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Preface 

About 

This section briefly introduces the author, the coverage of this book, the technical skills you'll 

need to get started, and the hardware and software requirements required to complete all of 

the included activities and exercises. 



ii | Preface 

About the Book 

Applying deep learning approaches to various NLP tasks can take your computational 
algorithms to a completely new level in terms of speed and accuracy. deep learning for 
natural language processing starts off by highlighting the basic building blocks of the 
natural language processing domain. The book goes on to introduce the problems that 
you can solve using state-of-the-art neural network models. Delving into the various 
neural network architectures and their specific areas of application will help you to 
understand how to select the best model to suit your needs. As you advance through 
this deep learning book, you'll study convolutional, recurrent, and recursive neural 
networks, in addition to covering long short-term memory networks (LSTM). In the 
later chapters, you will be able to develop applications using NLP techniques such as 

attention model and beam search. 

By the end of this book, you will not only have sound knowledge of natural language 
processing, but you will also be able to select the best text pre-processing and neural 
network models to solve a number of NLP issues. 

About the Authors 

Karthiek Reddy Bokka is a speech and audio machine learning engineer graduate 
from the University of Southern California and is currently working for Bi-amp 
Systems in Portland. His interests include deep learning, digital signal and audio 
processing, natural language processing, and computer vision. He has experience in 
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Description 

This book will start with the basic building blocks of natural language processing 
domain. It will introduce the problems that can be solved using the state-of-the-art 
Neural Network models. It will cover deeply the necessary pre-processing needed 
in the text processing tasks. The book will cover some hot topics in the NLP domain, 
which include Convolutional Neural Networks, Recurrent Neural Networks, and 

Long Short Term Memory Networks. The audience of this book will understand the 
importance of text pre-processing, and hyper parameter tuning as well. 

Learning Objectives 

¢ Learn the fundamentals of natural language processing. 

¢ Understand various pre-processing techniques for deep learning problems. 

* Develop Vector representation of text using word2vec & Glove. 

* Understand Named Entity Recognition. 

¢ Perform Parts of Speech Tagging using machine learning. 

¢ Train and deploy a scalable model. 

¢ Understand several architectures of neural networks. 

Audience 

Aspiring data scientists and engineers who want to be introduced to deep learning in 

the domain of natural language processing. 

They will start with the basics of natural language processing concepts and will 

gradually dive deeper into the concepts of Neural Networks and their application in 

text processing problems. They will get to learn different Neural Network architectures 

along with their application areas. Strong knowledge in Python and linear algebra skills 

are expected. 
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Approach 

Deep learning for natural language processing will start with the very basic concepts 
of natural language processing. Once the basic concepts are introduced, the audience 
will gradually be made aware of the applications and problems in the real world where 
NLP techniques are applicable. Once the user understands the problem domain, the 

approach for developing the solution will be introduced. As part of solution-based 
approach, basic building blocks of Neural Networks are discussed. Eventually, modern 
architectures of various Neural Networks are elaborated with their corresponding 
application areas with examples. 

Hardware Requirements 

For the optimal experience, we recommend the following hardware configuration: 

¢ Processor: Intel Core i5 or equivalent 

¢ Memory: 4 GB RAM 

¢ Storage: 5 GB available space 

Software Requirements 

We also recommend that you have the following software installed in advance: 

¢ OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Linux 

(Ubuntu, Debian, Red Hat, or Suse), or the latest version of OS X 

¢ Python (3.6.5 or later, preferably 3.7; available through https: //www.python.org / 
downloads/release /python-371/) 

¢ Jupyter (go to https: //jupyter.org /install and follow the instructions to install). 
Alternatively, you can use Anaconda to install Jupyter. 

¢ Keras (https: //keras.io/#installation) 

* Google Colab: It is a free Jupyter notebook environment and runs on cloud infra- 
structure. It is highly recommended as it requires no porn and has Pree -installed 
popular Python packages and libraries (https: //col: 3 
books /welcome.ipynb) 
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Conventions 

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 

A block of code is set as follows: 

from sklearn.datasets import make_blobs 

import matplotlib.pyplot as plt 

import numpy as np 

~Matplotlib inline 

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "Next, click Generate 
file followed by Download now and name the downloaded file model.h5." 

Installation and Setup 

Each great journey begins with a humble step, and our upcoming adventure in the land 
of data wrangling is no exception. Before we can do awesome things with data, we need 
to be prepared with the most productive environment. In this small note, we shall see 
how to do that. 

Install Python on Windows 

1. Find your desired version of Python on the official installation page at https: // 
www.python.org /downloads/windows/. 

2. Ensure that you install the correct "-bit" version depending on your computer 
system, either 32-bit or 64-bit. You can find out this information in the System 
Properties window of your OS. 

After you download the installer, simply double-click on the file and follow the 
user-friendly prompts shown on screen. 
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Install Python on Linux 

To install Python on Linux, perform the following: 

I. Open the command prompt and verify that p\Python 3 is not already installed by 
running python3 --version. 

To install Python 3, run this: 

sudo apt-get update 

sudo apt-get install python3.6 

If you encounter problems, there are numerous sources online that can help you 
troubleshoot the issue. 

Install Python on macOS X 

To install Python on macOS X, do the following: 

iP Open the terminal by holding command and space (CMD + Space), typing terminal 
in the open search box, and hitting enter. 

Install Xcode through the command line by running xcode-select --install. 

The easiest way to install Python 3 is using homebrew, which is installed through 
the command line by running ruby -e "$(curl -fsSL https: //raw. githubusercon- 

tent .com/Homebrew/install/master/install)". 

Add homebrew to your PATH environment variable. Open your profile in the 
command line by running sudo nano ~/.profile and inserting export PATH="/usr/ 
local/opt/python/libexec/bin: $PATH" at the bottom. 

The final step is to install Python. In the command line, run brew install python. 

Note that if you install Anaconda, the latest version of Python will be installed 
automatically. 
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Installing Keras 

To install Keras, perform the following steps: 

1. Since Keras requires another deep learning framework to behave as the backend, 
you'll need to download another framework first, and TensorFlow is recom- 
mended. 

To install TensorFlow for your platform, click on https: //www.tensorflow.org / 
install /. 

2. Once the backend has been installed, you can install Keras using either the follow- 
ing command: 

sudo pip install keras 

Alternatively, you can install it from the Github source, clone Keras using this: 

git clone https://github.com/keras-team/keras. git 

3. Install Keras on Python using the following commands: 

cd keras 

sudo python setup.py install 

You need to configure the backend now. Refer to the following link for more 
information: (https: //keras.io/backend/) 

Additional Resources 

The code bundle for this book is also hosted on GitHub at: https: //github.com/ 

TrainingByPackt /Deep-Learning-for-Natural-Language-Processing. We also have other 

code bundles from our rich catalog of books and videos available at https: //github. 
com /PacktPublishing /. Check them out! 

You can download the graphic bundle for the book from here: 

https: //www.packtpub.com /sites /default /files/downloads/9781838558024 
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Introduction to 

Natural Language 

Processing 
Learning Objectives 

By the end of this chapter, you will be able to: 

Describe natural language processing and its applications 

Explain different text preprocessing techniques 

Perform text preprocessing on text corpora 

Explain the functioning of Word2Vec and GloVe word embeddings 

Generate word embeddings using Word2Vec and GloVe 

Use the NLTK, Gensim, and Glove-Python libraries for text preprocessing and generating 

word embeddings 

This chapter aims to equip you with knowledge of the basics of natural language processing and 

experience with the various text preprocessing techniques used in Deep Learning. 
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Introduction 

Welcome to deep learning for Natural Language Processing. This book guides you in 
understanding and optimizing deep learning techniques for the purpose of natural 
language processing, which furthers the reality of generalized artificial intelligence. 
You will journey through the concepts of natural language processing - its applications 
and implementations - and learn the ways of deep neural networks, along with utilizing 
them to enable machines to understand natural language. 

The Basics of Natural Language Processing 

To understand what natural language processing is, let's break the term into two: 

¢ Natural language is a form of written and spoken communication that has 
developed organically and naturally. 

¢ Processing means analyzing and making sense of input data with computers. 

M4 te) Sy 

NLP model 

Figure 1.1: Natural language processing 

Therefore, natural language processing is the machine-based processing of human 
communication. It aims to teach machines how to process and understand the language 
of humans, thereby allowing an easy channel of communication between human and 
machines. 

For example, the personal voice assistants found in our phones and smart speakers, 
such as Alexa and Siri, are a result of natural language processing. They have been 
created in such a manner that they are able to not only understand what we say to 
them but also to act upon what we say and respond with feedback. Natural language 
processing algorithms aid these technologies in communicating with humans. 

® 
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The key thing to consider in the mentioned definition of natural language processing 
is that the communication needs to occur in the natural language of humans. We've 
been communicating with machines for decades now by creating programs to perform 
certain tasks and executing them. However, these programs are written in languages 
that are not natural languages, because they are not forms of spoken communication 
and they haven't developed naturally or organically. These languages, such as Java, 
Python, C, and C++, were created with machines in mind and the consideration always 

being, "what will the machine be able to understand and process easily?" 

While Python is a more user-friendly language and so is easier for humans to learn and 
be able to write code in, the basic point remains the same - to communicate with a 
machine, humans must learn a language that the machine is able to understand. 

Pe ‘tle : a 

a os = 

y y an Machine 

/ Natural [ , oc. \ 
Language \ 

\ Processing 

Figure 1.2: Venn diagram for natural language processing 

The purpose of natural language processing is the opposite of this. Rather than having 

humans conform to the ways of a machine and learn how to effectively communicate 

with them, natural language processing enables machines to conform to humans and 

learn their way of communication. This makes more sense since the aim of technology 

is to make our lives easier. 

To clarify this with an example, your first ever program was probably a piece of code 

that asked the machine to print ‘hello world’. This was you conforming to the machine 

and asking it to execute a task in a language that it understood. Asking your voice 

assistant to say ‘hello world’ by voicing this commang to it, and having it say hello 

world' back to you, is an example of the application of natural language processing, 

because you are communicating with a machine in your natural language (in this case, 

English). The machine is conforming to your form of communication, understanding 

what you're saying, processing what you're asking it to do, and then executing the task. 
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Importance of natural language processing 

The following figure illustrates the various sections of the field of artificial intelligence: 

Artificial Intelligence 

a. : nee Natural 
sil Language Robotics Vision Learning Neural Processin 
Networks : 

Fig 1.3: Artificial intelligence and some of its subfields 

Along with machine learning and deep learning, natural language processing is a 
subfield of artificial intelligence, and because it deals with natural language, it's actually 
at the intersection of artificial intelligence and linguistics. 

As mentioned, natural language processing is what enables machines to understand the 
language of humans, thus allowing an efficient channel of communication between the 
two. However, there is another reason Natural language processing is necessary, and 
that is because, like machines, machine learning and deep learning models work best 
with numerical data. Numerical data is hard for humans to naturally produce; imagine 
us talking in numbers rather than words. So, natural language processing works with 
textual data and converts it into numerical data, enabling machine learning and deep 
learning models to be fitted on it. Thus, it exists to bridge the communication gap 
between humans and machines by taking the spoken and written forms of language 
from humans and converting them into data that can be understood by machines. 
Thanks to natural language processing, the machine is able to make sense of, answer 
questions based on, solve problems using, and communicate in a natural language, 
among other things. 
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Capabilities of Natural language processing 

Natural language processing has many real-world applications that benefit the lives 
of humans. These applications fall under three broad capabilities of natural language 
processing: 

¢ Speech Recognition 

The machine is able to recognize a natural language in its spoken form 
and translate it into a textual form. An example of this is dictation on your 
smartphones - you can enable dictation and speak to your phone, and it will 
convert whatever you are saying into text. 

¢ Natural Language Understanding 

The machine is able to understand a natural language in both its spoken and 
written form. If given a command, the machine is able to understand and execute 
it. An example of this would be saying ‘Hey Siri, call home' to Siri on your iPhone 
for Siri to automatically call ‘home' for you. 

¢ Natural Language Generation 

The machine is able to generate natural language itself. An example of this is 
asking ‘Siri, what time is it?’ to Siri on your iPhone and Siri replying with the time - 
‘It's 2:08pm‘. 

These three capabilities are used to accomplish and automate a lot of tasks. Let's take a 

look at some of the things natural language processing contributes to, and how. 

Note 

Textual data is known as corpora (plural) and a corpus (singular). 
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Applications of Natural Language Processing 

The following figure depicts the general application areas of natural language 

processing: 

Natural Language 
Processing 

Figure 1.4: Application areas of natural language processing 

e Automatic text summarization 

This involves processing corpora to provide a summary. 

¢ Translation 

This entails translation tools that translate text to and from different languages, 
for example, Google Translate. 

¢ Sentiment analysis 

This is also known as emotional artificial intelligence or opinion mining, and it 
is the process of identifying, extracting, and quantifying emotions and affective 
states from corpora, both written and spoken. Sentiment analysis tools are used 
to process things such as customer reviews and social media posts to understand 
emotional responses to and opinions regarding particular things, such as the 
quality of food at a new restaurant. 
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Information extraction 

This is the process of identifying and extracting important terms from corpora, 
known as entities. Named entity recognition falls under this category and is a 
process that will be explained in the next chapter. 

Relationship extraction 

Relationship extraction involves extracting semantic relationships from corpora. 
Semantic relationships occur between two or more entities (such as people, 
organizations, and things) and fall into one of the many semantic categories. For 
example, if a relationship extraction tool was given a paragraph about Sundar 
Pichai and how he is the CEO of Google, the tool would be able to produce 
“Sundar Pichai works for Google" as output, with Sundar Pichai and Google being 
the two entities, and 'works for' being the semantic category that defines their 
relationship. 

Chatbot 

Chatbots are forms of artificial intelligence that are designed to converse with 
humans via speech and text. The majority of them mimic humans and make it feel 
as though you are speaking to another human being. Chatbots are being used in 
the health industry to help people who suffer from depression and anxiety. 

Social media analysis 

Social media applications such as Twitter and Facebook have hashtags and trends 
that are tracked and monitored using natural language processing to understand 
what is being talked about around the world. Additionally, natural language 
processing aids the process of moderation by filtering out negative, offensive, and 
inappropriate comments and posts. 

Personal voice assistants 

Siri, Alexa, Google Assistant, and Cortana are all personal voice assistants that 

leverage natural language processing techniques to understand and respond to 

what we Say. 

Grammar checking 

Grammar-checking software automatically checks and corrects your grammar, 

punctuation, and typing errors. 
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Text Preprocessing 

When answering questions on a comprehension passage, the questions are specific to 

different parts of the passage, and so while some words and sentences are important 
to you, others are irrelevant. The trick is to identify key words from the questions and 
match them to the passage to find the correct answer. 

Text preprocessing works in a similar fashion - the machine doesn't need the irrelevant 
parts of the corpora; it just needs the important words and phrases required to execute 
the task at hand. Thus, text preprocessing techniques involve prepping the corpora 
for proper analysis and for the machine learning and deep learning models. Text 
preprocessing is basically telling the machine what it needs to take into consideration 
and what it can disregard. 

Each corpus requires different text preprocessing techniques depending on the 
task that needs to be executed, and once you've learned the different preprocessing 
techniques, you'll understand where to use what and why. The order in which the 
techniques have been explained is usually the order in which they are performed. 

We will be using the NLTK Python library in the following exercises, but feel free to use 
different libraries while doing the activities. NLTK stands for Natural Language Toolkit 
and is the simplest and one of the most popular Python libraries for natural language 
processing, which is why we will be using it to understand the basic concepts of natural 
language processing. 

Note 

For further information on NLTK, go to https://www.nitk.org/. 

Text Preprocessing Techniques 

The following are the most popular text preprocessing techniques in natural language 
processing: 

¢ Lowercasing /uppercasing 

¢ Noise removal 

¢ Text normalization 

¢ Stemming 
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¢ Lemmatization 

¢ Tokenization 

¢ Removing stop words 

Let's look at each technique one by one. 

Lowercasing/Uppercasing 

This is one of the most simple and effective preprocessing techniques that people 
often forget to use. It either converts all the existing uppercase characters into 
lowercase ones so that the entire corpus is in lowercase, or it converts all the lowercase 
characters present in the corpus into uppercase ones so that the entire corpus is in 
uppercase. 

This method is especially useful when the size of the corpus isn't too large and the task 
involves identifying terms or outputs that could be recognized differently due to the 
case of the characters, since a machine inherently processes uppercase and lowercase 
letters as separate entities — 'A' is different from ‘a. This kind of variation in the input 
capitalization could result in incorrect output or no output at all. 

An example of this would be a corpus that contains both ‘India’ and ‘india’ Without 
applying lowercasing, the machine would recognize these as two separate terms, when 
in reality they're both different forms of the same word and correspond to the same 
country. After lowercasing, there would exist only one instance of the term "India," 
which would be ‘india, simplifying the task of finding all the places where India has been 
mentioned in the corpus. 

Note 

All exercises and activities will be primarily developed on Jupyter Notebook. You 

will need to have Python 3.6 and NLTK installed on your system. 

Exercises 1 - 6 can be done within the same Jupyter notebook. 
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Exercise 1: Performing Lowercasing on a Sentence 

In this exercise, we will take an input sentence with both uppercase and lowercase 
characters and convert them all into lowercase characters. The following steps will help 
you with the solution: 

1. Open cmd or another terminal depending on your operating system. 

2. Navigate to the desired path and use the following command to initiate a Jupyter 

notebook: 

jupyter notebook 

3. Store an input sentence in an 's' variable, as shown: 

s = "The cities I like most in India are Mumbai, Bangalore, Dharamsala and 

Allahabad." 

4, Apply the lower() function to convert the capital letters into lowercase characters 
and then print the new string, as shown: 

s = s.lower() 

print(s) 

Expected output: 

the cities i like most in india are mumbai, bangalore, dharamsala and allahabad. 

Figure 1.5: Output for lowercasing with mixed casing in a sentence 

9. Create an array of words with capitalized characters, as shown: 

words = ['indiA', 'India', ‘'india', 'iNDia'] 

6. Using list comprehension, apply the lower() function on each element of the words 
array and then print the new array, as follows: 

words = [word.lower() for word in words] 

print (words) 

Expected output: 

[‘india’, ‘india’, ‘india’, ‘india’] 

Figure 1.6: Output for lowercasing with mixed casing of words 
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Noise Removal 

Noise is a very general term and can mean different things with respect to different 
corpora and different tasks. What is considered noise for one task may be what is 
considered important for another, and thus this is a very domain-specific preprocessing 
technique. For example, when analyzing tweets, hashtags might be important to 
recognize trends and understand what's being spoken about around the globe, but 
hashtags may not be important when analyzing a news article, and so hashtags would 
be considered noise in the latter's case. 

Noise doesn't include only words, but can also include symbols, punctuation marks, 
HTML markup (<,>, *, ?,.), numbers, whitespaces, stop words, particular terms, 

particular regular expressions, non-ASCII characters (\W|\d+), and parse terms. 

Removing noise is crucial so that only the important parts of the corpora are fed into 
the models, ensuring accurate results. It also helps by bringing words into their root or 
standard form. Consider the following example: 

[wh cis [Without noe 
sleepy 

sleepy!! 

#sleepy sleepy 

>>>>>sleepy>>>> 

<a>sleepy</a> 

Figure 1.7: Output for noise removal 

After removing all the symbols and punctuation marks, all the instances of sleepy 

correspond to the one form of the word, enabling more efficient prediction and analysis 

of the corpus. 
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Exercise 2: Removing Noise from Words 

In this exercise, we will take an input array containing words with noise attached (such 
as punctuation marks and HTML markup) and convert these words into their clean, 
noise-free forms. To do this, we will need to make use of Python's regular expression 
library. This library has several functions that allow us to filter through input data and 
remove the unnecessary parts, which is exactly what the process of noise removal aims 
to do. 

Note 

To learn more about 're,' click on https://docs.python.org/3/library/re.html. 

1. In the same Jupyter notebook, import the regular expression library, as shown: 

import re 

2. Create a function called 'clean_words’, which will contain methods to remove 

different types of noise from the words, as follows: 

def clean_words(text): 

#remove html markup 

text = re.sub("(<.*?>)","", text) 

#remove non-ascii and digits 

text=re.sub("(\W|\d+)","_ ", text) 

#remove whitespace 

text=text.strip() 

return text 

3. Create an array of raw words with noise, as demonstrated: 

raw = ['..sleepy', 'sleepy!!', '#sleepy', '>>>>>sleepy>>>>', '<a>sleepy</ 
a>'] 

4, Apply the clean_words() function on the words in the raw array and then print the 
array of clean words, as shown: 

2 
clean = [clean_words(r) for r in raw] 

print(clean) 
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Expected output: 

[‘sleepy’, ‘sleepy’, ‘sleepy’, ‘sleepy’, ‘sleepy’ ] 

Figure 1.8: Output for noise removal 

Text Normalization 

This is the process of converting a raw corpus into a canonical and standard form, 
which is basically to ensure that the textual input is guaranteed to be consistent before 
it is analyzed, processed, and operated upon. 

Examples of text normalization would be mapping an abbreviation to its full form, 
converting several spellings of the same word to one spelling of the word, and so on. 

The following are examples for canonical forms of incorrect spellings and abbreviations: 

Spaghetti 

Spaghett 
Spaghetty 

Spagetty 

Figure 1.9: Canonical form for incorrect spellings 

aw form | Canonical form 

be right back 

Figure 1.10: Canonical form for abbreviations 

There is no standard way to go about normalization since it is very dependent on the 

corpus and the task at hand. The most common way to go about it is with dictionary 

mapping, which involves manually creating a dictionary that maps all the various forms 

of one word to that one word, and then replaces each of those words with one standard 

form of the word. 
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Stemming 

Stemming is performed on a corpus to reduce words to their stem or root form. The 
reason for saying "stem or root form" is that the process of stemming doesn't always 
reduce the word to its root but sometimes just to its canonical form. 

The words that undergo stemming are known as inflected words. These words are in 
a form that is different from the root form of the word, to imply an attribute such as 
the number or gender. For example, "journalists" is the plural form of "journalist." Thus, 
stemming would cut off the 's' bringing "journalists" to its root form: 

Annoying 

Annoyed Annoy 

Figure 1.11: Output for stemming 

Stemming is beneficial when building search applications due to the fact that when 
searching for something in particular, you might also want to find instances of that 
thing even if they're spelled differently. For example, if you're searching for exercises in 
this book, you might also want 'Exercise' to show up in your search. 

However, stemming doesn't always provide the desired stem, since it works by chopping 
off the ends of the words. It's possible for the stemmer to reduce ‘troubling’ to 'troubl' 
instead of 'trouble' and this won't really help in problem solving, and so stemming isn't a 
method that's used too often. When it is used, Porter's stemming algorithm is the most 
common algorithm for stemming. 

Exercise 3: Performing Stemming on Words 

In this exercise, we will take an input array containing various forms of one word and 
convert these words into their stem forms. 

1. Inthe same Jupyter notebook, import the nltk and pandas libraries as well as 

Porter Stemmer, as shown: 

import nltk 

import pandas as pd 

from nltk.stem import PorterStemmer as ps 

2. Create an instance of stemmer, as follows: 

stemmer = ps() 
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3. Create an array of different forms of the same word, as shown: 

words=['annoying', 'annoys', ‘annoyed', ‘annoy'] 

4. Apply the stemmer to each of the words in the words array and store them in a new 
array, as given: 

stems =[stemmer.stem(word = word) for word in words] 

5. Print the raw words and their stems in the form of a DataFrame, as shown: 

sdf = pd.DataFrame({'raw word': words, 'stem': stems}) 

sdf 

Expected output: 

Out[ 14]: 
raw word stem 

0 annoying annoy 

1 annoys annoy 

2 annoyed annoy 

3 annoy annoy 

Figure 1.12: Output of stemming 

Lemmatization 

Lemmatization is a process that is like stemming - its purpose is to reduce a word to 
its root form. What makes it different is that it doesn't just chop the ends of words off 
to obtain this root form, but instead follows a process, abides by rules, and often uses 

WordNet for mappings to return words to their root forms. (WordNet is an English 
language database that consists of words and their definitions along with synonyms and 
antonyms. It is considered to be an amalgamation of a dictionary and a thesaurus.) For 
example, lemmatization is capable of transforming the word 'better' into its root form 
‘g00d’, since 'better' is just the comparative form of 'good." 

While this quality of lemmatization makes it highly appealing and more efficient 
when compared with stemming, the drawback is that since lemmatization follows 
such an organized procedure, it takes a lot more time than stemming does. Hence, 
lemmatization is not recommended when you're working with a large corpus. 
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Exercise 4: Performing Lemmatization on Words 

In this exercise, we will take an input array containing various forms of one word and 

convert these words into their root form. 

L In the same Jupyter notebook as the previous exercise, import WordNetLemmatizer 

and download WordNet, as shown: 

from nltk.stem import WordNetLemmatizer as wnl 

nltk.download('wordnet' ) 

Create an instance of lemmatizer, as follows: 

lemmatizer = wnl() 

Create an array of different forms of the same word, as demonstrated: 

words = ['troubling', 'troubled', 'troubles', 'trouble'] 

Apply lemmatizer to each of the words in the words array and store them in a new 
array, as follows. The word parameter provides the lemmatize function with the 
word it is supposed to lemmatize. The pos parameter is the part of speech you 
want the lemma to be. 'v' stands for verb and thus the lemmatizer will reduce the 

word to its closest verb form: 

# v denotes verb in "pos" 

lemmatized = [Llemmatizer.lemmatize(word = word, pos = 'v') for word in 

words ] 

Print the raw words and their root forms in the form of a DataFrame, as shown: 

ldf = pd.DataFrame({'raw word': words, 'lemmatized': lemmatized}) 

ldf = ldf[L'raw word','lemmatized' ]] 

ldf 

Expected output: 

raw word lemmatized 

0 troubling trouble 

1 = troubled trouble 

# troubles trouble " 

3 trouble trouble 

Figure 1.13: Output of lemmatization 
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Tokenization 

Tokenization is the process of breaking down a corpus into individual tokens. Tokens 
are the most commonly used words - thus, this process breaks down a corpus into 
individual words - but can also include punctuation marks and spaces, among other 
things. 

This technique is one of the most important ones since it is a prerequisite for a lot of 

applications of natural language processing that we will be learning about in the next 
chapter, such as Parts-of-Speech (PoS) tagging. These algorithms take tokens as input 
and can't function with strings or paragraphs of text as input. 

Tokenization can be performed to obtain individual words as well as individual 
sentences as tokens. Let's try both of these out in the following exercises. 

Exercise 5: Tokenizing Words 

In this exercise, we will take an input sentence and produce individual words as tokens 

from it. 

1. In the same Jupyter notebook, import n1tk: 

import nltk 

2. From nltk, import word_tokenize and punkt, as shown: 

nltk.download('punkt' ) 

from nltk import word_tokenize 

3. Store words in a variable and apply word_tokenize() on it, then print the results, as 

follows: 

s = "hi! my name is john." 

tokens = word_tokenize(s) 

tokens 

Expected output: 

f°hi", “2°, my", "name", ‘is", ‘john’, °."] 

Figure 1.14: Output for the tokenization of words 

As you can see, even the punctuation marks are tokenized and considered as individual 

tokens. 

Now let's see how we can tokenize sentences. 
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Exercise 6: Tokenizing Sentences 

In this exercise, we will take an input sentence and produce individual words as tokens 

from it. 

1. Inthe same Jupyter notebook, import sent_tokenize, as shown: 

from nltk import sent_tokenize 

2. Store two sentences in a variable (our sentence from the previous exercise was 
actually two sentences, so we can use the same one to see the difference between 
word and sentence tokenization) and apply sent_tokenize() on it, then print the 

results, as follows: 

s = "hi! my name is shubhangi." 

tokens = sent_tokenize(s) 

tokens 

Expected output: 

f'hi!l*, ‘my name is john.‘ ] 

Figure 1.15: Output for tokenizing sentences 

As you can see, the two sentences have formed two individual tokens. | 

Additional Techniques 

There are several ways to perform text preprocessing, including the usage of a variety 
of Python libraries such as BeautifulSoup to strip away HTML markup. The previous 
exercises serve the purpose of introducing some techniques to you. Depending on 
the task at hand, you may need to use just one or two or all of them, including the 
modifications made to them. For example, at the noise removal stage, you may find it 
necessary to remove words such as 'the;,’ ‘and, 'this, and ‘it So, you will need to create 

an array containing these words and pass the corpus through a for loop to store only 
the words that are not a part of that array, removing the noisy words from the corpus. 
Another way of doing this is given later in this chapter and is done after tokenization 
has been performed. 
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Exercise 7: Removing Stop Words 

In this exercise, we will take an input sentence and remove the stop words from it. 

1. Open a Jupyter notebook and download 'stopwords' using the following line of 
code: 

nltk.download('stopwords' ) 

2. Store a sentence in a variable, as shown: 

s = "the weather is really hot and i want to go for a swim" 

3. Import stopwords and create a set of the English stop words, as follows: 

from nltk.corpus import stopwords 

stop_words = set(stopwords.words('english' )) 

4, Tokenize the sentence using word_tokenize, and then store those tokens that do 
not occur in stop_words in an array. Then, print that array: 

tokens = word_tokenize(s) 

tokens = [word for word in tokens if not word in stop_words] 

print(tokens) 

Expected output: 

[‘weather’, ‘really’, ‘hot", "want", ‘go’, *swim’] 

Figure 1.16: Output after removing stopwords 

Additionally, you may need to convert numbers into their word forms. This is also 
a method you can add to the noise removal function. Furthermore, you might need 
to make use of the contractions library, which serves the purpose of expanding the 
existing contractions in the text. For example, the contractions library will convert 
‘you're’ into 'you are, and if this is necessary for your task, then it is recommended to 
install this library and use it. 

Text preprocessing techniques go beyond the ones that have been discussed in this 

chapter and can include anything and everything that is required for a task or a corpus. 
In some instances, some words may be important, while in others they won't be. 
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Word Embeddings 

As mentioned in the earlier sections of this chapter, natural language processing 
prepares textual data for machine learning and deep learning models. The models 
perform most efficiently when provided with numerical data as input, and thus a key 
role of natural language processing is to transform preprocessed textual data into 
numerical data, which is a numerical representation of the textual data. 

This is what word embeddings are: they are numerical representations in the form of 
real-value vectors for text. Words that have similar meanings map to similar vectors and 
thus have similar representations. This aids the machine in learning the meaning and 
context of different words. Since word embeddings are vectors mapping to individual 
words, word embeddings can only be generated once tokenization has been performed 
on the corpus. 
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Figure 1.17: Example for word embeddings 

Word embeddings encompass a variety of techniques used to create a learned 
numerical representation and are the most popular way to represent a document's 
vocabulary. The beneficial aspect of word embeddings is that they are able to capture 
contextual, semantic, and syntactic similarities, and the relations of a word with othen 

words, to effectively train the machine to comprehend natural language. This is the 
main aim of word embeddings - to form clusters of similar vectors that correspond to 
words with similar meanings. 
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The reason for using word embeddings is to make machines understand synonyms 
the same way we do. Consider an example of online restaurant reviews - they consist 
of adjectives describing food, ambience, and the overall experience. They are either 
positive or negative, and comprehending which reviews fall into which of these two 
categories is important. The automatic categorization of these reviews can provide a 
restaurant with quick insights as to what areas they need to improve on, what people 
liked about their restaurant, and so on. 

There exist a variety of adjectives that can be classified as positive, and the same 
goes with negative adjectives. Thus, not only does the machine need to be able to 
differentiate between negative and positive, it also needs to learn and understand that 
multiple words can relate to the same category because they ultimately mean the same 
thing. This is where word embeddings are helpful. 

Consider the example of restaurant reviews received on a food service application. The 
following two sentences are from two separate restaurant reviews: 

¢ Sentence A - The food here was great. 

e Sentence B - The food here was good. 

The machine needs to be able to comprehend that both these reviews are positive and 
mean a similar thing, despite the adjective in both sentences being different. This is 
done by creating word embeddings, because the two words ‘good' and 'great' map to 
two separate but similar real-value vectors and, thus, can be clustered together. 

The Generation of Word Embeddings 

We've understood what word embeddings are and their importance; now we need to 
understand how they're generated. The process of transforming words into their real- 
value vectors is known as vectorization and is done by word embedding techniques. 
There are many word embedding techniques available, but in this chapter, we will be 
discussing the two main ones - Word2Vec and GloVe. Once word embeddings (vectors) 
have been created, they combine to form a vector space, which is an algebraic model 

consisting of vectors that follow the rules of vector addition and scalar multiplication. If 
you don't remember your linear algebra, this might be a good time to quickly review it. 

Word2Vec 

As mentioned earlier, Word2Vec is one of the word embedding techniques used to 
generate vectors from words - something you can probably understand from the name 

itself. 
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Word2Vec is a shallow neural network — it has only two layers - and thus does not 
qualify as a deep learning model. The input is a text corpus, which it uses to generate 
vectors as the output. These vectors are known as feature vectors for the words present 
in the input corpus. It transforms a corpus into numerical data that can be understood 

by a deep neural network. 

The aim of Word2Vec is to understand the probability of two or more words occurring 
together and thus to group words with similar meanings together to form a cluster in 
a vector space. Like any other machine learning or deep learning model, Word2Vec 
becomes more and more efficient by learning from past data and past occurrences 
of words. Thus, if provided with enough data and context, it can accurately guess a 
word's meaning based on past occurrences and context, similar to how we understand 
language. 

For example, we are able to create a connection between the words 'boy' and 'man’, and 
‘girl’ and ‘woman, once we have heard and read about them and understood what they 
mean. Likewise, Word2Vec can also form this connection and generate vectors for these 
words that lie close together in the same cluster so as to ensure that the machine is 
aware that these words mean similar things. 

Once Word2Vec has been given a corpus, it produces a vocabulary wherein each word 
has a vector of its own attached to it, which is known as its neural word embedding, and 

simply put, this neural word embedding is a word written in numbers. 

Functioning of Word2Vec 

Word2Vec trains a word against words that neighbor the word in the input corpus, and 
there are two methods of doing so: 

* Continuous Bag of Words (CBOW): 

This method predicts the current word based on the context. Thus, it takes the 
word's surrounding words as input to produce the word as output, and it chooses 

this word based on the probability that this is indeed the word that is a part of the 
sentence. 

For example, if the algorithm is provided with the words "the food was" and needs 
to predict the adjective after it, it is most likely to output the word "good" rather 
than output the word "delightful," since there would be more instances where the 
word "good" was used, and thus it has learned that "good" has a higher probability 
than "delightful" CBOW it said to be faster than skip-gram and hasahigher 4% 
accuracy with more frequent words. 
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: algorithm 

Fig 1.18: The CBOW algorithm 

¢ Skip-gram 

This method predicts the words surrounding a word by taking the word as 
input, understanding the meaning of the word, and assigning it to a context. 
For example, if the algorithm was given the word "delightful," it would have to 
understand its meaning and learn from past context to predict that the probability 
that the surrounding words are "the food was" is highest. Skip-gram is said to 
work best with a small corpus. 

delightful 

Fig 1.19: The skip-gram algorithm 
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While both methods seem to be working in opposite manners, they are essentially 
predicting words based on the context of local (nearby) words; they are using a 
window of context to predict what word will come next. This window is a configurable 
parameter. 

The decision of choosing which algorithm to use depends on the corpus at hand. 
CBOW works on the basis of probability and thus chooses the word that has the highest 
probability of occurring given a specific context. This means it will usually predict only 
common and frequent words since those have the highest probabilities, and rare and 
infrequent words will never be produced by CBOW. Skip-gram, on the other hand, 
predicts context, and thus when given a word, it will take it as a new observation rather 

than comparing it to an existing word with a similar meaning. Due to this, rare words 
will not be avoided or looked over. However, this also means that a lot of training data 
will be required for skip-gram to work efficiently. Thus, depending on the training data 
and corpus at hand, the decision to use either algorithm should be made. 

Essentially, both algorithms, and thus the model as a whole, require an intense 
learning phase where they are trained over thousands and millions of words to better 
understand context and meaning. Based on this, they are able to assign vectors to 
words and thus aid the machine in learning and predicting natural language. To 
understand Word2Vec better, let's do an exercise using Gensim's Word2Vec model. 

Gensim is an open source library for unsupervised topic modeling and natural language 
processing using statistical machine learning. Gensim's Word2Vec algorithm takes an 
input of sequences of sentences in the form of individual words (tokens). 

Also, we can use the min_count parameter. It exists to ask you how many instances of a 
word should be there in a corpus for it to be important to you, and then takes that into 
consideration when generating word embeddings. In a real-life scenario, when dealing 
with millions of words, a word that occurs only once or twice may not be important 
at all and thus can be ignored. However, right now, we are training our model only on 
three sentences each with only 5-6 words in every sentence. Thus, min_ count is set to 
1 since a word is important to us even if it occurs only once. 
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Exercise 8: Generating Word Embeddings Using Word2Vec 

In this exercise, we will be using Gensim's Word2Vec algorithm to generate word 
embeddings post tokenization. 

Note 

You will need to have gensim installed on your system for the following exercise. 
You can use the following command to install it, if it is not already installed: 

pip install --upgrade gensim 

For further information, click on https://radimrehurek.com/gensim/models/ 

word2vec.html. 

The following steps will help you with the solution: 

ile 

Z. 

Open a new Jupyter notebook. 

Import the Word2Vec model from gensim, and import word_tokenize from nltk, as 

shown: 

from gensim.models import Word2Vec as wtv 

from nltk import word_tokenize 

Store three strings with some common words into three separate variables, and 
then tokenize each sentence and store all the tokens in an array, as shown: 

s1 = "Ariana Grande is a singer" 

s2 = "She has been a singer for many years" 

s3 = "Ariana is a great singer" 

sentences = [word_tokenize(s1), word_tokenize(s2), word_tokenize(s3) ] 

You can print the array of sentences to view the tokens. 

Train the model, as follows: 

model = wtv(sentences, min_count = 1) 

Word2Vec's default value for min_count is 5. 
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5. Summarize the model, as demonstrated: 

print('this is the summary of the model: ') 

print(model ) 

Your output will look something like this: 

this is the summary of the model: 

Word2Vec(vocab=12, size=10@, alpha=0.9025) 

Figure 1.20: Output for model summary 

Vocab = 12 signifies that there are 12 different words present in the sentences that 
were input to the model. 

6. Let's find out what words are present in the vocabulary by summarizing it, as 
shown: 

words = list(model.wv.vocab) 

print('this is the vocabulary for our corpus: ') 

print (words) 

Your output will look something like this: 

this is the vocabulary for our corpus: 

[’Ariana’, ‘Grande’, ‘is’, ‘a’, ‘singer’, ‘She’, ‘has’, ‘been’, ‘for’, ‘many’, ‘years’, ‘great’ ] 

Figure 1.21: Output for the vocabulary of the corpus 

Let's see what the vector (word embedding) for the word 'singer' is: 

print("the vector for the word singer: ") 

print(model['singer' ]) 
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Expected output: 

the vector for the word singer: 
[ 3.9150659e-03 2.6659777e-03 1.0298982e-03 -2.7156321e-03 

1.9977870e-03 3.1204436e-03 1.2055682e-04 1.0450699e-03 

-6.4308796e-04 3.0822519e-03 2.1972554e-03 5.1480172e-05 

-3.7099270e-03 3.9439583e-03 6.8276987e-04 7.7137066e-04 

2.3698520e-03 -7.8547641e-04 6.0383842e-04 4.6370425e-03 

-1.6786088e-03 1.7417425e-03 2.4216413e-03 3.6545738e-03 

-1.9871239e-03 2.94894212-03 -1.2810023e-03 -4.9174053e-04 

-3.9743204e-03 -2.7023794e-03 -3.0541950e-04 -1.5724347e-03 

-2.1029566e-03 -2.1624754e-03 2.1620055e-04 -1.4000515e-03 

-4.0824865e-03 4.6588355e-04 3.5028579e-03 4.8283348e-03 

-2.8737928e-03 -4.5569306e-03 -7.6568732e-04 -3.3311991e-05 

3.5790715e-03 4,.2424244e-03 3.3478225e-03 -7.4140396e-04 

1,0030111¢-03 -5.2394503e-04 5.8383477e-04 -4.8430995e-03 

2.6972082e-03 -4.8002079e-03 -2.3011414e-03 8.0388715e-04 

3.1952575e-05 -8.1621204e-04 -3.8127291e-03 -6.7428290e-04 

-1.7713077e-03 -3.0159748e-03 1.7178850e-03 -1.9258332e-03 

-2.4637436e-03 3.3779652e-03 2.7676420e-03 1.8853768e-03 

-2.4718521¢€-03 -1.9754141e-03 2.6104036e-03 -2.1335895e-03 

2.4405334e-03 -3.2013952e-04 3.9961869e-03 4.0419102e-03 

2.0586823e-03 4.9897884e-03 4.5599132e-03 -1.0976522e-03 

1.5563263e-03 3.9063310e-03 -2.9308300e-03 -4.8254002e-03 

-8.7642738e-06 3.9748671e-03 5.2895391e-04 6.35350121e-04 

-1.2614765¢-03 -8.5018738e-04 3.7659388e-03 3.0237564e-03 

4,5014662e-03 4.3258793e-03 -4.2659100e-03 4.9081761e-03 

-3.9214552e-03 -2.4262110e-03 -8.1192164e-05 -4.1112076e-03) 

Figure 1.22: Vector for the word ‘singer’ 

Our Word2Vec model has been trained on these three sentences, and thus its 

vocabulary only includes the words present in this sentence. If we were to find words 
that are similar to a particular input word from our Word2Vec model, we wouldn't get 

words that actually make sense since the vocabulary is so small. Consider the following 

examples: 

#lookup top 6 similar words to great 

wi = ["great"] 

model.wv.most_similar (positive=w1, topn=6) 

The ‘positive’ refers to the depiction of only positive vector values in the output. 
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The top six similar words to ‘great' would be: 

[("has’, @.13253481686115265), 
("been’, @.12117968499660492), 
("for’, @.10518198771953583), 
(‘singer’, @.03586522936820984) , 
("a', @.08413773775100708), 
("She’, @.08044794946998951) ] 

Figure 1.23: Word vectors similar to the word ‘great’ 

Similarly, for the word ‘singer’, it could be as follows: 

#lookup top 6 similar words to singer 

wl = ["singer"] 

model.wv.most_similar (positive=w1, topn=6) 

[(‘for', 6.17918802605438232), 

(‘been’, @.12124449759721756), 

(‘great', @.08586522936820084), 

(‘is", @.07638381804227329), 

('a', @.03302524611353874), 

(‘Ariana’, @.02957476342516899) } 

Figure 1.24: Word vector similar to word ‘singer’ 

We know that these words are not actually similar in meaning to our input words at all, 
and that also shows up in the correlation value beside them. However, they show up 
because these are the only words that exist in our vocabulary. 

Another important parameter of the Gensim Word2Vec model is the size parameter. Its 
default value is 100 and implies the size of the neural network layers that are being used 
to train the model. This corresponds to the amount of freedom the training algorithm 
has. A larger size requires more data but also leads to higher accuracy. 

Note 

For more information on Gensim's Word2Vec model, click on 

https://rare-technologies.com/word2vec-tutorial/. 



Word Embeddings | 29 

GloVe 

GloVe, an abbreviation of "global vectors," is a word embedding technique that has 
been developed by Stanford. It is an unsupervised learning algorithm that builds on 
Word2Vec. While Word2Vec is quite successful in generating word embeddings, the 
issue with it is that is it has a small window through which it focuses on local words and 
local context to predict words. This means that it is unable to learn from the frequency 
of words present globally, that is, in the entire corpus. GloVe, as mentioned in its name, 
looks at all the words present in a corpus. 

While Word2Vec is a predictive model as it learns vectors to improve its predictive 
abilities, GloVe is a count-based model. What this means is that GloVe learns its vectors 

by performing dimensionality reduction on a co-occurrence counts matrix. The 
connections that GloVe is able to make are along the lines of this: 

king - man + woman = queen 

This means it's able to understand that "king" and "queen" share a relationship that is 
similar to that between "man" and "woman". 

These are complicated terms, so let's understand them one by one. All of these 
concepts come from statistics and linear algebra, so if you already know what's going 
on, you can skip to the activity! 

When dealing with a corpus, there exist algorithms to construct matrices based on 
term frequencies. Basically, these matrices contain words that occur in a document as 
rows, and the columns are either paragraphs or separate documents. The elements of 
the matrices represent the frequency with which the words occur in the documents. 
Naturally, with a large corpus, this matrix will be huge. Processing such a large matrix 
will take a lot of time and memory, thus we perform dimensionality reduction. This 
is the process of reducing the size of the matrix so it is possible to perform further 

operations on it. 

In the case of GloVe, the matrix is known as a co-occurrence counts matrix, which 

contains information on how many times a word has occurred in a particular context 

in a corpus. The rows are the words and the columns are the contexts. This matrix is 

then factorized in order to reduce the dimensions, and the new matrix has a vector 

representation for each word. 

GloVe also has pretrained words with vectors attached to them that can be used if the 

semantics match the corpus and task at hand. The following activity guides you through 

the process of implementing GloVe in Python, except that the code isn't directly given 

to you, so you'll have to do some thinking and maybe some googling. Try it out! 
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Exercise 9: Generating Word Embeddings Using GloVe 

In this exercise, we will be generating word embeddings using Glove-Python. 

Note 

To install Glove-Python on your platform, go to https://pypi.org/project/ 

glove/#files. 

Download the Text8Corpus from http://mattmahoney.net/dc/text8.zip. 

Extract the file and store it with your Jupyter notebook. 

1. Import itertools: 

import itertools 

2. We need a corpus to generate word embeddings for, and the gensim.models. 
wordavec library, luckily, has one called Text8Corpus. Import this along with two 

modules from the Glove-Python library: 

from gensim.models.word2vec import Text8Corpus 

from glove import Corpus, Glove 

3. Convert the corpus into sentences in the form of a list using itertools: 

sentences = list(itertools.islice(Text8Corpus('text8'),None)) 

4. Initiate the Corpus() model and fit it on to the sentences: 

corpus = Corpus() 

corpus.fit(sentences, window=10) 

The window parameter controls how many neighboring words are considered. 

5. Now that we have prepared our corpus, we need to train the embeddings. Initiate 
the Glove() model: 

glove = Glove(no_components=100, learning_rate=0. 05) 

6. Generate a co-occurrence matrix based on the corpus and fit the glove model én 
to this matrix: 

glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True) 
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The model has been trained! 

Add the dictionary of the corpus: 

glove. add_dictionary(corpus. dictionary) 

. Use the following command to see which words are similar to your choice of word 
based on the word embeddings generated: 

glove.most_similar('man') 

Expected output: 

[{'woman’, @.7866706012658177), 

(‘young', @.7787864197368234), 
(‘spider’, @.7728204994207245), 

('girl’, 6.76425609096475@1) | 

Figure 1.25: Output of word embeddings for 'man' 

You can try this out for several different words to see which words neighbor them 
and are the most similar to them: 

glove.most_similar('queen', number = 10) 

Expected output: 

[(‘elizabeth', @.9290495999532598), 
(‘victoria’, @.8600464526851297), 
(‘mary', @.8089403382412337), 
("anne’, @.7667713770457262), 
(‘scotland’, @.6942531928211478), 
(‘catherine’, @.6910265819525973), 
(‘consort', @.6986798004149294), 
(‘tudor’, @.6686379422061477), 
("isabella', @©.6666968276614551) ] 
Figure 1.26: Output of word embeddings for 'queen' 

Note 

To learn more about GloVe, go to https://nlp.stanford.edu/projects/glove/. 



32 | Introduction to Natural Language Processing 

Activity 1: Generating Word Embeddings from a Corpus Using Word2Vec. 

You have been given the task of training a Word2Vec model on a particular corpus - the 
Text8Corpus, in this case - to determine which words are similar to each other. The 
following steps will help you with the solution. 

Note 

You can find the text corpus file at http://mattmahoney.net/dc/text8.zip. 

Upload the text corpus from the link given previously. 

Import word2vec from gensim models. 

Store the corpus in a variable. 

Fit the word2vec model on the corpus. 

Find the most similar word to 'man' 

Anu fF wow Ny ‘Father’ is to ‘girl’, 'x'is to "boy.' Find the top 3 words for x. 

Note 

The solution for the activity can be found on page 296. 

Expected Outputs: 

[('woman', ©.6842043995857239), 

(‘girl', @.5943484306335449), 
(‘creature’, @.5780946612358893), 

(‘boy', @.5284570293426514), 

(‘person’, @.5135789513587952), 

(‘'stranger', @.5@6704568862915), 
(‘beast’, @.504448652267456), 

(‘god', @.5@37523508071899), 

(‘evil’, @.4998573525428772), 

(‘thief’, ©.4973783493041992 ) | 

Figure 1.27: Output for similar word embeddings 
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Top three words for 'x' could be: 

[(‘mother’, @.7770676612854904), 
(‘grandmother’, @.7024110555648804), 
Fi 

(‘wife’, @.6916966438293457) ] 

Figure 1.28: Output for top three words for 'x' 

Summary 

In this chapter, we learned about how natural language processing enables humans 
and machines to communicate in natural human language. There are three broad 
applications of natural language processing, and these are speech recognition, natural 
language understanding, and natural language generation. 

Language is a complicated thing, and so text is required to go through several phases 
before it can make sense to a machine. This process of filtering is known as text 
preprocessing and comprises various techniques that serve different purposes. They 
are all task- and corpora-dependent and prepare text for operations that will enable it 
to be input into machine learning and deep learning models. 

Since machine learning and deep learning models work best with numerical data, it is 
necessary to transform preprocessed corpora into numerical form. This is where word 
embeddings come into the picture; they are real-value vector representations of words 
that aid models in predicting and understanding words. The two main algorithms used 

to generate word embeddings are Word2Vec and GloVe. 

In the next chapter, we will be building on the algorithms used for natural language 
processing. The processes of POS tagging and named entity recognition will be 
introduced and explained. 
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Applications of 

Natural Language 

Processing 
Learning Objectives 

By the end of this chapter, you will be able to: 

Describe POS tagging and its applications 

Differentiate between rule-based and stochastic POS taggers 

Perform POS tagging, chunking, and chinking on text data 

Perform named entity recognition for information extraction 

Develop and train your own POS tagger and named entity recognizer 

Use NLTK and spaCy to perform POS tagging, chunking, chinking, and named entity 

recognition 

This chapter aims to introduce you to the plethora of applications of NLP and the various 

techniques involved within. 
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Introduction 

This chapter begins with a quick recap of what natural language processing is and what 
services it can help provide. Then, it discusses two applications of natural language 
processing: Parts of Speech Tagging (POS tagging) and Named Entity Recognition. 
The functioning, necessity, and purposes of both of these algorithms are explained. 
Additionally, there are exercises and activities that perform POS tagging and named 
entity recognition and build and develop these algorithms. 

Natural language processing consists of aiding machines to understand the natural 
language of humans in order to communicate with them effectively and automate 
a large number of tasks. The previous chapter discussed the applications of natural 
language processing along with examples of real-life use cases where these techniques 
could simplify the lives of humans. This chapter will specifically look into two of these 
algorithms and their real-life applications. 

Every aspect of natural language processing can be seen to follow the same analogy of 
teaching a language. In the last chapter, we saw how machines need to be told what 
parts of a corpus to pay attention to and what parts are irrelevant and unimportant. 
They need to be trained to remove stop words and noisy elements and focus on key 
words to reduce various forms of the same word to the word's root form so that it's 
easier to search for and interpret. In a similar fashion, the two algorithms discussed 
in this chapter also teach machines particular things about languages in the way we 
humans have been taught. 

POS Tagging 

Before we dive straight into the algorithm, let's understand what parts of speech are. 
Parts of speech are something most of us are taught in our early years of learning 

the English language. They are categories assigned to words based on their syntactic 
or grammatical functions. These functions are the functional relationships that exist 
between different words. 
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Parts of Speech 

The English language has nine main parts of speech: 

¢ Nouns: Things or people 

¢ Examples: table, dog, piano, London, towel 

¢ Pronouns: Words that replace nouns 

¢ Examples: I, you, he, she, it 

¢ Verbs: Action words 

¢ Examples: to be, to have, to study, to learn, to play 

¢ Adjectives: Words that describe nouns 

¢ Examples: intelligent, small, silly, intriguing, blue 

¢ Determiners: Words that limit nouns 

¢ Examples: a few, many, some, three 

Note 

For more examples of determiners, visit https://www.ef.com/in/english-resources/ 

english-grammar/determiners/. 

e Adverbs: Words that describe verbs, adjectives, or adverbs themselves 

e Examples: quickly, shortly, very, really, drastically 

¢ Prepositions: Words that link nouns to other words 

¢ Examples: to, on, in, under, beside 

* Conjunctions: Words that join two sentences or words 

e Examples: and, but, yet 

¢ Interjections: Words that are exclamations 

¢ Examples: ouch! Ow! Wow! 

