.

Capabilities of Natural language processing | 5

Capabilities of Natural language processing

Natural language processing has many real-world applications that benefit the lives
of humans. These applications fall under three broad capabilities of natural language
processing:

¢ Speech Recognition

The machine is able to recognize a natural language in its spoken form
and translate it into a textual form. An example of this is dictation on your
smartphones - you can enable dictation and speak to your phone, and it will
convert whatever you are saying into text.

¢ Natural Language Understanding

The machine is able to understand a natural language in both its spoken and
written form. If given a command, the machine is able to understand and execute
it. An example of this would be saying ‘Hey Siri, call home' to Siri on your iPhone
for Siri to automatically call ‘home' for you.

¢ Natural Language Generation

The machine is able to generate natural language itself. An example of this is
asking ‘Siri, what time is it?’ to Siri on your iPhone and Siri replying with the time -
‘It's 2:08pm‘.

These three capabilities are used to accomplish and automate a lot of tasks. Let's take a

look at some of the things natural language processing contributes to, and how.

Note

Textual data is known as corpora (plural) and a corpus (singular).

6 | Introduction to Natural Language Processing

Applications of Natural Language Processing

The following figure depicts the general application areas of natural language

processing:

Natural Language
Processing

Figure 1.4: Application areas of natural language processing

e Automatic text summarization

This involves processing corpora to provide a summary.

¢ Translation

This entails translation tools that translate text to and from different languages,
for example, Google Translate.

¢ Sentiment analysis

This is also known as emotional artificial intelligence or opinion mining, and it
is the process of identifying, extracting, and quantifying emotions and affective
states from corpora, both written and spoken. Sentiment analysis tools are used
to process things such as customer reviews and social media posts to understand
emotional responses to and opinions regarding particular things, such as the
quality of food at a new restaurant.

Applications of Natural Language Processing | 7

Information extraction

This is the process of identifying and extracting important terms from corpora,
known as entities. Named entity recognition falls under this category and is a
process that will be explained in the next chapter.

Relationship extraction

Relationship extraction involves extracting semantic relationships from corpora.
Semantic relationships occur between two or more entities (such as people,
organizations, and things) and fall into one of the many semantic categories. For
example, if a relationship extraction tool was given a paragraph about Sundar
Pichai and how he is the CEO of Google, the tool would be able to produce
“Sundar Pichai works for Google" as output, with Sundar Pichai and Google being
the two entities, and 'works for' being the semantic category that defines their
relationship.

Chatbot

Chatbots are forms of artificial intelligence that are designed to converse with
humans via speech and text. The majority of them mimic humans and make it feel
as though you are speaking to another human being. Chatbots are being used in
the health industry to help people who suffer from depression and anxiety.

Social media analysis

Social media applications such as Twitter and Facebook have hashtags and trends
that are tracked and monitored using natural language processing to understand
what is being talked about around the world. Additionally, natural language
processing aids the process of moderation by filtering out negative, offensive, and
inappropriate comments and posts.

Personal voice assistants

Siri, Alexa, Google Assistant, and Cortana are all personal voice assistants that

leverage natural language processing techniques to understand and respond to

what we Say.

Grammar checking

Grammar-checking software automatically checks and corrects your grammar,

punctuation, and typing errors.

8 | Introduction to Natural Language Processing

Text Preprocessing

When answering questions on a comprehension passage, the questions are specific to

different parts of the passage, and so while some words and sentences are important
to you, others are irrelevant. The trick is to identify key words from the questions and
match them to the passage to find the correct answer.

Text preprocessing works in a similar fashion - the machine doesn't need the irrelevant
parts of the corpora; it just needs the important words and phrases required to execute
the task at hand. Thus, text preprocessing techniques involve prepping the corpora
for proper analysis and for the machine learning and deep learning models. Text
preprocessing is basically telling the machine what it needs to take into consideration
and what it can disregard.

Each corpus requires different text preprocessing techniques depending on the
task that needs to be executed, and once you've learned the different preprocessing
techniques, you'll understand where to use what and why. The order in which the
techniques have been explained is usually the order in which they are performed.

We will be using the NLTK Python library in the following exercises, but feel free to use
different libraries while doing the activities. NLTK stands for Natural Language Toolkit
and is the simplest and one of the most popular Python libraries for natural language
processing, which is why we will be using it to understand the basic concepts of natural
language processing.

Note

For further information on NLTK, go to https://www.nitk.org/.

Text Preprocessing Techniques

The following are the most popular text preprocessing techniques in natural language
processing:

¢ Lowercasing /uppercasing

¢ Noise removal

¢ Text normalization

¢ Stemming

Applications of Natural Language Processing | 9

¢ Lemmatization

¢ Tokenization

¢ Removing stop words

Let's look at each technique one by one.

Lowercasing/Uppercasing

This is one of the most simple and effective preprocessing techniques that people
often forget to use. It either converts all the existing uppercase characters into
lowercase ones so that the entire corpus is in lowercase, or it converts all the lowercase
characters present in the corpus into uppercase ones so that the entire corpus is in
uppercase.

This method is especially useful when the size of the corpus isn't too large and the task
involves identifying terms or outputs that could be recognized differently due to the
case of the characters, since a machine inherently processes uppercase and lowercase
letters as separate entities — 'A' is different from ‘a. This kind of variation in the input
capitalization could result in incorrect output or no output at all.

An example of this would be a corpus that contains both ‘India’ and ‘india’ Without
applying lowercasing, the machine would recognize these as two separate terms, when
in reality they're both different forms of the same word and correspond to the same
country. After lowercasing, there would exist only one instance of the term "India,"
which would be ‘india, simplifying the task of finding all the places where India has been
mentioned in the corpus.

Note

All exercises and activities will be primarily developed on Jupyter Notebook. You

will need to have Python 3.6 and NLTK installed on your system.

Exercises 1 - 6 can be done within the same Jupyter notebook.

10 | Introduction to Natural Language Processing

Exercise 1: Performing Lowercasing on a Sentence

In this exercise, we will take an input sentence with both uppercase and lowercase
characters and convert them all into lowercase characters. The following steps will help
you with the solution:

1. Open cmd or another terminal depending on your operating system.

2. Navigate to the desired path and use the following command to initiate a Jupyter

notebook:

jupyter notebook

3. Store an input sentence in an 's' variable, as shown:

s = "The cities I like most in India are Mumbai, Bangalore, Dharamsala and

Allahabad."

4, Apply the lower() function to convert the capital letters into lowercase characters
and then print the new string, as shown:

s = s.lower()

print(s)

Expected output:

the cities i like most in india are mumbai, bangalore, dharamsala and allahabad.

Figure 1.5: Output for lowercasing with mixed casing in a sentence

9. Create an array of words with capitalized characters, as shown:

words = ['indiA', 'India', ‘'india', 'iNDia']

6. Using list comprehension, apply the lower() function on each element of the words
array and then print the new array, as follows:

words = [word.lower() for word in words]

print (words)

Expected output:

[‘india’, ‘india’, ‘india’, ‘india’]

Figure 1.6: Output for lowercasing with mixed casing of words

Applications of Natural Language Processing | 11

Noise Removal

Noise is a very general term and can mean different things with respect to different
corpora and different tasks. What is considered noise for one task may be what is
considered important for another, and thus this is a very domain-specific preprocessing
technique. For example, when analyzing tweets, hashtags might be important to
recognize trends and understand what's being spoken about around the globe, but
hashtags may not be important when analyzing a news article, and so hashtags would
be considered noise in the latter's case.

Noise doesn't include only words, but can also include symbols, punctuation marks,
HTML markup (<,>, *, ?,.), numbers, whitespaces, stop words, particular terms,

particular regular expressions, non-ASCII characters (\W|\d+), and parse terms.

Removing noise is crucial so that only the important parts of the corpora are fed into
the models, ensuring accurate results. It also helps by bringing words into their root or
standard form. Consider the following example:

[wh cis [Without noe
sleepy

sleepy!!

#sleepy sleepy

>>>>>sleepy>>>>

<a>sleepy

Figure 1.7: Output for noise removal

After removing all the symbols and punctuation marks, all the instances of sleepy

correspond to the one form of the word, enabling more efficient prediction and analysis

of the corpus.

12 | Introduction to Natural Language Processing

Exercise 2: Removing Noise from Words

In this exercise, we will take an input array containing words with noise attached (such
as punctuation marks and HTML markup) and convert these words into their clean,
noise-free forms. To do this, we will need to make use of Python's regular expression
library. This library has several functions that allow us to filter through input data and
remove the unnecessary parts, which is exactly what the process of noise removal aims
to do.

Note

To learn more about 're,' click on https://docs.python.org/3/library/re.html.

1. In the same Jupyter notebook, import the regular expression library, as shown:

import re

2. Create a function called 'clean_words’, which will contain methods to remove

different types of noise from the words, as follows:

def clean_words(text):

#remove html markup

text = re.sub("(<.*?>)","", text)

#remove non-ascii and digits

text=re.sub("(\W|\d+)","_ ", text)

#remove whitespace

text=text.strip()

return text

3. Create an array of raw words with noise, as demonstrated:

raw = ['..sleepy', 'sleepy!!', '#sleepy', '>>>>>sleepy>>>>', '<a>sleepy</
a>']

4, Apply the clean_words() function on the words in the raw array and then print the
array of clean words, as shown:

2
clean = [clean_words(r) for r in raw]

print(clean)

Applications of Natural Language Processing | 13

Expected output:

[‘sleepy’, ‘sleepy’, ‘sleepy’, ‘sleepy’, ‘sleepy’]

Figure 1.8: Output for noise removal

Text Normalization

This is the process of converting a raw corpus into a canonical and standard form,
which is basically to ensure that the textual input is guaranteed to be consistent before
it is analyzed, processed, and operated upon.

Examples of text normalization would be mapping an abbreviation to its full form,
converting several spellings of the same word to one spelling of the word, and so on.

The following are examples for canonical forms of incorrect spellings and abbreviations:

Spaghetti

Spaghett
Spaghetty

Spagetty

Figure 1.9: Canonical form for incorrect spellings

aw form | Canonical form

be right back

Figure 1.10: Canonical form for abbreviations

There is no standard way to go about normalization since it is very dependent on the

corpus and the task at hand. The most common way to go about it is with dictionary

mapping, which involves manually creating a dictionary that maps all the various forms

of one word to that one word, and then replaces each of those words with one standard

form of the word.

14 | Introduction to Natural Language Processing

Stemming

Stemming is performed on a corpus to reduce words to their stem or root form. The
reason for saying "stem or root form" is that the process of stemming doesn't always
reduce the word to its root but sometimes just to its canonical form.

The words that undergo stemming are known as inflected words. These words are in
a form that is different from the root form of the word, to imply an attribute such as
the number or gender. For example, "journalists" is the plural form of "journalist." Thus,
stemming would cut off the 's' bringing "journalists" to its root form:

Annoying

Annoyed Annoy

Figure 1.11: Output for stemming

Stemming is beneficial when building search applications due to the fact that when
searching for something in particular, you might also want to find instances of that
thing even if they're spelled differently. For example, if you're searching for exercises in
this book, you might also want 'Exercise' to show up in your search.

However, stemming doesn't always provide the desired stem, since it works by chopping
off the ends of the words. It's possible for the stemmer to reduce ‘troubling’ to 'troubl'
instead of 'trouble' and this won't really help in problem solving, and so stemming isn't a
method that's used too often. When it is used, Porter's stemming algorithm is the most
common algorithm for stemming.

Exercise 3: Performing Stemming on Words

In this exercise, we will take an input array containing various forms of one word and
convert these words into their stem forms.

1. Inthe same Jupyter notebook, import the nltk and pandas libraries as well as

Porter Stemmer, as shown:

import nltk

import pandas as pd

from nltk.stem import PorterStemmer as ps

2. Create an instance of stemmer, as follows:

stemmer = ps()

Applications of Natural Language Processing | 15

3. Create an array of different forms of the same word, as shown:

words=['annoying', 'annoys', ‘annoyed', ‘annoy']

4. Apply the stemmer to each of the words in the words array and store them in a new
array, as given:

stems =[stemmer.stem(word = word) for word in words]

5. Print the raw words and their stems in the form of a DataFrame, as shown:

sdf = pd.DataFrame({'raw word': words, 'stem': stems})

sdf

Expected output:

Out[14]:
raw word stem

0 annoying annoy

1 annoys annoy

2 annoyed annoy

3 annoy annoy

Figure 1.12: Output of stemming

Lemmatization

Lemmatization is a process that is like stemming - its purpose is to reduce a word to
its root form. What makes it different is that it doesn't just chop the ends of words off
to obtain this root form, but instead follows a process, abides by rules, and often uses

WordNet for mappings to return words to their root forms. (WordNet is an English
language database that consists of words and their definitions along with synonyms and
antonyms. It is considered to be an amalgamation of a dictionary and a thesaurus.) For
example, lemmatization is capable of transforming the word 'better' into its root form
‘g00d’, since 'better' is just the comparative form of 'good."

While this quality of lemmatization makes it highly appealing and more efficient
when compared with stemming, the drawback is that since lemmatization follows
such an organized procedure, it takes a lot more time than stemming does. Hence,
lemmatization is not recommended when you're working with a large corpus.

16 | Introduction to Natural Language Processing

Exercise 4: Performing Lemmatization on Words

In this exercise, we will take an input array containing various forms of one word and

convert these words into their root form.

L In the same Jupyter notebook as the previous exercise, import WordNetLemmatizer

and download WordNet, as shown:

from nltk.stem import WordNetLemmatizer as wnl

nltk.download('wordnet')

Create an instance of lemmatizer, as follows:

lemmatizer = wnl()

Create an array of different forms of the same word, as demonstrated:

words = ['troubling', 'troubled', 'troubles', 'trouble']

Apply lemmatizer to each of the words in the words array and store them in a new
array, as follows. The word parameter provides the lemmatize function with the
word it is supposed to lemmatize. The pos parameter is the part of speech you
want the lemma to be. 'v' stands for verb and thus the lemmatizer will reduce the

word to its closest verb form:

v denotes verb in "pos"

lemmatized = [Llemmatizer.lemmatize(word = word, pos = 'v') for word in

words]

Print the raw words and their root forms in the form of a DataFrame, as shown:

ldf = pd.DataFrame({'raw word': words, 'lemmatized': lemmatized})

ldf = ldf[L'raw word','lemmatized']]

ldf

Expected output:

raw word lemmatized

0 troubling trouble

1 = troubled trouble

troubles trouble "

3 trouble trouble

Figure 1.13: Output of lemmatization

Applications of Natural Language Processing | 17

Tokenization

Tokenization is the process of breaking down a corpus into individual tokens. Tokens
are the most commonly used words - thus, this process breaks down a corpus into
individual words - but can also include punctuation marks and spaces, among other
things.

This technique is one of the most important ones since it is a prerequisite for a lot of

applications of natural language processing that we will be learning about in the next
chapter, such as Parts-of-Speech (PoS) tagging. These algorithms take tokens as input
and can't function with strings or paragraphs of text as input.

Tokenization can be performed to obtain individual words as well as individual
sentences as tokens. Let's try both of these out in the following exercises.

Exercise 5: Tokenizing Words

In this exercise, we will take an input sentence and produce individual words as tokens

from it.

1. In the same Jupyter notebook, import n1tk:

import nltk

2. From nltk, import word_tokenize and punkt, as shown:

nltk.download('punkt')

from nltk import word_tokenize

3. Store words in a variable and apply word_tokenize() on it, then print the results, as

follows:

s = "hi! my name is john."

tokens = word_tokenize(s)

tokens

Expected output:

f°hi", “2°, my", "name", ‘is", ‘john’, °."]

Figure 1.14: Output for the tokenization of words

As you can see, even the punctuation marks are tokenized and considered as individual

tokens.

Now let's see how we can tokenize sentences.

18 | Introduction to Natural Language Processing

Exercise 6: Tokenizing Sentences

In this exercise, we will take an input sentence and produce individual words as tokens

from it.

1. Inthe same Jupyter notebook, import sent_tokenize, as shown:

from nltk import sent_tokenize

2. Store two sentences in a variable (our sentence from the previous exercise was
actually two sentences, so we can use the same one to see the difference between
word and sentence tokenization) and apply sent_tokenize() on it, then print the

results, as follows:

s = "hi! my name is shubhangi."

tokens = sent_tokenize(s)

tokens

Expected output:

f'hi!l*, ‘my name is john.‘]

Figure 1.15: Output for tokenizing sentences

As you can see, the two sentences have formed two individual tokens. |

Additional Techniques

There are several ways to perform text preprocessing, including the usage of a variety
of Python libraries such as BeautifulSoup to strip away HTML markup. The previous
exercises serve the purpose of introducing some techniques to you. Depending on
the task at hand, you may need to use just one or two or all of them, including the
modifications made to them. For example, at the noise removal stage, you may find it
necessary to remove words such as 'the;,’ ‘and, 'this, and ‘it So, you will need to create

an array containing these words and pass the corpus through a for loop to store only
the words that are not a part of that array, removing the noisy words from the corpus.
Another way of doing this is given later in this chapter and is done after tokenization
has been performed.

Applications of Natural Language Processing | 19

Exercise 7: Removing Stop Words

In this exercise, we will take an input sentence and remove the stop words from it.

1. Open a Jupyter notebook and download 'stopwords' using the following line of
code:

nltk.download('stopwords')

2. Store a sentence in a variable, as shown:

s = "the weather is really hot and i want to go for a swim"

3. Import stopwords and create a set of the English stop words, as follows:

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

4, Tokenize the sentence using word_tokenize, and then store those tokens that do
not occur in stop_words in an array. Then, print that array:

tokens = word_tokenize(s)

tokens = [word for word in tokens if not word in stop_words]

print(tokens)

Expected output:

[‘weather’, ‘really’, ‘hot", "want", ‘go’, *swim’]

Figure 1.16: Output after removing stopwords

Additionally, you may need to convert numbers into their word forms. This is also
a method you can add to the noise removal function. Furthermore, you might need
to make use of the contractions library, which serves the purpose of expanding the
existing contractions in the text. For example, the contractions library will convert
‘you're’ into 'you are, and if this is necessary for your task, then it is recommended to
install this library and use it.

Text preprocessing techniques go beyond the ones that have been discussed in this

chapter and can include anything and everything that is required for a task or a corpus.
In some instances, some words may be important, while in others they won't be.

20 | Introduction to Natural Language Processing

Word Embeddings

As mentioned in the earlier sections of this chapter, natural language processing
prepares textual data for machine learning and deep learning models. The models
perform most efficiently when provided with numerical data as input, and thus a key
role of natural language processing is to transform preprocessed textual data into
numerical data, which is a numerical representation of the textual data.

This is what word embeddings are: they are numerical representations in the form of
real-value vectors for text. Words that have similar meanings map to similar vectors and
thus have similar representations. This aids the machine in learning the meaning and
context of different words. Since word embeddings are vectors mapping to individual
words, word embeddings can only be generated once tokenization has been performed
on the corpus.

Indonesia .

PG AAT TPE roel cere is Ah ab Jakarta

Canada

a

India
Oa a a New Delhi

China ——_

a Belling

Russia Ree rttetrci ds eRe r ae (API

Moscow

Figure 1.17: Example for word embeddings

Word embeddings encompass a variety of techniques used to create a learned
numerical representation and are the most popular way to represent a document's
vocabulary. The beneficial aspect of word embeddings is that they are able to capture
contextual, semantic, and syntactic similarities, and the relations of a word with othen

words, to effectively train the machine to comprehend natural language. This is the
main aim of word embeddings - to form clusters of similar vectors that correspond to
words with similar meanings.

Word Embeddings | 21

The reason for using word embeddings is to make machines understand synonyms
the same way we do. Consider an example of online restaurant reviews - they consist
of adjectives describing food, ambience, and the overall experience. They are either
positive or negative, and comprehending which reviews fall into which of these two
categories is important. The automatic categorization of these reviews can provide a
restaurant with quick insights as to what areas they need to improve on, what people
liked about their restaurant, and so on.

There exist a variety of adjectives that can be classified as positive, and the same
goes with negative adjectives. Thus, not only does the machine need to be able to
differentiate between negative and positive, it also needs to learn and understand that
multiple words can relate to the same category because they ultimately mean the same
thing. This is where word embeddings are helpful.

Consider the example of restaurant reviews received on a food service application. The
following two sentences are from two separate restaurant reviews:

¢ Sentence A - The food here was great.

e Sentence B - The food here was good.

The machine needs to be able to comprehend that both these reviews are positive and
mean a similar thing, despite the adjective in both sentences being different. This is
done by creating word embeddings, because the two words ‘good' and 'great' map to
two separate but similar real-value vectors and, thus, can be clustered together.

The Generation of Word Embeddings

We've understood what word embeddings are and their importance; now we need to
understand how they're generated. The process of transforming words into their real-
value vectors is known as vectorization and is done by word embedding techniques.
There are many word embedding techniques available, but in this chapter, we will be
discussing the two main ones - Word2Vec and GloVe. Once word embeddings (vectors)
have been created, they combine to form a vector space, which is an algebraic model

consisting of vectors that follow the rules of vector addition and scalar multiplication. If
you don't remember your linear algebra, this might be a good time to quickly review it.

Word2Vec

As mentioned earlier, Word2Vec is one of the word embedding techniques used to
generate vectors from words - something you can probably understand from the name

itself.

22 | Introduction to Natural Language Processing

Word2Vec is a shallow neural network — it has only two layers - and thus does not
qualify as a deep learning model. The input is a text corpus, which it uses to generate
vectors as the output. These vectors are known as feature vectors for the words present
in the input corpus. It transforms a corpus into numerical data that can be understood

by a deep neural network.

The aim of Word2Vec is to understand the probability of two or more words occurring
together and thus to group words with similar meanings together to form a cluster in
a vector space. Like any other machine learning or deep learning model, Word2Vec
becomes more and more efficient by learning from past data and past occurrences
of words. Thus, if provided with enough data and context, it can accurately guess a
word's meaning based on past occurrences and context, similar to how we understand
language.

For example, we are able to create a connection between the words 'boy' and 'man’, and
‘girl’ and ‘woman, once we have heard and read about them and understood what they
mean. Likewise, Word2Vec can also form this connection and generate vectors for these
words that lie close together in the same cluster so as to ensure that the machine is
aware that these words mean similar things.

Once Word2Vec has been given a corpus, it produces a vocabulary wherein each word
has a vector of its own attached to it, which is known as its neural word embedding, and

simply put, this neural word embedding is a word written in numbers.

Functioning of Word2Vec

Word2Vec trains a word against words that neighbor the word in the input corpus, and
there are two methods of doing so:

* Continuous Bag of Words (CBOW):

This method predicts the current word based on the context. Thus, it takes the
word's surrounding words as input to produce the word as output, and it chooses

this word based on the probability that this is indeed the word that is a part of the
sentence.

For example, if the algorithm is provided with the words "the food was" and needs
to predict the adjective after it, it is most likely to output the word "good" rather
than output the word "delightful," since there would be more instances where the
word "good" was used, and thus it has learned that "good" has a higher probability
than "delightful" CBOW it said to be faster than skip-gram and hasahigher 4%
accuracy with more frequent words.

Word Embeddings | 23

: algorithm

Fig 1.18: The CBOW algorithm

¢ Skip-gram

This method predicts the words surrounding a word by taking the word as
input, understanding the meaning of the word, and assigning it to a context.
For example, if the algorithm was given the word "delightful," it would have to
understand its meaning and learn from past context to predict that the probability
that the surrounding words are "the food was" is highest. Skip-gram is said to
work best with a small corpus.

delightful

Fig 1.19: The skip-gram algorithm

24 | Introduction to Natural Language Processing

While both methods seem to be working in opposite manners, they are essentially
predicting words based on the context of local (nearby) words; they are using a
window of context to predict what word will come next. This window is a configurable
parameter.

The decision of choosing which algorithm to use depends on the corpus at hand.
CBOW works on the basis of probability and thus chooses the word that has the highest
probability of occurring given a specific context. This means it will usually predict only
common and frequent words since those have the highest probabilities, and rare and
infrequent words will never be produced by CBOW. Skip-gram, on the other hand,
predicts context, and thus when given a word, it will take it as a new observation rather

than comparing it to an existing word with a similar meaning. Due to this, rare words
will not be avoided or looked over. However, this also means that a lot of training data
will be required for skip-gram to work efficiently. Thus, depending on the training data
and corpus at hand, the decision to use either algorithm should be made.

Essentially, both algorithms, and thus the model as a whole, require an intense
learning phase where they are trained over thousands and millions of words to better
understand context and meaning. Based on this, they are able to assign vectors to
words and thus aid the machine in learning and predicting natural language. To
understand Word2Vec better, let's do an exercise using Gensim's Word2Vec model.

Gensim is an open source library for unsupervised topic modeling and natural language
processing using statistical machine learning. Gensim's Word2Vec algorithm takes an
input of sequences of sentences in the form of individual words (tokens).

Also, we can use the min_count parameter. It exists to ask you how many instances of a
word should be there in a corpus for it to be important to you, and then takes that into
consideration when generating word embeddings. In a real-life scenario, when dealing
with millions of words, a word that occurs only once or twice may not be important
at all and thus can be ignored. However, right now, we are training our model only on
three sentences each with only 5-6 words in every sentence. Thus, min_ count is set to
1 since a word is important to us even if it occurs only once.

Word Embeddings | 25

Exercise 8: Generating Word Embeddings Using Word2Vec

In this exercise, we will be using Gensim's Word2Vec algorithm to generate word
embeddings post tokenization.

Note

You will need to have gensim installed on your system for the following exercise.
You can use the following command to install it, if it is not already installed:

pip install --upgrade gensim

For further information, click on https://radimrehurek.com/gensim/models/

word2vec.html.

The following steps will help you with the solution:

ile

Z.

Open a new Jupyter notebook.

Import the Word2Vec model from gensim, and import word_tokenize from nltk, as

shown:

from gensim.models import Word2Vec as wtv

from nltk import word_tokenize

Store three strings with some common words into three separate variables, and
then tokenize each sentence and store all the tokens in an array, as shown:

s1 = "Ariana Grande is a singer"

s2 = "She has been a singer for many years"

s3 = "Ariana is a great singer"

sentences = [word_tokenize(s1), word_tokenize(s2), word_tokenize(s3)]

You can print the array of sentences to view the tokens.

Train the model, as follows:

model = wtv(sentences, min_count = 1)

Word2Vec's default value for min_count is 5.

26 | Introduction to Natural Language Processing

5. Summarize the model, as demonstrated:

print('this is the summary of the model: ')

print(model)

Your output will look something like this:

this is the summary of the model:

Word2Vec(vocab=12, size=10@, alpha=0.9025)

Figure 1.20: Output for model summary

Vocab = 12 signifies that there are 12 different words present in the sentences that
were input to the model.

6. Let's find out what words are present in the vocabulary by summarizing it, as
shown:

words = list(model.wv.vocab)

print('this is the vocabulary for our corpus: ')

print (words)

Your output will look something like this:

this is the vocabulary for our corpus:

[’Ariana’, ‘Grande’, ‘is’, ‘a’, ‘singer’, ‘She’, ‘has’, ‘been’, ‘for’, ‘many’, ‘years’, ‘great’]

Figure 1.21: Output for the vocabulary of the corpus

Let's see what the vector (word embedding) for the word 'singer' is:

print("the vector for the word singer: ")

print(model['singer'])

Word Embeddings | 27

Expected output:

the vector for the word singer:
[3.9150659e-03 2.6659777e-03 1.0298982e-03 -2.7156321e-03

1.9977870e-03 3.1204436e-03 1.2055682e-04 1.0450699e-03

-6.4308796e-04 3.0822519e-03 2.1972554e-03 5.1480172e-05

-3.7099270e-03 3.9439583e-03 6.8276987e-04 7.7137066e-04

2.3698520e-03 -7.8547641e-04 6.0383842e-04 4.6370425e-03

-1.6786088e-03 1.7417425e-03 2.4216413e-03 3.6545738e-03

-1.9871239e-03 2.94894212-03 -1.2810023e-03 -4.9174053e-04

-3.9743204e-03 -2.7023794e-03 -3.0541950e-04 -1.5724347e-03

-2.1029566e-03 -2.1624754e-03 2.1620055e-04 -1.4000515e-03

-4.0824865e-03 4.6588355e-04 3.5028579e-03 4.8283348e-03

-2.8737928e-03 -4.5569306e-03 -7.6568732e-04 -3.3311991e-05

3.5790715e-03 4,.2424244e-03 3.3478225e-03 -7.4140396e-04

1,0030111¢-03 -5.2394503e-04 5.8383477e-04 -4.8430995e-03

2.6972082e-03 -4.8002079e-03 -2.3011414e-03 8.0388715e-04

3.1952575e-05 -8.1621204e-04 -3.8127291e-03 -6.7428290e-04

-1.7713077e-03 -3.0159748e-03 1.7178850e-03 -1.9258332e-03

-2.4637436e-03 3.3779652e-03 2.7676420e-03 1.8853768e-03

-2.4718521¢€-03 -1.9754141e-03 2.6104036e-03 -2.1335895e-03

2.4405334e-03 -3.2013952e-04 3.9961869e-03 4.0419102e-03

2.0586823e-03 4.9897884e-03 4.5599132e-03 -1.0976522e-03

1.5563263e-03 3.9063310e-03 -2.9308300e-03 -4.8254002e-03

-8.7642738e-06 3.9748671e-03 5.2895391e-04 6.35350121e-04

-1.2614765¢-03 -8.5018738e-04 3.7659388e-03 3.0237564e-03

4,5014662e-03 4.3258793e-03 -4.2659100e-03 4.9081761e-03

-3.9214552e-03 -2.4262110e-03 -8.1192164e-05 -4.1112076e-03)

Figure 1.22: Vector for the word ‘singer’

Our Word2Vec model has been trained on these three sentences, and thus its

vocabulary only includes the words present in this sentence. If we were to find words
that are similar to a particular input word from our Word2Vec model, we wouldn't get

words that actually make sense since the vocabulary is so small. Consider the following

examples:

#lookup top 6 similar words to great

wi = ["great"]

model.wv.most_similar (positive=w1, topn=6)

The ‘positive’ refers to the depiction of only positive vector values in the output.

28 | Introduction to Natural Language Processing

The top six similar words to ‘great' would be:

[("has’, @.13253481686115265),
("been’, @.12117968499660492),
("for’, @.10518198771953583),
(‘singer’, @.03586522936820984) ,
("a', @.08413773775100708),
("She’, @.08044794946998951)]

Figure 1.23: Word vectors similar to the word ‘great’

Similarly, for the word ‘singer’, it could be as follows:

#lookup top 6 similar words to singer

wl = ["singer"]

model.wv.most_similar (positive=w1, topn=6)

[(‘for', 6.17918802605438232),

(‘been’, @.12124449759721756),

(‘great', @.08586522936820084),

(‘is", @.07638381804227329),

('a', @.03302524611353874),

(‘Ariana’, @.02957476342516899) }

Figure 1.24: Word vector similar to word ‘singer’

We know that these words are not actually similar in meaning to our input words at all,
and that also shows up in the correlation value beside them. However, they show up
because these are the only words that exist in our vocabulary.

Another important parameter of the Gensim Word2Vec model is the size parameter. Its
default value is 100 and implies the size of the neural network layers that are being used
to train the model. This corresponds to the amount of freedom the training algorithm
has. A larger size requires more data but also leads to higher accuracy.

Note

For more information on Gensim's Word2Vec model, click on

https://rare-technologies.com/word2vec-tutorial/.

Word Embeddings | 29

GloVe

GloVe, an abbreviation of "global vectors," is a word embedding technique that has
been developed by Stanford. It is an unsupervised learning algorithm that builds on
Word2Vec. While Word2Vec is quite successful in generating word embeddings, the
issue with it is that is it has a small window through which it focuses on local words and
local context to predict words. This means that it is unable to learn from the frequency
of words present globally, that is, in the entire corpus. GloVe, as mentioned in its name,
looks at all the words present in a corpus.

While Word2Vec is a predictive model as it learns vectors to improve its predictive
abilities, GloVe is a count-based model. What this means is that GloVe learns its vectors

by performing dimensionality reduction on a co-occurrence counts matrix. The
connections that GloVe is able to make are along the lines of this:

king - man + woman = queen

This means it's able to understand that "king" and "queen" share a relationship that is
similar to that between "man" and "woman".

These are complicated terms, so let's understand them one by one. All of these
concepts come from statistics and linear algebra, so if you already know what's going
on, you can skip to the activity!

When dealing with a corpus, there exist algorithms to construct matrices based on
term frequencies. Basically, these matrices contain words that occur in a document as
rows, and the columns are either paragraphs or separate documents. The elements of
the matrices represent the frequency with which the words occur in the documents.
Naturally, with a large corpus, this matrix will be huge. Processing such a large matrix
will take a lot of time and memory, thus we perform dimensionality reduction. This
is the process of reducing the size of the matrix so it is possible to perform further

operations on it.

In the case of GloVe, the matrix is known as a co-occurrence counts matrix, which

contains information on how many times a word has occurred in a particular context

in a corpus. The rows are the words and the columns are the contexts. This matrix is

then factorized in order to reduce the dimensions, and the new matrix has a vector

representation for each word.

GloVe also has pretrained words with vectors attached to them that can be used if the

semantics match the corpus and task at hand. The following activity guides you through

the process of implementing GloVe in Python, except that the code isn't directly given

to you, so you'll have to do some thinking and maybe some googling. Try it out!

30 | Introduction to Natural Language Processing

Exercise 9: Generating Word Embeddings Using GloVe

In this exercise, we will be generating word embeddings using Glove-Python.

Note

To install Glove-Python on your platform, go to https://pypi.org/project/

glove/#files.

Download the Text8Corpus from http://mattmahoney.net/dc/text8.zip.

Extract the file and store it with your Jupyter notebook.

1. Import itertools:

import itertools

2. We need a corpus to generate word embeddings for, and the gensim.models.
wordavec library, luckily, has one called Text8Corpus. Import this along with two

modules from the Glove-Python library:

from gensim.models.word2vec import Text8Corpus

from glove import Corpus, Glove

3. Convert the corpus into sentences in the form of a list using itertools:

sentences = list(itertools.islice(Text8Corpus('text8'),None))

4. Initiate the Corpus() model and fit it on to the sentences:

corpus = Corpus()

corpus.fit(sentences, window=10)

The window parameter controls how many neighboring words are considered.

5. Now that we have prepared our corpus, we need to train the embeddings. Initiate
the Glove() model:

glove = Glove(no_components=100, learning_rate=0. 05)

6. Generate a co-occurrence matrix based on the corpus and fit the glove model én
to this matrix:

glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True)

Word Embeddings | 31

The model has been trained!

Add the dictionary of the corpus:

glove. add_dictionary(corpus. dictionary)

. Use the following command to see which words are similar to your choice of word
based on the word embeddings generated:

glove.most_similar('man')

Expected output:

[{'woman’, @.7866706012658177),

(‘young', @.7787864197368234),
(‘spider’, @.7728204994207245),

('girl’, 6.76425609096475@1) |

Figure 1.25: Output of word embeddings for 'man'

You can try this out for several different words to see which words neighbor them
and are the most similar to them:

glove.most_similar('queen', number = 10)

Expected output:

[(‘elizabeth', @.9290495999532598),
(‘victoria’, @.8600464526851297),
(‘mary', @.8089403382412337),
("anne’, @.7667713770457262),
(‘scotland’, @.6942531928211478),
(‘catherine’, @.6910265819525973),
(‘consort', @.6986798004149294),
(‘tudor’, @.6686379422061477),
("isabella', @©.6666968276614551)]
Figure 1.26: Output of word embeddings for 'queen'

Note

To learn more about GloVe, go to https://nlp.stanford.edu/projects/glove/.

32 | Introduction to Natural Language Processing

Activity 1: Generating Word Embeddings from a Corpus Using Word2Vec.

You have been given the task of training a Word2Vec model on a particular corpus - the
Text8Corpus, in this case - to determine which words are similar to each other. The
following steps will help you with the solution.

Note

You can find the text corpus file at http://mattmahoney.net/dc/text8.zip.

Upload the text corpus from the link given previously.

Import word2vec from gensim models.

Store the corpus in a variable.

Fit the word2vec model on the corpus.

Find the most similar word to 'man'

Anu fF wow Ny ‘Father’ is to ‘girl’, 'x'is to "boy.' Find the top 3 words for x.

Note

The solution for the activity can be found on page 296.

Expected Outputs:

[('woman', ©.6842043995857239),

(‘girl', @.5943484306335449),
(‘creature’, @.5780946612358893),

(‘boy', @.5284570293426514),

(‘person’, @.5135789513587952),

(‘'stranger', @.5@6704568862915),
(‘beast’, @.504448652267456),

(‘god', @.5@37523508071899),

(‘evil’, @.4998573525428772),

(‘thief’, ©.4973783493041992) |

Figure 1.27: Output for similar word embeddings

Summary | 33

Top three words for 'x' could be:

[(‘mother’, @.7770676612854904),
(‘grandmother’, @.7024110555648804),
Fi

(‘wife’, @.6916966438293457)]

Figure 1.28: Output for top three words for 'x'

Summary

In this chapter, we learned about how natural language processing enables humans
and machines to communicate in natural human language. There are three broad
applications of natural language processing, and these are speech recognition, natural
language understanding, and natural language generation.

Language is a complicated thing, and so text is required to go through several phases
before it can make sense to a machine. This process of filtering is known as text
preprocessing and comprises various techniques that serve different purposes. They
are all task- and corpora-dependent and prepare text for operations that will enable it
to be input into machine learning and deep learning models.

Since machine learning and deep learning models work best with numerical data, it is
necessary to transform preprocessed corpora into numerical form. This is where word
embeddings come into the picture; they are real-value vector representations of words
that aid models in predicting and understanding words. The two main algorithms used

to generate word embeddings are Word2Vec and GloVe.

In the next chapter, we will be building on the algorithms used for natural language
processing. The processes of POS tagging and named entity recognition will be
introduced and explained.

; ° re eee al * et a

» > al a P

eee .'13Ae ths
is - 7 . —_ ; _

. a ’ - oe ern es J 7 : i - 4

a sat inland ek ; eae
s 5 a ’ i

: 5 ee ; i

. ey aay

rye diate! ee
a: oe i Bscvettis |

~f bine Bia ih ap noe eat are PERL ERRES cienext ; anal

one esi Gahran eee te era fe " nerdy imeene/iits Galt: ners aie th ecttinn at

Vigne "ssncannes stil . . Sane
‘"oreature™, &. 5 7BORGATE RT) 6 a ’

‘ty’, @, PRORS POTS HA 2ES14), | =
** Sas tt. % @.S1357BGh1 8795S}, 7 oa rah
(* strdihgeb", &. SORTOCSGRERIOLS >,
4 beast, @OAAMBDS i Baur
(‘goc’, 8 92° 75.2: oO). ae

evil’, &,d0p0S7SSaS4ad7 127, | ('thiet’, 8.2973 7aae eed)
oa ri a -

guis 1 77 Cutpot for atta Got ane

ee

Applications of

Natural Language

Processing
Learning Objectives

By the end of this chapter, you will be able to:

Describe POS tagging and its applications

Differentiate between rule-based and stochastic POS taggers

Perform POS tagging, chunking, and chinking on text data

Perform named entity recognition for information extraction

Develop and train your own POS tagger and named entity recognizer

Use NLTK and spaCy to perform POS tagging, chunking, chinking, and named entity

recognition

This chapter aims to introduce you to the plethora of applications of NLP and the various

techniques involved within.

36 | Applications of Natural Language Processing

Introduction

This chapter begins with a quick recap of what natural language processing is and what
services it can help provide. Then, it discusses two applications of natural language
processing: Parts of Speech Tagging (POS tagging) and Named Entity Recognition.
The functioning, necessity, and purposes of both of these algorithms are explained.
Additionally, there are exercises and activities that perform POS tagging and named
entity recognition and build and develop these algorithms.

Natural language processing consists of aiding machines to understand the natural
language of humans in order to communicate with them effectively and automate
a large number of tasks. The previous chapter discussed the applications of natural
language processing along with examples of real-life use cases where these techniques
could simplify the lives of humans. This chapter will specifically look into two of these
algorithms and their real-life applications.

Every aspect of natural language processing can be seen to follow the same analogy of
teaching a language. In the last chapter, we saw how machines need to be told what
parts of a corpus to pay attention to and what parts are irrelevant and unimportant.
They need to be trained to remove stop words and noisy elements and focus on key
words to reduce various forms of the same word to the word's root form so that it's
easier to search for and interpret. In a similar fashion, the two algorithms discussed
in this chapter also teach machines particular things about languages in the way we
humans have been taught.

POS Tagging

Before we dive straight into the algorithm, let's understand what parts of speech are.
Parts of speech are something most of us are taught in our early years of learning

the English language. They are categories assigned to words based on their syntactic
or grammatical functions. These functions are the functional relationships that exist
between different words.

POS Tagging | 37

Parts of Speech

The English language has nine main parts of speech:

¢ Nouns: Things or people

¢ Examples: table, dog, piano, London, towel

¢ Pronouns: Words that replace nouns

¢ Examples: I, you, he, she, it

¢ Verbs: Action words

¢ Examples: to be, to have, to study, to learn, to play

¢ Adjectives: Words that describe nouns

¢ Examples: intelligent, small, silly, intriguing, blue

¢ Determiners: Words that limit nouns

¢ Examples: a few, many, some, three

Note

For more examples of determiners, visit https://www.ef.com/in/english-resources/

english-grammar/determiners/.

e Adverbs: Words that describe verbs, adjectives, or adverbs themselves

e Examples: quickly, shortly, very, really, drastically

¢ Prepositions: Words that link nouns to other words

¢ Examples: to, on, in, under, beside

* Conjunctions: Words that join two sentences or words

e Examples: and, but, yet

¢ Interjections: Words that are exclamations

¢ Examples: ouch! Ow! Wow!

As you can see, each word falls under a specific Parts of speech tag assigned to it

that helps us understand the meaning and purpose of the word, enabling us to better

understand the context in which it is being used.

38 | Applications of Natural Language Processing

POS Tagger

POS tagging is the process of assigning a tag to a word. This is done by an algorithm
known as a POS tagger. The aim of the algorithm is really just as simple as this.

Most POS taggers are supervised learning algorithms. If you don't remember what
supervised learning algorithms are, they are machine learning algorithms that learn to
perform a task based on previously labeled data. The algorithms take rows of data as
input. This data contains feature columns—data used to predict something—and usually
one label column-the something that needs to be predicted. The models are trained
on this input to learn and understand what features correspond to which label, thus

learning how to perform the task of predicting the labels. Ultimately, they are given
unlabeled data (data that just consists of feature columns), for which they must predict
labels.

The following diagram is a general illustration of a supervised learning model:

1 $10,000

3 $46,000 Training
Be ne

es $98,000

5 $49,000

4 $98,000

3 $49,000

Fig 2.1: Supervised learning

Note

For more information on supervised learning, go to https://www.packtpub.com/

big-data-and-business-intelligence/applied-supervised-learning-python.

POS Tagging | 39

Thus, POS taggers hone their predictive abilities by learning from previously labeled
datasets. In this case, the datasets can consist of a variety of features, such as the
word itself (obviously), the definition of the word, the relationships of the word with
its preceding, proceeding, and other related word(s) that are present within the same
sentence, phrase, or paragraph. These features together help the tagger predict what
POS tag should be assigned to a word. The corpus used to train a supervised POS tagger
is known as a pre-tagged corpus. Such corpora serve as the basis for the creation of a
system for the POS tagger to tag untagged words. These systems/types of POS taggers
will be discussed in the next section.

Pre-tagged corpora, however, are not always readily available, and to accurately train
a tagger, the corpus must be large. Thus, recently there have been iterations of the
POS tagger that can be considered as unsupervised learning algorithms. These are
algorithms that take data consisting solely of features as input. These features aren't
associated with labels and thus the algorithm, instead of predicting labels, forms groups
or clusters of the input data.

In the case of POS tagging, the models use computational methods to automatically
generate sets of POS tags. While, pre-tagged corpora are responsible for aiding the
process of creating a system for the tagger in the case of supervised POS taggers, with
unsupervised POS taggers, these computational methods serve as the basis for the
creation of such systems. The drawback of unsupervised learning methods is that the
cluster of POS tags generated automatically may not always be as accurate as those
found in the pre-tagged corpora used to train supervised methods.

To summarize, the key differences between supervised and unsupervised learning
methods are as follows:

¢ Supervised POS taggers take pre-tagged corpora as input to be trained, while
unsupervised POS taggers take untagged corpora as input to create a set of POS

tags.

¢ Supervised POS taggers create dictionaries of words with their respective POS

tags based on the tagged corpora, while unsupervised POS taggers generate these

dictionaries using the self-created POS tag set.

40 | Applications of Natural Language Processing

Several Python libraries (such as NLTK and spaCy) have trained POS taggers of their
own. You will learn how to use one in the following sections, but let's understand
the input and output of a POS tagger with an example for now. An important thing
to remember is that since a POS tagger assigns a POS tag to each word in the given
corpus, the input needs to be in the form of word tokens. Therefore, before performing
POS tagging, tokenization needs to be carried out on the corpus. Let's say we give the
trained POS tagger the following tokens as an input:

[*i* ‘enjoy’, playing , “the*, “prano’ |

After POS tagging, the output would look something like this:

['I_PRO', 'enjoy_V', 'playing_V', 'the_DT', piano_N']

Here, PRO = pronoun, V = verb, DT = determiner, and N = noun.

The input and output for both a trained supervised and unsupervised POS tagger are
the same: tokens, and tokens with POS tags, respectively.

Note

This is not the exact syntax of the output; you'll see the proper output later when

you perform the exercise. This is just to give you an idea of what POS taggers do.

The aforementioned parts of speech are very basic tags, and to ease the process of
understanding natural language, POS algorithms create much more complicated tags
that are variations of these basic ones. Here's a full list of the POS tags with their
descriptions:

POS Tagging | 41

Number Tag =—s(escription
1 cc Coordinating conjunction

2 CD Cardinal number

| DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

g JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

it NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

wel TO To

26 UH interjection

AF VB Verb, base form

28 VBD Verb, past tense

29 VBG Verb, gerund or present participle

30 VBN Verb, past participle

31 VBP Verb, non-3rd person singular present

a2 VBZ Verb, 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-prenoun

35 WPS Possessive wh-pronoun

36 WRB Wh-adverb

Figure 2.2; POS tags with descriptions

These tags are from the Penn Treebank tagset (https: //www.ling.upenn.edu/courses/
Falk 2003/ling001/penn_treebank _pos.html), which is one of the most popular

tagsets. A majority of the pre-trained taggers for the English language are trained on

this tagset, including NLTK's POS tagger.

42 | Applications of Natural Language Processing

Applications of Parts of Speech Tagging

Just like text pre-processing techniques help the machine understand natural language
better by encouraging it to focus on only the important details, POS tagging helps the
machine actually interpret the context of text and thus make sense of it. While text
pre-processing is more of a cleaning phase, parts of speech tagging is actually the part
where the machine is beginning to output valuable information about corpora on its
own.

Understanding what words correspond to which parts of speech can be beneficial in
processing natural language in several ways for a machine:

¢ POS tagging is useful in differentiating between homonyms - words that have the
same spelling but mean different things. For example, the word “play” can mean
the verb to play, as in engage in an activity, and also the noun, as in a dramatic
work to be performed on stage. A POS tagger can help the machine understand
what context the word "play" is being used in by determining its POS tag.

e POS tagging builds on the need for sentence and word segmentation — one of the
basic tasks of natural language processing.

e POS tags are used in performing higher-level tasks by other algorithms, one of
which we will be discussing in this chapter, named entity recognition.

¢ POS tags contribute to the process of sentiment analysis and question answering
too. For example, in the sentence "Tim Cook is the CEO of this technology
company,’ you want the machine to be able to replace “this technology company"
with the name of the company. POS tagging can help the machine recognize

that the phrase “this technology company" is a determiner ((this) + a noun phrase
(technology company)). It can use this information to, for example, search articles
online and check how many times "Tim Cook is the CEO of Apple" appears in them
to then decide whether Apple is the correct answer.

Thus, POS tagging is an important step in the process of understanding natural
language because it contributes to other tasks.

Types of POS Taggers

As we saw in the previous section, POS taggers can be both of the supervised and
unsupervised learning type. This difference largely affects how a tagger is trained.
There is another distinction that impacts how the tagger actually assigns a tag to an*
untagged word, which is the approach used to train the taggers.

The two types of POS taggers are rule-based and stochastic. Let's take a look at both of
them.

Applications of Parts of Speech Tagging | 43

Rule-Based POS Taggers

These POS taggers work pretty much exactly as their name states - by rules. The
purpose for giving the taggers sets of rules is to ensure that they tag an ambiguous/
unknown word accurately most of the times, thus most of the rules are applied only
when the taggers come across an ambiguous/unknown word.

These rules are often known as context frame rules and provide the taggers with
contextual information to understand what tag to give an ambiguous word. An example
of a rule is as follows: If an ambiguous/unknown word, x, is preceded by a determiner
and followed by a noun, then assign it the tag of an adjective. An example of this would
be "one small girl” where "one" is a determiner and "girl" is a noun, therefore the tagger
will assign adjective to the word "small."

The rules depend on your theory of grammar. Additionally, they also often include rules
such as capitalization and punctuation. This can help you recognize pronouns and
differentiate them from words found at the start of a sentence (following a full stop).

Most rule-based POS taggers are supervised learning algorithms, in order to be able
to learn the correct rules and apply them to properly tag ambiguous words. Recently,
though, there have been experiments with training these taggers the unsupervised way.
Untagged text is given to the tagger to tag, and humans go through the output tags,
correcting whatever tags are inaccurate. This correctly tagged text is then given to the
tagger so that it can develop correction rules between the two different tagsets and
learn how to accurately tag words.

An example of this correction rule-based POS tagger is Brill's tagger, which follows the
process mentioned earlier. Its functioning can be compared with the art of painting
- when painting a house, it is easier to first paint the background of the house (for
example, a brown square) and then paint the details, such as a door and windows, on

top of that background using a finer brush. Similarly, Brill's rule-based POS tagger aims

to first generally tag an untagged corpus, even if some of the tags may be wrong, and

then revisit those tags to understand why some are wrong and learn from them.

Note

Exercises 10-16 can be performed in the same Jupyter Notebook.

44 | Applications of Natural Language Processing

Exercise 10: Performing Rule-Based POS Tagging

NLTK has a POS tagger that is a rule-based tagger. In this exercise, we will perform POS
tagging using NLTK's POS tagger. The following steps will help you with the solution:

Hh

2

Open cmd or terminal, depending on your operating system.

Navigate to the desired path and use the following command to initiate a Jupyter
Notebook:

jupyter notebook

Import nl1tk and punkt, as shown:

import nltk

nltk.download('punkt')

nltk.download('averaged_perceptron_tagger ')

nltk.download('tagsets')

Store an input string in a variable called s, as follows:

s = 'i enjoy playing the piano'

Tokenize the sentence, as demonstrated:

tokens = nltk.word_tokenize(s)

Apply the POS tagger on the tokens and then print the tagset, as shown:

tags = nltk.pos_tag(tokens)

tags

Your output will look like this:

[Ci "NN’),
(‘enjoy’, "VBP’),
(‘playing’, 'VBG’),
(‘the’, 'DT’),
(‘piano’, 'NN')]

Fig 2.3: Tagged output

Applications of Parts of Speech Tagging | 45

7. To understand what the "NN" POS tag stands for, you can use the following line of
code:

nltk.help.upenn_tagset ("NN")

The output will be as follows:

NN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...

Fig 2.4: Noun details

You can do this for each POS tag by substituting "NN" with it.

Let's try this out with a sentence containing homonyms.

