

Deep	Learning	in	Python
Master	Data	Science	and	Machine	Learning	with	Modern	

Neural	Networks	written	in	Python,	Theano,	and	
TensorFlow

By:	The	LazyProgrammer	(http://lazyprogrammer.me)
	

	
	

	

http://lazyprogrammer.me

	
Introduction
	
Chapter	1:	What	is	a	neural	network?
	
Chapter	2:	Biological	analogies
	
Chapter	3:	Getting	output	from	a	neural	network
	
Chapter	4:	Training	a	neural	network	with	backpropagation
	
Chapter	5:	Theano
	
Chapter	6:	TensorFlow
	
Chapter	7:	Improving	backpropagation	with	modern	techniques	-	
momentum,	adaptive	learning	rate,	and	regularization
	
Chapter	8:	Unsupervised	learning,	autoencoders,	restricted	Boltzmann	
machines,	convolutional	neural	networks,	and	LSTMs
	
Chapter	9:	You	know	more	than	you	think	you	know
	
Conclusion
	

	
	

	

Introduction

	
	

	
Deep	 learning	 is	 making	 waves.	 At	 the	 time	 of	 this	 writing	 (March	 2016),
Google’s	AlghaGo	program	just	beat	9-dan	professional	Go	player	Lee	Sedol	at
the	game	of	Go,	a	Chinese	board	game.
	
	
	
Experts	 in	 the	 field	 of	 Artificial	 Intelligence	 thought	 we	 were	 10	 years	 away
from	 achieving	 a	 victory	 against	 a	 top	 professional	 Go	 player,	 but	 progress
seems	to	have	accelerated!
	
	
	
While	 deep	 learning	 is	 a	 complex	 subject,	 it	 is	 not	 any	more	difficult	 to	 learn
than	any	other	machine	learning	algorithm.	I	wrote	this	book	to	introduce	you	to
the	basics	of	neural	networks.	You	will	get	along	fine	with	undergraduate-level
math	and	programming	skill.
	
	
	
All	the	materials	in	this	book	can	be	downloaded	and	installed	for	free.	We	will
use	 the	 Python	 programming	 language,	 along	 with	 the	 numerical	 computing
library	Numpy.	 I	will	 also	 show	you	 in	 the	 later	 chapters	how	 to	build	a	deep
network	using	Theano	and	TensorFlow,	which	are	libraries	built	specifically	for
deep	learning	and	can	accelerate	computation	by	taking	advantage	of	the	GPU.
	

	
	
Unlike	other	machine	learning	algorithms,	deep	learning	is	particularly	powerful
because	 it	automatically	 learns	 features.	 That	means	 you	 don’t	 need	 to	 spend
your	 time	 trying	 to	 come	 up	with	 and	 test	 “kernels”	 or	 “interaction	 effects”	 -
something	only	statisticians	 love	 to	do.	 Instead,	we	will	 let	 the	neural	network
learn	 these	 things	 for	 us.	 Each	 layer	 of	 the	 neural	 network	 learns	 a	 different
abstraction	 than	 the	 previous	 layers.	 For	 example,	 in	 image	 classification,	 the
first	 layer	 might	 learn	 different	 strokes,	 and	 in	 the	 next	 layer	 put	 the	 strokes
together	 to	 learn	 shapes,	 and	 in	 the	next	 layer	put	 the	 shapes	 together	 to	 form
facial	features,	and	in	the	next	layer	have	a	high	level	representation	of	faces.
	
	
	
Do	 you	 want	 a	 gentle	 introduction	 to	 this	 “dark	 art”,	 with	 practical	 code
examples	 that	 you	 can	 try	 right	 away	 and	 apply	 to	 your	 own	 data?	 Then	 this
book	is	for	you.
	
	

	
	

	

	Chapter	1:	What	is	a	neural	network?
	
	

	
A	 neural	 network	 is	 called	 such	 because	 at	 some	 point	 in	 history,	 computer
scientists	were	trying	to	model	the	brain	in	computer	code.
	
	
	
The	 eventual	 goal	 is	 to	 create	 an	 “artificial	 general	 intelligence”,	which	 to	me
means	a	program	that	can	learn	anything	you	or	I	can	learn.	We	are	not	there	yet,
so	 no	 need	 to	 get	 scared	 about	 the	machines	 taking	 over	 humanity.	 Currently
neural	 networks	 are	 very	 good	 at	 performing	 singular	 tasks,	 like	 classifying
images	and	speech.
	
	
	
Unlike	 the	 brain,	 these	 artificial	 neural	 networks	 have	 a	 very	 strict	 predefined
structure.
	
	
	
The	 brain	 is	 made	 up	 of	 neurons	 that	 talk	 to	 each	 other	 via	 electrical	 and
chemical	 signals	 (hence	 the	 term,	 neural	 network).	 We	 do	 not	 differentiate
between	these	2	types	of	signals	in	artificial	neural	networks,	so	from	now	on	we
will	just	say	“a”	signal	is	being	passed	from	one	neuron	to	another.
	
	
	
Signals	 are	 passed	 from	 one	 neuron	 to	 another	 via	 what	 is	 called	 an	 “action

potential”.	It	 is	a	spike	in	electricity	along	the	cell	membrane	of	a	neuron.	The
interesting	thing	about	action	potentials	is	that	either	they	happen,	or	they	don’t.
There	is	no	“in	between”.	This	is	called	the	“all	or	nothing”	principle.	Below	is	a
plot	of	the	action	potential	vs.	time,	with	real,	physical	units.
	
	
	

	
These	 connections	 between	 neurons	 have	 strengths.	 You	 may	 have	 heard	 the
phrase,	 “neurons	 that	 fire	 together,	 wire	 together”,	 which	 is	 attributed	 to	 the
Canadian	neuropsychologist	Donald	Hebb.
	
	
	
Neurons	with	 strong	 connections	will	 be	 turned	 “on”	by	 each	other.	So	 if	 one
neuron	sends	a	signal	(action	potential)	to	another	neuron,	and	their	connection
is	 strong,	 then	 the	next	neuron	will	 also	have	an	action	potential,	would	could
then	be	passed	on	to	other	neurons,	etc.
	
	
	
If	the	connection	between	2	neurons	is	weak,	then	one	neuron	sending	a	signal	to

another	 neuron	might	 cause	 a	 small	 increase	 in	 electrical	 potential	 at	 the	 2nd
neuron,	but	not	enough	to	cause	another	action	potential.
	
	
	
Thus	we	can	think	of	a	neuron	being	“on”	or	“off”.	(i.e.	it	has	an	action	potential,
or	it	doesn’t)
	
	
	
What	does	this	remind	you	of?
	
	
	
If	you	said	“digital	computers”,	then	you	would	be	right!
	
	
	
Specifically,	neurons	are	the	perfect	model	for	a	yes	no,	true	false,	0	/	1	type	of
problem.	We	call	 this	“binary	classification”	and	the	machine	 learning	analogy
would	be	the	“logistic	regression”	algorithm.
	
	
	

	
The	above	image	is	a	pictorial	representation	of	the	logistic	regression	model.	It
takes	 as	 inputs	 x1,	 x2,	 and	 x3,	 which	 you	 can	 imagine	 as	 the	 outputs	 of	 other
neurons	or	some	other	input	signal	(i.e.	the	visual	receptors	in	your	eyes	or	the
mechanical	 receptors	 in	your	 fingertips),	and	outputs	another	 signal	which	 is	a
combination	of	these	inputs,	weighted	by	the	strength	of	those	input	neurons	to
this	output	neuron.
	
	
	
Because	 we’re	 going	 to	 have	 to	 eventually	 deal	 with	 actual	 numbers	 and
formulas,	let’s	look	at	how	we	can	calculate	y	from	x.
	
	
	

y	=	sigmoid(w1*x1	+	w2*x2	+	w3*x3)
	
	
	
Note	 that	 in	 this	 book,	 we	 will	 ignore	 the	 bias	 term,	 since	 it	 can	 easily	 be
included	in	the	given	formula	by	adding	an	extra	dimension	x0	which	is	always

equal	to	1.
	
	
	
So	 each	 input	 neuron	 gets	 multiplied	 by	 its	 corresponding	 weight	 (synaptic
strength)	and	added	to	all	the	others.	We	then	apply	a	“sigmoid”	function	on	top
of	that	to	get	the	output	y.	The	sigmoid	is	defined	as:
	

sigmoid(x)	=	1	/	(1	+	exp(-x))
	
	
	
If	you	were	to	plot	the	sigmoid,	you	would	get	this:
	

	
You	 can	 see	 that	 the	 output	 of	 a	 sigmoid	 is	 always	 between	0	 and	1.	 It	 has	 2
asymptotes,	so	that	the	output	is	exactly	1	when	the	input	is	+	infinity,	and	the
output	is	exactly	0	when	the	input	is	-	infinity.
	
	
	
The	output	is	0.5	when	the	input	is	0.
	

	
	
	
You	can	interpret	the	output	as	a	probability.	In	particular,	we	interpret	it	as	the
probability:
	
	
	

P(Y=1	|	X)
	
	
	
Which	can	be	read	as	“the	probability	that	Y	is	equal	to	1	given	X”.	We	usually
just	use	this	and	“y”	by	itself	interchangeably.	They	are	both	“the	output”	of	the
neuron.
	
	
	
To	get	a	neural	network,	we	simply	combine	neurons	together.	The	way	we	do
this	 with	 artificial	 neural	 networks	 is	 very	 specific.	 We	 connect	 them	 in	 a
feedforward	fashion.
	

	
I	have	highlighted	in	red	one	logistic	unit.	Its	inputs	are	(x1,	x2)	and	its	output	is
z1.	See	if	you	can	find	the	other	2	logistic	units	in	this	picture.
	
	
	
We	call	 the	layer	of	z’s	 the	“hidden	layer”.	Neural	networks	have	one	or	more
hidden	 layers.	 A	 neural	 network	 with	 more	 hidden	 layers	 would	 be	 called
“deeper”.
	
	
	
“Deep	learning”	 is	somewhat	of	a	buzzword.	 I	have	googled	around	about	 this
topic,	 and	 it	 seems	 that	 the	 general	 consensus	 is	 that	 any	 neural	 network	with
one	or	more	hidden	layers	is	considered	“deep”.
	