As you can see, each word falls under a specific Parts of speech tag assigned to it 

that helps us understand the meaning and purpose of the word, enabling us to better 

understand the context in which it is being used. 



38 | Applications of Natural Language Processing 

POS Tagger 

POS tagging is the process of assigning a tag to a word. This is done by an algorithm 
known as a POS tagger. The aim of the algorithm is really just as simple as this. 

Most POS taggers are supervised learning algorithms. If you don't remember what 
supervised learning algorithms are, they are machine learning algorithms that learn to 
perform a task based on previously labeled data. The algorithms take rows of data as 
input. This data contains feature columns—data used to predict something—and usually 
one label column-the something that needs to be predicted. The models are trained 
on this input to learn and understand what features correspond to which label, thus 

learning how to perform the task of predicting the labels. Ultimately, they are given 
unlabeled data (data that just consists of feature columns), for which they must predict 
labels. 

The following diagram is a general illustration of a supervised learning model: 

1 $10,000 

3 $46,000 Training 
Be ne 

es $98,000 

5 $49,000 

4 $98,000 

3 $49,000 

Fig 2.1: Supervised learning 

Note 

For more information on supervised learning, go to https://www.packtpub.com/ 

big-data-and-business-intelligence/applied-supervised-learning-python. 
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Thus, POS taggers hone their predictive abilities by learning from previously labeled 
datasets. In this case, the datasets can consist of a variety of features, such as the 
word itself (obviously), the definition of the word, the relationships of the word with 
its preceding, proceeding, and other related word(s) that are present within the same 
sentence, phrase, or paragraph. These features together help the tagger predict what 
POS tag should be assigned to a word. The corpus used to train a supervised POS tagger 
is known as a pre-tagged corpus. Such corpora serve as the basis for the creation of a 
system for the POS tagger to tag untagged words. These systems/types of POS taggers 
will be discussed in the next section. 

Pre-tagged corpora, however, are not always readily available, and to accurately train 
a tagger, the corpus must be large. Thus, recently there have been iterations of the 
POS tagger that can be considered as unsupervised learning algorithms. These are 
algorithms that take data consisting solely of features as input. These features aren't 
associated with labels and thus the algorithm, instead of predicting labels, forms groups 
or clusters of the input data. 

In the case of POS tagging, the models use computational methods to automatically 
generate sets of POS tags. While, pre-tagged corpora are responsible for aiding the 
process of creating a system for the tagger in the case of supervised POS taggers, with 
unsupervised POS taggers, these computational methods serve as the basis for the 
creation of such systems. The drawback of unsupervised learning methods is that the 
cluster of POS tags generated automatically may not always be as accurate as those 
found in the pre-tagged corpora used to train supervised methods. 

To summarize, the key differences between supervised and unsupervised learning 
methods are as follows: 

¢ Supervised POS taggers take pre-tagged corpora as input to be trained, while 
unsupervised POS taggers take untagged corpora as input to create a set of POS 

tags. 

¢ Supervised POS taggers create dictionaries of words with their respective POS 

tags based on the tagged corpora, while unsupervised POS taggers generate these 

dictionaries using the self-created POS tag set. 
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Several Python libraries (such as NLTK and spaCy) have trained POS taggers of their 
own. You will learn how to use one in the following sections, but let's understand 
the input and output of a POS tagger with an example for now. An important thing 
to remember is that since a POS tagger assigns a POS tag to each word in the given 
corpus, the input needs to be in the form of word tokens. Therefore, before performing 
POS tagging, tokenization needs to be carried out on the corpus. Let's say we give the 
trained POS tagger the following tokens as an input: 

[*i* ‘enjoy’, playing , “the*, “prano’ | 

After POS tagging, the output would look something like this: 

['I_PRO', 'enjoy_V', 'playing_V', 'the_DT', piano_N'] 

Here, PRO = pronoun, V = verb, DT = determiner, and N = noun. 

The input and output for both a trained supervised and unsupervised POS tagger are 
the same: tokens, and tokens with POS tags, respectively. 

Note 

This is not the exact syntax of the output; you'll see the proper output later when 

you perform the exercise. This is just to give you an idea of what POS taggers do. 

The aforementioned parts of speech are very basic tags, and to ease the process of 
understanding natural language, POS algorithms create much more complicated tags 
that are variations of these basic ones. Here's a full list of the POS tags with their 
descriptions: 
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Number Tag =—s(escription 
1 cc Coordinating conjunction 

2 CD Cardinal number 

| DT Determiner 

4 EX Existential there 

5 FW Foreign word 

6 IN Preposition or subordinating conjunction 

7 JJ Adjective 

8 JJR Adjective, comparative 

g JJS Adjective, superlative 

10 LS List item marker 

11 MD Modal 

12 NN Noun, singular or mass 

it NNS Noun, plural 

14 NNP Proper noun, singular 

15 NNPS Proper noun, plural 

16 PDT Predeterminer 

17 POS Possessive ending 

18 PRP Personal pronoun 

19 PRP$ Possessive pronoun 

20 RB Adverb 

21 RBR Adverb, comparative 

22 RBS Adverb, superlative 

23 RP Particle 

24 SYM Symbol 

wel TO To 

26 UH interjection 

AF VB Verb, base form 

28 VBD Verb, past tense 

29 VBG Verb, gerund or present participle 

30 VBN Verb, past participle 

31 VBP Verb, non-3rd person singular present 

a2 VBZ Verb, 3rd person singular present 

33 WDT Wh-determiner 

34 WP Wh-prenoun 

35 WPS Possessive wh-pronoun 

36 WRB Wh-adverb 

Figure 2.2; POS tags with descriptions 

These tags are from the Penn Treebank tagset (https: //www.ling.upenn.edu/courses/ 
Falk 2003/ling001/penn_treebank _pos.html), which is one of the most popular 

tagsets. A majority of the pre-trained taggers for the English language are trained on 

this tagset, including NLTK's POS tagger. 
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Applications of Parts of Speech Tagging 

Just like text pre-processing techniques help the machine understand natural language 
better by encouraging it to focus on only the important details, POS tagging helps the 
machine actually interpret the context of text and thus make sense of it. While text 
pre-processing is more of a cleaning phase, parts of speech tagging is actually the part 
where the machine is beginning to output valuable information about corpora on its 
own. 

Understanding what words correspond to which parts of speech can be beneficial in 
processing natural language in several ways for a machine: 

¢ POS tagging is useful in differentiating between homonyms - words that have the 
same spelling but mean different things. For example, the word “play” can mean 
the verb to play, as in engage in an activity, and also the noun, as in a dramatic 
work to be performed on stage. A POS tagger can help the machine understand 
what context the word "play" is being used in by determining its POS tag. 

e POS tagging builds on the need for sentence and word segmentation — one of the 
basic tasks of natural language processing. 

e POS tags are used in performing higher-level tasks by other algorithms, one of 
which we will be discussing in this chapter, named entity recognition. 

¢ POS tags contribute to the process of sentiment analysis and question answering 
too. For example, in the sentence "Tim Cook is the CEO of this technology 
company,’ you want the machine to be able to replace “this technology company" 
with the name of the company. POS tagging can help the machine recognize 

that the phrase “this technology company" is a determiner ((this) + a noun phrase 
(technology company)). It can use this information to, for example, search articles 
online and check how many times "Tim Cook is the CEO of Apple" appears in them 
to then decide whether Apple is the correct answer. 

Thus, POS tagging is an important step in the process of understanding natural 
language because it contributes to other tasks. 

Types of POS Taggers 

As we saw in the previous section, POS taggers can be both of the supervised and 
unsupervised learning type. This difference largely affects how a tagger is trained. 
There is another distinction that impacts how the tagger actually assigns a tag to an* 
untagged word, which is the approach used to train the taggers. 

The two types of POS taggers are rule-based and stochastic. Let's take a look at both of 
them. 
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Rule-Based POS Taggers 

These POS taggers work pretty much exactly as their name states - by rules. The 
purpose for giving the taggers sets of rules is to ensure that they tag an ambiguous/ 
unknown word accurately most of the times, thus most of the rules are applied only 
when the taggers come across an ambiguous/unknown word. 

These rules are often known as context frame rules and provide the taggers with 
contextual information to understand what tag to give an ambiguous word. An example 
of a rule is as follows: If an ambiguous/unknown word, x, is preceded by a determiner 
and followed by a noun, then assign it the tag of an adjective. An example of this would 
be "one small girl” where "one" is a determiner and "girl" is a noun, therefore the tagger 
will assign adjective to the word "small." 

The rules depend on your theory of grammar. Additionally, they also often include rules 
such as capitalization and punctuation. This can help you recognize pronouns and 
differentiate them from words found at the start of a sentence (following a full stop). 

Most rule-based POS taggers are supervised learning algorithms, in order to be able 
to learn the correct rules and apply them to properly tag ambiguous words. Recently, 
though, there have been experiments with training these taggers the unsupervised way. 
Untagged text is given to the tagger to tag, and humans go through the output tags, 
correcting whatever tags are inaccurate. This correctly tagged text is then given to the 
tagger so that it can develop correction rules between the two different tagsets and 
learn how to accurately tag words. 

An example of this correction rule-based POS tagger is Brill's tagger, which follows the 
process mentioned earlier. Its functioning can be compared with the art of painting 
- when painting a house, it is easier to first paint the background of the house (for 
example, a brown square) and then paint the details, such as a door and windows, on 

top of that background using a finer brush. Similarly, Brill's rule-based POS tagger aims 

to first generally tag an untagged corpus, even if some of the tags may be wrong, and 

then revisit those tags to understand why some are wrong and learn from them. 

Note 

Exercises 10-16 can be performed in the same Jupyter Notebook. 
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Exercise 10: Performing Rule-Based POS Tagging 

NLTK has a POS tagger that is a rule-based tagger. In this exercise, we will perform POS 
tagging using NLTK's POS tagger. The following steps will help you with the solution: 

Hh 

2 

Open cmd or terminal, depending on your operating system. 

Navigate to the desired path and use the following command to initiate a Jupyter 
Notebook: 

jupyter notebook 

Import nl1tk and punkt, as shown: 

import nltk 

nltk.download('punkt' ) 

nltk.download('averaged_perceptron_tagger ' ) 

nltk.download('tagsets') 

Store an input string in a variable called s, as follows: 

s = 'i enjoy playing the piano' 

Tokenize the sentence, as demonstrated: 

tokens = nltk.word_tokenize(s) 

Apply the POS tagger on the tokens and then print the tagset, as shown: 

tags = nltk.pos_tag(tokens) 

tags 

Your output will look like this: 

[Ci "NN’), 
(‘enjoy’, "VBP’), 
(‘playing’, 'VBG’), 
(‘the’, 'DT’), 
(‘piano’, 'NN')] 

Fig 2.3: Tagged output 
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7. To understand what the "NN" POS tag stands for, you can use the following line of 
code: 

nltk.help.upenn_tagset ("NN") 

The output will be as follows: 

NN: noun, common, singular or mass 
common-carrier cabbage knuckle-duster Casino afghan shed thermostat 
investment slide humour falloff slick wind hyena override subhumanity 
machinist ... 

Fig 2.4: Noun details 

You can do this for each POS tag by substituting "NN" with it. 

Let's try this out with a sentence containing homonyms. 

8. Store an input string containing homonyms in a variable called sent: 

sent = 'and so i said im going to play the piano for the play tonight' 

9. Tokenize this sentence and then apply the POS tagger on the tokens, as shown: 

tagset = nltk.pos_tag(nltk.word_tokenize(sent) ) 

tagset 

Expected output: 

Cand’, ‘CC’, 

(‘so’, 'RB'), 
(7, 37’), 
(‘said', 'VBD'), 
(‘im', 'NN'), 
(C‘acing', 'VBG’), 

(‘to’, ‘TO'), 
(‘play’, "VB'), 
(‘the’, DT"), 
(‘piano’, 'NN’), 
(‘for', 'IN’), 
(‘the’, 'DT'), 
(‘play’, 'NN’), 
(‘tonight’, 'NN')] 

Fig 2.5: Tagged output 

As you can see, the first instance of the word play has been tagged as 'VB, which stands 

for verb, base form, and the second instance of the word play has been tagged as 'NN’, 

which stands for noun. Thus, POS taggers are able to differentiate between homonyms 

and different instances of the same word. This helps machines understand natural 

language better. 
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Stochastic POS Taggers 

Stochastic POS taggers are taggers that use any method other than rule-based methods 
to assign tags to words. Thus, there are a large number of approaches that fall into the 
stochastic category. All models that incorporate statistical methods, such as probability 
and frequency, when determining the POS tags for words are stochastic models. 

We will discuss three models: 

¢ The Unigram or Word Frequency Approach 

¢ Then - gram approach 

¢ The hidden Markov Model 

The Unigram or Word Frequency Approach 

The simplest stochastic POS taggers assign POS tags to ambiguous words solely based 
on the probability that a word occurs with a tag. This basically means that whatever tag 
the tagger found linked with a word most often in the training set is the tag that it will 
assign to an ambiguous instance of the same word. For example, let's say the training 
set has the word "beautiful" tagged as an adjective a majority of the time. When the POS 
tagger encounters "beaut", it won't be able to tag this directly because it isn't a proper 
word. This will be an ambiguous word, and so it will calculate the probability of it being 
each of the POS tags, based on how many times different instances of this word have 
been tagged with each of those POS tags. "beaut" can be seen as an ambiguous form of 
"beautiful", and since "beautiful" has been tagged as an adjective a majority of the time, 
the POS tagger will tag "beaut" as an adjective too. This is called the word frequency 
approach because the tagger is checking the frequency of the POS tags assigned to 
words. 

The n - gram Approach 

This builds on the previous approach. The n in the name stands for how many words 
are considered when determining the probability of a word belonging to a particular 
POS tag. In the Unigram tagger, n = 1, and thus only the word itself is taken into 
consideration. Increasing the value of n results in taggers calculating the probability of 
a specific sequence of n POS tags occurring together and assigning a word a tag based 
on this probability. 

When assigning a tag to a word, these POS taggers create a context of the word by 
factoring in the type of token it is, along with the POS tags of the n preceding words. s 
Based on the context, the taggers select the tag that is most likely to be in sequence 
with the tags of the preceding words and assigns this to the word in question. The most 
popular n - gram tagger is known as the Viterbi algorithm. 
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Hidden Markov Model 

The hidden Markov model combines both the word frequency approach and the n - gram 
approach. A Markov model is one that describes a sequence of events or states. The 
probability of each state occurring depends solely on the state attained by the previous 
event. These events are based on observations. The "hidden" aspect of the hidden Markov 
model is that the set of states that an event could possibly be is hidden. 

In the case of POS tagging, the observations are the word tokens, and the hidden set of 
states are the POS tags. The way this works is that the model calculates the probability 
of a word having a particular tag based on what the tag of the previous word was. For 
example, P (V | NN) is the probability of the current word being a verb given that the 
previous word is a noun. 

Note 

This is a very basic explanation of the hidden Markov model. To learn more, go to 

https://medium.freecodecamp.org/an-introduction-to-part-of-speech-tagging-and- 

the-hidden-markov-model-953d45338f24. 

To learn more about stochastic models, go to http://ccl.pku.edu.cn/doubtfire/NLP/ 

Lexical Analysis/Word Segmentation Tagging/POS Tagging Overview/POS%20 

Tagging%200verview.htm. 

The three approaches mentioned earlier have been explained in an order where each 

model builds upon and improves the accuracy of the preceding model. However, each 
model that builds upon a preceding model involves more calculations of probability and 
thus will take more time to perform computations, depending on the size of the training 

corpus. Therefore, the decision of which approach to use depends on the size of the 

corpus. 
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Exercise 11: Performing Stochastic POS Tagging 

spaCy's POS tagger is a stochastic one. In this exercise, we will use spaCy's POS tagger 

on some sentences to see the difference in the results of rule-based and stochastic 

tagging. The following steps will help you with the solution: 

Note 

To install spaCy, click on the following link and follow the instructions: https:// 

spacy.io/usage 

1. Import spaCy: 

import spacy 

2. Load spaCy's 'en_core_web_sm' model: 

nlp = spacy.load('en_core_web_sm' ) 

spaCy has models that are specific to different languages. The ‘en_core_web_sm' 
model is the English language model and has been trained on written web text, 
such as blogs and news articles, and includes vocabulary, syntax, and entities. 

Note 

To learn more about spaCy models, click on https://spacy.io/models. 

3. Fit the model on the sentence you want to assign POS tags to. Let's use the 
sentence we gave NLTK's POS tagger: 

doc = nlp(u"and so i said i'm going to play the piano for the play 

tonight") 

4. Now, let's tokenize this sentence, assign the POS tags, and print them: 

for token in doc: 

print(token.text, token.pos_, token. tag_) 
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Expected output: 

and CCONJ CC 

so ADV RB 

i PRON PRP 

Said VERB VBD 

i PRON PRP 

*m VERB VBP 

going VERB VBG 

to PART TO 

play VERB VB 

the DET DT 

Piano NOUN NN 

for ADP IN 

the DET DT 

play NOUN NN 

tonight NOUN NN 

Figure 2.6: Output for POS tags 

To understand what a POS tag stands for, use the following line of code: 
spacy.explain("VBZ") 

Replace "VBZ" with the POS tag you'd like to know about. In this case, your output will 
be this: 

‘verb, 3rd person singular present' 

As you can see, the results are pretty much the same as the ones obtained from the 
NLTK POS tagger. This is the case due to the simplicity of our input. 

Chunking 

POS taggers work on individual tokens of words. Tagging individual words isn't always 
the best way to understand corpora, though. For example, the words 'United' and 
‘Kingdom’ don't make a lot of sense when they're separated, but 'United Kingdom' 
together tells the machine that this is a country, thus providing it with more context 
and information. This is where the process of chunking comes into the picture. 

Chunking is an algorithm that takes words and their POS tags as input. It processes 
these individual tokens and their tags to see whether they can be combined. The 
combination of one or more individual tokens is known as a chunk, and the POS tag 
assigned to such a chunk is known as a chunk tag. 
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Chunk tags are combinations of basic POS tags. They are easier to define phrases by 
and are more efficient than simple POS tags. These phrases are chunks. There will be 
instances where a single word is considered a chunk and assigned a chunk tag too. 
There are five major chunk tags: 

¢ Noun Phrase (NP): These are phrases that have nouns as the head word. They act 
as a subject or an object to the verb or verb phrase. 

¢ Verb Phrase (VP): These are phrases that have verbs as the head word. 

e Adjective Phrase (ADJP): These are phrases that have adjectives as the head word. 
Describing and qualifying nouns or pronouns is the main function of adjective 
phrases. They are found either directly before or after the noun or pronoun. 

e Adverb Phrase (ADVP): These are phrases that have adverbs as the head word. 
They're used as modifiers for nouns and verbs by providing details that describe 
and qualify them. 

¢ Prepositional Phrase (PP): These are phrases that have prepositions as the head 
word. They position an action or an entity in time or space. 

For example, in the sentence 'the yellow bird is slow and is flying into the brown house’, 
the following phrases will be assigned the following chunk tags: 

‘the yellow bird’ - NP 

1s — VP 

‘slow' - ADJP 

‘is flying’ - VP 

intor—PP. 

‘the brown house' - NP 

Thus, chunking is performed after POS tagging has been applied on a corpus. This 
allows the text to be broken down into its simplest form (tokens of words), have its 
structure analyzed, and then be grouped back together into meaningful higher-level 
chunks. Chunking also benefits the process of named entity recognition. We'll see how 
in the coming section. 

The chunk parser present within the NLTK library is rule based and thus needs to 
be given a regular expression as a rule to output a chunk with its chunk tag. spaCy » 
can perform chunking without the presence of rules. Let's take a look at both these 
approaches. 
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Exercise 12: Performing Chunking with NLTK 

In this exercise, we will generate chunks and chunk tags. nltk has a regular expression 
parser. This requires an input of a regular expression of a phrase and the corresponding 
chunk tag. It then searches the corpus for this expression and assigns it the tag. 

Since chunking works with POS tags, we can add on to our code from the POS tagging 
exercise. We saved the tokens with their respective POS tags in 'tagset'. Let's use this. 
The following steps will help you with the solution: 

1. Create a regular expression that will search for a noun phrase, as shown: 

rule = r"""Noun Phrase: {<DT>?<JJ>*<NN>}""" 

This regular expression is searching for a determiner (optional), followed by one or 
more adjectives and then a single noun. This will form a chunk called Noun Phrase. 

Note 

If you don't know how to write Regular Expressions, check out these quick 

tutorials: https://www.w3schools.com/python/python_regex.asp https:// 

pythonprogramming.net/regular-expressions-regex-tutorial-python-3/ 

2. Create an instance of RegexpParser and feed it the rule: 

chunkParser = nltk.RegexpParser(rule) 

3. Give chunkParser the tagset containing the tokens with their respective POS tags 
so that it can perform chunking, and then draw the chunks: 

chunked = chunkParser.parse(tagset) 

chunked. draw() 

Note 

matplotlib needs to be installed on your machine for the .draw() function to work. 

Your output will look something like this: 

SS RD Sn Wit Ree Ra Ei — 
andCC soRB id said VBD iW) '‘mVBP going VBG toTO play VB Noun Phrase oF IN moh Foiaae Noun a 

Sa rae ~~ 
plano NN the DT play NN tonight NN 

\ 

the DT 

Figure 2.7: Parse tree. 
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This is a parse tree. As you can see, the chunking process has recognized the noun 

phrases and labeled them, and the remaining tokens are shown with their POS 
tags. 

4, Let's try the same thing out with another sentence. Store an input sentence in 

another variable: 

a = "the beautiful butterfly flew away into the night sky” 

5. Tokenize the sentence and perform POS tagging using NLTK’s POS tagger: 

tagged = nltk.pos_tag(nltk.word_tokenize(a) ) 

6. Repeat step 3: 

chunked2 = chunkParser.parse(tagged) 

chunked2.draw() 

Expected output: 

S 

ae _—_—_o ~. 

Noun Phrase flewVED awayRB intoIN Noun Phrase Noun Phrase 

the DT beautiful JJ butterfly MN the DT night NN. sky NN 

Figure 2.8: Output for chunking. 

Exercise 13: Performing Chunking with spaCy 

In this exercise, we will implement chunking with spaCy. spaCy doesn't require us to 
formulate rules to recognize chunks; it identifies chunks on its own and tells us what 
the head word is, thus telling us what the chunk tag is. Let's identify some noun chunks 
using the same sentence from Exercise 12. The following steps will help you with the 
solution: 

1. Fit spaCy's English model on the sentence: 

doc = nlp(u"the beautiful butterfly flew away into the night sky") 

2. Apply noun_chunks on this model, and for each chunk, print the text of the chunk, 
the root word of the chunk, and the dependency relation that connects the root, 
word to its head: 

for chunk in doc.noun_chunks: 

print(chunk.text, chunk.root.text, chunk. root.dep_) 
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a ee ee 

Expected output: 

the beautiful butterfly butterfly nsubj 

the night sky sky pobj 

Figure 2.9; Output for chunking with spaCy 

As you can see, chunking with spaCy is a lot simpler than with NLTK. 

Chinking 

Chinking is an extension of chunking, as you've probably guessed already from its name. 
It's not a mandatory step in processing natural language, but it can be beneficial. 

Chinking is performed after chunking. Post chunking, you have chunks with their 
chunk tags, along with individual words with their POS tags. Often, these extra words 
are unnecessary. They don't contribute to the final result or the entire process of 
understanding natural language and thus are a nuisance. The process of chinking helps 
us deal with this issue by extracting the chunks, and their chunk tags form the tagged 
corpus, thus getting rid of the unnecessary bits. These useful chunks are called chinks 
once they have been extracted from the tagged corpus. 

For example, if you need only the nouns or noun phrases from a corpus to answer 
questions such as "what is this corpus talking about?", you would apply chinking 
because it would extract just what you want and present it in front of your eyes. Let's 
check this out with an exercise. 

Exercise 14: Performing Chinking 

Chinking is basically altering the things that you're looking for in a corpus. Thus, 
applying chinking involves altering the rule (regular expression) provided to 
chinkParser. The following steps will help you with the solution: 

1. Create a rule that chunks the entire corpus and only creates chinks out of the 

words or phrases tagged as nouns or noun phrases: 

rule = r"""Chink: {<.*>+} 

}<VB.?|CC|RB|JJ|IN|DT|TO>+{""" 

This rule is in the form of a regular expression. Basically, this regular expression is 

telling the machine to ignore all words that are not nouns or noun phrases. When 

it comes across a noun or a noun phrase, this rule will ensure that it is extracted 

as a chink. 
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2. Create an instance of RegexpParser and feed it the rule: 

chinkParser = nltk.RegexpParser(rule) 

3. Give chinkParser the tagset containing the tokens with their respective POS tags 

so that it can perform chinking, and then draw the chinks: 

chinked = chinkParser.parse(tagset) 

chinked. draw() 

Expected output: 

S 

SC ———— SS 
andCC soRB iJJ said VBD it} ‘mVBP acing VBG toTO playVB the DT Chink forIN the DT Chink 

piano NN play NN tonight NN 

Figure 2.10: Output for chinking 

As you can see, the chinks have been highlighted and contain only nouns. 

Activity 2: Building and Training Your Own POS Tagger 

We've already looked at POS tagging words using the existing and pre-trained POS 
taggers. In this activity, we will train our own POS tagger. This is like training any other 
machine learning algorithm. The following steps will help you with the solution: 

1. Pick a corpus to train the tagger on. You can use the nltk treebank to work on. The 
following code should help you import the treebank corpus: 

nltk.download('treebank' ) 

tagged = nltk.corpus. treebank. tagged_sents() 

2. Determine what features the tagger will consider when assigning a tag to a word. 

3. Create a function to strip the tagged words of their tags so that we can feed them 
into our tagger. 

4, Build the dataset and split the data into training and testing sets. Assign the 
features to 'X' and append the POS tags to 'Y’. Apply this function on the training 

set. 
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Use the decision tree classifier to train the tagger. 

Import the classifier, initialize it, fit the model on the training data, and print the 
accuracy score. 

Note 

The accuracy score in the output may vary, depending on the corpus used. 

Expected output: 

Training completed 

Accuracy: 8.8959565@61867267 

Figure 2.11: Expected accuracy score. 

Note 

The solution for the activity can be found on page 297, 

Named Entity Recognition 

This is one of the first steps in the process of information extraction. Information 

extraction is the task of a machine extracting structured information from unstructured 
or semi-structured text. This furthers the comprehension of natural language by 
machines. 

After text preprocessing and POS tagging, our corpus becomes semi-structured and 

machine-readable. Thus, information extraction is performed after we've readied our 

corpus. 

The following diagram is an example of named entity recognition: 

Why Is Diversity Important For Google And India? Sundar Pichai Answers 

| 
| Organization Location Name 

Figure 2.12: Example for named entity recognition 
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Named Entities 

Named entities are real-world objects that can be classified into categories, such as 
people, places, and things. Basically, they are words that can be denoted by a proper 
name. Named entities can also include quantities, organizations, monetary values, and 
many more things. 

Some examples of named entities and the categories they fall under are as follows: 

¢ Donald Trump, person 

° Italy, location 

¢ Bottle, object 

¢ 500 USD, money 

Named entities can be viewed as instances of entities. In the previous examples, the 
categories are basically entities in their own and the named entities are instances of 
those. For example, London is an instance of city, which is an entity. 

The most common named entity categories are as listed: 

¢ ORGANIZATION 

¢ PERSON 

¢ LOCATION 

¢ DATE 

¢ TIME 

¢ MONEY 

¢ PERCENT 

¢ FACILITY 

¢ GPE (which stands Geo-Political Entity) 

Named Entity Recognizers 

Named entity recognizers are algorithms that identify and extract named entities from 
corpora and assign them a category. The input provided to a trained named entity 
recognizer consists of tokenized words with their respective POS tags. The output of ® 
named entity recognition is named entities along with their categories, among the other 
tokenized words and their POS tags. 
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The problem of named entity recognition takes place in two phases: 

1. Identifying and recognizing named entities (for example, 'London’) 

2. Classifying these names entities (for example, ‘London is a ‘location’ 

The first phase of identifying named entities is quite similar to the process of chunking, 
because the aim is to recognize things that are denoted by proper names. The named 
entity recognizer needs to look out for continuous sequences of tokens to be able to 
correctly spot named entities. For example, ‘Bank of America’ should be identified as a 
single named entity, despite the phrase containing the word ‘America’, which in itself is 
a named entity. 

Much like POS taggers, most named entity recognizers are supervised learning 
algorithms. They are trained on input that contains named entities along with the 
categories that they fall under, thus enabling the algorithm to learn how to classify 
unknown named entities in the future. 

This input containing named entities with their respective categories is often known 
as a knowledge base. Once a named entity recognizer has been trained and is given an 
unrecognized corpus, it refers to this knowledge base to search for the most accurate 
classification to assign to a named entity. 

However, due to the fact that supervised learning requires an excessive amount of 
labeled data, unsupervised learning versions of named entity recognizers are also 
being researched. These are trained on unlabeled corpora - text that doesn't have 
named entities categorized. Like POS taggers, named entity recognizers categorize the 

named entities, and then the incorrect categories are corrected manually by humans. 
This corrected data is fed back to the NERs so that they can simply learn from their 
mistakes. 

Applications of Named Entity Recognition 

As mentioned earlier, named entity recognition is one of the first steps of information 
extraction and thus plays a major role in enabling machines to understand natural 

language and perform a variety of tasks based on it. Named entity recognition is and 

can be used in various industries and scenarios to simplify and automate processes. 

Let's take a look at a few use cases: 

* Online content, including articles, reports, and blog posts, are often tagged to 

enable users to search for it more easily and also to get a quick overview of what 

exactly the content is about. Named entity recognizers can be used to scour 

through this content and extract named entities to automatically generate these 

tags. These tags help categorize articles into predefined hierarchies as well. 
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¢ Search algorithms also benefit from these tags. If a user were to enter a keyword 
into a search algorithm, instead of scouring through all the words of every article 
(which will take forever), the algorithm just needs to refer to the tags produced 
by named entity recognition to pull up articles containing or pertaining to the 
entered keyword. This reduces the computational time and operations by a lot. 

¢ Another purpose for these tags is to create an efficient recommendation system. 
If you read an article that discusses the current political situation in India, and is 
thus maybe tagged as ‘Indian Politics’ (this is just an example), the news website 
can use this tag to suggest different articles with the same or similar tags. This 
also works in the case of visual entertainment such as movies and shows. Online 
streaming websites use tags assigned to content (for example, genres such as 
‘action’, ‘adventure’, 'thriller’, and so on) to understand your taste better and thus 

recommend similar content to you. 

¢ Customer feedback is important for any service or product providing company. 
Running customer complaints and reviews through named entity recognizers 
produces tags that can help classify them based on location, type of product, and 
type of feedback (positive or negative). These reviews and complaints can then be 
sent to the people responsible for that particular product or that particular area 
and can be dealt with based on whether the feedback is positive or negative. The 
same thing can be done with tweets, Instagram captions, Facebook posts, and so 
on. 

As you can see, there are many applications of named entity recognition. Thus, it is 
important to understand how it works and how to implement it. 

Types of Named Entity Recognizers 

As is the case with POS taggers, there are two broad methods to design a named entity 
recognizer: a linguistic approach by defining rules to recognize entities, or a stochastic 
approach using statistical models to accurately determine which category a named 
entity falls into best. 

Rule-Based NERs 

Rule-based NERs work in the same way that rule-based POS taggers do. 
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Stochastic NERs 

These include any and all models that use statistics to name and recognize entities. 
There are several approaches to stochastic named entity recognition. Let's take a look 
at two of them: 

¢ Maximum Entropy Classification 

This is a machine learning classification model. It calculates the probability 
of a named entity falling into a particular category solely on the basis of the 
information provided to it (the corpus). 

Note 

For more information on Maximum Entropy Classification, go to http://blog. 

datumbox.com/machine-learning-tutorial-the-max-entropy-text-classifier/. 

¢ Hidden Markov Model 

This method is the same as the one explained in the POS tagging section, but instead 
of the hidden set of states being the POS tags, they are the categories of the named 
entities. 

Note 

For more information on stochastic named entity recognition and when to use 

which approach, go to http://www.datacommunitydc.org/blog/2013/04/a-survey- 

of-stochastic-and-gazetteer-based-approaches-for-named-entity-recognition- 

part-2. 
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Exercise 15: Perform Named Entity Recognition with NLTK 

In this exercise, we'll use the ne_chunk algorithm of NLTK to perform named entity 
recognition on a sentence. Instead of using the sentences we used in the previous 
exercises, create a new sentence that contains proper names that can be classified into 

categories so that you can actually see the results: 

1. Store an input sentence in a variable, as shown: 

ex = "Shubhangi visited the Taj Mahal after taking a SpiceJet flight from 

Pune." 

2. Tokenize the sentence and assign POS tags to the tokens: 

tags = nltk.pos_tag(nltk.word_tokenize(ex)) 

3. Apply the ne_chunk() algorithm on the tagged words and either print or draw the 
results: 

ne = nltk.ne_chunk(tags, binary = True) 

ne.draw() 

Assigning the value of 'True' to the 'binary' parameter tells the algorithm to just 
recognize the named entities and not classify them. Thus, your results will look 
something like this: 

§ 

en 

NE visited VBD the DT NE afteriN taking VBG aDT NE fightNN from IN NE 

Shubhangi NNP Taj NNP Mahal NNP SpicetJet NNP Pune NNP 

Figure 2.13: Output for named entity recognition with POS tags 

As you can see, the named entities have been highlighted as 'NE’. 

4, To know which categories the algorithm has assigned to these named entities, 
simply assign the value of 'False' to the 'binary' parameter: 

ner = nltk.ne_chunk(tags, binary = False) 

ner.draw() 
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Rn 

Expected output: 

s 

= Pe a ie 
PERSON visited YBD the DT ORGANIZATION after (iM taking VAG aDT ORGANIZATION flight NM fram IM GPE 

Shubhangi NMP Taj NNP WWahal NNIP Spicetet MNP Pure AAP 

Figure 2.14: Output with named entities 

The algorithm has accurately categorized 'Shubhangi' and 'SpiceJet’. 'Taj Mahal’, 
however, shouldn't be an ORGANIZATION, it should be a FACILITY. Thus, NLTK's ne_ 

chunk() algorithm isn't the best one. 

Exercise 16; Performing Named Entity Recognition with spaCy 

In this exercise, we'll be implementing spaCy's named entity recognizer on the sentence 
from the previous exercise and compare the results. spaCy has several NERs that have 
been trained on different corpora. Each model has a different set of categories; here's a 
list of all the categories spaCy can recognize: 

PERSON People, including fictional. 

Nationalities or religious or political groups. 

Buildings, airports, highways, bridges, etc, 

Companies, agencies, institutions, etc. 

Countries, cities, states. 

Non-GPE locations, mountain ranges, bodies of water. 

CARDINAL 

Figure 2.15: Categories of spaCy 

Objects, vehicles, foods, etc. (Not services.) 

Named hurricanes, battles, wars, sports events, etc. 

Titles of books, songs, etc. 

Named documents made into laws. 

Any named language. 

Absolute or relative dates or periods. 

Times smaller than a day, 

Percentage, including "%”". 

Monetary values, including unit. 

Measurements, as of weight or distance. 

"first", “second”, etc. 

Numerals that do not fall under another type. 
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The following steps will help you with the solution: 

1, Fit spaCy's English model on the sentence we used in the previous exercise: 

doc = nlp(u"Shubhangi visited the Taj Mahal after taking a SpiceJet flight 

from Pune.") 

2. For each entity in this sentence, print the text of the entity and the label: 

for ent in doc.ents: 

print(ent.text, ent.label_) 

Your output will look something like this: 

SpicelJet ORG 

Pune GPE 

Figure 2.16: Output for named entity 

It's only recognizing 'SpiceJet' and 'Pune' as named entities, and not 'Shubhangi' 
and ‘Taj Mahal’. Let's try adding a last name to 'Shubhangi' and check whether that 
makes a difference. 

3. Fit the model on the new sentence: 

doc! = nlp(u"Shubhangi Hora visited the Taj Mahal after taking a SpiceJet 

flight from Pune.") 

4. Repeat step 2: 

for ent in docl.ents: 

print(ent.text, ent.label_) 

Expected output: 

Shubhangi Hora PERSON 

the Taj Mahal WORK_OF_ART 

SpiceJet ORG 

Pune GPE 

Figure 2.17: Output for named entity recognition with spaCy. 
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So now that we've added a last name, "Shubhangi Hora" is recognized as a PERSON, and 

"Taj Mahal" is recognized as a WORK_OF ART. The latter is incorrect, since if you check 
the table of categories, WORK_OF_ART is used to describe songs and books. 

Thus, the recognition and categorization of named entities strongly depends on the 
data that the recognizer has been trained on. This is something to keep in mind when 
implementing named entity recognition; it is often better to train and develop your own 
recognizer for specific use cases. 

Activity 3: Performing NER on a Tagged Corpus 

Now that we've seen how to perform named entity recognition on a sentence, in this 
activity, we'll perform named entity recognition on a corpus that has been through POS 
tagging. Imagine that you're given a corpus that you've identified the POS tags for and 
now your job is to extract entities from it so that you can provide an overall summary of 
what the corpus is discussing. The following steps will help you with the solution: 

1. Import NLTK and other necessary packages. 

2. Print nltk.corpus.treebank.tagged_sents() to see the tagged corpus that you need 

extract named entities from. 

3. Store the first sentence of the tagged sentences in a variable. 

4, Use nltk.ne_chunk to perform NER on the sentence. Set binary to True and print 

the named entities. 

5. Repeat steps 3 and 4 on any number of sentences to see the different entities 

that exist in the corpus. Set the binary parameter to False to see what the named 

entities are categorized as. 
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Expected output: 

(Ss 
(PERSON Rudolph/NNP) 
(GPE Agnew/NNP) 

YS 

55/CD 

years /NNS 

old/33 

and/cc 

former/ JJ 

chairman/ NN 

of /IN 

(ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP) 

PLC/NNP 

es 

was /VBD 

named /VBN 

*_4/-NONE - 

a/DT 

nonexecutive/IJJ 

director/NN 

of/IN 

this/DT 

(GPE British/JJ} 

industrial/JJ 

conglomerate/NN 

pay 

Figure 2.18: Expected output for NER on tagged corpus 

Note 

The solution for the activity can be found on page 300. 
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Summary 

Natural language processing enables a machine to understand the language of humans, 
and just as we learned how to comprehend and process language, machines are taught 
as well. Two ways of better understanding language that allow machines to contribute 
to the real world are POS tagging and named entity recognition. 

The former is the process of assigning POS tags to individual words so that the machine 
can learn context, and the latter is recognizing and categorizing named entities to 
extract valuable information from corpora. 

There are distinctions in the way these processes are performed: the algorithms can be 
supervised or unsupervised, and the approach can be rule-based or stochastic. Either 
way, the goal is the same, that is, to comprehend and communicate with humans in 
their natural language. 

In the next chapter, we will be discussing neural networks, how they work, and how 
they can be used for natural language processing. 
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Introduction to 

Neural Networks 

Learning Objectives 

By the end of this chapter, you will be able to: 

Describe Deep Learning and its applications 

Differentiate between Deep Learning and machine learning 

Explore neural networks and their applications 

Understand the training and functioning of a neural network 

Use Keras to create neural networks 

This chapter aims to introduce you to neural networks, their applications in Deep Learning, and 

their general drawbacks. 
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Introduction 

In the previous two chapters, you learned about the basics of natural language 
processing, its importance, the steps required to prepare text for processing, and two 
algorithms that aid a machine in understanding and executing tasks based on natural 
language. However, to cater to higher, more complicated natural language processing 
problems, such as creating a personal voice assistant like Siri and Alexa, additional 
techniques are required. Deep learning systems, such as neural networks, are often 
used in natural language processing, and so we're going to cover them in this chapter. 

In the following chapters, you learn how to use neural networks for the purpose of 
natural language processing. 

This chapter begins with an explanation on deep learning and how it is different 
from machine learning. Then, it discusses neural networks, which make up a large 
part of deep learning techniques, and their basic functioning along with real-world 
applications. Additionally, it introduces Keras, a Python deep learning library. 

Introduction to Deep Learning 

Artificial Intelligence is the idea of agents possessing the natural intelligence of humans. 
This natural intelligence includes the ability to plan, understand human language, 
learn, make decisions, solve problems, and recognize words, images and objects. 
When building these agents, this intelligence is known as artificial intelligence, since 
it is human-made. These agents do not refer to physical objects. They are, in fact, a 
reference to software that demonstrates artificial intelligence. 

There are two types of artificial intelligence—narrow and generalized. Narrow artificial 
intelligence is the kind of artificial intelligence that we are currently surrounded by; 
it is any single agent possessing one of the several capabilities of natural intelligence. 
The application areas of natural language processing that you learned about in the 
first chapter of this book are examples of narrow Artificial Intelligence, because 
they are agents capable of carrying out a single task, such as, a machine being able 
to automatically summarize an article. There do exist Technologies do exist that are 
capable of more than one task, such as self-driving cars, but these are still considered a 
combination of several narrow Als. 

Generalized artificial intelligence is the possession of all human capabilities and more, 
in a single agent, rather than one or two capabilities in a single agent. AI experts claim 

that once AI has surpassed this goal of generalized AI and it is smarter and more adept 
than humans themselves in all fields, it will become super artificial intelligence. 
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As mentioned in the previous chapters, natural language processing is an approach to 
achieving artificial intelligence, by enabling machines to understand and communicate 
with humans in the natural language of humans. Natural language processing prepares 
textual data and transforms it into a form that machines are able to process—a 

numerical form. This is where deep learning comes in. 

Like natural language processing and machine learning, deep learning is also a category 
of techniques and algorithms. It is a subfield of machine learning because both these 
approaches share the same primary principle—both machine learning and deep learning 
algorithms take input and use it to predict output. 

Artificial Intelligence — 

Machine Learning 

Deep Learning 

Fig 3.1: Deep learning as a subfield of machine learning 

When trained on a training dataset, both types of algorithms (machine learning and 

deep learning) aim to minimize the difference between the actual outcomes and their 

predicted outcomes. This aids them in forming an association between the input and 

the output, thus resulting in higher accuracy. 



70 | Introduction to Neural Networks 

Comparing Machine Learning and Deep Learning 

While both these approaches are based on the same principle—predicting output 
from input-—they achieve this in different ways, which is why deep learning has been 
categorized as a separate approach. Additionally, one of the main reasons for deep 
learning coming about was the increased accuracy these models provide in their 
prediction process. 

While machine learning models are quite self-sufficient, they still need human 
intervention to determine that a prediction is incorrect, and thus they need to get 
better at performing that particular task. Deep learning models, on the other hand, are 
capable of determining whether a prediction is incorrect or not by themselves. Thus, 
deep learning models are self-sufficient; they can make decisions and improve their 
efficiency without human interventions. 

To better understand this, let's take the example of an air conditioner whose 
temperature settings can be controlled by voice commands. Let's say that when the air 
conditioner hears the word "hot,’ it decreases the temperature, and when it hears the 
word "cold," it increases the temperature. If this were a machine learning model, then 

the air conditioner would learn to recognize these two words in different sentences 
over time. However, if this were a deep learning model, it could learn to alter the 

temperature based on words and sentences similar to the words "hot" and "cold," such 

as "It's a little warm" or "I'm freezing!" and so on. 

This is an example that directly relates to natural language processing since the model 
understands the natural language of humans and acts on what it has understood. In 
this book we will be sticking to using deep learning models for the purpose of natural 
language processing, though in reality they can be used in almost every field. They are 
currently involved in automating the task of driving, by enabling a vehicle to recognize 
stop signs, read traffic signals, and halt for pedestrians. The medical field is also 
utilizing deep learning methods to detect diseases at early stages - cancer cells. But 
since our focus in this book is on enabling machines to understand the natural language 
of humans, let's get back to that. 

Deep learning techniques are most often used in the supervised learning way, that is, 
they are provided with labelled data to learn from. However, the key difference between 
machine learning methods and deep learning methods is that the latter require insanely 
large amounts of data which didn't exist before. Thus, deep learning has only recently 
become advantageous. It also requires quite a bit of computing power since it needs to 
be trained on such large amounts of data. 
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The main difference, however, is in a algorithms themselves. If you've studied machine 

learning before, then you're aware of the variety of algorithms that exist to solve 
classification and regression problems, as well as unsupervised learning ones. Deep 
learning systems differ from these algorithms because they use Artificial Neural 
Networks. 

Neural Networks 

Often neural networks and deep learning are terms that are used interchangeably. They 
do not mean the same thing, however, so let's learn the difference. 

As mentioned before, deep learning is an approach that follows the same principle 
as machine learning, but does so with more accuracy and efficiency. Deep learning 
systems make use of artificial neural networks, which are computing models on their 
own. So, basically, neural networks are a part of the deep learning approach but are not 
the deep learning approach on their own. They are frameworks that are incorporated by 
deep learning methods. 

Artificial Intelligence 

Machine Learning 

Deep Learning 

Neural 

Networks 

Fig 3.2: Neural Networks as a part of the deep learning Approach 

Artificial neural networks are based on a framework inspired by the biological neural 

networks found in the human brain. These neural networks are made of nodes that 

enable the networks to learn from images, text, real-life objects, and other things, to be 

able to execute tasks and predict things accuracy. 
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Neural networks consist of layers, which we will take a look at in the following section. 
The number of layers that a network has can be anywhere from three to hundreds. 
Neural networks that are made of only three or four layers are called shallow neural 
networks, whereas networks that have many more layers than that are referred to as 
deep neural networks. Thus, the neural networks used by the deep learning approach 
are deep neural networks and they possess several layers. Due to this, deep learning 
models are very well suited to complex tasks such as facial recognition translating text, 
and so on. 

These layers break down the input into several levels of abstraction. As a result, the 
deep learning model is better able to learn from and understand the input, be it images 
or text or another form of input, which aids it in making decisions and predicting things 
the way our human mind does. 

Let's go through an example to understand these layers. Imagine that you're in your 
bedroom doing some work and you notice you're sweating. That's your input data— 
the fact that you're feeling hot and so in your head a little voice goes "I'm feeling hot!" 
Next, you might wonder why you're feeling so hot—"Why am I feeling so hot?" This is a 
thought. You'll then try to come up with a solution to this problem, maybe by taking a 
shower-—"Let me take a quick shower.’ This is a decision that you've made. But then you 
remember that you've got to leave for work soon—"But, I need to leave the house soon." 
This is a memory. You might try to convince yourself by thinking “Isn't there enough 
time to squeeze in a quick shower, though?" This is the process of a reasoning. Lastly, 
you'll probably act on your thoughts by either thinking "I'm going to take a shower; or, 
"there's no time for a shower, never mind." This is decision making and in the event you 
do take a shower, it is an action. 

The multiple layers in a deep neural network allow the model to go through these 
different levels of processing just like the mind does, thus building upon the principles 
of biological neural networks. These layers are how and why deep learning models are 
able to perform tasks and predict outputs with such high accuracy. 

Neural Network Architecture 

Neural network architecture refers to the elements that are the building blocks of a 
neural network. While there are several different types of neural networks, the basic 
architecture and foundation remains constant. The architecture includes: 

¢ Layers 

¢ Nodes > 
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° Edges 

¢ Biases 

¢ Activation functions 

The Layers 

As mentioned before, neural networks are made up of layers. While the number of these 
layers varies from model to model and is dependent on the task at hand, there are only 
three types of layers. Each layer is made up of individual nodes and the number of these 
nodes depends on the requirement of the layer and the neural network as a whole. A 
node can be thought of as a neuron. 

The layers present in a neural network are as follows: 

¢ The input layer 

As the name suggests, this is the layer that consists of the input data entering the 
neural network. It is a mandatory layer as every neural network requires input 
data to learn from and perform operations on to be able to generate an output. 
This layer can only occur once in a neural network. Each input node is connected 
to each node present in the proceeding layer. 

The variables or characteristics of input data are known as features. The target 
output is dependent on these features. For example, take the iris dataset. (The 
Iris dataset is one of the most popular datasets for machine learning beginners. It 
consists of data of three different types of flowers. Each instance has four features 
and one target class.) The classification label of a flower is dependent on the four 
features—petal length and width, and sepal length and width. The features, and 
thus the input layer, is denoted by X, and each individual featured is denoted by 
X1, X2,..., Xn. 

¢ The hidden layer 

This is the layer where the actual computation is done. It comes after the input 
layer, since it acts on the input provided by the input layer, and before the output 

layer, since it generates the output that is provided by the output layer. 

A hidden layer is made up of nodes known as “activation nodes.’ Each node 
possesses an activation function, which is a mathematical function that is 

performed on the inputs received by an activation node to generate an output. 

Activation functions will be discussed later on in this chapter. 
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This is the only type of layer that can occur multiple times, and thus in deep neural 
networks, there can be up to hundreds of hidden layers present. The number of 
hidden layers depends on the task at hand. 

The output generated by the nodes of one hidden layer are fed into the proceeding 
hidden layer as input. The output generated by each activation node of a hidden 
layer is sent to each activation node of the next layer. 

¢ The output layer 

This is the last layer of the neural network and it consists of nodes that provide 
the final outcome of all the processing and computing. This is also a mandatory 
layer since a neural network must produce an output based on input data. 

In the case of the iris dataset, the output for a particular instance of a flower 
would be the category of that flower-—Iris setosa, Iris virginica, or Iris versicolor. 

The output, often known as the target, is denoted as y. 

Hidden Layers 

| Input Layer Output Layer 

Fig 3.3: A Neural Network with 2 Hidden Layers 
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Nodes 

Each activation node or neuron possess the following components: 

¢ An activation 

This is the current state of the node—whether it is active or not. 

¢ A threshold value (optional) 

If present, this determines whether a neuron is activated or not, depending on 
whether the weighted sum is above or below this threshold value. 

e An activation function 

This is what computes a new activation for the activation node based on the inputs 
and the weighted sum. 

e An output function 

This generates the output for the particular activation node based on the 
activation function. 

Input neurons have no such components as they don't perform computation, nor 
do they have any preceding neurons. Similarly, output neurons don't have these 
components, since they don't perform computation, nor do they have proceeding 
neurons. 

The Edges 

Input Layer | Hidden Layer 

Input Layer | Hidden Layer 
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Fig 3.4: The Weighted Connections of a Neural Network 
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Each of the arrows in the preceding diagram represents a connection between two 
nodes from two different layers. A connection is known as an edge. Each edge that leads 
to an activation node has its own weight, which can be considered as a sort of impact 
that one node has on the other node. Weights can be either positive or negative. 

Take a look at the earlier diagram. Before the values reach the activation function, their 
values are multiplied by the weights assigned to their respective connections. These 
multiplied values are then added together to obtain a weighted sum. This weighted 
sum is basically a measure of how much impact that node has on the output. Thus if the 
value is low, that means that it doesn't really affect the output that much and so it's not 
that important. If the value is high, then it shares a strong correlation with the target 
output and thus plays a role in determining what the output is. 

Biases 

A bias is a node, and each layer of a neural network has its own bias node, except for the 
output layer. Thus, each layer has its own bias node. The bias node holds a value, known 

as the bias. This value is incorporated in the process of calculating the weighted sum 
and so also plays a role in determining the output generated by a node. 

Bias is an important aspect of neural networks because it allows the activation function 
to shift either to the right or to the left. This helps the model to better fit the data and 
thus produce accurate outputs. 

Activation Functions 

Activation functions are functions that are part of the activation nodes found in the 
hidden layers of neural networks. They serve the purpose of introducing non-linearity 
into neural networks, which is really important, as without them neural networks would 
just have linear functions, leaving no difference between them and linear regression 
models. This defeats the purpose of neural networks, because then they wouldn't 
be able to learn complex functional relationships that exist within data. Activation 
functions also need to be differentiable for backpropagation to occur. This will be 
discussed in future sections of this chapter. 
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Basically, an activation node calculates the weighted sum of the inputs it receives, adds 
the bias, and then applies an activation function to this value. This generates an output 
for that particular activation node which is then used as input by the proceeding layer. 
This output is known as an activation value. Therefore, the proceeding activation node 
in the next layer will receive multiple activation values from preceding activation nodes 
and calculate a new weighted sum. It will apply its activation function to this value to 
generate its own activation value. This is how data flows through a neural network. 
Thus, an activation function helps convert an input signal into an output signal. 