8. Store an input string containing homonyms in a variable called sent:

sent = 'and so i said im going to play the piano for the play tonight'

9. Tokenize this sentence and then apply the POS tagger on the tokens, as shown:

tagset = nltk.pos_tag(nltk.word_tokenize(sent))

tagset

Expected output:

Cand’, ‘CC’,

(‘so’, 'RB'),
(7, 37’),
(‘said', 'VBD'),
(‘im', 'NN'),
(C‘acing', 'VBG’),

(‘to’, ‘TO'),
(‘play’, "VB'),
(‘the’, DT"),
(‘piano’, 'NN’),
(‘for', 'IN’),
(‘the’, 'DT'),
(‘play’, 'NN’),
(‘tonight’, 'NN')]

Fig 2.5: Tagged output

As you can see, the first instance of the word play has been tagged as 'VB, which stands

for verb, base form, and the second instance of the word play has been tagged as 'NN’,

which stands for noun. Thus, POS taggers are able to differentiate between homonyms

and different instances of the same word. This helps machines understand natural

language better.

46 | Applications of Natural Language Processing

Stochastic POS Taggers

Stochastic POS taggers are taggers that use any method other than rule-based methods
to assign tags to words. Thus, there are a large number of approaches that fall into the
stochastic category. All models that incorporate statistical methods, such as probability
and frequency, when determining the POS tags for words are stochastic models.

We will discuss three models:

¢ The Unigram or Word Frequency Approach

¢ Then - gram approach

¢ The hidden Markov Model

The Unigram or Word Frequency Approach

The simplest stochastic POS taggers assign POS tags to ambiguous words solely based
on the probability that a word occurs with a tag. This basically means that whatever tag
the tagger found linked with a word most often in the training set is the tag that it will
assign to an ambiguous instance of the same word. For example, let's say the training
set has the word "beautiful" tagged as an adjective a majority of the time. When the POS
tagger encounters "beaut", it won't be able to tag this directly because it isn't a proper
word. This will be an ambiguous word, and so it will calculate the probability of it being
each of the POS tags, based on how many times different instances of this word have
been tagged with each of those POS tags. "beaut" can be seen as an ambiguous form of
"beautiful", and since "beautiful" has been tagged as an adjective a majority of the time,
the POS tagger will tag "beaut" as an adjective too. This is called the word frequency
approach because the tagger is checking the frequency of the POS tags assigned to
words.

The n - gram Approach

This builds on the previous approach. The n in the name stands for how many words
are considered when determining the probability of a word belonging to a particular
POS tag. In the Unigram tagger, n = 1, and thus only the word itself is taken into
consideration. Increasing the value of n results in taggers calculating the probability of
a specific sequence of n POS tags occurring together and assigning a word a tag based
on this probability.

When assigning a tag to a word, these POS taggers create a context of the word by
factoring in the type of token it is, along with the POS tags of the n preceding words. s
Based on the context, the taggers select the tag that is most likely to be in sequence
with the tags of the preceding words and assigns this to the word in question. The most
popular n - gram tagger is known as the Viterbi algorithm.

Applications of Parts of Speech Tagging | 47

Hidden Markov Model

The hidden Markov model combines both the word frequency approach and the n - gram
approach. A Markov model is one that describes a sequence of events or states. The
probability of each state occurring depends solely on the state attained by the previous
event. These events are based on observations. The "hidden" aspect of the hidden Markov
model is that the set of states that an event could possibly be is hidden.

In the case of POS tagging, the observations are the word tokens, and the hidden set of
states are the POS tags. The way this works is that the model calculates the probability
of a word having a particular tag based on what the tag of the previous word was. For
example, P (V | NN) is the probability of the current word being a verb given that the
previous word is a noun.

Note

This is a very basic explanation of the hidden Markov model. To learn more, go to

https://medium.freecodecamp.org/an-introduction-to-part-of-speech-tagging-and-

the-hidden-markov-model-953d45338f24.

To learn more about stochastic models, go to http://ccl.pku.edu.cn/doubtfire/NLP/

Lexical Analysis/Word Segmentation Tagging/POS Tagging Overview/POS%20

Tagging%200verview.htm.

The three approaches mentioned earlier have been explained in an order where each

model builds upon and improves the accuracy of the preceding model. However, each
model that builds upon a preceding model involves more calculations of probability and
thus will take more time to perform computations, depending on the size of the training

corpus. Therefore, the decision of which approach to use depends on the size of the

corpus.

48 | Applications of Natural Language Processing

Exercise 11: Performing Stochastic POS Tagging

spaCy's POS tagger is a stochastic one. In this exercise, we will use spaCy's POS tagger

on some sentences to see the difference in the results of rule-based and stochastic

tagging. The following steps will help you with the solution:

Note

To install spaCy, click on the following link and follow the instructions: https://

spacy.io/usage

1. Import spaCy:

import spacy

2. Load spaCy's 'en_core_web_sm' model:

nlp = spacy.load('en_core_web_sm')

spaCy has models that are specific to different languages. The ‘en_core_web_sm'
model is the English language model and has been trained on written web text,
such as blogs and news articles, and includes vocabulary, syntax, and entities.

Note

To learn more about spaCy models, click on https://spacy.io/models.

3. Fit the model on the sentence you want to assign POS tags to. Let's use the
sentence we gave NLTK's POS tagger:

doc = nlp(u"and so i said i'm going to play the piano for the play

tonight")

4. Now, let's tokenize this sentence, assign the POS tags, and print them:

for token in doc:

print(token.text, token.pos_, token. tag_)

Chunking | 49

Expected output:

and CCONJ CC

so ADV RB

i PRON PRP

Said VERB VBD

i PRON PRP

*m VERB VBP

going VERB VBG

to PART TO

play VERB VB

the DET DT

Piano NOUN NN

for ADP IN

the DET DT

play NOUN NN

tonight NOUN NN

Figure 2.6: Output for POS tags

To understand what a POS tag stands for, use the following line of code:
spacy.explain("VBZ")

Replace "VBZ" with the POS tag you'd like to know about. In this case, your output will
be this:

‘verb, 3rd person singular present'

As you can see, the results are pretty much the same as the ones obtained from the
NLTK POS tagger. This is the case due to the simplicity of our input.

Chunking

POS taggers work on individual tokens of words. Tagging individual words isn't always
the best way to understand corpora, though. For example, the words 'United' and
‘Kingdom’ don't make a lot of sense when they're separated, but 'United Kingdom'
together tells the machine that this is a country, thus providing it with more context
and information. This is where the process of chunking comes into the picture.

Chunking is an algorithm that takes words and their POS tags as input. It processes
these individual tokens and their tags to see whether they can be combined. The
combination of one or more individual tokens is known as a chunk, and the POS tag
assigned to such a chunk is known as a chunk tag.

50 | Applications of Natural Language Processing

Chunk tags are combinations of basic POS tags. They are easier to define phrases by
and are more efficient than simple POS tags. These phrases are chunks. There will be
instances where a single word is considered a chunk and assigned a chunk tag too.
There are five major chunk tags:

¢ Noun Phrase (NP): These are phrases that have nouns as the head word. They act
as a subject or an object to the verb or verb phrase.

¢ Verb Phrase (VP): These are phrases that have verbs as the head word.

e Adjective Phrase (ADJP): These are phrases that have adjectives as the head word.
Describing and qualifying nouns or pronouns is the main function of adjective
phrases. They are found either directly before or after the noun or pronoun.

e Adverb Phrase (ADVP): These are phrases that have adverbs as the head word.
They're used as modifiers for nouns and verbs by providing details that describe
and qualify them.

¢ Prepositional Phrase (PP): These are phrases that have prepositions as the head
word. They position an action or an entity in time or space.

For example, in the sentence 'the yellow bird is slow and is flying into the brown house’,
the following phrases will be assigned the following chunk tags:

‘the yellow bird’ - NP

1s — VP

‘slow' - ADJP

‘is flying’ - VP

intor—PP.

‘the brown house' - NP

Thus, chunking is performed after POS tagging has been applied on a corpus. This
allows the text to be broken down into its simplest form (tokens of words), have its
structure analyzed, and then be grouped back together into meaningful higher-level
chunks. Chunking also benefits the process of named entity recognition. We'll see how
in the coming section.

The chunk parser present within the NLTK library is rule based and thus needs to
be given a regular expression as a rule to output a chunk with its chunk tag. spaCy »
can perform chunking without the presence of rules. Let's take a look at both these
approaches.

Chunking | 51

Exercise 12: Performing Chunking with NLTK

In this exercise, we will generate chunks and chunk tags. nltk has a regular expression
parser. This requires an input of a regular expression of a phrase and the corresponding
chunk tag. It then searches the corpus for this expression and assigns it the tag.

Since chunking works with POS tags, we can add on to our code from the POS tagging
exercise. We saved the tokens with their respective POS tags in 'tagset'. Let's use this.
The following steps will help you with the solution:

1. Create a regular expression that will search for a noun phrase, as shown:

rule = r"""Noun Phrase: {<DT>?<JJ>*<NN>}"""

This regular expression is searching for a determiner (optional), followed by one or
more adjectives and then a single noun. This will form a chunk called Noun Phrase.

Note

If you don't know how to write Regular Expressions, check out these quick

tutorials: https://www.w3schools.com/python/python_regex.asp https://

pythonprogramming.net/regular-expressions-regex-tutorial-python-3/

2. Create an instance of RegexpParser and feed it the rule:

chunkParser = nltk.RegexpParser(rule)

3. Give chunkParser the tagset containing the tokens with their respective POS tags
so that it can perform chunking, and then draw the chunks:

chunked = chunkParser.parse(tagset)

chunked. draw()

Note

matplotlib needs to be installed on your machine for the .draw() function to work.

Your output will look something like this:

SS RD Sn Wit Ree Ra Ei —
andCC soRB id said VBD iW) '‘mVBP going VBG toTO play VB Noun Phrase oF IN moh Foiaae Noun a

Sa rae ~~
plano NN the DT play NN tonight NN

\

the DT

Figure 2.7: Parse tree.

52 | Applications of Natural Language Processing

This is a parse tree. As you can see, the chunking process has recognized the noun

phrases and labeled them, and the remaining tokens are shown with their POS
tags.

4, Let's try the same thing out with another sentence. Store an input sentence in

another variable:

a = "the beautiful butterfly flew away into the night sky”

5. Tokenize the sentence and perform POS tagging using NLTK’s POS tagger:

tagged = nltk.pos_tag(nltk.word_tokenize(a))

6. Repeat step 3:

chunked2 = chunkParser.parse(tagged)

chunked2.draw()

Expected output:

S

ae _—_—_o ~.

Noun Phrase flewVED awayRB intoIN Noun Phrase Noun Phrase

the DT beautiful JJ butterfly MN the DT night NN. sky NN

Figure 2.8: Output for chunking.

Exercise 13: Performing Chunking with spaCy

In this exercise, we will implement chunking with spaCy. spaCy doesn't require us to
formulate rules to recognize chunks; it identifies chunks on its own and tells us what
the head word is, thus telling us what the chunk tag is. Let's identify some noun chunks
using the same sentence from Exercise 12. The following steps will help you with the
solution:

1. Fit spaCy's English model on the sentence:

doc = nlp(u"the beautiful butterfly flew away into the night sky")

2. Apply noun_chunks on this model, and for each chunk, print the text of the chunk,
the root word of the chunk, and the dependency relation that connects the root,
word to its head:

for chunk in doc.noun_chunks:

print(chunk.text, chunk.root.text, chunk. root.dep_)

Chinking | 53
a ee ee

Expected output:

the beautiful butterfly butterfly nsubj

the night sky sky pobj

Figure 2.9; Output for chunking with spaCy

As you can see, chunking with spaCy is a lot simpler than with NLTK.

Chinking

Chinking is an extension of chunking, as you've probably guessed already from its name.
It's not a mandatory step in processing natural language, but it can be beneficial.

Chinking is performed after chunking. Post chunking, you have chunks with their
chunk tags, along with individual words with their POS tags. Often, these extra words
are unnecessary. They don't contribute to the final result or the entire process of
understanding natural language and thus are a nuisance. The process of chinking helps
us deal with this issue by extracting the chunks, and their chunk tags form the tagged
corpus, thus getting rid of the unnecessary bits. These useful chunks are called chinks
once they have been extracted from the tagged corpus.

For example, if you need only the nouns or noun phrases from a corpus to answer
questions such as "what is this corpus talking about?", you would apply chinking
because it would extract just what you want and present it in front of your eyes. Let's
check this out with an exercise.

Exercise 14: Performing Chinking

Chinking is basically altering the things that you're looking for in a corpus. Thus,
applying chinking involves altering the rule (regular expression) provided to
chinkParser. The following steps will help you with the solution:

1. Create a rule that chunks the entire corpus and only creates chinks out of the

words or phrases tagged as nouns or noun phrases:

rule = r"""Chink: {<.*>+}

}<VB.?|CC|RB|JJ|IN|DT|TO>+{"""

This rule is in the form of a regular expression. Basically, this regular expression is

telling the machine to ignore all words that are not nouns or noun phrases. When

it comes across a noun or a noun phrase, this rule will ensure that it is extracted

as a chink.

54 | Applications of Natural Language Processing

2. Create an instance of RegexpParser and feed it the rule:

chinkParser = nltk.RegexpParser(rule)

3. Give chinkParser the tagset containing the tokens with their respective POS tags

so that it can perform chinking, and then draw the chinks:

chinked = chinkParser.parse(tagset)

chinked. draw()

Expected output:

S

SC ———— SS
andCC soRB iJJ said VBD it} ‘mVBP acing VBG toTO playVB the DT Chink forIN the DT Chink

piano NN play NN tonight NN

Figure 2.10: Output for chinking

As you can see, the chinks have been highlighted and contain only nouns.

Activity 2: Building and Training Your Own POS Tagger

We've already looked at POS tagging words using the existing and pre-trained POS
taggers. In this activity, we will train our own POS tagger. This is like training any other
machine learning algorithm. The following steps will help you with the solution:

1. Pick a corpus to train the tagger on. You can use the nltk treebank to work on. The
following code should help you import the treebank corpus:

nltk.download('treebank')

tagged = nltk.corpus. treebank. tagged_sents()

2. Determine what features the tagger will consider when assigning a tag to a word.

3. Create a function to strip the tagged words of their tags so that we can feed them
into our tagger.

4, Build the dataset and split the data into training and testing sets. Assign the
features to 'X' and append the POS tags to 'Y’. Apply this function on the training

set.

Named Entity Recognition | 55

Use the decision tree classifier to train the tagger.

Import the classifier, initialize it, fit the model on the training data, and print the
accuracy score.

Note

The accuracy score in the output may vary, depending on the corpus used.

Expected output:

Training completed

Accuracy: 8.8959565@61867267

Figure 2.11: Expected accuracy score.

Note

The solution for the activity can be found on page 297,

Named Entity Recognition

This is one of the first steps in the process of information extraction. Information

extraction is the task of a machine extracting structured information from unstructured
or semi-structured text. This furthers the comprehension of natural language by
machines.

After text preprocessing and POS tagging, our corpus becomes semi-structured and

machine-readable. Thus, information extraction is performed after we've readied our

corpus.

The following diagram is an example of named entity recognition:

Why Is Diversity Important For Google And India? Sundar Pichai Answers

|
| Organization Location Name

Figure 2.12: Example for named entity recognition

56 | Applications of Natural Language Processing

Named Entities

Named entities are real-world objects that can be classified into categories, such as
people, places, and things. Basically, they are words that can be denoted by a proper
name. Named entities can also include quantities, organizations, monetary values, and
many more things.

Some examples of named entities and the categories they fall under are as follows:

¢ Donald Trump, person

° Italy, location

¢ Bottle, object

¢ 500 USD, money

Named entities can be viewed as instances of entities. In the previous examples, the
categories are basically entities in their own and the named entities are instances of
those. For example, London is an instance of city, which is an entity.

The most common named entity categories are as listed:

¢ ORGANIZATION

¢ PERSON

¢ LOCATION

¢ DATE

¢ TIME

¢ MONEY

¢ PERCENT

¢ FACILITY

¢ GPE (which stands Geo-Political Entity)

Named Entity Recognizers

Named entity recognizers are algorithms that identify and extract named entities from
corpora and assign them a category. The input provided to a trained named entity
recognizer consists of tokenized words with their respective POS tags. The output of ®
named entity recognition is named entities along with their categories, among the other
tokenized words and their POS tags.

Named Entity Recognition | 57

The problem of named entity recognition takes place in two phases:

1. Identifying and recognizing named entities (for example, 'London’)

2. Classifying these names entities (for example, ‘London is a ‘location’

The first phase of identifying named entities is quite similar to the process of chunking,
because the aim is to recognize things that are denoted by proper names. The named
entity recognizer needs to look out for continuous sequences of tokens to be able to
correctly spot named entities. For example, ‘Bank of America’ should be identified as a
single named entity, despite the phrase containing the word ‘America’, which in itself is
a named entity.

Much like POS taggers, most named entity recognizers are supervised learning
algorithms. They are trained on input that contains named entities along with the
categories that they fall under, thus enabling the algorithm to learn how to classify
unknown named entities in the future.

This input containing named entities with their respective categories is often known
as a knowledge base. Once a named entity recognizer has been trained and is given an
unrecognized corpus, it refers to this knowledge base to search for the most accurate
classification to assign to a named entity.

However, due to the fact that supervised learning requires an excessive amount of
labeled data, unsupervised learning versions of named entity recognizers are also
being researched. These are trained on unlabeled corpora - text that doesn't have
named entities categorized. Like POS taggers, named entity recognizers categorize the

named entities, and then the incorrect categories are corrected manually by humans.
This corrected data is fed back to the NERs so that they can simply learn from their
mistakes.

Applications of Named Entity Recognition

As mentioned earlier, named entity recognition is one of the first steps of information
extraction and thus plays a major role in enabling machines to understand natural

language and perform a variety of tasks based on it. Named entity recognition is and

can be used in various industries and scenarios to simplify and automate processes.

Let's take a look at a few use cases:

* Online content, including articles, reports, and blog posts, are often tagged to

enable users to search for it more easily and also to get a quick overview of what

exactly the content is about. Named entity recognizers can be used to scour

through this content and extract named entities to automatically generate these

tags. These tags help categorize articles into predefined hierarchies as well.

58 | Applications of Natural Language Processing

¢ Search algorithms also benefit from these tags. If a user were to enter a keyword
into a search algorithm, instead of scouring through all the words of every article
(which will take forever), the algorithm just needs to refer to the tags produced
by named entity recognition to pull up articles containing or pertaining to the
entered keyword. This reduces the computational time and operations by a lot.

¢ Another purpose for these tags is to create an efficient recommendation system.
If you read an article that discusses the current political situation in India, and is
thus maybe tagged as ‘Indian Politics’ (this is just an example), the news website
can use this tag to suggest different articles with the same or similar tags. This
also works in the case of visual entertainment such as movies and shows. Online
streaming websites use tags assigned to content (for example, genres such as
‘action’, ‘adventure’, 'thriller’, and so on) to understand your taste better and thus

recommend similar content to you.

¢ Customer feedback is important for any service or product providing company.
Running customer complaints and reviews through named entity recognizers
produces tags that can help classify them based on location, type of product, and
type of feedback (positive or negative). These reviews and complaints can then be
sent to the people responsible for that particular product or that particular area
and can be dealt with based on whether the feedback is positive or negative. The
same thing can be done with tweets, Instagram captions, Facebook posts, and so
on.

As you can see, there are many applications of named entity recognition. Thus, it is
important to understand how it works and how to implement it.

Types of Named Entity Recognizers

As is the case with POS taggers, there are two broad methods to design a named entity
recognizer: a linguistic approach by defining rules to recognize entities, or a stochastic
approach using statistical models to accurately determine which category a named
entity falls into best.

Rule-Based NERs

Rule-based NERs work in the same way that rule-based POS taggers do.

Named Entity Recognition | 59

Stochastic NERs

These include any and all models that use statistics to name and recognize entities.
There are several approaches to stochastic named entity recognition. Let's take a look
at two of them:

¢ Maximum Entropy Classification

This is a machine learning classification model. It calculates the probability
of a named entity falling into a particular category solely on the basis of the
information provided to it (the corpus).

Note

For more information on Maximum Entropy Classification, go to http://blog.

datumbox.com/machine-learning-tutorial-the-max-entropy-text-classifier/.

¢ Hidden Markov Model

This method is the same as the one explained in the POS tagging section, but instead
of the hidden set of states being the POS tags, they are the categories of the named
entities.

Note

For more information on stochastic named entity recognition and when to use

which approach, go to http://www.datacommunitydc.org/blog/2013/04/a-survey-

of-stochastic-and-gazetteer-based-approaches-for-named-entity-recognition-

part-2.

60 | Applications of Natural Language Processing

Exercise 15: Perform Named Entity Recognition with NLTK

In this exercise, we'll use the ne_chunk algorithm of NLTK to perform named entity
recognition on a sentence. Instead of using the sentences we used in the previous
exercises, create a new sentence that contains proper names that can be classified into

categories so that you can actually see the results:

1. Store an input sentence in a variable, as shown:

ex = "Shubhangi visited the Taj Mahal after taking a SpiceJet flight from

Pune."

2. Tokenize the sentence and assign POS tags to the tokens:

tags = nltk.pos_tag(nltk.word_tokenize(ex))

3. Apply the ne_chunk() algorithm on the tagged words and either print or draw the
results:

ne = nltk.ne_chunk(tags, binary = True)

ne.draw()

Assigning the value of 'True' to the 'binary' parameter tells the algorithm to just
recognize the named entities and not classify them. Thus, your results will look
something like this:

§

en

NE visited VBD the DT NE afteriN taking VBG aDT NE fightNN from IN NE

Shubhangi NNP Taj NNP Mahal NNP SpicetJet NNP Pune NNP

Figure 2.13: Output for named entity recognition with POS tags

As you can see, the named entities have been highlighted as 'NE’.

4, To know which categories the algorithm has assigned to these named entities,
simply assign the value of 'False' to the 'binary' parameter:

ner = nltk.ne_chunk(tags, binary = False)

ner.draw()

Named Entity Recognition | 61
Rn

Expected output:

s

= Pe a ie
PERSON visited YBD the DT ORGANIZATION after (iM taking VAG aDT ORGANIZATION flight NM fram IM GPE

Shubhangi NMP Taj NNP WWahal NNIP Spicetet MNP Pure AAP

Figure 2.14: Output with named entities

The algorithm has accurately categorized 'Shubhangi' and 'SpiceJet’. 'Taj Mahal’,
however, shouldn't be an ORGANIZATION, it should be a FACILITY. Thus, NLTK's ne_

chunk() algorithm isn't the best one.

Exercise 16; Performing Named Entity Recognition with spaCy

In this exercise, we'll be implementing spaCy's named entity recognizer on the sentence
from the previous exercise and compare the results. spaCy has several NERs that have
been trained on different corpora. Each model has a different set of categories; here's a
list of all the categories spaCy can recognize:

PERSON People, including fictional.

Nationalities or religious or political groups.

Buildings, airports, highways, bridges, etc,

Companies, agencies, institutions, etc.

Countries, cities, states.

Non-GPE locations, mountain ranges, bodies of water.

CARDINAL

Figure 2.15: Categories of spaCy

Objects, vehicles, foods, etc. (Not services.)

Named hurricanes, battles, wars, sports events, etc.

Titles of books, songs, etc.

Named documents made into laws.

Any named language.

Absolute or relative dates or periods.

Times smaller than a day,

Percentage, including "%”".

Monetary values, including unit.

Measurements, as of weight or distance.

"first", “second”, etc.

Numerals that do not fall under another type.

62 | Applications of Natural Language Processing

The following steps will help you with the solution:

1, Fit spaCy's English model on the sentence we used in the previous exercise:

doc = nlp(u"Shubhangi visited the Taj Mahal after taking a SpiceJet flight

from Pune.")

2. For each entity in this sentence, print the text of the entity and the label:

for ent in doc.ents:

print(ent.text, ent.label_)

Your output will look something like this:

SpicelJet ORG

Pune GPE

Figure 2.16: Output for named entity

It's only recognizing 'SpiceJet' and 'Pune' as named entities, and not 'Shubhangi'
and ‘Taj Mahal’. Let's try adding a last name to 'Shubhangi' and check whether that
makes a difference.

3. Fit the model on the new sentence:

doc! = nlp(u"Shubhangi Hora visited the Taj Mahal after taking a SpiceJet

flight from Pune.")

4. Repeat step 2:

for ent in docl.ents:

print(ent.text, ent.label_)

Expected output:

Shubhangi Hora PERSON

the Taj Mahal WORK_OF_ART

SpiceJet ORG

Pune GPE

Figure 2.17: Output for named entity recognition with spaCy.

Named Entity Recognition | 63

So now that we've added a last name, "Shubhangi Hora" is recognized as a PERSON, and

"Taj Mahal" is recognized as a WORK_OF ART. The latter is incorrect, since if you check
the table of categories, WORK_OF_ART is used to describe songs and books.

Thus, the recognition and categorization of named entities strongly depends on the
data that the recognizer has been trained on. This is something to keep in mind when
implementing named entity recognition; it is often better to train and develop your own
recognizer for specific use cases.

Activity 3: Performing NER on a Tagged Corpus

Now that we've seen how to perform named entity recognition on a sentence, in this
activity, we'll perform named entity recognition on a corpus that has been through POS
tagging. Imagine that you're given a corpus that you've identified the POS tags for and
now your job is to extract entities from it so that you can provide an overall summary of
what the corpus is discussing. The following steps will help you with the solution:

1. Import NLTK and other necessary packages.

2. Print nltk.corpus.treebank.tagged_sents() to see the tagged corpus that you need

extract named entities from.

3. Store the first sentence of the tagged sentences in a variable.

4, Use nltk.ne_chunk to perform NER on the sentence. Set binary to True and print

the named entities.

5. Repeat steps 3 and 4 on any number of sentences to see the different entities

that exist in the corpus. Set the binary parameter to False to see what the named

entities are categorized as.

64 | Applications of Natural Language Processing

Expected output:

(Ss
(PERSON Rudolph/NNP)
(GPE Agnew/NNP)

YS

55/CD

years /NNS

old/33

and/cc

former/ JJ

chairman/ NN

of /IN

(ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP)

PLC/NNP

es

was /VBD

named /VBN

*_4/-NONE -

a/DT

nonexecutive/IJJ

director/NN

of/IN

this/DT

(GPE British/JJ}

industrial/JJ

conglomerate/NN

pay

Figure 2.18: Expected output for NER on tagged corpus

Note

The solution for the activity can be found on page 300.

Summary | 65

Summary

Natural language processing enables a machine to understand the language of humans,
and just as we learned how to comprehend and process language, machines are taught
as well. Two ways of better understanding language that allow machines to contribute
to the real world are POS tagging and named entity recognition.

The former is the process of assigning POS tags to individual words so that the machine
can learn context, and the latter is recognizing and categorizing named entities to
extract valuable information from corpora.

There are distinctions in the way these processes are performed: the algorithms can be
supervised or unsupervised, and the approach can be rule-based or stochastic. Either
way, the goal is the same, that is, to comprehend and communicate with humans in
their natural language.

In the next chapter, we will be discussing neural networks, how they work, and how
they can be used for natural language processing.

ES ae ‘J Wel Bese? tr: 7

he =n ct Danan
7

: eee aT es ene a a fare Seas

Balance tage Ht, ae Rea dsp ne Nena ae cada toate sods gps wiincksinaenag unr

é i ’

2 See Sahai fone ao ty aatge found on Loge 36D.

ne a ; P
* ~ - a

i - sen “
‘ ” > :,

_
‘

4% le
a _

Z [7 bd

oe er
a ay re.

hy
oe

»

~

Introduction to

Neural Networks

Learning Objectives

By the end of this chapter, you will be able to:

Describe Deep Learning and its applications

Differentiate between Deep Learning and machine learning

Explore neural networks and their applications

Understand the training and functioning of a neural network

Use Keras to create neural networks

This chapter aims to introduce you to neural networks, their applications in Deep Learning, and

their general drawbacks.

68 | Introduction to Neural Networks

Introduction

In the previous two chapters, you learned about the basics of natural language
processing, its importance, the steps required to prepare text for processing, and two
algorithms that aid a machine in understanding and executing tasks based on natural
language. However, to cater to higher, more complicated natural language processing
problems, such as creating a personal voice assistant like Siri and Alexa, additional
techniques are required. Deep learning systems, such as neural networks, are often
used in natural language processing, and so we're going to cover them in this chapter.

In the following chapters, you learn how to use neural networks for the purpose of
natural language processing.

This chapter begins with an explanation on deep learning and how it is different
from machine learning. Then, it discusses neural networks, which make up a large
part of deep learning techniques, and their basic functioning along with real-world
applications. Additionally, it introduces Keras, a Python deep learning library.

Introduction to Deep Learning

Artificial Intelligence is the idea of agents possessing the natural intelligence of humans.
This natural intelligence includes the ability to plan, understand human language,
learn, make decisions, solve problems, and recognize words, images and objects.
When building these agents, this intelligence is known as artificial intelligence, since
it is human-made. These agents do not refer to physical objects. They are, in fact, a
reference to software that demonstrates artificial intelligence.

There are two types of artificial intelligence—narrow and generalized. Narrow artificial
intelligence is the kind of artificial intelligence that we are currently surrounded by;
it is any single agent possessing one of the several capabilities of natural intelligence.
The application areas of natural language processing that you learned about in the
first chapter of this book are examples of narrow Artificial Intelligence, because
they are agents capable of carrying out a single task, such as, a machine being able
to automatically summarize an article. There do exist Technologies do exist that are
capable of more than one task, such as self-driving cars, but these are still considered a
combination of several narrow Als.

Generalized artificial intelligence is the possession of all human capabilities and more,
in a single agent, rather than one or two capabilities in a single agent. AI experts claim

that once AI has surpassed this goal of generalized AI and it is smarter and more adept
than humans themselves in all fields, it will become super artificial intelligence.

Introduction | 69

As mentioned in the previous chapters, natural language processing is an approach to
achieving artificial intelligence, by enabling machines to understand and communicate
with humans in the natural language of humans. Natural language processing prepares
textual data and transforms it into a form that machines are able to process—a

numerical form. This is where deep learning comes in.

Like natural language processing and machine learning, deep learning is also a category
of techniques and algorithms. It is a subfield of machine learning because both these
approaches share the same primary principle—both machine learning and deep learning
algorithms take input and use it to predict output.

Artificial Intelligence —

Machine Learning

Deep Learning

Fig 3.1: Deep learning as a subfield of machine learning

When trained on a training dataset, both types of algorithms (machine learning and

deep learning) aim to minimize the difference between the actual outcomes and their

predicted outcomes. This aids them in forming an association between the input and

the output, thus resulting in higher accuracy.

70 | Introduction to Neural Networks

Comparing Machine Learning and Deep Learning

While both these approaches are based on the same principle—predicting output
from input-—they achieve this in different ways, which is why deep learning has been
categorized as a separate approach. Additionally, one of the main reasons for deep
learning coming about was the increased accuracy these models provide in their
prediction process.

While machine learning models are quite self-sufficient, they still need human
intervention to determine that a prediction is incorrect, and thus they need to get
better at performing that particular task. Deep learning models, on the other hand, are
capable of determining whether a prediction is incorrect or not by themselves. Thus,
deep learning models are self-sufficient; they can make decisions and improve their
efficiency without human interventions.

To better understand this, let's take the example of an air conditioner whose
temperature settings can be controlled by voice commands. Let's say that when the air
conditioner hears the word "hot,’ it decreases the temperature, and when it hears the
word "cold," it increases the temperature. If this were a machine learning model, then

the air conditioner would learn to recognize these two words in different sentences
over time. However, if this were a deep learning model, it could learn to alter the

temperature based on words and sentences similar to the words "hot" and "cold," such

as "It's a little warm" or "I'm freezing!" and so on.

This is an example that directly relates to natural language processing since the model
understands the natural language of humans and acts on what it has understood. In
this book we will be sticking to using deep learning models for the purpose of natural
language processing, though in reality they can be used in almost every field. They are
currently involved in automating the task of driving, by enabling a vehicle to recognize
stop signs, read traffic signals, and halt for pedestrians. The medical field is also
utilizing deep learning methods to detect diseases at early stages - cancer cells. But
since our focus in this book is on enabling machines to understand the natural language
of humans, let's get back to that.

Deep learning techniques are most often used in the supervised learning way, that is,
they are provided with labelled data to learn from. However, the key difference between
machine learning methods and deep learning methods is that the latter require insanely
large amounts of data which didn't exist before. Thus, deep learning has only recently
become advantageous. It also requires quite a bit of computing power since it needs to
be trained on such large amounts of data.

Neural Networks | 71

The main difference, however, is in a algorithms themselves. If you've studied machine

learning before, then you're aware of the variety of algorithms that exist to solve
classification and regression problems, as well as unsupervised learning ones. Deep
learning systems differ from these algorithms because they use Artificial Neural
Networks.

Neural Networks

Often neural networks and deep learning are terms that are used interchangeably. They
do not mean the same thing, however, so let's learn the difference.

As mentioned before, deep learning is an approach that follows the same principle
as machine learning, but does so with more accuracy and efficiency. Deep learning
systems make use of artificial neural networks, which are computing models on their
own. So, basically, neural networks are a part of the deep learning approach but are not
the deep learning approach on their own. They are frameworks that are incorporated by
deep learning methods.

Artificial Intelligence

Machine Learning

Deep Learning

Neural

Networks

Fig 3.2: Neural Networks as a part of the deep learning Approach

Artificial neural networks are based on a framework inspired by the biological neural

networks found in the human brain. These neural networks are made of nodes that

enable the networks to learn from images, text, real-life objects, and other things, to be

able to execute tasks and predict things accuracy.

72 | Introduction to Neural Networks

Neural networks consist of layers, which we will take a look at in the following section.
The number of layers that a network has can be anywhere from three to hundreds.
Neural networks that are made of only three or four layers are called shallow neural
networks, whereas networks that have many more layers than that are referred to as
deep neural networks. Thus, the neural networks used by the deep learning approach
are deep neural networks and they possess several layers. Due to this, deep learning
models are very well suited to complex tasks such as facial recognition translating text,
and so on.

These layers break down the input into several levels of abstraction. As a result, the
deep learning model is better able to learn from and understand the input, be it images
or text or another form of input, which aids it in making decisions and predicting things
the way our human mind does.

Let's go through an example to understand these layers. Imagine that you're in your
bedroom doing some work and you notice you're sweating. That's your input data—
the fact that you're feeling hot and so in your head a little voice goes "I'm feeling hot!"
Next, you might wonder why you're feeling so hot—"Why am I feeling so hot?" This is a
thought. You'll then try to come up with a solution to this problem, maybe by taking a
shower-—"Let me take a quick shower.’ This is a decision that you've made. But then you
remember that you've got to leave for work soon—"But, I need to leave the house soon."
This is a memory. You might try to convince yourself by thinking “Isn't there enough
time to squeeze in a quick shower, though?" This is the process of a reasoning. Lastly,
you'll probably act on your thoughts by either thinking "I'm going to take a shower; or,
"there's no time for a shower, never mind." This is decision making and in the event you
do take a shower, it is an action.

The multiple layers in a deep neural network allow the model to go through these
different levels of processing just like the mind does, thus building upon the principles
of biological neural networks. These layers are how and why deep learning models are
able to perform tasks and predict outputs with such high accuracy.

Neural Network Architecture

Neural network architecture refers to the elements that are the building blocks of a
neural network. While there are several different types of neural networks, the basic
architecture and foundation remains constant. The architecture includes:

¢ Layers

¢ Nodes >

Neural Networks | 73

° Edges

¢ Biases

¢ Activation functions

The Layers

As mentioned before, neural networks are made up of layers. While the number of these
layers varies from model to model and is dependent on the task at hand, there are only
three types of layers. Each layer is made up of individual nodes and the number of these
nodes depends on the requirement of the layer and the neural network as a whole. A
node can be thought of as a neuron.

The layers present in a neural network are as follows:

¢ The input layer

As the name suggests, this is the layer that consists of the input data entering the
neural network. It is a mandatory layer as every neural network requires input
data to learn from and perform operations on to be able to generate an output.
This layer can only occur once in a neural network. Each input node is connected
to each node present in the proceeding layer.

The variables or characteristics of input data are known as features. The target
output is dependent on these features. For example, take the iris dataset. (The
Iris dataset is one of the most popular datasets for machine learning beginners. It
consists of data of three different types of flowers. Each instance has four features
and one target class.) The classification label of a flower is dependent on the four
features—petal length and width, and sepal length and width. The features, and
thus the input layer, is denoted by X, and each individual featured is denoted by
X1, X2,..., Xn.

¢ The hidden layer

This is the layer where the actual computation is done. It comes after the input
layer, since it acts on the input provided by the input layer, and before the output

layer, since it generates the output that is provided by the output layer.

A hidden layer is made up of nodes known as “activation nodes.’ Each node
possesses an activation function, which is a mathematical function that is

performed on the inputs received by an activation node to generate an output.

Activation functions will be discussed later on in this chapter.

74 | Introduction to Neural Networks

This is the only type of layer that can occur multiple times, and thus in deep neural
networks, there can be up to hundreds of hidden layers present. The number of
hidden layers depends on the task at hand.

The output generated by the nodes of one hidden layer are fed into the proceeding
hidden layer as input. The output generated by each activation node of a hidden
layer is sent to each activation node of the next layer.

¢ The output layer

This is the last layer of the neural network and it consists of nodes that provide
the final outcome of all the processing and computing. This is also a mandatory
layer since a neural network must produce an output based on input data.

In the case of the iris dataset, the output for a particular instance of a flower
would be the category of that flower-—Iris setosa, Iris virginica, or Iris versicolor.

The output, often known as the target, is denoted as y.

Hidden Layers

| Input Layer Output Layer

Fig 3.3: A Neural Network with 2 Hidden Layers

Neural Networks | 75

Nodes

Each activation node or neuron possess the following components:

¢ An activation

This is the current state of the node—whether it is active or not.

¢ A threshold value (optional)

If present, this determines whether a neuron is activated or not, depending on
whether the weighted sum is above or below this threshold value.

e An activation function

This is what computes a new activation for the activation node based on the inputs
and the weighted sum.

e An output function

This generates the output for the particular activation node based on the
activation function.

Input neurons have no such components as they don't perform computation, nor
do they have any preceding neurons. Similarly, output neurons don't have these
components, since they don't perform computation, nor do they have proceeding
neurons.

The Edges

Input Layer | Hidden Layer

Input Layer | Hidden Layer

xy Weights

™

my Weighted Sum
eet a Output to the

a next node

M2 ae es A -
H pF

oe

|_ an
ae

Fig 3.4: The Weighted Connections of a Neural Network

76 | Introduction to Neural Networks

Each of the arrows in the preceding diagram represents a connection between two
nodes from two different layers. A connection is known as an edge. Each edge that leads
to an activation node has its own weight, which can be considered as a sort of impact
that one node has on the other node. Weights can be either positive or negative.

Take a look at the earlier diagram. Before the values reach the activation function, their
values are multiplied by the weights assigned to their respective connections. These
multiplied values are then added together to obtain a weighted sum. This weighted
sum is basically a measure of how much impact that node has on the output. Thus if the
value is low, that means that it doesn't really affect the output that much and so it's not
that important. If the value is high, then it shares a strong correlation with the target
output and thus plays a role in determining what the output is.

Biases

A bias is a node, and each layer of a neural network has its own bias node, except for the
output layer. Thus, each layer has its own bias node. The bias node holds a value, known

as the bias. This value is incorporated in the process of calculating the weighted sum
and so also plays a role in determining the output generated by a node.

Bias is an important aspect of neural networks because it allows the activation function
to shift either to the right or to the left. This helps the model to better fit the data and
thus produce accurate outputs.

Activation Functions

Activation functions are functions that are part of the activation nodes found in the
hidden layers of neural networks. They serve the purpose of introducing non-linearity
into neural networks, which is really important, as without them neural networks would
just have linear functions, leaving no difference between them and linear regression
models. This defeats the purpose of neural networks, because then they wouldn't
be able to learn complex functional relationships that exist within data. Activation
functions also need to be differentiable for backpropagation to occur. This will be
discussed in future sections of this chapter.

Training a Neural Network | 77

Basically, an activation node calculates the weighted sum of the inputs it receives, adds
the bias, and then applies an activation function to this value. This generates an output
for that particular activation node which is then used as input by the proceeding layer.
This output is known as an activation value. Therefore, the proceeding activation node
in the next layer will receive multiple activation values from preceding activation nodes
and calculate a new weighted sum. It will apply its activation function to this value to
generate its own activation value. This is how data flows through a neural network.
Thus, an activation function helps convert an input signal into an output signal.

This process of calculating the weighted sum, applying an activation function, and
producing an activation value is known as feedforward.

There are several activation functions (Logistic, TanH, ReLU, and so on). The Sigmoid
function is one of the most popular and simple activation functions out there. When
represented mathematically, this function looks like

IO> Tre
Figure 3.5: Expression for sigmoid function

As you can see, this function is non-linear.

Training a Neural Network

So far, we know that once an input is provided to a neural network, it enters the input
layer which is an interface that exists to pass on the input to the next layer. If a hidden
layer is present, then the inputs are sent to the activation nodes of the hidden layer via
weighted connections. The weighted sum of all the inputs received by the activations
nodes is calculated by multiplying the inputs with their respective weights and adding
these values up along with the bias. The activation function generates an activation
value from the weighted sum and this is passed on to the nodes in the next layer. If the
next layer is another hidden layer, then it uses the activation values from the previous
hidden layer as inputs and repeats the activation process. However, if the proceeding
layer is the output layer, then the output is provided by the neural network.

78 | Introduction to Neural Networks

From all of this information, we can conclusively say that there are three parts of the
deep learning model that have an impact on the output generated by the model—the
inputs, the connection weights and biases, and the activation functions.

Deep Learning
Model

Activation

Functions

Figure 3.6: Aspects of a deep learning model that impact the output

While the inputs are taken from the dataset, the former two are not. Thus, the following

two questions arise—who or what decides what the weight is for a connection? How do
we know which activation functions to use? Let's tackle these questions one by one.

Calculating Weights

Weights play a very important role in multilayer neural networks, since altering the
weight of a single connection can completely alter the weights assigned to further
connections and thus the outputs generated by the proceeding layers. Thus, having the
optimal weights is necessary to create an accurate deep learning model. This sounds
like a lot of pressure, but lucky for us, deep learning models are capable of finding the
optimal weights all on their own. To understand this better, let's take the example of
linear regression.

Training a Neural Network | 79

Linear regression is a supervised machine learning algorithm that, as suggested by
the name itself, is suitable to solve regression problems (datasets whose output is in
the form of continuous numerical values, such as the selling prices of houses). This
algorithm assumes there exists a linear relationship between the input (the features)
and the output (the target). Basically, it believes that there exists a line of best fit that
accurately describes the relationship between the input and output variables. It uses
this to predict future numerical values. In a scenario where there is only one input
feature, the equation for this line is:

yoectmx

Figure 3.7: Expression for linear regression

Where,

y is the target output

c is the y-intercept

m is the model coefficient

x is the input feature

Similar to the connections in neural networks, the input features have values attached

to them too-they're called model coefficients. In a way, these model coefficients

determine the importance a feature has in determining the output, which is similar

to what the weights in neural networks do. It is important to ensure these model

coefficients are of the correct value so as to get correct predictions.

80 | Introduction to Neural Networks

Let's say that we want to predict the selling price of a house based on how many
bedrooms it has. So, the price of the house is our target output and the number of
bedrooms it has is our input feature. Since this is a supervised learning method, our
model will be fed a dataset that contains instances of our input feature matched with
the correct target output.

Number of Bedrooms (Input Selling Price (Target Output)

Feature)

Fig 3.8: Sample Dataset for Linear Regression

Now, our linear regression model needs to find a model coefficient that describes the
impact of the number of bedrooms on the selling price of the house. It does this by
making use of two algorithms-the loss function and the gradient descent algorithm.

The Loss Function

The loss function is also sometimes known as the cost function.

For classification problems, the loss function calculates the difference between the
predicted probability of a particular category and the category itself. For example, let's
say you have a binary classification problem that needs to predict whether a house will
be sold or not. There are only two outputs—"yes" and "no." A classification model when
fitted on this data will predict the probability of an instance of data falling in either the
"yes" category or the "no" category. Let's say the "yes" category has a value of 1, and
"no" has a value of 0. Thus, if the output probability is closer to 1 it will fall in the "yes"
category. The loss function for this model will measure this difference.

Training a Neural Network | 81

For regression problems, the loss function calculates the error between actual values
and predicted values. The house price example from the previous section is a regression
problem and so the loss function is calculating the error between the actual price of a
house, and the price that our model predicted. Thus, in a way, the loss function helps
the model self-evaluate its performance. Obviously, the model's aim is to predict the
price that is exactly, if not closest to, the actual price. To do this, it needs to minimize

the loss function as much as possible.

The only factor that is directly affecting the price predicted by the model is the model
coefficient. To arrive at the model coefficient that is best suited for the problem at
hand, the model needs to keep improving the values for the model coefficient. Let's call
each different value an update of the model coefficient. So, with each update of the
model coefficient, the model must calculate the error between the actual price and the
price that the model has predicted using that update of the model coefficient.

Once the function has reached its minimum value, the model coefficient at this

minimum point is chosen as the final model coefficient. This value is stored and used in
the linear equation described above by the linear regression algorithm. From that point
onwards, whenever the model is fed input data in the form of how many bedrooms
a house has without target outputs, it uses the linear equation with the apt model
coefficient to calculate and predict the price that that house will be sold at.

There are many different kinds of loss functions—such as MSE (for regression problems)
and Log Loss (for classification problems). Let's take a look at how they work.

The Mean Squared Error function calculates the difference between the actual values
and the predicted values, squares this difference, and then averages it out across the
entire dataset. The function, when expressed mathematically, looks like this:

1 an

MSE = paz AXP

Figure 3.9: Expression for mean squared error function

Where,

n is the total number of data points

yi is the ith actual value

xi is the input

f() is the function being carried out on the input to generate the output, therefore

f(xi) is the predicted value

82 | Introduction to Neural Networks

Log loss is used for classification models whose output is a probability value in the
range of 0 and 1. The higher the difference between the predicted probability and the
actual category, the higher the log loss. The mathematical representation of the log loss
functions is:

N
1 Log Loss = —5, y, (log (p(¥.)) + (1— y,))(1og (1 — PO)

t=1

Figure 3.10: Expression for log loss function

Where,

N is the total number of data points

yi is the ith actual label

p is the predicted probability

The Gradient Descent Algorithm

The process of evaluating the model's performance via the loss function is one that the
model carries out independently, as is the process for updating and ultimately choosing
the model coefficients.

Imagine that you're on a mountain and you want to climb back down and reach the
absolute bottom. It's cloudy and there are quite a few peaks so you can't exactly see
where the bottom is, or which direction it is in, you just know that you need to get
there. You start your journey at 5000 meters above sea level, and you decide to take
large steps. You take a step and then you check your phone to see how many meters
above sea level you are. Your phone says you are 5003 meters above sea level, which
means you've gone in the wrong direction. Now, you take a large step in another
direction and your phone says you are 4998 meters above sea level. This means you're
getting closer to the bottom, but how do you know that this step was the one with the
steepest descent? What if you took a step in another direction that brought you down
to 4996 meters above sea level? Thus, you check your position after taking a step in
each possible direction, and whichever takes you closest the bottom, is the one you
choose.

You keep repeating this process, and then you reach a point where your phone says
you are 100 meters above sea level. When you take another step, your phone's reading
remains the same-—100 meters above sea level. Finally, you have reached what seems td
be the bottom since a step in any direction from this point results in you still being 100
meters above sea level.

Training a Neural Network | 83

Loss

ecw: hi ‘Heneal <a
Function

Genet

2
246,000

lok

*
795 000

= ig

sl
$40 000

mee

Pangy al Gradient

“tens Descent

Fig 3.11: Updating Parameters

This is how the gradient descent algorithm works. The algorithm descends a plot of
the loss function against possible values for the model coefficient and the y-intercept,
like you descended the mountain. It starts off with an assigned value for the model
coefficient—this is you standing at a point 5000 meters above sea level. It calculates
the gradient of the plot at this point. This gradient tells the model which direction it
should move in to update the coefficient in order to get closer to the global minimum,
which is the end goal. So, it takes a step and arrives at a new point with a new model

coefficient. It repeats the process of calculating the gradient, obtaining a direction to
move in, updating the coefficient, and taking another step. It checks to see that this
step is the one that provides it with the steepest descent. With each step that it takes,
it arrives at a new model coefficient and calculates the gradient at that point. This
process is repeated until the value of the gradient doesn't change for a number of trials.
This means that the algorithm has reached the global minimum and has converged.
The model coefficient at this point is used as the final model coefficient in the linear
equations.

In neural networks, the gradient descent algorithm and loss function work together
to find values to be assigned to connections as weights and to biases. These values are
updated by minimizing the loss function using the gradient descent algorithm, as is
the case in linear regression models. Additionally, with the case of linear regression,
there is always only one minimum, due to the fact that the loss function is bowl shaped.
This makes it easy for the gradient descent algorithm to find it and be sure that this

is the lowest point. In the case of neural networks, however, it is not that simple.

The activation functions used by neural networks serve the purpose of introducing

non-linearity to the situation.

84 | Introduction to Neural Networks

As a result, the plot of the loss function of a neural network is not a bowl-shaped curve,

and this does not have just one minimum point. Instead, it has several minimums, only

one of which is the global minima. The rest are known as local minima. This sounds
like a major issue, but it is, in fact, alright for the gradient descent algorithm to reach a
local minima and choose the weight values at that point, due to the fact that most local
minima are usually quite close to the global minimum. There are modified versions of
the gradient descent algorithm that are also used when designing neural networks.

Stochastic and batch-sized gradient descent are two of them.

Let's say our loss function is MSE, and we need the gradient descent algorithm to
update one weight (w) and one bias (b).

fwd) = 5)". fowx, +)?
Figure 3.12: Expression for gradient of loss function

The gradient is the partial derivative of the loss function, with respect to the weight and
the bias. The mathematical representation of this is:

d is

f'(w,b) o se lin Tc ab oath eAt W, a a 1

Figure 3.13: Expression of gradient with partial derivaive of loss function

The result of this is the gradient of the loss function at the current position. This also
tells us which direction we should move in to continue updating the weight and the
bias.

The size of the step taken is adjusted by a parameter called the learning rate and is
a very sensitive parameter in the gradient descent algorithm. It is called alpha and is
denoted by a. If the learning rate is too small, then the algorithm will take too many tiny
steps and thus take too long to reach the minimum. However, if the learning rate is too
large then the algorithm might miss the minimum altogether. Thus, it is important to
tweak and test out the algorithm using different learning rates to ensure the right one

is chosen. ;

Training a Neural Network | 85

The learning rate is multiplied with the gradient calculated at each step in order to
modify the size of the step, thus the step size of each step is not always the same.
Mathematically, this looks like:

ca dw
N

aw

Figure 3.14: Expression for learning rate multiplied with gradient

And,

“Lap b= b-|— * Of

Figure 3.15: Expression for learning rate multiplied with gradient at each step

The values are subtracted from the previous values of the weight and bias because
the partial derivatives point in the direction of the steepest ascent, but our aim is to

descend.

Small Learning Rate Large Learning Rate

va
ee

ee

)

oe

ae

Fig 3.16: Learning Rate

86 | Introduction to Neural Networks

Backpropagation

Linear regression is basically a neural network, but without a hidden layer and with an
identity activation function (which is a linear function, therefore linearity). Hence, the
learning process remains the same as the one described in the previous sections—the
loss function aims to minimize the error by having the gradient descent algorithm
constantly update the weights till the global minimum is reached.

However, when dealing with larger, more complicated neural networks that are not
linear in nature, the loss calculated is sent back through the network to each layer,
which then begins the process of weight updating again. The loss is propagated
backwards, therefore this is known as backpropagation.