	

	

	

Exercise
	
	

	
Using	the	logistic	unit	as	a	building	block,	how	would	you	calculate	the	output
of	 a	 neural	 network	Y?	 If	 you	 can’t	 get	 it	 now,	 don’t	worry,	we’ll	 cover	 it	 in
Chapter	3.
	
	

	
	

	

Chapter	2:	Biological	analogies

	
	

	
I	described	in	the	previous	chapter	how	an	artificial	neural	network	is	analogous
to	 a	 brain	 physically,	 but	what	 about	with	 respect	 to	 learning	 and	 other	 “high
level”	attributes?
	
	

	

	Excitability	Threshold
	
	

	
The	output	of	a	 logistic	unit	must	be	between	0	and	1.	In	a	classifier,	we	must
choose	which	class	to	predict	(say,	is	this	is	a	picture	of	a	cat	or	a	dog?)
	
	
	
If	1	=	cat	and	0	=	dog,	and	the	output	is	0.7,	what	do	we	say?	Cat!
	
	
	
Why?	Because	our	model	is	saying,	“the	probability	that	this	is	an	image	of	a	cat
is	70%”.
	
	
	

	
The	50%	line	acts	as	the	“excitability	threshold”	of	a	neuron,	i.e.	the	threshold	at
which	an	action	potential	would	be	generated.
	
	

	

	Excitatory	and	Inhibitory	Connections
	
	

	
Neurons	 have	 the	 ability	 when	 sending	 signals	 to	 other	 neurons,	 to	 send	 an
“excitatory”	 or	 “inhibitory”	 signal.	 As	 you	 might	 have	 guessed,	 excitatory
connections	 produce	 action	 potentials,	 while	 inhibitory	 connections	 inhibit
action	potentials.
	
	
	
These	are	 like	 the	weights	of	a	 logistic	 regression	unit.	A	very	positive	weight
would	be	a	very	excitatory	connection.	A	very	negative	weight	would	be	a	very
inhibitory	connection.
	
	

	

	Repetition	and	Familiarity
	
	

	
“Practice	makes	 perfect”	 people	 often	 say.	When	you	practice	 something	over
and	over	again,	you	become	better	at	it.
	

	
	
Neural	networks	are	the	same	way.	If	you	train	a	neural	network	on	the	same	or
similar	examples	again	and	again,	it	gets	better	at	classifying	those	examples.
	
	
	
Your	 mind,	 by	 practicing	 a	 task,	 is	 lowering	 its	 internal	 error	 curve	 for	 that
particular	task.
	
	
	
You	 will	 see	 how	 this	 is	 implemented	 in	 code	 when	 we	 talk	 about
backpropagation,	the	training	algorithm	for	a	neural	network.
	
	
	
Essentially	what	we	are	going	to	do	is	do	a	for-loop	a	number	of	times,	looking
at	the	same	samples	again	and	again,	doing	backpropagation	on	them	each	time.
	
	

	

	Exercise
	
	

	
In	 preparation	 for	 the	 next	 chapter,	 you’ll	 need	 to	 make	 sure	 you	 have	 the
following	installed	on	your	machine:	Python,	Numpy,	and	optionally	Pandas.
	
	

	

	Chapter	3:	Getting	output	from	a	neural	network
	
	

	

	Get	some	data	to	work	with
	
	

	
Assuming	you	don’t	yet	have	any	data	to	work	with,	you’ll	need	some	to	do	the
examples	 in	 this	 book.	 https://kaggle.com	 is	 a	 great	 resource	 for	 this.	 I	would
recommend	 the	MNIST	 dataset.	 If	 you	want	 to	 do	 binary	 classification	 you’ll
have	to	choose	another	dataset.
	
	
	
The	data	you’ll	use	for	any	machine	learning	problem	often	has	the	same	format.
	
	
	
We	have	some	inputs	X	and	some	labels	or	targets	Y.
	
	
	
Each	sample	 (pair	of	x	and	y)	 is	 represented	as	a	vector	of	 real	numbers	 for	x
and	a	categorical	variable	(often	just	0,	1,	2,	…)	for	y.
	
	
	

https://kaggle.com

You	put	all	the	sample	inputs	together	to	form	a	matrix	X.	Each	input	vector	is	a
row.	So	that	means	each	column	is	a	different	input	feature.
	
	
	
Thus	 X	 is	 an	 N	 x	 D	 matrix,	 where	 N	 =	 number	 of	 samples	 and	 D	 =	 the
dimensionality	 of	 each	 input.	 For	 MNIST,	 D	 =	 784	 =	 28	 x	 28,	 because	 the
original	images,	which	are	28	x	28	matrices,	are	“flattened”	into	1	x	784	vectors.
	
	
	
If	y	 is	not	a	binary	variable	 (0	or	1),	you	can	 turn	 it	 into	a	matrix	of	 indicator
variables,	which	will	be	needed	later	when	we	are	doing	softmax.
	
	
	
So	for	 the	MNIST	example	you	would	 transform	Y	into	an	 indicator	matrix	(a
matrix	of	 0s	 and	1s)	where	Y_indicator	 is	 an	N	x	K	matrix,	where	 again	N	=
number	 of	 samples	 and	 K	 =	 number	 of	 classes	 in	 the	 output.	 For	MNIST	 of
course	K	=	10.
	
	
	
Here	is	an	example	of	how	you	could	do	this	in	Numpy:
	
	
	
def	y2indicator(y):
	
N	=	len(y)
	
ind	=	np.zeros((N,	10))
	

	
for	i	in	xrange(N):
	
ind[i,	y[i]]	=	1
	

	
return	ind
	
	
	
In	this	book,	I	will	assume	you	already	know	how	to	load	a	CSV	into	a	Numpy
array	or	Pandas	dataframe	and	do	basic	operations	 like	multiplying	and	adding
Numpy	arrays.
	

		
	

Architecture	of	an	artificial	neural	network
	
	

	
Unlike	biological	 neural	 networks,	where	 any	one	neuron	 can	be	 connected	 to
any	 other	 neuron,	 artificial	 neural	 networks	 have	 a	 very	 specific	 structure.	 In
particular,	they	are	composed	of	layers.
	
	
	
Each	 layer	 feeds	 into	 the	 next	 layer.	 There	 are	 no	 “feedback”	 connections.
(Actually	there	can	be,	and	these	are	called	recurrent	neural	networks,	but	they
are	outside	the	scope	of	this	book.)
	
	
	
You	 already	 saw	what	 a	 neural	 network	 looks	 like	 in	 Chapter	 1,	 and	 how	 to
calculate	the	output	of	a	logistic	unit.
	

	
	
	
Suppose	we	have	a	1-hidden	layer	neural	network,	where	x	is	the	input,	z	is	the
hidden	layer,	and	y	is	the	output	layer	(as	in	the	diagram	from	Chapter	1).
	
	

	
	

	

	

Feedforward	action
	
	

	
Let	us	complete	the	formula	for	y.	First,	we	have	to	compute	z1	and	z2.
	
	
	

z1	=	s(w11*x1	+	w12*x2)
	

z2	=	s(w21*x1	+	w22*x2)
	
	
	
s()	can	be	any	non-linear	function	(if	it	were	linear,	you’d	just	be	doing	logistic
regression).	The	most	common	3	choices	are,	1:
	
	
	
def	sigmoid(x):
	
return	1	/	(1	+	np.exp(-x))
	
	
	
Which	we	saw	earlier.
	
	
	

2,	the	hyperbolic	tangent:	np.tanh()
	
	
	
And	3,	the	rectifier	linear	unit,	or	ReLU:
	
	
	
def	relu(x):
	
if	x	<	0:
	
return	0
	
else:
	

	
return	x
	
	
	
Prove	to	yourself	that	this	alternative	way	of	writing	relu	is	correct:
	
	
	
def	relu(x):
	
return	x	*	(x	>	0)
	
	
	
This	latter	form	is	needed	in	libraries	like	Theano	which	will	automatically
calculate	the	gradient	of	the	objective	function.
	
	
	
And	then	y	can	be	computed	as:
	
	
	

y	=	s’(v1*z1	+	v2*z2)
	

	
	
Where	s’()	can	be	a	sigmoid	or	softmax,	as	we	discuss	in	the	next	sections.
	
	
	

	
Note	 that	 inside	 the	 sigmoid	 functions	 we	 simply	 have	 the	 “dot	 product”
between	the	input	and	weights.	It	is	more	computationally	efficient	to	use	vector
and	matrix	 operations	 in	Numpy	 instead	 of	 for-loops,	 so	we	will	 try	 to	 do	 so
where	possible.
	
	
	
This	 is	an	example	of	a	neural	network	using	ReLU	and	softmax	in	vectorized
form:
	
	
	
def	forward(X,	W,	V):
	
Z	=	relu(X.dot(W))
	
Y	=	softmax(Z.dot(V))
	

	
return	Y
	
	

	

	

Binary	classification
	
	

	
As	you	can	 see,	 the	 last	 layer	of	our	 simple	 sigmoid	network	 is	 just	 a	 logistic
regression	layer.	We	can	interpret	the	output	as	the	probability	that	Y=1	given	X.
	
	
	
Of	 course,	 since	 binary	 classification	 can	 only	 output	 a	 0	 or	 1,	 then	 the
probability	that	Y=0	given	X:
	
	
	
P(Y=0	|	X)	=	1	-	P(Y=1	|	X),
	
	
	
because	they	must	sum	to	1.
	
	

	

	

Softmax
	
	

	
What	 if	 we	 want	 to	 classify	 more	 than	 2	 things?	 For	 example,	 the	 famous
MNIST	dataset	contains	the	digits	0-9,	so	we	have	10	output	classes.
	
	
	
In	this	scenario,	we	use	the	softmax	function,	which	is	defined	as	follows:
	
	
	

softmax(a[k])	=	exp(a[k])	/	{	exp(a[1])	+	exp(a[2])	+	…	+	exp(a[k])	+	…	+
exp(a[K])	}

	
	
	
Note	that	the	“little	k”	and	the	“big	K”	are	different.
	
	
	
Convince	yourself	that	this	always	adds	up	to	1,	and	thus	can	also	be	considered
a	probability.
	
	

	

	Now	in	code!
	