This process of calculating the weighted sum, applying an activation function, and 
producing an activation value is known as feedforward. 

There are several activation functions (Logistic, TanH, ReLU, and so on). The Sigmoid 
function is one of the most popular and simple activation functions out there. When 
represented mathematically, this function looks like 

IO> Tre 
Figure 3.5: Expression for sigmoid function 

As you can see, this function is non-linear. 

Training a Neural Network 

So far, we know that once an input is provided to a neural network, it enters the input 
layer which is an interface that exists to pass on the input to the next layer. If a hidden 
layer is present, then the inputs are sent to the activation nodes of the hidden layer via 
weighted connections. The weighted sum of all the inputs received by the activations 
nodes is calculated by multiplying the inputs with their respective weights and adding 
these values up along with the bias. The activation function generates an activation 
value from the weighted sum and this is passed on to the nodes in the next layer. If the 
next layer is another hidden layer, then it uses the activation values from the previous 
hidden layer as inputs and repeats the activation process. However, if the proceeding 
layer is the output layer, then the output is provided by the neural network. 
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From all of this information, we can conclusively say that there are three parts of the 
deep learning model that have an impact on the output generated by the model—the 
inputs, the connection weights and biases, and the activation functions. 

Deep Learning 
Model 

Activation 

Functions 

Figure 3.6: Aspects of a deep learning model that impact the output 

While the inputs are taken from the dataset, the former two are not. Thus, the following 

two questions arise—who or what decides what the weight is for a connection? How do 
we know which activation functions to use? Let's tackle these questions one by one. 

Calculating Weights 

Weights play a very important role in multilayer neural networks, since altering the 
weight of a single connection can completely alter the weights assigned to further 
connections and thus the outputs generated by the proceeding layers. Thus, having the 
optimal weights is necessary to create an accurate deep learning model. This sounds 
like a lot of pressure, but lucky for us, deep learning models are capable of finding the 
optimal weights all on their own. To understand this better, let's take the example of 
linear regression. 
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Linear regression is a supervised machine learning algorithm that, as suggested by 
the name itself, is suitable to solve regression problems (datasets whose output is in 
the form of continuous numerical values, such as the selling prices of houses). This 
algorithm assumes there exists a linear relationship between the input (the features) 
and the output (the target). Basically, it believes that there exists a line of best fit that 
accurately describes the relationship between the input and output variables. It uses 
this to predict future numerical values. In a scenario where there is only one input 
feature, the equation for this line is: 

yoectmx 

Figure 3.7: Expression for linear regression 

Where, 

y is the target output 

c is the y-intercept 

m is the model coefficient 

x is the input feature 

Similar to the connections in neural networks, the input features have values attached 

to them too-they're called model coefficients. In a way, these model coefficients 

determine the importance a feature has in determining the output, which is similar 

to what the weights in neural networks do. It is important to ensure these model 

coefficients are of the correct value so as to get correct predictions. 
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Let's say that we want to predict the selling price of a house based on how many 
bedrooms it has. So, the price of the house is our target output and the number of 
bedrooms it has is our input feature. Since this is a supervised learning method, our 
model will be fed a dataset that contains instances of our input feature matched with 
the correct target output. 

Number of Bedrooms (Input Selling Price (Target Output) 

Feature) 

Fig 3.8: Sample Dataset for Linear Regression 

Now, our linear regression model needs to find a model coefficient that describes the 
impact of the number of bedrooms on the selling price of the house. It does this by 
making use of two algorithms-the loss function and the gradient descent algorithm. 

The Loss Function 

The loss function is also sometimes known as the cost function. 

For classification problems, the loss function calculates the difference between the 
predicted probability of a particular category and the category itself. For example, let's 
say you have a binary classification problem that needs to predict whether a house will 
be sold or not. There are only two outputs—"yes" and "no." A classification model when 
fitted on this data will predict the probability of an instance of data falling in either the 
"yes" category or the "no" category. Let's say the "yes" category has a value of 1, and 
"no" has a value of 0. Thus, if the output probability is closer to 1 it will fall in the "yes" 
category. The loss function for this model will measure this difference. 
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For regression problems, the loss function calculates the error between actual values 
and predicted values. The house price example from the previous section is a regression 
problem and so the loss function is calculating the error between the actual price of a 
house, and the price that our model predicted. Thus, in a way, the loss function helps 
the model self-evaluate its performance. Obviously, the model's aim is to predict the 
price that is exactly, if not closest to, the actual price. To do this, it needs to minimize 

the loss function as much as possible. 

The only factor that is directly affecting the price predicted by the model is the model 
coefficient. To arrive at the model coefficient that is best suited for the problem at 
hand, the model needs to keep improving the values for the model coefficient. Let's call 
each different value an update of the model coefficient. So, with each update of the 
model coefficient, the model must calculate the error between the actual price and the 
price that the model has predicted using that update of the model coefficient. 

Once the function has reached its minimum value, the model coefficient at this 

minimum point is chosen as the final model coefficient. This value is stored and used in 
the linear equation described above by the linear regression algorithm. From that point 
onwards, whenever the model is fed input data in the form of how many bedrooms 
a house has without target outputs, it uses the linear equation with the apt model 
coefficient to calculate and predict the price that that house will be sold at. 

There are many different kinds of loss functions—such as MSE (for regression problems) 
and Log Loss (for classification problems). Let's take a look at how they work. 

The Mean Squared Error function calculates the difference between the actual values 
and the predicted values, squares this difference, and then averages it out across the 
entire dataset. The function, when expressed mathematically, looks like this: 

1 an 

MSE = paz AXP 

Figure 3.9: Expression for mean squared error function 

Where, 

n is the total number of data points 

yi is the ith actual value 

xi is the input 

f() is the function being carried out on the input to generate the output, therefore 

f(xi) is the predicted value 
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Log loss is used for classification models whose output is a probability value in the 
range of 0 and 1. The higher the difference between the predicted probability and the 
actual category, the higher the log loss. The mathematical representation of the log loss 
functions is: 

N 
1 Log Loss = —5,  y, (log (p(¥.)) + (1— y,))(1og (1 — PO) 

t=1 

Figure 3.10: Expression for log loss function 

Where, 

N is the total number of data points 

yi is the ith actual label 

p is the predicted probability 

The Gradient Descent Algorithm 

The process of evaluating the model's performance via the loss function is one that the 
model carries out independently, as is the process for updating and ultimately choosing 
the model coefficients. 

Imagine that you're on a mountain and you want to climb back down and reach the 
absolute bottom. It's cloudy and there are quite a few peaks so you can't exactly see 
where the bottom is, or which direction it is in, you just know that you need to get 
there. You start your journey at 5000 meters above sea level, and you decide to take 
large steps. You take a step and then you check your phone to see how many meters 
above sea level you are. Your phone says you are 5003 meters above sea level, which 
means you've gone in the wrong direction. Now, you take a large step in another 
direction and your phone says you are 4998 meters above sea level. This means you're 
getting closer to the bottom, but how do you know that this step was the one with the 
steepest descent? What if you took a step in another direction that brought you down 
to 4996 meters above sea level? Thus, you check your position after taking a step in 
each possible direction, and whichever takes you closest the bottom, is the one you 
choose. 

You keep repeating this process, and then you reach a point where your phone says 
you are 100 meters above sea level. When you take another step, your phone's reading 
remains the same-—100 meters above sea level. Finally, you have reached what seems td 
be the bottom since a step in any direction from this point results in you still being 100 
meters above sea level. 
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Fig 3.11: Updating Parameters 

This is how the gradient descent algorithm works. The algorithm descends a plot of 
the loss function against possible values for the model coefficient and the y-intercept, 
like you descended the mountain. It starts off with an assigned value for the model 
coefficient—this is you standing at a point 5000 meters above sea level. It calculates 
the gradient of the plot at this point. This gradient tells the model which direction it 
should move in to update the coefficient in order to get closer to the global minimum, 
which is the end goal. So, it takes a step and arrives at a new point with a new model 

coefficient. It repeats the process of calculating the gradient, obtaining a direction to 
move in, updating the coefficient, and taking another step. It checks to see that this 
step is the one that provides it with the steepest descent. With each step that it takes, 
it arrives at a new model coefficient and calculates the gradient at that point. This 
process is repeated until the value of the gradient doesn't change for a number of trials. 
This means that the algorithm has reached the global minimum and has converged. 
The model coefficient at this point is used as the final model coefficient in the linear 
equations. 

In neural networks, the gradient descent algorithm and loss function work together 
to find values to be assigned to connections as weights and to biases. These values are 
updated by minimizing the loss function using the gradient descent algorithm, as is 
the case in linear regression models. Additionally, with the case of linear regression, 
there is always only one minimum, due to the fact that the loss function is bowl shaped. 
This makes it easy for the gradient descent algorithm to find it and be sure that this 

is the lowest point. In the case of neural networks, however, it is not that simple. 

The activation functions used by neural networks serve the purpose of introducing 

non-linearity to the situation. 
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As a result, the plot of the loss function of a neural network is not a bowl-shaped curve, 

and this does not have just one minimum point. Instead, it has several minimums, only 

one of which is the global minima. The rest are known as local minima. This sounds 
like a major issue, but it is, in fact, alright for the gradient descent algorithm to reach a 
local minima and choose the weight values at that point, due to the fact that most local 
minima are usually quite close to the global minimum. There are modified versions of 
the gradient descent algorithm that are also used when designing neural networks. 

Stochastic and batch-sized gradient descent are two of them. 

Let's say our loss function is MSE, and we need the gradient descent algorithm to 
update one weight (w) and one bias (b). 

fwd) = 5)". fowx, +)? 
Figure 3.12: Expression for gradient of loss function 

The gradient is the partial derivative of the loss function, with respect to the weight and 
the bias. The mathematical representation of this is: 

d is 
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Figure 3.13: Expression of gradient with partial derivaive of loss function 

The result of this is the gradient of the loss function at the current position. This also 
tells us which direction we should move in to continue updating the weight and the 
bias. 

The size of the step taken is adjusted by a parameter called the learning rate and is 
a very sensitive parameter in the gradient descent algorithm. It is called alpha and is 
denoted by a. If the learning rate is too small, then the algorithm will take too many tiny 
steps and thus take too long to reach the minimum. However, if the learning rate is too 
large then the algorithm might miss the minimum altogether. Thus, it is important to 
tweak and test out the algorithm using different learning rates to ensure the right one 

is chosen. ; 
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The learning rate is multiplied with the gradient calculated at each step in order to 
modify the size of the step, thus the step size of each step is not always the same. 
Mathematically, this looks like: 
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Figure 3.14: Expression for learning rate multiplied with gradient 

And, 
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Figure 3.15: Expression for learning rate multiplied with gradient at each step 

The values are subtracted from the previous values of the weight and bias because 
the partial derivatives point in the direction of the steepest ascent, but our aim is to 

descend. 
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Fig 3.16: Learning Rate 
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Backpropagation 

Linear regression is basically a neural network, but without a hidden layer and with an 
identity activation function (which is a linear function, therefore linearity). Hence, the 
learning process remains the same as the one described in the previous sections—the 
loss function aims to minimize the error by having the gradient descent algorithm 
constantly update the weights till the global minimum is reached. 

However, when dealing with larger, more complicated neural networks that are not 
linear in nature, the loss calculated is sent back through the network to each layer, 
which then begins the process of weight updating again. The loss is propagated 
backwards, therefore this is known as backpropagation. 

Backpropagation is performed using the partial derivatives of the loss function. It 
involves calculating the loss of every node in every layer by propagating backwards in 
the neural network. Knowing the loss of every node allows the network to understand 
which weights are having a drastic negative impact on the output and the loss. Thus, 
the gradient descent algorithm is able to reduce the weights of these connections that 
have high error rates, consequently reducing the impact that that node has on the 
network's output. 

When dealing with many layers in a neural network, there are many activation functions 
working on the inputs. This can be represented as follows: 

fd) = X(¥(ZQ))) 

Figure 3.17: Expression for backpropagation function 

Here X, Y, and Z are activation functions. As we can see, f(x) is a composite function, 

thus, backpropagation can be seen as an application of the chain rule. The chain rule is 

the formula used to calculate the partial derivatives of a composite function, which is 
what we're doing through backpropagation. Therefore, by applying the chain rule to the 
preceding function (known as the forward propagation function since values are moving 
in the forward direction to generate an output) and calculating the partial derivatives 
with respect to each weight, we will be able to determine exactly how much of an 
impact each node has on the final output. 

The loss of the final node present in the output layer is the total loss of the entire neural 
network, because it is in the output layer and so the loss of all the previous nodes gets 
accumulated. The input nodes present in the input layer do not have a loss because 
they don't have an impact on the neural network. The input layer is merely an interfaée 
that sends the input to the activation nodes present in the hidden layers. 
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Therefore, the process of backpropagation is the process of updating the weights using 
the gradient descent algorithm and the loss function. 

Note 

For more information on the math of backpropagation, click here: https://ml- 

cheatsheet.readthedocs.io/en/latest/backpropagation.html| 

Designing a Neural Network and Its Applications 

Common machine learning techniques are used when training and designing a neural 
network. Neural networks can be classified as: 

¢ Supervised neural networks 

¢ Unsupervised neural networks 

Supervised neural networks 

These are like the example used in the previous section (predicting the price of the 
house based on how many rooms it has). Supervised neural networks are trained on 
datasets consisting of sample inputs with their corresponding outputs. These are 
suitable for noise classification and making predictions. 

There are two types of supervised learning methods: 

¢ Classification 

This is for problems that have discrete categories or classes as target outputs, 
for example the Iris dataset. The neural network learns from sample inputs and 
outputs how to correctly classify new data. 

¢ Regression 

This is for problems that have a range of continuous numerical values as target 
outputs, like the price of a house example. The neural network describes the 
causal relationship between the inputs and their outputs. 
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Unsupervised neural networks 

These neural networks are trained on data without any target output, and thus are able 

to recognize and draw out patterns and inferences from the data. This makes them 

well-suited for tasks such as identifying category relationships and discovering natural 

distributions in data. 

¢ Clustering 

A cluster analysis is the grouping together of similar inputs. These neural networks can 
be used for gene sequence analysis and object recognition, amongst other things. 

Neural networks that are capable of pattern recognition can be trained both by 
supervised or unsupervised methods. They play a key role in text classification and 
speech recognition. 

Exercise 17: Creating a neural network 

In this exercise, we're going to implement a simple, classic neural network, by following 
the workflow outlined earlier, to predict whether a review is positive or negative. 

This is a natural language processing problem, since the neural network is going to be 
fed rows of sentences that are actually reviews. Each review has a label in the training 
set—either 0 for negative or 1 for positive. This label is dependent on the words present 
in the review and so, our neural network needs to understand the meaning of the 
review and accordingly label it. Ultimately, our neural network needs to be able to 
predict whether a review is positive or negative. 

Note 

Download the dataset from the link: 

Processing/tree/master/Lesson%2003 

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language- 



Designing a Neural Network and Its Applications | 89 

The following steps will help you with the solution. 

1. Open up a new Jupyter notebook by typing the following command in the 
directory you'd like to code in: 

jupyter notebook 

2. Next, import pandas so that you can store the data in a dataframe: 

import pandas as pd 

df = pd.read_csv('train_comment_smal1_50.csv', sep=',') 

3. Import the regular expressions package 

import re 

4, Create a function to preprocess the reviews by removing the HTML tags, escaped 
quotes and normal quotes: 

def clean_comment(text): 

# Strip HTML tags 

text = re.sub('<[*<]+?>', ' ', text) 

# Strip escaped quotes 

text = text.replace('\\"', '') 

# Strip quotes 

text = text.replace('"’, '') 

return text 

5. Apply this function to the reviews currently stored in your dataframe: 

df£['cleaned_comment'] = df['comment_text'].apply(clean_comment) 

6. Import train_test_split from scikit-learn to divide this data into a training set 
and a validation set: 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df['cleaned_comment'], 

df[‘'toxic'], test_size=0.2) 

7. Import nltk and stopwords from nl1tk library: 

import nltk 

nltk.download('stopwords' ) 
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8. Now machine learning and deep learning models require numerical data as input, 

and currently our data is in the form of text. Thus, we're going to use an algorithm 

called CountVectorizer to convert the words present in the reviews into word 

count vectors 

from sklearn. feature_extraction.text import CountVectorizer 

from nltk.corpus import stopwords 

vectorizer = CountVectorizer(binary=True, stop_words = stopwords. 

words('english'), lowercase=True, min_df=3, max_df=0.9, max_features=5000) 

X_train_onehot = vectorizer.fit_transform(X_train) 

Our data is clean and prepped now! 

9, We're going to create a two-layer neural network. When defining a neural 
network, the number of layers does not include the input layer since it's a 
given that an input layer exists and because the input layer isn't a part of the 
computation process. So, a two-layer neural network includes an input layer, one 
hidden layer and an output layer. 

10. Import the model and the layers from Keras: 

from keras.models import Sequential 

from keras.layers import Dense 

11. Initiate the neural network: 

nn = Sequential() 

12. Add the hidden layer. Specify the number of nodes the layer will have the 
activation function the nodes possess and what the input for the layer is: 

nn.add(Dense(units=500, activation='relu', input_dim=len(vectorizer.get_ 

feature_names()))) 

13. Add the output layer. Once again, specify the number of nodes and the activation 
function. We're going to use the sigmoid function here because this is a binary 

classification problem (predicting whether a review is positive or negative). We're 
going to have only one output node since the output is just one value—either 1 or 
0. 

nn.add(Dense(units=1, activation='sigmoid' )) 



14. 

15. 

16. 

Lig 
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We're going to compile the neural network now, and decide which loss function, 
optimization algorithm and performance metric we want to use. Since the 
problem is a binary classification one, we're going to use binary_crossentropy as 
our loss function. The optimization algorithm is basically the gradient descent 
algorithm. Different versions and modifications of gradient descent exist. In this 
case, we're going to use the Adam algorithm, which is an extension of stochastic 
gradient descent: 

nn.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

Now, let's summarize our model and see what's going on: 

nn. summary () 

The output you'll get will look something like this: 

Layer (type) Output Shape Param # 

dense 1 (Dense) (None, 500) 2858 

dense 2 (Dense) (None, 1) 561i 

Total params: 29,001 

Trainable params: 29,061 

Non-trainable params: @ 

Figure 3.18: Model summary 

Now, it's time to train the model. Fit the neural network on the X_train and y_ 

train data we had divided earlier: 

nn.fit(X_train_onehot[:-20], y_train[:-20], 

epochs=5, batch_size=128, verbose=1, 

validation_data=(X_train_onehot[-100:], y_train[-20:])) 

That's it! Our neural network is now ready for testing. 

Transform the input validation data into word count vectors and evaluate the 

neural network. Print the accuracy score to see how your network is doing: 

scores = nn.evaluate(vectorizer.transform(X_test), y_test, verbose=1) 

print("Accuracy:", scores[1]) 
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Your score might be a little different, but it should be close to 0.875. 

Which is a pretty good score. So, there you have it. You just created your first ever 

neural network, trained it, and validated it. 

Expected output: 

16/18 [ s=osaesseeesssesescssssssessss] - es 135us/step 

Accuracy: 8.8999999761581421 

Figure 3.19: Expected accuracy score 

18. Save your model: 

model. save('nn.hd5' ) 

Fundamentals of Deploying a Model as a Service 

The purpose of deploying a model as a service is for other people to view and access 
it with ease, and in other ways besides just looking at your code on GitHub. There are 
different types of model deployments, depending on why you've created the model 
in the first place. You could say there are three types—a streaming model (one that 
constantly learns as it is constantly fed data and then makes predictions), an analytics 
as a service model (AaaS—one that is open for anyone to interact with) and an on-line 
model (one which is only accessible by people working within the same company). 

The most common way of showcasing your work is through a web application. There 
are multiple deployment platforms that aid and allow you to deploy your models 
through them, such as Deep Cognition, MLflow, and others. 

Flask is the easiest micro web framework to use to deploy your own model without 
using an existing platform. It is written in Python. Using this framework, you can build 
a Python API for your model that will easily generate predictions and display them for 
you. 

The flow is as follows: 

1. Create a directory for the API 

2. Copy your pre-trained neural network model to this directory 

3. Write a program that loads this model, preprocess the input so that it matches 

the training input of your model, use the model to make predictions and prepare, 
send, display this prediction. 
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To test and run the API, you simply need to type the applications name along with 
.run(). 

In the case of the neural network we created in, we would save that model and load it 
into a new Jupyter notebook. We would convert input data (the cleaned reviews) into 
word count vectors so that the input data for our API would be the same as the training 
data. Then, we would use our models to generate predictions and display them. 

Activity 4: Sentiment Analysis of Reviews 

In the activity, we are going to review comments from a dataset and categorize them as 
positive or negative. The following steps will help you with the solution. 

Oo ND uw 

Note 

You will find the dataset at the following link: 

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language- 

Processing/tree/master/Lesson%2004 

Open a new Jupyter notebook. Import the dataset. 

Import the necessary Python packages and necessary classes. Load the dataset in 

a dataframe. 

Import the necessary libraries to clean and prepare the data. Create an array for 
your cleaned text to be stored in. Using a for loop, iterate through every instance 

(every review). 

Import CountVectorizer and convert the words into word count vectors. Create 
an array to store each unique word as its own column, hence making them 

independent variables. 

Import necessary label encoding entities. 

Divide the dataset into training and testing sets. 

Create the neural network model. 

Train the model and validate it. 
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9. Evaluate the neural network and print the accuracy scores to see how it's doing. 

Expected output: 

20/28 [ seen saeestenessseeceesssesaas=] — @s 166us/step 

Accuracy: 1.0 

[1.192693321833454e-67, 1.08] 

Figure 3.20: Accuracy score 

Note 

The solution for the activity can be found on page 302. 

Summary 

In this chapter, we were introduced to a subset of machine learning—deep learning. You 
learned about the differences and similarities between the two categories of techniques 
and understood the requirement for deep learning and its applications. 

Neural networks are artificial representations of the biological neural networks that 
are present in the human brain. Artificial neural networks are frameworks that are 
incorporated by deep learning models and have proven to be increasingly efficient and 
accurate. They are used in several fields, from training self-driving cars to detecting 
cancer cells in very early stages. 

We studied the different components of a neural network and learned a network trains 

and corrects itself, with the help of the loss function, the gradient descent algorithm 
and backpropagation. You also learned how to perform sentiment analysis on text 
inputs! Furthermore, you learned the basics of deploying a model as a service. 

In the coming chapters, you will learn more about neural networks and their different 
types, along with which neural network to use in what situations. 
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Foundations of 

Convolutional Neural 

Network 
Learning Objectives 

By the end of this chapter, you will be able to: 

Describe the inspiration for CNNs in neural science 

Describe the convolution operations 

Describe a basic CNN architecture for a classification task 

Implement a simple CNN for image and text classification tasks 

Implement a CNN for a sentiment analysis of text 

In this chapter, we aim to cover the architecture of convolutional neural networks (CNNs) and 

gain an intuition of CNNs based on their applications on image data, before delving into their 

applications in natural language processing. 
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Introduction 

Neural networks, as a broad field, borrow a lot from biological systems, particularly 
the brain. Advances in neural science have directly influenced research in to neural 
networks. 

CNNs are inspired by the work of two neural scientists, D.H. Hubel and T.N. Wiesel. 
Their research focused on the mammalian visual cortex, which is the part of the brain 
responsible for vision. Through their research back in the sixties, they found that the 
visual cortex is composed of layers of neurons. Furthermore, these layers are arranged 
in a hierarchical structure. This hierarchy ranges from simple-to hypercomplex 
neurons. They also advanced the notion of a 'receptive field; which is the space within 
which certain stimuli activate or fire a neuron, with a degree of spatial invariance. 
Spatial or shift invariance allows animals to detect objects regardless of whether they 
are rotated, scaled, transformed, or partially obscured. 

Figure 4.1: Examples of spatial variance 

Inspired by neural concepts of how animals see, computer vision scientists have 
modelled neural networks that adhere to the same principles of locality, hierarchy, and 
spatial invariance. We will dive deeper into the architecture of CNNs in the next section. 

CNNs are a subset of neural networks that contain one or more ‘convolution’ layers. 
Typical neural networks are fully connected, which means every neuron is connected 
to every neuron in the next layer. When dealing with high-dimensional data such 
as images, sound, and so on, typical neural networks are slow and tend to overfit as 

there are too many weights being learned. Convolutional layers solve this problem 
by connecting a neuron to a region of the input in lower layers. We will discuss 
convolution layers in greater detail in the next section. 

To understand the general architecture of CNNs, we will first apply them to the task of 
image classification and then, subsequently, to natural language processing. To begin, 
we'll do a small exercise to understand how computers see images. 
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Exercise 18: Finding Out How Computers See Images 

Images and text share an important similarity. The location of a pixel in an image, or 
a word in text, matters. This spatial significance makes applying convolutional neural 
networks possible for both text and images. 

In this exercise, we want to determine how computers interpret images. We will do this 
by using the MNIST dataset, which contains a repository of handwritten digits perfect 
for demonstrating CNNs. 

Note 

MNIST is a built-in Keras dataset. 

You will need to have both Python and Keras installed. For easier visualization, you can 
run your code in a Jupyter notebook: 

1. Start by importing the necessary classes: 

%matplotlib inline 

import keras 

import matplotlib.pyplot as plt 

2. Since we'll be using this dataset throughout the chapter, we will import the 

training and test sets as shown here: 

Cxetrain, y¥-treinys, (X test, yatest) = keras.datasets.mnist.load_data() 

3. Visualize the first image in the dataset: 

sample_image = X_train[Q] 

plt.imshow(sample_image ) 
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Running the preceding code should result in an image being visualized, as shown 
here: 

0 5 10 5 20 2 

Figure 4.2: Visualization of an image 

The images are 28 by 28 pixels, with each pixel being a number between 0 and 255. 
Try playing around with different indices to display their values as follows. You can 
do this by putting arbitrary numbers between @ and 255 as x and y in: 

print(sample_image[x]L[y]) 

4, When you run the print code as follows, expect to see numbers between 0 and 

250; 

print(sample_image[22][111]) 

print(sample_image[6J[12]) 

print(sample_image[5J[23]) 

print(sample_image[10][11]) 

Expected Output: 

253 

170 

Le? > 

154 

Figure 4.3: Numerical representation of an image 
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This exercise is meant to help you appreciate how image data is processed with each 
pixel as a number between 0 and 255. This understanding is essential as we'll feed these 
images into a CNN as input in the next section. 

Understanding the Architecture of a CNN 

Let's assume we have the task of classifying each of the MNIST images as a number 
between 0 and 9. The input in the previous example is an image matrix. For a colored 
image, each pixel is an array with three values corresponding to the RGB color scheme. 
For grayscale images, each pixel is just one number, as we saw earlier. 

To understand the architecture of a CNN, it is best to separate it into two sections as 
visualized in the image that follows. 

A forward pass of the CNN involves a set of operations in the two sections. 

Section Two Section One 

Output: 

image Five 
matrix as 

input Pooling 

“4 
Rectified Feature Map Flatten Fully connected 

Figure 4.4: Application of convolution and ReLU operations 

The figure is explained in the following sections: 

¢ Feature extraction 

e Neural network 

Feature Extraction 

The first section of a CNN is all about feature extraction. Conceptually, it can be 

interpreted as the model's attempt to learn which features distinguish one class from 

another. In the task of classifying images, these features might include unique shapes 

and colors. 
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CNNs learn the hierarchical structure of these features. The lower layers of a CNN 
abstract features such as edges, while the higher layers learn more defined features 
such as shapes. 

Feature learning occurs through a set of three operations repeated a number of times, 

as follows: 

1. Convolution 

2. An activation function (the application of the ReLU activation function to achieve 
non-linearity) 

3. Pooling 

Convolution 

Convolution is the an operation that distinguishes CNNs from other neural networks. 
The convolution operation is not unique to machine learning; it is applied in many other 
fields, such as electrical engineering and signal processing. 

Convolution can be thought of as looking through a small window as we move the 
window to the right and down. Convolution, in this context, involves iteratively sliding a 

"filter" across an image, while applying a dot product as we move left and down. 

This window is called a "filter" or a "kernel". In the actual sense, a filter or kernel is a 

matrix of preferably smaller dimensions than the input. To better understand how 
filters are applied to images, consider the following example. After calculating the dot 
product on the area covered by the filter, we take a step to the right and calculate the 
dot product: 

Input Matrix &) Filter/ Kernel —— Feature Map 4 

Figure 4.5: Filter application on images 

The result of this convolution is known as a feature map or an activation map. 
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The size of the filter needs to be defined as a hyperparameter. This size can also be 
considered the area for which a neuron can "see" the input. This is called a neuron's 
receptive field. Additionally, we need to define the stride size, that is, the number of 
steps we need to take before applying the filter. Pixels at the center have the filters 
passing through several times compared with those at the edges. To avoid losing 
information at the corners, it is advisable to add an extra layer of zeros as padding. 

The ReLU Activation Function 

Activation functions are used all across machine learning. They are useful for 
introducing non-linearity and allowing the a model to learn non-linear functions. In this 
particular context, we apply the Rectified Linear Unit (ReLU). It basically replaces all 
the negative values with zero. 

The following image demonstrates the change in an image after ReLU is applied. 

Input Feature Map Rectified Feature Map 

_ Only non-negative aa 

Figure 4.6: Image after applying ReLU function 

Exercise 19: Visualizing ReLU 

In this exercise we will visualize the Rectified Linear Unit function. The ReLU function 

will be plotted on an X-Y axis, where X is numbers in the range of -15 to 15 and Y is the 

output after applying the ReLU function. The goal of this exercise is to visualize ReLU. 

1. Import the required Python packages: 

from matplotlib import pyplot 

2. Define the ReLU function: 

def relu(x): 

return max(@.0, x) 

3. Specify the input and output references: 

inputs = [x for x in range(-15, 15)] 

outputs = [relu(x) for x in inputs] 
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4, Plot the input against the output: 

pyplot.plot(inputs, outputs) #Plot the input against the output 

pyplot.show() 

Expected Output: 

Figure 4.7: Graph plot for ReLU 

Pooling 

Pooling is a downsampling process that involves reducing dimensionality from a higher 
to a lower dimensional space. In machine learning, pooling is applied as a way to reduce 
the spatial complexity of the layers. This allows for fewer weights to be learned and 
consequently faster training times. 

Historically, different techniques have been used to perform pooling, such as average 
pooling and L2-norm pooling. The most preferred pooling technique is max pool. Max 
pooling involves taking the largest element within a defined window size. The following 
is an example of max pooling on a matrix: | 

Figure 4.8; Max pool 
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If we apply max pooling to the preceding example, the section that has 2, 6, 3, and 7 is 
reduced to 7. Similarly, the section with 1, 0, 9, and 2 is reduced to 9. With max pooling, 
we pick the largest number in a section. 

Dropout 

A common problem encountered in machine learning is overfitting. Overfitting 
occurs when a model "memorizes" the training data and is unable to generalize 
when presented with different examples in testing. There are several ways to avoid 
overfitting, particularly through regularization: 

Under Fitted Good Fit Over Fitted 

Figure 4.9: Regularization 

Regulation is the process of constraining coefficients toward zero. Regularization 
can be summarized as techniques used to penalize learned coefficients so that they 
tend towards zero. Dropout is a common regularization technique that is applied by 
randomly "dropping" some neurons during both the forward and backward passes. 
To implement dropout, we specify the probability of a neuron being dropped as 
a parameter. By randomly dropping neurons, we ensure that the model is able to 
generalize better and therefore be a little more flexible. 

Classification in Convolutional Neural Network 

The second section of a CNN is more task-specific. For the task of classification, this 
section is basically a fully connected neural network. A neural network is regarded as 
fully connected when every neuron in one layer is connected to all the neurons in the 
next layer. The input to the fully connected layer is a flattened vector that is the output 
of section one. Flattening converts the matrix into a 1D vector. 

The number of hidden layers in the fully connected layer is a hyperparameter that can 
be optimized and fine-tuned. 
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Exercise 20: Creating a Simple CNN Architecture 

In this exercise, you will construct a simple CNN model using Keras. This exercise will 

entail creating a model with the layers discussed so far. In the first section of the model, 
we will have two convolutional layers with the ReLU activation function, a pooling layer, 
and a dropout layer. In the second section, we will have a flattened layer and a fully 

connected layer. 

1. First, we import the necessary classes: 

from keras.models import Sequential #For stacking layers 

from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout 

from keras.utils import plot_model 

2. Next, define the variables used: 

num_classes = 10 

3. Let's now define the model. Keras's Sequential model allows you to stack layers as 
you go: 

model = Sequential() 

4. We can now add section one layers. The convolution and ReLU layers are defined 
together. We have two convolutional layers. We define a kernel size of 3 for each. 
The first layer of the model receives the input. We need to define how it should 
expect that input to be structured. In our case, the input is in the form of 28 by 28 
images. We also need to specify the number of neurons for each layer. In our case, 
we define 64 neurons for the first layer and 32 neurons for the second layer. Please 
note that these are hyperparameters that can be optimized: 

model. add(Conv2D(64, kernel_size=3, activation='relu', input_ 

shape=(28, 28,1))) 

model.add(Conv2D(32, kernel_size=3, activation='relu' )) 

9. We then add a pooling layer, followed by a dropout layer with a 25% probability of 
neurons being 'dropped': 

model. add(MaxPooling2D(pool_size=(2, 2))) 

model .add(Dropout(@.25)) 

The section one layers are done. Please note that the number of layers is also a 
hyperparameter that can be optimized. > 
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6. For section two, we first flatten the input. We then add a fully connected or dense 
layer. Using the softmax activation function, we can calculate the probability for 
each of the 10 classes: 

model .add(Flatten()) 

model.add(Dense(num_classes, activation='softmax')) 

7. To visualize the model architecture so far, we can print out the model as follows: 

model. summary () 

Expected Output: 

Layer (type) § | -— Output Shape = Param # 

en ei eee ee ee 
conv2d 6 (Conv2D) (None, 24, 24, 32) 18464 

max _pooling2d 3 (MaxPooling2 (None, 12, 12, 32) 0 

dropout _3 (Dropout) ({None;-i2;-12, 32) 0 

flatten 3 (Flatten) (None, 4608) 0 

dense 2 (Dense) (None, 10) 46090 
ee ss se cs st a a es ee eS ee ee i a ee es 

Total params: 65,194 

Trainable params: 65,194 

Non-trainable params: 0 

Figure 4.10: Model summary 
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8. You can also run the following code to export the image to a file: 

plot_model(model, to_file='model.png' ) 

: max_pooling2d_3: MaxPooling2D 

Figure 4.11: Visualized architecture of a simple CNN 

In the preceding exercise, we created a simple CNN with two convolutional layers for 
the task of classification. In the preceding output image, you'll notice how the layers are 
stacked - starting from the input layer, then the two convolutional layers, the pooling, 
dropout, and flattening layers, and the fully connected layer at the end. 
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Training a CNN 

During the training of a CNN, the model tries to learn the weights of the filters in 
feature extraction and the weights at the fully connected layers in the neural network. 
To understand how a model is trained, we'll discuss how the probability of each output 
class is calculated, how we calculate the error or the loss, and finally, how we optimize 
or minimize that loss while updating the weights: 

i Probabilities 

Recall that in the last layer of the neural network section, we used a softmax 
function to calculate the probability of each output class. This probability 
is calculated by dividing the exponent of that class score by the sum of the 
exponents of all scores: 

exp (yi 
softmax = sel ocd aa scons = is the class 0,1....9 

ye exp(yi) 

Figure 4.12: Expression to calculate probability 

Loss 

We need to be able to quantify how well the calculated probabilities predict the 
actual class. This is done by calculating a loss, which in the case of classification 
probability is best done through the categorical cross-entropy loss function. The 
categorical cross-entropy loss function takes in two vectors, the predicted classes 
(let's call that y') and the actual classes (say y), and outputs the overall loss. Cross- 
entropy loss is calculated as the sum of the negative log likelihoods of the class 
probabilities. It can be represented as the H function here: 

Ba deers ape 04 SG TEES) 

Figure 4.13: Expression to calculate loss 
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3. Optimization 

Consider the sketch of cross-entropy loss that follows. By minimizing the loss, we 

can predict the correct class with a higher probability: 

Cross Entropy Loss 

Predicted Probability 

Figure 4.14: Cross-entropy loss versus predicted probability 

Gradient descent is an optimization algorithm for finding the minimum of a function, 
such as the loss function described earlier. Although the overall error is calculated, 
we need to go back and calculate how much of that loss was contributed by each 
node. Consequently, we can update the weights, so as to minimize the overall error. 
Backpropagation applies the chain rule of calculus to calculate the update for each 
weight. This is done by taking the partial derivative of the error or loss relative to the 
weights. 

To better visualize these steps, consider the following diagram, which summarizes 

the three steps. For the classification task, the first step involves the calculation of 
probabilities for each output class. We then apply a loss function to quantify how well 
the probabilities predict the actual class. In order to make a better prediction going 
forward, we then update our weights by performing backpropagation through gradient 
descent: 
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Probability S 

Calculation of 
probabilities for each 
output class by using 
softmax function. 

Optimization 
Apply a loss function 
|to quantify how well 
the probabilities 
predict the actual 
class, through the 
categorical cross 
entropy loss function 

Update the weights by 
performing back 
propagation through 
gradient descent. 

Figure 4.15: Steps for the classification task 

Exercise 21: Training a CNN 

In this exercise, we will train the model we created in exercise 20. The following steps 
will help you with the solution. Recall that this is for the overall task of classification. 

yi We start by defining the number of epochs. An epoch is a common 
hyperparameter used in deep neural networks. One epoch is when the entire 
dataset is passed through a complete forward and backward pass. As training data 
is usually a lot, data can be divided into several batches: 

epochs=12 

Recall that we imported the MNIST dataset by running the following command: 

(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data() 

We first reshape the data to fit the model: 

X_train = X_train.reshape(60000,28,28,1) #60,000 is the number of training 

examples 

X_test = X_test.reshape(10000, 28, 28,1) 

The to_categorical function changes a vector of integers to a matrix of one-hot 
encoded vectors. Given the following example, the function returns the array 

shown: 

#Demonstrating the to_categorical method 

Import numpy as np 

from keras.utils import to_categorical 

example = [1,0,3,2] 

to_categorical (example) 
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The array would be as follows: 

array (iO. pel, Dsyeucd, 

[ dees 0.7 D ae Mie 1 y 

[OnpaerO ooaas 1; 

POC, Career ue 41) 

Figure 4.16: Array output 

5. We apply it to the target column as shown: 

from keras.utils import to_categorical 

y_train = to_categorical(y_train) 

y_test = to_categorical(y_test) 

6. We then define the loss function as a categorical cross-entropy loss function. 
Additionally, we define the optimizer and the metrics. The Adam(Adaptive 
Moment) optimizer is an optimization algorithm often used in place of stochastic 
gradient descent. It defines an adaptive learning rate for each parameter of the 
model: 

model.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=['accuracy' ]) 

7. To train the model, run the .fit method: 

model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=epochs ) 

The output should be as follows: 

Train on 60000 samples, validate on 10000 samples 

Epoch 1/12 

60000/60000 [==s===s==s==== SaaSessesseeesese ] - 2098 3ms/step - loss: 11.8406 - acc: 0.2646 - val_loss: 11.0491 - val 
acc: 0.3130 i 
Epoch 2/12 

60000/60000 [=s==s==s=sses=ss=sssass=s=ee=s==] - 1978 3ms/step - loss: 9.8795 - acc: 0.3867 - val_loss: 9.8567 - val_ac 

ce: 0.3884 is 
Epoch 3/12 

60000/60000 [sess=sessseessseesessseseeese=] - 199s 3ms/step - loss: 9.8271 - acc: 0.3901 - val_loss: 9.7647 - val_ac 

ce: 0.3940 7 
Epoch 4/12 

60000/60000 [===ss=====s=s=s=ss===ssee=sssee==5 ] - 227s 4ms/step - loss: 9.6686 - acc: 0.4000 - val_loss: 9.6117 - val_ac 
c: 0.4033 

Figure 4.17: Training the model 
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8. To evaluate the model's performance, you can run the following: 

score = model.evaluate(X_test, y_test, verbose=0) 
print('Test loss:', score[0]) 

print('Test accuracy:', score[1]) 

9. For this task, we expect a fairly high accuracy after a number of epochs: 

Test loss: 6.17829175567627 

Test accuracy: @.6169 

Figure 4.18: Accuracy and loss output 

Applying CNNs to Text 

Now that we have a general intuition of how CNNs work using images, let's look at 
how they can be applied in natural language processing. Just like images, text has 
spatial qualities that make it ideal for CNN usage. However, there is one main change 
to the architecture that we introduce when dealing with text. Instead of having 
two-dimensional convolutional layers, text is one-dimensional, as shown here. 

Figure 4.19: One-dimensional convolution 

It is important to note that the preceding input sequence can be either the character 

sequence or the word sequence. The application of CNNs on text, at the character level, 

can.be visualized as shown in the following figure. CNNs have 6 convolutional layers and 
3 fully connected layers as shown here. 
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Quis ation 
Feature 

| 

Convolutions Max-pooling Conv. and Pool. layers Fully-connected 

Figure 4.20: CNN with 6 convolutional and 3 fully connected layers 

Character-level CNNs were shown to perform well when applied to large noisy 
data. They are also simpler than word-level applications because they require no 
preprocessing (such as stemming) and the characters are represented as one-hot 
encoding representations. 

In the following example, we will demonstrate the application of CNNs to text at a word 
level. We will therefore need to perform some vectorization and padding before feeding 
the data into the CNN architecture. 

Exercise 22: Application of a Simple CNN to a Reuters News Topic for 

Classification 

In this exercise, we will be applying a CNN model to the built-in Keras Reuters dataset. 

Note 

If you are using Google Colab, you need to downgrade your version of numpy to 

1.16.2 by running 

!pip install numpy==1.16.1 

import numpy as np 

This downgrade is necessary since this version of numpy has the default value of 

allow_pickle as True. 
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1. Start by importing the necessary classes: 

import keras 

from keras.datasets import reuters 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras import layers 

2. Define the variables: 

batch_size = 32 

epochs = 12 

maxlen = 10000 

batch_size = 32 

embedding_dim = 128 

num_filters = 64 

kernel_size = 5 

3. Load the Reuters dataset: 

(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=None, 

test_split=0.2) 

4, Prepare the data: 

word_index = reuters.get_word_index(path="reuters_word_index. json") 

num_classes = max(y_train) + 1 

index_to_word = {} 

for key, value in word_index.items(): 

index_to_word[value] = key 

5. Tokenize the input data: 

tokenizer = Tokenizer(num_words=maxlen) 

x_train = tokenizer.sequences_to_matrix(x_train, mode='binary') 

x_test = tokenizer.sequences_to_matrix(x_test, mode='binary') 

y_train = keras.utils.to_categorical(y_train, num_classes) 

y_test = keras.utils.to_categorical(y_test, num_classes) 

6. Define the model: 

model = Sequential() 

model.add(layers.Embedding(512, embedding_dim, input_length=maxlen)) 

model.add(layers.Conv1D(num_filters, kernel_size, activation='relu')) 

model. add(layers.GlobalMaxPooling1D()) 

‘model.add(layers.Dense(10, activation='relu' )) 
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model.add(layers.Dense(num_classes, activation='softmax' )) 

model.compile(loss='categorical_crossentropy', optimizer='adam' , 

metrics=['accuracy' ]) 

7. Train and evaluate the model. Print the accuracy score: 

history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, 

verbose=1, validation_split=0.1) 

score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) 

print('Test loss:', score[Q@]) 

print('Test accuracy:', score[1]) 

Expected output: 

Test loss: 2.2279047027615064 

Test accuracy: @.43232413178984863 

Figure 4.21: Accuracy score 

We have thus created a model and trained it on a dataset. 

Application Areas of CNNs 

Now that we understand the architecture of CNNs, let's look at some applications. In 
general, CNNs are great for data that has a spatial structure. Examples of types of data 
that has a spatial structure are sound, images, video, and text. 

In natural language processing, CNNs are used for various tasks such as sentence 
classification. One example is the task of sentiment classification, where a sentence is 

classified as belonging to a predetermined group of classes. 

As discussed earlier, CNNs are applied at the character level to classification tasks such 
as sentiment classification, especially on noisy datasets such as social media posts. 

CNNs are more commonly applied in computer vision. Here are some applications in 

this area: 

¢ Facial recognition 

Most social networking sites employ CNNs to detect faces and subsequently 
perform tasks such as tagging. 
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Figure 4.22: Facial recognition 

* Object detection 

Similarly, CNNs are able to detect objects in images. There are several CNN-based 
architectures that are used to detect objects, one of the most popular being 
R-CNN. (R-CNN stands for Region CNN.) An R-CNN works by applying a selective 
search to come up with regions and subsequently use using CNNs to perform 
classification, one region at a time. 

Tt 

_ _. Wall Painting 

eee Fo) 

Figure 4.23: Object detection 
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¢ Image captioning 

This task involves creating a textual description for an image. One way to perform 
image captioning is to replace the fully connected layer in section two with a 
recurrent neural network (RNN). 

ag © 2 oe 

A puppy in acup A dog wearing A white puppy sitting 
sunglasses on a sofa chair 

Figure 4.24: Image captioning 

° Semantic segmentation 

Semantic segmentation is the task of segmenting an image into more meaningful 
parts. Each pixel in an image is classified as belonging to a class. 

forward/inference 
——$— > 

backward/learning 

Figure 4.25: Semantic segmentation 
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An architecture that can be used to perform semantic segmentation is a Fully 
Convoluted Network (FCN). The architecture of FCNs is slightly different from the 
preceding one in two ways: it has no fully connected layer and it has upsampling. 
Upsampling is the process of making the output image larger preferably the same size 
as the input image. 

Here is a sample architecture: 

32x sien. one 

image convl -32 oll conv2  pool2 convs pool3 an bite conv5 pool5 conv6-7 prediction 

x cone? 16x upsampled 

aaa prediction (FCN-16s) 

8x upsampled 

4x conv7 prediction (FCN-8s) 

Figure 4.26: Sample architecture of semantic segmentation 

Note 

For more on FCNs, refer to the paper by Jonathan Long, Evan Shelhamer, and 

Trevor Darrell titled Fully Convolutional Networks for Semantic Segmentation. 
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Activity 5: Sentiment Analysis on a Real-life Dataset 

Imagine that you are tasked with creating a model to classify the reviews from a 
dataset. In this activity, we will build a CNN that performs the binary classification task 
of sentiment analysis. We will be using a real-life dataset from UCI's repository. 

Note 

This dataset is downloaded from https://archive.ics.uci.edu/ml/datasets/ 

Sentiment+Labelled+Sentences 

From Group to Individual Labels using Deep Features, Kotziaa et al., KDD 2015 UCI 

machine learning Repository [http://archive.ics.uci.edu.ml]. Irvine, CA: University of 

California, School of Information and Computer Science 

You can also download it from our GitHub repository link: 

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language- 

Processing/tree/master/Lesson%2004 : 

The following steps will help you with the solution. 

1. 

Z 

oN Dm 

Download the Sentiment Labelled Sentences dataset. 

Create a directory labelled ‘data’ within your working directory and unzip the 
downloaded folder within the directory. 

Create and run your working script (for example, sentiment.ipynb) on Jupyter 
Notebook. 

Import your data using pandas read_csv method. Feel free to use one or all of the 
files in the dataset. 

Split your data into training and test sets by using scikit learn's train_test_split. 

Tokenize using Keras's tokenizer. 

Convert the text into sequences using the texts_to_sequences method. 

Ensure that all sequences have the same length by padding them. You can use 
Keras's pad_sequences function. 
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9. Define the model with a minimum of one convolutional layer and one fully 
connected layer. As this is a binary classification, we use a sigmoid activation 
function and calculate the loss through binary cross-entropy loss. 

10. Train and test the model. 

Note 

The solution for the activity can be found on page 305. 

Expected output: 

Training Accuracy: 1.e@0e@ 

Testing Accuracy: 6.8167 

Figure 4.27: Accuracy scores 

Summary 

In this chapter, we studied the architecture and applications of convolutional neural 

networks (CNNs). CNNs are applied not just to text and images but also to datasets that 
have some form of spatial structure. In the upcoming chapters, you will explore how to 
apply other forms of neural networks to various natural language tasks. 
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Recurrent Neural 

Networks 

Learning Objectives 

By the end of this chapter, you will be able to: 

Describe classical feedforward networks 

Differentiate between feedforward neural networks and recurrent neural networks 

Evaluate the application of backpropagation through time for recurrent neural networks 

Describe the drawbacks of recurrent neural networks 

Use recurrent neural networks with keras to solve the author attribution problem 

This chapter aims to introduce you to recurrent neural networks and their applications, as well 

as their drawbacks. 
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Introduction 

We encounter different kinds of data in our day-to-day lives, and some of this data has 
temporal dependencies (dependencies over time) while some does not. For example, 
an image by itself contains the information it wants to convey. However, data forms 
such as audio and video have dependencies over time. They cannot convey information 
if a fixed point in time is taken into consideration. Based on the problem statement, 
the input that's needed in order to solve the problem can differ. If we have a model to 
detect a particular person in a frame, a single image can be used as input. However, if 
we need to detect their actions, we need a stream of images, contiguous in time, as the 

input. We can understand the person's actions by analyzing these images together, but 
not independently. 

While watching a movie, a particular scene makes sense because its context is known, 

and we remember all the information gathered before in the movie to understand 
the current scene. This is very important, and we, as humans, can do this because 

our brains can store memory, analyze past data, and retrieve useful information to 
understand the current scene. 

Networks such as multi-layered perceptron and convolutional neural networks lack this 

capability. Every input given to these networks is treated independently, and they don't 
store any information from past inputs to analyze the current inputs because they lack 
memory in their architecture. That being the case, maybe there is a way we can enable 
neural networks to have memory. We can try and make them store useful information 
from the past and make them retrieve information from the past that helps them to 
analyze the current input. This is indeed possible, and the architecture for it is called 
the Recurrent Neural Network (RNN). 

Before we delve deep into the theory of RNNs, let's take a look at their applications. 
Currently, RNNs are widely used. Some of the applications are as follows: 

* Speech recognition: Whether it's Amazon's Alexa, Apple's Siri, Google's voice 
assistant, or Microsoft's Cortana, all their speech recognition systems use RNNs. 

¢ Time series predictions: Any application with time series data, such as stock market 
data, website traffic, call center traffic, movie recommendations, Google Maps 

routes, and so on, uses RNNs to predict future data, the optimal path, optimal 

resource allocations, and so on. 

* Natural language processing: Applications such as machine translation (for Google 
Translate, for instance), chatbots (such as those for Slack and Google), and 
question answering all use RNNs to model dependencies. 
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Previous Versions of Neural Networks 

could not capture time-variable dependencies, which are essential for capturing the 
time-variable properties of a signal. Modeling time-variable dependencies is very 
important in many applications involving real-world data, such as speech and video, in 
which data has time-variable properties. Also, human biological neural networks have 
a recurrent relationship, so it is the most obvious direction to take. How could this 

recurrent relationship be added to existing feedforward networks? 

One of the first attempts to achieve this was done by adding delay elements, and the 
network was called the Time-Delay Neural Network, or TDNN for short. 

In this network, as the following figure shows, the delay elements are added to the 
network and the past inputs are given to the network along with the current timestep 

as the input to the network. This definitely has an advantage over the traditional feed 
forward networks but has the disadvantage of having only so many inputs from the past 
as the window allows. If the window is too large, the network grows with increasing 
parameters and computational complexities. 

D = Delay 

Figure 5.1: TDNN structure 
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Then came Elman networks, or simple RNNs. Elman networks are very similar to 
feedforward networks, except that the hidden layer of output is stored and used for the 
next input. This way, information from the previous timesteps can be captured in these 
hidden states. 

One way of looking at Elman networks is that at each input, we append the previous 
hidden layers' outputs along with the inputs and send them all as the inputs to the 
network. So, if the input size is m and the hidden layer size is n, the effective input layer 
size becomes m+n. 

The following figure shows a simple three-layer network, where the previous state is 
fed back to the network to store the context, and therefore it is called SimpleRNN. 
There are other variations to this architecture, such as Jordan networks, which we will 

not study in this chapter. For those are interested in the early history of RNNs, reading 
more on Elman networks and Jordan networks might be the best place to start. 