Backpropagation is performed using the partial derivatives of the loss function. It
involves calculating the loss of every node in every layer by propagating backwards in
the neural network. Knowing the loss of every node allows the network to understand
which weights are having a drastic negative impact on the output and the loss. Thus,
the gradient descent algorithm is able to reduce the weights of these connections that
have high error rates, consequently reducing the impact that that node has on the
network's output.

When dealing with many layers in a neural network, there are many activation functions
working on the inputs. This can be represented as follows:

fd) = X(¥(ZQ)))

Figure 3.17: Expression for backpropagation function

Here X, Y, and Z are activation functions. As we can see, f(x) is a composite function,

thus, backpropagation can be seen as an application of the chain rule. The chain rule is

the formula used to calculate the partial derivatives of a composite function, which is
what we're doing through backpropagation. Therefore, by applying the chain rule to the
preceding function (known as the forward propagation function since values are moving
in the forward direction to generate an output) and calculating the partial derivatives
with respect to each weight, we will be able to determine exactly how much of an
impact each node has on the final output.

The loss of the final node present in the output layer is the total loss of the entire neural
network, because it is in the output layer and so the loss of all the previous nodes gets
accumulated. The input nodes present in the input layer do not have a loss because
they don't have an impact on the neural network. The input layer is merely an interfaée
that sends the input to the activation nodes present in the hidden layers.

Designing a Neural Network and Its Applications | 87

Therefore, the process of backpropagation is the process of updating the weights using
the gradient descent algorithm and the loss function.

Note

For more information on the math of backpropagation, click here: https://ml-

cheatsheet.readthedocs.io/en/latest/backpropagation.html|

Designing a Neural Network and Its Applications

Common machine learning techniques are used when training and designing a neural
network. Neural networks can be classified as:

¢ Supervised neural networks

¢ Unsupervised neural networks

Supervised neural networks

These are like the example used in the previous section (predicting the price of the
house based on how many rooms it has). Supervised neural networks are trained on
datasets consisting of sample inputs with their corresponding outputs. These are
suitable for noise classification and making predictions.

There are two types of supervised learning methods:

¢ Classification

This is for problems that have discrete categories or classes as target outputs,
for example the Iris dataset. The neural network learns from sample inputs and
outputs how to correctly classify new data.

¢ Regression

This is for problems that have a range of continuous numerical values as target
outputs, like the price of a house example. The neural network describes the
causal relationship between the inputs and their outputs.

88 | Introduction to Neural Networks

Unsupervised neural networks

These neural networks are trained on data without any target output, and thus are able

to recognize and draw out patterns and inferences from the data. This makes them

well-suited for tasks such as identifying category relationships and discovering natural

distributions in data.

¢ Clustering

A cluster analysis is the grouping together of similar inputs. These neural networks can
be used for gene sequence analysis and object recognition, amongst other things.

Neural networks that are capable of pattern recognition can be trained both by
supervised or unsupervised methods. They play a key role in text classification and
speech recognition.

Exercise 17: Creating a neural network

In this exercise, we're going to implement a simple, classic neural network, by following
the workflow outlined earlier, to predict whether a review is positive or negative.

This is a natural language processing problem, since the neural network is going to be
fed rows of sentences that are actually reviews. Each review has a label in the training
set—either 0 for negative or 1 for positive. This label is dependent on the words present
in the review and so, our neural network needs to understand the meaning of the
review and accordingly label it. Ultimately, our neural network needs to be able to
predict whether a review is positive or negative.

Note

Download the dataset from the link:

Processing/tree/master/Lesson%2003

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language-

Designing a Neural Network and Its Applications | 89

The following steps will help you with the solution.

1. Open up a new Jupyter notebook by typing the following command in the
directory you'd like to code in:

jupyter notebook

2. Next, import pandas so that you can store the data in a dataframe:

import pandas as pd

df = pd.read_csv('train_comment_smal1_50.csv', sep=',')

3. Import the regular expressions package

import re

4, Create a function to preprocess the reviews by removing the HTML tags, escaped
quotes and normal quotes:

def clean_comment(text):

Strip HTML tags

text = re.sub('<[*<]+?>', ' ', text)

Strip escaped quotes

text = text.replace('\\"', '')

Strip quotes

text = text.replace('"’, '')

return text

5. Apply this function to the reviews currently stored in your dataframe:

df£['cleaned_comment'] = df['comment_text'].apply(clean_comment)

6. Import train_test_split from scikit-learn to divide this data into a training set
and a validation set:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df['cleaned_comment'],

df[‘'toxic'], test_size=0.2)

7. Import nltk and stopwords from nl1tk library:

import nltk

nltk.download('stopwords')

90 | Introduction to Neural Networks

8. Now machine learning and deep learning models require numerical data as input,

and currently our data is in the form of text. Thus, we're going to use an algorithm

called CountVectorizer to convert the words present in the reviews into word

count vectors

from sklearn. feature_extraction.text import CountVectorizer

from nltk.corpus import stopwords

vectorizer = CountVectorizer(binary=True, stop_words = stopwords.

words('english'), lowercase=True, min_df=3, max_df=0.9, max_features=5000)

X_train_onehot = vectorizer.fit_transform(X_train)

Our data is clean and prepped now!

9, We're going to create a two-layer neural network. When defining a neural
network, the number of layers does not include the input layer since it's a
given that an input layer exists and because the input layer isn't a part of the
computation process. So, a two-layer neural network includes an input layer, one
hidden layer and an output layer.

10. Import the model and the layers from Keras:

from keras.models import Sequential

from keras.layers import Dense

11. Initiate the neural network:

nn = Sequential()

12. Add the hidden layer. Specify the number of nodes the layer will have the
activation function the nodes possess and what the input for the layer is:

nn.add(Dense(units=500, activation='relu', input_dim=len(vectorizer.get_

feature_names())))

13. Add the output layer. Once again, specify the number of nodes and the activation
function. We're going to use the sigmoid function here because this is a binary

classification problem (predicting whether a review is positive or negative). We're
going to have only one output node since the output is just one value—either 1 or
0.

nn.add(Dense(units=1, activation='sigmoid'))

14.

15.

16.

Lig

Designing a Neural Network and Its Applications | 91

We're going to compile the neural network now, and decide which loss function,
optimization algorithm and performance metric we want to use. Since the
problem is a binary classification one, we're going to use binary_crossentropy as
our loss function. The optimization algorithm is basically the gradient descent
algorithm. Different versions and modifications of gradient descent exist. In this
case, we're going to use the Adam algorithm, which is an extension of stochastic
gradient descent:

nn.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

Now, let's summarize our model and see what's going on:

nn. summary ()

The output you'll get will look something like this:

Layer (type) Output Shape Param #

dense 1 (Dense) (None, 500) 2858

dense 2 (Dense) (None, 1) 561i

Total params: 29,001

Trainable params: 29,061

Non-trainable params: @

Figure 3.18: Model summary

Now, it's time to train the model. Fit the neural network on the X_train and y_

train data we had divided earlier:

nn.fit(X_train_onehot[:-20], y_train[:-20],

epochs=5, batch_size=128, verbose=1,

validation_data=(X_train_onehot[-100:], y_train[-20:]))

That's it! Our neural network is now ready for testing.

Transform the input validation data into word count vectors and evaluate the

neural network. Print the accuracy score to see how your network is doing:

scores = nn.evaluate(vectorizer.transform(X_test), y_test, verbose=1)

print("Accuracy:", scores[1])

92 | Introduction to Neural Networks

Your score might be a little different, but it should be close to 0.875.

Which is a pretty good score. So, there you have it. You just created your first ever

neural network, trained it, and validated it.

Expected output:

16/18 [s=osaesseeesssesescssssssessss] - es 135us/step

Accuracy: 8.8999999761581421

Figure 3.19: Expected accuracy score

18. Save your model:

model. save('nn.hd5')

Fundamentals of Deploying a Model as a Service

The purpose of deploying a model as a service is for other people to view and access
it with ease, and in other ways besides just looking at your code on GitHub. There are
different types of model deployments, depending on why you've created the model
in the first place. You could say there are three types—a streaming model (one that
constantly learns as it is constantly fed data and then makes predictions), an analytics
as a service model (AaaS—one that is open for anyone to interact with) and an on-line
model (one which is only accessible by people working within the same company).

The most common way of showcasing your work is through a web application. There
are multiple deployment platforms that aid and allow you to deploy your models
through them, such as Deep Cognition, MLflow, and others.

Flask is the easiest micro web framework to use to deploy your own model without
using an existing platform. It is written in Python. Using this framework, you can build
a Python API for your model that will easily generate predictions and display them for
you.

The flow is as follows:

1. Create a directory for the API

2. Copy your pre-trained neural network model to this directory

3. Write a program that loads this model, preprocess the input so that it matches

the training input of your model, use the model to make predictions and prepare,
send, display this prediction.

Fundamentals of Deploying a Model as a Service | 93

To test and run the API, you simply need to type the applications name along with
.run().

In the case of the neural network we created in, we would save that model and load it
into a new Jupyter notebook. We would convert input data (the cleaned reviews) into
word count vectors so that the input data for our API would be the same as the training
data. Then, we would use our models to generate predictions and display them.

Activity 4: Sentiment Analysis of Reviews

In the activity, we are going to review comments from a dataset and categorize them as
positive or negative. The following steps will help you with the solution.

Oo ND uw

Note

You will find the dataset at the following link:

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language-

Processing/tree/master/Lesson%2004

Open a new Jupyter notebook. Import the dataset.

Import the necessary Python packages and necessary classes. Load the dataset in

a dataframe.

Import the necessary libraries to clean and prepare the data. Create an array for
your cleaned text to be stored in. Using a for loop, iterate through every instance

(every review).

Import CountVectorizer and convert the words into word count vectors. Create
an array to store each unique word as its own column, hence making them

independent variables.

Import necessary label encoding entities.

Divide the dataset into training and testing sets.

Create the neural network model.

Train the model and validate it.

94 | Introduction to Neural Networks

9. Evaluate the neural network and print the accuracy scores to see how it's doing.

Expected output:

20/28 [seen saeestenessseeceesssesaas=] — @s 166us/step

Accuracy: 1.0

[1.192693321833454e-67, 1.08]

Figure 3.20: Accuracy score

Note

The solution for the activity can be found on page 302.

Summary

In this chapter, we were introduced to a subset of machine learning—deep learning. You
learned about the differences and similarities between the two categories of techniques
and understood the requirement for deep learning and its applications.

Neural networks are artificial representations of the biological neural networks that
are present in the human brain. Artificial neural networks are frameworks that are
incorporated by deep learning models and have proven to be increasingly efficient and
accurate. They are used in several fields, from training self-driving cars to detecting
cancer cells in very early stages.

We studied the different components of a neural network and learned a network trains

and corrects itself, with the help of the loss function, the gradient descent algorithm
and backpropagation. You also learned how to perform sentiment analysis on text
inputs! Furthermore, you learned the basics of deploying a model as a service.

In the coming chapters, you will learn more about neural networks and their different
types, along with which neural network to use in what situations.

oo J in, lait Bt leas a
4

a

ca a” ae
ee Ae ae

Zz

: ,

T.

?) ae ~ .
-

r °
- ©

MaPNES yy) WH BE fiw © we 2
i 7

;
i

‘ Ineipitatinn for oF re lyre
: ¥ ~~

onvolulien apereh-te.. ‘ PE: &
- LIND arctan eaten tarsi Wirmddes, * ra

Benet Af as tabi Seraon tag;

peal ie
 — us >

oan
 x
a

cme eer eer
Seer im gran

per tie mas

aot deploying 4
fresama

: nthe J iat eee

pope arta

Foundations of

Convolutional Neural

Network
Learning Objectives

By the end of this chapter, you will be able to:

Describe the inspiration for CNNs in neural science

Describe the convolution operations

Describe a basic CNN architecture for a classification task

Implement a simple CNN for image and text classification tasks

Implement a CNN for a sentiment analysis of text

In this chapter, we aim to cover the architecture of convolutional neural networks (CNNs) and

gain an intuition of CNNs based on their applications on image data, before delving into their

applications in natural language processing.

98 | Foundations of Convolutional Neural Network

Introduction

Neural networks, as a broad field, borrow a lot from biological systems, particularly
the brain. Advances in neural science have directly influenced research in to neural
networks.

CNNs are inspired by the work of two neural scientists, D.H. Hubel and T.N. Wiesel.
Their research focused on the mammalian visual cortex, which is the part of the brain
responsible for vision. Through their research back in the sixties, they found that the
visual cortex is composed of layers of neurons. Furthermore, these layers are arranged
in a hierarchical structure. This hierarchy ranges from simple-to hypercomplex
neurons. They also advanced the notion of a 'receptive field; which is the space within
which certain stimuli activate or fire a neuron, with a degree of spatial invariance.
Spatial or shift invariance allows animals to detect objects regardless of whether they
are rotated, scaled, transformed, or partially obscured.

Figure 4.1: Examples of spatial variance

Inspired by neural concepts of how animals see, computer vision scientists have
modelled neural networks that adhere to the same principles of locality, hierarchy, and
spatial invariance. We will dive deeper into the architecture of CNNs in the next section.

CNNs are a subset of neural networks that contain one or more ‘convolution’ layers.
Typical neural networks are fully connected, which means every neuron is connected
to every neuron in the next layer. When dealing with high-dimensional data such
as images, sound, and so on, typical neural networks are slow and tend to overfit as

there are too many weights being learned. Convolutional layers solve this problem
by connecting a neuron to a region of the input in lower layers. We will discuss
convolution layers in greater detail in the next section.

To understand the general architecture of CNNs, we will first apply them to the task of
image classification and then, subsequently, to natural language processing. To begin,
we'll do a small exercise to understand how computers see images.

Introduction | 99

Exercise 18: Finding Out How Computers See Images

Images and text share an important similarity. The location of a pixel in an image, or
a word in text, matters. This spatial significance makes applying convolutional neural
networks possible for both text and images.

In this exercise, we want to determine how computers interpret images. We will do this
by using the MNIST dataset, which contains a repository of handwritten digits perfect
for demonstrating CNNs.

Note

MNIST is a built-in Keras dataset.

You will need to have both Python and Keras installed. For easier visualization, you can
run your code in a Jupyter notebook:

1. Start by importing the necessary classes:

%matplotlib inline

import keras

import matplotlib.pyplot as plt

2. Since we'll be using this dataset throughout the chapter, we will import the

training and test sets as shown here:

Cxetrain, y¥-treinys, (X test, yatest) = keras.datasets.mnist.load_data()

3. Visualize the first image in the dataset:

sample_image = X_train[Q]

plt.imshow(sample_image)

100 | Foundations of Convolutional Neural Network

Running the preceding code should result in an image being visualized, as shown
here:

0 5 10 5 20 2

Figure 4.2: Visualization of an image

The images are 28 by 28 pixels, with each pixel being a number between 0 and 255.
Try playing around with different indices to display their values as follows. You can
do this by putting arbitrary numbers between @ and 255 as x and y in:

print(sample_image[x]L[y])

4, When you run the print code as follows, expect to see numbers between 0 and

250;

print(sample_image[22][111])

print(sample_image[6J[12])

print(sample_image[5J[23])

print(sample_image[10][11])

Expected Output:

253

170

Le? >

154

Figure 4.3: Numerical representation of an image

Understanding the Architecture of a CNN | 101

This exercise is meant to help you appreciate how image data is processed with each
pixel as a number between 0 and 255. This understanding is essential as we'll feed these
images into a CNN as input in the next section.

Understanding the Architecture of a CNN

Let's assume we have the task of classifying each of the MNIST images as a number
between 0 and 9. The input in the previous example is an image matrix. For a colored
image, each pixel is an array with three values corresponding to the RGB color scheme.
For grayscale images, each pixel is just one number, as we saw earlier.

To understand the architecture of a CNN, it is best to separate it into two sections as
visualized in the image that follows.

A forward pass of the CNN involves a set of operations in the two sections.

Section Two Section One

Output:

image Five
matrix as

input Pooling

“4
Rectified Feature Map Flatten Fully connected

Figure 4.4: Application of convolution and ReLU operations

The figure is explained in the following sections:

¢ Feature extraction

e Neural network

Feature Extraction

The first section of a CNN is all about feature extraction. Conceptually, it can be

interpreted as the model's attempt to learn which features distinguish one class from

another. In the task of classifying images, these features might include unique shapes

and colors.

102 | Foundations of Convolutional Neural Network

CNNs learn the hierarchical structure of these features. The lower layers of a CNN
abstract features such as edges, while the higher layers learn more defined features
such as shapes.

Feature learning occurs through a set of three operations repeated a number of times,

as follows:

1. Convolution

2. An activation function (the application of the ReLU activation function to achieve
non-linearity)

3. Pooling

Convolution

Convolution is the an operation that distinguishes CNNs from other neural networks.
The convolution operation is not unique to machine learning; it is applied in many other
fields, such as electrical engineering and signal processing.

Convolution can be thought of as looking through a small window as we move the
window to the right and down. Convolution, in this context, involves iteratively sliding a

"filter" across an image, while applying a dot product as we move left and down.

This window is called a "filter" or a "kernel". In the actual sense, a filter or kernel is a

matrix of preferably smaller dimensions than the input. To better understand how
filters are applied to images, consider the following example. After calculating the dot
product on the area covered by the filter, we take a step to the right and calculate the
dot product:

Input Matrix &) Filter/ Kernel —— Feature Map 4

Figure 4.5: Filter application on images

The result of this convolution is known as a feature map or an activation map.

Understanding the Architecture of a CNN | 103

The size of the filter needs to be defined as a hyperparameter. This size can also be
considered the area for which a neuron can "see" the input. This is called a neuron's
receptive field. Additionally, we need to define the stride size, that is, the number of
steps we need to take before applying the filter. Pixels at the center have the filters
passing through several times compared with those at the edges. To avoid losing
information at the corners, it is advisable to add an extra layer of zeros as padding.

The ReLU Activation Function

Activation functions are used all across machine learning. They are useful for
introducing non-linearity and allowing the a model to learn non-linear functions. In this
particular context, we apply the Rectified Linear Unit (ReLU). It basically replaces all
the negative values with zero.

The following image demonstrates the change in an image after ReLU is applied.

Input Feature Map Rectified Feature Map

_ Only non-negative aa

Figure 4.6: Image after applying ReLU function

Exercise 19: Visualizing ReLU

In this exercise we will visualize the Rectified Linear Unit function. The ReLU function

will be plotted on an X-Y axis, where X is numbers in the range of -15 to 15 and Y is the

output after applying the ReLU function. The goal of this exercise is to visualize ReLU.

1. Import the required Python packages:

from matplotlib import pyplot

2. Define the ReLU function:

def relu(x):

return max(@.0, x)

3. Specify the input and output references:

inputs = [x for x in range(-15, 15)]

outputs = [relu(x) for x in inputs]

104 | Foundations of Convolutional Neural Network

4, Plot the input against the output:

pyplot.plot(inputs, outputs) #Plot the input against the output

pyplot.show()

Expected Output:

Figure 4.7: Graph plot for ReLU

Pooling

Pooling is a downsampling process that involves reducing dimensionality from a higher
to a lower dimensional space. In machine learning, pooling is applied as a way to reduce
the spatial complexity of the layers. This allows for fewer weights to be learned and
consequently faster training times.

Historically, different techniques have been used to perform pooling, such as average
pooling and L2-norm pooling. The most preferred pooling technique is max pool. Max
pooling involves taking the largest element within a defined window size. The following
is an example of max pooling on a matrix: |

Figure 4.8; Max pool

Understanding the Architecture of a CNN | 105

If we apply max pooling to the preceding example, the section that has 2, 6, 3, and 7 is
reduced to 7. Similarly, the section with 1, 0, 9, and 2 is reduced to 9. With max pooling,
we pick the largest number in a section.

Dropout

A common problem encountered in machine learning is overfitting. Overfitting
occurs when a model "memorizes" the training data and is unable to generalize
when presented with different examples in testing. There are several ways to avoid
overfitting, particularly through regularization:

Under Fitted Good Fit Over Fitted

Figure 4.9: Regularization

Regulation is the process of constraining coefficients toward zero. Regularization
can be summarized as techniques used to penalize learned coefficients so that they
tend towards zero. Dropout is a common regularization technique that is applied by
randomly "dropping" some neurons during both the forward and backward passes.
To implement dropout, we specify the probability of a neuron being dropped as
a parameter. By randomly dropping neurons, we ensure that the model is able to
generalize better and therefore be a little more flexible.

Classification in Convolutional Neural Network

The second section of a CNN is more task-specific. For the task of classification, this
section is basically a fully connected neural network. A neural network is regarded as
fully connected when every neuron in one layer is connected to all the neurons in the
next layer. The input to the fully connected layer is a flattened vector that is the output
of section one. Flattening converts the matrix into a 1D vector.

The number of hidden layers in the fully connected layer is a hyperparameter that can
be optimized and fine-tuned.

106 | Foundations of Convolutional Neural Network

Exercise 20: Creating a Simple CNN Architecture

In this exercise, you will construct a simple CNN model using Keras. This exercise will

entail creating a model with the layers discussed so far. In the first section of the model,
we will have two convolutional layers with the ReLU activation function, a pooling layer,
and a dropout layer. In the second section, we will have a flattened layer and a fully

connected layer.

1. First, we import the necessary classes:

from keras.models import Sequential #For stacking layers

from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout

from keras.utils import plot_model

2. Next, define the variables used:

num_classes = 10

3. Let's now define the model. Keras's Sequential model allows you to stack layers as
you go:

model = Sequential()

4. We can now add section one layers. The convolution and ReLU layers are defined
together. We have two convolutional layers. We define a kernel size of 3 for each.
The first layer of the model receives the input. We need to define how it should
expect that input to be structured. In our case, the input is in the form of 28 by 28
images. We also need to specify the number of neurons for each layer. In our case,
we define 64 neurons for the first layer and 32 neurons for the second layer. Please
note that these are hyperparameters that can be optimized:

model. add(Conv2D(64, kernel_size=3, activation='relu', input_

shape=(28, 28,1)))

model.add(Conv2D(32, kernel_size=3, activation='relu'))

9. We then add a pooling layer, followed by a dropout layer with a 25% probability of
neurons being 'dropped':

model. add(MaxPooling2D(pool_size=(2, 2)))

model .add(Dropout(@.25))

The section one layers are done. Please note that the number of layers is also a
hyperparameter that can be optimized. >

Understanding the Architecture of a CNN | 107

6. For section two, we first flatten the input. We then add a fully connected or dense
layer. Using the softmax activation function, we can calculate the probability for
each of the 10 classes:

model .add(Flatten())

model.add(Dense(num_classes, activation='softmax'))

7. To visualize the model architecture so far, we can print out the model as follows:

model. summary ()

Expected Output:

Layer (type) § | -— Output Shape = Param #

en ei eee ee ee
conv2d 6 (Conv2D) (None, 24, 24, 32) 18464

max _pooling2d 3 (MaxPooling2 (None, 12, 12, 32) 0

dropout _3 (Dropout) ({None;-i2;-12, 32) 0

flatten 3 (Flatten) (None, 4608) 0

dense 2 (Dense) (None, 10) 46090
ee ss se cs st a a es ee eS ee ee i a ee es

Total params: 65,194

Trainable params: 65,194

Non-trainable params: 0

Figure 4.10: Model summary

108 | Foundations of Convolutional Neural Network
ata Hee alae Saeki elaine See ee A Sheerness

8. You can also run the following code to export the image to a file:

plot_model(model, to_file='model.png')

: max_pooling2d_3: MaxPooling2D

Figure 4.11: Visualized architecture of a simple CNN

In the preceding exercise, we created a simple CNN with two convolutional layers for
the task of classification. In the preceding output image, you'll notice how the layers are
stacked - starting from the input layer, then the two convolutional layers, the pooling,
dropout, and flattening layers, and the fully connected layer at the end.

Training a CNN | 109

Training a CNN

During the training of a CNN, the model tries to learn the weights of the filters in
feature extraction and the weights at the fully connected layers in the neural network.
To understand how a model is trained, we'll discuss how the probability of each output
class is calculated, how we calculate the error or the loss, and finally, how we optimize
or minimize that loss while updating the weights:

i Probabilities

Recall that in the last layer of the neural network section, we used a softmax
function to calculate the probability of each output class. This probability
is calculated by dividing the exponent of that class score by the sum of the
exponents of all scores:

exp (yi
softmax = sel ocd aa scons = is the class 0,1....9

ye exp(yi)

Figure 4.12: Expression to calculate probability

Loss

We need to be able to quantify how well the calculated probabilities predict the
actual class. This is done by calculating a loss, which in the case of classification
probability is best done through the categorical cross-entropy loss function. The
categorical cross-entropy loss function takes in two vectors, the predicted classes
(let's call that y') and the actual classes (say y), and outputs the overall loss. Cross-
entropy loss is calculated as the sum of the negative log likelihoods of the class
probabilities. It can be represented as the H function here:

Ba deers ape 04 SG TEES)

Figure 4.13: Expression to calculate loss

110 | Foundations of Convolutional Neural Network

3. Optimization

Consider the sketch of cross-entropy loss that follows. By minimizing the loss, we

can predict the correct class with a higher probability:

Cross Entropy Loss

Predicted Probability

Figure 4.14: Cross-entropy loss versus predicted probability

Gradient descent is an optimization algorithm for finding the minimum of a function,
such as the loss function described earlier. Although the overall error is calculated,
we need to go back and calculate how much of that loss was contributed by each
node. Consequently, we can update the weights, so as to minimize the overall error.
Backpropagation applies the chain rule of calculus to calculate the update for each
weight. This is done by taking the partial derivative of the error or loss relative to the
weights.

To better visualize these steps, consider the following diagram, which summarizes

the three steps. For the classification task, the first step involves the calculation of
probabilities for each output class. We then apply a loss function to quantify how well
the probabilities predict the actual class. In order to make a better prediction going
forward, we then update our weights by performing backpropagation through gradient
descent:

Training a CNN | 111

Probability S

Calculation of
probabilities for each
output class by using
softmax function.

Optimization
Apply a loss function
|to quantify how well
the probabilities
predict the actual
class, through the
categorical cross
entropy loss function

Update the weights by
performing back
propagation through
gradient descent.

Figure 4.15: Steps for the classification task

Exercise 21: Training a CNN

In this exercise, we will train the model we created in exercise 20. The following steps
will help you with the solution. Recall that this is for the overall task of classification.

yi We start by defining the number of epochs. An epoch is a common
hyperparameter used in deep neural networks. One epoch is when the entire
dataset is passed through a complete forward and backward pass. As training data
is usually a lot, data can be divided into several batches:

epochs=12

Recall that we imported the MNIST dataset by running the following command:

(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()

We first reshape the data to fit the model:

X_train = X_train.reshape(60000,28,28,1) #60,000 is the number of training

examples

X_test = X_test.reshape(10000, 28, 28,1)

The to_categorical function changes a vector of integers to a matrix of one-hot
encoded vectors. Given the following example, the function returns the array

shown:

#Demonstrating the to_categorical method

Import numpy as np

from keras.utils import to_categorical

example = [1,0,3,2]

to_categorical (example)

112 | Foundations of Convolutional Neural Network

The array would be as follows:

array (iO. pel, Dsyeucd,

[dees 0.7 D ae Mie 1 y

[OnpaerO ooaas 1;

POC, Career ue 41)

Figure 4.16: Array output

5. We apply it to the target column as shown:

from keras.utils import to_categorical

y_train = to_categorical(y_train)

y_test = to_categorical(y_test)

6. We then define the loss function as a categorical cross-entropy loss function.
Additionally, we define the optimizer and the metrics. The Adam(Adaptive
Moment) optimizer is an optimization algorithm often used in place of stochastic
gradient descent. It defines an adaptive learning rate for each parameter of the
model:

model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

7. To train the model, run the .fit method:

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=epochs)

The output should be as follows:

Train on 60000 samples, validate on 10000 samples

Epoch 1/12

60000/60000 [==s===s==s==== SaaSessesseeesese] - 2098 3ms/step - loss: 11.8406 - acc: 0.2646 - val_loss: 11.0491 - val
acc: 0.3130 i
Epoch 2/12

60000/60000 [=s==s==s=sses=ss=sssass=s=ee=s==] - 1978 3ms/step - loss: 9.8795 - acc: 0.3867 - val_loss: 9.8567 - val_ac

ce: 0.3884 is
Epoch 3/12

60000/60000 [sess=sessseessseesessseseeese=] - 199s 3ms/step - loss: 9.8271 - acc: 0.3901 - val_loss: 9.7647 - val_ac

ce: 0.3940 7
Epoch 4/12

60000/60000 [===ss=====s=s=s=ss===ssee=sssee==5] - 227s 4ms/step - loss: 9.6686 - acc: 0.4000 - val_loss: 9.6117 - val_ac
c: 0.4033

Figure 4.17: Training the model

Training a CNN | 113

8. To evaluate the model's performance, you can run the following:

score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])

print('Test accuracy:', score[1])

9. For this task, we expect a fairly high accuracy after a number of epochs:

Test loss: 6.17829175567627

Test accuracy: @.6169

Figure 4.18: Accuracy and loss output

Applying CNNs to Text

Now that we have a general intuition of how CNNs work using images, let's look at
how they can be applied in natural language processing. Just like images, text has
spatial qualities that make it ideal for CNN usage. However, there is one main change
to the architecture that we introduce when dealing with text. Instead of having
two-dimensional convolutional layers, text is one-dimensional, as shown here.

Figure 4.19: One-dimensional convolution

It is important to note that the preceding input sequence can be either the character

sequence or the word sequence. The application of CNNs on text, at the character level,

can.be visualized as shown in the following figure. CNNs have 6 convolutional layers and
3 fully connected layers as shown here.

114 | Foundations of Convolutional Neural Network

Quis ation
Feature

|

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Figure 4.20: CNN with 6 convolutional and 3 fully connected layers

Character-level CNNs were shown to perform well when applied to large noisy
data. They are also simpler than word-level applications because they require no
preprocessing (such as stemming) and the characters are represented as one-hot
encoding representations.

In the following example, we will demonstrate the application of CNNs to text at a word
level. We will therefore need to perform some vectorization and padding before feeding
the data into the CNN architecture.

Exercise 22: Application of a Simple CNN to a Reuters News Topic for

Classification

In this exercise, we will be applying a CNN model to the built-in Keras Reuters dataset.

Note

If you are using Google Colab, you need to downgrade your version of numpy to

1.16.2 by running

!pip install numpy==1.16.1

import numpy as np

This downgrade is necessary since this version of numpy has the default value of

allow_pickle as True.

Training a CNN | 115

1. Start by importing the necessary classes:

import keras

from keras.datasets import reuters

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras import layers

2. Define the variables:

batch_size = 32

epochs = 12

maxlen = 10000

batch_size = 32

embedding_dim = 128

num_filters = 64

kernel_size = 5

3. Load the Reuters dataset:

(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=None,

test_split=0.2)

4, Prepare the data:

word_index = reuters.get_word_index(path="reuters_word_index. json")

num_classes = max(y_train) + 1

index_to_word = {}

for key, value in word_index.items():

index_to_word[value] = key

5. Tokenize the input data:

tokenizer = Tokenizer(num_words=maxlen)

x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')

x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

6. Define the model:

model = Sequential()

model.add(layers.Embedding(512, embedding_dim, input_length=maxlen))

model.add(layers.Conv1D(num_filters, kernel_size, activation='relu'))

model. add(layers.GlobalMaxPooling1D())

‘model.add(layers.Dense(10, activation='relu'))

116 | Foundations of Convolutional Neural Network

model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam' ,

metrics=['accuracy'])

7. Train and evaluate the model. Print the accuracy score:

history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,

verbose=1, validation_split=0.1)

score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1)

print('Test loss:', score[Q@])

print('Test accuracy:', score[1])

Expected output:

Test loss: 2.2279047027615064

Test accuracy: @.43232413178984863

Figure 4.21: Accuracy score

We have thus created a model and trained it on a dataset.

Application Areas of CNNs

Now that we understand the architecture of CNNs, let's look at some applications. In
general, CNNs are great for data that has a spatial structure. Examples of types of data
that has a spatial structure are sound, images, video, and text.

In natural language processing, CNNs are used for various tasks such as sentence
classification. One example is the task of sentiment classification, where a sentence is

classified as belonging to a predetermined group of classes.

As discussed earlier, CNNs are applied at the character level to classification tasks such
as sentiment classification, especially on noisy datasets such as social media posts.

CNNs are more commonly applied in computer vision. Here are some applications in

this area:

¢ Facial recognition

Most social networking sites employ CNNs to detect faces and subsequently
perform tasks such as tagging.

Application Areas of CNNs | 117

Figure 4.22: Facial recognition

* Object detection

Similarly, CNNs are able to detect objects in images. There are several CNN-based
architectures that are used to detect objects, one of the most popular being
R-CNN. (R-CNN stands for Region CNN.) An R-CNN works by applying a selective
search to come up with regions and subsequently use using CNNs to perform
classification, one region at a time.

Tt

_ _. Wall Painting

eee Fo)

Figure 4.23: Object detection

118 | Foundations of Convolutional Neural Network

¢ Image captioning

This task involves creating a textual description for an image. One way to perform
image captioning is to replace the fully connected layer in section two with a
recurrent neural network (RNN).

ag © 2 oe

A puppy in acup A dog wearing A white puppy sitting
sunglasses on a sofa chair

Figure 4.24: Image captioning

° Semantic segmentation

Semantic segmentation is the task of segmenting an image into more meaningful
parts. Each pixel in an image is classified as belonging to a class.

forward/inference
——$— >

backward/learning

Figure 4.25: Semantic segmentation

Application Areas of CNNs | 119

An architecture that can be used to perform semantic segmentation is a Fully
Convoluted Network (FCN). The architecture of FCNs is slightly different from the
preceding one in two ways: it has no fully connected layer and it has upsampling.
Upsampling is the process of making the output image larger preferably the same size
as the input image.

Here is a sample architecture:

32x sien. one

image convl -32 oll conv2 pool2 convs pool3 an bite conv5 pool5 conv6-7 prediction

x cone? 16x upsampled

aaa prediction (FCN-16s)

8x upsampled

4x conv7 prediction (FCN-8s)

Figure 4.26: Sample architecture of semantic segmentation

Note

For more on FCNs, refer to the paper by Jonathan Long, Evan Shelhamer, and

Trevor Darrell titled Fully Convolutional Networks for Semantic Segmentation.

120 | Foundations of Convolutional Neural Network

Activity 5: Sentiment Analysis on a Real-life Dataset

Imagine that you are tasked with creating a model to classify the reviews from a
dataset. In this activity, we will build a CNN that performs the binary classification task
of sentiment analysis. We will be using a real-life dataset from UCI's repository.

Note

This dataset is downloaded from https://archive.ics.uci.edu/ml/datasets/

Sentiment+Labelled+Sentences

From Group to Individual Labels using Deep Features, Kotziaa et al., KDD 2015 UCI

machine learning Repository [http://archive.ics.uci.edu.ml]. Irvine, CA: University of

California, School of Information and Computer Science

You can also download it from our GitHub repository link:

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language-

Processing/tree/master/Lesson%2004 :

The following steps will help you with the solution.

1.

Z

oN Dm

Download the Sentiment Labelled Sentences dataset.

Create a directory labelled ‘data’ within your working directory and unzip the
downloaded folder within the directory.

Create and run your working script (for example, sentiment.ipynb) on Jupyter
Notebook.

Import your data using pandas read_csv method. Feel free to use one or all of the
files in the dataset.

Split your data into training and test sets by using scikit learn's train_test_split.

Tokenize using Keras's tokenizer.

Convert the text into sequences using the texts_to_sequences method.

Ensure that all sequences have the same length by padding them. You can use
Keras's pad_sequences function.

Summary | 121

9. Define the model with a minimum of one convolutional layer and one fully
connected layer. As this is a binary classification, we use a sigmoid activation
function and calculate the loss through binary cross-entropy loss.

10. Train and test the model.

Note

The solution for the activity can be found on page 305.

Expected output:

Training Accuracy: 1.e@0e@

Testing Accuracy: 6.8167

Figure 4.27: Accuracy scores

Summary

In this chapter, we studied the architecture and applications of convolutional neural

networks (CNNs). CNNs are applied not just to text and images but also to datasets that
have some form of spatial structure. In the upcoming chapters, you will explore how to
apply other forms of neural networks to various natural language tasks.

> er ape me :

ema

Bt 71 eL-

ek an tne sa et

ee on
Pa i! ws idle mrs: enamipie, weno

eee 77
i. ae

_ iia

Hire i.

-

Splice your

token:

vn
aa

cinq a oe oom me Poni dade ¢ xf

aro =n ai a

- Behr

oe meson .

ab yo ht be i,

ee tae ~~ eS : A,

4

<

a]
Stal

+ get a wh wer et

a] one te sata

Pa) ae
oe

a

Recurrent Neural

Networks

Learning Objectives

By the end of this chapter, you will be able to:

Describe classical feedforward networks

Differentiate between feedforward neural networks and recurrent neural networks

Evaluate the application of backpropagation through time for recurrent neural networks

Describe the drawbacks of recurrent neural networks

Use recurrent neural networks with keras to solve the author attribution problem

This chapter aims to introduce you to recurrent neural networks and their applications, as well

as their drawbacks.

124 | Recurrent Neural Networks

Introduction

We encounter different kinds of data in our day-to-day lives, and some of this data has
temporal dependencies (dependencies over time) while some does not. For example,
an image by itself contains the information it wants to convey. However, data forms
such as audio and video have dependencies over time. They cannot convey information
if a fixed point in time is taken into consideration. Based on the problem statement,
the input that's needed in order to solve the problem can differ. If we have a model to
detect a particular person in a frame, a single image can be used as input. However, if
we need to detect their actions, we need a stream of images, contiguous in time, as the

input. We can understand the person's actions by analyzing these images together, but
not independently.

While watching a movie, a particular scene makes sense because its context is known,

and we remember all the information gathered before in the movie to understand
the current scene. This is very important, and we, as humans, can do this because

our brains can store memory, analyze past data, and retrieve useful information to
understand the current scene.

Networks such as multi-layered perceptron and convolutional neural networks lack this

capability. Every input given to these networks is treated independently, and they don't
store any information from past inputs to analyze the current inputs because they lack
memory in their architecture. That being the case, maybe there is a way we can enable
neural networks to have memory. We can try and make them store useful information
from the past and make them retrieve information from the past that helps them to
analyze the current input. This is indeed possible, and the architecture for it is called
the Recurrent Neural Network (RNN).

Before we delve deep into the theory of RNNs, let's take a look at their applications.
Currently, RNNs are widely used. Some of the applications are as follows:

* Speech recognition: Whether it's Amazon's Alexa, Apple's Siri, Google's voice
assistant, or Microsoft's Cortana, all their speech recognition systems use RNNs.

¢ Time series predictions: Any application with time series data, such as stock market
data, website traffic, call center traffic, movie recommendations, Google Maps

routes, and so on, uses RNNs to predict future data, the optimal path, optimal

resource allocations, and so on.

* Natural language processing: Applications such as machine translation (for Google
Translate, for instance), chatbots (such as those for Slack and Google), and
question answering all use RNNs to model dependencies.

Previous Versions of Neural Networks | 125

Previous Versions of Neural Networks

could not capture time-variable dependencies, which are essential for capturing the
time-variable properties of a signal. Modeling time-variable dependencies is very
important in many applications involving real-world data, such as speech and video, in
which data has time-variable properties. Also, human biological neural networks have
a recurrent relationship, so it is the most obvious direction to take. How could this

recurrent relationship be added to existing feedforward networks?

One of the first attempts to achieve this was done by adding delay elements, and the
network was called the Time-Delay Neural Network, or TDNN for short.

In this network, as the following figure shows, the delay elements are added to the
network and the past inputs are given to the network along with the current timestep

as the input to the network. This definitely has an advantage over the traditional feed
forward networks but has the disadvantage of having only so many inputs from the past
as the window allows. If the window is too large, the network grows with increasing
parameters and computational complexities.

D = Delay

Figure 5.1: TDNN structure

126 | Recurrent Neural Networks

Then came Elman networks, or simple RNNs. Elman networks are very similar to
feedforward networks, except that the hidden layer of output is stored and used for the
next input. This way, information from the previous timesteps can be captured in these
hidden states.

One way of looking at Elman networks is that at each input, we append the previous
hidden layers' outputs along with the inputs and send them all as the inputs to the
network. So, if the input size is m and the hidden layer size is n, the effective input layer
size becomes m+n.

The following figure shows a simple three-layer network, where the previous state is
fed back to the network to store the context, and therefore it is called SimpleRNN.
There are other variations to this architecture, such as Jordan networks, which we will

not study in this chapter. For those are interested in the early history of RNNs, reading
more on Elman networks and Jordan networks might be the best place to start.

Transforms

state

Figure 5.2: SimpleRNN structure >

RNNs | 127

And then came the RNN, which is the topic of this chapter. We will look into RNNs in
detail in the coming sections It is important to note that in recurrent networks, since
there are memory units and weights associated to these units, they need to be learned
during backpropagation. Since these gradients are also backpropagated through time,
we Call it Back Propagation Through Time, or BPTT. We will discuss BPTT in detail

in the upcoming sections. However, TDNN, Elman networks, and RNNs have a major

drawback due to BPTT, and it is called vanishing gradients. Vanishing gradients is a
problem where gradients get smaller and smaller as they backpropagate, and in these
networks, as timesteps increase, back-propagated gradients get smaller and smaller,
resulting in vanishing gradients. It's almost impossible to capture time dependencies
greater than 20 timesteps.

To address this issue, an architecture called the Long Short-Term Memory (LSTM)
architecture was introduced. The key idea here is to hold some cell states constant
and introduce them as needed in future timesteps. These decisions are made by gates,
including forget gates and output gates. Another commonly used variant of the LSTM
is called the Gated Recurrent Unit, or GRU for short. Don't worry much if you didn't
understand this completely. There are two chapters following that are dedicated to
making these concepts clear.

RNNs

Recurrent often means occurring repeatedly. The recurrent part of RNNs simply means
that the same task is done over all the inputs in the input sequence (for RNNs, we give
a sequence of timesteps as the input sequence). One main difference between feed
forward networks and RNNs is that RNNs have memory elements called states that

capture the information from the previous inputs. So, in this architecture, the current

output not only depends on the current input, but also on the current state, which

takes into account past inputs.

128 | Recurrent Neural Networks

RNNs are trained by sequences of inputs rather than a single input; similarly, we can

consider each input to an RNN as a sequence of timesteps. The state elements in RNNs

contain information about past inputs to process the current input sequence.

Yer Y; Yeas

Figure 5.3: RNN structure

For each input in the input sequence, the RNN gets a state, calculates its output, and
sends its state to the next input in the sequence. The same set of tasks is repeated for
all the elements in the sequence.

It's easy to understand RNNs and their operations by comparing them to feedforward
networks. Let's do that now.

By now, it's very clear that the inputs are independent of each other in feedforward
neural networks, so we train the network by randomly drawing pairs of inputs and
outputs. There is no significance to the sequence. At any given time, the output is a
function of input and weights.

ny = F(,,W)

Figure 5.4: Expression for the output of an RNN

In RNNs, our output at time t depends not only on the current input and the weight, but
also on previous inputs. In this case, the output at time t will be defined as shown:

Ut — Pia. Lit
, Kip ee aL ae ee W)

Figure 5.5: Expression for the output of an RNN at time t

RNNs | 129 we ne RNNE:| 929

Let's look at a simple structure of an RNN that is called a folded model. In the following
figure, the S, state vector is fed back into the network from the previous timestep.
One important takeaway from this representation is that RNNs share the same weight
matrices across timesteps. By increasing the timesteps, we are not learning more
parameters, but we are looking at a bigger sequence.

Yt

Xu
Figure 5.6: Folded model of an RNN

This is a folded model of an RNN:

Xt : Current input vector in the input sequence

Yt: Current output vector in the output sequence

St: Current state vector

Wx: Weight matrix connecting the input vector to the state vector

Wy: Weight matrix connecting the state vector to the output vector

Ws: Weight matrix connecting the state vector of previous timestep to the next one

130 | Recurrent Neural Networks

Since the input, x is a sequence of timesteps and we perform the same task for
elements in this sequence, we can unfold this model.

Ves Yt Veet

Figure 5.7: Unfolding of an RNN

For example, the output at time t+1,y,,, depends on input at time t+1, weight matrices,
and all the inputs before it.

Ye y

Figure 5.8: Unfolded RNN Fy

RNNs | 131 pee OWI lows4 IN WRNNS | 81

Since RNNs are extensions of FFNNs, it's best to understand the differences between
these architectures.

FF NN R_NN

y, Y,

W, W,

h sC Xm,
W.. W..

X, +
y,= F(x,W,,W,) y= F(X, %,49X,p9-++-W,,W,,W,)

Figure 5.9: Differences between FFNNs and RNNs

The output expressions for FFNNs and RNNs are as follows:

h= t Wx Dye W got Spe

X,Wy ih (X,_ 1Wx25__9W,) Ws

y,=h,.wy Y,=S,.W,

Figure 5.10: Output expressions for FFNNs and RNNs

From the previous figure and equations, it is very evident that there are a lot of
similarities between these two architectures. In fact, they are the same if Ws=0. This is

obviously the case since Ws is the weight associated with the state that is fed back to
the network. Without Ws, there is no feedback, which is the basis of the RNN.

132 | Recurrent Neural Networks

In FFNNs, the output at t depends on the input at t and weight matrices. In RNNs, the
output at t depends on input at t, t-1, t-2, and so on, as well as the weight matrices. This

is explained with the further calculation of hidden vector h in the case of an FFNN and
s in the case of an RNN. At first glance, it might look like the state at t depends on the
input at t, the state at t-1, and the weight matrices; and the state at t-1 depends on the

input at t-1, the state at t-2, and so on; creating a chain that goes back all the way to the
first timestep considered. The output calculations of both FFNNs and RNNs are same,

though.

RNN Architectures

RNNs can come in many forms, and the appropriate architecture needs to be chosen
depending on the problem we are solving.

one to many many to one many to many many to many

ain} : HU UOb
HH. nH. MOL OH,
i io0 Oue ale

Figure 5.11 Different architectures of RNNs

One to many: In this architecture, a single input is given, and the output is a sequence.
An example of this is image captioning, where the input is a single image, and the
output is a sequence of words explaining the image.

Many to one: In this architecture, a sequence of inputs is given, but a single output
is expected. An example is any time series prediction where the next timestep in the
sequence needs to be predicted, given the previous timesteps.

Many to many: In this architecture, an input sequence is given to the network, and the
network outputs a sequence. In this case, the sequence can be either synced or not
synced. For example, in machine translation, the whole sentence needs to be fedin 4

before the networks starts to translate it. Sometimes, the input and output are not in
sync; for example, in the case of speech enhancement, where an audio frame is given as

input and a cleaner version of the input frame is the output expected. In such cases, the
input and output are in sync.

RNNs | 133 i ust ino RNB 193

RNNs can also be stacked on top of each other. It is important to note that each RNN
in the stack has its own weight matrices. So, the weight matrices are shared on the
horizontal axis (the time axis) and not on the vertical axis (the number of RNNs).

Figure 5.12: Stacked RNNs

BPTT

RNNs can deal with varying sequence lengths, can be used in different forms, and can
be stacked on top of each other. Previously, you have come across the back propagation
technique to backpropagate loss values to adjust weights. In the case of RNNs,
something similar can be done, with a bit of a twist, which is a gate loss through time.
It's called BPTT.

From the basic theory of back propagation, we know the following:

W, < previous + A W new

Figure 5.13: Expression for weight update

134 | Recurrent Neural Networks

The update value is calculated through gradient calculations using the chain rule:

AW ee
Ow

Figure 5.14 Partial derivative of error with regards to weight

Here, a is the learning rate. The partial derivative of Error (loss) with respect to the
weight matrix is the main calculation. Once this new matrix is obtained, adjusting the
weight matrices is simply adding this new matrix, scaled by a learning factor, to itself.

When calculating the update values for RNNs, we will use BPTT.

Let's look at an example to understand this better. Consider a loss function, such as the

mean squared error (which is commonly used for regression problems):

E.= (d, cc y,)

Y,

tba
* aw,

Be we OE :

S; S, W,
fa) Ww,

OE,

W,

OW.

X,
t-1

Figure 5.15: Loss function

At timestep t = 3, the loss calculated is as shown:

E, = (d, i y;)
Figure 5.16 Loss at time t=3

This loss needs to be backpropagated, and the Wy, Wx, and Ws weights need to be
updated.

RNNs | 135

As seen previously, we need to calculate the update value to adjust these weights, and
this update value can be calculated using partial derivatives and the chain rule.

There are three parts to doing this:

¢ Update Weight Wy by calculating the partial derivative of the error with respect to

Wy

¢ Update Weight Ws by calculating the partial derivative of the error with respect to
Ws

¢ Update Weight Wx by calculating the partial derivative of the error with respect to
Wx

Before we look at these updates, let's unroll the model and keep the part of the network

that's actually relevant for our calculations.

Figure 5.17 Unfolded RNN with loss at time t=3

Since we are looking at how loss at t=3 affects the weight matrices, the loss values

at and previous to t=2 are not relevant. Now, we need to understand how to

backpropagate this loss through the network.

Let's look at each of these updates and show the gradient flow for each of the updates

shown in the preceding figure.

136 | Recurrent Neural Networks

Updates and Gradient Flow

The updates can be listed as follows:

e Adjusting weight matrix Wy

e Adjusting weight matrix Ws

¢ For updating Wx

Adjusting Weight Matrix Wy

The model can be visualized as follows:

Figure 5.18: Back propagation of loss through weight matrix Wy

For Wy, the update is very simple since there are no additional paths or variables
between Wy and the error. The matrix can be realized as follows:

aE, _ OB, by,
OW, oy 3 OW,

Figure 5.19: Expression for weight matrix Wy

Updates and Gradient Flow | 137

Adjusting Weight Matrix Ws

Figure 5.20: Back propagation of loss through weight matrix Ws with respect to $3

We can calculate the partial derivate of error with respect to Ws using the chain rule,

as shown in the previous figure. It looks like that is what is needed, but it's important to
remember that S, is dependent on S,_,, and therefore S, is dependent on S,, so we need

to consider S, also, as shown here:

Shae Oye Osa. Os,

dy, 05, Os, dw,
Figure 5.21: Back propagation of loss through weight matrix Ws with respect to S,

138 | Recurrent Neural Networks

Again, S, in turn depends on §,, and therefore S, needs to be considered, too, as shown

here:

de Oy, Of, ds, ~ds}

Os See eesa. OS eT 2 3 2 1

- Figure 5.22: Back propagation of loss through weight matrix Ws with respect to S,

At t=3, we must consider the contribution of state S, to the error, the contribution of
state S, to the error, and the contribution of state S, to the error, E,. The final value
looks like this:

dE, dy, 0s, ds,

0B dy, 0s, ds, dw,

aw, ie aa
OE; Oy3 OS; OS,

oe ee
dy, OS, OS, Ow,

_ 95; dy, @s, as, As,

dy, Os, 8s, ds, Ow, :
Figure 5.23: Sum of all derivatives of error with respect to Ws at t=3

Updates and Gradient Flow | 139

In general, for timestep N, all the contributions of the previous timesteps need to be
considered. So, the general formula looks like this:

DE nen O Bie Oye 0S;

OW, Se On OS OW,
Figure 5.24: General expression for the derivative of error with respect to Ws

For Updating Wx

We can calculate the partial derivate of error with respect to Wx using the chain rule, as
shown in the next few figures. With the same reasoning that S, is dependent on §S,_,, the
calculation of partial derivative of error with respect to Wx can be divided into three
stages at t=3.

dE, dy, ds,

dy, ds; ow,

Figure 5.25: Back propagation of loss through weight matrix Wx with respect to S,

140 | Recurrent Neural Networks

Back propagation of loss through weight matrix Wx with respect to §,:

Figure 5.26: Back propagation of loss through weight matrix Wx with respect to S,

Back propagation of loss through weight matrix Wx with respect to S,:

OE; 20¥y 0540S qacdsy

dy 3 fa) Ss 3 0 Ss 4) 0 S 1 a] Ww.