	
	

	
Assuming	 that	you	have	already	 loaded	your	data	 into	Numpy	arrays,	you	can
calculate	the	output	y	as	we	do	in	this	section.
	
	
	
Note	that	there	is	a	little	bit	of	added	complexity	since	the	formulas	shown	above
only	calculate	the	output	for	one	input	sample.	When	we	are	doing	this	in	code,
we	typically	want	to	do	this	calculation	for	many	samples	simultaneously.
	
	
	
def	sigmoid(a):
	
return	1	/	(1	+	np.exp(-a))
	
	
	
def	softmax(a):
	
expA	=	np.exp(a)
	
return	expA	/	expA.sum(axis=1,	keepdims=True)
	
	
	
X,Y	=	load_csv(“yourdata.csv”)
	
W	=	np.random.randn(D,	M)
	
V	=	np.random.randn(M,	K)

V	=	np.random.randn(M,	K)
	
	
	
Z	=	sigmoid(X.dot(W))
	
p_y_given_x	=	softmax(Z.dot(V))
	
	
	
Here	“M”	is	the	number	of	hidden	units.	It	is	what	we	call	a	“hyperparameter”,
which	could	be	chosen	using	a	method	such	as	cross-validation.
	
	
	
Of	 course,	 the	 outputs	 here	 are	 not	 very	 useful	 because	 they	 are	 randomly
initialized.	What	 we	would	 like	 to	 do	 is	 determine	 the	 best	W	 and	V	 so	 that
when	we	take	the	predictions	of	P(Y	|	X),	they	are	very	close	to	the	actual	labels
Y.
	
	

	

	

Exercise
	
	

	
Add	the	bias	term	to	the	above	examples.
	
		

	

	
	
	

	

	Chapter	4:	Training	a	neural	network	with	
backpropagation
	
	

	
There	 is	 no	 way	 for	 us	 to	 “solve	 for	W	 and	 V”	 in	 closed	 form.	 Recall	 from
calculus	that	the	typical	way	to	do	this	is	to	find	the	derivative	and	set	it	to	0.	We
have	to	instead	“optimize”	our	objective	function	using	a	method	called	gradient
descent.
	
	
	
What	is	the	objective	function	we’ll	use?
	
	
	

J	=	-sum_from_n=1..N	(sum_from_k=1..K	(T[n,k]	*	logY[n,k]))
	
	
	
You’ll	notice	that	this	is	just	the	negative	log-likelihood.	(Think	about	how	you
would	calculate	the	likelihood	of	the	faces	of	a	die	given	a	dataset	of	die	rolls,
and	you	should	get	a	result	in	a	similar	form).
	
	
	
And	 if	 you	 turned	 your	 label/target	 variables	 (now	 called	 T)	 into	 an	 indicator
matrix	like	I	mentioned,	it	should	now	be,	well,	a	matrix,	thus	having	2	indices,
n	and	k,	as	above.
	

	
	
	
In	Numpy	this	could	be	calculated	as	follows:
	
	
	
def	cost(T,	Y):
	
return	-(T*np.log(Y)).sum()
	
	
	
So	now	 that	we	have	an	objective	 function,	how	do	we	optimize	 it?	We	use	a
method	called	“gradient	descent”,	where	we	“travel”	along	the	gradient	of	J	with
respect	to	W	and	V,	until	we	hit	a	minimum.
	
	
	
In	a	picture,	gradient	descent	looks	like	this.
	
	
	

	
	
	
	
	
Convince	 yourself	 that	 by	 going	 along	 the	 direction	 of	 the	 gradient,	 we	 will
always	end	up	at	a	“lower”	J	than	where	we	started.
	
	
	
In	 general,	 knowing	 how	 to	 compute	 the	 gradient	 is	 not	 necessary	 unless	 you
want	to	know	how	to	code	a	neural	network	yourself	in	Numpy,	which	we	do	in
my	 course	 at	 https://udemy.com/data-science-deep-learning-in-python.	 In	 this
book,	since	we	are	focusing	on	Theano	and	TensorFlow,	we	will	not	do	this.
	
	
	
Once	you	find	the	gradient,	you	want	to	take	small	steps	in	that	direction.
	

https://udemy.com/data-science-deep-learning-in-python

	
	
	
You	can	imagine	that	if	your	steps	are	too	large,	you’ll	just	end	up	on	the	“other
side”	of	the	canyon,	bouncing	back	and	forth!
	
	
	
Thus	we	do	our	weight	updates	like	so:
	
	
	

weight	=	weight	-	learning_rate	*	gradient_of_J_wrt_weight
	

	
	
In	a	more	“mathy”	form:
	
	
	

w	=	w	-	learning_rate	*	dJ/dw
	
	
	
Where	 the	 learning	 rate	 is	 a	 very	 small	 number,	 i.e.	 0.00001.	 (Note:	 if	 the
number	is	too	small,	gradient	descent	will	take	a	very	long	time.	I	show	you	how
to	optimize	this	value	in	my	Udemy	course).
	
	
	
That	is	all	there	is	to	it!
	

	
	
If	you	want	to	convince	yourself	 that	 this	works,	I	would	recommend	trying	to
optimize	a	function	you	already	know	how	to	solve,	such	as	a	quadratic.
	
	
	
For	example,	your	objective	would	be	J	=	x**2	+	x,	and	the	gradient	of	J	is	2x	+
1,	so	the	minimum	can	be	found	at	-1/2.
	
	
	
There	 is	 one	 slight	 problem	 with	 this	 update	 formula	 as	 it	 concerns	 neural
networks	-	and	that	is,	unlike	logistic	regression	which	has	a	global	minimum	-
with	neural	networks	you	are	susceptible	to	local	minima.
	
	
	
So	you	may	see	your	error	 curve	 fall	 and	 then	eventually	become	 flat,	but	 the
final	error	it	is	attempting	to	reach	is	not	the	best	possible	final	error.
	
	
	
Some	more	advanced	methods,	like	momentum,	can	help	alleviate	this	problem.
	
	

	

Why	is	it	called	“backpropagation”?
	
	

	
Consider	a	neural	network:

Consider	a	neural	network:
	
	
	
o--W--o--V--o
	

	
x					z					y
	
	
	
Where	I	have	replaced	the	usual	“multi-node”	vector	representations	of	x,	y,	and
z	by	single	nodes	representing	those	vectors.
	
	
	
This	becomes	more	convenient	when	you	consider	deeper	and	deeper	networks.
	
	
	
If	you	are	proficient	in	multi-variable	calculus	and	you	would	like	to	attempt	to
derive	the	gradient	of	J	yourself,	you	will	begin	to	notice	some	patterns.
	
	
	
First	is	that	the	error	at	“y”	is	always	“t	-	y”,	where	t	is	the	target	variable.
	
	
	
The	weight	V	depends	on	“t	-	y”	-	the	error	at	y.
	
	
	
When	you	derive	the	gradient	for	W,	you	will	notice	that	it	depends	on	the	error
at	z.
	
	
	

	
If	you	extended	this	network	to	have	more	than	1-hidden	layer,	you	would	notice
the	 same	pattern.	 It	 is	 a	 recursive	 structure,	 and	 you	will	 see	 it	 directly	 in	 the
code	in	the	next	section.
	
	
	
The	 error	 of	 a	 weight	 will	 always	 depend	 on	 the	 errors	 at	 the	 nodes	 to	 the
immediate	right	(which	themselves	depend	on	the	errors	to	the	right,	etc.)
	
	
	
This	 graphical	 /	 recursive	 structure	 is	 what	 allows	 libraries	 like	 Theano	 and
TensorFlow	to	automatically	calculate	gradients	for	you.
	
	
	
[Note:	 If	 you	 would	 like	 to	 see	 me	 derive	 the	 gradients	 with	 respect	 to	 the
various	weights	in	a	deep	neural	network	by	hand,	check	out	my	Udemy	course
at	https://www.udemy.com/data-science-deep-learning-in-python]
	
	

	

https://www.udemy.com/data-science-deep-learning-in-python

	

Exercise
	
	

	
Use	gradient	descent	to	optimize	the	following	functions:
	
	
	
maximize	J	=	log(x)	+	log(1-x),	0	<	x	<	1
	
	
	
maximize	J	=	sin(x),	0	<	x	<	pi
	
	
	
minimize	J	=	1	-	x^2	-	y^2,	0	<=	x	<=	1,	0	<=	y	<=	1,	x	+	y	=	1
	
	

	

	

More	Code
	
	

	
Before	we	start	 looking	at	Theano	and	TensorFlow,	I	want	you	 to	get	a	neural
network	 set	 up	 with	 just	 pure	 Numpy	 and	 Python.	 Assuming	 you’ve	 went
through	the	previous	chapters,	you	should	already	have	code	to	load	the	data	and
feed	the	data	into	the	neural	network	in	the	forward	direction.
	
	
	
#	…	load	data	into	X,	T…
	
#	…	initialize	W1	and	W2
	
	
	
def	forward(X,	W1,	W2):
	
Z	=	sigmoid(X.dot(W1))
	
Y	=	softmax(Z.dot(W2))
	
return	Y,	Z
	
	
	
def	grad_W2(Z,	T,	Y):
	
return	Z.T.dot(Y	-	T)

return	Z.T.dot(Y	-	T)
	
	
	
def	grad_W1(X,	Z,	T,	Y,	W2):
	
return	X.T.dot(((Y	-	T).dot(W2.T)		(Z(1	-	Z))))
	
	
	
for	i	in	xrange(epochs):
	
Y,	Z	=	forward(X,	W1,	W2)
	
W2	-=	learning_rate	*	grad_W2(Z,	T,	Y)
	
W1	-=	learning_rate	*	grad_W1(X,	Z,	T,	Y,	W2)
	
print	cost(T,	Y)
	
	
	
And	 watch	 the	 cost	 magically	 decrease	 on	 every	 iteration	 of	 the	 loop!	 Some
notes	about	this	code:
	
	
	
I	have	renamed	the	target	variables	T	and	the	output	of	the	neural	network	Y.	In
the	previous	chapter	I	called	the	targets	Y	and	the	output	of	the	neural	network
p_y_given_x.
	
	
	

	
Notice	we	return	both	Z	(the	hidden	layer	values)	as	well	as	Y	in	the	forward()
function.	That’s	because	we	need	both	to	calculate	the	gradient.
	