Transforms 

state 

Figure 5.2: SimpleRNN structure > 
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And then came the RNN, which is the topic of this chapter. We will look into RNNs in 
detail in the coming sections It is important to note that in recurrent networks, since 
there are memory units and weights associated to these units, they need to be learned 
during backpropagation. Since these gradients are also backpropagated through time, 
we Call it Back Propagation Through Time, or BPTT. We will discuss BPTT in detail 

in the upcoming sections. However, TDNN, Elman networks, and RNNs have a major 

drawback due to BPTT, and it is called vanishing gradients. Vanishing gradients is a 
problem where gradients get smaller and smaller as they backpropagate, and in these 
networks, as timesteps increase, back-propagated gradients get smaller and smaller, 
resulting in vanishing gradients. It's almost impossible to capture time dependencies 
greater than 20 timesteps. 

To address this issue, an architecture called the Long Short-Term Memory (LSTM) 
architecture was introduced. The key idea here is to hold some cell states constant 
and introduce them as needed in future timesteps. These decisions are made by gates, 
including forget gates and output gates. Another commonly used variant of the LSTM 
is called the Gated Recurrent Unit, or GRU for short. Don't worry much if you didn't 
understand this completely. There are two chapters following that are dedicated to 
making these concepts clear. 

RNNs 

Recurrent often means occurring repeatedly. The recurrent part of RNNs simply means 
that the same task is done over all the inputs in the input sequence (for RNNs, we give 
a sequence of timesteps as the input sequence). One main difference between feed 
forward networks and RNNs is that RNNs have memory elements called states that 

capture the information from the previous inputs. So, in this architecture, the current 

output not only depends on the current input, but also on the current state, which 

takes into account past inputs. 
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RNNs are trained by sequences of inputs rather than a single input; similarly, we can 

consider each input to an RNN as a sequence of timesteps. The state elements in RNNs 

contain information about past inputs to process the current input sequence. 

Yer Y; Yeas 

Figure 5.3: RNN structure 

For each input in the input sequence, the RNN gets a state, calculates its output, and 
sends its state to the next input in the sequence. The same set of tasks is repeated for 
all the elements in the sequence. 

It's easy to understand RNNs and their operations by comparing them to feedforward 
networks. Let's do that now. 

By now, it's very clear that the inputs are independent of each other in feedforward 
neural networks, so we train the network by randomly drawing pairs of inputs and 
outputs. There is no significance to the sequence. At any given time, the output is a 
function of input and weights. 

ny = F(,,W) 

Figure 5.4: Expression for the output of an RNN 

In RNNs, our output at time t depends not only on the current input and the weight, but 
also on previous inputs. In this case, the output at time t will be defined as shown: 

Ut — Pia. Lit
, Kip ee aL ae ee W) 

Figure 5.5: Expression for the output of an RNN at time t 
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Let's look at a simple structure of an RNN that is called a folded model. In the following 
figure, the S, state vector is fed back into the network from the previous timestep. 
One important takeaway from this representation is that RNNs share the same weight 
matrices across timesteps. By increasing the timesteps, we are not learning more 
parameters, but we are looking at a bigger sequence. 

Yt 

Xu 
Figure 5.6: Folded model of an RNN 

This is a folded model of an RNN: 

Xt : Current input vector in the input sequence 

Yt: Current output vector in the output sequence 

St: Current state vector 

Wx: Weight matrix connecting the input vector to the state vector 

Wy: Weight matrix connecting the state vector to the output vector 

Ws: Weight matrix connecting the state vector of previous timestep to the next one 
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Since the input, x is a sequence of timesteps and we perform the same task for 
elements in this sequence, we can unfold this model. 

Ves Yt Veet 

Figure 5.7: Unfolding of an RNN 

For example, the output at time t+1,y,,, depends on input at time t+1, weight matrices, 
and all the inputs before it. 

Ye y 

Figure 5.8: Unfolded RNN Fy 
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Since RNNs are extensions of FFNNs, it's best to understand the differences between 
these architectures. 

FF NN R_NN 

y, Y, 

W, W, 

h sC Xm, 
W.. W.. 

X, + 
y,= F(x,W,,W,) y= F(X, %,49X,p9-++-W,,W,,W,) 

Figure 5.9: Differences between FFNNs and RNNs 

The output expressions for FFNNs and RNNs are as follows: 

h= t Wx Dye W got Spe 

X,Wy ih (X,_ 1Wx25__9W,) Ws 

y,=h,.wy Y,=S,.W, 

Figure 5.10: Output expressions for FFNNs and RNNs 

From the previous figure and equations, it is very evident that there are a lot of 
similarities between these two architectures. In fact, they are the same if Ws=0. This is 

obviously the case since Ws is the weight associated with the state that is fed back to 
the network. Without Ws, there is no feedback, which is the basis of the RNN. 
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In FFNNs, the output at t depends on the input at t and weight matrices. In RNNs, the 
output at t depends on input at t, t-1, t-2, and so on, as well as the weight matrices. This 

is explained with the further calculation of hidden vector h in the case of an FFNN and 
s in the case of an RNN. At first glance, it might look like the state at t depends on the 
input at t, the state at t-1, and the weight matrices; and the state at t-1 depends on the 

input at t-1, the state at t-2, and so on; creating a chain that goes back all the way to the 
first timestep considered. The output calculations of both FFNNs and RNNs are same, 

though. 

RNN Architectures 

RNNs can come in many forms, and the appropriate architecture needs to be chosen 
depending on the problem we are solving. 

one to many many to one many to many many to many 

ain} : HU UOb 
HH. nH. MOL OH, 
i io0 Oue ale 

Figure 5.11 Different architectures of RNNs 

One to many: In this architecture, a single input is given, and the output is a sequence. 
An example of this is image captioning, where the input is a single image, and the 
output is a sequence of words explaining the image. 

Many to one: In this architecture, a sequence of inputs is given, but a single output 
is expected. An example is any time series prediction where the next timestep in the 
sequence needs to be predicted, given the previous timesteps. 

Many to many: In this architecture, an input sequence is given to the network, and the 
network outputs a sequence. In this case, the sequence can be either synced or not 
synced. For example, in machine translation, the whole sentence needs to be fedin 4 

before the networks starts to translate it. Sometimes, the input and output are not in 
sync; for example, in the case of speech enhancement, where an audio frame is given as 

input and a cleaner version of the input frame is the output expected. In such cases, the 
input and output are in sync. 
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RNNs can also be stacked on top of each other. It is important to note that each RNN 
in the stack has its own weight matrices. So, the weight matrices are shared on the 
horizontal axis (the time axis) and not on the vertical axis (the number of RNNs). 

Figure 5.12: Stacked RNNs 

BPTT 

RNNs can deal with varying sequence lengths, can be used in different forms, and can 
be stacked on top of each other. Previously, you have come across the back propagation 
technique to backpropagate loss values to adjust weights. In the case of RNNs, 
something similar can be done, with a bit of a twist, which is a gate loss through time. 
It's called BPTT. 

From the basic theory of back propagation, we know the following: 

W, < previous + A W new 

Figure 5.13: Expression for weight update 
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The update value is calculated through gradient calculations using the chain rule: 

AW ee 
Ow 

Figure 5.14 Partial derivative of error with regards to weight 

Here, a is the learning rate. The partial derivative of Error (loss) with respect to the 
weight matrix is the main calculation. Once this new matrix is obtained, adjusting the 
weight matrices is simply adding this new matrix, scaled by a learning factor, to itself. 

When calculating the update values for RNNs, we will use BPTT. 

Let's look at an example to understand this better. Consider a loss function, such as the 

mean squared error (which is commonly used for regression problems): 

E.= (d, cc y,) 

Y, 

tba 
* aw, 

Be we OE : 

S; S, W, 
fa) Ww, 

OE, 

W, 

OW. 

X, 
t-1 

Figure 5.15: Loss function 

At timestep t = 3, the loss calculated is as shown: 

E, = (d, i y;) 
Figure 5.16 Loss at time t=3 

This loss needs to be backpropagated, and the Wy, Wx, and Ws weights need to be 
updated. 
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As seen previously, we need to calculate the update value to adjust these weights, and 
this update value can be calculated using partial derivatives and the chain rule. 

There are three parts to doing this: 

¢ Update Weight Wy by calculating the partial derivative of the error with respect to 

Wy 

¢ Update Weight Ws by calculating the partial derivative of the error with respect to 
Ws 

¢ Update Weight Wx by calculating the partial derivative of the error with respect to 
Wx 

Before we look at these updates, let's unroll the model and keep the part of the network 

that's actually relevant for our calculations. 

Figure 5.17 Unfolded RNN with loss at time t=3 

Since we are looking at how loss at t=3 affects the weight matrices, the loss values 

at and previous to t=2 are not relevant. Now, we need to understand how to 

backpropagate this loss through the network. 

Let's look at each of these updates and show the gradient flow for each of the updates 

shown in the preceding figure. 
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Updates and Gradient Flow 

The updates can be listed as follows: 

e Adjusting weight matrix Wy 

e Adjusting weight matrix Ws 

¢ For updating Wx 

Adjusting Weight Matrix Wy 

The model can be visualized as follows: 

Figure 5.18: Back propagation of loss through weight matrix Wy 

For Wy, the update is very simple since there are no additional paths or variables 
between Wy and the error. The matrix can be realized as follows: 

aE, _ OB, by, 
OW, oy 3 OW, 

Figure 5.19: Expression for weight matrix Wy 
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Adjusting Weight Matrix Ws 

Figure 5.20: Back propagation of loss through weight matrix Ws with respect to $3 

We can calculate the partial derivate of error with respect to Ws using the chain rule, 

as shown in the previous figure. It looks like that is what is needed, but it's important to 
remember that S, is dependent on S,_,, and therefore S, is dependent on S,, so we need 

to consider S, also, as shown here: 

Shae Oye Osa. Os, 

dy, 05, Os, dw, 
Figure 5.21: Back propagation of loss through weight matrix Ws with respect to S, 
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Again, S, in turn depends on §,, and therefore S, needs to be considered, too, as shown 

here: 

de Oy, Of, ds, ~ds} 

Os See eesa. OS eT 2 3 2 1 

- Figure 5.22: Back propagation of loss through weight matrix Ws with respect to S, 

At t=3, we must consider the contribution of state S, to the error, the contribution of 
state S, to the error, and the contribution of state S, to the error, E,. The final value 
looks like this: 

dE, dy, 0s, ds, 

0B dy, 0s, ds, dw, 

aw, ie aa 
OE; Oy3 OS; OS, 

oe ee 
dy, OS, OS, Ow, 

_ 95; dy, @s, as, As, 

dy, Os, 8s, ds, Ow, : 
Figure 5.23: Sum of all derivatives of error with respect to Ws at t=3 
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In general, for timestep N, all the contributions of the previous timesteps need to be 
considered. So, the general formula looks like this: 

DE nen O Bie Oye 0S; 

OW, Se On OS OW, 
Figure 5.24: General expression for the derivative of error with respect to Ws 

For Updating Wx 

We can calculate the partial derivate of error with respect to Wx using the chain rule, as 
shown in the next few figures. With the same reasoning that S, is dependent on §S,_,, the 
calculation of partial derivative of error with respect to Wx can be divided into three 
stages at t=3. 

dE, dy, ds, 

dy, ds; ow, 

Figure 5.25: Back propagation of loss through weight matrix Wx with respect to S, 
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Back propagation of loss through weight matrix Wx with respect to §,: 

Figure 5.26: Back propagation of loss through weight matrix Wx with respect to S, 

Back propagation of loss through weight matrix Wx with respect to S,: 

OE; 20¥y 0540S qacdsy 

dy 3 fa) Ss 3 0 Ss 4) 0 S 1 a] Ww. 

Figure 5.27: Back propagation of loss through weight matrix Wx with respect to S, 
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Similar to the previous discussion, at t=3, we must consider the contribution of state S, 
to the error, the contribution of state S, to the error, and the contribution of state Ss, his 
the error, E,. The final value looks like chiss 

dE, dy, 08, 8, 
= 4 — = 4s 

OE, dy, .08,. 08, OW. 

aw, Re ee 
| OE, dy; O83, OS, 

dy; OS, OS, OW, 

dE; dy; 0s, ds, as, 

as, ds, Os, OW, Oy, 

Figure 5.28: Sum of all derivatives of error with respect to Wx at t=3 

In general, for timestep N, all the contributions of the previous timesteps need to be 
considered. So, the general formula looks as follows 

Bie NOEs Sd yes. 

Ja Betetepecten hi geogei ketal Se8 
Figure 5.29: General expression of derivative of error with respect to Wx 
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Since the chain of derivatives already has 5 multiplicative terms at t=3, this number 
grows to 22 multiplicative terms for timestep 20. It's possible that each of these 
derivatives could be either greater than 0 or less than 0. Due to consecutive 
multiplications with longer timesteps, the total derivative gets smaller or larger. This 
problem is either vanishing gradients or exploding gradients. 

Gradients 

The two types of gradients that have been identified are: 

¢ Exploding gradients 

e Vanishing gradients 

Exploding Gradients 

As the name indicates, this happens when gradients explode to much bigger values. 
This could be one of the problems that RNN architectures could encounter with larger 
timesteps. This could happen when each of the partial derivatives is larger than 1, and 
multiplication of these partial derivatives leads to an even larger value. These larger 
gradient values cause a dramatic shift in the weight values each time they are adjusted 
using back propagation, leading to a network that doesn't learn well. 

There are some techniques used to mitigate this issue, such as gradient clipping, 
wherein the gradient is normalized once it exceeds a set threshold. 

Vanishing Gradients 

Whether it is RNNs or CNNs, vanishing gradients could be a problem if calculated loss 
has to travel back a lot. In CNNs, this problem could occur when there are a lot of layers 
with activations such as sigmoid or tanh. The loss has to travel all the way back to the 
initial layers, and these activations generally dilute them by the time they reach the 
initial layers, which means there are almost no weight updates for the initial layers, 
resulting in underfitting. This is even common in RNNs, since even if a network has one 
RNN layer but a large number of timesteps, the loss has to travel all the way through the 
timesteps due to backpropagation through time. Since the gradients are multiplicative, 
as seen in the generalized derivative expressions earlier, these values tend to become 
low, and weights are not updated after a certain timestep. This means that even if more 
timesteps are shown to a network, the network can't benefit because the gradients 

cannot travel all the way back. This limitation in RNNs is due to vanishing gradients. * 
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As the name indicates, this happens when the gradients become too small. This 
could happen when each of partial derivatives is smaller than 1 and multiplication of 
these partial derivatives leads to a much smaller value. With this geometric decay of 
information, the network cannot learn properly. There are almost no changes in the 
weight values, which leads to underfitting. 

There must be a better mechanism to use to know what parts of the previous timesteps 
to remember, what to forget, and so on. To address this issue, architectures such as 

LSTM networks and GRUs were created. 

RNNs with Keras 

So far, we have discussed the theory behind RNNs, but there are a lot of frameworks 
available that can abstract away the implementation details. As long as we know how 
to use these frameworks, we can successfully get our projects working. TensorFlow, 
Theano, Keras, PyTorch, and CNTK are some of these frameworks. In this chapter, 

let's take a closer look at the most commonly used framework, called Keras. It uses 
either Tensorflow or Theano as the backend, indicating that it creates an even higher 

level of abstraction than other frameworks. It is a tool best suited for beginners. 
Once comfortable with Keras, tools such as TensorFlow give much more power in 
implementing custom functions. 

There are many variants of RNNs that you will study in the next few chapters, but all of 
them use the same base class, called RNN: 

keras.layers.RNN(cell, return_sequences=False, return_state=False, go_ 

backwards=False, stateful=False, unroll=False) 

In this chapter, we have discussed the simple form of the RNN, which is called 

SimpleRNN in Keras: 

keras.layers.SimpleRNN(units, activation='tanh', use_bias=True, kernel_ 

initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_ 

initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, 

bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, 

recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_ 

dropout=0.0, return_sequences=False, return_state=False, go_backwards=False, 

stateful=False, unroll=False) 
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As you can see from the arguments here, there are two kinds: one for regular kernels, 
used to compute the outputs of a layer, and the other for recurrent kernels used to 
compute states. Don't worry too much about constraints, regularizers, initializers, and 
dropout. You can find more about them at https: //keras.io/layers/recurrent/. They are 
mostly used to avoid overfitting. The role of activation here is the same as the role of 
activation with any other layer. 

The units are the number of recurrent units in a particular layer. The greater the 
number of units, the more parameters there are that need to be learned. 

return_sequences is the argument that specifies whether the RNN layer should return 
the whole sequence or just the last timestep. If return_sequences is false, the output 
of the RNN layer is just the last timestep, so we cannot stack this with another RNN 
layer. In other words, if an RNN layer needs to be stacked by another RNN layer, return_ 
sequences need to be true. If an RNN layer is connected to the Dense layer, this can 

argument can be either true or false, depending on the application. 

The return_state argument specifies whether the last state of the RNN needs to be 
returned along with the output. This can be set to either True or False, depending on 
the application. 

go_backwards can be used if, for any reason, the input sequence needs to be processed 
backward. Keep a note that if this is set to True, even the returned sequence is reversed. 

stateful is an argument that can be set to true if a state needs to be passed between 
batches. If this argument is set to true, the data needs to be handled carefully; we have 
a topic covering this in detail. 

unroll is an argument that leads to the network being unrolled if set to true, which can 
speed up operations but can be very memory extensive depending on the timesteps. 
Generally, this argument is set to true for short sequences. 
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The number of timesteps is not an argument for a particular layer since it stays the 
same for the whole network, which is represented in the input shape. This brings us to 
the important point of the shape of the network when using RNNs: 

Input_shape 

3D tensor with shape (batch_size, timesteps, input_dim) 

Output_shape 

If return_sequences is true, 3D tensor with shape (batch_size, timesteps, 

units) 

If return_sequences is false, 2D tensor with shape (batch_size, units) 

If return_state is True, a list of 2 tensors, 1 is output tensor same as 

above depending on return_sequences, the other is state tensor of shape 

(batch_size, units) 

Note 

If you start building a network with an RNN layer, input_shape must be specified. 

After a model is built, model. summary() can be used to see the shapes of each layer and 

the total number of parameters. 

Exercise 23: Building an RNN Model to Show the Stability of Parameters over 

Time 

Let's build a simple RNN model to show that the parameters do not change with 

timesteps. Note that while mentioning the input_shape argument, batch_size need not 
be mentioned unless needed. It is needed for a stateful network, which we will discuss 

next. batch_size is mentioned while training the model with the fit() or fit_generator() 
functions. 

The following steps will help you with the solution: 

1. Import the necessary Python packages. We will be using Sequential, SimpleRNN, 
and Dense. 

from keras.models import Sequential 

from keras.layers import SimpleRNN, Dense 
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2. Next, we define the model and its layers: 

model = Sequential() 

# Recurrent layer 

model. add(SimpleRNN(64, input_shape=(10,100), return_sequences=False) ) 

# Fully connected layer 

model.add(Dense(64, activation='relu')) 

# Output layer 

model.add(Dense(100, activation='softmax')) 

3. You can check the summary of the model: 

model. summary () 

model. summary() gives the following output: 

Layer (type) Output Shape 

simple_rnn_a (SimpleRNi) (None, 64) 
dense 1 (Dense} (None, 64) 

dense 2 (Dense) (None, 180) 

Total params: 21,220 

Trainable params: 21,220 

Non-trainable params: @ 

Figure 5.30: Model summary for model layers 

Param # 

see eae ee ee 

In this case, None is the batch_size parameter, which will be provided by the fit() 
function. The output of the RNN layer is (None, 64) since it is not returning the 
sequence. 

4, Let's look at the model that returns sequence: 

model = Sequential() 

# Recurrent layer 

model .add(SimpleRNN(64, input_shape=(10,100), return_sequences=True)) 

# Fully connected layer 

model.add(Dense(64, activation='relu' )) 
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# Output layer 

model.add(Dense(100, activation='softmax')) 

model. summary () 

The summary of the model that returns sequence looks like this: 

simple_rnn_3 (SimpleRNN) (None, 1¢, 64) ~=«éwSG 
dense 5 (Dense) = ~~ (None, 10, 64) 4160 

dense_6 (Dense) (None, 18, 1866) 6506 

Total params: 21,226 

Trainable params: 21,228 

Non-trainable params: @ 

Figure 5.31: Model summary of sequence-returning model 

Now the RNN layer is returning a sequence, and therefore its output shape is 
3D instead of 2D, as seen earlier. Also, note that the Dense layer is automatically 

adjusted to this change in its input. The Dense layer with the current Keras 
version has the capability of adjusting to time_steps from a previous RNN layer. In 
the previous versions of Keras, TimeDistributed(Dense) was used to achieve this. 

We have previously discussed how the RNN shares its parameters over timesteps. 

Let's see that in action and change the timesteps of the previous model from 10 to 

1,000: 

model = Sequential() 

# Recurrent layer 

model.add(SimpleRNN(64, input_shape=(1000,100), return_sequences=True) ) 
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# Fully connected layer 

model.add(Dense(64, activation='relu')) 

# Output layer 

model .add(Dense(10@, activation='softmax' )) 

model. summary () 

Layer (type) Output Shape Param # 

Simple rnn_5 (SimpleRNN) {None, 1060, 64) 18568 

dense 9 (Dense) (None, 10008, 64) 4168 

dense 16 (Dense) {None, 16@6, 160) 65e¢ 

Total params: 21,226 

Trainable params: 21,226 

Non-trainable params: @ 

Figure 5.32: Model summary for timesteps 

Clearly, the output shapes of the network changed to this new time_steps. 
However, there is no change in the parameters between the two models. 

This indicates that the parameters are shared over time and are not impacted by 
changing the number of timesteps. Note that the same is applicable to the Dense 
layer when operating on more than one timestep. 

Stateful versus Stateless 

There are two modes of operation available with RNNs considering the states: the 
stateless and stateful modes. If the argument stateful=True, you are working with 
stateful mode, and False signifies stateless mode. 

Stateless mode is basically saying that one example in a batch is not related to any 
example in the next batch; that is, every example is independent in the given case. The 

state is reset after every example. Each example has a certain number of timesteps 
depending on the model architecture. For example, the last model we saw had 
1,000 timesteps, and between these 1000 timesteps, the state vector was calculated ° 

and passed from one timestep to the next. However, at the end of the example or 
the beginning of the next example, there was no state passed. Each example was 
independent and therefore there was no consideration needed regarding the way the 
data was shuffled. 
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In stateful mode, the state from example i of batch 1 is passed to the i+1 example of 
batch 2. This means that the state is passed from one example to the next among 
batches. For this reason, the examples must be contiguous across batches and cannot 
be random. The following figure explains this situation. The examples i, i+1, i+2, and so 
on are contiguous, and so are j, j+1, j+2, and so on, and k, k#1, k+2, and so on. 

batch 1 batch 2 batch 1 

i+2 
-----——~ 

j+2 a SEE are 

Figure 5.33 Batch formations for stateful RNN 

Exercise 24: Turning a Stateless Network into a Stateful Network by Only 

Changing Arguments 

In order to turn a network from stateless to stateful by changing the arguments, the 
following steps should be taken. 

1. First, we would need to import the required Python packages: 

from keras.models import Sequential 

from keras.layers import SimpleRNN, Dense 

2. Next, build the model using Sequential and define the layers: 

model = Sequential() 

# Recurrent layer 

model.add(SimpleRNN(64, input_shape=(1000,100), return_sequences=True, 

stateful=False)) 

# Fully connected layer 



150 | Recurrent Neural Networks 

model.add(Dense(64, activation='relu' )) 

# Output layer 

model.add(Dense(100, activation='softmax' )) 

model. summary () 

3. Set the optimizer to Adam, set categorical crosstropy as the loss parameter, and 

set the metrics to fit the model. Compile the model and fit the model over 100 

epochs: 

model.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=['accuracy' ]) 

model.fit(X, Y, batch_size=32, epochs=100, shuffle=True) 

4, Assume that X and Y are training data as contiguous examples. Turn this model 
into a stateful one: 

model = Sequential() 

# Recurrent layer 

model.add(SimpleRNN(64, input_shape=(1000,100@), return _sequences=True, 

stateful=True) ) 

# Fully connected layer 

model. add(Dense(64, activation='relu')) 

# Output layer 

model.add(Dense(100, activation='softmax')) 

5. Set the optimizer to Adam, set categorical crossentropy as the loss parameter, and 

set the metrics to fit the model. Compile the model and fit the model over 100 
epochs: 

model.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=[ 'accuracy' ]) 

model .fit(X, Y, batch_size=1, epochs=100, shuffle=False) 

6. You can use a box and whisker plot to visualize the output. 

results.boxplot() 

pyplot.show() 
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Expected output: 

115 

110 

105 + 

100 + 

95 

stateful_batch12 stateless batch12 

Figure 5.34: Box and whisker plot for stateful vs stateless 

Note 

The output may vary depending on the data used. 

From the concept of stateful models, we understand that the data fed in batches 
need to be contiguous, so turn randomization OFF. However, even with batch_size 

>1, the data across batches will not be contiguous, so make batch _size=1. By turning 
the network to stateful=True and fitting it with the mentioned parameters, we are 
essentially training the model correctly in a stateful manner. 

However, we are not using the concept of mini batch gradient descent, and nor are we 

shuffling the data. So, a generator needs to be implemented that can carefully train a 
stateful network, which is outside the scope of this chapter. 

model .compile is a function where an optimizer and a loss function are assigned to the 
network, along with the metrics that we care about. 

model. fit() is a function that is used to train a model by specifying its training data, 
validation data, the number of epochs, the batch size, the mode of shuffling, and more. 
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Activity 6: Solving a Problem with an RNN - Author Attribution 

Author attribution is a classic text classification problem that comes under the umbrella 
of natural language processing (NLP). Authorship attribution is a well-studied problem 
that led to the field of stylometry. 

In this problem, we are given a set of documents from certain authors. We need to train 
a model to understand the authors’ styles and use the model to identify the authors of 
the unknown documents. As with many other NLP problems, it has benefited greatly 
from the increase in available computer power, data, and advanced machine learning 

techniques. This makes authorship attribution a natural candidate for the use of deep 
learning (DL). In particular, we can benefit from DL's ability to automatically extract the 
relevant features for a specific problem. 

In this activity, we will focus on the following: 

1, Extracting character-level features from the text of each author (to get each 
author's style) 

2. Using those features to build a classification model for authorship attribution 

3. Applying the model for identifying the author of a set of unknown documents 

Note 

You can find the required data for the activity at https://github.com/ 

TrainingByPackt/Deep-Learning-for-Natural-Language-Processing/tree/master/ 

Lesson%2005. 

The following steps will help you with the solution. 

1. Import the necessary Python packages. 

2. Upload the text document to be used. Then, pre-process the text file by 
converting all text into lowercase, converting all newlines and multiple 
whitespaces into single whitespaces, and removing any mention of the authors' 
names, otherwise we risk data leakage. 

3. To break the long texts into smaller sequences, we use the Tokenizer class from 
the Keras framework. 



4. Proceed to create the training and validation sets. 
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We construct the model graph and perform the training procedure. 

6. Apply the model to the unknown papers. Do this for all the papers in the Unknown 

have 

have 

have 

have 

have 

been written 

been written 

been written 

been written 

been written 

b i 

f by 
by f 

by 

by f 

Author A, 

Author B 

Author 

Author 

Author | 

Figure 5.35: Output for author attribution 

folder. 

Expected output: 

Paper 5 is predicted to 

Paper 4 is predicted to 

Paper 1 is predicted to 

Paper 3 is predicted to 

Paper 2 is predicted to 

Note 

The solution for the activity can be found on page 309. 

Summary 

B 

B 

B 

B 

4 

2 

4 

6142 to 5612 

5215 to 4558 

13924 to 6858 

7620 to 5764 

12846 to 6806 

In this chapter, we were introduced to RNNs and covered the major differences 
between the architectures of RNNs and FFNNs. We looked at BPTT and how weight 
matrices are updated. We learned how to use RNNs using Keras and solved a problem 
of author attribution using RNNs in Keras. We looked at the shortcomings of RNNs by 
looking at vanishing gradients and exploding gradients. In the next chapters, we will 
look into architectures that will address these issues. 
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Gated Recurrent 

Units (GRUs) 

Learning Objectives 

By the end of this chapter, you will be able to: 

* Assess the drawback of simple Recurrent Neural Networks (RNNs) 

« Describe the architecture of Gated Recurrent Units (GRUs) 

* Perform sentiment analysis using GRUs 

* Apply GRUs for text generation 

The chapter aims to provide a solution to the existing drawbacks of the current architecture of 

RNNs. 
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Introduction 

In previous chapters, we studied text processing techniques such as word embedding, 

tokenization, and Term Frequency Inverse Document Frequency (TFIDF). We also 
learned about a specific network architecture called a Recurrent Neural Network (RNN) 
that has the drawback of vanishing gradients. 

In this chapter, we are going to study a mechanism that deals with vanishing gradients 
by using a methodical approach of adding memory to the network. Essentially, the 
gates that are used in GRUs are vectors that decide what information should be passed 
onto the next stage of the network. This, in turn, helps the network to generate output 
accordingly. 

A basic RNN generally consists of an input layer, output layer, and severa! 
interconnected hidden layers. The following diagram displays the basic architecture of 
an RNN: 

me) ae ¥, Yee 

hes hy A 
h i phen . 

a ee —— ape re 

Xe-4 Xt Xeo4 

Figure 6.1: A basic RNN 

RNNs, in their simplest form, suffer from a drawback, that is, their inability to retain 
long-term relationships in the sequence. To rectify this flaw, a special layer called Gated 
Recurrent Unit (GRU) needs to be added to the simple RNN network. 

In this chapter, we will first explore the reason behind the inability of Simple RNNs to 
retain long term dependencies, followed by the introduction of the GRU layer and how 
it attempts to solve this specific issue. We will then go on to build a network with the 
GRU layer included. 
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The Drawback of Simple RNNs 

Let's take a look at a simple example in order to revisit the concept of vanishing 
gradients. 

Essentially, you wish to generate an English poem using an RNN. Here, you set up a 
simple RNN to do your bidding and it ends up producing the following sentence: 

"The flowers, despite it being autumn, blooms like a star". 

One can easily spot the grammatical error here. The word 'blooms' should be ‘bloom’ 
since at the beginning of the sentence, the word ‘flowers’ indicates that you should be 
using the plural form of the word ‘bloom’ to bring about the subject-verb agreement 
in the sentence. A simple RNN fails at this job because it is incapable of retaining any 
information about a dependency between the word ‘flowers’ that occurs early in the 
sentence and the word ‘blooms, which occurs much later (theoretically, it should be 
able to!). 

A GRU helps to solve this issue by eliminating the ‘vanishing gradient’ problem that 
hinders the learning ability of the network where long-term relationships within 
the text are not preserved by the network. In the following sections, we'll focus our 
attention on understanding the vanishing gradient problem and discuss how a GRU 
resolves the issue in more detail 

Let's now recall how a neural network learns. In the training phase, the inputs get 
propagated, layer by layer, up to the output layer. Since we know the exact value that 
the output should be producing for a given input during training, we calculate the error 
between the expected output and the output obtained. This error is then fed into a 
cost function (which varies depending on the problem and the creativity of the network 
developer). Now, the next step is to calculate the gradient of this cost function with 
respect to every parameter of the network, starting from the layer nearest to the output 
layer right down to the bottom layer where the input layer is present: 

re 

w(2] \ wi] wi4]/ 
Input b[1] b[2] b[3] b[4] } C 

eee ee Razr ae Lae 

Figure 6.2: A simple neural network 

Consider a very simple neural network with only four layers and only one connection 

between each layer and one single output, as shown in the preceding diagram. Note 

that-you will never use such a network in practice; it is presented here only for 

demonstrating the concept of vanishing gradients. 



158 | Gated Recurrent Units (GRUs) 

Now, to calculate the gradient of the cost function with respect to the bias term of the 
first hidden layer (b[1]), the following calculation needs to be carried out: 

grad(C, b[1]) = d(z[1]) * w[2] * d(z[2]) * w([3] * d(z[3}) * w[4] * d(z[4]) * grad{(C, a [4]) 

Figure 6.3: Gradient calculation using chain rule 

Here, each element can be explained as follows: 

grad(x, y) = the gradient of x with respect to y 

d(var) = the derivative of 'sigmoid' of the 'var' variable 

w[i] = the weight of the ‘i’ layer 

b[i] = the bias term in the ‘i’ layer 

a[i] = the activation function of the ‘i' layer 

ali] = wijl*alj-1] + bff] 
The preceding expression can be attributed to the chain rule of differentiation. 

The preceding equation involves the multiplication of several terms. If the values of 
most of these terms are a fraction between -1 and 1, the multiplication of such fractions 
will yield a term with a very small value at the end. In the preceding example, the value 
of grad(C,b[1]) will a very small fraction. The problem here is, this gradient is the term 
that will be used to update the value of b[1] for the next iteration: 

b[1] = b[1] + lambda*grad(C, b[1]) 

Figure 6.4: Updating value of b[1] using the gradient 

Note 

There could be several ways of performing an update using different optimizers, 

but the concept remains essentially the same. 
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The consequence of this action is that the value of b[1] hardly changes from the last 
iteration, which leads to a very slow learning progress. In a real-world network, which 
might be several layers deep, this update will be still smaller. Hence, the deeper the 
network, the more severe the problem with gradients. Another observation made here 

is that the layers that are closer to the output layer learn quicker than those that are 
closer to the input layer since there are fewer multiplication terms. This also leads to an 
asymmetry in learning, leading to the instability of the gradients. 

So, what bearing does this issue have on simple RNNs? Recall the structure of RNNs;. it 

is essentially an unfolding of layers in time with as many layers as there are words (for 
a modelling problem). The learning proceeds through Backpropagation Through Time 
(BPTT), which is exactly the same as the regime that was described previously. The 
only difference is that the same parameters are updated in every layer. The later layers 
correspond to the words that appear later in the sentence, while the earlier layers are 
those that correspond to the words appearing earlier in the sentence. With vanishing 
gradients, the earlier layers do not change much from their initial values and, hence, 
they fail to have much effect on the later layers. The more far-back-in-time a layer is 
from a given layer at time, 't’, the less influential it is for determining the output of the 
layer at 't’. Hence, in our example sentence, the network struggles to learn that the 
word ‘flowers' is plural, which results in the wrong form of the word 'bloom' being used. 

The Exploding Gradient Problem 

As it turns out, gradients not only vanish but they can explode as well - that is, early 
layers can learn too quickly with a large deviation in values from one training iteration 
to the next, while the gradients of the later layers don't change very quickly. How can 
this happen? Well, revisiting our equation, if the value of individual terms is much larger 
than the magnitude of 1, a multiplicative effect results in the gradients becoming huge. 

This leads to a destabilization of the gradients and causes issues with learning. 

Ultimately, the problem is one of unstable gradients. In practice, the vanishing gradients 

problem is much more common and harder to solve than the exploding gradients 

problem. 



160 | Gated Recurrent Units (GRUs) 

Fortunately, the exploding gradient problem has a robust solution: clipping. Clipping 

simply refers to stopping the value of gradients from growing beyond a predefined 

value. If the value is not clipped, you will begin seeing NaNs (Not a Number) for 

the gradients and weights of the network due to the representational overflow of 

computers. Providing a ceiling for the value will help to avoid this issue. Note that 

clipping only curbs the magnitude of the gradient, but not its direction. So, the learning 
still proceeds in the correct direction. A simple visualization of the effect of gradient 
clipping can be seen in the following diagram: 

SS 
| Without Gradient Clipping With Gradient Clipping 

Figure 6.5: Clipping gradients to combat the explosion of gradients 

Gated Recurrent Units (GRUs) 

GRUs help the network to remember long-term dependencies in an explicit manner. 
This is achieved by introducing more variables in the structure of a simple RNN. 

So, what will help us to get rid of the vanishing gradients problem? Intuitively speaking, 
if we allow the network to transfer most of the knowledge from the activation function 
of the previous timesteps, then an error can be backpropagated more faithfully than 
a simple RNN case. If you are familiar with residual networks for image classification, 
then you will recognize this function as being similar to that of a skip connection. 
Allowing the gradient to backpropagate without vanishing enables the network to learn 
more uniformly across layers and, hence, eliminates the issue of gradient instability: 
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Figure 6.6: The full GRU structure 

The different signs in the preceding diagram are as follows: 

oO & “tanh 

“plus” operation “sigmoid” function “Hadamard product” operation “tanh” function 

Figure 6.7: The meanings of the different signs in the GRU diagram 

Note 

The Hadamard product operation is an elementwise matrix multiplication. 
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The preceding diagram has all its components exploited by a GRU. You can observe the 
activation functions, h, represented at different timesteps (h[t], h[t-1]). The r[t] term 
refers to the reset gate and z[t] term refers to the update gate. The h'[t] term refers to 
a candidate function, which we'll represent using the h_candidate[t] variable in the 
equation for the purpose of being explicit. The GRU layer uses the update gate to decide 
on the amount of previous information that can be passed onto the next activation, 
while it uses the reset gate to determine the amount of previous information to forget. 
In this section, we shall examine each of these terms in detail and explore how they 
help the network to remember long-term relations in the text structure. 

The expression for the activation function (hidden layer) for the next layer is as follows: 

h{t] = hadamard{z[t], h[t-1]} + hadamard{(1 - z[t]) * h_candidate[t]} 

Figure 6.8: The expression for the activation function for the next layer in terms 

of the candidate activation function 

The activation function is, therefore, a weighing of the activation from the previous 
timestep and a candidate activation function for this timestep. The z[t] function is a 
sigmoid function and, hence, it takes a value between 0 and 1. In most practical cases, 

the value is closer to 0 or 1. Before going into the preceding expression in more depth, 
let's take a moment to observe the effect of the introduction of a weighted summing 
scheme for updating the activation function. If the value of z[t] remains 1 for several 
timesteps, then that means the value of the activation function at a very early timestep 
can still be propagated to a much later timestep. This, in turn, provides the network 
with a memory. 

Additionally, observe how this is different to a simple RNN, where the value of the 
activation function is overwritten at every timestep without an explicit weighing of the 
previous timestep activation (the contribution of the previous activation in a simple 
RNN is present within the nonlinearity and, hence, is implicit). 
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Types of Gates 

Let's now expand on the previous equation for the activation update in the following 
sections, 4 

The Update Gate 

The update gate is represented by the following diagram. As you can see from the full 
GRU diagram, only the relevant parts are highlighted. The purpose of the update gate is 
to determine the amount of information that needs to be passed on from the previous 
timesteps to the next step activation. To understand the diagram and the function of 
the update gate, consider the following expression for calculating the update gate: 

z[t] = sigmoid(W_z * x{[t] + U_z * h[t-1]) 

Figure 6.9: The expression for calculating the update gate 

The following figure shows a graphical representation of the update gate: 

h. | 

Xt 

Figure 6.10: The update gate in a full GRU diagram 
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The number of hidden states is n_h (the dimensionality of h), while the number of 
input dimensions is n_x. The input at timestep t (x[t]), is multiplied by a new set of 
weights, W_z, using the dimensions (n_h, n_x). The activation function from the 

previous timestep, (h[t-1]), is multiplied by another new set of weights, U_z, using the 
dimensions (n_h, n_h). 

Note that the multiplications here are matrix multiplications. These two terms are then 
added together and passed through a sigmoid function to squish the output, z[t], within 
a range of [0,1]. The z[t] output has the same dimensions as the activation function, that 
is, (n_h, 1). The W_z and U_z parameters also need to be learned using BPTT. Let's 
write a simple Python snippet to aid in our understanding of the update gate: 

import numpy as np 

# Write a sigmoid function to be used later in the program 

def sigmoid(x): 

return 1-/-°@1 +°nplexp(-x)) 

n_x = 5 # Dimensionality of input vector 

n_h = 3 # Number of hidden units 

# Define an input at time 't' having a dimensionality of n_x 

x_t = np.random.randn(n_x, 1) 

# Define W_z, U_z and h_prev (last time step activation) 

W_z = np.random.randn(n_h, n_x) # n_h = 3, n_x=5 

U_z = np.random.randn(n_h, n_h) # n_h = 3 

h_prev = np.random.randn(n_h, 1) 
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Ee ae 

array([[-0.93576943], 

[-0.26788808], 

[ 0.53035547], 

[-0.69166075], 

[-0.39675353]]) 

h_prev 

array([[ 0.90085595], 

[-0.68372786], 

[-0.12289023]}) 

W_z2 

array([{[ 1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763], 

[-2.3015387 , 1.74481176, -0.7612069 , 0.3190391 , -0.24937038], 

[ 1.46210794, -2.06014071, -0.3224172 , -0.38405435, 1.13376944)}) 

Uz 

array ([ -09989127, -0.17242821, -0.87785842], -1 

0.04221375, 0.58281521, -1.10061918], 

1.14472371, 0.90159072, 0.50249434]}) [ee Bi oe 

Figure 6.11: A screenshot displaying the weights and activation functions 

Following is the code snippet for update gate expression: 

# Calculate expression for update gate 

z_t = Ssigmoid(np.matmul(W_z, x_t) + np.matmul(U_z, h_prev)) 

In the previous code snippet, we initialised the random values for x[t], W_z, U_z, 
and h_prev in order to demonstrate the calculation of z[t] . In a real network, these 
variables will have more relevant values. 

The Reset Gate 

The reset gate is represented by the following diagram. As you can see from the full 
GRU diagram, only the relevant parts are highlighted. The purpose of the reset gate 
is to determine the amount of information from the previous timestep that should 
be forgotten in order to calculate the next step activation. In order to understand 
the diagram and the function of the reset gate, consider the following expression for 
calculating the reset gate: 

r{t] = sigmoid(W_r * x{t] + U_r* h[t-1]) 

Figure 6.12: The expression for calculating the reset gate 
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The following figure shows a graphical representation of the reset gate: 

h, 

Xt 

Figure 6.13: The reset gate 

The input at timestep, t, is multiplied by the weights, W_r, using the dimensions (n_h, 

n_x). The activation function from the previous timestep, (h[t-1]), is then multiplied 
by another new set of weights, U_r, using the dimensions (n_h, n_h). Note that 
the multiplications here are matrix multiplications. These two terms are then added 
together and passed through a sigmoid function to squish the r[t] output within a range 
of [0,1]. The r[t] output has the same dimensions as the activation function, that is, 
(n_h, 1). 
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The W_r and U_r parameters also need to be learned using BPTT. Let's take a look at 
how to calculate the reset gate expression in Python: 

# Define W_r, U_r 

W_r = np.random.randn(n_h, n_x) # n_h = 3, n_x=5 

U_r = np.random.randn(n_h, n_h) # n_h = 3 

# Calculate expression for update gate 

r_t = sigmoid(np.matmul(W_r, x_t) + np.matmul(U_r, h_prev)) 

In the preceding snippet, the values of the x_t, h_prev, n_h, and n_x variables have 

been used from the update gate code snippet. Note that the values of r_t may not be 
particularly close to either 0 or 1 since it is an example. In a well-trained network, the 
values are expected to be close to 0 or 1: 

Wer 

array([[-0.6871727 , -0.84520564, -0.67124613, -0.0126646 , -1.11731035], 

[ 0.2344157 , 1.65980218, 0.74204416, -0.19183555, -0.88762896], 

[-0.74715829, 1.6924546 , 0.05080775, -0.63699565, 0.19091548]]) 

aa giae 5 

array ([ 1O02Z55 1245, 40, 120158957 OnGl 720311), [ Le 

{ 0.30017032, -0.35224985, -1.1425182 J], 

[-0.34934272, -0.20889423, 0.58662319]]) 

Figure 6.14: A screenshot displaying the values of the weights 

mt 

array([[0.93699927], 

10.70392511), 

[0.5971474 ]]) 

Figure 6.15: A screenshot displaying the r_t output 
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The Candidate Activation Function 

A candidate activation function for replacing the previous timestep activation function 

is also calculated at every timestep. As the name suggests, the candidate activation 

function represents an alternative value that the next timestep activation function 
should take. Take a look at the expression for calculating the candidate activation 
function, as follows: 

h_candidatet] = tanh(W * x[t] + U * hadamard{r{t], h[t-1]}) 

Figure 6.16: The expression for calculating the candidate activation function 

The following figure shows a graphical representation of the candidate activation 
function: 

n 

Figure 6.17: The candidate activation function 

The input at timestep, t, is multiplied by the weights, W, using the dimensions (n_h, 
n_x). The W matrix serves the same purpose as the matrix that is used in a simple RNN. 
Then, an element-wise multiplication is carried out between the reset gate and the 
activation function from the previous timestep, (h[t-1]). This operation is referred to 
as ‘hadamard multiplication’. The result of this multiplication is matrix-multiplied by W 
using the dimensions (n_h, n_h). The U matrix is the same matrix that is used with a 
simple RNN. These two terms are then added together and passed through a hyperbolic 
tan function to squish the output h_candidate[t] within a range of [-1,1]. The h_ 
candidate[t] output has the same dimensions as the activation function, that is, (n_h, 1): 
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# Define W, U 

= i] np.random.randn(n_h, n_x) # n_h = 3, n_x=5 

= iH] np.random.randn(n_h, n_h) # n_h = 3 

# Calculate h_candidate 

h_candidate = np.tanh(np.matmul(W, x_t) + np.matmul(U,np.multiply(r_t, h_ 

prev))) 

Again, the same values for the variables have been used as in the calculation of 
the update and reset gate. Note that the Hadamard matrix multiplication has been 
implemented using the NumPy function, 'multiply': 

W 

array([[ 0.83898341, 0.93110208, 0.28558733, 0.88514116, -0.75439794], 
[ 1.25286816, 0.51292982, -0.29809284, 0.48851815, -0.07557171], 
[ 1.13162939, 1.51981682, 2.18557541, -1.39649634, -1.44411381]]) 

Oo 

U 

array([[-0.50446586, 0.16003707, 0.87616892], 
[ 0.31563495, -2.02220122, -0.30620401], 

[ 0.82797464, 0.23009474, 0.76201118]]) 

Figure 6.18: A screenshot displaying how the W and U weights are defined 

The following figure shows a graphical representation of the h_candidate function: 

h_candidate 

array([[-0.94284959], 

[-0.47277196], 

[ 0.9429634 }]) 

Figure 6.19: A screenshot displaying the value of h_candidate 
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Now, since the values of the update gate, the reset gate, and the candidate activation 

function have been calculated, we can code up the expression for the current activation 

function that will be passed onto the next layer: 

# Calculate h_new 

h_new = np.multiply(z_t, h_prev) + np.multiply((1-z_t), h_candidate) 

h_new 

array([[-0.72356608], 

[-0.62428489], 

{ 0.61671542]]) 

Figure 6.20: A screenshot displaying the value of the current activation function 

Mathematically speaking, the update gate serves the purpose of selecting a weighting 
between the previous activation function and the candidate activation function. Hence, 
it is responsible for the final update of the activation function for the current timestep 
and in determining how much of the previous activation function and candidate 
activation function will pass onto the next layer. The reset gate acts as a way to select 
or unselect the parts of the previous activation function. This is why an element-wise 
multiplication is carried out between the previous activation function and the reset gate 
vector. Consider our previous example of the poem generation sentence: 

"The flowers, despite it being autumn, blooms like a star." 

A reset gate will serve to remember that the word ‘flowers' affect the plurality of the 
word ‘bloom, which occurs toward the end of the sentence. Hence, the particular value 
in the reset gate vector that is responsible for remembering the plurality or singularity 
of the word will hold a value that is closer to the values of 0 or 1. If a 0 value denotes 
that the word is singular, then, in our case, the reset gate will hold the value of 1 in order 

to remember that the word 'bloom' should now hold the plural form. Different values in 
the reset gate vector will remember different relations within the complex structure of 
the sentence. 

As another example, consider the following sentence: 

"The food from France was delicious, but French people were also very 
accommodating." 
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Examining the structure of the sentence, we can see that there are several complex 
relations that need to be kept in mind: 

¢ The word ‘food' corresponds with the word ‘delicious’ (here, ‘delicious’ can only be 
used in the context of 'food'). 

¢ The word 'France' corresponds with 'French' people. 

¢ The word 'people' and 'were' are related to each other; that is, the use of the word 
‘people’ dictates that the correct form of 'was' is used. 

In a well-trained network, the reset gate will have an entry in its vector for all such 
relations. The value of these entries will be suitably turned 'off' or 'on' depending on 
which relationship needs to be remembered from the previous activations and which 
needs to be forgotten. In practice, it is difficult to ascribe an entry of the reset gate or 
hidden state to a particular function. The interpretability of deep learning networks is, 
hence, a hot research topic. 

GRU Variations 

The form of GRU just described form of a GRU is the full GRU. Several independent 
researchers have utilized different forms of GRU, such as by removing the reset gate 
entirely or by using activation functions. The full GRU is, however, still the most used 
approach. 

Sentiment Analysis with GRU 

Sentiment analysis is a popular use case for applying natural language processing 
techniques. The aim of sentiment analysis is to determine whether a given piece of text 
can be considered as conveying a ‘positive’ sentiment or a 'negative' sentiment. For 
example, consider the following text reviewing a book: 

"The book had its moments of glory, but seemed to be missing the point quite 

frequently. An author of such calibre certainly had more in him than what was delivered 
through this particular work.’ 

To a human reader, it is perfectly clear that the mentioned book review conveys a 
negative sentiment. So, how would you go about building a machine learning model for 
the classification of sentiments? As always, for using a supervised learning approach, 
a text corpus containing several samples is needed. Each piece of text in this corpus 
should have a label indicating whether the text can be mapped to a positive or a 
negative sentiment. The next step will be to build a machine learning model using this 

data. 
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Observing the example sentence, you can already see that such a task could be 
challenging for a machine learning model to solve. If a simple tokenization or TFIDF 
approach is used, the words such as ‘glory’ and ‘calibre’ would be easily misunderstood 
by the classifier as conveying a positive sentiment. To make matters worse, there is 
no word in the text that can be directly interpreted as negative. This observation also 
brings about the need to connect different parts of the text structure in order to derive 
a meaning out of the sentence. For instance, the first sentence can be broken into two 
parts: 

1. "The book had its moments of glory" 

2. “but seemed to be missing the point quite frequently.’ 

Looking at just the first part of the sentence can lead you to conclude that the remark is 
a positive one. It is only when the second sentence is taken into consideration that the 
meaning of the sentence can be truly understood as depicting negative feelings. Hence, 
there is a need to retain long term dependency here. A simple RNN is, therefore, not 
good enough for the task. Let's now apply a GRU to a sentiment classification task and 
see how it performs. 

Exercise 25: Calculating the Model Validation Accuracy and Loss for Sentiment 

Classification . 

In this exercise, will we code up a simple sentiment classification system using the 
imdb dataset. The imdb dataset consists of 25,000 train text sequences and 25,000 test 

text sequences - each containing a review for a movie. The output variable is a binary 
variable having a value of 0 if the review is negative, and a value of 1 if the review is 
positive: 

Note 

All exercises and activities should be run in a Jupyter notebook. The requirements. 

txt file for creating the Python environment for running this notebook is as 

h5py==2.9.0, keras==2.2.4, numpy==1.16.1, tensorflow==1.12.0. 
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Solution: 

We begin by loading the dataset, as follows: 
from keras.datasets import imdb 

1. Let's also define the maximum number of topmost frequent words to consider 
when generating the sequence for training as 10,000. We will also restrict the 
sequence length to 500: 

max_features = 10000 

maxlen = 500 

2. Let's now load the data as follows: 

(train_data, y_train), (test_data, y_test) = imdb. load_data(num_words=max_ 

features) 

print('Number of train sequences: ', len(train_data)) 

print('Number of test sequences: ', len(test_data)) 

Number of train sequences: 25000. 

Number of test sequences: 25000 

train_data shape: (25000, 500) 

test _data shape: (25000, 500) 

Figure 6.21: A screenshot showing the train and test sequences 

3. There could be sequences having a length that is shorter than 500; therefore, we 

need to pad them out to have a length of exactly 500. We can use a Keras function 
for this purpose: 

from keras.preprocessing import sequence 

train_data = sequence.pad_sequences(train_data, maxlen=maxlen) 

test_data = sequence.pad_sequences(test_data, maxlen=maxlen) 

4, Let's examine the shapes of the train and test data, as follows: 

print('train_data shape:', train_data. shape) 

print('test_data shape:', test_data. shape) 

Verify that the shape of both the arrays is (25,000, 500). 

5. Let's now build an RNN with a GRU unit. First, we need to import the necessary 
packages, as follows: 

from keras.models import Sequential 

from keras. layers import Embedding 

from keras.layers import Dense 

from keras. layers import GRU 
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6. 

8. 

Since we'll use the sequential API of Keras to build the model, we need to import 
the sequential model API from the Keras model. The embedding layer essentially 
turns input vectors into a fixed size, which can then be fed to the next layer of the 
network. If used, it must be added as the first layer to the network. We also import 
a Dense layer, since it is this layer that ultimately gives a distribution over the 
target variable (0 or 1). 