Figure 5.27: Back propagation of loss through weight matrix Wx with respect to S,

Updates and Gradient Flow | 141

Similar to the previous discussion, at t=3, we must consider the contribution of state S,
to the error, the contribution of state S, to the error, and the contribution of state Ss, his
the error, E,. The final value looks like chiss

dE, dy, 08, 8,
= 4 — = 4s

OE, dy, .08,. 08, OW.

aw, Re ee
| OE, dy; O83, OS,

dy; OS, OS, OW,

dE; dy; 0s, ds, as,

as, ds, Os, OW, Oy,

Figure 5.28: Sum of all derivatives of error with respect to Wx at t=3

In general, for timestep N, all the contributions of the previous timesteps need to be
considered. So, the general formula looks as follows

Bie NOEs Sd yes.

Ja Betetepecten hi geogei ketal Se8
Figure 5.29: General expression of derivative of error with respect to Wx

142 | Recurrent Neural Networks

Since the chain of derivatives already has 5 multiplicative terms at t=3, this number
grows to 22 multiplicative terms for timestep 20. It's possible that each of these
derivatives could be either greater than 0 or less than 0. Due to consecutive
multiplications with longer timesteps, the total derivative gets smaller or larger. This
problem is either vanishing gradients or exploding gradients.

Gradients

The two types of gradients that have been identified are:

¢ Exploding gradients

e Vanishing gradients

Exploding Gradients

As the name indicates, this happens when gradients explode to much bigger values.
This could be one of the problems that RNN architectures could encounter with larger
timesteps. This could happen when each of the partial derivatives is larger than 1, and
multiplication of these partial derivatives leads to an even larger value. These larger
gradient values cause a dramatic shift in the weight values each time they are adjusted
using back propagation, leading to a network that doesn't learn well.

There are some techniques used to mitigate this issue, such as gradient clipping,
wherein the gradient is normalized once it exceeds a set threshold.

Vanishing Gradients

Whether it is RNNs or CNNs, vanishing gradients could be a problem if calculated loss
has to travel back a lot. In CNNs, this problem could occur when there are a lot of layers
with activations such as sigmoid or tanh. The loss has to travel all the way back to the
initial layers, and these activations generally dilute them by the time they reach the
initial layers, which means there are almost no weight updates for the initial layers,
resulting in underfitting. This is even common in RNNs, since even if a network has one
RNN layer but a large number of timesteps, the loss has to travel all the way through the
timesteps due to backpropagation through time. Since the gradients are multiplicative,
as seen in the generalized derivative expressions earlier, these values tend to become
low, and weights are not updated after a certain timestep. This means that even if more
timesteps are shown to a network, the network can't benefit because the gradients

cannot travel all the way back. This limitation in RNNs is due to vanishing gradients. *

Gradients | 143

As the name indicates, this happens when the gradients become too small. This
could happen when each of partial derivatives is smaller than 1 and multiplication of
these partial derivatives leads to a much smaller value. With this geometric decay of
information, the network cannot learn properly. There are almost no changes in the
weight values, which leads to underfitting.

There must be a better mechanism to use to know what parts of the previous timesteps
to remember, what to forget, and so on. To address this issue, architectures such as

LSTM networks and GRUs were created.

RNNs with Keras

So far, we have discussed the theory behind RNNs, but there are a lot of frameworks
available that can abstract away the implementation details. As long as we know how
to use these frameworks, we can successfully get our projects working. TensorFlow,
Theano, Keras, PyTorch, and CNTK are some of these frameworks. In this chapter,

let's take a closer look at the most commonly used framework, called Keras. It uses
either Tensorflow or Theano as the backend, indicating that it creates an even higher

level of abstraction than other frameworks. It is a tool best suited for beginners.
Once comfortable with Keras, tools such as TensorFlow give much more power in
implementing custom functions.

There are many variants of RNNs that you will study in the next few chapters, but all of
them use the same base class, called RNN:

keras.layers.RNN(cell, return_sequences=False, return_state=False, go_

backwards=False, stateful=False, unroll=False)

In this chapter, we have discussed the simple form of the RNN, which is called

SimpleRNN in Keras:

keras.layers.SimpleRNN(units, activation='tanh', use_bias=True, kernel_

initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_

initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None,

bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,

recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_

dropout=0.0, return_sequences=False, return_state=False, go_backwards=False,

stateful=False, unroll=False)

144 | Recurrent Neural Networks

As you can see from the arguments here, there are two kinds: one for regular kernels,
used to compute the outputs of a layer, and the other for recurrent kernels used to
compute states. Don't worry too much about constraints, regularizers, initializers, and
dropout. You can find more about them at https: //keras.io/layers/recurrent/. They are
mostly used to avoid overfitting. The role of activation here is the same as the role of
activation with any other layer.

The units are the number of recurrent units in a particular layer. The greater the
number of units, the more parameters there are that need to be learned.

return_sequences is the argument that specifies whether the RNN layer should return
the whole sequence or just the last timestep. If return_sequences is false, the output
of the RNN layer is just the last timestep, so we cannot stack this with another RNN
layer. In other words, if an RNN layer needs to be stacked by another RNN layer, return_
sequences need to be true. If an RNN layer is connected to the Dense layer, this can

argument can be either true or false, depending on the application.

The return_state argument specifies whether the last state of the RNN needs to be
returned along with the output. This can be set to either True or False, depending on
the application.

go_backwards can be used if, for any reason, the input sequence needs to be processed
backward. Keep a note that if this is set to True, even the returned sequence is reversed.

stateful is an argument that can be set to true if a state needs to be passed between
batches. If this argument is set to true, the data needs to be handled carefully; we have
a topic covering this in detail.

unroll is an argument that leads to the network being unrolled if set to true, which can
speed up operations but can be very memory extensive depending on the timesteps.
Generally, this argument is set to true for short sequences.

Gradients | 145

The number of timesteps is not an argument for a particular layer since it stays the
same for the whole network, which is represented in the input shape. This brings us to
the important point of the shape of the network when using RNNs:

Input_shape

3D tensor with shape (batch_size, timesteps, input_dim)

Output_shape

If return_sequences is true, 3D tensor with shape (batch_size, timesteps,

units)

If return_sequences is false, 2D tensor with shape (batch_size, units)

If return_state is True, a list of 2 tensors, 1 is output tensor same as

above depending on return_sequences, the other is state tensor of shape

(batch_size, units)

Note

If you start building a network with an RNN layer, input_shape must be specified.

After a model is built, model. summary() can be used to see the shapes of each layer and

the total number of parameters.

Exercise 23: Building an RNN Model to Show the Stability of Parameters over

Time

Let's build a simple RNN model to show that the parameters do not change with

timesteps. Note that while mentioning the input_shape argument, batch_size need not
be mentioned unless needed. It is needed for a stateful network, which we will discuss

next. batch_size is mentioned while training the model with the fit() or fit_generator()
functions.

The following steps will help you with the solution:

1. Import the necessary Python packages. We will be using Sequential, SimpleRNN,
and Dense.

from keras.models import Sequential

from keras.layers import SimpleRNN, Dense

146 | Recurrent Neural Networks

2. Next, we define the model and its layers:

model = Sequential()

Recurrent layer

model. add(SimpleRNN(64, input_shape=(10,100), return_sequences=False))

Fully connected layer

model.add(Dense(64, activation='relu'))

Output layer

model.add(Dense(100, activation='softmax'))

3. You can check the summary of the model:

model. summary ()

model. summary() gives the following output:

Layer (type) Output Shape

simple_rnn_a (SimpleRNi) (None, 64)
dense 1 (Dense} (None, 64)

dense 2 (Dense) (None, 180)

Total params: 21,220

Trainable params: 21,220

Non-trainable params: @

Figure 5.30: Model summary for model layers

Param #

see eae ee ee

In this case, None is the batch_size parameter, which will be provided by the fit()
function. The output of the RNN layer is (None, 64) since it is not returning the
sequence.

4, Let's look at the model that returns sequence:

model = Sequential()

Recurrent layer

model .add(SimpleRNN(64, input_shape=(10,100), return_sequences=True))

Fully connected layer

model.add(Dense(64, activation='relu'))

Gradients | 147

Output layer

model.add(Dense(100, activation='softmax'))

model. summary ()

The summary of the model that returns sequence looks like this:

simple_rnn_3 (SimpleRNN) (None, 1¢, 64) ~=«éwSG
dense 5 (Dense) = ~~ (None, 10, 64) 4160

dense_6 (Dense) (None, 18, 1866) 6506

Total params: 21,226

Trainable params: 21,228

Non-trainable params: @

Figure 5.31: Model summary of sequence-returning model

Now the RNN layer is returning a sequence, and therefore its output shape is
3D instead of 2D, as seen earlier. Also, note that the Dense layer is automatically

adjusted to this change in its input. The Dense layer with the current Keras
version has the capability of adjusting to time_steps from a previous RNN layer. In
the previous versions of Keras, TimeDistributed(Dense) was used to achieve this.

We have previously discussed how the RNN shares its parameters over timesteps.

Let's see that in action and change the timesteps of the previous model from 10 to

1,000:

model = Sequential()

Recurrent layer

model.add(SimpleRNN(64, input_shape=(1000,100), return_sequences=True))

148 | Recurrent Neural Networks

Fully connected layer

model.add(Dense(64, activation='relu'))

Output layer

model .add(Dense(10@, activation='softmax'))

model. summary ()

Layer (type) Output Shape Param #

Simple rnn_5 (SimpleRNN) {None, 1060, 64) 18568

dense 9 (Dense) (None, 10008, 64) 4168

dense 16 (Dense) {None, 16@6, 160) 65e¢

Total params: 21,226

Trainable params: 21,226

Non-trainable params: @

Figure 5.32: Model summary for timesteps

Clearly, the output shapes of the network changed to this new time_steps.
However, there is no change in the parameters between the two models.

This indicates that the parameters are shared over time and are not impacted by
changing the number of timesteps. Note that the same is applicable to the Dense
layer when operating on more than one timestep.

Stateful versus Stateless

There are two modes of operation available with RNNs considering the states: the
stateless and stateful modes. If the argument stateful=True, you are working with
stateful mode, and False signifies stateless mode.

Stateless mode is basically saying that one example in a batch is not related to any
example in the next batch; that is, every example is independent in the given case. The

state is reset after every example. Each example has a certain number of timesteps
depending on the model architecture. For example, the last model we saw had
1,000 timesteps, and between these 1000 timesteps, the state vector was calculated °

and passed from one timestep to the next. However, at the end of the example or
the beginning of the next example, there was no state passed. Each example was
independent and therefore there was no consideration needed regarding the way the
data was shuffled.

Gradients | 149

In stateful mode, the state from example i of batch 1 is passed to the i+1 example of
batch 2. This means that the state is passed from one example to the next among
batches. For this reason, the examples must be contiguous across batches and cannot
be random. The following figure explains this situation. The examples i, i+1, i+2, and so
on are contiguous, and so are j, j+1, j+2, and so on, and k, k#1, k+2, and so on.

batch 1 batch 2 batch 1

i+2
-----——~

j+2 a SEE are

Figure 5.33 Batch formations for stateful RNN

Exercise 24: Turning a Stateless Network into a Stateful Network by Only

Changing Arguments

In order to turn a network from stateless to stateful by changing the arguments, the
following steps should be taken.

1. First, we would need to import the required Python packages:

from keras.models import Sequential

from keras.layers import SimpleRNN, Dense

2. Next, build the model using Sequential and define the layers:

model = Sequential()

Recurrent layer

model.add(SimpleRNN(64, input_shape=(1000,100), return_sequences=True,

stateful=False))

Fully connected layer

150 | Recurrent Neural Networks

model.add(Dense(64, activation='relu'))

Output layer

model.add(Dense(100, activation='softmax'))

model. summary ()

3. Set the optimizer to Adam, set categorical crosstropy as the loss parameter, and

set the metrics to fit the model. Compile the model and fit the model over 100

epochs:

model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(X, Y, batch_size=32, epochs=100, shuffle=True)

4, Assume that X and Y are training data as contiguous examples. Turn this model
into a stateful one:

model = Sequential()

Recurrent layer

model.add(SimpleRNN(64, input_shape=(1000,100@), return _sequences=True,

stateful=True))

Fully connected layer

model. add(Dense(64, activation='relu'))

Output layer

model.add(Dense(100, activation='softmax'))

5. Set the optimizer to Adam, set categorical crossentropy as the loss parameter, and

set the metrics to fit the model. Compile the model and fit the model over 100
epochs:

model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

model .fit(X, Y, batch_size=1, epochs=100, shuffle=False)

6. You can use a box and whisker plot to visualize the output.

results.boxplot()

pyplot.show()

Gradients | 151

Expected output:

115

110

105 +

100 +

95

stateful_batch12 stateless batch12

Figure 5.34: Box and whisker plot for stateful vs stateless

Note

The output may vary depending on the data used.

From the concept of stateful models, we understand that the data fed in batches
need to be contiguous, so turn randomization OFF. However, even with batch_size

>1, the data across batches will not be contiguous, so make batch _size=1. By turning
the network to stateful=True and fitting it with the mentioned parameters, we are
essentially training the model correctly in a stateful manner.

However, we are not using the concept of mini batch gradient descent, and nor are we

shuffling the data. So, a generator needs to be implemented that can carefully train a
stateful network, which is outside the scope of this chapter.

model .compile is a function where an optimizer and a loss function are assigned to the
network, along with the metrics that we care about.

model. fit() is a function that is used to train a model by specifying its training data,
validation data, the number of epochs, the batch size, the mode of shuffling, and more.

152 | Recurrent Neural Networks

Activity 6: Solving a Problem with an RNN - Author Attribution

Author attribution is a classic text classification problem that comes under the umbrella
of natural language processing (NLP). Authorship attribution is a well-studied problem
that led to the field of stylometry.

In this problem, we are given a set of documents from certain authors. We need to train
a model to understand the authors’ styles and use the model to identify the authors of
the unknown documents. As with many other NLP problems, it has benefited greatly
from the increase in available computer power, data, and advanced machine learning

techniques. This makes authorship attribution a natural candidate for the use of deep
learning (DL). In particular, we can benefit from DL's ability to automatically extract the
relevant features for a specific problem.

In this activity, we will focus on the following:

1, Extracting character-level features from the text of each author (to get each
author's style)

2. Using those features to build a classification model for authorship attribution

3. Applying the model for identifying the author of a set of unknown documents

Note

You can find the required data for the activity at https://github.com/

TrainingByPackt/Deep-Learning-for-Natural-Language-Processing/tree/master/

Lesson%2005.

The following steps will help you with the solution.

1. Import the necessary Python packages.

2. Upload the text document to be used. Then, pre-process the text file by
converting all text into lowercase, converting all newlines and multiple
whitespaces into single whitespaces, and removing any mention of the authors'
names, otherwise we risk data leakage.

3. To break the long texts into smaller sequences, we use the Tokenizer class from
the Keras framework.

4. Proceed to create the training and validation sets.

Summary | 153

We construct the model graph and perform the training procedure.

6. Apply the model to the unknown papers. Do this for all the papers in the Unknown

have

have

have

have

have

been written

been written

been written

been written

been written

b i

f by
by f

by

by f

Author A,

Author B

Author

Author

Author |

Figure 5.35: Output for author attribution

folder.

Expected output:

Paper 5 is predicted to

Paper 4 is predicted to

Paper 1 is predicted to

Paper 3 is predicted to

Paper 2 is predicted to

Note

The solution for the activity can be found on page 309.

Summary

B

B

B

B

4

2

4

6142 to 5612

5215 to 4558

13924 to 6858

7620 to 5764

12846 to 6806

In this chapter, we were introduced to RNNs and covered the major differences
between the architectures of RNNs and FFNNs. We looked at BPTT and how weight
matrices are updated. We learned how to use RNNs using Keras and solved a problem
of author attribution using RNNs in Keras. We looked at the shortcomings of RNNs by
looking at vanishing gradients and exploding gradients. In the next chapters, we will
look into architectures that will address these issues.

= — i nf ff ’ gicae

Re *e>* ; wilted »

r ’ <i sa mab ex

s : aon

tom. aaa oer om ar mtg 90
bea arb +> pear one tt hen

. apie Soe tine nba ‘ilaied
iam pete ace 5 dela dedenebanaetadiane

ge ray Ask ih cb - as sleet ena. Se eiliica
fp pe? er:

‘ a 7 — o%
eS F asia ul pit 2S»

any he aus?
7 o 7 : r zs ; B i al ’ : ¥ a , ®

3 7 a“ . :

ae
mo oe

at ddan hyo hon 2c spam a can ss yet Speer magento -
yd anne mest pinot fa wooo 9) gradi pin aeee ott

eee IDNs rat aA 2tosthiry yalbolgns bro ainstbery yoiciairucy i pot
thes ; ake: va ED Tt ieee eae ib lt seg sersto> ani 0101 0K oot

= : ss -

he he air gapeiags SG) ALey Ty hay ‘ a Die

a ieee! | > pony, rerun tty ware, Then, pre-pice <7 thet ten the by ak

hn -~ Ge Saad of iet bahar CMivertings AT peter ties dee ol

street eae 4y ehiowtpaces, vind PEPIN Ys aif7 SNS OF Uh

we 3 wile oa een cigs feamage. oe
he

ny f= <a wie w aMCeA, we Lay nine ‘tondecauk

=i - a a 7a ea q

c i‘ / z =e,

Ne «soa =

>.

*.

Gated Recurrent

Units (GRUs)

Learning Objectives

By the end of this chapter, you will be able to:

* Assess the drawback of simple Recurrent Neural Networks (RNNs)

« Describe the architecture of Gated Recurrent Units (GRUs)

* Perform sentiment analysis using GRUs

* Apply GRUs for text generation

The chapter aims to provide a solution to the existing drawbacks of the current architecture of

RNNs.

156 | Gated Recurrent Units (GRUs)

Introduction

In previous chapters, we studied text processing techniques such as word embedding,

tokenization, and Term Frequency Inverse Document Frequency (TFIDF). We also
learned about a specific network architecture called a Recurrent Neural Network (RNN)
that has the drawback of vanishing gradients.

In this chapter, we are going to study a mechanism that deals with vanishing gradients
by using a methodical approach of adding memory to the network. Essentially, the
gates that are used in GRUs are vectors that decide what information should be passed
onto the next stage of the network. This, in turn, helps the network to generate output
accordingly.

A basic RNN generally consists of an input layer, output layer, and severa!
interconnected hidden layers. The following diagram displays the basic architecture of
an RNN:

me) ae ¥, Yee

hes hy A
h i phen .

a ee —— ape re

Xe-4 Xt Xeo4

Figure 6.1: A basic RNN

RNNs, in their simplest form, suffer from a drawback, that is, their inability to retain
long-term relationships in the sequence. To rectify this flaw, a special layer called Gated
Recurrent Unit (GRU) needs to be added to the simple RNN network.

In this chapter, we will first explore the reason behind the inability of Simple RNNs to
retain long term dependencies, followed by the introduction of the GRU layer and how
it attempts to solve this specific issue. We will then go on to build a network with the
GRU layer included.

The Drawback of Simple RNNs | 157

The Drawback of Simple RNNs

Let's take a look at a simple example in order to revisit the concept of vanishing
gradients.

Essentially, you wish to generate an English poem using an RNN. Here, you set up a
simple RNN to do your bidding and it ends up producing the following sentence:

"The flowers, despite it being autumn, blooms like a star".

One can easily spot the grammatical error here. The word 'blooms' should be ‘bloom’
since at the beginning of the sentence, the word ‘flowers’ indicates that you should be
using the plural form of the word ‘bloom’ to bring about the subject-verb agreement
in the sentence. A simple RNN fails at this job because it is incapable of retaining any
information about a dependency between the word ‘flowers’ that occurs early in the
sentence and the word ‘blooms, which occurs much later (theoretically, it should be
able to!).

A GRU helps to solve this issue by eliminating the ‘vanishing gradient’ problem that
hinders the learning ability of the network where long-term relationships within
the text are not preserved by the network. In the following sections, we'll focus our
attention on understanding the vanishing gradient problem and discuss how a GRU
resolves the issue in more detail

Let's now recall how a neural network learns. In the training phase, the inputs get
propagated, layer by layer, up to the output layer. Since we know the exact value that
the output should be producing for a given input during training, we calculate the error
between the expected output and the output obtained. This error is then fed into a
cost function (which varies depending on the problem and the creativity of the network
developer). Now, the next step is to calculate the gradient of this cost function with
respect to every parameter of the network, starting from the layer nearest to the output
layer right down to the bottom layer where the input layer is present:

re

w(2] \ wi] wi4]/
Input b[1] b[2] b[3] b[4] } C

eee ee Razr ae Lae

Figure 6.2: A simple neural network

Consider a very simple neural network with only four layers and only one connection

between each layer and one single output, as shown in the preceding diagram. Note

that-you will never use such a network in practice; it is presented here only for

demonstrating the concept of vanishing gradients.

158 | Gated Recurrent Units (GRUs)

Now, to calculate the gradient of the cost function with respect to the bias term of the
first hidden layer (b[1]), the following calculation needs to be carried out:

grad(C, b[1]) = d(z[1]) * w[2] * d(z[2]) * w([3] * d(z[3}) * w[4] * d(z[4]) * grad{(C, a [4])

Figure 6.3: Gradient calculation using chain rule

Here, each element can be explained as follows:

grad(x, y) = the gradient of x with respect to y

d(var) = the derivative of 'sigmoid' of the 'var' variable

w[i] = the weight of the ‘i’ layer

b[i] = the bias term in the ‘i’ layer

a[i] = the activation function of the ‘i' layer

ali] = wijl*alj-1] + bff]
The preceding expression can be attributed to the chain rule of differentiation.

The preceding equation involves the multiplication of several terms. If the values of
most of these terms are a fraction between -1 and 1, the multiplication of such fractions
will yield a term with a very small value at the end. In the preceding example, the value
of grad(C,b[1]) will a very small fraction. The problem here is, this gradient is the term
that will be used to update the value of b[1] for the next iteration:

b[1] = b[1] + lambda*grad(C, b[1])

Figure 6.4: Updating value of b[1] using the gradient

Note

There could be several ways of performing an update using different optimizers,

but the concept remains essentially the same.

The Drawback of Simple RNNs | 159

The consequence of this action is that the value of b[1] hardly changes from the last
iteration, which leads to a very slow learning progress. In a real-world network, which
might be several layers deep, this update will be still smaller. Hence, the deeper the
network, the more severe the problem with gradients. Another observation made here

is that the layers that are closer to the output layer learn quicker than those that are
closer to the input layer since there are fewer multiplication terms. This also leads to an
asymmetry in learning, leading to the instability of the gradients.

So, what bearing does this issue have on simple RNNs? Recall the structure of RNNs;. it

is essentially an unfolding of layers in time with as many layers as there are words (for
a modelling problem). The learning proceeds through Backpropagation Through Time
(BPTT), which is exactly the same as the regime that was described previously. The
only difference is that the same parameters are updated in every layer. The later layers
correspond to the words that appear later in the sentence, while the earlier layers are
those that correspond to the words appearing earlier in the sentence. With vanishing
gradients, the earlier layers do not change much from their initial values and, hence,
they fail to have much effect on the later layers. The more far-back-in-time a layer is
from a given layer at time, 't’, the less influential it is for determining the output of the
layer at 't’. Hence, in our example sentence, the network struggles to learn that the
word ‘flowers' is plural, which results in the wrong form of the word 'bloom' being used.

The Exploding Gradient Problem

As it turns out, gradients not only vanish but they can explode as well - that is, early
layers can learn too quickly with a large deviation in values from one training iteration
to the next, while the gradients of the later layers don't change very quickly. How can
this happen? Well, revisiting our equation, if the value of individual terms is much larger
than the magnitude of 1, a multiplicative effect results in the gradients becoming huge.

This leads to a destabilization of the gradients and causes issues with learning.

Ultimately, the problem is one of unstable gradients. In practice, the vanishing gradients

problem is much more common and harder to solve than the exploding gradients

problem.

160 | Gated Recurrent Units (GRUs)

Fortunately, the exploding gradient problem has a robust solution: clipping. Clipping

simply refers to stopping the value of gradients from growing beyond a predefined

value. If the value is not clipped, you will begin seeing NaNs (Not a Number) for

the gradients and weights of the network due to the representational overflow of

computers. Providing a ceiling for the value will help to avoid this issue. Note that

clipping only curbs the magnitude of the gradient, but not its direction. So, the learning
still proceeds in the correct direction. A simple visualization of the effect of gradient
clipping can be seen in the following diagram:

SS
| Without Gradient Clipping With Gradient Clipping

Figure 6.5: Clipping gradients to combat the explosion of gradients

Gated Recurrent Units (GRUs)

GRUs help the network to remember long-term dependencies in an explicit manner.
This is achieved by introducing more variables in the structure of a simple RNN.

So, what will help us to get rid of the vanishing gradients problem? Intuitively speaking,
if we allow the network to transfer most of the knowledge from the activation function
of the previous timesteps, then an error can be backpropagated more faithfully than
a simple RNN case. If you are familiar with residual networks for image classification,
then you will recognize this function as being similar to that of a skip connection.
Allowing the gradient to backpropagate without vanishing enables the network to learn
more uniformly across layers and, hence, eliminates the issue of gradient instability:

Gated Recurrent Units (GRUs) | 161

Mes | h,
ae 1 — — — = _—

.

|)

a .
|

| h'; |

| ‘ 14 |
| /
Saat a i ee aie . a ae eet

Hy

Figure 6.6: The full GRU structure

The different signs in the preceding diagram are as follows:

oO & “tanh

“plus” operation “sigmoid” function “Hadamard product” operation “tanh” function

Figure 6.7: The meanings of the different signs in the GRU diagram

Note

The Hadamard product operation is an elementwise matrix multiplication.

162 | Gated Recurrent Units (GRUs)

The preceding diagram has all its components exploited by a GRU. You can observe the
activation functions, h, represented at different timesteps (h[t], h[t-1]). The r[t] term
refers to the reset gate and z[t] term refers to the update gate. The h'[t] term refers to
a candidate function, which we'll represent using the h_candidate[t] variable in the
equation for the purpose of being explicit. The GRU layer uses the update gate to decide
on the amount of previous information that can be passed onto the next activation,
while it uses the reset gate to determine the amount of previous information to forget.
In this section, we shall examine each of these terms in detail and explore how they
help the network to remember long-term relations in the text structure.

The expression for the activation function (hidden layer) for the next layer is as follows:

h{t] = hadamard{z[t], h[t-1]} + hadamard{(1 - z[t]) * h_candidate[t]}

Figure 6.8: The expression for the activation function for the next layer in terms

of the candidate activation function

The activation function is, therefore, a weighing of the activation from the previous
timestep and a candidate activation function for this timestep. The z[t] function is a
sigmoid function and, hence, it takes a value between 0 and 1. In most practical cases,

the value is closer to 0 or 1. Before going into the preceding expression in more depth,
let's take a moment to observe the effect of the introduction of a weighted summing
scheme for updating the activation function. If the value of z[t] remains 1 for several
timesteps, then that means the value of the activation function at a very early timestep
can still be propagated to a much later timestep. This, in turn, provides the network
with a memory.

Additionally, observe how this is different to a simple RNN, where the value of the
activation function is overwritten at every timestep without an explicit weighing of the
previous timestep activation (the contribution of the previous activation in a simple
RNN is present within the nonlinearity and, hence, is implicit).

: Gated Recurrent Units (GRUs) | 163

Types of Gates

Let's now expand on the previous equation for the activation update in the following
sections, 4

The Update Gate

The update gate is represented by the following diagram. As you can see from the full
GRU diagram, only the relevant parts are highlighted. The purpose of the update gate is
to determine the amount of information that needs to be passed on from the previous
timesteps to the next step activation. To understand the diagram and the function of
the update gate, consider the following expression for calculating the update gate:

z[t] = sigmoid(W_z * x{[t] + U_z * h[t-1])

Figure 6.9: The expression for calculating the update gate

The following figure shows a graphical representation of the update gate:

h. |

Xt

Figure 6.10: The update gate in a full GRU diagram

164 | Gated Recurrent Units (GRUs)

The number of hidden states is n_h (the dimensionality of h), while the number of
input dimensions is n_x. The input at timestep t (x[t]), is multiplied by a new set of
weights, W_z, using the dimensions (n_h, n_x). The activation function from the

previous timestep, (h[t-1]), is multiplied by another new set of weights, U_z, using the
dimensions (n_h, n_h).

Note that the multiplications here are matrix multiplications. These two terms are then
added together and passed through a sigmoid function to squish the output, z[t], within
a range of [0,1]. The z[t] output has the same dimensions as the activation function, that
is, (n_h, 1). The W_z and U_z parameters also need to be learned using BPTT. Let's
write a simple Python snippet to aid in our understanding of the update gate:

import numpy as np

Write a sigmoid function to be used later in the program

def sigmoid(x):

return 1-/-°@1 +°nplexp(-x))

n_x = 5 # Dimensionality of input vector

n_h = 3 # Number of hidden units

Define an input at time 't' having a dimensionality of n_x

x_t = np.random.randn(n_x, 1)

Define W_z, U_z and h_prev (last time step activation)

W_z = np.random.randn(n_h, n_x) # n_h = 3, n_x=5

U_z = np.random.randn(n_h, n_h) # n_h = 3

h_prev = np.random.randn(n_h, 1)

Gated Recurrent Units (GRUs) | 165

Ee ae

array([[-0.93576943],

[-0.26788808],

[0.53035547],

[-0.69166075],

[-0.39675353]])

h_prev

array([[0.90085595],

[-0.68372786],

[-0.12289023]})

W_z2

array([{[1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763],

[-2.3015387 , 1.74481176, -0.7612069 , 0.3190391 , -0.24937038],

[1.46210794, -2.06014071, -0.3224172 , -0.38405435, 1.13376944)})

Uz

array ([-09989127, -0.17242821, -0.87785842], -1

0.04221375, 0.58281521, -1.10061918],

1.14472371, 0.90159072, 0.50249434]}) [ee Bi oe

Figure 6.11: A screenshot displaying the weights and activation functions

Following is the code snippet for update gate expression:

Calculate expression for update gate

z_t = Ssigmoid(np.matmul(W_z, x_t) + np.matmul(U_z, h_prev))

In the previous code snippet, we initialised the random values for x[t], W_z, U_z,
and h_prev in order to demonstrate the calculation of z[t] . In a real network, these
variables will have more relevant values.

The Reset Gate

The reset gate is represented by the following diagram. As you can see from the full
GRU diagram, only the relevant parts are highlighted. The purpose of the reset gate
is to determine the amount of information from the previous timestep that should
be forgotten in order to calculate the next step activation. In order to understand
the diagram and the function of the reset gate, consider the following expression for
calculating the reset gate:

r{t] = sigmoid(W_r * x{t] + U_r* h[t-1])

Figure 6.12: The expression for calculating the reset gate

166 | Gated Recurrent Units (GRUs)

The following figure shows a graphical representation of the reset gate:

h,

Xt

Figure 6.13: The reset gate

The input at timestep, t, is multiplied by the weights, W_r, using the dimensions (n_h,

n_x). The activation function from the previous timestep, (h[t-1]), is then multiplied
by another new set of weights, U_r, using the dimensions (n_h, n_h). Note that
the multiplications here are matrix multiplications. These two terms are then added
together and passed through a sigmoid function to squish the r[t] output within a range
of [0,1]. The r[t] output has the same dimensions as the activation function, that is,
(n_h, 1).

Gated Recurrent Units (GRUs) | 167

The W_r and U_r parameters also need to be learned using BPTT. Let's take a look at
how to calculate the reset gate expression in Python:

Define W_r, U_r

W_r = np.random.randn(n_h, n_x) # n_h = 3, n_x=5

U_r = np.random.randn(n_h, n_h) # n_h = 3

Calculate expression for update gate

r_t = sigmoid(np.matmul(W_r, x_t) + np.matmul(U_r, h_prev))

In the preceding snippet, the values of the x_t, h_prev, n_h, and n_x variables have

been used from the update gate code snippet. Note that the values of r_t may not be
particularly close to either 0 or 1 since it is an example. In a well-trained network, the
values are expected to be close to 0 or 1:

Wer

array([[-0.6871727 , -0.84520564, -0.67124613, -0.0126646 , -1.11731035],

[0.2344157 , 1.65980218, 0.74204416, -0.19183555, -0.88762896],

[-0.74715829, 1.6924546 , 0.05080775, -0.63699565, 0.19091548]])

aa giae 5

array ([1O02Z55 1245, 40, 120158957 OnGl 720311), [Le

{ 0.30017032, -0.35224985, -1.1425182 J],

[-0.34934272, -0.20889423, 0.58662319]])

Figure 6.14: A screenshot displaying the values of the weights

mt

array([[0.93699927],

10.70392511),

[0.5971474]])

Figure 6.15: A screenshot displaying the r_t output

168 | Gated Recurrent Units (GRUs)

The Candidate Activation Function

A candidate activation function for replacing the previous timestep activation function

is also calculated at every timestep. As the name suggests, the candidate activation

function represents an alternative value that the next timestep activation function
should take. Take a look at the expression for calculating the candidate activation
function, as follows:

h_candidatet] = tanh(W * x[t] + U * hadamard{r{t], h[t-1]})

Figure 6.16: The expression for calculating the candidate activation function

The following figure shows a graphical representation of the candidate activation
function:

n

Figure 6.17: The candidate activation function

The input at timestep, t, is multiplied by the weights, W, using the dimensions (n_h,
n_x). The W matrix serves the same purpose as the matrix that is used in a simple RNN.
Then, an element-wise multiplication is carried out between the reset gate and the
activation function from the previous timestep, (h[t-1]). This operation is referred to
as ‘hadamard multiplication’. The result of this multiplication is matrix-multiplied by W
using the dimensions (n_h, n_h). The U matrix is the same matrix that is used with a
simple RNN. These two terms are then added together and passed through a hyperbolic
tan function to squish the output h_candidate[t] within a range of [-1,1]. The h_
candidate[t] output has the same dimensions as the activation function, that is, (n_h, 1):

Gated Recurrent Units (GRUs) | 169

Define W, U

= i] np.random.randn(n_h, n_x) # n_h = 3, n_x=5

= iH] np.random.randn(n_h, n_h) # n_h = 3

Calculate h_candidate

h_candidate = np.tanh(np.matmul(W, x_t) + np.matmul(U,np.multiply(r_t, h_

prev)))

Again, the same values for the variables have been used as in the calculation of
the update and reset gate. Note that the Hadamard matrix multiplication has been
implemented using the NumPy function, 'multiply':

W

array([[0.83898341, 0.93110208, 0.28558733, 0.88514116, -0.75439794],
[1.25286816, 0.51292982, -0.29809284, 0.48851815, -0.07557171],
[1.13162939, 1.51981682, 2.18557541, -1.39649634, -1.44411381]])

Oo

U

array([[-0.50446586, 0.16003707, 0.87616892],
[0.31563495, -2.02220122, -0.30620401],

[0.82797464, 0.23009474, 0.76201118]])

Figure 6.18: A screenshot displaying how the W and U weights are defined

The following figure shows a graphical representation of the h_candidate function:

h_candidate

array([[-0.94284959],

[-0.47277196],

[0.9429634 }])

Figure 6.19: A screenshot displaying the value of h_candidate

170 | Gated Recurrent Units (GRUs)

Now, since the values of the update gate, the reset gate, and the candidate activation

function have been calculated, we can code up the expression for the current activation

function that will be passed onto the next layer:

Calculate h_new

h_new = np.multiply(z_t, h_prev) + np.multiply((1-z_t), h_candidate)

h_new

array([[-0.72356608],

[-0.62428489],

{ 0.61671542]])

Figure 6.20: A screenshot displaying the value of the current activation function

Mathematically speaking, the update gate serves the purpose of selecting a weighting
between the previous activation function and the candidate activation function. Hence,
it is responsible for the final update of the activation function for the current timestep
and in determining how much of the previous activation function and candidate
activation function will pass onto the next layer. The reset gate acts as a way to select
or unselect the parts of the previous activation function. This is why an element-wise
multiplication is carried out between the previous activation function and the reset gate
vector. Consider our previous example of the poem generation sentence:

"The flowers, despite it being autumn, blooms like a star."

A reset gate will serve to remember that the word ‘flowers' affect the plurality of the
word ‘bloom, which occurs toward the end of the sentence. Hence, the particular value
in the reset gate vector that is responsible for remembering the plurality or singularity
of the word will hold a value that is closer to the values of 0 or 1. If a 0 value denotes
that the word is singular, then, in our case, the reset gate will hold the value of 1 in order

to remember that the word 'bloom' should now hold the plural form. Different values in
the reset gate vector will remember different relations within the complex structure of
the sentence.

As another example, consider the following sentence:

"The food from France was delicious, but French people were also very
accommodating."

Sentiment Analysis with GRU | 171

Examining the structure of the sentence, we can see that there are several complex
relations that need to be kept in mind:

¢ The word ‘food' corresponds with the word ‘delicious’ (here, ‘delicious’ can only be
used in the context of 'food').

¢ The word 'France' corresponds with 'French' people.

¢ The word 'people' and 'were' are related to each other; that is, the use of the word
‘people’ dictates that the correct form of 'was' is used.

In a well-trained network, the reset gate will have an entry in its vector for all such
relations. The value of these entries will be suitably turned 'off' or 'on' depending on
which relationship needs to be remembered from the previous activations and which
needs to be forgotten. In practice, it is difficult to ascribe an entry of the reset gate or
hidden state to a particular function. The interpretability of deep learning networks is,
hence, a hot research topic.

GRU Variations

The form of GRU just described form of a GRU is the full GRU. Several independent
researchers have utilized different forms of GRU, such as by removing the reset gate
entirely or by using activation functions. The full GRU is, however, still the most used
approach.

Sentiment Analysis with GRU

Sentiment analysis is a popular use case for applying natural language processing
techniques. The aim of sentiment analysis is to determine whether a given piece of text
can be considered as conveying a ‘positive’ sentiment or a 'negative' sentiment. For
example, consider the following text reviewing a book:

"The book had its moments of glory, but seemed to be missing the point quite

frequently. An author of such calibre certainly had more in him than what was delivered
through this particular work.’

To a human reader, it is perfectly clear that the mentioned book review conveys a
negative sentiment. So, how would you go about building a machine learning model for
the classification of sentiments? As always, for using a supervised learning approach,
a text corpus containing several samples is needed. Each piece of text in this corpus
should have a label indicating whether the text can be mapped to a positive or a
negative sentiment. The next step will be to build a machine learning model using this

data.

172 | Gated Recurrent Units (GRUs)

Observing the example sentence, you can already see that such a task could be
challenging for a machine learning model to solve. If a simple tokenization or TFIDF
approach is used, the words such as ‘glory’ and ‘calibre’ would be easily misunderstood
by the classifier as conveying a positive sentiment. To make matters worse, there is
no word in the text that can be directly interpreted as negative. This observation also
brings about the need to connect different parts of the text structure in order to derive
a meaning out of the sentence. For instance, the first sentence can be broken into two
parts:

1. "The book had its moments of glory"

2. “but seemed to be missing the point quite frequently.’

Looking at just the first part of the sentence can lead you to conclude that the remark is
a positive one. It is only when the second sentence is taken into consideration that the
meaning of the sentence can be truly understood as depicting negative feelings. Hence,
there is a need to retain long term dependency here. A simple RNN is, therefore, not
good enough for the task. Let's now apply a GRU to a sentiment classification task and
see how it performs.

Exercise 25: Calculating the Model Validation Accuracy and Loss for Sentiment

Classification .

In this exercise, will we code up a simple sentiment classification system using the
imdb dataset. The imdb dataset consists of 25,000 train text sequences and 25,000 test

text sequences - each containing a review for a movie. The output variable is a binary
variable having a value of 0 if the review is negative, and a value of 1 if the review is
positive:

Note

All exercises and activities should be run in a Jupyter notebook. The requirements.

txt file for creating the Python environment for running this notebook is as

h5py==2.9.0, keras==2.2.4, numpy==1.16.1, tensorflow==1.12.0.

Sentiment Analysis with GRU | 173

Solution:

We begin by loading the dataset, as follows:
from keras.datasets import imdb

1. Let's also define the maximum number of topmost frequent words to consider
when generating the sequence for training as 10,000. We will also restrict the
sequence length to 500:

max_features = 10000

maxlen = 500

2. Let's now load the data as follows:

(train_data, y_train), (test_data, y_test) = imdb. load_data(num_words=max_

features)

print('Number of train sequences: ', len(train_data))

print('Number of test sequences: ', len(test_data))

Number of train sequences: 25000.

Number of test sequences: 25000

train_data shape: (25000, 500)

test _data shape: (25000, 500)

Figure 6.21: A screenshot showing the train and test sequences

3. There could be sequences having a length that is shorter than 500; therefore, we

need to pad them out to have a length of exactly 500. We can use a Keras function
for this purpose:

from keras.preprocessing import sequence

train_data = sequence.pad_sequences(train_data, maxlen=maxlen)

test_data = sequence.pad_sequences(test_data, maxlen=maxlen)

4, Let's examine the shapes of the train and test data, as follows:

print('train_data shape:', train_data. shape)

print('test_data shape:', test_data. shape)

Verify that the shape of both the arrays is (25,000, 500).

5. Let's now build an RNN with a GRU unit. First, we need to import the necessary
packages, as follows:

from keras.models import Sequential

from keras. layers import Embedding

from keras.layers import Dense

from keras. layers import GRU

174 | Gated Recurrent Units (GRUs)

6.

8.

Since we'll use the sequential API of Keras to build the model, we need to import
the sequential model API from the Keras model. The embedding layer essentially
turns input vectors into a fixed size, which can then be fed to the next layer of the
network. If used, it must be added as the first layer to the network. We also import
a Dense layer, since it is this layer that ultimately gives a distribution over the
target variable (0 or 1).

Finally, we import the GRU unit; let's initialize the sequential model API and add
the embedding layer, as follows:

model = Sequential()

model .add(Embedding(max_features, 32))

The embedding layer takes max_features as input, which is defined by us to be
10,000. The 32 value is set here as the next GRU layer expects 32 inputs from the
embedding layer.

Next, we'll add the GRU and the dense layer, as follows:

model . add(GRU(32))

model.add(Dense(1, activation='sigmoid'))

The 32 value is arbitrarily chosen and can function as one of the hyperparameters
to tune when designing the network. It represents the dimensionality of the
activation functions. The dense layer only gives out the 1 value, which is a
probability of the review (that is, our target variable) to be 1. We choose sigmoid as
the activation function here.

Next, we compile the model with the binary cross-entropy loss and the rmsprop
optimizer:

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

Sentiment Analysis with GRU | 175 in eee ee Eee

9. We choose to track the accuracy (train and validation) as the metric. Next, we fit
the model on our sequence data. Note that we also assign 20% of the sample from
the training data as the validation dataset. We also set the number of epochs to be
10 and the batch_size to be 128 — that is, in a single forward-backward pass, we
choose to pass 128 sequences in a single batch:

history = model.fit(train_data, y_train,

epochs=10,

batch_size=128,

validation_split=0.2

Train on 20000 samples, validate on 5000 samples
Epoch 1/10

20000/20000 (==s====s=====s=s==ss=s========e== ===] - 53s 3ms/step - loss: 0.5382 - acc: 0.7286 - val_loss: 0.4796 - val_ac
ec: 0.7620

Epoch 2/10

20000/20000 [=====sss=ss==sssesses=ss=ss=s5==] - 535 3ms/step - loss: 0.3120 - acc: 0.8701 - val_loss:
ec: 0.8732

Epoch 3/10

20000/20000 [=s====s=s====s=ssss=sss=s=S==s===] - 51s 3ms/step - loss:

ec: 0.8720

Epoch 4/10

20000/20000 [====s=ss=s==<ss=seeseease==s=2=] - 515 3ms/step - loss:

ce: 0.8740

Epoch 5/10

20000/20000 [==s==s====s=ssssssssssssssssses==] - 51

c: 0,8792

Epoch 6/10
20000/20000 [=====s===s=====sse==s=======s===] - 51s 3ms/step - loss:

e: 0.8710

Epoch 7/10
20000/20000 [(===sss=s=s=sssssssssssssesses=as==] - 52

ec: 0.8500

Epoch 8/10
20000/20000 [=s=====s===<sss=ssssssssssssss==] - 53

c: 0.8792
Epoch 9/10
20000/20000 [=ss===ss=s==sss=s=s=sss====s===5=] - 535 3ms/step - loss:

c: 0.8308

Epoch 10/10
20000/20000 [==ss=s=s=s=s=ssss=s====s=s=====] - 535s 3ms/step - loss: 0.1284 - acc: 0.9541 - val_loss: 0.3599 - val_ac

o -3218 ~ val_ac

o -2503 - acc: 0.9025 - val_loss: ° -3644 - val ac

o °o +2187 - acc: 0.9184 - val_loss: 0.3092 - val_ac

o °o 3ms/step - loss: n -1937 - acc: 0.9290 - val_loss: 0.3130 - val_ac

o o +1747 = acc: 0.9350 - val_loss: 0.3299 - val_ac

o °o 3ms/step - loss: +3599 - val_ac na -1600 - acc: 0.9434 - val_loss:

o 3ms/step - loss: 0.1498 - acc: 0.9458 - val_loss: 0.3378 - val_ac

o o +1389 - ace: 0.9512 - val_loss: 0.5470 - val_ac

Figure 6.22: A screenshot displaying the variable history output of the training model

The variable history can be used to keep track of the training progress. The
previous function will trigger a training session, which, on a local CPU, should take
a couple of minutes to train.

10. Next, let's take a look at how exactly the training progressed by plotting the losses
and accuracy. For this, we'll define a plotting function as follows:

import matplotlib.pyplot as plt

def plot_results(history):

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.historyL['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

176 | Gated Recurrent Units (GRUs)

plt.plot(epochs, acc, 'bo', label='Training Accuracy’)

plt.plot(epochs, val_acc, 'b', label='Validation Accuracy ')

plt.title('Training and validation Accuracy’)

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training Loss’)

plt.plot(epochs, val_loss, 'b', label='Validation Loss’)

plt.title('Training and validation Loss')

plt.legend()

plt.show()

11. Let's call our function on the history variable that us obtained as an output of the
‘fit’ function:

plot_results(history)

12. When run by author, the output of the preceding code looks like the following
diagram:

Expected Output:

Training and validation accuracy

0.95 ® Training acc

a= Validation acc

0.90 e

0.85

0.75

2 4 6 8 10

Figure 6.23: The training and validation accuracy for the sentiment classification task

Sentiment Analysis with GRU | 177

The following diagram demonstrates the training and validation loss:

Training and validation loss

@ = Training loss

—— Validation loss

Figure 6.24: The training and validation loss for the sentiment classification task

Note

The validation accuracy is pretty high in the best epoch (~87%).

Activity 7: Developing a Sentiment Classification Model Using a Simple RNN

In this activity, we aim to generate a model for sentiment classification using a simple
RNN. This is done to judge the effectiveness of GRUs over simple RNNs.

if

2

3.

4

Load the dataset.

Pad the sequences out so that each sequence has the same number of characters.

Define and compile the model using a simple RNN with 32 hidden units.

Plot the validation and training accuracy and losses.

Note

The solution for the activity can be found on page 317.

178 | Gated Recurrent Units (GRUs)

Text Generation with GRUs

The problem of text generation requires an algorithm in order to come up with new

text based on a training corpus. For example, if you feed the poems of Shakespeare into
a learning algorithm, then the algorithm should be able to generate new text (character
by character or word by word) in the style of Shakespeare. We will now see how to
approach this problem with what we have learned in this chapter.

Exercise 26: Generating Text Using GRUs

So, let's revisit the problem that we introduced in the previous section of this chapter.
That is, you wish to use a deep learning method to generate a poem. Let's go about
solving this problem using a GRU. We will be using The Sonnets written by Shakespeare
to train our model so that our output poem is in the style of Shakespeare:

i Let's begin by importing the required Python packages, as follows:

import io

import sys

import random

import string

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import GRU

from keras.optimizers import RMSprop

The use of each package will become clear in the code snippets that follow.

Next, we define a function that reads from the file that contains the

Shakespearean sonnets and prints out the first 200 characters:

def load_text(filename):

with open(filename, 'r') as f:

text = f.read()

return text

file_poem = 'shakespeare_poems.txt' # Path of the file

text = load_text(file_poem)

print(textL: 200])

Sentiment Analysis with GRU | 179

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,

That thereby beauty's rose might never die,

But as the riper should by time decease,

His tender heir might bear his mem

Figure 6.25: A screenshot of THE SONNETS

3. Next, we'll perform certain data preparation steps. First, we will get a list of the
distinct characters from the file that was read in. We will then make a dictionary
that maps each character to an integer index. Finally, we will create another
dictionary that maps an integer index to the characters:

chars = sorted(list(set(text)))

print('Number of distinct characters:', len(chars))

char_indices = dict((c, i) for i, c in enumerate(chars))

indices_char = dict((i, c) for i, c in enumerate(chars))

4. Now, we will generate the sequences for the training data from the text. We will
feed a fixed length of 40 characters per sequence for the model. The sequences
will be made such that there is a sliding window of three steps with each
sequence. Consider the following part of the poem:

"From fairest creatures we desire increase,

That thereby beauty's rose might never die,"

180 | Gated Recurrent Units (GRUs)

We aim to achieve the following result from the preceding snippet of text:

'\n\nFrom fairest creatures we desire incre’,

‘rom fairest creatures we desire increase’,

' fairest creatures we desire increase,\nT',

'irest creatures we desire increase,\nThat',

"st creatures we desire increase,\nThat th',

‘creatures we desire increase,\nThat there',

‘atures we desire increase,\nThat thereby ',

‘res we desire increase,\nThat thereby bea',

' we desire increase,\nThat thereby beauty',

"desire increase,\nThat thereby beauty's ",

"sire increase,\nThat thereby beauty's ros",

"e increase,\nThat thereby beauty's rose m",

"ncrease,\nThat thereby beauty's rose migh",

"ease,\nThat thereby beauty's rose might n",

"e,\nThat thereby beauty's rose might neve",

"That thereby beauty's rose might never d",

"t thereby beauty's rose might never die,",

Figure 6.26: A screenshot of the training sequences

These are sequences with a length of 40 characters each. Each subsequent string is
shifted by three steps to the right of the previous string. This arrangement is so that
we end up with enough sequences (but not too many, which would be the case with
a step of 1). In general, we could have more sequences, but since this example is a
demonstration and, hence, will run on a local CPU, feeding in too many sequences will
make the training process much longer than desired.

Additionally, for each of these sequences, we need to have one output character that

is the next character in the text. Essentially, we are teaching the model to observe 40

characters and then learn what the next most likely character will be. To understand
what the output character might be, consider the following sequence:

That thereby beauty's rose might never d

The output character for this sequence will be the i character. This is because in the
text, i is the next character. The following code snippet achieves the same:

max_len_chars = 40

step = 3

sentences = []

next_chars = []

Sentiment Analysis with GRU | 181

for i in range(®, len(text) - max_len_chars, step):

sentences.append(text[i: i + max_len_chars])

next_chars.append(text[i + max_len_chars])

print('nb sequences:', len(sentences))

We now have the sequences that we wish to train on and the corresponding character
output for the same. We will now need to obtain a training matrix for the samples and
another matrix for the output characters, which can be fed to the model to train:

xX = np.zeros((len(sentences), max_len_chars, len(chars)), dtype=np.bool)

y = np.zeros((len(sentences), len(chars)), dtype=np.bool)

for i, sentence in enumerate(sentences):

for t, char in enumerate(sentence):

x[Ci, t, char_indices[char]] = 1

yli, char_indices[next_chars[i]]] = 1

Here, x is the matrix that holds our input training samples. The shape of the x array
is the number of sequences, the maximum number of characters, and the number of

distinct characters. Therefore, x is a three-dimensional matrix. So, for each sequence,

that is, for every timestep (= maximum number of characters), we have a one-hot-
coded vector with the same length as the number of distinct characters in the text.
This vector has a value of 1, where the character at the given step is present, and all
the other entries are 0. y is a two-dimensional matrix with the shape of the number of
sequences and the number of distinct characters). Thus, for every sequence, we have a
one-hot-coded vector with the same length as the number of distinct characters. This
vector has all the entries as 0 except for the one that corresponds to the current output

character. The one-hot-encoding is accomplished using the dictionary mappings that
we created in the earlier step.