	
	
Don’t	 worry	 about	 how	 I	 calculated	 the	 gradient	 functions,	 unless	 you	 know
enough	calculus	to	derive	them	yourself	and	then	implement	them	in	code.
	
	
	
So	 what	 exactly	 is	 backpropagation?	 It	 just	 means	 the	 “error”	 is	 getting
propagated	backward	through	the	neural	network.	Notice	how	“Y	-	T”	shows	up
in	both	gradients.	If	you	had	more	than	1	hidden	layer	in	the	neural	network,	you
would	notice	more	patterns	emerge.
	
	
	
Notice	that	we	loop	through	a	number	of	“epochs”,	calculating	the	error	on	the
entire	 dataset	 at	 the	 same	 time.	 Refer	 back	 to	 chapter	 2,	 when	 I	 talked	 about
repetition	 in	 biological	 analogies.	 We	 are	 just	 repeatedly	 showing	 the	 neural
network	the	same	samples	again	and	again.
	
	

	

	

Exercise
	
	

	
Use	 the	 above	 code	 on	 the	MNIST	 dataset,	 or	 whatever	 dataset	 you	 chose	 to
download.	Add	the	bias	terms,	or	add	a	column	of	1s	to	the	matrix	X	and	Z	so
that	you	effectively	have	bias	terms.
	
	
	
In	 addition	 to	 printing	 the	 cost,	 also	 print	 the	 classification	 rate	 or	 error	 rate.
Does	a	lower	cost	guarantee	a	lower	error	rate?
	
	

	
	

	
	

	

Chapter	5:	Theano

	
	

	
Theano	is	a	Python	library	that	is	very	popular	for	deep	learning.	It	allows	you	to
take	 advantage	of	 the	GPU	 for	 faster	 floating	point	 calculations,	 since,	 as	 you
may	have	seen,	gradient	descent	can	take	quite	awhile.
	
	
	
In	this	book	I	show	you	how	to	write	Theano	code,	but	if	you	want	to	know	the
particulars	 about	 how	 to	 get	 a	machine	 that	 has	GPU	 capabilities	 and	 how	 to
tweak	your	Theano	code	and	commands	to	use	them,	you’ll	want	to	consult	my
course	at:	https://udemy.com/data-science-deep-learning-in-theano-tensorflow
	
	
	
	If	you	would	like	to	view	this	code	in	a	Python	file	on	your	computer,	please	go
to:
	
	
	
https://github.com/lazyprogrammer/machine_learning_examples/tree/master/ann_class2
	
	
	
The	relevant	files	are:
	

https://udemy.com/data-science-deep-learning-in-theano-tensorflow
https://github.com/lazyprogrammer/machine_learning_examples/tree/master/ann_class2

	
	
theano1.py
	
theano2.py
	
	

	

Theano	Basics
	
	

	
Learning	 Numpy	 when	 you	 already	 know	 Python	 is	 pretty	 easy,	 right?	 You
simply	have	a	few	new	functions	to	operate	on	special	kinds	of	arrays.
	
	
	
Moving	from	Numpy	to	Theano	is	a	whole	other	beast.	There	are	a	 lot	of	new
concepts	that	just	do	not	look	like	regular	Python.
	
	
	
So	let’s	first	talk	about	Theano	variables.	Theano	has	different	types	of	variable
objects	 based	 on	 the	 number	 of	 dimensions	 of	 the	 object.	 For	 example,	 a	 0-
dimensional	 object	 is	 a	 scalar,	 a	 1-dimensional	 object	 is	 a	 vector,	 a	 2-
dimensional	object	is	a	matrix,	and	a	3+	dimensional	object	is	a	tensor.
	
	
	
They	are	all	within	the	theano.tensor	module.	So	in	your	import	section:
	

	
	
import	theano.tensor	as	T
	
	
	
You	can	create	a	scalar	variable	like	this:
	
	
	
c	=	T.scalar(‘c’)
	
	
	
The	 string	 that	 is	 passed	 in	 is	 the	 variable’s	 name,	 which	 may	 be	 useful	 for
debugging.
	
	
	
A	vector	could	be	created	like	this:
	
	
	
v	=	T.vector(‘v’)
	
	
	
And	a	matrix	like	this:
	
	
	
A	=	T.matrix(‘A’)

A	=	T.matrix(‘A’)
	
	
	
Since	we	generally	haven’t	worked	with	tensors	in	this	book,	we	are	not	going	to
look	at	those.	When	you	start	working	with	color	images,	this	will	add	another
dimension,	 so	 you’ll	 need	 tensors.	 (Ex.	 a	 28x28	 image	 would	 have	 the
dimensions	3x28x28	since	we	need	to	have	separate	matrices	for	the	red,	green,
and	blue	channels).
	
	
	
What	is	strange	about	regular	Python	vs.	Theano	is	that	none	of	the	variables	we
just	created	have	values!
	
	
	
Theano	variables	are	more	like	nodes	in	a	graph.
	
	
	
(Come	to	think	of	it,	isn’t	the	neural	network	I	described	in	Chapter	1	simply	a
graphical	model?)
	
	
	
We	only	“pass	 in”	values	 to	 the	graph	when	we	want	 to	perform	computations
like	feedforward	or	backpropagation,	which	we	haven’t	defined	yet.	TensorFlow
works	in	the	same	way.
	
	
	
Despite	that,	we	can	still	define	operations	on	the	variables.
	

	
	
	
For	example,	if	you	wanted	to	do	matrix	multiplication,	it	is	similar	to	Numpy:
	
	
	
u	=	A.dot(v)
	
	
	
You	 can	 think	 of	 this	 as	 creating	 a	 new	 node	 in	 the	 graph	 called	 u,	 which	 is
connected	to	A	and	v	by	a	matrix	multiply.
	
	
	
To	 actually	 do	 the	 multiply	 with	 real	 values,	 we	 need	 to	 create	 a	 Theano
function.
	
	
	
import	theano
	
matrix_times_vector	=	theano.function(inputs=[A,v],	outputs=[u])
	
	
	
import	numpy	as	np
	
A_val	=	np.array([[1,2],	[3,4]])
	
v_val	=	np.array([5,6])
	

	
u_val	=	matrix_times_vector(A_val,	v_val)
	
	
	
Using	 this,	 try	 to	 think	 about	 how	 you	 would	 implement	 the	 “feedforward”
action	of	a	neural	network.
	
	
	
One	of	 the	 biggest	 advantages	 of	Theano	 is	 that	 it	 links	 all	 these	 variables	 up
into	a	graph	and	can	use	 that	 structure	 to	calculate	gradients	 for	you	using	 the
chain	rule,	which	we	discussed	in	the	previous	chapter.
	
	
	
In	 Theano	 regular	 variables	 are	 not	 “updateable”,	 and	 to	 make	 an	 updateable
variable	we	create	what	is	called	a	shared	variable.
	
	
	
So	let’s	do	that	now:
	
	
	
x	=	theano.shared(20.0,	‘x')
	
	
	
Let’s	also	create	a	simple	cost	function	that	we	can	solve	ourselves	and	we	know
it	has	a	global	minimum:
	
	

	
cost	=	x*x	+	x
	
	
	
And	 let’s	 tell	 Theano	 how	 we	 want	 to	 update	 x	 by	 giving	 it	 an	 update
expression:
	
	
	
x_update	=	x	-	0.3*T.grad(cost,	x)
	
	
	
The	 grad	 function	 takes	 in	 2	 parameters:	 the	 function	 you	 want	 to	 take	 the
gradient	of,	and	the	variable	you	want	the	gradient	with	respect	to.	You	can	pass
in	multiple	variables	as	a	list	into	the	2nd	parameter,	as	we’ll	be	doing	later	for
each	of	the	weights	of	the	neural	network.
	
	
	
Now	 let’s	create	a	Theano	 train	 function.	We’re	going	 to	add	a	new	argument
called	 the	 updates	 argument.	 It	 takes	 in	 a	 list	 of	 tuples,	 and	 each	 tuple	 has	 2
things	in	it.	The	first	thing	is	the	shared	variable	to	update,	and	the	2nd	thing	is
the	update	expression	to	use.
	
	
	
train	=	theano.function(inputs=[],	outputs=cost,	updates=[(x,	x_update)])
	
	
	

Notice	 that	 ‘x’	 is	not	 an	 input,	 it’s	 the	 thing	we	update.	 In	 later	 examples,	 the
inputs	will	be	the	data	and	labels.	So	the	inputs	param	takes	in	data	and	labels,
and	the	updates	param	takes	in	your	model	parameters	with	their	updates.
	
	
	
Now	we	simply	write	a	loop	to	call	the	train	function	again	and	again:
	
	
	
for	i	in	xrange(25):
	
cost_val	=	train()
	
print	cost_val
	
	
	
And	print	the	optimal	value	of	x:
	
	
	
print	x.get_value()
	
	
	
Now	let’s	take	all	these	basic	concepts	and	build	a	neural	network	in	Theano.
	
	

	

A	neural	network	in	Theano

	
	

	
First,	 I’m	going	 to	define	my	inputs,	outputs,	and	weights	 (the	weights	will	be
shared	variables):
	
	
	
thX	=	T.matrix('X')
	
thT	=	T.matrix('T')
	
W1	=	theano.shared(np.random.randn(D,	M),	'W1')
	
W2	=	theano.shared(np.random.randn(M,	K),	‘W2')
	
	
	
Notice	I’ve	added	a	“th”	prefix	to	the	Theano	variables	because	I’m	going	to	call
my	actual	data,	which	are	Numpy	arrays,	X	and	T.
	
	
	
Recall	that	M	is	the	number	of	units	in	the	hidden	layer.
	
Next,	I	define	the	feedforward	action.
	
	
	
thZ	=	T.tanh(thX.dot(W1))
	
thY	=	T.nnet.softmax(thZ.dot(W2))
	

	
	
	
T.tanh	 is	a	non-linear	 function	similar	 to	 the	sigmoid,	but	 it	 ranges	between	-1
and	+1.
	
	
	
Next	 I	 define	 my	 cost	 function	 and	 my	 prediction	 function	 (this	 is	 used	 to
calculate	the	classification	error	later).
	