Finally, we import the GRU unit; let's initialize the sequential model API and add 
the embedding layer, as follows: 

model = Sequential() 

model .add(Embedding(max_features, 32)) 

The embedding layer takes max_features as input, which is defined by us to be 
10,000. The 32 value is set here as the next GRU layer expects 32 inputs from the 
embedding layer. 

Next, we'll add the GRU and the dense layer, as follows: 

model . add(GRU(32)) 

model.add(Dense(1, activation='sigmoid' )) 

The 32 value is arbitrarily chosen and can function as one of the hyperparameters 
to tune when designing the network. It represents the dimensionality of the 
activation functions. The dense layer only gives out the 1 value, which is a 
probability of the review (that is, our target variable) to be 1. We choose sigmoid as 
the activation function here. 

Next, we compile the model with the binary cross-entropy loss and the rmsprop 
optimizer: 

model.compile(optimizer='rmsprop', 

loss='binary_crossentropy', 

metrics=['acc']) 



Sentiment Analysis with GRU | 175 in eee ee Eee 

9. We choose to track the accuracy (train and validation) as the metric. Next, we fit 
the model on our sequence data. Note that we also assign 20% of the sample from 
the training data as the validation dataset. We also set the number of epochs to be 
10 and the batch_size to be 128 — that is, in a single forward-backward pass, we 
choose to pass 128 sequences in a single batch: 

history = model.fit(train_data, y_train, 

epochs=10, 

batch_size=128, 

validation_split=0.2 

Train on 20000 samples, validate on 5000 samples 
Epoch 1/10 

20000/20000 (==s====s=====s=s==ss=s========e== ===] - 53s 3ms/step - loss: 0.5382 - acc: 0.7286 - val_loss: 0.4796 - val_ac 
ec: 0.7620 

Epoch 2/10 

20000/20000 [=====sss=ss==sssesses=ss=ss=s5==] - 535 3ms/step - loss: 0.3120 - acc: 0.8701 - val_loss: 
ec: 0.8732 

Epoch 3/10 

20000/20000 [=s====s=s====s=ssss=sss=s=S==s=== ] - 51s 3ms/step - loss: 

ec: 0.8720 

Epoch 4/10 

20000/20000 [====s=ss=s==<ss=seeseease==s=2=] - 515 3ms/step - loss: 

ce: 0.8740 

Epoch 5/10 

20000/20000 [==s==s====s=ssssssssssssssssses==] - 51 

c: 0,8792 

Epoch 6/10 
20000/20000 [=====s===s=====sse==s=======s===] - 51s 3ms/step - loss: 

e: 0.8710 

Epoch 7/10 
20000/20000 [(===sss=s=s=sssssssssssssesses=as==] - 52 

ec: 0.8500 

Epoch 8/10 
20000/20000 [=s=====s===<sss=ssssssssssssss==] - 53 

c: 0.8792 
Epoch 9/10 
20000/20000 [=ss===ss=s==sss=s=s=sss====s===5=] - 535 3ms/step - loss: 

c: 0.8308 

Epoch 10/10 
20000/20000 [==ss=s=s=s=s=ssss=s====s=s=====] - 535s 3ms/step - loss: 0.1284 - acc: 0.9541 - val_loss: 0.3599 - val_ac 

o -3218 ~ val_ac 

o -2503 - acc: 0.9025 - val_loss: ° -3644 - val ac 

o °o +2187 - acc: 0.9184 - val_loss: 0.3092 - val_ac 

o °o 3ms/step - loss: n -1937 - acc: 0.9290 - val_loss: 0.3130 - val_ac 

o o +1747 = acc: 0.9350 - val_loss: 0.3299 - val_ac 

o °o 3ms/step - loss: +3599 - val_ac na -1600 - acc: 0.9434 - val_loss: 

o 3ms/step - loss: 0.1498 - acc: 0.9458 - val_loss: 0.3378 - val_ac 

o o +1389 - ace: 0.9512 - val_loss: 0.5470 - val_ac 

Figure 6.22: A screenshot displaying the variable history output of the training model 

The variable history can be used to keep track of the training progress. The 
previous function will trigger a training session, which, on a local CPU, should take 
a couple of minutes to train. 

10. Next, let's take a look at how exactly the training progressed by plotting the losses 
and accuracy. For this, we'll define a plotting function as follows: 

import matplotlib.pyplot as plt 

def plot_results(history): 

acc = history.history['acc'] 

val_acc = history.history['val_acc'] 

loss = history.historyL['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(acc) + 1) 
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plt.plot(epochs, acc, 'bo', label='Training Accuracy’ ) 

plt.plot(epochs, val_acc, 'b', label='Validation Accuracy ' ) 

plt.title('Training and validation Accuracy’ ) 

plt.legend() 

plt.figure() 

plt.plot(epochs, loss, 'bo', label='Training Loss’) 

plt.plot(epochs, val_loss, 'b', label='Validation Loss’) 

plt.title('Training and validation Loss' ) 

plt.legend() 

plt.show() 

11. Let's call our function on the history variable that us obtained as an output of the 
‘fit’ function: 

plot_results(history) 

12. When run by author, the output of the preceding code looks like the following 
diagram: 

Expected Output: 

Training and validation accuracy 

0.95 ® Training acc 

a= Validation acc 

0.90 e 

0.85 

0.75 

2 4 6 8 10 

Figure 6.23: The training and validation accuracy for the sentiment classification task 
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The following diagram demonstrates the training and validation loss: 

Training and validation loss 

@ = Training loss 

—— Validation loss 

Figure 6.24: The training and validation loss for the sentiment classification task 

Note 

The validation accuracy is pretty high in the best epoch (~87%). 

Activity 7: Developing a Sentiment Classification Model Using a Simple RNN 

In this activity, we aim to generate a model for sentiment classification using a simple 
RNN. This is done to judge the effectiveness of GRUs over simple RNNs. 

if 

2 

3. 

4 

Load the dataset. 

Pad the sequences out so that each sequence has the same number of characters. 

Define and compile the model using a simple RNN with 32 hidden units. 

Plot the validation and training accuracy and losses. 

Note 

The solution for the activity can be found on page 317. 



178 | Gated Recurrent Units (GRUs) 

Text Generation with GRUs 

The problem of text generation requires an algorithm in order to come up with new 

text based on a training corpus. For example, if you feed the poems of Shakespeare into 
a learning algorithm, then the algorithm should be able to generate new text (character 
by character or word by word) in the style of Shakespeare. We will now see how to 
approach this problem with what we have learned in this chapter. 

Exercise 26: Generating Text Using GRUs 

So, let's revisit the problem that we introduced in the previous section of this chapter. 
That is, you wish to use a deep learning method to generate a poem. Let's go about 
solving this problem using a GRU. We will be using The Sonnets written by Shakespeare 
to train our model so that our output poem is in the style of Shakespeare: 

i Let's begin by importing the required Python packages, as follows: 

import io 

import sys 

import random 

import string 

import numpy as np 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import GRU 

from keras.optimizers import RMSprop 

The use of each package will become clear in the code snippets that follow. 

Next, we define a function that reads from the file that contains the 

Shakespearean sonnets and prints out the first 200 characters: 

def load_text(filename): 

with open(filename, 'r') as f: 

text = f.read() 

return text 

file_poem = 'shakespeare_poems.txt' # Path of the file 

text = load_text(file_poem) 

print(textL: 200]) 
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THE SONNETS 

by William Shakespeare 

From fairest creatures we desire increase, 

That thereby beauty's rose might never die, 

But as the riper should by time decease, 

His tender heir might bear his mem 

Figure 6.25: A screenshot of THE SONNETS 

3. Next, we'll perform certain data preparation steps. First, we will get a list of the 
distinct characters from the file that was read in. We will then make a dictionary 
that maps each character to an integer index. Finally, we will create another 
dictionary that maps an integer index to the characters: 

chars = sorted(list(set(text))) 

print('Number of distinct characters:', len(chars)) 

char_indices = dict((c, i) for i, c in enumerate(chars)) 

indices_char = dict((i, c) for i, c in enumerate(chars)) 

4. Now, we will generate the sequences for the training data from the text. We will 
feed a fixed length of 40 characters per sequence for the model. The sequences 
will be made such that there is a sliding window of three steps with each 
sequence. Consider the following part of the poem: 

"From fairest creatures we desire increase, 

That thereby beauty's rose might never die," 
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We aim to achieve the following result from the preceding snippet of text: 

'\n\nFrom fairest creatures we desire incre’, 

‘rom fairest creatures we desire increase’, 

' fairest creatures we desire increase,\nT', 

'irest creatures we desire increase,\nThat', 

"st creatures we desire increase,\nThat th', 

‘creatures we desire increase,\nThat there', 

‘atures we desire increase,\nThat thereby ', 

‘res we desire increase,\nThat thereby bea', 

' we desire increase,\nThat thereby beauty', 

"desire increase,\nThat thereby beauty's ", 

"sire increase,\nThat thereby beauty's ros", 

"e increase,\nThat thereby beauty's rose m", 

"ncrease,\nThat thereby beauty's rose migh", 

"ease,\nThat thereby beauty's rose might n", 

"e,\nThat thereby beauty's rose might neve", 

"That thereby beauty's rose might never d", 

"t thereby beauty's rose might never die,", 

Figure 6.26: A screenshot of the training sequences 

These are sequences with a length of 40 characters each. Each subsequent string is 
shifted by three steps to the right of the previous string. This arrangement is so that 
we end up with enough sequences (but not too many, which would be the case with 
a step of 1). In general, we could have more sequences, but since this example is a 
demonstration and, hence, will run on a local CPU, feeding in too many sequences will 
make the training process much longer than desired. 

Additionally, for each of these sequences, we need to have one output character that 

is the next character in the text. Essentially, we are teaching the model to observe 40 

characters and then learn what the next most likely character will be. To understand 
what the output character might be, consider the following sequence: 

That thereby beauty's rose might never d 

The output character for this sequence will be the i character. This is because in the 
text, i is the next character. The following code snippet achieves the same: 

max_len_chars = 40 

step = 3 

sentences = [] 

next_chars = [] 
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for i in range(®, len(text) - max_len_chars, step): 

sentences.append(text[i: i + max_len_chars]) 

next_chars.append(text[i + max_len_chars]) 

print('nb sequences:', len(sentences)) 

We now have the sequences that we wish to train on and the corresponding character 
output for the same. We will now need to obtain a training matrix for the samples and 
another matrix for the output characters, which can be fed to the model to train: 

xX = np.zeros((len(sentences), max_len_chars, len(chars)), dtype=np.bool) 

y = np.zeros((len(sentences), len(chars)), dtype=np.bool) 

for i, sentence in enumerate(sentences): 

for t, char in enumerate(sentence): 

x[Ci, t, char_indices[char]] = 1 

yli, char_indices[next_chars[i]]] = 1 

Here, x is the matrix that holds our input training samples. The shape of the x array 
is the number of sequences, the maximum number of characters, and the number of 

distinct characters. Therefore, x is a three-dimensional matrix. So, for each sequence, 

that is, for every timestep (= maximum number of characters), we have a one-hot- 
coded vector with the same length as the number of distinct characters in the text. 
This vector has a value of 1, where the character at the given step is present, and all 
the other entries are 0. y is a two-dimensional matrix with the shape of the number of 
sequences and the number of distinct characters). Thus, for every sequence, we have a 
one-hot-coded vector with the same length as the number of distinct characters. This 
vector has all the entries as 0 except for the one that corresponds to the current output 

character. The one-hot-encoding is accomplished using the dictionary mappings that 
we created in the earlier step. 

1. Weare now ready to define our model, as follows: 

model = Sequential() 

model.add(GRU(128, input_shape=(max_len_chars, len(chars)))) 

model.add(Dense(len(chars), activation='softmax' )) 

optimizer = RMSprop(1r=0.01) 

model.compile(loss='categorical_crossentropy', optimizer=optimizer ) 
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2. We make use of the sequential API, add a GRU layer with 128 hidden parameters, 

and then add a dense layer. 

Note 

The dense layer has the same number of outputs as the number of distinct 

characters. This is because we're essentially learning a distribution of the 

possible characters in our vocabulary. In this sense, this is essentially a multiclass 

classification problem, which also explains our choice of categorical cross-entropy 

for the cost function. 

3. We will now go ahead and fit our model to the data, as follows: 

model.fit(x, y,batch_size=128, epochs=10) 

model. save("poem_gen_model .h5") 

Here, we have selected a batch size of 128 sequences and training for 10 epochs. 
We will also save the model in hdf5 format file for later use: 

Epoch 1/10 . 
31327/31327 [sSsssssssessssesseessssss==s==] - 12s 374us/step - loss: 2.2844 

Epoch 2/10 

31327/31327 [=sSsSssssesesesseeseesss======] - lls 335us/step - loss: 1.8985 

Epoch 3/10 

31327/31327 [=ssSssssesssssesssssseees===5=] - lls 339us/step - loss: 1.7675 

Epoch 4/10 

31327/31327 [SHsssssssssssssssesssseeess===] - 12s 372us/step - loss: 1.6757 

Epoch 5/10 

31327/31327 [s=s=ssssssssssssessesssssss====] - lls 353us/step - loss: 1.5984 

Epoch 6/10 

31327/31327 [sssssssssssssssSsessssess=====] - lls 34lus/step - loss: 1.5479 

Epoch 7/10 

31327/31327 [sssssssssssssessseesesssss=s==] - 12s 382us/step - loss: 1.5083 

Epoch 8/10 

31327/31327 [sssssssssssssssseesesssss=ss==] - lls 346us/step - loss: 1.4803 

Epoch 9/10 

31327/31327 [ssssssssssssesssesssssses=====] - lls 354us/step - loss: 1.4648 

Epoch 10/10 

31327/31327 [Ssssssssssesssssssssssss======] - lls 356us/step - loss: 1.4428 

Figure 6.27: A screenshot displaying epochs 

Note ’ 

You should increase the number of the GRUs and epochs. The higher the value 

for these, the more time it will take to train the model and better results can be 

expected. 
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4. Next, we need to be able to use the model to actually generate some text, as 
follows: 

from keras.models import load_model 

model_loaded = load_model('poem_gen_model .h5' ) 

5. We also define a sampling function that selects a candidate character given a 
probability distribution over the number of characters: 

def sample(preds, temperature=1.Q): 

# helper function to sample an index from a probability array 

preds = np.asarray(preds).astype('float64') 

preds = np.log(preds) / temperature 

exp_preds = np.exp(preds) 

preds = exp_preds / np.sum(exp_preds) 

probas = np.random.multinomial(1, preds, 1) 

return np.argmax(probas) 

6. We are sampling using a multinomial distribution; the temperature parameter 
helps to add bias to the probability distribution such that the less likely words can 
have more or less representation. You can also simply try to return an argument 
argmax over the preds variable, but this will likely result in a repetition of words: 

def generate_poem(model, num_chars_to_generate=4QQ): 

start_index = random.randint(@, len(text) - max_len_chars - 1) 

generated = '' 

sentence = text[start_index: start_index + max_len_chars] 

generated += sentence 

print("Seed sentence: {}".format(generated) ) 

for i in range(num_chars_to_generate): 

x_pred = np.zeros((1, max_len_chars, len(chars))) 

for t, char in enumerate(sentence): 

x_pred[@, t, char_indices[char]] = 1. 

preds = model.predict(x_pred, verbose=0)[0] 

next_index = sample(preds, 1) 

next_char = indices_char[next_index ] 

generated += next_char 

sentence = sentence[1:] + next_char 

return generated 
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7. We pass the loaded model and the number of characters that we wish to generate. 

We then pass a seed text for the model to use as the input (remember, we taught 
the model to predict the next character given a sequence length of 40 characters). 
This is being done before the for loop kicks in. In the first pass of the loop, we pass 
our seed text to the model, generate the output character, and append the output 
character in the 'generated' variable. In the next pass, we shift our newly updated 
sequence (with 41 characters after first pass) to the right by one character, so that 
the model can now take this 40 character input with the last character being the 
new character that we just generated. The function can now be called as follows: 

generate_poem(model_loaded, 100) 

And voila! You have a poem written in Shakespearean style. An example output is 

shown as follows: 

' thou viewest,\nNow is the time that faced padince thy fete,\njevery bnuping griats I have liking dispictreessedg.\n 

\nThy such thy sombeliner h' 

Figure 6.28: A screenshot displaying the output of the generated poem sequence 

You will immediately notice that the poem does not really make sense. This can be 
attributed to two reasons: 

¢ The preceding output was generated with a very small amount of data or 
sequences. Therefore, the model was unable to learn much. In practice, you would 
use a much larger dataset, make many more sequences out if it, and train the 

model using GPUs for a practical training time (we will learn about training on 
the cloud GPU in the last chapter 9- 'A practical flow NLP project workflow in an 
organization’). 

¢ Even if trained with a massive amount of data, there will always be some errors 
since a model can only learn so much. 

We can still, however, see that even with this basic setup there are words that make 

sense despite our model being a character generation model. There are phrases such as 
‘| have liking’ that are valid as standalone phrases. 

Note 

White space, newline characters, and more are also being learned by the model. 
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Activity 8: Train Your Own Character Generation Model Using a Dataset of 

Your Choice 

We just used some of Shakespeare's work to generate our own poem. You don't need 
to restrict yourself to poem generation but you can use any piece of text to start 
generating your own piece of writing. The basic steps and setup remains same as 
discussed in the previous example. 

Note 

Create a conda environment using the requirements file and activate it. Then, run 

the code in a Jupyter notebook. Don't forget to input a text file containing the text 

from an author in whose style you wish to generate new text. 

Load the text file. 

Create dictionaries mapping the characters to indices and vice versa. 

Create sequences from the text. 

Make input and output arrays to feed to the model. 

Build and train the model using GRU. 

Save the model. 

Define the sampling and generation functions. 

eo NDA Fw Nn Generate the text. 

Note 

The solution for the activity can be found on page 320. 
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Summary 

A GRU is an extension of a simple RNN, which helps to combat the vanishing gradient 
problem by allowing the model to learn long-term dependencies in the text structure. A 
variety of use cases can benefit from this architectural unit. We discussed a sentiment 
classification problem and learned how GRUs perform better than simple RNNs. We 
then saw how text can be generated using GRUs. 

In the next chapter, we talk about another advancement over a simple RNN - Long 
Short-Term Memory (LSTM) networks, and explore what advantages they bring with 
their new architecture. 
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Long Short-Term 

Memory (LSTM) 

Learning Objectives 

By the end of this chapter, you will be able to: 

* Describe the purpose of an LSTM 

* Evaluate the architecture of an LSTM in detail 

* Develop a simple binary classification model using LSTMs 

* Implement neural language translation and develop an English-to-German translation 

model 

This chapter briefly introduces you to the LSTM architecture and its applications in the world of 

natural language processing. 
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Introduction 

In the previous chapters, we studied Recurrent Neural Networks (RNNs) and a 
specialized architecture called the Gated Recurrent Unit (GRU), which helps combat 
the vanishing gradient problem. LSTMs offer yet another way to tackle the vanishing 
gradient problem. In this chapter, we will take a look at the architecture of LSTMs and 
see how they enable a neural network to propagate gradients in a faithful manner. 

Additionally, we will look at an interesting application of LSTMs in the form of neural 
language translation, which will empower us to build a model that can be used to 
translate text given in one language to another language. 

LSTM 

The vanishing gradient problem makes it difficult for the gradient to propagate from the 
later layers in the network to the early layers, causing the initial weights of the network 
to not change much from the initial values. Thus, the model doesn't learn well and leads 
to poor performance. LSTMs solve the issue by introducing a "memory" to the network, 
which leads to the retention of long-term dependencies in the text structure. However, 
LSTMs add memory in a way that is different from the GRU's method. In the following 
sections, we will see how LSTMs accomplish this task. 

An LSTM helps a network to remember long-term dependencies in an explicit manner. 
As in the case of the GRU, this is achieved by introducing more variables in the 
structure of a simple RNN. 

Using LSTMs, we allow the network to transfer most of the knowledge from the 
activation of previous timesteps, a feat difficult to achieve with simple RNNs. 

Recall the structure of the simple RNN; it's essentially an unfolding of the same unit and 

can be represented by the following diagram: 

Figure 7.1: The repeating module in a standard RNN 
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The recurrence of block "A"in the diagram signifies that it is the same structure 
that is repeated over time. The input to each unit is an activation from the previous 
timestep (represented by the letter "h"). Another input is the sequence value at time "t" 
(represented by the letter "x"). 

Similar to the case with a simple RNN, LSTMs also have a fixed, time-unfolding, 

repeating structure, but the repeated unit itself has a different structure. Each unit of 
an LSTM has several different kinds of modules that interoperate to impart memory to 
the model. An LSTM's structure can be represented by the following diagram: 

Figure 7.2: The LSTM unit 

Let's also get familiar with the notations we'll be using for the diagrams: 

—> > < 
Neural Network — Pointwise Vector 

Layer Operation Transfer Concatenate Copy 

Figure 7.3: Notations used in the model 
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The most essential component of an LSTM is the cell state, henceforth represented by 
the letter "C". The cell state can be depicted by a constant bold line on the upper end 
of the boxes in the following diagram. It is often convenient to think of this line as a 
conveyor belt running through different time instances and carrying some information. 
Although there are several operations that can affect the value that propagates through 
the cell state, in practice, it is very easy for the information from previous cell states to 
reach the next cell state. 

Cr-1 © o Be. 

Figure 7.4: Cell state 

It would be useful to understand LSTMs as seen from the perspective of the 
modification of this cell state. As with GRUs, the components of LSTMs that allow the 
modification of the cell state are called "gates". 

An LSTM operates over several steps, which are described in the sections that follow. 

The Forget Gate 

The forget gate is responsible for determining the cell state content that should be 
forgotten from the previous timestep. The expression for the forget gate is as follows: 

f(t] = sigmoid (w_f* x[t] + U_f* h[t — 1]) 

Figure 7.5: Expression for the forget gate 
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The input at timestep t is multiplied by a new set of weights, W_f, with the dimensions 
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another 
new set of weights, U_f, with the dimensions (n_h, n_h). Note that the multiplications 
are matrix multiplications. These two terms are then added and passed through a 
sigmoid function to squish the output, f[t], within a range of [0,1]. The output has the 
Same number of dimensions as there are in cell state vector C (n_h,1). The forget 
gate outputs a Tl’ or a '0' for each dimension. A value of '1' signifies that all information 
from the previous cell state for this dimension should pass, retained, while a value '0' 
indicates that all information from the previous cell state for this dimension should be 
forgotten. Diagrammatically, it can be represented as shown: 

Figure 7.6: The forget gate 

So, how does the output of the forget gate impact the sentence construction? Let's take 
a look at the generated sentence: 

"Jack goes for a walk when his daughter goes to bed." 

The first subject in the sentence is Jack; which connotes the male gender. The cell state 
representing the gender of the subject has a value corresponding to 'Male' (this could be 
0 or 1). Now, up to the word ‘his' in the sentence, the subject of the sentence does not 
change, and the cell state for the subject's gender continues having the 'male' value. The 
next word, however, ‘daughter, is a new subject and hence there is a need to forget the 

old value in the cell state that represents the gender. Note that even if the old gender 
state was female, there is still a need to forget this value so that a value corresponding 
to the new subject can be used. 
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The forget gate accomplishes the ‘forget’ operation by setting the subject gender value 

to 0 (that is, f[t] will output O for the said dimension). 

In Python, the forget gate can be calculated with the following code snippet: 

# Importing packages and setting the random seed to have a fixed output 

import numpy as np 

np. random. seed(Q@) 

# A sigmoid needs to be defined to be used later 

def sigmoid(x): 

return 1-/ (Cl -tenprexet-x)) 

# Simulating dummy values for the previous state and current input 

h_prev = np.random.randn(3, 1) 

X = np.random.randn(5, 1) 

This code produces the following output for h_prev and x: 

h_ prev 

array([[1.76405235], 

[0.40015721], 

[0.97873798]]) 

x 

array([[ 2.2408932 ], 

i 1.86/755799), 

[-0.97727788], 

[ 0.95008842], 

[-0.15135721]]) 

Figure 7.7: Output for the previous state, 'h_prev,' and the current input, 'x' 
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We can initialize some dummy values for W_f and U_f: 

# Initialize W_f and U_f with dummy values 

W_f 

cet. 

np.random.randn(3, 5) # n_h = 3, n_x=5 

3 np.random.randn(3, 3) # n_h 

This produces the following values: 

Wet 

array([[-0.10321885, 0.4105985 , 0.14404357, 1.45427351, 

0276103773], 

[ 0.12167502, 0.44386323, 0.33367433, 1.49407907, - 

0.20515826], 

[ 0.3130677 , -0.85409574, -2.55298982, 0.6536186 , 

0.8644362 ]]}) 

uf 

array([[-0.74216502, 2.26975462, -1.45436567], 

{f 0.04575852, -0.16718385, 1.53277921], 

[ 1.46935877, 0.15494743, 0.37816252]]) 

Figure 7.8: Output of the matrix values 

Now the forget gate can be calculated: 

f = sigmoid(np.matmul(W_f, x) + np.matmul(U_f, h_prev) 

This produces the following values for f[t1: 

£ 

array([[0.45930054], 

[0.97661676], 

[0.99403442]]) 

Figure 7.9: Output of the forget gate, f[t] 
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The Input Gate and the Candidate Cell State 

At each timestep, a new candidate cell state is also calculated using the following 

expression: 

C_candidate =tanh (W_c*h[t — 1] + U_c*x[t]) 

Figure 7.10: Expression for candidate cell state 

The input at timestep t is multiplied by a new set of weights, W_c, with the dimensions 
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another 
new set of weights, U_c, with the dimensions (n_h, n_h). Note that the multiplications 
are matrix multiplications. These two terms are then added and passed through a 
hyperbolic tan function to squish the output, f[t], within a range of [-1,1]. The output, 
C_candidate, has the dimensions (n_h,1). In the diagram that follows, the candidate 
cell state is represented by C tilde: 

Figure 7.11: Input gate and candidate state 

The candidate aims at calculating the cell state that it deduces from the current 
timestep. In our example sentence, this corresponds to calculating the new subject 
gender value. This candidate cell state is not passed as is to update the next cell state 
but is regulated by an input gate. 

The input gate determines which values of the candidate cell state get passed on to the 
next cell state. The following expression can be used to calculate the input gate value: 

i[t] = sigmoid (W_i* x[t] + U_i*h[t— 1]) 

Figure 7.12: Expression for the input gate value 
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The input at timestep t is multiplied by a new set of weights, W_i, with the dimensions 

(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another 
new set of weights, U_i, with the dimensions (n_h, n_h). Note that the multiplications 

are matrix multiplications. These two terms are then added and passed through a 
sigmoid function to squish the output, i[t], within a range of [0,1]. The output has the 
same number of dimensions as there are in cell state vector C (n_h, 1). In our example 
sentence, after reaching the word ‘daughter, there is a need to update the cell state 
for the values that correspond to the gender of the subject. After having calculated the 
new candidate value for the subject gender through the candidate cell state, only the 
dimension corresponding to the subject gender is set to 1 in the input gate vector. 

The Python code snippet for the candidate cell state and input gate is as follows: 

# Initialize W_i and U_i with dummy values 

Wed 

et 

np.random.randn(3, 5) # n_h = 3, n_x=5 

3 np.random.randn(3, 3) # n_h 

This produces the following values for the matrices: 

wii 

0.34791215, 0.15634897, array([[-0.88778575, -1.98079647, 
1.23029068], 

[ 1.20237985, -0.38732682, 
1.42001794], 

[-1.70627019, 1.9507754 , 
1.25279536]]) 

0.30230275, -1.04855297, - 

0.50965218, -0.4380743 , - 

ui 

array([[ 0.77749036, -1.61389785, -0.21274028], 
[-0.89546656, 0.3869025 , -0.51080514], 
[-1.18063218, -0.02818223, 0.42833187]]) 

Figure 7.13: Screenshot of values of matrices for candidate cell state and input gate 
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The input gate can be calculated as shown: 

i = sigmoid(np.matmul(W_i, x) + np.matmul(U_i, h_prev)) 

This outputs the following value for i: 

“ 

array([[0.00762368], 

[0.39184172], 

[0.17027909]]) 

Figure 7.14: Screenshot of output of input gate 

To calculate the candidate cell state, we first initialize the W_c and U_c matrices: 

# Initialize W_c and U_c with dummy values 

34 -NxX=5 

3 

W_c = np.random.randn(3, 5) # n_h 

U_c = np.random.randn(3, 3) # n_h 

The values produced for these matrices are as given: 

Wc 

array([{[ 0-06651722, 0.3024719 , -0.63432209, -0.36274117, - 
0.67246045], 

[-0.35955316, -0.81314628, -1.7262826 , 0.17742614, - 
0.40178094], 

[-1.63019835, 0.46278226, -0.90729836, 0.0519454 , 
0.72909056]]) 

U_c 

array([[ 0.12898291, 1.13940068, -1.23482582], 

[ 0.40234164, -0.68481009, -0.87079715], 

[-0.57884966, -0.31155253, 0.05616534]]) 

Figure 7.15: Screenshot for values of matrices W_c and U_c 
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We can now use the update equation for the candidate cell state: 

c_candidate = np.tanh(np.matmul(W_c, x) + np.matmul(U_c, h_prev)) 

The candidate cell state produces the following value: 

| c_candidate 

array ([f 0. 312339921) 

[-0.67747899], 

[-0 .99555958]1]) 

Figure 7.16: Screenshot of the candidate cell state 

Cell State Update 

At this point, we know what should be forgotten from the old cell state (forget gate), 
what should be allowed to affect the new cell state (input gate), and what value the 
candidate cell change should have (candidate cell state). Now, the cell state for the 
current timestep can be calculated as follows: 

C[t]=hadamard(f[t], C[t-1]) + hadamard(i[t], C_candidate[t]) 

Figure 7.17: Expression for cell state update 

In the preceding expression, 'hadamard' represents element-wise multiplications. So, 
the forget gate gets multiplied element wise with the old cell state, allowing it to forget 
the gender of the subject in our example sentence. On the other hand, the input gate 
allows the new candidate value for the gender of the subject to affect the new cell state. 
These two terms are then added element-wise so that the current cell state now has a 
subject gender that corresponds to a value that corresponds to ‘female. 
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The next diagram depicts the operation 

t—1 

tt U4 > 

Figure 7.18: Updated cell state 

Here is the code snippet for producing the current cell state. 

First, initialize a value for the previous cell state: 

# Initialize c_prev with dummy value 

c_prev = np.random.randn(3,1) 

c_new = np.multiply(f, c_prev) + np.multiply(i, c_candidate) 

The value becomes the following: 

c_ new 

array([[-0.53124803], 

[ 0.61429771], 

{ 0.29336152]]) 

Figure 7.19: Screenshot for output of updated cell state 
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Output Gate and Current Activation 

Note that all we have done is update the cell state until now. We need to generate the 
activation for the current state as well; that is, (h[t]). This is done using an output gate 
that is calculated as given: 

o[t] = sigmoid(W_o*x{[t] + U_o*h[t-1]) 

Figure 7.20: Expression for output gate. 

The input at timestep t is multiplied by a new set of weights, W_o, with the dimensions 
(n_h, n_x). The activation from the previous timestep (h[t-1]) is multiplied by another 
new set of weights, U_o, with the dimensions (n_h, n_h). Note that the multiplications 
are matrix multiplications. These two terms are then added and passed through a 
sigmoid function to squish the output, o[t], within a range of [0,1]. The output has the 
same number of dimensions as there are in cell state vector h (n_h, 1). 

The output gate is responsible for regulating the amount by which the current cell state 
is allowed to affect the activation value for the timestep. In our example sentence, it 
is worth propagating the information that depicts whether the subject is singular or 
plural such that the correct verb form may be used. For example, if the word following 
the word ‘daughter’ is a verb such as ‘goes, it is important to use the correct form of the 
word, ‘go’. Hence, the output gate allows relevant information to be passed on to the 
activation, which then goes as an input to the next timestep. In the next diagram, the 

output gate is represented as o_t: 

hy 

Figure 7.21: Output gate and current activation 
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The following code snippet shows how the value for the output gate can be calculated: 

# Initialize dummy values for W_o and U_o 

W_o = np.random.randn(3, 5) # n_h = 3, n_x=5 

3 U_o = np.random.randn(3, 3) # n_h 

This produces the following output: 

W_o 

array([[-1-.16514984, 0.90082649, 0.46566244, -1.53624369, 
1.48825219], 

[ 1.89588918, 1.17877957, -0.17992484, -1.07075262, 
1.05445173], 

[-0.40317695, 1.22244507, 0.20827498, 0.97663904, 
0.3563664 }]) 

U_o 

array([[ 0.70657317, 0.01050002, 1.78587049], 
[ 0.12691209, 0.40198936, 1.8831507 ], 
[-1.34775906, -1.270485 , 0.96939671]]) 

Figure 7.22: Screenshot for output of matrices W_o and U_o 

Now the output can be calculated: 

Oo = np.tanh(np.matmul(W_o, x) + np.matmul(U_o, h_prev)) 

The value of the output gate is as follows: 

Oo 

array([[-0.06989015], 

[ 0.99999957], 

[ Usll43221037)]} 

Figure 7.23: Screenshot of the value of the output gate 

Once the output gate is evaluated, the value of the next activation can be calculated? 

h[t] = hadamard(o[t], tanh (C[t])) 

Figure 7.24: Expression to calculate the value of the next activation 
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First, a hyperbolic tangent function is applied to the current cell state. This limits the 
values in the vector between -1 and 1. Then, an element-wise product of this value is 
done with the output gate value that was just calculated. 

Let's see the code snippet for calculating the current timestep activation: 

h_new = np.multiply(o, np.tanh(c_new)) 

This finally produces the following: 

h_new 

array([[-0.04695679], 

[ 0.12468345], 

[ 0.07479682]]) 

Figure 7.25: Screenshot for the current timestep activation 

Now let's build a very simple binary classifier to demonstrate the use of an LSTM. 

Exercise 27: Building an LSTM-Based Model to Classify an Email as Spam or 

Not Spam (Ham) 

In this exercise, we will be building an LSTM-based model that will help us classify 
emails as spam or genuine: 

1. We will start by importing the required Python packages: 

import pandas as pd 

import numpy as np 

from keras.models import Model, Sequential 

from keras.layers import LSTM, Dense, Embedding 

from keras.preprocessing. text import Tokenizer 

from keras.preprocessing import sequence 

Note: 

The LSTM unit has been imported the same way as you would for a simple RNN or 

GRU. 
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2. We can now read the input file containing a column that contains text and another 

column that contains the label for the text depicting whether the text is spam or 

not. 

Note 

For the input file, go to the repository link at 

https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language- 

Processing/tree/master/Lesson%2007/exercise 

df = pd.read_csv("spam.csv", encoding="latin") 

df .head() 

3. The data looks as depicted here: 

df.head/ } 

vi v2 Unnamed: Unnamed: Unnamed: 

2 3 4 

0 “ham Go until jurong point, crazy.. Available only NaN NaN NaN 

1. ham Ok lar... Joking wif u oni... NaN NaN NaN 

2 spam Free entry in 2 a wkly comp to win Pata NaN NaN NaN 

a. han U dun say so early hor... U c already hae! NaN NaN NaN 

4 ham Nah | don't think he goes to usf, Praise NaN NaN NaN 

Figure 7.26: Screenshot of the output for spam classification 

4, There are some irrelevant columns as well, but we only need the columns 
containing the text data and labels: 

df = df[["v1","v2"]] 
df .head() 
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5. The output should be as follows: 

df.head; } 

v1 v2 

Oo ham Go until jurong point, crazy.. Available only ... 

1 ham Ok lar... Joking wif u oni... 

2 spam Free entry in 2 a wkly comp to win FA Cup fina... 

3 ham _ Udun say so early hor... U c already then say... 

4 ham Nah | don't think he goes to usf, he lives aro... 

Figure 7.27: Screenshot for columns with text and labels 

6. Wecan check the label distribution: 

df["v1" J]. value_counts() 

The label distribuiton would look like this: 

df["v1l"].value_counts() 

ham 4825 

spam 747 

Name: vl, dtype: int64 

Figure 7.28: Screenshot for label distribution 

7. Wecan now map the label distribution to 0/1 so that it can be fed to a classifier. 

Also, an array is created to contain the texts: 

lab_map = {"ham":@, "spam": 1} 

Y = df["v1"].map(lab_map). values 

X = df["v2"]. values 
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8. This produces output X and Y as follows: 

xX 

array(['Go until jurong point, crazy.. Available only in bugi 

s n great world la e buffet... Cine there got amore wat...', 

‘Oke Abe. seOKLNo WLt UONl aes x 

"Free entry in 2 a wkly comp to win FA Cup final tkts 

21st May 2005. Text FA to 87121 to receive entry question(std 

txt rate)T&C's apply 084528100750ver18's", 

-ee, ‘Pity, * was in mood for that. So...any other sug 

gestions?', 

"The guy did some bitching but I acted like i'd be int 

erested in buying something else next week and he gave it to 

us for free", 

9. Next, we will restrict the maximum number of tokens to be generated for the 100 
most frequent words. We will initialize a tokenizer that assigns an integer value to 

‘Rofl. Its true to its name'], dtype=object) 

Figure 7.29: Screenshot for output X 

x 

arravi[O 7; O,oL)> <5 =a, WO) 

Figure 7.30: Screenshot for output Y 

each word being used in the text corpus: 

max_words = 100 

mytokenizer = Tokenizer(nb_words=max_words, lower=True, split=" ") 

mytokenizer. fit_on_texts(X) 

text_tokenized = mytokenizer.texts_to_sequences(X) 
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10. This will produce a text_tokenized value: 

In [24]: text_tokenized 

11. 

Out[24]: [[50, 
[46, 
[47, 
[6, 
[1, 
[67, 
[1l, 
[72, 
[72, 
[13, 
[30, 
[2, 
[3, 
[12, 

4, 
[1, 
[2, 
[93, 
[6, 
FIA 

29, 

64, 
6], 
8, 

23), 
98, 
21, 
9, 
13, 
4, 
96, 
22, 

48, 
1774 
ae 
51], 

17, 4, 
ie nye 
30], 

49, 

5 & 

6, 

3, 

2, 

8, 

19, 

7, 
25s 

72, 

19, 

89, 67, 58], | 

4, 
57), 
2, 
38, 
55, 

Poh ee eee 

69], 
B77 55 5 Oy 44702, 914 105, 46 Jody: 68,021, 
Os AD, WO, 65a 

Witai2¢ 51,02; .1231,, 
LIE925°2 US yp 64; 
SPOT ye, te, ay soy hey a7 ee) seeo6 at, 1B), 4 
2 ear 2 BD. se Ss aod: : 

T3710 GL, fy 65, 92, 4215 
aT ee OTS? Sse age | 
Wed Be ala RRS Oy alee 9? lie Mia Fal See Wiehe ly Pee 

18, 
8, 

36, 

Drm lacey 
33], 

26 89], 

i, OF; 
BR 411 

1], 

Figure 7.31: Screenshot for the output of tokenized values 

Note that since we restricted the maximum number words to be 100, only the 
words in the text that fall within the top 100 most frequent words will be assigned 
an integer index. The rest of the works will be ignored. So, even though the first 
sequence in X has 20 words, there are 6 indices in the tokenized representation of 
this sentence. 

Next, we will allow a maximum sequence length of 50 words per sequence and 
pad the sequences that are shorter than this length. The longer sequences, on the 
other hand, get truncated: 

max_len = 50 

sequences = sequence.pad_sequences(text_tokenized, maxlen=max_len) 
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ite 

The output is as follows: 

sequences 

arravi [Troy OF Oy we 5G* SO OT pS OT7 

[ 0% 0, 0, ce f 0, 46, 61, 

[-O, Pry oe ; ar me le 
Pecans 

CRO; Bel, be Oph tf Ler ee, ee le 

[Oy 0; . Meets ude Ae ghee ae lee 

ro, 0, 0, wide, «Gl,'> 276i] , dtypae=intszZ} 

Figure 7.32: Screenshot for padded sequences 

Note that the padding was done in the 'pre' mode, meaning that the initial part of 
the sequences get padded to make the sequence length equal to max_len. 

Next, we define the model with the LSTM layer having 64 hidden units and fit it to 
our sequence data with the respective target values: 

model = Sequential() 

model. add(Embedding(max_words, 20, input_length=max_len)) 

model. add(LSTM(64) ) 

model.add(Dense(1, activation="Ssigmoid")) 

model.compile(loss='binary_crossentropy' , 

optimizer='adam' , 

metrics=['accuracy' ]) 

model . fit (sequences, Y, batch_size=128, epochs=10, 

validation_split=0. 2) 

Here, we start with an embedding layer, which ensures a fixed size for input to the 
network (20). We have a dense layer with a single sigmoid output, which indicates 
whether the target variable is 0 or 1. We then compile the model with binary 
cross-entropy as the loss function and use Adam as the optimization strategy. 
After that, we fit the model to our data with a batch size of 128 and an epoch count 
of 10. Note that we also keep aside 20% of the training data as validation data. This 
starts a training session: 
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model.fit(sequences,Y,batch size=128,epochs=10, 

validation _split=0.2) 

Train on 4457 samples, validate on 1115 samples 

Epoch 1/10 

4457/4457 [ssssssssss==ssssssss==========] - 2s 539us/step - 
loss: 0.4885 - acc: 0.8548 - val_loss: 0.3700 - val_ace: 0.87 
00 

Epoch 2/10 

4457/4457 [sssssssssssssssssssss=S========] - 2s 374us/step - 

loss: 0.3425 - acc: 0.8652 - val_loss: 0.2649 - val_acc: 0.87 
igs 

Epoch 3/10 

4457/4457 [s=ssssssssssssesssssssss=======] - 2s 38lus/step - 

loss: 0.2028 - acc: 0.9226 - val_loss: 0.1489 - val_acc: 0.95 
34 

Epoch 4/10 

4457/4457 [ssssssssssssssssssss5=========] - 25 367us/step - 

loss: 0.1348 - acc: 0.9547 - val_loss: 0.1271 - val_acc: 0.95 

16 

Epoch 5/10 

4457/4457 [sssssssssssssssssssssses==5===] - 25 404us/step - 

loss: 0.1157 - acc: 0.9605 - val loss: 0.1073 - val acc: 0.95 

78 

Epoch 6/10 

4457/4457 [sssssssssssssssesssseessss=5==] - 2s 368us/step - 

loss: 0.1061 - acc: 0.9632 - val_loss: 0.1027 - val_acc: 0.96 

14 

Epoch 7/10 

4457/4457 [sssssssssssssesssssssssssss===] - 2s 37lus/step - 

loss: 0.0998 - acc: 0.9657 - val_loss: 0.1046 - val_acc: 0.95 

78 

Epoch 8/10 
4457/4457 [Ssssssssssssssssssssssessa=s==] - 2s 372us/step - 

loss: 0.0955 - acc: 0.9672 - val_loss: 0.1004 - val_acec: 0.95 

96 

Figure 7.33: Screenshot of model fitting to 10 epochs 

After 10 epochs, a validation accuracy of 96% is achieved. This is remarkably good 

performance. 
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We can now try some test sequences and obtain the probability of the sequence 

being spam: 

inp_test_seq = "WINNER! U win a 500 prize reward & free entry to FA cup 

final tickets! Text FA to 34212 to receive award" 

test_sequences = mytokenizer.texts_to_sequences(np.array(Linp_test_seq])) 

test_sequences_matrix = sequence.pad_sequences(test_sequences , maxlen=max_ 

len) 

model.predict(test_sequences_matrix) 

Expected output: 

-model.predict(test_sequences_ matrix) 

array([[0.96648586]], dtype=float32) 

Figure 7.34: Screenshot of the output of model prediction 

There is a very high probability of the test text being spam. 

Activity 9: Building a Spam or Ham Classifier Using a Simple RNN 

We will be building a spam-or-ham classifier using a simple RNN with the same 

hyperparameters as earlier and compare the performance with that of our LSTM-based 
solution. For a simple dataset such as this, a simple RNN would perform very close to an 
LSTM. However, this is usually not the case with more complex models, as we will see in 
the next section. 

Note 

Find the input file at https://github.com/TrainingByPackt/Deep-Learning-for- 

Natural-Language-Processing/tree/master/Lesson%2007/exercise. 
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1. Import the required Python packages. 

NM Read the input file containing a column that contains text and another column 
that contains the label for the text depicting whether the text is spam or not. 

Convert to sequences. 

Pad the sequences. 

Train the sequences. 

Build the model. 

“a2 VS? Predict the mail category on the new test data. 

Expected output: 

P 

array([{[0.979119]], dtype=float32) 

Figure 7.35: Output for mail category prediction 

Note 

The solution for the activity can be found on page 324. 

Neural Language Translation 

The simple binary classifier described in the previous section is a basic use case for 
the area of natural language processing (NLP) and doesn't fully justify the use of any 
techniques that are more complex than using a simple RNN or even simpler techniques. 
However, there are many complex use cases for which it is imperative to use more 

complex units such as LSTMs. Neural language translation is one such application. 

The goal of a neural language translation task is to build a model that can translate a 
piece of text from a source language to a target language. Before starting with the code, 
let's discuss the architecture of this system. 

Neural language translation represents a many-to-many NLP application, which means 
that there are many inputs to the system and the system produces many outputs as 

well. 
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Additionally, the number of inputs and outputs could be different as the same text 
can have a different number of words in the source and target language. The area of 
NLP that solves such problems is referred to as sequence-to-sequence modeling. The 
architecture consists of an encoder block and a decoder block. The following diagram 

represents the architecture: 

Ich méchte 

| would swimming BEGIN Ich méchte gehen END 

Figure 7.36: Neural translation model 

The left part of the architecture is the encoder block, and the right part is the decoder 
block. The diagram attempts to translate an English sentence to German, as here: 

English: I would like to go swimming 

German: Ich méchte schwimmen gehen 

Note 

Periods have been dropped from the preceding sentences for demonstration 

purposes only. Periods are also considered valid tokens. 
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The encoder block takes each word of the English (source language) sentence as input 
at a given timestep. Each unit of the encoder block is an LSTM. The only outputs for 
the encoder block are the final cell state and activations. These are jointly referred to as 
the thought vector. The thought vector is used to initialize the activation and cell state 
for the decoder block, which is another LSTM block. During the training phase, at each 
timestep, the decoder output is the next word in the sentence. This is represented by 
a dense softmax layer that has a value 1 for the next word token and 0 for all the other 
entries in the vector. 

The English sentence is fed to the encoder word by word, producing a final cell state 
and activation. During the training phase, the real output of the decoder at each 
timestep is known. This is simply the next German word in the sentence. Note that 
there is a ‘BEGIN _' token inserted at the sentence beginning and an '_END' token 
at the end of the sentence. The output for the 'BEGIN _' token is the first word in the 

German sentence. This can be seen in the last diagram. At the time of training, the 
network is made to learn the translation word by word. 

In the inference phase, the English input sentence is fed to the encoder block, 
producing a final cell state and activation. The decoder has the 'BEGIN _' token as the 
input at the first timestep, along with the cell state and activations. Using these three 
inputs, a softmax output is produced for this timestep. In a well-trained network, the 
softmax value is the highest for the entry corresponding to the correct word. This next 
word is then fed as the input to the next timestep. This process is continued until an 
'_END' token is sampled or a maximum sentence length is reached. 

Now let's go through the code for the model. 

We read in the file containing sentence pairs first. We also keep the number of pairs 
restricted to 20,000 for demonstration purposes: 

import os 

import re 

import numpy as np 

with open("deu.txt", 'r', encoding='utf-8') as f: 

lines = f.read().split('\n') 

num_samples = 20000 # Using only 20000 pairs for this example 

lines_to_use = lines[: min(num_samples, len(lines) - 1)] 

print(lines_to_use) 
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Output: 

lines_to_use 
oslaeteeremetmma les aeteieernsiaeealeeemmeiaaasmetetiaainioneels 

(oHL, \tHaliol™, 

"Hi. \tGriiB Gott!', 

"Run! \tLauf!', 

‘Wow! \tPotzdonner!', 

'Wow!\tDonnerwetter!', 

'Fire!\tFeuer!', 

'Help!\tHilfe!', 

"Help! \tZu Hilf!', 

'Stop!\tStopp!', 
‘Wait! \tWarte!', 

'Go on.\tMach weiter.', 

'Hello!\tHallo!', 

‘I ran.\tIch rannte.', 

'I see.\tIch verstehe.', 

'I see.\tAha.', 

"Lr try. \tich probiere es. ', 

'I won!\tIch hab gewonnen!', 

Figure 7.37: Screenshot for the English-to-German translation of sentence pairs 

Each line has first the English sentence, followed by a tab character, and then the 

German translation of the sentence. Next, we'll map all the numbers to a placeholder 

word, 'NUMBER_ PRESENT’, and append the 'BEGIN_ ' and ' _END' tokens to each 

German sentence, as discussed previously: 

for 1 in range(len(lines_to_use)): 

lines_to_use[1] = re.sub("\d", " NUMBER_PRESENT ",lines_to_use[1]) 

input_texts = [] 

target_texts = [] 

input_words = set() 

target_words = set() 

for line in lines_to_use: 

input_text, target_text = line.splitc('\t') PS 

target_text = ‘BEGIN. ' + target_text + ' _END' 

input_texts.append(input_text) 

target_texts.append(target_text) 

for word in input_text.split(): 
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if word not in input_words: 

input_words.add(word) 

for word in target_text.split(): 

if word not in target_words: 

target_words.add(word) 

In the previous snippet, we obtained the input and output texts. They look as depicted: 

input texts 

BET Pee 
LBlaey 

"Rimi, 

‘Wow!', 

'Wow!', 

"Fire ies 

"Help!', 

‘'Help!', 

“Stop! ‘; 

‘Wait!', 

‘Gavan. ', 

'Hello!', 

'T wernt; 

'I see.', 

'I see.', 

6 My a 

'I won!', 

'I won!', 

'Smile.', 
'Chearc! 

target_texts 

['BEGIN_ Hallo! _END', 
‘BEGIN. GriifB Gott! _END', 

'BEGIN. Lauf! _END', 
‘BEGIN. Potzdonner! _END', 
'BEGIN. Donnerwetter! _END', 

'BEGIN. Feuer! _END', 
'BEGIN. Hilfe! _END', 
'BEGIN. Zu Hilf! _END', 
'BEGIN. Stopp! _END', 

'BEGIN. Warte! _END', 

'BEGIN_ Mach weiter. _END', 
Pmmarar rT 11-8 Taatrm | 

Figure 7.38: Screenshot for input and output texts after mapping 
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Next, we get the maximum length of the input and output sequences and get a list of all 
the words in the input and output corpus: 

max_input_segq_length = max([len(i.split()) for i in input_texts]) 

max_target_seq_length = max(Llen(i.split()) for i in target_texts]) 

input_words = sorted(list(input_words) ) 

target_words = sorted(list(target_words) ) 

num_encoder_tokens = len(input_words) 

num_decoder_tokens = len(target_words) 

input_words and target_words look as shown in the following figure: 

input_words 

[ ' "Look, wer : 

' "aah. ue 

'S', 

"ATM?', 

'AWOL.', 
"Abandon', 

"About', 

MAGE.” ; 

"Add', 

‘Admission', 
'After' 

target_words 

['"Schaul"', 

eae 

'Abend?', 

‘Abendbrot', 
Inhanwdahwnnr ! 

Figure 7.39: Screenshot for input text and target words 
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Next, we generate an integer index for each token in the input and output words: 

input_token_index = dict( 

L(word, i) for i, word in enumerate(input_words) ]) 

target_token_index = dict([(word, i) for i, word in enumerate(target_words) ]) 

The values of these variables are as follows: 

input_token_index 

i "Logks.” "3 5; 

BANS th ky 
Sis 2 

i Re She 

= 

ee ee 

& 
~~ 

ra 

in! 