1. Weare now ready to define our model, as follows:

model = Sequential()

model.add(GRU(128, input_shape=(max_len_chars, len(chars))))

model.add(Dense(len(chars), activation='softmax'))

optimizer = RMSprop(1r=0.01)

model.compile(loss='categorical_crossentropy', optimizer=optimizer)

182 | Gated Recurrent Units (GRUs)

2. We make use of the sequential API, add a GRU layer with 128 hidden parameters,

and then add a dense layer.

Note

The dense layer has the same number of outputs as the number of distinct

characters. This is because we're essentially learning a distribution of the

possible characters in our vocabulary. In this sense, this is essentially a multiclass

classification problem, which also explains our choice of categorical cross-entropy

for the cost function.

3. We will now go ahead and fit our model to the data, as follows:

model.fit(x, y,batch_size=128, epochs=10)

model. save("poem_gen_model .h5")

Here, we have selected a batch size of 128 sequences and training for 10 epochs.
We will also save the model in hdf5 format file for later use:

Epoch 1/10 .
31327/31327 [sSsssssssessssesseessssss==s==] - 12s 374us/step - loss: 2.2844

Epoch 2/10

31327/31327 [=sSsSssssesesesseeseesss======] - lls 335us/step - loss: 1.8985

Epoch 3/10

31327/31327 [=ssSssssesssssesssssseees===5=] - lls 339us/step - loss: 1.7675

Epoch 4/10

31327/31327 [SHsssssssssssssssesssseeess===] - 12s 372us/step - loss: 1.6757

Epoch 5/10

31327/31327 [s=s=ssssssssssssessesssssss====] - lls 353us/step - loss: 1.5984

Epoch 6/10

31327/31327 [sssssssssssssssSsessssess=====] - lls 34lus/step - loss: 1.5479

Epoch 7/10

31327/31327 [sssssssssssssessseesesssss=s==] - 12s 382us/step - loss: 1.5083

Epoch 8/10

31327/31327 [sssssssssssssssseesesssss=ss==] - lls 346us/step - loss: 1.4803

Epoch 9/10

31327/31327 [ssssssssssssesssesssssses=====] - lls 354us/step - loss: 1.4648

Epoch 10/10

31327/31327 [Ssssssssssesssssssssssss======] - lls 356us/step - loss: 1.4428

Figure 6.27: A screenshot displaying epochs

Note ’

You should increase the number of the GRUs and epochs. The higher the value

for these, the more time it will take to train the model and better results can be

expected.

Sentiment Analysis with GRU | 183

4. Next, we need to be able to use the model to actually generate some text, as
follows:

from keras.models import load_model

model_loaded = load_model('poem_gen_model .h5')

5. We also define a sampling function that selects a candidate character given a
probability distribution over the number of characters:

def sample(preds, temperature=1.Q):

helper function to sample an index from a probability array

preds = np.asarray(preds).astype('float64')

preds = np.log(preds) / temperature

exp_preds = np.exp(preds)

preds = exp_preds / np.sum(exp_preds)

probas = np.random.multinomial(1, preds, 1)

return np.argmax(probas)

6. We are sampling using a multinomial distribution; the temperature parameter
helps to add bias to the probability distribution such that the less likely words can
have more or less representation. You can also simply try to return an argument
argmax over the preds variable, but this will likely result in a repetition of words:

def generate_poem(model, num_chars_to_generate=4QQ):

start_index = random.randint(@, len(text) - max_len_chars - 1)

generated = ''

sentence = text[start_index: start_index + max_len_chars]

generated += sentence

print("Seed sentence: {}".format(generated))

for i in range(num_chars_to_generate):

x_pred = np.zeros((1, max_len_chars, len(chars)))

for t, char in enumerate(sentence):

x_pred[@, t, char_indices[char]] = 1.

preds = model.predict(x_pred, verbose=0)[0]

next_index = sample(preds, 1)

next_char = indices_char[next_index]

generated += next_char

sentence = sentence[1:] + next_char

return generated

184 | Gated Recurrent Units (GRUs)

7. We pass the loaded model and the number of characters that we wish to generate.

We then pass a seed text for the model to use as the input (remember, we taught
the model to predict the next character given a sequence length of 40 characters).
This is being done before the for loop kicks in. In the first pass of the loop, we pass
our seed text to the model, generate the output character, and append the output
character in the 'generated' variable. In the next pass, we shift our newly updated
sequence (with 41 characters after first pass) to the right by one character, so that
the model can now take this 40 character input with the last character being the
new character that we just generated. The function can now be called as follows:

generate_poem(model_loaded, 100)

And voila! You have a poem written in Shakespearean style. An example output is

shown as follows:

' thou viewest,\nNow is the time that faced padince thy fete,\njevery bnuping griats I have liking dispictreessedg.\n

\nThy such thy sombeliner h'

Figure 6.28: A screenshot displaying the output of the generated poem sequence

You will immediately notice that the poem does not really make sense. This can be
attributed to two reasons:

¢ The preceding output was generated with a very small amount of data or
sequences. Therefore, the model was unable to learn much. In practice, you would
use a much larger dataset, make many more sequences out if it, and train the

model using GPUs for a practical training time (we will learn about training on
the cloud GPU in the last chapter 9- 'A practical flow NLP project workflow in an
organization’).

¢ Even if trained with a massive amount of data, there will always be some errors
since a model can only learn so much.

We can still, however, see that even with this basic setup there are words that make

sense despite our model being a character generation model. There are phrases such as
‘| have liking’ that are valid as standalone phrases.

Note

White space, newline characters, and more are also being learned by the model.

Sentiment Analysis with GRU | 185

Activity 8: Train Your Own Character Generation Model Using a Dataset of

Your Choice

We just used some of Shakespeare's work to generate our own poem. You don't need
to restrict yourself to poem generation but you can use any piece of text to start
generating your own piece of writing. The basic steps and setup remains same as
discussed in the previous example.

Note

Create a conda environment using the requirements file and activate it. Then, run

the code in a Jupyter notebook. Don't forget to input a text file containing the text

from an author in whose style you wish to generate new text.

Load the text file.

Create dictionaries mapping the characters to indices and vice versa.

Create sequences from the text.

Make input and output arrays to feed to the model.

Build and train the model using GRU.

Save the model.

Define the sampling and generation functions.

eo NDA Fw Nn Generate the text.

Note

The solution for the activity can be found on page 320.

186 | Gated Recurrent Units (GRUs)

Summary

A GRU is an extension of a simple RNN, which helps to combat the vanishing gradient
problem by allowing the model to learn long-term dependencies in the text structure. A
variety of use cases can benefit from this architectural unit. We discussed a sentiment
classification problem and learned how GRUs perform better than simple RNNs. We
then saw how text can be generated using GRUs.

In the next chapter, we talk about another advancement over a simple RNN - Long
Short-Term Memory (LSTM) networks, and explore what advantages they bring with
their new architecture.

all

0 lo. ae re

Ps

Daina toe spapre: you wt
Cis Paserbe the nc ox of sal iss

peaatennes aint href ae tA

of Betien sepia on
<a a

ae a

ant

Si A eee cas :

: —

4

d vpn tenner ~

Cl eee katehe uh

= : 7 7 mA.

6 ee OO

- a Pegi

\ | Rare

Ler nine ges ey bet H "7

Long Short-Term

Memory (LSTM)

Learning Objectives

By the end of this chapter, you will be able to:

* Describe the purpose of an LSTM

* Evaluate the architecture of an LSTM in detail

* Develop a simple binary classification model using LSTMs

* Implement neural language translation and develop an English-to-German translation

model

This chapter briefly introduces you to the LSTM architecture and its applications in the world of

natural language processing.

190 | Long Short-Term Memory (LSTM)

Introduction

In the previous chapters, we studied Recurrent Neural Networks (RNNs) and a
specialized architecture called the Gated Recurrent Unit (GRU), which helps combat
the vanishing gradient problem. LSTMs offer yet another way to tackle the vanishing
gradient problem. In this chapter, we will take a look at the architecture of LSTMs and
see how they enable a neural network to propagate gradients in a faithful manner.

Additionally, we will look at an interesting application of LSTMs in the form of neural
language translation, which will empower us to build a model that can be used to
translate text given in one language to another language.

LSTM

The vanishing gradient problem makes it difficult for the gradient to propagate from the
later layers in the network to the early layers, causing the initial weights of the network
to not change much from the initial values. Thus, the model doesn't learn well and leads
to poor performance. LSTMs solve the issue by introducing a "memory" to the network,
which leads to the retention of long-term dependencies in the text structure. However,
LSTMs add memory in a way that is different from the GRU's method. In the following
sections, we will see how LSTMs accomplish this task.

An LSTM helps a network to remember long-term dependencies in an explicit manner.
As in the case of the GRU, this is achieved by introducing more variables in the
structure of a simple RNN.

Using LSTMs, we allow the network to transfer most of the knowledge from the
activation of previous timesteps, a feat difficult to achieve with simple RNNs.

Recall the structure of the simple RNN; it's essentially an unfolding of the same unit and

can be represented by the following diagram:

Figure 7.1: The repeating module in a standard RNN

Introduction | 191

The recurrence of block "A"in the diagram signifies that it is the same structure
that is repeated over time. The input to each unit is an activation from the previous
timestep (represented by the letter "h"). Another input is the sequence value at time "t"
(represented by the letter "x").

Similar to the case with a simple RNN, LSTMs also have a fixed, time-unfolding,

repeating structure, but the repeated unit itself has a different structure. Each unit of
an LSTM has several different kinds of modules that interoperate to impart memory to
the model. An LSTM's structure can be represented by the following diagram:

Figure 7.2: The LSTM unit

Let's also get familiar with the notations we'll be using for the diagrams:

—> > <
Neural Network — Pointwise Vector

Layer Operation Transfer Concatenate Copy

Figure 7.3: Notations used in the model

192 | Long Short-Term Memory (LSTM)

The most essential component of an LSTM is the cell state, henceforth represented by
the letter "C". The cell state can be depicted by a constant bold line on the upper end
of the boxes in the following diagram. It is often convenient to think of this line as a
conveyor belt running through different time instances and carrying some information.
Although there are several operations that can affect the value that propagates through
the cell state, in practice, it is very easy for the information from previous cell states to
reach the next cell state.

Cr-1 © o Be.

Figure 7.4: Cell state

It would be useful to understand LSTMs as seen from the perspective of the
modification of this cell state. As with GRUs, the components of LSTMs that allow the
modification of the cell state are called "gates".

An LSTM operates over several steps, which are described in the sections that follow.

The Forget Gate

The forget gate is responsible for determining the cell state content that should be
forgotten from the previous timestep. The expression for the forget gate is as follows:

f(t] = sigmoid (w_f* x[t] + U_f* h[t — 1])

Figure 7.5: Expression for the forget gate

Introduction | 193

The input at timestep t is multiplied by a new set of weights, W_f, with the dimensions
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another
new set of weights, U_f, with the dimensions (n_h, n_h). Note that the multiplications
are matrix multiplications. These two terms are then added and passed through a
sigmoid function to squish the output, f[t], within a range of [0,1]. The output has the
Same number of dimensions as there are in cell state vector C (n_h,1). The forget
gate outputs a Tl’ or a '0' for each dimension. A value of '1' signifies that all information
from the previous cell state for this dimension should pass, retained, while a value '0'
indicates that all information from the previous cell state for this dimension should be
forgotten. Diagrammatically, it can be represented as shown:

Figure 7.6: The forget gate

So, how does the output of the forget gate impact the sentence construction? Let's take
a look at the generated sentence:

"Jack goes for a walk when his daughter goes to bed."

The first subject in the sentence is Jack; which connotes the male gender. The cell state
representing the gender of the subject has a value corresponding to 'Male' (this could be
0 or 1). Now, up to the word ‘his' in the sentence, the subject of the sentence does not
change, and the cell state for the subject's gender continues having the 'male' value. The
next word, however, ‘daughter, is a new subject and hence there is a need to forget the

old value in the cell state that represents the gender. Note that even if the old gender
state was female, there is still a need to forget this value so that a value corresponding
to the new subject can be used.

194 | Long Short-Term Memory (LSTM)

The forget gate accomplishes the ‘forget’ operation by setting the subject gender value

to 0 (that is, f[t] will output O for the said dimension).

In Python, the forget gate can be calculated with the following code snippet:

Importing packages and setting the random seed to have a fixed output

import numpy as np

np. random. seed(Q@)

A sigmoid needs to be defined to be used later

def sigmoid(x):

return 1-/ (Cl -tenprexet-x))

Simulating dummy values for the previous state and current input

h_prev = np.random.randn(3, 1)

X = np.random.randn(5, 1)

This code produces the following output for h_prev and x:

h_ prev

array([[1.76405235],

[0.40015721],

[0.97873798]])

x

array([[2.2408932],

i 1.86/755799),

[-0.97727788],

[0.95008842],

[-0.15135721]])

Figure 7.7: Output for the previous state, 'h_prev,' and the current input, 'x'

Introduction | 195

We can initialize some dummy values for W_f and U_f:

Initialize W_f and U_f with dummy values

W_f

cet.

np.random.randn(3, 5) # n_h = 3, n_x=5

3 np.random.randn(3, 3) # n_h

This produces the following values:

Wet

array([[-0.10321885, 0.4105985 , 0.14404357, 1.45427351,

0276103773],

[0.12167502, 0.44386323, 0.33367433, 1.49407907, -

0.20515826],

[0.3130677 , -0.85409574, -2.55298982, 0.6536186 ,

0.8644362]]})

uf

array([[-0.74216502, 2.26975462, -1.45436567],

{f 0.04575852, -0.16718385, 1.53277921],

[1.46935877, 0.15494743, 0.37816252]])

Figure 7.8: Output of the matrix values

Now the forget gate can be calculated:

f = sigmoid(np.matmul(W_f, x) + np.matmul(U_f, h_prev)

This produces the following values for f[t1:

£

array([[0.45930054],

[0.97661676],

[0.99403442]])

Figure 7.9: Output of the forget gate, f[t]

196 | Long Short-Term Memory (LSTM)

The Input Gate and the Candidate Cell State

At each timestep, a new candidate cell state is also calculated using the following

expression:

C_candidate =tanh (W_c*h[t — 1] + U_c*x[t])

Figure 7.10: Expression for candidate cell state

The input at timestep t is multiplied by a new set of weights, W_c, with the dimensions
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another
new set of weights, U_c, with the dimensions (n_h, n_h). Note that the multiplications
are matrix multiplications. These two terms are then added and passed through a
hyperbolic tan function to squish the output, f[t], within a range of [-1,1]. The output,
C_candidate, has the dimensions (n_h,1). In the diagram that follows, the candidate
cell state is represented by C tilde:

Figure 7.11: Input gate and candidate state

The candidate aims at calculating the cell state that it deduces from the current
timestep. In our example sentence, this corresponds to calculating the new subject
gender value. This candidate cell state is not passed as is to update the next cell state
but is regulated by an input gate.

The input gate determines which values of the candidate cell state get passed on to the
next cell state. The following expression can be used to calculate the input gate value:

i[t] = sigmoid (W_i* x[t] + U_i*h[t— 1])

Figure 7.12: Expression for the input gate value

The Input Gate and the Candidate Cell State | 197

The input at timestep t is multiplied by a new set of weights, W_i, with the dimensions

(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another
new set of weights, U_i, with the dimensions (n_h, n_h). Note that the multiplications

are matrix multiplications. These two terms are then added and passed through a
sigmoid function to squish the output, i[t], within a range of [0,1]. The output has the
same number of dimensions as there are in cell state vector C (n_h, 1). In our example
sentence, after reaching the word ‘daughter, there is a need to update the cell state
for the values that correspond to the gender of the subject. After having calculated the
new candidate value for the subject gender through the candidate cell state, only the
dimension corresponding to the subject gender is set to 1 in the input gate vector.

The Python code snippet for the candidate cell state and input gate is as follows:

Initialize W_i and U_i with dummy values

Wed

et

np.random.randn(3, 5) # n_h = 3, n_x=5

3 np.random.randn(3, 3) # n_h

This produces the following values for the matrices:

wii

0.34791215, 0.15634897, array([[-0.88778575, -1.98079647,
1.23029068],

[1.20237985, -0.38732682,
1.42001794],

[-1.70627019, 1.9507754 ,
1.25279536]])

0.30230275, -1.04855297, -

0.50965218, -0.4380743 , -

ui

array([[0.77749036, -1.61389785, -0.21274028],
[-0.89546656, 0.3869025 , -0.51080514],
[-1.18063218, -0.02818223, 0.42833187]])

Figure 7.13: Screenshot of values of matrices for candidate cell state and input gate

198 | Long Short-Term Memory (LSTM)

The input gate can be calculated as shown:

i = sigmoid(np.matmul(W_i, x) + np.matmul(U_i, h_prev))

This outputs the following value for i:

“

array([[0.00762368],

[0.39184172],

[0.17027909]])

Figure 7.14: Screenshot of output of input gate

To calculate the candidate cell state, we first initialize the W_c and U_c matrices:

Initialize W_c and U_c with dummy values

34 -NxX=5

3

W_c = np.random.randn(3, 5) # n_h

U_c = np.random.randn(3, 3) # n_h

The values produced for these matrices are as given:

Wc

array([{[0-06651722, 0.3024719 , -0.63432209, -0.36274117, -
0.67246045],

[-0.35955316, -0.81314628, -1.7262826 , 0.17742614, -
0.40178094],

[-1.63019835, 0.46278226, -0.90729836, 0.0519454 ,
0.72909056]])

U_c

array([[0.12898291, 1.13940068, -1.23482582],

[0.40234164, -0.68481009, -0.87079715],

[-0.57884966, -0.31155253, 0.05616534]])

Figure 7.15: Screenshot for values of matrices W_c and U_c

The Input Gate and the Candidate Cell State | 199

We can now use the update equation for the candidate cell state:

c_candidate = np.tanh(np.matmul(W_c, x) + np.matmul(U_c, h_prev))

The candidate cell state produces the following value:

| c_candidate

array ([f 0. 312339921)

[-0.67747899],

[-0 .99555958]1])

Figure 7.16: Screenshot of the candidate cell state

Cell State Update

At this point, we know what should be forgotten from the old cell state (forget gate),
what should be allowed to affect the new cell state (input gate), and what value the
candidate cell change should have (candidate cell state). Now, the cell state for the
current timestep can be calculated as follows:

C[t]=hadamard(f[t], C[t-1]) + hadamard(i[t], C_candidate[t])

Figure 7.17: Expression for cell state update

In the preceding expression, 'hadamard' represents element-wise multiplications. So,
the forget gate gets multiplied element wise with the old cell state, allowing it to forget
the gender of the subject in our example sentence. On the other hand, the input gate
allows the new candidate value for the gender of the subject to affect the new cell state.
These two terms are then added element-wise so that the current cell state now has a
subject gender that corresponds to a value that corresponds to ‘female.

200 | Long Short-Term Memory (LSTM)

The next diagram depicts the operation

t—1

tt U4 >

Figure 7.18: Updated cell state

Here is the code snippet for producing the current cell state.

First, initialize a value for the previous cell state:

Initialize c_prev with dummy value

c_prev = np.random.randn(3,1)

c_new = np.multiply(f, c_prev) + np.multiply(i, c_candidate)

The value becomes the following:

c_ new

array([[-0.53124803],

[0.61429771],

{ 0.29336152]])

Figure 7.19: Screenshot for output of updated cell state

Output Gate and Current Activation | 201

Output Gate and Current Activation

Note that all we have done is update the cell state until now. We need to generate the
activation for the current state as well; that is, (h[t]). This is done using an output gate
that is calculated as given:

o[t] = sigmoid(W_o*x{[t] + U_o*h[t-1])

Figure 7.20: Expression for output gate.

The input at timestep t is multiplied by a new set of weights, W_o, with the dimensions
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another
new set of weights, U_o, with the dimensions (n_h, n_h). Note that the multiplications
are matrix multiplications. These two terms are then added and passed through a
sigmoid function to squish the output, o[t], within a range of [0,1]. The output has the
same number of dimensions as there are in cell state vector h (n_h, 1).

The output gate is responsible for regulating the amount by which the current cell state
is allowed to affect the activation value for the timestep. In our example sentence, it
is worth propagating the information that depicts whether the subject is singular or
plural such that the correct verb form may be used. For example, if the word following
the word ‘daughter’ is a verb such as ‘goes, it is important to use the correct form of the
word, ‘go’. Hence, the output gate allows relevant information to be passed on to the
activation, which then goes as an input to the next timestep. In the next diagram, the

output gate is represented as o_t:

hy

Figure 7.21: Output gate and current activation

202 | Long Short-Term Memory (LSTM)

The following code snippet shows how the value for the output gate can be calculated:

Initialize dummy values for W_o and U_o

W_o = np.random.randn(3, 5) # n_h = 3, n_x=5

3 U_o = np.random.randn(3, 3) # n_h

This produces the following output:

W_o

array([[-1-.16514984, 0.90082649, 0.46566244, -1.53624369,
1.48825219],

[1.89588918, 1.17877957, -0.17992484, -1.07075262,
1.05445173],

[-0.40317695, 1.22244507, 0.20827498, 0.97663904,
0.3563664 }])

U_o

array([[0.70657317, 0.01050002, 1.78587049],
[0.12691209, 0.40198936, 1.8831507],
[-1.34775906, -1.270485 , 0.96939671]])

Figure 7.22: Screenshot for output of matrices W_o and U_o

Now the output can be calculated:

Oo = np.tanh(np.matmul(W_o, x) + np.matmul(U_o, h_prev))

The value of the output gate is as follows:

Oo

array([[-0.06989015],

[0.99999957],

[Usll43221037)]}

Figure 7.23: Screenshot of the value of the output gate

Once the output gate is evaluated, the value of the next activation can be calculated?

h[t] = hadamard(o[t], tanh (C[t]))

Figure 7.24: Expression to calculate the value of the next activation

Output Gate and Current Activation | 203

First, a hyperbolic tangent function is applied to the current cell state. This limits the
values in the vector between -1 and 1. Then, an element-wise product of this value is
done with the output gate value that was just calculated.

Let's see the code snippet for calculating the current timestep activation:

h_new = np.multiply(o, np.tanh(c_new))

This finally produces the following:

h_new

array([[-0.04695679],

[0.12468345],

[0.07479682]])

Figure 7.25: Screenshot for the current timestep activation

Now let's build a very simple binary classifier to demonstrate the use of an LSTM.

Exercise 27: Building an LSTM-Based Model to Classify an Email as Spam or

Not Spam (Ham)

In this exercise, we will be building an LSTM-based model that will help us classify
emails as spam or genuine:

1. We will start by importing the required Python packages:

import pandas as pd

import numpy as np

from keras.models import Model, Sequential

from keras.layers import LSTM, Dense, Embedding

from keras.preprocessing. text import Tokenizer

from keras.preprocessing import sequence

Note:

The LSTM unit has been imported the same way as you would for a simple RNN or

GRU.

204 | Long Short-Term Memory (LSTM)

2. We can now read the input file containing a column that contains text and another

column that contains the label for the text depicting whether the text is spam or

not.

Note

For the input file, go to the repository link at

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language-

Processing/tree/master/Lesson%2007/exercise

df = pd.read_csv("spam.csv", encoding="latin")

df .head()

3. The data looks as depicted here:

df.head/ }

vi v2 Unnamed: Unnamed: Unnamed:

2 3 4

0 “ham Go until jurong point, crazy.. Available only NaN NaN NaN

1. ham Ok lar... Joking wif u oni... NaN NaN NaN

2 spam Free entry in 2 a wkly comp to win Pata NaN NaN NaN

a. han U dun say so early hor... U c already hae! NaN NaN NaN

4 ham Nah | don't think he goes to usf, Praise NaN NaN NaN

Figure 7.26: Screenshot of the output for spam classification

4, There are some irrelevant columns as well, but we only need the columns
containing the text data and labels:

df = df[["v1","v2"]]
df .head()

Output Gate and Current Activation | 205

5. The output should be as follows:

df.head; }

v1 v2

Oo ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham _ Udun say so early hor... U c already then say...

4 ham Nah | don't think he goes to usf, he lives aro...

Figure 7.27: Screenshot for columns with text and labels

6. Wecan check the label distribution:

df["v1" J]. value_counts()

The label distribuiton would look like this:

df["v1l"].value_counts()

ham 4825

spam 747

Name: vl, dtype: int64

Figure 7.28: Screenshot for label distribution

7. Wecan now map the label distribution to 0/1 so that it can be fed to a classifier.

Also, an array is created to contain the texts:

lab_map = {"ham":@, "spam": 1}

Y = df["v1"].map(lab_map). values

X = df["v2"]. values

206 | Long Short-Term Memory (LSTM)

8. This produces output X and Y as follows:

xX

array(['Go until jurong point, crazy.. Available only in bugi

s n great world la e buffet... Cine there got amore wat...',

‘Oke Abe. seOKLNo WLt UONl aes x

"Free entry in 2 a wkly comp to win FA Cup final tkts

21st May 2005. Text FA to 87121 to receive entry question(std

txt rate)T&C's apply 084528100750ver18's",

-ee, ‘Pity, * was in mood for that. So...any other sug

gestions?',

"The guy did some bitching but I acted like i'd be int

erested in buying something else next week and he gave it to

us for free",

9. Next, we will restrict the maximum number of tokens to be generated for the 100
most frequent words. We will initialize a tokenizer that assigns an integer value to

‘Rofl. Its true to its name'], dtype=object)

Figure 7.29: Screenshot for output X

x

arravi[O 7; O,oL)> <5 =a, WO)

Figure 7.30: Screenshot for output Y

each word being used in the text corpus:

max_words = 100

mytokenizer = Tokenizer(nb_words=max_words, lower=True, split=" ")

mytokenizer. fit_on_texts(X)

text_tokenized = mytokenizer.texts_to_sequences(X)

Output Gate and Current Activation | 207

10. This will produce a text_tokenized value:

In [24]: text_tokenized

11.

Out[24]: [[50,
[46,
[47,
[6,
[1,
[67,
[1l,
[72,
[72,
[13,
[30,
[2,
[3,
[12,

4,
[1,
[2,
[93,
[6,
FIA

29,

64,
6],
8,

23),
98,
21,
9,
13,
4,
96,
22,

48,
1774
ae
51],

17, 4,
ie nye
30],

49,

5 &

6,

3,

2,

8,

19,

7,
25s

72,

19,

89, 67, 58], |

4,
57),
2,
38,
55,

Poh ee eee

69],
B77 55 5 Oy 44702, 914 105, 46 Jody: 68,021,
Os AD, WO, 65a

Witai2¢ 51,02; .1231,,
LIE925°2 US yp 64;
SPOT ye, te, ay soy hey a7 ee) seeo6 at, 1B), 4
2 ear 2 BD. se Ss aod: :

T3710 GL, fy 65, 92, 4215
aT ee OTS? Sse age |
Wed Be ala RRS Oy alee 9? lie Mia Fal See Wiehe ly Pee

18,
8,

36,

Drm lacey
33],

26 89],

i, OF;
BR 411

1],

Figure 7.31: Screenshot for the output of tokenized values

Note that since we restricted the maximum number words to be 100, only the
words in the text that fall within the top 100 most frequent words will be assigned
an integer index. The rest of the works will be ignored. So, even though the first
sequence in X has 20 words, there are 6 indices in the tokenized representation of
this sentence.

Next, we will allow a maximum sequence length of 50 words per sequence and
pad the sequences that are shorter than this length. The longer sequences, on the
other hand, get truncated:

max_len = 50

sequences = sequence.pad_sequences(text_tokenized, maxlen=max_len)

208 | Long Short-Term Memory (LSTM)

ite

The output is as follows:

sequences

arravi [Troy OF Oy we 5G* SO OT pS OT7

[0% 0, 0, ce f 0, 46, 61,

[-O, Pry oe ; ar me le
Pecans

CRO; Bel, be Oph tf Ler ee, ee le

[Oy 0; . Meets ude Ae ghee ae lee

ro, 0, 0, wide, «Gl,'> 276i] , dtypae=intszZ}

Figure 7.32: Screenshot for padded sequences

Note that the padding was done in the 'pre' mode, meaning that the initial part of
the sequences get padded to make the sequence length equal to max_len.

Next, we define the model with the LSTM layer having 64 hidden units and fit it to
our sequence data with the respective target values:

model = Sequential()

model. add(Embedding(max_words, 20, input_length=max_len))

model. add(LSTM(64))

model.add(Dense(1, activation="Ssigmoid"))

model.compile(loss='binary_crossentropy' ,

optimizer='adam' ,

metrics=['accuracy'])

model . fit (sequences, Y, batch_size=128, epochs=10,

validation_split=0. 2)

Here, we start with an embedding layer, which ensures a fixed size for input to the
network (20). We have a dense layer with a single sigmoid output, which indicates
whether the target variable is 0 or 1. We then compile the model with binary
cross-entropy as the loss function and use Adam as the optimization strategy.
After that, we fit the model to our data with a batch size of 128 and an epoch count
of 10. Note that we also keep aside 20% of the training data as validation data. This
starts a training session:

Output Gate and Current Activation | 209 ee LS

model.fit(sequences,Y,batch size=128,epochs=10,

validation _split=0.2)

Train on 4457 samples, validate on 1115 samples

Epoch 1/10

4457/4457 [ssssssssss==ssssssss==========] - 2s 539us/step -
loss: 0.4885 - acc: 0.8548 - val_loss: 0.3700 - val_ace: 0.87
00

Epoch 2/10

4457/4457 [sssssssssssssssssssss=S========] - 2s 374us/step -

loss: 0.3425 - acc: 0.8652 - val_loss: 0.2649 - val_acc: 0.87
igs

Epoch 3/10

4457/4457 [s=ssssssssssssesssssssss=======] - 2s 38lus/step -

loss: 0.2028 - acc: 0.9226 - val_loss: 0.1489 - val_acc: 0.95
34

Epoch 4/10

4457/4457 [ssssssssssssssssssss5=========] - 25 367us/step -

loss: 0.1348 - acc: 0.9547 - val_loss: 0.1271 - val_acc: 0.95

16

Epoch 5/10

4457/4457 [sssssssssssssssssssssses==5===] - 25 404us/step -

loss: 0.1157 - acc: 0.9605 - val loss: 0.1073 - val acc: 0.95

78

Epoch 6/10

4457/4457 [sssssssssssssssesssseessss=5==] - 2s 368us/step -

loss: 0.1061 - acc: 0.9632 - val_loss: 0.1027 - val_acc: 0.96

14

Epoch 7/10

4457/4457 [sssssssssssssesssssssssssss===] - 2s 37lus/step -

loss: 0.0998 - acc: 0.9657 - val_loss: 0.1046 - val_acc: 0.95

78

Epoch 8/10
4457/4457 [Ssssssssssssssssssssssessa=s==] - 2s 372us/step -

loss: 0.0955 - acc: 0.9672 - val_loss: 0.1004 - val_acec: 0.95

96

Figure 7.33: Screenshot of model fitting to 10 epochs

After 10 epochs, a validation accuracy of 96% is achieved. This is remarkably good

performance.

210 | Long Short-Term Memory (LSTM)

We can now try some test sequences and obtain the probability of the sequence

being spam:

inp_test_seq = "WINNER! U win a 500 prize reward & free entry to FA cup

final tickets! Text FA to 34212 to receive award"

test_sequences = mytokenizer.texts_to_sequences(np.array(Linp_test_seq]))

test_sequences_matrix = sequence.pad_sequences(test_sequences , maxlen=max_

len)

model.predict(test_sequences_matrix)

Expected output:

-model.predict(test_sequences_ matrix)

array([[0.96648586]], dtype=float32)

Figure 7.34: Screenshot of the output of model prediction

There is a very high probability of the test text being spam.

Activity 9: Building a Spam or Ham Classifier Using a Simple RNN

We will be building a spam-or-ham classifier using a simple RNN with the same

hyperparameters as earlier and compare the performance with that of our LSTM-based
solution. For a simple dataset such as this, a simple RNN would perform very close to an
LSTM. However, this is usually not the case with more complex models, as we will see in
the next section.

Note

Find the input file at https://github.com/TrainingByPackt/Deep-Learning-for-

Natural-Language-Processing/tree/master/Lesson%2007/exercise.

Neural Language Translation | 211

1. Import the required Python packages.

NM Read the input file containing a column that contains text and another column
that contains the label for the text depicting whether the text is spam or not.

Convert to sequences.

Pad the sequences.

Train the sequences.

Build the model.

“a2 VS? Predict the mail category on the new test data.

Expected output:

P

array([{[0.979119]], dtype=float32)

Figure 7.35: Output for mail category prediction

Note

The solution for the activity can be found on page 324.

Neural Language Translation

The simple binary classifier described in the previous section is a basic use case for
the area of natural language processing (NLP) and doesn't fully justify the use of any
techniques that are more complex than using a simple RNN or even simpler techniques.
However, there are many complex use cases for which it is imperative to use more

complex units such as LSTMs. Neural language translation is one such application.

The goal of a neural language translation task is to build a model that can translate a
piece of text from a source language to a target language. Before starting with the code,
let's discuss the architecture of this system.

Neural language translation represents a many-to-many NLP application, which means
that there are many inputs to the system and the system produces many outputs as

well.

212 | Long Short-Term Memory (LSTM)

Additionally, the number of inputs and outputs could be different as the same text
can have a different number of words in the source and target language. The area of
NLP that solves such problems is referred to as sequence-to-sequence modeling. The
architecture consists of an encoder block and a decoder block. The following diagram

represents the architecture:

Ich méchte

| would swimming BEGIN Ich méchte gehen END

Figure 7.36: Neural translation model

The left part of the architecture is the encoder block, and the right part is the decoder
block. The diagram attempts to translate an English sentence to German, as here:

English: I would like to go swimming

German: Ich méchte schwimmen gehen

Note

Periods have been dropped from the preceding sentences for demonstration

purposes only. Periods are also considered valid tokens.

Neural Language Translation | 213

The encoder block takes each word of the English (source language) sentence as input
at a given timestep. Each unit of the encoder block is an LSTM. The only outputs for
the encoder block are the final cell state and activations. These are jointly referred to as
the thought vector. The thought vector is used to initialize the activation and cell state
for the decoder block, which is another LSTM block. During the training phase, at each
timestep, the decoder output is the next word in the sentence. This is represented by
a dense softmax layer that has a value 1 for the next word token and 0 for all the other
entries in the vector.

The English sentence is fed to the encoder word by word, producing a final cell state
and activation. During the training phase, the real output of the decoder at each
timestep is known. This is simply the next German word in the sentence. Note that
there is a ‘BEGIN _' token inserted at the sentence beginning and an '_END' token
at the end of the sentence. The output for the 'BEGIN _' token is the first word in the

German sentence. This can be seen in the last diagram. At the time of training, the
network is made to learn the translation word by word.

In the inference phase, the English input sentence is fed to the encoder block,
producing a final cell state and activation. The decoder has the 'BEGIN _' token as the
input at the first timestep, along with the cell state and activations. Using these three
inputs, a softmax output is produced for this timestep. In a well-trained network, the
softmax value is the highest for the entry corresponding to the correct word. This next
word is then fed as the input to the next timestep. This process is continued until an
'_END' token is sampled or a maximum sentence length is reached.

Now let's go through the code for the model.

We read in the file containing sentence pairs first. We also keep the number of pairs
restricted to 20,000 for demonstration purposes:

import os

import re

import numpy as np

with open("deu.txt", 'r', encoding='utf-8') as f:

lines = f.read().split('\n')

num_samples = 20000 # Using only 20000 pairs for this example

lines_to_use = lines[: min(num_samples, len(lines) - 1)]

print(lines_to_use)

214 | Long Short-Term Memory (LSTM)

Output:

lines_to_use
oslaeteeremetmma les aeteieernsiaeealeeemmeiaaasmetetiaainioneels

(oHL, \tHaliol™,

"Hi. \tGriiB Gott!',

"Run! \tLauf!',

‘Wow! \tPotzdonner!',

'Wow!\tDonnerwetter!',

'Fire!\tFeuer!',

'Help!\tHilfe!',

"Help! \tZu Hilf!',

'Stop!\tStopp!',
‘Wait! \tWarte!',

'Go on.\tMach weiter.',

'Hello!\tHallo!',

‘I ran.\tIch rannte.',

'I see.\tIch verstehe.',

'I see.\tAha.',

"Lr try. \tich probiere es. ',

'I won!\tIch hab gewonnen!',

Figure 7.37: Screenshot for the English-to-German translation of sentence pairs

Each line has first the English sentence, followed by a tab character, and then the

German translation of the sentence. Next, we'll map all the numbers to a placeholder

word, 'NUMBER_ PRESENT’, and append the 'BEGIN_ ' and ' _END' tokens to each

German sentence, as discussed previously:

for 1 in range(len(lines_to_use)):

lines_to_use[1] = re.sub("\d", " NUMBER_PRESENT ",lines_to_use[1])

input_texts = []

target_texts = []

input_words = set()

target_words = set()

for line in lines_to_use:

input_text, target_text = line.splitc('\t') PS

target_text = ‘BEGIN. ' + target_text + ' _END'

input_texts.append(input_text)

target_texts.append(target_text)

for word in input_text.split():

Neural Language Translation | 215

if word not in input_words:

input_words.add(word)

for word in target_text.split():

if word not in target_words:

target_words.add(word)

In the previous snippet, we obtained the input and output texts. They look as depicted:

input texts

BET Pee
LBlaey

"Rimi,

‘Wow!',

'Wow!',

"Fire ies

"Help!',

‘'Help!',

“Stop! ‘;

‘Wait!',

‘Gavan. ',

'Hello!',

'T wernt;

'I see.',

'I see.',

6 My a

'I won!',

'I won!',

'Smile.',
'Chearc!

target_texts

['BEGIN_ Hallo! _END',
‘BEGIN. GriifB Gott! _END',

'BEGIN. Lauf! _END',
‘BEGIN. Potzdonner! _END',
'BEGIN. Donnerwetter! _END',

'BEGIN. Feuer! _END',
'BEGIN. Hilfe! _END',
'BEGIN. Zu Hilf! _END',
'BEGIN. Stopp! _END',

'BEGIN. Warte! _END',

'BEGIN_ Mach weiter. _END',
Pmmarar rT 11-8 Taatrm |

Figure 7.38: Screenshot for input and output texts after mapping

216 | Long Short-Term Memory (LSTM)

Next, we get the maximum length of the input and output sequences and get a list of all
the words in the input and output corpus:

max_input_segq_length = max([len(i.split()) for i in input_texts])

max_target_seq_length = max(Llen(i.split()) for i in target_texts])

input_words = sorted(list(input_words))

target_words = sorted(list(target_words))

num_encoder_tokens = len(input_words)

num_decoder_tokens = len(target_words)

input_words and target_words look as shown in the following figure:

input_words

[' "Look, wer :

' "aah. ue

'S',

"ATM?',

'AWOL.',
"Abandon',

"About',

MAGE.” ;

"Add',

‘Admission',
'After'

target_words

['"Schaul"',

eae

'Abend?',

‘Abendbrot',
Inhanwdahwnnr !

Figure 7.39: Screenshot for input text and target words

Neural Language Translation | 217

Next, we generate an integer index for each token in the input and output words:

input_token_index = dict(

L(word, i) for i, word in enumerate(input_words)])

target_token_index = dict([(word, i) for i, word in enumerate(target_words)])

The values of these variables are as follows:

input_token_index

i "Logks.” "3 5;

BANS th ky
Sis 2

i Re She

=

ee ee

&
~~

ra

in!

Nae gee

"ATM? 12) 912),

"AWOL. 3. 13,

‘Abandon': 14,

"About 's_15,

Weber abeiy

"AdG ts 4147, 9

'Admission': 18,
‘Aftar' «19

- 9 es ee «

wo -

target_token_index

{'"Schau!"': 0,

Saas) ley

Leh bets De

ASTD WS jie

Bk Rs

ates ig

ers Oly

SBME Sie

Pipe Eat spe

"Abend': 9,

"Abend!': 10,

"Abend?': 11,

"Abendbrot': 12,

Figure 7.40: Screenshot for output of integer index for each token

218 | Long Short-Term Memory (LSTM)

We now define the arrays for the encoder input data, which is a 2-dimensional matrix
with as many rows as sentence pairs and as many columns as the maximum input
sequence length. Similarly, the decoder input data is also a 2-dimensional matrix with
as many rows as sentence pairs and as many columns as the maximum sequence length
in the target corpus. We also need target output data, which is required during the
training phase. This is a 3-dimensional matrix where the first dimension has the same
value as the number of sentence pairs. The second dimension has the same number
of elements as the maximum target sequence length. The third dimension represents
the number of decoder tokens (the number of distinct words in the target corpus). We
initialize these variables with zeros:

encoder_input_data = np.zeros(

(len(input_texts), max_input_seq_length),

dtype='float32')

decoder_input_data = np. zeros(

(len(target_texts), max_target_seq_length),

dtype='float32')

decoder_target_data = np.zeros(

(len(target_texts), max_target_seq_length, num_decoder_tokens),

dtype='float32')

We now populate these matrices:

for i, (input_text, target_text) in enumerate(zip(input_texts, target_

texts)):

for t, word in enumerate(input_text.split()):

encoder_input_dataLi, t] = input_token_index[word]

for t, word in enumerate(target_text.split()):

decoder_input_data[i, t] = target_token_index[word]

if tO:

decoder_target_data is ahead of decoder_input_data by one

timestep

decoder_target_data[i, t - 1, target_token_index[word]] = 1.

The values look as follows:

encoder input data

array([[283.,

le ZENS ae

[=505e;

f 696. ,

[-696%, 3004.
e=float32)

decoder input data

0O.,

ot)

_,
[696., 3001.

3001.

SEA PIT Sap) Le

[175.,11140.

bp loreere eT Alh oye

shoei

[tS. 3405.

f175., 3405.

[tise 34055

e=float32)

decoder target data

array([[

[

[0.,
[0.,
[0.,

[0.,
[0.,
[0.,

[0.,
[0.,

oo co * «me

0

0.

0.

0

|

La

Lf

La

0. ’ 0. ’

Oy,

’

v

’

,

a

’

’

v

’

4502.

4682.

3008.

3665.

11T3.

3665.

8432. v

6239.,

6239.,

or

0.

0.
‘

’

° -s 3

eo;

oS ° ~

Os;

Om

oo

0.

0.

Neural Language Translation | 219

0., O., 0.1,
ae rye i
Or; 0., Oye

Dat one]
Os O34 ‘ Ll

0., 0., 0.J], dtyp

oy, ozs 0.1,
O24 4 olan
Oey Oye dehy

Oe, Ow es
0., 0., 0.],
0., 0., 0.J], dtyp

-l,

ll,

l,

Figure 7.41: Screenshot of matrix population

We will now define a model. For this exercise, we'll use the functional API of Keras:

from keras.layers import Input, LSTM, Embedding, Dense

from keras.models import Model

embedding_size = 50 # For embedding layer

220 | Long Short-Term Memory (LSTM)

Let's see the encoder block:

encoder_inputs = Input(shape=(None,))

encoder_after_embedding = Embedding(num_encoder_tokens, embedding_size)

(encoder_inputs)

encoder_lstm = LSTM(50, return_state=True)

_, state_h, state_c = encoder_lstm(encoder_after_embedding)

encoder_states = [state_h, state_c]

First, an Input layer with a flexible number of inputs is defined (with the None
attribute). Then, an embedding layer is defined and applied to the encoder inputs. Next,
an LSTM unit is defined with 50 hidden units and applied to the embedding layer. Note
that the return_state parameter in the LSTM definition is set to True since we would

like to obtain the final encoder states to be used for initializing decoder cell state and
activations. The encoder LSTM is then applied to the embeddings and the states are

collected back into variables.

Now let's define the decoder block:

decoder_inputs = Input(shape=(None,))

decoder_after_embedding = Embedding(num_decoder_tokens, embedding_size)

(decoder_inputs)

decoder_lstm = LSTM(5@, return_sequences=True, return_state=True)

decoder_outputs, _, _ = decoder_lstm(decoder_after_embedding,

initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

The decoder takes in inputs and defines embedding layers in a way similar to that of the
encoder. An LSTM block is then defined with the return_sequences and return_state
parameters set to True. This is done since we wish to use the sequences and states for
the decoder. A dense layer is then defined with a softmax activation and a number of
outputs equal to the number of distinct tokens in the target corpus. We can now define
a model that takes in the encoder and decoder inputs as its input and produces the
decoder outputs as final outputs:

model = Model(Lencoder_inputs, decoder_inputs], decoder_outputs) ®

model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['acc'])

model.summary()

Neural Language Translation | 221

The following model summary is seen:

Layer (type) Output Shape Param #

Connected to

input_1 (InputLayer) (None, None) 0

input_2 (InputLayer) (None, None) 0

embedding _1 (Embedding) (None, None, 50) 286200

input_1[0][0]

embedding 2 (Embedding) (None, None, 50) 456300

input_2[0][0]

lstm_1 (LSTM) [(None, 50), (None, 20200

embedding_1[0][0]

lstm_2 (LSTM) {(None, None, 50), (20200

embedding 2[0][0]

lstm_1[0][1]

lstm_1[0][2]

dense _1 (Dense) (None, None, 9126) 465426

lstm_2[0][0]

Total params: 1,248,326

Trainable params: 1,248,326

Non-trainable params: 0

Figure 7.42: Screenshot of model summary

222 | Long Short-Term Memory (LSTM)

We can now fit the model for our inputs and outputs:

model .fit(Lencoder_input_data, decoder_input_data], decoder_target_data,

batch_size=128,

epochs=20,

validation_split=0.05)

We set a batch size of 128 with 20 epochs:

Train on 19000 samples, validate on 1000 samples

Epoch 1/20

19000/19000 [===S====s=ss=ssssssesses=ss======] - 310s 16ms/step

- loss: 1.6492 - acc: 0.0787 - val_loss: 1.8068 - val_acc: 0.

0674

Epoch 2/20

19000/19000 [====s=s=sss=sssssssss==s=s========] - 303s 16ms/step

- loss: 1.5174 - acc: 0.0908 - val_loss: 1.6923 - val_ace: 0.

0822

Epoch 3/20

19000/19000 [ss=ss=sssssssssssesssssss======] - 304s 16ms/step

- loss: 1.4060 - acc: 0.1040 - val_loss: 1.6107 - val_acc: 0.

1065 ;

Epoch 4/20

19000/19000 [==s==s=s==ss=s=ssssssss=s=s=s======] - 292s 15ms/step

- loss: 1.3343 - acc: 0.1157 - val_loss: 1.5683 - val_acc: 0.

1100
Epoch 5/20

19000/19000 [==s=S=sSssss=sssssssss=sss========] - 292s 15ms/step

- loss: 1.2860 - acc: 0.1212 - val_loss: 1.5299 - val_ace: 0.

1197

Epoch 6/20

19000/19000 [==ss=ss=ssssssssssss============] - 291s 15ms/step

= loss: 1.2510 - acc: 0.1241 - val_loss: 1.5037 - val_acc: 0.

1145

Epoch 7/20

19000/19000 [=s=ss=s=s=s=ss=sessssss=sss=s=s========] - 291s 15ms/step

Figure 7.43: Screenshot of model fitting with 20 epochs

The model is now trained. Now, as described in our section on neural language
translation, the inference phase follows a slightly different architecture from the one
used during training. We first define the encoder model, which takes encoder_inputg
(with embedding) as input and produces encoder_states as output. This makes sense as
the output of the encoder block is the cell state and activations:

encoder_model = Model(encoder_inputs, encoder_states)

Neural Language Translation | 223

Next, a decoder inference model is defined:

decoder_state_input_h = Input(shape=(50,))

decoder_state_input_c = Input(shape=(5,))

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]

decoder_outputs_inf, state_h_inf, state_c_inf = decoder_lstm(decoder_after_
embedding, initial_state=decoder_states_inputs)

The initial states of decoder_lIstm, which was trained earlier, are set to the decoder_
states_inputs variable, which will be set to encoder state output later on. Then, we pass
decoder outputs through a dense softmax layer for getting the index of the predicted
word and define the decoder inference model:

decoder_states_inf = [state_h_inf, state_c_inf]

decoder_outputs_inf = decoder_dense(decoder_outputs_inf)

Multiple input, multiple output

decoder_model = Model(

[decoder_inputs] + decoder_states_inputs,

[decoder_outputs_inf] + decoder_states_inf)

The decoder model takes multiple inputs in the form of decoder_input (with
embedding) and decoder states. The output is also a multivariable where the dense
layer output and decoder states are returned. The states are required here as they need
to passed on as input states for the sampling of the word at the next timestep.

Since the output of the dense layer will return a vector, we need a reverse lookup
dictionary to map the index for the generated word to an actual word:

Reverse-lookup token index to decode sequences

reverse_input_word_index = dict(

(i, word) for word, i in input_token_index.items())

reverse_target_word_index = dict(

(i, word) for word, i in target_token_index.items())

224 | Long Short-Term Memory (LSTM)

The values in the dictionaries are as follows:

reverse_input_word_index

LA

ery a

bee es

: "G24

Dar Rete eey

Biey Petia

Oe ee

Ose Ae

Pisa Ae

2 AIM?

43: "AWOL.',
14: 'Abandon',

Le ADO 7

LOS eae

iy Pe Aadoy

18: '‘Admission',

TGi2 TALtCer™,

20:5. ' Aim. ,

PAIRS Soe bys le

vt he NO a Wi, ae

reverse target word index

{O27 Schaudt")

Wig acl Sexy

Ae, Sgr

ce eT ie

he ae

: Bi cme

oe Ss

ee ee

Oo. or.

9: 'Abend',

10: 'Abend!',

ll: 'Abend?',

12: 'Abendbrot',

Figure 7.44: Screenshot of dictionary values

We now need to develop a sampling logic. Given a token representation for every word
in an input sentence, we first get the output from encoder_model using these word
tokens as inputs for the encoder. We also initialize the first input word to the decoder,
to be a ‘BEGIN _' token. We then sample a new word token using these values. The

input to the decoder for the next timestep is this newly generated token. We continue
in this fashion until we either sample the '_END' token or reach the maximum allowed
output sequence length.

Neural Language Translation | 225

The first step is encoding the input as a state vector:

def decode_sequence(input_seq):

states_value = encoder_model.predict(input_seq)

Then, we generate an empty target sequence of length 1:

target_seq = np.zeros((1,1))

Next, we populate the first character of the target sequence with the start character:

target_seql®, 0] = target_token_index['BEGIN_']

Then, we create a sampling loop for a batch of sequences:

stop_condition = False

decoded_sentence = ''

while not stop_condition:

output_tokens, h, c = decoder_model.predict(

[target_seq] + states_value)

Next, we sample a token:

sampled_token_index = np.argmax(output_tokens)

sampled_word = reverse_target_word_index[sampled_token_index]

decoded_sentence += ' ' + sampled_word

Then, we state the exit condition "either hit max length":

or find stop character.

if (sampled_word == '_END' or

len(decoded_sentence) > 60):

stop_condition = True

Update the target sequence (of length 1).