	
	
cost	=	-(thT	*	T.log(thY)).sum()
	
prediction	=	T.argmax(thY,	axis=1)
	
	
	
And	 I	 define	 my	 update	 expressions.	 (notice	 how	 Theano	 has	 a	 function	 to
calculate	gradients!)
	
	
	
update_W1	=	W1	-	lr*T.grad(cost,	W1)
	
update_W2	=	W2	-	lr*T.grad(cost,	W2)
	
	
	
I	create	a	train	function	similar	to	the	simple	example	above:
	

	
	
train	=	theano.function(
	
inputs=[thX,	thT],
	
updates=[(W1,	update_W1),(W2,	update_W2)],
	
)
	
	
	
And	I	create	a	prediction	function	to	tell	me	the	cost	and	prediction	of	my	test	set
so	I	can	later	calculate	the	error	rate	and	classification	rate.
	
	
	
get_prediction	=	theano.function(
	
inputs=[thX,	thT],
	
outputs=[cost,	prediction],
	
)
	
	
	
And	similar	to	the	last	section,	I	do	a	for-loop	where	I	just	call	train()	again	and
again	until	convergence.	(Note	that	the	derivative	at	a	minimum	will	be	0,	so	at
that	 point	 the	weight	won’t	 change	 anymore).	This	 code	 uses	 a	method	 called
“batch	gradient	descent”,	which	iterates	over	batches	of	the	training	set	one	at	a
time,	 instead	of	 the	 entire	 training	 set.	This	 is	 a	 “stochastic”	method,	meaning

that	 we	 hope	 that	 over	 a	 large	 number	 of	 samples	 that	 come	 from	 the	 same
distribution,	we	will	converge	to	a	value	that	is	optimal	for	all	of	them.
	
	
	
for	i	in	xrange(max_iter):
	
for	j	in	xrange(n_batches):
	
Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
	
	
train(Xbatch,	Ybatch)
	
if	j	%	print_period	==	0:
	
cost_val,	prediction_val	=	get_prediction(Xtest,	Ytest_ind)
	
	

	
	

	

Exercise
	
	

	
Complete	the	code	above	by	adding	the	following:
	

	
	
	
A	function	to	convert	the	labels	into	an	indicator	matrix	(if	you	haven’t	done	so
yet)	 (Note	 that	 the	 examples	 above	 refer	 to	 the	 variables	 Ytrain_ind	 and
Ytest_ind	-	that’s	what	these	are)
	
	
	
Add	bias	 terms	at	 the	hidden	and	output	 layers	and	add	the	update	expressions
for	them	as	well.
	
	
	
Split	your	data	into	training	and	test	sets	to	conform	to	the	code	above.
	
	
	
Try	it	on	a	dataset	like	MNIST.
	
	

	

Chapter	6:	TensorFlow

	
	

	
If	you	would	like	to	view	this	code	in	a	Python	file	on	your	computer,	please	go
to:
	
	
	
https://github.com/lazyprogrammer/machine_learning_examples/tree/master/ann_class2
	
	
	
The	relevant	files	are:
	
	
	
tensorflow1.py
	
tensorflow2.py
	
	

	

TensorFlow	Basics
	
	

	

https://github.com/lazyprogrammer/machine_learning_examples/tree/master/ann_class2

	
TensorFlow	is	a	newer	library	than	Theano	developed	by	Google.	It	does	a	lot	of
nice	 things	 for	 us	 like	 Theano	 does,	 like	 calculating	 gradients.	 In	 this	 first
section	 we	 are	 going	 to	 cover	 basic	 functionality	 as	 we	 did	 with	 Theano	 -
variables,	functions,	and	expressions.
	
	
	
TensorFlow’s	web	site	will	have	a	command	you	can	use	to	install	the	library.	I
won’t	include	it	here	because	the	version	number	is	likely	to	change.
	
	
	
If	 you	 are	 on	 a	Mac,	 you	 may	 need	 to	 disable	 “System	 Integrity	 Protection”
(rootless)	 temporarily	by	booting	 into	 recovery	mode,	 typing	 in	csrutil	disable,
and	then	rebooting.	You	can	check	if	it	 is	disabled	or	enabled	by	typing	csrutil
status	in	your	console.
	
	
	
Once	 you	 have	 TensorFlow	 installed,	 come	 back	 to	 the	 book	 and	 we’ll	 do	 a
simple	matrix	multiplication	example	like	we	did	with	Theano.
	
	
	
Import	as	usual:
	
	
	
import	tensorflow	as	tf
	
	
	

With	TensorFlow	we	have	 to	 specify	 the	 type	 (Theano	variable	=	TensorFlow
placeholder):
	
	
	
A	=	tf.placeholder(tf.float32,	shape=(5,	5),	name='A')
	
	
	
	
	
But	shape	and	name	are	optional:
	
	
	
v	=	tf.placeholder(tf.float32)
	
	
	
	
	
We	 use	 the	 ‘matmul’	 function	 in	 TensorFlow.	 I	 think	 this	 name	 is	 more
appropriate	than	‘dot’:
	
	
	
u	=	tf.matmul(A,	v)
	
	
	
	
	

	
Similar	to	Theano,	you	need	to	"feed"	the	variables	values.	In	TensorFlow	you
do	the	"actual	work"	in	a	"session".
	
	
	
with	tf.Session()	as	session:
	
#	the	values	are	fed	in	via	the	argument	"feed_dict"
	
#	v	needs	to	be	of	shape=(5,	1)	not	just	shape=(5,)
	
#	it's	more	like	"real"	matrix	multiplication
	
output	=	session.run(w,	feed_dict={A:	np.random.randn(5,	5),	v:
np.random.randn(5,	1)})
	
	
	
print	output,	type(output)
	
	

	
	

	

Simple	optimization	problem	in	TensorFlow
	
	

	
Analogous	 to	 the	 last	 chapter	 we	 are	 going	 to	 optimize	 a	 quadratic	 in
TensorFlow.	 Since	 you	 should	 already	 know	 how	 to	 calculate	 the	 answer	 by
hand,	 this	 will	 help	 you	 reinforce	 your	 TensorFlow	 coding	 and	 feel	 more

comfortable	coding	a	neural	network.
	
	
	
Start	by	creating	a	TensorFlow	variable	(in	Theano	this	would	be	a	shared):
	
	
	
u	=	tf.Variable(20.0)
	
	
	
Next,	create	your	cost	function	/	expression:
	
	
	
cost	=	u*u	+	u	+	1.0
	
	
	
Create	an	optimizer.
	
	
	
train_op	=	tf.train.GradientDescentOptimizer(0.3).minimize(cost)
	
	
	
This	 is	 the	 part	 that	 differs	 greatly	 from	 Theano.	 Not	 only	 does	 TensorFlow
compute	 the	 gradient	 for	 you,	 it	 does	 the	 entire	 optimization	 for	 you,	without
you	having	to	specify	the	parameter	updates.
	

	
	
	
The	downside	to	this	is	you	are	stuck	with	the	optimization	methods	that	Google
has	implemented.	There	are	a	wide	variety	in	addition	to	pure	gradient	descent,
including	 RMSProp	 (an	 adaptive	 learning	 rate	 method),	 and
MomentumOptimizer	(which	allows	you	to	move	out	of	local	minima	using	the
speed	of	past	weight	changes).
	
	
	
I	 suspect	 that	 the	 full	 list	will	be	updated	 in	 the	near	 future,	 since	 forum	posts
indicate	that	Nesterov	momentum	is	currently	being	worked	on.
	
	
	
Next,	create	an	op	to	initialize	your	variables	(for	this	problem,	it’s	just	“u”):
	
	
	
init	=	tf.initialize_all_variables()
	
	
	
And	lastly,	run	your	session:
	
	
	
with	tf.Session()	as	session:
	
session.run(init)
	
for	i	in	xrange(12):
	

	
session.run(train_op)
	
print	"i	=	%d,	cost	=	%.3f,	u	=	%.3f"	%	(i,	cost.eval(),	u.eval())
	
	

	

A	neural	network	in	TensorFlow
	
	

	
Let’s	create	our	input,	target,	and	weight	variables.	Notice	I	have	again	omitted
the	bias	terms	for	you	to	do	as	an	exercise.	Also	notice	that	a	Theano	shared	=
TensorFlow	variable:
	
	
	
X	=	tf.placeholder(tf.float32,	shape=(None,	D),	name='X')
	
T	=	tf.placeholder(tf.float32,	shape=(None,	K),	name='T')
	
W1	=	tf.Variable(W1_init.astype(np.float32))
	
W2	=	tf.Variable(W2_init.astype(np.float32))
	
	
	
Let	me	 repeat,	 since	 it’s	kind	of	confusing	 -	a	Theano	variable	 !=	TensorFlow
variable.
	
	
	

	
We	 can	 specify	 “None”	 in	 our	 shapes	 because	we	want	 to	 be	 able	 to	 pass	 in
variable	lengths	-	i.e.	batch	size,	test	set	size,	etc.
	
	
	
Now	 let’s	 calculate	 the	 output	 (notice	 I’m	 using	 ReLU	 as	 my	 hidden	 layer
nonlinearity,	which	is	a	little	different	from	sigmoid	and	softmax):
	
	
	
Z	=	tf.nn.relu(tf.matmul(X,	W1))
	
Yish	=	tf.matmul(Z,	W2)
	
	
	
I	call	this	“Yish”	because	we	haven’t	done	the	final	softmax	step.
	
	
	
The	reason	we	don’t	do	this	is	because	it’s	included	in	how	we	compute	the	cost
function	 (that’s	 just	 how	 TensorFlow	 functions	 work).	 You	 don’t	 want	 to
softmax	 this	 variable	 because	 you’d	 effectively	 end	up	 softmax-ing	 twice.	We
calculate	the	cost	as	follows:
	
	
	
cost	=	tf.reduce_sum(
	
tf.nn.softmax_cross_entropy_with_logits(
	
Yish,

Yish,
	
T
	
)
	
)
	
	
	
While	 these	 functions	 probably	 all	 seem	 unfamiliar	 and	 foreign,	 with	 enough
consultation	 of	 the	 TensorFlow	 documentation,	 you	will	 acclimate	 yourself	 to
them.
	