Nae gee 

"ATM? 12) 912), 

"AWOL. 3. 13, 

‘Abandon': 14, 

"About 's_15, 

Weber abeiy 

"AdG ts 4147, 9 

'Admission': 18, 
‘Aftar' «19 

- 9 es ee « 

wo - 

target_token_index 

{'"Schau!"': 0, 

Saas) ley 

Leh bets De 

ASTD WS jie 

Bk Rs 

ates ig 

ers Oly 

SBME Sie 

Pipe Eat spe 

"Abend': 9, 

"Abend!': 10, 

"Abend?': 11, 

"Abendbrot': 12, 

Figure 7.40: Screenshot for output of integer index for each token 



218 | Long Short-Term Memory (LSTM) 

We now define the arrays for the encoder input data, which is a 2-dimensional matrix 
with as many rows as sentence pairs and as many columns as the maximum input 
sequence length. Similarly, the decoder input data is also a 2-dimensional matrix with 
as many rows as sentence pairs and as many columns as the maximum sequence length 
in the target corpus. We also need target output data, which is required during the 
training phase. This is a 3-dimensional matrix where the first dimension has the same 
value as the number of sentence pairs. The second dimension has the same number 
of elements as the maximum target sequence length. The third dimension represents 
the number of decoder tokens (the number of distinct words in the target corpus). We 
initialize these variables with zeros: 

encoder_input_data = np.zeros( 

(len(input_texts), max_input_seq_length), 

dtype='float32') 

decoder_input_data = np. zeros( 

(len(target_texts), max_target_seq_length), 

dtype='float32' ) 

decoder_target_data = np.zeros( 

(len(target_texts), max_target_seq_length, num_decoder_tokens), 

dtype='float32') 

We now populate these matrices: 

for i, (input_text, target_text) in enumerate(zip(input_texts, target_ 

texts)): 

for t, word in enumerate(input_text.split()): 

encoder_input_dataLi, t] = input_token_index[word] 

for t, word in enumerate(target_text.split()): 

decoder_input_data[i, t] = target_token_index[word] 

if tO: 

# decoder_target_data is ahead of decoder_input_data by one 

timestep 

decoder_target_data[i, t - 1, target_token_index[word]] = 1. 



The values look as follows: 

encoder input data 

array([[ 283., 

le ZENS ae 

[=505e; 

f 696. , 

[-696%, 3004. 
e=float32) 

decoder input data 

0O., 

ot) 

_, 
[ 696., 3001. 

3001. 

SEA PIT Sap) Le 

[ 175.,11140. 

bp loreere eT Alh oye 

shoei 

[ tS. 3405. 

f175., 3405. 

[tise 34055 

e=float32) 

decoder target data 

array([[ 

[ 

[0., 
[0., 
[0., 

[0., 
[0., 
[0., 

[0., 
[0., 

oo co * «me 

0 

0. 

0. 

0 

| 

La 

Lf 

La 

0. ’ 0. ’ 

Oy, 

’ 

v 

’ 

, 

a 

’ 

’ 

v 

’ 

4502. 

4682. 

3008. 

3665. 

11T3. 

3665. 

8432. v 

6239., 

6239., 

or 

0. 

0. 
‘ 

’ 

° -s 3 

eo; 

oS ° ~ 

Os; 

Om 

oo 

0. 

0. 
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0., O., 0.1, 
ae rye i 
Or; 0., Oye 

Dat one ] 
Os O34 ‘ Ll 

0., 0., 0.J], dtyp 

oy, ozs 0.1, 
O24 4 olan 
Oey Oye dehy 

Oe, Ow es 
0., 0., 0.], 
0., 0., 0.J], dtyp 

-l, 

ll, 

l, 

Figure 7.41: Screenshot of matrix population 

We will now define a model. For this exercise, we'll use the functional API of Keras: 

from keras.layers import Input, LSTM, Embedding, Dense 

from keras.models import Model 

embedding_size = 50 # For embedding layer 
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Let's see the encoder block: 

encoder_inputs = Input(shape=(None, )) 

encoder_after_embedding = Embedding(num_encoder_tokens, embedding_size) 

(encoder_inputs) 

encoder_lstm = LSTM(50, return_state=True) 

_, state_h, state_c = encoder_lstm(encoder_after_embedding) 

encoder_states = [state_h, state_c] 

First, an Input layer with a flexible number of inputs is defined (with the None 
attribute). Then, an embedding layer is defined and applied to the encoder inputs. Next, 
an LSTM unit is defined with 50 hidden units and applied to the embedding layer. Note 
that the return_state parameter in the LSTM definition is set to True since we would 

like to obtain the final encoder states to be used for initializing decoder cell state and 
activations. The encoder LSTM is then applied to the embeddings and the states are 

collected back into variables. 

Now let's define the decoder block: 

decoder_inputs = Input(shape=(None, )) 

decoder_after_embedding = Embedding(num_decoder_tokens, embedding_size) 

(decoder_inputs) 

decoder_lstm = LSTM(5@, return_sequences=True, return_state=True) 

decoder_outputs, _, _ = decoder_lstm(decoder_after_embedding, 

initial_state=encoder_states) 

decoder_dense = Dense(num_decoder_tokens, activation='softmax' ) 

decoder_outputs = decoder_dense(decoder_outputs) 

The decoder takes in inputs and defines embedding layers in a way similar to that of the 
encoder. An LSTM block is then defined with the return_sequences and return_state 
parameters set to True. This is done since we wish to use the sequences and states for 
the decoder. A dense layer is then defined with a softmax activation and a number of 
outputs equal to the number of distinct tokens in the target corpus. We can now define 
a model that takes in the encoder and decoder inputs as its input and produces the 
decoder outputs as final outputs: 

model = Model(Lencoder_inputs, decoder_inputs], decoder_outputs) ® 

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', 

metrics=['acc']) 

model.summary() 
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The following model summary is seen: 

Layer (type) Output Shape Param # 

Connected to 

input_1 (InputLayer) (None, None) 0 

input_2 (InputLayer) (None, None) 0 

embedding _1 (Embedding) (None, None, 50) 286200 

input_1[0][0] 

embedding 2 (Embedding) (None, None, 50) 456300 

input_2[0][0] 

lstm_1 (LSTM) [(None, 50), (None, 20200 

embedding_1[0][0] 

lstm_2 (LSTM) {(None, None, 50), ( 20200 

embedding 2[0][0] 

lstm_1[0][1] 

lstm_1[0][2] 

dense _1 (Dense) (None, None, 9126) 465426 

lstm_2[0][0] 

Total params: 1,248,326 

Trainable params: 1,248,326 

Non-trainable params: 0 

Figure 7.42: Screenshot of model summary 
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We can now fit the model for our inputs and outputs: 

model .fit(Lencoder_input_data, decoder_input_data], decoder_target_data, 

batch_size=128, 

epochs=20, 

validation_split=0.05) 

We set a batch size of 128 with 20 epochs: 

Train on 19000 samples, validate on 1000 samples 

Epoch 1/20 

19000/19000 [===S====s=ss=ssssssesses=ss======] - 310s 16ms/step 

- loss: 1.6492 - acc: 0.0787 - val_loss: 1.8068 - val_acc: 0. 

0674 

Epoch 2/20 

19000/19000 [====s=s=sss=sssssssss==s=s========] - 303s 16ms/step 

- loss: 1.5174 - acc: 0.0908 - val_loss: 1.6923 - val_ace: 0. 

0822 

Epoch 3/20 

19000/19000 [ss=ss=sssssssssssesssssss======] - 304s 16ms/step 

- loss: 1.4060 - acc: 0.1040 - val_loss: 1.6107 - val_acc: 0. 

1065 ; 

Epoch 4/20 

19000/19000 [==s==s=s==ss=s=ssssssss=s=s=s======] - 292s 15ms/step 

- loss: 1.3343 - acc: 0.1157 - val_loss: 1.5683 - val_acc: 0. 

1100 
Epoch 5/20 

19000/19000 [==s=S=sSssss=sssssssss=sss========] - 292s 15ms/step 

- loss: 1.2860 - acc: 0.1212 - val_loss: 1.5299 - val_ace: 0. 

1197 

Epoch 6/20 

19000/19000 [==ss=ss=ssssssssssss============] - 291s 15ms/step 

= loss: 1.2510 - acc: 0.1241 - val_loss: 1.5037 - val_acc: 0. 

1145 

Epoch 7/20 

19000/19000 [=s=ss=s=s=s=ss=sessssss=sss=s=s========] - 291s 15ms/step 

Figure 7.43: Screenshot of model fitting with 20 epochs 

The model is now trained. Now, as described in our section on neural language 
translation, the inference phase follows a slightly different architecture from the one 
used during training. We first define the encoder model, which takes encoder_inputg 
(with embedding) as input and produces encoder_states as output. This makes sense as 
the output of the encoder block is the cell state and activations: 

encoder_model = Model(encoder_inputs, encoder_states) 
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Next, a decoder inference model is defined: 

decoder_state_input_h = Input(shape=(50, )) 

decoder_state_input_c = Input(shape=(5, )) 

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] 

decoder_outputs_inf, state_h_inf, state_c_inf = decoder_lstm(decoder_after_ 
embedding, initial_state=decoder_states_inputs) 

The initial states of decoder_lIstm, which was trained earlier, are set to the decoder_ 
states_inputs variable, which will be set to encoder state output later on. Then, we pass 
decoder outputs through a dense softmax layer for getting the index of the predicted 
word and define the decoder inference model: 

decoder_states_inf = [state_h_inf, state_c_inf] 

decoder_outputs_inf = decoder_dense(decoder_outputs_inf) 

# Multiple input, multiple output 

decoder_model = Model( 

[decoder_inputs] + decoder_states_inputs, 

[decoder_outputs_inf] + decoder_states_inf) 

The decoder model takes multiple inputs in the form of decoder_input (with 
embedding) and decoder states. The output is also a multivariable where the dense 
layer output and decoder states are returned. The states are required here as they need 
to passed on as input states for the sampling of the word at the next timestep. 

Since the output of the dense layer will return a vector, we need a reverse lookup 
dictionary to map the index for the generated word to an actual word: 

# Reverse-lookup token index to decode sequences 

reverse_input_word_index = dict( 

(i, word) for word, i in input_token_index.items()) 

reverse_target_word_index = dict( 

(i, word) for word, i in target_token_index.items()) 
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The values in the dictionaries are as follows: 

reverse_input_word_index 

LA 

ery a 

bee es 

: "G24 

Dar Rete eey 

Biey Petia 

Oe ee 

Ose Ae 

Pisa Ae 

2 AIM? 

43: "AWOL.', 
14: 'Abandon', 

Le ADO 7 

LOS eae 

iy Pe Aadoy 

18: '‘Admission', 

TGi2 TALtCer™, 

20:5. ' Aim. , 

PAIRS Soe bys le 

vt he NO a Wi, ae 

reverse target word index 

{O27 Schaudt") 

Wig acl Sexy 

Ae, Sgr 

ce eT ie 

he ae 

: Bi cme 

oe Ss 

ee ee 

Oo. or. 

9: 'Abend', 

10: 'Abend!', 

ll: 'Abend?', 

12: 'Abendbrot', 

Figure 7.44: Screenshot of dictionary values 

We now need to develop a sampling logic. Given a token representation for every word 
in an input sentence, we first get the output from encoder_model using these word 
tokens as inputs for the encoder. We also initialize the first input word to the decoder, 
to be a ‘BEGIN _' token. We then sample a new word token using these values. The 

input to the decoder for the next timestep is this newly generated token. We continue 
in this fashion until we either sample the '_END' token or reach the maximum allowed 
output sequence length. 
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The first step is encoding the input as a state vector: 

def decode_sequence(input_seq): 

states_value = encoder_model.predict(input_seq) 

Then, we generate an empty target sequence of length 1: 

target_seq = np.zeros((1,1)) 

Next, we populate the first character of the target sequence with the start character: 

target_seql®, 0] = target_token_index['BEGIN_'] 

Then, we create a sampling loop for a batch of sequences: 

stop_condition = False 

decoded_sentence = '' 

while not stop_condition: 

output_tokens, h, c = decoder_model.predict( 

[target_seq] + states_value) 

Next, we sample a token: 

sampled_token_index = np.argmax(output_tokens) 

sampled_word = reverse_target_word_index[sampled_token_index ] 

decoded_sentence += ' ' + sampled_word 

Then, we state the exit condition "either hit max length": 

# or find stop character. 

if (sampled_word == '_END' or 

len(decoded_sentence) > 60): 

stop_condition = True 

# Update the target sequence (of length 1). 

_target_seq = np.zeros((1,1)) 

target_seql0, 0] = sampled_token_index 
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Then, we update the states: 

states_value = [h, c] 

return decoded_sentence 

In this instance, you can test the model by translating a user-defined English sentence 
to German: 

text_to_translate = "Where is my car?" 

encoder_input_to_translate = np.zeros( 

(1, max_input_seq_length), 

dtype='float32') 

for t, word in enumerate(text_to_translate.split()): 

encoder_input_to_translate[@, t] = input_token_index[word] 

decode_sequence(encoder_input_to_translate) 

The output is depicted in this screenshot: 

In [122]: text_to_translate = "Where is my car?" 

In [123]: encoder_input_to_translate = np.zeros( 

(1, max_input_seq length), 
dtype='float32') 

for t, word in enumerate(text_to_translate.split()): 
anandAar innut +A tranelatarnh +1 im §mnnit tnbkan indawlunrA) 

In [124]: decode_sequence(encoder_input_to_translate) 

Out[{124]: ' Wo ist mein Auto? _END' 

Figure 7.45: Screenshot of English-to-German translator ‘ 
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This is, indeed, the correct translation. 

So, even a model trained on just 20,000 sequences for only 20 epochs is capable of 
producing good translations. With the current settings, the training session ran for 
about 90 minutes. 

Activity 10: Creating a French-to-English translation model 

In this activity, we aim to generate a language translator model that converts French 
text into English. 

Note 

You can find the related files to the activity at https://github.com/TrainingByPackt/ 

Deep-Learning-for-Natural-Language-Processing/tree/master/Lesson%2007/ 

activity. 

1. Read in the sentence pairs (check the GitHub repository for the file). 

i Generate input and output texts with the 'BEGIN _' and '_END' words attached to 

the output sentences. 

Convert the input and output texts into input and output sequence matrices. 

Define the encoder and decoder training models and train the network. 

Define the encoder and decoder architecture for inference. 

Se ee oe Create the user input text (French: ' Ow est ma voiture?'). The sample output text in 
English should be 'Where is my car?’ Refer to the 'French.txt' file from the GitHub 
repository for some sample French words. 
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Expected output: 

" Get a lot. _END’ 

Figure 7.46: Output for French to English translator model 

Note 

The solution for the activity can be found on page 327. 

Summary 

We introduced LSTM units as a possible remedy to the vanishing gradient problem. 
We then discussed the LSTM architecture in detail and built a simple binary classifier 
using it. We then delved into a neural nanguage translation application that utilizes 
LSTM units, and we built a French-to-English translator model using the techniques 
we explored. In the next chapter, we will discuss the current state of the art in the NLP 
sphere. 
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State-of-the-Art 

Natural Language 

Processing 
Learning Objectives 

By the end of this chapter, you will be able to: 

Evaluate vanishing gradients in long sentences 

Describe an attention mechanism model as a state-of-the-art NLP domain 

Assess one specific attention mechanism architecture 

Develop a neural machine translation model using an attention mechanism 

Develop a text summarization model using an attention mechanism 

This chapter aims to acquaint you with the current practices and technologies in the NLP 

domain. 



232 | State-of-the-Art Natural Language Processing 

Introduction 

In the last chapter, we studied Long Short Term Memory units (LSTMs), which help 
combat the vanishing gradient problem. We also studied GRU in detail, which has its 
own way of handling vanishing gradients. Although LSTM and GRU reduce this problem 
in comparison to simple recurrent neural networks, the vanishing gradient problem 
still manages to prevail in many practical cases. The issue essentially remains the 
same: longer sentences with complex structural dependences are challenging for deep 
learning algorithms to encapsulate. Therefore, one of the most prevalent research areas 
represents the community's attempts to mitigate the effects of the vanishing gradient 
problem. 

Attention mechanisms, in the last few years, have attempted to provide a solution to 
the vanishing gradient problem. The basic concept of an attention mechanism relies 
on having access to all parts of the input sentence when arriving at an output. This 
allows the model to lay varying amounts of weight (attention) to different parts of the 
sentence, which allows dependencies to be deduced. Due to their uncanny ability to 
learn such dependencies, attention mechanism-based architectures represent the 
current state of the art in the NLP domain. 

In this chapter, we will learn about attention mechanisms and solve a neural machine 
translation task using a specific architecture based on an attention mechanism. We will 
also mention some other related architectures that are being used in the industry today. 

Attention Mechanisms 

In the last chapter, we solved a Neural Language Translation task. The architecture for 
the translation model adopted by us consists of two parts: Encoder and Decoder. Refer 
to the following diagram for the architecture: 

Er liebt zu schwimmen 

He loved to swim 

Figure 8.1: Neural language translation model 
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For a neural machine translation task, a sentence is passed into an encoder word by 
word, which produces a single thought vector (represented in the preceding image as 
'S'), which embeds the meaning of the entire sentence into a single representation. The 
decoder then uses this vector to initialize the hidden states and produce a translation 
word by word. 

In the simple encoder-decoder regime, only 1 vector (the thought vector) contains the 
representation of the entire sentence. The longer the sentence, the more difficult it 
becomes for the single thought vector to retain long-term dependencies. The use of 
LSTM units reduces the problem only to some extent. A new concept was developed to 
mitigate the vanishing gradient problem further, and this concept is called Attention 
mechanisms. 

An attention mechanism aims to mimic a human's way of learning dependencies. Let's 
illustrate this with an example sentence: 

"There have been many incidents of thefts lately in our neighborhood, which has forced 
me to consider hiring a security agency to install a burglar-detection system in my 
house so that I can keep myself and my family safe." 

Note the use of the words ‘my’, 'l’, 'me’, ‘myself; and ‘our’. These occur at distant 

positions within the sentence but are tightly coupled to each other to represent the 
meaning of the sentence. 

When trying to translate the previous sentence, a traditional encoder-decoder 
functions as follows: 

1. Pass the sentence word by word to the encoder. 

2. The encoder produces a single thought vector, which represents the entire 
sentence encoding. For a long sentence, such as the previous one, even with the 
use of LSTMs, it would be difficult for the encoder to embed all the dependencies. 

Therefore, the earlier part of the sentence is not as strongly encoded as the later 

part of the sentence, which means the later part of the sentence ends up having a 

dominant influence over the encodings. 

3. The decoder uses the thought vector to initialize the hidden state vector to 

generate the output translation. 

A more intuitive way to translate the sentence would be to pay attention to the correct 

positions of words in the input sentence when determining a particular word in the 

target language. As an example, consider the following sentence: 

‘The animal could not walk on the street because it was badly injured.’ 
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In this sentence, whom does the word ‘it' refer to? Is it the animal or the street? An 

answer to this question would be possible if the entire sentence were considered 
together and different parts of the sentence were weighed differently to determine the 
answer to the question. An attention mechanism accomplishes this, as depicted here: 

The_ The_ 

animal_ 

could_ 

not_ 

walk_ 

on_ 

the_ 

street_ 

because_ because_ 

a 2 it 

was_ 

badly _ badly_ 
injured _ injured_ 

Figure 8.2: An example of an attention mechanism 

The diagram shows how much weight each word receives in understanding every word 
in a sentence. As can be seen, the word 'it_' receives a very strong weighting from 
‘animal _' and a relatively weaker weighting from ‘street _'. Thus, the model can now 
answer the question of which entity ‘it’ refers to in the sentence. 

For a translation encoder-decoder model, while generating word-by-word output, 
at a given point in time, not all the words in the input sentence are important for the 
determination of the output word. An attention mechanism implements a scheme that 
does exactly that: weighs different parts of the input sentence with all of the input 
words at each point in the determination of the output. A well-trained network with 
an attention mechanism would learn to apply an appropriate amount of weighting to 
different parts of the sentence. This regime allows the entire part of the input sentence 
to be always available for use at every point of determining the output. Thus, instead 
of one thought vector, the decoder has access to the "thought" vector specific for 
the determination of each word in the output sentence. This ability of an attention 
mechanism is in stark contrast to a traditional LSTM/GRU/RNN-based encoder- 
decoder. 
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An attention mechanism is a general concept. It can be realized in several architectural 
flavors, which are discussed in the later part of the chapter. 

An Attention Mechanism Model 

Let's see how an encoder-decoder architecture could look with an attention mechanism 
in place: 

Er liebt 

Softmax ! 

‘Encoder (_} 3 Decoder ' 

He loved to swim 

Figure 8.3: An attention mechanism model 

The preceding diagram depicts the training phase of a language translation model with 
an attention mechanism. We can note a few differences compared to a basic encoder- 
decoder regime, as follows: 

¢ The initial states of the decoder get initialized with the encoder output state from 
the last encoder cell. An initial NULL word is used to start the translation, and the 

first word is produced as 'Er’. This is the same as the previous encoder-decoder 
model. 

¢ For the second word, in addition to the input from the previous word and the 
hidden state of the preceding decoder timestep, another vector is fed as input to 
the cell. This vector, generally regarded as ‘Context vector’, is a function of all the 
encoder hidden states. From the preceding diagram, it is a weighted summation of 
the hidden states of the encoder for all the timesteps. 
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¢ During the training phase, since the output of each decoder timestep is known, we 

can learn all the parameters of the network. In addition to the usual parameters, 
corresponding to whichever RNN flavor is being used, the parameters specific to 
the attention function are also learned. If the attention function is just a simple 
summation of the hidden state encoder vectors, the weights of the hidden states 
at each encoder timestep can be learned. 

¢ At inference time, at every timestep, the decoder cell can take as input the 

predicted word from the last timestep, the hidden states from the previous 

decoder cell, and the context vector. 

Let's look at one specific realization of an attention mechanism for neural machine 
translation. In the previous chapter, we built a neural language translation model, which 
is a subproblem area of a more general area of NLP called neural machine translation. In 
the following section, we attempt to solve a date-normalization problem. 

Data Normalization Using an Attention Mechanism 

Let's say you're maintaining a database that has a table containing a column for date. 
The input for the date is taken from your customers, who fill in a form and enter the 
date in a date field. The frontend engineer somehow forgot to enforce’a scheme upon 
the field, such that only dates in a "YYYY-MM-DD" format are accepted. You are now 
tasked with normalizing the date column of database table, such that the user inputs in 
several formats get converted to a standard "YYYY-MM-DD" format. 

As an example, the user inputs for date and the corresponding correct normalization 
are shown here: 

Jser Input Normalized Date 
3-May-79 5/3/1979 wi 
5-Apr-09 5/5/2009 

21th of August 2016 8/21/2016 
Tue 10 Jul 2007 7/10/2007 

Figure 8.4: Table for date normalization 

You can see that there is a lot of variation in the way a user can input a date. There are 
many more ways in which the date could be specified apart from the examples in the, 
table. 
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This problem is a good candidate to be solved by a neural machine translation model as 
the input has a sequential structure, wherein the meanings of the different components 
in the input need to be learned. This model will have the following components: 

¢ Encoder 

¢ Decoder 

e Attention mechanisms 

Encoder 

This is a bidirectional LSTM that takes each character of the date as input. Thus, at each 
timestep, the input to the encoder is a single character of the input date. Apart from 
this, the hidden state and memory state is also taken as an input from the previous 
encoder cell. Since this is a bidirectional architecture, there are two sets of parameters 
pertaining to the LSTM: one in the forward direction and the other in the backward 
direction. 

Decoder 

This is a unidirectional LSTM. It takes as input the context vector for this timestep. 
Since each output character is not strictly dependent upon the last output character 

in the case of date normalization, we don't need to feed the previous timestep output 
as an input to the current timestep. Additionally, since it is an LSTM unit, the hidden 
states and memory state from the previous decoder timestep are also fed to the current 
timestep unit for the determination of the decoder output at this timestep. 

Attention mechanisms 

Attention mechanisms are explained in this section. For determination of a decoder 

input at a given timestep, a context vector is calculated. A context vector is a weighted 
summation of all the hidden state of an encoder from all timesteps. This is as follows: 

context[t] = dot(H, alpha|t]) 

Figure 8.5: Expression for the context vector 



238 | State-of-the-Art Natural Language Processing 

The dot operation is a dot product operation that multiplies weights (represented by 

alpha) with the corresponding hidden state vector for all timesteps and sums them up. 

The value of the alpha vector is calculated separately for each decoder output timestep. 
The alphas encapsulate the essence of an attention mechanism, that is, determining 

how much ‘attention’ to be given to which part of the input to figure out the current 
timestep output. This can be realized in a diagram, as follows: 

context[t] 

alphatt] alphat2 alpha{T] 

rf 
4 

h1 h2 hT 

Figure 8.6: Determination of attention to inputs 

As an example, let's say that the encoder input has a fixed length of 30 characters, 
and the decoder output has a fixed output length of 10 characters. For the date 

normalization problem, this means that the user input is fixed to be a maximum of 30 
characters, while the model output is fixed at 10 characters (the number of characters 
in the YYYY-MM-DD format, including the hyphens). 

Let's say that we wish to determine the decoder output at the output timestep=4 (an 
arbitrary number chosen to explain the concept; it just needs to be <=10, which is the 
output timestep count). At this step, the weight vector alpha is computed. This vector 

has a dimensionality equal to the number of timesteps of the encoder input (as a weight 
needs to be computed for every encoder input timestep). So, in our case, alpha has a 
dimensionality of 30. 
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Now, we already have the hidden state vector from each of the encoder timesteps, 
so there are a total of 30 hidden state vectors available. The dimensionality of the 
hidden state vector accounts for both the forward and backward components of the 
bidirectional encoder LSTM. For a given timestep, we combine the forward hidden state 
and backward hidden state into a single vector. So, if the dimensionality of forward and 
backward hidden states is 32 each, we put them in a single vector of 64 dimensions as 
[h_ forward, h_backward]. This is a simple concatenation function. Let's call this the 
encoder hidden state vector. 

We now have a single 30-dimensional weight vector alpha, and 30 vectors of 
64-dimensional hidden states. So, we can now multiply each of the 30 hidden state 
vectors with a corresponding entry in the alpha vector. Furthermore, we can sum 

up these scaled representations of hidden states to receive a single 64-dimensional 
context vector. This is essentially the operation performed by the dot operator. 

The Calculation of Alpha 

The weights can be modeled by a multilayer perceptron (MLP), which is a simple 
neural network consisting of multiple hidden layers. We choose to have two dense 
layers with a softmax output. The number of dense layers and units can be treated 
as hyperparameters. The input to this MLP consists of two components: these are 
the hidden state vectors for all timesteps from the encoder bidirectional LSTM, as 
explained in the last point, and the hidden states from the previous timestep of the 

decoder. These are concatenated to form a single vector. So, the input to the MLP is: 
[encoder hidden state vector, previous state vector from decoder]. This is a concatenation 

operation of tensors: [H, S_ prev]. S_prev refers to the decoder's hidden state output 
from the previous timestep. If the dimensionality of S_ prev is 64 (denoting a hidden 
state dimensionality of 64 for the decoder LSTM) and the dimensionality of the 
encoder's hidden state vector is 64 (from the last point), a concatenation of these two 

vectors produces a vector of size 128. 
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Thus, the MLP receives a 128-dimension input for a single encoder timestep. As we 

have fixed the encoder input length to 30 characters, we will have a matrix (more 
accurately, a tensor) of size [30, 128]. The parameters of this MLP are learned using the 
same BPTT regime that is used to learn all the other parameters of the model. So, all 

the parameters of the entire model (encoder + decoder + attention function MLP) are 
learned together. This can be seen in the following diagram: 

context{t] 

hi h2 hT 
ee 

alpha{1] alpha[2] alpha{T] 

Softmax 

[dense _| 

[S_prev; h1] [S_prev; h2] [S_prev; hT] 

Figure 8.7: The calculation of alpha 

In the previous step, we learned the weights (alpha vector) for determining only one 
step of the decoder output (we had assumed this timestep to be 4 in an earlier point). 
So, the determination of a single step decoder output requires the inputs: S_prev and 
encoder hidden states for calculating the context vector, decoder hidden states, and 
decoder previous timestep memory, which goes as input to the decoder unidirectional 
LSTM. Proceeding to the next decoder timestep requires a calculation of a new alpha 
vector since, for this next step, various parts of the input sequence will most likely be 
weighted differently compared to the previous timestep. 

Due to the architecture of the model, the training and inference steps are the same. The 
only difference is that, during training, we know the output for each decoder timestep 
and use that to train the model parameters (this technique is referred to as "Teacher 
Forcing’). 
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In contrast, during inference time, we predict the output character. Note that both 
during training and inference, we do not feed the previous timestep decoder output 
character as input to the current timestep decoder cell. It should be noted that the 
architecture proposed here is specific to this problem. There are a lot of architectures 
and ways to define an attention function. We will take a brief look at some of these in 
later sections of the chapter. 

Exercise 28: Build a Date Normalization Model for a Database Column 

A database column accepts date inputs from various users in multiple formats. In this 
exercise, we aim to normalize the date column of the database table such that the user 

inputs in several formats get converted to a standard "YY YY-MM-DD" format: 

Note 

The Python requirements for running the code are as follows: 

Babel==2.6.0 

Faker==1.0.2 

Keras==2.2.4 

numpy==1.16.1 

pandas==0.24.1 

scipy==1.2.1 

tensorflow==1.12.0 

tqdm==4.31.1 

Faker==1.0.2 
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1. We import all the necessary modules: 

from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, 

LSTM, Multiply 

from keras.layers import RepeatVector, Dense, Activation, Lambda 

from keras.optimizers import Adam 

from keras.utils import to_categorical 

from keras.models import load_model, Model 

import keras.backend as K 

import numpy as np 

from babel.dates import format_date 

from faker import Faker 

import random 

from tqdm import tqdm 

2. Next, we define some helper functions. We first use the 'faker' and babel modules 

to generate data for training. The format_date function from babel generates 
date in a specific format (using FORMATS). Additionally, dates are also returned ina 
human-readable format that emulates the informal user input date that we wish to 
normalize: 

fake = Faker() 

fake. seed(12345) 

random. seed(12345) 

3. Define the format of the data we would like to generate: 

FORMATS = ['short', 

"medium', 

“Lone”, 

PUES 

LUA, Bag 

“EUS dibs 

 Fiud bbe 

fuga, bs 

fale 

mT diy 

fubk', 

UL > 

"TOLL 3 

"d MMM YYY', 

"d MMMM YYY', 

"dd MMM YYY', 

'd MMM, YYY', 
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'd MMMM, YYY', 
"dd, MMM YYY", 
'd MM YY", 
'd MMMM YYY!, 
"MMMM d YYY', 
'MMMM d, YYY!, 
'dd.MM.YY"J 

# change this if you want it to work with another language 

LOCALES = ['en_US'] 

def load_date(): 

Loads some fake dates 

:returns: tuple containing human readable string, machine readable 

string, and date object 

dt = fake.date_object() 

human_readable = format_date(dt, format=random.choice(FORMATS), 

locale='en_US') # locale=random.choice(LOCALES)) 

human_readable = human_readable.lower() 

human_readable = human_readable.replace(',','') 

machine_readable = dt.isoformat() 

return human_readable, machine_readable, dt 

4, Next, we generate and write a function to load the dataset. In this function, 
examples are created using the load_date() function defined earlier. In addition to 

this dataset, the function also returns dictionaries for mapping human-readable 
and machine-readable tokens along with the inverse machine vocabulary: 

def load_dataset(m): 

Loads a dataset with m examples and vocabularies 

:m: the number of examples to generate 

human_vocab = set() 

machine_vocab = set() 

dataset = [] 

Tx = 30 
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for i in tqdm(range(m)): 

h, m, _ = load_date() 

if h is not None: 

dataset.append((h, m)) 

human_vocab. update(tuple(h) ) 

machine_vocab. update(tuple(m) ) 

human = dict(zip(sorted(human_vocab) + ['<unk>', '<pad>'], 

list(range(len(human_vocab) + 2)))) 

inv_machine = dict(enumerate(sorted(machine_vocab) )) 

machine = {v:k for k,v in inv_machine. items()} 

return dataset, human, machine, inv_machine 

The previous helper functions are used to generate a dataset using the babel 

Python package. Additionally, it returns the input and output vocab dictionaries, as 
we have been doing in past exercises. 

5. Next, we generate a dataset having 10,000 samples using these helper functions: 

m = 10000 . 

dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m) 

The variables hold values, as depicted: 

m = 10000 

dataset, human_vocab, machine vocab, inv_machine_vocab = load_dataset(m) 

100% | MM | «10000/10000 [00:00<00:00, 23983.69it/s] 

dataset 

[('9 may 1998', '1998-05-09'), 

('10509,.70°, 1970-09-10"), 

('4/28/90', '1990-04-28'), 

(‘thursday january 26 1995', '1995-01-26'), 

('monday march 7 1983', '1983-03-07'), 

Figure 8.8: Screenshot displaying variable values 
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The human_vocab is a dictionary that maps input characters to integers. The 
following is the mapping of values for human_vocab: 

human_vocab 

Coote Lag 

TES? 1 Se 

Oe er eee: Bs 

oof 5s 

hs Bega 

ee re LTR 

an is <Lae 

Figure 8.9: Screenshot for human_vocab dictionary 

The machine_vocab dictionary contains the mapping of the output character to 
integers. 

machine vocab 

{'-' 

*) 

erie, 

pt 

'3' 

Aa 

ee 

'6' 

oe ge 

'g' 

A 
ee ee ee os ee ss ee ee se ee ee Foo A USP WN FE OC C28. SS We re =) =.= fe 

_ 

Figure 8.10: Screenshot for the machine_vocab dictionary 
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inv_machine_vocab is an inverse mapping of machine_vocab to map predicted 

integers back to characters: 

inv_machine_ vocab 

{0s ‘'={", 

Ls O84 

Zito Ley 

ch piece’ i 

4s "3a 

5s. ang 

63. .58¢ 

(Ee aller 

3 eae tao 

Boe Bey 

LOe 993} 

Figure 8.11: Screenshot for the inv_machine_vocab dictionary 

6. Next, we preprocess data such that the input sequences have shape (10008, 30, 
len(human_vocab)). Thus, every row in this matrix represents 30 timesteps and the 
one-coded vector, having a value of 1 corresponding to the character at a given 
timestep. Similarly, the Y output gets the shape (10000, 10, len(machine_vocab)). 
This corresponds to 10 output timesteps and the corresponding one-hot-coded 

output vector. We first define a function named 'string_to_int' that takes as input 
a single user date and returns a sequence of integers that can be fed to the model: 

def string_to_int(string, length, vocab): 

Converts all strings in the vocabulary into a list of integers 

representing the positions of the 

input string's characters in the "vocab" 

Arguments: 

string -- input string, e.g. 'Wed 10 Jul 200Q7' 

length -- the number of timesteps you'd like, determines if the output 

will be padded or cut ® 
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vocab -- vocabulary, dictionary used to index every character of your 
Petrang 

Returns: 

rep -- list of integers (or '<unk>') (size = length) representing the 
position of the string's character in the vocabulary 

wow 

Change the case to lowercase to standardize the text 

string = string. lower() 

string = string.replace(',','') 

if len(string) > length: 

string = stringL: length] 

rep = list(map(lambda x: vocab.get(x, '<unk>'), string)) 

if len(string) < length: 

rep += [vocab['<pad>']] * (length - len(string)) 

return rep 

We can now utilize this helper function to generate input and output integer 
sequences, as explained previously: 

def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty): 

X, Y = zip(*dataset) 

print("X shape before preprocess: {}".format(X)) 

X = np.array([string_to_int(i, Tx, human_vocab) for i in X]) 

Y = [string_to_int(t, Ty, machine_vocab) for t in Y] 

print("X shape from preprocess: {}".format(X.shape) ) 

print("Y shape from preprocess: {}".format(Y)) 

Xoh = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(human_vocab)), X))) 

Yoh = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(machine_vocab)), Y))) 
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return X, np.array(Y), Xoh, Yoh 

Tx = 30 

yee 8 

X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, 

Ty) 

9. Print the shape of the matrices. 

print("X.shape:", X.shape) 

print("Y.shape:", Y.shape) 

print("Xoh.shape:", Xoh.shape) 

print("Yoh.shape:", Yoh.shape) 

The output of this step is as follows: 

X.shape: (10000, 30) 

Y¥.shape: (10000, 10) 

Xoh.shape: (10000, 30, 37) 

Yoh.shape: (10000, 10, 11) 

Figure 8.12: Screenshot for the shape of matrices 

10. We can further inspect the shapes of the X,Y, Xoh, and Yoh vectors: 

index = Q 

print("Source date:", dataset[Lindex][0]) 

print("Target date:", datasetLindex][1]) 

print() 

print("Source after preprocessing (indices):", X[index]. shape) 

print("Target after preprocessing (indices):", Y[Lindex].shape) 

print () 

print("Source after preprocessing (one-hot): 

print("Target after preprocessing (one-hot): 

, XohLindex]. shape) 

, YohLindex].shape) 
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The output should be as follows: 

index = 0 

print("Source date:", dataset[index][0]) 

print("Target date:", dataset[index][1]) 

print() 

print("Source after preprocessing (indices):", X[index].shape) 

print("Target after preprocessing (indices):", Y[{index].shape) 

print() 

print("Source after preprocessing (one-hot):", Xoh[index].shape) 

print("Target after preprocessing (one-hot):", Yoh[index].shape) 

Source date: 9 may 1998 

Target date: 1998-05-09 

Source after preprocessing (indices): (30,) 

Target after preprocessing (indices): (10,) 

Source after preprocessing (one-hot): (30, 37) 

Target after preprocessing (one-hot): (10, 11) 

Figure 8.13: Screenshot for the shape of matrices after processing 

11. We now start defining some functions that we need to build the model. First, we 
define a function that calculates a softmax value given a tensor as input: 

def softmax(x, axis=1): 

"""Softmax activation function. 

# Arguments 

x : Tensor. 

axis: Integer, axis along which the softmax normalization is 

applied. 

# Returns 

Tensor, output of softmax transformation. 

# Raises 

ValueError: In case 'dim(x) == 1' 

ndim = K.ndim(x) 

if ndim == 

return K.softmax(x) 

elif ndim > 2: 

e = K.exp(x - K.max(x, axis=axis, keepdims=True) ) 

s = K.sum(e, axis=axis, keepdims=True) 

return e/s 

else: 

raise ValueError('Cannot apply softmax to a tensor that is 1D') 
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12. Next, we can start to put the model together: 

# Defined shared layers as global variables 

repeator = RepeatVector(Tx) 

concatenator = Concatenate(axis=-1) 

densor1 = Dense(10, activation = "tanh") 

densor2 = Dense(1, activation = "relu") 

activator = Activation(softmax, name='attention_weights' ) 

dotor = Dot(axes = 1) 

13. RepeatVector serves the purpose of repeating a given tensor multiple times. In our 
case, this is done Tx times, which is 30 input timesteps. The repeator is used to 
repeat S_prev 30 times. Recall that to calculate the context vector for determining 
one timestep decoder output, S_prev needs to be concatenated with each of the 
input encoder timesteps. The Concatenate keras function accomplishes the next 
step, that is, concatenating the repeated S_prev and encoder hidden state vector 

for each timestep. We have also defined MLP layers, which are two dense layers 
(densor1, densor2). Next, the output of MLP is passed through a softmax layer. 
This softmax distribution is an alpha vector with each entry corresponding to the 

weight for each concatenated vector. In the end, a dotor function is defined, which 
is responsible for calculating the context vector. The entire flow corresponds to 
one step attention (since it is for one decoder output timestep): 

def one_step_attention(h, s_prev): 
won 

Performs one step of attention: Outputs a context vector computed as a 

dot product of the attention weights 

"alphas" and the hidden states "h" of the Bi-LSTM. 

Arguments: 

h -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 

2*n_h) 

S_prev -- previous hidden state of the (post-attention) LSTM, numpy- 

array of shape (m, n_s) 

Returns: 

context -- context vector, input of the next (post-attetion) LSTM é@ell 
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Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can 
concatenate it with all hidden states, 'h': 

S_prev = repeator(s_prev) 

Use concatenator to concatenate a and s_prev on the last axis: 

concat = concatenator([h, s_prev]) 

Use densor1 to propagate concat through a small fully-connected neural network 
to compute the intermediate energies variable, e: 

e = densor1(concat) 

Use densor2 to propagate e through a small fully-connected neural network to 
compute the variable energies: 

energies = densor2(e) 

Use activator on energies to compute the attention weights alphas: 

alphas = activator(energies) 

Use dotor along with alphas and a to compute the context vector to be given to 
the next (post-attention) LSTM-cell: 

context = dotor(Lalphas, h]) 

return context 

Up to this point, we still haven't defined the number of hidden state units for the 
encoder and decoder LSTMs. We also need to define the decoder LSTM, which is a 

unidirectional LSTM: 

nh = 32 

n_s = 64 

post_activation_LSTM_cell = LSTM(n_s, return_state = True) 

output_layer = Dense(len(machine_vocab), activation=softmax) 

We now define the encoder and decoder model: 

def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size): 

Arguments: 

Tx -- length of the input sequence 

Ty -- length of the output sequence 

n_h -- hidden state size of the Bi-LSTM 
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n_s -- hidden state size of the post-attention LSTM 

human_vocab_size -- size of the python dictionary "human_vocab" 

machine_vocab_size -- size of the python dictionary "machine_vocab" 

Returns: 

model -- Keras model instance 

22. Define the inputs of your model with a shape (Tx, ). Define s@ and c@, and the initial 
hidden state for the decoder LSTM of shape (n_s,): 

X = Input(shape=(Tx, human_vocab_size), name="input_first" ) 

sQ@ = Input(shape=(n_s,), name='sQ' ) 

cQ@ = Input(shape=(n_s, ), name='cQ') 

Ss = sQ 

c= c0 

23. Initialize an empty list of outputs: 

outputs = [] 

24. Define your pre-attention Bi-LSTM. Remember to use return_sequences=True: 

h = Bidirectional(LSTM(n_h, return_sequences=True) )(X) 

20. Iterate for Ty steps: 

for t in range(Ty): 

26. Perform one step of the attention mechanism to get back the context vector at 
step t: 

context = one_step_attention(h, s) 

27. Apply the post-attention LSTM cell to the context vector. Also, pass initial_state 
= [hidden state, cell state]: 

S, _, C = post_activation_LSTM_cell(context, initial_state = 

[s,c]) 

28. Apply the Dense layer to the hidden state output of the post-attention LSTM: 

out = output_layer(s) 

# Append "out" to the "outputs" list 

outputs. append (out) 
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29. Create a model instance by taking three inputs and returning the list of outputs: 

model = Model(inputs=[X, s@, cQ], outputs=outputs) 

return model 

model = model(Tx, Ty, n_h, n_s, len(human_vocab), len(machine_vocab)) 

model. summary () 

The output could be as shown in the following figure: 

model.summary | } 

dense_3 (Dense) (None, 11) 715 lstm_1[0][0] 

lstm_1[1][0] 

lstm_1[2][0] 

lstm_1[3][0] 

lstm_1[4][0] 
lstm_1[5][0] 

lstm_1[6][0] 

lstm_1[{7][0] 

lstm_1[8][0] 
1lstm_1[9][0] 

Total params: 52,960 

Trainable params: 52,960 

Non-trainable params: 0 

Figure 8.14: Screenshot for model summary 

30. We will now compile the model with categorical_crossentropy as the loss function 

and Adam optimizer as the optimization strategy: 

opt = Adam(1lr = @.005, beta_1=0.9, beta_2=0.999, decay = 0.01) 

model. compile(loss='categorical_crossentropy', optimizer=opt, 

metrics=['accuracy' ]) 
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31. We need to initialize the hidden state vector and memory state for decoder LSTM 
before fitting the model: 

sQ@ = np.zeros((m, n_s)) 

c@ = np.zeros((m, n_s)) 

outputs = list(Yoh.swapaxes(@,1)) 

model.fit([Xoh, s@, cQ], outputs, epochs=1, batch_size=100) 

This starts the training: 

Epoch 1/1 

10000/10000 [==s==sssssssssssssesssss=======] - 15s lms/step - loss: 17.0066 - dense 3 loss: 

2.5402 - dense 3_acc: 0.4576 - dense _3_acc_1: 0.7088 - dense _3_ acc 2: 0.3134 - dense _3_acc_3: 

0.0748 - dense _3_acc_4:; 0.8606 - dense_3_acc_5: 0.3337 - dense_3_acc_6: 0.0510 - dense _3_acc_ 

7: 0.8976 - dense _ 3 acc_8: 0.2671 - dense 3 acc 9: 0.1082 

Figure 8.15: Screenshot for epoch training 

32. The model is now trained and can be called for inference: 

EXAMPLES = ['3 May 1979', '5 April @9', '21th of August 2016', 'Tue 1@ Jul 

2007', ‘Saturday May 9 2018', ‘March 3 2001', 'March 3rd 200@1', '1 March 

2001' J 

for example in EXAMPLES: 

source = string_to_int(example, Tx, human_vocab) 

source = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(human_vocab)), source)))#.swapaxes(@,1) 

source = source[np.newaxis, : ] 

prediction = model.predict([source, s@, cQ]) 

prediction = np.argmax(prediction, axis = -1) 

output = [Linv_machine_vocab[int(i)] for i in prediction] 

print("source:", example) 

prantC"output:”, ' joinCoutout)) 
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Expected output: 

source: 3 May 1979 

output: 1979-05-03 

source: 5 April 09 

output: 2009-05-05 

source: 21th of August 2016 

output: 2016-08-21 

source: Tue 10 Jul 2007 

output: 2007-07-10 

source: Saturday May 9 2018 

output: 2018-05-09 

source: March 3 2001 

output: 2001-03-03 

source: March 3rd 2001 

output: 2001-03-03 

source: 1 March 2001 

output: 2001-03-01 

Figure 8.16: Screenshot for normalized date output 

Other Architectures and Developments 

The attention mechanism architecture described in the last section is only a way of 
building attention mechanism. In recent times, several other architectures have been 
proposed, which constitute a state of the art in the deep learning NLP world. In this 
section, we will briefly mention some of these architectures. 

Transformer 

In late 2017, Google came up with an attention mechanism architecture in their seminal 
paper titled "Attention is all you need." This architecture is considered state-of-the-art 
in the NLP community. The transformer architecture makes use of a special multi- 
head attention mechanism to generate attention at various levels. Additionally, it is also 
employs residual connections to further ensure that the vanishing gradient problem 
has a minimal impact on learning. The special architecture of transformers also allows a 
massive speed up of the training phase while providing better quality results. 
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The most commonly used package with transformer architecture is tensor2tensor. The 
Keras code for transformer tends to be very bulky and untenable, while tensor2tensor 
allows the use of both a Python package and a simple command-line utility that can be 

used to train a transformer model. 

Note 

For more information on tensor2tensor, refer to https://github.com/tensorflow/ 

tensor2tensor/#t2t-overview 

Readers interested in learning more about the architecture should read the 

mentioned paper and the associated Google blogpost at this link: https:// 

ai.googleblog.com/2017/08/transformer-novel-neural-network.htm| 

BERT 

In late 2018, Google open sourced yet another groundbreaking architecture, called 
BERT (Bidirectional Encoder Representations from Transformers). The deep learning 
community for NLP has been missing the transfer-learning regime for training models 
for a long time. The transfer learning approach to deep learning has been state-of-the- 
art with image-related tasks such as image classification. Images are universal in their 
basic structure, as they do not differ regardless of geographical locations. This allows 
the training of deep learning models on generic images. These pre-trained models can 
then be fine-tuned for a specific task. This saves training time and the need for massive 
amounts of data to achieve a respectable model performance. 

Languages, unfortunately, vary a lot depending upon geographical locations and tend 
to not share basic structures. Hence, transfer learning is not a viable option when it 
comes to NLP tasks. BERT has now made it possible with its new attention mechanism 

architecture, which builds on top of the basic transformer architecture. 

Note 

For more information on BERT, refer to https://github.com/google-research/bert 

Readers interested in learning more about BERT should take a look at the Google 

blog on it at https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art- 

pre.html. 
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Open Al GPT-2 

Open Al also open sourced an architecture called GPT-2, which builds upon their 
previous architecture called GPT. The mainstay of the GPT-2 architecture is its ability 
to perform well on text-generation tasks. The GPT-2 model is also a transformer-based 
model containing around 1.5 billion parameters. 

Note 

Readers interested in learning more can refer to the blogpost by OpenAl at https:// 

blog.openai.com/better-language-models/, 

Activity 11: Build a Text Summarization Model 

We will use the attention mechanism model architecture we built for neural machine 
translation to build a text summarization model. The goal of text summarization is to 
write a summary of a given large text corpus. You can imagine using text summarizers 
for the summarization of books or the generation of headlines for news articles. 

As an example, use the given input text: 

"Celebrating its 25th year, Mercedes-Benz India is set to redefine India's luxury space 
in the automotive segment by launching the new V-Class. The V-Class is powered by 
a 2.1-litre BS VI diesel engine that generates 120kW power, 380Nm torque, and can go 
from 0-100km /h in 10.9 seconds. It features LED headlamps, a multi-functional steering 
wheel, and 17-inch alloy wheels." 

A good text summarization model should be able to produce a meaningful summary, 

such as: 

"Mercedes-Benz India launches the new V-Class" 

From an architectural viewpoint, a text summarization model is exactly the same as 
a translation model. The input to the model is text that is fed character by character 
(or word by word) to an encoder, while the decoder produces output characters in the 

same language as the source text. 

Note 

The input text can be found at https://github.com/TrainingByPackt/Deep-Learning- 

for-Natural-Language-Processing/tree/master/Lesson%2008. 
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The following steps will help you with the solution: 

1. Import the required Python packages and make the human and machine vocab 

dictionaries. 

Define the length of the input and output characters and the model functions 
(Repeator, Concatenate, Densors, and Dotor). 

Define a one-step-attention function and the number of hidden states for the 

decoder and encoder. 

Define the model architecture and run it to obtain a model. 

Define model loss functions and other hyperparameters. Also, initialize the 
decoder state vectors. 

Fit the model to our data. 

Run the inference step for the new text. 

Expected Output: 

source; Last night a meteorite was seen flying near the earth's moon. 

output: aaaea <pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad> 

Figure 8.17: Output for text summarization 

Note 

The solution for the activity can be found on page 333. 

Summary 

In this chapter, we learned about the concept of attention mechanisms. Based on 
attention mechanisms, several architectures have been proposed that constitute the 

state of the art in the NLP world. We learned about one specific model architecture to 
perform a neural machine translation task. We also briefly mentioned other state-of- 
the-art architectures such as transformers and BERT. 

Up to now, we have seen many different NLP models. In the next chapter, we will look at 
the flow of a practical NLP project in an organization and related technology. 
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A Practical NLP 

Project Workflow in 

an Organization 
Learning Objectives 

By the end of this chapter, you will be able to: 

Identify the requirements of a natural language processing project 

Understand how different teams in an organization might be involved 

Use Google Colab notebooks to leverage a GPU to train Deep Learning models 

Deploy a model on AWS to be used as Software as a Service (SaaS) 

Get acquainted with a simple tech stack for deployment 

In this chapter, we will be looking at a real-time NLP project and its flow in an organization,right 

till the final stage through the entire chapter. 
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Introduction 

Up to this point in the book, we have studied several deep learning techniques that 
can be applied to solve specific problems in the NLP domain. Having knowledge of 
these techniques has empowered us to build good models and deliver high-quality 
performance. However, when it comes to delivering a working machine learning 
product in an organization, several other aspects need to be considered. 

In this chapter, we will go through a practical project workflow when delivering a 
working deep learning system in an organization. Specifically, you will be introduced to 
the possible roles of various teams within your organization, building a deep learning 
pipeline and, finally, delivering your product in the form of SaaS. 

General Workflow for the Development of a Machine Learning Product 

Today, there are several ways of working with data science in an organization. Most 
organizations have a workflow that is specific to their environment. Some example 
workflows are as follows: 

Presentation 

a 

Figure 9.1: General workflow for the development of a machine learning product 

The Presentation Workflow: 

¥ ‘ at 

ee 

Figure 9.2: General presentation workflow 
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The presentation workflow can be elaborated as follows: 

1. The data science team receives a request to solve a problem using machine 
learning. The requester could be some other team within the organization or some 
other company that has hired you as consultants. 

2. You obtain the relevant data and apply specific machine learning techniques. 

3. You showcase the results and insights in the form of a report/presentation to the 
stakeholders. This could also be a potential way to approach the Proof of Concept 
(PoC) phase of a project. 

The Research Workflow: 

Figure 9.3: Research workflow 

The main focus of this approach is to conduct research to solve a particular problem 
that caters to a use case. The solution can be leveraged both by the organization as 
well as the community in general. Other factors that distinguish this workflow from the 
presentation workflow are as follows: 

¢ The timelines for such projects are typically longer than those imposed on 
presentation workflows, 

e The deliverable is in the form of research papers and/or toolboxes. 

The workflow can be broken down as follows: 

1. Your organization has a research wing that wishes to enhance the existing 
machine learning state in the community, while also allowing your company to 
leverage the results. 

2. Your team goes through the existing research that caters to the problem you 
are being asked to solve. This involves reading research papers in detail and 
implementing them to establish the baseline performance on some datasets 
suggested in the research papers. 
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3. You then either try to tailor the existing research to solve your problem or come 

_ up with novel ways to solve it yourself. 