_target_seq = np.zeros((1,1))

target_seql0, 0] = sampled_token_index

226 | Long Short-Term Memory (LSTM)

Then, we update the states:

states_value = [h, c]

return decoded_sentence

In this instance, you can test the model by translating a user-defined English sentence
to German:

text_to_translate = "Where is my car?"

encoder_input_to_translate = np.zeros(

(1, max_input_seq_length),

dtype='float32')

for t, word in enumerate(text_to_translate.split()):

encoder_input_to_translate[@, t] = input_token_index[word]

decode_sequence(encoder_input_to_translate)

The output is depicted in this screenshot:

In [122]: text_to_translate = "Where is my car?"

In [123]: encoder_input_to_translate = np.zeros(

(1, max_input_seq length),
dtype='float32')

for t, word in enumerate(text_to_translate.split()):
anandAar innut +A tranelatarnh +1 im §mnnit tnbkan indawlunrA)

In [124]: decode_sequence(encoder_input_to_translate)

Out[{124]: ' Wo ist mein Auto? _END'

Figure 7.45: Screenshot of English-to-German translator ‘

Neural Language Translation | 227

This is, indeed, the correct translation.

So, even a model trained on just 20,000 sequences for only 20 epochs is capable of
producing good translations. With the current settings, the training session ran for
about 90 minutes.

Activity 10: Creating a French-to-English translation model

In this activity, we aim to generate a language translator model that converts French
text into English.

Note

You can find the related files to the activity at https://github.com/TrainingByPackt/

Deep-Learning-for-Natural-Language-Processing/tree/master/Lesson%2007/

activity.

1. Read in the sentence pairs (check the GitHub repository for the file).

i Generate input and output texts with the 'BEGIN _' and '_END' words attached to

the output sentences.

Convert the input and output texts into input and output sequence matrices.

Define the encoder and decoder training models and train the network.

Define the encoder and decoder architecture for inference.

Se ee oe Create the user input text (French: ' Ow est ma voiture?'). The sample output text in
English should be 'Where is my car?’ Refer to the 'French.txt' file from the GitHub
repository for some sample French words.

228 | Long Short-Term Memory (LSTM)

Expected output:

" Get a lot. _END’

Figure 7.46: Output for French to English translator model

Note

The solution for the activity can be found on page 327.

Summary

We introduced LSTM units as a possible remedy to the vanishing gradient problem.
We then discussed the LSTM architecture in detail and built a simple binary classifier
using it. We then delved into a neural nanguage translation application that utilizes
LSTM units, and we built a French-to-English translator model using the techniques
we explored. In the next chapter, we will discuss the current state of the art in the NLP
sphere.

Dies i < = if 7 ’ = 7 —_
2 ‘

; ora *
2. at

atural Langua

Processif

ni cre G
uu tetpe sible bs

+3 aie ee
rie , ipag : SANT

an

ets iejct eri a) ie
 Ae as a hefe-wthe ar NL? domals

, -

weention ae achahis
1 ET atl wet

es > ew A

ce nei wa) s9:p witie! ures ar. etter: meu
dsr

iyo bal aby & wren ine ray

ee:
pe 42 be éa] ais rie ous

State-of-the-Art

i =

an

= mi. <_< poked >!

pS sactamit w sieeple Dahil

ee.

“a? or
Ee

we Ateroot ay

pa abe
<i = on so

~~ >

ata Ae: pec
beck |

cae a

p oppiication that i
; “< e's oslo pal

ea - bs

State-of-the-Art

Natural Language

Processing
Learning Objectives

By the end of this chapter, you will be able to:

Evaluate vanishing gradients in long sentences

Describe an attention mechanism model as a state-of-the-art NLP domain

Assess one specific attention mechanism architecture

Develop a neural machine translation model using an attention mechanism

Develop a text summarization model using an attention mechanism

This chapter aims to acquaint you with the current practices and technologies in the NLP

domain.

232 | State-of-the-Art Natural Language Processing

Introduction

In the last chapter, we studied Long Short Term Memory units (LSTMs), which help
combat the vanishing gradient problem. We also studied GRU in detail, which has its
own way of handling vanishing gradients. Although LSTM and GRU reduce this problem
in comparison to simple recurrent neural networks, the vanishing gradient problem
still manages to prevail in many practical cases. The issue essentially remains the
same: longer sentences with complex structural dependences are challenging for deep
learning algorithms to encapsulate. Therefore, one of the most prevalent research areas
represents the community's attempts to mitigate the effects of the vanishing gradient
problem.

Attention mechanisms, in the last few years, have attempted to provide a solution to
the vanishing gradient problem. The basic concept of an attention mechanism relies
on having access to all parts of the input sentence when arriving at an output. This
allows the model to lay varying amounts of weight (attention) to different parts of the
sentence, which allows dependencies to be deduced. Due to their uncanny ability to
learn such dependencies, attention mechanism-based architectures represent the
current state of the art in the NLP domain.

In this chapter, we will learn about attention mechanisms and solve a neural machine
translation task using a specific architecture based on an attention mechanism. We will
also mention some other related architectures that are being used in the industry today.

Attention Mechanisms

In the last chapter, we solved a Neural Language Translation task. The architecture for
the translation model adopted by us consists of two parts: Encoder and Decoder. Refer
to the following diagram for the architecture:

Er liebt zu schwimmen

He loved to swim

Figure 8.1: Neural language translation model

Introduction | 233

For a neural machine translation task, a sentence is passed into an encoder word by
word, which produces a single thought vector (represented in the preceding image as
'S'), which embeds the meaning of the entire sentence into a single representation. The
decoder then uses this vector to initialize the hidden states and produce a translation
word by word.

In the simple encoder-decoder regime, only 1 vector (the thought vector) contains the
representation of the entire sentence. The longer the sentence, the more difficult it
becomes for the single thought vector to retain long-term dependencies. The use of
LSTM units reduces the problem only to some extent. A new concept was developed to
mitigate the vanishing gradient problem further, and this concept is called Attention
mechanisms.

An attention mechanism aims to mimic a human's way of learning dependencies. Let's
illustrate this with an example sentence:

"There have been many incidents of thefts lately in our neighborhood, which has forced
me to consider hiring a security agency to install a burglar-detection system in my
house so that I can keep myself and my family safe."

Note the use of the words ‘my’, 'l’, 'me’, ‘myself; and ‘our’. These occur at distant

positions within the sentence but are tightly coupled to each other to represent the
meaning of the sentence.

When trying to translate the previous sentence, a traditional encoder-decoder
functions as follows:

1. Pass the sentence word by word to the encoder.

2. The encoder produces a single thought vector, which represents the entire
sentence encoding. For a long sentence, such as the previous one, even with the
use of LSTMs, it would be difficult for the encoder to embed all the dependencies.

Therefore, the earlier part of the sentence is not as strongly encoded as the later

part of the sentence, which means the later part of the sentence ends up having a

dominant influence over the encodings.

3. The decoder uses the thought vector to initialize the hidden state vector to

generate the output translation.

A more intuitive way to translate the sentence would be to pay attention to the correct

positions of words in the input sentence when determining a particular word in the

target language. As an example, consider the following sentence:

‘The animal could not walk on the street because it was badly injured.’

234 | State-of-the-Art Natural Language Processing

In this sentence, whom does the word ‘it' refer to? Is it the animal or the street? An

answer to this question would be possible if the entire sentence were considered
together and different parts of the sentence were weighed differently to determine the
answer to the question. An attention mechanism accomplishes this, as depicted here:

The_ The_

animal_

could_

not_

walk_

on_

the_

street_

because_ because_

a 2 it

was_

badly _ badly_
injured _ injured_

Figure 8.2: An example of an attention mechanism

The diagram shows how much weight each word receives in understanding every word
in a sentence. As can be seen, the word 'it_' receives a very strong weighting from
‘animal _' and a relatively weaker weighting from ‘street _'. Thus, the model can now
answer the question of which entity ‘it’ refers to in the sentence.

For a translation encoder-decoder model, while generating word-by-word output,
at a given point in time, not all the words in the input sentence are important for the
determination of the output word. An attention mechanism implements a scheme that
does exactly that: weighs different parts of the input sentence with all of the input
words at each point in the determination of the output. A well-trained network with
an attention mechanism would learn to apply an appropriate amount of weighting to
different parts of the sentence. This regime allows the entire part of the input sentence
to be always available for use at every point of determining the output. Thus, instead
of one thought vector, the decoder has access to the "thought" vector specific for
the determination of each word in the output sentence. This ability of an attention
mechanism is in stark contrast to a traditional LSTM/GRU/RNN-based encoder-
decoder.

Introduction | 235

An attention mechanism is a general concept. It can be realized in several architectural
flavors, which are discussed in the later part of the chapter.

An Attention Mechanism Model

Let's see how an encoder-decoder architecture could look with an attention mechanism
in place:

Er liebt

Softmax !

‘Encoder (_} 3 Decoder '

He loved to swim

Figure 8.3: An attention mechanism model

The preceding diagram depicts the training phase of a language translation model with
an attention mechanism. We can note a few differences compared to a basic encoder-
decoder regime, as follows:

¢ The initial states of the decoder get initialized with the encoder output state from
the last encoder cell. An initial NULL word is used to start the translation, and the

first word is produced as 'Er’. This is the same as the previous encoder-decoder
model.

¢ For the second word, in addition to the input from the previous word and the
hidden state of the preceding decoder timestep, another vector is fed as input to
the cell. This vector, generally regarded as ‘Context vector’, is a function of all the
encoder hidden states. From the preceding diagram, it is a weighted summation of
the hidden states of the encoder for all the timesteps.

236 | State-of-the-Art Natural Language Processing

¢ During the training phase, since the output of each decoder timestep is known, we

can learn all the parameters of the network. In addition to the usual parameters,
corresponding to whichever RNN flavor is being used, the parameters specific to
the attention function are also learned. If the attention function is just a simple
summation of the hidden state encoder vectors, the weights of the hidden states
at each encoder timestep can be learned.

¢ At inference time, at every timestep, the decoder cell can take as input the

predicted word from the last timestep, the hidden states from the previous

decoder cell, and the context vector.

Let's look at one specific realization of an attention mechanism for neural machine
translation. In the previous chapter, we built a neural language translation model, which
is a subproblem area of a more general area of NLP called neural machine translation. In
the following section, we attempt to solve a date-normalization problem.

Data Normalization Using an Attention Mechanism

Let's say you're maintaining a database that has a table containing a column for date.
The input for the date is taken from your customers, who fill in a form and enter the
date in a date field. The frontend engineer somehow forgot to enforce’a scheme upon
the field, such that only dates in a "YYYY-MM-DD" format are accepted. You are now
tasked with normalizing the date column of database table, such that the user inputs in
several formats get converted to a standard "YYYY-MM-DD" format.

As an example, the user inputs for date and the corresponding correct normalization
are shown here:

Jser Input Normalized Date
3-May-79 5/3/1979 wi
5-Apr-09 5/5/2009

21th of August 2016 8/21/2016
Tue 10 Jul 2007 7/10/2007

Figure 8.4: Table for date normalization

You can see that there is a lot of variation in the way a user can input a date. There are
many more ways in which the date could be specified apart from the examples in the,
table.

Introduction | 237 SESE SE ee ROS al nae lena nteriaielanh Rem

This problem is a good candidate to be solved by a neural machine translation model as
the input has a sequential structure, wherein the meanings of the different components
in the input need to be learned. This model will have the following components:

¢ Encoder

¢ Decoder

e Attention mechanisms

Encoder

This is a bidirectional LSTM that takes each character of the date as input. Thus, at each
timestep, the input to the encoder is a single character of the input date. Apart from
this, the hidden state and memory state is also taken as an input from the previous
encoder cell. Since this is a bidirectional architecture, there are two sets of parameters
pertaining to the LSTM: one in the forward direction and the other in the backward
direction.

Decoder

This is a unidirectional LSTM. It takes as input the context vector for this timestep.
Since each output character is not strictly dependent upon the last output character

in the case of date normalization, we don't need to feed the previous timestep output
as an input to the current timestep. Additionally, since it is an LSTM unit, the hidden
states and memory state from the previous decoder timestep are also fed to the current
timestep unit for the determination of the decoder output at this timestep.

Attention mechanisms

Attention mechanisms are explained in this section. For determination of a decoder

input at a given timestep, a context vector is calculated. A context vector is a weighted
summation of all the hidden state of an encoder from all timesteps. This is as follows:

context[t] = dot(H, alpha|t])

Figure 8.5: Expression for the context vector

238 | State-of-the-Art Natural Language Processing

The dot operation is a dot product operation that multiplies weights (represented by

alpha) with the corresponding hidden state vector for all timesteps and sums them up.

The value of the alpha vector is calculated separately for each decoder output timestep.
The alphas encapsulate the essence of an attention mechanism, that is, determining

how much ‘attention’ to be given to which part of the input to figure out the current
timestep output. This can be realized in a diagram, as follows:

context[t]

alphatt] alphat2 alpha{T]

rf
4

h1 h2 hT

Figure 8.6: Determination of attention to inputs

As an example, let's say that the encoder input has a fixed length of 30 characters,
and the decoder output has a fixed output length of 10 characters. For the date

normalization problem, this means that the user input is fixed to be a maximum of 30
characters, while the model output is fixed at 10 characters (the number of characters
in the YYYY-MM-DD format, including the hyphens).

Let's say that we wish to determine the decoder output at the output timestep=4 (an
arbitrary number chosen to explain the concept; it just needs to be <=10, which is the
output timestep count). At this step, the weight vector alpha is computed. This vector

has a dimensionality equal to the number of timesteps of the encoder input (as a weight
needs to be computed for every encoder input timestep). So, in our case, alpha has a
dimensionality of 30.

Introduction | 239

Now, we already have the hidden state vector from each of the encoder timesteps,
so there are a total of 30 hidden state vectors available. The dimensionality of the
hidden state vector accounts for both the forward and backward components of the
bidirectional encoder LSTM. For a given timestep, we combine the forward hidden state
and backward hidden state into a single vector. So, if the dimensionality of forward and
backward hidden states is 32 each, we put them in a single vector of 64 dimensions as
[h_ forward, h_backward]. This is a simple concatenation function. Let's call this the
encoder hidden state vector.

We now have a single 30-dimensional weight vector alpha, and 30 vectors of
64-dimensional hidden states. So, we can now multiply each of the 30 hidden state
vectors with a corresponding entry in the alpha vector. Furthermore, we can sum

up these scaled representations of hidden states to receive a single 64-dimensional
context vector. This is essentially the operation performed by the dot operator.

The Calculation of Alpha

The weights can be modeled by a multilayer perceptron (MLP), which is a simple
neural network consisting of multiple hidden layers. We choose to have two dense
layers with a softmax output. The number of dense layers and units can be treated
as hyperparameters. The input to this MLP consists of two components: these are
the hidden state vectors for all timesteps from the encoder bidirectional LSTM, as
explained in the last point, and the hidden states from the previous timestep of the

decoder. These are concatenated to form a single vector. So, the input to the MLP is:
[encoder hidden state vector, previous state vector from decoder]. This is a concatenation

operation of tensors: [H, S_ prev]. S_prev refers to the decoder's hidden state output
from the previous timestep. If the dimensionality of S_ prev is 64 (denoting a hidden
state dimensionality of 64 for the decoder LSTM) and the dimensionality of the
encoder's hidden state vector is 64 (from the last point), a concatenation of these two

vectors produces a vector of size 128.

240 | State-of-the-Art Natural Language Processing

Thus, the MLP receives a 128-dimension input for a single encoder timestep. As we

have fixed the encoder input length to 30 characters, we will have a matrix (more
accurately, a tensor) of size [30, 128]. The parameters of this MLP are learned using the
same BPTT regime that is used to learn all the other parameters of the model. So, all

the parameters of the entire model (encoder + decoder + attention function MLP) are
learned together. This can be seen in the following diagram:

context{t]

hi h2 hT
ee

alpha{1] alpha[2] alpha{T]

Softmax

[dense _|

[S_prev; h1] [S_prev; h2] [S_prev; hT]

Figure 8.7: The calculation of alpha

In the previous step, we learned the weights (alpha vector) for determining only one
step of the decoder output (we had assumed this timestep to be 4 in an earlier point).
So, the determination of a single step decoder output requires the inputs: S_prev and
encoder hidden states for calculating the context vector, decoder hidden states, and
decoder previous timestep memory, which goes as input to the decoder unidirectional
LSTM. Proceeding to the next decoder timestep requires a calculation of a new alpha
vector since, for this next step, various parts of the input sequence will most likely be
weighted differently compared to the previous timestep.

Due to the architecture of the model, the training and inference steps are the same. The
only difference is that, during training, we know the output for each decoder timestep
and use that to train the model parameters (this technique is referred to as "Teacher
Forcing’).

Introduction | 241

In contrast, during inference time, we predict the output character. Note that both
during training and inference, we do not feed the previous timestep decoder output
character as input to the current timestep decoder cell. It should be noted that the
architecture proposed here is specific to this problem. There are a lot of architectures
and ways to define an attention function. We will take a brief look at some of these in
later sections of the chapter.

Exercise 28: Build a Date Normalization Model for a Database Column

A database column accepts date inputs from various users in multiple formats. In this
exercise, we aim to normalize the date column of the database table such that the user

inputs in several formats get converted to a standard "YY YY-MM-DD" format:

Note

The Python requirements for running the code are as follows:

Babel==2.6.0

Faker==1.0.2

Keras==2.2.4

numpy==1.16.1

pandas==0.24.1

scipy==1.2.1

tensorflow==1.12.0

tqdm==4.31.1

Faker==1.0.2

242 | State-of-the-Art Natural Language Processing

1. We import all the necessary modules:

from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input,

LSTM, Multiply

from keras.layers import RepeatVector, Dense, Activation, Lambda

from keras.optimizers import Adam

from keras.utils import to_categorical

from keras.models import load_model, Model

import keras.backend as K

import numpy as np

from babel.dates import format_date

from faker import Faker

import random

from tqdm import tqdm

2. Next, we define some helper functions. We first use the 'faker' and babel modules

to generate data for training. The format_date function from babel generates
date in a specific format (using FORMATS). Additionally, dates are also returned ina
human-readable format that emulates the informal user input date that we wish to
normalize:

fake = Faker()

fake. seed(12345)

random. seed(12345)

3. Define the format of the data we would like to generate:

FORMATS = ['short',

"medium',

“Lone”,

PUES

LUA, Bag

“EUS dibs

 Fiud bbe

fuga, bs

fale

mT diy

fubk',

UL >

"TOLL 3

"d MMM YYY',

"d MMMM YYY',

"dd MMM YYY',

'd MMM, YYY',

Introduction | 243

'd MMMM, YYY',
"dd, MMM YYY",
'd MM YY",
'd MMMM YYY!,
"MMMM d YYY',
'MMMM d, YYY!,
'dd.MM.YY"J

change this if you want it to work with another language

LOCALES = ['en_US']

def load_date():

Loads some fake dates

:returns: tuple containing human readable string, machine readable

string, and date object

dt = fake.date_object()

human_readable = format_date(dt, format=random.choice(FORMATS),

locale='en_US') # locale=random.choice(LOCALES))

human_readable = human_readable.lower()

human_readable = human_readable.replace(',','')

machine_readable = dt.isoformat()

return human_readable, machine_readable, dt

4, Next, we generate and write a function to load the dataset. In this function,
examples are created using the load_date() function defined earlier. In addition to

this dataset, the function also returns dictionaries for mapping human-readable
and machine-readable tokens along with the inverse machine vocabulary:

def load_dataset(m):

Loads a dataset with m examples and vocabularies

:m: the number of examples to generate

human_vocab = set()

machine_vocab = set()

dataset = []

Tx = 30

244 | State-of-the-Art Natural Language Processing

for i in tqdm(range(m)):

h, m, _ = load_date()

if h is not None:

dataset.append((h, m))

human_vocab. update(tuple(h))

machine_vocab. update(tuple(m))

human = dict(zip(sorted(human_vocab) + ['<unk>', '<pad>'],

list(range(len(human_vocab) + 2))))

inv_machine = dict(enumerate(sorted(machine_vocab)))

machine = {v:k for k,v in inv_machine. items()}

return dataset, human, machine, inv_machine

The previous helper functions are used to generate a dataset using the babel

Python package. Additionally, it returns the input and output vocab dictionaries, as
we have been doing in past exercises.

5. Next, we generate a dataset having 10,000 samples using these helper functions:

m = 10000 .

dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)

The variables hold values, as depicted:

m = 10000

dataset, human_vocab, machine vocab, inv_machine_vocab = load_dataset(m)

100% | MM | «10000/10000 [00:00<00:00, 23983.69it/s]

dataset

[('9 may 1998', '1998-05-09'),

('10509,.70°, 1970-09-10"),

('4/28/90', '1990-04-28'),

(‘thursday january 26 1995', '1995-01-26'),

('monday march 7 1983', '1983-03-07'),

Figure 8.8: Screenshot displaying variable values

Introduction | 245
a

The human_vocab is a dictionary that maps input characters to integers. The
following is the mapping of values for human_vocab:

human_vocab

Coote Lag

TES? 1 Se

Oe er eee: Bs

oof 5s

hs Bega

ee re LTR

an is <Lae

Figure 8.9: Screenshot for human_vocab dictionary

The machine_vocab dictionary contains the mapping of the output character to
integers.

machine vocab

{'-'

*)

erie,

pt

'3'

Aa

ee

'6'

oe ge

'g'

A
ee ee ee os ee ss ee ee se ee ee Foo A USP WN FE OC C28. SS We re =) =.= fe

_

Figure 8.10: Screenshot for the machine_vocab dictionary

246 | State-of-the-Art Natural Language Processing

inv_machine_vocab is an inverse mapping of machine_vocab to map predicted

integers back to characters:

inv_machine_ vocab

{0s ‘'={",

Ls O84

Zito Ley

ch piece’ i

4s "3a

5s. ang

63. .58¢

(Ee aller

3 eae tao

Boe Bey

LOe 993}

Figure 8.11: Screenshot for the inv_machine_vocab dictionary

6. Next, we preprocess data such that the input sequences have shape (10008, 30,
len(human_vocab)). Thus, every row in this matrix represents 30 timesteps and the
one-coded vector, having a value of 1 corresponding to the character at a given
timestep. Similarly, the Y output gets the shape (10000, 10, len(machine_vocab)).
This corresponds to 10 output timesteps and the corresponding one-hot-coded

output vector. We first define a function named 'string_to_int' that takes as input
a single user date and returns a sequence of integers that can be fed to the model:

def string_to_int(string, length, vocab):

Converts all strings in the vocabulary into a list of integers

representing the positions of the

input string's characters in the "vocab"

Arguments:

string -- input string, e.g. 'Wed 10 Jul 200Q7'

length -- the number of timesteps you'd like, determines if the output

will be padded or cut ®

Introduction | 247

vocab -- vocabulary, dictionary used to index every character of your
Petrang

Returns:

rep -- list of integers (or '<unk>') (size = length) representing the
position of the string's character in the vocabulary

wow

Change the case to lowercase to standardize the text

string = string. lower()

string = string.replace(',','')

if len(string) > length:

string = stringL: length]

rep = list(map(lambda x: vocab.get(x, '<unk>'), string))

if len(string) < length:

rep += [vocab['<pad>']] * (length - len(string))

return rep

We can now utilize this helper function to generate input and output integer
sequences, as explained previously:

def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty):

X, Y = zip(*dataset)

print("X shape before preprocess: {}".format(X))

X = np.array([string_to_int(i, Tx, human_vocab) for i in X])

Y = [string_to_int(t, Ty, machine_vocab) for t in Y]

print("X shape from preprocess: {}".format(X.shape))

print("Y shape from preprocess: {}".format(Y))

Xoh = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(human_vocab)), X)))

Yoh = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(machine_vocab)), Y)))

248 | State-of-the-Art Natural Language Processing

return X, np.array(Y), Xoh, Yoh

Tx = 30

yee 8

X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx,

Ty)

9. Print the shape of the matrices.

print("X.shape:", X.shape)

print("Y.shape:", Y.shape)

print("Xoh.shape:", Xoh.shape)

print("Yoh.shape:", Yoh.shape)

The output of this step is as follows:

X.shape: (10000, 30)

Y¥.shape: (10000, 10)

Xoh.shape: (10000, 30, 37)

Yoh.shape: (10000, 10, 11)

Figure 8.12: Screenshot for the shape of matrices

10. We can further inspect the shapes of the X,Y, Xoh, and Yoh vectors:

index = Q

print("Source date:", dataset[Lindex][0])

print("Target date:", datasetLindex][1])

print()

print("Source after preprocessing (indices):", X[index]. shape)

print("Target after preprocessing (indices):", Y[Lindex].shape)

print ()

print("Source after preprocessing (one-hot):

print("Target after preprocessing (one-hot):

, XohLindex]. shape)

, YohLindex].shape)

Introduction | 249 ene ee

The output should be as follows:

index = 0

print("Source date:", dataset[index][0])

print("Target date:", dataset[index][1])

print()

print("Source after preprocessing (indices):", X[index].shape)

print("Target after preprocessing (indices):", Y[{index].shape)

print()

print("Source after preprocessing (one-hot):", Xoh[index].shape)

print("Target after preprocessing (one-hot):", Yoh[index].shape)

Source date: 9 may 1998

Target date: 1998-05-09

Source after preprocessing (indices): (30,)

Target after preprocessing (indices): (10,)

Source after preprocessing (one-hot): (30, 37)

Target after preprocessing (one-hot): (10, 11)

Figure 8.13: Screenshot for the shape of matrices after processing

11. We now start defining some functions that we need to build the model. First, we
define a function that calculates a softmax value given a tensor as input:

def softmax(x, axis=1):

"""Softmax activation function.

Arguments

x : Tensor.

axis: Integer, axis along which the softmax normalization is

applied.

Returns

Tensor, output of softmax transformation.

Raises

ValueError: In case 'dim(x) == 1'

ndim = K.ndim(x)

if ndim ==

return K.softmax(x)

elif ndim > 2:

e = K.exp(x - K.max(x, axis=axis, keepdims=True))

s = K.sum(e, axis=axis, keepdims=True)

return e/s

else:

raise ValueError('Cannot apply softmax to a tensor that is 1D')

250 | State-of-the-Art Natural Language Processing

12. Next, we can start to put the model together:

Defined shared layers as global variables

repeator = RepeatVector(Tx)

concatenator = Concatenate(axis=-1)

densor1 = Dense(10, activation = "tanh")

densor2 = Dense(1, activation = "relu")

activator = Activation(softmax, name='attention_weights')

dotor = Dot(axes = 1)

13. RepeatVector serves the purpose of repeating a given tensor multiple times. In our
case, this is done Tx times, which is 30 input timesteps. The repeator is used to
repeat S_prev 30 times. Recall that to calculate the context vector for determining
one timestep decoder output, S_prev needs to be concatenated with each of the
input encoder timesteps. The Concatenate keras function accomplishes the next
step, that is, concatenating the repeated S_prev and encoder hidden state vector

for each timestep. We have also defined MLP layers, which are two dense layers
(densor1, densor2). Next, the output of MLP is passed through a softmax layer.
This softmax distribution is an alpha vector with each entry corresponding to the

weight for each concatenated vector. In the end, a dotor function is defined, which
is responsible for calculating the context vector. The entire flow corresponds to
one step attention (since it is for one decoder output timestep):

def one_step_attention(h, s_prev):
won

Performs one step of attention: Outputs a context vector computed as a

dot product of the attention weights

"alphas" and the hidden states "h" of the Bi-LSTM.

Arguments:

h -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx,

2*n_h)

S_prev -- previous hidden state of the (post-attention) LSTM, numpy-

array of shape (m, n_s)

Returns:

context -- context vector, input of the next (post-attetion) LSTM é@ell

14.

ie

16.

Ni

18.

1d,

20.

ed

Introduction | 251

Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can
concatenate it with all hidden states, 'h':

S_prev = repeator(s_prev)

Use concatenator to concatenate a and s_prev on the last axis:

concat = concatenator([h, s_prev])

Use densor1 to propagate concat through a small fully-connected neural network
to compute the intermediate energies variable, e:

e = densor1(concat)

Use densor2 to propagate e through a small fully-connected neural network to
compute the variable energies:

energies = densor2(e)

Use activator on energies to compute the attention weights alphas:

alphas = activator(energies)

Use dotor along with alphas and a to compute the context vector to be given to
the next (post-attention) LSTM-cell:

context = dotor(Lalphas, h])

return context

Up to this point, we still haven't defined the number of hidden state units for the
encoder and decoder LSTMs. We also need to define the decoder LSTM, which is a

unidirectional LSTM:

nh = 32

n_s = 64

post_activation_LSTM_cell = LSTM(n_s, return_state = True)

output_layer = Dense(len(machine_vocab), activation=softmax)

We now define the encoder and decoder model:

def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size):

Arguments:

Tx -- length of the input sequence

Ty -- length of the output sequence

n_h -- hidden state size of the Bi-LSTM

252 | State-of-the-Art Natural Language Processing

n_s -- hidden state size of the post-attention LSTM

human_vocab_size -- size of the python dictionary "human_vocab"

machine_vocab_size -- size of the python dictionary "machine_vocab"

Returns:

model -- Keras model instance

22. Define the inputs of your model with a shape (Tx,). Define s@ and c@, and the initial
hidden state for the decoder LSTM of shape (n_s,):

X = Input(shape=(Tx, human_vocab_size), name="input_first")

sQ@ = Input(shape=(n_s,), name='sQ')

cQ@ = Input(shape=(n_s,), name='cQ')

Ss = sQ

c= c0

23. Initialize an empty list of outputs:

outputs = []

24. Define your pre-attention Bi-LSTM. Remember to use return_sequences=True:

h = Bidirectional(LSTM(n_h, return_sequences=True))(X)

20. Iterate for Ty steps:

for t in range(Ty):

26. Perform one step of the attention mechanism to get back the context vector at
step t:

context = one_step_attention(h, s)

27. Apply the post-attention LSTM cell to the context vector. Also, pass initial_state
= [hidden state, cell state]:

S, _, C = post_activation_LSTM_cell(context, initial_state =

[s,c])

28. Apply the Dense layer to the hidden state output of the post-attention LSTM:

out = output_layer(s)

Append "out" to the "outputs" list

outputs. append (out)

Introduction | 253 sg oS RE SE shemale cle siepeatiarnemmnmaladeaaliitiiee sebadalibil Daiaias

29. Create a model instance by taking three inputs and returning the list of outputs:

model = Model(inputs=[X, s@, cQ], outputs=outputs)

return model

model = model(Tx, Ty, n_h, n_s, len(human_vocab), len(machine_vocab))

model. summary ()

The output could be as shown in the following figure:

model.summary | }

dense_3 (Dense) (None, 11) 715 lstm_1[0][0]

lstm_1[1][0]

lstm_1[2][0]

lstm_1[3][0]

lstm_1[4][0]
lstm_1[5][0]

lstm_1[6][0]

lstm_1[{7][0]

lstm_1[8][0]
1lstm_1[9][0]

Total params: 52,960

Trainable params: 52,960

Non-trainable params: 0

Figure 8.14: Screenshot for model summary

30. We will now compile the model with categorical_crossentropy as the loss function

and Adam optimizer as the optimization strategy:

opt = Adam(1lr = @.005, beta_1=0.9, beta_2=0.999, decay = 0.01)

model. compile(loss='categorical_crossentropy', optimizer=opt,

metrics=['accuracy'])

254 | State-of-the-Art Natural Language Processing

31. We need to initialize the hidden state vector and memory state for decoder LSTM
before fitting the model:

sQ@ = np.zeros((m, n_s))

c@ = np.zeros((m, n_s))

outputs = list(Yoh.swapaxes(@,1))

model.fit([Xoh, s@, cQ], outputs, epochs=1, batch_size=100)

This starts the training:

Epoch 1/1

10000/10000 [==s==sssssssssssssesssss=======] - 15s lms/step - loss: 17.0066 - dense 3 loss:

2.5402 - dense 3_acc: 0.4576 - dense _3_acc_1: 0.7088 - dense _3_ acc 2: 0.3134 - dense _3_acc_3:

0.0748 - dense _3_acc_4:; 0.8606 - dense_3_acc_5: 0.3337 - dense_3_acc_6: 0.0510 - dense _3_acc_

7: 0.8976 - dense _ 3 acc_8: 0.2671 - dense 3 acc 9: 0.1082

Figure 8.15: Screenshot for epoch training

32. The model is now trained and can be called for inference:

EXAMPLES = ['3 May 1979', '5 April @9', '21th of August 2016', 'Tue 1@ Jul

2007', ‘Saturday May 9 2018', ‘March 3 2001', 'March 3rd 200@1', '1 March

2001' J

for example in EXAMPLES:

source = string_to_int(example, Tx, human_vocab)

source = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(human_vocab)), source)))#.swapaxes(@,1)

source = source[np.newaxis, :]

prediction = model.predict([source, s@, cQ])

prediction = np.argmax(prediction, axis = -1)

output = [Linv_machine_vocab[int(i)] for i in prediction]

print("source:", example)

prantC"output:”, ' joinCoutout))

Other Architectures and Developments | 255

Expected output:

source: 3 May 1979

output: 1979-05-03

source: 5 April 09

output: 2009-05-05

source: 21th of August 2016

output: 2016-08-21

source: Tue 10 Jul 2007

output: 2007-07-10

source: Saturday May 9 2018

output: 2018-05-09

source: March 3 2001

output: 2001-03-03

source: March 3rd 2001

output: 2001-03-03

source: 1 March 2001

output: 2001-03-01

Figure 8.16: Screenshot for normalized date output

Other Architectures and Developments

The attention mechanism architecture described in the last section is only a way of
building attention mechanism. In recent times, several other architectures have been
proposed, which constitute a state of the art in the deep learning NLP world. In this
section, we will briefly mention some of these architectures.

Transformer

In late 2017, Google came up with an attention mechanism architecture in their seminal
paper titled "Attention is all you need." This architecture is considered state-of-the-art
in the NLP community. The transformer architecture makes use of a special multi-
head attention mechanism to generate attention at various levels. Additionally, it is also
employs residual connections to further ensure that the vanishing gradient problem
has a minimal impact on learning. The special architecture of transformers also allows a
massive speed up of the training phase while providing better quality results.

256 | State-of-the-Art Natural Language Processing

The most commonly used package with transformer architecture is tensor2tensor. The
Keras code for transformer tends to be very bulky and untenable, while tensor2tensor
allows the use of both a Python package and a simple command-line utility that can be

used to train a transformer model.

Note

For more information on tensor2tensor, refer to https://github.com/tensorflow/

tensor2tensor/#t2t-overview

Readers interested in learning more about the architecture should read the

mentioned paper and the associated Google blogpost at this link: https://

ai.googleblog.com/2017/08/transformer-novel-neural-network.htm|

BERT

In late 2018, Google open sourced yet another groundbreaking architecture, called
BERT (Bidirectional Encoder Representations from Transformers). The deep learning
community for NLP has been missing the transfer-learning regime for training models
for a long time. The transfer learning approach to deep learning has been state-of-the-
art with image-related tasks such as image classification. Images are universal in their
basic structure, as they do not differ regardless of geographical locations. This allows
the training of deep learning models on generic images. These pre-trained models can
then be fine-tuned for a specific task. This saves training time and the need for massive
amounts of data to achieve a respectable model performance.

Languages, unfortunately, vary a lot depending upon geographical locations and tend
to not share basic structures. Hence, transfer learning is not a viable option when it
comes to NLP tasks. BERT has now made it possible with its new attention mechanism

architecture, which builds on top of the basic transformer architecture.

Note

For more information on BERT, refer to https://github.com/google-research/bert

Readers interested in learning more about BERT should take a look at the Google

blog on it at https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-

pre.html.

Activity 11: Build a Text Summarization Model | 257

Open Al GPT-2

Open Al also open sourced an architecture called GPT-2, which builds upon their
previous architecture called GPT. The mainstay of the GPT-2 architecture is its ability
to perform well on text-generation tasks. The GPT-2 model is also a transformer-based
model containing around 1.5 billion parameters.

Note

Readers interested in learning more can refer to the blogpost by OpenAl at https://

blog.openai.com/better-language-models/,

Activity 11: Build a Text Summarization Model

We will use the attention mechanism model architecture we built for neural machine
translation to build a text summarization model. The goal of text summarization is to
write a summary of a given large text corpus. You can imagine using text summarizers
for the summarization of books or the generation of headlines for news articles.

As an example, use the given input text:

"Celebrating its 25th year, Mercedes-Benz India is set to redefine India's luxury space
in the automotive segment by launching the new V-Class. The V-Class is powered by
a 2.1-litre BS VI diesel engine that generates 120kW power, 380Nm torque, and can go
from 0-100km /h in 10.9 seconds. It features LED headlamps, a multi-functional steering
wheel, and 17-inch alloy wheels."

A good text summarization model should be able to produce a meaningful summary,

such as:

"Mercedes-Benz India launches the new V-Class"

From an architectural viewpoint, a text summarization model is exactly the same as
a translation model. The input to the model is text that is fed character by character
(or word by word) to an encoder, while the decoder produces output characters in the

same language as the source text.

Note

The input text can be found at https://github.com/TrainingByPackt/Deep-Learning-

for-Natural-Language-Processing/tree/master/Lesson%2008.

258 | State-of-the-Art Natural Language Processing

The following steps will help you with the solution:

1. Import the required Python packages and make the human and machine vocab

dictionaries.

Define the length of the input and output characters and the model functions
(Repeator, Concatenate, Densors, and Dotor).

Define a one-step-attention function and the number of hidden states for the

decoder and encoder.

Define the model architecture and run it to obtain a model.

Define model loss functions and other hyperparameters. Also, initialize the
decoder state vectors.

Fit the model to our data.

Run the inference step for the new text.

Expected Output:

source; Last night a meteorite was seen flying near the earth's moon.

output: aaaea <pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>

Figure 8.17: Output for text summarization

Note

The solution for the activity can be found on page 333.

Summary

In this chapter, we learned about the concept of attention mechanisms. Based on
attention mechanisms, several architectures have been proposed that constitute the

state of the art in the NLP world. We learned about one specific model architecture to
perform a neural machine translation task. We also briefly mentioned other state-of-
the-art architectures such as transformers and BERT.

Up to now, we have seen many different NLP models. In the next chapter, we will look at
the flow of a practical NLP project in an organization and related technology.

“an Organization
and

-

coon 5 eaiivieer 0 Bioagpran 7° Sees OF

: ae + Ait ery BOP i ans ite ats UTC Ot ty ef!

etait

pe vail ye Retin h. iy Lever ate 2 } eu oh

pelt co iam

=

, ‘ »
ten FImMmoveS

ry & oy ’

_ APractical NLP
ra ject Wo rif] ow in

etediinnrns ice
ee are ie - 4 oe

ied af Wm trees - eo mee Seem oh a nai 5

a

yi ae ee ie Ag Ber wee oe 9

7 Pigg nint eo en Sa oni paathieli
“5 — 2 a _ yy ~ ‘

> re PV ’ 2 ie “40

eye’ ier eBAR Mor met Morice a eee
7 : 7 _ or ere

7 : : ; ’ ae ’ ee bar

‘ a om 7 ‘ ; _
ae i

- oe a.

ye eal Pes 1.5 : Are on page 38%. ; =a ™

: | ee = a
a

« z mas

FS tn Oi wha wet earsed ebot sy ore See Soe
eCbeNtiEy we hanttist overeat pare hang been rien 7

Stete: of Ge artin the NID week We keg none i ore

’ perform @ neural rachiie Wartlet ae ae Whe ples, iat

™

ied is q

"the-art architectures such oe irancleg Se el RY, ~ —

: Vp it bow, We have s@ah inary d ra oF ? canal bed

the flow gfe praclca Pe i ie: 0 sn :

A Practical NLP

Project Workflow in

an Organization
Learning Objectives

By the end of this chapter, you will be able to:

Identify the requirements of a natural language processing project

Understand how different teams in an organization might be involved

Use Google Colab notebooks to leverage a GPU to train Deep Learning models

Deploy a model on AWS to be used as Software as a Service (SaaS)

Get acquainted with a simple tech stack for deployment

In this chapter, we will be looking at a real-time NLP project and its flow in an organization,right

till the final stage through the entire chapter.

262 | A Practical NLP Project Workflow in an Organization

Introduction

Up to this point in the book, we have studied several deep learning techniques that
can be applied to solve specific problems in the NLP domain. Having knowledge of
these techniques has empowered us to build good models and deliver high-quality
performance. However, when it comes to delivering a working machine learning
product in an organization, several other aspects need to be considered.

In this chapter, we will go through a practical project workflow when delivering a
working deep learning system in an organization. Specifically, you will be introduced to
the possible roles of various teams within your organization, building a deep learning
pipeline and, finally, delivering your product in the form of SaaS.

General Workflow for the Development of a Machine Learning Product

Today, there are several ways of working with data science in an organization. Most
organizations have a workflow that is specific to their environment. Some example
workflows are as follows:

Presentation

a

Figure 9.1: General workflow for the development of a machine learning product

The Presentation Workflow:

¥ ‘ at

ee

Figure 9.2: General presentation workflow

Introduction | 263

The presentation workflow can be elaborated as follows:

1. The data science team receives a request to solve a problem using machine
learning. The requester could be some other team within the organization or some
other company that has hired you as consultants.

2. You obtain the relevant data and apply specific machine learning techniques.

3. You showcase the results and insights in the form of a report/presentation to the
stakeholders. This could also be a potential way to approach the Proof of Concept
(PoC) phase of a project.

The Research Workflow:

Figure 9.3: Research workflow

The main focus of this approach is to conduct research to solve a particular problem
that caters to a use case. The solution can be leveraged both by the organization as
well as the community in general. Other factors that distinguish this workflow from the
presentation workflow are as follows:

¢ The timelines for such projects are typically longer than those imposed on
presentation workflows,

e The deliverable is in the form of research papers and/or toolboxes.

The workflow can be broken down as follows:

1. Your organization has a research wing that wishes to enhance the existing
machine learning state in the community, while also allowing your company to
leverage the results.

2. Your team goes through the existing research that caters to the problem you
are being asked to solve. This involves reading research papers in detail and
implementing them to establish the baseline performance on some datasets
suggested in the research papers.

264 | A Practical NLP Project Workflow in an Organization

3. You then either try to tailor the existing research to solve your problem or come

_ up with novel ways to solve it yourself.

4, The end product could be research papers and/or toolboxes.

The Production-Oriented Workflow

| The data science team receives requests for development of a machine learning product or
identifies the need of a product. The requests can be from internal/external stakeholders of
the organization.

Gathering of relevant data, processing the data, building the learning model is carried out here.
_ Several machine learning techniques in line with the requirement are tried and tested.

The outputs conclusions can be used as Proof of Concept

' AMinimum Viable Product is defined here.

: Generally, in the form of a SaaS.

_ Other aspects such as Data Acquisition Pipelines, Continuous Integration, Monitoring ete are
added,

Figure 9.4: Production-oriented workflow

The workflow can be elaborated on as follows:

1. The data science team receives a request to solve a problem using machine
learning. The requester could be some other team within the organization or
another company that has hired you as consultants. It could also be that the data

science team wishes to build a product that they think will bring value to the
organization.

2. You obtain the data, do the necessary research, and build the machine learning

model. The data could be obtained either from within the organization or, if the
problem is general enough (for example: language translation), it could also be an
open source dataset. The model built could, hence, qualify as PoC to be shown tg
the stakeholders.

3. You define a Minimum Viable Product (MVP): for example, a machine learning
model in the form of SaaS.

Problem Definition | 265

Once MVP is achieved, you iteratively add other aspects, such as Data Acquisition
Pipelines, Continuous Integration, Monitoring and so on.

You will notice that even the sample workflows share components. In this chapter,
our focus will be on part of The Production Workflow. We will build a Minimum Viable
Product for a specific problem.

Problem Definition

Let's say that you work for an e-commerce platform, through which your customers
can purchase a variety of products. The merchandising department of your company
comes up with a request to add a feature to the website — ‘Addition of a slider that
contains the 5 items that received the most positive reviews in a given calendar
week.

This request is first made to the web development department since, ultimately, they
are the ones responsible for displaying the website contents. The web development
department realizes that, to get a review rating, the data science team needs to be
involved. The data science team receives the request from the web development team
— 'We need a web service that takes a string of text as input and returns a score that
indicates the degree to which the text represents a positive sentiment’.

The data science team then refines the requirements and agrees upon the definition of

a Minimum Viable Product (MVP) with the web development team:

1. The deliverable will be a web service deployed on an AWS EC2 instance.

2. The input to the web service will be a post request containing four reviews (that is,
a single post request to the service will contain four reviews).

3. The output of the web service will be a set of four scores that correspond to each

input text.

4, The output score will be on a scale from 1 to 5, with 1 being the least and 5 being

the most positive review.

266 | A Practical NLP Project Workflow in an Organization

Data Acquisition

A big contribution toward determining the performance of any machine learning model
is the quality and quantity of the data.

Usually, a data warehousing team /infrastructure team (DWH) is responsible for
maintaining the data-related infrastructure at a company. The team takes care that
data is never lost, that the underlying infrastructure is stable, and that data is always
available for any team that might be interested in using it. The data science team, being
one of the consumers of the data, contacts the DWH team, which grants them access to

a database that contains all the reviews for various items in the product catalog of the
company.

Typically, there are multiple data fields/tables in the database, some oi which may not
be important for the machine learning model development.

A data engineer (a part of the DWH team/member of another team/member of your
team) then connects to the database, processes the data into a tabular format, and

generates a flat file in the esv format. A discussion between the data scientist and the
data engineer at this point results in the retention of only three columns from the
database table:

¢ ‘Rating’: A score on the scale of 1 to 5 that indicates the degree to which a positive
sentiment is represented

¢ ‘Review Title’: A simple title for the review

e 'Review': Actual review text

Notice that all three fields are inputs from customers (users of your e-commerce
platform). Additionally, fields such as ‘item id' are not retained since they are not
required to build this machine learning model for sentiment classification. The removal
and retention of such information is also a product of discussions between the DS team,
data engineers, and the DWH team.

Google Colab | 267

It might have been the case that the current data is devoid of sentiment ratings.
In such a case, one common solution is to manually go through each review and
assign it a sentiment score for the purpose of obtaining training data for the model.
However, as you can imagine, doing so for millions of reviews is a daunting task. Thus,
crowdsourcing services such as Amazon Mechanical Turk can be utilized to annotate
the data and get training labels for it.

Note

For more information on Amazon Mechanical Turk, refer to https://Awww.mturk.

com/.

Google Colab

You are familiar with the intense computational requirements of deep learning models.
On a CPU, it would take a remarkably long time to train a deep learning model with
lots of training data. Hence, to keep training times practical, it is common practice
to use cloud-based services that offer Graphics Processing Units (GPU) to speed up
computations. You can expect a speedup of 10-30 times when compared to running the
training session on a CPU. The exact amount of speedup, of course, depends upon the
power of the GPU, the amount of data involved, and the processing steps.

There are many vendors offering such cloud services, such as Amazon Web Services
(AWS), Microsoft Azure and others. Google offers an environment/IDE called Google
Colab, which offers up to 12 hours of free GPU usage per day for anyone looking to train
deep learning models. Additionally, the code is run on a Jupyter-like notebook. In this
chapter, we will leverage the power of Google Colab to develop our deep learning-based
sentiment classifier.

In order to familiarize yourself with Google Colab, you are urged to go through a
tutorial for it.

Note

Before proceeding further, refer to the tutorial at https://colab.research.google.

com/notebooks/welcome.ipynb#recent=true

268 | A Practical NLP Project Workflow in an Organization

The following steps should acquaint you well with Google Colab:

1. To open a new blank colab notebook, go to https: //colab.research.google.com/
notebooks /welcome.ipynb, select 'File' from the menu, and then select the ‘New

Python 3 notebook’ option, as shown in the screenshot:

& tutorial1.ipynb

File Edit View Insert Runtime Tools Help

Locate in Drive

New Python 3 notebook

New Python 2 notebook

Open notebook... 38/Ctri+O

Upload notebook...

Save a copy in Drive...

Save a copy as a GitHub Gist...

Save a copy in GitHub...

Save 3/Ctri+S

Revision history

Download .ipynb

Download .py

Print d6/Ctri+P

Figure 9.5: A new Python notebook on Google Colab

Google Colab | 269

2. Next, rename the notebook any name of your choice. Then, to use a GPU for
training, we need to select a GPU as the runtime. To do so, choose the 'Edit'
option from the menu and select ‘Notebook Settings’.

& train_sentiment_classifier.ipynb +

File Edit View Insert Runtime Tools Help

COD) Undo insert cell $8/Ctri+Shift+Z

[1] * — Select all cells 98/Ctrl+Shift+A

‘ Cut selection

Copy selection

C Paste

[3] £ Delete selected cells 3/Ctrl+M D

d

Find and replace... 38/Ctri+H

ce 2 Fisainext $8/Ctrl+G /gdrive; to attempt to forci

Find previous $#/Ctri+Shift+G
(13}04

i

i Notebook settings
Pi

£ Show/hide code t Tokenizer
f mport pad_sequences

Clear all outputs
£

from keras.layers import Dense, Embedding, LSTM

[2 Using TensorFlow backend.

Figure 9.6: Edit dropdown in Google Colab

3. A menu pops up with a 'Hardware Accelerator’ field, which is set to ‘None’ by
default:

Notebook settings

Runtime type

Python 3
ase

Hardware accelerator

None * @)

eB Omit code cell output when saving this notebook

CANCEL SAVE

Figure 9.7: Notebook settings for Google Colab

270 | A Practical NLP Project Workflow in an Organization

4, A dropdown can be used at this point to select 'GPU' as the option:

Notebook settings

Runtime type

Python 3 ¥

Hardware accelerator

GPU ~*@

‘= Omit code cell output when saving this notebook

CANCEL SAVE

Figure 9.8: GPU hardware accelerator

5. To check whether the GPU has, in fact, been allotted to your notebook, run the

following snippet:

Check if GPU is detected

import tensorflow as tf

tf.test.gpu_device_name()

The output of running this snippet should indicate the GPU's availability:

[1] # Check if GPU is detetced

import tensorflow as tf
tf.test.gpu_device_name(_).

[> ‘'/device:GPU:0'

Figure 9.9: Screenshot for GPU device name

The output is the GPU device name.

Google Colab | 271

6. Next, the data needs to be made accessible within the notebook. There are a
number of ways to do this. One way to accomplish this task is by moving the data
to a personal Google Drive location. It's better to move the data in a zipped format
to avoid using up too much space on the drive. Go ahead and create a new folder
on Google Drive and move the zipped CSV data file within the folder. Next, we
mount the Google Drive onto the Colab notebook machine to make the drive data
available for use within the Colab notebook:

from google.colab import drive

drive.mount('/content/gdrive')

The snippet we just mentioned would return a weblink for authorization. Upon
clicking on that link, a new browser tab opens up containing an authorization code
that should be copied and pasted onto the notebook prompt:

Fe) from google.colab import drive
drive-mount('/content/gdeive’)

this URL in a browser: httpar//accounts.google.com/o/oauth2/auth?c) tent id=947318989803-6bubigktgdgfindg3nfes6|9 lhoUbredi. apps. googleusarcontent.comeredirect urisurnsjAlet#$jawcs

x your authorization code: % elk — ~ }
yy B oe e o

o

Figure 9.10: Screenshot for importing data from Google Drive

At this point, all the data within your Google Drive is available for use within the
Colab notebook.