	
	
Like	our	Theano	example,	we	want	to	create	train	and	predict	functions	also:
	
	
	
train_op	=	tf.train.RMSPropOptimizer(
	
learning_rate,
	
decay=0.99,
	
momentum=0.9).minimize(cost)
	
predict_op	=	tf.argmax(Yish,	1)
	
	
	

Notice	 how,	 unlike	 Theano,	 I	 did	 not	 even	 have	 to	 specify	 a	 weight	 update
expression!	 One	 could	 argue	 that	 it	 is	 sort	 of	 redundant	 since	 you	 are	 pretty
much	always	going	 to	use	w	+=	 learning_rate*gradient.	However,	 if	you	want
different	 techniques	 like	 adaptive	 learning	 rates	 and	momentum	you	are	 at	 the
mercy	of	Google.	Luckily,	their	engineers	have	already	included	RMSProp	(for
an	 adaptive	 learning	 rate)	 and	momentum,	which	 I	 have	 used	 above.	To	 learn
about	their	other	optimization	functions,	consult	their	documentation.
	
	
	
In	TensorFlow,	you	need	 to	call	 a	 special	 function	 to	 initialize	all	 the	variable
objects.	You	do	that	like	this:
	
	
	
init	=	tf.initialize_all_variables()
	
	
	
And	 then	 finally,	 you	 run	 your	 train	 and	 predict	 functions	 in	 a	 loop,	 inside	 a
session:
	
	
	
with	tf.Session()	as	session:
	
session.run(init)
	
	
	
for	i	in	xrange(max_iter):
	
for	j	in	xrange(n_batches):

	
Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
	
	
session.run(train_op,	feed_dict={X:	Xbatch,	T:	Ybatch})
	
if	j	%	print_period	==	0:
	
test_cost	=	session.run(cost,	feed_dict={X:	Xtest,	T:	Ytest_ind})
	
prediction	=	session.run(predict_op,	feed_dict={X:	Xtest})
	
print	error_rate(prediction,	Ytest)
	
	
	
Notice	we	are	again	using	batch	gradient	descent.
	
	
	
The	error_rate	function	was	defined	as:
	
	
	
def	error_rate(p,	t):
	
return	np.mean(p	!=	t)
	

	
	
Ytrain_ind	and	Ytest_ind	are	defined	as	before.
	
	

	

Exercise
	
	
	
Run	your	TensorFlow	neural	network	on	the	MNIST	dataset:
	
	
	
Create	a	1-hidden	layer	neural	network	with	500,	1000,	2000,	and	3000	hidden
units.	What	is	the	impact	on	training	error	and	test	error?
	
	
	
Create	neural	networks	with	1,	2,	and	3	hidden	layers,	all	with	500	hidden	units.
What	is	the	impact	on	training	error	and	test	error?	(Hint:	It	should	be	overfitting
when	you	have	too	many	hidden	layers).
	
	

	

Chapter	7:	Improving	backpropagation	with	
modern	techniques	-	momentum,	adaptive	
learning	rate,	and	regularization
	
	

	
All	of	 the	techniques	I	describe	in	this	section	are	simple	to	explain.	However,
this	simplicity	hides	their	usefulness	and	can	be	a	bit	misleading.
	
	
	
Why	do	I	say	this?
	
	
	
Every	single	one	of	these	techniques,	I	could	explain	to	you	in	a	few	minutes.
	
	
	
But	remember	that	what	we	are	doing	here	is	computer	science	-	programming.
	
	
	
The	simple	act	of	me	telling	you	an	equation	is	not	what	is	going	to	make	you
good.
	
	
	

If	I	elaborate	on	the	idea,	it	will	still	not	make	you	good.
	
	
	
If	 you	watch	me	 derive	 the	 equations	 on	YouTube,	 it	 will	 still	 not	make	 you
good.
	
	
	
If	you	watch	me	put	them	into	my	code,	it	will	still	not	make	you	good.
	
	
	
If	you	watch	me	run	the	code,	it	will	still	not	make	you	good.
	
	
	
So	how	do	you	get	good?
	
	
	
Well,	 this	 is	 the	 field	 of	 programming.	 So	 you	 have	 to	 program.	 Take	 the
equation,	 put	 it	 into	 your	 code,	 and	watch	 it	 run.	Compare	 its	 performance	 to
plain	backpropagation.
	
	
	
Take	your	time,	observe	and	experiment.
	
	
	
This	is	what	will	enhance	your	intuition	and	understanding.
	

	
	
	

	
Momentum
	
	
	
Momentum	 in	 gradient	 descent	works	 like	momentum	 in	 physics.	 If	 you	were
moving	 in	 a	 certain	 direction	 already,	 you	 will	 continue	 to	 move	 in	 that
direction,	carried	forward	by	your	momentum.
	
	
	
Momentum	is	defined	as	the	last	weight	change.
	
	
	
v(t)	=	dw(t	-	1)
	
	
	
The	next	weight	change	is	a	function	of	both	the	gradient	of	the	cost	with	respect
to	the	weights	and	the	momentum.
	
	
	
w(t)	=	w(t-1)	+	mu*v(t)	-	learning_rate*dJ(t)/dw
	
	
	
Where	mu	is	called	the	momentum	parameter	(usually	set	to	around	0.99).
	
	
	

	
You	can	simplify	this	as	follows:
	
	
	
dw(t)	=	mu*dw(t-1)	-	learning_rate*dJ(t)/dw
	
	
	
And	then:
	
	
	
w(t)	+=	dw(t)
	
	
	
Momentum	greatly	speeds	up	the	learning	process.
	
	
	

	
Adaptive	learning	rate
	
	
	
There	are	many	types	of	adaptive	 learning	rate,	but	 they	all	have	one	 theme	in
common	-	decreasing	over	time.
	
	
	
For	example,	you	could	just	halve	your	learning	rate	every	10	epochs.
	
	
	
e.g.
	
	
	
if	epoch	%	10	==	0:
	
learning_rate	/=	2
	
	
	
Another	method	is	inverse	decay:
	
	
	
learning_rate	=	A/(1	+	kt)
	
	
	

	
Another	method	is	exponential	decay:
	
	
	
learning_rate	=	A	*	exp(-kt)
	
	
	
A	more	modern	adaptive	method	is	AdaGrad.	This	involves	keeping	a	cache	of
the	weight	changes	so	far.	Each	dimension	of	each	weight	has	its	own	cache.
	
	
	
cache	=	cache	+	gradient	*	gradient
	
	
	
Notice	 that’s	 element-by-element	 multiplication	 as	 per	 Numpy	 convention.
Then:
	
	
	
w	-=	learning_rate	*	gradient	/	(sqrt(cache)	+	epsilon)
	
	
	
Where	epsilon	is	a	small	number	like	10^-10	to	avoid	dividing	by	0.
	
	
	
Researchers	have	found	that	AdaGrad	often	drops	too	aggressively.	RMSprop	is

another	method	similar	to	AdaGrad,	where	the	cache	is	“leaky”	(i.e.	only	holds	a
fraction	of	its	previous	value).
	
	
	
In	this	case:
	
	
	
cache	=	decay_rate	*	cache	+	(1	-	decay_rate)	*	grad^2
	
	
	
And	the	weight	update	formula	remains	the	same.
	
	
	

	
Regularization
	
	
	
L1	and	L2	regularization	have	been	well-known	for	a	long	time	and	have	been
applied	before	neural	networks	came	to	prominence.
	
	
	
L1	regularization	is	simply	just	the	usual	cost	added	to	the	absolute	value	of	the
weights	times	a	constant:
	
	
	
J_L1	=	J	+	L1_const	*	(|W1|	+	|b1|	+	|W2|	+	|b2|	+	…)
	
	
	
Similarly,	 L2	 regularization	 is	 just	 the	 usual	 cost	 added	 to	 the	 square	 of	 the
weights	times	a	constant:
	
	
	
J_L2	=	J	+	L2_const	*	(|W1|2	+	|b1|2	+	|W2|2	+	…)
	
	
	
Note	that	that’s	element-by-element	squaring.
	
	
	

	
Sometimes,	both	L1	and	L2	regularization	can	be	used	in	unison.
	
	
	
What’s	the	difference	between	these	two?	They	both	penalize	your	weights	from
going	 to	 infinity	 (which	 they	 are	bound	 to	do	 since	 the	pre-sigmoid	 activation
wants	to	go	as	close	to	infinity	as	possible).
	
	
	
The	 difference	 is	 that	 the	 derivative	 of	 the	 square	 function	 goes	 to	 0	 as	 you
approach	0.	So	L2	regularization	encourages	the	weights	 to	be	small.	But	once
they	are	small,	 the	penalty	also	becomes	small,	and	 the	gradient	of	 the	penalty
also	becomes	small,	so	the	influence	of	L2	regularization	decreases	here.
	
	
	
The	 derivative	 of	 the	 absolute	 value	 function	 is	 constant	 on	 either	 side	 of	 0.
Therefore,	 even	when	 your	 weights	 are	 small,	 the	 gradient	 remains	 the	 same,
until	you	actually	get	 to	0.	There,	 the	gradient	 is	 technically	undefined,	but	we
treat	 it	 as	 0,	 so	 the	 weight	 ceases	 to	 move.	 Therefore,	 L1	 regularization
encourages	 “sparsity”,	 where	 the	 weights	 are	 encouraged	 to	 be	 0.	 This	 is	 a
common	 technique	 in	 linear	 regression,	 where	 statisticians	 are	 interested	 in	 a
small	number	of	very	influential	effects.
	
	
	

	
Early	stopping
	
	
	
Stopping	 backpropagation	 early	 is	 another	 well-known	 old	 method	 of
regularization.	With	 so	 many	 parameters,	 you	 are	 bound	 to	 overfit.	 You	may
also	use	a	validation	set	to	help	with	early	stopping,	since	an	increase	of	the	cost
on	the	validation	set	would	mean	you	are	overfitting.
	
	
	

	
Noise	Injection
	
	
	
Adding	 random	 noise	 to	 your	 inputs	 during	 training	 is	 yet	 another	method	 of
regularization.	Usually,	we	choose	a	Gaussian-distributed	random	variable	with
0-mean	and	small	variance.	This	simulates	having	more	data	and	will	result	in	a
more	robust	predictor.
	