4, The end product could be research papers and/or toolboxes. 

The Production-Oriented Workflow 

| The data science team receives requests for development of a machine learning product or 
identifies the need of a product. The requests can be from internal/external stakeholders of 
the organization. 

Gathering of relevant data, processing the data, building the learning model is carried out here. 
_ Several machine learning techniques in line with the requirement are tried and tested. 

The outputs conclusions can be used as Proof of Concept 

' AMinimum Viable Product is defined here. 

: Generally, in the form of a SaaS. 

_ Other aspects such as Data Acquisition Pipelines, Continuous Integration, Monitoring ete are 
added, 

Figure 9.4: Production-oriented workflow 

The workflow can be elaborated on as follows: 

1. The data science team receives a request to solve a problem using machine 
learning. The requester could be some other team within the organization or 
another company that has hired you as consultants. It could also be that the data 

science team wishes to build a product that they think will bring value to the 
organization. 

2. You obtain the data, do the necessary research, and build the machine learning 

model. The data could be obtained either from within the organization or, if the 
problem is general enough (for example: language translation), it could also be an 
open source dataset. The model built could, hence, qualify as PoC to be shown tg 
the stakeholders. 

3. You define a Minimum Viable Product (MVP): for example, a machine learning 
model in the form of SaaS. 
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Once MVP is achieved, you iteratively add other aspects, such as Data Acquisition 
Pipelines, Continuous Integration, Monitoring and so on. 

You will notice that even the sample workflows share components. In this chapter, 
our focus will be on part of The Production Workflow. We will build a Minimum Viable 
Product for a specific problem. 

Problem Definition 

Let's say that you work for an e-commerce platform, through which your customers 
can purchase a variety of products. The merchandising department of your company 
comes up with a request to add a feature to the website — ‘Addition of a slider that 
contains the 5 items that received the most positive reviews in a given calendar 
week. 

This request is first made to the web development department since, ultimately, they 
are the ones responsible for displaying the website contents. The web development 
department realizes that, to get a review rating, the data science team needs to be 
involved. The data science team receives the request from the web development team 
— 'We need a web service that takes a string of text as input and returns a score that 
indicates the degree to which the text represents a positive sentiment’. 

The data science team then refines the requirements and agrees upon the definition of 

a Minimum Viable Product (MVP) with the web development team: 

1. The deliverable will be a web service deployed on an AWS EC2 instance. 

2. The input to the web service will be a post request containing four reviews (that is, 
a single post request to the service will contain four reviews). 

3. The output of the web service will be a set of four scores that correspond to each 

input text. 

4, The output score will be on a scale from 1 to 5, with 1 being the least and 5 being 

the most positive review. 
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Data Acquisition 

A big contribution toward determining the performance of any machine learning model 
is the quality and quantity of the data. 

Usually, a data warehousing team /infrastructure team (DWH) is responsible for 
maintaining the data-related infrastructure at a company. The team takes care that 
data is never lost, that the underlying infrastructure is stable, and that data is always 
available for any team that might be interested in using it. The data science team, being 
one of the consumers of the data, contacts the DWH team, which grants them access to 

a database that contains all the reviews for various items in the product catalog of the 
company. 

Typically, there are multiple data fields/tables in the database, some oi which may not 
be important for the machine learning model development. 

A data engineer (a part of the DWH team/member of another team/member of your 
team) then connects to the database, processes the data into a tabular format, and 

generates a flat file in the esv format. A discussion between the data scientist and the 
data engineer at this point results in the retention of only three columns from the 
database table: 

¢ ‘Rating’: A score on the scale of 1 to 5 that indicates the degree to which a positive 
sentiment is represented 

¢ ‘Review Title’: A simple title for the review 

e 'Review': Actual review text 

Notice that all three fields are inputs from customers (users of your e-commerce 
platform). Additionally, fields such as ‘item id' are not retained since they are not 
required to build this machine learning model for sentiment classification. The removal 
and retention of such information is also a product of discussions between the DS team, 
data engineers, and the DWH team. 
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It might have been the case that the current data is devoid of sentiment ratings. 
In such a case, one common solution is to manually go through each review and 
assign it a sentiment score for the purpose of obtaining training data for the model. 
However, as you can imagine, doing so for millions of reviews is a daunting task. Thus, 
crowdsourcing services such as Amazon Mechanical Turk can be utilized to annotate 
the data and get training labels for it. 

Note 

For more information on Amazon Mechanical Turk, refer to https://Awww.mturk. 

com/. 

Google Colab 

You are familiar with the intense computational requirements of deep learning models. 
On a CPU, it would take a remarkably long time to train a deep learning model with 
lots of training data. Hence, to keep training times practical, it is common practice 
to use cloud-based services that offer Graphics Processing Units (GPU) to speed up 
computations. You can expect a speedup of 10-30 times when compared to running the 
training session on a CPU. The exact amount of speedup, of course, depends upon the 
power of the GPU, the amount of data involved, and the processing steps. 

There are many vendors offering such cloud services, such as Amazon Web Services 
(AWS), Microsoft Azure and others. Google offers an environment/IDE called Google 
Colab, which offers up to 12 hours of free GPU usage per day for anyone looking to train 
deep learning models. Additionally, the code is run on a Jupyter-like notebook. In this 
chapter, we will leverage the power of Google Colab to develop our deep learning-based 
sentiment classifier. 

In order to familiarize yourself with Google Colab, you are urged to go through a 
tutorial for it. 

Note 

Before proceeding further, refer to the tutorial at https://colab.research.google. 

com/notebooks/welcome.ipynb#recent=true 
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The following steps should acquaint you well with Google Colab: 

1. To open a new blank colab notebook, go to https: //colab.research.google.com/ 
notebooks /welcome.ipynb, select 'File' from the menu, and then select the ‘New 

Python 3 notebook’ option, as shown in the screenshot: 

& tutorial1.ipynb 

File Edit View Insert Runtime Tools Help 

Locate in Drive 

New Python 3 notebook 

New Python 2 notebook 

Open notebook... 38/Ctri+O 

Upload notebook... 

Save a copy in Drive... 

Save a copy as a GitHub Gist... 

Save a copy in GitHub... 

Save 3/Ctri+S 

Revision history 

Download .ipynb 

Download .py 

Print d6/Ctri+P 

Figure 9.5: A new Python notebook on Google Colab 
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2. Next, rename the notebook any name of your choice. Then, to use a GPU for 
training, we need to select a GPU as the runtime. To do so, choose the 'Edit' 
option from the menu and select ‘Notebook Settings’. 

& train_sentiment_classifier.ipynb + 

File Edit View Insert Runtime Tools Help 

COD) Undo insert cell $8/Ctri+Shift+Z 

[1] * — Select all cells 98/Ctrl+Shift+A 

‘ Cut selection 

Copy selection 

C Paste 

[3] £ Delete selected cells 3/Ctrl+M D 

d 

Find and replace... 38/Ctri+H 

ce 2 Fisainext $8/Ctrl+G /gdrive; to attempt to forci 

Find previous $#/Ctri+Shift+G 
(13}04 

i 

i Notebook settings 
Pi 

£ Show/hide code t Tokenizer 
f mport pad_sequences 

Clear all outputs 
£ 

from keras.layers import Dense, Embedding, LSTM 

[2 Using TensorFlow backend. 

Figure 9.6: Edit dropdown in Google Colab 

3. A menu pops up with a 'Hardware Accelerator’ field, which is set to ‘None’ by 
default: 

Notebook settings 

Runtime type 

Python 3 
ase 

Hardware accelerator 

None * @) 

eB Omit code cell output when saving this notebook 

CANCEL SAVE 

Figure 9.7: Notebook settings for Google Colab 
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4, A dropdown can be used at this point to select 'GPU' as the option: 

Notebook settings 

Runtime type 

Python 3 ¥ 

Hardware accelerator 

GPU ~*@ 

‘= Omit code cell output when saving this notebook 

CANCEL SAVE 

Figure 9.8: GPU hardware accelerator 

5. To check whether the GPU has, in fact, been allotted to your notebook, run the 

following snippet: 

# Check if GPU is detected 

import tensorflow as tf 

tf.test.gpu_device_name() 

The output of running this snippet should indicate the GPU's availability: 

[1] # Check if GPU is detetced 

import tensorflow as tf 
tf.test.gpu_device_name(_). 

[> ‘'/device:GPU:0' 

Figure 9.9: Screenshot for GPU device name 

The output is the GPU device name. 
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6. Next, the data needs to be made accessible within the notebook. There are a 
number of ways to do this. One way to accomplish this task is by moving the data 
to a personal Google Drive location. It's better to move the data in a zipped format 
to avoid using up too much space on the drive. Go ahead and create a new folder 
on Google Drive and move the zipped CSV data file within the folder. Next, we 
mount the Google Drive onto the Colab notebook machine to make the drive data 
available for use within the Colab notebook: 

from google.colab import drive 

drive.mount('/content/gdrive') 

The snippet we just mentioned would return a weblink for authorization. Upon 
clicking on that link, a new browser tab opens up containing an authorization code 
that should be copied and pasted onto the notebook prompt: 

Fe) from google.colab import drive 
drive-mount('/content/gdeive’ ) 

this URL in a browser: httpar//accounts.google.com/o/oauth2/auth?c) tent id=947318989803-6bubigktgdgfindg3nfes6|9 lhoUbredi. apps. googleusarcontent.comeredirect urisurnsjAlet#$jawcs 

x your authorization code: % elk — ~ } 
yy B oe e o 

o 

Figure 9.10: Screenshot for importing data from Google Drive 

At this point, all the data within your Google Drive is available for use within the 
Colab notebook. 

7. Next, navigate to the folder location where the zipped data is present: 

cd "/content/gdrive/My Drive/Lesson-9/" 

8. Confirm that you have navigated to the desired location by issuing a ‘pwd’ 
command in the notebook cell: 

[ ] pwd 

[> ‘/content/gdrive/My Drive/Lesson-9' 

Figure 9.11: Data imported on the Colab notebook from Google Drive 
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9. Next, unzip the zipped data file using the unzip command: 

lunzip data.csv.zip 

This will result in the following output: 

[ ] !unzip data.csv.zip 

[> Archive: data.csv.zip 

inflating: data.csv 

creating: _— MACOSX/ 
inflating: _ MACOSX/. data.csv 

Figure 9.12: Unzipping a data file on a Colab notebook 

The 'MACOSX' output lines are operating system-specific and may not be the 
same for everyone. Anyhow, an unzipped data file, 'data.csv' is now available for 
use within the Colab notebook. 

10. Now that we have the data available and the environment to use the GPU is set, we 

can start coding up the model. We will import the required packages first: 

import os 

import re 

import pandas as pd 

from keras.preprocessing. text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.models import Sequential 

from keras.layers import Dense, Embedding, LSTM 

11. Next, we will write a preprocessing function that turns all the text to lowercase 
and removes any numbers: 

def preprocess_data(data_file_path): 

data = pd.read_csv(data_file_path, header=None) # read the csv 

data.columns = ['rating', 'title', 'review'] # add column names 

data['review'] = data['review'].apply(lambda x: x.lower()) # change 

all text to lower 

datal 'review'] = data['review'].apply((lambda x: re.sub('[*a-zA-z0- > 

9\s]','',x))) # remove all numbers 

return data 
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12, Note that we are using pandas for reading and processing texts. Let's run this 
function with the path of our CSV file: 

df = preprocess_data('data.csv') 

13. We can now examine the contents of the dataframe: 

df.head(.) 

rating title review 

0 3 more like funchuck gave this to my dad for a gag gift after direc... 

1 5 Inspiring i hope a lot of people hear this cd we need mo... 

2 5 The best soundtrack ever to anything. im reading a lot of reviews saying that this i... 

3 4 Chrono Cross OST _ the music of yasunori misuda is without questi... 

4 5 Too good to be true probably the greatest soundtrack in history us... 

Figure 9.13: Screenshot of dataframe contents 

14. As expected, we have three fields. Also, we see that the 'review' column has much 

more text than the 'title' column. So, we choose to use only the 'review' column 
for developing the model. We'll now proceed with tokenizing the text: 

# initialize tokenization 

max_features = 2000 

maxlength = 250 

tokenizer = Tokenizer(num_words=max_features, split=' ') 

# fit tokenizer 

tokenizer. fit_on_texts(df['review' ]. values) 

X = tokenizer. texts_to_sequences(df['review' ]. values) 

# pad sequences 

X = pad_sequences(X, maxlen=maxlength) 
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i 

Here, we have restricted the feature count to 2,000 words. We then apply the 
tokenizer with the maximum features to the 'review' column of the data. We also 

pad the sequence length to 250 words. 

The X variable looks as follows: 

xX 

array([[ 0, lie tiaacet lig 40, ie Gs 

[ 0, 0, Operate’; 23, 1694, ms Ne 

[ 0, OF O:elnres 4 24 ie OL? de) SLOT 

i. 0; 0, Ofa sop PAD oe Td 10Shay 
[ 0, 0, 0, wecy 290, 290, 1722}, 

tai 0, esti 1, 38, 1840]], dtype=int32) 

Figure 9.14: Screenshot of the X variable array 

The X variable is a NumPy array with 3,000,000 rows and 250 columns. This is 

because there are 3,000,000 reviews available and each review has a fixed length 

of 250 words after padding. 

We'll now prepare the target variable for training. We define the problem as a five- 
class classification problem where each class corresponds to a rating. Since the 
rating (sentiment score) is on a scale of 1-5, there are 5 outputs of the classifier. 
(You could also model this as a regression problem). We use the get_dummies 
function from pandas to get the five outputs: 

# get target variable 

y_train = pd.get_dummies(df.rating).values 

The y_train variable is a NumPy array with 3,000,000 rows and 5 columns with 

values, as shown: 

y_train 

array([[0, 0, 1, 0, 0], 

[9, 0, 0, 0, 1], 

[0, 0, 0, 0, 1], 
pinay . 

[0, l, 0, 0, 0), 

[0, 0, 1, 0, 0], 
[1, 0, 0, 0, 0]], dtype=uint8) 

Figure 9.15: y_train output 
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16. We have now preprocessed the text and prepared the target variable. Let's now 
define the model: 

embed_dim = 128 

hidden_units = 100 

n_classes = 5 

model = Sequential() 

model. add(Embedding(max_features, embed_dim, input_length = X.shape[1])) 

model .add(LSTM(hidden_units) ) 

model.add(Dense(n_classes, activation='softmax')) 

model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics 

= ['accuracy']) 

print(model.summary()) 

We choose 128 embedding dimensions for input. We also choose an LSTM as the 
RNN unit with 100 hidden dimensions. The model summary is printed as follows: 

Layer (type) = | — Output Shape Param # 

étibeddtng i (Embedding). %-.(Woney>250;¢ 120) 256099 
lstm_1 (LSTM) (None, 100) 91600 

dense 1 (Dense) (None, 5) 505 

Total params: 348,105 

Trainable params: 348,105 

Non-trainable params: 0 

None 

Figure 9.16: Screenshot of the model summary 

17. We can now fit the model: 

# fit the model 

model. fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15, 

validation_split=0.2) 
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Note that we fit 100,000 reviews instead of 3,000,000. Running the training 
session with this configuration takes around 90 minutes. It would take much 
longer with a complete amount of data: 

# fit the model 

model.£it(K[:100000, +], y_train[:100000, :], batch_size = 128, epochs=15, validation_split=0.2) 

Train on 80000 samples, validate on 20000 samples 

Epoch 1/15 

80000/80000 [=s===se=sssseessneseeesa======] - 3208 4ms/step - loss: 1.1106 - acc: 0.5231 - val_loss: 1.1261 - val_acc: 0.5171 
Epoch 2/15 

80000/80000 [s====ss=s==s==sss=asseess=ses=5=] - 3195 4ms/step - loss: 1.0786 - acc: 0.5385 - val_loss: 1.1099 - val_acc: 0.5192 
Epoch 3/15 

80000/80000 [=========s==ssse=s=esees======] - 3185 4ms/step - loss: 1.0482 - acc: 0.5533 - val_loss: 1.1256 - val_ace: 0.5164 

Epoch 4/15 

80000/80000 [==ss=s=s==ss=ss=s=s==s===========] - 3lls 4ms/step - loss: 1.0226 - acc; 0.5660 - val_loss: 1.1226 - val_acc: 0.5172 

Epoch 5/15 

80000/80000 [==s=s==s===s=s=sssess=ssss=s======] - 3155 4ms/step - loss: 1.0014 - acc: 0.5771 - val_loss: 1.1348 - val_acc: 0.5087 

Epoch 6/15 

80000/80000 [s==s==s=s==s=sseseseesssessea=as==] - 319s 4ms/step - loss: 0.9754 - acc: 0.5873 - val_loss: 1.1455 - val_acc: 0.5078 

Epoch 7/15 

80000/80000 - 3208 4ms/step - loss: 0.9496 - acc: 0.6015 - val_loss: 1.1708 - val_ace: 0.5051 
Epoch 8/15 

80000/80000 - 3225 4ms/step - loss: 0.9244 - acc: 0.6099 - val_loss: 1.1870 - val_acc: 0.5028 
Epoch 9/15 

80000/80000 - 317s 4ms/step - loss: 0.8978 - acc: 0.6226 - val_loss: 1.2118 - val_acc: 0.5002 

Epoch 10/15 

80000/80000 - 313s 4ms/step - loss: 0.8678 - acc: 0.6383 - val_loss: 1.2304 - val_acc: 0.4975 

Epoch 11/15 

80000/80000 - 3198 4ms/step - loss: 0.8391 - acc: 0.6508 - val_loss: 1.2817 - val_acc: 0.4953 

Epoch 12/15 

80000/80000 - 320s 4ms/step - loss: 0.8089 - acc: 0.6655 - val_loss: 1.3062 - val_ace: 0.4907 
Epoch 13/15 

80000/80000 - 319s 4ms/step - loss: 0.7753 - acc: 0.6810 - val_loss: 1.3529 - val_acc: 0.4883 

Epoch 14/15 . 

80000/80000 [s==sessesessessesscessesssese=] - 3158 4ms/step - loss: 0.7442 - acc: 0.6958 - val_loss: 1.3931 - val_acc: 0.4814 

Epoch 15/15 

80000/80000 [====se=sssseesseesss=asseess==] - 316s 4ms/step - loss: 0.7081 - acc: 0.7134 - val_loss: 1.4570 - val_ace: 0.4803 

<keras.callbacks.History at 0x7fcba53a00f£0> 

Figure 9.17: Screenshot of the training session 

The validation accuracy for this 5-class problem is 48%. This isn't a good result, 
but for the purpose of demonstration, we can go ahead and deploy it. 

18. We now have the model that we wish to deploy. Now, we need to save the model 
file and the tokenizer that will be used in the production environment to get 
predictions on the new reviews: 

# save model and tokenizer 

model.save('trained_model.h5') # creates a HDF5 file 'trained_model.h5' 

with open('trained_tokenizer.pkl', 'wb') as f: # creates a pickle file 

'trained_tokenizer.pkl' 

pickle.dump(tokenizer, f) 
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19. These files now need to be downloaded from the Google Colab environment to the 
local drive: 

from google.colab import files 

files. download('trained_model.h5') 

files. download('trained_tokenizer.pkl') 

This snippet will download the tokenizer and model files to the local computer. We 
are now ready to use the model for predictions. 

Flask 

In this section, we will use the Flask microserver framework provided by Python to 
make a web application that provides predictions. We will get a RESTful API that we can 
query to get our results. Before commencing, we need to install Flask (use pip): 

1. Let's begin by importing the packages: 

import re 

import pickle 

import numpy as np 

from flask import Flask, request, jsonify 

from keras.models import load_model 

from keras.preprocessing.sequence import pad_sequences 

2. Now, let's write a function that loads the trained model and tokenizer: 

def load_variables(): 

global model, tokenizer 

model = load_model('trained_model.h5') 

model._make_predict_function() #https://github.com/keras-team/keras/ 

issues/6462 

with open('trained_tokenizer.pkl', 'rb') as f: 

tokenizer = pickle. load(f) 

The make_predict_function() is a hack that allows using keras models with Flask. 
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3. Now, we'll define preprocessing functions similar to the training code: 

def do_preprocessing(reviews): 

processed_reviews = [] 

for review in reviews: 

review = review. lower() 

processed_reviews. append(re.sub('[*a-zA-z@-9\s]', '', review)) 

processed_reviews = tokenizer.texts_to_sequences(np.array(processed_ 

reviews ) ) 

processed_reviews = pad_sequences(processed_reviews, maxlen=250) 

return processed_reviews 

Similar to the training phase, the reviews are first lowercased. Then, numbers are 

replaced with blanks. Next, the loaded tokenizer is applied and the sequences are 
padded to have a fixed length of 250 to make them consistent with the training 
input. 

4. We will now define a Flask app instance: 

app = Flask(__name__) 

5. We now define an endpoint that displays a fixed message: 

@app. route('/') 

def home_routine(): 

return ‘Hello World! ' 

It is good practice to have a root endpoint to check whether the web service is up. 

6. Next, we'll have a prediction endpoint, to which we can send our review strings. 
The kind of HTTP request we will use is a 'POST' request: 

@app. route('/prediction', methods=['POST' ]) 

def get_prediction(): 

# get incoming text 

# run the model 

if request.method == 'POST': 

data = request.get_json() 

data = do_preprocessing(data) 

predicted_sentiment_prob = model.predict(data) 

predicted_sentiment = np.argmax(predicted_sentiment_prob, axis=-1), 

return str(predicted_sentiment) 
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7. Wecan now start the web server: 

if __name__ == '__main__': 

# load model 

load_variables() 

app. run(debug=True ) 

8. We could save this file as app. py (any name could be used). Run this code from the 
terminal using app. py: 

python app.py 

An output such as the one shown here will be produced in the terminal window: 

Using TensorFlow backend. 

2019-03-24 23:08:25.948604: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions 
that this TensorFlow binary was not compiled to use: AVX2 FMA 

* Serving Flask app "app” (lazy loading) 

* Environment: production 

* Debug mode: on 

* Running on http://127.0.@.1:5000/ (Press CTRL+C to quit) 

* Restarting with stat 

Using TensorFlow backend. 

2019-03-24 23:08:31.730337: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions 

that this TensorFlow binary was not compiled to use: AVX2 FMA 

* Debugger is active! 

* Debugger PIN: 150-665-765 

Figure 9.18: Output for Flask 

9. At this point, go to your browser window and enter the http: //127.0.0.1:5000/ 
address. The ‘Hello World!’ message will be displayed on the screen. The output 
produced corresponds to the root endpoint we set in the code. Now, we send our 
review texts to the 'prediction' endpoint of our Flask web service. Let's send the 
following four reviews: 

10. "The book was very poor" 

ie Very nice!” 

12. "The author could have done more" 

13. "Amazing product!" 
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14. We can send post requests to a web service using curl requests. For the four 

reviews mentioned, the curl request can be sent through the terminal, as follows: 

curl, @XePOst: \ 

127.0.0.1:5000/prediction \ 

-H 'Content-Type: application/json' \ 

-d '["The book was very poor", "Very nice!", "The author could have done 

more", "Amazing product! "]' 

The list of four reviews is posted to the prediction endpoint of the web service. 

The web service replies with a list of four ratings: 

[@ 4 2 4] 

So, the sentiment ratings are as follows: 

15. "The book was very poor"- 0 

16. "Very nice!"- 4 

17. "The author could have done more" - 2 

18. "Amazing product!" - 4 

The ratings actually make sense! 

Deployment 

Up to this point, the data science team has a Flask web service that works on a local 
system. However, the web development team is still not in a position to use the service, 
since it only runs on a local system. So, we need to host this web service somewhere 

on a cloud platform so that it is also available for the web development team to use. 
This section provides a basic pipeline for the deployment to work, which can be broken 
down into the following steps: 

1. Make changes to the Flask web app so that it can be deployed. 

2. Use Docker to wrap the flask web application into a container. 

3. Host the container on an Amazon Web Services (AWS) EC2 instance. 

Let's look at each of these steps in detail. ‘ 
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Making Changes to a Flask Web App 

The flask application that was coded in the FLASK section ran on a local web address: 
http: //127.0.@.1:500Q. Since our intention is to host it on the internet, this address 
needs to be changed to: 0.0.0.0. Additionally, since the default HTTP port is 80, the port 
also needs to be changed from 5000 to 80. So, the address that needs to be queried 
now becomes: 0.0.0.0:80. 

In the code snippet, this change can be accomplished simply by modifying the call to 
the app. run function, as shown here: 

app. run(host=0.0.0.0, port=80) 

Notice that the ‘debug’ flag has also vanished (the default value of ‘debug’ flag is 'False’). 
This is because the application is past the debugging phase and is ready to be deployed 
to production. 

Note 

The rest of the code remains exactly the same as before. 

The application should be run again using the same command as earlier, and it should 
be verified that the same responses as earlier are received. The address in the curl 
request needs to be changed to reflect the updated web address: 

curl =X°POSTA\ 

Q.0.0.0:80/prediction \ 

-H ‘Content-Type: application/json' \ 

-d '["The book was very poor", "Very nice!", "The author could have done 

more", “Amazing product!"]' 

Note 

if a permission error is received at this point, change the port number to 5000 

in the app. run() command in app.py. (Port 80 is a privileged port, so change it to a 

port that isn't, for example, 5000). However, be sure to change the port back to 80 

once it is verified that the code works. 
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Use Docker to Wrap the Flask Web Application into a Container 

The DS team intends to run the web service on a virtual machine hosted on a cloud 
platform (that is, AWS EC2). To isolate the EC2 operating system from the code 
environment, Docker offers containerization as a solution. We'll be using that here. 

Note 

For a quick tutorial on the basics of Docker and how to install and use it, refer to 

https://docker-curriculum.com/. 

Follow these steps to deploy the application onto the container: 

1. We first need a requirements.txt file that lists the specific packages that are needed 
to run the Python code: 

Flask==1.0.2 

numpy==1.14.1 

keras==2.2.4 

tensorflow==1.10.0 

2. We need a Dockerfile containing instructions so that the Docker daemon can 
build the docker image: 

FROM python:3.6-slim 

COPY ./app.py /deploy/ 

COPY ./requirements.txt /deploy/ 

COPY ./trained_model.h5 /deploy/ 

COPY ./trained_tokenizer.pkl /deploy/ 

WORKDIR /deploy/ 

RUN pip install -r requirements. txt 

EXPOSE 80 

ENTRYPOINT ["python", "app.py"] 
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The Docker image is pulled from the Python dockerhub repository. Here, the 
Dockerfile is executed. The app.py, requirements.txt, tokenizer pickle file, and 
trained model are copied over to the Docker image using the COPY command. To 
change the working directory to the ‘deploy’ directory (in which the files were 
copied), the WORKDIR command is used. The RUN command then installs the 
Python packages mentioned in the Dockerfile. Since port 80 is required to be 
accessed outside the container, the EXPOSE command is used. 

Note 

The Docker Hub link can be found at https://hub.docker.com/_/python. 

3. The Docker image should next be made using the docker build command: 

docker build -f Dockerfile -t app-packt 

Don't forget the period in this command. The output of the command is as follows: 

Sending build context to Docker daemon 115.6MB 

Step 1/9 : FROM python:3.6-slim 

---> 5d4dd7f71a65 

Step 2/9 : COPY ./app.py /deploy/ 

~--> £71341666654 

Step 3/9 : COPY ./requirements.txt /deploy/ 
---> 688538f2682c 

Step 4/9 : COPY ./trained_model.h5 /deploy/ 

---> 89af21aa696e 

Step 5/9 : COPY ./trained_tokenizer.pkl /deploy/ 
---> 9cba42121f49 

Step 6/9 : WORKDIR /deploy/ 

---> Running in 204358b07798 

Removing intermediate container 204358b07798 

---> 33241b6c6015 

Step 7/9 : RUN pip install -r requirements. txt 

---> Running in d19156@53f1d 

Collecting Flask==1.0.2 (from -r requirements.txt (line 1)) 

Downloading https://files.pythonhosted.org/packages/7f/e7/08578774ed4536d3242b 1 4dach469638663460/af824ea99 

7202cd0@edb4b/Flask-1.@.2-py2.py3-none-any.whl (91kB) 

Collecting numpy==1.14.1 (from -r requirements.txt. (line 2)) 

Downloading https://files.pythonhosted. org/packages/de/7d/348c5d8d44443656e76285aa97b828b6dbd9c10esb9cOF7F 

98ef fOff70e4/numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12. 2MB) 

Collecting keras==2.2.4 (from -r requirements.txt (line 3)) 

Downloading https://files.pythonhosted. org/packages/5e/10/aa32dad@71ce52b5502266b5c659451cfd6ffcbf14e6c8c4 

f16cOff5aaab/Keras-2.2.4-py2.py3-none-any.whl (312kB) 

Collecting tensorflow==1.10.0 (from -r requirements.txt (line 4)) 

Downloading https: //files. pythonhosted. org/packages/ee/e6/a6d371306c23c2b01cd2cb38909673d1 7ddd388d9e4b3cOf 

6602bfd972c8/tensorflow-1.10.0-cp36-cp36m-manylinux1_x86_64.whl (58.4MB) 

Figure 9.19: Output screenshot for docker build 

'app-packt' is the name of the Docker image generated. 
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4, The Docker image can now be run as a container by issuing the docker run 
command: 

docker run -p 80:80 app-packt 

The p flag is used to do port mapping between port 80 of the local system to 
port 80 of the Docker container. (Change the port mapping part of the command 
to 5000:80 if 5000 is used locally. Please change the mapping back to 80:80 after 
verifying that the Docker container works, as explained.) 

The following screenshot depicts the output of the docker run command: 

docker run -p 8@:8@ app-packt 

2@19-@4-28 21:57:24.697584: I Foncor TOUT CELE Piatt crnced., feature_guard.cc:141] Your CPU supports instructio 

s that this TensorFlow binary was not compiled to use: AVX2 FMA 

* Serving Flask app “app” (lazy loading) 

*x Environment: production 

WARNING: Do not use the development server in a production environment. 

Use a production WSGI server instead. 

* Debug mode: off 

Using TensorFlow backend. 

* Running on http://0.@.0.0:80/ (Press CTRL+C to quit) 

Figure 9.20: Output screenshot for the docker run command 

The exact same curl request from the last section can now be issued to verify that 
the application works. 

The application code is now ready to be deployed onto AWS EC2. 

Host the Container on an Amazon Web Services (AWS) EC2 instance 

The DS team now has a containerized application that works on their local system. The 

web development team is still not in a position to use it, as it is still local. As per the 
initial MVP definition, the DS team now goes on to use the AWS EC2 instance to deploy 
the application. The deployment will ensure that the web service is available for the web 
development team to use. 
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As a prerequisite, you need to have an AWS account to use the EC2 instance. For the 

purpose of demonstration, we will be using a 't2.small' EC2 instance type. This instance 
costs around 2 cents (USD) per hour at the time of writing. Note that this instance is not 
free-tier eligible. By default, this instance will not be available in your AWS region and 
a request needs to be raised for this instance to be added to your account. This usually 
takes a couple of hours. Alternatively, check the instance limits for your AWS region and 
select another instance with a minimum of 2GB RAM. A simple 't2.micro' instance will 
not work for us here, as it has only 1GB of memory. 

Note 

The link for the AWS account can be found at https://aws.amazon.com/ 

premiumsupport/knowledge-center/create-and-activate-aws-account/ 

To add instances and check instance limits, refer to https://docs.aws.amazon.com/ 

AWSEC2/latest/UserGuide/ec2-resource-limits.html. 

Let's start with the deployment process: 

1. After logging into the AWS Management Console, search for ‘ec2' in the search bar. 
This takes you to the EC2 dashboard, as shown here: 

AWS Management Console 

AWS services 

Find Services 
You can enter names, keywords or acronyms 

——_ a sean — nn en Eon aa nc rn 

EC2 
Virtual Servers in the Cloud 

ECS 
Run and Manage Docker Containers 

EFS 
Mananer File Sfnracne for FC? 

Figure 9.21: AWS services in the AWS Management Console 
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2. A key pair needs to be created to access AWS resources. To create one, look for 

the following pane and select ‘Key Pairs’. This allows you to create a new key pair: 

f=} NETWORK & SECURITY 

Security Groups 

Elastic IPs 

Placement Groups 

Key Pairs 

Network Interfaces 

Figure 9.22: Network and security on the AWS console 

3. A'.pem' file is downloaded, which is the key file. Be sure to save the pem file safely 
and change its mode using the following command: 

chmod 40@ key-file-name.pem 

This is required to change file permissions to private. 

4. To configure the instance, select ‘Launch Instance’ on the EC2 dashboard: 

Resources 

You are using the following Amazon EC2 resources in the EU Central (Frankfurt) region: 

0 Running Instances 0 Elastic IPs 

0 Dedicated Hosts 0 Snapshots 

1 Volumes 0 Load Balancers 

2 Key Pairs 6 Security Groups 

Q Placement Groups 

Learn more about the latest in AWS Compute from AWS re:Invent by viewing the EC2 Videos. 

Create Instance 

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance. 

Launch Instance w 

Note: Your instances will launch in the EU Central (Frankfurt) region 

Service Health ™ Scheduled Events 

Figure 9.23: Resources on the AWS console 
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5. Next, select the Amazon Machine Instance (AMI), which selects the OS that EC2 
instance runs. We will work with 'Amazon Linux 2 AMI': 

Note 

For more information on Amazon Linux 2 AMI, refer to https://aws.amazon.com/ 

amazon-linux-2/. 

1.Choose AM! =. 2. Choose instance Typo «= 3. Configure instance 4. Add Storage «=. Add Tags 8. Gontigura Seaurity Group 7. Review 

Step 1: Choose an Amazon Machine Image (AMI) Cancel ane! textt 
4n AMI ig a template thet contains the software configuration (operating system, application server, and applications) required to Jaunch your instance, You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or you can select one of 

your own AMIs. 

Q Search for an AMI by entering 2 sparch term e.g, “Windows* x 

Quick Start 1 to 36 of 38 AMIa 

My AMis ‘ a Amazon Linux 2 AMI (HVM), SSD Volume Type ~ ami-09det150731bdbce2 Solect 

AWS M aon s Amazon a Amazon Linux 2 comas with five years support. It provides Linux kemel 4.14 tuned for optimal performance on Amazon EC2, systemd 219, GCC 7.3, Glibo 2,26, Binutits 2.29.1, and the latest 64-bit (x86) : 

‘ software packages through extras, ‘ { ‘ 
Community AMis: \ Rost device typa: eb —-Virtunilemtion type: hym = ENA Enabled: Yes x 

t 
De and aR WS lca loan SAE lo bor a eh ess ea es oan Sci Rel bow Ral Sarak ry SRA SaET ie Bors RISE ve RT RIS Ai Pla 

fries tied only 2% & Amazon Linux AMI 2018.03.0 (HYM), SSD Volume Type - arni-Ocfbf4iédi41068ac ea 

Amazon Linux The Amazon Linux AMI is an EBS-backed, AWS-supported Image, The default image includes AWS command ine tools, Python, Ruby, Perl, and Java. The repositories Include Docker, PHP, MYSQL. gy tn wag 
PostgreSQL, and other packager a o 
Root devine typo; ¢n8 Virtualization type; hum: ENA Enabied: Yeo 

a Red Hat Enterprise Linux 7.6 (HVM), SSD Volume Type - ami-c86c3t23 F Setoct | 

Red Hat Red Hat Enterprise Linux version 7.5 (HVM), EBS General Purpose (SSD) Volume Type 84+bit (86) 

Free Dor afigible 
Root davies type; aba —-Virtuntization type: tivm = ENA Enabled: Yee 

Figure 9.24: Amazon Machine Instance (AMI) 

6. Now, we select the hardware part of EC2, which is the 't2.small' instance: 

Step 2: Choose an Instance Type 
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and networking capacity, and give you tho flexibility to 

Choose tha appropriate mix of resources for your applications. Learn more about instance types and how they can meet your computing needs. 

Filter by: | Altinstancetypes + Current generation ~ Show/Hide Columns 

Currently selected: (2.smail (Variable ECUs, 1 VOPUs, 2.5 GHz, Intel Xeon Family, 2 GiB memory, EBS only) 

; Bi Family . aype > voPus {j) = Moroty (GiB) <___Ingtance Storage (GB) (|) + EBG-Optimizad Avaliable “{/ | _ Notwork Performance |j) > leat : 

General purpose | (2.nano ) Os EBS only - Low to Moderate Yes 

General purpose Be im i i 1 EBS only - Low to Moderate Yes 

a Genera! purpose 12.small 1 2 EBS only - Low to Moderate Yes 

General purpose 12.medium ° 4 EBS only < Low to Moderate Yes 

General purpose 12.large 2 8 EBS only - Low to Moderate Yes 

General purpose . t2.xlarge 4 16 EBS only Moderate Yes 

General purpose 12.2xlarge B 32 ; EBS only - Moderate Yes 

General purpose i t3.nano 2 O68 EBS only Yes Up to 5 Gigabit Yos 

General purpose t3.micro 2 1 EBS only Yes Up to & Gigabit Yes 

General purpose 13.srall 2 2 EBS only Yes Up to 5 Gigabit Yes 

Ganeral purpose 13.medium 2 4 EBS only 1 Yes Up to 5 Gigabit Yes 

wos General aioe, large 2 8 EBS only Yes Up to 5 Gigabit Yes 

Cancel Previous’ Meee pete | Nost Configure Instance Details 

Figure 9.25: Choosing the instance type on AMI 
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7. Clicking on 'Review and Launch’ gets you to step 7 - the Review Instance Launch 

screen: 

Step 7: Review Instance Launch 
Please review your instance launch delelis. You can go back to adit changes for each section. Click Launch to assign a key pair te your instance and complete the jaunch process. 

x 
4& Your instance configuration is not eligible for the free usage tier 

To isunch an instance that's eligible for the free usage tier, check your AMI selection, instance type, configuration options, or storage devices. Learn more about free usage tier eligibility and usage restrictions. 

+ AMI Details Ecit Abt 

Amazon Linux 2 AMI (H¥M}, SSD Volume Type - ami-O9def150731bdbcc2 

Pear Amazon Linux 2 comes with five years support. It provides Linux Kernel 4.14 tuned for cptimal performance on Amazon ECZ, systemd 219, GOC 7.3, Gilbe 226, Binutlle 229.1, and the istest software parksges Twougn extras, 

Riseme fool Device Typeceba —Yirtumbizalion typo: hy 

> Instance Type Eds instance type 

instance Type _-BCUs vCPUs Memory (GiS} ; Instance Storage (GB) EDS-Optimized Available Network Performance 

12.amal Variable 1 2 E@S onty - Low to Moderate 

+ Security Groups m i ft security groups 

Security group name taunch-wizard-6 

Desaription jaunch-wizard-6 created 2019-05-01T23:24:09.494+02;00 

Typs i Protocol { Port Range ‘1 Source j Description | 

This security group hes ne rules 

» Instance Details Edit instance details 

» Storage Edit storage 

> Tags 

cont ree EY 

Figure 9.26: The review instance launch screen 3 

8. Now, to make the web service reachable, the security group needs to be modified. 
To this end, a rule needs to be created. At the end, you should see the following 

screen: 

Step 6: Configure Security Group 
A security group is a set of firewall rules that control the traffie for your instance, On this page, you can add rules to allow specitic traffic to reach your instance. For example, if you wurit to set up 4 web Server and altow Internet traffic to reach your instance, adkd 

rules that allow unrestricted access to the HTTP and HTTPS ports. You oan create a naw security gro.) or select from an axiging one below, Learn riore about Amazon EC2 security groups. 

Assign a security group: ©sCrexte o new security group 

Select an existing security group 

Security group name: launoh-wizard-2 

Description: jaunoh-wizard-2 created 2019-04-13720:04:04,323+02;00 

Typa { Protocol | Port Range |i Source | Description [ 

SSH # TCP 22 Cusiom = ¢#! 0.0.0.0/0 @g. SSH fer Acrnin Deaitog oS 

HTTP ? TCR BO Custom =): 0.0,0,0/0, :/0 2.9. SGM for Ac Oes*top ° 

Add Rule 

& Warning 

Rules with source of 0,0.0.0/0 allow all IP addresses to access your Instance, We recommend setting security group rules to allow access from known IP addreases only, 

Figure 9.27: Configure the security group 

Note 

More can be learned about security groups and configuration using the AWS 

documentation at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using- 

network-security.html. 



Deployment | 289 
a 

9. Next, clicking on the 'Launch' icon will trigger a redirection to a Launch screen: 

Launch Status 

@ = Your Instances are now launching 

The following Instance launches have been Initiated: |-0d110c66392fe813a View Jaunch log 

| @ Get notified of estimated charges 
| Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an amount you detine (for axampla, if you exceed the (ree usage tier). 

How to connect to your Instances 

Your instances ane launching, and jt may take a few minutes until they are In the running state, when they will be ready for you to use, sage hours on your new Instances will start Immodiately and continue to accrue until you stop or terminate your instances, 

Click View Instances to monitor your instances” status, Once your instances are in the ftunning stale, you car connect to them fram the Instances screen, Find our how to connect to your inutances. 

» Here are some helpful resources to get you started 

+ How to connect to your Linux instance » Amnzon E02: User Guide 

+ Learn about AWS Free Usage Tier * Amazon EC2: Discussion Forum 

While your Instances are launching you can also 

Croate status check alarms to ba notified when these instances fall status checks. (Additional charges may apply) 

Create and attach additional EBS volurnes (Additional charges may apply) 

Manage security groups 

Figure 9.28: Launch status on the AWS instance 

The 'View Instance' button is to be used to navigate to a screen that displays the 
EC2 instance being launched, which is ready to be used when the instance state 
turns to ‘running: 

10. Next, access the EC2 using the following command from the local system terminal 
with the 'public-dns-name' field replaced with your EC2 instance name (of the 
form: ec2-x-x-x-x.compute-l.amazonaws.com) and the path of the key pair pem 
file that was saved earlier: 

ssh -i /path/my-key-pair.pem ec2-user@public-dns-name 

This command will take you to the prompt of the EC2 instance where Docker 

needs to be installed first. Docker installation is required for the workflow since 
the Docker image will be built within the EC2 instance. 

11. For Amazon Linux 2 AMI, the following commands should be used to accomplish 

this: 

sudo amazon-linux-extras install docker 

sudo yum install docker 

sudo service docker start 

sudo usermod -a -G docker ec2-user 

Note 

For an explanation of the commands, check out the documentation at https://docs. 

aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html. 



290 | A Practical NLP Project Workflow in an Organization 

12. The 'exit' command should be used to log out of the instance. Next, log back in 

using the ssh command that was used earlier. Verify that Docker is working by 
issuing the 'docker info' command. Open another local terminal window for the 
next steps. 

13. Now, copy the files that are needed to build the Docker image within the EC2 
instance. Issue the command from the local terminal (not from within EC2!): 

scp -i /path/my-key-pair.pem file-to-copy ec2-user@public-dns-name: /home/ 

ec2-user 

14. The following files should be copied to build the Docker image, as was done 
earlier: requirements.txt, app.py, trained_model.h5, trained_tokenizer.pkl, and 

Dockerfile. 

15. Next, log in to the EC2 instance, issue the 'ls' command to see whether the copied 
files exist, and build and run the Docker image using the same commands that 
were used in the local system (ensure that you use port 80 at all locations in the 
code/commands). 

16. Enter the home endpoint from the local browser using the public DNS name to see 
the ‘Hello World!’ message: 

C @ Not Secure | ec2-52-59-206-245.eu-central-1.compute.amazonaws.com 

Hello World! 

Figure 9.29: Screenshot for the home endpoint 

17. Now you can send a curl request to the web service from a local terminal with the 
test sample data after replacing the public-dns-name with yours: 

curl =x POST \ 

public-dns-name:80/predict \ 

-H ‘Content-Type: application/json' \ 

-d '["The book was very poor", "Very nice!", "The author could have done 

more", "Amazing product! "]' 

18. This should return the same review ratings as the ones obtained locally. 

This concludes the simple deployment process. 
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The DS team now shares this curl request with the web development team, which can 
consume the web service with their test samples. 

Note 

When the web service is not required, stop or terminate the EC2 instance to avoid 
getting charged. 

QQ. search :i-050b9208dd5c1a0dd Add filter 

S _ Name * Instance ID « Instance Type » Availability Zone ~ Instance Sta 

& i-050b9208ddifl _) running [@re) al a(=ver 

Create Template From Instance 

Launch More Like This 

instance State 

Instance Settings 

Image Stop - | 

Networking Reboot 

CloudWatch Monitoring Terminate 
Instance: |] i-050b9208dd5c1a0dd | 

_ Description Status Checks _ Monitoring Tags 

Figure 9.30: Stopping the AWS EC2 instance 

From an MVP point of view, the deliverables are now complete! 

Improvements 

The workflow described in this chapter is only meant to introduce a basic workflow 
using certain tools (Flask, Colab, Docker, and AWS EC2) and inspire an example plan for 
a deep learning project in an organization. This is, however, only an MVP, which could 
be improved in many ways for future iterations. 
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Summary 

In this chapter, we saw the journey of a deep learning project as it flows through an 
organization. We also learned about Google Colab notebooks to leverage GPUs for 
faster training. Additionally, we developed a Flask-based web service using Docker 
and deployed it to a cloud environment, hence enabling the stakeholders to obtain 
predictions for a given input. 

This chapter concludes our efforts toward learning how to leverage deep learning 
techniques to solve problems in the domain of natural language processing. Almost 

every aspect discussed in this chapter and the previous ones is a topic of research and 
is being improved upon continuously. The only way to stay informed is to keep learning 
about the new and exciting ways to tackle problems. Some common ways to do so are 
by following discussions on social media, following the work of top researchers/deep 
learning practitioners, and being on the constant lookout for organizations that are 
doing cutting-edge work when it comes to this domain. 
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Appendix 

About 

This section is included to assist the learners to perform the activities present in the book. It 

includes detailed steps that are to be performed by the learners to complete and achieve the 

objectives of the book. 



296 | Appendix 

Chapter 1: Introduction to Natural Language Processing 

Activity 1: Generating word embeddings from a corpus using Word2Vec. 

Solution: 

1. Upload the text corpus from the link aforementioned. 

2. Import the word2vec from gensim models 

from gensim.models import word2vec 

3. Store the corpus in a variable. 

sentences = word2vec.Text8Corpus('text8') 

4, Fit the word2vec model on the corpus. 

model = word2vec.Word2Vec(sentences, size = 20Q) 

5. Find the most similar word to ‘man’. 

model.most_similar(['man' ]) 

The output is as follows: 

[('woman', @.6842043995857239), 

(‘girl’, @.5943484306335449), 

("creature’, @.5780946612358093), 

(‘boy', @.5204570293426514), 

(‘person', @.5135789513587952), 

{‘stranger’, @.506704568862915), 

('beast’, ®.504448652267456), 

('god', @.5037523508071899), 

{'evil’, @.4990573525428772), 

(' thief’, @.4973783493041992) ] 

Figure 1.29: Output for similar word embeddings 

6. ‘Father’ is to ‘girl’, 'x' is to boy. Find the top 3 words for x. 

model.most_similar(['girl', 'father'], ['boy'], topn=3) 

The output is as follows: 

[¢'mother’, @.7770676612854004 ) , 

('grandmother’, @.7024110555648804) , 

('wife’, @.6916966438293457) ] 

Figure 1.30: Output for top three words for 'x' 
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Chapter 2: Applications of Natural Language Processing 

Activity 2: Building and training your own POS tagger 

Solution: 

1. The first thing to do is pick a corpus that we want to train our tagger on. Import 
the necessary Python packages. Here, we use the nltk treebank corpus to work on: 

import nltk 

nltk.download('treebank' ) 

tagged_sentences = nltk.corpus.treebank. tagged_sents() 

print(tagged_sentences[Q]) 

print("Tagged sentences: ", len(tagged_sentences)) 

print ("Tagged words:", len(nltk. corpus. treebank.tagged_words())) 

2. Next, we need to determine what features our tagger will take into consideration 
when determining what tag to assign to a word. These can include whether the 
word is all capitalized, is in lowercase, or has one capital letter: 

def features(sentence, index): 

""" sentence: [wl, w2, ...], index: the index of the word """ 

return { 

'word': sentenceLindex], 

‘is_first': index == Q, 

‘is_last': index == len(sentence) - 1, 

‘is_capitalized': sentence[Lindex][@].upper() == sentenceLindex ] 

[0], 

'is_all_caps': sentenceLindex].upper() == sentence[index], 

‘is_all_lower': sentenceLindex].lower() == sentenceLindex], 

'orefix-1': sentenceLindex][@], 

'prefix-2': sentenceLindex]L:2], 

‘prefix-3': sentenceLindex][:3], 

'suffix-1': sentenceLindex][-1], 

'suffix-2': sentenceLindex][-2:], 

'suffix-3': sentenceLindex][-3:], 

'prev_word': '' if index == @ else sentenceL[index - 1], 

'next_word': '' if index == len(sentence) - 1 else sentenceLindex 

'has_hyphen': '-' in sentenceLindex], 

'is_numeric': sentence[Lindex].isdigit(), 

'‘capitals_inside': sentence[index][1:].lower() != sentenceLindex] 
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import pprint 

pprint.pprint(features(['This', 
' ' ‘is', 'a', 'sentence'], 2)) 

{'capitals_inside': False, 

‘has_hyphen': False, 

'is_all_caps': False, 

‘is_all_lower': True, 

‘is_capitalized': False, 

‘is_first': False, 

‘is_last': False, 

'is_numeric': False, 

'next_word': 'sentence', 

iprefix- the! “al; 

'prefix-2': ‘a’, 

"prefix-3": “haul; 

'nreveword si Tas", 

a St fisee P er a 

"SUTNX@ 2 Ge 

'surfixe3': "a", 

'word': ‘a'} 

3. Create a function to strip the tagged words of their tags so that we can feed them 
into our tagger: 

def untag(tagged_sentence): 

return [w for w, t in tagged_sentence ] 

4. Now we need to build our training set. Our tagger needs to take features individu- 
ally for each word, but our corpus is actually in the form of sentences, so we need 

to do a little transforming. Split the data into training and testing sets. Apply this 
function on the training set. 

# Split the dataset for training and testing 

cutoff = int(.75 * len(tagged_sentences)) 

training_sentences = tagged_sentences[: cutoff] 

test_sentences = tagged_sentences[cutoff: ] 

print(len(training_sentences))  # 2935 

print(len(test_sentences) ) # 979 

and create a function to assign the features to 'X' and append the POS 

tags to “Y*. 
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def transform_to_dataset(tagged_sentences): 

A ea Od Bi 

for tagged in tagged_sentences: 

for index in range(len(tagged)): 

X.append(features(untag(tagged), index)) 

y.append(tagged[index][1]) 

return X, y 

X, y = transform_to_dataset(training_sentences) 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.feature_extraction import DictVectorizer 

from sklearn.pipeline import Pipeline 

Apply this function on the training set. Now we can train our tagger. It's basically 
a Classifier since it's categorizing words into classes, so we can use a classification 
algorithm. You can use any that you like or try out a bunch of them to see which 
works best. Here, we'll use the decision tree classifier. Import the classifier, initial- 
ize it, and fit the model on the training data. Print the accuracy score. 

clf = Pipeline([ 

('vectorizer', DictVectorizer(sparse=False)), 

('classifier', DecisionTreeClassifier(criterion='entropy' )) 

]) 

clf.fit(X[:10000], y[:10000]) # Use only the first 10K samples if you're 

running it multiple times. It takes a fair bit :) 

print('Training completed' ) 

X_test, y_test = transform_to_dataset(test_sentences ) 

print("Accuracy:”,. clf.score(X_test, y_test)) 

The output is as follows: 

Training completed 

Accuracy: @.8959505061867267 

Figure 2.19: Accuracy score 
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Activity 3: Performing NER on a Tagged Corpus 

Solution: 

1. Import the necessary Python packages and classes. 

import nltk 

nltk.download(' treebank' ) 

nltk.download('maxent_ne_chunker' ) 

nltk.download('words' ) 

2. Print the nltk.corpus.treebank. tagged_sents() to see the tagged corpus that you 

need extract named entities from. 

nltk.corpus. treebank. tagged_sents() 

sent = nltk.corpus. treebank. tagged_sents()[@] 

print(nltk.ne_chunk(sent, binary=True)) 

3. Store the first sentence of the tagged sentences in a variable. 

sent = nltk.corpus.treebank. tagged_sents()[1] 

4, Use nltk.ne_chunk to perform NER on the sentence. Set binary to ea and print 
the named entities. 

print(nltk.ne_chunk(sent, binary=False)) 

sent = nltk.corpus.treebank. tagged_sents()[2] 

rint(nltk.ne_chunk(sent) ) 
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The output is as follows: 

(s 

(PERSON Rudolph/NNP) 

(GPE Agnew/NNP) 

a 

55/CD 

years/NNS 
old/J] 

and/ Cc 

former/JJ 

chairman; NN 

of /IN 

(ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP)} 

PLC/NNP 

ats 

was/VBD 

named,VBN 

*_4/-NONE- 

a/DT 

nonexecutive/JJ 

director/NN 

of {IN 

this/DT 

(GPE British/JJ) 
industrial/JJ 

conglomerate/NN 

sv 

Figure 2.20: NER on tagged corpus 
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Chapter 3: Introduction to Neural Networks 

Activity 4: Sentiment Analysis of Reviews 

Solution: 

1. Open anew Jupyter notebook. Import numpy, pandas and matplotlib.pyplot. Load 

the dataset into a dataframe. 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

dataset = pd.read_csv('train_comment_small1_100.csv', sep=',') 

2. Next step is to clean and prepare the data. Import re and nltk. From nltk. corpus 
import stopwords. From nltk. stem. porter, import PorterStemmer. Create an array 

for your cleaned text to be stored in. 

import re 

import nltk 

nltk.download('stopwords' ) 

from nltk.corpus import stopwords 

from nltk.stem.porter import PorterStemmer 

corpus = [] 

3. Using a for loop, iterate through every instance (every review). Replace all non-al- 
phabets with a '' (whitespace). Convert all alphabets into lowercase. Split each 
review into individual words. Initiate the PorterStemmer. If the word is not a stop- 
word, perform stemming on the word. Join all the individual words back together 
to form a cleaned review. Append this cleaned review to the array you created. 

for i in range(®, dataset.shape[Q@]-1): 

review = re.sub('[*a-zA-Z]', ' ', dataset['comment_text'J[i]) 

review = review. lower() 

review = review.split() 

ps = PorterStemmer() 

review = [ps.stem(word) for word in review if not word in 

set(stopwords.words('english'))] 

review = ' ', join(review) 

corpus. append(review) > 
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Import CountVectorizer. Convert the reviews into word count vectors using Count- 
Vectorizer. 

from sklearn. feature_extraction. text import CountVectorizer 

cv = CountVectorizer(max_features = 20) 

Create an array to store each unique word as its own column, hence making them 
independent variables. 