7. Next, navigate to the folder location where the zipped data is present:

cd "/content/gdrive/My Drive/Lesson-9/"

8. Confirm that you have navigated to the desired location by issuing a ‘pwd’
command in the notebook cell:

[] pwd

[> ‘/content/gdrive/My Drive/Lesson-9'

Figure 9.11: Data imported on the Colab notebook from Google Drive

272 | A Practical NLP Project Workflow in an Organization

9. Next, unzip the zipped data file using the unzip command:

lunzip data.csv.zip

This will result in the following output:

[] !unzip data.csv.zip

[> Archive: data.csv.zip

inflating: data.csv

creating: _— MACOSX/
inflating: _ MACOSX/. data.csv

Figure 9.12: Unzipping a data file on a Colab notebook

The 'MACOSX' output lines are operating system-specific and may not be the
same for everyone. Anyhow, an unzipped data file, 'data.csv' is now available for
use within the Colab notebook.

10. Now that we have the data available and the environment to use the GPU is set, we

can start coding up the model. We will import the required packages first:

import os

import re

import pandas as pd

from keras.preprocessing. text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense, Embedding, LSTM

11. Next, we will write a preprocessing function that turns all the text to lowercase
and removes any numbers:

def preprocess_data(data_file_path):

data = pd.read_csv(data_file_path, header=None) # read the csv

data.columns = ['rating', 'title', 'review'] # add column names

data['review'] = data['review'].apply(lambda x: x.lower()) # change

all text to lower

datal 'review'] = data['review'].apply((lambda x: re.sub('[*a-zA-z0- >

9\s]','',x))) # remove all numbers

return data

Google Colab | 273
SS gece a a a ee

12, Note that we are using pandas for reading and processing texts. Let's run this
function with the path of our CSV file:

df = preprocess_data('data.csv')

13. We can now examine the contents of the dataframe:

df.head(.)

rating title review

0 3 more like funchuck gave this to my dad for a gag gift after direc...

1 5 Inspiring i hope a lot of people hear this cd we need mo...

2 5 The best soundtrack ever to anything. im reading a lot of reviews saying that this i...

3 4 Chrono Cross OST _ the music of yasunori misuda is without questi...

4 5 Too good to be true probably the greatest soundtrack in history us...

Figure 9.13: Screenshot of dataframe contents

14. As expected, we have three fields. Also, we see that the 'review' column has much

more text than the 'title' column. So, we choose to use only the 'review' column
for developing the model. We'll now proceed with tokenizing the text:

initialize tokenization

max_features = 2000

maxlength = 250

tokenizer = Tokenizer(num_words=max_features, split=' ')

fit tokenizer

tokenizer. fit_on_texts(df['review']. values)

X = tokenizer. texts_to_sequences(df['review']. values)

pad sequences

X = pad_sequences(X, maxlen=maxlength)

274 | A Practical NLP Project Workflow in an Organization

i

Here, we have restricted the feature count to 2,000 words. We then apply the
tokenizer with the maximum features to the 'review' column of the data. We also

pad the sequence length to 250 words.

The X variable looks as follows:

xX

array([[0, lie tiaacet lig 40, ie Gs

[0, 0, Operate’; 23, 1694, ms Ne

[0, OF O:elnres 4 24 ie OL? de) SLOT

i. 0; 0, Ofa sop PAD oe Td 10Shay
[0, 0, 0, wecy 290, 290, 1722},

tai 0, esti 1, 38, 1840]], dtype=int32)

Figure 9.14: Screenshot of the X variable array

The X variable is a NumPy array with 3,000,000 rows and 250 columns. This is

because there are 3,000,000 reviews available and each review has a fixed length

of 250 words after padding.

We'll now prepare the target variable for training. We define the problem as a five-
class classification problem where each class corresponds to a rating. Since the
rating (sentiment score) is on a scale of 1-5, there are 5 outputs of the classifier.
(You could also model this as a regression problem). We use the get_dummies
function from pandas to get the five outputs:

get target variable

y_train = pd.get_dummies(df.rating).values

The y_train variable is a NumPy array with 3,000,000 rows and 5 columns with

values, as shown:

y_train

array([[0, 0, 1, 0, 0],

[9, 0, 0, 0, 1],

[0, 0, 0, 0, 1],
pinay .

[0, l, 0, 0, 0),

[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0]], dtype=uint8)

Figure 9.15: y_train output

, Google Colab | 275 nes so aie ch TL a hia Oellien, le emanate A anpioiea

16. We have now preprocessed the text and prepared the target variable. Let's now
define the model:

embed_dim = 128

hidden_units = 100

n_classes = 5

model = Sequential()

model. add(Embedding(max_features, embed_dim, input_length = X.shape[1]))

model .add(LSTM(hidden_units))

model.add(Dense(n_classes, activation='softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics

= ['accuracy'])

print(model.summary())

We choose 128 embedding dimensions for input. We also choose an LSTM as the
RNN unit with 100 hidden dimensions. The model summary is printed as follows:

Layer (type) = | — Output Shape Param #

étibeddtng i (Embedding). %-.(Woney>250;¢ 120) 256099
lstm_1 (LSTM) (None, 100) 91600

dense 1 (Dense) (None, 5) 505

Total params: 348,105

Trainable params: 348,105

Non-trainable params: 0

None

Figure 9.16: Screenshot of the model summary

17. We can now fit the model:

fit the model

model. fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15,

validation_split=0.2)

276 | A Practical NLP Project Workflow in an Organization

Note that we fit 100,000 reviews instead of 3,000,000. Running the training
session with this configuration takes around 90 minutes. It would take much
longer with a complete amount of data:

fit the model

model.£it(K[:100000, +], y_train[:100000, :], batch_size = 128, epochs=15, validation_split=0.2)

Train on 80000 samples, validate on 20000 samples

Epoch 1/15

80000/80000 [=s===se=sssseessneseeesa======] - 3208 4ms/step - loss: 1.1106 - acc: 0.5231 - val_loss: 1.1261 - val_acc: 0.5171
Epoch 2/15

80000/80000 [s====ss=s==s==sss=asseess=ses=5=] - 3195 4ms/step - loss: 1.0786 - acc: 0.5385 - val_loss: 1.1099 - val_acc: 0.5192
Epoch 3/15

80000/80000 [=========s==ssse=s=esees======] - 3185 4ms/step - loss: 1.0482 - acc: 0.5533 - val_loss: 1.1256 - val_ace: 0.5164

Epoch 4/15

80000/80000 [==ss=s=s==ss=ss=s=s==s===========] - 3lls 4ms/step - loss: 1.0226 - acc; 0.5660 - val_loss: 1.1226 - val_acc: 0.5172

Epoch 5/15

80000/80000 [==s=s==s===s=s=sssess=ssss=s======] - 3155 4ms/step - loss: 1.0014 - acc: 0.5771 - val_loss: 1.1348 - val_acc: 0.5087

Epoch 6/15

80000/80000 [s==s==s=s==s=sseseseesssessea=as==] - 319s 4ms/step - loss: 0.9754 - acc: 0.5873 - val_loss: 1.1455 - val_acc: 0.5078

Epoch 7/15

80000/80000 - 3208 4ms/step - loss: 0.9496 - acc: 0.6015 - val_loss: 1.1708 - val_ace: 0.5051
Epoch 8/15

80000/80000 - 3225 4ms/step - loss: 0.9244 - acc: 0.6099 - val_loss: 1.1870 - val_acc: 0.5028
Epoch 9/15

80000/80000 - 317s 4ms/step - loss: 0.8978 - acc: 0.6226 - val_loss: 1.2118 - val_acc: 0.5002

Epoch 10/15

80000/80000 - 313s 4ms/step - loss: 0.8678 - acc: 0.6383 - val_loss: 1.2304 - val_acc: 0.4975

Epoch 11/15

80000/80000 - 3198 4ms/step - loss: 0.8391 - acc: 0.6508 - val_loss: 1.2817 - val_acc: 0.4953

Epoch 12/15

80000/80000 - 320s 4ms/step - loss: 0.8089 - acc: 0.6655 - val_loss: 1.3062 - val_ace: 0.4907
Epoch 13/15

80000/80000 - 319s 4ms/step - loss: 0.7753 - acc: 0.6810 - val_loss: 1.3529 - val_acc: 0.4883

Epoch 14/15 .

80000/80000 [s==sessesessessesscessesssese=] - 3158 4ms/step - loss: 0.7442 - acc: 0.6958 - val_loss: 1.3931 - val_acc: 0.4814

Epoch 15/15

80000/80000 [====se=sssseesseesss=asseess==] - 316s 4ms/step - loss: 0.7081 - acc: 0.7134 - val_loss: 1.4570 - val_ace: 0.4803

<keras.callbacks.History at 0x7fcba53a00f£0>

Figure 9.17: Screenshot of the training session

The validation accuracy for this 5-class problem is 48%. This isn't a good result,
but for the purpose of demonstration, we can go ahead and deploy it.

18. We now have the model that we wish to deploy. Now, we need to save the model
file and the tokenizer that will be used in the production environment to get
predictions on the new reviews:

save model and tokenizer

model.save('trained_model.h5') # creates a HDF5 file 'trained_model.h5'

with open('trained_tokenizer.pkl', 'wb') as f: # creates a pickle file

'trained_tokenizer.pkl'

pickle.dump(tokenizer, f)

Flask | 277

19. These files now need to be downloaded from the Google Colab environment to the
local drive:

from google.colab import files

files. download('trained_model.h5')

files. download('trained_tokenizer.pkl')

This snippet will download the tokenizer and model files to the local computer. We
are now ready to use the model for predictions.

Flask

In this section, we will use the Flask microserver framework provided by Python to
make a web application that provides predictions. We will get a RESTful API that we can
query to get our results. Before commencing, we need to install Flask (use pip):

1. Let's begin by importing the packages:

import re

import pickle

import numpy as np

from flask import Flask, request, jsonify

from keras.models import load_model

from keras.preprocessing.sequence import pad_sequences

2. Now, let's write a function that loads the trained model and tokenizer:

def load_variables():

global model, tokenizer

model = load_model('trained_model.h5')

model._make_predict_function() #https://github.com/keras-team/keras/

issues/6462

with open('trained_tokenizer.pkl', 'rb') as f:

tokenizer = pickle. load(f)

The make_predict_function() is a hack that allows using keras models with Flask.

278 | A Practical NLP Project Workflow in an Organization

3. Now, we'll define preprocessing functions similar to the training code:

def do_preprocessing(reviews):

processed_reviews = []

for review in reviews:

review = review. lower()

processed_reviews. append(re.sub('[*a-zA-z@-9\s]', '', review))

processed_reviews = tokenizer.texts_to_sequences(np.array(processed_

reviews))

processed_reviews = pad_sequences(processed_reviews, maxlen=250)

return processed_reviews

Similar to the training phase, the reviews are first lowercased. Then, numbers are

replaced with blanks. Next, the loaded tokenizer is applied and the sequences are
padded to have a fixed length of 250 to make them consistent with the training
input.

4. We will now define a Flask app instance:

app = Flask(__name__)

5. We now define an endpoint that displays a fixed message:

@app. route('/')

def home_routine():

return ‘Hello World! '

It is good practice to have a root endpoint to check whether the web service is up.

6. Next, we'll have a prediction endpoint, to which we can send our review strings.
The kind of HTTP request we will use is a 'POST' request:

@app. route('/prediction', methods=['POST'])

def get_prediction():

get incoming text

run the model

if request.method == 'POST':

data = request.get_json()

data = do_preprocessing(data)

predicted_sentiment_prob = model.predict(data)

predicted_sentiment = np.argmax(predicted_sentiment_prob, axis=-1),

return str(predicted_sentiment)

Flask | 279 i ee

7. Wecan now start the web server:

if __name__ == '__main__':

load model

load_variables()

app. run(debug=True)

8. We could save this file as app. py (any name could be used). Run this code from the
terminal using app. py:

python app.py

An output such as the one shown here will be produced in the terminal window:

Using TensorFlow backend.

2019-03-24 23:08:25.948604: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions
that this TensorFlow binary was not compiled to use: AVX2 FMA

* Serving Flask app "app” (lazy loading)

* Environment: production

* Debug mode: on

* Running on http://127.0.@.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

Using TensorFlow backend.

2019-03-24 23:08:31.730337: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions

that this TensorFlow binary was not compiled to use: AVX2 FMA

* Debugger is active!

* Debugger PIN: 150-665-765

Figure 9.18: Output for Flask

9. At this point, go to your browser window and enter the http: //127.0.0.1:5000/
address. The ‘Hello World!’ message will be displayed on the screen. The output
produced corresponds to the root endpoint we set in the code. Now, we send our
review texts to the 'prediction' endpoint of our Flask web service. Let's send the
following four reviews:

10. "The book was very poor"

ie Very nice!”

12. "The author could have done more"

13. "Amazing product!"

280 | A Practical NLP Project Workflow in an Organization

14. We can send post requests to a web service using curl requests. For the four

reviews mentioned, the curl request can be sent through the terminal, as follows:

curl, @XePOst: \

127.0.0.1:5000/prediction \

-H 'Content-Type: application/json' \

-d '["The book was very poor", "Very nice!", "The author could have done

more", "Amazing product! "]'

The list of four reviews is posted to the prediction endpoint of the web service.

The web service replies with a list of four ratings:

[@ 4 2 4]

So, the sentiment ratings are as follows:

15. "The book was very poor"- 0

16. "Very nice!"- 4

17. "The author could have done more" - 2

18. "Amazing product!" - 4

The ratings actually make sense!

Deployment

Up to this point, the data science team has a Flask web service that works on a local
system. However, the web development team is still not in a position to use the service,
since it only runs on a local system. So, we need to host this web service somewhere

on a cloud platform so that it is also available for the web development team to use.
This section provides a basic pipeline for the deployment to work, which can be broken
down into the following steps:

1. Make changes to the Flask web app so that it can be deployed.

2. Use Docker to wrap the flask web application into a container.

3. Host the container on an Amazon Web Services (AWS) EC2 instance.

Let's look at each of these steps in detail. ‘

Deployment | 281

Making Changes to a Flask Web App

The flask application that was coded in the FLASK section ran on a local web address:
http: //127.0.@.1:500Q. Since our intention is to host it on the internet, this address
needs to be changed to: 0.0.0.0. Additionally, since the default HTTP port is 80, the port
also needs to be changed from 5000 to 80. So, the address that needs to be queried
now becomes: 0.0.0.0:80.

In the code snippet, this change can be accomplished simply by modifying the call to
the app. run function, as shown here:

app. run(host=0.0.0.0, port=80)

Notice that the ‘debug’ flag has also vanished (the default value of ‘debug’ flag is 'False’).
This is because the application is past the debugging phase and is ready to be deployed
to production.

Note

The rest of the code remains exactly the same as before.

The application should be run again using the same command as earlier, and it should
be verified that the same responses as earlier are received. The address in the curl
request needs to be changed to reflect the updated web address:

curl =X°POSTA\

Q.0.0.0:80/prediction \

-H ‘Content-Type: application/json' \

-d '["The book was very poor", "Very nice!", "The author could have done

more", “Amazing product!"]'

Note

if a permission error is received at this point, change the port number to 5000

in the app. run() command in app.py. (Port 80 is a privileged port, so change it to a

port that isn't, for example, 5000). However, be sure to change the port back to 80

once it is verified that the code works.

282 | A Practical NLP Project Workflow in an Organization

Use Docker to Wrap the Flask Web Application into a Container

The DS team intends to run the web service on a virtual machine hosted on a cloud
platform (that is, AWS EC2). To isolate the EC2 operating system from the code
environment, Docker offers containerization as a solution. We'll be using that here.

Note

For a quick tutorial on the basics of Docker and how to install and use it, refer to

https://docker-curriculum.com/.

Follow these steps to deploy the application onto the container:

1. We first need a requirements.txt file that lists the specific packages that are needed
to run the Python code:

Flask==1.0.2

numpy==1.14.1

keras==2.2.4

tensorflow==1.10.0

2. We need a Dockerfile containing instructions so that the Docker daemon can
build the docker image:

FROM python:3.6-slim

COPY ./app.py /deploy/

COPY ./requirements.txt /deploy/

COPY ./trained_model.h5 /deploy/

COPY ./trained_tokenizer.pkl /deploy/

WORKDIR /deploy/

RUN pip install -r requirements. txt

EXPOSE 80

ENTRYPOINT ["python", "app.py"]

Deployment | 283

The Docker image is pulled from the Python dockerhub repository. Here, the
Dockerfile is executed. The app.py, requirements.txt, tokenizer pickle file, and
trained model are copied over to the Docker image using the COPY command. To
change the working directory to the ‘deploy’ directory (in which the files were
copied), the WORKDIR command is used. The RUN command then installs the
Python packages mentioned in the Dockerfile. Since port 80 is required to be
accessed outside the container, the EXPOSE command is used.

Note

The Docker Hub link can be found at https://hub.docker.com/_/python.

3. The Docker image should next be made using the docker build command:

docker build -f Dockerfile -t app-packt

Don't forget the period in this command. The output of the command is as follows:

Sending build context to Docker daemon 115.6MB

Step 1/9 : FROM python:3.6-slim

---> 5d4dd7f71a65

Step 2/9 : COPY ./app.py /deploy/

~--> £71341666654

Step 3/9 : COPY ./requirements.txt /deploy/
---> 688538f2682c

Step 4/9 : COPY ./trained_model.h5 /deploy/

---> 89af21aa696e

Step 5/9 : COPY ./trained_tokenizer.pkl /deploy/
---> 9cba42121f49

Step 6/9 : WORKDIR /deploy/

---> Running in 204358b07798

Removing intermediate container 204358b07798

---> 33241b6c6015

Step 7/9 : RUN pip install -r requirements. txt

---> Running in d19156@53f1d

Collecting Flask==1.0.2 (from -r requirements.txt (line 1))

Downloading https://files.pythonhosted.org/packages/7f/e7/08578774ed4536d3242b 1 4dach469638663460/af824ea99

7202cd0@edb4b/Flask-1.@.2-py2.py3-none-any.whl (91kB)

Collecting numpy==1.14.1 (from -r requirements.txt. (line 2))

Downloading https://files.pythonhosted. org/packages/de/7d/348c5d8d44443656e76285aa97b828b6dbd9c10esb9cOF7F

98ef fOff70e4/numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12. 2MB)

Collecting keras==2.2.4 (from -r requirements.txt (line 3))

Downloading https://files.pythonhosted. org/packages/5e/10/aa32dad@71ce52b5502266b5c659451cfd6ffcbf14e6c8c4

f16cOff5aaab/Keras-2.2.4-py2.py3-none-any.whl (312kB)

Collecting tensorflow==1.10.0 (from -r requirements.txt (line 4))

Downloading https: //files. pythonhosted. org/packages/ee/e6/a6d371306c23c2b01cd2cb38909673d1 7ddd388d9e4b3cOf

6602bfd972c8/tensorflow-1.10.0-cp36-cp36m-manylinux1_x86_64.whl (58.4MB)

Figure 9.19: Output screenshot for docker build

'app-packt' is the name of the Docker image generated.

284 | A Practical NLP Project Workflow in an Organization

4, The Docker image can now be run as a container by issuing the docker run
command:

docker run -p 80:80 app-packt

The p flag is used to do port mapping between port 80 of the local system to
port 80 of the Docker container. (Change the port mapping part of the command
to 5000:80 if 5000 is used locally. Please change the mapping back to 80:80 after
verifying that the Docker container works, as explained.)

The following screenshot depicts the output of the docker run command:

docker run -p 8@:8@ app-packt

2@19-@4-28 21:57:24.697584: I Foncor TOUT CELE Piatt crnced., feature_guard.cc:141] Your CPU supports instructio

s that this TensorFlow binary was not compiled to use: AVX2 FMA

* Serving Flask app “app” (lazy loading)

*x Environment: production

WARNING: Do not use the development server in a production environment.

Use a production WSGI server instead.

* Debug mode: off

Using TensorFlow backend.

* Running on http://0.@.0.0:80/ (Press CTRL+C to quit)

Figure 9.20: Output screenshot for the docker run command

The exact same curl request from the last section can now be issued to verify that
the application works.

The application code is now ready to be deployed onto AWS EC2.

Host the Container on an Amazon Web Services (AWS) EC2 instance

The DS team now has a containerized application that works on their local system. The

web development team is still not in a position to use it, as it is still local. As per the
initial MVP definition, the DS team now goes on to use the AWS EC2 instance to deploy
the application. The deployment will ensure that the web service is available for the web
development team to use.

Deployment | 285

As a prerequisite, you need to have an AWS account to use the EC2 instance. For the

purpose of demonstration, we will be using a 't2.small' EC2 instance type. This instance
costs around 2 cents (USD) per hour at the time of writing. Note that this instance is not
free-tier eligible. By default, this instance will not be available in your AWS region and
a request needs to be raised for this instance to be added to your account. This usually
takes a couple of hours. Alternatively, check the instance limits for your AWS region and
select another instance with a minimum of 2GB RAM. A simple 't2.micro' instance will
not work for us here, as it has only 1GB of memory.

Note

The link for the AWS account can be found at https://aws.amazon.com/

premiumsupport/knowledge-center/create-and-activate-aws-account/

To add instances and check instance limits, refer to https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/ec2-resource-limits.html.

Let's start with the deployment process:

1. After logging into the AWS Management Console, search for ‘ec2' in the search bar.
This takes you to the EC2 dashboard, as shown here:

AWS Management Console

AWS services

Find Services
You can enter names, keywords or acronyms

——_ a sean — nn en Eon aa nc rn

EC2
Virtual Servers in the Cloud

ECS
Run and Manage Docker Containers

EFS
Mananer File Sfnracne for FC?

Figure 9.21: AWS services in the AWS Management Console

286 | A Practical NLP Project Workflow in an Organization

2. A key pair needs to be created to access AWS resources. To create one, look for

the following pane and select ‘Key Pairs’. This allows you to create a new key pair:

f=} NETWORK & SECURITY

Security Groups

Elastic IPs

Placement Groups

Key Pairs

Network Interfaces

Figure 9.22: Network and security on the AWS console

3. A'.pem' file is downloaded, which is the key file. Be sure to save the pem file safely
and change its mode using the following command:

chmod 40@ key-file-name.pem

This is required to change file permissions to private.

4. To configure the instance, select ‘Launch Instance’ on the EC2 dashboard:

Resources

You are using the following Amazon EC2 resources in the EU Central (Frankfurt) region:

0 Running Instances 0 Elastic IPs

0 Dedicated Hosts 0 Snapshots

1 Volumes 0 Load Balancers

2 Key Pairs 6 Security Groups

Q Placement Groups

Learn more about the latest in AWS Compute from AWS re:Invent by viewing the EC2 Videos.

Create Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Launch Instance w

Note: Your instances will launch in the EU Central (Frankfurt) region

Service Health ™ Scheduled Events

Figure 9.23: Resources on the AWS console

Deployment | 287

5. Next, select the Amazon Machine Instance (AMI), which selects the OS that EC2
instance runs. We will work with 'Amazon Linux 2 AMI':

Note

For more information on Amazon Linux 2 AMI, refer to https://aws.amazon.com/

amazon-linux-2/.

1.Choose AM! =. 2. Choose instance Typo «= 3. Configure instance 4. Add Storage «=. Add Tags 8. Gontigura Seaurity Group 7. Review

Step 1: Choose an Amazon Machine Image (AMI) Cancel ane! textt
4n AMI ig a template thet contains the software configuration (operating system, application server, and applications) required to Jaunch your instance, You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or you can select one of

your own AMIs.

Q Search for an AMI by entering 2 sparch term e.g, “Windows* x

Quick Start 1 to 36 of 38 AMIa

My AMis ‘ a Amazon Linux 2 AMI (HVM), SSD Volume Type ~ ami-09det150731bdbce2 Solect

AWS M aon s Amazon a Amazon Linux 2 comas with five years support. It provides Linux kemel 4.14 tuned for optimal performance on Amazon EC2, systemd 219, GCC 7.3, Glibo 2,26, Binutits 2.29.1, and the latest 64-bit (x86) :

‘ software packages through extras, ‘ { ‘
Community AMis: \ Rost device typa: eb —-Virtunilemtion type: hym = ENA Enabled: Yes x

t
De and aR WS lca loan SAE lo bor a eh ess ea es oan Sci Rel bow Ral Sarak ry SRA SaET ie Bors RISE ve RT RIS Ai Pla

fries tied only 2% & Amazon Linux AMI 2018.03.0 (HYM), SSD Volume Type - arni-Ocfbf4iédi41068ac ea

Amazon Linux The Amazon Linux AMI is an EBS-backed, AWS-supported Image, The default image includes AWS command ine tools, Python, Ruby, Perl, and Java. The repositories Include Docker, PHP, MYSQL. gy tn wag
PostgreSQL, and other packager a o
Root devine typo; ¢n8 Virtualization type; hum: ENA Enabied: Yeo

a Red Hat Enterprise Linux 7.6 (HVM), SSD Volume Type - ami-c86c3t23 F Setoct |

Red Hat Red Hat Enterprise Linux version 7.5 (HVM), EBS General Purpose (SSD) Volume Type 84+bit (86)

Free Dor afigible
Root davies type; aba —-Virtuntization type: tivm = ENA Enabled: Yee

Figure 9.24: Amazon Machine Instance (AMI)

6. Now, we select the hardware part of EC2, which is the 't2.small' instance:

Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and networking capacity, and give you tho flexibility to

Choose tha appropriate mix of resources for your applications. Learn more about instance types and how they can meet your computing needs.

Filter by: | Altinstancetypes + Current generation ~ Show/Hide Columns

Currently selected: (2.smail (Variable ECUs, 1 VOPUs, 2.5 GHz, Intel Xeon Family, 2 GiB memory, EBS only)

; Bi Family . aype > voPus {j) = Moroty (GiB) <___Ingtance Storage (GB) (|) + EBG-Optimizad Avaliable “{/ | _ Notwork Performance |j) > leat :

General purpose | (2.nano) Os EBS only - Low to Moderate Yes

General purpose Be im i i 1 EBS only - Low to Moderate Yes

a Genera! purpose 12.small 1 2 EBS only - Low to Moderate Yes

General purpose 12.medium ° 4 EBS only < Low to Moderate Yes

General purpose 12.large 2 8 EBS only - Low to Moderate Yes

General purpose . t2.xlarge 4 16 EBS only Moderate Yes

General purpose 12.2xlarge B 32 ; EBS only - Moderate Yes

General purpose i t3.nano 2 O68 EBS only Yes Up to 5 Gigabit Yos

General purpose t3.micro 2 1 EBS only Yes Up to & Gigabit Yes

General purpose 13.srall 2 2 EBS only Yes Up to 5 Gigabit Yes

Ganeral purpose 13.medium 2 4 EBS only 1 Yes Up to 5 Gigabit Yes

wos General aioe, large 2 8 EBS only Yes Up to 5 Gigabit Yes

Cancel Previous’ Meee pete | Nost Configure Instance Details

Figure 9.25: Choosing the instance type on AMI

288 | A Practical NLP Project Workflow in an Organization

7. Clicking on 'Review and Launch’ gets you to step 7 - the Review Instance Launch

screen:

Step 7: Review Instance Launch
Please review your instance launch delelis. You can go back to adit changes for each section. Click Launch to assign a key pair te your instance and complete the jaunch process.

x
4& Your instance configuration is not eligible for the free usage tier

To isunch an instance that's eligible for the free usage tier, check your AMI selection, instance type, configuration options, or storage devices. Learn more about free usage tier eligibility and usage restrictions.

+ AMI Details Ecit Abt

Amazon Linux 2 AMI (H¥M}, SSD Volume Type - ami-O9def150731bdbcc2

Pear Amazon Linux 2 comes with five years support. It provides Linux Kernel 4.14 tuned for cptimal performance on Amazon ECZ, systemd 219, GOC 7.3, Gilbe 226, Binutlle 229.1, and the istest software parksges Twougn extras,

Riseme fool Device Typeceba —Yirtumbizalion typo: hy

> Instance Type Eds instance type

instance Type _-BCUs vCPUs Memory (GiS} ; Instance Storage (GB) EDS-Optimized Available Network Performance

12.amal Variable 1 2 E@S onty - Low to Moderate

+ Security Groups m i ft security groups

Security group name taunch-wizard-6

Desaription jaunch-wizard-6 created 2019-05-01T23:24:09.494+02;00

Typs i Protocol { Port Range ‘1 Source j Description |

This security group hes ne rules

» Instance Details Edit instance details

» Storage Edit storage

> Tags

cont ree EY

Figure 9.26: The review instance launch screen 3

8. Now, to make the web service reachable, the security group needs to be modified.
To this end, a rule needs to be created. At the end, you should see the following

screen:

Step 6: Configure Security Group
A security group is a set of firewall rules that control the traffie for your instance, On this page, you can add rules to allow specitic traffic to reach your instance. For example, if you wurit to set up 4 web Server and altow Internet traffic to reach your instance, adkd

rules that allow unrestricted access to the HTTP and HTTPS ports. You oan create a naw security gro.) or select from an axiging one below, Learn riore about Amazon EC2 security groups.

Assign a security group: ©sCrexte o new security group

Select an existing security group

Security group name: launoh-wizard-2

Description: jaunoh-wizard-2 created 2019-04-13720:04:04,323+02;00

Typa { Protocol | Port Range |i Source | Description [

SSH # TCP 22 Cusiom = ¢#! 0.0.0.0/0 @g. SSH fer Acrnin Deaitog oS

HTTP ? TCR BO Custom =): 0.0,0,0/0, :/0 2.9. SGM for Ac Oes*top °

Add Rule

& Warning

Rules with source of 0,0.0.0/0 allow all IP addresses to access your Instance, We recommend setting security group rules to allow access from known IP addreases only,

Figure 9.27: Configure the security group

Note

More can be learned about security groups and configuration using the AWS

documentation at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-

network-security.html.

Deployment | 289
a

9. Next, clicking on the 'Launch' icon will trigger a redirection to a Launch screen:

Launch Status

@ = Your Instances are now launching

The following Instance launches have been Initiated: |-0d110c66392fe813a View Jaunch log

| @ Get notified of estimated charges
| Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an amount you detine (for axampla, if you exceed the (ree usage tier).

How to connect to your Instances

Your instances ane launching, and jt may take a few minutes until they are In the running state, when they will be ready for you to use, sage hours on your new Instances will start Immodiately and continue to accrue until you stop or terminate your instances,

Click View Instances to monitor your instances” status, Once your instances are in the ftunning stale, you car connect to them fram the Instances screen, Find our how to connect to your inutances.

» Here are some helpful resources to get you started

+ How to connect to your Linux instance » Amnzon E02: User Guide

+ Learn about AWS Free Usage Tier * Amazon EC2: Discussion Forum

While your Instances are launching you can also

Croate status check alarms to ba notified when these instances fall status checks. (Additional charges may apply)

Create and attach additional EBS volurnes (Additional charges may apply)

Manage security groups

Figure 9.28: Launch status on the AWS instance

The 'View Instance' button is to be used to navigate to a screen that displays the
EC2 instance being launched, which is ready to be used when the instance state
turns to ‘running:

10. Next, access the EC2 using the following command from the local system terminal
with the 'public-dns-name' field replaced with your EC2 instance name (of the
form: ec2-x-x-x-x.compute-l.amazonaws.com) and the path of the key pair pem
file that was saved earlier:

ssh -i /path/my-key-pair.pem ec2-user@public-dns-name

This command will take you to the prompt of the EC2 instance where Docker

needs to be installed first. Docker installation is required for the workflow since
the Docker image will be built within the EC2 instance.

11. For Amazon Linux 2 AMI, the following commands should be used to accomplish

this:

sudo amazon-linux-extras install docker

sudo yum install docker

sudo service docker start

sudo usermod -a -G docker ec2-user

Note

For an explanation of the commands, check out the documentation at https://docs.

aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html.

290 | A Practical NLP Project Workflow in an Organization

12. The 'exit' command should be used to log out of the instance. Next, log back in

using the ssh command that was used earlier. Verify that Docker is working by
issuing the 'docker info' command. Open another local terminal window for the
next steps.

13. Now, copy the files that are needed to build the Docker image within the EC2
instance. Issue the command from the local terminal (not from within EC2!):

scp -i /path/my-key-pair.pem file-to-copy ec2-user@public-dns-name: /home/

ec2-user

14. The following files should be copied to build the Docker image, as was done
earlier: requirements.txt, app.py, trained_model.h5, trained_tokenizer.pkl, and

Dockerfile.

15. Next, log in to the EC2 instance, issue the 'ls' command to see whether the copied
files exist, and build and run the Docker image using the same commands that
were used in the local system (ensure that you use port 80 at all locations in the
code/commands).

16. Enter the home endpoint from the local browser using the public DNS name to see
the ‘Hello World!’ message:

C @ Not Secure | ec2-52-59-206-245.eu-central-1.compute.amazonaws.com

Hello World!

Figure 9.29: Screenshot for the home endpoint

17. Now you can send a curl request to the web service from a local terminal with the
test sample data after replacing the public-dns-name with yours:

curl =x POST \

public-dns-name:80/predict \

-H ‘Content-Type: application/json' \

-d '["The book was very poor", "Very nice!", "The author could have done

more", "Amazing product! "]'

18. This should return the same review ratings as the ones obtained locally.

This concludes the simple deployment process.

Deployment | 291

The DS team now shares this curl request with the web development team, which can
consume the web service with their test samples.

Note

When the web service is not required, stop or terminate the EC2 instance to avoid
getting charged.

QQ. search :i-050b9208dd5c1a0dd Add filter

S _ Name * Instance ID « Instance Type » Availability Zone ~ Instance Sta

& i-050b9208ddifl _) running [@re) al a(=ver

Create Template From Instance

Launch More Like This

instance State

Instance Settings

Image Stop - |

Networking Reboot

CloudWatch Monitoring Terminate
Instance: |] i-050b9208dd5c1a0dd |

_ Description Status Checks _ Monitoring Tags

Figure 9.30: Stopping the AWS EC2 instance

From an MVP point of view, the deliverables are now complete!

Improvements

The workflow described in this chapter is only meant to introduce a basic workflow
using certain tools (Flask, Colab, Docker, and AWS EC2) and inspire an example plan for
a deep learning project in an organization. This is, however, only an MVP, which could
be improved in many ways for future iterations.

292 | A Practical NLP Project Workflow in an Organization

Summary

In this chapter, we saw the journey of a deep learning project as it flows through an
organization. We also learned about Google Colab notebooks to leverage GPUs for
faster training. Additionally, we developed a Flask-based web service using Docker
and deployed it to a cloud environment, hence enabling the stakeholders to obtain
predictions for a given input.

This chapter concludes our efforts toward learning how to leverage deep learning
techniques to solve problems in the domain of natural language processing. Almost

every aspect discussed in this chapter and the previous ones is a topic of research and
is being improved upon continuously. The only way to stay informed is to keep learning
about the new and exciting ways to tackle problems. Some common ways to do so are
by following discussions on social media, following the work of top researchers/deep
learning practitioners, and being on the constant lookout for organizations that are
doing cutting-edge work when it comes to this domain.

eae
rhage

altri

hie un te wel sa

at Se ee ~
> jeep icarming

ra ign <rmcemning. Andst =

oy cman aT HD: a

: ra Ome ay : Pace Gael atid ippehescare raia : ee

a age 7 7 a aes Ny Qa at dod : anigars wpe oy Pa x

ote b ce P at a Mc (ati lenal Seaeg nc i yo

his Se tee bid RS | a channel fal dindct Si

wr Blige Saree ene ey Ee 24

Say Ue eT eet eae Try Se
x. @

(? al '
= oF ae eS ior

- ret * ’
“= _ : >

7 “pi, 7 ng

’ e | >

—_ ’ nary “Sa

j i t

>. ee

7 , ye
fas = ’ . _

a8

ve =? ‘oe

7 _ = oa

; _ wa oy
- .

or,
Gr
om

Appendix

About

This section is included to assist the learners to perform the activities present in the book. It

includes detailed steps that are to be performed by the learners to complete and achieve the

objectives of the book.

296 | Appendix

Chapter 1: Introduction to Natural Language Processing

Activity 1: Generating word embeddings from a corpus using Word2Vec.

Solution:

1. Upload the text corpus from the link aforementioned.

2. Import the word2vec from gensim models

from gensim.models import word2vec

3. Store the corpus in a variable.

sentences = word2vec.Text8Corpus('text8')

4, Fit the word2vec model on the corpus.

model = word2vec.Word2Vec(sentences, size = 20Q)

5. Find the most similar word to ‘man’.

model.most_similar(['man'])

The output is as follows:

[('woman', @.6842043995857239),

(‘girl’, @.5943484306335449),

("creature’, @.5780946612358093),

(‘boy', @.5204570293426514),

(‘person', @.5135789513587952),

{‘stranger’, @.506704568862915),

('beast’, ®.504448652267456),

('god', @.5037523508071899),

{'evil’, @.4990573525428772),

(' thief’, @.4973783493041992)]

Figure 1.29: Output for similar word embeddings

6. ‘Father’ is to ‘girl’, 'x' is to boy. Find the top 3 words for x.

model.most_similar(['girl', 'father'], ['boy'], topn=3)

The output is as follows:

[¢'mother’, @.7770676612854004) ,

('grandmother’, @.7024110555648804) ,

('wife’, @.6916966438293457)]

Figure 1.30: Output for top three words for 'x'

Chapter 2: Applications of Natural Language Processing | 297

Chapter 2: Applications of Natural Language Processing

Activity 2: Building and training your own POS tagger

Solution:

1. The first thing to do is pick a corpus that we want to train our tagger on. Import
the necessary Python packages. Here, we use the nltk treebank corpus to work on:

import nltk

nltk.download('treebank')

tagged_sentences = nltk.corpus.treebank. tagged_sents()

print(tagged_sentences[Q])

print("Tagged sentences: ", len(tagged_sentences))

print ("Tagged words:", len(nltk. corpus. treebank.tagged_words()))

2. Next, we need to determine what features our tagger will take into consideration
when determining what tag to assign to a word. These can include whether the
word is all capitalized, is in lowercase, or has one capital letter:

def features(sentence, index):

""" sentence: [wl, w2, ...], index: the index of the word """

return {

'word': sentenceLindex],

‘is_first': index == Q,

‘is_last': index == len(sentence) - 1,

‘is_capitalized': sentence[Lindex][@].upper() == sentenceLindex]

[0],

'is_all_caps': sentenceLindex].upper() == sentence[index],

‘is_all_lower': sentenceLindex].lower() == sentenceLindex],

'orefix-1': sentenceLindex][@],

'prefix-2': sentenceLindex]L:2],

‘prefix-3': sentenceLindex][:3],

'suffix-1': sentenceLindex][-1],

'suffix-2': sentenceLindex][-2:],

'suffix-3': sentenceLindex][-3:],

'prev_word': '' if index == @ else sentenceL[index - 1],

'next_word': '' if index == len(sentence) - 1 else sentenceLindex

'has_hyphen': '-' in sentenceLindex],

'is_numeric': sentence[Lindex].isdigit(),

'‘capitals_inside': sentence[index][1:].lower() != sentenceLindex]

298 | Appendix

import pprint

pprint.pprint(features(['This',
' ' ‘is', 'a', 'sentence'], 2))

{'capitals_inside': False,

‘has_hyphen': False,

'is_all_caps': False,

‘is_all_lower': True,

‘is_capitalized': False,

‘is_first': False,

‘is_last': False,

'is_numeric': False,

'next_word': 'sentence',

iprefix- the! “al;

'prefix-2': ‘a’,

"prefix-3": “haul;

'nreveword si Tas",

a St fisee P er a

"SUTNX@ 2 Ge

'surfixe3': "a",

'word': ‘a'}

3. Create a function to strip the tagged words of their tags so that we can feed them
into our tagger:

def untag(tagged_sentence):

return [w for w, t in tagged_sentence]

4. Now we need to build our training set. Our tagger needs to take features individu-
ally for each word, but our corpus is actually in the form of sentences, so we need

to do a little transforming. Split the data into training and testing sets. Apply this
function on the training set.

Split the dataset for training and testing

cutoff = int(.75 * len(tagged_sentences))

training_sentences = tagged_sentences[: cutoff]

test_sentences = tagged_sentences[cutoff:]

print(len(training_sentences)) # 2935

print(len(test_sentences)) # 979

and create a function to assign the features to 'X' and append the POS

tags to “Y*.

Chapter 2: Applications of Natural Language Processing | 299

def transform_to_dataset(tagged_sentences):

A ea Od Bi

for tagged in tagged_sentences:

for index in range(len(tagged)):

X.append(features(untag(tagged), index))

y.append(tagged[index][1])

return X, y

X, y = transform_to_dataset(training_sentences)

from sklearn.tree import DecisionTreeClassifier

from sklearn.feature_extraction import DictVectorizer

from sklearn.pipeline import Pipeline

Apply this function on the training set. Now we can train our tagger. It's basically
a Classifier since it's categorizing words into classes, so we can use a classification
algorithm. You can use any that you like or try out a bunch of them to see which
works best. Here, we'll use the decision tree classifier. Import the classifier, initial-
ize it, and fit the model on the training data. Print the accuracy score.

clf = Pipeline([

('vectorizer', DictVectorizer(sparse=False)),

('classifier', DecisionTreeClassifier(criterion='entropy'))

])

clf.fit(X[:10000], y[:10000]) # Use only the first 10K samples if you're

running it multiple times. It takes a fair bit :)

print('Training completed')

X_test, y_test = transform_to_dataset(test_sentences)

print("Accuracy:”,. clf.score(X_test, y_test))

The output is as follows:

Training completed

Accuracy: @.8959505061867267

Figure 2.19: Accuracy score

300 | Appendix

Activity 3: Performing NER on a Tagged Corpus

Solution:

1. Import the necessary Python packages and classes.

import nltk

nltk.download(' treebank')

nltk.download('maxent_ne_chunker')

nltk.download('words')

2. Print the nltk.corpus.treebank. tagged_sents() to see the tagged corpus that you

need extract named entities from.

nltk.corpus. treebank. tagged_sents()

sent = nltk.corpus. treebank. tagged_sents()[@]

print(nltk.ne_chunk(sent, binary=True))

3. Store the first sentence of the tagged sentences in a variable.

sent = nltk.corpus.treebank. tagged_sents()[1]

4, Use nltk.ne_chunk to perform NER on the sentence. Set binary to ea and print
the named entities.

print(nltk.ne_chunk(sent, binary=False))

sent = nltk.corpus.treebank. tagged_sents()[2]

rint(nltk.ne_chunk(sent))

Chapter 2: Applications of Natural Language Processing | 301

The output is as follows:

(s

(PERSON Rudolph/NNP)

(GPE Agnew/NNP)

a

55/CD

years/NNS
old/J]

and/ Cc

former/JJ

chairman; NN

of /IN

(ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP)}

PLC/NNP

ats

was/VBD

named,VBN

*_4/-NONE-

a/DT

nonexecutive/JJ

director/NN

of {IN

this/DT

(GPE British/JJ)
industrial/JJ

conglomerate/NN

sv

Figure 2.20: NER on tagged corpus

302 | Appendix

Chapter 3: Introduction to Neural Networks

Activity 4: Sentiment Analysis of Reviews

Solution:

1. Open anew Jupyter notebook. Import numpy, pandas and matplotlib.pyplot. Load

the dataset into a dataframe.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

dataset = pd.read_csv('train_comment_small1_100.csv', sep=',')

2. Next step is to clean and prepare the data. Import re and nltk. From nltk. corpus
import stopwords. From nltk. stem. porter, import PorterStemmer. Create an array

for your cleaned text to be stored in.

import re

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

corpus = []

3. Using a for loop, iterate through every instance (every review). Replace all non-al-
phabets with a '' (whitespace). Convert all alphabets into lowercase. Split each
review into individual words. Initiate the PorterStemmer. If the word is not a stop-
word, perform stemming on the word. Join all the individual words back together
to form a cleaned review. Append this cleaned review to the array you created.

for i in range(®, dataset.shape[Q@]-1):

review = re.sub('[*a-zA-Z]', ' ', dataset['comment_text'J[i])

review = review. lower()

review = review.split()

ps = PorterStemmer()

review = [ps.stem(word) for word in review if not word in

set(stopwords.words('english'))]

review = ' ', join(review)

corpus. append(review) >

Chapter 3: Introduction to Neural Networks | 303

Import CountVectorizer. Convert the reviews into word count vectors using Count-
Vectorizer.

from sklearn. feature_extraction. text import CountVectorizer

cv = CountVectorizer(max_features = 20)

Create an array to store each unique word as its own column, hence making them
independent variables.

X = cv.fit_transform(corpus).toarray()

y = dataset.iloc[: ,Q0]

y1 = y[:99]

yl

Import LabelEncoder from sklearn.preprocessing. Use the LabelEncoder on the

target output (y).

from sklearn import preprocessing

labelencoder_y = preprocessing.LabelEncoder()

y = labelencoder_y.fit_transform(y1)

Import train_test_split. Divide the dataset into a training set and a validation set.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =

@.20, random_state = Q)

Import StandardScaler from sklearn. preprocessing. Use the StandardScaler on the

features of both the training set and the validation set (Xx).

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Now the next task is to create the neural network. Import keras. Import Sequen-
tial from keras.models and Dense from Keras layers.

import tensorflow

import keras

from keras.models import Sequential

from keras.layers import Dense

304 | Appendix

10. Initialize the neural network. Add the first hidden layer with 'relu' as the activa-
tion function. Repeat step for the second hidden layer. Add the output layer with
‘sof tmax' as the activation function. Compile the neural network, using ‘adam’ as the
optimizer, 'binary_crossentropy’' as the loss function and ‘accuracy’ as the perfor-

mance metric.

classifier = Sequential()

classifier.add(Dense(output_dim = 20, init = 'uniform', activation =

'relu', input_dim = 20))

classifier.add(Dense(output_dim =20, init = ‘uniform', activation =

"relu'))

classifier.add(Dense(output_dim = 1, init = 'uniform', activation =

"softmax'))

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',

metrics = ['accuracy'])

11. Now we need to train the model. Fit the neural network on the training dataset
with a batch_size of 3 and a nb_epoch of 5.

classifier.fit(X_train, y_train, batch_size = 3, nb_epoch = 5)

X_test

12. Validate the model. Evaluate the neural network and print the accuracy scores to
see how it's doing.

y_pred = classifier.predict(X_test)

scores = classifier.evaluate(X_test, y_pred, verbose=1)

print("Accuracy:", scores[1])

13. (Optional) Print the confusion matrix by importing confusion_matrix from sklearn.
metrics.

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

scores

Your output should look similar to this:

20/22 [ssseseesescesssssssssssssssess | - es 160us/step

Accuracy: 1.8

[1.192893321833454e-@7, 1.0]

Figure 3.21: Accuracy score for sentiment analysis

Chapter 4: Introduction to convolutional networks | 305

Chapter 4: Introduction to convolutional networks

Activity 5: Sentiment Analysis on a real-life dataset

Solution:

1. Import the necessary classes

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras import layers

from keras.preprocessing.sequence import pad_sequences

import numpy as np

import pandas as pd

2. Define your variables and parameters.

epochs = 20

maxlen = 100

embedding_dim = 50

num_filters = 64

kernel_size = 5

batch_size = 32

3. Import the data.

data = pd.read_csv('data/sentiment labelled sentences/yelp_labelled.

txt',names=['sentence', 'label'], sep='\t')

data. head()

Printing this out on a Jupyter notebook should display:

i ome")
pow testes i
s|ovstisrotena——SSSSC*d
a)portanyanstretnirewer isa [0
| Speedy ana elt yoni of |
Te ston ont eran rst ansso wer |

Figure 4.27: Labelled dataset

306 | Appendix

4. Select the 'sentence' and ‘label’ columns

sentences=dataLl'sentence']. values

labels=data['label'].values

5. Split your data into training and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

sentences, labels, test_size=0.30, random_state=1000)

6. Tokenize

tokenizer = Tokenizer (num_words=5000)

tokenizer. fit_on_texts(X_train)

X_train = tokenizer. texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index) + 1 #The vocabulary size has an

additional 1 due to the @ reserved index

7. Pad in order to ensure that all sequences have the same length

X_train = pad_sequences(X_train, padding='post', maxlen=maxlen)

X_test = pad_sequences(X_test, padding='post', maxlen=maxlen)

8. Create the model. Note that we use a sigmoid activation function on the last layer
and the binary cross entropy for calculating loss. This is because we are doing a
binary classification.

model = Sequential()

model.add(layers.Embedding(vocab_size, embedding_dim, input_

length=maxlen))

model. add(layers.Conv1D(num_filters, kernel_size, activation='relu'))

model. add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(10, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='adam',

loss='binary_crossentropy',

metrics=['accuracy'])

model. summary ()

Chapter 4: Introduction to convolutional networks | 307

The above code should yield

Layer (type) = -——« Output Shape = 8 = Param #

embedding 1 (Embedding), .(Nene,100,.50), +©««87350
convld_1 (Conv1D) (None, 96, 64) 16064

global_max_poolingld_1 (Glob (None, 64) 0

dense_1 (Dense) (None, 10) 650

dense 2 (Dense) (None, 1) 11
aS SSS SSS SSS SS SS SS

Total params: 104,075

Trainable params: 104,075

Non-trainable params: 0

Figure 4.28: Model summary

The model can be visualized as follows as well:

global_max_pooling!d_1: GlobalMaxPooling1D

embedding_1_input: InputLayer

embedding 1: Embedding

convld_!: Conv1D

dense_1: Dense

dense 2: Dens

Figure 4.29: Model visualization

308 | Appendix

9. Train and test the model.

model .fit(X_train, y_train,

epochs=epochs,

verbose=False,

validation_data=(X_test, y_test),

batch_size=batch_size)

loss, accuracy = model.evaluate(X_train, y_train, verbose=False)

print("Training Accuracy: {:.4f}".format(accuracy))

loss, accuracy = model.evaluate(X_test, y_test, verbose=False)

print("Testing Accuracy: {:.4f}".format(accuracy))

The accuracy output should be as follows:

Training Accuracy: 1.0000

Testing Accuracy: 0.8080

Figure 4.30: Accuracy score

Chapter 5: Foundations of Recurrent Neural Network | 309

Chapter 5: Foundations of Recurrent Neural Network

Activity 6: Solve a problem with RNN - Author Attribution

Solution:

Prepare the data

We begin by setting up the data pre-processing pipeline. For each one of the authors,
we aggregate all the known papers into a single long text. We assume that style does
not change across the various papers, hence a single text is equivalent to multiple small
ones yet it is much easier to deal with programmatically.

For each paper of each author we perform the following steps:

1. Convert all text into lower-case (ignoring the fact that capitalization may be a
stylistic property)

2. Converting all newlines and multiple whitespaces into single whitespaces

3. Remove any mention of the authors' names, otherwise we risk data leakage
(authors names are hamilton and madison)

4. Do the above steps in a function as it is needed for predicting the unknown
papers.

import numpy as np

import os

from sklearn.model_selection import train_test_split

Classes for A/B/Unknown

A=0

B.= 1

UNKNOWN = -1

def preprocess_text(file_path):

with open(file_path, 'r') as f:

lines = f.readlines()

text = ' ' joinClines[1:])<replace€"\n",.‘ ').replace(' ‘,'’

') lower().replace('hamilton','').replace('madison', '')

text = ' '.join(text.split())

return text

310 | Appendix

Concatenate all the papers known to be written by A/B into a single long

text

all_authorA, all_authorB = '',''

for x in os.listdir('./papers/A/'):

all_authorA += preprocess_text('./papers/A/' + x)

for x in os.listdir('./papers/B/'):

all_authorB += preprocess_text('./papers/B/' + x)

Print lengths of the large texts

print("AuthorA text length: {}".format(len(all_authorA)))

print("AuthorB text length: {}".format(len(all_authorB)))

The output for this should be as follows:

AuthorA text length: 216394

AuthorB text length: 230867

Figure 5.34: Text length count

The next step is to break the long text for each author into many small sequences.
As described above, we empirically choose a length for the sequence and use it
throughout the model's lifecycle. We get our full dataset by labeling each sequence
with its author.

To break the long texts into smaller sequences we use the Tokenizer class from
the keras framework. In particular, note that we set it up to tokenize according
to characters and not words.