	
	

	
Data	Augmentation
	
	
	
Suppose	 the	 label	 for	your	 image	 is	 “dog”.	A	dog	 in	 the	center	of	your	 image
should	 be	 classified	 as	 dog.	 As	 should	 a	 dog	 on	 the	 top	 right,	 or	 top	 left,	 or
bottom	right,	or	bottom	left.	An	upside-down	dog	is	still	a	dog.	A	dog	of	slightly
different	color	is	still	a	dog.
	
	
	
By	 creating	 your	 own	 data	 and	 training	 on	 both	 the	 original	 data	 and	 hand-
crafted	data,	you	are	teaching	the	neural	network	to	recognize	different	variants
of	the	same	thing,	resulting	in	a	more	robust	predictor.
	
	
	
What	I	mentioned	above	was	translational	invariance,	rotational	invariance,	and
color	 invariance.	 Can	 you	 think	 of	 other	 invariances?	 Would	 rotational
invariance	work	with	MNIST?
	
	
	

	
Dropout
	
	
	
Dropout	 is	a	new	technique	 that	has	become	very	popular	 in	 the	deep	 learning
community	 due	 to	 its	 effectiveness.	 It	 is	 similar	 to	 noise	 injection,	 except	 that
now	the	noise	is	not	Gaussian,	but	a	binomial	bitmask.
	
	
	
In	 other	 words,	 at	 every	 layer	 of	 the	 neural	 network,	 we	 simply	multiply	 the
nodes	 at	 that	 layer	 by	 a	 bitmask	 (array	 of	 0s	 and	 1s,	 of	 the	 same	 size	 as	 the
layer).
	
	
	
We	usually	set	the	probability	of	1	(call	this	p)	to	be	0.5	in	the	hidden	layers	and
0.8	at	the	input	layer.
	
	
	
What	 this	does	 effectively	 is	 creates	 an	ensemble	of	neural	networks.	Because
every	node	can	either	be	“on”	or	“off”,	this	technique	emulates	an	ensemble	of
2^N	neural	networks.
	
	
	
This	method	is	called	“dropout”	because	setting	the	value	of	a	node	to	0	is	 the
same	as	completely	“dropping”	it	from	the	network.
	
	
	

	
We	only	set	nodes	 to	0	during	 the	 training	phase.	During	 the	prediction	phase,
we	instead	just	multiply	the	outgoing	weights	of	a	node	by	that	node’s	p.	Note
that	this	is	an	approximation	to	actually	calculating	the	output	of	each	ensemble
and	averaging	the	resulting	predictions,	but	it	works	well	in	practice.
	
	
	

	
One	Problem
	
	
	
What	do	all	these	methods	have	in	common?	While	they	work	well,	there	is	still
one	 major	 issue:	 they	 add	 more	 hyperparameters	 to	 your	 model!	 Thus,	 the
hyperparameter	search	space	becomes	even	larger.
	

	

Exercise
	
	
	
Add	 all	 of	 these	methods	 to	 your	 Theano	 code	 and	 experiment	with	 different
values.	Compare	to	vanilla	backpropagation.
	
	
	
Note	 that	 TensorFlow	 includes	 many	 of	 these	 methods	 in	 its	 optimizers,	 so
incorporating	them	into	your	training	with	TensorFlow	would	be	trivial.
	
	

	

	Chapter	8:	Unsupervised	learning,	
autoencoders,	restricted	Boltzmann	machines,	
convolutional	neural	networks,	and	LSTMs
	
	

	
Wow!	So	at	this	point,	you’ve	already	learned	what	I	consider	to	be	the	“basics”
of	 deep	 learning.	These	 are	 the	 fundamental	 skills	 that	will	 be	 carried	 over	 to
more	 complex	 neural	 networks,	 and	 these	 topics	 will	 be	 repeated	 again	 and
again,	albeit	in	more	complex	forms.
	
	
	
However,	I	don’t	want	to	leave	you	in	a	place	where	“you	don’t	know	what	you
don’t	know”.
	
	
	
There	is	lots	more	to	learn	about	deep	learning!	Where	do	you	go	from	here?
	
	
	
Well,	this	book	focused	primarily	on	“supervised	learning”,	which	I	think	makes
a	lot	more	sense	to	most	people.	You	want	to	teach	a	machine	how	to	behave	by
showing	it	examples	of	how	to	do	things	“correctly”,	while	“penalizing”	it	when
it	does	something	incorrectly.
	
	
	

But	 there	are	other	“optimization”	 functions	 that	neural	networks	can	 train	on,
that	don’t	 even	need	a	 label	 at	 all!	This	 is	 called	“unsupervised	 learning”,	 and
algorithms	 like	 k-means	 clustering,	 Gaussian	 mixture	 models,	 and	 principal
components	analysis	fall	into	this	family.
	
	
	
Neural	 networks	 have	 2	 popular	 ways	 of	 doing	 unsupervised	 learning:
Autoencoders	and	Restricted	Boltzmann	Machines.
	
	
	
Surprisingly,	 when	 you	 “pre-train”	 a	 neural	 network	 using	 either	 of	 these
unsupervised	methods,	it	helps	you	achieve	a	better	final	accuracy!
	
	
	
Deep	 learning	 has	 also	 been	 successfully	 applied	 to	 reinforcement	 learning
(which	 is	 rewards-based	 rather	 than	 trained	on	an	error	 function),	 and	 that	has
been	 shown	 to	 be	 useful	 for	 playing	 video	 games	 like	 Flappy	Bird	 and	 Super
Mario.
	
	
	
Special	 neural	 network	 architectures	 have	 been	 applied	 to	 particular	 problems
(whereas	we	have	been	talking	about	data	in	the	abstract	sense	in	this	book).
	
	
	
For	 image	 classification,	 convolutional	 neural	 networks	 have	 been	 shown	 to
perform	well.	These	use	the	convolution	operator	to	pre-process	the	data	before
feeding	it	into	the	final	logistic	layer.
	

	
	
For	sequence	classification,	LSTMs,	or	long	short-term	memory	networks	have
been	shown	to	work	well.	These	are	a	special	type	of	recurrent	neural	network,
which	up	until	recently,	researchers	have	been	saying	are	very	hard	to	train.
	
	
	
What	 other	 domains	 have	 you	 thought	 about	 applying	 deep	 learning	 to?	 The
stock	market?	Gambling?	Self-driving	vehicles?
	
	
	
There	is	tons	of	untapped	potential	out	there!
	
	

	
	

	
	

	

	

Exercise
	
	

	
Send	me	an	email	 at	 info@lazyprogrammer.me	and	 let	me	know	which	of	 the
above	 topics	you’d	be	most	 interested	 in	 learning	about	 in	 the	 future.	 I	always
use	student	feedback	to	decide	what	courses	and	books	to	create	next!
	

	
	
	

mailto:info@lazyprogrammer.me

	

Chapter	9:	You	know	more	than	you	think	you	
know
	
	

	
The	great	 thing	about	 the	digital	 format	 is	 I	can	update	 this	book	as	often	as	 I
need	or	want.
	
	
	
If	 you	 think	 a	 topic	 that	 is	 not	 currently	 included	 in	 this	 book	 should’ve	 been
included	in	this	book,	please	just	let	me	know.
	
	
	
Keep	in	mind	that	this	book	was	created	to	teach	you	the	fundamentals,	not	the
latest	and	greatest	research.	To	be	frank,	understanding	that	kind	of	stuff	is	going
to	take	you	months	or	perhaps	years	of	effort.	And	without	the	fundamentals,	it’s
not	going	to	make	much	sense	anyway.
	
	
	
Now	you	might	have	read	this	book	and	thought	to	yourself,	“wait	a	minute	-	all
you	 taught	 me	 was	 how	 to	 stack	 logistic	 regressions	 together	 and	 then	 do
gradient	descent,	which	is	an	algorithm	that	I	already	know	from	doing	logistic
regression?”
	
	
	

That’s	the	real	beauty	of	this.	My	job	as	a	teacher	is	to	make	things	seem	easy
for	you	as	a	student.
	
	
	
If	everything	seems	too	simple,	then	I’ve	done	my	job.
	
	
	
As	a	sidenote,	I	think	it’s	a	person’s	ego	that	makes	them	feel	like	they	need	to
learn	something	hard.	Don’t	let	your	ego	get	in	the	way	of	your	learning!
	
	
	
Now,	whereas	the	last	chapter	was	based	on	showing	you	what	you	don’t	know,
this	 chapter	 is	devoted	 to	 showing	you	what	you	DO	know,	and	you	probably
know	more	than	you	think	after	reading	this	book.
	
	
	

	
Logistic	Regression
	
	
	
First,	let’s	go	back	to	logistic	regression.	Remember	that	all	supervised	machine
learning	models	have	the	same	API.
	
	
	
train(X,	Y)	and	predict(X)
	
	
	
For	logistic	regression	this	is	simple.	Prediction	is:
	
	
	
y	=	s(Wx)
	
	
	
Training	is	similarly	simple.	We	just	take	the	derivative	of	the	cost	and	move	in
that	direction:
	
	
	
W	=	W	-	a*dJ/dW
	
	
	

Now	let’s	look	at	neural	networks.
	
	
	
Prediction	is	almost	the	same,	with	just	one	additional	step:
	
	
	
y	=	s(W1s(W2x))
	
	
	
How	 do	 we	 train?	 Same	 thing	 as	 before.	 Take	 the	 derivative,	 move	 in	 that
direction:
	
	
	
Wi	=	Wi	-	a*dJ/dWi

	
	
	
Remember	that	neural	networks	can	be	arbitrarily	deep,	so	we	can	have	W1,	W2,
W3,	and	so	on.
	
	
	
What	about	convolutional	neural	networks?	Prediction	is	again,	simply	just	the
addition	of	one	new	step:
	
	
	
y	=	s(W1s(W2	*	x)
	

	
	
	
The	*	operator	means	convolution,	which	you	learn	about	in	courses	like	signal
processing	and	linear	systems.
	
	
	
I	go	through	the	basics	of	convolution	and	how	it	can	be	used	to	do	things	like
add	 filters	 like	 the	 delay	 filter	 on	 sound,	 or	 edge	 detection	 and	 blurring	 on
images,	in	my	course	Deep	Learning:	Convolutional	Neural	Networks	in	Python.
	