X = cv.fit_transform(corpus).toarray() 

y = dataset.iloc[: ,Q0] 

y1 = y[:99] 

yl 

Import LabelEncoder from sklearn.preprocessing. Use the LabelEncoder on the 

target output (y). 

from sklearn import preprocessing 

labelencoder_y = preprocessing.LabelEncoder() 

y = labelencoder_y.fit_transform(y1) 

Import train_test_split. Divide the dataset into a training set and a validation set. 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 

@.20, random_state = Q) 

Import StandardScaler from sklearn. preprocessing. Use the StandardScaler on the 

features of both the training set and the validation set (Xx). 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

Now the next task is to create the neural network. Import keras. Import Sequen- 
tial from keras.models and Dense from Keras layers. 

import tensorflow 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 
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10. Initialize the neural network. Add the first hidden layer with 'relu' as the activa- 
tion function. Repeat step for the second hidden layer. Add the output layer with 
‘sof tmax' as the activation function. Compile the neural network, using ‘adam’ as the 
optimizer, 'binary_crossentropy’' as the loss function and ‘accuracy’ as the perfor- 

mance metric. 

classifier = Sequential() 

classifier.add(Dense(output_dim = 20, init = 'uniform', activation = 

'relu', input_dim = 20)) 

classifier.add(Dense(output_dim =20, init = ‘uniform', activation = 

"relu')) 

classifier.add(Dense(output_dim = 1, init = 'uniform', activation = 

"softmax')) 

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', 

metrics = ['accuracy']) 

11. Now we need to train the model. Fit the neural network on the training dataset 
with a batch_size of 3 and a nb_epoch of 5. 

classifier.fit(X_train, y_train, batch_size = 3, nb_epoch = 5) 

X_test 

12. Validate the model. Evaluate the neural network and print the accuracy scores to 
see how it's doing. 

y_pred = classifier.predict(X_test) 

scores = classifier.evaluate(X_test, y_pred, verbose=1) 

print("Accuracy:", scores[1]) 

13. (Optional) Print the confusion matrix by importing confusion_matrix from sklearn. 
metrics. 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test, y_pred) 

scores 

Your output should look similar to this: 

20/22 [ssseseesescesssssssssssssssess | - es 160us/step 

Accuracy: 1.8 

[1.192893321833454e-@7, 1.0] 

Figure 3.21: Accuracy score for sentiment analysis 
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Chapter 4: Introduction to convolutional networks 

Activity 5: Sentiment Analysis on a real-life dataset 

Solution: 

1. Import the necessary classes 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras import layers 

from keras.preprocessing.sequence import pad_sequences 

import numpy as np 

import pandas as pd 

2. Define your variables and parameters. 

epochs = 20 

maxlen = 100 

embedding_dim = 50 

num_filters = 64 

kernel_size = 5 

batch_size = 32 

3. Import the data. 

data = pd.read_csv('data/sentiment labelled sentences/yelp_labelled. 

txt',names=['sentence', 'label'], sep='\t') 

data. head() 

Printing this out on a Jupyter notebook should display: 

i ome") 
pow testes i 
s|ovstisrotena——SSSSC*d 
a)portanyanstretnirewer isa [0 
| Speedy ana elt yoni of | 
Te ston ont eran rst ansso wer | 

Figure 4.27: Labelled dataset 
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4. Select the 'sentence' and ‘label’ columns 

sentences=dataLl'sentence' ]. values 

labels=data['label'].values 

5. Split your data into training and test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( 

sentences, labels, test_size=0.30, random_state=1000) 

6. Tokenize 

tokenizer = Tokenizer (num_words=5000) 

tokenizer. fit_on_texts(X_train) 

X_train = tokenizer. texts_to_sequences(X_train) 

X_test = tokenizer.texts_to_sequences(X_test) 

vocab_size = len(tokenizer.word_index) + 1 #The vocabulary size has an 

additional 1 due to the @ reserved index 

7. Pad in order to ensure that all sequences have the same length 

X_train = pad_sequences(X_train, padding='post', maxlen=maxlen) 

X_test = pad_sequences(X_test, padding='post', maxlen=maxlen) 

8. Create the model. Note that we use a sigmoid activation function on the last layer 
and the binary cross entropy for calculating loss. This is because we are doing a 
binary classification. 

model = Sequential() 

model.add(layers.Embedding(vocab_size, embedding_dim, input_ 

length=maxlen)) 

model. add(layers.Conv1D(num_filters, kernel_size, activation='relu')) 

model. add(layers.GlobalMaxPooling1D()) 

model.add(layers.Dense(10, activation='relu' )) 

model.add(layers.Dense(1, activation='sigmoid' )) 

model.compile(optimizer='adam', 

loss='binary_crossentropy', 

metrics=['accuracy' ]) 

model. summary () 
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The above code should yield 

Layer (type) =  -——« Output Shape = 8 = Param # 

embedding 1 (Embedding), .(Nene,100,.50),  +©««87350 
convld_1 (Conv1D) (None, 96, 64) 16064 

global_max_poolingld_1 (Glob (None, 64) 0 

dense_1 (Dense) (None, 10) 650 

dense 2 (Dense) (None, 1) 11 
aS SSS SSS SSS SS SS SS 

Total params: 104,075 

Trainable params: 104,075 

Non-trainable params: 0 

Figure 4.28: Model summary 

The model can be visualized as follows as well: 

global_max_pooling!d_1: GlobalMaxPooling1D 

embedding_1_input: InputLayer 

embedding 1: Embedding 

convld_!: Conv1D 

dense_1: Dense 

dense 2: Dens 

Figure 4.29: Model visualization 
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9. Train and test the model. 

model .fit(X_train, y_train, 

epochs=epochs, 

verbose=False, 

validation_data=(X_test, y_test), 

batch_size=batch_size) 

loss, accuracy = model.evaluate(X_train, y_train, verbose=False) 

print("Training Accuracy: {:.4f}".format(accuracy ) ) 

loss, accuracy = model.evaluate(X_test, y_test, verbose=False) 

print("Testing Accuracy: {:.4f}".format(accuracy) ) 

The accuracy output should be as follows: 

Training Accuracy: 1.0000 

Testing Accuracy: 0.8080 

Figure 4.30: Accuracy score 
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Chapter 5: Foundations of Recurrent Neural Network 

Activity 6: Solve a problem with RNN - Author Attribution 

Solution: 

Prepare the data 

We begin by setting up the data pre-processing pipeline. For each one of the authors, 
we aggregate all the known papers into a single long text. We assume that style does 
not change across the various papers, hence a single text is equivalent to multiple small 
ones yet it is much easier to deal with programmatically. 

For each paper of each author we perform the following steps: 

1. Convert all text into lower-case (ignoring the fact that capitalization may be a 
stylistic property) 

2. Converting all newlines and multiple whitespaces into single whitespaces 

3. Remove any mention of the authors' names, otherwise we risk data leakage 
(authors names are hamilton and madison) 

4. Do the above steps in a function as it is needed for predicting the unknown 
papers. 

import numpy as np 

import os 

from sklearn.model_selection import train_test_split 

# Classes for A/B/Unknown 

A=0 

B.= 1 

UNKNOWN = -1 

def preprocess_text(file_path): 

with open(file_path, 'r') as f: 

lines = f.readlines() 

text = ' ' joinClines[1:])<replace€"\n",.‘ ').replace(' ‘,'’ 

')  lower().replace('hamilton','').replace('madison', '') 

text = ' '.join(text.split()) 

return text 
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# Concatenate all the papers known to be written by A/B into a single long 

text 

all_authorA, all_authorB = '','' 

for x in os.listdir('./papers/A/' ): 

all_authorA += preprocess_text('./papers/A/' + x) 

for x in os.listdir('./papers/B/'): 

all_authorB += preprocess_text('./papers/B/' + x) 

# Print lengths of the large texts 

print("AuthorA text length: {}".format(len(all_authorA))) 

print("AuthorB text length: {}".format(len(all_authorB))) 

The output for this should be as follows: 

AuthorA text length: 216394 

AuthorB text length: 230867 

Figure 5.34: Text length count 

The next step is to break the long text for each author into many small sequences. 
As described above, we empirically choose a length for the sequence and use it 
throughout the model's lifecycle. We get our full dataset by labeling each sequence 
with its author. 

To break the long texts into smaller sequences we use the Tokenizer class from 
the keras framework. In particular, note that we set it up to tokenize according 
to characters and not words. 

5. Choose SEQ_LEN hyper parameter, this might have to be changed if the model 
doesn't fit well to training data. 

6. Write a function make_subsequences to turn each document into sequences of 

length SEQ_LEN and give it a correct label. 

7. Use Keras Tokenizer with char_level=True 

8. Fit the tokenizer on all the texts 

9, Use this tokenizer to convert all texts into sequences using texts_to_sequences() 

2 
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10. Use make_subsequences() to turn these sequences into appropriate shape and 
length 

from keras.preprocessing.text import Tokenizer 

# Hyperparameter - sequence length to use for the model 

SEQ_LEN = 30 

def make_subsequences(long_sequence, label, sequence_length=SEQ_LEN): 

len_sequences = len(long_sequence) 

X = np.zeros(((len_sequences - sequence_length)+1, sequence_length)) 

y = np.zeros((X.shape[@], 1)) 

for i in range(X.shape[@]): 

X[Li] = long_sequence[i:i+sequence_length] 

yLi] = label 

return X,y 

# We use the Tokenizer class from Keras to convert the long texts into a 

sequence of characters (not words) 

tokenizer = Tokenizer(char_level=True) 

# Make sure to fit all characters in texts from both authors 

tokenizer. fit_on_texts(all_authorA + all_authorB) 

authorA_long_sequence = tokenizer.texts_to_sequences([all_authorA])[0@] 

authorB_long_sequence = tokenizer.texts_to_sequences([all_authorB])[@] 

# Convert the long sequences into sequence and label pairs 

X_authorA, y_authorA = make_subsequences(authorA_long_sequence, A) 

X_authorB, y_authorB = make_subsequences(authorB_long_sequence, B) 

# Print sizes of available data 

print("Number of characters: {}".format(len(tokenizer.word_index) )) 

print('author A sequences: {}'.format(X_authorA. shape) ) 

print('author B sequences: {}'.format(X_authorB. shape) ) 

The output should be as follows: 

Number of characters: 52 

author A sequences: (216365, 3 

author B sequences: (230838, 3 

Figure 5.35: Character count of sequences 
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11. Compare the number of raw characters to the number of labeled sequences for 
each author. Deep Learning requires many examples of each input. The following 
code calculates the number of total and unique words in the texts. 

# Calculate the number of unique words in the text 

word_tokenizer = Tokenizer() 

word_tokenizer.fit_on_texts([all_authorA, all_authorB]) 

print("Total word count: ", len((all_authorA + ' ' + all_authorB).split(' 

OP) 
print("Total number of unique words: ", len(word_tokenizer.word_index)) 

The output should be as follows: 

Total word count: 74349 

Total number of unique words: 6318 

Figure 5.36: Total word count and unique word count 

We now proceed to create our train, validation sets. 

12. Stack x data together and y data together. 

13. Use train_test_split to split the dataset into 80% training and 20% validation. 

14. Reshape the data to make sure that they are sequences of correct length. 

# Take equal amounts of sequences from both authors 

X = np.vstack((X_authorA, X_authorB)) 

y = np.vstack((y_authorA, y_authorB)) 

# Break data into train and test sets 

X_train, X_val, y_train, y_val = train_test_split(X,y, train_size=0.8) 

# Data is to be fed into RNN - ensure that the actual data is of size 

[batch size, sequence length] 

X_train = X_train.reshape(-1, SEQ_LEN) 

X_val = X_val.reshape(-1, SEQ_LEN) 

# Print the shapes of the train, validation and test sets 

print("X_train shape: {}".format(X_train. shape) ) 
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print("y_train shape: {}".format(y_train. shape) ) 

print("X_validate shape: {}".format(X_val.shape)) 

print("y_validate shape: {}".format(y_val. shape) ) 

The output is as follows: 

~ oO 
X_train shape: (357762, i 

y_train shape: (357762, 1) 

X_Validate shape: (89441, 38) 

y_validate shape: (89441, 1) 

bee Li 

Figure 5.37: Testing and training datasets 

Finally, we construct the model graph and perform the training procedure. 

15. Create a model using RNN and Dense layers. 

16. Since its a binary classification problem, the output layer should be Dense with 
sigmoid activation. 

17. Compile the model with optimizer, appropriate loss function and metrics. 

18. Print the summary of the model. 

from keras.layers import SimpleRNN, Embedding, Dense 

from keras.models import Sequential 

from keras.optimizers import SGD, Adadelta, Adam 

Embedding_size = 100 

RNN_size = 256 

model = Sequential() 

model .add(Embedding(len(tokenizer.word_index)+1, Embedding_size, input_ 

length=30) ) 

model.add(SimpleRNN(RNN_size, return_sequences=False) ) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics = 

['accuracy']) 

model. summary () 
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The output is as follows: 

embedding 1 (Embedding) - (None, 38, 190) ewollol ae S3g@hi0 a¢f 
simple _rnn_i (SimpleRNN) (None, 256) 91392 

dense_1 (Dense) (None, 1) 257 

Total params: 96,949 

Trainable params: 96,949 

Non-trainable params: @ 

Figure 5.38: Model summary 

19. Decide upon the batch size, epochs and train the model using training data and 
validate with validation data 

20. Based on the results, go back to model above, change it if needed (use more layers, 
use regularization, dropout, etc., use different optimizer, or a different learning 

rate, etc.) 

21. Change Batch_size, epochs if needed. 

Batch_size = 4096 

Epochs = 20 

model.fit(X_train, y_train, batch_size=Batch_size, epochs=Epochs, 

validation_data=(X_val, y_val)) 
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The output is as follows: 

Train on 357762 samples, validate on 89441 samples 
Epoch 1/28 

357762/357762 [===s-=-==2-========2==========] - 75 20us/step - loss: 6.6987 - acc: @.5298 - val_loss: 8.6846 - val_acc: 6.5528 
Epoch 2/28 

357762/357762 [s==sssssss5=ss555s=s====2=====] - 5s l4us/step - loss: @.6848 - acc: 8.5521 - val_loss: 8.6864 - val_acc: @.5457 
Epoch 3/26 
357762/357762 [ssssssssssssssss=essss===-==] - 5s 14us/step - loss: @.6832 - acc: @.5567 - val_loss: @.6828 - val_acc: 6.5571 
Epoch 4/20 
357762/357762 [===ssess=-=s=22se===s====2n2==] - 55 14us/step - loss: @.6829 - acc: 8.5556 - val_loss: @.6819 - val_acc: 6.5604 
Epoch 5/28 

357762/357762 [===s=s========================] - 5s 13us/step - loss: @.680@ - acc: @.5621 - val_loss: 0.676@ - val_acc: @.5718 
Epoch 6/28 
357762/357762 [=s====ssse=2==sssee=2ssses=02==] - 55 14us/step - loss: @.6713 - acc: @.58@3 - val_loss: @.6748 - val_acc: @.5833 
Epoch 7/26 

357762/357762 [==s==s===<========ss=====s====] - 55 14us/step - loss: @.665@ - acc: @.5936 - val_loss; @.6491 - val_acc: 8.6165 
Epoch 8/20 
357762/357762 [=====ss-ssssessssa=s===s======] - 55 15us/step - loss: @.6391 - acc: 6.6309 - val_loss: 6.623@ - val_acc: @. 6488 
Epoch 9/28 
357762/357762 [s=====sss===sss=ssss=s=<======5=] - 65 17us/step - loss: 0.6113 - acc: @.6624 - val_loss: @.6502 - val_acc: 0.6229 
Epoch 10/28 
357762/357762 [===ss]s=sss<=ssses==ssss=eee==] - 85 21us/step - loss: @.5674 - acc: 6.7026 - val_loss: 6.5382 - val_acc: @.7256 
Epoch 11/20 

357762/357762 [====ss==s=<==s=s=s==s==s=s===s=] - 95 24us/step - loss: 8.4963 - acc: @.7568 - val_loss: @.4697 - wal_acc: @.7745 
Epoch 12/20 
357762/357762 [==-===s========sss==s=========] - 135 36us/step - loss: @.4178 - acc: @.8@70 - val_loss: @.4@78 - val_acc: 0.8112 

“Epoch 13/28 

357762/357762 [===ss==s<se=s=s=sssses=-=====5=] - 165 46us/step - loss: @.3448 - acc: 0.8483 - val_loss: @.3798 - val_acc: 9.8328 
Epoch 14/28 
357762/357762 [====s=s==sssssesssssss=s=======] - 245 67us/step - loss: @.2898 - acc: @.8759 - val_loss: @.2925 - val_acc: 8.8746 
Epoch 15/28 

357762/357762 [=s====ss=sssseesesese=====s=2==] - 245 68us/step - loss: @.2364 - acc: @.9@21 - val_loss: @.2538 - val_acc; @.8928 
Epoch 16/28 
357762/357762 [==s=====ss=====================] - 245 G6us/step - loss: @.1934 - acc: @.9225 - val_loss: @.2153 - val_acc: @,9104 
Epoch 17/28 
357762/357762 [=sssssesse=sesesss=ese2==2=5==] - 245 67u5s/step - loss: @.1662 - acc: @.9345 - val_loss: 8.19314 - val_acc: 6.9206 
Epoch 18/20 

357762/357762 [===============s=ss=s=se=s====] - 245 67us/step - loss: 8.1400 - acc: @,9455 - val_loss: @.1825 - val_acc: 8.9254 
Epoch 19/28 

357762/357762 [====s==ssss=s=a=sease==e==e==2=] - 275 76us/step - loss: @.1249 - acc: @.952@ - val_loss: @.1666 - val_acc: @.9329 
Epoch 26/208 

357762/357762 [s==s===sss=sssessss==s==s======] - 335 Sius/step - loss: 4.1079 - acc; 8.9591 - val_loss: @.15@3 - val_acc: @.9400 
<keras.callbacks.History at @x2@f3a8d9efa> 

Figure 5.39: Epoch training 

Applying the Model to the Unknown Papers 

Do this all the papers in the Unknown folder 

1. Preprocess them same way as training set (lower case, removing white lines, etc.) 

2. Use tokenizer and make_subsequences function above to turn them into sequences 
of required size. 

3. Use the model to predict on these sequences. 

4, Count the number of sequences assigned to author A and the ones assigned to 
author B 



316 | Appendix 

5. Based on the count, pick the author with highest votes/count 

for x in os. listdir('./papers/Unknown/' ): 

unknown = preprocess_text('./papers/Unknown/' + x) 

unknown_long_sequences = tokenizer. texts_to_sequences([Lunknown])[@] 

X_Sequences = make_subsequences(unknown_long_sequences, UNKNOWN) > —_ 

X_sequences = X_sequences.reshape((-1,SEQ_LEN)) 

ll S votes_for_authorA 

votes_for_authorB ll fe) 

y = model.predict(X_sequences ) 

y = y>@.5 

votes_for_authorA = np.sum(y==0) 

votes_for_authorB = np.sum(y==1) 

print("Paper {} is predicted to have been written by {}, {} to {}". 

format ( 

x.replace('paper_','').replace('.txt',''), 

("Author A" if votes_for_authorA > votes_for_authorB else 

"Author B"), 

max(votes_for_authorA, votes_for_authorB), min(votes_for 

authorA, votes_for_authorB) )) 

The output is as follows: 

is predicted to have been written by Author B, 11946 to 8828 

is predicted to have been written by Author B, 11267 to 8379 

is predicted to have been written by Author B, 6738 to 6646 

is predicted to have been written by Author A, 5254 to 4519 

is predicted to have been written by Author A, 6570 to 5184 

Paper 

Paper 

Paper 

Paper 

Paper in B WwW he 

Figure 5.40: Output for author attribution 
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Chapter 6: Foundations of GRUs 

Activity 7: Develop a sentiment classification model using Simple RNN 

Solution: 

1. Load the dataset. 

from keras.datasets import imdb 

max_features = 10000 

maxlen = 500 

(train_data, y_train), (test_data, y_test) = imdb. load_data(num_words=max_ 

features) 

print('Number of train sequences: ', len(train_data)) 

print('Number of test sequences: ', len(test_data)) 

2. Pad sequences so that each sequence has the same number characters. 

from keras.preprocessing import sequence 

train_data = sequence.pad_sequences(train_data, maxlen=maxlen) 

test_data = sequence.pad_sequences(test_data, maxlen=maxlen) 

3. Define and compile model using SimpleRNN with 32 hidden units. 

from keras.models import Sequential 

from keras.layers import Embedding 

from keras.layers import Dense 

from keras.layers import GRU 

from keras.layers import SimpleRNN 

model = Sequential() 

model. add(Embedding(max_features, 32)) 

model . add(SimpleRNN(32) ) 

model.add(Dense(1, activation='sigmoid' )) 

model.compile(optimizer='rmsprop', 

loss='binary_crossentropy' , 

metrics=['acc']) 

history = model.fit(train_data, y_train, 

epochs=10, 

batch_size=128, 

validation_split=0.2) 
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4, Plot the validation and training accuracy and losses. 

import matplotlib.pyplot as plt 

def plot_results(history): 

acc = history.history['acc' ] 

val_acce = history.history['val_acc' ] 

loss = history.historyL'loss' ] 

val_loss = history.history['val_loss' ] 

epochs = range(1, len(acc) + 1) 

plt.plot(epochs, acc, 'bo', label='Training Accuracy' ) 

plt.plot(epochs, val_acc, 'b', label='Validation Accuracy' ) 

plt.title('Training and validation Accuracy' ) 

plt.legend() 

plt. figured) 

plt.plot(epochs, loss, ‘'bo', label='Training Loss') 

plt.plot(epochs, val_loss, 'b', label='Validation Loss') 

plt.title('Training and validation Loss') 

plt.legend() 

plt.show() 

5. Plot the model 

plot_results(history) 
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The output is as follows: 

Training and validation Accuracy 

100 ® = Training Accuracy e 2 
—— Validation Accuracy e 

095 - e 

0.65 

060 

2 4 6 & 10 

Training and validation Loss 

® Traning Loss 

of —— Validation Loss 

7 

O6 

05 

04 

03 e 

Q2 L 

a1 s 

oo 
2 4 6 8 10 

Figure 6.29: Training and validation accuracy loss 
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Activity 8: Train your own character generation model with a dataset of your 

choice 

Solution: 

1. Load the text file and import the necessary Python packages and classes. 

import sys 

import random 

import string 

import numpy as np 

from keras.models import Sequential 

from keras.layers import Dense 

from keras. layers import LSTM, GRU 

from keras.optimizers import RMSprop 

from keras.models import load_model 

# load text 

def load_text (filename): 

with open(filename, 'r') as f: 

text = f.read() 

return text 

in_filename = 'drive/shakespeare_poems.txt' # Add your own text file here 

text = load_text(in_filename) 

print(textL:200]) 

The output is as follows: 

THE SONNETS 

by William Shakespeare 

From fairest creatures we desire increase, 

That thereby beauty's rose might never die, 

But as the riper should by time decease, 

His tender heir might bear his mem 

Figure 6.30: Sonnets from Shakespeare 
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2. Create dictionaries mapping characters to indices and vice-versa. 

chars = sorted(list(set(text))) 

print('Number of distinct characters:', len(chars)) 
char_indices = dict((c, i) for i, ¢ in enumerate(chars)) 
indices_char = diét(¢(ipiceforei tec iin enumerate(chars)) 

The output is as follows: 

Number of distinct characters: 61 

Figure 6.31: Distinct character count 

3. Create sequences from the text. 

max_len_chars = 40 

step = 3 

sentences = [] 

next_chars = [] 

for i in range(@, len(text) - max_len_chars, step): 

sentences.append(textli: i + max_len_chars]) 

next_chars.append(text[i + max_len_chars]) 

print('nb sequences:', len(sentences)) 

The output is as follows: 

nb sequences: 31327 

Figure 6.32: nb sequence count 

4, Make input and output arrays to feed the model. 

X = np.zeros((len(sentences), max_len_chars, len(chars)), dtype=np.bool) 

y = np.zeros((len(sentences), len(chars)), dtype=np.bool) 

for i, sentence in enumerate(sentences): 

for t, char in enumerate(sentence): 

xLi, t, char_indices[char]] = 1 

y[Li, char_indices[next_chars[i]]] = 1 
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5. Build and train the model using GRU and save the model. 

print('Build model...') 

model = Sequential() 

model.add(GRU(128, input_shape=(max_len_chars, len(chars)))) 

model.add(Dense(len(chars), activation='softmax')) 

optimizer = RMSprop(1r=0.01) 

model.compile(loss='categorical_crossentropy', optimizer=optimizer) 

model.fit(x, y,batch_size=128, epochs=10) 

model. save("poem_gen_model .h5") 

6. Define sampling and generation functions. 

def sample(preds, temperature=1.0): 

# helper function to sample an index from a probability array 

preds = np.asarray(preds).astype('float64' ) 

preds = np.log(preds) / temperature 

exp_preds = np.exp(preds) 

preds = exp_preds / np.sum(exp_preds) 

probas = np.random.multinomial(1, preds, 1) 

return np.argmax(probas) 

7. Generate text. 

from keras.models import load_model 

model_loaded = load_model('poem_gen_model.h5' ) 

def generate_poem(model, num_chars_to_generate=400): 

start_index = random.randint(@, len(text) - max_len_chars - 1) 

generated = '' 

sentence = text[start_index: start_index + max_len_chars] 

generated += sentence 

print("Seed sentence: {}".format(generated)) 

for i in range(num_chars_to_generate): 

x_pred = np.zeros((1, max_len_chars, len(chars))) 

for t, char in enumerate(sentence): 

x_pred[@, t, char_indices[char]] = 1. 

preds = model.predict(x_pred, verbose=0)[0] 
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next_index = sample(preds, 1) 

next_char = indices_char[next_index] 

generated += next_char 

sentence = sentence[1:] + next_char 

return generated 

generate_poem(model_loaded, 100) 

The output is as follows: 

Seed sentence: pretty looks have been mine enemies, 

And 

‘pretty looks have been mine enemies, \nAnd summmmmite it Time swill hold love and ust.\nAnd thou heart whereferayed me henule,\nThat which have,* 

Figure 6.33: Generated text output 
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Chapter 7: Foundations of LSTM 

Activity 9: Build a Spam or Ham classifier using a Simple RNN 

Solution: 

1. Import required Python packages 

import pandas as pd 

import numpy as np 

from keras.models import Model, Sequential 

from keras.layers import SimpleRNN, Dense, Embedding 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing import sequence 

2. Read the input file containing a column that contains text and another column 
that contains the label for the text depicting whether the text is spam or not. 

df = pd.read_csv("drive/spam.csv", encoding="latin") 

df .head() 

The output is as follows: 

vi v2 Unnamed: 2 Unnamed: 3 Unnamed: 4 

0 ham Go until jurong point, crazy.. Available only ... NaN NaN NaN 

1 ham OK lar... Joking wif u oni.. NaN NaN NaN 

2 spam Free entry in 2 a wkly comp to win FA Cup fina... NaN NaN NaN 

3 ham Udun say so early hor... Uc already then say... NaN NaN NaN 

4 ham Nah | don't think he goes to usf, he lives aro.. NaN NaN NaN 

Figure 7.35: Input data file 
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3. Label the columns in the input data. 

df = dfil" vi", "v2" 7] 

df .head() 

The output is as follows: 

vi w2 

0 ham Go until jurong point, crazy.. Available only ... 

1 ham Ok lar... Joking wif u oni... 

2 spam Free entry in 2 a wkly comp to win FA Cup fina... 

3 ham  U dun say so early hor... Uc already then say... 

4 ham Nah | don't think he goes to usf, he lives aro... 

Figure 7.36: Labelled input data 

4. Count spam, ham characters in the v1 column. 

df["v1"].value_counts() 

The output is as follows: 

ham 4825 

spam f47 

Name: vi, dtype: int64 

Figure 7.37: Value counts for spam or ham 

5. Get X as feature and Y as target. 

lab_map = {"ham":@, "spam":1} 

X = df["v2"]. values 

Y = df["v1"].map(lab_map). values 

6. Convert to sequences and pad the sequences. 

max_words = 100 

mytokenizer = Tokenizer(nb_words=max_words, lower=True, split=" ") 

mytokenizer. fit_on_texts(X) 

text_tokenized = mytokenizer.texts_to_sequences(X) 

text_tokenized 
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The output is as follows: 

[[50, 64, 8, 89, 67, 58], 
[46, 6], 

[Ad, 8; 15; 4, 2, 71, 2a 3, F31, 
[6, 23, 6, 57], 
[1, 98, 69, 2, 69], 
fof, 21,<%, 38, 87, 55, 3, 44, 12, 14, 85, 46, 2, 68, 24, 
fat, 6,25, 55, 2,36, 16, 16,. 55], 
[72, 13, 725413,.22,.51, 2,. 13}, 
(72, 42-37-47, ty a> 45, 8a, 
[43; 96,36, 6, 81,.2; 2.5, 36, 12, 47, 16; °5, $6, 47,18], 
[38, 32, 77, 7, 1, 98, 78, 2, 8@, 48, 93, 88], 
(2,48). 2. 93,, 7) GBs 2.65, 52, 421, 
[3, 17, 4,47, 8, 91, 73, 5, 2, 32]; 
149 099s 3 a a 8 AD, SF, 39, Al 9 Se 7, he, 20, SED, 
fi, 47, 4; °18,°36, 33], 
(2, 15, $. & 5S, 73,. 25, S91; 
[93, 30], 
[6, 49, 19, 1, 69, 1], 
[34, 5, 6, 5, 61], 
[a8 5379, 35,72, -F1. 
[9, 20, 49, 3], 
[75, 2, 12, 19, 64], 
[23, 57, 45, 9, 90], 

Figure 7.38: Tokenized data 

7. Train the sequences 

max_len = 50 

sequences = sequence.pad_sequences(text_tokenized,maxlen=max_len) 

sequences 

8. Build the model 

model = Sequential() 

model .add(Embedding(max_words, 20, input_length=max_len)) 

model .add(SimpleRNN(64) ) 

model.add(Dense(1, activation="sigmoid" )) 

model.compile(loss='binary_crossentropy', 

optimizer='adam', 

metrics=['accuracy' ]) 

model . fit (sequences, Y, batch_size=128 , epochs=10, 

validation_split=0.2) 
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9. Predict the mail category on new test data. 

inp_test_seq = "WINNER! U win a 50@ prize reward & free entry to FA cup 

final tickets! Text FA to 34212 to receive award" 

test_sequences = mytokenizer.texts_to_sequences(np.array(Linp_test_seq])) 

test_sequences_matrix = sequence.pad_sequences(test_sequences , maxlen=max_ 

len) 

model .predict(test_sequences_matrix) 

The output is as follows: 

array([[@.979119]], dtype=float32) 

Figure 7.39: Output for new test data 

Activity 10: Create a French to English translation model 

Solution: 

1. Import the necessary Python packages and classes. 

import os 

import re 

import numpy as np 

2. Read the file in sentence pairs. 

with open("fra.txt", 'r', encoding='utf-8') as f: 

lines = f.read().splitc¢'\n') 

num_samples = 20000 # Using only 20000 pairs for this example 

lines_to_use = lines[: min(num_samples, len(lines) - 1)] 

3. Remove \u202f character 

for 1 in range(len(lines_to_use)): 

lines_to_use[l] = re.sub("\u202f", "", lines_to_use[1]) 

for 1 in range(len(lines_to_use)): 

lines_to_use[1] = re.sub("\d", " NUMBER_PRESENT ", lines_to_use[1]) 
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4, Append 'BEGIN _ 'and' _END' words to target sequences. Map words to integers. 

input_texts = [] 

target_texts = [] 

input_words = set() 

target_words = set() 

for line in lines_to_use: 

target_text, input_text = line.splitc¢'\t') 

target_text = 'BEGIN_ ' + target_text + ' _END' 

input_texts.append(input_text) 

target_texts.append(target_text) 

for word in input_text.split(): 

if word not in input_words: 

input_words.add(word) 

for word in target_text.split(): 

if word not in target_words: 

target_words.add(word) 

max_input_seq_length = max(Llen(i.split()) for i in input_texts]) 

max_target_seq_length = max(Llen(i.split()) for i in target_texts]) 

input_words = sorted(list(input_words) ) 

target_words = sorted(list(target_words)) 

num_encoder_tokens = len(input_words) 

num_decoder_tokens = len(target_words) 

5. Define encoder-decoder inputs. 

input_token_index = dict( 

C(word, i) for i, word in enumerate(input_words) ]) 

target_token_index = dict( 

[C(word, i) for i, word in enumerate(target_words) ]) 

encoder_input_data = np.zeros( 

(len(input_texts), max_input_seq_length), 

dtype='float32') ’ 

decoder_input_data = np.zeros( 

(len(target_texts), max_target_segq_length), 

dtype='float32' ) 

decoder_target_data = np.zeros( 

(len(target_texts), max_target_seq_length, num_decoder_tokens), 
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dtype='float32') 

for i, (input_text, target_text) in enumerate(zip(input_texts, target_ 
texts)): 

for t, word in enumerate(input_text.split()): 

encoder_input_data[i, t] = input_token_index[word] 
for t, word in enumerate(target_text.split()): 

decoder_input_dataLli, t] = target_token_index[word] 

cy a I * 

# decoder_target_data is ahead of decoder_input_data #by one 

timestep 

decoder_target_data[i, t - 1, target_token_index[word]] = 1. 

6. Build the model. 

from keras.layers import Input, LSTM, Embedding, Dense 

from keras.models import Model 

embedding_size = 50 

7. Initiate encoder training. 

encoder_inputs = Input(shape=(None, )) 

encoder_after_embedding = Embedding(num_encoder_tokens, embedding_size) 

(encoder_inputs) 

encoder_lstm = LSTM(5@, return_state=True)_, 

state_h, state_c = encoder_lstm(encoder_after_embedding) 

encoder_states = [state_h, state_c] 

8. Initiate decoder training. 

decoder_inputs = Input(shape=(None, )) 

decoder_after_embedding = Embedding(num_decoder_tokens, embedding_size) 

(decoder_inputs) 

decoder_lstm = LSTM(5@, return_sequences=True, return_state=True) 

decoder_outputs, _, _ = decoder_lstm(decoder_after_embedding, 

initial_state=encoder_states) 

decoder_dense = Dense(num_decoder_tokens, activation='softmax' ) 

decoder_outputs = decoder_dense(decoder_outputs ) 
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9. Define the final model. 

model = Model([encoder_inputs, decoder_inputs], decoder_outputs) 

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', 

metrics=['acc']) 

model .fit(Lencoder_input_data, decoder_input_data], 

decoder_target_data, 

batch_size=128, 

epochs=20, 

validation_split=0.05) 

10. Provide inferences to encoder and decoder 

# encoder part 

encoder_model = Model(encoder_inputs, encoder_states) 

# decoder part 

decoder_state_input_h = Input(shape=(50, )) 

decoder_state_input_c = Input(shape=(50, )) 

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] 

decoder_outputs_inf, state_h_inf, state_c_inf = decoder_lstm(decoder_ 

after_embedding, initial_state=decoder_states_inputs) 

decoder_states_inf = [state_h_inf, state_c_inf] 

decoder_outputs_inf = decoder_dense(decoder_outputs_inf ) 

decoder_model = Model( 

[decoder_inputs] + decoder_states_inputs, 

[decoder_outputs_inf] + decoder_states_inf) 

11. Reverse-lookup token index to decode sequences 

reverse_input_word_index = dict( 

(i, word) for word, i in input_token_index.items()) 

reverse_target_word_index = dict( 

(i, word) for word, i in target_token_index.items()) 

def decode_sequence(input_seq): 
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12. Encode input as a state vector 

states_value = encoder_model.predict(input_seq) 

13. Generate empty target sequence of length 1. 

target_seq = np.zeros((1,1)) 

14. Populate the first character of target sequence with the start character. 

target_seql®@, 0] = target_token_index['BEGIN_' ] 

15. Sampling loop for a batch of sequences 

stop_condition = False 

decoded_sentence = 

while not stop_condition: 

output_tokens, h, c = decoder_model.predict( 

[target_seq] + states_value) 

16. Sample a token. 

sampled_token_index = np.argmax(output_tokens) 

sampled_word = reverse_target_word_index[sampled_token_index ] 

decoded_sentence += ' ' + sampled_word 

17. Exit condition: either hit max length or find stop character. 

if (sampled_word == '_END' or 

len(decoded_sentence) > 60): 

stop_condition = True 

18. Update the target sequence (of length 1). 

target_seq = np.zeros((1,1)) 

target_seql0, 0] = sampled_token_index 

19. Update states 

states_value = [h, c] 

return decoded_sentence 
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20. Inference for user input: take in a word sequence, convert the sequence word by 

word into encoded. 

text_to_translate = "OU est ma voiture??" 

encoder_input_to_translate = np.zeros( 

(1, max_input_seq_length), 

dtype='float32') 

for t, word in enumerate(text_to_translate.split()): 

encoder_input_to_translate[®@, t] = input_token_index[word] 

decode_sequence(encoder_input_to_translate) 

The output is as follows: 

" Get a lot. END’ 

Figure 7.47: French to English translator 
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Chapter 8: State of the art in Natural Language Processing 

Activity 11: Build a Text Summarization Model 

Solution: 

1. Import the necessary Python packages and classes. 

import os 

import re 

import pdb 

import string 

import numpy as np 

import pandas as pd 

from keras.utils import to_categorical 

import matplotlib.pyplot as plt 

~matplotlib inline 

2. Load the dataset and read the file. 

path_data = "news_summary_small.csv" 

df_text_file = pd.read_csv(path_data) 

df_text_file.headlines = df_text_file.headlines.str.lower() 

df_text_file.text = df_text_file.text.str.lower() 

lengths_text = df_text_file. text. apply (len) 

dataset = list(zip(df_text_file.text.values, df_text_file. headlines. values) ) 

3. Make vocab dictionary. 

input_texts = [] 

target_texts = [] 

input_chars = set() 

target_chars = set() 

for line in dataset: 

input_text, target_text = list(line[@]), list(line[1]) 

target_text = ['BEGIN_'] + target_text + ['_END'] 

input_texts.append(input_text) 

target_texts.append(target_text) 

for character in input_text: 

if character not in input_chars: 

input_chars.add(character ) 
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for character in target_text: 

if character not in target_chars: 

target_chars.add(character ) 

input_chars.add("<unk>" ) 

input_chars.add("<pad>" ) 

target_chars.add('"<pad>") 

input_chars = sorted(input_chars) 

target_chars = sorted(target_chars) 

human_vocab = dict(zip(input_chars, range(len(input_chars)))) 

machine_vocab = dict(zip(target_chars, range(len(target_chars)))) 

inv_machine_vocab = dict(enumerate(sorted(machine_vocab) )) 

def string_to_int(string_in, length, vocab): 

Converts all strings in the vocabulary into a list of integers 

representing the positions of the 

input string's characters in the "vocab" 

Arguments: 

string == input string 

length -- the number of time steps you'd like, determines if the 

output will be padded or cut 

vocab -- vocabulary, dictionary used to index every character of your 

*string: 

Returns: 

rep -- list of integers (or '<unk>') (size = length) representing the 

position of the string's character in the vocabulary 

A, Convert lowercase to standardize. 

string_in = string_in. lower() 

string_in = string_in.replace(',','') 

if len(string_in) > length: 

string_in = string_inL: length] 

rep = list(map(lambda x: vocab.get(x, '<unk>'), string_in)) 
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if len(string_in) < length: 

rep += [vocab['<pad>']] * (length - len(string_in)) 

return rep 

def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty): 

X, Y = zip(*dataset) 

X = np.array([string_to_int(i, Tx, human_vocab) for i in X]) 

Y = [string_to_int(t, Ty, machine_vocab) for t in Y] 

print("X shape from preprocess: {}".format(X. shape) ) 

Xoh = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(human_vocab)), X))) 

Yoh = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(machine_vocab)), Y))) 

return X, np.array(Y), Xoh, Yoh 

def softmax(x, axis=1): 

"""Softmax activation function. 

# Arguments 

x : Tensor. 

axis: Integer, axis along which the softmax normalization is 

applied. 

# Returns 

Tensor, output of softmax transformation. 

# Raises 

ValueError: In case 'dim(x) == 1'. 
wow 

ndim = K.ndim(x) 

if ndim == 

return K.softmax(x) 

elif ndim > 2: 

e = K.exp(x - K.max(x, axis=axis, keepdims=True) ) 

s = K.sum(e, axis=axis, keepdims=True) 

returne/s 

else: 

raise ValueError('Cannot apply softmax to a tensor that is 1D') 
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5. Run the previous code snippet to load data, get vocab dictionaries and define 
some utility functions to be used later. Define length of input characters and 

output characters. 

Tx = 460 

Ty s= 15 

X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, 

Ty) 
Define the model functions (Repeator, Concatenate, Densors, Dotor) 

# Defined shared layers as global variables 

repeator = RepeatVector(Tx) 

concatenator = Concatenate(axis=-1) 

densorl = Dense(1@, activation = "tanh") 

densor2 = Dense(1, activation = "relu") 

activator = Activation(softmax, name='attention_weights' ) 

dotor = Dot(axes = 1) 

Define one-step-attention function: 

def one_step_attention(h, s_prev): 

Performs one step of attention: Outputs a context vector computed as a 

dot product of the attention weights 

"alphas" and the hidden states "h" of the Bi-LSTM. 

Arguments: 

h -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 

2*n_h) 

s_prev -- previous hidden state of the (post-attention) LSTM, numpy- 

array of shape (m, n_s) 

Returns: 

context -- context vector, input of the next (post-attetion) LSTM cell 

6. Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concate- 
nate it with all hidden states "a" 

s_prev = repeator(s_prev) 

7. Use concatenator to concatenate a and s_prev on the last axis (= 1 line) 

concat = concatenator([h, s_prev]) 
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8. Use densor1 to propagate concat through a small fully-connected neural network 
to compute the "intermediate energies" variable e. 

e = densor1(concat) 

9. Use densor2 to propagate e through a small fully-connected neural network to 
compute the "energies" variable energies. 

energies = densor2(e) 

10. Use "activator" on "energies" to compute the attention weights "alphas" 

alphas = activator(energies) 

11. Use dotor together with "alphas" and "a" to compute the context vector to be 
given to the next (post-attention) LSTM-cell 

context = dotor([alphas, h]) 

return context 

Define the number of hidden states for decoder and encoder. 

nh = 32 

ns = 64 

post_activation_LSTM_cell = LSTM(n_s, return_state = True) 

output_layer = Dense(len(machine_vocab), activation=softmax) 

Define the model architecture and run it to obtain a model. 

def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size): 

Arguments: 

Tx -- length of the input sequence 

Ty -- length of the output sequence 

n_h -- hidden state size of the Bi-LSTM 

n_s -- hidden state size of the post-attention LSTM 

human_vocab_size -- size of the python dictionary "human_vocab" 

machine_vocab_size -- size of the python dictionary "machine_vocab" 

Returns: 

model -- Keras model instance 

12. Define the inputs of your model with a shape (Tx,) 
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13. Define s@ and c®, initial hidden state for the decoder LSTM of shape (n_s,) 

X = Input(shape=(Tx, human_vocab_size), name="input_first") 

s@ = Input(shape=(n_s, ), name='sQ') 

cQ = Input(shape=(n_s,), name='cQ') 

s = s@ 

c = cQ 

14. Initialize empty list of outputs 

outputs = [] 

15. Define your pre-attention Bi-LSTM. Remember to use return_sequences=True. 

a = Bidirectional(LSTM(n_h, return_sequences=True) )(X) 

# Iterate for Ty steps 

for t in range(Ty): 

# Perform one step of the attention mechanism to get back the 

context vector at step t 

context = one_step_attention(h, s) 

16. Apply the post-attention LSTM cell to the "context" vector. 

# Pass: initial_state = [hidden state, cell state] 

S, _, ¢€ = post_activation_LSTM_cell(context, initial_state = 

[s,cu) 

17. Apply Dense layer to the hidden state output of the post-attention LSTM 

out = output_layer(s) 

18. Append "out" to the "outputs" list 

outputs. append(out) 

19. Create model instance taking three inputs and returning the list of outputs. 

model = Model(inputs=[X, s@, cQ0], outputs=outputs) } 

return model 

model = model(Tx, Ty, n_h, n_s, lenChuman_vocab), len(machine_vocab)) 

#Define model loss functions and other hyperparameters. Also #initialize 

decoder state vectors. 

opt = Adam(lr = 0.005, beta_1=0.9, beta_2=0.999, decay = 0.01) 
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model. compile(loss='categorical_crossentropy', optimizer=opt, 

metrics=['accuracy']) 

sQ@ = np.zeros((10000, n_s)) 

cQ = np.zeros((1000@0, n_s)) 

outputs = list(Yoh.swapaxes(0,1)) 

Fit the model to our data: 

model.fit([Xoh, s@, c@], outputs, epochs=1, batch_size=100) 

#Run inference step for the new text. 

EXAMPLES = ["Last night a meteorite was seen flying near the earth's 

moon." ] 

for example in EXAMPLES: 

source = string_to_int(example, Tx, human_vocab) 

source = np.array(list(map(lambda x: to_categorical(x, num_ 

classes=len(human_vocab)), source))) 

source = source[np.newaxis, :] 

prediction = model.predict([source, s@, cQ]) 

prediction = np.argmax(prediction, axis = -1) 

output = Linv_machine_vocab[Lint(i)] for i in prediction] 

print("source:", example) 

printC"output.",. *.’. joinCoutput)) 

The output is as follows: 

source: Last night a meteorite was seen flying near the earth's moon, 

output: aaaaa <pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad> 

Figure 8.18: Text summarization model output 
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Chapter 9: A practical NLP project workflow in an organisation 

Code for LSTM model 

1. Check if GPU is detected 

import tensorflow as tf 

tf. test. gpu_device_name() 

2. Setting up collar notebook 

from google.colab import drive 

drive.mount('/content/gdrive' ) 

# Run the below command in a new cell 

cd /content/gdrive/My Drive/Lesson-9/ 

# Run the below command in a new cell 

!unzip data.csv.zip 

3. Import necessary Python packages and classes. 

import os 

import re 

import pickle 

import pandas as pd 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.models import Sequential 

from keras.layers import Dense, Embedding, LSTM 

4, Load the data file. 

def preprocess_data(data_file_path): 

data = pd.read_csv(data_file_path, header=None) # read the csv 

data.columns = ['rating', 'title', 'review'] # add column names 

data['review'] = data['review'].apply(lambda x: x.lower()) # change 

all text to lower 
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dataL'review'] = data['review'].apply((lambda x: re.sub('[*a-zA-z0- 
9\s]','',x))) # remove all numbers 

return data 

df = preprocess_data('data.csv') 

Initialize tokenization. 

max_features = 2000 

maxlength = 250 

tokenizer = Tokenizer(num_words=max_features, split=' ') 

Fit tokenizer. 

tokenizer. fit_on_texts(df['review'].values) 

X = tokenizer.texts_to_sequences(df['review' ]. values) 

Pad sequences. 

X = pad_sequences(X, maxlen=maxlength) 

Get target variable 

y_train = pd.get_dummies(df.rating).values 

embed_dim = 128 

hidden_units = 100 

n_classes = 5 

model = Sequential() 

model.add(Embedding(max_features, embed_dim, input_length = X.shape[1])) 

model .add(LSTMChidden_units)) 

model.add(Dense(n_classes, activation='softmax')) 

model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics 

= ['accuracy']) 

print(model.summary()) 

9, Fit the model. 

model. fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15, 

validation_split=0. 2) 
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10. Save model and tokenizer. 

model.save('trained_model.h5') # creates a HDF5 file 'trained_model.h5' 

with open('trained_tokenizer.pkl', 'wb') as f: # creates a pickle file 

"trained_tokenizer.pkl' 

pickle.dump(tokenizer, f) 

from google.colab import files 

files. download('trained_model.h5' ) 

files. download('trained_tokenizer.pkl') 

Code for Flask 

1, Import the necessary Python packages and classes. 

import re 

import pickle 

import numpy as np 

from flask import Flask, request, jsonify 

from keras.models import load_model 

from keras.preprocessing.sequence import pad_sequences 

2. Define the input files and load in dataframe 

def load_variables(): 

global model, tokenizer 

model = load_model('trained_model.h5') 

model._make_predict_function() # https://github.com/keras-team/keras/ 

issues/6462 

with open('trained_tokenizer.pkl', 'rb') as f: 

tokenizer = pickle. load(f) 
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3. Define preprocessing functions similar to the training code: 

def do_preprocessing(reviews): 

processed_reviews = [] 

for review in reviews: 

review = review. lower() 

processed_reviews.append(re.sub('[*a-zA-z@-9\s]', '', review)) 

processed_reviews = tokenizer.texts_to_sequences(np.array(processed_ 

reviews) ) 

processed_reviews = pad_sequences(processed_reviews, maxlen=250) 

return processed_reviews 

4. Define a Flask app instance: 

app = Flask(__name__) 

5. Define an endpoint that displays a fixed message: 

@app.route('/') 

def home_routine(): 

return ‘Hello World!' 

6. We'll have a prediction endpoint, to which we can send our review strings. The 
kind of HTTP request we will use is a 'POST' request: 

@app.route('/prediction', methods=['POST' ]) 

def get_prediction(): 

# get incoming text 

# run the model 

if request.method == 'POST': 

data = request.get_json() 

data = do_preprocessing(data) 

predicted_sentiment_prob = model.predict(data) 

predicted_sentiment = np.argmax(predicted_sentiment_prob, axis=-1) 

return str(predicted_sentiment) 

7. Start the web server. 

if _.name__ == '__main__': 

# load model 

load_variables() 

app. run(debug=True) 



344 | Appendix 

8. Save this file as app. py (any name could be used). Run this code from the terminal 

using app. py: 

python app.py 

The output is as follows: 

Using TensorFlow backend. 

2019-83-24 23:08:25.948604: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions 

that this TensorFlow binary was not compiled to use: AVX2 FMA 

* Serving Flask app "app” (lazy loading) 

* Environment: production 

* Debug mode: on 

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) 

x Restarting with stat 

Using TensorFlow backend. 

2019-83-24 23:08:31.730337: 1 tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions 

that this TensorFlow binary was not compiled to use: AVX2 FMA 

* Debugger is active! 
* Debugger PIN: 150-665-765 

Figure 9.31: Output for flask 
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