5. Choose SEQ_LEN hyper parameter, this might have to be changed if the model
doesn't fit well to training data.

6. Write a function make_subsequences to turn each document into sequences of

length SEQ_LEN and give it a correct label.

7. Use Keras Tokenizer with char_level=True

8. Fit the tokenizer on all the texts

9, Use this tokenizer to convert all texts into sequences using texts_to_sequences()

2

Chapter 5: Foundations of Recurrent Neural Network | 311

10. Use make_subsequences() to turn these sequences into appropriate shape and
length

from keras.preprocessing.text import Tokenizer

Hyperparameter - sequence length to use for the model

SEQ_LEN = 30

def make_subsequences(long_sequence, label, sequence_length=SEQ_LEN):

len_sequences = len(long_sequence)

X = np.zeros(((len_sequences - sequence_length)+1, sequence_length))

y = np.zeros((X.shape[@], 1))

for i in range(X.shape[@]):

X[Li] = long_sequence[i:i+sequence_length]

yLi] = label

return X,y

We use the Tokenizer class from Keras to convert the long texts into a

sequence of characters (not words)

tokenizer = Tokenizer(char_level=True)

Make sure to fit all characters in texts from both authors

tokenizer. fit_on_texts(all_authorA + all_authorB)

authorA_long_sequence = tokenizer.texts_to_sequences([all_authorA])[0@]

authorB_long_sequence = tokenizer.texts_to_sequences([all_authorB])[@]

Convert the long sequences into sequence and label pairs

X_authorA, y_authorA = make_subsequences(authorA_long_sequence, A)

X_authorB, y_authorB = make_subsequences(authorB_long_sequence, B)

Print sizes of available data

print("Number of characters: {}".format(len(tokenizer.word_index)))

print('author A sequences: {}'.format(X_authorA. shape))

print('author B sequences: {}'.format(X_authorB. shape))

The output should be as follows:

Number of characters: 52

author A sequences: (216365, 3

author B sequences: (230838, 3

Figure 5.35: Character count of sequences

312 | Appendix

11. Compare the number of raw characters to the number of labeled sequences for
each author. Deep Learning requires many examples of each input. The following
code calculates the number of total and unique words in the texts.

Calculate the number of unique words in the text

word_tokenizer = Tokenizer()

word_tokenizer.fit_on_texts([all_authorA, all_authorB])

print("Total word count: ", len((all_authorA + ' ' + all_authorB).split('

OP)
print("Total number of unique words: ", len(word_tokenizer.word_index))

The output should be as follows:

Total word count: 74349

Total number of unique words: 6318

Figure 5.36: Total word count and unique word count

We now proceed to create our train, validation sets.

12. Stack x data together and y data together.

13. Use train_test_split to split the dataset into 80% training and 20% validation.

14. Reshape the data to make sure that they are sequences of correct length.

Take equal amounts of sequences from both authors

X = np.vstack((X_authorA, X_authorB))

y = np.vstack((y_authorA, y_authorB))

Break data into train and test sets

X_train, X_val, y_train, y_val = train_test_split(X,y, train_size=0.8)

Data is to be fed into RNN - ensure that the actual data is of size

[batch size, sequence length]

X_train = X_train.reshape(-1, SEQ_LEN)

X_val = X_val.reshape(-1, SEQ_LEN)

Print the shapes of the train, validation and test sets

print("X_train shape: {}".format(X_train. shape))

Chapter 5: Foundations of Recurrent Neural Network | 313

print("y_train shape: {}".format(y_train. shape))

print("X_validate shape: {}".format(X_val.shape))

print("y_validate shape: {}".format(y_val. shape))

The output is as follows:

~ oO
X_train shape: (357762, i

y_train shape: (357762, 1)

X_Validate shape: (89441, 38)

y_validate shape: (89441, 1)

bee Li

Figure 5.37: Testing and training datasets

Finally, we construct the model graph and perform the training procedure.

15. Create a model using RNN and Dense layers.

16. Since its a binary classification problem, the output layer should be Dense with
sigmoid activation.

17. Compile the model with optimizer, appropriate loss function and metrics.

18. Print the summary of the model.

from keras.layers import SimpleRNN, Embedding, Dense

from keras.models import Sequential

from keras.optimizers import SGD, Adadelta, Adam

Embedding_size = 100

RNN_size = 256

model = Sequential()

model .add(Embedding(len(tokenizer.word_index)+1, Embedding_size, input_

length=30))

model.add(SimpleRNN(RNN_size, return_sequences=False))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy', metrics =

['accuracy'])

model. summary ()

314 | Appendix

The output is as follows:

embedding 1 (Embedding) - (None, 38, 190) ewollol ae S3g@hi0 a¢f
simple _rnn_i (SimpleRNN) (None, 256) 91392

dense_1 (Dense) (None, 1) 257

Total params: 96,949

Trainable params: 96,949

Non-trainable params: @

Figure 5.38: Model summary

19. Decide upon the batch size, epochs and train the model using training data and
validate with validation data

20. Based on the results, go back to model above, change it if needed (use more layers,
use regularization, dropout, etc., use different optimizer, or a different learning

rate, etc.)

21. Change Batch_size, epochs if needed.

Batch_size = 4096

Epochs = 20

model.fit(X_train, y_train, batch_size=Batch_size, epochs=Epochs,

validation_data=(X_val, y_val))

Chapter 5: Foundations of Recurrent Neural Network | 315

The output is as follows:

Train on 357762 samples, validate on 89441 samples
Epoch 1/28

357762/357762 [===s-=-==2-========2==========] - 75 20us/step - loss: 6.6987 - acc: @.5298 - val_loss: 8.6846 - val_acc: 6.5528
Epoch 2/28

357762/357762 [s==sssssss5=ss555s=s====2=====] - 5s l4us/step - loss: @.6848 - acc: 8.5521 - val_loss: 8.6864 - val_acc: @.5457
Epoch 3/26
357762/357762 [ssssssssssssssss=essss===-==] - 5s 14us/step - loss: @.6832 - acc: @.5567 - val_loss: @.6828 - val_acc: 6.5571
Epoch 4/20
357762/357762 [===ssess=-=s=22se===s====2n2==] - 55 14us/step - loss: @.6829 - acc: 8.5556 - val_loss: @.6819 - val_acc: 6.5604
Epoch 5/28

357762/357762 [===s=s========================] - 5s 13us/step - loss: @.680@ - acc: @.5621 - val_loss: 0.676@ - val_acc: @.5718
Epoch 6/28
357762/357762 [=s====ssse=2==sssee=2ssses=02==] - 55 14us/step - loss: @.6713 - acc: @.58@3 - val_loss: @.6748 - val_acc: @.5833
Epoch 7/26

357762/357762 [==s==s===<========ss=====s====] - 55 14us/step - loss: @.665@ - acc: @.5936 - val_loss; @.6491 - val_acc: 8.6165
Epoch 8/20
357762/357762 [=====ss-ssssessssa=s===s======] - 55 15us/step - loss: @.6391 - acc: 6.6309 - val_loss: 6.623@ - val_acc: @. 6488
Epoch 9/28
357762/357762 [s=====sss===sss=ssss=s=<======5=] - 65 17us/step - loss: 0.6113 - acc: @.6624 - val_loss: @.6502 - val_acc: 0.6229
Epoch 10/28
357762/357762 [===ss]s=sss<=ssses==ssss=eee==] - 85 21us/step - loss: @.5674 - acc: 6.7026 - val_loss: 6.5382 - val_acc: @.7256
Epoch 11/20

357762/357762 [====ss==s=<==s=s=s==s==s=s===s=] - 95 24us/step - loss: 8.4963 - acc: @.7568 - val_loss: @.4697 - wal_acc: @.7745
Epoch 12/20
357762/357762 [==-===s========sss==s=========] - 135 36us/step - loss: @.4178 - acc: @.8@70 - val_loss: @.4@78 - val_acc: 0.8112

“Epoch 13/28

357762/357762 [===ss==s<se=s=s=sssses=-=====5=] - 165 46us/step - loss: @.3448 - acc: 0.8483 - val_loss: @.3798 - val_acc: 9.8328
Epoch 14/28
357762/357762 [====s=s==sssssesssssss=s=======] - 245 67us/step - loss: @.2898 - acc: @.8759 - val_loss: @.2925 - val_acc: 8.8746
Epoch 15/28

357762/357762 [=s====ss=sssseesesese=====s=2==] - 245 68us/step - loss: @.2364 - acc: @.9@21 - val_loss: @.2538 - val_acc; @.8928
Epoch 16/28
357762/357762 [==s=====ss=====================] - 245 G6us/step - loss: @.1934 - acc: @.9225 - val_loss: @.2153 - val_acc: @,9104
Epoch 17/28
357762/357762 [=sssssesse=sesesss=ese2==2=5==] - 245 67u5s/step - loss: @.1662 - acc: @.9345 - val_loss: 8.19314 - val_acc: 6.9206
Epoch 18/20

357762/357762 [===============s=ss=s=se=s====] - 245 67us/step - loss: 8.1400 - acc: @,9455 - val_loss: @.1825 - val_acc: 8.9254
Epoch 19/28

357762/357762 [====s==ssss=s=a=sease==e==e==2=] - 275 76us/step - loss: @.1249 - acc: @.952@ - val_loss: @.1666 - val_acc: @.9329
Epoch 26/208

357762/357762 [s==s===sss=sssessss==s==s======] - 335 Sius/step - loss: 4.1079 - acc; 8.9591 - val_loss: @.15@3 - val_acc: @.9400
<keras.callbacks.History at @x2@f3a8d9efa>

Figure 5.39: Epoch training

Applying the Model to the Unknown Papers

Do this all the papers in the Unknown folder

1. Preprocess them same way as training set (lower case, removing white lines, etc.)

2. Use tokenizer and make_subsequences function above to turn them into sequences
of required size.

3. Use the model to predict on these sequences.

4, Count the number of sequences assigned to author A and the ones assigned to
author B

316 | Appendix

5. Based on the count, pick the author with highest votes/count

for x in os. listdir('./papers/Unknown/'):

unknown = preprocess_text('./papers/Unknown/' + x)

unknown_long_sequences = tokenizer. texts_to_sequences([Lunknown])[@]

X_Sequences = make_subsequences(unknown_long_sequences, UNKNOWN) > —_

X_sequences = X_sequences.reshape((-1,SEQ_LEN))

ll S votes_for_authorA

votes_for_authorB ll fe)

y = model.predict(X_sequences)

y = y>@.5

votes_for_authorA = np.sum(y==0)

votes_for_authorB = np.sum(y==1)

print("Paper {} is predicted to have been written by {}, {} to {}".

format (

x.replace('paper_','').replace('.txt',''),

("Author A" if votes_for_authorA > votes_for_authorB else

"Author B"),

max(votes_for_authorA, votes_for_authorB), min(votes_for

authorA, votes_for_authorB)))

The output is as follows:

is predicted to have been written by Author B, 11946 to 8828

is predicted to have been written by Author B, 11267 to 8379

is predicted to have been written by Author B, 6738 to 6646

is predicted to have been written by Author A, 5254 to 4519

is predicted to have been written by Author A, 6570 to 5184

Paper

Paper

Paper

Paper

Paper in B WwW he

Figure 5.40: Output for author attribution

Chapter 6: Foundations of GRUs | 317

Chapter 6: Foundations of GRUs

Activity 7: Develop a sentiment classification model using Simple RNN

Solution:

1. Load the dataset.

from keras.datasets import imdb

max_features = 10000

maxlen = 500

(train_data, y_train), (test_data, y_test) = imdb. load_data(num_words=max_

features)

print('Number of train sequences: ', len(train_data))

print('Number of test sequences: ', len(test_data))

2. Pad sequences so that each sequence has the same number characters.

from keras.preprocessing import sequence

train_data = sequence.pad_sequences(train_data, maxlen=maxlen)

test_data = sequence.pad_sequences(test_data, maxlen=maxlen)

3. Define and compile model using SimpleRNN with 32 hidden units.

from keras.models import Sequential

from keras.layers import Embedding

from keras.layers import Dense

from keras.layers import GRU

from keras.layers import SimpleRNN

model = Sequential()

model. add(Embedding(max_features, 32))

model . add(SimpleRNN(32))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',

loss='binary_crossentropy' ,

metrics=['acc'])

history = model.fit(train_data, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

318 | Appendix

4, Plot the validation and training accuracy and losses.

import matplotlib.pyplot as plt

def plot_results(history):

acc = history.history['acc']

val_acce = history.history['val_acc']

loss = history.historyL'loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training Accuracy')

plt.plot(epochs, val_acc, 'b', label='Validation Accuracy')

plt.title('Training and validation Accuracy')

plt.legend()

plt. figured)

plt.plot(epochs, loss, ‘'bo', label='Training Loss')

plt.plot(epochs, val_loss, 'b', label='Validation Loss')

plt.title('Training and validation Loss')

plt.legend()

plt.show()

5. Plot the model

plot_results(history)

Chapter 6: Foundations of GRUs | 319

The output is as follows:

Training and validation Accuracy

100 ® = Training Accuracy e 2
—— Validation Accuracy e

095 - e

0.65

060

2 4 6 & 10

Training and validation Loss

® Traning Loss

of —— Validation Loss

7

O6

05

04

03 e

Q2 L

a1 s

oo
2 4 6 8 10

Figure 6.29: Training and validation accuracy loss

320 | Appendix

Activity 8: Train your own character generation model with a dataset of your

choice

Solution:

1. Load the text file and import the necessary Python packages and classes.

import sys

import random

import string

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras. layers import LSTM, GRU

from keras.optimizers import RMSprop

from keras.models import load_model

load text

def load_text (filename):

with open(filename, 'r') as f:

text = f.read()

return text

in_filename = 'drive/shakespeare_poems.txt' # Add your own text file here

text = load_text(in_filename)

print(textL:200])

The output is as follows:

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,

That thereby beauty's rose might never die,

But as the riper should by time decease,

His tender heir might bear his mem

Figure 6.30: Sonnets from Shakespeare

Chapter 6: Foundations of GRUs | 321

2. Create dictionaries mapping characters to indices and vice-versa.

chars = sorted(list(set(text)))

print('Number of distinct characters:', len(chars))
char_indices = dict((c, i) for i, ¢ in enumerate(chars))
indices_char = diét(¢(ipiceforei tec iin enumerate(chars))

The output is as follows:

Number of distinct characters: 61

Figure 6.31: Distinct character count

3. Create sequences from the text.

max_len_chars = 40

step = 3

sentences = []

next_chars = []

for i in range(@, len(text) - max_len_chars, step):

sentences.append(textli: i + max_len_chars])

next_chars.append(text[i + max_len_chars])

print('nb sequences:', len(sentences))

The output is as follows:

nb sequences: 31327

Figure 6.32: nb sequence count

4, Make input and output arrays to feed the model.

X = np.zeros((len(sentences), max_len_chars, len(chars)), dtype=np.bool)

y = np.zeros((len(sentences), len(chars)), dtype=np.bool)

for i, sentence in enumerate(sentences):

for t, char in enumerate(sentence):

xLi, t, char_indices[char]] = 1

y[Li, char_indices[next_chars[i]]] = 1

322 | Appendix

5. Build and train the model using GRU and save the model.

print('Build model...')

model = Sequential()

model.add(GRU(128, input_shape=(max_len_chars, len(chars))))

model.add(Dense(len(chars), activation='softmax'))

optimizer = RMSprop(1r=0.01)

model.compile(loss='categorical_crossentropy', optimizer=optimizer)

model.fit(x, y,batch_size=128, epochs=10)

model. save("poem_gen_model .h5")

6. Define sampling and generation functions.

def sample(preds, temperature=1.0):

helper function to sample an index from a probability array

preds = np.asarray(preds).astype('float64')

preds = np.log(preds) / temperature

exp_preds = np.exp(preds)

preds = exp_preds / np.sum(exp_preds)

probas = np.random.multinomial(1, preds, 1)

return np.argmax(probas)

7. Generate text.

from keras.models import load_model

model_loaded = load_model('poem_gen_model.h5')

def generate_poem(model, num_chars_to_generate=400):

start_index = random.randint(@, len(text) - max_len_chars - 1)

generated = ''

sentence = text[start_index: start_index + max_len_chars]

generated += sentence

print("Seed sentence: {}".format(generated))

for i in range(num_chars_to_generate):

x_pred = np.zeros((1, max_len_chars, len(chars)))

for t, char in enumerate(sentence):

x_pred[@, t, char_indices[char]] = 1.

preds = model.predict(x_pred, verbose=0)[0]

Chapter 6: Foundations of GRUs | 323

next_index = sample(preds, 1)

next_char = indices_char[next_index]

generated += next_char

sentence = sentence[1:] + next_char

return generated

generate_poem(model_loaded, 100)

The output is as follows:

Seed sentence: pretty looks have been mine enemies,

And

‘pretty looks have been mine enemies, \nAnd summmmmite it Time swill hold love and ust.\nAnd thou heart whereferayed me henule,\nThat which have,*

Figure 6.33: Generated text output

324 | Appendix

Chapter 7: Foundations of LSTM

Activity 9: Build a Spam or Ham classifier using a Simple RNN

Solution:

1. Import required Python packages

import pandas as pd

import numpy as np

from keras.models import Model, Sequential

from keras.layers import SimpleRNN, Dense, Embedding

from keras.preprocessing.text import Tokenizer

from keras.preprocessing import sequence

2. Read the input file containing a column that contains text and another column
that contains the label for the text depicting whether the text is spam or not.

df = pd.read_csv("drive/spam.csv", encoding="latin")

df .head()

The output is as follows:

vi v2 Unnamed: 2 Unnamed: 3 Unnamed: 4

0 ham Go until jurong point, crazy.. Available only ... NaN NaN NaN

1 ham OK lar... Joking wif u oni.. NaN NaN NaN

2 spam Free entry in 2 a wkly comp to win FA Cup fina... NaN NaN NaN

3 ham Udun say so early hor... Uc already then say... NaN NaN NaN

4 ham Nah | don't think he goes to usf, he lives aro.. NaN NaN NaN

Figure 7.35: Input data file

Chapter 7: Foundations of LSTM | 325

3. Label the columns in the input data.

df = dfil" vi", "v2" 7]

df .head()

The output is as follows:

vi w2

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... Uc already then say...

4 ham Nah | don't think he goes to usf, he lives aro...

Figure 7.36: Labelled input data

4. Count spam, ham characters in the v1 column.

df["v1"].value_counts()

The output is as follows:

ham 4825

spam f47

Name: vi, dtype: int64

Figure 7.37: Value counts for spam or ham

5. Get X as feature and Y as target.

lab_map = {"ham":@, "spam":1}

X = df["v2"]. values

Y = df["v1"].map(lab_map). values

6. Convert to sequences and pad the sequences.

max_words = 100

mytokenizer = Tokenizer(nb_words=max_words, lower=True, split=" ")

mytokenizer. fit_on_texts(X)

text_tokenized = mytokenizer.texts_to_sequences(X)

text_tokenized

326 | Appendix

The output is as follows:

[[50, 64, 8, 89, 67, 58],
[46, 6],

[Ad, 8; 15; 4, 2, 71, 2a 3, F31,
[6, 23, 6, 57],
[1, 98, 69, 2, 69],
fof, 21,<%, 38, 87, 55, 3, 44, 12, 14, 85, 46, 2, 68, 24,
fat, 6,25, 55, 2,36, 16, 16,. 55],
[72, 13, 725413,.22,.51, 2,. 13},
(72, 42-37-47, ty a> 45, 8a,
[43; 96,36, 6, 81,.2; 2.5, 36, 12, 47, 16; °5, $6, 47,18],
[38, 32, 77, 7, 1, 98, 78, 2, 8@, 48, 93, 88],
(2,48). 2. 93,, 7) GBs 2.65, 52, 421,
[3, 17, 4,47, 8, 91, 73, 5, 2, 32];
149 099s 3 a a 8 AD, SF, 39, Al 9 Se 7, he, 20, SED,
fi, 47, 4; °18,°36, 33],
(2, 15, $. & 5S, 73,. 25, S91;
[93, 30],
[6, 49, 19, 1, 69, 1],
[34, 5, 6, 5, 61],
[a8 5379, 35,72, -F1.
[9, 20, 49, 3],
[75, 2, 12, 19, 64],
[23, 57, 45, 9, 90],

Figure 7.38: Tokenized data

7. Train the sequences

max_len = 50

sequences = sequence.pad_sequences(text_tokenized,maxlen=max_len)

sequences

8. Build the model

model = Sequential()

model .add(Embedding(max_words, 20, input_length=max_len))

model .add(SimpleRNN(64))

model.add(Dense(1, activation="sigmoid"))

model.compile(loss='binary_crossentropy',

optimizer='adam',

metrics=['accuracy'])

model . fit (sequences, Y, batch_size=128 , epochs=10,

validation_split=0.2)

Chapter 7: Foundations of LSTM | 327

9. Predict the mail category on new test data.

inp_test_seq = "WINNER! U win a 50@ prize reward & free entry to FA cup

final tickets! Text FA to 34212 to receive award"

test_sequences = mytokenizer.texts_to_sequences(np.array(Linp_test_seq]))

test_sequences_matrix = sequence.pad_sequences(test_sequences , maxlen=max_

len)

model .predict(test_sequences_matrix)

The output is as follows:

array([[@.979119]], dtype=float32)

Figure 7.39: Output for new test data

Activity 10: Create a French to English translation model

Solution:

1. Import the necessary Python packages and classes.

import os

import re

import numpy as np

2. Read the file in sentence pairs.

with open("fra.txt", 'r', encoding='utf-8') as f:

lines = f.read().splitc¢'\n')

num_samples = 20000 # Using only 20000 pairs for this example

lines_to_use = lines[: min(num_samples, len(lines) - 1)]

3. Remove \u202f character

for 1 in range(len(lines_to_use)):

lines_to_use[l] = re.sub("\u202f", "", lines_to_use[1])

for 1 in range(len(lines_to_use)):

lines_to_use[1] = re.sub("\d", " NUMBER_PRESENT ", lines_to_use[1])

328 | Appendix

4, Append 'BEGIN _ 'and' _END' words to target sequences. Map words to integers.

input_texts = []

target_texts = []

input_words = set()

target_words = set()

for line in lines_to_use:

target_text, input_text = line.splitc¢'\t')

target_text = 'BEGIN_ ' + target_text + ' _END'

input_texts.append(input_text)

target_texts.append(target_text)

for word in input_text.split():

if word not in input_words:

input_words.add(word)

for word in target_text.split():

if word not in target_words:

target_words.add(word)

max_input_seq_length = max(Llen(i.split()) for i in input_texts])

max_target_seq_length = max(Llen(i.split()) for i in target_texts])

input_words = sorted(list(input_words))

target_words = sorted(list(target_words))

num_encoder_tokens = len(input_words)

num_decoder_tokens = len(target_words)

5. Define encoder-decoder inputs.

input_token_index = dict(

C(word, i) for i, word in enumerate(input_words)])

target_token_index = dict(

[C(word, i) for i, word in enumerate(target_words)])

encoder_input_data = np.zeros(

(len(input_texts), max_input_seq_length),

dtype='float32') ’

decoder_input_data = np.zeros(

(len(target_texts), max_target_segq_length),

dtype='float32')

decoder_target_data = np.zeros(

(len(target_texts), max_target_seq_length, num_decoder_tokens),

Chapter 7: Foundations of LSTM | 329

dtype='float32')

for i, (input_text, target_text) in enumerate(zip(input_texts, target_
texts)):

for t, word in enumerate(input_text.split()):

encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):

decoder_input_dataLli, t] = target_token_index[word]

cy a I *

decoder_target_data is ahead of decoder_input_data #by one

timestep

decoder_target_data[i, t - 1, target_token_index[word]] = 1.

6. Build the model.

from keras.layers import Input, LSTM, Embedding, Dense

from keras.models import Model

embedding_size = 50

7. Initiate encoder training.

encoder_inputs = Input(shape=(None,))

encoder_after_embedding = Embedding(num_encoder_tokens, embedding_size)

(encoder_inputs)

encoder_lstm = LSTM(5@, return_state=True)_,

state_h, state_c = encoder_lstm(encoder_after_embedding)

encoder_states = [state_h, state_c]

8. Initiate decoder training.

decoder_inputs = Input(shape=(None,))

decoder_after_embedding = Embedding(num_decoder_tokens, embedding_size)

(decoder_inputs)

decoder_lstm = LSTM(5@, return_sequences=True, return_state=True)

decoder_outputs, _, _ = decoder_lstm(decoder_after_embedding,

initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

330 | Appendix

9. Define the final model.

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['acc'])

model .fit(Lencoder_input_data, decoder_input_data],

decoder_target_data,

batch_size=128,

epochs=20,

validation_split=0.05)

10. Provide inferences to encoder and decoder

encoder part

encoder_model = Model(encoder_inputs, encoder_states)

decoder part

decoder_state_input_h = Input(shape=(50,))

decoder_state_input_c = Input(shape=(50,))

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]

decoder_outputs_inf, state_h_inf, state_c_inf = decoder_lstm(decoder_

after_embedding, initial_state=decoder_states_inputs)

decoder_states_inf = [state_h_inf, state_c_inf]

decoder_outputs_inf = decoder_dense(decoder_outputs_inf)

decoder_model = Model(

[decoder_inputs] + decoder_states_inputs,

[decoder_outputs_inf] + decoder_states_inf)

11. Reverse-lookup token index to decode sequences

reverse_input_word_index = dict(

(i, word) for word, i in input_token_index.items())

reverse_target_word_index = dict(

(i, word) for word, i in target_token_index.items())

def decode_sequence(input_seq):

Chapter 7: Foundations of LSTM | 331

12. Encode input as a state vector

states_value = encoder_model.predict(input_seq)

13. Generate empty target sequence of length 1.

target_seq = np.zeros((1,1))

14. Populate the first character of target sequence with the start character.

target_seql®@, 0] = target_token_index['BEGIN_']

15. Sampling loop for a batch of sequences

stop_condition = False

decoded_sentence =

while not stop_condition:

output_tokens, h, c = decoder_model.predict(

[target_seq] + states_value)

16. Sample a token.

sampled_token_index = np.argmax(output_tokens)

sampled_word = reverse_target_word_index[sampled_token_index]

decoded_sentence += ' ' + sampled_word

17. Exit condition: either hit max length or find stop character.

if (sampled_word == '_END' or

len(decoded_sentence) > 60):

stop_condition = True

18. Update the target sequence (of length 1).

target_seq = np.zeros((1,1))

target_seql0, 0] = sampled_token_index

19. Update states

states_value = [h, c]

return decoded_sentence

332 | Appendix

20. Inference for user input: take in a word sequence, convert the sequence word by

word into encoded.

text_to_translate = "OU est ma voiture??"

encoder_input_to_translate = np.zeros(

(1, max_input_seq_length),

dtype='float32')

for t, word in enumerate(text_to_translate.split()):

encoder_input_to_translate[®@, t] = input_token_index[word]

decode_sequence(encoder_input_to_translate)

The output is as follows:

" Get a lot. END’

Figure 7.47: French to English translator

Chapter 8: State of the art in Natural Language Processing | 333

Chapter 8: State of the art in Natural Language Processing

Activity 11: Build a Text Summarization Model

Solution:

1. Import the necessary Python packages and classes.

import os

import re

import pdb

import string

import numpy as np

import pandas as pd

from keras.utils import to_categorical

import matplotlib.pyplot as plt

~matplotlib inline

2. Load the dataset and read the file.

path_data = "news_summary_small.csv"

df_text_file = pd.read_csv(path_data)

df_text_file.headlines = df_text_file.headlines.str.lower()

df_text_file.text = df_text_file.text.str.lower()

lengths_text = df_text_file. text. apply (len)

dataset = list(zip(df_text_file.text.values, df_text_file. headlines. values))

3. Make vocab dictionary.

input_texts = []

target_texts = []

input_chars = set()

target_chars = set()

for line in dataset:

input_text, target_text = list(line[@]), list(line[1])

target_text = ['BEGIN_'] + target_text + ['_END']

input_texts.append(input_text)

target_texts.append(target_text)

for character in input_text:

if character not in input_chars:

input_chars.add(character)

334 | Appendix

for character in target_text:

if character not in target_chars:

target_chars.add(character)

input_chars.add("<unk>")

input_chars.add("<pad>")

target_chars.add('"<pad>")

input_chars = sorted(input_chars)

target_chars = sorted(target_chars)

human_vocab = dict(zip(input_chars, range(len(input_chars))))

machine_vocab = dict(zip(target_chars, range(len(target_chars))))

inv_machine_vocab = dict(enumerate(sorted(machine_vocab)))

def string_to_int(string_in, length, vocab):

Converts all strings in the vocabulary into a list of integers

representing the positions of the

input string's characters in the "vocab"

Arguments:

string == input string

length -- the number of time steps you'd like, determines if the

output will be padded or cut

vocab -- vocabulary, dictionary used to index every character of your

*string:

Returns:

rep -- list of integers (or '<unk>') (size = length) representing the

position of the string's character in the vocabulary

A, Convert lowercase to standardize.

string_in = string_in. lower()

string_in = string_in.replace(',','')

if len(string_in) > length:

string_in = string_inL: length]

rep = list(map(lambda x: vocab.get(x, '<unk>'), string_in))

Chapter 8: State of the art in Natural Language Processing | 335

if len(string_in) < length:

rep += [vocab['<pad>']] * (length - len(string_in))

return rep

def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty):

X, Y = zip(*dataset)

X = np.array([string_to_int(i, Tx, human_vocab) for i in X])

Y = [string_to_int(t, Ty, machine_vocab) for t in Y]

print("X shape from preprocess: {}".format(X. shape))

Xoh = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(human_vocab)), X)))

Yoh = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(machine_vocab)), Y)))

return X, np.array(Y), Xoh, Yoh

def softmax(x, axis=1):

"""Softmax activation function.

Arguments

x : Tensor.

axis: Integer, axis along which the softmax normalization is

applied.

Returns

Tensor, output of softmax transformation.

Raises

ValueError: In case 'dim(x) == 1'.
wow

ndim = K.ndim(x)

if ndim ==

return K.softmax(x)

elif ndim > 2:

e = K.exp(x - K.max(x, axis=axis, keepdims=True))

s = K.sum(e, axis=axis, keepdims=True)

returne/s

else:

raise ValueError('Cannot apply softmax to a tensor that is 1D')

336 | Appendix

5. Run the previous code snippet to load data, get vocab dictionaries and define
some utility functions to be used later. Define length of input characters and

output characters.

Tx = 460

Ty s= 15

X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx,

Ty)
Define the model functions (Repeator, Concatenate, Densors, Dotor)

Defined shared layers as global variables

repeator = RepeatVector(Tx)

concatenator = Concatenate(axis=-1)

densorl = Dense(1@, activation = "tanh")

densor2 = Dense(1, activation = "relu")

activator = Activation(softmax, name='attention_weights')

dotor = Dot(axes = 1)

Define one-step-attention function:

def one_step_attention(h, s_prev):

Performs one step of attention: Outputs a context vector computed as a

dot product of the attention weights

"alphas" and the hidden states "h" of the Bi-LSTM.

Arguments:

h -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx,

2*n_h)

s_prev -- previous hidden state of the (post-attention) LSTM, numpy-

array of shape (m, n_s)

Returns:

context -- context vector, input of the next (post-attetion) LSTM cell

6. Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concate-
nate it with all hidden states "a"

s_prev = repeator(s_prev)

7. Use concatenator to concatenate a and s_prev on the last axis (= 1 line)

concat = concatenator([h, s_prev])

Chapter 8: State of the art in Natural Language Processing | 337

8. Use densor1 to propagate concat through a small fully-connected neural network
to compute the "intermediate energies" variable e.

e = densor1(concat)

9. Use densor2 to propagate e through a small fully-connected neural network to
compute the "energies" variable energies.

energies = densor2(e)

10. Use "activator" on "energies" to compute the attention weights "alphas"

alphas = activator(energies)

11. Use dotor together with "alphas" and "a" to compute the context vector to be
given to the next (post-attention) LSTM-cell

context = dotor([alphas, h])

return context

Define the number of hidden states for decoder and encoder.

nh = 32

ns = 64

post_activation_LSTM_cell = LSTM(n_s, return_state = True)

output_layer = Dense(len(machine_vocab), activation=softmax)

Define the model architecture and run it to obtain a model.

def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size):

Arguments:

Tx -- length of the input sequence

Ty -- length of the output sequence

n_h -- hidden state size of the Bi-LSTM

n_s -- hidden state size of the post-attention LSTM

human_vocab_size -- size of the python dictionary "human_vocab"

machine_vocab_size -- size of the python dictionary "machine_vocab"

Returns:

model -- Keras model instance

12. Define the inputs of your model with a shape (Tx,)

338 | Appendix

13. Define s@ and c®, initial hidden state for the decoder LSTM of shape (n_s,)

X = Input(shape=(Tx, human_vocab_size), name="input_first")

s@ = Input(shape=(n_s,), name='sQ')

cQ = Input(shape=(n_s,), name='cQ')

s = s@

c = cQ

14. Initialize empty list of outputs

outputs = []

15. Define your pre-attention Bi-LSTM. Remember to use return_sequences=True.

a = Bidirectional(LSTM(n_h, return_sequences=True))(X)

Iterate for Ty steps

for t in range(Ty):

Perform one step of the attention mechanism to get back the

context vector at step t

context = one_step_attention(h, s)

16. Apply the post-attention LSTM cell to the "context" vector.

Pass: initial_state = [hidden state, cell state]

S, _, ¢€ = post_activation_LSTM_cell(context, initial_state =

[s,cu)

17. Apply Dense layer to the hidden state output of the post-attention LSTM

out = output_layer(s)

18. Append "out" to the "outputs" list

outputs. append(out)

19. Create model instance taking three inputs and returning the list of outputs.

model = Model(inputs=[X, s@, cQ0], outputs=outputs) }

return model

model = model(Tx, Ty, n_h, n_s, lenChuman_vocab), len(machine_vocab))

#Define model loss functions and other hyperparameters. Also #initialize

decoder state vectors.

opt = Adam(lr = 0.005, beta_1=0.9, beta_2=0.999, decay = 0.01)

Chapter 8: State of the art in Natural Language Processing | 339

model. compile(loss='categorical_crossentropy', optimizer=opt,

metrics=['accuracy'])

sQ@ = np.zeros((10000, n_s))

cQ = np.zeros((1000@0, n_s))

outputs = list(Yoh.swapaxes(0,1))

Fit the model to our data:

model.fit([Xoh, s@, c@], outputs, epochs=1, batch_size=100)

#Run inference step for the new text.

EXAMPLES = ["Last night a meteorite was seen flying near the earth's

moon."]

for example in EXAMPLES:

source = string_to_int(example, Tx, human_vocab)

source = np.array(list(map(lambda x: to_categorical(x, num_

classes=len(human_vocab)), source)))

source = source[np.newaxis, :]

prediction = model.predict([source, s@, cQ])

prediction = np.argmax(prediction, axis = -1)

output = Linv_machine_vocab[Lint(i)] for i in prediction]

print("source:", example)

printC"output.",. *.’. joinCoutput))

The output is as follows:

source: Last night a meteorite was seen flying near the earth's moon,

output: aaaaa <pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>

Figure 8.18: Text summarization model output

340 | Appendix

Chapter 9: A practical NLP project workflow in an organisation

Code for LSTM model

1. Check if GPU is detected

import tensorflow as tf

tf. test. gpu_device_name()

2. Setting up collar notebook

from google.colab import drive

drive.mount('/content/gdrive')

Run the below command in a new cell

cd /content/gdrive/My Drive/Lesson-9/

Run the below command in a new cell

!unzip data.csv.zip

3. Import necessary Python packages and classes.

import os

import re

import pickle

import pandas as pd

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense, Embedding, LSTM

4, Load the data file.

def preprocess_data(data_file_path):

data = pd.read_csv(data_file_path, header=None) # read the csv

data.columns = ['rating', 'title', 'review'] # add column names

data['review'] = data['review'].apply(lambda x: x.lower()) # change

all text to lower

Chapter 9: A practical NLP project workflow in an organisation | 341

dataL'review'] = data['review'].apply((lambda x: re.sub('[*a-zA-z0-
9\s]','',x))) # remove all numbers

return data

df = preprocess_data('data.csv')

Initialize tokenization.

max_features = 2000

maxlength = 250

tokenizer = Tokenizer(num_words=max_features, split=' ')

Fit tokenizer.

tokenizer. fit_on_texts(df['review'].values)

X = tokenizer.texts_to_sequences(df['review']. values)

Pad sequences.

X = pad_sequences(X, maxlen=maxlength)

Get target variable

y_train = pd.get_dummies(df.rating).values

embed_dim = 128

hidden_units = 100

n_classes = 5

model = Sequential()

model.add(Embedding(max_features, embed_dim, input_length = X.shape[1]))

model .add(LSTMChidden_units))

model.add(Dense(n_classes, activation='softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics

= ['accuracy'])

print(model.summary())

9, Fit the model.

model. fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15,

validation_split=0. 2)

342 | Appendix

10. Save model and tokenizer.

model.save('trained_model.h5') # creates a HDF5 file 'trained_model.h5'

with open('trained_tokenizer.pkl', 'wb') as f: # creates a pickle file

"trained_tokenizer.pkl'

pickle.dump(tokenizer, f)

from google.colab import files

files. download('trained_model.h5')

files. download('trained_tokenizer.pkl')

Code for Flask

1, Import the necessary Python packages and classes.

import re

import pickle

import numpy as np

from flask import Flask, request, jsonify

from keras.models import load_model

from keras.preprocessing.sequence import pad_sequences

2. Define the input files and load in dataframe

def load_variables():

global model, tokenizer

model = load_model('trained_model.h5')

model._make_predict_function() # https://github.com/keras-team/keras/

issues/6462

with open('trained_tokenizer.pkl', 'rb') as f:

tokenizer = pickle. load(f)

Chapter 9: A practical NLP project workflow in an organisation | 343

3. Define preprocessing functions similar to the training code:

def do_preprocessing(reviews):

processed_reviews = []

for review in reviews:

review = review. lower()

processed_reviews.append(re.sub('[*a-zA-z@-9\s]', '', review))

processed_reviews = tokenizer.texts_to_sequences(np.array(processed_

reviews))

processed_reviews = pad_sequences(processed_reviews, maxlen=250)

return processed_reviews

4. Define a Flask app instance:

app = Flask(__name__)

5. Define an endpoint that displays a fixed message:

@app.route('/')

def home_routine():

return ‘Hello World!'

6. We'll have a prediction endpoint, to which we can send our review strings. The
kind of HTTP request we will use is a 'POST' request:

@app.route('/prediction', methods=['POST'])

def get_prediction():

get incoming text

run the model

if request.method == 'POST':

data = request.get_json()

data = do_preprocessing(data)

predicted_sentiment_prob = model.predict(data)

predicted_sentiment = np.argmax(predicted_sentiment_prob, axis=-1)

return str(predicted_sentiment)

7. Start the web server.

if _.name__ == '__main__':

load model

load_variables()

app. run(debug=True)

344 | Appendix

8. Save this file as app. py (any name could be used). Run this code from the terminal

using app. py:

python app.py

The output is as follows:

Using TensorFlow backend.

2019-83-24 23:08:25.948604: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions

that this TensorFlow binary was not compiled to use: AVX2 FMA

* Serving Flask app "app” (lazy loading)

* Environment: production

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

x Restarting with stat

Using TensorFlow backend.

2019-83-24 23:08:31.730337: 1 tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions

that this TensorFlow binary was not compiled to use: AVX2 FMA

* Debugger is active!
* Debugger PIN: 150-665-765

Figure 9.31: Output for flask

ey me ee
“| 7 ll sige taper’. abies bc0% “fe captured sinhubo v in-tihs secon Lone

7 ; decorum’ iancettatlie er of where Suy appar

* 7
>

be ¥ By
“ ’ 4

_ ssid E _—
oe

a := —

¢ Pail

. oe .

- J ;

fr -

; —~

ae

Index

About

All major keywords used in this book are captured alphabetically in this section. Each one is

accompanied by the page number of where they appear.

A
absolute:82

abstract: 102, 143

access: 92, 232, 234,

266, 286, 289

accuracy: 22, 28, 47,

50, O9=iz,0 1502, 94,

112-113, 116, 727, 150,

172.4 75-17, 208-209,

253. 2/0-210

activate: 98, 185

activated:75

activation: 73-78, 83, 86,

90, 102-103, 106-107,

115-116, 121, 143-144,

146-148, 150, 158, 160,

162-166, 168, 170-171,

174, 181, 190-191, 193,

196-197, 201-203,

208, 212-213, 220,

242, 249-252, 275

algorithm: 14, 22-25,

28-29, 36, 38-39, 46,

49, 54, 57-58, 60-61,

79-84, 86-87, 90-91,

94, 110, 112, 178

alphas: 238, 250-251
amazon: 124, 267, 280,

284-285, 287-289

amazonaws:289

amazonecs:289

analytics:92
app-packt: 283-284

arbitrary: 100, 238
argmax: 183, 225, 254, 278

arrays: 173, 185, 218
asarray:183
astype:183
asymmetry:159

B
backend: 143, 242

biases: 73, 76, 78, 83

bi-Istm: 250-252

binary: 60, 63, 80,

90-91, 115, 120-121,

172, 174, 189, 203,

208-209, 211, 228

C
calculus:110

categories: 7, 21, 36,

56-57, 59-61, 63, 87, 94

chatbot:7

chunked: 51-52

chunking: 35, 49-53, 57
chunks: 50-53

classes: 87, 93, 99,

106-107, 109, 115-116,

247, 254, 275

cluster: 22, 39, 88

cnn-based:117

coding:272
command: 3, 5, 10, 25, 31,

44, 89, 111, 271-272, 281,

283-284, 286, 289-290

composite:86
configure: 286, 288

console: 285-286

constant: 72, 127, 192, 292

corpora: 1, 5-8, 11, 33, 39,

42, 49, 56-57, 61, 65

corpus: 5, 8-9, 11, 13-15,

17-20, 22-24, 26,

29-32, 36, 39-40, 43,

47, 50-51, 53-55, 57,

59, 63-64, 90, 171, 178,

206, 216, 218, 220, 257

cortana: 7, 124

cortex:98

crosstropy:150

D
daemon:282

darrell:119

dashboard: 285-286

database: 15, 236, 241, 266

dataframe: 15-16,

89, 93, 273

dataset: 54, 69, 73-74, 78,

80-81, 87-88, 93, 99,

111, 114-116, 120, 172-173,

175, 177, 184-185, 210,

243-244, 247-248, 264

debugging:281
decode: 223, 225-226

deploy: 92, 261,

276, 282-284

docker: 280, 282-284,

289-292

dockerfile: 282-283, 290

dockerhub:283

domain: 231-232, 262, 292

dominant:233

dummies:274

E
e-commerce: 265-266

embedding: 21-22, 26,

29, 115, 156, 173-174,

203, 208-209, 219-220,

222-bas, 2te, 210

employ:116
entity: 7, 33, 35-36, 42,

30, 55-63, 65, 234

entropy:59
entrypoint:282
enumerate: 179, 181, 183,

217-218, 226, 244

epochs: 30, 91, 111-113,

115-116, 150-151,

175-176, 182, 208-209,

222, 221, 2%4, 219

F

feature: 22, 38, 79-80, 90,

101-102, 109, 265, 274

fields: 68, 94, 102, 266, 273
filename:178

fine-tuned: 105, 256

flatten: 106-107

flattened: 105-106

flattening: 105, 108
framework: 71, 92,

143, 152, 277

free-tier:285

function: 10, 12, 16-17, 19,

50-51, 54, 73, 75-77,

80-84, 86-87, 89-91,

94, 102-103, 106-107,

109-112, 120-121, 128,

134, 146, 151, 157-158,

160, 162-166, 168-171,

173-176, 178, 182-184,

193, 196-197, 201, 203,

209, 235-236, 239-243,

246-247, 249-250, 253,

258, 272-274, 277, 281

G
edrive:271
generic:256
genres:58
glorot:143
google: 6-7, 114, 124,

Zone200, 201,,267-269,
74 Se A FP As

googleblog:256

googling:29
gradient: 80, 82-87, 91,

94, 110, 112, 134-136,

142, 151, 157-160, 186,

190, 228, 232-233, 255

H
header:272
hierarchy:98

import: 12, 14, 16-19, 25,

30, 32, 44, 48, 54-55,

63, 89-90, 93, 99, 103,

106, 111-112, 114-115,

120, 145, 149, 152, 164,

173-175, 178, 183, 194,

203, 211, 213, 219, 242,

298, 270-272, 277

initialize: 55, 174, 195,

197-198, 200, 202,

206, 212, 218, 224, 233,

252, 254, 258, 273

install: 19, 25, 30, 48, 114,

233, 277, 282, 289

instance: 9, 14, 16, 45-46,

51, 54, 56, 73-74, 80, 93,

124, 172) 226}:252-253,

265, 278, 280, 284-291

integer: 179, 206-207,

217, 247, 249

iterate: 93, 252

J
jupyter: 9-10, 12, 14, 16-19,

29, 30, 43-44, 89, 93,
999120) 172, 185

K
keepdims:249

keras-team:277

kernel: 102, 106, 115, 143

L
lambda: 242, 247, 254, 272

lemmatize:16

library: 8, 12, 19, 24,

30, 50, 68, 89

Istm-based: 203, 210

Istm-cell:251

M
macosx:272

matmul: 165, 167, 169,

195, 198, 202

matplotlib: 51, 99, 103, 175

maxpooling:106
multiclass:182

multi-head:255

N
networking:116
neural: 2, 22, 28, 65,

67-68, 71-79, 83-84,

86-88, 90-94, 97-99,

101-102, 105, 109,

111, 118, 121, 123-125,

128, 155-157, 189-190,

2i1ealz,. 2224228)

231-233, 236-237,

239, 251, 257-258

newaxis:254

O
one-coded:246

onehot: 90-91

one-hot: 111, 114, 248

openai:257
overfit:98

p

package: 89, 178, 244, 256

pickle: 114, 276-277, 283

primary:69
private:286

pyplot: 99, 103-104,
150, 175

python: 3, 8-9, 12, 18,

29, 40, 51, 68, 92-93,
99, 103, 145, 149, 152,
164, 167, 172, 178, 194,
197, 203, 211, 241, 244,
292, 256, 258, 268,
2112192826883

pytorch:143

R
randint:183

random: 149, 164-165,

167, 169, 178, 183,

194-195, 197-198,

200, 202, 242-243

regression: 71, 76, 78-81,

83, 86-87, 134, 274

repository: 99, 120,

204, 227, 283

reshape:111

return: 12, 15, 89, 103,

143-147, 149-150, 164,

178, 183, 194, 220,

223, 226, 243-244,

247-249, 251-253,

Bi 2727278; 290

rmsprop: 174, 178, 181, 220

S
scikit:120

session: 175, 209,

227, 267, 276

setosa:74

sigmoid: 77, 90, 121,

142, 158, 162, 164-167,

174, 193-195, 197-198,

201, 208-209

softmax: 107, 109, 116,

146-148, 150, 181,

212-213, 220, 223,

239, 249-251, 275

stemmer: 14-15

stride:103

string: 10, 44-45, 178, 180,

243, 246-247, 254, 265

supervised: 38-40,
42-43, 57, 65,70,

79-80, 87-88, 171

T

tensor: 145, 240,

249-250, 256

tensorflow: 143, 172,

241, 256, 270, 282

threshold: 75, 142

torque:257

trigger: 175, 289

U
untagged: 39, 42-43
update: 81, 83-84, 86,

110, 133-136, 158-159,

162-165, 167,

169-170, 196-199, 201,

225-226, 244

V
validate:93

valueerror:249

v-class:257

vector: 21-22, 26-29,

33, 105, 111, 129, 132,

148, 164, 170-171, 181,

193, 197, 201, 203, 212,

223, 225, 233-240,

246, 250-252, 254

verbose: 30, 91,

113, 116, 183

W
weblink:271

website: 58, 124, 265

wordnet: 15-16

workdir: 282-283

workflow: 88, 184,

261-265, 289, 291

Y
yyyy-mm-dd: 236,

238, 241

Z
zipped: 271-272

aah. Dal

a

ae a

' se
= ‘

F i

ya eG
s

Ov) ” aoa

——
oe as viet

af Dvee, ae .

- ae
oo 7 a

, a : Si *

a , a a

,
4 i: -

T

ae ees .

od

fd mc nomena ALZT
3 aot sae eee ie
ete . —
Pas , Vr

vi OL etADAWHM

PM

CPSIA information can be obtained
at www.ICGtesting.com
Printed in the USA
FSHW020639100520
70040FS

a
e

/
n
a
y

ba

DY=1=ye) Learning for Natural
BR Tale[Ut-le (=m sicele=-tlale,

No) e)\ alate me (=1-) om (-v-1aallale m=] ¢) e)aces-lelal=<)

to various NLP tasks can take your

‘ore] ga) ele im-)a(e)at-1m-](ele)ainalaamnom-meo)aalel(=1K-1h\,

new level in terms of soeed and accuracy.
Deep Learning for Natural Language

Processing starts off by highlighting

idal=mey-j[om ole] fe l/aleme)(elel me) maal-mal-la0le-]|

relate [Ut-le (=m e] geler-\-1-1 [ale mele) aat-llanm Nal-meele| =

(efoto) amcomialigele|0(e-maal-me)cele)(-laamaal-ls

Niele mor- 1a m-re)\V(- Uli ale B-it-]«-tee) canal omr- [am al-10] ¢-]

lal=iayv(ola @aalere(-i-mm BI-\Vlale Malcolm tal-m-]alele hs
lal=10] ¢-] Malia) d @r-]celalix-[eim6| «-\-e-|alemaal=iig
je] =1ei | ilem=]¢=1- me) m=] ee) |(er-]4(e) ami 1i mall] em iele|

to understand how to select the best

model to suit your needs. As you advance

Course Objectives:

« Understand various pre-processing
intel alalie [6{=1-m ce) me (-1-1 eM (-t-]dall ale e)gele)i-laas

- Build a vector representation

fo] c=) aml Ul} ale MuVo) ge VA -lem-lale M@lle)Y—

an @l f-1- 1K Wal-[aal-cem-aldiavac-leele [alr4-1e
and parts-of-speech tagger with
PN oy- (el alm @) ol-lal | md

meleaps
AAUVAVAVA Of= (eld exe] aa)

idalgelele| ama) cme (1-1 om (--]¢allalemeelel ei—3

WiolU Mi m140 le \ymexe)a\Ve) 10a (e)al-]muc-e0lacalm

and recursive neural networks, in addition

to covering long short-term memory

networks (LSTM). In the later chapters,

WelUmYV11m oc-m-] 0) (=m xeme(-\V/-1(0] o-]e)e)|(er- 1a (ea

Ui} [ale | M =m K-Lolalal(e [6 (= 8-10 (ola N-\oe-lan=ala (ela)

laatete(=)m-l ale el=\-1a0B-r-1 cela n

By the end of this course, you will not

fol al \aar=\i-mciele | ale mtale)uii(=re(e(-me) mal-1a0 | ¢-1)

Tale 1Ur-le[-m e] celet- 1-1] ale Wm 010) m-] em e\-E-] 0) (=

to select the best text pre-processing

Tale Mal-101¢-] Mal-ia)e)s-@aalele [=] erento) i)

a number of NLP issues.

"um 10] |(¢ M- Ma at-lelallal-mar-lacii-iale)am aalete(-)

in Keras

as BI-\V/-1 [0] oki -) ame l-lal-i¢-lale)al-]e)e)i(e-lalela

using LSTM

im =10l (em Mdalelol-1m\\Ve]geMe|-le-leidlola)

he) e)i(er-1a(e]ameliialeM-lam-lat-lalslelaMaalete(-1|

ISBN 978-1-83855-029-5
90000

9 Hl