	
	
How	do	we	train	a	CNN?	Same	as	before,	actually.	Just	take	the	derivative,	and
move	in	that	direction.
	
	
	
Wi	=	Wi	-	a*dJ/dWi

	
	
	
Hopefully	you’re	seeing	a	pattern	here.
	
	
	
What	about	recurrent	neural	networks?
	
	
	
Just	 like	 how	 we	 introduced	 one	 new	 thing	 with	 convolutional	 nets,	 we’ll

https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow

introduce	one	new	thing	here	-	time.
	
	
	
In	 particular,	we’ll	 split	 up	 the	 2	 calculations,	 so	 that	 the	 first	 calculation	 (the
state	of	the	hidden	unit),	can	depend	on	its	last	value.
	
	
	
Prediction	becomes:
	
	
	
h(t)	=	s(Wxx(t)	+	Whh(t-1))
	
y(t)	=	s(Woh(t))
	
	
	
If	you	guessed	that	the	way	we	train	these	is	by	taking	the	derivative	of	the	cost,
and	moving	in	that	direction,	you	would	be	correct!	Good	job!
	
	
	
Wi	=	Wi	-	a*dJ/dWi

	
	
	
So	what	 is	 the	moral	of	 this	 story?	Knowing	and	understanding	 the	method	 in
this	 book	 -	 gradient	 descent	 a.k.a.	 backpropagation	 is	 absolutely	 essential	 to
understanding	deep	learning.
	

	
	
Unfortunately,	 the	Kindle	 format	only	allows	me	 to	do	so	much	 in	 the	way	of
presenting	formulae,	however,	I	do	go	through	how	to	take	the	derivatives	in	my
online	video	courses.
	
	
	
There	 are	 instances	where	 you	 don’t	want	 to	 take	 the	 derivative	 anyway.	 The
difficulty	 of	 taking	 derivatives	 in	 more	 complex	 networks	 is	 what	 held	many
researchers	back	in	the	field.
	
	
	
Now,	 with	 tools	 like	 Theano	 and	 TensorFlow,	 which	 can	 do	 automatic
differentiation,	we	have	one	less	thing	to	worry	about.
	
	
	
Now	we	can	design	deep	networks	to	our	heart’s	content,	because	we	know	that
the	update	will	remain:
	
	
	
W	=	W	-	learning_rate	*	T.grad(cost,	W)
	
	
	
In	fact,	the	only	reason	a	handful	of	neural	network	architectures	have	“bubbled
up”	to	the	top	is	because	they	have	performed	well.
	
	
	

	
But	 good	 performance	 on	 benchmark	 datasets	 is	 not	 what	 makes	 you	 a
competent	 deep	 learning	 researcher.	 Many	 papers	 get	 published	 where
researchers	are	simply	attempting	some	novel	idea.	They	may	not	have	superior
performance	 compared	 to	 the	 state	 of	 the	 art,	 but	 they	 may	 perform	 on-par,
which	is	still	interesting.
	
	
	
All	research,	whether	it	led	to	success	or	failure,	got	us	to	where	we	are	today.
	
	
	
Don’t	forget	that	people	gave	up	on	neural	networks	for	decades.
	
	
	
This	is	more	about	creativity	and	thinking	big.
	

	
	
	

	

Conclusion
	
	

	
I	really	hope	you	had	as	much	fun	reading	this	book	as	I	did	making	it.
	
	
	
Did	you	find	anything	confusing?	Do	you	have	any	questions?
	
	
	
I	am	always	available	to	help.	Just	email	me	at:	info@lazyprogrammer.me
	
	
	
Do	 you	 want	 to	 learn	 more	 about	 deep	 learning?	 Perhaps	 online	 courses	 are
more	your	style.	I	happen	to	have	a	few	of	them	on	Udemy.
	
	
	
A	lot	of	the	material	in	this	book	is	covered	in	this	course,	but	you	get	to	see	me
derive	the	formulas	and	write	the	code	live:
	
	
	
Data	Science:	Deep	Learning	in	Python
	
	
	

mailto:info@lazyprogrammer.me
https://udemy.com/data-science-deep-learning-in-python

	
https://udemy.com/data-science-deep-learning-in-python
	
	
	
Are	you	comfortable	with	this	material,	and	you	want	to	take	your	deep	learning
skillset	to	the	next	level?	Then	my	follow-up	Udemy	course	on	deep	learning	is
for	 you.	 Similar	 to	 this	 book,	 I	 take	 you	 through	 the	 basics	 of	 Theano	 and
TensorFlow	-	creating	functions,	variables,	and	expressions,	and	build	up	neural
networks	from	scratch.	I	teach	you	about	ways	to	accelerate	the	learning	process,
including	batch	gradient	descent,	momentum,	and	adaptive	learning	rates.	I	also
show	you	live	how	to	create	a	GPU	instance	on	Amazon	AWS	EC2,	and	prove
to	 you	 that	 training	 a	 neural	 network	with	GPU	optimization	 can	be	 orders	 of
magnitude	faster	than	on	your	CPU.
	
	
	
Data	Science:	Practical	Deep	Learning	in	Theano	and	TensorFlow
	
	
	
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
	
	
	
When	 you’ve	 got	 the	 basics	 of	 deep	 learning	 down,	 you’re	 ready	 to	 explore
alternative	architectures.	One	very	popular	alternative	is	the	convolutional	neural
network,	 created	 specifically	 for	 image	 classification.	 These	 have	 promising
applications	in	medical	imaging,	self-driving	vehicles,	and	more.	In	this	course,	I
show	you	how	to	build	convolutional	nets	in	Theano	and	TensorFlow.
	
	
	

https://udemy.com/data-science-deep-learning-in-python
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow/
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow

Deep	Learning:	Convolutional	Neural	Networks	in	Python
	
	
	
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-
tensorflow
	
	
	
In	 part	 4	 of	 my	 deep	 learning	 series,	 I	 take	 you	 through	 unsupervised	 deep
learning	 methods.	 We	 study	 principal	 components	 analysis	 (PCA),	 t-SNE
(jointly	 developed	 by	 the	 godfather	 of	 deep	 learning,	 Geoffrey	 Hinton),	 deep
autoencoders,	 and	 restricted	Boltzmann	machines	 (RBMs).	 I	 demonstrate	 how
unsupervised	pretraining	on	 a	 deep	network	with	 autoencoders	 and	RBMs	can
improve	supervised	learning	performance.
	
	
	
Unsupervised	Deep	Learning	in	Python
	
	
	
https://www.udemy.com/unsupervised-deep-learning-in-python
	
	
	
Would	you	like	an	introduction	to	the	basic	building	block	of	neural	networks	-
logistic	 regression?	 In	 this	course	 I	 teach	 the	 theory	of	 logistic	 regression	 (our
computational	model	 of	 the	 neuron),	 and	 give	 you	 an	 in-depth	 look	 at	 binary
classification,	manually	creating	features,	and	gradient	descent.	You	might	want
to	check	this	course	out	if	you	found	the	material	in	this	book	too	challenging.
	
	
	

https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
https://www.udemy.com/unsupervised-deep-learning-in-python
https://www.udemy.com/unsupervised-deep-learning-in-python

	
Data	Science:	Logistic	Regression	in	Python
	
	
	
https://udemy.com/data-science-logistic-regression-in-python
	
	
	
To	get	an	even	simpler	picture	of	machine	learning	in	general,	where	we	don’t
even	need	gradient	descent	and	can	just	solve	for	the	optimal	model	parameters
directly	in	“closed-form”,	you’ll	want	to	check	out	my	first	Udemy	course	on	the
classical	statistical	method	-	linear	regression:
	
	
	
Data	Science:	Linear	Regression	in	Python
	
	
	
https://www.udemy.com/data-science-linear-regression-in-python
	
	
	
If	you	are	 interested	 in	 learning	about	how	machine	 learning	can	be	applied	 to
language,	 text,	 and	 speech,	 you’ll	 want	 to	 check	 out	 my	 course	 on	 Natural
Language	Processing,	or	NLP:
	
	
	
Data	Science:	Natural	Language	Processing	in	Python
	

https://udemy.com/data-science-logistic-regression-in-python
https://udemy.com/data-science-logistic-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python

	
	
https://www.udemy.com/data-science-natural-language-processing-in-python
	
	
	
If	you	are	 interested	 in	 learning	SQL	-	 structured	query	 language	 -	a	 language
that	can	be	applied	to	databases	as	small	as	 the	ones	sitting	on	your	iPhone,	 to
databases	as	large	as	the	ones	that	span	multiple	continents	-	and	not	only	learn
the	 mechanics	 of	 the	 language	 but	 know	 how	 to	 apply	 it	 to	 real-world	 data
analytics	and	marketing	problems?	Check	out	my	course	here:
	
	
	
SQL	for	Marketers:	Dominate	data	analytics,	data	science,	and	big	data
	
	
	
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
	
	
	
Finally,	I	am	always	giving	out	coupons	and	letting	you	know	when	you	can	get
my	stuff	for	free.	But	you	can	only	do	this	if	you	are	a	current	student	of	mine!
Here	are	some	ways	I	notify	my	students	about	coupons	and	free	giveaways:
	
	
	
My	newsletter,	which	you	can	sign	up	for	at	http://lazyprogrammer.me	(it	comes
with	a	free	6-week	intro	to	machine	learning	course)
	
	
	

https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
http://lazyprogrammer.me

	
My	Twitter,	https://twitter.com/lazy_scientist
	
	
	
My	 Facebook	 page,	 https://facebook.com/lazyprogrammer.me	 (don’t	 forget	 to
hit	“like”!)
	

https://twitter.com/lazy_scientist
https://facebook.com/lazyprogrammer.me

	Introduction
	Chapter 1: What is a neural network?
	Chapter 2: Biological analogies
	Chapter 3: Getting output from a neural network
	Chapter 4: Training a neural network with backpropagation
	Chapter 5: Theano
	Chapter 6: TensorFlow
	Chapter 7: Improving backpropagation with modern techniques - momentum, adaptive learning rate, and regularization
	Chapter 8: Unsupervised learning, autoencoders, restricted Boltzmann machines, convolutional neural networks, and LSTMs
	Chapter 9: You know more than you think you know
	Conclusion

